
HONEYWELL

FORTRAN
MANUAL

, SOFIVVARE

SUBJECT

LEVEL 68

MULTICS
FORTRAN MANUAL

Additions and Changes to Multics FORTRAN

SPECIAL INSTRUCTIONS

This manual supersedes AT58-02, dated December 1979, and its Addendum A,
dated August 1980. Throughout the manual, change bars in the margins indicate
technical additions and changes; asterisks denote deletions.

SOFTWARE SUPPORTED

Multics Software Release 9.1

ORDER NUMBER

AT58-03 December 1981

Honeywell

PREFACE

This document describes the FORTRAN language to be used on the Multics
system. It is intended as a reference rather than a users' manual. The user is
assumed to be familiar with some algebraic language. For further information
about how to use Multics FORTRAN, or for a FORTRAN-oriented introduction to the
Multics system, see the FORTRAN Users' Guide, Order No. CC70.

Warning

Multics FORTRAN is an implementation of FORTRAN IV as specified in American
Standard FORTRAN, X3.9-1966, with extensions, and features of FORTRAN 77 as
specified in American National Standard Programming Language FORTRAN, X3.9-1978.

Some but not all of the features of FORTRAN 77 are available only if the
program is compiled with the ansi77 option in effect. Only those features that

I

are incompatible with the ansi66 interpretation are under control of the ansi77
option. Almost all of the FORTRAN 77 standard features have now been implemented.
See Appendix B for a list of the incompatible differences between ansi66 and
ansi77.

It is possible to write FORTRAN programs that are, according to one of the
standards, invalid, and for these programs to compile and execute in Multics
wi thout reported error. It should be clearly understood that any program in
violation of the standard is not a valid program, and the results are undefined.
As such there is no guarantee that a program dependent on constructs and values
expressly stated to be undefined will produce correct or even consistent results
now or in the future. In this manual such constraints are identified by "must,"
"must not," "cannot," "invalid," "undefined," or "in error."

The information and specifications in this document are
subject to change without notice. This document contains
information about Honeywell products or IJelVi.ces that may
not be available outside the United States. Corurult your
Honeywell Marketing Representative.

~ Honeywell Information Systems Inc., 1982 File No.: 1L23

AT58-03

Notation

The notation of the metalanguage used in this manual is derived from that
of the American National Standard Programming Language FORTRAN, X3.9-1978. The
follbwing conventions apply:

1. Letters, subscripted letters, and words indicate generalized items that
must be replaced by particular items in actual statements.

2. Brackets, [J, indicate optional items. A sequence of repeated letters,
of which some are bracketed (as a[,aJ) indicates distinct items that
must be replaced by distinct items in actual statements.

3. An ellipsis, •.• , indicates that the preceding optional items may appear
zero or more times in succession.

, 4. Where blanks appear they are for enhanced readab il i ty, except where
noted otherwise.

Significant Changes in AT58-03B

Implementation of Large Arrays and Very Large Arrays.

Archive components can now be compiled.

Character constants may span multiple records in list-directed input.

Single record created from list-directed output.

Appendix A comparison of FORTRAN features extensively revised.

Only one feature of FORTRAN 77 is not yet added to Multics:

variable-expression array bounds

For purposes of clarity and ease of use, the MPM set has been reorganized.
The six former MPM manuals, the Tools manual, and the RCP Users' Guide have been
consolidated into a new set of three manuals.

Multics Programmer's Reference Manual (AG91)
contains all the reference material from the former eight manuals.

Multics Commands and Active Functions (AG92)
contains all the commands and active functions from the former eight
manuals.

Multics Subroutines and Input/Output Modules (AG93)
contains all the subroutines and I/O modules from the former eight
manuals.

The following manuals are obsolete:

Name

MPM Peripheral Input/Output
MPM Subsystem Writers' Guide
Programming Tools
MPM Communications I/O
Resource Control Users'Guide

Order No.

AX49
AK92
AZ03
CC92
CT38

References to these manuals still exist on pages not published wi th this
addendum. When this manual is revised, the references in the text to the old
manuals will be changed to reflect the new organization.

12/83 iii AT58-03B

Section 1

I

Section 2

Section 3

12/83

CONTENTS

Basic Elements of a FORTRAN Program
Compiler Function • • • • • • •
Statements • • • • • •

Order of Statements • • • • • •
Statement Labels • • • • • • • • •

Program Structure • • • • • •
Input Formats •••••••• • • • •

Free Format •• ••••••••
Comments •• •••••
Continuation Lines •
Blank Lines • • • • • • •
Semicolon • • • • • • • • • • •
Line Numbers •

Card-Image Format
The %include Statement
Language Options ••••

FORTRAN'S Compilation Options ••••
The %global Statement • • • • • • •
The %options Statement • • • •

Data Modes
Data Modes • • • • • . • • • • • • • • .

Constants •
Integer Mode • • • • • •

Internal Representation
Range . . • .
Constants •• • • . • • •

Real Mode • • • • • • • •.• • • • •
Internal Representation
Range •• • • • .
Constants •••••••

Double-Precision Mode • • • •
Internal Representation
Range . • • . • • • •
Constants ••...•••

Complex Mode • • . . • . .
Internal Representation . • • . .
Range • . • . • • • . . . • •
Constants •. • • . • . .

Logical Mode • . . . • • • .
Internal Representation
Range . . . • .
Constants

Character Mode • • • .
Constants
Octal Constants
Named Constants

Expressions • . . . • • .
Names
Variables . • • .
Arrays . . .

Subscripts .
Array Declaration

Assumed-Size Arrays
Storage Arrays .

Array Elements

iv

Page

1-1
1-1
1-1
1-2
1-3
1-3
1-3
1-4
1-4
1-4
1-4
1-4
1-5
1-5
1-6
1-6
1-7
1-7
1-10

2-1
2-1
2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-2
2-3
2-3
2-3
2-4
2-4
2-4
2-4
2-4
2-5
2-5
2-5
2-5
2-5
2-6
2-6
2-7
2-8

3-1
3-1
3-2
3-2
3-2
3-3
3-4
3-4
3-4. 1

AT58-03B

Section 4

Section 5

12/83

CONTENTS (cont)

Character Substrings • • • • • •
Function References • • • •
Mode Conversion • • • • •

To a Mode of Higher Rank
Integer to Real • • • •
Integer to Double Precision
Integer to Complex • • • • • • •
Real to Double Precision • • • •
Real to Complex • • • • • •
Double Precision to Complex

To Mode of a Lower Rank • •
Real to Integer • • • • • •
Double Precision to Real • • • •
Double Precision to Integer
Complex to Double Precision
Complex to Real • • • •
Complex to Integer • • • • • •

FORTRAN Operators • • • •
Arithmetic Operators • • • • •
Character Operator • • • • • • •
Relational Operators • • • •
Logical Operators

Executable Statements • • • • • • •
Assignment Statement • • • • • •
Assign Statement .• ••••
Arithmetic If Statement •••••
Logical If Statement • • • • • • .
Block if Statement • • . • • • •
Else Statement • • . • • • • . •
Else If Statement • • • • •
End If Statement • • . • • • •
Unconditional Go To Statement
Computed Go To Statement
Assigned Go To Statement
Do Statement • • •
Continue Statement
Call Statement • • • • •
Return Statement
Pause Statement
Stop Statement .
Inquire Statement
End Statement ••...

Input/Output
Input/Output Processing . • • •

Records •
Record Length • . • .
Files • . . • .
10 Transfer Limits •...•.
Access to files • . . • . .

Sequential Files • • • .
Direct Access Files

External and Internal Files
Units ..•...••....
The Terminal • . • •
Unit Attributes ...

Carriage Control . . • .
Default Carriage Control .
Default Input and Default Output •
Binary Stream Input/Output

Error Processing . • . . • • • .
Data Transfer Statements • . • . .

Read Statement

v

Page

3-4.1
3-5
3':'6
3-6
3-6

'3-6
3-6
3-6
3-7
3-7
3-7
3-7
3-7
3-8
3-8
3-8
3-8
3-8
3-9
3-10
3-11
3-12

4-1
4-1
4-3
4-3
4-3
4-4
4-5
4-5
4-6
4-6
4-7
4-7
4-7
4-9
4-9
4-10
4-11
4-12
4-12
4-14

5-1
5-1
5-1
5-2
5-2
5-2 I
5-2
5-2. 1
5-3
5-3
5-3
5-4
5-4
5-5
5-5
5-6
5-6
5-6
5-7
5-7

AT58-03B

Section 6

12/83

CONTENTS (cont)

End-of-File Record • • . .
Keywords . . • . . • • • . •
Formatted Sequential Read Statement
Formatted Direct Access Read Statement
Terminal Read Statement ••. . . . •
Unformatted Sequential Read Statement
Unformatted Direct Access Read

Statement • . • . . • • .
Decode Statement • • . .
Namelist Read Statement . • . . .

Write Statement . • • • . • • ...
Formatted Sequential Write Statement .
Formatted Direct Access Write

Statement . • . . • • . • • . •
Print Statement •. • . • • . . . • •
Unformatted Sequential Write Statement
Unformatted Direct Access Write
Statement • • • • • • .

Encode Statement • • • •. ••.•
Namelist Write Statement ..•..

I/O Control Statements .•••
Open Statement . • • • . .
Opening a Connected Unit •.•.•.•.
Close Statement • • • . • .
Rewind Statement . • . .
Backspace Statement . ..•.•••.
Endfile Statement . . . • . • .

Notes on Several Endfile Versions
Data Transfer Lists • • • • • . • . •
Implied Do-Loops • . •
Format Specifications

Control Items • • • • • • • • •
Field Descriptors • • .

Numeric Conversion . .•..
Integer Conversion
Floating-Point Conversion via fw.d ••
Floating-Point Conversion via ~w.d,

dw. d • . • . . . • . • • • • • . • •
Floating-Point Conversion via gw.d .
Floating-Point Conversion via eW.dee •
Floating-Point Conversion via gw.dee •
Complex Conversion .•.... - ••••

Scale Factor Effects • . • • • • • • • . • •
Character-String Field Descriptor
Octal-String Field Descriptor • • . .
Logical Field Descriptor • . • . • . •

Repeat Groups • • • • • • • • • • • • • •
Interaction Between Format and
Input/Output List •••••••••••

Format Statement • • . • • • • • . • . • • •
Format Specifications Contained In Arrays
List-Directed Input/Output • • • • • • • • •

List-Directed Input • • •
List-Directed Output

Namelist Statement •
Input • • • .
Output

Declarative Statements
Explicit Declarations
Variable Attributes
Initialization • • •
Implicit Typing
Implicit Statement .

vi

Page

5-8
5-8
5-8
5-9
5-9
5-10

5-10
5-11
5-11
5-12
5-13

5-13
5-13
5-14

5-14
5-14
5-15
5-16
5-16
5-21
5-21
5-22
5-22
5-22. 1
5-23
5-23
5-23
5-25
5-26
5-28
5-28
5-29
5-29

5-30
5-30
5-31
5-31
5-32
5-32
5-33
5-34
5-34
5-34

5-35
5-36
5-36
5-36
5-37
5-38
5-38
5-38
5-39

6-1
6-1
6-2
6-2
6-3
6-3

AT58-03B

Section 7

Section 8

Section 9

Section 10

Section 11

Appendix A

Append ix B

Index

Figure 1-1.
Figure 2-1.
Figure 2-2.
Figure 2-3.

12/83

CONTENTS (cont)

Mode Statement
Dimension Statement
Save Statement . .• . ••.
Automatic Statement •.•.
Common Statement•.
Data Statement . .•
Equivalence Statement
Ext ern a I S tat em en t . .
Intrinsic Statement
Parameter Statement

Functions • • • • . . .
Statement Functions
Built-in Functions.
Generic Functions

Subprograms • . . . • . • • • .
Block Data Subprograms • . . • •
Dummy Arguments of Subprograms .
Subroutine Subprogram s • .••.
Function Subprograms • . . • .
Entry Points • . . • • . • • . •

Multics FAST Subsystem Environment
Running a Program .
Termination of a Run
Compiling a Program
Separate Subprograms
Linking ..•.•.
Running a Subprogram
Pause Statement •.
Reserved Entry Names

Page

6-3
6-4
6-5
6-5
6-6
6-7
6-8
6-9
6-10
6-10

7-1
7-1
7-1
7-2

8-1
8-1
8-2
8-3
8-4
8-5

9-1
9-1
9-2
9-2
9-2
9-3
9-4
9-5
9-5

FORTRAN and the Multics Input/Output System .• 10-1
Files and I/O Switches. • . . • . .• • 10-1
Errors and Error Messages ••.••. . 10-2
Connecting Units to Files and Devices . 10-2

Details of Connection 10-3
Attaching ••••..•.•••..• 10-3
Opening ••••••. • ••.• 10-4
Assign Unit Attributes .•••.. 10-6

Examples
Change Maker •

FORTRAN Comparison

Differences Between Ansi66 and Ansi77 .

ILLUSTRATIONS

Order of Statements . • . • • .
Format of Real Data . . . • . .
Format of Double-Precision Data
Format of Complex Data . . • .

vii

. 11-1

. 11-1

A-1

B-1

i-1

1-2
2-2
2-3
2-4

AT58-03B

Table 3-1.
Table 7-1.
Table 10-1.
Table A-1.

12/83

CONTENTS (cont)

TABLES

Operands and Mode of Results
Built-In Functions ••.••
Opening Modes Used by FORTRAN
Comparison of FORTRAN Features

viii

Page

3-10
7-3

10-5
A-2

AT58-03B

SECTION 1

BASIC ELEMENTS OF A FORTRAN PROGRAM

A FORTRAN program consists of one or more distinct units, each of which can
be compiled separately. The term program unit is applied to any sequence of
FORTRAN statements and comment lines that is terminated by an end statement.
This can be a main program or one of the three defined types of subprogram:
subroutines, functions, and block data subprograms. Each executable program
must have one and only one main program, and can have any number of subroutine,
function, or block data subprograms. It is a feature of the Multics implementation
that a subroutine taking no arguments is directly executable from command level.

The execution of an executable program begins wi th the main program. Associated
program units are invoked by the call statement or by function references in
expressions, which are resolved to the subprograms compiled with the referencing
program unit or, if this fails, located using a linking mechanism specific to
the particular environment of the run (information on environment-related topics
is in the FORTRAN Users' Guide).

An executable program terminates either when a stop statement is executed
or when control reaches the end statement of a main program. (See the FORTRAN
Users' Guide for an explanation of the stop statement and the termination of an
~ •• ~~ .. ~~1-.' ~ _~~_~~_ \
CACCU~dU~C Vl-V~laW.J

COMPILER FUNCTION

Input to a compilation is the ASCII text representation of one or more
program units contained in a source segment or archive component. A main program I
must be the first program unit in the source segment in which it resides.

The output of compilation is an object segment, containing the binary
representation of the source text. Entry points are defined within this segment
for the beginning of each program unit and for additional entry points that may
have been defined within the subprograms. All of these entry points are valid
targets of call statements and function references when the program is executed,
whether or not the referencing program unit is compiled with the unit it calls.
Different program units in a single source segment are compiled in a single
object segment. Program units may also be compiled independently: the fact
that a program unit is not in the same object segment as the referencing program
does not alter the validity of the call statement or function reference.

STATEMENTS

A program unit is composed of statements that describe either some portion
of an algorithm or some aspect of the data to be processed. Comment lines can
appear anywhere within a program unit. Conventions for designating comment and
statement lines are described under "Program Structure" below. Not all the

12/83 1 -1 AT58-03B

statements described below are required in any given program unit, but when such
statements appear, the prescribed statement order must be followed.

Order of Statements

Statements in a FORTRAN program unit can be executable or nonexecutable
(the latter descriptive of data items or input/output formats). Format, declarative,
and data statements can appear anywhere after an implici t statement
-- if there is one -- and before the end statement. The %global and %option
statements must be the first statements in any program unit in which they appear.
Statement function definition stat ements must precede executable statements.
Declarative statements for a particular variable must precede the first executable
statement or the first namelist statement referencing that variable. A program
unit can contain at most one implicit statement, and a subprogram can contain no
more than one subroutine, one function, or one block data statement. The order

I of statements in a subprogram is the same as in a main program. A subprogram
must begin with a subroutine, function, or block data statement. By contrast,
the program statement in a main program is optional. If it is used, it must be
the first statement of the main program. The syntax of this statement is:

I program program_name

I where program name is the name given to the main program. It must conform to
the requirements of symbolic names, described in Section 3. The actual order
statements must follow is given in Figure 1-1 below.

When the program statement is used, the object segment produced will have
as its internal entry point name the name specified in the program statement.
If no program statement is used, the object segment will have the name "main ".
Note that the dynamic linker treats the name "main " specially (see the FORTRAN
Users' Guide), and this special treatment is not given to names supplied with
the program statement. .

%options or %global STATEMENTS

FUNCTION,SUBROUTINE,OR
BLOCK DATA STATEMENTS

IMPLICIT STATEMENT

COMMENT DECLARATIVE, STATEMENT
LINES FORMAT, FUNCTION

AND DATA DEFINITIONS
STATEHENTS

EXECUTABLE
AND ENTRY
STATEMENTS

END STATEMENT

Figure 1-1. Order of Statements

12/83 1-2 AT58-03B

A block data program is used to initialize variables in common blocks. The
first statement says "block data," followed by, in order, common statements for
the block or blocks being initialized, any declarative statements for the variables
within the common blocks, data statements initializing those variables that have
to be initialized and finally an end statement.

Statement Labels

In FORTRAN an unsigned integer of from 1 to 5 digits, containing no blanks,
and one of which must be nonzero, is used to label a format statement or an
executable statement, making it possible to reference that statement. The label
appears at the beginning of the first line of a statement, and need not be
separated from it by a delimiter. If line numbers are used (see "Line Numbers"
below), the label follows the line number and must be separated from it by at
least one blank character.

A statement label is not a line number.

Example:

5 a=b+c

go to 5

PROGRAM STRUCTURE

A FORTRAN program unit begins with the first statement in the source segment.
A statement begins with an initial line and may be continued on one or more
continuation lines. The text of a continued statement can be broken at any
point, since continuation text is appended directly to text on the preceding
line for compilation purposes. (In card-image format, the text on the preceding
line is always at most 72 characters in length. See "Input Formats" below.)

A program unit ends with an end statement.
nonblank characters are the letters "end". Any
this initial line are in error.

INPUT FORMATS

This is an initial line whose
continuation lines following

Two formats can be used to enter source program text: free and card-image.
In free format, the compiler interprets the line character by character. In,
card-image format, the compiler interprets the line according to distinct fields
corresponding to card columns.

The compiler ignores blank characters except wi thin a character-string
constant.

Example:

a = b + C

is equivalent to:

a=b+c

1-3 AT58-03

The compiler treats the ASCII horizontal tab character (HT) as a single
blank character (except within a character-string constant).

Comments can be included and are indicated using the conventions described
below. For example, in both input formats, a line that begins with an uppercase
or lowercase c is ignored by the compiler and can be used to contain comments.

Free Format

The compiler interprets free-format input text character by character according
to the conventions given below. A line that is neither a comment nor a continuation
line is an initial line. A blank line is permitted and is treated as an initial
line.

COMMENTS

A line whose first character is an uppercase or lowercase c is a comment
line, and is ignored except for listing purposes.

A line whose first nonblank character is an asterisk (*) or exclamation
mark (!) is a comment line, and is ignored except for listing purposes.

An exclamation mark, except within a character-string constant, is a comment
indicator at any point, and subsequent text on the containing line is a comment.

CONTINUATION LINES

A line whose first nonblank character is an ampersand (&) is a continuation
line, and subsequent text is concatenated to the text on the preceding line.

I BLANK LINES

I Blank lines are treated differently by the ansi66 and ansi77 options. The
ansi77 option treats them as comment lines and thus ignores them. The ansi66
option treats them as initial lines. Hence when a blank line precedes a continuation
line, the latter is treated as a continuation of the blank line.

SEMICOLON

The semicolon C;) can function as a separator to allow more than one statement
to appear on a line. Statements beginning after a semicolon on the same line as
the semicolon cannot have labels. A semicolon cannot appear on an end line.

1-4 AT5B-03

LINE NUMBERS

Line numbers, a free-format input option, are sequence numbers that do not
consti tute part of a program uni t and appear at the beginning of each line.
When line numbers appear, the first character on the line must be numeric. A
line number is an unsigned integer constant of five or fewer digits. The highest
line number allowable is 16383. The line number is -terminated by the first
nonnumeric character on a line, including the blank character. Embedded blanks
are, therefore, not permi tted. Line numbers must be unique and must be in
strictly ascending order. Line numbers appear on program listings and are used
to identify the erroneous statement for error messages during compilation.

Card-Image Format

Card-image format lines are restricted to 80 characters. The compiler prints
a warning message if a source program line exceeds this length. A completely
blank line is valid and is treated as an initial line in ansi66 and as a continuation I
line in ansi11. A line can contain less than 80 characters, in which case the
missing character positions are treated as blanks.

The interpretation of a line is based on the contents of the fields shown
below:

character position field

1-5 label

6 continuation

1-12 statement text

13-80 identification

12/83 1-5

interpretation

If the first character is a c,
C, or *, then this line is a comment
line.

If this line
line (not a
particular) ,
ignored.

is a continuation
comment line, in
this field is

If this line is an initial line,
this field must be all blank or
contain 1-5 numer ic char ac ter s;
the numerIC characters are
concatenated to form the statement
label.

If this line is a comment line,
this field is ignored.

If this field is blank or zero,
this is an initial line.

If this field is not blank or
zero, this is a continuation line.

Thi s field contain s tex t of a
statement; if the line is less
than 12 characters long, it is
extended to 12 characters by
inserting the appropriate number
of blank characters.

Thi s field is ignored for all
lines.

AT58-03B

The %include Statement

Syntax:

%include partial_segment_name

where partial segment name

I ". incl. fortran" suffix. A
space characters.

is the
partial

entryname of
segment name

an include file wi thout the
can consist of anything but

An include statement must appear alone on an initial line. The compiler
ignores anything on the line after the entryname of the include filee

The compiler processes the %include statement as follows: it appends the
".incl.fortran" suffix to the entryname and locates the include file using the
translator search list. The program is then compiled as if the %include statement
were a comment, and as if the include file itself were inserted between the
%include statement and the next statement in the source. The total length of
the name of the include file, after the addition of the suffix, must be no more
than 32 characters.

The %include statement is not a statement in FORTRAN as defined either by
the ANSI Standard or by Multics FORTRAN. Consequently both case and blanks have
significance, regardless of the compiler options selected (i.e., free-form or
card-image). The include file must be compatible with the input format of the
source program in which the %include statement appears.

An included segment may i tsel f contain a % include statement; the maximum
depth of nesting is 32 levels. Recursion of nested include files is not permitted.

There is, due to a system-wide restriction, a limit of 256 segments per
compilation, or the main source segment and 255 %include statements. In order
to ensure the proper working of the debugging facilities, multiple uses of a
single include file in different %include statements count as separate segments.

There is no restriction on the relationship between include file boundaries
and subprogram boundaries. A single subroutine may use more than one %include
statement, and a single include file may contain more than one subprogram. An
include file may contain the last part of one subprogram and the beginning of
another.

Language Options

Multics FORTRAN is being brought into conformance with the 1977 ANSI standard
for FORTRAN (FORTRAN 77). As this process is carried out, certain incompatible
changes to the language must be introduced. To reduce the impact of these
changes, two options are available for controlling the interpretation of constructs
whose meanings are different under FORTRAN 77.

Under the ansi66 option, the "old" interpretation of incompatible constructs
is used. The interpretation corresponds to the 1966 ANSI standard for FORTRAN
with many extensions specific to Multics FORTRAN.

Under the ansi77 option, the new interpretation of incompatible constructs
is used. The interpretation corresponds to the rules of FORTRAN 77.

1-6 AT58-03

The majority of language constructs, including many features of FORTRAN 77
and extensions specific to Multics FORTRAN have identical interpretations under
these two options. Only where FORTRAN 77 requires a different interpretation of
some construct already present in the ansi66 Multics FORTRAN language do these
options matter.

Appendix B contains a concise list of constructs which differ between the
ansi66 and ansi77 options. This list is not yet complete, and as Multics FORTRAN
approaches full conformance to FORTRAN 77 additional incompatible changes will
be placed under control of the ansi77 option.

These two options may be specified by control arguments on the command line
(-ansi66, -ansi77) and as keywords in %options and %global statements (ansi66,
ansi77). Only one of the two may be in effect for anyone program unit; ansi66
is presently the default.

FORTRAN'S Compilation Options I

The following tabs lists all of the options available with the FORTRAN compiler I
and indicates how each can be specified.

(AGO) ansi66 (A) long (A) non relocatable
(AGO) ansi77 (A) long profile (A) optImize
(AGO) auto (A) map - (A) profile
(AG) auto zero (AG) no auto zero (A) relocatable
(A) brief (A) - check (AGO) round no
(A) brief table (AGO) - check multiply (A) safe optimize no
(AGO) card (AGO) -no

-
fold (A) severityN

(A) check (AG) - large (AGO) static no array
(AGO) check multiply (A - line numbers (AGO) stringrange no
(AGO) default full (A no map (AGO) subscript range
(AGO) default - safe (A) - optimize (A) table no
(AGO) fold (AGO) - stringrange (A) time no
(AGO) free (AGO) -

no subscript range (A) time ot
(A) full optimize (A) - table (AGO) truncate no
(AG) large array (A) no version (A) version
(A) line numbers (AG) no very large array(AG) very - large - array
(A) list (AG) - vIa - (AG) vIa no parm parm - - -

Key: A = control argument, G = %global, 0 = %options

The %global Statement

The %global statement makes it possible to specify in the program itself
the options with which a source segment must be compiled, eliminating the need
to specify certain control arguments at compilation time. The %global statement
has the form:

%global <options>;

The options are specified by the keyword
keywords may be given with the statement,
terminated by a semicolon.

12/83 1-7

descriptors given below. Multiple
separated by commas. The list is

AT58-03B

I

I %global statements can be overridden by the fortran command's control arguments.
A warning message is printed when a %global statement is overridden. Following
is a list of keywords, with brief explanations, for the %global statement:

I
I
I
I

• ansi66
specifies that the program is to be interpreted according to the 1966
FORTRAN standard (or Multics specific extensions to it) in situations
where the 1977 standard is incompatible.

• ansi77

12/83

specifies that the program is to be interpreted according to the 1977
FORTRAN standard in situations where it is incompatible with the 1966
standard or Multics specific extensions to it.

• card
specifies that the source segment is in card-image format and that
uppercase letters are to be interpreted as lowercase outside of character
string constants. Conflicts with free.

• check multiply

•

checks single-precision overflows in integer multiplications. Conflicts
with no check multiply. This is the default unless optimization is
requested. -

no check multiply
inhibits- checking
multiplications.

for single-precision overflows in integer

• free

•

•

specifies that the program is in free-form format and that uppercase
and lowercase characters are distinct. Conflicts with card.

default full
sets the default optimization to "full optimize." Conflicts with
default safe. (This is assumed if no default option is specified.)

default safe
sets the default optimization to "safe_optimize."
default full.

Conflicts wi th

• fold

•

spec i fies that uppercase let ters are to be interpreted as lowercase
when they are not part of a character string constant. Conflicts with
no fold.

no fold
specifies that uppercase letters are not to be mapped into lowercase
form. Conflicts with fold.

• stringrange
produces additional code to allow substring range checklng to be performed
at run time. Conflicts with nostrg. Ignored if -optimize or
-safe_optimize is given on the command line.

1-8 AT58-03B

• no stringrange
inhibits the production of code to allow substring range checking.
Conflicts with strg.

• subscriptrange
produces additional code to allow subscriptrange to be checked at run
time. Conflicts with nosubrg. Ignored if -optimize or -safe_optimize
is given on the command line.

• no subscript range
inhibits the production of code to allow subscriptrange checking (i.e.,
by the -subscriptrange control argument). Conflicts with subrg.

• static
all local variables are allocated static storage so their values will
be retained between invocations. This option has the effect of a
generalized save statement. (See Section 6.) Conflicts with auto.
Ignored in any program unit in which a save or automatic statement
appears.

• auto
all local variables are allocated automatic storage in the stack frame.
Conflicts with static. Ignored in any program unit in which a save or
automatic statement appears. Note that since common variables are not
local variables, this keyword has no meaning for block data subprograms.

• round
specifies that intermediate and final resul ts of real and double-precision
calculations are to be rounded before they are stored. Conflicts with
truncate. This is the default.

• truncate

•

specifies that intermediate and final resul ts of real and double precision
calculations are to be truncated before they are stored. -Conflicts

auto zero
automatic
allocated.

storage for the program must
Conflicts with no auto zero.

be initialized to zero when
This is the default.

• no auto zero
automatTc storage for the program need not be initialized to zero when
allocated. Conflicts with auto zero.

• large array

•

specifies that the compiler is to take all arrays in static and automatic
and collect them for Large Array processing. This permits a very
large number of arrays which may each be up to a full segment in
length. Without this option, the aggregate stack frame size is limited
to 62000 words, and the combined linkage section is limited to 128K.
(Note the aggregate size of static for binding is 16K.) Conflicts
with no_large_array and very_Iarge_array.

no large array
specifies that large array support is not needed e

large_array.
Conflicts with I

• very large array

12/83

specTfies that the size of individual arrays may exceed a segment in
length. The present limit of individual arrays under this option is
2**24 words. A large number of such arrays may exist, up to the limit
of segment numbers for the process. This automatically sets the mode
of array sub-program parameters to VLA, which is a superset of normal
hardware addressing. The vIa option also sets the la option and provides
Large Arrays and Very Large Arrays. Conflicts with no_very_large_array
and large_array.

1-9 AT58-03B

I

I

• no very large array
specifies that very large array is not needed.
very_Iarge_arrays.

Conflicts with

• vIa parm

•

specifies that the size of parameters passed may exceed a segment in
length and that vIa addressing must be used for parameters. It also
permi ts the declaration of arrays which exceed a segment in length,
without placing smaller arrays into Large Array storage. This is useful
for the compilation of packages because it descreases startup overhead.
Conflicts with no_vla_parm.

no vIa parm
specifIes no very large array parameters. Conflicts with vla_parm.

The %global statement, when it is used, must precede all other statements
in the source segment, since it applies to all the program units in anyone
compilation. It cannot have a statement label, cannot be continued, and must
appear alone on a line. More than one %global statement may be used. If conflicting
options are specified in multiple %global statements, only the last specified
has any effect. Control arguments specified wi th the fortran command are overridden
by any conflicting keywords in the %global statement. Options duplicated by a
control argument and a %global keyword will take effect as if there were no
duplication.

The %options Statement

The %options statement makes it possible to specify in the program the
options with which a particular program unit is to be compiled, thereby allowing
program units that require different options to be compiled together in one
compiler run. The %options statement has the following form:

%options <options>;

The keywords are the same as for the %global statement, described above, except

I that auto zero, no auto zero, large array, no large array, very large array,
no_very_large_array~vla_parm and no_vla_parm cannot be given. - -

The %options statement affects only the immediately following program unit,
and overrides standard defaults, options specified in a %global statement, and
control arguments specified when the compiler is invoked.

The %options statement cannot have a statement label, cannot be continued,
and must appear alone on a line. More than one %options statement may be used
in the same program unit (main program or subprogram). The %options statement
must precede all other statements in the program unit, including subroutine or
function statements, if any, except the %global statement at the beginning of
the segment, if %global is used.

1-10 AT58-03B

SECTION 2

DATA MODES

Multics FORTRAN supports six data types, called modes: integer, real, double
precision, complex, logical, and character. All six modes can be written as
constants or literals within the text of a program unit, and can be assigned as
the values of variables or returned as the values of functions.

DATA MODES -----

Constants

A constant is a fixed, invariant quantity. Multics FORTRAN provides four
main kinds of constants: arithmetic, logical, character-string, and octal.

Arithmetic constants are integer, real, double precision, or complex numbers;
logical constants are • true. or. false.; character constants are alphabet ic
and/or numeric characters; and octal constants are base eight numbers.

The form of the constant determines both its value and mode. The parameter
statement makes it possible to give a constant a symbolic name (see "Named
Constants" below). Blanks in a constant have no significance, except in a
character-string constant.

An unsigned constant is a constant without a leading sign. A signed constant
is a constant with a leading plus or minus sign. An optionally signed constant
is either signed or unsigned.

Integer Mode

INTERNAL REPRESENTATION

An integer value occupies one 36-bit word of storage, in the form of a (2's
complement) binary integer.

RANGE

Integer values range from -34,359,738,368 to +34,359,738,367.

2-1 AT58-03

CONSTANTS

An integer constant is an optionally signed number without a decimal point.
An integer constant can have up to 11 decimal digits. Any 10-digit decimal
integer lies within the permitted range of integer values.

Examples:

Valid

+5
100
-25

2314132567

Real Mode ----

INTERNAL REPRESENTATION

Invalid

3,417 (comma not allowed)
456. 1 (decimal point not allgwed)

106143614218 (out of range _2 35 to 23 -1)

A real value occupies one 36-bit word of storage, in the form of a binary
single-precision floating-point number.

The internal representation has two parts: a mantissa or fractional part,
and an exponent. (These are represented in the following diagram by the EXP and
MANTISSA fields.)

RANGE

EXP MANTISSA

Figure 2-1. Format of Real Data

The value of such a real number is:

MANTISSA * 2**EXP

Bit 0 is the sign of the exponent.
Bit 8 is the sign of the number.

The largest magnitude (absolute va~~e) (ignoring sign) that can be represented
in Multics FORTRAN is 1.7014118360 10- that results in a larger magnitude will
cause the overflow condition to be signalled as the result of a hardware fault.

2-2 AT58-03

The smallest nonzer~8magnitude that can be represented in Multics FORTRAN
is 1.4693679385278 * 10- . Any arithmetic operation that results in a smaller
nonzero magnitude will cause the underflow condition to be signalled as the
result of a hardware fault.

CONSTANTS

A real constant is an optionally signed decimal number of up to eight
digits that contains either a decimal point, an exponent, or both. In the
absence of a decimal point, an exponent must appear9 and the decimal point is
assumed to be immediately to the right of the digit preceding the exponent. An
exponent is written as a lowercase letter e followed immediately by an optionally
signed integer constant, adhering to the rules given above for integer constants.

The value of a real constant containing an exponent is the number multiplied
by a power of 10, where the power of 10 is given in the exponent field. Hence,
"2000." is represented as "2.0e3". A decimal number containing a decimal point
but no exponent is considered to be a real (single-precision) constant, unless
there are more than eight digits in the number, in which case the number is
assumed to be a double-precision constant. If the number of digits is greater
than eight, a warning is printed out at compile time telling the user that a
double-precision constant has been created.

Examples:

Valid Invalid

1.0
1.5

-25·3
7.0e3

1 (no decimal point or exponent)
2e-40 (exponent is too small)
3dO (invalid single-precision exponentiation indicator, 3) I
2-e40 (this is really an expression)

1 . eO
+5.21e-5
-.3333e-10
5.e-15

.0
O.e-4

Double-Precision Mode

INTERNAL REPRESENTATION

A double-precision value occupies a 72-bit double word of storage on an
even boundary, in the form of a binary double-precision floating-point number.
The internal representation of a double precision value is the same as that of a
real-value, except that the mantissa has a second 36-bit word of storage, providing
for increased precision.

0 1 7 8 9 ~5

S EXP S MANTISSA

MANTISSA

Figure 2-2. Format of Double-Precision Data

2-3 AT58-03

RANGE

The range of double-precision values is the same as for real values.

CONSTANTS

Double-precision constants are identical to real constants, except that
either

• the character d is used as the exponentiation indicator instead of the
character e, or

• the number of significant digits in the constant is greater than 8 (it
may be as many as 19).

In the absence of a decimal point, an exponent must appear, and the decimal
point is assumed to be immediately to the right of the rightmost digit before
the exponent. If the exponent is omitted, the decimal point must appear and the
number must contain at least nine decimal digits. A warning message is printed,
indicating that the mode of the constant is being interpreted as double precision.
To suppress the warning message, always include a double precision exponent in
double precision constants.

Examples:

Valid

25d5
-1.5d-03

1234.567890

Complex Mode

Invalid

1 (no exponent or decimal point)
467. (not enough digits)
1d+40 (exponent too large)

INTERNAL REPRESENTATION

A complex value occupies two 36-bit words of storage on an even-word boundary,
in the form of an ordered pair of real values, the first word containing the
real part and the second word the imaginary part.

0 1 7 8_ q ~5

S EXP S MANTISSA

S EXP S MANTISSA

Figure 2-3. Format of Complex

2-4 AT58-03

RANGE

The range of values for each element of the ordered pair
is the same as for real values.

CONSTANTS

A complex constant is a
pair of integer or real constants, or one of each, separated by a comma and enclosed
in parentheses. DouD~e preclslon constants are not acceptable as either
the real or the imaginary part of a complex constant.

Examples:

Valid

(1.5, .3)

(-5., .0)

(25.3, -5.2e7)
(1, 5.2)
(3.7, 0)
(14.e20, 23.54321)
(1, 2.0e5)

Logical Mode

INTERNAL REPRESENTATION

Invalid

(1d3,123456789)
(wrong exponentiation indicator)
(1e3,1234567890)
(too many digits in external part)

Logical data occupies one 36-bit word of storage. The value true is represented
by the octal value 400000000000. The value false is represented by the octal
value 000000000000.

RANGE

Logical data may have the values .true. or .false.

CONSTANTS

Logical values are represented ln the source program by the constants .true.
and .false.

Examples:

Valid Invalid

.true. true (periods required)

.false.

2-5 AT58-03

Character Mode

Character data represents an ordered sequence of ASCII characters stored in
from 1 to 64 words. Each word, except the last, contains four characters; the
last word may contain from one to four characters. The maximum number of characters
allowed in a single character string is 256.

In the ansi66 implementation, all character variables and array elements
are stored as aligned character strings, that is, starting on a word boundary in
the computer memory. For the purposes of storage layout, array elements are
padded to a multiple of 4 characters. These pad characters are not part of any
character data but exists only to align the array elements at a word boundary.

In the ansi77 implementation, character variables may be stored as unaligned
character strings, that is, each array element immediately follows the preceding
element wi th no intervening padding and thus may begin at character positions
that are not word boundaries.

For example, in the ansi66 implementation an array declared as

character*3 alpha (4)

is stored as:

xx
xx

xx
xx

xx
xx

xx
xx
xx
xx

\. __ -..y __ ~A ___ y ___ -'A'-__ T". __ ~A'-__ y-,... ___ I

alpha(1) alpha(2) alpha(3) alpha(4)

Here, each of the 4 words stores an array element of 3 characters. The last
byte of each word is unused so that the next element can begin at a word
boundary.

In the ansi77 implementation this array is stored as:

I::: I::: I::: 1
'----y---A---y-~"---v----"

alpha(1) alpha(2) alpha(3) alpha(4)

Scalar character variables which ~ppear in common blocks or equivalence
groups may begin off word boundaries if the ansi77 option is in effect.

CONSTANTS

Character data can be represented in the text of a program by character-string
constants. A character-string constant can be expressed in ei ther of the two
forms described below.

2-6 AT58-03

One form of character-string constant consists of a sequence of one or more
contiguous ASCII characters enclosed either in quotation marks or apostrophes.
When quotation marks are used to delimit it, any quotation marks in the actual
string must be doubled. Similarly, any apostrophes embedded in a character
string delimited by apostrophes must be doubled.

Examples:

"This is a character-string constant"
'This is a "character-string" constant'
"This string contains "" and '."

The second form used to express a character-string constant begins with an
unsigned integer constant indicating the length of the string. This is followed
immediately by the letter h followed by a string of ASCII characters whose
length is equal to the value of the integer constant. There are no restrictions
on the characters that can appear as part of the string.

Examples:

35hThis is a character-string constant
29hThis string contains " and '

The FORTRAN 77 Standard does not include this second form. Multics, however, I
at present supports Hollerith character-string constants under both the ansi66
and ansi77 options.

A character-string constant can appear in the following contexts: on the
right-hand side' of an assignment statement; as an initial value in a data statement;
as an argument of a call statement or a function reference; as a format specification
in an input/output statement; as an operand of a relational operator; as an
operand of the concatenation operator; and in a parameter statement.

OCTAL CONSTANTS

An octal constant is a numeric string preceded by a lowercase letter o.
The numeric string can consist of from 1 to 24 octal (base eight) digits. Octal
constants may be written only as initial values in a data statement.

When an octal constant is stored as the initial val ue of a variable, the
bit value represented by the constant is right justified within the storage area
allocated for the variable. Integer and real variables contain 12 octal digits;
double precision and complex variables contain 24. If fewer digits are expressed,
the constant will be padded on the left with zeroes; if more are expressed,
excess left-hand digits will be truncated. See the various data modes in this
section for the particulars.

Examples:

07777
054177
01

2-7 AT58-03

NAMED CONSTANTS

A named constant can appear in most of the same contexts where a constant
of the same mode can appear. An integer named constant cannot be used as either
part of a complex constant, although a real named constant is allowed. A named
constant cannot specify a statement label, appear within a format specification,
or be used to where the syntax would be ambiguous. For example:

parameter (len=3)
character*len a
character b*len

The declaration of a is in error; the declaration of b is allowed. See the
parameter statement for a description of how to declare named constants.

2-8 AT58-03

SECTION 3

EXPRESSIONS

In FORTRAN, the term expression applies to any language construct that
represents a value, including arithmetic, character, relational, and logical
expressions. The simplest form of expression is a constant (described in Section 2),
a variable reference, array element reference, or function reference, described
below. More complicated expressions combine one or more operands with operators
and parentheses.

NAMES

The programmer can construct symbolic names to ident i fy or represent the
following program entities:

main program
variables
subprogram entries
arrays
statement functions
common blocks
namelists
named constants

Names are constructed using any alphabetic or numeric characters and the
characters dollar sign ($) and underscore (). The first character must be
alphabetic. Only one $ is permitted in a name. An alphabetic character is any
one of the lowercase or uppercase letters of the alphabet. A numeric character
is anyone of the decimal digits 0-9.

Normally, the Mul tics system makes a distinction between uppercase and lowercase
(e.g., A10 is not the same name as a10). If the user selects the -fold control
argument in compiling, however, all uppercase letters are converted to lowercase
(except within character-string constants). The -fold control argument is implied
by card-image input (i.e., -card control argument).

Programmer-constructed names for variables, arrays, and namelists can be
from 1 to 256 characters long. The first nine characters of a variable name
cannot be "parameter."

The names "main" and "symbol table" are used internally by the Multics
system and cannot be used as entry point names.

3-1 AT58-03

I

Names used to identify generic functions, built-in functions, or keywords
are defined by the language. All such names consist of lowercase alphabetic
and/or numeric characters only. The programmer is free to use these names for
his own purposes, but such mul tiple use is generally considered to be a poor
programming pract ice. In general in the Mul tics system, because of dynamic
linking, name duplications should be avoided. (See the FORTRAN Users' Guide for
fuller discussion of these and related issues.)

VARIABLES

A FORTRAN variable is an entity that has both a symbolic name and a mode.
A variable name must conform to the rules given under "Names" above. The mode
of a variable corresponds to the mode of the datum stored in it. The first
letter of the symbolic name implicitly defines the mode of the variable. The
defaul t implicit mode associated with the let ters i, j, k, I, m, and n is
integer; that associated with all the other letters in the alphabet is real.
The implicit mode associated with a letter can be modified by the implicit
statement. The mode of a specified variable can be changed from the implicit
mode associated with its name to some other mode by declaring it in an explicit
mode statement. An explicit mode statement overrides the implicit statement.
Section 6 provides detailed information on the declaration of variable modes.

At any point in the execution of a FORTRAN program, a variable is either
defined or undefined. Before a variable has been assigned a value, its contents
are undefined, and the variable may not be referenced other than to assign it a
value.

ARRAYS

An array is an n-dimensional ordered sequence of values (all of the same
mode) that is given a name conforming to the rules given under "Names" above.
The values are called array elements.

I The dimensions and bounds of an array are specified by an array declarator
in a dimension statement, a common statement, an automatic statement, or a mode
statement. An array declarator has the form:

*

aCb[,bJ. .•)

where a is the array name and each b gives the maximum value for one dimension
of the array. The maximum number of dimensions permitted is seven. All references
to an array element must contain the number of subscripts provided in the declaration.

SUBSCRIPTS

I A subscript is an integer quanti ty (an integer constant or constant expression) ,
or a list of integer quantities separated by commas, that is associated with the

I array name to identify one element of the array. It may be a negative value.
The number of quantities in any subscript must be the same as the number of
dimensions of the corresponding array. A subscript is enclosed in parentheses
and immediately follows the array name.

3-2 AT58-03

ARRAY DECLARATION

The number of elements contained in an array may be declared by specifying
in an array declaration the number of dimensions and the extent of each dimension
in the array.

The form of each b is:

[b 1 :]b2

where: b 1 is the lower dimension bound. It is optional.
b 2 is the upper dimension bound.

If the lower bound is omitted, the colon must also be omitted, and the value of
the lower bound is assumed to be 1.

Each b is one of the following:

an integer constant

an integer expression involving constants, named constants defined in earlier
parameter statements, and the operators +, -, *, I, and **

a simple variable

If b is a variable, it must either be in common storage or be provided for with
a dummy parameter, and then a also must be provided for with a dummy parameter
of the subprogram in which the array is declared.

The value of a subscript may be negative, zero, or positive, but it must be
greater than or equal to the lower bound (£1) and less than or equal to the
upper bound ('£2). An array subscript is normally limited to a range which

:~~r~~~~~ea ;;;-:;:i~~g~:~i °nfu:;~;:;e _ ~~ 1 ~~~s th~r206u2g1h4 31 ~~~~~g~o~62d1o~b[~r p~~~~~~~~ II

and complex numbers. It is further restricted for character arrays by the length
of the array element character string.

When Very Large Array compilation is used, numeric arrays can exceed a I
segment in length. In this case, the subscript 1 imi ts for numeric data types
are increased to address up to 2**24 words, -16,777,215 through 16,777,215 for
single precision and integers, -8,388,607 through 8,388,607 for double precision
and complex data types.

12/83 3-3 AT58-03B

Assumed-Size Arrays

An array may be declared wi th an asterisk used as the upper bound of the
last dimension. These arrays are called assumed-size arrays. In a subprogram,
an assumed-size array, like any other array, must be provided for with a dummy
parameter.

The omitted upper bound is assumed to be greater than or equal to the
corresponding lower bound, but its exact value depends on the actual argument
used when the array is referenced. Assumed-size arrays cannot be used in contexts
where the value of the last upper bound is required. Those contexts, which
treat the entire array as a unit, are:

the input/output list of any input/output statement

the argument list of a reference to an external subprogram declared wi th
the (descriptors) attribute

the storage specification of an encode or decode statement

the format specification of a formatted input/output statement.

Note that assumed-size arrays may be passed to subprograms which do not require
Multics argument descriptors.

Subscript range checking is always disabled for subscripts in the last
dimension of an assumed-size array.

STORAGE ARRAYS

The elements of an array are stored in contiguous storage in column-major
order. If the elements are accessed in the order in which they are stored, the
leftmost subscript varies most rapidly. Given the following dimension statement:

dimension ab(3,2)

storage is allocated as follows:

ab(1,1),ab(2,1),ab(3,1),

ab(1,2),ab(2,2),ab(3,2)

The FORTRAN language defines very few operations on arrays as a whole:
they may be transmitted by input/output statements, they may be passed as arguments
to subprograms, they may be used as format specifiers in any formatted input/output
statement, and they may be used to identify storage in encode and decode statements.

In the Multics storage hierarchy, segments are limited to 255K (255*1024)
words in length, which is the limit of vfile_ 10. Thus it is not possible to do
10 of a Very Large Array, or any combination of normal arrays which exceeds this
limit, with a single binary 10 record. This means that it is not always possible
to use an entire array as the list item for a binary 10 read or write statement,
since a Very Large Array will, by definition, exceed this limit.

12/83 3-4 AT58-03B

ARRAY ELEMENTS

An individual value in an array, called an array element, is referred to by
the name of the array followed by a parenthesized list of subscripts corresponding
to the number of dimensions declared for the array, as shown below:

a(s[,s] .•.)

where a is the array name and each s is an arithmetic expression whose value is
truncated to integer. There must be one s for each declared dimension of the
array.

Examples:

a(5) is a reference to the fifth element of the
array a

b(i,j) is a reference to the jth element in the ith row
of the array b

c(k+3) is a reference to the k+3 element of the array c

CHARACTER SUBSTRINGS

A character substring is character data that is a part of a character
variable or array element. It is represented by a substring name and may appear
in any place where a character array element or variable is permitted. The form
of a substring name is:

variable_name(exp1:exp2)

or:

array_name(subscript1, ••• ,subscriptn)(exp1:exp2)

12/83 3-4. 1 AT58-03B

where variable_name is the name of a simple character variable and array_name is I
the name of a character array, (subscript1, ... ,subscriptn) is the array subscript
informat ion, and exp 1 and exp2 are both integer expressions. The expressions
exp 1 and exp2 are known as the substring expressions. The expression exp 1 specifies
the leftmost character position of the substring within the string, and exp2
specifies the rightmost position. If exp1 is omitted, a value of 1 is assumed.
If exp2 is omitted, the length of the string upon which the substring is being
defined is assumed. Thus a substring expression of the form string(:) identifies
the entire character string. The length of the substring is equal to exp2-exp1+1.

The substring expressions may be any integer expressions. Array references
and function references are permitted. Note that the evaluation of a function
within a substring expression must not alter the value of any other expression
within the substring reference.

The substring expressions are subject to the constraint:

1 <= exp1 <= exp2 <= length of string

Character substrings can be used only when the program is compiled under
the ansi77 option.

FUNCTION REFERENCES

A function reference consists of a generic function name, a built-in function
name, a statement function name, or a function subprogram entry name followed by
a parenthesized argument list containing zero or more arguments. The semantics
of a function reference are identical to those of the call statement described
in Section 4 except that a function cannot alter the value of any other variable
used in the same statement that contains the function reference, and statement
labels cannot be passed as arguments. Reference to a zero argument function I
consists of the function name, a left parenthesis, and a right parenthesis.
These parentheses must be included in both the actual and dummy argument lists
of such functions; they cannot be omitted. For example, the statement:

area () = 3.14 * r **2

defines a statement function "area" with zero arguments. The statement:

integer function previous ()

begins a function subprogram of zero arguments.

Function references are evaluated wi thin expressions at the point where
their value is required and do not affect the order of operator evaluation. It
should be noted that if multiple calls to the same function (using identical
arguments) occur in a single statement, the compiler may generate code to call
the function only once, and save the returned value to substitute it for the
other calls.

3-5 AT58-03

I
I
I
I

MODE CONVERSION

Each FORTRAN operator requires that its operands be of specific modes. In
certain cases an operand that does not conform to the required mode is converted
to a temporary value that has the required mode. Mode conversion is also performed
during the execution of an assignment statement if the mode of the left side of
the assignment operator differs from the mode of the expression on the right
side. The rules for specific mode conversion are as follows.

To ~ Mode of Higher Rank

INTEGER TO REAL

Any integer value can be converted to a real value although some values
will lose precision.

The exponent of the real value is calculated in an appropriate fashion.
The mantissa of the real value is 27 bits of the integer value, beginning with
the first nonzero bit for nonnegative values, and beginning with the first zero
bit otherwise.2ln integer value is represented exactly as long as its magnitude
is less than 2 . Otherwise, it is truncated. The leftmost bit of the integer
that is not equal to the sign bit (0 or 1) is placed next to the sign bit of the
mantissa and the exponent is adjusted accordingly (this operation is called
normalization).

The round/truncate option is ignored.

INTEGER TO DOUBLE PRECISION

An integer value is represented exactly.
explained above in "integer to real."

The round/truncate option is ignored.

INTEGER TO COMPLEX

The mantissa is normalized as

The integer value becomes the complex value by conversion of the integer to
a real value, which becomes the real. part of the complex value. The imaginary
part of the complex value is set to zero.

The round/truncate option is ignored.

REAL TO DOUBLE PRECISION

The exponent of the double preclslon value is the same as the exponent of
the real value. The mantissa of the double preclsl0n value is the mantissa of
the real value (27 bits) followed by 36 bits of zero.

Any real value can be converted to a double precision value with no loss of
precision.

3-6 AT58-03

The round/truncate option is ignored.

REAL TO COMPLEX

The real value becomes the real part of the complex value. The imaginary
part of the complex value is zero.

Any real value can be converted to a complex value with no loss of precision.

DOUBLE PRECISION TO COMPLEX

The exponent of the real part of the complex value is the same as the
exponent of the double precision value. The mantissa of the complex value is
determined by rounding the mantissa of the double precision value to 27 bits (if
the round option is specified), or by truncating the mantissa of the double
precision value to 27 bits (otherwise). The actual rounding or truncation takes
place when the value is stored in main memory. The imaginary part of the complex
value is zero.

Any double precision value can be converted to a complex value , although
some values will lose precision.

To Mode of ~ Lower Rank

REAL mt"'\ TltTl"1'1r.'1rtT:'n
.LV Ll'l.Lr:.vr:.n

I f the round opt ion is spec i fied, and the real val ue is the result of
evaluating an expression other than a variable or function reference, the real
value is rounded to 27 bits of mantissa. Otherwise, the extra bits are truncated.

Real values whose absolute value is)2 35 cannot be converted to integer.
The result of an attempt to perform such conversions is undefined.

The real value is converted to an integer by shifting the mantissa until
the exponent goes to zero. All fractional digits are truncated.

Any real value wi thin the permitted range is converted with no loss of
precision (except for the fractional part).

DOUBLE PRECISION TO REAL

The exponent of the real value is the same as the exponent of the double
precision value. The mantissa of the real value is determined by rounding the
mantissa of the double precision value to 27 bits (if the round option is specified),
or by truncating the mantissa of the double precision value to 27 bits (otherwise).
The actual rounding or truncation takes place when the value is stored in main
memory.

3-7 AT58-03

Any double precision value can be converted to real, although some values
will lose precision.

DOUBLE PRECISION TO INTEGER

If the round option is specified, and the double preclslon value is the
result of evaluating an expression other than a variable or function reference,
the double precision value is rounded to 63 bits of mantissa. Otherwise, the
extra bits are truncated.

The double preclslon value is converted to integer by shifting the mantissa
until the exponent goes to zero. All fractional digits are truncated.

Any double precision value within the permitted range is converted with no
loss of precision (except for the fractional part).

COMPLEX TO DOUBLE PRECISION

The real part of the complex value is itself a real value, and is converted
to the double precision value as described above under "Real to Double Precision."
The imaginary part of the complex value is ignored.

The round/truncate option is ignored.

COMPLEX TO REAL

The real part of the complex value is assigned unchanged to the real value.
The imaginary part of the complex value is ignored.

COMPLEX TO INTEGER

The real part of the complex value is converted to integer by shifting the
mantissa until the exponent goes to zero. All fractional digits are truncated.
The imaginary part of the complex value is ignored. If the round option is
specified, and the complex value is the result of evaluating an expression other
than a variable or function reference, the real part of the complex value is
rounded to 27 bits of mantissa. Otherwise, the extra bits are truncated.

If the absolute value of the real part of the complex value is ~235, it
cannot be converted to integer. The resul t of an attempt to perform such a
conversion is undefined.

FORTRAN OPERATORS

There are four types of FORTRAN operators: arithmetic, relational, logical,
and character. Operators can be unary (requiring a single operand) or binary
(requiring two operands).

3-8 AT58-03

Precedence determines the order in which an operator is evaluated In an
expression. Adjacent operators that have the same precedence, except for **,
are evaluated from left to right; adjacent occurrences of ** are evaluated from
right to left. In the expression a+b/c, for example, the division operation has
greater precedence than the addition operation so that b/c is evaluated first
and its resul t added to a. FORTRAN operators are listed below in order of
precedence beginning at the highest level (those operators that are acted upon
first) to the lowest.

highest

lowest

Arithmetic Operators
** A ,

unary -, unary +
*, I
+, -

Character Operator
II

Relational Operators
.eq •. ne .• gt •• It •• ge •. le.

Logical Operators
.not .
. and •
. or.
.eqv •• neqv.

Normal precedence can be overridden by the use of parentheses to separate a
portion of an expression. For example, the expression a*b+c is evaluated by
multiplying a times b and then adding c to the result. The expression a*(b+c)
is evaluated by mul tiplying a times the total of b+c. Other examples of precedence
are shown below.

Expression

a+b+c*d*e**f**g

a.eq.b.or.c.lt.d

a.and.b.or.c

ARITHMETIC OPERATORS

Evaluation

(a+b)+C(c*d)*(Ce**(f**g))))

(a.eq.b).or.(c.lt.d)

Ca.and.b).or.c

The arithmetic operators and their indicated meanings are:

+ - plus minus (unary)
+ - add subtract (binary)
* I multiply divide
** or A exponentiation

The operands of an arithmetic operator must have values whose modes are
arithmetic. Arithmetic modes have a rank that determines the mode of the result
of arithmetic operations. If the modes of the two operands differ, the operand
of the lower mode is converted to a temporary value whose mode is that of the
higher operand, except in the case of raising an operand to an integer power,
for which there is no conversion. The result of the operation has the higher of
the two modes.

3-9 AT58-03

I

Evaluation of real, double preclslon, and complex expressions takes place
in machine registers that may contain more bits of mantissa than is available in
memory. Therefore, if intermediate results of computations involving such
expressions must be stored in memory, the mantissas are rounded or truncated as
specified by the round or truncate options.

I All intermediate and final results of arithmetic operations must be within
the range of the data type in order for the final result to the defined.

The rank of arithmetic modes (from highest to lowest) is:

highest

1
lowest

complex
double precision
real
integer

Table 3-1 defines the mode of the result of the operation for all arithmetic
operators.

Table 3-1. Operands and Mode of Results

Left Right
Operand Operand

Integer Real Double Complex
Precision

Integer Integer Real Double Complex
Precision

Double
Real Real Real Precision Complex

Double Double Double Double
Precision Precision Precision Precision Complex

Complex Complex Complex Complex Complex

CHARACTER OPERATOR

The only character operator is:

II concatenation

This operation can be done only when the program is compiled under the ansi77
option.

3-10 AT58-03

The concatenation operator is a binary operator. Both its operands must be
character data; no data conversions are defined for it. The result is formed by
concatenation of the two operands, and it also is produced as character data.
In the case of multiple concatenation, the operands are evaluated from left to
right, unless the order of evaluation has been altered by the use of parentheses.

It should be noted that the compiler is only required to evaluate as much
of a character expression as is necessary to provide a result of the necessary
length. To take a specific example, in a program fragment such as:

character*4 a,b
character*6 c, char function
c = a II b II char function()

the compiler need not call the function named char function because the result
of concatenating a and b provides an 8 character result, and only 6 characters
are needed to completely set the character variable c.

RELATIONAL OPERATORS

Relational operators produce logical results--true
sat is fie d , . f a Is e . 0 the rw is e . The reI a t ion a lop era tor s
meanings are:

.eq. equal to

.ne. not equal to

.gt. greater than

.It. less than

.ge. greater than or equal to

.le. less than or equal to

if the relation is
and their indicated

The operands of relational operators must be character-string values or
must be arithmetic values of integer, real, or double-precision modes. In addition,
the .eq. and .ne. operators may have operands both of which are complex or
both of which are logical.

If the mode of one operand is not character, and the other is a character-string
constant, then the internal representations of the two are compared. If the
mode of one operand is integer, real, or logical, then the character-string
constant must be from one to four characters long. (If less than four characters
long , it is padded on the right with blanks. For example, "i" is convert ed to
"i " If it is greater than four characters long, a warning is printed and
only the first four characters of the character-string constant are used.) If
the mode of one operand is double precision or complex, the character-string
constant must be from one to eight characters long. (If less than eight characters
long, it is padded on the right with blanks. If it is greater than eight
characters long, a warning is printed and only the first eight characters of the
character-string constant are used.)

3-11 AT58-03

I
I

LOGICAL OPERATORS

The operands of a logical operator must have logical values. The result of
a logical operator is a logical value defined by the following:

a.and.b

a.or.b

.not.a

has the value true if both a and b are true. It has the value
false if either a or b is false.

has the value true if either a or b is true. It has the value
false if both a and b are false.

has the value true if a is false. It has the value false if a is
true.

a.eqv.b has the value true if a and b are either both true or both false.
It has the value false if either a or b is true and the other
false.

a.neqv.b has the value true if either a or b is true and the other false.
It has the value false if a and b are either both true or both
false.

3-12 AT58-03

EXECUTABLE STATEMENTS

The following statements are executable in Multics FORTRAN:

1. arithmetic, logical, and character assignment statements

2. statement label (assign) statements

3. arithmetic if and logical if statements

4. unconditional go to, computed go to, and assigned go to statements

5. do statement

6. continue statement

7. call and return statements

8. stop and pause statements

9. read, write, input, and print statements

10. open and close statements

11. inquire statement

12. rewind, backspace, and endfile statements

13. end statement

ASSIGNMENT STATEMENT

Syntax:

a=b

where a is a variable or an array element name, or the name of the major entry
of the function subprogram in which this statement occurs, and b is an expression.

4-1 AT58-03

I

Semantics:

The expression b is evaluated and the resultant value is substituted for
the value currently assigned to a.

If b is an arithmetic expression, its value is converted to the mode of a.
The mode of a must be one of the arithmetic modes.

If b is a logical expression, the mode of a must be logical.

If the mode of a is character, b must be a character-string expression. If
the length of b exceeds the length of a, only the leftmost characters of bare
assigned. If b is shorter than a, it is padded on the right with blanks.

If b is a character-string constant and the mode of a is not character, the
internal representation of b is assigned without conversion to a. If the mode
of a is integer, real, or logical, then the character-string constant b must be
from one to four characters long. (I f less than four characters long, it is
padded on the right with blanks. For example, "i" is converted to "i ". If b
is greater than four characters long, a warning is printed and only the first
four characters of b are assigned to a.) If the mode of a is double precision
or complex, b must be from one to eight charact ers long. (I f less than eight
characters long, it is padded on the right with blanks. If b is greater than
eight characters long, a warning is printed and only the first eight characters
of b are assigned to a.)

Users who store character-string values in real, double-precision, or complex
variables are warned that the value of b is rounded before assignment to a if
the modes of a and b differ; even if the modes are the same, the value of b is
rounded when b is not a variable or function reference and the round option has
been specified. To round a character-string value is to destroy it.

The evaluation of real, double precision, and complex expressions is carried
out in machine registers that may contain more bits of mantissa than are available
in memory. As a result, the value of the expression must be truncated or rounded
before assignment to the variable if the expression is not a constant, a variable
reference, an array element reference, or a function subprogram reference. The
rounding or truncation is controlled by the round and truncate options of the
%global and %options statements.

Examples:

a(i)=b+c
k=5
i="tag"

If a is the name of the major entry of the function subprogram in which the
assignment occurs, the value assigned to a is returned to the calling subprogram
when the next return statement is executed. This mechanism is the way a FORTRAN
function subprogram returns a value to its caller. '

Example:

c this function returns 2 * x
function f(x)
f=x+x
return
end

4-2 AT58-03

ASSIGN STATEMENT

Syntax:

assign n to i

where n is a statement label and i is a simple variable of integer mode. I

Semantics:

A designator identifying the statement labeled n is assigned as the value
of 'Cne integer variable i. Such a value can be used in an assigned go to I~
statement or a format statement. This statement makes for efficient transfer of
control because the statement label used in a particular reference can be varied.

Example:

assign 100 to k

ARITHMETIC IF STATEMENT

Syntax:

if(e) [n 1],[n2],[n
3

]

where e is an integer, real, or double-precision expression; and n 1 , n?, and n~
are statement labels. Any of the labels Cn 1 , n2 , or n~) can be omiE"ted, but
their relative positions must be retained by the use of commas.

Semantics:

The expression e is evaluated and control is transferred to the executable
statement labeled: n. if e is negative, n2 if e is 0, and n~ if e is positive.
If a label is omitted,' the statement followlng the if is assurrred. This statement I
allows control to be transferred on the basis of the sign of an arithmetic
variable.

Example:

if(a-b)5,7,B

LOGICAL IF STATEMENT

Syntax:

if(e) s

where e is a logical expression and s is any executable FORTRAN statement except
a do, logical if, block if, else if, else, end if, or end. I

4-3 AT5B-03

Semantics:

The expression e is evaluated. If it is true, statement s is executed;

I otherwise, s is not executed. This permits conditional execution of FORTRAN
statements. Note that the expression e mayor may not be fully evaluated. For
example, in the context:

if (a .eq. O.or. func(x) .eq. y) go to 999

if a is in fact 0 the function func mayor may not be called.

I BLOCK IF STATEMENT

I Syntax:

I if (e) then

I where e is a logical expression.

I Semantics:

I

The block if statement is used with the end if statement to form a block if
structure. A block if structure may contain one or more else if statements as
well as a single else statement. It may also be empty. The block if structure
allows the grouping of one or more blocks of code which are executed conditionally.

I Block if structures can be nested, that
other block if structures within it.

is, a block if structure can contain

Each statement in a program unit has an if-level associated with it. The
if-level of a given statement is the number of block if statements from the
beginning of the program uni t up to and including that statement minus the
number of end if statements from the beginning of the program unit up to but not
including that statement. The if-level of every statement must be zero or greater;
the if-level of the end statement must be zero.

Execution of a block if statement causes the logical expression e to be
evaluated. If the value of e is false, control is transferred to the next else
if, else, or end if statement with the same if-level. If the value of e is
true, the statements in the if-block are executed. Should control reach the end
of the if-block, control is then transferred to the next end if statement with
the same if-level as the block if statement.

I Transfer of control into an if-block from outside the if-block is prohibited.

I If an if-block contains a do statement,
must be contained within the if-block.

the entire range of the do-loop

I A block if statement may have a statement label and can be referenced by
another statement.

4-4 AT58-03

ELSE STATEMENT

Syntax:

else

Semantics:

I

I
I

I
The else statement provides an alternate path of execution for a block if I

statement or an else if statement. The else statement may appear only within a •
block if or else if structure, and its if-level must be greater than zero.

The statements following an else statement up to but not including the next
end if statement with the same if-level comprise an else-block. An else-block
may be empty. An else-block may not contain else if or else statements that
have the same if-level as the else statement heading the else-block.

The execution of an else statement has no effect.

Transfer of control into an else-block from outside the else-block is
prohibited.

If an else-block contains a do statement, the entire range of the do-loop
must be contained within the else-block.

An else statement may have a statement label, but the label may not be
referenced by any statement.

ELSE IF STATEMENT

Syntax;

else if (e) then

where e is a logical expression.

Semantics:

The else if statement combines the functions of the else and block if
statements. This statement performs a conditional test and provides an alternate
path of execution for a block if or another else if. The else if statement
makes it possible to form block if structures with more than one alternative.

The else if statement may appear only within a block if or else if structure
and must have an if-level greater than zero.

The statements following an else if statement up to but not including the
next else if, else, or end if statement with the same if-level comprise and
else-if-block. An else-if-block may be empty.

4-5 AT58-03

Execution of an else if statement causes the logical expression e to be
evaluated. If the value of e is false, control is transferred to the next else
if, else, or end if statement with the same if-level. If the value of e is
true, the statements in the else-if-block are executed. Should control reach
the end of the else-if-block, control is transferred to the next end if statement
with the same if-level as the else if statement.

Transfer of control into an else-if-block from outside the else-if-block is
prohibited.

If an else-if-block contains a do statement, the entire range of the do-loop
must be contained within the else-if-block.

An else if statement may have a statement label, but the label may not be
referenced by any statement.

END IF STATEMENT -- --

Syntax:

end if

Semantics:

For each block if statement there must be a corresponding end if statement.
That is, there must be an end if statement with the same if-level for every
block if statement. This statement is used to indicate the end of a block-if
structure.

Execution of an end if statement has no effect.

UNCONDITIONAL GO TO STATEMENT

Syntax:

go to n

where n is a statement label.

Semantics:

Control is transferred to the executable statement with the label n.

Example:

go to 5

4-6 AT58-03

COMPUTED GO TO STATEMENT

Syntax:

go to (n 1,n2 , ... nm) [,]i

where each n is a statement label and i is an arithmetic expression whose value
is converted to an integer.

Semantics:

If i is within the range 1<i<m, control transfers to the statement labeled
by the ith label in the list of-statement labels. Otherwise, control passes to
the statement following the computed go to. This statement permits transfer of I
control to an almost unlimited number of points, whereas the logical if and
arithmetic if statements permit transfer to two and three points.

Example:

go to (5,10,17),k

ASSIGNED GO TO STATEMENT

Syntax:

go to i [[,] (n[,n] ••.)]

where n is a statement label and i is a scalar variable of integer mode.

Semantics:

Control is transferred to the statement identified by the statement label
value of i. The variable i acquires a statement label value only by appearing
in an assign statement in the same program unit (see "Assign Statement" above).
If a list of statement labels appears in the statement, the value of i must be
one of the labels in the list. Used in conjunction with the assign statement, I
the assigned go to statement allows transfer of control based on assigned statement
labels, and the optional list permits checking of the assigned label.

Example:

go to k, (5 , 1 0 , 1 5)

DO STATEMENT

Syntax:

do n[,]i = m1,m2[,m3]

where n is the statement label of an executable statement that follows the do
statement; i is an arithmetic scalar variable whose mode is not complex; and m1,
m2 , and m3 are arithmetic expressions whose values are converted to the mode
of i. If m3 is omitted, it is assumed to be 1.

4-7 AT58-03

Semantics:

Statements following the do, up to and including statement n, are executed
repeatedly for different values of i. The range of a do is the series of
statements executed as a result of a do, up to and including the terminal statement

I of the do-loop. Processing of the do statement under the ansi66 option differs
from that of the ansi77 option.

Under the ansi66 option, a do statement is processed by first computing the
loop count. The loop count has the value (m2 - m)/m + 1, and is truncated to
integer if necessary. If the loop count is positi~e, It specifies the number of
times the range will be executed. If the loop count is zero or negative, the
range will be executed once. Before the first execution of the range, i is
assigned the value of m1. After each execution of the range, i is incremented
by the value of m

3
.

Under the ansi77 option, the loop count is computed as for ansi66 do-loops.
Next, the value of m is saved, and i is assigned the value of m. If the loop
count is zero or ne~ative, the range is skipped entirely and e~ecution of the
do-loop is complete. If the loop count is positive, it specifies the number of
times the range will be executed. After each execution of the range, i is
incremented by the previously saved value of m

3
.

A do range may include another do range as long as it includes it completely.

I Several do ranges may end with the same statement. If a do range contains a
block if statement, the corresponding end if statement must also be contained in
the do range.

I

A do range must not end with any of the following statements: unconditional
go to, assigned go to, arithmetic if, return, stop, pause, do, block if, else
if, else, end if, or end. When a logical if statement ends a do range, the
conditional statement is considered to be a part of the do range.

Control must not be transferred into the range of a do from a statement
outside the range of the do. Control may be transferred from within the range
of the do to another statement either within or outside the range. If several
do ranges end in a single statement, that statement is considered to be within
the range of the innermost do.

Example:

do 5 i=1,n

do 5 j=k,10,e

5 x(i,j)=y

4-8 AT58-03

CONTINUE STATEMENT

Syntax:

continue

Semantics:

A continue statement is a null statement normally used to mark the end of a
do range. When control is to be directed to the last statement of a do range to
continue the execution of the do, it may be convenient to use a continue statement
as the last statement in the range.

Example:

do 10 i=1,n

if(a.eq.b)go to 10

10 continue

CALL STATEMENT

Syntax:

call s[([a[,a] ...])]

where s is a subroutine subprogram entry name. Each a is an argument that
corresponds to a dummy argument of the subprogram entry s or is a dollar sign
($) followed by the statement label of an executable statement in the calling
program. Each argument can be a constant, a variable, an expression, an array
name, a subprogram entry name, a statement label, or one of the built-in function
names listed in Table 7-1. In the case of subroutines and entry points that
have no arguments, a left parentheses followed by a right parentheses may be
used to indicate the absence of arguments. Parentheses used for this purpose
may be omitted from a call statement. For example, the statement

call doit ()

is equivalent to

call do it

Semantics:

Each argument is evaluated and its associated storage address becomes the
storage address of the corresponding dummy argument of the subprogram entry s.
The call statement transfers control to the subroutine. Execution of the return
statement in the subroutine transfers control back to the caller.

Each expression or constant argument, except a character-string constant
argument, must correspond to a scalar dummy argument whose mode is identical to
the mode of the constant or expression. A dummy argument associated with a
constant or expression argument (other than a variable) cannot be the object of
an. assignment statement or input operation within the called subprogram.

4-9 AT58-03

I
I
I

Each character-string constant argument must correspond to a scalar dummy
argument. If the mode of the dummy argument is integer, real, or logical, the
character-string constant must be four characters long. If the mode of the
dummy argument is complex or double precision, the character-string constant
must be eight characters long. If the mode of the dummy argument is character,
the length of the constant must equal the declared length of the dummy argument.

Each variable argument must correspond to a scalar dummy argument whose
mode is identical to that of the argument. Any value assigned to the dummy
argument during the execution of the subprogram immediately becomes the new
value of the argument. Any subscripts of the argument are evaluated by the
calling program unit before transfer of control to the called program.

Each array dummy argument must correspond to an array name argument or an
array element argument of the same mode. The dimensionality of the array dummy
argument is constrained only in that it cannot declare an array whose storage is
greater than that of the actual array argument. The same subscripts access
different elements when used to reference multidimensional arrays of differing
dimensions. In the following example, the array elements a (1 ,2) and b (2,2)
occupy the same storage, as do c(10) and d(10).

Example:
real a(5,5),c(25)
call builder(a,c)

subroutine builder(b,d)
real b(4,4),d(15)

Each subprogram entry name argument and each built-in function name argument
must correspond to a dummy argument explicitly declared in the called subprogram
as a subprogram entry name. If the actual argument was a built-in function name
or function subprogram name, the corresponding dummy argument must be explicitly
declared in the called subprogram as a function subprogram entry and must have a
mode that correctly describes the mode of the value returned by an invocation of
the actual argument.

If the argument list contains a statement label argument, the dummy argument
of s must contain at least one asterisk (in any argument position). Statement
label arguments and asterisk dummy arguments are not considered while associating
arguments with corresponding dummy arguments. (See "Dummy Arguments of Subprograms"
in Section 8 of this manual.)

Examples:

10 call x(a,b(i),5)
call y("this is a constant",q)
call z(b(i),$10)

RETURN STATEMENT

Syntax:

return en]

where n is an arithmetic expression whose value is converted to an integer.

4-10 AT58-03

Semantics:

If n is omitted, or if n<O, the return statement is said to be a normal
return. This statement returns control to the calling program unit. If n is
supplied, the return statement is said to be an alternate return, and control
must have been transferred to the subprogram through an entry containing one or
more asterisk dummy arguments. Control is returned to the statement label in
the calling program corresponding to the nth label argument when the subprogram
was invoked.

The three returns in
label arguments:

the subprogram below illustrate the use of statement I

c
c
c
c

c
c
c
c

call foo Ci, j, $8, $10)
print, "i equals j"

8 print,"i is less than j"

10 print,"i is greater than j"

subroutine foo (ii, JJ, *,*)
if (ii .It. jj) then

Return to statement labelled in first
position of statement label list

return 1
else if (ii .gt. jj) then

Return to statement labelled in second
position of statement label list

return 2
else
return
end if
end

A return statement may not appear in a main program. An alternate return
statement can appear only in subroutine subprograms. If fewer than n label
arguments were passed in the call, the return acts as if a value of 0 were given
for n; i.e., a normal return occurs.

If the return statement appears in a function subprogram, then the value
most recently assigned to the major entry of the subprogram is returned as a
result of the function.

PAUSE STATEMENT

Syntax:

pause [n]

where n is a string of not more than 5 digits, or a character-string constant.

4-11 AT58-03

Semantics:

The action resulting from the execution of a PAUSE statement differs for
full Multics and the Multics FAST subsystem. In FAST, "PAUSE" or "Pause n" is
printed on the terminal and execution resumes. In full Multics, the condition
'fortran pause' is signalled and the string "n" is made available in the condition
informatIon. A handler for the' fortran pause' condition can then take appropriate
action. In the absence of a handler -for the condition, interactive processes
will print out a standard error message and establish a new command level.
Absentee and daemon processes will print out the standard error message and
resume execution.

STOP STATEMENT

·Syntax:

stop [n]

where n is a string of not more than 5 digits or is a character-string constant.

Semantics:

When a stop statement is executed, "STOP" or "STOP nil is printed on the
.user's terminal and program execution stops. At this time, all files opened by
the FORTRAN program are closed. See the environment section of the FORTRAN·
Users' Guide for subsequent action.

INQUIRE STATEMENT

Syntax:

inquire (ilist)

where ilist is a list of specifiers separated by commas.

Semantics:

An inquire statement may be used to inquire about properties of a particular
named file or of a particular unit. In an inquire by file statement, exactly
one file= specifier must be present, and no unit= specifier may be present. In
an inquire by unit statement, exactly one unit= specifier must be present, and
no file= specifier may be present. The inquire statement may be executed before,
While, or after a file is connected to a unit. All values assigned are those
current at the time the statement is executed.

12/83 4-12 AT58-03B

The form of a file= specifier is

file=fn

where fn is a character expression whose value specifies the name of the file
being inquired about. The form of the unit= specifier is

unit=u

where u is an integer expression whose value specifies the number of the number
of the unit being inquired about.

The remaining inquire statement specifiers are described below. In many of
these specifiers a variable or array element must be provided, and execution of
the inquire statement causes the variable or array element to become defined
with a particular value or to become undefined. The inquire statement assigns
values to variables and array elements using the rules for assignment statements.

12/83 4-12. 1 AT58-03B

err=s
is an error specifier, where s is the label of an executable statement. If
an error is encountered during the execution of the inquire statement,
control is transferred to the statement whose label is s.

iostat=ios
is an inputloutput status specifier, where ios is an integer variable or
array element. If an error occurs during the execution of the inquire
statement, ios becomes defined with a positive integer value (a Multics
error table code). If no error occurs, ios becomes defined with the value
zero.

exist=ex
ex is a logical variable or logical array element. Execution of an inquire
by file statement causes ex to become defined with the value true if a file
with the specified name exists, and with the value false otherwise. Execution
of an inquire by unit statement causes ex to become defined with the value
true if the unit exists, and with the value false otherwise.

opened=od
od is a logical variable or logical array element. Execution of an inquire
by file statement causes od to become defined with the value true if the
specified file is connected to a unit, and with the value false otherwise.
Execution of an inquire by unit statement causes od to become defined with
the value true if the specified unit is connected to a file, and with the
value false otherwise.

number=num
num is an integer variable or integer array element which is assigned the
number of the unit that is currently connected to the file. If there is no
unit connected to the file, num becomes undefined.

named=nmd
nmd is a logical variable or logical array element that is assigned the
value true if the file has a name and false if it does not.

name=pn
pn is a character variable or character array element. It is assigned the
absolute pathname of the file is the file has a name, and becomes undefined
otherwise.

access=acc
acc is a character variable or character array element that is assigned the
value "sequential" if the file is connected for sequential access, and with
the value "direct" if the file is connected for direct access. If there is
no connection, acc becomes undefined.

sequential=seq
seq is a character variable or character array element that is assigned the
value "yes" if sequential is included in the set of allowed access methods
for the file, "no" if sequential is not an allowed access method for the
file, and "unknown" if it cannot be determined whether or not sequential is
an allowed access method for the file.

direct=dir
dir is a character variable or character array element. This specifier is
analogous to sequential= above, except that the query is about direct access
rather than sequential access.

form=fm
fm is a character variable or character array element that is assigned the
value "formatted" if the file is connected for formatted 110, or the value
"unformatted" if the file is connected for unformatted 110. If there is no
connection, fm becomes undefined.

4-13 AT58-03

formatted=fmt
fmt is a character variable or character array element that is assigned the
value "yes" is formatted is included in the set of allowed forms for the
file, the value "no" is formatted is not an allowed form for the file, and
"unknown" if it cannot be determined whether or not formatted is an allowed
form for the file.

unformatted=unf
unf is a character variable or character array element. This specifier is
analogous to formatted= above, except that the query is about unformatted
form rather than formatted.

recl=rcl
rcl is an integer variable or integer array element that is assigned the
value of the record length of the file. If the file is connected for
format ted 1/0, the length is the number of charact ers. I f the file is
connected for unformatted 110, the length is the number of 9 bit bytes. If
there is no connection, or if the connection is not for direct access, rcl
becomes undefined.

nextrec=nr
nr is an integer variable or array element. nr is assigned the value n+1,
where n is the number of record most recently read or written. If the file
is connected but no records have been read or written since the connection,
nr is assigned the value 1. If the file is not connected for direct access,
or if the position of the file cannot be determined because of a previous
error condition, nr becomes undefined.

blank=blnk
blnk is a character variable or character array element that is assigned
the value "null" if null blank control is in effect for the file, or the
value "zero" if zero blank control is in effect for the file. If the file
is not connected for formatted 110, blnk becomes undefined.

END STATEMENT

Syntax:

end

Semantics:

An end statement marks the end of a program unit. Every program unit must
have an end statement as its last line. It cannot be continued, labeled, or
followed by a semicolon. If control reaches the end of a subroutine or function
subprogram, control is returned to the calling program unit exactly as when a
normal return statement is executed. If control reaches the end of a main
program, the effect is as if a stop, statement were executed, except there is
nothing printed on the user's terminal. See the environment section of the
FORTRAN Users' Guide for subsequent action.

4-14 AT58-03

SECTION 5

INPUT/OUTPUT

INPUT/OUTPUT PROCESSING

There are two different types of FORTRAN I/O statements: data transfer
statements and control statements. Data transfer statements provide means of
reading and writing blocks of data called records. Control statements provide
means of manipulating and operating on collections of records called files.
Within a FORTRAN program, a file is identified by a unit number. A unit is a
generalized name used by FORTRAN to identify a file known to Multics by another
name. A file is a collection of records distinct from the storage medium on
which it is stored, but via a unit number it may be associated with a particular
location in the storage system (e.g., a segment) or a particular device (e.g., a
terminal or a tape). A uni t is either connected or disconnected. A unit is
connected when its unit number is associated with a location in the storage
system or with an I/O device by the FORTRAN runtime I/O routines. It remains
connected until explicitly disconnected or until the end of the program run.

Records

There are two· forms of record: formatted and unformatted. A formatted
record consists of fields of characters. A formatted record is defined as the
data from one newline up to and including the next newline. The length and form
of such a record is determined by the format specification and the output data
transfer list used to create the record. Within the file, a formatted record
appears as a collection of characters. It does not contain any information
concerning the fields used to create the record.

Unformatted records consist of fields of data each being the binary
representation of integer, real, logical, double precision, complex, or character
data. The length of each field depends on the data type of the value it represents:
integer, real, and logical data require one machine word (36 bits) each; double
precision and complex data require two words each; and character data requires
as many (integral) words as is appropriate (there are four characters allocated
per word). Within the file, an unformatted record appears as a collection of
words. It does not contain any information concerning the fields used to create
the record.

5-1 AT58-03

Record Length

The records read and written by FORTRAN data transfer statements are logical
records and have no relation to the external storage medium on which they are
stored. Formatted records are an integral number of characters long. Unformatted
records are an integral number of words long.

On input, formatted records are padded on the right with sufficient blanks
to satisfy the input format specified. Therefore, given a format specification
and an input data transfer list it is possible to calculate the number of records
required, regardless of the physical length of the records. On output, trailing
blanks are not removed. If the length of an output record exceeds a limit
imposed by the external storage medium, FORTRAN does not create several records
each of which conforms to the limit. It is the responsibility of the programmer
to observe these limits.

On input, only one unformatted record is read and it must be large enough
to satisfy the entire data transfer list specified in the read statement. Data
not used by the read statement is lost (i. e., the next read operation on that
file reads the next record). On output, unformatted records are written exactly
as indicated in the write statement, i.e., no truncation occurs.

Files

A file is a collection of records, all of the same form (i.e., all formatted
records or all unformatted records). Usually the records in files are of different
lengths. However, a maximum record length can be attributed to a file. In such
a case all records are allocated the same amount of storage, although the entire
storage area of a record need not be used. If a file has a maximum record
length attributed to it, the programmer must be sure to keep the records in the
file from exceeding that length. Once a file has a maximum record length attributed
to it, moreover, the maximum record length cannot be changed. A write statement
that creates a record longer than the maximum length is in error (see "Error
Processing" below). The record is not automatically broken into smaller records
that conform to the maximum record length.

I 10 Transfer Limits

Multics FORTRAN 10 works through a Multics 10 DIM (Device Interface Module)
which actually performs the operation. To this date all DIMs are capable of
transfering a segment or less in a single operation. This limits the size of a
binary 10 operation, which is record oriented, to a segment or less. Thus the
programmer may not be able to do binary 10 of arrays or combinations of arrays
which exceed this single operation size limit. This will be particularly noticable
to the programmer using Very Large Arrays (VLAs).

Access to files

There are two distinct means of accessing the records of a file-- sequential
and direct access.

12/83 5-2 AT58-03B

SEQUENTIAL FILES

In a sequential file, records are accessed only in the order in which they
were written. Although the rewind and backspace control statements can be used
to position a sequential file to a particular record, a given record in a sequential
file is normally read or written only when the record immediately preceding it
was the last record read or written. Only records already written can be read.
The backspace control statement makes it possible to back up a sequential file
one record at a time, and the rewind statement positions to the beginning of a
file. However, a write of a record after repositioning by a rewind or backspace
will cause all records after it to be lost.

In general, sequential files do not allow the user to change the file
position to any record other than the immediately contiguous record or the beginning
of the file.

12/83 5-2.1 AT58-03B

DIRECT ACCESS FILES

In a direct access file, records are accessed by explicit record number. A
unique record number with a value greater than or equal to 0 is associated with
each record in the file. Therefore, the user can access any record in isolation
from any other records in the file, in any order whatever. Only records already
written can be read. The rewind and backspace control statements cannot be used
wi th a direct access file unless the file also has the maximum record length
attribute.

Depending on the 1/0 module used, certain direct access files can also be
accessed sequentially, that is, according to the numerical order of the record
numbers.

External and Internal Files I

External files are files that exist outside of the FORTRAN program. These I
are the storage files or devices that are connected by traditional input/output.

Internal files provide a means of converting and transferring data within
internal storage. They provide much the same capability as the nonstandard
encode and decode statements. An internal file is always positioned at the
beginning of the first record prior to data transfer. Reading and writing records
of internal files must be performed by sequential-access, formatted 1/0 statements,
though list-directed formatting is not allowed. A record of an internal file is
defined by writing the record, and a record can be used only if it is defined.
Records can be defined, or undefined, by means other than 1/0 statements (e.g.,
assignment statements). If the number of characters written is less than the
length of the record, the remaining portion of the record is filled with blanks.

An internal file can be a variable, array or array element, or substring, I
and its data type must be character. A record of an internal file can be a
variable, an array element, or a substring. If an internal file is an array,
each element of the array is a record of the internal file; otherwise the internal
file contains one record.

Units

Each file referenced in a FORTRAN program has a unit number associated with
it. A unit number, u, is an integer value in the range 0 < u < 99. The association
between unit numbers and external storage or devices (i.e~, external files) is
called a connection and is established when a unit that is not yet connected
(i.e., disconnected) is referenced by a data transfer statement or by a FORTRAN
open statement. Connect ion by a data transfer statement is implicit, and connect ion
by a FORTRAN open statement is explicit. In either case, actions taken external
to the FORTRAN program run (such as prior use of the io call command, described
in the MPM Commands) are taken into account. See the description of the open
statement below for a full discussion of the actions taken. Fuller details of
the inputloutput system appear in Section 10.

Unit numbers 1 to 99 can be connected to any file or device supported by
Multics 1/0 and by the FORTRAN runtime 1/0 routines. Unit number 0 is connected
only to a terminal. See "Default Input and Default Output" under "Unit Attributes"
below for information about default connections.

5-3 AT58-03

The Terminal

Terminal input/output must be in the form of sequentially accessed formatted
records. The rewind, backspace, and endfile control statement cannot be used on
a unit connected to the terminal. On the other hand, the prompt attribute has
meaning only for units connected to the terminal. The various attributes are
discussed below.

For connections to unit number 0, the FORTRAN I/O runtime routines use the
user_input and user_output I/O switches for input and output respectively.

Unit Attributes

The following attributes are associated with each unit. When the unit is
connected, a value is assigned to each of these. These attributes are discussed
in detail in Section 10 where the entire connection process is described. If
the open statement is used to connect the unit, each of these attributes can be
specified explicitly using the appropriate open statement specifier. For complete
information on the use of the open statement, see Section 4 of the FORTRAN
Users' Guide.

1. I/O switch
the I/O switch associated with the unit. (The ioswitch specifier.)

2. Attachment
the attach description associated with the unit. (The attach specifier.)

3. Filename
name of the file associated with the unit. (The file specifier.)

4. Mode
the types of data transfer allowed for the unit; possible values are
in, out, and inout. (The mode specifier.)

5. Access
the access method associated with the unit; possible values are sequential
and direct. (The access specifier.)

6. Form
the type of records associated with the unit; possible values are
format ted and unformat ted. (The form spe ci fier.) Mixing formatted
and unformatted records in a single file is not supported.

7. Maximum record length
the maximum record length, in characters, associated with the unit,
but only if a maximum record length was specified. The file must be a
formatted sequential file. (The recl specifier.)

8. Binary stream
a logical value indicating whether access to the unit follows binary
stream conventions (see "Binary Stream Input/Output" below). (The
binary stream specifier.)

9. Prompt
a logical value indicating that a prompt character is to be printed
when input from this unit is expected; this at tribute is meaningful
only with units connected to the terminal. (The prompt specifier.)

5-4 AT58-03

10. Carriage control
a logical value indicating that carriage control characters are processed
for each output record associated with the unit; this attribute is
meaningful only for files for which the mode attribute is out or inout,
form is formatted, and access is sequential. (The carriage specifier.)

11. Defer newline
a logical value indicating that newline characters should precede each
line of output rather than follow each line. The same number of newline
characters is printed whether the newline character precedes or follows
the line; however, by deferring the printing of the newline character
it is possible to: a) allow the plus (+) carriage control character
at the beginning of a format statement to cause overprinting; and b)
allow a program to ask a quest ion and have the user respond on the
same line. (+ carriage control characters in the second and succeeding
records produced by the use of the 'I' in processing a single format
always have the proper effect.) This attribute is only meaningful for
files for which the mode attribute is out or inout, form is formatted,
and access is sequential. (The defer specifier.)

CARRIAGE CONTROL

If the carriage-control option is in effect when a file is written, the
first character of the line is not printed; instead, it is transformed into a
carriage-control character as follows:

Character

o
1
blank
+

all other

Resulting Control Character

Newline 012 (double space)
Newpage 014 (page eject)
None (single space)
The previous line and the current line are written as a
single line split by a carriage-return character. This
causes the second line to overprint the first. If the
unit is connected to the terminal and the unit does not
have the defer newline attribute, this carriage control
character is treated as a blank for the first record
produced by a given output data transfer. It - always
causes overprinting when preceded by a "I" format item.
None (single space)

If carriage control is not in effect, all characters of the line are written.

DEFAULT CARRIAGE CONTROL

Certain units automatically have the carriage control attribute associated
with them. This attribute is honored only if the mode of the file is out or
inout, the form is formatted, and the access is sequential. Unit numbers 6 and
42 have the default carriage attribute.

5-5 AT58-03

DEFAULT INPUT AND DEFAULT OUTPUT

Certain units have the default input attribute or default output attribute.
Under the right circumstances, a unit with one of these attributes will be
connected to the terminal instead of to a file in the storage system. This
provides a simple way to reference the terminal from a FORTRAN program without
any special knowledge. Unit numbers 5 and 41 have the default input attribute.
Unit numbers 6 and 42 have the default output attribute.

In order to connect a unit that has the default input attribute to the
terminal, the I/O switch associated with the terminal must not be attached already
at the time of connection. Connection is either implicit or explicit. A formatted
sequential read statement causes implicit connection of the unit to the terminal.
Explicit connection requires the use of the open statement, with the following
specifiers: the mode attribute (as in), the form attribute (as formatted), and
the access attribute (as sequential); otherwise, the unit is connected to a file
in the storage system.

In order to connect a unit that has the default output attribute to the
terminal, the I/O switch associated with the terminal must not be attached already
at the time of connection. Connection is either implicit or explicit. A formatted
sequential write statement causes implicit connection to the terminal. Explicit
connection requires the use of the open statement, with the following specifiers:
the mode attribute (as out), the form attribute (as formatted), and the access
at t ri bute (as sequent ial); otherwise the uni t is connected to a fi Ie in the
storage system.

BINARY STREAM INPUT/OUTPUT

A binary stream file is an unformatted file. The file is a collection of
machine words. Each word is directly addressable by record number. The record
number of the first word in the file is zero, and so on. The number of words
written by an unformatted write depends on the number of words required to store
the data transfer list. An unformatted read statement reads words from the file
until the list is satisfied or until the end of file is reached.

ERROR PROCESSING

When an error occurs, several actions can be taken. If the iostat specifier
is given, the status variable is assigned an error code value that describes the
error. Then if the err specifier is not given, execution continues with the
statement immediately following the statement containing the iostat specifier.
If the err specifier is given, execution continues with the statement whose
statement label is specified by the err specifier.

~ If the iostat specifier is not given and the err specifier is, execution
continues wi th the statement whose statement label is specified. No error
information is available.

If neither specifier is given, the program run terminates with an error
message.

Throughout the rest of this section, one of the error processing actions
described above is implied by the phrase "an error occurs" or "an error is
encountered."

5-6 AT58-03

DATA TRANSFER STATEMENTS

Data transfer statements perform the transfer of data between memory and an
external file or device. The read statement specifies input. For terminal
input, the synonymous input statement can be used. The decode statement, which
accomplishes a memory-to-memory transfer of data using a format specification,
is included among FORTRAN input statements.

Output is specified by a write statement. Terminal output can also be
specified by the synonymous print statement. Included among output statements
is the encode statement, which performs the reverse function of decode for
memory-to-memory data transmission.

Read Statement

There are five variations of the read statement, each supporting a particular
type of file access. Each of these is documented separately. The syntax model
below is a generalized one, including all fields that can be supplied with a
read. Each form of the read, however, has a different requirement for fields,
as shown in the individual syntax models that follow.

read (u'k, n, end=a, err=b, unit=u, fmt=n, rec=k) list

where:

I

u integer expression giving uni t number (0-99), the name of an internal I
file, or an asterisk (*). An asterisk appearing as a unit specifier
indicates a default, preconnected unit. In Multics FORTRAN this
is unit 0, which is connected to the user's terminal.

k

n

a

b

integer expression giving record number; the record k must exist
in the file at the time the read statement is executed e The
value ofk must be > 0 and is specified by the user. The FORTRAN
I/O runtime routines use the value of this expression as the
record number. The val ue of this expression is not changed by
these routines. If the record number field is present, the statement
is a direct access read statement. If the field is not present,
the separating apostrophe must also be omitted and the statement
is a sequential read statement.

label of a format statement, a character-string constant, the
name of a character variable, a character expression involving
substrings and/or concatenation, a namelist name, the name of a
character or integer array that contains the character-string
representation of a format, or an asterisk (*) specifying
list-directed formatting. It may also be a simple integer variable
that is defined with a value representing a format string. Such
a variable may be defined by execut ing an assign statement containing
the label of a format statement. An n is used only with formatted
operations and must be omitted (along with the separating comma)
for unformatted ones; a list-directed operation can be specified
bv omitting n but retaining the comma. (See "Format Soecifications"
l~ter in this section.) ~ .

a statement label indicating where control is to be transferred
at the end of an input file. This field is optional for all
sequential read statements. It is invalid for all direct access
read statements.

a statement label indicating where control is to be transferred
in case of error. This field is optional for all read statements.

5-7 AT58-03

list a data transfer list (described later under "Data Transfer Lists");
the data transfer list can be omitted, in which case execution of
the statement causes at least one record to be read and discarded.

END OF FILE RECORD

The "end=a" and "err=b" options can appear in either order and either or
both can be omitted. If omitted, the separating comma or commas must be omitted.
If end=a is not supplied and end of file is reached, the program run terminates
with an error message. If err=b is not supplied, the program run terminates
with an error message when any input/output error occurs.

If a record consisting of the backs 1 ash character "\" followed by the letter
f is encountered during any formatted sequential read operation, it is considered
an end-of-file record and the end-of-file condition is raised. If the read
statement includes end=b, control is transferred to the statement whose label is
b; otherwise, the program run terminates with an error message. Because this
end-of-file record need not be the physical end of the file, data records can
follow the end-of-file record and are read when subsequent read statements are
directed at the file. This allows the end-of-file record to be used to separate
sets of data read from a single file.

I KEYWORDS

Three additional keywords can be used. The "unit=u" keyword can be used to
specify the unit on which the data transfer will take place. The "fmt=n" keyword
can be used in formatted read and write statements to specify the format which
will control the data transfer. The "rec=k" keyword can be used in direct
access read and write statements to specify the number of the record to be
transmitted.

I If the "unit=u" keyword is omitted, the unit specifier must appear first in
the control list of the read or write statement. If the "fmt=n" keyword is

I omitted, the format specifier must appear second in the control list and the
first item in the control list must be a unit specifier with the "unit=u" keyword
omitted.

FORMATTED SEQUENTIAL READ

Syntax:

I read (u,n,end=a,err=b,unit=u,fmt=n) list

Semantics:

Formatted records are read from the file or device associated with unit u
under control of the format specified by n. The data contained in the records
is transmitted to the variables specified by the list. The number of records
that are read depends on the number of elements in the list and on the content
of the format. Records are read beginning at the current file posit ion. The
file position is left following the last record read.

5-8 AT58-03

read(8,100) x,y,z
read(unit=8,fmt=100) x,y,z
read(i,65,err=101) (x(i),i=1,10)
read(5, ,end=10) ab, c
read (75,)

FORMATTED DIRECT ACCESS READ

Syntax:

read (u'k,n,err=b,unit=u,fmt=n,rec=k) list

Semantics:

Format ted records are read beginning with record number k in the file or
device associated with unit u under the control of the format specified by n.
The data contained in the records is transmitted to the variables specified by
the list. The number of records that are read depends on the number of elements
in the list and on the content of the format. The file position is left following
the last record read. If more than one record is requested, records with record
numbers k, k+1, k+2, .•. etc. are read. The value of the last record number is
not made known to the user.

Examples:

read(8'i,100)x,y
read(rec=i,unit=8,100)x,y
read(i'j,10)a,b,c,d(n)
read(8'n,)cur,next
~~~.-l(1(,\'~.~ t::t:: ~~~_':>'7\ 
lCaU\ IV .L"T"Ul,JJ,Cll-.)1 J 

TERMINAL READ STATEMENT 

Syntax: 

read n,list 
or 

read, list 
or 

input n,list 
or 

input, list 

Semantics: 

P,. terminal read statement is equivalent to a formatted sequential read 
statement as shown below: 

read n,list 
read, list 

input n,list 
i.nput, 1 ist 

read(O,n)list 
read(O,10)list 

10 format(v) 
read(O,n)list 
read(O,10)list 

5-9 AT58-03 

I 

I 

I 



UNFORMATTED SEQUENTIAL READ STATEMENT 

Syntax: 

I read (u,end=a,err=b,unit=u) list 

I 

Semantics: 

An unformatted record is read from the file or device associated with unit 
u. The number of words specified by the items in the list must not exceed the 
number of words specified by the items in the list used to create the record. 
The file position is left following the record read. 

The data contained in the record is transmi tted to the variables in the 
list. The data contained in the record is assumed to be of the same mode as the 
list items. No mode conversion is performed between the data in the record and 
the list items, and no checking is performed. 

Examples: 

read(51)a,b,c 
read(j,err=99)x,y,z 
read(err=99,unit=j)x,y,z 
read(1,err=64,err=19)p,q,r 

UNFORMATTED DIRECT ACCESS READ STATEMENT 

Syntax: 

I read(u'k,err=b,unit=u,rec=k) list 

I 

Semantics: 

The unformatted record number k is read from the file or device associated 
with unit u. Such a record must exist; if not, an error occurs. The number of 
words specified by the items in the list must not exceed the number of words 
specified by the items in the list used to create the record. The file position 
is left following the record read. 

The data contained in the record is transmitted to the variables in the 
list. The data contained in the record is assumed to be of the same mode as the 
list items. No mode conversion is performed between the data in the record and 
the list items, and no checking is performed. 

Example: 

read(10'm+n,err=25)x,y,z 

DECODE STATEMENT 

Syntax: 

decode(c,n)list 

where c is a variable, an array name, or an array element of any mode other than 
logical. For this statement, list is required. 

5-10 AT58-03 



Semantics: 

The storage identified by c is considered to be one or more records. Values 
are read from those records and stored into the variables specified by the list 
under control of the format identified by n. New records are selected in the 
manner described in "Interaction Between Format and Input/Output List" below. 

If c is a variable or array element, the format must request a single 
record containing no more than j characters where j is 4 if the variable or 
array element is of integer or real mode, 8 if complex or double-precision mode, 
and the declared length if the variable or array element is character mode. If 
it requests less than j characters from c, the leftmost characters are read and 
the remaining characters of c are ignored. If more than j characters are requested 
or if a second record is requested, an error occurs. 

If c is an array of character mode consisting of k array elements, each j 
characters in length, the format must not request more than k records, each no 
more than j characters in length. Each record is read from one element of c 
beginning with the first element. If more than j characters are requested from 
a record or if more than k records are requested, an error occurs. 

If c is an array of arithmetic mode, it must be an array of one dimension. 
The entire array is processed as if it were a character-string variable of 
length j where j is equal to the number of elements in the array, multiplied by 
4 if the array is integer or real mode, or multiplied by 8 if the array is 
complex or double-precision mode. 

Example: 

integer x(5) 
character*10 c(5) 
read 5,c 

5 format(5a10) 
decode (c,10) (x(i),i=1,S) 

10 format (5(3x,i7/)) 

All five elements of the array are ilread" by this example. 

NAMELIST READ STATEMENT 

Syntax: 

read(u,n,end=a,err=b) 

Semantics: 

Records of the form described under the "Namelist Statement" below are read 
from the file or device associated with unit u, under control of the namelist 
specified by n. 

Examples: 

namelist/input/a,b,c,d 
read(5,input,end=10) 

5-11 AT58-03 



Write Statement 

There are five variations of the write statement, each supporting a particular 
type of file access. Each of these is documented separately. The syntax model 
below is a generalized one, including all fields that can be supplied with a 
write. Each form of the write, however, has a different requirement for fields, 
as shown in the individual syntax models that follow. 

I write (u'k,n,err=b,unit=u,fmt=n,rec=k)list 

I 

I 

I 

where: 

u 

k 

n 

b 

list 

integer expression giving uni t number (0-99), the name of an internal 
file, or an asterisk. An asterisk appearing as a unit specifier 
indicates a default, preconnected unit. In Multics FORTRAN this 
is unit 0, which is connected to the user's terminal. See "Keywords" 
above. 

integer expression giving record number; k must be > 0 and is 
specified by the user. The FORTRAN I/O runtime routines use the 
value of this expression as the record number. The value of this 
expression is not changed by these routines. If the record number 
field is present, the statement is a direct access write statement; 
if this field is not present, the separating apostrophe must also 
be omitted and the statement is a sequential write statement. 

label of a format statement, a character-string constant, a character 
variable, a character expression involving substrings and/or 
concatenations, a namelist name, or the name of a character or 
integer array that contains the character-string representation 
of a format. It may also be a simple integer variable that is 
defined with a value representing a format string. Such a variable 
may be defined by executing an assign statement containing the 
label of a format statement. An n is used only with formatted 
operations and must be omitted (along with the separating comma) 
for unformatted ones; a list-directed operation can be specified 
by omitting n but retaining the comma. (See "Format Specifications" 
later in this section.) 

a statement label indicating where control is to be transferred 
in case of error. The "err=b" option can be omitted; if omitted, 
the comma must be omitted. Without the "err=b" option, an error 
causes the program run to terminate with an error message. 

a data transfer list (described later under "Data Transfer Lists"); 
the data transfer list can be omitted. 

FORMATTED SEQUENTIAL WRITE STATEMENT 

Syntax: 

I write (u,n,err=b,unit=u,fmt=n) list 

Semantics: 

Formatted records are written to the file or device associated with unit u 
under the control of the format identified by n. The data contained in the 
variables specified in the list is written to the records. The number of records 
written depends on the number of elements in the list and on the content of the 
format. The file position is left following the last record written. 

5-12 AT58-03 



Examples: 

write(10,format) a,b,c 
write(8,105) (a(i) ,i=1 ,in) 
write (fmt=105,unit=8)a,b,c 
write(37,err=909)x,y,z 

FORMATTED DIRECT ACCESS WRITE STATEMENT 

Syntax: 

write (u'k,n,err=b,unit=u,fmt=n,rec=k)list 

Semantics: 

The current values of the list elements are written as format ted records 
beginning with record k to the file or device associated with unit u, under the 
control of the format identified by n. The data contained in the variables 
specified by the list is written to the records. Existing records are overwritten. 
The number of records written depends on the number of elements in the list and 
on the content of the format. The file position is left following the last 
record written. 

If more than one record is produced, records with record numbers k, 
k+1 ,k+2, .•. k+n are written. The value of the last record number is not made 
known to the user. 

Examples: 

write(8'j,800)a,b,c 
write(rec=j, unit=8,800)a,b,c 
write(30'n+m,format)xyz 

PRINT STATEMENT 

Syntax: 

print n,list 
or 

print,list 

Semantics: 

A print statement 
as shown below: 

print n,list 
print,list 

is equivalent to a formatted sequential write statement 

write (O,n)list 
write (0,10)list 

10 format (v) 

5-13 

I 

I 

I 
I 



UNFORMATTED SEQUENTIAL WRITE STATEMENT 

Syntax: 

I write (u,err=b,unit=u) list 

Semantics: 

A single unformatted record is written to the file or device associated 
with unit u. The record contains a copy of the current value of every element 
in the list, written in the order in which it appears in the list. 

Examples: 

write (51) a 
write (k) x,y,z(i) 

UNFORMATTED DIRECT ACCESS WRITE STATEMENT 

Syntax: 

I write(u'k,err=b, unit=u, rec=k) list 

I 

Semantics: 

A single unformatted record is written to the file or device associated 
with unit u. The record contains a copy of the current value of every element 
in the list, written in the order in which it appears in the list. 

Examples: 

write(10'250,err=6)a,b,c 
write(15'n+m)x,y 
write(rec=n+m,unit=15)x,y 

ENCODE STATEMENT 

Syntax: 

encode(c,n)list 

where c is a variable, an array element, or an array name of any mode other than 
logical. For this statement, the list is required. 

Semantics: 

The current values of the elements specified by the list are transmitted to 
the storage identified by c under control of the format identified by n. The 
storage identified by c is considered to be one or more records. New records 
are selected in the manner described in "Interaction Between Format and Input/Output 
List" under "Format Specification." 

5-14 AT58-03 



If c is a variable or an array element, the format must produce a single 
record containing no more than j characters, where j is equal to 4 if the 
variable or array element is of integer or real mode, 8 if complex or double-precision 
mode, and the declared length if character mode. The record is contained Cleft 
justified) within C; any excess characters in c are unmodified. If more than 
characters are produced or if a second record is produced, an error occurs. 

If c is an array of character mode consisting of k array elements, each j 
characters in length, the format must not produce more than k records, each no 
more than j characters in length. Each record is stored into one element of c 
beginning with the first element. If more than j characters are produced from a 
record or if more than k records are produced, an error occurs. 

If c is an array of an arithmetic mode, it must be an array of one dimension. 
The entire array is processed as if it were a character-string variable of 
length j, where j is equal to the number of elements in the array, multiplied by 
4 if the array is integer or real mode, or multiplied by 8 if the array is 
complex or double-precision mode. 

Example: 

integer x,z 
character*40 c(5) 
encode(c,10)x,y,z 

1 0 form a t (i 1 0 , f 1 0 . 3 , 1 , 1 0 x , i 1 0 ) 

The first two elements of the array c are modified by this example. 

NAMELIST WRITE STATEMENT 

Syntax: 

write(u,n,err=b) 

Semantics: 

The current values of the variables identified by namelist n are written as 
a single record of the form described under the "Namelist Statement" below to 
the file or device associated with unit u. 

Examples: 

namelist/output/x,y,z 
write(6,output) 

1/0 CONTROL STATEMENTS 

The 1/0 control statements are used to change attributes associated with 
units. The open and close statements connect or disconnect the unit respectively. 
In addition, the open statement, used primarily to associate a unit with an 
external file or device, can also be used to specify and change attributes of 
units that are already connected. 

The rewind, backspace, and endfile statements affect the "current position" 
associated with the file or device. 

5-15 AT58-03 



The following descriptions assume the use of standard 1/0 modules (see 
Section 10 for information about them). The use of nonstandard 1/0 modules may 
impose additional restrictions on the features and capabilities described. Some 
of the more commonly used nonstandard 1/0 modules are discussed in Section 4 of 
the FORTRAN Users' Guide. 

Open Statement 

The open statement is used to: 

• connect a file or device to a unit, 

• create a file and then connect it to a unit, or 

• change the value of the access, mode, prompt, defer newline, or carriage 
control attributes for a connected unit. 

The syntax of the open statement is: 

openCu,olist) 

where u is an integer expression giving the unit number and olist is a list of 
zero or more specifiers in any order. CA specifier is a keyword followed by an 
equal sign followed by an expression.) In most cases, the keyword used to 
specify an attribute is the same as the name of the attribute. There is a 
difference between the keyword (specifier) and the attribute. Not all keywords 
allowed in the open statement specify file attributes, e.g., err=, iostat=, and 

I status=. The unit= keyword may be used to specify the unit number instead of 
placing the unit number in the first position as indicated above. If this 
keyword is used, it can appear anywhere in the list of specifiers. The recognized 
specifiers are: 

I 

access=acc 
attach=atd 
binary stream=bs 
blank=blnk 
carriage=car 
defer=d 
err=s 
file=fname 
form= f 
iostat=ios 
ioswitch=sw 
mode=io 
prompt=p 
recl=len 
status=x 

I unit=u 

The specifiers are described in more detail below. 

access=acc 
specifies the access method desired, where acc is a character expression 
whose value when any trailing blanks are removed is either: 

sequential 
direct 

This specifier defines the access method for the unit. If not specified 
when the unit is connected, the default is: 

sequential 

5-16 AT58-03 



attach:atd 
specifies an attach description to be used to attach the 1/0 switch, 
where atd is a character expression that is passed directly to the 
Mul tics 1/0 system as an at tach descript ion. (For a descript ion of 
Multics 1/0, see Section 10 below and MPM Reference Guide, Section 5). 
See the FORTRAN Users I Guide for a detailed explanation of how this 
specifier interacts with other specifiers in an open statement. This 
specifier cannot be given if the file specifier is present, if the 1/0 
switch is already attached, or if the unit is already connected. 

blank:blnk I 
specifies the manner in which trailing and embedded blanks are to be 
treated during number conversions, where blnk is a character expression i 
whose value when any trailing blanks are removed is either: 

null 
zero 

This specifier indicates whether trailing and embedded blanks are to 
be ignored or treated as zeros. If the specifier is "null," then such 
blanks are ignored and given no numerical significance. If the specifier 
is "zero," then these blanks are treated as zeros. The defaul t for 
handling trailing and embedded blanks depends on whether the program 
is compiled under the ansi77 option or the ansi66 option. Under the 
ansi 77 opt ion, the defaul t is to ignore those blanks, and under the 
ansi66, they are treated as zeros. 

binary stream:bs 
specifies the value of the binary stream attribute, where bs is a 
logical expression. If bs evaluates to .true., the binary stream attribute 
is associated with the specified unit. See Section 10 below for a 
detailed description of the binary stream attribute. If the binary 
stream attribute evaluates to .true., the recl specifier must not be 
given and the file must be an unformatted file. This specifier cannot 
be given if the unit is already connected. 

carriage:car 
specifies the value of the carriage control attribute, where car is a 
logical expression. This attribute is meaningful only if the mode is: 

out 
inout 

the form is: 

formatted 

and the access is: 

sequential 

For a description of carriage control processing, see the section "Carriage 
Control" above. If not specified, the defaul t value is copied from 
the previous use of this unit in the program run. At the beginning of 
a program run its value is .false., except for unit numbers 6 and 42. 

WARNING: Once this attribute is associated with a unit, it remains 
with that unit for the life of the program run, or until it is 
explicitly changed. If a unit is given this attribute and then 
disconnected, all subsequent connections acquire this attribute also. 

5-17 AT58-03 

I 



defer=d 

err=s 

specifies a value for the defer newline attribute, where d is a logical 
expression. If d evaluates to .true., the specified unit is given the 
defer newline attribute. If a unit has the defer newline attribute, 
then the last newline character of a write statement is not printed 
immediately. Instead, it is printed before the next line of output is 
printed or when the program run terminates. This mode of operation 
allows the "+" carriage control to work in the first record produced 
by a given write statement and also allows the program to ask questions 
that are answered on the same line. This attribute is meaningful only 
if the mode is: 

out 
inout 

the form is: 

formatted 

and the access is: 

sequential 

If not specified, the default value is copied from the previous use of 
this unit in the program run. At the beginning of a program run its 
value is .false. 

WARNING: Once this attribute is associated with a unit, it remains 
with that unit for the life of the program run, or until it is 
explicitly changed. If a unit is given this attribute and then 
disconnected, all subsequent connections acquire this attribute also. 

specifies an error return statement label, where s is a statement 
label indicating where control is transferred in case of an error 
during the execution of an open statement. If an error occurs and 
this specifier and the iostat specifier are not given, the program run 
terminates with an error message. See "Error Processing" above for a 
complete description of error processing. 

file=fname 
specifies a file name, where fname is a character expression whose 
value when any trailing blanks are removed is: 

the pathname of the file to 
be connected to the unit 

If this specifier is not given when the unit is connected and a file 
name is required for the attachment, the value filenn is used, where 
nn is a two-digit representation of the unit number-.- This specifier 
cannot be given if the attach specifier is present, if the 1/0 switch 
is already attached, or if the unit is already connected. 

form=f 
specifies the form of the records in the file or device, where f is a 
character expression whose value when any trailing blanks are removed 
is either: 

formatted 
unformatted 

If not specified when connecting a unit, the default is: 

unformatted 

This specifier cannot be given if the unit is already connected. 

5-18 AT58-03 



12/83 

form=f 
specifies the form of the records in the file or device, where f is a 
character expression whose value when any trailing blanks are removed 
is either: 

formatted 
unformatted 

If not specified when connecting a unit, the default is: 

unformatted if ansi66 or access = "direct", else formatted 

This specifier cannot be given if the unit is already connected. 

iostat=ios 
specifies a status variable, where ios is an integer variable or an 
integer array element. After execution of the open statement, the 
integer variable or integer array element contains zero "if no error 
occurred during the execution of an open statement or a nonzero value 
if an error occurred. Whether or not there is an error, no message is 
printed and execution continues with the statement immediately following 
the open statement (unless the err specifier is given). If an error 
occurs and this specifier and the err specifier are not given, the 
program run terminates with an error message. See "Error Processing" 
above for a complete description of error processing. 

A character string describing the meaning of an I/O status code can be 
obtained by calling the convert status code , com err , or sub err 
subroutines. Note that the absolute value of the status code must be 
passed, since the negative of a standard system status code is returned 
where the FORTRAN Standard requires a negative value. See "List of 
System Status Codes and Meanings" in the Multics Programmer's Reference 
Manual for a list of error codes. 

ioswitch=sw 
specifies the name of the I/O switch, where sw is a character expression 
whose value when any trailing blanks are removed is: 

the name of the I/O switch to be 
associated with the specified unit 

See Section 12 for a detailed explanation of how this specifier interacts 
with others in an open statement. This specifier cannot be given if 
the unit is already connected. 

mode=io 
specifies the types of data transfer that are desired for the unit, 
where io is a character expression whose value when any trailing blanks 
are removed is: 

in 
out 
inout 

If out or inout is specified, the user must have write access to the 
file or device associated wi th the uni t. If not specified when the 
unit is connected, the default is: 

inout 

prompt=p 
specifies the value of the prompt attribute, where p is a logical 
expression. If p eva 1 ua tes to . true., the unit is given the prompt 
attribute. This causes the two-character sequence "? "to be output 
to the terminal immediately prior to each input request for that unit. 
If the unit is not the terminal, this attribute is ignored. If not 
specified, the default value is copied from the previous use of this 
unit in the program run. At the beginning of a program run its value 
is .false. 

5-19 AT58-03B 

I 



WARNING: Once this attribute is associated with a unit, it remains 
with that unit for the life of the process or run unit, or until it 
is explicitly changed. If a unit is given this attribute and then 
disconnected, all subsequent connections acquire this attribute also. 

recl=len 
specifies a maximum record length, where len is an integer expression 
whose value must be greater than zero. This specifier can be used to 
specify that a file or device has a maximum record length attribute or 
it can be used to change the value of that maximum record length 
attribute. If the file does not exist or if the file is empty, any 
value can be specified. If the file already exists and is not empty, 
the file must already have the maximum record length attribute, and 
the maximum record length attribute associated with the file must equal 
the value specified. This specifier cannot be given if the unit has 
the binary stream attribute or if the unit is already connected and it 
does not already have the maximum record length attribute. 

status=x 
where x is a character expression (i.e., quoted) whose value when any 
trailing blanks are removed is: 

new 
old 
scratch 
unknown 

If the status value is "old," a file= keyword must be present in the 
open statement, and the named file must exist. If the status value is 
"new," a file= keyword must be present in the open statement, but the 
named file cannot exist already. If the status value is "scratch," no 
file= keyword can be used. A temporary file is created for the unit 
in the process directory, and it is deleted when the unit is closed. 
The corresponding close statement cannot have the status value "keep" 
if the unit is opened with status value "scratch." If the status 
value is "unknown," a file will be created if necessary. The file= 
keyword may be used; if it is not, the file name will be derived from 
the unit number. When no status specifier is present in an open statement, 
the status value is assumed to be "unknown." 

unit=u 

WARNING: Prior to implementation of ansi 77, specifying this field 
had no effect on execution of a program, but that is no longer 
true. The status= keyword specifications in previously written 
programs may now affect the execution of those programs. 

specifies the unit to be used, where u is the unit's number. Exactly 
one unit specifier must be present in the open statement. If this 
keyword is not used, the unit number must be placed in the first 
position of the open statement. 

5-20 AT58-03 



Opening ~ Connected Unit 

If an open statement specifies a unit that is already connected, only certain 
specifiers are permitted. If an invalid specifier is given, an error occurs. 
The permitted specifiers for an open statement referencing an already connected 
unit are: 

err=s 
iostat:ios 
recl=len 
mode=io 
access=acc 
prompt=p 
defer=d 
carriage=car 

The effect of giving any of these specifiers in an open statement for a 
connected unit is to change the corresponding attribute to have the value specified. 
Changing the maximum record length is permitted only if there are no records in 
the associated file. Specifying a maximum record length for an already existing 
file that does not have this property is not permitted. 

Close Statement 

The close statement is us~d to disconnect a unit, i.e., remove the association 
between a unit number and the file it currently represents. The close statement 
places the file in a consistent state by: 

• fl ushing any internal buffers managed by the FORTRAN runtime 110 routines, 
and 

• restoring the Multics internal 1/0 data bases to their state prior to 
the corresponding open. 

Certain changes in the use of a file require that the unit be closed and 
reopened. For a discussion of such constraints see Section 10. 

The syntax of the close statement is: 

close([unit=]u,clist) 

where u is an integer expression giving the unit number and clist is a list of 
specifiers. The unit= keyword may be used to specify the unit number instead of 
placing the unit number in the first position as indicated above. If the optional 
keyword is used, it can appear anywhere in the list of specifiers. The recognized 
specifiers are: 

err=s 
iostat=ios 
status=st 
unit=u 

5-21 AT58-03 



* 

The err, iostat, and unit specifiers have the same meaning as for the open 
statement; the status specifier is described below. 

status=st 
specifies the file disposition after it is disconnected, where st is a 
character expression whose value when any trailing blanks are removed 
is either: 

keep 
delete 

If delete is specified, the file associated with the specified unit is 
deleted after disconnecting if and only if the file was attached and 
opened by the FORTRAN runtime I/O routines. If keep is specified, no 
further action is taken after closing. If this specifier is not given, 
the default value is keep. See above for the status of scratch files. 

Rewind Statement 

The rewind statement is used to set the 
device to the beginning of the file or device. 
that have the sequential attribute. 

The syntax of the rewind statement is: 

rewind ([unit=]u[,err=s,iostat=ios]) 

current position of a fi Ie or 
It is permitted only for units 

where u is an integer expression representing the unit number of the file to be 
repositioned, s specifies the error label, and ios is the input/output status 
specifier. If the position is already at the beginning, there is no change. 
The unit specifier must appear exactly once, and if the unit= keyword is omitted, 
the specifier must be in the first position. The err= and iostat= keywords can 
appear no more than once. 

Backspace Statement 

The backspace statement is used to set the current posi tion of a file to 
the record immediately preceding the current record. It is permitted only for 
units that have the sequential attribute. 

The syntax of the backspace statement is: 

backspace ([unit=]u[,err=s,iostat=ios]) 

where u is an integer expression representing the unit number of the file to be 
positioned, s specifies the error label, and ios is the input/output status 
specifier. If the position is at the beginning of the file or device, there is 
no change. The unit specifier must appear exactly once, and if the unit= keyword 
is omitted, the specifier must be in the first position. The err= and iostat= 
keywords can appear no more than once. 

12/83 5-22 AT58-03B 



NOTES ON SEVERAL ENDFILE VERSIONS 

There are currently three separate actions that can be taken as a result of 
executing an endfile statement, depending on the version of the compiler used to 
generate the object code actually executing. The old fortran compiler generates 
an endfile statement that behaves like a close statement instead of performing 
the actions mentioned above. The new fortran compiler generates an endfile statement 
whose execution depends on the version of the runtime FORTRAN 1/0 routines used 
(see MPM Commands) The MR5.0 and MR6.o versions of the runtime FORTRAN 1/0 
routines execute it as a statement that does not affect the file or device but 
prints a warning message. With releases MR9.0 and beyond, the endfile statement 
as executed by the runtime FORTRAN 1/0 routines behaves as indicated in the 
previous paragraph. 

DATA TRANSFER LISTS 

A data transfer list specifies values to be transmitted during the execution 
of the data transfer statement in which the list appears. 

Syntax: 

e[,e] ... 

If the list is used in a read or decode statement, each e is the name of a 
variable, an array element, an array name, or an implied do-loop. If the list 
is used in a write or encode statement, each e is an expression, an array name, 
or an implied do-loop. 

Semantics: 

Beginning with the leftmost item, each item is evaluated and its value 
transmitted to or from the record(s) referenced by this data transfer statement. 
The evaluation of an item consists of the computation of its subscripts, evaluation 
of the expression, or the execution of all implied do-loops contained in the 
item. 

Examples: 

a,x(i,j),(y(k),k:1,n) 
a,b,c 

IMPLIED DO-LOOPS 

An implied do-loop is similar in function to a do statement. Its execution 
causes one or more list elements to be transmitted to or from a record. 

Syntax: 

(list,i:m1 ,m2 [,m
3

]) 

where list is a data transfer list; i is an arithmetic variable whose mode is 
not complex; and m1 , m2 , and m~ are ariOthmetic expressions whose modes are not 
complex and whose values are converted to the mode of i. If m3 is omitted, it 
is assumed to be 1. 

5-23 AT58-03 



Semantics: 

The semantics of an implied do-loop are analogous to those of a do-loop. 

I Processing of an implied do-loop may cause no elements to be transmitted if the 
ansi 77 option is in effect (see DO STATEMENT in Section 4). The range of an 
implied do-loop is specified by the enclosing parentheses. 

Examples: 

Analogous Do 
Implied Do List Statements 

(x(i),i=1,n) do 99 i=1,n 
99 xCi) 

«a(i,j) ,j=1 ,n) ,i=1 ,m) do 80 i=1,m 

(i,j,a(k,i,j),k=1,15) 

do 80 j=1,n 
80 a(i,j) 

do 60 k=1,15 
60 i,j,a(k,i,j) 

Equivalent List Naming Each 
Array Element Separately 

x(1),x(2), ..• ,x(n) 

a( 1,1) ,a( 1,2), ... ,a( 1 ,n) 
a(2,1),a(2,2), ••. ,a(2,n) 

a(m,1),a(m,2), •.. ,a(m,n) 

i,j,a(1,i,j) 
i,j,a(2,i,j) 

i,j,a(15,i,j) 

The order in which list elements are transmitted makes it possible for the 
evaluation of subscripts or an implied do-loop variable to be affected by the 
transmission of previous list elements in an input statement. 

Example: 

read(5,100)i,k,a(i,k) 

The values of i and k used in the evaluation of a(i,k) are the values just 
transmitted by this read operation. If a nonsubscripted array name is used as a 
list element, it is equivalent to the use of each of the array elements listed 
in the order in which the elements occur in storage, except that the resultant 
code may be more efficient. 

Example: 

dimension a(2,3) 

read (2) a 

is equivalent to: 

dimension a(2,3) 

read(2) a(1,1),a(2,1),a(1,2),a(2,2),a(1,3),a(2,3) 

5-24 AT58-03 



FORMAT SPECIFICATIONS 

Data transfer operations performed by formatted read, formatted write, input, 
print, encode, or decode statements are controlled by format specifications. A 
format specification may be contained in a format statement, or expressed as a 
character-string constant, a character-string variable, or an integer or 
character-string array. It consists of a set of zero or more field descriptors 
separated by commas, colons, or record delimiters. If the format specification 
is contained in a variable, array, or constant, the first nonblank character 
must be a left parenthesis. The matching right parenthesis terminates the 
specification. Characters following the terminating right parenthesis in a 
character-string constant or a format statement are invalid and cause an error
during compilation. Characters following the terminating right parenthesis in a 
variable or an array are ignored. 

Syntax: 

([["l,][/] ••• f[cf] ••• [,$]]) 
or 

([["l,]v[,$]]) 
or 

([["1,]*[,$]]) 

I 

I 
where "1 are the characters caret and 1; / is zero or more slash characters; I 
each f is either a control item, a field descriptor, or a repeat group; each c 
is a comma, a colon, or a set of one or more slash characters; $ is the dollar 
sign character; v is the lowercase letter v; and * is an asterisk. The "1 is I 
optional and if omitted, the comma must also be omitted. Under the ansi66 
option, s may be used to serve the same function as "1. The $ is optional and 
if omitted the comma must also be omit ted. Both sand $ cannot appear in the 
same format specification. A format specification may be empty (i.e., it may be 
a left parenthesis followed immediately by a right parenthesis). 

Semantics 

If the format specification is empty, the data transfer list must be omitted. 
For input operations, one record is read and discarded; for output operations, a 
blank record is wri t ten. The s indicates that the file contains line numbers 
that are to be skipped on input. The s is invalid for output. A slash delimits 
records. For input operations, the next record is read. For output operations, 
the current record is written and output continues into a new record. See the 
following pages for control items, field descriptors, and repeat groups. Commas 
or colons are used to delimit the separate specifications. When a colon is used 
to delimit specifications, it implies a comma and terminates processing of the 
format specification if the data transfer list has been exhausted. When a set 
of one or more slashes is used to delimit specifications, it implies a comma and 
delimits records. For a complete description of format processing refer to 
"Interaction Between Format and Input/Output List" later in this section. The $ 
indicates that the newline character that would normally follow the final output 
record is suppressed. On input, the $ is ignored. The v and the asterisk I 
indicate list-directed input/output, which is performed as described under 
"List-Directed Input/Output" later in this section. 

5-25 AT58-03 



Control Items 

A control item can have one of the following forms: 

s 
sp 
ss 
.... 1 

nxs 
tn 
tIn 
trn 
nha1a2···an 
"a1 a 2·· .an" 
'a1 a2··· an' 
$ 
bn 
bz 

character-string constants 

where n is an unsigned positive integer constant, except in the case of bn; a 1, 
a2' through an are ASCII characters; and the let ters s, x, t, h, bn, and by 
represent themselves and are control codes. 

The s control item's meaning depends on whether the program is compiled 
using ansi66 or ansi77. In program units compiled under the ansi66 option, the 
s control item indicates that the file contains line numbers that are to be 
ignored. For this purpose, a line number is a string of one or more digi ts 
followed by one nondigit and occurring at the beginning of a record. When used 
in this way, the s control item must appear at the beginning of a format and can 
be used only for input. 

In programs compiled under the ansi77 option, the s control item pertains 
to the production of plus (+) signs in numeric output fields and is directly 
related to the sp and ss control items. At the beginning of a formatted output 
statement's execution, the system has the option of producing plus signs in 
numeric output fields. If an sp control item is encountered in the format 
specification, the system must produce plus signs that would ordinarily be optional. 
If the ss control item is encountered, the system must not produce plus signs. 
If an s control item is encountered in a format statement compiled under the 
ansi77 option, the option of producing the plus signs is returned to the system. 
(The sp and ss control items operate under both the ansi77 and ansi66 options.) 
On Mul tics, optional plus signs are not produced unless an sp control item is 
used. These three controls pertaining to plus signs have no effect on the 
execution of an input statement. 

The Al (caret 1) control item can be used only at the beginning of a format 
and only for input. As with the s control item in the ansi66 option, the .... 1 
control item indicates that the file contains line numbers that are to be ignored. 
Under the ansi66 option, either the s or the .... 1 control item can be used to 
indicate that line numbers in the input records are to be skipped, while under 
the ansi77 option, only the Al control item can indicate this. 

The nx form causes the next n characters of the current input record to be 

I skipped. If the ansi66 option is in effect, skipped characters in an output 
record are cleared to blanks. 

12/83 5-26 AT58-03B 



The tn form causes the processing of the current record to continue wi th 
the nth character position of the record. This control item is used to permit 
the order of the elements in the data transfer list to differ from the order of 
the fields of a record. If the ansi66 option is in effect and the new position I 
is to the right of the current end of the record in the buffer, the record will 
be extended to the new position with blanks. 

The tIn and trn forms indicate that transmission of the next character to 
or from the record is to occur at the character position n characters from the 
current position. The tIn form causes processing of the current record to continue 
n characters to the left of the current posi tion. If n is greater than the 
current position, the next transmission takes place at position i of the record. 
The trn form causes processing to continue n characters to the right or forward 
of the current position. If the ansi66 option is in effect and the new position I 
is to the right of the current end of the record in the buffer, the record will 
be extended to the new position with blanks. 

A character-string constant has the same form as described for character-string 
constahts in Section 2. However, in this case, when quotation marks are used to 
delimit a character string, the string itself cannot include quotation marks; 
1 ikewise apost rophes cannot appear wi thin character-st ring constants del imi ted 
by ~postrophes. Used as a control item, a character-string constant causes the 
value of the constant to be placed in the current output record. If a character-string 
constant is used to describe an input record, the constant is replaced by the 
corresponding field of the record. 

Examples: 

5x 

t25 

"x equals" 

8hx equals 

causes five characters of the current record to be skipped. I 
If this is an output record and the ansi66 option is in 
effect, those five characters will be cleared to blanks. 

causes the processing of the current record to continue 
with the 25th character position of the record. 

causes the letters "x equals" (without the quotation 
marks) to appear in the current output record or causes 
the constant "x equals" (without the quotation marks) 
to be replaced by the next eight characters of the current 
input record. 

this item is equivalent to the previous example. 

The $ control item can be used only at the end of a format, and is meaningful 
only on output. It indicates that the newline character that would normally 
follow the final output record is suppressed. 

The bn and bz control items specify the interpretation of trailing and 
embedded blanks in numeric input fields. They are not meaningful for output. 
At the beginning of execution of a formatted input statement, the interpretation 
of all blanks other than leading blanks is dictated by the blank: keyword in the 
open statement for the unit or by the appropriate default if no blank: keyword 
is given," If a bn control i tern is encountered in the format specification, 
trailing and embedded blanks are ignored (treated as null) in succeeding numeric 
input fields. If a bz control item is encountered, trailing and embedded blanks 
are treated as zeros in succeeding numeric input fields. 

12/83 5-27 AT58-03B 



Field Descriptors 

A field descriptor can have one of the following forms: 

Sr w.d 
Srew.d 
Srdw.d 
Srgw.d 
Srew.dee 
Srew.dee 
riw 
riw.m 
raw 
ra 
rrw 
row 
rlw 

where the underl ined let ters (a, d, e, f, g, i, I, 0, r) are conversion codes 
that control the conversion of input fields or output variables. 

The w is an unsigned, nonzero, integer constant whose value describes the 
width of a field in the record. The d is an unsigned integer constant whose 
value describes the number of decimal fractional digits expected in an input 
field or required in an output field. Its meaning varies slightly when used 
wi th a g conversion code. The e is a signed, nonzero, integer constant whose 
value indicates the exponent in an output field. The m is an unsigned, integer 
constant whose value indicates the minimum number of digits in an output field. 
The r is an optional, unsigned, nonzero, integer constant whose value indicates 
the number of times this field descriptor is to be repeatedly used. The S is a 
scale-factor designator as defined below. The scale factor designator is in no 
way related to the s control mentioned earlier. 

NUMERIC CONVERSION 

The numeric field descriptor i is used to specify input/output of integer 
data. The numeric field descriptors-f, e, g, and d are used to specify input/output 
of real, double-precision, and complex-data. The following rules apply: 

2/83 

1. With all numeric input conversions, leading blanks are not significant. 
Other blanks are treated in one of two ways. For programs compiled 
under the ansi77 option, they are ignored by default and thus have no 
numerical significance. For programs compiled under the ansi66 option, 
they are treated as zeros by default. Plus signs may be omitted. A 
field of all blanks is considered to be zero. 

2. With the f, e, g, and d input conversions, a decimal point appearing 
in the input-field overrides the decimal point specification supplied 
by the field descriptor. If the input value does not contain a decimal 
point, a decimal point is assumed to immediately precede the rightmost 
d digits. 

3. With all output conversions, the output field is right justified. If 
the number of characters produced by the conversion is smaller than 
the field width, leading blanks are inserted in the output field. 

4. With all output conversions, the character-string representation of a 
negative value is signed; a positive value is unsigned. This is the 
default. Under ansi77, this signing convention can be changed. 

5. If the number of characters produced by an output conversion exceeds 
the field width, the entire output field is filled with asterisks. 

5-28 AT58-03A 



INTEGER CONVERSION 

The numeric field descriptors iw and iw.m describe a field w characters I 
wide that contains the character-string representation of an integer. The list 
element associated with this field descriptor must be an integer value. 

For input conversion, the field consists of an optional sign followed by a 
string of digits. Leading blanks are not significant. Other blanks are treated I 
in one of two ways. For programs compiled under the ansi 77 option, they are 
ignored by default and thus have no numerical significance. For programs compiled 
under the ansi66 option, they are treated as zeros by default. Plus signs may 
be omitted. A field of all blanks is considered to be zero. 

For output conversion, the field contains a right-justified, possibly signed, 
integer constant whose value is that of the associated list element. All leading 
zeros are suppressed. The value 0 is represented as a single digit, right 
justified within the field. In the case of the iw.m descriptor, the integer 
consists of at least m digits and contains leading zeros if necessary. The 
value of m must not exceed the value of w. If m is zero and the value of the 
associated list element is zero, the output field will consist entirely of blanks, 
regardless of the sign control in effect. 

Examples: 

Format 

i5 
i7 
2i4 

+l:'SHSO 
l:'Sl:'Sl:'Sl:'S-10 
l:'Sl:'Sl:'Sl:'Sl!Sl:'S-1 

FLOATING-POINT CONVERSION VIA fw.d 

Output Value 

l:'Sl:'S100 
l:'Sl:'Sl:'Sl:'S-10 
kHSl:'S0l:'Sl:'S-1 

The numeric field descriptor iw.d describes a field w characters wide that 
contains the character-string representation of a floating-point value. The 
list element associated with this field descriptor must be a real value, a 
double-precision value, or the real or imaginary part of a complex value. 

For input conversion, the field consists of an optional sign followed by a 
string of digits optionally containing a decimal point, and optionally followed 
by an exponent. An exponent may be a signed integer constant, or an e, E, D, or 
d followed by an optionally signed integer constant. The value in the field is 
converted to the mode of the list element. 

For output conversion, the field contains a floating-point constant, possibly 
signed, without an exponent, whose value is that of the associated list element 
rounded to d fractional digits. All leading zeros to the left of the units 
position of the output are suppressed. 

See "Scale Factor Effects" below, for the effect of scale factors on w. d 
input/output conversions. 

Examples: 

Format Input Output Value 

f7.3 0123456 123.456 
123.456 123.456 

f10.3 l:'Sl:'Sl:'Sl:'S123456 161616123.456 
f12.6 165000000e+02 1616500.000000 

5-29 AT58-03 



FLOATING-POINT CONVERSION VIA ~w.d, £w.d 

The numeric field descriptor ew. d or dw. d describes a field w characters 
wide that contains the character-string representation of a floating-point value. 
The list element associated with this field descriptor must be a real value, a 
double-precision value, or the real or imaginary part of a complex value. 

For input conversion, th is field descriptor is equi valent to an fw. d descriptOJ:~. 

For output conversion, the field contains: 

-0.x1 •.. xctE or -.x 1 •.. xdE for negative values 
0.x 1 ••• xdE or .x 1 ..• xdE for positive or 0 values 

where xl through xd are the most significant d digits of the value rounded and E 
is an exponent of the form E+yy or D+yy where yy is a 2-digit decimal exponent. 
The digit represented by x 1 will be nonzero unless the value is zero, the exponent 
is -38, or scaling (see below) is used. 

The leading 0 is produced only if there is sufficient room within the field 
specified by w. 

See "Scale Factor Effects" below for the effect of scale factors on ew.d 
and dw.d input/output conversions. 

Examples: 

Format 

e15.8 ISfHHHS is is IHS is 1 0 0 0 0 
iSiSiSiSiS14398624.iS 
iSiSiSiSiS1439.86241 

FLOATING-POINT CONVERSION VIA ~w.d 

Output Value 

iSO.10000000E-03 
iSO.14398624E+08 
iSO.14398624E+04 

The numeric field descriptor ~w.d describes a field w characters wide that 
contains the character-string representation of a float ing-point value. The 
list element associated with this field descriptor must be a real value, a 
double-precision value, or the real or imaginary part of a complex value. 

For in put con v e r s ion, t his fie 1 d des c rip tor is e qui val e n t to an fW • d des c rip tor. 

5-30 AT58-03 



For output conversion, the character-string representation of the value 
depends on the magnitude of the value. Let n be the magnitude of the value. 
The following describes the output conversion performed in terms of an fw.d or 
ew.d field descriptor: 

Magnitude Of Data 

n<0.1 
0.1<n<1 
1 <n<1 0 

10**(d-2)<n<10**(d-1) 
10**(d-1)<n<10**d 
10**d<n -

Examples: 

Format Input Output 

Equivalent Conversion Effected 

ew.d 
f(w-4).d,4x 
f (w-4 ) • ( d-1 ) , 4x 

f(w-4).1,4x 
f(w-4).0,4x 
ew.d 

g10.3 123456.789 123456.8 
g14.2 0.0123456789 0.1234568E-01 
g14.7 12345678.9 0.1234568E+08 

FLOATING-POINT CONVERSION VIA ew.dee I 

The numeric field description ew.dee describes a field w characters wide I 
that contains the character-string -representation of a floating point value. 
The list elemEmt associated wi th this field descriptor must be real, double 
precision, or the real or imaginary part of a complex value. 

For input conversion, this field descriptor is equivalent to fw.d. I 

For out put conversion, this field descriptor is the same as ew. d, except I 
that the exponent field contains e digits, with leading zeros if necessary. 

FLOATING-POINT CONVERSION VIA ~w.d~e I 

The numeric field descriptor gwo dee describes a field w characters wide I 
that contains the character-string - representation of a floating point value. 
The list element associated wi th this field descriptor must be real, double 
precision, or the real or imaginary part of a complex value. 

For input conversion, this field descriptor is equivalent to fw.d. I 

For out put conversion, this field descriptor is the same as gw. d, except I 
that when the magnitude of the value to be converted is less than 0.1 or greater 
than 10**d, a conversion equivalent to ew.dee is performed. 

5-31 AT58-03 



I 

COMPLEX CONVERSION 

A complex list element requires a pair of floating-point (f, e, d, g) field 
descriptors. The first of these refers to the real part of the-compfex value 
and the second refers to the imaginary part. 

Example: 

2f10.5 

SCALE FACTOR EFFECTS 

The character p indicates a scale factor (n or -n) to be applied to f, ~, 
g, and d conversions. The form used is: 

where n, the scale factor, is an optionally signed integer constant. 

When the format control is initiated at the beginning of each input or 
output statement, a scale factor of 0 is established. Once a scale factor has 
been established, it applies to all subsequently interpreted f, e, q, and d 
field descriptors until another scale factor is encountered. The scale-factor n 
affects the appropriate conversions in the following manner: 

12/83 

1. For f, e, q, and d input conversions (provided no exponent exists in 
the external field) and f output conversions, the scale factor n is 
used as follows: 

2. 

3. 

externally represented number equals internally represented number 
times the quantity 10**n 

This means that the input value is divided by 10**n to obtain the 
internal value, but that the internal value is multiplied by 10**n to 
obtain the output value. Note that in all the above input conversions 
and for f output conversion the value of the number is changed. 

For f, e, g, and d input, the scale factor has no effect if there is 
an exponent- in the- external field. 

For e and d output, the real constant part of the output quantity is 
multipliedby 10**n and the exponent is reduced by n. Note that for e 
and d conversions the appearance of the output is changed but not the 
value. 

The output field will be filled with stars if the scale factor is less 
than or equal to -d (i.e., there are no significant digits) or greater 
than d+1 (i.e., there are too many significant digits for the field). 

5-32 AT58-03B 



12/83 

The scale factor n modifies e and d output as follows: If n<O, there 
are exactly -n leading a's and d+n significant digits after the decimal 
point. (Therefore, a negati ve scale factor reduces the number of 
significant digits printed.) If n>O, there are exactly n significant 
digits to the left of the decimal point and d-n+1 significant digits 
to the right of the decimal point. (Therefore, a positive scale factor 
prints d+1 significant digits.) The scale factor must be greater than 
-d (otherwise there would be no significant digits) and less than d+2 
(otherwise there would appear to be more than d+1 significant digits). 

4. For q output, the effect of the scale factor is suspended unless the 
magnitude of the data to be converted is outside the range that permits 
the effective use of f conversion. If the effective use of a conversion 
is required, the scale factor has the same effect as with e output. 

5-32.1 AT58-03B 



Examples: 

Output 
Actual Without Scaled 

Format Input Internal Scaling Output 

-3p f7.3 ~123456 123456. 123456. 123.456 
-3p e12.4 ~~~~~~123456 12345.6 ~~0.1234E+05 ~~0.0001E+OB 

1p d10.4 ~~rs 12.3456 1.23456 ~.1235D+01 1.2346D+OO 

NOTE: An f7.3 field descriptor cannot be used to output the value 123456 
without scaling. It is included in this example only to show the 
steps in scaling the number. 

CHARACTER-STRING FIELD DESCRIPTOR 

The field descriptor aw describes a field w characters wide. The field 
descriptor a may be used without any width specifier. This is equivalent to the 
aw descriptor, with w being determined by the list element associated with the 
field descriptor. The list element associated with these two field descriptors 
may be of any mode. 

On input, the bit-string representation of the rightmost n characters of 
the field are stored in the list element. (If the list element is a character-string 
variable, n is the length of the variable. If the list element is a double-precision 
or complex variable, n is B. If the list element is not character-string, I 
double-precision, or complex mode, n is 4.) In the case where w is specified, 
if the field is less than n characters wide, the w characters are stored left 
justified with n-w trailing blank characters in the list element. 

On output, when w is specified, the bit-string content of the list element is I 
right justified in the output field and the remainder of the field is filled 
with blank characters. If the field is less than n characters wide, the output 
field consists of the leftmost w characters from the list element if w has been I 
specified. The bit-string content of a variable output via an aw or ~ field 
descriptor must represent valid ASCII characters. 

Examples: 

a4 
10aB 

The field descriptor rw functions exactly like an aw field descriptor, 
except that on input it stores its data right justified within the list element 
and fills the remainder of the element with 0 bits; on output, it takes the 
rightmost w or n characters from the list element. 

Examples: 

r4 
2r10 

5-33 AT5B-03 



OCTAL-STRING FIELD DESCRIPTOR 

The octal-string field descriptor ow describes a field w characters wide 
that contains a string of octal digits. - The list element associated with this 
field descriptor may be of any mode. 

On input, the field must contain a right-justified string of octal digits. 
The last m digits, padded with zeroes if necessary, are stored right justified 
in the variable (m is 24 for double-precision list elements; otherwise, it is 
12) • 

On output, the bit-string representation of the variable is converted to an 
octal string of m digits and the rightmost w (if w < m) digits are stored in the 
output field. If w>m, m digits are stored right Justified in the output field 
and the remainder of the field is blank. 

Examples: 

05 
3012 

LOGICAL FIELD DESCRIPTOR 

A logical field descriptor lw describes a field w characters wide that 
contains the character-string representation of a logical value. The 

I character-string representation of a logical value is either T, F, t, or f. The 
list element associated with the field descriptor must be a logical variable. 

On input, the field is examined from left to right (one character at a 
time) until the first nonblank character is encountered. If that character is a 
t or T, the value .true. is transmitted to the list element. If the first 
character is an f or F, the value .false. is transmitted to the list element. 

I Output consists of the letter T or F, right justified with preceding blanks 
in a field whose width is w. 

Examples: 

18 
215 

Repeat Groups 

A repeat group consists of a parenthesized format specification optionally 
preceded by an unsigned, nonzero, integer constant known as a repeat factor. 
During the interpretation of a format specification, the contents of the repeat 
group are reused as many times as are indicated by the repeat factor. If the 
repeat factor is omi t ted, the contents of the group are used once. Repeat 
groups may be nested to a maximum depth of three. 

5-34 AT58-03 



Example: 

5x,i10,2C3x,"aCi)=",f10.3),"sum=",e12.4 

is equivalent to: 

5x,i10,3x,"aCi)=",f10.3,3x,"aCi)=",f10.3,"sum=",e12.4 

Interaction Between Format and Input/Output List 

16 process an element of a data transfer listj the format is scanned in the 
steps given below. If an input statement is being executed, these steps apply 
to the record read; if an output statement is being processed, they apply to the 
record being created. 

1. If a control item is encountered, the control requests are performed 
and scanning of the format continues. 

2. If a record delimiter is encountered and a read is being processed, 
the next record is read. If a write is being processed, the current 
record is written and a new one is begun. Scanning then continues. 

3. If a colon is encountered and there is another item in the list, the 
colon is ignored and scanning is continued; if the list has been exhausted, 
processing of the format specification terminates. 

4. If a field descriptor is encountered and there is another item in the 
list, the descriptor and item are processed and scanning continues; if 
the list is exhausted, processing of the format specification terminates. 

5. If the end of the format is reached and there are no more items, 
processing is completed; if there is another item and input processing 
is being performed, the next record is read and the format is scanned 
again. If output processing is being performed, the current record is 
written and a new one begun; the format is scanned again. 

6. When the format is being res canned , control reverts to that repeat I 
group specification terminated by the last preceding right parenthesis 
or, if none exists, then to the first left parenthesis of the format 
specification. CThis action has no effect on the scale factor.) 

In the three examples below, control reverts to the parenthesis immediately 
preceding 5e15.8: 

C5e15.8,1x) 
C1x,4h,C5e15.8,1x» 
C1x/10f12.7,5(4x,a4),6C5e15.8,1x» 

In the following example, the format labeled 101 produces the output 
"1,2,3,4,5"; the format labeled 102 produces "1,2,3,4,5,": 

integer x(5)/1,2,3,4,5/ 
print 101, x 
print 102,x 

1 0 1 Form a t C 5 (i 1 : 1 h , ) ) 
1 02 Form a t C 5 (i 1 , 1 h , ) ) 

An empty data transfer list causes the format to be interpreted until a 
colon or field descriptor is encountered or until the end of the format is 
reached. If the data transfer list is not empty, the format specification must 
contain at least one field descriptor. 

5-35 AT58-03 



FORMAT STATEMENT 

A format statement is a nonexecutable statement containing a format 
specification. A format statement must be labeled and can appear anywhere in 
the text of a subprogram Cafter any implicit, subroutine, function, or block 
data statements). 

Syntax: 

label format s 

where label is a statement label and s is a format specification as described 
above under "Format Specifications." 

FORMAT SPECIFICATIONS CONTAINED IN ARRAYS 

The character-string representation of a format can be stored in an array 
by the use of a data statement, a formatted read or encode statement that uses a 
format containing an aw field descriptor, or through the execution of assignment 
statements that store-characters into the elements of the array. 

Example: 

dimension k(20) 
read 100, k 

100 format (20a4) 

read k,a,b,c 

The first read statement reads 80 characters from the user's terminal and 
stores them into the integer array k. The second read statement reads a, b, and 
c according to the format contained in k. 

LIST-DIRECTED INPUT/OUTPUT 

If a format specification consists entirely of the single letter v or an 
asterisk (*), the format specifies list-directed input/output. If a format 
specification consists of the characters "s,v" or "s,*" under the ansi66 option 
or ""l,v" or 11"'1,*" under either the ansi66 or ansi77 option, the format specifies 
list-directed input from a file containing line numbers. 

12/83 5-36 AT58-03B 



List-Directed Input 

Execution of a list-directed input operation begins when a record is read 
from the formatted input file designated by the read statement. (Record marks, 
which are newl ine characters in a binary stream file, are treated like blank 
characters. ) The elements of the read statement's data transfer list cause 
fields to be extracted from the input record. Additional records are read until 
no more list items remain to be satisfied or a list termination character (either 
"I" or ";") is encountered in the input stream. If all the list elements have 
been assigned values or a list termination character is encountered, the remaining 
characters of the last record read are ignored. A complex list element requires 
a complex constant of the form (n, n). Character constants may span mul tiple I 
records (in which case the last character of one record is assumed to immediately I 
precede the first character of the next record). 

Each record has the following form: 

where each f is a field that is either all blank, contains a single constant, or 
contains a single constant with a repetition factor of the form r*c, where r is 
the number of times the constant c is to be read. Each is optionally surrounded 
by blanks and each d is a comma or one or more blanks. A null field can be 
specified by the occurrence of consecutive commas. A null field can also contain 
repetition factor of the form r*, where r is the number of null values to be 
read. 

In programs compiled under the ansi66 option, a null field assigns a 0 to 
the list element when the list element is an arithmetic variable. If the list 
element is a character-string variable, a null field assigns a string of blanks 
to the list element. If the list element is a logical variable, a blank or null 
field assigns .false. to the list element. 

In programs compiled under the ansi77 option, a null field has no effect on 
the corresponding list element. If the list element is defined already, it 
remains defined with the same value; if the element is undefined, it remains so. 

When the record field actually contains a constant, that constant is assigned 
to the list element as if the constant were the right side of an assignment 
statement whose left side was the list element. Unlike the assignment statement, 
list-directed input does not permit a character-string constant to be assigned 
to an arithmetic or a logical list element. 

Each constant may be any constant that could be written in the text of a 
subprogram, except: 

1. 

2. 

3. 

12/83 

Character-string constants must be enclosed in quotation marks or 
apostrophes if they span mul tiple input records or if they contain I 
embedded blanks, the character ":" or the character "I"; the nh form 
is not allowed.· 

The constant must not contain blanks, unless they are within a quoted 
character-string constant or unless they immediately follow the e or d 
in an exponent. 

Acceptable input for a logical variable is not restricted to just I 
.true. or .false.: any value beginning with an optional period followed 
by the letter (t) or T is considered to be true, and any value beginning 
with an optional period followed by the letter f (or F) is considered 
to be false. 

5-37 AT58-03B 



List-Directed Output 

I 

Execution of a list-directed output operation creates a single record that 
is the catenation of the values to be output, in the order that they are specified 
in the output statement. The format of such a record depends on whether the 
ansi66 or the ansi77 option is in effect. 

I 
If the ansi66 option is selected, val ue s are output in a fix ed form at 

determined by the type of the value: 'i16' format for integer values, 'e16.8' 
for real values, 'd26.18' for double precision values, '''C'',e16.8'', "e16.8")'" 
for complex values, '12' for logical values, and 'a' for character values. 

If the an si 77 option is in effect, nonnumer ic val ue s are out put in fix ed 
format (' 11' for logical values and 'a' for character values), while numeric 
values are output in a variable format (appropriate to the type of the value) 
that suppresses spaces and insignificant zeroes. A space is inserted in the 
output record before the first value (to act as carriage control) unless the 
carriage attribute is in effect on the output unit. A space is also inserted 
between each pair of consecutive noncharacter values to serve as a separator. 

NAMELIST STATEMENT 

Syntax: 

namelist/n/list[/n/list] ..• 

where each n is the name of a namelist consisting of list. Each list is a list 
of array or variable names. For any list that is too long for a single source 
statement, multiple declarations of the same namelist may be used; such declarations 
must be in consecutive statements. The lists are merged. 

Semantics: 

Input 

The execution of a namelist formatted read statement that refers to a namelist 
causes records from the designated input file to be read until the following has 
been completely processed: 

$x [f,] ••• $ 

where x is the name of the namelist. Blanks may be used as separators in 
addition to or instead of any comma. Each f is a field consisting of: 

all blanks 
or 

name= c 
or 

name= cl ist 

where name may be subscripted with one or more integer constants. 

12/83 

Each cis: 

const 
or 

k*const 
or 

k* 

5-38 AT58-03B 



or 
all blanks 

wbere k is an integer constant; const is any constant that could be written in 
the text of a program unit; k*c is equivalent to c[,c] .•• ; and k* is equivalent 
to k occurrences of a comma. 

A clist is: 

c[,c]. .• 

Each name must appear in the namelist. 

If one or more subscripts are given with a name, the name must be an array 
name and the subscripts must satisfy the constraints of an array reference. 

After expansion of all replicated constants (those of the form k*c or k*), 
the number of constants or blank fields in the constant list must not exceed the 
number of elements in the named variable. 

The assignments indicated by the equal sign (=) are performed as assignment 
statements, except that a constant list is assigned to an array, by assigning 
each constant to one element of the array in column-major order; i.e., varying 
the leftmost subscript most rapidly. 

A blank field is considered to be a 0 if the required mode is arithmetic, 
and to be . false. if the required mode is logical; otherwise, it is a blank 
character. 

Output 

The execut ion of a namel ist format ted write statement that refers to a 
namelist causes tne current value of each variable in the namelist to be written 
into a single record of the form: 

$x [f[,f]. •• ]$ 

where x is the name of the namelist and each f is: 

name=constant[,constant] ••• 

The form of f that uses a list of constants is output for each array, while 
the form using a single constant is output for each variable. The constants are I 
edited in the same format as list-directed output. 

If the carriage control attribute is in effect for the unit to which the 
record is to be written, all commas are replaced by blanks and the $x and 
trailing $ are removed. 

The formatted record is written to the file or device designated by the 
write statement. 

12/83 5-39 AT58-03B 



SECTION 6 

DECLARATIVE STATEMENTS 

A user-constructed name within a FORTRAN subprogram is either explicitly 
declared to have a particular meaning by its use in some definitive context or 
assumed, by default, to be a variable name. In general, the same name cannot be 
used for more than one purpose within the same subprogram. 

EXPLICIT DECLARATIONS 

A name whose meaning is established by its use in a definitive context is 
said to be explicitly declared. A name can be explicitly declared in any of the 
following ways: 

1. As an array, if it is used as an array name in an array declaration. 

2. As a common block name, if it is used as a common block name in a 
common statement. 

3. As a statement function name, if it is not explicitly declared as an 
array and it appears as a statement function name in a statement function 
definition. 

4. As a subprogram entry name, .if it: 

a. follows the word "subroutine" in a subroutine statement, or 

b. follows the word "function" in a function statement, or 

c. follows the word "entry" in an entry statement, or 

d. follows the word "call" in a call statement, or 

e. appears in the list of an external statement and is not one of 
the built-in function names, or 

f. is not explicitly declared as an array, statement function or 
built-in function and is used in an expression immediately followed 
by a parenthesized list. 

5. As a generic or built-in function, if it: 

a. has not been explicitly declared as an array, statement function, 
or subprogram entry, and 

b. is one of the names listed in Section 7, and 

c. is used as a function name in a function reference or in the list 
of an external statement. 

6-1 AT58-03 



VARIABLE ATTRIBUTES 

A variable has, in addition to its name, characteristics that determine the 
way in which it can be used. These characteristics are called attributes and 
are as follows: 

mode 

storage class 

initial value 

The mode attribute can be: integer, real, double precision, complex, logical, 
or character. The mode of a variable is specified in a mode statement or by a 
FORTRAN convention called implici t typing, described later in this section. 
Functions and arrays also have associated modes. 

The storage class attribute determines the type of storage the variable 
will occupy. For details on storage classes in Multics FORTRAN see the FORTRAN 
Users' Guide. 

INITIALIZATION 

By default, all FORTRAN variables are assigned the initial value of binary 
zero. (If the no_auto_zero option is specified in a %global or %options statement, 
automatic values get no default initial value. Such variables contain whatever 
values happen to be in the storage addresses allocated for them.) This default 
initial value of zero represents an extension of standard FORTRAN, which defines 
no initial values for variables. The FORTRAN standard specifies that variables 
that are not explicitly initialized have undefined values. Programs that depend 
on default initialization to zero on the Multics system are in error. Initial 
values can be explicitly assigned in an assignment statement, a data statement, 
a mode statement, or a %global statement. See Section 2 of the FORTRAN Users' 
Guide for discussion of related issues. 

Variables can be explicitly initialized by a data statement, a mode statement, 
or an assignment statement. Variables not explicitly initialized are automatically 
initialized to binary zero except when the no auto zero option is in effect. 
The meaning of this for the different modes is is follows: 

data type 

integer 
real 
double precision 
complex 
logical 
character 

default initial value 

zero 
unnormalized representation of zero 
unnormalized representation of zero 
unnormalized representation of zero 
.false. 
not a valid character 

Common variables are initialized at the beginning of a program run. For 
local variables, see "Local Storage" above. 

6-2 AT58-03 



IMPLICIT TYPING 

If a mode is not explicitly declared for a variable, implicit typing is 
performed. When implicit typing is used, the mode of the name is determined by 
its initial letter. Names that begin with any of the letters i through n are 
given integer mode and all others are given real mode. Capital letters are 
different letters from lowercase letters. Thus I through N have integer value, 
but are not the same letters as i through n. These default conventions may be 
changed by the programmer through the use of the implicit statement. Letters 
not explicitly changed by the programmer retain their normal signification. 

IMPLICIT STATEMENT 

Syntax: 

implicit mode[*len](l[,l] ... )[,mode[*k](l[,l] ... )] •.. 

where each mode is one of the following keywords: integer, real, double precision, 
complex, logical, or character and each k is an optional unsigned nonzero integer 
constant. If len is omitted, the asterisk character must also be omitted. If 
mode is real and the value of len is greater than 7, then mode is translated to 
double precision. If mode is character, the value of len must be from 1 to 256 
and give the number of characters in the string values. If mode is character 
and len is omitted, the default value is used. For ansi66 it is 8, and for 
ansi77 it is 1. The value len is ignored for all other cases. 

Each I is a single letter or a pair of letters separated by a hyphen (if a I 
pair of letters is used, they must have the same case). The letter on the left 
must alphabetically precede or be the same as the letter on the right. 

can b~O~~S~~~~do~~I~m~~!C!~d:t:~~m~~~n~~Yb:P~:~:f~~e~.pr~~~~~c~~i;ta~~~e~t;e~~:~ 1&_ 

precede all other statements except the block data, function, program, and subroutine 
statements. 

Semantics: 

The implicit statement associates a mode with variables according to the I 
first letter of their names. This is useful when variables require a mode other 
than the one assigned to them by implicit typing and when they do not have the 
desired mode explicitly assigned to them by a mode statement. 

Example: 

implicit integer(i-n),complex(c) ,double precision(d,p) 

MODE STATEMENT 

Syntax: 

mode[*len]e[/i/][,e[/i/]] ••• 

where mode is specified by one of the following keywords: integer, real, double 
precision, complex, logical, or character and len is an optional unsigned nonzero 
integer constant. If len is omitted, the * character must also be omitted. If 
mode is specified as real and the value of len is greater than 7, then mode is 
double precision. 

6-3 AT58-03 



Each e is a list of one or more of the following items: an array declarator, 
an array name, a variable name, a function subprogram entry name, or a statement 
function name. 

The *len may follow any of the names in the list e, if it is not placed 
immediately after the mode keyword. 

Each 1 1S an optional list of initial values that is assigned to the preceding 
list, e, according to corresponding list posi t ion. When a constant list is 
supplied, it must have the same number of elements as the preceding name list. 
If i is supplied, e can only contain array names, array declarators, and variable 
names. If i is omitted, the slashes must also be omitted. The list must follow 
the rules given below for the data statement. 

If mode is character, it is optionally followed by a * and the length 
specifier, in the form: 

character[*len] e[/i/][,e[/i/]] 

If len is omitted, the * character must also be omitted, and the default length 
is used. When the ansi66 opt ion is in effect, the defaul t length is 8; when 
ansi77 is in effect, the default length is 1. If len is specified, it may be an 
unsigned integer constant whose value is between 1 and 256 inclusive, or an 
integer constant expression enclosed in parentheses. Additionally, len may be 
an asterisk enclosed in parentheses if the ansi77 option is in effect. 

Semantics: 

The indicated mode is associated with the names specified by the list e. 

When mode is character, and len is (*), the character length is determined 
ei ther by the length of the corresponding actual argument for dummy argument 
names, or by the length of the associated constant value for named constants. 

Examples: 

integer i,j,k(10) 
character*10 a,b(7) 
character x*5,y*7(10,10) 
character *11 a,b*5,c(10,12)*3 

DIMENSION STATEMENT 

Syntax: 

dimension a[,a] •.. 

where each a is an array declaration as described under "Arrays" in Section 3. 

6-4 AT58-03 



Semantics: 

Each a is declared as an array with the dimensions indicated. 

Example: 

dimension a(10,15),b(n) 

The maximum number of dimensions allowed is seven. If, as in the example ben), 
a variable name specifies a dimension, the dimension statement must appear in a 
function or subroutine subprogram and the array name, b, must be a dummy argument 
of the function or subroutine. The dimension indicator, n, may be a dummy 
argument of the function or subroutine, or it may appear in a common block. 

SAVE STATEMENT 

Syntax: 

save [a[,a] ••• ] 

where each a is the name of a variable or an array in local storage, or a common 
block. When a is a common block name, it must be preceded and followed by a 
slash. 

Semantics: 

Each a retains its value after the execution of a return statement and is 
not initialized each time the program unit is entered (only the first time the 
program unit is entered in a process, or after the program has been terminated 
or recompiled, or, when using the run command, at the beginning of a run unit). 
This makes it possible to save the value of a variable that is assigned by a 
subprogram. In the case of a common block, the entire block retains its value 
after execution of the return statement. (On Multics, this is always true of 
common blocks, whether or not they are named in a save statement.) If no a's 
are given, all allowable items in that program unit are retained and not initialized 
each time the segment is entered. The save statement changes the storage class 
from automatic to static for the specified varlaDles. (See the FORTRAN User i s 
Guide for information about storage classes.) The save statement, when it appears, 
must precede any equivalence statements in a program. This permits a case by 
case override for variables and arrays designated by the automatic option in a 
%options or %global statement. A save statement and an automatic statement 
cannot be used in the same program. 

Example: 

save x,y,z 

AUTOMATIC STATEMENT 

Syntax: 

automatic e[,e] ••. 

where each e i is an array declarator or an array or variable name. 

2/83 6-5 AT58-03A 



Semantics: 

The variables and arrays specified are assigned locations within automatic 
storage. That is, storage for the variables is allocated and initialized at 
each entry into the segment. Values are discarded on execution of a return or 
end statement. The total size of automatic storage is limited by the size of 
the stack segment in the user's process. This statement changes the defaul t 
storage class to static. This permits a case by case override for variables and 
arrays designated by the save option in a %options or %global statement. 

Example: 

automatic x,y,z(10) 

COMMON STATEMENT 

Syntax: 

common [/[b]/]a[[,]/[b]/aJ 

where each b is a common block name or is empty. If b is empty, the first two 
slashes are optional. Each a is a list of array declarators or array and variable 
names. 

Semantics: 

The variables in each list a are assigned locations in the common block b. 
The variables are assigned locations in the order in which they appear in the 
common statements of the subprogram. The common statement coordinates the naming 
of variables between the main program and one or more subprograms. It can be 
used to conserve memory and to allow the sharing of data by means other than an 
argument list. 

If b is empty, it is understood to be the name of a block of common storage 
known as unlabeled common. Unlabeled common storage differs from labeled common 
in that its length is not checked and no init.ial values can be assigned. All 
subprograms containing declarations of unlabeled common in fact refer to the 
same block of storage. If b contains a dollar sign ($), the common block is 
assumed to reside in the named segment at the named offset (or zero if no offset 
is specified). Each labeled common block must be declared the same length in 
all program units that declare it. To ensure this, common blocks can be declared 
in include files (see "The %include Statement" in Section 1). See "Dynamic 

I 
Linking" in Section 4 of the Mul tics Programmer's Reference Manual and in Section 1 
of the FORTRAN Users' Guide for more information. The length of each common 
block is normally restricted to that of a segment (261120 words). However, if 
the vIa option (Very Large Array) is specified, each nonpermanent, noncharacter 
block may be up to 2**24 words long. 

If the ansi77 option is in effect, and any of the variables in list a are 
character mode, then all variables in list a must be character mode. That is, a 
given common block may not contain both character and noncharacter data. 

Examples: 

common /block1/a,b,c/block2/x,y(10) 

common/shared_perm_data$/count,sum,data(100,100) 

12/83 6-6 AT58-03B 



DATA STATEMENT 

Syntax: 

data v/k/[,v/k/J ••• 

where each v is a list that can contain variable names, array element names, 
array names, and implied do-loops. Each k is a list of optionally signed constants, 
any of which may be preceded by a replication factor consisting of a posi ti ve 
unsigned integer constant followed by an asterisk. 

Semantics~ 

At the time storage is allocated for a variable (i. e., on entry to the 
corresponding segment), the corresponding constant is assigned to it. This provides 
a means of initializing variables, especially a group of variables, with one 
statement. Wi th the exception of octal constants, which are not permi t ted in 
assignment statements, the rules for mode conversion of the constants in data 
statements are exactly the same as those for mode conversion in assignment statements. 
(See "Assignment Statements" in Section 4.) 

Subscripts to arrays can be integer constants or constant expressions. 
When an array element name appears within the list of an implied do-loop, it can 
be subscripted by integer constants, constant expressions, or by the index variable 
of a containing do-loop. The subscripts can take on negative values. The number 
of subscripts must be either one or equal to the number of dimensions. 

The number of variables and array elements in each v must equal the number 
of constants in k. 

A constant written with a replication factor n is equivalent to n occurrences 
of that constant. An array name corresponds to n constants where n is the total 
number of elements in the array. An array element corresponds to one constant. 

A character-string constant given as the initial value of an arithmetic or 
logical variable is stored left justified in the storage of the variable. If 
the corresponding member of v is the name of the first element of an array, then 
the first element and subsequent elements are set until the constant is expended. 

The use of character variables and character substring expressions are allowed I 
in data statements. The substring ranges are integers whose value is determined 
by constants, constant expressions, or simple expressions that refer to variables 
that are indexes of implied do-loops. 

12/83 6-7 AT58-03B 



An octal constant given as the initial value of a double preclslon or 
complex, integer or real variable initializes all the storage of such a variable. 
Octal constants cannot be used to initialize character or logical variables. 

Examples: 

data a,i,c/5.2, 10, (-5.0,+7.2)1 
data b(1),b(2),b(3)/3*1.45/x,y/3.14,2.171 
data array 11.0,2.0,3.0,4.0,5.01 
integer \.1\.] (10) 
data WW (1)/"a long string for WW"I 
data «a(j,i), j=1,5) i=1,7) 135*01 

The first five elements of the array WW are initialized by the second-to-Iast 
data statement. 

12/83 6-7. 1 AT58-03B 



An implied do-loop corresponds to n*m constants where m is the number of 
elements specified by the list of the implied do-loop and n is the number of 
times the implied do-loop is evaluated. 

The control values m" m2, and m3 of implied do-loops used in data statements 
can be integer constants, constant expressions, or the index variable of a containing 
do-loop, and these values can be negative. The loop count of an implied do-loop 
appearing in a data statement must be greater than zero. 

Automatic variables initialized with a data statement are initialized when 
the program run is initiated or whenever a new generation of automatic storage 
is allocated (when a separately compiled subroutine or function is invoked). 
Automatic variables of a subroutine or function are not reinitialized when the 
subprogram is called from another subprogram or a main program that was compiled 
from the same source segment--i.e., subprograms compiled in one object segment 
have the same storage. 

EQUIVALENCE STATEMENT 

Syntax: 

equivalence (e,e[,eJ ••• ) [,Ce,e[,eJ ••. )J ••• 

where each e is a variable or array name. Subscripts are all integer constants 
or constant expressions, and· they may take on negative values. The number of 
subscripts must be either one or equal to the number of dimensions. Each 
parenthesized group is known as an equivalence group. 

Semantics: 

The elements listed in an equivalence group are assigned storage so that 
they all occupy the same storage location. An array name is considered to be a 
reference to the first element of the array. This permits the use of more than 
one name for a single variable. 

An equivalence statement cannot alter the relative order of the elements of 
an array, and cannot cause consecutive array elements to occupy noncontiguous 
storage. 

An equivalence statement cannot alter the relative order of variables within 
a common block. 

Any statements in a subprogram that affect the storage classes of items in 
an equivalence statement must appear in the subprogram before the equivalence 
statements (e.g., the save and automatic statements). 

An equivalence statement that equivalences an array to a common variable 
may extend the upper end of the common block, but it cannot extend the lower 
end. The length of the common block includes the length of the variables equivalenced 
to it. 

If the ansi77 option is in effect, and any of the items in an equivalence 
group are character mode, then all items in the equivalence group must be character 
mode. That is, a given equivalence group may not specify both character and 
noncharacter data. 

6-8 AT58-03 



Example: 

common Ib/x,y,z 
dimension r(5) 
equivalence (r(1),z) 

causes common block to contain: 

x y z 

r ( 1 ) r(2) 

2 3 4 

but: 

equivalence (z,r(4)) 

r(3) r(4) r(5) 

5 6 7 

is invalid because r( 1) would occupy a location below the lower end of the 
common block. 

The modes of the variables equivalenced together may differ, but the programmer 
must ensure that the value obtained by a reference to an equivalenced variable 
is consistent with the declared mode of the variable. When one equivalence 
group contains variables of mixed modes, the values can be defined only for one 
mode. Values of variables of other modes are truly undefined. The casual FORTRAN 
programmer should avoid the use of mixed mode equivalence groups. 

Examples of valid equivalence groups: 

dimension x(10),y(20,20),a(10) 
equivalence (i,j,k),(a(5),x) 
equivalence (x,y),(x(10),q) 

Double-precision and complex variables are always allocated on double word 
boundaries. An equivalence statement that contradicts this requirement is in 
error. 

EXTERNAL STATEMENT 

Syntax: 

external f[,f] ••• 

where each f is a subprogram name, a subprogram name followed by "(descriptors)," 
or is one of the names of a built-in function (listed in Table 7-1). 

Semantics: 

Each name is declared as a subprogram name. An external statement is necessary 
when a subprogram name or built-in function name is to be passed as an argument 
but is not used as a function or subroutine within the calling subprogram. 

6-9 AT58-03 



If a subprogram name is followed by "(descriptors)" and the subprogram name 
is not the name of any entry point declared in this compilation, then standard 
Multics descriptors are generated for all arguments passed in a call. Furthermore, 
argument consistency is not checked during calls to the subprogram. 

In general, descriptors are required for external names that are either: 

• Multics commands 

• PL/I procedures that are declared with options (variable), e.g., ioa 

• PL/I procedures whose declarations contain the character "*" 

• external entry points 

If the ansi77 option is in effect, standard Multics descriptors are generated 
automatically if any of the arguments are character mode. 

Example: 

external fun, sqrt, ioa (descriptors) 

I INTRINSIC STATEMENT 

I Syntax: 

I intrinsic fun [,fun •.• ] 

I where fun is the name of an intrinsic (built-in) function. 

I Semantics: 

The purpose of this statement is to identify fun as an intrinsic function. 
This is useful when an intrinsic function is passed as an argument to another 
subprogram. It distinguishes fun from user-defined functions with the same name, 
and indicates that that intrinsic function is to be called rather than the 
user-defined function. 

PARAMETER STATEMENT 

Syntax: 

parameter (a=c[,a=c] .•• ) 

where each a is a symbolic name and each c is a constant expression. 

Semantics: 

I The name a assumes the value of c. This. statement provides a means of 
assigning names to constants. Its mode is determined by the FORTRAN rules for 
the typing of symbolic names or by the use of an implicit statement or an 
explicit declaration prior to its first use in a parameter statement. The name 
a may appear anywhere the constant c could appear, except a may not specify a 
statement label, or appear wi thin a format specification or where the syntax 
would be ambiguous. For example, a can be used as an array declarator, as a 
constant or replication factor in a data 
part of a complex constant, and so on. 
its use in the source text. 

_.c.._.c.._""",, __ ~ __ .... l,..,,"" Y"II_ ...... 1 ,....""" 4-\..."" .;"' ...... ,..,..;1tt""II..."Y"'~r 
;:;, V a v c:: Lll c:: 11 v, a ;:;, v 11 c:: 1 c:: a .L v 1 v L 1 c:: .L ill a 5 .L 11 a 1 .'J 

The declaration of each a must precede 

6-10 AT58-03 



If the mode of the name a is arithmetic, the corresponding constant c must 
be an ari thmet ic expression consist ing of the operators +, ,* , I, **, and 
operands that are either constants or named constants defined in an earlier 
parameter statement or earlier in the same parameter statement. 

If the mode of the name a is logical, the corresponding c must be a logical 
constant expression consisting of one of the logical constants .true. or .false., 
or one including the logical operators .and., .or., or .not., previously defined 
logical parameters, or constant relational expressions. A constant relational 
expression, in turn, is an expression consisting of the relational operators 
.It., .le., .eq., .ne., .ge., and .gt., and their operands. The operands of 
constant relational expressions are either constants, previously defined parameters" 
or constant arithmetic or logical expressions. 

If the mode of the name a is character, the corresponding c must be a 
character expression consisting of the character operator II and operands that 
are either constants or named constants defined in an earlier parameter statement 
or earlier in the same parameter statement. Array references, function references, 
and substring references are not allowed. The II operator is not allowed unless 
the ansi77 option is in effect. If a has a declared length, the expression will 
be truncated or padded with blanks on the right, whichever is necessary to get 
the required length. If a is declared with length C*), its length will be set 
to the length of the result of the evaluation of the expression c. 

A now obsolete form of the parameter statement in Mul tics FORTRAN is as 
follows: 

parameter a=c[,a=c] ••• 

where each a is a name and each c is a constant (but not another named constant). 
The name a assumes the mode and value of c. The name a must not have been 
explicitly declared. This version of the statement will not be supported after 
some future release. 

6-11 AT58-03 



SECTION 7 

FUNCTIONS 

A FORTRAN function reference produces a value that is obtained by performing 
a series of computations that have been established as the function's definition. 
In addition to the built-in functions of FORTRAN, a program can contain function 
references to functions defined by the programmer. Two types of function definitions 
can be written in FORTRAN--statement functions, described below, and function 
subprograms, described in Section 8, "Subprograms." 

STATEMENT FUNCTIONS 

A statement function is a programmer-defined function whose entire definition 
is expressed by a single statement. The name of a statement function is known 
only to the subprogram in which it is defined. A statement function is defined 
by a statement of the form: 

f(p[ ,p] ... )=e 

where f is the statement function name and e is an expression. Each p is a name 
known as a dummy argument. Each dummy argument behaves as a temporary variable. 
When the statement function is invoked by a reference of the form f(a[,a] ••. ), 
each expression a is evaluated and assigned to the dummy argument p. The relationship 
between the modes of p and a must be valid for an assignment statement, except 
that a must not be a character-string constant if p is arithmetic. After the 
actual arguments have been assigned to the dummy arguments, the expression e is 
evaluated and converted to conform to the mode of f. The converted value is the 
value of the reference f(a[,a] •.. ). 

The names used to identify the dummy arguments of a statement function may 
be used elsewhere within the subprogram as the names of variables. 

All statement functions must be defined before the first executable statement 
of the subprogram. 

Example: 

f(x)=x-3.14 

BUILT-IN FUNCTIONS 

Built-in functions are predefined functions available for use in a FORTRAN 
program. The arguments of each buil t-in funct ion must be of a specific mode. 
No conversions are performed to force an argument to conform to the required 
mode. 

7-1 AT58-03 



The FORTRAN language defines two classes of buil t-in functions: external 
built-in functions and internal built-in functions. The names of external built-in 
functions can appear in the list of an external statement and can be passed as 
arguments to a subprogram. The names of internal built-in functions cannot be 
passed as arguments nor can they appear in the list of an external statement. 

GENERIC FUNCTIONS 

A generic function name identifies a set of buil t-in functions. Each reference 
to a generic function is transformed by the compiler into a reference to one of 
the built-in functions in the set identified by the generic function name. The 
compiler makes this transformation by first converting all arguments to the 
highest mode of any of the arguments. That mode is then used to select a 
built-in function from the set of built-in functions identified by the generic 
function name. If no member of the set can accept arguments of the mode of the 
converted arguments, the program is in error. 

For example, the generic funct ion reference min (a, b, c) is transformed by 
converting a, b, and c to the highest mode of a, b, or c. The generic function 
reference min(a,b,c) is then replaced by a reference to minO(a,b,c), amin1(a,b,c), 
or dmin1(a,b,c) depending on the mode of the converted values a, b, and c. If 
the mode is character, complex, or logical, the program is in error because no 
member of the set identified by min accepts arguments of these modes. 

Table 7-1 lists each generic function name and defines the set of built-in 
functions represented by that name. Those functions with an asterisk (*) in 
column E are external and can be passed as arguments and used in external statements. 
Column A contains the number of arguments that the built-in function accepts. 
If there is no name in the "Generic Name" column, that built-in function has no 
generic name. 

7-2 AT58-03 



Function Definition A E Generic Specific Type of Type of 
Name Name Argument Function 

Converslon 1 int integer integer 
Type Conversion to Integer int real integer 

See Note 1 ifix real integer 
I 

idint double integer 
complex integer I 

,-,onVerSlon i real. real. lnteger real 
To Real float integer real 
See Note 10 real real 

sngl double real 
complex real 

Conversion to 1 dble integer double 
Double Precision real double 
See Note 10 double double 

complex double 

Converslon -, cmplx integer complex 
to Complex or real complex 
See Note 9 2 double complex 

complex complex 

Conversion to 1 
Integer ichar character integer 
See Note 5 

I 

converSlon to 1 char integer character 
Character 
See Note 6 

Truncation See Note 1 1 aint aint integer real 
real real 

dint double double 

Absolute Value i a i 1 it abs iabs integer integer 
I 

abs real real 
See Not~s ~ and 3 dabs double double 
Car2+ai )1 2 cabs complex real 

Nearest Whole (int(a+.5) if a)O 1 anlnt lnteger real 
Number (int(a-.5) if a<O anint real real 

dnint double double 
I 

7-3 AT58-03 



Table 7-1 
Built-In Functions (continued) 

Function Definition A E Generic Specific Type of Type of 
Name Name Argument Function 

I Nearest Integer ( In t (a+ . 5)· l f a)O 1 nint real real 
(int(a-.5) if a<O anint idnint double double 

Remaindering a1-intCa1/a2)*a2 2 * mod mod integer integer 
See Notes 1 and 3 amod real real 

dmod double double 

Transfer of Sign : a 1 1 if a 2 
) 0 2 sign isign integer integer 

-I a 1 1 if a 2 < 0 sign real real 
dsign double double 

Positive a 1-a2 if a 1)a2 2 dim idim integer integer 
Difference 0 if a1~a2 dim real real 

ddim double double 

Choosing Largest max C a 1 ' a 2' .•. ) )2 max maxO integer integer 
Value - amax1 real real 

dmax1 double double 

amaxO integer real 
max1 real integer 

Choosing Smallest minCa 1,a2 ,···) )2 min minO integer integer 
Value 

- amin1 real real 
dmin1 double double 

aminO integer real 
min1 real integer 

Length of String 1 len character integer 
or Substring 

Index of Substring See Note 7 2 :It index character integer 

Lexical Comparison Compares L 1ge character loglcal 
Characters 19t character logical 
See Note 8 lIe character logical 

lIt character logical 

7-4 AT58-03 



Table 7-1 
Built-In Functions (continued) 

Function Definition A E Generic Specific Type of Type of 
Name Name Argument Function 

Imaginary Part of ai 1 aimag complex real 
Complex Argument See Note 2 

Conjugate of a Car,-ai) 1 conjg complex complex 
Complex JlJ.rgument See Note 2 

Double Precision a1*a2 2 dprod real double 
Product I 

Square Root (a)**(1/2) 1 * sqrt sqrt integer real 
sqrt real real 
dsqrt double double 
csqrt complex complex 

~xponential eel 1 * exp exp integer real 
exp real real 
dexp double double 
cexp complex complex 

Natural Logarithm log(a) 1 [it alog alog integer real 
log alog real real 
See dlog double double 
Note 4 clog complex complex 

Common Logarithm log10(a) 1 * alog10 alog10 integer real 
log10 alog10 real real 
See dlog10 double double 
Note 4 

7-5 AT58-03 



Table 7-1 
Built-In Functions (continued) 

Function Definition A E Generic Specific Type of Type of 
Name Name Argument Function 

Sine sin(a) 1 1t sin Sln lnteger real 
sin real real 
dsin double double 
csin complex complex 

Cosine cos\a) 1 1t cos cos integer real 
cos real real 
dcos double double 
ccos complex complex 

I Tangent tan(a) 1 1t tan tan integer real 
tan real real 
dtan double double 

Arcsine arcsin(a) 1 asin asin integer real 
asin real real 
dasin double double 

Arccosine arccos(a) 1 acos acos lnteger real 
acos real real 
dacos double double 

Arctangent arctan(a) 1 if atan at an real real 
datan double double 

arctanCa 1/a2 ) 2 if atan2 atan2 real real 
datan2 double double 

Hyperbolic Sine sinh(a) 1 if sinh sinh integer real 
sinh real real 
dsinh double double 

Hyperbolic Cosine cosh(a) 1 if cosh COSh lnteger real 
cosh real real 
dcosh double double 

Hyperbolic tanhCa) 1 if tanh tanh integer real 
Tangent tanh real real 

dtanh double double 

7-6 AT58-03 



Notes 

1 . For a of type integer, int (a) = a. For a of type real or doub Ie 
precision, int (a) is the value obtained by truncating the fractional 
part of a. For example, 
int(3.7) = 3 
int (-3.7) = -3 
In other words, the truncation is always toward zero. For a of type 
complex, intCa) is the value obtained by truncating the real part of a 
toward zero. The functions aint and dint perform the same truncation, 
but do not convert the truncated value to integer. 

2. A comDlex value is expressed as an ordered pair of real values (ar:; 
ai) where ar is the real part and ai the imaginary part. 

3. 

4. 

5. 

6. 

7. 

8. 

() 
;1 • 

1 0. 

Only dmod and cabs of their respective groups are external. 

The generic functions log, log10, alog, and alog10 are not external 
built-in functions. All the specific names, including alog and alog10, 
are external built-in functions. 

Returns the ASCII code of the character argument. 

Returns the character whose ASCII code is passed as an argument. 

Returns an integer that gives the starting position of the substring 
represented by the second argument. The first argument represents the 
string of which the substring is a part. If the substring does not 
occur, or if the length of the second argument is greater than the 
length of the first, then zero is returned. 

Returns a logical value indicating, respectively, whether the first 
character string is >=, >, <=, or < the second, when they are compared 
lexically using the ASCII collating sequence. 

The cmplx function may be used with either one or two arguments. When I 

used with two arguments, both arguments must be integer, real, or 
double precision. The value of the first argument becomes the real 
part, and the value of the second argument becomes the imaginary part. 
When used with a single integer, real, or double precision argument, 
the value of the argument becomes the real part and the imaginary part 
is zero. When used with a single complex argument, the value of the 
argument is the entire complex result. 

Complex values are converted to real or double precision by converting I 
the real part of the complex number. The imaginary part is ignored. 

7-7 AT58-03 



SECTION 8 

SUBPROGRAMS 

There are three types of subprograms in FORTRAN: subroutines, functions, 
and block data subprograms. The type of a subprogram is indicated by its beginning 
statement. Subroutine subprograms begin with a subroutine statement; function 
subprograms begin wi th a function statement; and block data subprograms begin 
with a block data statement. 

Subroutine subprograms are invoked by a call statement in another program 
unit (the Multics implementation also allows subroutines that take no arguments 
to be called from command level). Functions are invoked by function references 
within an expression in another program unit. Control is returned to the caller 
from a subprogram by the execution of a return statement. A subprogram may not 
be invoked twice without the execution of a return statement between the invocations. 
A block data subprogram is not executed and cannot be referenced. It must be 
compiled with the first program unit that references any variables in its common 
blocks. 

BLOCK DATA SUBPROGRAMS 
~ ----_. --~--~-=== 

Block data subprograms initialize labeled common blocks. They may contain 
only declarative statements. Naming a block data subprogram is optional. The I 
name has no significance for the compiler or dynamic linker, but it may be 
~:~~U;t:~;me;~~umentation. If a name is given, it is supplied with the block 

Syntax: 

block data 

or 

block data name 

Semantics: 

A program may contain several block data subprograms. Each block data 
subprogram may initialize any number of common blocks. A given common block can 
be initialized within only one block data subprogram. A block data subprogram 
must be compiled in the same source segment as the first subprogram (in order of 
execution) that references variables in its common blocks, or it must be bound 
with the referencing subprogram. The FORTRAN Users' Guide describes the use of 
the set fortran common command when this constraint cannot be satisfied. 

8-1 AT58-03 

I 
i 



DUMMY ARGUMENTS OF SUBPROGRAMS 

A dummy argument is a name whose attributes describe the attributes of the 
actual argument to be associated with it by the execution of a function reference 
or call statement. The storage address of a dummy argument is the storage 
address of the actual argument with which it is associated and may vary from one 
invocation of a subprogram to the next. No statement executed in a subprogram 
can reference a dummy argument that is not in the argument list of the entry 
point specified by the subprogram reference. 

There are four kinds of dummy arguments; entry dummy arguments, dummy label 
arguments, scalar dummy arguments, and array dummy arguments. 

An entry dummy argument is identified by a name that has been explicitly 
declared as an entryname by its use in one of the contexts described in Section 6. 
An entry dummy argument is equivalent to an entryname and may be used as such 
anywhere in the subprogram. 

If an entry dummy argument is used as a function name in a function reference, 
the actual argument associated with the dummy argument must be a function whose 
returned value has a mode identical to the mode of the dummy argument. 

If the actual argument associated with an entry dummy argument is a function 
entry or external built-in function, the entry dummy argument must not be used 
as a subroutine entryname in a call statement. Conversely, if the actual argument 
associated with an entry dummy argument is a subroutine entry, the entry dummy 
argument must not be used as a function reference. 

A dummy label argument is identified by an asterisk. When label arguments 
appear in a call statement, they are removed from the argument list and replaced 
by a single integer argument following all the user-supplied arguments. This 
argument is initialized to zero before the subroutine is called. The entry 
point called must have at least one label argument. Since label arguments are 
removed from the argument list, they need not be in the same argument position 
as the dummy label arguments and, in fact, only one asterisk is needed regardless 
of the number of label arguments that appear in the call statement. 

If an alternate return statement is executed, the expression is assigned to 
the dummy argument associated with the special argument and control is returned 
to the calling program. Following the call statement is a computed go to statement 
built using the label arguments in the call statement and the value returned. 
See Section 4 for a description of the computed go to statement. If a normal 
return statement is executed, the statement following the call statement is 
executed. 

A dummy argument is identified by a name declared as a variable. A dummy 
argument is completely equivalent to a variable and may be used as such anywhere 
in the subprogram, except in those declarative statements that establish the 
storage class of a variable. 

8-2 AT58-03 



The actual argument associated with a dummy argument can be a variable, an 
array element name, a character-string constant, or an expression whose mode is 
identical to the mode of the dummy argument. Refer to Section 4 for a description 
of the use of character-string constants as arguments. 

An array dummy argument is identified by a name declared as an array. An 
array parameter is completely equivalent to an array and may be used as such 
anywhere in the subprogram, except in those declarative statements that establish 
the storage class of an array. 

Each array dummy argument must correspond to an array name argument or an 
array element argument of the same mode. The dimensionality of the array dummy 
argument is constrained only in that it cannot declare an array whose storage is 
greater than that of the actual array argument. The same subscripts access 
different elements when used to reference multidimensional arrays of differing 
dimensions. 

Example: 

dimension x(10,10) 

n=10 
call s(x,n) 

subroutine s(a,m) 
dimension a(m,m) 

The values of dummy arguments used as array bounds cannot be altered during 
the execution of the subprogram. The values of array bounds of dummy arguments I 
are determined by expressions using integer constants and integer variables that _ 
are parameters. 

SUBROUTINE SUBPROGRAMS 

A subroutine subprogram begins with a subroutine statement that explicitly 
names the subroutine's major entry and defines any dummy arguments required by 
that subroutine. 

Syntax: 

subroutine e[([d[,d]. •• ])] 

where e is the name of the subprogram and each d is the name of a dummy argument. 
The name e must not be used as the name of any other entry point in the compilation. 
The maximum number of dummy arguments is 63. Any label parameters, used for 
counting argument list elements, together count as one dummy argument. The 
absence of arguments may be indicated by a left parenthesis followed by a right 
parenthesis. Parentheses used for this purpose may be omitted from a subroutine 
statement. 

Semantics: 

When the subprogram is invoked, the arguments (if any) specified by the 
call are associated with the dummy arguments and control is transferred to the 
first executable statement in the subroutine. Refer to "Dummy Arguments of 
Subprograms" above for a discussion of dummy arguments. 

12/83 8-3 AT58-03B 



FUNCTION SUBPROGRAMS 

A function subprogram begins with a function statement that explicitly names 
the function's major entry and defines the dummy arguments required by that 
entry. 

Syntax: 

[mode [*k]] function f[*k] (d[,d] ••• ) 

where mode is not specified or is specified by one of the following keywords: 
integer, real, double precision, complex, logical, or character; and k is an 
unsigned, nonzero, integer constant. The *k is optional when mode is specified 
and can appear, if used, in only one of the two posi tions shown. If mode is 
specified as real and the value of k is greater than 7, the mode is double 
precision. For all other cases, k is ignored. 

If the mode is specified character, in the form 

[character[*len]] function f[*len] (d[,d]) 

*len may appear in at most one of the positions shown. The character length may 
be an unsigned integer constant between 1 and 256 inclusive, or "(*)" if the 
ansi77 option is in effect. If len is omitted, the default length is used (8 if 
the ansi66 option is in effect, 1 if the ansi 77 option is in effect.) The name 
of the function f must not be the name of any other entry point in the same 
compilation. Each d is the name of a dummy argument. The maximum number of 
dummy arguments is 62. 

Semantics: 

When the function is invoked by the execution of a function reference, the 
arguments specified by that function reference are associated with the dummy 
arguments and control is transferred to the first executable statement of the 
function. Refer to "Dummy Arguments of Subprograms" above for a discussion of 
dummy arguments. 

If the mode associated with the function name is not specified in the 
function statement, it may be explicitly specified by the use of the function 
name in a mode statement or it may be determined by the implicit typing convention 
of the FORTRAN language. (Refer to "Implicit Typing" in Section 6.) 

The value returned by the 
assignment statement whose left 
entries to the function. 

invocation of a function is determined by an 
side consists of the entryname of one of the 

The mode associated with a function entryname describes the mode of the 
value returned by the function. All entries to a function subprogram must be 
associated with the same mode. In other words, the mode of the value returned 
by the invocation of a function is invariant; it does not depend on the entry 
used to invoke the function. 

2/83 8-4 AT58-03A 



Example: 

function f(x) 

f=7.0 

return 

entry e(x) 

f=5.0 

return 

The function returns either 7.0 when invoked as f(a) or 5.0 when invoked as 
e(a). 

ENTRY POINTS 

The first executable statement in an executable subprogram is called the 
major entry point of the subprogram. For subroutines and functions, the name of 
this entry point is supplied with the subroutine or function statement. For a 
main program, the name of this entry point is main or the name supplied with I 
the program statement. (The identifier main is a -reserved keyword in Multics I 
FORTRAN.) 

Secondary entry points can also be defined in subroutine and function 
subprograms. These are additional points in the subprogram where control can be 
transferred from other program units. Secondary entry points are defined using 
the entry statement. 

Syntax: 

entrye [([d[,d] ..• ])] 

where e is the secondary entryname and each d is the name of a dummy argument. 
The name e must not be used as the name of any other entry point in the compilation. 
The maximum number of dummy arguments is 63. Any label parameters, used for 
count ing argument list elements, together count as one dummy argument. The 
absence of arguments may be indicated by a left parenthesis followed by a right 
parenthesis. Parentheses used for this purpose may be omitted from an entry 
statement. 

8-5 AT58-03 

I 



Semantics: 

When the subprogram is invoked by the use of the entryname e, the actual 
arguments (if any) specified by the call or function reference are associated 
with the dummy arguments specified by this entry and control is transferred to 
the first executable statement following this entry statement. Refer to "Dummy 
Arguments of Subprograms" above for a discussion of dummy arguments. 

In a multiple entry subprogram, the number of parameters in each entry may 
differ and the same parameter may appear in different positions wi thin the parameter 
lists of several entries. It should be noted, however, that if one parameter 
appears in the parameter lists of several entries, more efficient code is generated 
if the parameter always appears in the same position. 

Example: 

subroutine x (a,b,c) 

entry y (a,d) 

entry z (d,c,x,y,z) 

A secondary entry to a function subprogram must specify at least one dummy 
argument, and the mode associated with the entryname must be identical to the 
mode associated with the major entryname. 

The association of an actual argument with a dummy argument occurs at the 
time of the execution of the call statement or function reference. This association 
provides a storage address for the dummy argument. Any attempt to reference a 
dummy argument that does not appear in the entry through which control enters 
the subprogram yields unpredictable results. 

8-6 AT58-03 



SECTION 9 

MULTICS FAST SUBSYSTEM ENVIRONMENT 

The Multics FAST subsystem is a subset of the full Multics system that 
supports most of the same FORTRAN command repertoire as Mul tics. The storage 
hierarchy and dynamic linking features of the Multics system are available to 
the Multics FAST user. Under Multics FAST, the user can invoke the compiler 
explicitly using the fortran command or implicitly using the run command. For 
details on Multics FAST, see the Multics FAST Subsystem Reference Manual (Order 
No. AU25). 

RUNNING A PROGRAM 

If the Multics FAST temporary text contains a FORTRAN source program, issuing 
the run command causes the program to be compiled and then executed if the 
compilation succeeds (i.e., if no serious errors are detected during compilation). 
The name of the temporary text must have ".fortran" as a suffix. 

Example: 

new test.fortran 
i a x = 

100 end 
run 

To compile and execute a FORTRAN source program that has been saved, use 
the "run prog name" command, where prog name is the name of the source program 
(which must end in ". fortran") . -

Example: 

new 
1 0 x = 

100 end 
save test. fortran 
run test.fortran 

9-1 AT58-03 



To execute a FORTRAN object program that was created by explicit compilation, 
use the "run prog name" command, where prog name is the name of the object 
program and must not have the ".fortran" suffix. 

Example: 

run test 

TERMINATION OF A RUN 

A program run terminates when control reaches the end of the main program, 
when a stop statement is executed, when an error is detected, or when a quit 
signal occurs. All files are closed, and all storage used by the run is released. 
This includes the storage for the temporary object program produced when a source 
program is run. 

COMPILING A PROGRAM 

If a FORTRAN source program has been saved with a name containing the 
".fortran" suffix (e.g., xx.fortran), it may be compiled by issuing the fortran 
command in either of the following ways: 

fortran xx 
or 

fortran xx. fortran 

If the compilation succeeds, an object program with the name "xx" is saved in 
the user's working directory. 

Example: 

new 
10 x = 

100 end 
save test.fortran 
fortran test 
run test 

SEPARATE SUBPROGRAMS 

Subprograms may be compiled separately from the main program; that is, they 
may be in a different source segment. This is advantageous when the same subprogram 
is to be used with more than one main program, or when some subprograms are 
changed frequently while others remain the same. 

9-2 AT58-03 



Generally, the name of the source segment for a set of separate subprograms 
should end with the ".fortran" suffix (e.g., xx.fortran, where xx is the name of 
one of the subprograms). After compilation, the object segment has the name xx; 
this enables the system to find the name xx when it is referred to by another 
object segment. If other subprograms in the object segment are to be called 
from external segments, their names must be added to the obj ect segment. Similarly, 
if a subprogram in a compiled main program object segment is to be called from 
external segments, its name must be added to the main object segment. 

To add names to an object segment, use the Multics FAST add name command: 

add name object_segment_name additional name 

Example: 

new 
10 x = 

50 call b 

100 end 
110 subroutine a 

200 end 
save test.fortran 
fortran test 
add name test a 
new 
10 subroutine b 

50 call a 

100 end 
save b.fortran 
fortran b 
run test 

LINKING 

xx: 
The system uses the following three-step rule to find a named subprogram 

1. If the object segment containing the reference to xx also contains a 
subprogram named xx, use that subprogram. 

9-3 AT58-03 



2. Otherwise, if the main program was run as a source program, and if its 
segment contains a subprogram named xx, use that subprogram. 

3. Otherwise, search the user's working directory for a segment named xx, 
and search that segment (if found) for a subprogram named xx. 

A block data subprogram cannot be linked to by name; thus, it must be 
compiled with the first program unit to reference the block in the program run. 

All names needed to resolve references between separately compiled segments 
must be found in the user's working directory. However, by means of links, the 
names in the user's working directory may be connected to segments in other 
directories. The link command has the form: 

link complete_pathname entry_name 

where entry name is the name of a subprogram and, complete_pathname is the name 
of an object segment containing that subprogram. 

Example: 

link >udd>Demo>Smith>plot plot 
run plot 

If the object segment contains additional separately callable subprograms, 
their names should be added to the link. 

Example: 

new 
10 x = 

60 call plot 
80 call plotx 
100 call ploty 
150 end 
save test.fortran 
link >udd>Demo>Smith>plot plot 
add name plot plotx ploty 
run-test. fortran 

RUNNING A SUBPROGRAM 

It is possible to run subprograms in Multics FAST. If the command "run f" 
is executed and f is the obj ect segment containing a subprogram named f, that 
subprogram is executed as the main program. This is not normal FORTRAN practice, 
but it succeeds provided the subprogram has no parameters. 

WARNING: This feature applies even to object segments containing main 
programs. Thus, a subprogram name should not be used as the main 
name of a main program object segment. 

9-4 AT58-03 



Example: 

new 
10 x = 

100 end 
110 subroutine test2 

200 end 
save test~fortran 
fortran test 
add name test test2 
run-test2 

When a program run is initiated by running a subprogram, the execution of a 
return statement in the subprogram terminates the whole run. 

PAUSE STATEMENT 

Execution of a pause statement in Multics FAST causes the string "PAUSE" or 
"PAUSE string" to be printed and is otherwise ignored. 

RESERVED ENTRY NAMES 

The names "main" and "symbol_table" are used internally by the Multics 
system and cannot be used as entry point names. 

9-5 AT5B-03 



SECTION 10 

FORTRAN AND THE MULTICS INPUT/OUTPUT SYSTEM 

This section describes the relationship between the input/output features 
of FORTRAN (described in Section 5) and the Multics I/O system. It provides 
sufficient information to allow a FORTRAN programmer to understand the Multics 
I/O system. (The FORTRAN User's Guide provides more information on how to use 
FORTRAN to do I/O in the Multics system.) A complete description of the Multics 
I/O system, as well as definitions for some of the terms used in this section, 
is given in Section 5 of the Multics Programmers' Manual, Reference Guide (Order 
No. AG91). 

Throughout this section, references are made to many of the specifiers and 
attributes of Multics FORTRAN input/output. For information on these specifiers 
and how they relate to the attributes, refer to Section 5 of this manual. 

FILES AND I/O SWITCHES 

A FORTRAN program refers to a file or device by an integer valued unit 
number, u, where 0<u<99. There is a file table maintained by the FORTRAN runtime 
1/0 routines, conta.:lDing 100 entries (0 through 99). rne conneC'Clon of a unl'C 
identified by a unit number in a FORTRAN program is recorded in the corresponding 
file table entry. 

Each unit number used in a FORTRAN program run is associated with the 
following data structure: 

file table (unit number 0 - 99) 
flags 

connected/disconnected 
fortran attached/not 
fortran-opened/not 
formatted/unformatted 
prompt/no 
defer/no 
allow input/no 
allow-output/no 
allow-reopen/no 
allow-direct/no 
allow-sequential/no 
allow-positioning/no 
carriage control/no 

switch ptr~----------->I/O switch (switch name) 
I/O type file designator-------->Multics file 

stream attach description or device 
record attached/detached 
blocked opened/closed 
binary stream opening mode 

10-1 AT58-03 



ERRORS AND ERROR MESSAGES --- ----- ---------

When an error occurs, one of several actions is possible. If the iostat 
attribute is specified, a standard error code is stored in the designated variable 
or array element and execution continues with the statement following the statement 
in which the error occurred unless the err specifier is present. If the err 
specifier is present, control is passed to the designated statement label. If 
both are present, the designated variable is always set, although the transfer 
to a designated statement label occurs only if there is an error. If neither is 
present, an error message is printed and the program run terminates. 

The err and iostat specifiers can always be given in an open statement and 
are therefore not mentioned explicitly. 

Throughout the rest of this section, one of the error processing actions 
described above is implied by the phrases "an error occurs" or "an error condition 
exists." 

CONNECTING UNITS TO FILES AND DEVICES 

The file table maintained by the FORTRAN runtime 1/0 routines contains 
information specific to FORTRAN. A FORTRAN file is associated with the file 
table entry via the unit number in the program. A file table entry--like a 
unit--is either connected or disconnected. A disconnected file table entry becomes 
connected when its corresponding unit number is referenced by an open statement 
or a data transfer statement. When it is connected, it is associated with a 
Multics file or device through the use of a named 1/0 switch, and the 1/0 switch 
is attached and opened. The user can attach or open the 1/0 switch explicitly 
before the program is run or let the FORTRAN runtime 1/0 routines perform these 
functions when they connect the unit. (See the FORTRAN Users' Guide for a 
fuller explanation of connection from the standpoint of the program.) If the 
user attaches the 1/0 switch, the FORTRAN runtime 1/0 routines honor that attachment 
and choose a compatible opening mode. If the user attaches and opens the 1/0 
switch, both are accepted by the FORTRAN runtime 1/0 routines. When the file 
table entry is disconnected, only the functions actually performed by the FORTRAN 
runtime 1/0 routines are undone. 

The Multics file being referenced can be specified by using the file specifier 
in an open statement, but only in the case where the FORTRAN runtime 1/0 routines 
generate the attach description. If no name is specified, filenn is used. 

The user can specify the 1/0 switch name in an open statement. If it is 
not specified, the name is filenn, where nn is a two-digit representation of the 
unit number in the source program. 

The attach description used to attach the 1/0 switch can be specified in an 
open statement, can be specified externally to the FORTRAN system (e.g., with 
the io call command), or is generated by the FORTRAN runtime 1/0 routines depending 
on the properties of the Mul tics file or device being referenced and by the 
mode, access, and form attributes specified in the connection request. 

Unit number 0 is handled separately and the user cannot specify an 1/0 
switch name, an attach description, or a file pathname. 

10-2 AT58-03 



When a file table entry is being connected because of an open statement any 
of the open statement specifiers can be given, except that a specifier cannot be 
used if it implies an attribute that conflicts with the actual nature of the 
connection; conflicting specifiers must not be given. For example, the file and 
attach specifiers are mutually exclusive, as are binary stream and recl. Also, 
the use of file or attach is invalid if the I/O switch is already connected. 

Details of Connection 

Three major steps are required to connect a unit. The first is to attach 
the I/O switch; the second is to open the 1/0 switch; and the third is to assign 
the appropriate attributes. The FORTRAN runtime I/O routines are prepared to do 
as much of this as is necessary. In particular, if the I/O switch is not 
attached, the FORTRAN runtime I/O routines attach the I/O switch. If the I/O 
switch is not open, the FORTRAN runtime I/O routines open the I/O switch with an 
opening mode derived from the access, form, and mode attributes specified by the 
open statement as well as by the properties of the associated Multics file. If 
the program contains no open statement, the necessary attributes are established 
by default (see "Opening" below). Attaching and opening are caused either by an 
open statement or by a data transfer statement when the unit is not open. 

ATTACHING 

The FORTRAN runtime I/O routines use the following algorithm: 

1. If the unit number is 0, the file table entry is always connected and only 
the prompt:, carriage:, and defer: specifiers are allowed. The appropriate 
attributes are changed and no further action is taken. The connection is 
complete. 

2. 

3. 

If the file table entry is already connected, only the reel:, 
prompt:, defer:, and carriage: specifiers are allowed. 

If the user suppl ies the name of an I/O swi tch, use it. 
FORTRAN runtime I/O routines use filenn (e.g., file03). 

access=, 

Otherwise the 

4. If the I/O switch is already attached, the FORTRAN runtime routines honor 
that attachment. If the user specifies an attach or file specifier, an 
error occurs. Continue with "Opening" below. 

5. If the user supplies an attach description, the FORTRAN runtime I/O routines 
attach the I/O switch using it. If the user supplies the file specifier, 
an error occurs. Continue with "Opening" below. 

6. If the user supplies the name of a file, the FORTRAN runtime I/O routines 
use it. Otherwise, they use filenn. 

7. The FORTRAN runtime I/O routines generate an attach description and then 
at tach the I/O swi tch, choosing the first case description that exactly 
matches the connection request, and attach as specified. (If a filename is 
needed, FORTRAN I/O uses the one derived from step 6.) 

Case 1: If only form, access, and mode are specified (as formatted sequential 
input), and the uni t has the defaul t input at tribute, then the 
FORTRAN runtime I/O routines attach with: 

10-3 AT58-03 



Case 2: If only form, access, and mode are specified (as formatted sequential 
output), and the unit has the default output attribute, then the 
FORTRAN runtime 1/0 routines attach with: 

syn_ user_output -inhibit get line get_chars 

Case 3: If the binary stream attribute is specified, then the FORTRAN runtime 
1/0 routines attach with: 

vfile filename -no trunc 

Case 4: If a maximum record length, len, is specified, then the FORTRAN 
runtime 1/0 routines attach with: 

vfile filename -blocked len -no end 

Case 5: If the external file is a vfile blocked file, then the FORTRAN 1/0 
runtime routines attach with: 

vfile filename -no end 

Case 6: Otherwise the FORTRAN runtime 1/0 routines, attach with: 

vfile filename 

OPENING 

If the 1/0 switch is not open, the next step is to open the 1/0 switch with 
the appropriate iox opening mode. Table 12-1 gives the modes of opening for 
iox attempted for each combination of file type (including nonexistent and 
unknown), and the form, access, and mode attributes. The mode in out in an open 
statement is treated as the mode in if the file exists and is not zero length. 
It is treated as out if the file does not exist or is zero length. 

If any of the access, form, or mode attributes is not specified when a file 
table entry is connected , its defaul t value is used to connect the file table 
entry. The defaults are: 

access="sequential" 
form="unformatted" 
mode="inout" 

I (The defaul t value of form= is, however, formatted if the ansi 77 option 
effect and unformatted anytime that access="direct".) 

is in 

If the 1/0 switch is already opened, the iox opening mode must be one of 
those supported by the Multics 1/0 system, and this mode is used to determine 
the type of I/O supported by the 1/0 switch. 

If the mode is out or inout, the 1/0 module is vfile , and the file does 
not exist or is a zero length segment, a file is created depending on the access 
and form supplied in the open statement. A vfile unstructured file is created 
for formatted sequential, a vfile sequential file is created for unformatted 
sequential, and a vfile indexed file is created for both formatted and unformatted 
direct access files. -

12/83 10-4 AT58-03B 



Table 10-1. Opening Modes Used by FORTRAN 

INPUT OUTPUT 

SEQUENTIAL DIRECT SEQUENTIAL DIRECT 

File Type FMT UNF 

Nonexistent TIN QIN 
or Zero Length 

vfile 
Unstructured TIN X 

vfile 
Sequential QIN QIN 

vfile -Indexed QIN QIN 

vfile 
Blocked QIN QIN 

vfile 
Binary-Stream X TIN 

tape_mult_ 
Binary Stream X TIN 

Unknown TIN QIN 
QIN 

Opening mode abbreviations: 

TIN - stream input 
TOT - stream=output 
TIO - stream_input_output 

QIN - sequential input 
QaT - sequential-output 

FMT 

KIN 

X 

X 

KIN 

QIN 

X 

X 

KIN 
DIN 

QIO - sequential-input output 
QUP - sequential=update 

X - Error. Cannot be opened. 

UNF FMT UNF FMT UNF 

KIN TIO QIO KUP KUP 

X TIO X X X 

X QIO QIO X X 

KIN X X KUP KUP 

QIN QUP QUP QUP QUP 

TIN X TIO X TIO 

TIN X TOT X TOT 

KIN QIO QIO KUP KUP 
DIN QUP QUP KaT KaT 

QaT QaT DUP DUP 
TIO DOT DOT 
TOT 

KIN - keyed sequent al input 
KOT - keyed-sequent aI-output 
KUP - keyed=sequent al=update 

DIN - direct input 
DOT - direct-output 
DUP - direct=update 

10-5 

I 

-

AT58-03 



If the mode is in and the I/O module is vfile , a file must exist in the 
storage system and be of a type compatible for the access and form or an error 
occurs when the I/O swi tch is opened. The vfile I/O module considers a zero 
length file to be an unstructured file when opened for input. 

If the I/O module is vfile and the iox opening mode is stream input output 
or sequential input output, the file is truncated (i.e., its contents are lost) 
when it is opened -unless one of the control arguments -extend, -append, or 
-no trunc is supplied in the attach description. This is a feature of the 
vfile I/O module. Each of these control arguments prevents the truncation of 
the current contents of the file while providing its own set of side effects. 
While all three are described in detail in the description of the vfile I/O 
module in the MPM Subroutines, a brief description is in order here. The -extend 
control argument causes the file to be positioned to the end of the file when 
opened for output or input/output. It is ignored if the file is opened for 
input. The -append control argument causes all output data transfers to be 
appended to the current contents of the file. When opened, the file is positioned 
to the beginning of the file. The -no trunc control argument prevents vfile 
from truncating the contents of the file that follow the output data transfer~ 
When the file is opened, the file is positioned to the beginning of the file. 

If the binary stream attribute is specified, the associated storage system 
file must be a vfile unstructured file or it must be at tached with an I/O 
module other than vfile_, such as tape_mult • 

If the maximum record length attribute is specified, the associated storage 
system file must be a vfile blocked file or it must be attached with an I/O 
module other than vfile • 

ASSIGN UNIT ATTRIBUTES 

Unit attributes, as supplied by the open statement or implied by data transfer 
statements, are compared to the actual attributes of the file or device and must 
be consistent. The user can supply the following attributes: 

• I/O Switch Attribute 

See Section 5 of the MPM Reference Guide 

• Attachment Attribute 

See Section 5 of the MPM Reference Guide. 

• Filename Attribute 

If none is specified in attach description or open statement, filenn. 

10-6 AT58-03 



• Mode Attribute 

The mode attribute is processed only if it is specified or if the file 
table entry is being connected. If it is not specified when the file 
table entry is being connected, i.e. in an open statement, its default 
value is used (implicit connection via data transfer). This attribute 
can be specified with any opening, except those referencing unit number 
o. 

If the FORTRAN runtime 1/0 routines do not open the 1/0 switch, the 
opening mode of the 1/0 switch must at least support those modes the user 
has requested. Only the mode (s) specified in the open statement are 
allowed in subsequent data transfers, even if the actual 1/0 switch opening 
mode is less restrictive. 

If the file table entry is being connected and the FORTRAN runtime 1/0 
routines open the 1/0 switch, Table 10-1 indicates the opening mode used. 
If the mode is in, the 1/0 switch is opened for input only. If the mode 
is out, the 1/0 switch is opened for inputloutput, update or output only, 
and the FORTRAN runtime 1/0 routines only allow output data transfers. 
If the mode is inout or the connection is implied by a data transfer 
statement, the file table entry acquires the allow reopen attribute. This 
attribute allows the 1/0 switch to be reopened, as necessary, to support 
the inout mode. This at tribute allows the FORTRAN runtime 1/0 routines 
to: 

1~ support inout on files and devices that are unidirectional (many 
tape 1/0 modules are limited to input only and output only 
openings), and 

2. prevent the vfile 1/0 module from truncating a file opened for 
stream input output or sequential input output. To prevent 
premature destruction of the file, it is opened for stream input 
or sequential input. The first write request to the unit reopens 
the 1/0 switch. 

Finally, if the file table entry is already connected, the FORTRAN runtime 
1/0 routines have opened the 1/0 switch, and the user specifies a new 
(and different) mode, the mode is processed as follows. If the new mode 
is inout, the file table entry acquires the allow reopen attribute. (Refer 
to the previous paragraphs.) No other processing is required at this 
time. If the new mode is in or out and the current 1/0 switch opening 
does not support the new mode, the 1/0 switch is reopened. If the 1/0 
switch cannot be reopened, the original opening is restored and an ~rror 
occurs. The file is restricted to data transfers of the mode specified . 

• Access Attribute 

The access attribute is processed only if it is specified or if the file 
table entry is being connected. If it is not specified when the file 
table entry is being connected, its default value is used. This attribute 
can be specified with any opening, except those referencing unit number 
o. 

10-7 AT58-03 



The external file must support the access requested 
FORTRAN runtime 1/0 routines do not check that the 
support the access requested. 

by the user. 
file does in 

The 
fact 

If the access is sequential, direct access read and write statements are 
not permitted to the file. 

If the access is direct, then the backspace, rewind, sequential read, and 
sequential write statements are not permitted to the file. 

If the access is direct, the external file cannot be: the terminal, a 
vfile unstructured file, a vfile_ sequential file, a tape attachment, or 
a discard attachment. 

For vfile_ blocked files and binary stream files, if the access is sequential, 
the normal restrictions apply. If the access is direct, only the backspace 
and rewind statements are not permitted to the file. 

• Form Attribute 

The form attribute can be specified only when a file table entry is being 
connected. If it is not specified, its defaul t value is used. This 
attribute cannot be specified with any opening referencing unit number O. 

If the form is format ted, the external file cannot be a binary stream 
file. 

If the form is unformatted, the external file cannot be a vfile unstructured 
file or the terminal. 

• Maximum Record Length 

The maximum record length attribute is only processed if it is specified. 
This attribute can be specified with any opening, except those referencing 
unit number O. 

If the external file exists prior to connection, it 
blocked file. If the external file is not a vfile 
error occurs. 

must be 
blocked 

a vfile 
file, an 

If the file contains records, this value must equal the maximum record 
length value used to create those records. 

• Binary Stream Attribute 

If the external file exists prior to connection, it must be a vfile 
unstructured file or the 1/0 module used to attach it must not be vfile ~ 
The form of the file must be unformatted. 

This attribute can be supplied only when connecting a unit. It cannot be 
supplied if the unit is already connected or the unit number is O. 

10-8 AT58-03 



• Prompt Attribute 

This attribute can be supplied with any opening. If it is not supplied, 
it retains the value it had prior to the execution of the open statement. 
Once this attribute is associated with a unit it remains associated with 
all subsequent openings during the life of the process, until explicitly 
changed. 

• Carriage Control Attribute 

This attribute can be supplied with any opening. If it is not supplied, 
it retains the value it had prior to the execution of the open statement. 
Once this attribute is associated with a unit it remains associated with 
all subsequent openings for the life of the process, until explicitly 
changed. 

• Defer Newline Attribute 

This attribute can be supplied with any opening. If it is not supplied, 
it retains the value it had prior to the execution of the open statement. 
Once this attribute is associated with a unit it remains associated with 
all subsequent openings during the life of the process, until explicitly 
changed. 

10-9 AT58-03 



SECTION 11 

EXAMPLES 

This section gives an example of a FORTRAN program. 
of a main program that is a random number generator (it 
determines payment). Then it prints out the change due. 

The example consists 
produces a bill and 

CHANGE MAKER 

This program is called change. The line numbers in this example are not 
part of the source text and have been included to make referencing easier. This 
example illustrates the use of formatted output and a FORTRAN subprogram referencing 
a PL/I procedure (random_ in lines 24 and 26). 

The subprogram could be made interactive by replacing lines 24 and 25 with a 
read statement for namt and replacing lines 26 through 28 with a read statement 
for npay. 

The namelist "bugs" was included in this subprogram to aid in debugging. 
The payment can only be less than the amount if there is a logic error. In the 
interactive version, the namelist group would probably not be needed. 

c Change maker test program 
2 
3 c 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 c 
18 c 
19 c 
20 c 
21 c 
22 

Declarations 

dimension val(10), names(20) 
integer val 
character*12 names I"Fifties", "Fifty", "Twenties", "Twenty", 

& "Tens", "Ten", "Fives", "Five", "Dollars", "Dollar", 
& "Half Dollars", "Half Dollar", "Quarters", "Quarter", 
& "Dimes", "Dime", "Nickels", "Nickel", "Pennies", 
& "Penny"l 

namelist Ibugsl a new number, what change, namt, npay, mc 
data (val(i), i=1~ 10)/5000, 2000,-1000, 500, 100, 50, 25, 

& 10, 5, 11 

This program calls a random number generator to get an amount 
of purchase on the interval $10.00 to $0.50. 
The same number generator is called to determine how payment 
was made--exact payment or change due. 
Make change ten times. 

11-1 AT58-03 



23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 51 
37 52 
38 
39 70 
40 
41 60 
42 
43 
44 
45 c 

.. 46 c 
47 c 
48 
49 50 
50 15 
51 
52 27 
53 
54 5 
55 
56 
57 c 
58 c 
59 
60 
61 
62 53 
63 
64 c 
65 c 
66 
67 
68 
69 
70 
71 100 
72 

do 100 item = 1, 10 
call random $uniform(a new number) 
namt = 1000-* a new number-+ 50 
call random $unlform(what change) 
i = what change * 9 -
npay = (namt+val(i+1)-1) / val(i+1) *val(i+1) 
pay = float(npay) / 100. 
amt = float(namt) / 100. 
mc = npay - namt 
c = mc 
c = c/100. 
print 51, amt, pay 
if (c .ne. 0) print 52, c 
format("OAmount of bill is $", f5.2/t9, "Payment is $", f5.2) 
format(" Total change is $", f5.2) 
if (c) 60,70,50 
print, "No change." 
go to 100 
print, " Program error. Payment is less than amount." 
print bugs 
go to 100 

Now figure out the actual 
pieces of change--what denominations and 
how many of each. 

j = 1 
do 27 i = j,10 

if (val(i) .le. mc) go to 5 
continue 

go to 100 
n = mc/val(i) 
ipos = i * 2 -

Use correct English (singular or plural). 
The next statement selects the right word. 

if (n .eq. 1) ipos = ipos + 1 
print 53, n, names(ipos) 
formatCi6, lx, a12) 

Now compute the change on the amount 
remaining. If none, we are done. 

end 

mc = mc - n*vaICi) 
if (mc .le. 0) go to 100 
j = i + 1 
go to 15 
continue 

11-2 AT58-03 



A portion of one run of the change maker program is shown below. The 
exclamation mark denotes a line typed by the user. 

change 

Amount of bill is $ 2.73 
Payment is $10.00 

Total change is $ 7.27 
1 Five 
2 Dollars 
1 Quarter 
2 Pennies 

Amount of bill is $ 9. 14 
Payment is $ 9.25 

Total change is $ O. 11 
1 Dime 
1 Penny 

Amount of bill is $ 1. 0 1 
Payment is $ 1. 10 

Total change is $ 0.09 
1 Nickel 
4 Pennies 

Amount of bill is $ 3·70 
Payment is $ 3·70 

No change. 

Amount of bill is $ 2.40 
Payment is $50.00 

Total change is $47.60 
2 Twenties 
1 Five 
2 Dollars 
1 Half Dollar 
1 Dime 

11-3 AT58-03 



APPENDIX A 

FORTRAN COMPARISON 

Table A-1 compares various features of two versions of FORTRAN: 
and the American National Standard (1977). 

Multics I 
Table A-1 does not attempt to list and describe every FORTRAN feature but 

concentrates on those features that are different among the two FOR TRANs and I 
also those features that extend the standard FORTRAN. 

12/83 A-1 AT58-03B 



Table A-1. Comparison of FORTRAN Features 

I FORTRAN Features 

GENERAL INFORMATION 
character set 
distinction between uppercase/lowercase 
character variables and functions 
line length 
maximum statement length 

continuation convention 

statements per line 
comment lines 

end statement 
variable name length 
underscore character in variable name 
character *(*) function 
variable-expression array bounds 

I STATEMENT ORGANIZATION 
declarative statements can be mixed 

with executable statements 
implicit statement can appear anywhere 

FORMAT SPECIFICATIONS 
for n slashes at end of specification: 

total records read 
total records written 

carriage-control characters implemented 
for terminal files 

format field descriptors: 
o 
r 
v 
see) 

I 
STATEMENT FUNCTIONS 
formal parameters specify mode, order, 

and number of arguments 
mode of function and its defining 

expression are the same 

12/83 A-2 

Multics 

ASCII 
yes(a) 
yes(b) 
no limit 
1000 tokens 
or 1320 
chars(C) 
free form 
or standard 
multiple 
c, C, or * 
in col 1 
end/END 
1 to 256 
yes 
yes 
yes 

no 
no 

n+1 
n+1 

blank,1,O,+ 

yes 
yes 
yes 
yes 
yes 

yes 

yes 

Standard 
FORTRAN 

ASCII 
no 
yes 
72 
19 card 
images 

nonzero, non
blank in col 6 
one 
c/C in col 1(d) 

end/END 
1 to 6 
no 
yes 
yes 

no 
no 

n+1 
n+1 

not 

no 
no 
no 
no 
yes 

yes 

yes 

defined 

AT58-03B 



Table A-1 Ccont). Comparison of FORTRAN Features 

FORTRAN Features 

DYNAMIC LINKING 
link overlay 
common blocks initialized by first 

program to reference them 
common block storage can be a 

permanent segment 
Array Storage Limits 

EXTENSIONS 
maximum number of array dimensions 
abnormal statement 
automatic statement 
decode statement 
encode statement 
entry statement 
implicit statement 
mode statement allows mode *n 
mode statement allows data initialization 
namelist statement 
namelist I/O statement 
parameter statement 
punch statement 
terminal read statement 
direct access I/O statements 
alternate return statement 
typeless expressions 

in arithmetic if statement 
character-string constants 
interpratation of x**y**z as expression 
runtime sym~ol table can be generated 
dynamic debugger 

Multics 

noCf) 

yes 

yesC g ) 
2**24 

7 
no 
yes 
yes 
yes 
yes 
yes 
yes 
yes 
yes 
yes 
yes 
yes 
yes 
yes 
yes 
no 
no 
yes 
x**(y**z) 
yes 
yes 

Standard 
FORTRAN 

not defined 

not defined 

no 
not defined 

3 
no 
no 
no 
no 
yes 
yes 
yesCh) 
no 
no 
yes 
yes 
no 
no 
yes 
yes 
no 
no 
no 
x**(y**z) 
no 
no 

NOTES: a. The case of a letter depends on the control arguments used by 
the compiler; -fold and -card both map all uppercase letters 
into lowercase letters unless they appear within a 
character-string constant. 

12/83 A-3 AT58-03B 

I 

I 



I 

I 

12/83 

b. The FORTRAN 77 Standard allows this mode statement for characters 
but not for other data types. Mul tics FORTRAN allows it for 
all data types. 

c. A token is a constant, name, operator, delimiter, or label 
argument. For example, a statement consisting of 1000 1-character 
tokens requires at least 15 card images (66 columns to a card 
image) and a statement consisting of 1000 2-character tokens 
requires at least 30 card images. 

d. The FORTRAN standard does not specify the case (i.e., uppercase 
or lowercase) of the alphabetic characters. 

e. The s control item has different meanings under the ansi66 and 
ansi 77 options. The "'I control item is used in ansi 77 to 
perform the function s performs in ansi66, and s performs another 
function in ansi77. See "Format Specifications" in Section 5. 

f. There is no need for a LINK overlay because Multics dynamically 
links all external references. 

g. Permanent common storage is not allowed when using Very Large 
Arrays. 

h. The maximum length of a character-string value is 256 characters. 
The maximum length of a character-string constant is 256 
characters. 

A-4 AT58-03B 



APPENDIX B 

DIFFERENCES BETWEEN ANSI66 AND ANSI77 

The differences between the options of ansi66 and ansi77 are listed below. 
These options may be specified as control arguments C-ansi66 and -ansi77) or as 
keywords in %options and %global statements. This list contains only those 
items that are incompatible; all other aspects of the language are identical 
under these two options. This list is not yet complete; additional incompat ib il i ties 
will appear as Multics FORTRAN approaches FORTRAN 77. Presently, ansi66 is the 
default. 

Defaul t Character Length ..........•..• 
Can mix character and non-character 

in common block .•••...••••••.••..•• 
Can mix character and non-character 

in equivalence group ...••..•...••.. 
Character and,array elements 

word aligned ..•..•••......•.••...•. 
Substring references .•.....•...•••.••. 
Conca t ena t ion operator ....••...••...•. 
C *) length character strings •...•••... 
Descriptors automatically generated 

for character arguments ...•••....•• 
Embedded blanks in numeric input 

treated as zeros •..••...•...•••...• 
Format control item used for shipping 

line numbers on input records ..•... 
Null values in list-directed input 

effect corresponding item in input 
s tat ement .....•••...••...••••..•..• 

Blank lines treated as initial lines .• 
Zero trip do loop allowed ......•.....• 

B-1 

ansi66 
8 

yes 

yes 

yes 
no 
no 
no 

no 

yes 

s 

yes 
yes 
no 

ansi77 
1 

no 

no 

no 
yes 
yes 
yes 

yes 

no 

no 
no 
yes 

AT58-03 

I 



MULTICS FORTRAN MANUAL 
ADDENDUMB 

SUBJECT 

Changes to the Manual 

SPECIAL INSTRUCTIONS 

This is the second addendum to AT58, Revision 3, dated December 1981. Refer to 
the Preface for ((Significant Changes." 

Insert the attached pages into the manual according to the collating instruc
tions on the back of this cover. Throughout the manual, change bars in the 
margins indicate technical additions; asterisks denote deletions. 

Note: 
Insert this cover after the manual cover to indicate the updating of the 
document with Addendum B. 

SOFTWARE SUPPORTED 

M ul tics Software Release 10.2 

ORDER NUMBER 

AT58-03B 

39097 
11183 
Printed in U.S.A. 

December 1983 

Honeywell 



COLLATING INSTRUCTIONS 

To update the manual, remove old pages and insert new pages as follows: 

Remove Insert 

iii through viii, iii through viii 
ix, blank 

1 -1 , 1-2 1 -1 , 1-2 

1-5 through 1-8, 1-5 through 1-10 
1 -9, blank 

3-3, 3-4 3-3, 3-4, 
3-4.1, blank 

4 -11 , 4-12 4-11, 4-12 
4-12.1, blank 

5-1 , 5-2 5-1, 5-2 
5-2. 1, blank 

5-19 through 5-22 5-19 through 5-22 

5-25 through 5-28 5-25 through 5-28 

5-31, 5-32 5-31, 5-32 
5-32.1, blank 

5-35 through 5-38, 5-35 through 
5-39, blank 5-39, blank 

6-5 through 6-8 6-5, 6-6, 
6-7, blank, 
6-1.1, 6-8 

8-3, 8-4 8-3, 8-4 

10-3, 10-4 10-3, 10-4 

A-1 through A-4 A-1 through 

i-1 through i-8 i-1 through 

The information and specifications in this document are subject to change wiihoui notice. This 
document contains information about Honeywell products or services that may not be available 
outside the United States. Consult your Honeywell Marketing Representative. 

5-38, 

A-4 

i-6 

~HoneYWell Information Systems Inc., 1983 

12/83 

File No.: 1L23, 1U13 

AT58-03B 



1-4 

2-6, 2-7 

$ 3-1, 5-27 
currency symbol 5-27 

2-6 

5-7, 5-12, 5-27 

** , exponentiate 3-1, 3-9 

*, asterisk 1-4, 1-5 

+, add or plus 3-9 

,ampersand 1-4 

,multiply 3-9 

-, subtract or minus 3-9 

.and. 3-12 

. ego 3-11 

. false. 2-5 

.ge. 3-11 

.gt. 3-i i 

.le. 3-11 

.It. 3-11 

.ne. 3-11 

.not. 3-12 

.or. 3-12 

.true. 2-5 

/, divide 3-9 

II, concatenation 3-10 

=, assignment 4-1 

A 

absolute value function 1-3 

add (binary) 3-9 

add_name command (Multics FAST) 9-3 

alphabet 3-1 

alternate return 4-10, 8-2 

ampersand 1-4 

INDEX 

i-1 

ansi66 
default 6-3 
input/output control items 5-27 
list directed output 5-38 
selection 1-6, 1-8 
storage 2-6 

ansi77 
character substrings 3-5 
concatenation 3-10, 6-11 
default 6-3 
equivalence group 6-8 
list directed output 5-38 
selection 1-6, 1-8 
storage 2-6 
subprograms 6-10 

apostrophe 2-6, 5-7, 5-12, 5-27 

arccosine function 7-6 

arcsine function 7-6 

arctangent function 7-6 

argument descriptors 6-9 

arithmetic if statement 4-3 

arithmetic modes 
rank 3-10 
result of operations 3-10 

arithmetic operators 3-8, 3-9 

array declarators 3-2 

array dummy arguments 8-3 

array elements 3-4.1 

arrays 
declaration 
definition 
dimensions 
elements of 
large 1-9 
references 
subscripts 
very large 

3-3, 6-4 
3-2 
3-2, 4-10 
3-4.1 

to 3-4.1 
of 3-2, 3-3 

1-9, 3-3, 3-4 

assign statement 4-3 

assigned go to statement 4-3, 4-7 

assignment statement 4-1 

asterisk 1-4, 1-5 

automatic statement 6-5 

B 

backspace statement 5-22 

binary stream files 5-6, 10-6, 10-8 
binary stream specifier 5-17, 5-21 

AT58-03B 



blank lines 1-4 

blanks 1-3 

block data statement 1-3, 8-1 

block data subprograms 8-1 

block if statement 4-4 

built-in functions 3-5, 7-1 
absolute value 7-3 
arccosine 7-6 
arcsine 7-6 
arctangent 7-6 
choosing largest value 7-4 
choosing smallest value 7-4 
common logarithm 7-5 
conjugate of complex argument 7-5 
cosine 7-6 
double precision product 7-5 
exponential 7-5 
hyperbolic cosine 7-6 
hyperbolic sign 7-6 
hyperbolic tangent 7-6 
imaginary part of complex arguments 

7-5 
index of substring 7-4 
length of string or substring 7-4 
lexical comparison 7-4 
natural logarithm 7-5 
nearest integer 7-4 
nearest whole number 7-3 
positive difference 7-4 
remaindering 7-4 
sine 7-6 
square root 7-5 
tangent 7-6 
transfer of sign 7-4 
truncation 7-3 
type conversion 7-3 

c 

call statement 4-9, 6-1 

card-image format 1-5 

carriage specifier 5-21 

carriage-control characters 5-5 

character operator 3-10 

character set 3-1 

character substrings 3-4.1 

character-string constants 2-6, 3-11, 
4-2 

choosing largest value function 7-4 

choosing smallest value function 7-4 

close statement 5-21 
err specifier 

see open statement 
iostat specifier 

see open statement 
status specifier 5-22 
unit specifier 

see open statement 

comments 1-4 
card-image format 1-5 
free-format 1-4 

common blocks 8-1 
equivalenced variables 6-8 

common logarithm function 7-5 

common statement 6-6 

compatibility 
with other FORTRANs A-1 

complex constants 2-5 

complex data 2-5 

computed go to statement 4-7 

conjugate of complex argument function 
7-5 

constants 
character-string 

rounding 4-2 
complex 2-5 
double-precision 
integer 2-1 
logical 2-5 
named 2-8 
octal 2-3, 2-7 
real 2-2, 2-3 

continuation lines 
card-image format 
free-format 1-4 

continue statement 

control 
transfer of 4-8 

control items 5-26 

2-6, 3-11, 4-2 

2-3 

1-3 
1-5 

4-9 

conversion codes 5-28 

cosine function 7-6 

currency symbol 3-1, 4-9 

D 

data statement 2-3, 2-6, 6-2, 6-7 
mode conversion in 6-7 

data transfer lists 5-8, 5-i3, 5-23, 
5-25, 5-35, 5-37 

declarative statements 6-1 

decode statement 5-11 

descriptors 6-9 

dimension statement 6-4 

divide 3-9 

do range 4-8, 4-9 

do statement 4-7 

do-loops 
implied 
nested 

5-23, 6-7 
4-8 

dollar sign 3-1, 4-9 

double-precision constants 2-3 

double-precision product function 

dummy arguments 8-2, 8-3 

dummy label argument 8-2 

E 

else if statement 4-5 

7-5 

i-2 AT58-03B 



else statement 4-5 

encode statement 5-14 

end if statement 4-6 

end line 1-3 

end statement 4-14 

endfile statement 5-22.1 
different versions 5-23 

entry dummy argument 8-2 

entry points 8-5 

entry statement 6-1 

entrynames 8-6 

environment 
Multics FAST 

see Multics FAST subsystem 
environment 

equivalence statement 6-8 

equivalenced variables 
modes 6-9 

err 5-7 

err specifier 
see open statement 

error processing 10-2 

exclamation mark 1-4 

executable statements 4-1 
assignment 4-1 

explicit declarations 6-1 

exponent 2-3 

exponential function 7-5 

exponentiation 3-9 

expressions 3-1 

external functions 7-2 

external statement 6-1, 6-9 

F 

field descriptors 5-28 

files 5-1, 5-2 
access attribute 10-7 
access methods 5-2 
binary stream 

see binary stream files 
binary stream attribute 10-8 
carriage control attribute 5-5 
connecting 5-3, 5-16, 5-21, 10-1, 

10-3 
default input 5-6 
default output 5-6 
direct access 5-3 
end-of-file 5-8 
explicit opening 5-3 
external 5-3 
file attributes 5-4, 5-17 
form attribute 10-8 
implicit opening 5-3 
internal 5-3 
mode attribute 10-7 
opening 5-3, 5-4, 5-16, 5-21, 10-1, 

10-3, 10-4 

i-3 

files (cont) 
prompt attribute 10-9 
record length attribute 10-8 
sequential 

direct access of 5-3 
sequential access 5-2.1 
unit 5-3 

floating-point numbers 2-2 

formal parameters 4-9 

format specifications 
: format 5-35 
a format 5-33 
and data transfer lists 5-35 
character-strings 5-27 
control items 5-26 
conversion codes 5-28 
d format 5-30 
e format 5-30 
f format 5-29 
field descriptors 5-28 

character-string 5-33 
logical 5-34 
numeric 5-28 
octal-string 5-34 

format statement 5-36 
g format 5-30 
general form 5-25 
i format 5-29 
in arrays 5-36 
1 format 5-34 
numeric conversions 

complex 5-32 
integer 5-29 
real 5-29, 5-30 

o format 5-34 
r format 5-33 
repeat groups 5-34 
s format 5-26 
t format 5-26 
v format 5-3-6 

format statement 5-36 

formatted direct access 
read statement 5-9 

formatted direct access write 
statement 5-13 

formatted sequential read statement 
5-8 

formatted sequential write statement 
5-6, 5-13 

free-format input 1-4 

function references 3-5, 8-4 

function statement 6-1 

function subprograms 3-5, 8-4 

functions 
built-in 3-5, 7-1 
generic 3-5, 7-2 
references 3-5, 8-4 
statement 3-5 
subprograms 3-5 

G 

generic functions 3-5, 7-2 

go to statement 
assigned 4-3, 4-7 
computed 4-7 
unconditional 4-6 

AT58-03B 



H 

Hollerith character strings 2-7 

hyperbolic cosine function 7-6 

hyperbolic sine function 7-6 

hyperbolic tangent function 7-6 

if statement 
arithmetic 4-3-
logical 4-3 

I 

imaginary part of complex argument 
function 7-5 

implicit statement 6-3 

implicit typing 6-3 

implied do-loops 5-23, 6-7 

index of substring function 7-4 

initial lines 1-3, 1-5 

initial value 6-2 

input formats 
card-image 
free 1-4 

1-3 
1-5 

input statement 
see terminal read statement 

input/output 5-1 
error processing 5-6 
formatted input 5-2 
formatted output 5-2 
list-directed 5-37 
unformatted input 5-2 
unformatted output 5-2 

input/output lists 
see data transfer lists 

input/output statements 
see data transfer statements 
see statements 

integer constants 2-1 

integer data 2-1 

internal functions 7-2 

iostat specifier 
see open statement 

large arrays 
see arrays 

L 

length of string or substring function 
7-4 

lexical comparison function 7-4 

limits imposed by external storage 
5-2 

line numbers 1-3 
free-format 1-5 

list-directed input/output 5-37 

i-4 

logarithm 
common 7-3 
natural 7-3 

logical constants 2-5, 5-37 

logical if statement 4-3 

logical operators 3-8, 3-12 

M 

main entry point 8-5 

main program 1-1 

minus (unary) 3-9 

mode conversion 3-6 

mode statement 6-3 

Multics FAST subsystem environment 
9-1 

compiling a program 9-2 
linking 9-3 
running a program 9-1 
separate subprograms 9-3 
subprogram runs 9-4 
terminating a run 9-2 

multiply 3-9 

N 

named constants 2-8 

namelist read statement 5-12, 5-38 

namelist statement 5-38 

namelists 5-12 

names 3-1 

natural logarithm function 7-5 

nearest integer function 7-4 

nearest whole number function 7-3 

numeric conversion 5-28 

a 

octal constants 2-3, 2-7 

open statement 5-16, ~-2! • 
access specifier 5-~, J-17, 5-21, 

10-7 
attach specifier 5-17, 10-3 
binary stream specifier 5-4, 5-17, 

5-21, 10-8 
blank specifier 5-17 
carriage specifier 5-5, 5-17, 10-9 
defer specifier 5-5, 5-18, 5-21, 

10-9 
err specifier 5-6, 5-18, 5-21, 10-2 
file specifier 5-4, 5-18, 10-2, 

10-3 
form specifier 5-4, 5-19, 10-8 
iostat specifier 5-6, 5-19, 5-21, 

10-2 
ioswitch specifier 5-4,5-19, 10-2, 

10-3 
mode specifier 5-4, 5-19, 5-21, 

10-7 
prompt specifier 5-4, 5-19, 5-21, 

10-9 

AT58-03B 



open statement (cont) 
recl specifier 5-4, 5-20, 5-21, 

10-8 
status specifier 5-20 
unit specifier 5-21 

operators 3-8 
arithmetic 3-8, 3-9 
logical 3-8, 3-12 
precedence 3-9 
relational 3-8, 3-11 

P 

parameter statement 6-10, 6-11 

parameters 
array formal 
scalar formal 

4-9 
4-9 

very large arrays 1-10 

pause statement 4-11 

PLII 
argument descriptors 6-9 

plus (unary) 3-9 

positive difference function 7-4 

precedence 3-9 

print statement 5-13 

program statement 1-2 

program structure 1-3 

program unit 1-1 

Q 

quotation marks 2-6, 2-7 

R 

read statement 5-7 
end specifier 5-7 
err specifier 5-7 
fmt specifier 5-7 
formatted direct access 5-9 
formatted sequential 5-8 
general format 5-7 
iostat specifier 5-7 
namelist 5-12 
rec specifier 5-7 
terminal 5-9 
unformatted direct access 5-10 
unformatted sequential 5-10 
unit specifier 5-7 

real constants 2-3 

real data 2-2 

records 5-1 
formatted records 5-1 
record length 5-2, 5-20, 10-6, 10-8 
unformatted records 5-1 

relational operators 3-8, 3-11 

remaindering function 7-4 

repeat groups 5-34 

return 
alternate 4-11 
alternate return 4-10 

i-5 

return (cont) 
normal 4-11, 4-14 

return statement 4-10 
alternate return 8-2 

rewind statement 5-22 

s 

save statement 6-5 

secondary entry points 8-5 

semicolon 1-4 

sine function 7-6 

square root function 

statement 
data 2-3 

7-5 

statement functions 1-2, 3-5 

statements 1-1 
declarative 6-1 

automatic 6-5 
block data 8-1 
common 6-6 
data 2-6, 6-7 
dimension 6-4 
entry 6-1 
equivalence 6-8 
external 6-1, 6-9 
function 6-1 
implicit 6-3 
mode 6-3 
parameter 6-10 
program 1-2 
&a-ve 6-5 
subroutine 6-1 

encode and decode 3-4 
executable 4-1 

arithmetic if 4-3 
assign 4-3 
assigned go to 4-7 
block if 4-4 
call 4-9, 6-1 
computed go to 4-7 
continue 4-9 
do 4-7 
else 4-5 
else if 4-5 
end if 4-6 
logical if 4-3 
pause 4-11, 9-5 
return 4-10 
stop 4-12 
unconditional go to 4-6 

formatted sequential write statement 
5-6 

input/output 
decode 5-7, 5-11 
encode 5-7, 5-12, 5-14 
input 5-7, 5-9 
namelist 5-38 
print 5=12, 5=13 
punch 5-12 
read 5-7 
write 5-12 

input/output control 5-16 
backspace 5-16, 5-22 
close 5-21 
endfile 5-16, 5-22.1 
open 5-16, 5-21 
rewind 5-16, 5-22 

order of 1-2 
statement function definition 1-2 

status specifier 
see open statement 

AT58-03B 



stop statement 1-1, 4-12 

subprograms 1-1 
block data 8-1 
dummy arguments 8-2 
entry points 8-5 
function 8-4 
subroutine 8-3 

subroutine statement 6-1 

subroutines 8-3 
alternate return 4-10, 8-2 
call 4-9 
formal parameters 4-9 
normal return 4-14 

subscripts 3-2 

subtract (binary) 3-9 

T 

tangent function 7-6 

terminal read statement 5-9 

the terminal 5-3, 5-4, 5-6 

transfer limits 5-2 

transfer of sign function 7-4 

truncation function 7-3 

type conversion function 7-3 

u 

unconditional go to statement 4-6 

underscore character 3-1 

unformatted direct access 
read statements 5-10 

unformatted direct access write 
statement 5-14 

unformatted sequential read statement 
5-10 

unformatted sequential write statement 
5-14 

unit 5-1, 5-3 

unit attributes 
see file attributes 

unit number 5-1 

unit number 0 5-3, 5-4, 10-2, 10-3 

unit numbers 10-1 

variables 
attributes 6-2 
definition 3-2 
implicit typing 
initialization 
mode 6-2 
storage class 

very large arrays 
see arrays 

v 

6-3 
6-2 

c. .... v-co 

w 

write statement 
err specifier 5-12 
fmt specifier 5-12 
formatted direct access 5-13 
formatted sequential 5-6, 5-13 
general format 5-12 
iostat specifier 5-12 
namelist 5-15 
rec specifier 5-12 
unformatted direct access 5-14 
unformatted sequential 5-14 
unit specifier 5-12 

z 

zero-trip do loop 4-8 

underscore character 3-1 

i-6 AT58-03B 



UJ 
Z 
...J 
(.!) 
Z 
o 
...J 

HONEYWELL INFORMATION SYSTEMS 
Technical Publications Remarks Form 

TITLE MULTICS FORTRAN MANUAL 
ADDENDUMB 

ERRORS IN PUBLICATION 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

YOUi comments will be investigated by appropriate technical personnei 
and action will be taken as required. Receipt of all forms will be 
acknowledged; however, if you require a detailed reply, check here. D 

FROM: NAME ----------------------------------------
TITLE ________________________ _ 

COMPANY ----------
ADDRESS ____________________________________ __ 

ORDER No.1 AT58-03B 

DATED I DECEMBER 1983 

DATE 



PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154 

POSTAGE WILL BE PAID BY ADDRESSEE 

HONEYWELL INFORMATION SYSTEMS 
200 SMITH STREET 
WALTHAM, MA 02154 

ATTN: PUBLICATIONS, MS486 

Honeywell 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

I 

I 
I 
I 
I 
I 

P 

I 
I 
I 
I 
I 
I ~ 
I ...J 

I <.J 
I Z 

111(0 

I ~ 
I 0 

I ~ 
I u.. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
~ , 
I 
I 
I 
I 
I 
I 
I UJ 

I Z 
I ...J 

I <.J 
. Z 

1(0 

I ~ 
I 0 

I ~ 

~ 
I 
I 
I 
I 
I 

u.. 



Honeywell 
Honeyweii information Systems 

In the U.S.A.: 200 Smith Street, MS 486, WaHham, Massachusetts 02154 
In Canada: 155 Gordon Baker Road, Willowdale, Ontario M2H 3N7 

In the U.K.: Great West Road, Brentford, Middlesex TWa 9DH 
In Australia: 124 Walker Street, North Sydney, N.S.w. 2060 

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. 

33632, 7.5C182, Printed in U.S.A. AT58-03 


	000
	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	03-01
	03-02
	03-03
	03-04.0
	03-04.1
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12.0
	04-12.1
	04-13
	04-14
	05-01
	05-02.0
	05-02.1
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32.0
	05-32.1
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07.0
	06-07.1
	06-08
	06-09
	06-10
	06-11
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	09-01
	09-02
	09-03
	09-04
	09-05
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	11-01
	11-02
	11-03
	A-01
	A-02
	A-03
	A-04
	B-01
	_001
	_002
	i-1
	i-2
	i-3
	i-4
	i-5
	i-6
	replyA
	replyB
	xBack

