
SERIES 60 (LEVEL 68)

SOFTWARE

MULTICS COBOL USER'S GUIDE

SUBJECT

Information Concerning Efficient Techniques for Using Multics COBOL

SPECIAL INSTRUCTIONS

This manual supersedes AS43, Rev. 0, which has been extensively revised.
Marginal change indicators have been omitted.

SOFrNARESUPPORTED

Multics Software Release 6.0

Includes update pages issued as Addendum A
in April 1978.

ORDER NUMBER

AS43,Rev.1 December 1976

Honeywell

PREFACE

This manual is a supplement to the Multics COBOL Reference Manual, Order
No. AS44.

Section I provides an introduction to the contents of this manual and lists
terms the Multics COBOL user must understand before using this manual.

Section II explains how a COBOL source program is created on Multics.

Section III discusses in detail the COBOL compiler, its available options,
and its output.

Section IV shows how COBOL source 1/0 statements interface and interact
with the Multics 1/0 system.

Section V describes the run-time environment of a COBOL program.

Section VI discusses the use of the Multics symbolic debugging facilities
with a COBOL program, explains the general procedure used for reporting run-time
errors, and shows various ways of dealing with these errors.

Section VII contains suggestions for achieving most efficient use of
Multics COBOL.

Section VIII describes the design of the runtime package that supports the
ANSI COBOL-74 Communication Module.

Symbolic notations used to describe general source language formats within
this manual are as follows. Brackets [] enclose portions of a general format
that may be included or omitted at the user's discretion. Braces { } enclosing
a portion of a general format indicate that an option contained within the
braces must be selected. Choice indicators, {: :}, enclosing a portion of a
general format mean that a selection of one or more of the options contained
within the choice indicators must be made, but the same sequence of words cannot
be chosen more than once in that entry or statement. The ellipsis
represents an optional repetition of the preceding term. Components of a format
description that refer to a set of possible values rather than to a value itself
are given descriptive names enclosed in angle brackets < >.

Optional command arguments are enclosed in braces (e.g., {path},
{-control args}). All other arguments are required. Control arguments are
identified in the usage line with a leading hyphen (e.g., -control arg) simply
as a reminder that all control arguments must be preceded by a hyphen in the
actual invocation of the command. To indicate that a command accepts more than
one of a specific argument, an "s" is added to the argument name (e.g., paths,
-control args). See the MPM Commands, Section 3 introduction, for a complete
descriptIon of the command description format.

© 1978, Honeywell Information Systems Inc. File No.: 1L23

04/78 AS43A

The set of values constituting permissible values of path,
-control_args are defined (informally) at some point in this manual.

and I
When a sequence of lines representing interactive communication between the

user and Multics is given, the following conventions illustrate the nature of
the interaction: all lines are indented, lines the user types are preceded by
the exclamation mark (!), and those the system prints stand alone. I
Parenthesized information on the right side of a line constitutes additional
commentary concerning the particular line. For example:

edm progname.cobol
Edit. (segment already exists)
q (to return to command level)
r 2314 1.007 1.567 18

COBOL key words may be written in uppercase or lowercase letters in the
source program, but they always appear in uppercase in the text of this manual.
Multics key words (i.e., command names and control arguments) must be given in
lowercase.

In this manual many references are made to commands; some are described in
detail, while others are mentioned only in passing. Any key word termed a
command refers to a standard Multics command generally available to the Multics
user at command level. Most commands have both a long and abbreviated form.
Only the long, more descriptive name is given.

Some Multics subroutines are also referenced. These are not normally
called from command level, as they often require noncharacter-string,arguments.
By convention, Multics subroutines have a name ending with the underscore
character; e.g., print_cobol_error .

A full description of standard commands is available in the Multics
Programmers' Manual, Commands and Active Functions, Order No. AG92. Subroutines
are described in the Multics Programmers' Manual, Subroutines, Order No. AG93.
These references are given here to avoid repetitive references with the mention
of each command and subroutine in the text. Further references to the Multics
Programmers' Manual are abbreviated to MPM ..

Primary reference for user and subsystem programming on the Multics system
is contained in five manuals that are collectively referred to as the MPM.
Throughout this manual, references are frequently made to the MPM. For
convenience, these references will be as follows:

04/78

Document

Reference Guide (Order No. AG91)

Commands and Active Functions
(Order No-:-i\G92)

Subroutines (Order No. AG93)

Subsystem Writers' Guide
(Order No. AK92)

Peripheral Input/Output
(Order No. AX49)

iii

Referred To In Text As

MPM Reference Guide

MPM Commands

MPM Subroutines

MPM Subsystem Writers' Guide

MPM 1/0

AS43A

I

ACKNOWLEDGMENT

This acknowledgment has been reproduced from the CODASYL COBOL Journal of
Development 1976, as requested in that publication, prepared and published by
the CODASYL Programming Language Committee.

"Any organization interested in reproducing the COBOL report and
specifications in whole or in part, using ideas from this report as
the basis for an instruction manual or for any other purpose, is free
to do so. However, all such organizations are requested to reproduce
the following acknowledgment paragraphs in their entirety as part of
the preface to any such publication. Any organization using a short
passage from this document, such as in a book review, is requested to
mention "COBOL" in acknowledgment of the source, but need not quote
the acknowledgment.

12/79

COBOL is an industry language and is not the property of any
company or group of companies, or of any organization or
group of organizations.

No warranty, expressed or implied, is made by any
contributor or by the CODASYL Programming Language Committee
as to the accuracy and functioning of the programming system
and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

The authors and copyright
material used herein

holders of the copyrighted

FLOW-MATIC (trademark of Sperry Rand Corporation),
Programming for the Univac (R) I and II, Data
Automation Systems copyr ighted 1958, 1959, by
Sperry Rand Corporation; IBM Commercial Translator
Form No. F 28-8013, copyrighted 1959 by IBM;
FACT, DSI 27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell

have specifically author~zed the use of this material in
whole or in part, in the COBOL specifications. Such
authorization extends to the reproduction and use of COBOL
specifications in programming manuals or similar
publications."

iv AS43D

Section I

Section II

Section III

7/81

CONTENTS

Introduction

COBOL Source Program
Source Segment
Creating a COBOL Source Segment
COBOL Reference Format

Fixed Format on Multics
Conversion Considerations
Nonexistent Areas

Alternate Terminal-Oriented For~at
Free-Form Format Definition
Permanent Translation

COBOL Source Code
Use of Non-COBOL Characters . .
Capitalization Considerations .
Special Characters in Nonnumeric Literals
Escape Convention

Control Division
Sign Control
Usage Control
Precision Control
Descriptor Control

COBOL Library Facility ..
Definition of a Library ..

Dynamic Nature of the Library
Format Restriction for Library Text .
Text Comparison and Replacement .

Auxiliary Commands
expand cobol source, ecs

Compiling the COBOL Program
Invoking the Compiler
Source Errors

Diagnostic Format . .
Controlling Terminal Output .

Severity Control
Suppression of Warnings and Fatal

Errors
Reporting Observations
Unrecoverable Errors

Repetition Control
Leveling

List Header
Source Listing

DATE-COMPILED Paragraph
Cross-Reference Listing .

Usage
Allocation .

Object ~ap
Object Listing

Additional Compiler Arguments
Object Code Suppression . .
Run-Time Error Checking

Parameter Validation
Subscript Range Checking . .

v

Pap.e

1-1

2-1
2-1
2-2
2-3
2-3
2-3
2-4
2-5
2-5
2-6
2-6
2-7
2-8
2-9
2-9
2-11
2-11
2--11
2-12
2-12
2-12. 1
2-12. 1
2-12.2
2-13
2-13
2-17
2-17

3-1
3-1
3-2
3-2
3-3
3-3

3-4
3-4
3-4
3-5
3-5
3-5.i
3-6
3-6
3-7
3-8
3-8
3-9
3-10
3-10. 1
3-12
3-12
3-12
3-1-2. 1
3-12. 1

AS43E

I

Section IV

7/81

CONTENTS (cont)

String Range Checking
Index Integrity Verification

Source Transformations
Run-Time Performance Measurement
Source Level Debugging Requirements
Allocation for Temporary Compile-Time
Files

Compiler Development and Testing
Facilities

Argument Summary
Object Segment

Segment Creation
Object Segment Format .

Text Section . . .
Definition Section ..
Linkage. Section
Symbol Section . . .

Compiler Characteristics
Reentrancy
Command Line Considerations

Ordering of Arguments
Multiple Compilations

Online Documentation

Input/Output Processing .
Terminal I/O

Accepting Data
Displaying Data

Performing COBOL I/O on Multics
Opening a File
Transmitting Data
Closing a File

File Characteristics and Device Independence
File Sharing
Scope of Files
Attaching from Command Level
Implications for the OPEN and CLOSE Verbs

Defining a File
File Selection - SELECT Clause

File Structure·.
Organization
Access Mode • .
Record Format

Keys
Record Key
Relative Key

I/O Switch Assignment
EXTERNAL Attribute
Internal-file-name
Device Specification

File Status
Supplementary Options - APPLY Clause

Temporary Files
Attachment Control
Explicit Attach Specification
Tape Attachment Specialization .

Record Description - FD Entry . .
Value of Catalog-Name is Clause
Virtual Hemory Files
Tape Files

Variable-Length Records .
Declarative Procedures ..
Print Files

Page and Line Control . .

vi

Page

3-12.2
3-12.2
3-11
3-13
3-13. 1

3-13. i

3-14
3-14
3-16
3-16
3-16
3-16
3-17
3-17
3-17
3-18
3-18
3-18
3-19
3-19
3-20

4-1
4-1.
4-1
4-2
4-3
4-3
4-4
4-4
4-5
4-5
4-5
4-6
4-7
4-8
4-8
4-8
4-8
4-10
4-11
4-11
4-11
4-12
4-12
4-12
4-12
4-13
4-16
4-18
4-18
4-20
4-20
4-22
4-22. 1
4-23
4-23
4-23.1
4-23."
4-24
4-25
4-26

AS43E

Section V

Section VI

7/81

CONTENTS (cont)

File Opening Modes
Implementation Specifics

File State Rlock
File Activity Recording.

File Organization and Structure
Sequential Files
Relative Fiies

Sequential Mode
Random Mode
Dynamic Mode

Indexed Files
Sequential Mode
Random Mode
Dynamic Mode . .

Example

Executing a COBOL Program
Referencing an Object Segment
Resolving External References

Multics Environment .
Search Rules .
Dynamic Linking . .
Binding

Program Execution from Command Level
COBOL Run-Unit

Run-Unit Definition
Run-Unit Related Statements ..

STOP RUN Statement . .
EXIT PROGRAM Statement .
CANCEL Statement

Auxiliary Commands
run cobol Command
stop cobol run Command
cancel cobol program Command
display cobol run unit Command

Aspects of the Run-Time-Environment
STOP <literal> Statement
External Switches
COBOL Segmentation
Improper Program Termination

COBOL Data
Data Types

Unsigned Display Data
Separate Sign Display Data .
Nonseparate Sign Display Data
Packed Decimal Data
Binary Data

Data Allocation
Interprogram Communication

Aggregate Data
Implementation Specifics

Run-Unit Control .
Data Addressability ...

Error Processing and Debugging
Symbolic Debugging

Monitoring Program Execution
Displaying and Modifying Data

Character-String Data (display)
Packed Decimal Data (CO~P, COMP-5,

COMP-8)
Binary Data (COMP-6, COMP-7)

Run-Time Errors
Anticipated Errors

vii

Page

4-27
4-27
li-29
4-29
4-29
4-29
4-30
4-30
4-31
4-31
4-32
4-33
4-33 -
4-34
4-35

5-1
5-1
5-2
5-2
5-3
5-4
5-5
5-5
5-7
5-8
5-8
5-8
5-9
5-9
5-10
5-10
5-12
5-12
5-13
5-16
5-16
5-16
5-17
5-17
5-17
5-18
5-19
5-20
5-21
5-22
5-22
5-23
5-24
5-25
5-26.1
5-26.1
5-27

6-1
6-1
6-2
6-3
6-3

6-4-
6-6
6-6
6-7

AS43E

Section VII

Section VIII

Section IX

7/S1

CONTENTS (cont)

1/0 Errors
print cobol error Subroutine.

SIZE ERROR OptIon
Unanticipated Errors

Efficiency Considerations
Program Size
Data Definition
1/0 Considerations . . .
Use of Numeric Data Types
Use of the Inspect Statement .
Miscellaneous Considerations .
Measuring a Program's Performance

COBOL Message Control System
References . ." .
Terminology
Design Concepts
COBOL MCS Queue Organization
Overview of CMCS Data Bases
Administrative Functions ..

CMCS Administrator
Message Processing Operation

Daemon Message Processor . .
System Administrator Actions
Project Administrator Actions .
Operator Actions

User Commands
cobol mcs, cmcs ..

cobol mci admin, cmcsa
cv cmcs station ctl
cv-cmcs-terminaI ctl .
cv-cmcs-tree ctl-..

File Ordering -- Sort and Merge
Concepts

Sorting
Sort Statement

Merging
Merge Statement

Ordering
Program Organization

Sort Statement
Sort File
Sort Key Declarations

Variable-Length Records
Dominant Record Length .

Sort Key Evaluation • . .
Sort Input Processing . .

Using Option . . I. • •

Input Procedure Option
RELEASE Statement .

Giving Option
Output Procedure Option

RETURN Statement
Sort Operational Considerations

Flow of Control
Sort Examples

Merge Statement
The Merge File
Merge Key Declarations

Variable-Length Records
Merge Key Evaluation
Merge Input Processing

viii

Page

6-q
6-10
6-11
6-11

7-1
7-1
7-2
7-2
7-3
7-4
7-5
7-6

8-1
S-1
8-1
8-2
8-5
8=5
S-6
8-6
8-S
8-S
8-S
8-S"
8-8
8-9
8-10
8-17
8-22
8-23
8-24

9-1
9-1
9-1
9-1
9-2
9-2
9-3
9-3
9-4
9-5
9-5
9-5
9-6
9-6
9-6
9-6
9-6
9 ... 7
9-7
9-8
9-8
9-9
9-9
9-11
9-12
9-12
9-12
9-12
9-13
9-13

AS43E

Section X

Section XI

Appendix A

Index

Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.
Figure 9-5.

Table 2-1.
Table 2-2.
Table 3-1.
Table 3-2.
Table 3-3.
Table 4-1.
Table 4-2.

7/81

CONTENTS (cont)

Merge Output Processing
Giving Option
Output Procedure Option

RETURN Statement
Merge Operational Considerations .

Flow of Control .
Merge Examples

Work Requirements
Sort Work Files
Process Directory Work Files
Running COBOL Programs with the SORT
Statement

Page

9-13
9-13
9-13
9-14
9-14
9-14
9-16
9-17
9-17
9-17

9-18

Debug Facility
Description of the Debug Facility
Example of the Debug Facility

10-1
. 10-1

. . . . 10-1

Report Writer.. 11-1
Description of the Report Writer. . . 11-1

Report Format. 11-1
Report Control in the Procedure Division 11-2
Skeletal Format for the Report Section . 11-tl
RD Entries 11-5
Report Group Entries 11-5

Elements of a Report. 11-6
Report Groups 11-6
Control Data Items 11-7
File Characteristics 11-B
Line Counter 11-8
Page Counter 11:-9
SUM Counter Manipulation 11-9

Subtotalling . . .
Rolling Forward
Crossfooting .

Producing A Report .
Report Command

Order of COBOL 30urce Program . .

ILLUSTRATIONS

Sort Program Organization
Merge Program Organization
Sort Input Procedure Organization .

1 1 1 f'\
• 11- IV

· 11-10
· 11-11
· 11-12

.... 11-12

A-l

i-1

Sort Output Procedure Organization
Merge Output Procedure Organization

9-4
9-~
9-9
9-10
9-15

TABLES

Fixed Format Areas
Escape Convention
Diagnostic Severity Levels
Summary of List Arguments
Summary of Compiler Control Arguments .
Multics 1/0 Modules
File Organization

ix

2-3
2-10
3-2
3-6
3-15
4-4
4-8

AS43E

I

I

Table 4-3.
Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.

7/81

CONTENTS (cont)

File Opening Modes •
COBOL Data Types
Display Data Digit Encoding ..
Display Separate Sign Encoding ..
Display Nonseparate Sign Encoding

x

Page

4-28
5-18
5-19
5-20
5-21

AS43E

.'

SECTION I

INTRODUCTION

This manual provides information that enables the COBOL programmer to
create new programs on Multics and to convert existing programs to run
efficiently. The user is assumed to possess a basic knowledge of the COBOL
language and some familiarity with the essential ideas, terminology, and usage
of the Multics system. Specifically, he should understand the following terms:

Directory structure:

pathname
directory
segment
link
access mode
access control list (ACL)

Interactive control:

command processor
command level
ready message
quit and restart

Processing environment:

process
user
stack
process directory
working directory

File system:

file
1/0 switch
1/0 module
attach

If necessary, review the appropriate sections of the MPM Reference Guide.

1-1 AS43

This manual explains in detail those aspects of the COBOL language that
interface with or are dependent on the Multics system. Particular attention is
given to the inte~pretation of the various paragraphs of the Environment
Division, since this is the system-dependent component of the COBOL program.

This manual deals specifically with the meaning
files in the Multics virtual memory system. It
environment of the COBOL run-unit and the effects
execution of a modular run-unit and describes certain
that give the user supplemental information and
Finally, error processing and recovery are discussed.

1-2

of device-oriented COBOL
discusses the run-time

of dynamic linking on the
COBOL-oriented commands

control over the run-unit.

AS43

SECTION II

COBOL SOURCE PROGRAM

This section explains the manner in which a COBOL source program is created
on Multics. Uppercase, lowercase, and character set usage are discussed. Also,
the COBOL card-oriented reference format is described, and an alternate,
terminal-oriented format is presented. Such matters as the effect of the
newline character and trailing spaces on nonnumeric literals and a source-level
escape convention for nonprinting characters are explained. Finally, the COBOL
library facility is defined in terms of the Multics storage system.

SOURCE SEGMENT

The source program is defined as a syntactically correct set of COBOL
statements and serves as input to the COBOL compiler. It is contained in a
segment that must have a name of the form:

<program name>.cobol

where <program name) corresponds to ~ne name soecified in the PROGRAM-ID
paragraph of the Identification Division. The source segment may be created and
modified by using any of the text editors available on the Multics system.
Complete descriptions of the edm and qedx text editors can be found in the MPM
Commands manual.

2-1 AS43

I

I •

I

I

CREATING A COBOL SOURCE SEGMENT

To create a COBOL program named time-and-date that displays the time and date
on the user's terminal, the user could invoke the qedx text edi tor to create a source
segment named time-and-date.cobol as follows:

qedx
a

\f

(invoke the editor)
(enter append mode)

IDENTIFICATION DIVISION.
PROGRAM-ID. time-and-date.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
source-computer. Multics.
object-computer. Multics.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 time-out pic 99B99b99pp.
01 DATE-OUT PIC xeS).
01 date-in.

02 yy pic 99.
02 mm pic 99.
02 dd pic 99.

PROCEDURE DIVISION.
begin. accept date-in from date.

string mm "I" dd "I" yy delimited by size into date-out.
accept time-out from time.
inspect time-out replacing all spaces by":".
display "Time: " time-out" Date:" date-out.
exit program.

w time-and-date.cobol (create the segment)
(return control) q

r 1445 2.110 11.020 20S (system ready for next command)

At this point, the source program exists in a permanent segment in the user's
working directory and is ready to be compiled. Another invocation of a text editor
may be made to further alter the program contents. For example, the following editing
sequence could be employed if the user decided to separate the hours,minutes, and
seconds by commas instead of colons:

qedx (invoke the editor)
r time-and-date.cobol (segment to be edited)
1:1 (locate line containing colon)
inspect time-out replacing all spaces by":".

s/:/,1 p (change the colon to a comma and print results)
inspect time-out replacing all spaces by",".

w (permanently change the segment)
q
r 1447 1.773 3.747 47 (system ready for next command)

The source segment time-and-date.cobol is again ready to be compiled.

12/79 2-2 AS43D

COBOL REFERENCE FORMAT

The COBOL language is specified in terms of a reference format that divides
input source lines into areas. These areas control the interpretation of
certain words and characters and exert constraints on the placement of certain
constructs. For example, a hyphen in the Indicator Area has a different meaning
than a hyphen appearing elsewhere, whereas division and procedure names are
required to begin in Area A (defined below).

Fixed Format on Multics

The source program consists of a stream of characters divided into lines.
Each line is variable in length and is delimited by a newline character (012
octal). The newline character itself is never considered part of the line.

The reference format of a COBOL source program is described in terms of
character positions on a line, traditionally corresponding to columns on an
80-column card. The COBOL language itself is sensitive to areas defined by such
column positions. For Multics COBOL, these are defined in Table 2-1.

Table 2-1. Fixed Format Areas

Character Position Area Name

- 6 Sequence Number Area

7 Indicator Area

8 - 11 Area A

12 - 255 Area B

CONVERSION CONSIDERATIONS

Because any line may be of length 0 to 255 inclusive, all of the areas are
of variable length. Additionally, since the positioning of the newline
character determines the length of Area B, no right-hand margin exists in which
comments may appear. Often, with card-oriented reference formats, Area B has a
fixed length, extending from positions 12 through 72, thus allowing an I
eight-character right-hand margin for comments. Modifications must be made to
existing programs that assume such a format. Also, for space considerations,
trailing blanks that are left over after a card deck is converted to a Multics
segment should be eliminated except where they are meaningful (as in continued
nonnumeric literals; see "Special Characters in Nonnumeric Literals" below).

04/78 2-3 AS43A

NONEXISTENT AREAS

Area B is always variable in length. If the total line length is less than
twelve, Area B is considered nonexistent, i.e., as a zero-length (or null)
string of characters.

If the line length is less than eleven, Area A is assumed to contain the
characters starting at position eight and extending to the end of the line,
ro~~owea DY as many blanks as necessary to total four characters. In this case
Area B is nonexistent.

The Indicator Area may contain one of the following characters: ~ (blank),
*, /, or d. Any other value in this area is ignored and treated as though it

were a blank with a warning message issued during comDilation. If the total
line length is less than seven, the Indicator Area is assumed to contain a b18nk
character.

The Se~ue~ce Number Area is normally used for card numbers. Since Multics
text editors. are character-stream oriented rather than card-oriented, this~area
is usually not of use to COBOL users and may be left blank. All co~piler

diagnostic messages as well as run-time error messages refsrring to line numbers
use the external line number. This is the actual relative nu~ber of the line in
the segment and corresponds to the line number addressed by the text editors.
The external line number is shown to~ether with the corresponding line in the
output listing if one is produced. COBOL acceDts any value in the Sequence
Number Area. If the line length is less than six, the sequence number is taken
as the characters specified (if any) followed by as many blanks as necessary to
total six characters.

For example, if the input were as follows (with ~ representing the blank
character):

~~~~~~~~~~~DISPLAY~"XY~ 
~~~~~~-~~~~"~~~ 
~~~~~~-~~~~" 
~~~~~~-~~~~"Z". 

the literal "XY~~~~Z" would be disDlayed. It would be invalid to insert a
totally blank (or zero length) line between the first and last lines above as it
would break the continuation of the literal.

Alternate Terminal-Oriented Format

COBOL rules concerning positioning by column number are not well suited to
terminal input and tend to cause errors and annoyance for the interactive user.
A free-form COBOL spe~ification is available to the user to facilitate creating
COBOL programs at the terminal,

FREE-FORM FORMAT DEFINITION

The expand cobol source command (abbreviated ecs) and the -format control I
argument of the-cobol-command allow the user to enter a COROL source input file
in free-form, typically through a terminal, and reformats each source line into
the standard COBOL reference forma-to (See Table 2-1, above.) In a C-OBOL source
program, statements generally begin in Area B. However, certain entries, such
as COBOL-defined division names, section and paragraph names, level indicators,
and special level numbers, must begin in Area A. In addition, speci8l characters,
such as the asterisk, slash, hyphen, and the letter d, have significant meanings
when they appear in the indicator area.

If the -format (abbreviated -fmt) option is specified, a temporary internal
f i 1 e i s g en era ted ins u c h a 'm ann e r t hat sou r c eli n esc 0 n t a i n i n g COR 0 L - d e fin e d
names required to begin in Area A are actually interpreted as beginning in Area
A. For example, lines beginning with level-numbers 01, 06,77, or 88 are assumed
to begin in Area A. Lines beginning with level-numbers 02 through 49 are assumed
to be indented seven spaces plus the numeric value of the level-number. ror
example, level-number 02 begins at column 9; level-number 05, begins at column
12.

Some special characters force specific interpretation when they begin a
free-form source line. The slash denotes a comment line with page ejection; the
asterisk, a comment line without page ejection. The hyphen denotes a continuation
line. For continuation lines, the remainder of the line following the hyphen is
assumed to begin in Area B, since COBOL prohibits use of Area A in this case.

Debugging lines are probably of little interest to Multics COROL users, due
to the powerful symbolic debugging facilities available on an interactive basis,
but they may be specified in free-form source by beginning the line with d*.

Source lines not beginning with a special character and not containing
entries required to begin in Area A are assumed to begin in Area B. Any indentation
already existing in the free-form file is thereby maintained relative to column
12. If a list file is produced, source lines appear in reformatted form.

7/81 2-5 AS43E

The compiler converts all horizontal tab characters (ASCII 011) that are
not contained in nonnumeric literals to spaces. The number of spaces is determined
by subtracting the position of the tab character on the source line modulo 10
from 11. In this way, the user can use the tab character, a nonstandard COBOL
character, as a forma~ting tool to input his source program.

~f a free-form formatted program is invoked for a compilation and the -format
control argument is not specified the compiler treats that source in a free-form
manner. However, the following message is produced at the output device.

COBOL~ The -fmt option is assumed since the source file is apparently in
free format.

When debugging a COBOL program wi th its source in free-form format the
Multics Debugger cannot display the source line. However, all other debugging
facilities are available. An easy resolution to this situation is to make a
permanent translation of the source.

Users wishing to create a permanent file in reformatted form may achieve
identical functionality to that described above by using the format cobol source
command. (Refer to the MPM Commands manual.)

PERMANENT TRANSLATION

COBOL source files may be entered and maintained in terminal-oriented format.
In this case, the control argument available with the cobol command, -format,
indicates to the compiler that the source file is in such a format. Alternately,

I a program entered through the terminal in this format can be permanently transformed
to fixed format by the expand_cobol_source command. The usage of this command
is:

I ecs path1 path2

where pathi is ~ne path name of the segment containing terminal-oriented source
statements (input) and path2 is the pathname of the segment that is to contain
the translated fixed format statements (output). Full details are available in

I this manual.

COBOL SOURCE CODE

The basic unit of the COBOL language is the character. The character set
used to form COBOL character-strings and separators includes the 26 letters of
the alphabet, the 10 numeric digits, and the following 15 special characters:

is + * / = $ " (< >

Additionally, as an extension to standard COBOL, Multics COBOL allows the
use of the lowercase in forming character-strings wherever the rules for their
formation allow the use of uppercase. The following paragraphs discuss conditions
under whicn uppercase and lowercase letters are treated as distinct characters
and the instances where characters not in the COBOL character set are allowed.

7/81 2-6 AS43E

Use of Non-COBOL 8haracters

The COBOL source program must consist entirely of characters in the COBOL
character set except in the following instances, where any character in the
Multics character set (with the exception of the newline character) may be used:

1. In comment lines (denoted by an asterisk in the Indicator Area)

2. In comment-entries of the Identification Division

3. In nonnumeric literals

4. In the internal-file-name specified in the SELECT clause (with the
additional exclusion of the hyphen and blank)

The name specified with the PROGRAM-ID clause of the Identification
Division and the text name specified in the COpy statement must contain only
characters of the COBOL character set used for forming character-strings (i.e.,
the special characters, used as separators, are not available)~

Although the name of a COBOL program may not contain non-COBOL characters,
the program may call another program whose name contains such characters,
because the object of a CALL statement is either an alphanumeric variable or
literal, both of which may contain any character. Of particular interest is the
underscore character that is used extensively in PL/I programming throughout the
Multics system. The period often used in the names of Multics segments must
never appear in the name of a COBOL source file nor in the <text-name> portion
of the name of library text file. Conversely, if a COBOL program is to be
declared by a PL/I program, it must not have a name cont~ining the hyphen, for
this would violate the syntax of PL/I.

2-7 AS43

Capitalization Considerations

COBOL source code can generally be written in uppercase, lowercase, or a
combination of the two. Uppercase and lowercase letters are interchangeable in
key words, variable names, and picture clauses. For example, the following
statements are all equivalent:

01 NAME PIC XXBXX.
01 name pic xxbxx.
01 Name PiC xXbXx.

An attempt to define two data items with names differing only in capitalization
(e.g., data-item and DATA-ITEtO results in a fatal diagnostic due to duplicate
definition. Uppercase and lowercase letters are treated as distinct characters
only in the following cases:

1. The contents of a nonnumeric literal maintains its case. Thus, "ABC"
is not equal to Habc".

2. The name specified with the PROGRAM-ID clause of the Identification
Division maintains its case. For example, a source program with the
statement:

3.

4.

PROGRAM-ID. ABC.

is not equivalent to a program with a PROGRAM-ID of abc.

The name specified as the internal-file-name in the
maintains its case although the device suffix does not.

select file-name assign to sw_name.1-printer

is equivalent to

select file-name assign to sw_name.1-PRI~~ER

but not equivalent to

select file-name assign to SW_NAME.1-printer

SELECT clause
For example:

The text name given with the COpy statement maintains its case.
example:

For

COPY ABC.

is not equivalent to

COPY abc.

2-8 AS43

~ecial Characters in Nonnumeric Literals

Only nonnumeric literals longer than 243 characters need be continued from
one line to the next by use of the continuation convention (i.e., a hvphen in
the Indicator Area in the following line). When such literals are continued,
the actual number of blanks between the rightmost non blank character on the line
and the newline character ~re considered part of the literal. Such trailing
blanks should be transferred to the begInning of the continued line, because the
blanks are not readil~ apparent when the line is printed on the terminal or on
the printed listing and the standard Multics terminal 1/0 module normally
discards trailing white space (spaces or horizontal tabs).

Escape Convention

The newline character is not considered part of the source line and is not
part of a continued literal. To include the newline character (or any other
character) in a nonnumeric literal, a source-level escape convention is
available. Any character within a nonnumeric literal :?n be represented by a
string of digit pairs enclosed in quotation marks. The values are shown in
Table 2-2. The leftmost digit represents the left five bits of the character,
and the rightmost digit represents the right four bits of the character. For
example, in the literal:

"AX$"3BHC"YZ"

AX$ and YZ represent normal ASCII characters. 3BHC represents the following bit
pattern:

OOOii iOii 10001 1100

In Table 2-2, the digits in the top half of the table may be used as either the
left or right digit. The lower half may be used only as the left digit.

The newline character in the ASCII character set has the octal value 012
and the hexadecimal value (the escape code) OA. To define a data item one
character long having the value of the newline character, the convention used
is:

01 newline pic x value ""OA"".

To define the characters "A" and "B" separated by the newline character, the
convention used is:

01 A-nl-B pic xxx value "A"OA"B".

2-9 AS43

Table 2-2. Escape Convention

Digit

a
1
2
3
4
5
6
7
8
9
A
B
C
D
E
1:' L-

G
H
I
J
K
L
M
N
0
p

Q
R
S
T
U
V

Binary

0000
0001
0010
£'1£'111
VV 11

0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011·
11100
11101
11110
1 1111

Hexadecimal

00
01
02
(\"2
V...J

04
05
06
07
08
09
OA
OB
OC
OD
OE
OF

10
1 1
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

This convention is geared to the hexadecimal representation of an 8-bit
character. A Multics character is nine bits long, and the system escape
convention expresses the character as three octal digits preceded by a backslash
character (\). For example, the newline character is represented by the
characters \012. It is necessary to use the COBOL escape convention only when
dealing with the newline character, the only character in a nonnumeric literal
to which the compiler is sensitive. Other nonprinting characters can be
included in the literal by typing the character itself or by using the Multics
escape convention, if compatibility is not a consideration. For example:

01 beep pic x value "\007".

Expressing the newline character in a similar way would result in a fatal
compile-time diagnostic.

NOTE: Use this feature only when absolutely necessary. The hexadecimal
escape convention may change in future releases of the compiler.
Furthermore, changes in future releases may make current programs
operate incorrectly.

2-10 AS43

CONTROL DIVISION

Multics COBOL provides an optional Control Division to allow centralized
control over certain aspects of the program. The Control Division, when
present, is specified immediately before the Identification Division.

Sign Control

Standard COBOL assumes that, unless otherw.ise specified, the operational
sign of signed numeric data is associated with some digit positions, rather than
occupying a separate character. This convention is not well suited to the
Multics hardware and separate sign data should be used whenever possible for
efficiency considerations. Sign positioning can be controlled by the SIGN
clause in the Data Division entry defining the data in question as follows:

[DISPLAY SIGN {
LEADING }]

[SEPARATE CHARACTER]
TRAILING

IS

To avoid adding a SIGN clause for all signed numeric data not already having
one, the user may simply specify in the Default Section of the Control Division:

DEFAULT SIGN IS LEADING SEPARATE CHARACTER
or

DEFAULT SIGN IS TRAILING SEPARATE CHARACTER

Usage Control

Another useful function provided by the Control Division is controlling the
default data type attribute of numeric data defined with the USAGE IS
COMPUTATIONAL clause. The default for Multics COBOL COMPUTATIONAL is COMP-5,
packed decimal. In some cases, the user may wish to treat computational data as
though it were of DISPLAY or some other COMPUTATIONAL usage. To avoid changing
the USAGE clauses for all computational data, the user may merely specify in the
Default Section of the Control Division:

DEFAULT FOR COMPUTATIONAL IS DISPLAY

This will accomplish the same results. The complete COMPUTATIONAL format is:

[DEFAULT FOR -- IS
{

COMP }

] COMPUTATIONAL

r DISPLAY 1
COMP-5 -_ ... _"',. -- _...... -
LoUI"It'U 1 1\ llUN1\L-~

COMP-6
COMPUTATIONAL-6
COMP-7
COMPUTATIONAL-7
COMP-8
COMPUTATIONAL-8

For a complete description of the COMPUTATIONAL clause, refer to the Multics
COBOL Reference Manual.

04/78 2-11 AS43A

I

I

I

I
I

I

I

I

I

Precision Control

In addition, the NUMERIC LIMIT clause allows the user to specify the degree
of precision he desires for intermediate results of arithmetic operations. If
this clause is omitted, 30 positions are assumed. If an arithmetic result
exceeds the size limit, only the specified number of most significant digits are
retained.

The NUMERIC LIMIT clause has the following format:

[DEFAULT FOR] NUMERIC LIMIT IS integer-1

Descriptor Control

The GENERATE DESCRIPTOR clause allows the user to specify that either NO
descriptors, or one of two types of descriptors are to be generated for CALL
statements specifying arguments (via the USING clause).

They are:

1. SCALAR indicates that structures and arrays (tables) are to be
described to the called program as a character string redefinition of
the area they actually occupy. This is the way the COBOL language
deals with such data. This is the default.

2. AGGREGATE indicates that structures and arrays are to be described
with information about each individual component. This is the way the
PL/I language treats aggregate data.

3. NO specifies that no descriptors are generated at object time when
calls are made.

The GENERATE DESCRIPTOR clause has the following format:

{
NO } SCALAR
AGGREGATE

[DEFAULT FOR] GENERATE DESCRIPTORS

The GENERATE AGGREGATE DESCRIPTORS clause is used for the following
purposes:

1. To communicate with PL/I program defining parameters with variable
array extents.

2. To interface properly with the Multics data base manager MIDS (Multics
Integrated Data Store) and MRDS (Multics Relational Data Store) which
expects PL/I type descriptors in order to interpret the data passed to
them.

The GENERATE NO DESCRIPTORS clause is used to cause efficient execution of
the programs in situations where descriptors are not used by the called
programs. Keep in mind that a COBOL program never requires that description be
passed to it; however in this case, the ~rck option's function of checking
parameter validity is disabled. See "Interprogram Communication" in Section 5
for more details.

04/78 2-12 AS43A

For a complete description of the GENERATE DESCRIPTORS clause, refer to the
MULTICS COBOL Reference Manual.

COBOL LIBRARY FACILITY .

The COBOL source text manipulation fac iIi ties are the COPY and REPLACE
statements. These statements are described in the Multics COBOL Reference
t-1anual, Order No e AS44. Programs which contain COPY REPLACING or REPLACE statements
must be compiled using the -expand option (see "Source Transformations" in Section
I I I of this manual) • Programs which contain only simple COpy statements (i. e., COPY
statements without the REPLACING option) need not use the -expand option.

The library facility allows a set (or sets) of source program statements
that reside in a source library to be incorporated into a COBOL program. Data
descriptions and procedures common to several programs can thus be maintained in only
one location (the library) and included in all programs that require them. Multics
COBOL supports the COpy statement, which inserts library text into the source program
where it is treated by the compiler as a part of the source program.

General Format:

COPY text-name [{ :: } library-name]

r . l REPLACING

r
~ ,

l

r ==pseudo-text-1 == 1 r ==pseudo-text-2== 11 1
t identifier-1 J t identifier-2 J J J literal-1 BY literal-2 ••••

word-1 -- word-2

Each set of source program statements subject to reference by a COpy statement
is called a text item and is referenced by a text-name. Text items may be organized
into a single directory or may be distributed among many directories, at the
discretion of the user. Each text-name within any given directory must be
unique. The COBOL constructs text-name and library are Multics entry names. I

Definition of a Library

On Hultics, a COBOL library may be defined as a set of segments existing in one
or more storage system directories, each of which additionally:

12/79

1. Contains COBOL source code

2. Has a name in the form (text name> .incl.cobol where (text name> must contain
characters only of the COBOL character set

3. Is accessible to the process performing the compilation at the time the
compilation is being performed

2-12.1 AS43D

DYNAMIC NATURE OF THE LIBRARY

If the text-name in a COpy statement is not qualified by a library-name,
then the library text is located by using the Multics search facility with the

I "translator" or "tran~" search list. For more information on the Multics search
facility see add_search_paths in the MPM Commands manual.

If the text-name in a COpy statement is qualified by a library-name, then
library-name specifies a Multics directory which must contain the segment:

text-name.incl.cobol

An absolute pathname for the include file is obtained by applying the ~ultics
subroutine

expand_pathname $add_suffix

to the following relative pathname

library-name>text-name

7;81 2-12.2 AS43E

Format Restriction for Library Text

The -format control argument affects only the text in the source program
itself, not the library text segments that may be referenced in the source.
Thus, library text segments must be in fixed format at the time of compilation.
I f such a segment has been created in terminal-oriented format, it must be
conve~ted to fixed format by the expand_cobol_source command before compilation. i

Text Comparison and Replacement

Source statements may be incorporated into a program intact by using a
simple COpy statement, or may be modified as they are incorporated by using the
REPLACING phrase of the COPY and the REPLACE statement.

The logic for text comparison and replacement is the same for both
COPY ... REPLACING and for REPLACE statements.

The text of a COBOL source program or library text item consists of a
sequence of text words where a text word may be:

7/81

a. A separator, except for: a pseudo-text delimiter, and opening and
closing delimiters for nonnumeric literals. The right and left
parentheses are always considered text words regardless of their context.

2-13 AS43E

b. A literal including, in the case of nonnumeric literals, the opening
quotation mark and the closing quotation mark which bound the literal.

c. Any other sequence of contiguous characters except comment lines,
bounded by separators, which is neither a separator nor a literal.

Characters recognized as separators are the space (or a series of spaces),
the punctuation characters: comma, semicolon, and period (when one is followed
by a space), left and right parenthesis, quote, and the pseudo-text delimiter.

Each text-word and each separator, other than a space or a series of
spaces, is recognized as a text-unit, and it is on the basis of text-units that
comparisons are made for purposes of replacement.

Example:

Margins

A B

05 alpha picture s9(5).

05 beta picture 9(4)v99.

05 gamma ~icture 999v999, value 123.456.

procedure division.

begin.

open input input-file, output output-file.

display "Start program execution ... ".

R

The text-words contained in the previous format are shown below in brackets:

[05] [alpha] [picture] [s9] [(] [5] [)] [.]

[05] [beta] [picture] [9] [(] [4] [)] [v99] [.]

[05] [gamma] [picture] [999v999] [,] [value] [123.456] [.]

[procedure] [division] [.]

[begin] [.]

[open] [input] [input-file] [,] [output] [output-file] [.]

,[display] ["Start program execution ... "] [.]

For purposes of replacement, a table of search operands is formed,
consisting of all words, literals, identifiers, or pseudo-texts that precede the
word BY in the COPY .. :REPLACING or REPLACE statement. In the case of an
identifier or pseudo-text, the search operand may consist of a series of

02/79 2-14 AS43B

text-words. A corresponding table of replacement operands is built consisting
of all words, literals, identifiers, or pseudo-texts that follow the word ay in
the COpy or REPLAC~ statement.

The library text is scanned, text-word by text-word, until a text-word or
series of text-words is found that exactly matches one of the search operands.

Except for the very special case where the search operand consists solely
of a comma or semicolon, the occurrence of a text-word consisting of a comma or
semicolon separator is treated as a single space. For example, the text
, a, b, c' is equal to 'a; b; c' and to 'a- b c' and to 'a b c ' .

The continuation of lines has no effect on comparison. If a line contains
a continuation indicator, the partial character-string at the end of the
preceding line is simply concatenated with the partial character-string at the
beginning of the continuation line, thus forming a complete text-word. For
example, the pseudo-text ==add a b giving c== is found to match the following:

Margins

A B R

add a b giv

ing c.

Comment-lines do not affect comparison since a comment-line is treated as a
space, which is a separator, but not a text-word. Therefore '0 the pseudo-text
==move a to b c== is found to match the following:

Margins

A B R

move x to y. move a

• This is a comment l1ne.

to b c.

Comparisons are always made on the basis of complete text-words. A partial
text-word that happens to match a search operand is not a candidate for
replacement. For example, the pseudo-text ==master== does not match either of
the following:

Margins

A B R

fd master-file

display "Error on master 7ecord.".

When the search operand is either an
subscripting of indexing is expressed, the

02/79 2-15

identifier or pseudo-text in which
presence or absence of spaces has no

AS43B

I

• effect on comparison. The construct 'array(m,n)' is logically equivalent to
'array (m, n)'.

Once a match is found between one of the search operands and the library
text, _the corresponding replacement operand is substituted for the matching text
in the library.

If the replacement operand is a single word, literal, an identifier, or
pseudo-text wh611y contained within Area B, the replacement operand is simply
substituted into the library text at the same position occupied by the text
being replaced. If the replacement operand is longer than the text it is
replacing, extra lines may be added to the library text.

Sometimes, however, the replacement operand must occupy a specific position
within a source line. This is often the case when one or more complete lines of
text are being substituted and they contain a level indicator or a
paragraph-name that must begin in Area A, or when comment-lines are being
inserted. In such cases, the replacement operand (pseudo-text-2) must be
positioned with respect to standard COBOL reference format exactly as it.is to
appear in the resulting source program.

02/79 2~'6 AS43B

AUXILIARY COMMANDS

The expand cobol source command applies a transformation to a COBOL source
program. The nature of the source transformation is defined by control arguments.
If no control argument is given, then a segment containing text of a standard
format COBOL source program which possibly contains COpy and REPLACE statements
is translated into an equivalent source program not containing these statements.

expand_cobol source oldpath {newpath} {-control_args}

where:

1. oldpath
is the pathname of the input segment. If the path does not have a
suffix of .cobol, one is assumed. However the suffix .cobol must be
the last component of the name of the source segment.

2. newpath
is the pathname of the output segment~ If the path does not h~ve a
suffix of .cobol then one is assumed. If this argument is omitted
then the translated segment is in the form of the first component
with the suffix .ex.cobol.

3. control args
, can be selected from the following:

-format, -fmt
a pseudo free-form COBOL source program is translated into a standard
fixed format COBOL source program. All characters in the source
program are left exactly as typed.

-upper case, -uc
translation to standard fixed format occurs as descri bed for the
argument, -format. All characters except for those in alphanumeric
literals are converted to uppercase.

-lower case, -lc

-card

translation to standard fixed format. occurs as described for the
argument, -format. All characters except for those in alphanumeric
literals are converted to lowercase.

meaningless trailing blanks are del~ted from a standard fixed format
COBOL source program in card-image format. Characters in the
identification field (columns 73-80) are ignored.

-expand, -exp
a standard fixed format COBOL source program which possibly contains
COpy and REPLACE statements is translated into an equivalent source
program not containing these statements. This argument is the default.

-no e~pand, -no exp
- COpy and REPLACE statements in a standard fixed format COBOL source

program are not translated.

The control arguments -format, -upper case and -lower case cause a pseudo
free-form COBOL source program to be translated into an - equivalent standard

7/81 2-17 AS43E

I fixed format COBOL source program. They may be used in combination with the
control argument -expand but are inconsistent with the control argument -card.
They should not be used if the source program is already in standard fixed
format.

The control argument -card causes a standard fixed format COBOL source
program in card image format to be translated into an equivalent standard fixed
form~t program. Meaningless trailing blanks are deleted from each line in the
source program. If a line is exactly 80 characters long then the identification
field (columns 73 - 80) is deleted before removing meaningless trailing blanks.
This argument may be used in combination with the control argument -expand but
is inconsistent with the control arguments -format, -upper case and -lower case.

The argument -expand causes a standard fixed format COBOL source program
possibly containing COpy and REPLACE statements to be translated into an equivalent
standard fixed format program not containing these statements. The argument may
be used in combination with the control arguments -format, -upper case, -lower case
and -card. Expansion of COPY and REPLACE statements will take place unless the
argument -no_expand is present. This argument is the default for the command.

7/81 2-18 AS43E

SECTION

COMPILING THE COBOL PROGRAM

Once a source program is available in a properly named segment and all
library text segments referenced by the program exist in one or more directories
specified in the current translator search rules, the source program may be
compiled. This section discusses in detail the COBOL compiler, its available
control arguments, and its output.

INVOKING THE COMPILER

The COBOL compiler is invoked by using the following command:

cobol path {-control args}

where path is the pathname of the source segment that is to be translated by the
COBOL compiler. If path does not have a suffix of cobol, then one is assumed.
However, the suffix cobol must be the last component of the name of the source
segment. For example, typing:

cobol)udd)PROJ)Smith)time-and-date.cobol

causes compilation of the source program contained in the segment named
time-and-date.cobol that is contained (or linked to) in the directory
)udd)PROJ)Smith. Since the source segment is required to have a name in the
form <program name).cobol, it is not necessary to specify the language suffix
explicitly. Typing the command:

cobol time-and-date

causes compilation of the source segment time-and-date.cobol which, in this
case, must exist in the current working directory.

Once the compiler is invoked, it confirms the existence of the named source
segment and the validity of any specified options. After doing so, it prints
the response message:

COBOL

indicating that compilation has commenced.

04/78 3-1 AS43A

The <phase-diag number> actually contains a breakdown of <phase number> and
<diag number> where the phases of the compiler are abbreviated as follows:

Phase Number

04118

2

3

5

6

8

L

Phase Abb.

LEX

IDED
DDA

DD

PD

REPL

CaRR

LEVEL

Description

Separates the source program into COBOL elements

Identification and Environment Division processing,
and Data Division and Allocation

Data Division processing

Procedure Division processing

Matches user words in the Procedure Division with
definitions from the Data Division

Corresponding processing

FIPS Leveling processing

3-2.1 AS43A

SOURCE ERRORS

The compiler diagnoses source program errors of various levels of severity:
observations, warnings, fatal errors, and unrecoverable errors. Each is
described in Table 3-1.

Table 3- i. Diagnostic Severity

Severity D~scription

1 (*) Observation. Compilation continues without ill effect.

2 (**) Warning. A possible error has occurred. The compiler attempts to
remedy the situation and continues, possibly without ill effect.
The assumptions the compiler makes to remedy the situation,
however, do not guarantee the right results.

3 (***) Fatal Error. An uncorrectable error has occurred. The program is
definitely in error and no meaningful object code can be produced,
but the compiler can continue executing and diagnosing further
errors.

4 (****) Unrecoverable Error. The compiler cannot continue beyond this
error. A message is transmitted through the error_output 1/0 switch
and compilation terminates.

Diagnostic Format

Diagnostics are printed on the
message. Each diagnostic along with
following format:

terminal immediately following the response
the associated source line is given in the

<external line number> <source line image>
<error indicator> ...

I <severity indicator> <error indicator> <phase-diag number> <diag text>

The <external line number> is the relative number of the line in the source
segment, the content of which is <source' line image>, including the Sequence
Number Area. The <error indicator> is a digit used as a pOinter. It is
positioned under the word or character of the source line that caused the
compiler to determine an error existed. Where more than one error occurs on one
line, the digit 1 is positioned under the first incorrect word, 2 under the
second, and so on. There would follow as many diagnostic message lines as
<error indicator>'s under <source image>. In this way, no source line is ever
printed more than once. The <severity indicator> is either *, **, or ***,
corresponding to severity 1, 2, and 3, respectively. Both <diag number> and
<diag text> are explained in examples below.

04/78 3-2 AS43A

After all diagnostics are printed, the compiler returns to Multics command
level. Note: ~o more than 300 diagnostics can be printed on the terrrinal.

In the program time-and-date shown in Section II, if the statement on the
sixteenth line contained a misspelling of the variable name "date-in", the
following sequence would occur:

cobol time-and-date
COBOL

cobol:
16

fatal error encountered in time-and-date
begin. accept daye-in from date.

1
*** 1 6-2 Data-name not declared
cobol: Translation failed
r 2359 0.368 2.034 58

The user would again be at command level. If the spelling were corrected, but
the period following the paragraph name "begin" on the same line was omitted (a
nonfatal error), the following sequence would occur:

cobol time-and-date
COBOL

16 begin accept date-in from date.
1

** 1 5-7 PERIOD expected after the previous word
r 2359 0.369 2.035 59

An object program would be produced in this case.

Controlling Terminal Output

The user can control the type of diagnostics reported and the amount of
information printed on the terminal by specifying arguments when the compiler is
invoked.

SEVERITY CONTROL

The -severityi control argument (abbreviated -svi) controls the number of
diagnostics printed by allowing only those having a specified severity level i
or higher to be reported. If this control argument is not specified, -sv2 is
assumed as a default, and warnings, fatal errors, and unrecoverable errors are
reported. This argument has no effect on the list file, if one is produced,
which includes all diagnostics. See "List File," below.

04/78 3-3 AS43A

I

I

Suppression of Warnings and Fatal Errors

It is sometimes desirable to suppress warning messages. Some COBOL
programs may contain such messages, yet still run correctly as programmed. To
suppress these messages, the user types:

cobol warningful -sv3

where warningful.cobol is such a program.

Even fatal errors can be suppressed by specifying the control argument
-sv4. A message is issued indicating that no object segment is produced if
fatal errors are encountered. The user can refer to the list file to determine
the errors that were detected.

Reporting Observations

Observations are not normally displayed on the terminal. They exist only
in the list segment. Often, such observations involve the moving of data from
one field to a shorter field (causing truncation) or the moving of a signed
value to an unsigned numeric field (causing loss of sign).

To print observations on the terminal, the user must override the
compiler's default action by specifying the -sv1 control argument.

Unrecoverable Errors

Unrecoverable errors occur when the compiler reaches an internally
inconsistent or unexpected state during execution. The diagnostic issued in
these cases has a special format with the phase or module discovering the
condition usually identified, along with a descriptive message. This type of
error should not normally occur. If it does, the error should be reported as a
compiler bug. By eliminating some sequence of invalid source code, the user can
circumvent such errors.

When an unrecoverable error occurs, compilation is immediately terminated.
The maximum value of i in the -svi control argument is 4; -sv4 indicates only
unrecoverable errors are to be reported.

3-4 AS43

REPETITION CONTROL

The -brief control argument (abbreviated -bf) suppresses the text portion
of the diagnostic after it is printed once. If the time-and-date program shown
in Section II contained misspellings in lines 16.and 18, the following sequence
""'''111n """", _v~ ... u """"","",\AI.

cobol time-and-date -bf
COBOL

cobol: 2 fatal errors encountered in time-and-date.cobol

16 begin. accept daye-in from date.

••• 1 6-2

18

••• 1 6-2

1
Data-name not declared

accept tide-out from time.
1

cobol: Translation failed
r 1111 0.347 1.999 23

The -brief control argument, like the -severityi control argument, applies only
to messages displayed on the terminal and has no-effect on the list file.

LEVELING

Use
number 1
1 anguage e

cf the =leveli control argument
throu£lh 5) restricts the user
The five values for i are:

(abbreviated -levi where i equals a
to a subset of the Mul tics COBOL

low level

2 low intermediate level

3 high intermediate level

4 high level

5 Multics COBOL extensions

If a program compiles without any L type diagnostics it means the program
is an acceptable subset of Multics COBOL at the level requested. Reference the
Federal Information Processing Standards Publ ication December 1, 1975 (FIPS PUB
21-1) and the Multics COBOL Reference Manual for complete details. L type
diagnostics which appear when -lev4 is specified describe extensions to
ANSI-COBOL which are provided by Multics COBOL. The following example shows the
results of a program compiled with the -lev1 option.

09/79

1 IDENTIFICATION DIVISION.
2 ENVIRONMENT DIVISION.

•• 2-4 The PROGRAM-ID paragraph is missing - entry name assumed
identical to object segment name

••• L-161 FIPS level restriction [extension]: missing PROGRAM-ID
paragraph supplied

3 CONFIGURATION SECTION.
4 SOURCE-COMPUTER. MULTICS.
5 OBJECT-COMPUTER. MULTICS SEGMENT-LIMIT IS 10.

3-5 AS43C

I

I

I .

I

*

1
*** L-46 FIPS level restriction [2SEG- high level]: SEGMENT-LIMIT clause
6 DATA DIVISION.
7 WORKING-STORAGE SECTION.
8 01 GROUP-ITEM.
9 02 ELEM-ITEM PIC xxxxxx.
10 PROCEDURE DIVISION.
11 SECT -0 SECT ION.
i2 PAR-O.
13 MOVE "abcdef" TO ELEM-ITEM.
14 PAR-1.
15 CALL "EXTERNAL-PROCEDURE".

1
*** L-66 FIPS level restriction [1IPC- low intermediate level]:

CALL statement

16 CALL ELEM-ITEM.
1

*** L-147 FIPS level restriction· [2IPC- high intermediate level]:
CALL identifier statement

The severity of the L type diagnostics may be controlled by the -levelij
control arogument, where j = 1, 2 or 3 and specifies the severity. The default
(as illustrated above) is j = 3. If the control argument -leveli is used with
i = 1, 2, 3, or 4 then nC'n-L type diagnostics having severity 1 or 2 are not
printed. Many of these diagnostics are duplicated by L-type diagnostics.

LIST FILE

A li3t file can be produced as the result of compilation if one of the
following control arguments is specified:

-map
-list (-Is)

If none of these is used, the compiler will not produce a list file. Otherwise,
a segment or multisegment file named <program name>.list is produced in the
user's working directory, where <program name>.cobol is the name of the source
segment. If such a file already exists, it is replaced by the new one.

Th eli s t f i 1 e i sin ten d e d for p r i n tin g 0 n ali n e p r i n t e r (i. e ., p r i n ted
using the dprint command). The form-feed character is used to separate pages,
and since this has no effect on most terminals, printing a list file on a
terminal is not recommended. In addition, this file generally is large.
Normally the list file is queued for printing.

It is general practice to delete list files from the storage system after
printing as they are space consuming, they serve no purpose not met by the hard
copy listing, and they can always be reproduced through recompilation.

The list file may contain the source listing, the cross-reference listing,
the object map, and the object listing. The effect of each of the arguments on
the production of these components is shown in Table 3-2.

09/79 3 -5. 1 AS43C

Table 3-2. Summary of List Arguments

Option Name Source X-Ref Hap Object List

--- "
A

x

I -map

-list (-Is) x x

List Header

A list file always starts with a block of information called a header. The
header contains the program name, date and time of compilation, the compiler
version used, and arguments, if specified, in the following format:

COMPILATION LISTING OF SEGMENT <name>
Compiled by: Multics COBOL, <version>
Compiled on: <date> <time>

Options: {-control args}

This information is permanently associated with the object segment
resulting from a successful compilation. An object segment can be examined at
any time for this and additional structural information by using the
print link info command. In this way, the correspondence between object segment
and lIst fIle can be established or verified.

Source Listing

I The source listing is a line-numbered, printable ASCII listing of the
source program. The entire source line image for each line is presented, always
in the fixed reference format (see "Fixed Format en Mul tics" in Section II).
The line number shown with each line, referred to as the external line number,
represents the relative position of that line in the source segment as
determined by a count of newline characters. This is the line number
permanently associated with the statement(s) on that line for communication with
the source-level debuggers as well as the reporting of run-time errors (see
Section V). It is also the line number referenced in the additional output

I provided for the -map and -list control arguments.

09119 3-6 AS43C

If the source segment time-and-date.cobol shown in Section II were compiled
with the -map control argument, a segment named time-and-date.list would be I
created in the user's working directory with contents as follows:

COMPILATION LISTING OF SEGMENT time-and-date
Compiled by: Multics COBOL, Version 3.0 of September 23, 1977
Compiled on: 10101/77 0909.8 mst Sat

Options: list, map, table;

2
3
4
5
6
7
8
9

IDENTIFICATION DIVISION.
program-ide time-and-date.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
source-computer. Multics.
object-computer. Multics.
DATA DIVISION.

WORKING-STORAGE SECTION.
01 time-out pic 99B99b99pp.
01 DATE-OUT PIC x(8).
01 date-in.

02 yy pic 99.
02 mm pic '99.
02 dd pic 99.

PROCEDURE DIVISION.
begin. accept date-in from date.

10
11
12
13
14
15
16
17
18
19
20
21

string mm "I" dd "I" yy delimited by size into date-out.
accept time-out from time.
inspect time-out replac ing all spac es by ":".
display "Time: " time-out" Date: " date-out.
ex it program.

If source errors existed in the program, the diagnostic messages would
appear interspersed with the lines of the source program in the format used fOr
terminal diagnostics (see "Diagnostic Format" in Section III). This includes
all observations, warnings, and fatal errors. Up to 3000 diagnostic messages
can be printed in the listing. If more than 3000 occur, the user is so notified
by a message on the terminal.

DATE-COMPILED PARAGRAPH

The date and time of compilation in the header corresponds to that
generated for the DATE-COMPILED paragraph of the Identification Division. The
characters followin~ the colon on the third line of the header are identical to
those following the period after the DATE-COMPILED key word in the source
listing. Had time-and-date used this paragraph, the list file would show:

1 IDENTIFICATION DIVISION.
2 program-ide time-and-date.
3 DATE-COMPILED. 10101/77 0909.8 mst Sat

This information appears only in the list file.
modified as the result of a compilation.

09/79 3-7

Th e so u r c e f i 1 e i s n ever

AS43C

Cross-Reference Listing

I The cross-reference listing is an alphabetized list of all data names declared
in the Data Division, files selected 1n the Environment Division, and paragraph
and section names defined in the Procedure Division, along with, for each:

I

1. Its attributes (usage, level number, and picture, if applicable)

2. Its allocation location

3. The line number on which it is defined

4. The numbers of all lines containing a reference to it

For example, if the source file time-and-date.cobol were compiled with the -map
control argument, the segment time-and-:date.list would be created exactly as
shown in "Source Listing," with the addition of a page skip and the following
information:

IDENTIFIER LN TYPE OFFSET USAGE/CLASS PICTURE DEF. REF. LINES

begin TEXT 000065 paragraph-name def 16 NOREF
date-in 01 DATA 000006 GROUP alphanum X(6) def 11 ref 16
date-out 01 DATA 000004 DSPL Y al phanum X(8) def 10 ref 17 20
dd 02 DATA 000007 DSPLY numeric 9(2) def 14 ref 17
mm 02 DATA 000006(18) DSPLY numeric 9(2) def 13 ref 17
time-out 01 DATA 000002 DSPLY num-ed it 9(6)P(2)EDITED def 9 ref 18 19 20
yy 02 DATA 000006 DSPLY numeric 9(2) def 12 ref 17

Item names are given in lowercase regardless of how they appear in the text in
either their definition or references.

USAGE

A data item's usage is determined by the USAGE clause (if given) or by
default. The possible values in this case reflect all supported data formats,
specifically: DISPLAY, COMP, INDEX, COMP-5, COMP-6, COMP-7, and COMP-8. If no
USAGE clause is specified, the default is DISPLAY.

The organization, access mode, and associated device for a file are
established, explicitly or implicitly, in the SELECT clause of the Environment
Division. These are abbreviated and given in the following format:

organization/access mode - device

e.g., SEQ/SEQ-TAPE and REL/DYN-VRTL.

Procedure names are identified as either PARAGRAPH NAMES or SECTION NAMES.

Two additional types of usage are allowed: alphabet-names and
mnemonic-names. Alphabet-name indicates a user-defined alphabet-name, as
defined in the SPECIAL-NAMES paragraph. A mnemonic-name indicates a user-defined
mnemonic-name defined in the SPECIAL-NAMES paragraph.

09/79 3-8 AS43C

ALLOCATION

Storage allocation information is given in terms of a TYPE and OFFSET. The
possible values of TYPE are:

TEXT data is allocated in the object segment.

DATA data is allocated in a temporary data segment.

PARM data allocation is established by the calling program.

SYS data allocation is in system storage.

The OFFSET field for parameter data (PARM) contains the relative number of
the parameter in the calling sequence as expressed in the USING phrase of the
PROCEDURE DIVISION header. For the other data types, it is the word offset of
the leftmost location occupied by the data in the applicable segment. If the
item is not word aligned, a bit offset is also given, within parentheses.

Data Division data is allocated according to the section in which it is
defined as follows:

Section

WORKING-STORAGE
CONSTANT
FILE
LINKAGE
COMMUNICATION

DATA
TEXT
DATA
PARM
DATA

Thp allocation associated with a file is that assigned for its use as a
record area when 1/0 operations are performed on it. This allocation is
contained in the temporary data segment and is identified by the TYPE DATA.

The location of paragraph names and section names is associated with the
first machine instfuction generated for the first executable statement following
the particular name. Therefore, the TYPE value given for them is always TEXT
and the OFFSET is the word address i1 the object segment of that instruction,
i.e., the offset relative to the be~inning of the segment. No bit offset can
appear in this case, as all machine i1structions are word aligned.

The OFFSET value associated with TEXT allocations is meaningful only when
an object segment is produced. Since code is not generated if fatal errors
exist in the source program or the -check control argument has been specified
(see "Compilation Arguments" below), the OFFSET field is left blank in these
cases. All other information in the cross-reference listing is identical,
whether or not object code results from the compilation.

04/78 3-9 AS43A

I

For example:

STORAGE R,!QUIREMENTS FOR THIS PROGRAM.

Object Text Defs Link Symb Static
Start 0 0 143 202 306 212
Length 642 143 36 104 322 70

External procedure time-and-date uses 160 words of temporary storage
FILE SECTION: No files defined
WORKING-STORAGE SECTION: 22 characters for general storage with 0 items

COMMUNICATION SECTION:
LINKAGE SECTION:
CONSTANT SECTION:

initialized (DATA:2->6)
No data defined
No parameters defined
No constants defined explicitly;
44 words for constant storage

Total allocation required for COBOL data is 8 words

THE FOLLOWING EXTERNAL OPERATORS ARE CALLED BY THIS PROGRAM:

THE FOLLOWING EXTERNAL ENTRY IS CALLED BY THIS PROGRAM:

cobol rts

Object Listing

(TEXT:O->53)

The -list control argument (abbreviated -Is) causes the compiler to produce *
a list file containing a source listing, a cross-reference listing, and an
assembly-like listing of the generated object code. This shows the machine
language actually produced for each statement. of the source program in octal
format, together wi th a pseudo assembly language instruction interpretation
consisting of an operation code, base register, and modifier mnemonics.
Additionally, if the address field of the instruction uses the H ..

(self-relative) modifier, the text offset and contents of the word corresponding
to the resolved relative address are printed in the remarks field on the line.

If time-and-date were compiled with the -list control argument specified,
the segment time-and-date.list would be created exactly as indicated in "Object
Map" above, except that in place of the object map, the object code 1 isting
below would appear.

09119 3-10. 1 AS43C

I

Object Map

The -map control argument causes the compiler to produce a list file
containing a source listing, a cross-reference listing, and an object map. The
object map is a table giving the location of the object code generated for each
statement in the Procedure Division.

Each statement is identified by the external line number (i.e.: the
relative line number in the segment, not the sequence number) of the line on
which it starts. The location of the generated code is indicated by the word
offset in the object segment of the first machine instruction generated for the
statement. If more than one statement appears on a given line, an identical
number of entries will exist in the object map with the same line number
component but different object location components. In this case, the sequence
of the statements on the line corresponds with the sequence of the entries in
the map for that line.

As an example, if time-and-date.cobol were compiled with the -map control
argument specified, the segment time-and-date.list would be created and consist
of the source listing exactly as shown in "Source Listing" above, followed by
the cross-reference listing shown in "Cross-Reference Listing" above, which in
turn would be followed by this object map:

LINE LOC LINE LOC LINE LOC LINE LOC LINE LOC LINE LOC LINE LOC
15 000054 16 000065 17 000071 18 000102 19 000107 20 000113 21 000136

If no object code is produced, no mapping can be made between the source
statement and the machine code, and the object map is omitted.

04/78

Additionally, the compiler produces a program summary which describes:

• Storage requirements for this program.

• External procedure information on:

Program name (number of temporary words used)
File section
Working-storage section
Communication section
Linkage section
Constant section
Total allocation required for COBOL data

• A list of External operators called by this program

• A list of External entries called by this program

3-10 AS43A

OBJECT CODE
STATEMENT 1 ON LINE 15

PROCEDURE DIVISION.

54 000000 0000 00 0
55 000027 2000 00 cnaxO 27
56 000240 6270 00 eax7 240
57 7 00050 3521 20 epp2 pr7150,·
60 2 00006 2721 20 tsp2 pr216,*
61 000000 0000 75 0,*7
62 o 00102 0001 24 prO \102, ic.
63 4 00016 0541 00 aos pr4: 16
64 o 00100 0111 00 nop prO I 100

begin

STATEMENT 1 ON LINE 16
begin. accept date-in from date.

65 0 00054 7001 00 tsxO proO 154
66 6 00130 2371 00 Idaq pr6 I 130
67 3 40006 7551 00 sta pr31-37772
70 3 40007 5521 60 stbq pr31-37771,60

STATEMENT 1 ON LINE 17
string mm "I" dd "I" yy delimited by size into date-out.

71 057 100 100 500
72 3 40006 40 0002
73 3 40004 00 0003
74 057 100 100 500
75 3 40007 00 0002
76 3 40004 60 0003
77 3 40006 2351 00

100 000022 7310 00
101 3 40005 55ii i4

mlr
desc9a
desc9a
mlr
desc9a
desc9a
Ida
ars
stba

accept time-out from time.

102
103
104
105
106

o 00056 7001 00
100 004 024 500
6 00130 03 0010

'777746 00 0007
3 40002 00 0010

tsxO
mvne
desc9ns
desc9a
desc9a

(pr), (pr) ,fill(057)
pr31-37772 (2),2
pr31-37774,3
(pr), (pr) ,fill(057)
pr31-37771,2
pr31-37774(3),3
pr31-37772
22
pr3;-37773,i4

STATEMENT 1 ON LINE 18

prOl56
(pr) , (i c) , (pr)
pr61130,10,0
-32,7
pr31-37776,10

000011 = 070322201322

STATEMENT 1 ON LINE 19
inspect time-out replac ing all spac es by ":".

107
1 i 0
111
112

113

.

000 100 160 500
3 40002 00 0010
3 40002 00 0010

777701 0000 04

mvt
desc9a
desc9a
arg

(pr) , (pr) , fi 11 (000)
pr3l-37776,10
pr31-37776,10
-77,ic 000010 = 000001002003

STATEMENT 1 ON LINE 20
display "Time: " time-out "Date: " date-out.

0000362350 07 Ida 36,dl

END OBJECT CODE

09/79 3-11 AS43C

I

I

The object map is not given when the -list control argument is used.
Information contained in the map is given in the object listing~ although
expressed in a different form. That is, the entry following "STATEMENT 1 ON
LINE 16" shows that the first instruction associated with line 16 is at text
offset 25. Therefore, if both an object listing and object map are wanted, both
-list and -map must be specified. In this case, the map precedes the list.

Creation of an object listing significantly increases compilation time.
Thus, the -list control argument should be used only when detailed information
is required. Normally, use of this argument can be avoided by using the Multics
debug command to display interactively that portion of the object code actually
needed.

Like the object map, the object listing is meaningful only if object code
is produced. If this is not the case, no object listing is produced.

ADDITIONAL COMPILER ARGUMENTS

Additional control arguments supported by COBOL are discussed below.

Object Code Suppression

It is possible to compile a program only for the purpose of syntactic and
semantic checking and avoid the time and cost of code generation. Also, it may
be desirable to produce a cross-reference listing and/or source listing for
reference purposes only, for example, to plan future modifications. Both these
listings can be produced without code generation. For this purpose, the -check
control argument (abbreviated -ck) is available. When this argument is
specified, use of the -map and -table control arguments is meaningless.

Run-Time Error Ch.ec~il'!..8.

The -runtime check control argument (abbreviated -rck) causes the compiler
to generate code that checks certain conditions during execution of a program.
Specifically, it allows the user:

1. To validate the number and types of parameters

2. To check bounds on all subscripted references

3. To check the string range of all variable-length string references

4. To verify the legality of every index-name modification

Checking is not normally done during program execution due to the
additional overhead it requires and because such errors do not occur in a fully
debugged program. However, when a program is in the process of being debugged,
it is useful to use this option to cause the occurrence of such conditions to be
reported and the program halted rather than letting the program continue
executing only to fail elsewhere either by producing wrong results or aborting.
Also, the user is afforded the opportunity to correct many such errors "on the
fly" by using the Multics debugging facility and then continue execution (see
"Run-Time Errors" in Section VI for further details).

04/78 3-12 AS43A

The types of error situations checked for are discussed below. If any I
error occurs during execution of a program not compiled with the -rck option
then results of further execution is undefined-.--

PARAMETER VALIDATION I

When the =rck control argument is used, the object program checks to make
sure that the number of parameters passed to it by its caller is the same as the
number it expects (as indicated in the USING clause of the Procedure Division
header). Also, if possible, it makes sure that the characteristics of each data
item actually passed as a parameter (i.e., usage, picture, synchronization,
etc.) match those of the corresponding Linkage Section data description entry.
The only condition under which this parameter type validation is not performed
is when the calling program is a non-COBOL program which does not pass
descripters. For details on the relationship between COBOL data types and those
in other languages (particularly PL/I), refer to "Interprogram Communication" in
Section V.

When an error occurs, one of the following messages is issued:

<prog name>: Argument mismatch - incorrect number of arguments supplied.

- or -

<prog name>:
expected.

Argument mismatch - data type is not compatible with that

Additional information is given (refer to run-time errors in Section VI)
and program execution is suspended. The user can ignore the error and continue
execution by invoking the start command at this point. However, results are
undefined if the program executes a ~tatement that references a parameter which
has not been supplied. If a data type mismatch occurs and execution is
continued, all references to parameters are made according to the Linkage
Section definition of the executing program (the callee). Thus, portions of the
callers data may be inadvertently destroyed causing undefined results.

SUBSCRIPT RANGE CHECKING

When the -rck control argument is used, before every subscripted reference
in the object program is made, a check is performed to make sure that the
address determined by subscript calculation lies within the range of the table
in question. Effectively, each subscript whose value is non-constant is
compared to the bound of the corresponding dimension of the table (as specified
in the relevant OCCURS clause), and an error occurs if its value is found to be
outside that range. (Similar checking of constant subscripts is done at compile
time; references that are out of range result in severity 3 diagnostics.)

When a subscripted reference is outside the range of the associated table,
the following message is issued:

<program name>: A subscript is outside the range of the referenced table.

Additional information is given concerning the location of the error and
source line number on which the reference was made, and execution is suspended.
The user may then change the value of the subscript in error via the Multics
debugging facility and continue execution by invoking the start command. If an
attempt is made to continue execution and one or more subscripts is still out of

04/78 3-12.1 AS43A

I

I

I
range, the same error occurs again. Thus, there is no way execution can
continue with reference actually made to data outside the range of the table.

STRING RANGE CHECKING

Group items which contain subordinate data items having the
aCCURS ... DEPENDING ON clause are treated as variable length character strings.
When such a group item is referenced, only that portion of it (as determined by
the value of the DEPENDING ON variable) is involved in the operation. For
example, in the following program:

01 vstring-Iength pic 999.
01 vstring.

02 vchar pic x occurs 10 to 120 depending
on vstring-Iength.

display vstring.

the number of characters displayed depend on the contents of vstring-Iength.
When the -rck control argument is used, every reference to a variable length
string is checked to make sure that the value of the applicable DEPENDING ON
value is within the specified range.

When the value is outside the allowable range, the following message is
issued:

<program name>: Out of range depending on item.

and program execution is suspended.

The user may then change the value of the DEPENDING ON item via the Multics
debugging facility and continue execution by invoking the start command. If an
attempt is made to continue execution and the value of that data item is still
out of range, the same error occurs again. Thus there is no way that execution
can continue causing the program to make reference to a string that extends
beyond the defined range of the associated group item.

INDEX INTEGRITY VERIFICATION

When the -rck control argument is used, the object program checks every SET
statement in which the possibility exists that an index name may take on a value
outside the range of its associated table dimension. (A compile time check is
made when SET references a constant value and a severity 3 diagnostic is issued
for illegal assignments.) If such a condition occurs, the following message is
issued:

<program name>: Attempt to set an index outside the range of the
associated table.

Additional information is given concerning the location of the error and
the source line number of the SET statement and program execution is suspended.
The user may then change the value of the variable or the index name (for
SET ... TO), or the value of the index name (for SET ... UP or DOWN) or both and
continue execution by invoking the start command. If an attempt is made to
continue execution and the execution of the SET statement still yields an

04/78 3-12.2 AS43A

invalid index-name, the same error occurs again. Thus, there is no way in which
the program can set an index name to an invalid value. Notice that because of
this, indexed table references, unlike subscripted table references, are never
checked for range errors, even when the -rck option is specified.

04/78 3-12.3 AS43A

I

Source Transformations

Certain transformations can be made on a COBOL source program before it is
compiled. These transformations are specified by control arguments which are
defined below. They are a subset of the transformations available by using the
expand cobol source command. If a source transformation is requested then the
source-program (e.g., name.cobol) is pre-translated and placed in the user:s
proces.s directory wi th the suffix ex. cobol (i. e., [pd] >name. ex. cobol) . I f the
segment being compiled already has the suffix ex. cobol then these control arguments
are ignored.

The following control arguments may be used:

-card
allows the user to compile a standard fixed format source program in
card image format. Meaningless trailing blanks are deleted from
each line in the source program. If a line contains precisely 80
characters, the characters in the identification field (columns 73-80)
are removed before trailing blanks are removed. This argument may
be used in combination with the -expand control argument but is
inconsistent with the -format control argument.

-expand, -exp allows the user to compile a source program containing COPY
and REPLACE statements. An equi valent source program is produced
which does not contain these statements. This argument may be used
in combination with the -format or -card control arguments. If the
source program contains COpy REPLACING or REPLACE statements then
this control argument must be used.

-format, -fmt
allows the user to compile a source program that exists in
terminal-oriented format. This is essentially free format and is
described under "Alternate Terminal-Oriented Format" in Section II.
This argument may be used in combination with the -expand control
argument but is inconsistent with the -card control argument.

Run-Time Performance Measurement

The -profile control argument (abbreviated -pf) causes the compiler to allocate
an additional block of information in which execution statistics are kept and to
generate additional code wi th each source statement in order to record those
statistics. Use of the -profile control argument significantly degrades run-time
performance, but does allow the user to discover in which position of his program
the most time is heing spent in order to possibly improve or optimize that code.
After execution of a COBOL program which has been compiled wi th the -profile
option, the user then uses the profile command to display the statistics which
have been recorded (see "Measuring A Program's Performance" in Section VII for
additional information).

7/81 3-13 AS43E

Source Level Debugging Requirements

In order to utilize the Multics debugging facilities, debug and probe, most
effectively, it is necessary to produce a run-time symbol table as part of the
object segment. This symbol table is produced by default. Use -no table to I
prevent generation of the symbol table.

The run-time symbol table is recommended for use wi th those programs for I
which source-level debugging is needed or useful. Use -no table with completely
debugged programs used ina product ion env i ronrnent, because of the add it ional
storage space required for an object segment containing a table. Depending upon
the amount of data defined in the program, this can sIgnificantly increase its
size. Programs that are destined to be bound together using the Multics bind
command may be compiled and checked out with a symbol table. When it comes time
to produce the finished product, the various symbol tables can be discarded by
the binder, eliminating the need for recompilation.

Programs which contain COpy REPLACING and REPLACE statements, or are in
free format, undergo a complicated pre-translation before being presented to the
compiler. Therefore debuggers cannot be used to see source lines at run-time.
The compiler issues a warning diagnostic if the -table option is used in combination
with either the -expand or -table options in the same compilation process.

Allocation for Temporary Compile-Time Files

Normally, all work files used by COBOL during compilation of a program are
allocated in the process directory. The -temp dir control argument (abbreviated
-td) creates work files used by the compiler- in a specified directory rather
than in the process directory. Sometimes, when very large programs are compiled,
quota is exhausted in the process directory, causing a record quota overflow
error. The quota limit in the process directory is system dependent and cannot
be controlled by the user. To circumvent this problem, the user should make
sure the directory named after the -td option has sufficient quota for the
compilation. When the compilation is finished, these work files are truncated.
Another use of this argument is in the event a compiler error causes a fatal
process error, thereby terminating the process and destroying all files in the
process directory. If the work files are created in a permanent directory,
their states at the time the error occurred can be seen.

7/81 3-13. 1 AS43E

COnQiler Development and Testing Facilities

Two other arguments are available, but are probably of little use to most
users. Designed for the use of compiler developers, they may, in some cases, be
useful to the user who has discovered or is reporting a compiler malfunction.

The- -time control argument (abbreviated -tm) causes the printing of the
time, number of page faults, -and nUPlb6r of prepages taken by each phase of the
compiler. This information is directed through the user_output 1/0 switch.
Once the information is printed for a phase, that phase is complete. This
process isolates looping or unexpected errors at least to the phase level.
Also, unusual paging figures may indicate possible sources of trouble in some
situations.

The -debug control argument (abbreviated -db) leaves the work files
generated by the compiler intact after normal or abnormal termination of a
compilation. This argument is used primarily for debugging the compiler. The
cobol$clean_up command may be used to discard these files once they are no
longer needed. This argument causes severity 4 (unrecoverable) errors to avoid
unwinding the stack after aborting the compilation. Instead, a new instance of
the command processor is invoked at the point of the error, enabling the user to
trace the stack to determine the exact sequence of program calls resulting in
the error.

Argument Summary

A summary of all control arguments available with the COBOL compiler is
given in Table 3-3. This information can be displayed online by typing cobol
with no source segment or arguments specified.

3-14 AS43

7/81

Table 3-3. Summary of Compiler Control Arguments

Control Argument Description

~map

-list -Is

-table -tb

-no table -ntb

-severityl -svi

-brief -bf

-format -fmt

-expand -exp

-ok

-tm

-debug -db

-td

-runtime check -rck

-profile -pf

-levelik -levik -I
J

Produces source, cross-reference,
and object map listings.

Produces source, cross-reference,
and generated object code listings.

Produces symbol table for symbolic
debugging. (This is the default.)

Prevents the production of a symbol
table fo~ symbolic debugging.

Suppresses printing of errors under
severityl (0)i)4, default: -sv2).

Suppresses printing of duplicate
error messages.

Accepts terminal-oriented format
(format acceptable to the
expand_cobol source command).

Accepts source segments acceptable
to the expand_cobol_source command.

Accepts source statements in card
image format.

Bypasses code generation.

Prints time and paging information
for each phase of compilation.

Leaves work files intact after
compilation.

Creates the compiler's internal work
files in the specified directory
rather than in the process directory_

Produces an object program in which
various data integrity checks are
performed throughout execution.

Produces object program which
generates profi~e information.

Produces leveling diagnostic for
level i, where i is the level from
1 to 5 (default -lev5). The leveling
diagnostics which result will have
severity k where 1 < k < 3 (default
- levl3) .

3-15

I

AS43E

I

OBJECT SEGMENT ----

A normal compilation produces an object segment in the user 1 s working directory.
The following paragraphs explain the way in which this segment is created and give
information concerning its format.

If the source segment being compiled is named "X.cobol", the object segment
created is named X. If a segment named X already exists in the working
directory, its access control list (ACL) is saved and given to the new segment that
replaces it. Otherwise, the user is given read and execute access (re) to the object
segment with ring brackets v,v,v where v is the validation level of the process active
when the compilation is performed. If a directory exists in the working directory
wi th the name X, an error occurs and the compilation is discontinued. The directory
is neither destroyed nor altered.

The user's arguments control creation of a list file. If created for the
compilation of X.cobol, it is named X.list and its ACL is set as described for the
object segment except that the user is given read and write access (rw) when it is
created. Previous copies of X and X.list (if an appropriate argument has been
specified) are replaced by the new segments created by the compilation.

Object Segment Format

The object segment produced by a COBOL compilation is in the standard Multics
format for object segments described in the MPM Subsystem Writers' Guide. The object
segment contains four sections (text, defini tion, linkage, and symbol) , a map showing
the loc~tion of each section, and a debug map, optionally appended by the debugger
after compilation. A detailed breakdown of these sections is provided by the
print_link_info command.

TEXT SECTION

The text section consists of two parts. The first portion contains all constants
used by the program, both those data items defined in the Constant Section of the
Data Division and those literals and figurative constants contextually defined
through reference. The second portion contains all executable machine
instructions. Wi th this organization, all references to constant data are
resolved by self-relative addressing. Additionally, since the object segment is not
normally writable, any attempt to modify constants during program execution or
debugging results in an access violation.

12119 3-16 AS43D

DEFINITIon SECTION

The jefinition section contains information about externally visible data
defined in the program, data used in parameter validation, and additional
information used in resolving external references. In a COBOL program, the
following entry pOints are externally visible:

1. The main entry point, which is defined by the name specified in the
PROGRAM-ID paragraph

2. Optionally, uniquely named entries of compare routines called only by
the Multics sort and merge

The information contained in the definition section allows other programs to
call and (optionally) pass parameters to these programs.

LINKAGE SECTION

The linkage section contains information about externally visible data
referenced by this program and per-process static data used in run-unit control
(see Section V). No user-defined data appears here. Like the rest of the
object segment, this section is not writable; therefore, it is copied into a
combined linkage segment in the process directory when the program is first
called in the process (i.e., when the segment is initiated). The writable
linkage section serves as the means by which external references are dynamically
resolved. Information describing these references is kept in the form of
(initially unsnapped) links (not to be confused with storage system links).
When a reference is resolved during execution, its link is said to be snapped.
The original symbolic reference is chan~ed to a virtual memory address at this
time.

A 1 ir_k is created for each 1 iter al named in a CALL statement, as the se
constitute external references. (Take note that when a variable is used with
the CALL statement, its resolution involv~s 'invocation of system subroutines.)
Other 1 inks may be included such as a reference to the COBOL run-time support I
facility and references to the file state blocks (FSB) associated with files
defined in the program (see Section IV).

SYMBOL SECTION

The symbol section contains inIormation describing conditions under which
the object segment was created, such as the name and project of the user who
compiled it, the directory containing the source file used, and the date and
time of the compilation. All information given in the header of the list file
is recorded here and can be displayed by the print link info command. Also the
symbol table produced by the -table control argum-ent is placed in the symbol
section. Finally, relocation information necessary to bind COBOL object
'segments is produced and stored in this section.

09/79 3-17 AS43C

I

*

COMPILER CHARACTERISTICS

In the following paragraphs, characteristics of the COBOL compiler that are
visible to or affect the user are discussed.

Reentrancy

Like most other language translators on Multic5, the COBOL compiler is not
recursive. The user can interrupt compilation and, at some later time, restart
the compilation process. The user however, may not begin a second compilation
without executing a release command or a new_proc command.

The release command is normally used explicitly to unwind the stack. If
execution of the compiler (or any program) is interrupted (e.g., by the quit
button or the signaling of an error), and there is no intention of continuing
execution, the user should release the stack, or it grows unnecessarily large.
If compilation is interrupted and the compiler's stack frame is released, any
subsequent calls are not recursive.

Command Line Considerations

The following information deals with matters of interest involving
specification of the cobol command on the command line.

09/79 3-18 AS43C

ORDERING OF ARGUMENTS

Arguments can be given in any order on the command line, before or after the
source program name. They are distinguished from the program name by the fact they
start with a hyphen. For example:

cobol path -table -map

is equivalent to:

cobol -table -map path

which is also equivalent to:

cobol -map path -table

This convention implies the restriction that a source segment name must not begin
with a hyphen.

MULTIPLE COMPILATIONS

The format of the cobol command accepts one and only one source program
name. That is, an attempt to compile the three programs a.cobol, b.cobol, and c.cobol
by the command:

cobol abc -map

results in a diagnostic, and the compl~a~lon is aborted. However, It is possible
to make use of the extended features of the Multics command language to accomplish
such multiple compilation. The command line:

cobol (a b c) -map

is synonymous to the line;

cobol a -map; cobol b -map; cobol c -map

Addi tionally, to compile every COBOL source program in the working directory,
simply type:

cobol ([segs *.cobol]) -map

12/79 3-19 AS43D

*

I
This capability is not a function of the cobol command, but rather a

general property of the Multics command language. Command language conventions
are described in the MPM Reference Guide; active functions (such as 'segs' in
the above example) are described in the MPM Commands manual.

Online Documentation

If the compiler is invoked with no source program name and no arguments
given, a concise summary of available arguments is printed on the terminal, and
control is returned to command level. This summary contains lnformation similar
to that shown in Table 3-3.

More detailed information about how to use the COBOL compiler is available
through use of the help command as follows:

09/79

1. help cobol - Lists instructions for obtaining release-specific COBOL
information

2. help cobol implementation - Lists permanent restrictions, limitations,
and a summary of useful notes applying to the most recent release

3.

4.

help cobol status
di ffic ul ties-

Lists currently out stand ing known COBOL

help cobol changes - Lists new functionalities and changes to the
compiler and run-time support system since the last release

3-20 AS43C

SECTION IV

INPUTIOUTPUT PROCESSING

This section shows how the COBOL source 1/0 statements interface and
interact with the system. The interpretation of the SELECT clause of the
Environment Division, the File Description (FD) entries of the Data Division,
and the various lID statements and associated options of the Procedure Division
are discussed in relation to the Multics storage system, the generalized Multics
1/0 facility, and the COBOL run-unit. Additionally, language extensions defined
for the SELECT clause and I-O-CONTROL paragraph are explained.

TERMINAL 1/0

The ACCEPT and DISPLAY statements allow communication with the user's
terminal. With these statements, data is transferred directly to or from
user-defined data fields through system-defined 1/0 switches. No files or
record areas at the COBOL source-level are involved in this type of lID.

Accepting Data

ACCEPT can be used both for reading data and for the non-lID function of
setting up data involving the time and date. The latter will be omitted in the
following discussion. The format of ACCEPT is:

ACCEPT <identifier> [FROM <mnemonic-name>]

The ACCEPT statement initiates a read to the user input 1/0 switch. This
system-defined switch is normally attached to the user's terminal, but may be
attached to a storage system file in the case of an absentee process or by the
use of the &attach control line of an exec com or of similar facilities. No
interpretation or conversion of data type is attempted; data is transferred
character by character regardless of the data type of <identifier>. This is
determined by the combination of the USAGE and PICTURE clauses specified in the
data description entry. In effect 9 it is assumed, but not necessary, that the
data type of <identifier> is alphanumeric display. By knowing the internal
representation of other data types and the character-string relationship,
however, the user can use ACCEPT on any data type. For a description of all
supported data types, see "Data Types" in Section V.

04/78 4-1 AS43A

I

When an ACCEPT statement is executed, data is transferred from the
user input switch up to, but not including the first newline character
encountered. No prompting message is issued to instruct the user to enter data.
If he desires this, the user should execute a DISPLAY statement immediately
before the ACCEPT statement. If more characters than can be contained in * <identifier> are entered, the rest of the line (up to the newline character) is
discarded. If insufficient characters are entered to fill <identifier>, then
<identifier> is space-filled to the right. The effect of entering nothing as a
response (i.e., a newline character only) is to blank out the field. To be sure
a nonnull string is entered, the user may code as follows:

ASK. ACCEPT ID IF ID = ALL SPACES GO TO ASK.

without regard to the previous contents of ID.

Displaying Data

The format of the DISPLAY statement is:

{
<identifier-1>} l" , <identifier-2>-J I DISPLAY . .. [UPON <mnemonic-name>]
<literal-1> , <literal-2>

I

I

The DISPLAY ... UPON SYSOUT statement and the DISPLAY statement without the UPON
phrase cause data to be transferred through the user output I/O switch. This
system-defined switch is normally attached to the user's terminal, but may be
attached to a storage system file by the file output command. DISPLAY UPON
CONSOLE causes data to be transferred through-the error output I/O switch,
another system-defined switch that is always attached to the user's terminal by
convention.

When a DISPLAY statement is executed, data is transferred character by
character from each specified <identifier> and/or <literal> specified with no
interpretation or conversion performed. As with ACCEPT, it is assumed but not
required that the usage of all variables is DISPLAY. No separator characters
are produced between identifiers and/or literals; however, a newline is
transmitted after the last <identifier> or <literal>. To print data on
successive lines, the user must execute multiple DISPLAY statements or include
the newline character in a <literal> (see "Escape Convention" in Section II) or
<identifier>.

The statements

DISPLAY "ID1:", ID1.
DIS P LAY "I D 2 IS" SPA C E I D 2 '''' a A" I D 3 IS" " "" I D 3 QU 0 T E .

will produce output of the form:

04/78

ID1:<value-of-id1>
ID2 IS <value-of-id2>
ID3 IS "<value-of-id3>"

4-2 AS43A

Data should be directed to error output only in special cases, such as when
a situation arises in which normal processing cannot continue. The effect of
using this switch instead of user output is to bypass any active file output
command specification. - -

PERFORMING COBOL I/O ON MULTICS

The COBOL I/O operations are performed by a group of run-time subroutines
that use the Multics system I/O modules as described in the MPM Subroutines and
MPM I/O manuals. In this discussion, the input-output operation is considered
as a single process of placing a logical record on a file or obtaining a logical
record from a fi Ie, al though it is r ecogni zed that the oper Cit ion actuall y
consists of a series of separate steps.

All I/O is performed through one or more I/O switches. Thus, each file
defined in a SELECT clause is associated with a particular I/O switch at
run-time. The following paragraphs describe the actual activities that take
place when a file is opened, when data is transmitted to or from that file, and
when the file is closed.

Opening a File

Using the COBOL OPEN statement to open a file involves a number of discrete
steps. First, an I/O Control Block (IOCB) must be established for the
particular I/O switch associated with the file in question. An IOCB is a
process-local data block containing various control information for a file. It
is a temporary structure in that it ex ists only for the 1 ife of the process.
Functionally, the IOCB is the embodiment of the conceptual I/O switch. That is,
it contains, among other things, the data that supports the switching mechanism,
which in this case is a sequence of entry variables (in PL/I terminology)
serving as a transfer vector. Every uniquely named switch in a process has its
own such control block.

The next step is to attach the switch. This involves specifying a
source/target for subsequent I/O operations and an I/O module that will perform
these operations. The nature of the source/target (e.g., tape, a virtual memory
segment, or a terminal) depends on I/O module. Table 4-1 lists those I/O
modules supported by Multics COBOL. The attachment resulting from the execution
of the OPEN statement is based on information the user provides in the
Environment Division, as well as in some cases the current state of the switch.
(For a complete description of I/O modules, refer to the MPM Subroutines and the
MPM I/O manuals.)

After the I/O switch is attached, it should be opened. This prepares the
switch for the particular mode of processing (e.g., reading records
sequentially) using the already established attachment. This mode is determined
by the organization and access mode as specified in the SELECT clause as well as
the opening mode (INPUT, OUTPUT, 1-0, EXTEND) given in the OPEN statement
itself. For a mapping of the COBOL source designation into the Multics opening
mode, refer to "File Opening Modes" later in this section.

Finally, the file state block (FSB) is updated to record the opening, and
the various internal and external control data it holds are reinitialized. The
FSB is further discussed in "Implementation Specifics," below.

09/79 4-3 AS43C

I
I

I

Table 4-1. Multics I/O Modules

Module Name Description

discard

tape nstd

rdisk

record stream

syn

tape ansi

tape ibm

tty

vfile

Transmitting Data

Provides a sink for output operations

Supports I/O from/to tapes in nonstandard I
or unknown formats

Supports I/O from/to removable disk packs

Maps stream calls into record calls or
vice versa

Attaches an I/O switch as a synonym for
another switch

Supports I/O to and from Multics standard
tapes

Implements the processing of magnetic
tape files according to American
National Standard COBOL

Implements the processing of magnetic
tape files according to IBM standards

Supports I/O from/to terminal devices

Supports I/O from/to files in the virtual
memory storage system

At this point, the OPEN statement is completed, and the file is considered open
and active in the run-unit. The subsequent execution of other COBOL I/O statements
referring to this file will cause an appropriate transfer of data (or a control
operation) to be directed through the associated I/O switch. However, just as an
I/O switch cannot be opened until it is attached, it cannot be detached until it is
closed. .

Closing ~ File

Using the CLOSE statement to close a file also involves multiple steps. First,
the switch is closed and detached (provided that it was attached by the
program), and secondly if no errors have occurred, the FSB is updated to indicate
the file is no longer open. Any subsequent attempt to perform I/O on this file while
it is closed will result in a run-time error.

12/79 4-4 AS43D

FILE CHARACTERISTICS AND DEVICE INDEPENDENCE

The following information describes those characteristics of COBOL files in
relation to the Multics 1/0 system concepts involving device independence,
specifically, separation of the attaching and opening functions.

File Sharing

On Multics, files can be shared on two levels: on the sourceltarget or
device level and on the 1/0 switch level.

With device-level sharing, two or more programs, not necessarily in the
same process, reference the same device or pseudodevice through different 1/0
switches. Whether or not files can be referenced simultaneously depends on the
nature of the device. For example, two programs could not control the reading
or writing of the same tape device at the same time. However, given a
pseudodevice such as the virtual memory storage system, it is possible for any
number of)rograms to access the contents of a segment simultaneously. (This
can be a source of trouble if, for example, two programs attempt to read and
write an unstructured file at the same time. Protection is provided for the
user in the case of storage system structured files in the form of file
locking. However, the user must provide his own interlock mechanism when
dealing with unstructured files.) Regardless of the device, however, a program
that opens, writes, and closes a file through one 1/0 switch can then call
another program that opens and reads the same file through an entirely different
switch, thereby sharing the file only on the device level.

Switch-level sharing, on the other hand, occurs when two or more programs
in the same process reference a file through the same 1/0 switch. Changing the
attachment of such a shared switch affects all programs referencing through it.
It is possible, in this situation, for one program to write a record in a file
and then calIon another program that writes another record in the same file,
regardless of the device involved. A third program could then be called to
close the file. It is also possible to associate two different 1/0 switches so
that they behave as one and become, in effect, synonymous with each other. This
is done by the syn_ 1/0 module, which attaches one 1/0 switch to another instead
of to a device. In this case, an 1/0 switch itself is treated as a
pseudodevice. This is discussed and shown in examples later in this section.

Scope of Files

All Multics COBOL files have an attribute referred to as "scope." The
scope of a file, as determined by an option in the SELECT clause, is either
internal or external. The concept of scope, or visibility, is an extension to
the American National Standard COBOL definition and, indeed, need not even be
considered when dealing with existing programs. However, it is crucial to
effective file sharing.

4-5 AS43

If a file has internal scope, all related I/O operations are performed
through a uniquely named I/O switch. This ensures that no inadvertent matching
of switches in the same process will occur. Files defined in two programs with
identical SELECT clauses will be referenced by the I/O operations within each
program through different switches. Files not explicitly given the external
attribute (i.e., files defined in existing programs) are considered internal.
This allows the execution of any number of COBOL programs containing only
internal files in a process with complete independence. Internal files may be
shared on the device level by using the CATALOG-NAME phrase, a Multics extension
to the American National Standard; however, switch level sharing is impossible.

A file must be explicitly defined as having external scope, if it is to be
shared on the switch level. This is also true if the file is to be referenced
by the io_call command (e.g., attached). With external files, the user
specifies the name of the I/O switch that is to be used. External files
declared identically in the SELECT clause in two different programs thus will be
referenced by the I/O operations in each program through the same switch. For
details on establishing the switch name, refer to "I/O Switch Specification,"
below.

On Multics, commands perform the functions of job control language (JCL) on
a batch-oriented system. Since commands are nothing more than external
executable programs, it is necessary to assign a file external scope if it is
to be referenced by command (i.e., controlled in any way outside the program
itself). The io_call command, for example, keys on the I/O switch name for all
its operations; for internal files this name is unique and not readily apparent
to the user.

Attaching from Command Level

Attaching an I/O switch (as well as any other I/O operation) can be done at
command level by using the io_call command. In order to specify an attachment,
the I/O module interface must be known. Details concerning the I/O modules
shown in Table 4-1 can be found in the MPM Subroutines manual. A simple example
would be to attach an I/O switch by the name "sw_name" to a file contained in
the segment "seg_name" in the working directory. This attachment could be made
from command level as follows:

Once a switch is attached, it attains an "attach description," which is
kept in the IOCB. This is a string of characters that describe the current
attachment of the switch, with the null string indicating the switch is
unattached. For example, after the above invocation to io_call, the resulting
attach description for sw_name is "vfile_ seg_name".

The attachment made as the result of the execution of the OPEN statement in
a COBOL program is made through a subroutine interface with iox_$attach_iocb
rather than through the io_call command interface. However, the effect of the
resulting attachment is identical.

4-6 As43

Implications for the OPEN and CLOSE Verbs

Since an internal file cannot be referenced (e.g., attached or detached) outside
the program that defines it, the COBOL OPEN and CLOSE statements always function
exactly as described above in "Performing COBOL 1/0 on Multics." That is, OPEN always
involves:

1. Attaching the uniquely named 1/0 switch

2. Opening the file through that switch

CLOSE always involves:

1. Closing the file through the switch

2. Detaching the switch

If the switch is already attached, a logic error has occurred in the execution of
the program (i. e., two OPEN statements have been executed wi th no intervening CLOSE
statement). In this case, a run-time error occurs. Likewise, an erroneous situation
exists if, upon attempting to detach the swi tch ~ the program detects that the switch
is not attached (i.e., a CLOSE statement has been executed with no preceding OPEN
statement). The code generated for the OPEN and CLOSE statements controls the
attachment of the associated 1/0 switch because of the switch's inaccessibility.
(Actually, such a switch can be referenced outside the program that defines the
associated file if the unique name is known. All swi tches and their current attach
descriptions can be displayed by using the print attach table command. However, any
reference made to an internal file's swi tch outsIde the program is considered illegal
and results of continued execution of that program are undefined.)

External files 7 on the other hand, may be referenced by any number of programs.
Thus, the OPEN and CLOSE statements must be aware of the state of the switch. For
external files, execution of the OPEN statement attaches the switch, if it is
not already attached; opens the file, if it is not already opened. Execution of the
CLOSE statement closes the file, if it is not already closed, but only if a COBOL I
program caused it to be opened. .

The 1/0 switch of an external file is detached only if a COBOL program actually
caused it to be attached. That is, 1/0 swi tches attached by command or by the system
(e.g., user output) are never detached. 1/0 switches attached by the execution of
an OPEN statement in a COBOL program are detached when the file is closed, unless
otherwise specified by the APPLY clause of the I-O-CONTROL paragraph. (Refer to
"Supplementary Options - APPLY Clause" later in this section.)

12/79 4-7 AS43D

I

DEFINING A FILE

A file is defined in the FILE-CONTROL paragraph in the INPUT-OUTPUT section
of the Environment Division. Additional information concerning 1/0 techniques
may be specified in the APPLY clause of the I-O-CONTROL paragraph. The File
Description (FD) entry of the Data Division provides label and record size
information. Additionally, procedures that are to be performed upon
encountering I/O-related errors for specific files or classes of files may be
included.

The reader should have a basic understanding of the functions provided by
the various 1/0 related statements and the standard options available with the
SELECT clause. Details concerning these subjects can be found in the Multics
COBOL Reference Manual.

File Selection - SELECT Clause

A SELECT clause is specified for each file referenced in the program.
These clauses are grouped together under the FILE-CONTROL paragraph in the
INPUT-OUTPUT section of the Environment Division. The complete format of the
SELECT clause, showing all available options, appears on the following page.
Specific formats for sequential, relative, indexed, and stream files are
presented in detail in Section IX of the Multics COBOL Reference Manual.

FILE STRUCTURE

The following paragraphs provide information concerning logical file
structures supported on Multics and the relationship of these file structures to
the logical file types defined in a COBOL source program.

Organization

The Multics 1/0 system provides for three types of logical file structure:
sequential, indexed, and unstructured. In COBOL, structure is determined for
the most part by the value given in the ORGANIZATION clause with the mapping as
shown in Table 4-2.

Table 4-2. File Organization

Organization Multics File Structure

SEQUENTIAL* sequential
RELATIVE indexed
INDEXED indexed
STREAM unstructured

* when DEVICE is not PRINTER,
CARD-PUNCH, or CARD-READER

04/78 4-8 AS43A

02/79

SELECT [OPTIONAL] [EXTERNAL]:. file-name-1

ASSIGN [TO] r -VIRTUAL 1
internal-file-name-1 -PRINTER

-CARD-PUNCH

l _CARO-REAOER J
-PREATTACHED

. . -TAPE

ORGANIZATION IS ,. ._[ANSI] SEQUENTIAL

l
[; ACCESS MODE

MUrTICS
IBM-DOS
IBM-OS

INDEXED RECORD KEY IS data-name-4

[ALTERNATE RECORD KEY IS data-name-5

[WITH DUPLICATES]] •••

l RELATIVE [RELATIVE KEY is - data-name-3] J I
STREAM

{
RANDOM }] IS SEQUENTIAL
DyNAMIC

[; FILE STATUS IS data-name-1

..,
[. data-name-:U J

4-9 AS43B

Both RELATIVE and INDEXED files map into the same Multics file structure.
A RELATIVE file on Multics is a special type of indexed file for which the COBOL
IIO run-time system maintains a 12-character key with a value always
corresponding to the relative number of the record in the file (in decimal
representation).

STREAM organization is a Multics COBOL extension to the American National
Standard that allows the user to define and reference Multies unstructured
files. An unstr.uctured file consists of a stream of 9-bit bytes, normally ASCII
characters. Examples of an unstructured file are a list file or a source file.
Records in such a file vary in length from zero to 1,048,575 bytes. They are
delimited by the newline character, which is not considered part of the record.

A file with STREAM organization can be accessed only sequentially and
cannot be opened in I-O mode. When a READ is performed, data is transferred up
to, but not including the newline character. The short record error (01) is not
produced for records that are shorter than the defined record. When a WRITE is
performed, a newline character is appended to the contents of the record by the
COBOL IIO run-time system. Thus, the user never need deal with this character.
If a record is written that contains the newline character (octal 012), it
causes the same effect as if i+1 records were written, where i is the number of
newline characters contained.

Often in dealing with such filas, it is useful to know the number of
characters actually transmitted as the result of a READ, or to control the
number of characters that are to be written in some way other than alte~nate
record descriptions. A general mechanism that applies to files of all
organizations is available for this purpose: the RECORD CONTAINS clause of the
FD entry. This is described under "Variable-Length Records" later in this
section.

Access Mode

The value of <access> must be one of the foll~wing:

SEQUENTIAL
RANDOM
DYNAMIC

This value defines the manner in which the records"in the file are accessed; it
does not define the structure of the file. If a file is to be accessed only
sequentially or only randomly in a particular program, It is worthwhile to so
indicate, as more efficient record access will result.

4-10 AS43

Programs may use two different access modes to access the same fi Ie.
However, an external file that is shared by two or more programs on the 1/0
switch level must be defined in all such programs with identical access as well
as identical organization. This is because such programs attempt to share the
same opening modes for that file (see "Open Modes" below). If this happens, an
attempt to open the file will result in a run-time error, indicating the file is
being referenced in an inconsistent mode. An attempt to reference such a file
without opening it causes undefined results.

Record Format

For labelled tape files, the optional key words VLR, FLR, and SPANNED
denote the record format of the file. (Refer to the tape ansi and tape ibm I/O
modules in the MPM 1/0 manual.) SPANNED is meaningful only- for labelled-tape I
files.

For all other files, VLR and FLR indicate that variable-length records or
fixed-length records are to be written. This overrides the determination that
would normally be made based on factors expressed in the corresponding FD entry
for this file. (Refer to "Variable-Length Records" later in this section.)

KEYS

The identifier .specified with either the RECORD KEY or RELATIVE KEY clause
associates an index or a relative record number with each record, providing an
access path to a file's records.

Record Key

For INDEXED files the RECORD KEY clause must· be specified. The Multics 1/0
system does not require that the identifier representing the prime record key be
defined in the Record Description entry for that file. This American NatiohtH
Standard limitation is'relaxed in Multics COBOL. That is, the prime record key
may be defined in the WORKING-STORAGE section, in the LINKAGE section (i. e. ,
passed by a calling program as an argument), or even in the Record Description
entry of another file. In any of these cases, an observation diagnostic
(severity level 1) is issued when the program is compiled, indicating that a
nonstandard usage exists. If alternate record keys are used, all keys (prime
and al ternate) must be defined in the Rec:ord Descr ipt ion entry for that fi Ie.
In the above case, if the prime or alternate keys are not contained inside the
Record Description, a fatal diagnostic (severity level 3) is issued when the
program is compiled. However, the actual allocation of the record key
identifier in no way affects the functioning of 1/0 operations.

The record key is used to establ ish the index of records being wri tten.
For files with SEQUENTIAL access mode, the record key must have an ASCII value
.for the current record that collates higher than the value of the key of the
previous record written or a run-time error occurs. For files being read
sequentially, the record key is not necessarily updated after each READ
statement to reflect the key of the record just read. Had the record key been
defined outside the Record Description entry for the file (and thus been
allocated outside the file's record area), then execution of a READ statement
does not affect its value, as is the case with the relative key (see below).
Otherwise, it is updated due to the data transfer caused by the read.

The identifier specified as the record key must not exceed 256 characters
in length. This is the limit imposed by the Multics 1/0 system.

09119 4-11 AS43C

Relative Key

For RELATIVE files, The RELATIVE KEY clause mayor may not be specified,
depending on the access mode. If the file is to be accessed nonsequentially, an
identifier must be specified that will contain the value of the relative record
number. For sequential files, specification of a relative key is optional. If
given, it is updated by the 1/0 system to reflect the relative number of the
record just read (for sequential reads only) and to reflect the relative number
of the record just written (for files having SEQUENTIAL access only).

The identifier specified for the relative key must represent an unsigned
integer value. Its data type (usage) may be any of those available for numeric
data (e.g., DISPLAY, COMP-5, COMP-6). However, as far as 1/0 operations are
concerned, display numeric data is more efficient than any of the computational
data types.

If the relative key is within the Record Description entry (an extension to
the American National Standard) an observation diagnostic is issued. If the
relative key is contained within a file's record area, in the cases where the
1/0 system maintains the value, tpe key is updated only ~ the 1/0 operation
is successfully completed. Thus, in the case of a WRITE, the record is written
with the current value of the relative key in the record, not the relative
number of the record, which will not be placed in the record until after the
WRITE. In the case of a READ, the key in the record area would be updated after
the transfer of data, overlaying the actual contents of that field in the record
just read. These two cases compensate for each other and require no special
concern.

1/0 SWITCH ASSIGNMENT

Various language elements allow the user to establish and identify an 1/0
switch to be used in referencing a particular file and control its final
attachment.

EXTERNAL Attribute

If the optional key word EXTERNAL is specified, the scope of the file is
considered external; otherwise, the file is internal to the program. This
option affects the interpretation of the internal-file-name (discussed below).

Internal-file-name

The name given for <internal-file-name> concerns only external files.
Otherwise, it has no meaning, although a name must be specified. Often, in this
case, <internal-file-name> is made identical to <filename>, the name used to
refer to the file internally throughout the COBOL source program.

4-12 AS43

For external files and preattached internal files (see below), the I
internal-file-name identifies the name of the I/O switch through which the file
is to be referenced at run-time. Two programs required to share a file on the
I/O switch level need only to specify identical internal-file-names. The value
of <filename> does not have to match.

The additional descriptive information for the file in both programs must
be consistent and compatible to avoid run-time errors.

As an example, suppose program A contains the following code:

INPUT-OUTPUT SECTION.
FILE CONTROL.

SELECT file-a ASSIGN TO file a.
SELECT EXTERNAL file-b ASSIGN TO file b.
SELECT EXTERNAL file-c ASSIGN TO sw name.

and program B contains:

SELECT file-a ASSIGN TO file a-PREATTACHED.
SELECT EXTERNAL file-b ASSIGN TO FILE B.
SELECT EXTERNAL cfile ASSIGN TO sw name.

If programs A and B were active in the same run-unit, the only file shared on
the swi tch level would be fi le-c and cfi Ie, both referenced through the I/O
switch sw name. The internal-file-name can contain any character in the Multics
character set except the space and hyphen. Uppercase and lowercase letters
maintain their identity. Thus, no match occurs between the switches file band
FILE B. The internal-file~name must be no more than 16 characters long. -

Since all files are referenced through an I/O switch, unique switches are
created for inter nal files to avoid inadvertent matching. Thi s is done by
appending unique characters to the specified inte"rnal-file-name. Thus, in the
above example, if all files were opened, the following I/O switches would exist:

file a.!BBBJFDkwbzbmNn
file-a
file-b
FILE-B
sw name

Device Specification

(unpredictable)

As shown in the SELECT clause format above, the internal-file-name may
contain a device suffix to describe the nature of the file and to indicate how
the I/O switch is to be attached when the file is opened. The possible values
"of <device> supported are:

09/79

VIRTUAL
PRINTER
CARD-PUNCH
CARD-READER
TAPE
PREATTACHED

4-13 AS43C

i

I

The default is VIRTUAL if no device suffix is given. This causes the
vfile I/O module to be used to reference a virtual memory storage system file.
This may be either a segment or multisegment file.

PRINTER and CARD-PUNCH may be given only for SEQUENTIAL and STREAM files.
PRINiER indicates that a printable ASCII file is to be created and allows the
use of the ADVANCING clause in the WRITE statement. CARD-PUNCH indicates that a
file of card-images is to be produced. In either case, the vfile I/O module is
again used to crea&e an unstructured Ille in tne MUltlCS ~torage system
acceptable to the dprint and dpunch commands. An unstructured file is the type
of file produced using the STREAM organization. It is not the same as a Multics
sequential file, which is not printable. The device suffix in this case
actually alters the resulting structure of the file. Although CARD-PUNCH and
PRINTER indicate that the final destination of the output file is to a punch or
printer, the user must use the dpunch or dprint command to queue these files.

CARD-READER indicates that a file. of card-images is to be read. Whereas
the physical reading of cards is a system function, the compiler treats all
action against this file type as though it were defined as VIRTUAL.

TAPE may be specified only for SEQUENTIAL files to indicate that a file is
contained on tape. If the <qualifier> in the ORGANIZATION clause is ANSI or
omitted, attachment is made to the tape ansi I/O module. If the <qualifier> is
IBM-OS or IBM-DOS, attachment is made once -again to the tape ibm I/O module.
For complete details on tape attachment and proper usage: see the APPLY
statement in the COBOL Reference Manual and the tape ansi and tape ibm I/O
modules in the MPM Subroutines manual. - -

I PREATTACHED is used to indicate that no attachment is to take place when
the file is opened. The associated I/O switch must have been attached prior to
execution of the program in question; if not, a run-time error occurs. Thus,
the user is able to ensure that the switch has been attached and to avoid
generating code to make the attachment.

09/79 4-14 AS43C

This page has been deleted with Addendum A.

04/78 4-15 AS43A

I

FILE STATUS

The user may name one or two fields into which values are to be moved after
the execution of every statement that references either explicitly or implicitly
an associated file. The first of these is defined as a 2-digit variable in
which the leftmost digit is referred to as Status Key 1 and the rightmost as
Status Key 2. A detailed description of the usage of this field and possible
values are given in Section IX of the Multics COBOL Reference Manual. The
second field is a MultlCS language extension provided to give the user more
control over error handling. This is referred to as Status ~ey 3 and gives more
detailed information than Status Keys 1 and 2. It is in the form of a 4-digit
numeric value in which each digit and grouping of digits have a specified
meaning. If a data field lo~ger than 4 digits is specified, zero-fill occurs on
the left; if it is shorter, left truncation occurs (as though a 4-digit numeric
were moved to the specified data field). Status Key 3 is designed so that the
more critical information is in the rightmost digits so that left truncation can
be used effectively to limit the scope of comparisons made to it. Its format is
as follows:

where:

wxyz

wx describes the operation being performed
yz describes the cause of the error

specifically:
w = the COBOL

1
I/O statement in which the error occurred

OPEN

x = the

2
3
4
5
6
7
8,9,0

Multics
0
1
2
3
4

CLOSE
READ
WRITE
REWRITE
START
DELETE
undefined

I/O system subroutine that discovered the
none
iox $find iocb
iox - $attach iox $open or -iox $detach or iox $close -iox $read record, iox $write _record, - -

error

iox $rewrlte _record, or iox $delete record - -
5 iox $get _line, iox $get chars, or - -iox $put chars
6 iox - $seek key or iox $position
7 iox - $control iox $modes or - -8 iox $read key or iox $read length
9 other

y = the general category of the cause of the error
(similar to the COBOL-defined STATUS-KEY-1)

0 successful completion
1 at end of file
2 invalid key
3 permanent error
9 unable to make file available

04/78 4-16 AS43A

z = specific cause of the error. This depends on the value
of y. Legitimate combinations of yz are:

00 no error
01 short record
10 at end of file
21 invalid key - sequence error
22 invalid key - duplicate
23 invalid key - record not found
24 invalid key - new key = old key
30 unspecified error
31 file not open
32 invalid operation for current open mode
33 previous 1/0 operation was not READ
34 new record length ~= old record length
35 long record
36 file already open or already closed
90 cannot make file available
91 file is busy
92 format error in file .
93 cannot attach or detach the 1/0 switch
94 attach and open modes are incompatible
95 file does not exist
97 label error

All possible values of Status Key 3 that are returned by a Multics COBOL object
program along with the corresponding values of Status Keys 1 and 2 and a brief
description of the specific error are shown in Section IX of the Multics COBOL
Reference Manual.

Status keys should be included only if they are to be used by the program.
The time taken for their setting can be costly in a program with heavy 1/0
usage. Use them only for programmable reactions to anticipated situations.
Provisions exist for interactive decision making in regard to error corrections,
program restarting, and debugging on the system level. These are discussed in
detail in Section VI.

4-17 AS43

Supplementary Options = APPLY Clause

The I-O-CONTROL paragraph of the Environment Division allows the user further
control over the definition of his files by specifying one or more APPLY clauses.
The format is:

APPLY <io-technique> ON <filename> ...

The io-technique variable specified in the APPLY clause of the I-O-CONTROL
paragraph can consist of the following options.

[FILE
IS {TEMPORARY}]

PERMANENT _

[NIT DETACH AT CLOSE]
[ATTACH-OPTIONS ARE {

literal-1)]
data-name-1

TAPE-OPTIONS ARE

{

GENERATION }
OUTPUT-MODE IS MODIFICATION 1

{
literal-2

REPLACEMF.NT _ data-name-2 _

(integer-1)
DEVICE IS _ data-name-3

(
800 1

DENSITY IS _ 1000 J
RETAIN

FORCE

PROTECT

(CATALOG-NAME IS) {literal-3) I
ADDITIONAL _ CATALOG-NAMES ARE data-name- u • • . J

TEMPORARY FILES

The FILE IS TEMPORARY io-technique is normally used for work files that are
not to be retained after completion of the run-unit. Use of this option overrides
any previous specification for the VALUE of CATALOG-NAME IS entry in the file
description. For virtual memory files, a catalog-name is instead developed at
run-time as follows:

<process directory>~<unique characters).<progid>

where <process directory> is the name of the user's process directory at execution
time (as returned by the [pd] active function) and <unique characters> is a

I 15-character string generated at compile-time and guaranteed unique.

7/81 4-18 AS43E

In the following program:

PROGRAM-ID. progid.

SELECT fname ASSIGN TO sname.

APPLY TEMPORARY ON fname.

when the file fname is opened, the attach description of the I/O switch through
which it is referenced would be something like:

"vfile >pdd>!BGMBGpwBBBBBBB>progid.sname"

All such files allocated in the process directory will be automatically
deleted when the process terminates. Although the user does not "pay" for records
used in this directory, its quota is nonetheless finite. The actual allowable
quota is installation dependent, but care must be taken not to use an excessive
number of'records in these temporary files so as to avoid record quota overflow
in the process directory. They can be cleaned up between run-uni ts wi th the
command:

delete [pd]>*.progid

where progid is the name of the program defining such files.
Definition."

See "Run-Unit

Temporary files defined with the PRINTER and CARD-PUNCH device suffix are
an exception to the above rules and are allocated in the working directory.
Such files must not reside in the process directory because it is possible the
actual printing or punching of such files will not be completed until after the
user's process terminates. If the user desires to make such printer and card
punch files "temporary" in that they are deleted after being printed or punched,
the user should invoke the dprint command with the -dl control argument. For
example:

dprint -dl sname.progid

The FILE IS PERMANENT io-technique is provided only for documentation.

7/81 4-19 AS43E

I

I

I

ATTACHMENT CONTROL

The activities performed by the CLOSE statement for an external file can be
specialized by specification of the NO DETACH AT CLOSE io-technique in the APPLY
clause.

Consider the program:

PROGRAM=ID. myprog.

SELECT EXTERNAL fname ASSIGN TO sname.

OPEN OUTPUT fname.

CLOSE fname.

The I/O switch sname is normally detached upon execution of the CLOSE statement.
However, 'the attachment can be maintained until the run-unit terminates, if the
following statement is included:

APPLY NO DETACH ON fnam~

If sname is already attached when the OPEN statement is executeq, the
implied attachment "vfi1e myprog.sname" is ignored, and the current attachment
is used instead.

EXPLICIT ATTACH SPECIFICATION

The entire attach description can be defined explicitly by using the
ATTACH-OPTIONS io-technique. When this is used, it overrides all other implicit
attach information given in the SELECT clause. For example, in the program:

PROGRAM-ID. myprog.

SELECT fname ASSIGN TO sname.

APPLY ATTACH-OPTIONS "vfi1e <segname" ON fname.

the implied attachment "vfi1e myprog.sname" is overridden and becomes instead
"vfi1e <segname". That is, -the virtual file named segname in the directory
containing the current working directory is attached through the v file I/O
module. The same result could have been achieved by including: -

VALUE of CATALOG-NAME IS "<segname"

in the File Description entry.

09/79 4-20 AS43C

The following excerpt from a COBOL program shows other possibilities.

IDENTIFICATION DIVISION.
PROGRAM-ID. progid.
ENVIRONMENT DIVISJON.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT EXTERNAL file-1 ASSIGN TO switch 1-VIRTUAL.
SELECT EXTERNAL file-2 ASSIGN TO switch-2.
SELECT EXTERNAL file-3 ASSIGN TO switch=3

ORGANIZATION IS STREAM.
I-O-CONTROL.

APPLY ATTACH-OPTIONS "discard " ON file-2
APPLY TEMPORARY ON file-2
APPLY ATTACH-OPTIO-NS "syn user_output" ON file-3
APPLY NO DETACH ON file-3~

FD file-1 VALUE OF CATALOG-NAME IS "seg-1"

PROCEDURE DIVISION.

OPEN EXTEND file-1.
OPEN OUTPUT file-2, file-3.

When file-1 is opened, a' check is made to see if swi tch 1 is at tached. If
so, that attachment is used, and the file is opened. Otherwise, attachment is
made to the vfile IIO module with the attach description "vfile seg 1 -extend."
Likewise, for file-2, the destination of the output directed via-WRITE statements
depends on the previous attachment of switch 2. If it had been attached by use
of the io call command or by an OPEN statement in another program,. then the
output is -directed as specified in that attachment. Otherwise, no output is
produced (via attachment to the discard 1/0 module). Applying the TEMPORARY
io-technique to file-2 has no effect (other than for documentat ion), since it
affects the catalog-name used, which is overridden by the explicit attach
description. When file-3 is opened, switch-3 is attached (again, if not already
attached) as a synonym for the system-defined user output IIO switch, normally
opened for stream-output and attached to the user's terminal. This is accomplished
by the syn 1/0 module. This attachment has the effect of directing all output
for file-3- to the terminal (or to an unstructured file, if the file output
command is in effect). This makes WRITE statements to file-3 equi valent to
DISPLAY statements.

To check out a program that takes input from an unstructured file (call it
external "file=in" with switch "switch in") and produces output to another (external
"file-out" with switch "switch out"); attach the two switches before running as
follows: -

io call attach switch in syn user input
io-call attach switch-out syn_ user_output

When the program executes, the input normally read from file-in is accepted from
the terminal, allowing for spontaneous creation of test data. Likewise, the
output normally written to file-out is displayed upon the terminal for immediate
inspection. When the program is run again (in a different run-unit) without use
of the io call command beforehand, the attachments for switch in and switch out
as specifled or implied in the program are established.

7/81 4-21 AS43E

I

TAPE ATTACHMENT SPECIALIZATION

Attachment to tape ansi and tape_ibm_ I/O modules can be specialized by
the TAPE-OPTIONS I/O techniques. Using these techniques, the user can specify
values of various control arguments to the associated I/O modules. However,
when the normal defaults are sufficient to do the job the following I/O
attachments are generated.

If LABEL RECORDS within the FD clause are specified as OMITTED, the tape is
assumed to be nonstandard; attachment is made to the tape_ibm_ I/O module with
the following conditions set:

-fmt u

-rg

-den 800

-nb

-bk

-nIb

-mode ASCII

-dv 1

for undefined records. U format records are undefined in
format. Each block is treated as ~ single record, and a block
may contain a maximum of 8192 characters.

insert a ring only w~en file is opened for output or extend

specifies that density be set to 800 bits per inch

specifies the file sequence number be set to 1

specifies that the block length be set to the maximum size of
the current record area specified in the FD section

specifies that unlabeled tapes are to be processed

specifies the encoding mode used to record the file data

only 1 tape drive is used during an attachment

These 'options can all
technique.

be explicitly controlled by the TAPE-OPTIONS I/O

If LABEL RECORDS within the FD clause are specified as STANDARD, the tape
is assumed to be ANSI standard; attachment is made to the tape_ansi_ I/O module
with the following conditions set:

-fmt fb

-rg

-den 800

-nb

-bk

-nIb

-dv 1

04/78

for fixed-length records, blocked. Used when every record has
the same length, not to exceed 8192 characters

insert a ring only when file is opened for output or extend

specifies that density be set to 800 bits per inch

specifies the file sequence number be set to 1

specifies that the block length be set to the maximum size of the
current record area specified in the FD section

specifies that unlabeled tapes are to be processed

only 1 tape device is used during an attachment

4-22 AS43A

Record Description - FD Entry

The records of a file are described in the File Description (FD) entry for
that file in the Data Division. The FD entry also provides information about a
file's physical structure and labels, but such data is accepted only for
documentation on Multics. For example, the BLOCK CONTAINS and VALUE OF FILE-ID
clauses are significant only for tape files; they have no meaning for virtual
files. The general format of the FD entry is shown below.

FD

I
L

filename

[; BLOCK CONTAINS [integer-1 TOJ integer-2 eECORDS J]
CHARACTERS

[; RECORD CONTAINS [integer-3 TOJ integer-4 CHARACTERS

jpEPENDING ON data-name-1]]
(RECORD IS } STANDARD}

LABEL i.
--- LRECORDS ARE OMITTED

FILE-ID IS { data-name-2 }
literal-1

VALUE OF f RETENTION IS { data-name-3 } --- -- ----- literal-2

I I CATALOG-NAME IS r data-name-4 \.
II lliteral-3 J

[; IS } (data-name-5) ... DATA
ARE

1
I I I
I J J

]
[

; LINAGE IS [data-name-6} LINES [. WITH FOOTING AT [~ata-name-71]
Linteger-5 Linteger=6 J

r . LINES AT TOP [~ata-name-81]
L tlnteger-7 J

[; CODE-SET IS alPhabet-name]

[
• LINES AT BOTTOM [data-name-g}]]

Llnteger-8

This format shows all syntactical elements, though not all are discussed below.
A full description of the FD entry syntax is presented in Section IX of the
Multics COBOL Reference Manual.

04/78 4-22.1 AS43A

I

I

In the preceding format, <filename> is the name of a file defined
previously in a SELECT clause (see "File Selection - SELECT Clause" above). For
virtual files, the LABEL phrase is used only for documentation with STANDARD
considered equivalent to OMITTED. However, it must be specified due to American
Uational Standard requirements. For tape files, if labels are omitted, it
indicates attachment t~ the tape ibm I/O module. Standard indicates attachment I
to either tape ansi or tape ibm I/o modules, depending on the organization
<qualifier> in the SELECT clause.- The RECORD CONTAINS clause is used only for
documentation unless the DEPENDING ON clause is used. In that case, the
specified variable is set by the system each time a record is read and is used
each time a record is written, overriding all other record length determining
factors. No checking is done either after a READ or before a WRITE to ensure
that this variable contains a value within the specified bounds.

VALUE OF CATALOG-NAME IS CLAUSE

Once the I/O module to be used in 'attaching the I/O switch is determined,
additional information must be established for completing the attach
description. The nature of this data depends on the particular module, but some
form of external identification is necessary to attach to the specific file.
This is the function of the data-name or alphanumeric literal specified within
the VALUE OF C~TALOG-NAME clause.

VIRTUAL MEMORY FILES

For virtual memory files, the vfile I/O module is used. This requires the
pathname of a segment or multisegment file in the virtual memory storage system.
In this case, the catalog-name represents the full or relative pathname of the
file in question.

It is generally considered bad practice to include full pathnames in source
programs. If a relative pathname is given, it is expanded at run-time. Thus,
the statements:

SELECT fname ASSIGN TO sname-VIRTUAL.

FD fname VALUE OF CATALOG-NAME IS "xyz"

causes attachment to the file named "xyz" in whatever the working directory is
when the program is being executed (or more precisely, when the OPEN statement
for that file is executed). In this way, the same program is made to reference
any number of different files, each with the entry name "xyz".

Also, the catalog-name can be given in' a variable. In this case, the
contents of that field at the time the file is opened establishes the name of
the file in the attach description. For example:

04/78

SELECT fname ASSIGN TO sname-VIRTUAL.
FD fname VALUE OF 'CATALOG-NAME IS segname

WORKING-STORAGE SECTION.
01 segname pic x(32).

DISPLAY "Enter segment name:".
ACCEPT segname.
OPEN fname. .

4-23 AS43A

In this way, the program can reference any file in the storage system that is
accessible to the user. The user can wait until the program is executi.ng to
decide.

A run-time error occurs if the attachment cannot be made or the file cannot
be opened by using that attachment. If the catalog-name literal or variable
contains an invalid sequence of characters that cannot be interpreted as a pathname
(for example, "><" or all blanks), the attachment is not made. The attachment
is made if the catalog-name specifies a nonexistent file. In this case, an OPEN
wi th OUTPUT mode causes creation of such a file (assuming, of course, correct
access in the directory). An OPEN wi th INPUT mode causes an error, since the
file is not found. The attachment has been made at the time of the error.
Refer to Section VI, "Error Processing and Debugging."

If no VALUE OF CATALOG-NAME clause is specified in the File Description
entry, a default name is established as follows: the PROGRAM-ID given in the
Identification Division is concatenated .with a period that is concatenated with
the internal-file-name of the SELECT clause. It is as though:

VALUE OF CATALOG-NAME IS "<progid> .<internal file_name>"

had been coded in the File Description entry. This ensures that no inadvertent
references are made to the same segment for files whose catalog-name was established
.by default. For example, if the following program were run:

PROGRAM-ID. myprog.

I SELECT print-file ASSIGN TO Report-PRINTER.

OPEN OUTPUT print-file.
WRITE print-file.
CLOSE print-file.

a printable ASCII segment is created in the working directory with the name
"myprog.Report".

TAPE FILES

For tape files, the catalog-name represents the physical tape identification
(default is "work"), which is limited to six characters. For labelled tape
files, if the catalog-name is less than six characters and is entirely numeric,
the I/O module pads high-order positions with zeros. If it is less than six
characters but is not entirely numeric, low-order positions are padded wi th
blanks.

Variable-Length Records

7/81

Variable-length records are written if any of the following conditibns hold:

1. The key word VLR is specified in the SELECT clause.

2. More than one <data description> is given and more than one size record
is defined. (The definition of <data description> is given in Sections
VI and IX of the Multics COBOL Reference Manual.)

3. The expression .<data description> indicates a variable length record
(contains an OCCURS ... DEPENDING ON clause).

4-23.1 AS43E

4. The FD entry indicates a variable length record (contains a RECORD
CONTAINS ... DEPENDING ON clause).

If none of these conditions is true, fixed-length records are written.

For files having fixed-length records, the maximum record size is used for
each WRITE. Any padding required is the responsibility of the user. If any
portion of the record area is unused, its previous contents are written rather
than some special padding characters. This can only happen if FLR has been
specified in the SELECT clause and either condition 2 or 3 above is true.

For variable-length records, the following determination of record length
is made upon each WRITE. First of all, if RECORD CONTAINS ... DEPENDING ON is
specified, the number contained in the associated variable at the time of the
WRITE is used. Otherwise, if the record named in the WRITE statement is variable
(an OCCURS ... DEPENDING ON specified in its <data description», its current
length is determined by evaluating the variable associated with the OCCURS
clause. In this case, it is ensured that this variable is not outside the range
of the bounds given with the specified array. This variable is not
automatically set as the result of a READ as is the variable named in the RECORD
CONTAINS clause. If neither RECORD CONTAINS nor OCCURS variables have been
specified, the length of the fixed-length record named in the WRITE statement is
used.

04/78 4-23.2 AS43A

I

The user can take advantage of both the variable RECORD CONTAINS and OCCURS
clauses to process the type of variable-length records that compose Multics
unstructured files. For example, consider the following program:

DATA DIVISION.
FILE SECTION.
FD fname,

RECORD CONTAINS 0 to 256 CHARACTERS DEPENDING ON reclen,
LABEL RECORDS ARE OMITTED.
01 rec.

02 char PIC X OCCURS 0 TO 256 TIMES DEPENDING ON reclen.

WORKING-STORAGE SECTION.
01 reclen PIC 999.

If the 1-character array "char" is set up so that the number of occurrences
corresponds to the variable set by the READ statement, any reference to "rec"
after performing a READ references a string of characters with length equal to
the number of characters just read. Any WRITE to "fname" causes only as many
characters as indicated by the value of "reclen" to be transferred from "rec".

DECLARATIVE PROCEDURES

The declaratives of a COBOL program are a set of one or more special
purpose sections written at the beginning of the Procedure Division. The USE
statement serves to identify the particular use of a declarative section as
follows:

{
EXCEPTION}

USE AFTER STANDARD PROCEDURE ON
ERROR {

INPUT } OITfPiJT
1-0
EXTEND
<filename> ...

The section that follows this statement defines the actions to be taken when an
1/0 error occurs on a file opened in the specified mode or on the specific file
<filename>.

An 1/0 error can be caused by a logic error in the program (e.g., INVALID
KEY), an unexpected condition (e.g., incorrect access on a file), or an expected
condition (e.g., AT END). Hardware errors, as such, cannot occur in referencing
the virtual memory storage system, at least at a level visible to the COBOL 1/0.
After the occurrence of an 1/0 error, the user can:

04/78

1. Check a status code for an expected condition and alter data to affect
the continuation of the program

2. Ignore or record the error (by a message to the terminal, for example)
and continue processing

3. Perform clean-up functions and terminate execution of the program

4-24 AS43A

Errors may be easily and descriptively reported by including a CALL to the
print cobol error system subroutine in the declarative procedure. This writes
either to the terminal or to a specified 1/0 switch a message that specifies the
cause of the error, the line number of the source statement causing it, and
addi tional information. Refer to Section VI, "Error Processing and Debugging"
for full details on the use of this subroutine.

Continuation of program execution is accomplished by the execution of an EXIT
statement in the declarative procedure or by having control reach a point where
the next section begins. In all cases, execution resumes at the statement
immediately following the 1/0 statement that caused the error, even in the case
of 1/0 operations that involve more than one step, such as OPEN and CLOSE.
Regardless of which step caused the error (e.g., attach, open), no more actions
involving the operation are performed once the associated declarative section is
executed.

Situations may arise where more than one declarative applies to the same
file. An example is if:

USE AFTER STANDARD ERROR PROCEDURE ON INPUT.

USE AFTER STANDARD ERROR PROCEDURE ON file-a.

is specified in a program and an error occurs when referencing file-a while it
is open in the INPUT mode, only the more specific declarative procedure is
executed; the more general procedure is never executed. In the above case,
control is passed to the statement following the second USE statement shown.

Certain IIO conditions are considered warnings and do not cause eXecution
of an associated declarative procedure. These are identified by a value of "0"
in Status Key 1 (see "File Status" above). The user must check for such
warnings by including a test of one of the status keys after the applicable 1/0
statement.

PRINT FILES

Print files are identified by the following characteristics:

1. ORGANIZATION is SEQUENTIAL.

2. ACCESS MODE is SEQUENTIAL.

3. The device suffix is PRINTER (e.g., SELECT a ASSIGN TO a-PRINTER).

4. All OPEN statements to that file must be with OUTPUT mode.

04/78 4-25 AS43A

The use of channel-m (m= 1 to 16) mnemonic-name causes slewing to the
particular channel. This results in the insertion of the characters 1 through
16. For example, if CHANNEL-12, then the following insertion occurs:

(ESC)
\033 \061\062

(ETX)
\003

or, if CHANNEL-6, then insertion occurs as:

04/78

(ESC)
\033 \060\066

(ETX)
\003

The interpretation of these characters is site dependent.

4-26. 1 AS43A

Print files are treated as Multics unstructured files with each record delimited
by the newline character. Records are, by definition, of variable length. This
file structure is accepted by the print command and the dprint command: The
latter also interprets the contents of the unstructured file in producing the
printed listing. Backspaces, newlines, and form-feeds are translated to provide
meaningful output. If the position of the newline character indicates a record
(i.e., line) is shorter than the standard print line for the printer being used,
it is padded to the right with blanks. If the print line is longer than the
record, that record is split over as many physical lines as necessary to contain
all the information.

A print file is similar to a file defined with STREAM organization with one
exception: if not otherwise specified (by the ADVANCING clause), the newline
character is placed immediately before the contents of the record area, not
after, as in STREAM files. This is due to the COBOL-defined rules concerning
print files and the interpretation of the ADVANCING clause.

Page and Line Control

In print files, it is often desirable to control the page and line spacing.
COBOL provides the user with the ADVANCING clause of the WRITE statement for
this purpose. This can be used only when writing print files. The format is as
follows:

WRITE <record name> [FROM <identifier-1>J

{
BEFORE}

ADVANCING
AFTER

{
<identifier-2>} [LINE]

<integer> LINES

{

<mnemonic-name> }

PAGE

The print file is written as a stream of characters consisting of records
separated by the newline characters (octal 012) and possibly carriage-return
character (octal 015) and form-feed character (octal 014). The ADVANCING ...
LINES option merely controls the number of newline characters (octal 012) placed
before or after the contents of the record area. If the ADVANCING clause is not
specified with a WRITE statement to a print file, then, according to COBOL
rules, it is assumed that:

... AFTER ADVANCING 1 LINE

was requested. The ADVANCING ... PAGE and HOF (mnemonic-name) options cause the
insertion of a form-feed character (octal 014) before or after the contents of
the record area. This character has no effect on most terminals; however, it
causes a page eject on a listing produced on a line printer by a dprint command.

04/78 4-26 AS43A

If an identifier is used with the ADVANCING clause, the possibility of a
run-time error exists. The value of the identifier can never be less than zero,
because it must be defined as an unsigned integer. However, an upper limit of
120 is enforced. If, at the time of the WRITE, the identifier contains a value
greater than this, an error occurs, and a message such as the following is
issued:

progid: The value of a data-name used with the ADVANCING
clause is inordinately large

Error occurred at 476:1327 in)udd)PROJ)user)progid on line 259
system handler for error returns to command level

As with most run-time errors, corrective action may be taken (e.g., the
identifier could be set to a reasonable value by the Multics debugging facility)
and execution resumed with no ill effects. See Section VI for full details on
handling run-time errors.

FILE OPENING MODES

In COBOL, a file can be opened in one of four modes: INPUT, OUTPUT, 1-0,
and EXTEND. (Relative and indexed files cannot be opened with EXTEND; stream
files cannot be opened with 1-0.) The combination of organization, access mode,
and open mode map into one of the Multics 1/0 system opening modes is shown in
Table 4-3.

Reference to the "extend bit" in Table 4-3 indicates an opening parameter
currently supported by the vfile_ 1/0 module. In the future, this support will
be eliminated. Since extension is also an attachment argument, a conflict in
interpretation may occur. When COBOL files are opened in EXTEND mode, both the
attachment and the opening indicate the file is to be extended. The attach
description becomes "vfile_ filename -extend" and the extend bit passed as a
parameter in the iox_$open calling sequence is set to "1"b. When support
disappears for opening level extend specification and the value of this bit is
ignored, the user must ensure that any attachments made outside the program for
external files opened in EXTEND mode include an -extend control argument in ~ne
attach description. There will be no difference for a file opened in EXTEND
mode than for a file opened in OUTPUT mode except on the attach level. An
external file opened in both OUTPUT and EXTEND modes in the same program (or
run-unit) cannot share the same attach description.

IMPLEMENTATION SPECIFICS

The following information is provided for users who require more details
concerning the operation of the COBOL I/O,run-time system and the structures it
uses to reference and keep track of files in the run-unit. Such information is
necessary to debug programs on the nonsymbolic object code level. It is assumed
that such users will have a more intimate familiarity with the Multics system
than is necessary for understanding wu~~ other parts of this guide. The
information can be bypassed by the casual reader without loss of continuity.

4-27 AS43

Table 4- 3. File Opening l'1odes

Access Mode Organization Input Output 1-0 Extend

SEQUENTIAL
SEQUENTIAL
SEQUENTIAL I SEQUENTIAL
RANDOM
RANDOM I RANDOM
RANDOM
DYNAMIC
DYNAtlIC
DYNM1IC
DYNAHIC

where:
iox - open

1
2
3
4
5
6
7
8
9

10
11
12
13

SEQUENTIAL 4 5 7
RELATIVE 8 9 10
INDEXED 8 9 10
STREAM 1 2 NA
SEQUENTIAL NA NA NA
RELATIVE 11 12 13
INDEXED 11 12 13
STREAr-i rIA NA NA
SEQUENTIAL NA NA NA
flELATIVE
INDEXED
STREAM

mode

8 10** 10
8 10** 10
NA NA NA

Description

stream input
stream outout
stream input-output
sequential input
sequential output
sequential input-output
sequential update
keyed sequential input
keyed sequential output
keyed sequenti~l update
keyed nonsequential input
keyed nonsequential output
keyed nonsequential update

*
**

With extend bit - "1"b
Reads are prevented by run-time check

4-28

6* ** \ ,
NA
NA
2*
NA
NA
NA
NA
NA
NA
NA
NA

I

AS43

File State Block

Many of the mode mappings shown in Table 4-3 are not exact fits for COBOL
requirements and, in many cases, additional checks and data collection must be
kept in order to maintain American National Standard COBOL. For this purpose,
each COBOL file has associated with it a data structure called the file state
block (FSB). This contains various COBOL-related information not available in
the IOCB t the data structure associated with each file by the Multics 1/0
system.

Each FSB is allocated in a portion of system free area via a *system link
(with initialization). The entry portion of the name is formed from the name
specified by the user as the internal-fiJe-name, so that all external files
having the same internal-file-name will reference the same FSB after the links
have been resolved. A pointer to the file's IOCB, used in all iox calls, is
stored in the first two words of the FSB. Thls pOinter is available for
reference by the object program at the location pr4lfsb_link_offset,*.

File Activity Recording

A record is kept of all active files for clean-up purposes; A file is
active in the run-unit if a program contained in the run-unit 'has opened it at
least one time. An active file may be in either an open or closed state. A
file is active in a program if that program has opened that file at least once
in the run-unit. (This terminology is used in the output provided by the
display cobol run uni t command.)- P.ointers to the FSB' s of all active files in a
COBOL program-are-kept in a table, which in turn is pOinted to by a pointer in a
fixed location in the object program's internal static data area. This pointer
is initialized null 'indicating no active fileS) by a run-unit SUpport routine
invoked. by the object program's prologue code sequence the first time the
program is executed in the run-unit.

When the first file is opened in a program, space is allocated in the
segment used for run-unit control in the process (cobol control seg) for a
table of pOinters; each o.f which will eventually point to the FSB-of an acti ve
file. When subsequent files are opened in the program this table is updated.
In this way, all files active in any particular- program or in the entire
run-unit can be referenced at any time. Active files are closed, if they have
been left open, when a program is cancelled, when the run-unit is stopped, or
when the process is ended.

FILE ORGANIZATION AND STRUCTURE

Sequential Files

A sequential file is or.ganized such that each record in the file, except
the first, has a unique predecessor record and each record, except the last, has
a unique successor record. These predecessor-successor relationships are
established by the order in which the records are written when the file is
created. Once established, the predecessor-successor relationships do not
change except in the case where records are added to the end of the file. A
file that is organized sequentially must be accessed sequentially.

02/79 4-29 AS43B

I

I

Sequential files may be recorded in variable-length or fixed-length recor~
form. The following operations may be performed on a sequential file:

WRITE

READ

REWRITE

accesses the space immediately following that area into which the
previous logical record was written and places the contents of the
specified record in that space. The file must be open for output.

accesses the next logical record on the file and makes the contents
of t&at record available in the file record area. If no "next"
record exists, an AT END condition exists. The file must be open
for input or input-output.

replaces the logical record accessed by the previous input-output
operation (which must have been a successful READ) with the contents
of the specified record. The logical record being replaced must be
equal in size to the record specified in the REWRITE statement (the
replacement record). REWRITE can be executed only on files that are
open for input-output.

Relative Files

A relative file is organized such that each record location is uniquely
identified by an integer value greater than zero which specifies ordinal
position on the file. In the ~ELATIVE KEY phrase of the SELECT clause, the
source program specifies a numeric integer data item as' the relativ~ key item.
A relative file may be accessed in the sequential, random, or dynamic mode.

SEQUENTIAL MODE

The following operations may be performed on a relative file accessed in
the sequential mode:

WRITE.

DELETE

START

READ

02/79

accesses the next record location on the file, places the contents
of the specified record in that location, and places the relative
record number of the record in the relative key data item. If there
is no "next" record location, an "INVALID KEY condition exists. The
file must be open for output.

removes the logical record accessed by the previous input-output
operation (which must have been a successful READ statement) from
the file. The file must be open for input-output.

positions the file such that the relative record number of the next
logical record accessed is based on the comparison specified in the
START statement, in relation to the contents of the relative key
data item. If the comparison is not satisfied by any logical record
on the file, an INVALID KEY condition exists. The file must be open
for input or input-output.

accesses the next logical.record on the file, makes the contents of
that record available in the file record area, and places the
relative record number of the record in th~ relative key data item.
The number of record locations traversed to access the next logical
record is immaterial. If there is no "next" logical record, an AT
END condition exists. The file must b~ open for input or

_input-output.

4-30 AS43B

REWRITE I replaces the logical record accessed by the previous input-output
operation (which must have been a successful READ statement) with
the contents of the specifi~d record. The file must be open for
input-output.

RANDOM MODE

The following operations may be performed on a relative file accessed in
the random mode:

WRITE

DELETE

READ

REWRITE

places the contents of the specified record in the record location
identified by the contents of the relative key data item. If the
specified r"'ecord location is outside the boundaries of the allocated
file space, or if a logical record already occupies that location,
an INVALID KEY condition exists. The file must be open for output
or input-output. .

removes the logical record .identified by the contents of the
relative key data item from the file.· If the specified- recor~
location is outside the boundaries of the allocated file space, or
ir a logical record does not occupy that location, an INVALID KEY
condition exists. The file must be open for input-output.

accesses the logical record identified by the contents of the
relative key data item and makes the contents of that record
available in the file record area. If the specified record location
is outside the boundaries of the allocated file space, or if a
logical record does not occupy that location, an INVALID KEY
condition exists. The file must be open for input or input-output.

replaces the logical record identified by the contents of the
relative key data item with the contents of the specified record.
If the specified re~ord location is outside the boundaries of the
allocated file space, or if a logical record does not occupy that
record location, an INVALID KEY condition exists. The logical
record being replaced must be equal in size to the record specified
in the REWRITE statement (the replacement record). The file must be
open for input-output.

DYNAMIC MODE

The following operations may be performed on a relative file accessed in
the dynamic mode:

WRITE

DELETE

02/79

places the contents of the specified record in the record location
identified by the contents of the relative key data item. If the
specified record location is outside the boundaries of the allocated
file space, or if a logical record already occupies that location,
an INVALID KEY condition exists. The file must be open for output
or input-output.

removes the logical· record identified by the contents of the
relative key data item from the file. If the specified record
location is outside the boundaries of the allocated file space, or
if a logical record does not occupy the specified record location,

4-31 AS43B
--

START

an INVALID KEY condition exists.
input-output.

The file must be open for

positions the file at a record location such that the next logical
record accessed is based on the comparison specified in the START
statement, in relation ~o ~ne contents of the relative key data
item. If the comparison is not satisfied by any logical record on
thefile 1 an INVALID KEY condition exists. The file must be open
for input or input-output.

READ NEXT

READ

REWRITE

if the file was positioned by an OPEN or START statement, and the
record location to which it was positioned is still occupied by a
logical record (the logical record not having been deleted), the
input-output control system makes the contents of that logical
record available in the file record area and places the relative
record number of the record in the relative key data item.
Otherwise, the input-output control system accesses the next logical
record on the file, makes the contents of that record available in
the file record area, ~d places the relative record number of the
record in the relative key data item. If there is no "next" logical
record, an AT END condition exists. The file must be open for input
or input-output.

accesses the logical reriord identified by the contents of the
relative key data item and makes the contents of that record
available in the file record area. If the specified record location
is outside the boundaries of the allocated file space, or if a
logical record does not occupy that location, an INVALID KEY
condition exists. The file must be open for input or input-output.

replaces the logical record identified by the contents of the
relative key data item with the contents of the specified record.
If the specified record location is outside the boundaries of the
allocated file space, or if that record location does not contain a
logical record, an INVALID KEY condition exists. The logical record
being replaced must be equal in size to the record specified in ttie
REWRITE statement (the replacement record). The file must be open
for input-output.

Indexed Files

An indexed file is organized such that each record is uniquely identified
\ by the value of a key within the record (see MPH Subroutines manual).

In the RECORD KEY phrase of the SEL~CT clause, the source program specifies
one of the data items within one of the records associated with the file as the
prime record key data item. Each attempt to access a record based on the record
key item causes a search of the index file for a key that matches the current
contents of the record key data item in the file record area. The matching
index record in turn points to the location of the associated data record.

An indexed file may be accessed in the sequential, random, or dynamic mode.

02/79 4-32 AS43B

SEQUENTIAL MODE

,.
The following operations may be performed on an indexed file accessed in

'the sequential mode:

WRITE

DELETE

START

READ

accesses the space immediately following that location into which
the previous logical record was written and places the contents of
the specified ,record in that space. If the contents of the record
key data item are less than or equal to the key of the previously
written logical record, an INVALID KEY condition exists. The file
must be open for output.

removes the logical record accessed by the previous input-output
operation (which must have been a successful READ statement) from
the file. The file must be open for input~output.

positions the file such that the key of the next logical record
accessed is- based on the comparison specified in the START
statement, in relation to the contents of the record key data item.
If the comparison is not satisfied by any logical record on the
file, an INVALID KEY condition existsQ The file must be open for
input or input-output.

accesses the next logical record on the file and makes the contents
of that record available in the file record area. If there is no
"next" logical record, an AT END condition exists. The file must be
open for input or input-output.

REWRITE I
replaces the logical record accessed by the previous input-output
operation (which must have been a successful nCA~ statement) with I
the contents of the specified record. If the contents of the record
key data item are not equal to the key of the last record read. an
INVALID KEY condition exists. The logical record being replaced
must be equal in size to the record specified in the REWRITE
statement (the replacement record). The file must be open for
input-output.

RANDOM MODE

The following operations may be performed on an indexed file accessed in
the random mode:

DELETE

READ

02/79

removes the logical record identified by the contents of the record
key data item from the file. If no such logical record exists on
the file, an INVALID KEY condition exists. The file must be open
for input-output.

accesses the logical record identified by the contents of the record

4-33 AS43B

..•

i

REWRITE

DYNAMIC MODE

key data item and makes the contents of that record available in the
file record area. If no such logical record exists on the file, an
INVALID KEY condition exists. The file must be open for input or
input-output ~

replaces the logical record identified by the contents of the record
key data item with the contents of the specified record. If no such
record exists on the file, an INVALID KEY condition exists. The
Idgical record being replaced must be equal in size to the record
specified in the REWRITE statement (the replacement record). The
file must be open for input-output.

The following operations may be performed on an indexed file· accessed in
the dynamic mode:

WRITE

DELETE

START

places the contents of the specified record inta record space
situated such that the content of the record key data item is
greater than the key of the preceding logical record and less than
the key of the succeeding logical record. If the contents-of the
record key data item are equal to the key of an existing logical
record, or if writing the logical record wou_ld exceed the boundaries
of the allocated file spa~e, an INVALID KEY condition exists. The
file must be open for output or input-output.

removes the logical record identified by th~ contents of the record
key data item from the file. If no such logical record exists on
the file, an· INVALID KEY condition exists. The· file must be open

-' for input-output.

positions the file such that the next logical record accessed is
based on the comparison specified in the START statement, in
relation to the contents of the record key data item. If the
comparison is not satisfied by any logical record on the file, an
INVALID KEY condition exist.. The file must be open for input or
input-output.

READ NEXT

02/79

READ

if the file was position~d' by an OPEN or START statement, and the
logical record to which it was positioned is still accessible (not
having been deleted), the input-output control system makes the
contents of that logical record available in the file record area.
Otherwise, the input-output control system accesses the next logical
record on the file and makes the contents of that record available
in the file record area. If no "next" logical record exists on the
file, an AT END condition exists. The file must be open for input
or input-output.

accesses the logical record identified by the contents of the record
key data item and makes the contents of that logical record
available in the file record area. If no such record exists on the
file, an INVALID KEY condition exists. The file must be open for
input or input-output.

REWRITE
replaces the logical record identified by the contents of the record
key data item with the contents of the specified record. If-no such
logical record exists on the file, an INVALID KEY condition exists.
!he logical ~ecord being replaced :ust be equal !~ size to the

AS43B

record specified in the REWRITE statement (the replacement record).
The file must be open for input-output.

Example

••••••••••••• This program is a sample for using indexed I-O in Multics COBOL.
identification division.
program-ide testio.
environment division.
configuration section.
source-computer. multics.
object-computer. multics.
input-output .section.'
file-control.

select print-file
assign to printfile-printer.

select indexed-filel
assign to indexed1-virtual
organization is multics indexed
access mode is sequential
record key is prime-key1
alternate record key is alternate-keY1 with duplicates.

select indexed-file2
assign to indexed2-virtual
organization is multics indexed
access mode is dynamic
record key is prime-key2
alternate record key is alternate-key2.

dat division.
fil section.
fd ndexed-file1

label record is standard
data record is file-record1.

01 file-record 1.
05 description-of-item pic x(20).
05 i teDL-info.

10 filler pic x(10).
fO prime-key 1 .

15 key-number 1 pic 9(10).
15 filler pic 9(10).

10 filler pic 9(10).
10 altern~te-keyl.

15 filler pic x(10).
15 alt-key-numberl pic 9(10).

10 number-in-stock pic 9(10).

fd indexed-file2
label record is standard
data record is file-record2.

01 file-record2.
05 prime-key2.

10 part-number pic 9(10).
10 filler pic 9(10).

05 description pic x(20).
05 alternate-key2.

10 color
10 filler
10 parts-in-stock
10 parts-on-order
10 order-date

pic x(10).
pic 9(10).

pic 9(10).
pic 9(10).

pic 9(10).

fd print-file

02/79

label record is standard
data record is print-record.

4-35 AS43B

I

I

I

01 print-record.
05 description
05 part-number

pi c x (20) •
pic 9(10).

05 -number-on-hand
working-storage section.
procedure division.
begin.

VYII::U output print-file.
open input indexed-file1.
open i-oindexed-fl1e2.

read-file.

pic 9(10).

read indexed-file1 at end go to close-files.

move description-of-item to description of print-record.
move key-number1 to part-number of print-record.
move number-in-stock to number-on-hand.

write print-record after advancing 1 line.

move key-number1 to part-number of file-record2.
read indexed-file2 key is prime-key2 invalid key go to bad-key.

move number-in-stock to parts-in-stock.

rewrite file-record2 invalid key go to bad-key.

go to read-file.

bad-key.

display "Bad key", prime-key2.

close-files.

close print-file.
close indexed-file1.
close indexed-file2.

Print-file is a stream file to be dprinted. Indexed-file 1 is a sequential
indexed file used as input and indexed-file2 is a dynamic indexeq file used as-a
master record to be updated.

File print-file is opened for output mode, indexed-file1 is opened for
input mode to be read sequentially, and indexed-file2 is opened for IIO mode so
that it can be read from, and updated, while the file is open.

Indexed-file 1 is read sequentially using the end of file imperative
statement. When an end of file is signalled, transfer in the program is
automatically made to the close-files paragraph. Data is moved to the print
record and the record is written. The prime record key of indexed-file2 is
initialized and the file is read. Data is updated in the record and the record
is rewritten.

In both the read and rewrite statements for indexe~-file2, the invalid key
phrase is used. This causes transfer of control to the paragraph bad-key if an
invalid key is used.

02/79 4-36 AS43B

SECTION V

EXECUTING A COBOL PROGRAM

This section deals with the run-time environment of a COBOL program. The
resolution of external references with regard to Multics dynamic linking is
discussed. Also, the COBOL run-unit is defined in relation to the Multics
environment, and the effect of this definition on the interpretation of such
statements as STOP, STOP RUN, and EXIT PROGRAM is discussed. Auxiliary Multics
commands that are available for controlling and displaying information about the
run-unit are shown. Other aspects of the run~time environment such as the
COBOL-defined external switches and source-level segmentation control are
explained. Interprogram communication is discussed, and it is shown how a COBOL
program can call and be called by programs compiled by other languages on
Multics. Finally, all COBOL data types are defined in relation to COBOL
source-level declarations. They and the storage allocated for them are
explained on an implementation level, and the methods by which data are
referenced in a COBOL object program are discussed.

REFERENCING AN OBJECT SEGMENT

On Multics, object programs are referenced by a two-part symbolic name as
follows:

<reference name>[$<entry point name>]

where if the optional <entry point name> is omitted, it is assumed to be
identical to <reference name>. The reference name is equivalent to the segment
name established by the compiler upon creation of the object segment; the name
established by the compiler is the source segment name without the language
suffix. This equivalency can be altered (e.g., by the initiate command), but
for the scope of this discussion it is assumed.

The <entry point name> is a permanent fixture within the object segment and I
cannot be modified once the segment has been created. It serves to identify a
particular entry point in the segment. Normally, this is the offset of the
location in the segment to which control may be passed and program execution
initiated. COBOL programs have only one <entry point name>, which is defined by I
the PROGRAM-ID paragraph of the Identification Division. Consider the program
whose source is contained in the segment progname.cobol and which contains the
-~-~----~. ,;;,vovt::1Ut::llv.

PROGRAM-ID. PROGNAME.

The address at which execution is to begin in the resulting object segment
may be symbolically referenced as:

progname$PROGNAME

04/78 5-1 AS43A

I

Specifying progname alone would cause reference to the nonexistent entryname
progname within object segment progname. Specifying PROGNAME alone would cause
reference to the <entry point name> PROGNAME in the nonexistent segment
PROGNAME. If the source segment containing PROGRAM-ID X is named X.cobol, a
reference via the one-part name X is always properly resolved (i.e., X$X). This
convention is normally adopted when source programs are written.

RESOLVING EXTERNAL REFERENCES

When a CALL statement is executed, control is transferred to the program
identified by the string of characters constituting the literal or contained in
the specified identifier at the time of execution. This character-string is
called a reference name. It is not a pathname, nor is it necessarily a program
name or segment name. Resolution of a reference name into a meaningful address
within a segment where executable code exists is the subject of the following
paragraphs.

Multics Environment

The address space in which an object program executes is organized as a set
of segments. A segment is a linear address space beginning at O. Each process
runs in its own address space, which is established independently of other
address spaces. The set of segments that constitute a process is dynamically
determined by the execution of programs existing in the process. When a segment
is first referenced, it becomes part of the process and is "made known" to the
process or "initiated."

References to any portion of the address space consist of a segment
identification and an offset. The segment identification is initially symbolic.
Hqwever, when the segment identification is first used (referenced) in a
process, the segment it identifies is initiated and assigned a number unique
within the process. Additionally, a unique name is associated with it. The
segment number and reference name are retained throughout the life of the
process and identify the segment in all further references, the former
absolutely and the latter symbolically. Thus, a symbolic reference in the form:

<reference name>$<entry point name>

is transformed into a segmented address usually expressed in the form:

<segment number>:<offset>

I For example, 301:32.

with the OR sign (:) used to separate the segment number from the offset.

5-2

Before a segr,2nt becomes known to a process, it may be referenced only by
means of a symbolic path name that permanently identifies the segment within the
directory structure of the virtual memory storage system. Each directory,
itself a segment belonging to another directory (except for the root directory
">" which has no predecessor), also contains a list of other segment attributes.

Since the segment number used to reference a particular segment is process
dependent, segment numbers may not appear internally in pure procedure code.
For this reason, a segment is identified within a procedure segment by a
symbolic reference name. Before a procedure can complete an external segment
reference, the reference name must be translated into a segmented address. If
the reference name is already associated with an initiated segment, the segment
number has already been established and is readily available. Otherwise, it
must be first translated into a pathname by means of a directory-searching
algorithm and the segment located made known to the process (initiated).

Search Rules

The algorithm used in the resolution of reference names is based on a set
of search rules. However, default search rules, established for the user
whenever a process is created, can be modified by using the Multics commands
add_search_rules and set_search_rules. Search rules can be indirectly influenced
by the initiate and change_wdir commands. Default search rules are~

initiated segments (i.e., already assigned a segment number)
referencing directory
working directory
system libraries

The set of segments that have already been initiated is loosely considered a
directory in the rules. This convention makes the mechanism more easily
defined. Initiated segments must be u~eu IlrSL, in which case no actual
directory searching is performed. The user can alter the search rules by the
above-named commands, but must always leave initiated segments as the first
rule.

Assume a COBOL object segment running with default search rules set
executes the statement:

CALL "XYZ".

First, it is determined whether the name XYZ has been previously referenced in
the process. If it has, it will have already been associated with a segment and
a segment number. This address is used in resolving the reference (i.e., the
link between caller and called). Otherwise, a new segment must be made known to
the process; various directories are searched to determine which segment it
will be. Assuming no segment has been initiated with reference name XYZ, the
next step is to search the referencing directory for a segment named XYZ. This
is the directory containing the segment making the reference. If such a segment
is found, it is initiated; i.e., associated with a unique segment number and the
reference name XYZ. This action establishes the link between the segment making
the reference and this segment. Otherwise, the working directory and then the
system library directories are searched in predefined order. If such a segment
cannot be found after all directories in the search rules have been exhausted, a
linkage error occurs.

5-3 AS43

Qynamic Linking

Resolution of external references (or linking) is done at run-time, while
the program making the reference is actually running, not beforehand in a
separate step. With dynamic linking, an unresolvable reference is not
discovered until it is attempted. Thus, if the COBOL program prog in the
working directory >udd>PROJ>Smith executes the CALL statement:

CALL "XYZ"

and it is discovered after a search of all directories that XYZ does not exist,
a message such as the following would be issued:

Error: Linkage error by >udd>Proj>Smith>prog:71 (line 28)
referencing XYZ:XYZ
Segment not found.

Corrective action can be taken and execution of the program continued. If the
user has merely forgotten to compile XYZ he can perform a compilation and then
continue execution incorporating the newly created XYZ into the process. If, on
the other hand, the segment XYZ exists in a directory not named in the current
search rules, the user can alter the search rules to include that directory:

add_search_rules)udd>PROJ>Jones -after working_dir

This serves to include the directory >udd>PROJ>Jones immediately after the
user's working directory in the current search rules. Or the user could have
specifically initiated that segment:

initiate)udd)PROJ>Jones>XYZ

or established a storage system link to it in a directory that is in the search
rules:

link >udd>PROJ>Jones>XYZ

The initiate command initiates the segment identified by the given pathname with
the reference name XYZ. The link command adds a permanent entry to the working
directory, in effect making the segment XYZ in >udd>PROJ>Jones permanently
referencable by pathname >udd>PROJ)Smith>XYZ. If the user misnames the source
segment as xyz.cobol, the object segment produced by the compiler is xyz rather
than XYZ. The user initiates the segment xyz (in the working directory) with
the reference name XYZ:

initiate xyz XYZ

5-4 AS43

After any of the above alterations, the user types:

start

The start command causes execution to continue at the point of the linkage error
and complete the reference.

A CALL in a program to a nonexistent program does not affect its execution
so long as the unresolvable CALL is never executed. The programs composing a
COBOL run-unit cannot be known until the execution of the run-unit is complete.

Dynamic linking gives the user great flexibility in determining the
components of a run-unit, but resolving first-time references requires
significant overhead. Once symbolic references are resolved, however, programs
run efficiently, referencing each other directly through the established links.

If the components of a run-unit are fixed and known beforehand, the user
can enhance the efficiency of execution by using the Multics bind command. This
produces a single object program from a group of separately compiled object
segments, and in so doing, eliminates all external references among the programs
involved. The run-time activity necessary to resolve external references:
fielding a hardware fault, searching tables and directories, possibly initiating
a segment, and resolving a link is thus avoided.

PROGRAM EXECUTION FROM COMMAND LEVEL

Once an object program has been produced by the compiler and all files it
references and programs it calls are accessible, it is ready to be eXecuted. On
Multics, programs are executed from command level exactly as if they were
commands. For example, to execute the object program resulting from the
compilation of the time-and-date.cobol source program shown in Section II, the
user simply types:

time-and-date (or time-and-date$time-and-date)

If a segment named time-and-date is in a directory named in the current search
rules and it is a legitimate object segment having an entryname time-and-date,
it will be initiated, start executing, and the response will be:

Time: 23:14:59 Date: 27/09/76

5-5 AS43

Upon execution of the EXIT PROGRAM statement, control is returned to
command level, and the ready message is printed:

r 2315 0.396 0.666 12

Now the system is ready to accept another command. If an object pro~ram had
been produced in the working directory with a name identical to the name of a
Multics command, that program would be executed when the command name is typed,
provided of course, the command is not already initiated. The default search
rules place the working directory ahead of the system libraries.

Programs are executable by the command processor as if they were commands.
Conversely, commands can be executed from within programs by using the CALL
statement. For example, the statement:

CALL "dcr" USING "-lg"

causes execution of the dcr (display_cobol_run_unit) with the -long control
argument. The calling of commands is not generally suggested from within PL/I
programs on Multics, as most functions provided by commands have more efficient
subroutine interfaces. Additionally, these subroutines report erroneous
conditions to the calling program via a status code argument rather than
directly to the terminal as do commands. COBOL does not define the data types
necessary to communicate with many of these subroutines; however, alphanumeric
character-strings (PIC IS XXX) are supported. Since commands accept input from
the terminal, it is obvious that command interfaces are restricted to this type
of data. Although a COBOL program may not be able to call a subroutine, it can
always call a command. For example:

DATA DIVISION.
WORKING-STORAGE SECTION.
01 detach-arg PIC X(6) VALUE "detach".
01 switch-arg PIC X(9) VALUE "my_switch".

PROCEDURE DIVISION.

CALL "io_call" USING detach-arg, switch-argo

is equivalent to executing the command:

5-6 AS43

Blanks in arguments are significant because the command line is interpreted
by the command processor and parsed into a number of separate character-string
arguments, which are passed to the called program. For exam·ple:

01 segment-name PIC X(32).

MOVE "XYZ.list" TO segment-name.
CALL "delete" USING segment-name.

would cause the delete command to attempt deleting a segment in the working
directory with the name:

which probably would not exist. To avoid this problem, take advantage of COBOL
variable-length strings, e.g.:

01 segment-name PIC X(32).
01 var-segment-name REDEFINES segment-name.

02 char PIC X OCCURS 1 TO 32 TIMES DEPENDING ON name-len.
01 name-len PIC 99.

MOVE "XYZ.list" TO segment-name.
MOVE 8 TO name-len.
CALL "delete" USING var-segment-name.

or, if the segment name was not predetermined:

ACCEPT segment-name.
INSPECT segment-name TALLYING name-len FOR ALL SPACES.
SUBTRACT name-len FROM 32 GIVING name-len.
CALL "delete" USING var-segment-name.

All commands may be considered callable programs, and all programs that accept
nothing other than Character-string arguments may be considered commands.

COBOL RUN-UNIT

COBOL defines a run-unit as "a set of one or more object programs that
function, at object-time, as a unit to provide problem solutions." In a
conventional system, the run-unit can be thought of as the output of the static
linker, i.e., a fully linked and loadable set of object segments together with
associated data. A run-unit starts execution after being loaded and given
control by the system; when execution terminates, control returns to the system.
The former is done by a JCL directive and the latter by the execution of a STOP
RUN statement in any component of the run-unit. Attempting to fit this
traditional view of the world into a dynamic linking environment creates certain
problems and questions of interpretation.

5-7 AS43

I

I

I

Run-Unit Definition

In the Multics environment, the run-unit can be considered the set of COBOL
object segments referenced in a process from the time a COBOL program is first
executed until a STOP RUN is issued, or from the issuance of one STOP RUN to
another. It is identified by the name of the first COBOL program executed in
it.

A run-unit is started either explicitly by execution of the run cobol
command or implicitly by invocation from command level or from a call by another
language program. A run-unit is stopped either by the execution of the STOP RUN
statement in a COBOL object program or by the invocation of the stop cobol run
command. For the duration of time after a run-unit is started and before it is
stopped, it is said to be active. All COBOL object programs executed while a
run-unit is active are considered part of that run-unit. A run-unit is a subset
of a Multics process; it is stopped when the process is ended. Only one
run-unit may be active at any given time in a process.

All data defined in the
allocated and initialized, if
in the run-unit.

Working-Storage Section of a COBOL program is
necessary, the first time the program is executed

Run-Unit Related Statements

The definition of the COBOL run-unit on Multics affects the interpretation
of the following source language statements.

STOP RUN STATEMENT

The STOP RUN statement causes the current run-unit to be terminated. This
affects all COBOL programs that have been executed during the life of this
particular run-unit. Files referenced by these programs are cleaned up (i.e.,
buffers written and files closed, if necessary); action is taken to ensure that
the next time any of these programs is called, its data is in initial state.

Any time the user is at command level, the
can be issued to terminate an entire run-unit.
executing a STOP RUN statement in a COBOL program.

Multics stop cobol run command
This has the same effect as

When a run-unit is stopped, the following message is issued through the
user_output 1/0 switch:

<program name>: Run-unit <run-unit name> terminated at line <lineno>

where <run-unit name> is"the name of the current run-unit, <program name> is
equal to the <reference name> of the program executing the STOP RUN statement
(or <reference name>$<entry point name> if the two are different), and <lineno>
is the number of the source line containing the STOP RUN statement. If the
run-unit is terminated by the stop cobol run command, no message is given unless
an error is encountered. --

04/78 5-8 AS43A

EXIT PROGRAM STArEMENT

COBOL defines the function of the EXIT PROGRAM statement as follows: "An
execution of an EXIT PROGRAM statement in a called program causes control to be
passed to the calling program. Execution of an EXIT PROGRAM statement in a
program which is not called behaves as if the statement were an EXIT statement."
That is to say, ~n EXIT PROGRAM statement in a main program causes no action and
the next sequentlal statement is executed. In an implicitly started run-unit,
every program is a called program (i.e., there is no main program); every EXIT
PROGRAM statement encountered causes return of control to the caller. Since
there is no distinction between invocation of a procedure as a command (by using
the Multics command processor) and invocation by any other procedure (by using
the CALL statement), one or more sequences of program execution can be initiated
from command level, all within the same run-unit. Any COBOL program entered
more than once in a given run-unit finds its data in last-used state. Data is
in initial state only upon the program's first invocation within the run-unit.

If, on the other hand, a run-unit has been explicitly started as a result
of a run cobol command, the main program in which execution is to start has been
named. Such a program is not considered a called program and cannot return
(i.e., EXIT paOGRAM) to a caller., The only way to return to command level is by
execution of a STOP RUN statement. However, if the command processor is
recursively invoked (e.g., after a QUIT or an error condition), the run-unit is
still in effect and any COBOL programs called from the new command level become
part of the already existing run-unit.

CANCEL STATEMENT

The CANCEL statement eliminates a program from the run-unit. The actions
involved in cancelling a program are a subset of the actions taken for a STOP
RUN. Specifically, steps are taken to ensure that the data of the named program
are in initial state upon its next invocation within the run-unit.

Any time the user is at command level, one or" more programs in the current
run-unit may be cancelled by issuing the Multics command cancel cobol program.
The cancel cobol program command is a counterpart to a terminate ~omman~. NOTE:
A COBOL program that is part of a currently active run-unit must not be
terminated from the process unless it has first been cancelled. Otherwise, the
run-unit will be left in an inconsistent state.

If a program is not part of the currently active run-unit, a request to
cancel it with the cancel cobol program command results in an error message; a
request to cancel it by execution of the CANCEL statement in a COBOL program
causes no action, as required by the American National Standard COBOL definition
of that statement.

04/78 5-9 AS43A

Auxiliary Commands

Two Multics commands aid the user in controlling the state of the run-unit:
the stop_cobol_run and cancel cobol program commands. A complete description of
these commands is available in the MPM Commands manual.

run cobol COMMAND

A run-unit can be explicitly defined and initiated by using the run cobol
command (abbreviated rc). This command starts execution in a specified main
program from which control cannot be returned. It is stressed that the use of
this command is in no way necessary to execute COBOL object programs on Multics.
It is provided merely to simulate an environment in which more traditional COBOL
concepts may be easily defined. The format of the command is as follows:

rc <program name> {-control_args}

where <program name> is the reference name or pathname of the "main program" in
w hi c hex ec uti 0 n i s to be in i ~ i ate d , and - con t r 0 1 a r g sma y be 0 n e 0 f the
following:

-cobol switch, -cs

-no stop_run, -nsr

-sort dir

Sets one or
switches ON.

more of the eight
The format is:

-cs <switchno> ...

COBOL -de fi n ed external

where <switchno> is an integer from 1 to 8 referring to a
correspondingly numbered external switch to be set ON.
For example, the command

run cobol sk -cs 1 3 5

sets external switches 1, 3, and 5

Avoids establishment of "a handler for the stop_run
condition.

Specifies the directory to be used during execution of
this run-unit for temporary sort work files. If this
argument is not specified, the process directory is
assumed.

-sort file size, -sfs Specifies, in the floating point representation, the
total amount of data to be sorted during execution of
this run-unit in millions of bytes. This information is
used to optimize sorting. If this argument is not
specified, 1e6 is assumed (i.e., one million characters).

-debug, -db

-continue, -ctu

09/79

Sets the object time switch used by the debug facility to
, ON' for the run un it. Th e e f f e c t 0 f t his s wit chi s
discussed in Chapter XIII of the Multics COBOL Reference
Manual, Order No. AS44.

Continue the execution of the COBOL program if an
overflow occurs during an arithmetic statement not having
an ON SIZE ERROR option.

5-10 AS43C

The explicit creation of a run-unit via the run_cobol command provides for
the following: (1) the establishment of a main program, (2) the setting of
external switches, and (3) the ability to control the action taken for STOP RUN.

The program named by <program name> becomes the main program of the
run-unl~ and therefore the run-unit's name. The execution of an EXIT PROGRAM
statement in this program has no effect. (An implicitly started run-unit has no
main program. Execution of the EXIT PROGRAM statement in all programs contained
in such a run-unit always causes control to be returned to the caller, even when
the caller is a system program, e.g., the command processor.)

COBOL external switches are externally visible binary switches that can be
referenced by any program in the run-unit. These most closely correspond in
concept to sense switches of some computers that can be set by the operator.
These switches are initialized OFF at the outset of each run-unit unless
otherwise specified by the -cobol_switch control argument.

The action normally taken for STOP RUN is to cancel all programs in the
run-unit, closing any files left open. After this has been done, all data
associated with any of the programs is no longer available. Thus, in a
debugging environment, it may be useful to redefine the action taken for STOP
RUN. When the run-unit is explicitly started via the run_cobol command, the
STOP RUN statement causes the signaling of the stop_run condition for which a
handler is established that performs the normal action described above. If the
-no_stop_run control argument is specified, the handler is not established,
thereby allowing the user to use his own means to handle the signal. If the
user has not provided a handler for stop_run and specifies the -no_stop_run
control argument, an unclaimed signal will result.

The program in which execution is to begin does not have to be a COBOL
object program. It may
with COBOL programs.

5-11 AS43

I

stop cobol_run COMMAND

The stop cobol run
current COBOL run-unIt.

scr {-control_args}

command (abbreviated
The format is:

where -control args may be:

scr) causes termination of the

-retain_data, -rd The data areas associated with the programs composing the
run-unit are left intact for debugging purposes.

-retain files, -rf The files that have been left open are not closed.

This command causes the same result as executing the STOP RUN statement
from within a COBOL program. Stopping the run-unit consists of: (1) cleaning up
all files that have been opened by COBOL programs during execution of the
current run-unit, and (2) ensuring that the next time a program that is a
component of this run-unit is invoked, its data will be in initial state. Use
of the -rd control argument avoids freeing the COBOL data area which has been
allocated in user free storage, so that data in last used state can be
displayed. However, it does not prevent the reinitialization of data when a
program in the run-unit is again invoked.

cancel cobol program COMMAND

The cancel cobol program command (abbreviated ccp) causes one or more
programs in the current run-unit to be cancelled. Cancelling consists of
ensuring that the next time the program is invoked within the run-unit, its data
is in initial state. Any files that· have been opened by the program(s) and are
still open are closed. Additionally, the data area associated with each program
is freed. The format for this command is:

ccp <program name> {-control args}

where <program name> represents the <reference name> of the program to be
cancelled (or <reference name>$<entry point name> if the two are different) and
-control args may be:

I -retain_data, -rd The data area(s) associated with the program(s) is left
intact for debugging purposes.

-retain files, -rf Files that have been opened by the program(s) and have not
been closed are left open.

04/78 5-12 AS43A

This command causes the same ~ffect as the execution of the CANCEL
statement from within a COBOL program. The only difference is that if a
specified <program name> is not a component of the run-unit, an error message is
issued and no action is taken; for the CANCEL statement, no warning is given in
such a case.

To maintain the value of the program's data (e.g., for debugging purposes),
use the -rd control argument. Data associated with the cancelled program is in
its last used state; it is not restored to initial state until the next time
the program is invoked in the run-unit.

display cobol_run unit COMMAND

The display cobol run unit command (abbreviated dcr) displays the current
state of a COBOL run-unit~ i.e., the names of the programs that compose it.
Optionally, more detailed information may be displayed concerning active files,
data location, and other aspects of the run-unit. The format for this command
is:

dcr {-control args}

where -control_args may be one of the following:

-long, -lg Causes more detailed information concerning each COBOL
program in the run-unit to be displayed.

-files Displays
that have
run-unit.

information about
been referenced

the current state of the files
during execution of the current

-all, -a Includes information about programs that have been cancelled
during execution of this run-unit.

When no arguments are specified, the names of the programs currently active
in the run-unit (i.e., not cancelled) are displayed along with the number of
times each has been invoked beside the name within parentheses. For example:

Run-unit test$sk contains four COBOL programs

test$sk (2)
sk (19)
buglog (3)
string-test (1)

All external-switches off

04/78 5-13 AS43A

I

Use of the -long control argument causes such additional information to be
displayed as the location of the object segment and associated data segment 1 the
number of words of data being used, and the location of the file activity
records (from which the location of the file state blocks can be found). The
-all control argument includes information about programs that were once part of
the run-unit, but have been cancelled. For example:

04/78

dcr -lg -a

Run-unit test$sk contains 4 COBOL programs
Control segment at 305:0
1 inactive program

1 Name: test$sk
at 303:73
invoked 2 times
data at 310:0 for 52 words
file info at 305:100002

2 Name: sk
at 350115
invoked 19 times
data at 351:0 for 4 words
file_info at 77777:1

3 Name: sk-file (inactive)
at 476:35
data at 77777:1 for 52 words

4 Name: buglog
at 500: 1343
invoked 3 times
data at 501:0 for 3240 words
file_info at 305:100010

5 Name: string-test
at 523:561
invoked 1 time
data at 524:0 for 184 words
file_info at 305:100022

All external-switches off

5-14 AS43A

The -files control argument gives additional information concerning active
files in the programs. An active file is one that has been opened at least once
by the program in question. Information is given on the location of the file
state block, the current state of the file (i.e., open or closed), the name of
the program that last opened or closed the file, and, if the file is open, the
COBOL open mode, organization, and access mode. For example:

dcr -files

Run-unit test$sk contains 4 COBOL programs

test$sk (2)
1 file active, 2 files declared

Internal file ifile at 311:2
opened by test$sk for output with indexed organization

and dynamic access
sk (19)

No active files

buglog (3)
3 files active, 4 files declared

External file print iocb at 311:726
opened by buglog for extend with stream organization

and indexed access
External file bug iocb at 311:236
closed by buglog-

External file desc iocb at 311\472
closed by buglog

string-test (1)
1 file active, 1 file declared

External file testout at 311:1162
closed by string-test

·Had external switches been set, the last printed line would indicate switch
settings. For example, if switches 1 and 3 were set, a line would be printed as
follows:

External switch status: 1 2 3 4 5 6 7 8
ON OFF ON OFF OFF OFF OFF OFF

04/78 5-15 AS43A

ASPECTS OF THE RUN-TIME ENVIRONMENT

The following information pertains to those aspects of a COBOL program that
interface with or are related to the operational environment.

STOP <literal> Statement

The action taken by the STOP statement when a literal is specified is to
halt execution of the program temporarily after printing the literal on the
operator's console. On Multics, the effects of this statement are to output the
literal through the error_output 1/0 switch and recursively to reinvoke the
command processor. This produces the same situation as if error condition or
QUIT had occurred.

The name of the program issuing the STOP statement is displayed along with
the literal in the following format:

<program name>: <literal>

After this is printed, the user may restart execution of the program at the next
executable statement by invoking the Multics start command. He is also free, at
this point, to invoke other commands or subroutines and then at some later time
restart the stopped program. If he decides that the program issuing the STOP is
not to be restarted in the future, the user should free the stack space being
held by using the release command. The run-unit is still in effect at this
time; that is, data is in last used state if any program is again executed. To
terminate the run-unit (i.e., STOP RUN), the user must use the stop_cobol_run
command.

The STOP <literal> statement is meant to be used only in an interactive
environment. If a program issues a STOP literal statement in an absentee
process, the absentee run will be aborted at that point.

External Switches

Inherently related to the run-unit is the implementation of the COBOL
external switches. These are a set of eight binary switches that can be
referenced within a COBOL program by the names SWITCH-n, where n = 1, 2, ... ,8.
They are normally initialized OFF at the start of the run-unit. However, they
can be set within the COBOL program and also via a control argument of the
run_cobol command.

The external switches are visible to all COBOL programs in the run-unit.
They are allocated in a special control segment built at run-time in the process
directory. See "Implementation Specifics" later in this section.

5-16 AS43

COBOL Segmentation

COBOL source-level segmentation allows the user to divide a program into
different portions based on each portion's memory requirements. With this
information provided by the programmer, the compiler can then arrange to have a
large program executed in a small amount of memory by proper communication with
the memory management system. However, with the Multics virtual memory, as far
as the user is concerned, a limitless amount of memory is always available for
use. The actual memory management is performed via paging, which goes on behind
the scenes and cannot be explicitly controlled at the program level.

The use of independent segments (i.e., those with specified segment numbers
greater than 49) may cause unnecessary overhead when executing COBOL programs I
and should be avoided where possible. The effect of their use is that all
alterable GO TO statements in such a segment must be reinitialized each time
control enters it.

Improper Program Termination

At the end of a COBOL program, there is no automatic return of control
generated as in some other languages. If control reaches the last statement of
the program and that statement does not cause a transfer of control to another
point in the program (GO TO) or a return of control (EXIT PROGRAM, STOP RUN),
the program is considered in error. Multics COBOL provides a controlled
situation for this eventuality. If a source logic error causes an attempt to
execute beyond the code generated for the last statement, control is returned to
the user with the message:

progname: Attempt to execute beyond logical end of program
Error occurred at 3051125 in >udd>PROJ>user>progname
system handler for error returns to command level

This is a specific example of the general run-time error handling mechanism
described in Section VI of this guide.

COBOL DATA

The following information explains the meaning of the different data types
as determined in a COBOL source program by the PICTURE and USAGE clauses. The
allocation of the various data referenced within the COBOL program is also
shown. More detailed information concerning establishing addressability is
available under "Implementation Specifics" later in this section. Further
information on how to display and change the different data types in an
interactive debugging environment is discussed in Section VI.

04/78 5-17 AS43A

Multics COBOL supports the five categories of data defined by COBOL:
alphabetic, alphanumeric, alphanumeric edited, numeric edited, and numeric. The
category of a data item is determined entirely by the contents of the PICTURE
clause associated with it as described in Section VI of the Multics COBOL
Reference Manual.

Additionally, there are further sub-categories of numeric data referred to
as~. Multics COBOL supports six data types as determined primarily by the
USAGE clause. The SIGN clause and/or the presence of the operational sign
character "S" in the picture string also serve as determining factors. The
DEFAULT CaMP and DEFAULT SIGN statements of the Control Division can be used to
influence the USAGE and SIGN clauses and in this way also play a role in
establishing data type.

The seven data types and their relation to the information given in the
corresponding USAGE, PICTURE, and SIGN clauses are shown below in Table 5-1.

Table 5-1. COBOL Data Types

Data Type USAGE PICTURE SIGN

Unsigned Display DISPLAY S not N.A.
present

Separate Sign Display DISPLAY S present SEPARATE
specified

Nonseparate Sign Display DISPLAY S present SEPARATE not
specified

Packed Decimal (aligned) CaMP or either N.A.
COMP-5

rOng Binary COHP-6 N.A. N . A..

Short Binary COMP-7 N.A. N.A.

Packed Decimal COHP-8 either N.A..

N.A. indicates that this clause is not applicable since it
must not be used.

I

All data is word aligned for 01 level items. Long Binary data is always
word aligned, and Short Binary data is half-word aligned. All other types are
byte aligned, except COMP-8, which is digit aligned.

Moving unsigned data into signed data causes
signed data into unsigned data causes loss
warning diagnostic in this case.

5-18

a positive result. Moving
of sign; the compiler issues a

AS43

UNSIGNED DISPLAY DATA

Unsigned Display data is numeric data characterized by: (1) the absence of a
USAGE clause or the specification of "USAGE IS DISPLAY," and (2) the absence of the
operational sign character "S" in the picture string. The number of digits it
contains corresponds to the number of "9" characters in the associated picture string.
Each digit occupies a 9-bit byte. Input digits are checked and carried internally
as 4-bit data, the four least significant bits of the byte. They are interpreted
as shown in Table 5-2.

Table 5-2. Display Data Digit Encoding

Character Interpreted

0000 a
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 causes IPR
1011 causes IPR
1100 causes IPR
1101 causes IPR
i 110 causes IPR
1111 causes IPR

The contents of the five high-order bits are not checked for a sending field;
in a target field they are set to 00011, thereby creating the ASCII value corresponding
to the appropriate digit (e.g., 0010 -> 000110010 = "2").

If this data is used in a computation, and the least significant four bits of I
any digi t contain a value interpreted according to Table 5-2 as "causes IPR,"
then an illegal procedure fault occurs and program execution is terminated.

12/79 5-19 AS43D

SEPARATE SIGN DISPLAY DATA

Separate Sign Display data is numeric data characterized by: (1) the absence
of the USAGE clause or the specification of "USAGE IS DISPLAY", (2) the presence of
the operational sign character "S" in the picture string, and (3) the explicit
specification of the optional key word SEPARATE in either the SIGN clause or the
DEFAULT SIGN statement. The sign may be either leading or trailing; if not specified,
it is assumed to be trailing. In either case, a separate byte is allocated for the
sign.

Other than for the presence of an additional byte, this data type is identical
to Uns igned Display descr i bed above. Thus, the number of bytes occup ied by this data
is equal to the number of "9" characters in the picture string plus one, and all bytes
except that representing the sign are interpreted as shown in Table 5-1 The input
sign character, either the leftmost or rightmost of the field, is checked and carried
as 4-bit data, the four least significant bits. These are interpreted as shown
in Table 5-3 below.

Table 5-3. Display Separate Sign Encoding

Character Interpreted

0000 causes IPR
0001 causes IPR
0010 causes IPR
00 11 causes IPR
0100 causes IPR
0101 causes IPR
a 11 a causes IPR
0111 causes IPR
1000 causes IPR
1001 causes IPR
1010 +
1011 +
1100 +
1101
1110 +
1111 +

The contents of the high-order five bits of the sign byte are not checked for
a sending field. For a target field, the sign is set to 000101011 if the value is

. p 0 sit i v e, a a a 1 a 1 1 a 1 if neg a t i v e . Th i s cor res p 0 n d s tot h e AS C I I val u e 0 f the
appropriate sign (e.g., octal 53 = "+"; octal 55 = "_").

I If this data is used in a computation and the least significant four bits of
a digit or of the sign contain a value interpreted according to Tables 5-2 and 5-3
as "causes IPR," an illegal procedure fault occurs and program execution is
terminated.

12/79 5-20 AS43D

NONSEPARATE SIGN DISPLAY DATA

Nonseparate Sig~ Display data is numeric data character ized by: (1) the absence
of a USAGE clause or the specification of "USAGE IS DISPLAY," (2) the presence of
the operational sign character "S" in the picture string, (3) the absence of a SIGN
clause or, if present, the absence of the optional key word SEPARATE, and (4) the
absence of the DEFAULT SIGN statement or, if present, the absence of the optional
key word SEPARATE. The sign may be either leading or trailing as determined by the
SIGN or DEFAULT SIGN clauses. If not explicitly specified, it is assumed to be
trailing. In either case, the sign is combined with the value of the corresponding
rightmost or leftmost digit to form a character interpreted as shown in Table
5-4.

Table 5-4. Display Nonseparate Sign Encoding

Digit Sign Octal ASCII

0 + 173 {
1 + 101 A ,.,

+ 1"'''' B e. ue.

3 + 103 C
4 + 104 D
5 + 105 E
6 + 106 F
7 + 107 G
8 + 110 H
Q + 111 I
0 175 }
1 112 J
2 113 K
3 114 L
4 i i 5 M
5 116 N
6 117 0
7 120 P
8 121 Q
9 122 R

Other than for the alteration of the high-order or low-order byte to reflect
the sign, this data type is iden tical to Uns igned Display descr i bed above. The number
of bytes occupied by this data is equal to the number of "9" characters in the picture
string, and all bytes except the one incorporating the sign are interpreted as shown
in Table 5-2.

If this data is used in a computation and the least significant four bits of
any digi t not containing the sign contain a value interpreted according to Table 5-2
as "causes IPR" or the entire nine bits of the byte containing the sign do not
correspond to a valid value as shown in Table 5-4, an illegal procedure fault occurs
and program execution is terminated.

Nonseparate Sign Display data is not directly supported. Therefore, its use
should be avoided whenever possible, because it causes a reduction in execution
efficiency.

12/79 5-21 AS43D

I
I

I

I

PACKED DECIMAL DATA

Multics COBOL supports two types of packed decimal data: byte aligned with
trailing sign, and digit aligned with leading sign. Aligned Packed Decimal data
is numeric data characterized by: (1) the specification of "USAGE IS COMP" or
"USAGE IS COMPUTATIONALII and the absence of the Control Division DEFAULT COMP
statement, or (2) the specification of "USAGE IS COMP-5." It is packed four
bits per digit, two digits per byte. The number of digits allocated for this
type of data corresponds to the number or "~" characters in the picture string.
The digit encoding is identical to that shown in Table 5-2. If the picture
string contains the operational sign character "S'l, a trailing 4-bi t sign is
present. (The SIGN clause may not be given with any data whose USAGE is not
DISPLAY; additionally, the DEFAULT SIGN clause does not apply to any such data.)

Aligned Packed Decimal data is byte aligned and occupies an integral number
of bytes. If the total number of digits plus sign is odd, the data is
right-justified in the field. The unoccupied five bits are ignored when the
data is used as a sending field and left unchanged when it is used as a target
field. The leftmost, unused bit of each byte is treated similarly. The input
trailing sign is interpreted as shown in Table 5-3. For target fields, the sign
is set to 1011 for positive values and 1101 for negative.

Unaligned Packed Decimal data is digit aligned and is characterized by
"USAGE IS COMP-8." It is packed four bits per digit, two digits per byte. The
number of digits allocated for this type of data corresponds to the number of
"9" characters in the picture string. Digit encoding is identical to that shown
in Table 5-2. If the picture string contains the operational sign character "S",
a leading 4-bit sign is present. (The SIGN clause may not be given with any data
whose USAGE is not DISPLAY; additionally, the DEFAULT SIGN clause does not apply
to any such data.)

Unaligned Packed Decimal data is digit aligned and does not necessarily
occupy an integral number of bytes. The leftmost, unused bit of each byte is
ignored when the data is used as a sending field; it is left unchanged when used
as a target field. The input leading sign is interpreted as shown in Table 5-3.
For target fields, the sign is set to 1011 for positive values and to 1101 for
negative values.

BINARY DATA

Two types of binary data are supported by Multics COBOL: Long Binary and
Short Binary. They are numeric data that is characterized by the specification
of--II USAGE IS COMP-6" or "USAGE IS COMP-1," respectively. With this type of
data, the SIGN clause must not be specified and the DEFAULT SIGN statement does
not apply. Additionally, since a fixed format is dictated, the PICTURE clause
must not be specified.

Long Binary data is always word aligned. It is 36 bits in length (i.e.,
one word) and is in the form of a two's complement binary integer. The assumed
picture clause is 59(11) with the additional restriction that the value be
within the range -34,359,138,368 < x ~ 34,359,138,361.

Short Binary data is always half-word aligned. It is 18 bits in length
(i.e., two bytes) and is in the form of a two's complement binary integer. The
assumed picture is S9(6) with the additional restriction that the value must be
within the range -131,012 < x < 131,071.

02119 5-22 AS43B

Data Allocation

Various data is generated by the compiler and referenced by the object
program. The allocation of this data is described below. More information on
the establishment of adnressability to the different storage locations is given
later in this section under "Implementation Specifics."

Some temporary fields generated internally by the compiler are allocated in
the stack frame of the running procedure. These are not normally user visible.

Literals and all data defined in the Constant Sect~on are allocated in the
text portion of the object segment, immediately before the executable code. In
addition, some compiler-generated data such as a copy of the initial state of
alterable GO TO, vectors of independent segments, and descriptors for expected
arguments are kept here.

Some per-process data necessary for run-unit control is allocated in the
linkage section of the object segment. It is referenced by the code generated
for the entry sequence and is modified by the COBOL run-time support package.

Some external data that, must be visible to all
.run-unit (e.g., ~xternal Switches) are allocated in a
built at run-time in the process directory.

COBOL programs in the
special control segment

Some file-related data is contained in data structures called file state
blocks (FSBs). Each file defined in the program has an associated FSB, which is
allocated at run-time in the system free area via a*system link. Some of the
data kept in the FSB is user visible. However, much serves to provide control
over files and 1/0 operations and is primarily used to bridge the gap between
the Multics 1/0 facility and COBOL 1/0 requirements.

All other data defined in a COBOL program as well as space for the record
description areas are allocated in an area that is allocated at run-time in the
user free area. Also allocated here are other run-unit related data such as
indices, alterable GO TO vectors, and COBOL special registers. This type of
data is allocated when the associated . program is executed for the first time in
the run-unit and is freed when the program is cancelled or when any component of
the run-unit executes a STOP RUN statement. It is referred to as COBOL data;
however, in the run-time symbol table it is described as though it were
PL/I-based data for addressability .by the debuggers.

04/78 5-23 AS43A

I

I

INTERPROGRAM COMMUNICATION

A COBOL program is able to call and be called by any other program on
Multics that uses the standard callireturn sequences (e.g., PL/I, FORTRAN). COBOL
programs may pass descriptors wi th arguments, but never require them for parameters.
That is; a PL/T program that is to be called by a COBOL program could declare
its character-string parameters with asterisk extent. For example:

PROGRAM-ID. cobol-prog.

01 arg pic xxxxx.

CALL "p11 prog" USING argo

pl1 prog: proc(param);
dcl-param char(*) parameter;

Any reference to param in pl1 prog references a five-character string when called
by cobol-prog. Since there is no way for a COBOL program to define parameters

I with variable extent, calls to COBOL programs should not attempt to pass parameters
with variable extent.

Data type correspondence between COBOL and PLiI is as follows. Any COBOL
data of the categories alphanumeric, alphabetic, alphanumeric edited, or numeric
edi ted corresponds to a non-varying PL/I character-string. The number of posi tions
occupied by the COBOL data as indicated by the picture string corresponds to the
number of characters in the PL/I character-string.. Most simply:

PICTURE X(n) -> char(n).

Numeric COBOL data of Leading Separate Sign Display type is identical to
fixed point decimal PL/I data as follows:

PICTURE S9(m)V9(n) -> fixed dec(m+n,n) aligned.

Numeric Leading Separate Sign Display COBOL data may also be described as PL/I
pictured data with:

picture "s(m)9v(n)9".

Trailing Separate Sign and Unsigned Display COBOL data have no corresponding
PL/I arithmetic data type.

7181 5-24 AS43E

The equivalent of the PL/I varying character string can be obtained in
COBOL by use of COMP-6 (fixed binary) data together with a character string:

01.
02 COMP-6.
02 PIC X(n).

--> char(n) varying.

COBOL signed numeric display data without separate sign has no
corresponding PL/I data type. However, it may be dealt with in PL/I as character
data as follows:

PICTURE S9(m)V9(n) -> char(m+n).

Long Binary data corresponds to
precision 35. That is:

PL/I word aligned fixed binary with

USAGE COMP-6 -> fixed bin(35) aligned.

Short Binary data corresponds to PL/I fixed binary data with precision 17, which

•
*

is half-word aligned. It is not generally useful to communicate with this data
type between programs as it is difficult to ensure half-word alignment in the
PL/I program. However, short binary can be forced to occupy the right half of I
the word with the left half unused by using SYNCHRONIZED; this is identical to
PL/I fixed bin(17) aligned. Thus: USAGE COMP-7 SYNC --> fixed bin aligned.

COBOL packed decimal data has no corresponding PL/I data type. It may be
dealt with in PL/I as bit-string data.

Aggregate Data

Structures and arrays are, by default, passed by a COBOL program as I
alphanumeric character-strings. This corresponds to the COBOL definition of
aggregate references. For example, in the COBOL declaration:

01 lev 1 .
02 lev2 PIC S99 SIGN LEADING SEPARATE OCCURS 5 TIMES. I

all references to lev1 are treated as references to a field with the picture
X(15). Thus, if lev1 were used in an argument list, it would be described as a I
15-character alphanumeric field. Any reference to lev2 without index or
subscript is invalid.

In PL/I, an aggregate reference is treated as a multiple reference to each
element of the aggregate, rather than a single reference to the redefinition of
the entire aggregate as a character-string. Therefore, a reference to a I
correspondingly defined lev1 in a PL/I program (or lev2) without index is
considered a reference to all elements within the structure (or array).

04/78 5-25 AS43A

If the COBOL pro-' 3m only calls other COBOL programs or other language programs
that do not define their expected parameters with variable extents, no
des0.riptors are required. Avoiding the generation of descriptors can increase
program efficiency, especially when many calls are made with arguments passed.
In this case, the user should specify:

GENERATE NO DESCRIPTORS

If a called program has been compiled with the -rck option (see "Run-Time Error
Checking" in Section 3), then validation of the parameters as to data type and
extent are not performed (the validation of number of parameters is still done
however). If aggregate descriptors have been generated for the calling program
in this case, the callee reports an argument mismatch for any aggregate data
(i.e., table or structure). This is because the expected descriptors for such
are assumed to be scalar i.e., character string redefinitions of the area
occupied, as the COBOL language interprets them.

IMPLEMENTATION SPECIFICS

The following information is provided for users who require more details
concerning the functioning of the object program and the control of the
run-unit. Such information is necessary to debug programs effectively on the
object code level. It is assumed that such users will have a more intimate
familiarity with the Multics hardware and addressing mechanisms than is
necessary for understanding most other parts of this guide. The following
information can be bypassed by the casual reader without loss of continuity.

Run-Unit Control

Run-time support routines keep track of the programs that compose the
run-unit and provide an interface with those commands that display or alter it:
display cobol run unit, stop cobol run, and cancel cobol program. This control
is maintained by-a data structure allocated as PL/I internal static in the
linkage section of each COBOL object segment and a segment allocated in the
process directory named cobol_control seg.

The prologue code sequence of each COBOL program checks the setting of an
internal static switch that has been initialized to zero at the outset of the
process. If this switch is zero, it indicates that this is the first time this
program has been invoked in the run-unit. In this case, the following actions
are taken: (1) a transfer is made to the run-time support routine
cobol control , (2) code is executed to initialize alterable GO TO vectors and
data declared-in the Working-Storage Section with the VALUE clause, and (3) the
switch is incremented by one, indicating that the program is now part of the
current run-unit and this initialization activity can be avoided next time the
program is entered.

04/78 5-26.1 AS43A

I Because of the different interpretation of the two languages, the Multics
COBOL compiler allows the user to specify how aggregate data being passed as
parameters are to be described to the called program.

The user may do this via the GENERATE ... DESCRIPTORS clause in the Default
Section of the Control Division. (This is an pxtension to American National
Standard for COBOL). In order to describe aggregate data to the called program
as a character-string redefinition of the area occupied by the data (COBOL's
interpretation), the user specifies:

GENERATE SCALAR DESCRIPTORS

or merely nothing at all since this is the default. A COBOL program can
communicate with a PL/I program on this level by proper redefinition in the PL/I
program. For example, if the COBOL program has the statement:

CALL "p11 prog" USING lev1.

for proper matching the PL/I program should declare:

p11 prog: procedure(arg);
declare arg character(10) parameter;
declare 1 lev1 defined(arg),

2 lev2(5) fixed dec(2) unal;

If the user had specified:

GENERATE AGGREGATE DESCRIPTORS

then a more complex descriptor would be passed to the callee. A PL/I program
called as above would describe the structure with each element corresponding to
the COBOL definition. In the above example, this would be:

p11 prog: proc (arg);
dcl 1 arg,

2 lev2 (5) fixed dec(2) unal;

Notice that although this seems more straightforward than in the preceding case,
the descriptors built at run-time are substantially more complex. This may
cause significant efficiency loss in passing very large, multi-dimensional
arrays of structures. (This is true also in the PL/I to PL/I interface). It
does, however allow additional functionality in certain cases. For example, a
COBOL program could invoke a PL/I program which processed an array with variable
extent only if aggregate descriptors are generated. For example, the PL/I
program could have been written:

p11 prog: proc(arg);
dcl 1 arg ,

2 lev2 (*) fixed dec(2) unal;

Thus any reference to lev2 in the PL/I program would be equivalent to 5 separate
references to lev2(1), lev2(2), lev2(3), lev2(4), and lev2(5). The evaluation
of the builtin function expressions lbound(lev2) would eql;al 1 and hbound(lev2)
would equal 5.

In certain cases, called programs use the descriptor information to gather
information about the nature of the data being passed. Such is the case with
the Multics Data Base Manager's relational add procedural interfaces, the MRDS
and MIDS commands respectively. For proper interaction with these subroutines,
the COBOL program must generate aggregate descriptors.

~ - ,'78 5-26 AS43A

The cobol control run-time support program keeps a table of pointers to
each of its caller's linkage sections (contained in the combined linkage
segment) in the process directory segment cobol control seg. This segment is I
also used to store COBOL External Switches- and other run-unit related
information. Additionally, this program allocates a data area in the user free I
area for each unique caller and stores a pointer to the base of that area in a
known location in the caller's linkage section (internal static data area).
Thus, cobol control essentially provides addressability for each COBOL program
to its data-at the time it becomes part of the run-unit. It is clear then that
cancelling a program (either by the COBOL CANCEL statement or via command) is
simply a matter of resetting the switch to zero and freeing the data area (for I
space considerations). A STOP RUN simply cancels all programs in the run-unit
and additionally truncates the control segment.

The cobol control routine additionally sets up an on-unit that is executed
by the standard handler for the "finish" condition that is always signaled when
a process terminates. This serves to close all files that have been left open.
Along with the internal static switch and data area pointer in the static data I
area of the linkage section, there is a file pointer that points to a list of
pointers in a file state block (FSB) for each file actually opened by the
program. This is used to close any open files, for the FSB contains a pointer
to the 1/0 Control Block for the file. See Section IV for further information.

Data Addressability

Space in the stack is reserved for internally generated data of a temporary
nature via the entry code sequence in the COBOL Operators segment that is I
executed each time the program is called. References to this type of data are
made through pointer register 6, which is conventionally kept set to the base of
the stack frame of the executing program.

Literals and Constant Section. data are pooled and allocated before the
executable code in the text sectlon of the object segment. The actual
allocation of literals and constants may be shared; that is, the literal "BCD"
may occupy the same storage as "ABCDE". Since the object segment is created by
the compiler with re access and this access is not normally changed thereafter,
the user is afforded storage system level protection against inadvertent
modification of constant data. All references to this type of data are
self-relative (i.e., at a relative offset from the instruction word referencing
it).

Some per-process data necessary for run-unit control is allocated in the
linkage section of the object segment (see above). When the object segment is
first made known to the process, the section is copied into a combined linkage
segment in the process directory. Pointer register 4 is conventionally set to
point to the base of this area when the program is executing. Thus, this data
is referenced by the object program using a specific offset from pr4. I

Each FSB is externally visible, and thus must be referenced through a link. I
A *system link with initialization is used. Data contained in the FSB is I
referenced through a pointer register set to point to the link with indirect
modification.

04/78 5-27 AS43A

I Data allocated in the COBOL data area (i.e., Working-Storage Section data,
Communication Section data, and file record areas) is referenced by an inte~nal
static pointer set during the prologue sequence (see above). Conventionally,
pointer register 3 is set to the base address plus 16K words, allowing a 32K
addressing range without the use of index registers. Thus, the block of virtual
memory occupied by the first 32K words (131,071 bytes) of COBOL defined data is
referenced through a fixed and preset pointer register thereby avoiding the need
to maintain (i.e., reestablish) addressability to it during the execution of the
program.

04/78 5-28 AS43A

SECTION VI

ERROR PROCESSING AND DEBUGGING

This section discusses the use of the Mu It ics symbol ic debugg ing faci 1 i ties with
a COBOL program. Also, it explains the general procedure used for reporting run-time
errors and shows the user al ternate ways of dealing wi th such errors. Finally, some
common causes of run-time errors are pointed out with suggested corrective and/or
preventive measures.

SYMBOLIC DEBUGGING

The Multics debugger iiprobe" can be used to display and modify program data and
to monitor execution of a COBOL program. The debugger "debug" is not recommended
for use with COBOL programs, and is not discussed further here. (See MPM Commands
manual.) If its use is anticipated, the program in question should be compiled with
the -table control argument, so that the compiler creates a run-time symbol
table and appends it to the resulting object segment. Refer to "Source Level
Debugging Requirements" in Section III.

12/79 6-1 AS43D

*

Monitoring Program Execution

The user can set breakpoints in the object program at various points in the
execution path at which he would like to gain control. This is useful in
verifying that expected paths are taken. Also, by using debugging commands, the
user can display data at these points or modify it to affect the ensuing
execution of the program.

Breakpoints can be set in a COBOL program at section names, paragraph
names, or line numbers. A breakpoint set at a line number causes execution to
stop immediately before the first machine instruction generated for the first
executable statement contained on that line of the source segment. A breakpoint
set at a paragraph name is identical to one set at the following statement in
the source segment. A breakpoint set at a section name is identical to one set
at the first paragraph name defined in that section. In the COBOL program:

sec-1 SECTION.
par-1.

ADD 1 TO item-1. DISPLAY item-1.
EXIT PROGRAM.

assume the external line
contained on the thirtieth

number of the EXIT statement
line of the source segment).

commands all have the identical effect:

position "sec 1"; before
position "par-1"; before
before 29
position "ADD"; before

is 30 (i.e., it is
The following probe

That is, a break is set on the first machine instruction generated for the ADD
statement. The only way to set a break immediately before execution of the EXIT
PROGRAM is by line number, i.e.:

l
before 30

The probe basic request goto (g) is not allowed from programs
COBOL compiler, nor is the probe break request after (a).

02/79 6-2

compiled by the

AS43B

Once breaks have been established, probe is exited and the program is
executed by the commands:

quit

progname

Displaying and Modifying Data

Data defined in the COBOL program can be displayed and modified using probe. I
This can be done any time after the program has started execution in the
run-unit: at a breakpoint or after the program has finished executing, either due
to a run-time error or execution of an EXIT PROGRAM statement. The execution of a
STOP RUN statement (or the stop cobol run command without the -retain data control
argument) causes all program data to-be no longer referable by the debuggers.

The following paragraphs describe how the various COBOL data types are displayed
and modified by the debuggers. Refer to "Data Types" in Section V for a definition
of these types. All data is displayed by the probe value request. While executing I
probe, type value followed by the data-name of interest, followed by a carriage
return. Probe in turn prints the data-name, an equal sign, and the value of the
data.

CHARACTER-STRING DATA (display)

All alphanumeric, alphabetic, alphanumeric edited, and numerIC _,.3";~_"') ,..)_~ _ __ _
CU.LVCU UOVO 01 C

displayed as charac ter -str ings. This is true also of numeri c data of the following
type: Unsigned Display, Separate Sign Display, and Nonseparate Display. Consider *
the following program:

12/79

PROGRAM-ID. progname.

01 alphanum PIC XXXXX VALUE "abcde".
01 unsigned-dec PIC 999 VALUE 3.
01 struc.

02 sepsign-dec PIC S999 SIGN IS LEADING SEPARATE VALUE -15.
02 ovrpch-dec PIC S999 VALUE -15.

6-3 AS43D

*' I An aggregate data i tern is displayed on a component-by-component bas is. For

I

I

example,

probe progname
value alphanum
alphanum = "abcde"
value unsigned-dec
unsigned-dec = 3
'U "'.:l 1 1 1.0 C!.o 1""'\ c::.'!! ; N 'n _~ a I""!I
y c...l..L. u'" ."'''''''1-' a...J ..L6"1 -Y """ ""

sepsign-dec = -15
value ovrpch-dec
ovrpch-dec = -15
value struc
struc =

sepsign-dec = -15
ovrpch-dec = -15

let sepsign-dec = 0
value sepsign-dec
sepsign-dec = 0
let alphanum = "123"
value alphanum
alphanum = "123"

PACKED DECIMAL DATA (COMP, COMP-5, COMP-8)

Packed decimal data is displayed by probe as a decimal integer. If the data
is positive, no sign is given. If it is negative, a minus sign appears as the leftmost
or rightmost character. Consider the following program:

PROGRAM-ID. prog2.

01 struc2.
02 a1 PIC S99 USAGE COMP-5 VALUE -2
02 b1 PIC 99 USAGE COMP-5 VALUE 3
02 c 1 PIC 999 USAGE COMP-8 VALUE 4
02 d 1 PIC S99 USAGE COMP-8 VALUE -5

12/79 6-4 AS43D

If these are examined with probe:

probe prog2
value a1
-2
value b1
3
value c 1
4
value d 1
-5

02/79 6-5 AS43B

I

I
I

BINARY DATA (COMP-6, COMP-7)

Long and Short Binary data are displayed by probe as a decimal integer. If the
data item is positive, no sign is given. If it is negative, a minus sign appears
as the leftmost character. In the program:

PROGRAM-ID. prog3.

Oi struc3.
02 short-binary USAGE COMP-7 VALUE 3.
02 long-binary USAGE IS COMP-6 VALUE -1.

the data items short-binary and long-binary represent Short Binary and Long Binary
data , respectively, whi Ie struc 3 represen ts a char ac ter -str ing. The followi ng
sequence may occur:

probe prog3
value short-binary
3
value long-binary ..
-I

Two empty bytes exist between the allocation of sb and lb. This is because Long Binary
is always word aligned.

The same convention is used to modify binary data except that an optional plus
sign can immediately precede a positive value. For example:

let short-binary = -3
value short-binary
-3
let long-binary = 64
value long-binary
64

RUN-TIME ERRORS

Errors that occur at run-time fall into two general categories: first are those
that are anticipated by the compiler and secondly those that the system reports
directly. For the first type, the compiler generates code to test for an erroneous
or inconsistent state of program execution or such a situation is communicated to
the object program by the system via a status code. The setting of an index data
i tern outside the range defined for the assoc iated array or I/O errors on COBOL files
are examples of such anticipated errors. Such errors as record quota overflow or
an attempt by a machine instruction to reference an invalid address are termed
unanticipated errors. The compiler generates no code to deal with such errors;
instead they are reported directly to the user by the system.

12/79 6-6 AS43D

Anticipated Errors

Most anticipated run-time errors involve some sort of I/O activity.
However, the occurrence of the following situations also causes such errors.

1. The program attempts to execute beyond the end of the code generated
for This occurs when the last statement of the source code does
not cause either a return of control via a STOP RUN or EXIT PROGRAM
statement or a transfer of control via a GO TO statement. Similarly,
an error is caused by an attempt to execute beyond the end of a single
declarative procedure.

2. An attempt is made to execute an uninitialized alterable GO TO
statement that has not been set via an ALTER statement. If such a
statement exists in a section defined as an independent segment, it
must be altered every time control enters that section. Refer to
"COBOL Segmentation" in Section V.

3. An invalid exponentiation operation is
statement. This includes: (1) a negative
non-integer value, (2) zero exponentiated
exponentiated by a negative number.

attempted in a COMPUTE
number exponentiated by a

by zero, and (3) zero

4. A WRITE statement is executed in which the variable specified with the
ADVANCING clause contains a value greater than 120. This is the
maximum number of lines that can be advanced before or after writing a
line in a print file.

5. A CALL is made to a variable name and the contents of that variable
cannot be interpreted as a resolvable reference name.

6.

7.

8.

An error
statement.

occurs processing

An error occurs in referencing the
error output, or user input during the
ACCEPT statements.

-~ U.L

A SEARCH statement is executed with the
the VARYING clause uninitialized.

either ('flO'l'
o..)Vl\.L or ~1ER GE

I/O switches user output,
execution of the DISPLAY or

index data item specified in

9. A PERFORM state has been executed with the variable specified in the
BY clause equal to zero.

10. An attempt is made to set an index data item outside the allowable
range as defined by the extent of the array it references when the I
-rck option has been specified for the compilation of the object
program executing. This may occur as the result of execution of the
SET or PERFORM statements.

11. A group data item that contains an item with the OCCURS ... DEPENDING
ON clause is referenced when the value of the DEPENDING ON variable is
outside the allowable range specified when the -rck option has been I
specified for the compilation of the object program executing. rnlS I
may occur when the group item is referenced either as a sending or
target field.

12. A program is called in which the -rck option was specified during its
compilation in which the arguments passed by the calling program do
not match in either number or data type the parameters expected as
defined in the Linkage Section.

13. An attempt is made to reference an element of a table which does not
exist when the -rck option has been specified for the compilation of
the object program executing i.e., the evaluation of one or more
subscripts or subscript expressions yield a value outside the range of
the table.

04/78 6-7 AS43A

After any anticipated error is encountered, a message is issued through the
error output 1/0 switch in the following format:

04/78

<program name>: <COBOL error message>
Error occurred at <segno>l<offset>

[in <path> [on line <lineno>JJ

6-7.1 AS43A

where <program name> is the reference name of the program causing the error (or
<reference name>$<entry point name> if the two are not the same) and <path> is
its pathname in the storage system. The segmented address given by <segno> and
<offset> is that of the instruction causing the error and <lineno> is the
external line number of the corresponding source statement.

After this message is issued, the system-defined error condition is
signaled. If no handler has been established for this condition, the default
handler prints the message:

system handler for error returns to command level

and reinvokes the command processor. At this point, the user can take
corrective action, possibly using a symbolic debugger to modify program data,
and then restart the program by invoking the start command. The result of
restarting program execution after any anticipated error is always a controlled
attempt to retry the operation that encountered the error such that any
modifications to user-defined data fields are taken into account. An attempt to
restart immediately after an error occurs without any intervening corrective
action always results in the recurrence of the error and again leaves the user
at the above described state. If the user decides not to restart the program
causing the error, he should free the stack space being held for this purpose by
using the release command. The run-unit will still be in effect at this time.

For example, if the following situation occurs:

test: SET statement range error
Error occurred at 355:131 in)udd)P)u)test on line 256
system handler for error returns to command level
r 75 LI 13.253176.0862153 level 2,17

the user may proceed as follows:

edm te st. cobol
n256

SET index-name TO index-count.
t
I index-name

02 xyz OCCURS 10 TIMES INDEXED BY index-name.
q
r 755 1.866 80.202 931 level 2, 17

db
Itestlindex count
" 11 "
= "01"
Changing 356:222
"11" to "01"
.q
r 756 0.988 3.658 69 level 2, 17

sr

The program then continues execution with index-name set to one, just as though
the error had never occurred.

04/78 6-8 AS43A

The type of error recovery shown above is strictly interactive. If such an
error occurs in an absentee process, the run is aborted at that point; i.e.,
immediately after the "error" condition is signaled (assuming no handler has
been established).

lID ERRORS

Errors involving lID activities performed on COBOL files are always
anticipated errors. The user is able to define one or more status keys, which
are set after each lID operation, whether successful or not. These provide
further information as to the nature of the error and can be tested by the
program or displayed after the fact via a debugger. See "Status Keys" in
Section IV for full details.

After the occurrence of an lID error, a message in the format shown above
is issued except that, in some cases, an additional message may precede. This
occurs when the error has been discovered as the result of a status code
returned by the lID system. In this case the preliminary line of the message
is:

(program name>: (Multics error message)

where (Multics error message> represents an interpretation of the status code
identical to that obtained via the system subroutine com_err_. For more
information on system status codes and error handling, refer to "Handling of
Unusual Occurrences" in the MPM Reference Guide.

The user can cause a specified action to be taken on the occurrence of an
lID error either by including the INVALID KEY or AT END option with the DELETE,
READ, REWRITE, START, or WRITE statements or by associating a declarative
procedure with a particular file or class of files via the USE statement. The
action performed is the group of statements immeOiately following the key word
in the former case or the entire section headed by the USE statement in the
latter. In either case, this action is performed in place of the normal action
defined above. See "Declarative Procedures" in Section IV for further
information.

6-9 AS43

I

I

print cobol error_ Subroutine

When a declarative procedure is executed as the result of an I/O error, the
user may wish to take different actions depending on the nature of the
particular error. As mentioned above, data fields may be specified that will be
set to certain values that correspond with specific errors. These can be used
as determining factors in deciding what subsequent action is to be taken.
However, the printing of the messages described above is preempted by the
execution of the declarative procedure. These are usually more descriptive and
precise than any information obtainable by evaluation of the status keys. In
addition, they provide information concerning the line number and location of
the statement causing the error. For this reason, the error messages that would
have been issued to the error output I/O switch are retained and may be printed
via the print cobol error - subroutine (refer to the print cobol error
subroutine described in the- MPM Subroutines manual). This subroutine -:rnay be
ctilled only from ~ithir. a declarative procedure; it displays information
applicable to the error causing execution of the declarative procedure that has
invoked it. An example of how it may ~e used is:

SELECT file-a ASSIGN TO switch-a STATUS IS skey.

01 skey PIC XX.

PROCEDURE DIVISION.
DEC LA RA TI VES .

secl SECTION. USE AFTER ERROR PROCEDURE ON file-l.
par1. IF skey = "10" GO TO par2.

CALL "print cobol error ".
STOP "File lrror ~as oc~urred on file-a".
GO TO par3.

par2. DISPLAY "End of file on file-a".
CLOSE file-a.

par3. EXIT.
END DECLARATIVES.

In this way, the end-of-fi'le condition can be checked without limiting the
available information in case of an unexpected error. In addition, any restart
after execution of the STOP causes execution to be continued after the I/O
statement in error, rather than having it retried as would happen if a
declarative procedure were not used.

The messages issued by print cobol error are directed to the error output
I/O switch. An additional entry point is available in this subroutlne that
allows the user to specify the switch to be used. Using
print cobol error $switch, the user can direct the output to error output or to
another switch, perhaps associated with an external file of stream-organization
defined in some program in the run-unit. For example:

09/79

SELECT EXTERNAL error-file ASSIGN TO error_report-PRINTER.

01 switch-name PIC X(12) VALUE "error_report".

PROCEDURE DIVISION.
DECLARATIVES.
report-error SECTION. USE AFTER STANDARD EXCEPTION PROCEDURE

ON INPUT, OUTPUT, 1-0, EXTEND.
par-1. OPEN EXTEND error-file.

CALL "print ~obol ~rror $swit.ch" (lSTNG Swit.0h-na!T!~=
END DECLARATIVES.

6-10 AS43C

In this way, all file errors
printable segment and execution
statements causing an error.

occurring in
continues,

the program
bypassing the

are recorded
execution of

in a
any

If print cobol error is improperly invoked with no pending error recorded,
an error message is-issued to error_output.

SIZE ERROR OPTION

If the result of a computation requires more significant digits than are
available in the specified target field, a size error occurs. The user has the
option of including a SIZE ERROR clause with any statement that involves an
arithmetic computation: ADD, COMPUTE, DIVIDE, MULTIPLY, or SUBTRACT. With this
argument he specifies a group of statements that are to be executed should such
an error occur. If the argument is not used, the compiler makes no provisions
for its occurrence. In this case, an unanticipated error occurs after which
execution cannot normally be restarted.

Unanticipated Errors

Unanticipated errors are reported directly to the user through the
error output 1/0 switch as the result of the signaling of a system-defined
condition. Condition handlers can be established to process any such condition,
but not via a COBOL program. Each particular error is associated with a
different condition; some are hardware detected such as numeric overflow errors,
while others are software detected, such as record quota overflow. Whether
corrective action can be taken following the error and the program successfully
restarted, as with anticipated errors, depends on the nature of the particular
error. A complete description of Multics error processing is given in "Handling
of Unusual Occurrences" in the MPH Reference Guide.

The following example shows a correctable erior situation:

Error: record quota overflow condition by iox $put char:150
C>system library standard>bound vfile) --
referencIng >udd5PROJ>user>prog~ame.s~itch name: 100000
r 1016 1.480 106.128 1311 level 2, 18 -

delete *.list
r 1016 0.064 0.210 13 level 2, 18

sr

In this case, the user has provided the additional records needed to perform the
apparent 1/0 operation by deleting all the list files in the working directory
and thus enabled the execution of the program to be completed.

04118 6-11 AS43A

I
I

I

04/78

Some common, and usually unrestartable, errors are described below.

1. A numeric data item is used as the sending field in a numeric nOVE or
the operand in a computation, and it contains an invalid value in
either the digit or sign position. This causes an IPR error; i.e.,
the signaling of the illegal procedure condition, which in turn causes
program termination, assuming that no handler has been provided. This
is a common error in COBOL programs that attempt to use uninitialized
signed numeric data under the assumption it has a zero value. This is
due to the fact that uninitialized data normally consists of all zero
bits (although this is not guaranteed) which happens to constitute an
invalid sign value for Separate and Nonseparate Sign Display numeric
data. Refer to "Data Types" in Section V and see Table 5-3. For
example, in the program:

01 cnt PIC S999.

ADD 1 TO cnt.

such an error occurs upon execution of the ADD statement if cnt has
not been previously set as the target of a MOVE or computation. The
VALUE clause should always be used when it is necessary for data to
have initial values.

2. A computation is performed in which the result requires more
significant digits than the target field provides and the SIZE ERROR
option has not been used. For example, in the program:

01 cnt pic 9 value O.

PERFORM par1 10 times.
par 1. AD D 1 TO c n t .

when cnt has the value 9, adding one does not set it to zero, but
rather causes a fixed-point overflow error after which program
execution is terminated.

3. A subscript is used to index an array and contains a value outside the
range of the array. This type of error may go initially unrecognized
causing the destruction of other data in the program. (Sometimes an
attempt to address beyond the bounds of the segment occurs causing an
out of bounds error.) This problem can be avoided if the -rck option
is specified at compile-time. In this case, this situation results in
an anticipated error.

4. A CALL statement is executed in which the reference name contained in
the specified literal cannot be resolved by the linker. This results
in a linkage error that may be recoverable by alteration of the
execution environment. See "Dynamic Linking" in Section V for details
on how to handle this type of error. A similar anticipated error
occurs when a variable is specified with the CALL statement. In this
case, recovery can be made as above or the contents of the variable
can be altered, thereby changing the reference.

6-12 AS43A

SECTION VII

EFFICIENCY CONSIDERATIONS

This section deals with efficient use of Multics COBOL.
against some particularly inefficient constructs and data
given hints concerning program efficiency in the areas of
definition, and I/O usage.

PROGRAM SIZE

The user is warned
types and also is

program size, data

On Multics, program size should be kept small. This allows the user to
perform frequent interactive compilations and to take advantage of the
flexibility provided by dynamic linking. Modularizing a complicated procedure
into a number of programs with well-defined interfaces also serves to reduce the
complexity of the resulting programs and to facilitate debugging activity.

In regard to code generated by Multics COBOL, programs that reference less
than 32K words of data (i .e., 131,071 bytes) execute most efficiently. A I
pointer register is conventionally maintained so that the first 32K words
defined can be referenced directly, without an index register and without the
need to load a pointer register before each reference. Register pooling is
employed for data beyond this nominal limit; i.e., registers to reference this I
data are shared for other purposes and may have to be' reloaded before they can
be used. For larger programs, the Working-Stor~ge section should be set up so
that the more frequently used data items are defined toward the beginning and
less frequently used items toward the end. In this way, the more frequently
used items are referenced via the dedicated pointer register. The record areas
associated with files are usually allocated' first and are thus usually
referenced directly.

COBOL source-level segmentation should not be used. The user gains nothing
from dividing a program into segments of varying priority, and the additional
overhead necessary to simulate the activity of independent segments can even
cause performance degradation. If segmentation must be used, for compatibility
purposes, then the uSe of alterable GO TO statements in independent segments
should be avoided if possible.

7-1 AS43A

I

I

I

DATA DEFINITION

The VALUE clause should not be used to initialize Working-Storage data
unless the data actually must be initialized. That is, it should not be used as
a matter of course as it causes additional instructions to be executed when the
program becomes part of the run-unit. It is however, the only way a COBOL
program can cause data to be set upon first invocation only and thus make a
distinction between the first and subsequent invocations.

Data not changed by the program should be defined in the Constant Section.
Such data is not allocated in the data segment; i.e., it does not count in the
32K efficiency boundary men:ioned above. Instead, it is allocated in the text
section of the object segment immediately before the executable code. This not
only allows it to be referenced efficiently by self-relative addressing, but
also provides protection against accidental modification since the oDJect
segment is not normally writable. This data is pooled along with the literals
used by the program so that many different data items may share the same storage
space. For example, if a five-character data item with value "ABCDE" along with
a one-character item with value "B" is defined in the constant section and the
alphanumeric literals "BCD" and "A" are used in the program, all will refer to
the same data area. That is, a total of only five characters need be allocated.
Another advantage of Constant Section data is that the initialization is
performed at compile-time rather than at run-time as with Working-Storage data.
Thus, it takes no longer to execute a program for the first time in the run-unit
with many constants than a similar program with none at all.

lID CONSIDERATIONS

Relative and indexed files are treated as having identical file structure
by the Multics lID system. For relative files, the COBOL lID run-time system
keeps track of the relative record number for sequentially accessed files.
Processing efficiency is approximately the same for relative and indexed files.
Generally, sequential organization files are more efficient to process than
relative or indexed, and stream files more efficient than sequential. Dynam~c
access mode, which should be specified only if the file must be referenced both
randomly and sequentially, should be used sparingly because it reduces the
efficiency of sequential reads when the program also contains DELETE andlor
REWRITE statements.

Status keys should not be specified unless they are to be tested and used
by the program, preferably in a declarative procedure. They add additional
overhead on every lID operation and provide no further information about an
unexpected error than is provided by the normal error mechanism.

No significant extra activity is necessary to support the RECORD CONTAINS
DEPENDING ON construct. It is advisable to use this construct when it is

applicable, especially with files of stream organization. With print files,
considerable space can be saved by writing variable-length records, especially
if many trailing spaces are anticipated. Use of the ADVANCING option should be
used, even with a variable, instead of writing blank lines.

04118 1-2 AS43A

USE OF NUMERIC DATA TYPES

Use display numeric data whenever the ratio of its use in computations to
its use in a displayable format is fairly even~ That is, the time saved in
arithmetic operations by using more computational-oriented data may not outweigh
the time lost in converting that'data to an ASCII displayable format. Also,
Display numeric data is often required for compatibility and portability when it
is necessary that alphanumeric data share the same byte locations via the
REDEFINES option. Nonseparate Sign Display data is not directly supported by
Multics hardware and its manipulation requires significant software support.
Thus, its use is strongly discouraged for it adversely affects program execution
speed. It should be avoided and used only when required for compatibility
purposes.

Packed Decimal data (designated by USAGE IS COMP, COMP-5, or COMP-8) is
somewhat more efficient than Display data. Additionally, and most importantly,
use of Packed Decimal reduces the space required by a factor of two to one.
Conversion to displayable format is required, but involves minimal cost since
the data is in-decimal format, i.e., the 4-bit values represent decimal digits
that are easily translatable to their ASCII counterparts.

Long Binary and Short Binary data (designated by USAGE IS COMP-6 and
COMP-7, respectively) is highly efficient in arithmetic operations, especially
under the conditions described below. However, conversion to a displayable
format is significantly more expensive than for Packed Decimal. The choice
between Long and Short Binary should be made on the basis of the ~rec~sion
required and/or compatibility requirements involving alignment~ Word alignment
is guaranteed only. for Long Binary data; Short Binary is half-word alrgned.
Short Binary can hold values from-131,072 to 131,071, inclusive; Long Binary
can hold values from -34,359,738,368 to 34,359,738,367, inclusive.

Code generated for computations involving Binary data is optimized when the
computation can be performed in the hardware registers, with no possibility of
the loss of Significant digits. This code executes much faster than the code
generated to deal with Display or Packed Decimal data. Code to perform
computations using the hardware registers is generated for all addition,
subtraction, multiplication and division operations (i.e., for the. ADD,
SUBTRACT, o. MULTIPLY, and DIVIDE statements and the COMPUTE statement not
contairting th* exponentiation operator *.) if the following cdriditi6ris ~~e true:

1. All target variables are either Long or Short Binary.

2. The number of operands in the expression is less than or equal to two.

3. All operands in the expression are either Binary data, the figurative
constant zero, or literals having a value that is an integer and
within the range specified above for Long Binary data.

4. None of the Short Binary targets or operands appearing in the
statement are elements of an array.

5. If the operation is division, none of the target variables are to be
rounded.

7-3 AS43

I

I
I
I

USE OF THE INSPECT STATEMENT

There are many variations of the INSPECT statement and for the general case
a run-time support routine is invoked. However, optimization is performed for
certain commonly used variations which result in efficient in-line code. It ·is
often more efficient (and straightforward) to use more than one INSPECT
statement rather than one with multiple operands.

A statement in the form:

INSPECT identifier-i TALLYING
r r ALL "\ j i d en t i fie r - 3 -1 i

identifier-2 FOR 1 L LEADING J lliteral-l j 1
L CHARACTERS

[{
BEFORE}
AFTER INITIAL {

identifier-4 }]
literal-2

results in efficient code, provided identifier-3 or literal-1, and identifier-4
or literal-2 are non-numeric and have a length less than three. Note that if
multiple tallying results (identifier-2), objects of inspection (identifier-3,
literal-2), or inspection delimiters (identifier-4, literal-2) are specified,
optimization cannot be performed and results may not be· what is expected. For
example:

01 str pic x(12) value "ababababcaba"
INSPECT str TALLYING cnt1 FOR ALL nab" AFTER "b"

cnt2 FOR ALL "ban AFTER "~".

gives different results than:

INSPECT str TALLYING cnt1 FOR ALL nab" AFTER "b"
INSPECT str TALLYING·cnt2 FOR ALL "ban AFTER "a".

Namely, for the former case (one INSPECT) cnt1 is increased by 1 and cnt2 is
increased by 3, while for the latter (two INSPECT's) cnt1 is increased by 4 and
cnt2 is increased by 4. The execution of the two INSPECT statements is faster
by at least an order of magnitude than the one INSPECT statement and this
difference increases drastically as the l~ngth 6f the inspected string increases
and the number of hits decreases. For example, giv~n a 1000 character string in
which only a few matches are found, the difference in execution time would reach
4 ~rders of magnitude.

The same type 6f differences apply when using the REPLACING option.
Statements in the form:

and

INSPECT identifier-l

REPLACING ALL { {identifier-5}
literal-3

INSPECT identifier-l REPLACING

ALL { identi fier-5 }
literal ... 3

r [BEFORE "\
L L AFTER J

BY {
identifier-6 }}
literal-4 ...

INITIAL [identifier-7 1.. 1
lli teral-5 j j

result in efficient code if (1) all identifiers are non-numeric,· (2)
identifier-5 or literal-3 and identifier-6 or literal-4 are one character in
length, an~ (3) identifier-7 or literal-5 (if used) are less than three
characters in length. The, code sequence generated is somewhat shorter if
literals are specified for both the ALL value and BY value.

02/79 7-4 AS4jB

Like the TALLYING option, slight differences in format can result in
enormous differences in efficiency and it is often more efficient (and
straightforward) to use more than one INSPECT statement than multiple operands.
For example:

~ove 'a' TO ida MOVE 'b' to idb
INSPECT str REPLACING ALL ida by 'A' AFTER 'b',

ALL idb BY 'B' BEFORE 'c',

yields the same results (i.e., "aBABABABcAbA") as:

INSPECT str REPLACING ALL ida BY 'A' AFTER 'b'
INSPECT str REPLACING ALL idb BY 'B' BEFORE 'c'

which is "aBABABABcAbA".

However, the latter is accomplished via a few machine instructions whereas
the former requires a call to a run-time routine. Again, this is at least an
order of magnitude difference with an exponential increase as the inspected
string gets longer. It must be noted however, that the results of the above two
variations are not necessarily always the same and depend on the values assigned
to the identifiers. If "A" had been moved to idb, then the result of the single
INSPECT would have been "abAbAbAbcAbA" while the result of the two INSPECT's
would have been "abBbBbBbcBbB".

It should be noted that some very awkward and unwieldy forms of the INSPECT
statement may be necessary to accomplish relatively simple and straight forward
applications. For example, to convert all lower-case alphabetics in an
alphanumeric data field to upper-case, the user would have to write the COBOL
statement as:

INS P E ,_: T .1,-1 t c:; - n am eRE P LA C I N G AL L " a" BY" A ", " b" BY" B", " c" BY" C " ,
"d" BY "D", l'e" BY "E", "f" BY "F", "g" BY "G", "h" BY "H", "i" BY
"I", "j" BY "J', "k" BY "K", "1" BY "L", "m" BY "M" ~ "n" BY "N" 1

"0" 3Y j'2", lip" BY "P", "q" BY "Q", "r" BY "R", "s" BY "Su, "t"
BY "T", ..II! Bf "U", "v" BY "V", "w" BY "W", "x" BY "X", "y" BY "Y",
!!z!! By!· .. ··,.

However t'l.LS .:.alls into the format shown above for which efficient code is
produced. In fact, in this case, exactly one machine instruction is generated
to accomplish the entire statement. On the other hand, the statement:

INSPECT data-name REPLACING ALL "ab" BY "AB", "be" BY "BA".

results in the invocation of a run-time support routine and a character by I
character inspection (via software) of data-name which ANS rules demand.

MISCELLANEOUS CONSIDERATIONS

If possible, use indexing rather than subscripting. Using an index to
reference an array element is considerably more efficient; additionally, this
prevents you from referencing outside the range of the array.

It is more efficient to use the DIVIDE statement than to use COMPUTE with
the division operator. The division is correct to the maximum number of digits
of precision which the hardware can support in the latter case, whereas it is
carried out only to the precision necessary for satisfying specified COBOL rules
in the former.

04/78 7-5 AS43A

I

If multiple operands are specified with the STRING, UNSTRING, and DISPLAY
statements and some are variable length, it is more efficient if the
fixed-length items are specified first. For the STRING and UNSTRING statements,
nondelimited variables should be given first, if possible. Literal delimiters
less than three characters in length are processed significantly more
efficiently than longer literal delimiters which, in turn, are processed more
efficiently than variable delimiters. It is far more efficient to execute one
DISPLAY statement with multiple operands than to execute multiple DISPLAY
statements. The same is not true of the OPEN statement.

Defining an item with the OCCURS ... DEPENDING ON clause causes references
to a containing item to be significantly more time consuming. Thus, this
construct should only be used when necessary. If necessary only for some
references, it is worthwhile to REDEFINE the containing item as fixed length for
the othpr times it is referenced.

MEASURING A PROGRAM'S PERFORMANCE

The cost of executing each statement of a program can be determined by
specifying the compiler control argument profile. The information produced is
of interest to both the beginning programmer and the expert. For the beginning
programmer, it is a guide to the economics of programming and restores the view
of hardware cost that a high-level language otherwise obscures. For the expert
programmer, it is an indication of the points in a program that are unreasonably
expensive and that require refinement.

To measure the performance of a program, the user specifies the -profile
control argument in the cobol command that compiles the program. When the
profile control argument is specified, additional code is generated to calculate
statistics about the execution of each statement. After the program has been
executed, the information involving the accumulated statistics can be displayed
by invoking the following comman,d: .

profile sn

where sn is the segment name of an object segment.
command-rn the MPM Commands.)

(Reference the profile

For each statement in each line of the COBOL Program, a line is printed
that gives the number of times the statement was executed, the number of
instructions executed, and the support subroutines called as a result of the
statement's execution. For example, consider the following lines from a profile
listing:

LINE STM

8
10
12

COUNT

1
1
5

COST

7
10 +
50 +

PROGRAM

(open int file)
(write_stream)

The profile listing indicates that the statement on line 8 was executed once;
this statement requires seven machine language instructions and does not require
any support subroutines (i.e., operators). The statement on line 10 was
executed once; this statement requires ten machine language instructions and one
support subroutine, namely open int file. The statement on line 12 was executed
five times; this statement requires ten machine language instructions and one
support subroutine.

04/78 7-6 AS43A

SECTION VIII

COBOL MESSAGE CONTROL SYSTEM

The design of the runtime package that supports the full Level-2 functional
requirements of the ANSI COBOL-74 Communications Module is described in this
section.

Multics COBOL processes ANSI COBOL-74 Message Control System syntax. Full
Level-2 functions are provided for the SEND, RECEIVE, ENABLE, DISABLE, and
ACCEPT (MESSAGE COUNT) verbs of the COBOL Message Control System, hereafter
called CMCS or COBOL MCS. In addition, the PURGE verb from the CODASYL Journal
of Development (JOD) is supported.

Messages can be any length up to 262,144 bytes (including a small amount of
control information), and can be written and read in any number of pieces, thus
allowing the possibility of intermixed messages in the queues. Delimiters for
the pieces are specified, but cannot be imbedded in the data.

REFERENCES

It is recommended that the reader be familiar with the description of the
Communications Module in the ANSI COBOL-74 Standard.

1. ANSI COBOL-74 Standard Definition, ANSI X3.23-1974

2. CODASYL JOD, 1976, for a description of the PURGE verb.

TERMINOLOGY

04/78

absolute tree path
is a tree path that specifies all levels of a subtree necessary to
identify a specific physical message queue.

command line
is the command that is executed when a physical message queue
contains a message. It is specified for the queue in the source for
cmcs tree ctl.control. Rules for constructing command lines are
given in the description of the cv cmcs tree ctl command.

level name
is the logical name, from 1-12 characters, associated with each
level in a queue hierarchy definition.

level number
is a number from 1-4
hierarchy definition.

that is associated with each level in a queue
It is not necessary to use all four levels.

8-1 AS43A

mp line
is similar to the command line and is used when a message processor
is called to process a queue containing messages.

message delimiters
egi end-of-group indicator
emi end-of-message indicator
esi end-of-segment indicator

physical queue name
defines the name of the physical message queue. The actual
entryname assigned always has a cmcs_queue suffix. In all
subsequent discussions, the word "physical" is omitted from
"physical queue name"; however, the meaning is the same.

queue hierarchy
is a tree structure ~sed by COBOL programs to access messages for
(COBOL) communications processing. There can be up to four levels
in any subtree and any number of subtrees. Each level is identified
by a level number and a level name. In the Multics implementation,
the level names are logical (i.e., the physical message queues are
identified with a separate name associated with each terminating
branch (tree path) in the hierarchy definition).

tree path
is the concatenation of the level names in a particular branch of
the subtree. It is the tree path by which COBOL application
programs identify the particular physical message queue or queue
hierarchy to be accessed. A tree path has one of two forms:

1. Internally, it is always a 48 character string, consisting of
the concatenation of the four 12-character level names. The
level names are blank filled to a maximum of 12 characters, and
trailing unused level names must be supplied and must be blank.

2. Externally, the tree path can be a quoted string of the
internal form or it can be a variable length string of
characters with up to four period-delimited level names,
similar to the components of an entryname in the storage
system. In this form, the level names are not blank filled.

Examples of the two formats of tree paths are:

"orders cloth shirts dress

orders.cloth.shirts.dress

Notice that it is possible to have a tree path (in this form) that
is 51 characters in length if all four level names are given and
they are each 12 characters long.

DESIGN CONCEPTS

The COBOL-74 Communications Module is the section of the ANSI COBOL
standard that defines the COBOL MCS. COBOL MCS is a general facility used for
writing and reading messages in message queues, invoking application routines to
process messages, and controlling access to the terminals and queues. (Terminal
access in Multics is controlled only as it relates to CMCS; outside the context
of CMCS, no CMCS controls are imposed.)

04/78

• Full Level 2 COBOL MCS function·s are provided wi th MR6. O. "Full
Level 2" dictates that all
COBOL-74 definition of CMCS.
CODASYL JOD is also provided.)

functions adhere strictly to the ANSI
(The purge function as defined in the

8-2 AS43A

04/78

• The Multics implementation of COBOL MCS is based on the concept of a
"station." A station is a logical entity, having controls imposed by
the system, that can be attached by a process. Its primary purpose is
to provide a uniform mechanism for identifying sources and
destinations of messages. Thus, the facility is independent from
terminals, user-ids (including anonymous users), or constraints placed
upon interactive or absentee users,

In this usage, the term "attach!! means only that an available resource
becomes solely owned for current use by a speclIlc process. The
connotation of a Multics 1/0 attachment does not apply.

A specific station can be attached by an individual process; by
default, it is assigned to users dynamically on the basis of terminal
subch anne 1 s .

• A process can attach only one station.

• CMCS uses the standard Multics interfaces for terminal 1/0. The only
control imposed by CMCS is that the runtime package checks to verify
that a queue or terminal is enabled before attempting to do 1/0 with
that target.

• Every process must attach its station before proceeding. The first
attachment initializes the user's environment for CMCS processing. At
this point, a user can perform any CMCS operation.

• All message queues and system control tables for a given set of users
are contained in a single, user-specified directory. If desired, a
different set of users can operate in a different directory.

• The COBOL language specification requires
password for the ENABLE and DISABLE verbs.
literal passwords into program source is
section.

user programs to specify a
The need to avoid putting

emphasized later in this

• All COBOL application programs are benign, i.e., they always access
CMCS queues and control segments through the CMCS runtime interface.
If this policy is violated, incorrect operation may occur.

• Most messages are
destinations causes a
destination's queue.

short.
copy of

Thus,
the

a message sent to multiple
message to be placed in each

• When a user sends only a portion of a message, it is likely that it is
either a long report or a file data copy. Thus, a maximum size
holding buffer must be used. For this reason, a temporary segment is
assigned to each queue when the user sends a partial message to that
queue.

• The meaning of message length (to a COBOL program) becomes ambiguous
if the slew controls are imbedded in the data. For this reason, the
slew control information is kept separate from the message text until
the message is to be sent to an output device.

• The COBOL-74 Communications Module description is not specific as
regards the number of passwords needed for CMCS. Until ANSI clarifies
the rules for the use of passwords only one password, at the CMCS
system level, is used. This password must be matched by all users
wishing to perform enableldisable functions.

• The COBOL application program must use the absolute tree path of the
target queue to receive subsequent pieces of a message. To eliminate
ambiguities in the processing of receives with tree paths that are
subsets of an absolute tree path for a receive in process (not all
segments of the message have been read), the following rule is
established:

8-3 AS43A

04/78

A receive request with a tree
a message from a.b.c, must be
request from a or a.b. can be
a.b is rejected.

path of a.b, that is answered with
completed before any other message
processed. Any attempt to use just

Continuation receives for a.b.c are valid (and appropriate), as is a
receive request addressed to a.b.d or a.b.f, where a.b.d and a.b.f are
not necessarily absolute tree paths.

As an example,

Tree Path In-process Queue Name

a

a.b

a.b.c yes queue 1

a.b.d yes queue 2

a.b.f yes queue 3

given that requests for absolute tree paths a.b.d and a.b.f are
in-process, a new request for tree path a.b is rejected with
cmcs error table $ambiguous tree path. This causes a status key of
"20"-to be-returned to the requesting COBOL application program.

• A message queue is used to hold output messages for terminals until
they are written to the output device, or to hold input messages until
they are read by the COBOL application programs.

• In the Multics implementation, there is no physical distinction
between queues accessed for receives, and queues used to hold messages
for destinations.

Because of this, the CMCS queue hierarchy definition must include the
specification of all queues, both application queues and destination
queues.

In send operations, the destination is translated into a station name,
and thus has a specific queue assigned to hold the messages for output
to a terminal device.

• In an initial implementation, a user can attach (own) only one station
(to receive output as a destination). The process does not own the
queues it accesses for normal receives.

Only one password is used to validate all enable and disable requests.

• The EMI and EGI message delimiters are processed identically by the
runtime package. Differentiation in the meaning of these two
(logical) delimiters is left totally to user software.

• Attempting to do a send and a receive on the same tree path in the
same process is not allowed in the Multics implementation. Once either
of the operations is completed, the other can be started without
constraint.

For multiple
manipulation.
interference.

processes, locks are used for critical areas of queue
Locking is kept to a minimum to reduce inter-process

• Only the particular message being received is locked on an extended
basis. The entire queue is locked only long enough to accomplish the
message lock and changing the status lists.

8-4 AS43A

• The Multics implementation
CMCS directory explicitly.

design requires a process to specify its
This is done with the cobol mcs command.

COBOL MCS QUEUE ORGANIZATION

I QUEUE-XXX I

I I I I
I

RCD 0/1 RCD 1/1 RCD 2/1 RCD 2/2 RCD 3/1

CONTROL MESSAGE MESSAGE SEGMENT MESSAGE
INFO HEADER HEADER HEADER HEADER

SEGMENT SEGMENT DATA SEGMENT
HEADER HEADER HEADER

DATA DATA DATA

Notes:

Any given message can span multiple non-contiguous records of the file.
Only the first record for a given message contains a message header. Subsequent
pieces (segments) contain only the segment header and data.

Keys for the vfile records consist of two adjacent fields of fixed bin(35)
values. The first field contains the ordinal number of the CMCS message. The
second field holds the ordinal number for message segments within the given
message. Message numbers and message segment numbers begin with the value one.
When the physical queue is created, a record with key values of 0/1 is stored.
This record contains global control information for that queue. It is called
the queue control record.

Part of the header record for each message is a
backward pointers. The message header of a message is
pointer pairs, based upon the status of the record.

04/78

Current status codes are:

1 send in process (message being built)
2 send complete (available for processing)
3 receive in process
4 receive complete (ready for deletion)

8-5

pair of forward and
linked into a list of

AS43A

OVERVIEW OF CMCS DATA BASES

For a given set of users, the data bases described below and the associated
message queues reside in a single directory. A different set of users can have
the control segments and queues in a different directory.

cmcs terminal ctl.control
provides the default station id for interactive users (based on
user-device channel).

cmcs tree ctl.control
contains the template definitions of all CMCS queue hierarchies for
a given set of users. This segment is copied into the process_dir
during the useris CMCS initialization and is then dynamically
updated with user-specific information for each entry used.

cmcs station ctl.control
defines all legitimate stations and contains per-station flags to
indicate enable/disable conditions.

cmcs wait ctl.control
is-shared by all processes performing a receive with wait. Entries
are searched by queue hierarchy on a first come, first served basis.

cmcs system ctl.control
- this-segment initially contains the single CMCS password (up to 10

characters), used in granting permission to perform the enable and
disable functions as given in the language. In addition it contains
a field that specifies the number of seconds to wait in attempting
to lock any of the CMCS control segment locks.

cmcs queue ctl.control
- contains the flags for enable/disable functions on a per-queue

basis. Additionally, it holds the message status counters and
linked-list pointers for each queue. Entries in this table are
searched to find occurrences of available messages before the actual
queues are accessed.

cmcs user ctl.control
thIs per-process, external static data base contains all the
per-process parameters used by the various CMCS subroutines.

ADMINISTRATIVE FUNCTIONS

CMCS Administrator

The CMCS administrator must define and generate the system data bases (and
their containing directories). The following data bases require a source
segment for compilation by CMCS compilers:

cmcs station ctl.control
cmcs-terminaI ctl.control
cmcs-tree ctl~control

The station control segment must be gen~rated before the terminal and tree
control segments. After the tree control segment is generated, the
cobol mcs admin command is used to create all queues and additional control
segments:

04/78 8-6 AS43A

cmcs queue ctl.control
cmcs-wait ctl.control
cmcs-system_ctl.control

After the system control segment is created, the administrator must use the
set cmcs psw request of the cobol mcs admin command to set the initial password
for the CMCS system.

Additionally, the administrator must manually set the ACLs on all CMCS
segments, as appropriate for the given set of users. All segments, with the
exception of the cmcs system ctl.control and cmcs terminal ctl.control segments,
must have read and wrIte access for all users. Only the administrator need have
write access on the cmcs system_ctl.control segment (to change the password).

The cmcs tree ctl.control segment must have read and write access for all
users. In addition, the administrator must set the copy switch "on". This
segment is copied to the user's process directory, so that it can be updated
with process-specific information.

04/78 8-7 AS43A

Message Processing Operation

DAEMON MESSAGE PROCESSOR

The message processors invoke the COBOL application programs that actually
process the input messages and generate the outp~t messages. They are similar
to the system daemons in that they are initiated by the operations personnel
from a system terminal, and thus are not subject to idle process timeouts or cpu
time usage constraints. In addition, they can use the daemon message routing
facility so that multiple processes do not require multiple terminals. However,
in all other respects, they are like every other interactive process, subject to
all access and privilege controls.

Each message processor process has a Person id.Project id chosen by the
CMCS application administrator to be the application program User id. The
start up.ec exec com is used to condition the process environment and-calls the
cobol-mcs command, to start the actual processing of messages.

Once logged in, the message processor adds itself to a list of message
processors waiting for a transaction. It remains in the list until told to log
out by the application administrator (with the stop_mp request).

System Administrator Actions

The system administrator registers the project and users for a given CMCS
application system. The project must be given the daemon attribute in the
system administrator table (SAT). This permits the operator to log in the
process from a system terminal.

In addition, the system administrator determines if and how the daemon
terminal 1/0 is to be routed, and 'sets up the appropriate message routing
segments in >sc1 and controls in the system_start up.ec.

Project Administrator Actions

The project administrator adds the Person id of each message processor to
the project master file (PMF). The Person id also must be given the daemon
attribute.

The project administrator also creates a start up.ec exec com for the login
home directory of the message processor User id~ It has the general format
given below.

The project administrator coordinates with the system administrator on the
names to be used by the operators when logging in the message processor daemons.
(However, once the message processors are logged in, no further communications
with that process are necessary unless some abnormal situation occurs.)

&command line off
cwd <application directory path>

/&..._L.~ __ ____ ,

" ., "d " J. V II II dill t: /

logout

04/78 8-8 AS43A

Operator Actions

The operator logs in the daemon
for logging in the 10 daemons. It
functions in the admin.ec exec com.

USER COMMANDS

message processors in
may be desirable to

the same manner as
set up the login

A summary of the commands provided as part of the COBOL MCS runtime support
facility are provided below and are immediately followed by the detailed
descriptions.

cobol mcs, cmcs
- serves to establish the environment for further CMCS processing.

Users specifying the terminal option can perform any of the
functions of the COBOL send, receive, enable, disable, accept
message count, and purge verbs. If the message processor option is
used, the command performs the process initialization and then
enters a wait-state. This is in preparation for the execution of a
COBOL application program.

cobol mcs admin, cmcsa
- is-an administrative command with three major functions. The first

is to create necessary control segments and message queues for a
given CMCS directory, using the cmcs tree ctl.control segment as
input. The second is to set or change the system-wide password,
used to validate enable or disable requests. The third is to
administer the message processing interfaces (i.e., starting and
stopping the message processor).

cv cmcs station ctl
cv-cmcs-terminaI ctl
cv-cmcs-tree ctl

ire tliree control segment compilers based on the reduction compi19r
tool. They each read a source file called cmcs XXX ctl.src, where
XXX is station, terminal, or tree, respectively, and generate a
binary control segment of the name cmcs XXX ctl.control.
Subroutines that access the binary control segments hive a name of
the form cmcs XXX ctl .

A comprehensive example utilizing cmcs and cmcsa is provided at the end of
this section rather than with each of the following command requests.

04/78 8-9 AS43A

cobol mcs cobol mcs

Name: cobol_mcs, cmcs

Provides a command interface to the CMCS and functions in a manner similar
to that used inside a COBOL program. Refer to the
Multics COBOL Reference Manual for a complete description of the Communications
Module.

The first time this command is invoked in the user's process causes
initialization for the execution of all subsequent CMCS operations. If the
process is to operate as a CMCS terminal, the command reads subcommands from the
user_input switch.

cobol mcs cmcs dir {-control_arg}

where:

1. cmcsdir
is the path of the directory containing the desired CMCS message
queues and control segments.

2. control arg

Notes

must be one of the following:

-message processor, -mp
followed by a valid
the process to be
application program.

-terminal, -term

CMCS station name.
initialized for

The use of -station causes
subsequent use by a COBOL

optionally followed by a station name. If the station name is not
given a default station id is used. The use of -terminal causes the
process to be initialized to act as a CMCS source/destination.

This command must be invoked to initialize the user's process before any
other COBOL MCS functions are performed.

Once cobol mcs is invoked for terminal operations, the command reads
requests from the user input switch. The requests supported are receive, send,
enable, disable, accept, purge, and quit. They are identical in function,
although slightly different in format, to the corresponding verbs described in
the Multics COBOL Reference Manual under "Communications Module." (The purge
request is described in the CODASYL JOD.) Full ANSI COBOL-74 Level 2 support is
............ ,...." • .; ,.1-. A
t"'VY..L\,,4cu..

04/78 8-10 AS43A

cobol mcs cobol mcs

Request Summary

Requests and their abbreviated forms are listed below and are immediately
followed by a detailed description .

. (who am I?)
prints the short name of the command and the attached station name.

accept_message count, arnc
prints a count of all messages available in the specified queue
hierarchy.

disable input, di
disable-input terminal, dit
disable-output, do

disables a queue hierarchy, a station, or a set of stations,
respectively, from further activity, after the currently active
messages are processed. (This distinction is made because the COBOL
definition requires that messages currently being processed must be
completed before the queue or the terminal is disabled.)

enable input, ei
enable-input terminal, eit
enable-output, eo

-enables a queue hierarchy, a station, or a
respectively, for further activity.

set of stations,

execute, e
passes the remainder of the line to the system command processor.

purge, p

quit, q

causes all partially sent messages to be deleted, and all partially
received messages to be marked again as available.

causes the cobol mcs command to purge any incomplete send and/or
receive messages and then returns to command level.

receive, r

send, s

prints and deletes all messages available in the specified queue
hierarchy.

sends input lines as messages (or message segments) to the
destinations specified (partial messages are first accumulated until
they are complete, before writing to the destinations).

Request

The "." request is a convenient means for the terminal user to verify that
he is at request level in the cobol mcs command. It causes the short name of

04/78 8-11 AS43A

cobol mcs cobol mcs

the command, cmcs, to be printed. In addition, the name of the attached station
is printed.

Request

accept_message count, amc

This request causes the command to search the appropriate queues for a
count of all messages currently available for processing (send complete) and
prints the sum on the user output switch. Unless there are no other CMCS users
on the system, the availability of messages may change between the
accept_message count and any subsequent receive requests.

accept_message count tree_path

where tree path is a character string of the form a.b.c.d. The components, a,
b, c, and d represent the four levels of a CMCS queue hierarchy (maximum). The
level names must be alphanumeric (including underscore), and can be from 1-12
characters in length; trailing blanks are appended internally when appropriate.
At least the first component is required; trailing components are necessary
only to define the desired level in the queue hierarchy.

Request

disable input, di
disable-input terminal, dit
disable=output, do

These requests require a password, using the non-print function of the
terminal or a mask to avoid the printing of the password. The password response
is encoded and compared to the CMCS system password. If equal, the command
processes the arguments on the request line. The result is identical in
function to that of the disable verb in the COBOL language.

04/78 8-12 AS43A

cobol mcs

disable input tree path
disable input termInal source
disable=output dest1 {dest~

where:

1. tree_path
is as above.

2. source and desti

cobol mcs

dest!!.}

both refer to station names. They can be the same name if it is
desired to prevent a particular station from both entering messages
into the system and getting output (messages) from the system. Up
to ten destinations can be specified.

Request

enable input, ei
enable input terminal, eit
enable=output, eo

These requests operate identically to that of the disable requests, except
that they enable the specified queues or terminals.

enable input tree path
enable input termInal source
enable=output dest1 {dest~ destn}

where tree_path~ source, and desti are the same as in the disable request above.

Request

execute, e

This request is used to execute other Multics commands while operating
under the cobol mcs command.

04/78 8-13 AS43A

cobol mcs cobol mcs

execute command line

where command line is any command line to be passed to the Multics system. The
format is the same as input at normal command level.

Example

To print summary information on how many users are on the system, type:

execute how many users
Multics 2.0~ load 5.0/50.0; 6 users

Request

purge, p

This request causes all partially sent messages to be deleted, and all
partially received messages to be marked again as available.

purge s {destl dest!!.}

where desti is as above.

Notes

The purge s request causes all partially sent messages (for that process)
being sent to the listed destinations to be deleted. If no destination list is
given, all partially sent messages are deleted.

04/78 8-14 AS43A

cobol mcs cobol mcs

Request

quit, q

This request causes an implied purge all request and terminates the
cobol mcs session. The user is then returned to Multics command level.

quit

Request

receive, r

This request causes the appropriate queue or queues to be searched for the
first available message. If none is found, a "No messages" comment is generated
and the command returns to request level. (The cobol mcs command interface does
not "wait" for a message to become available.) If o~e is found, the message is
printed on the user-output switch, along with any appropriate slew-control data.

receive delim tree_path

where:

1. delim
is either esi or emi, to indicate that either a message segment, or
an entire message is desired.

2. tree_path
is the same as in the accept_message_count request above.

Notes

After the complete message is printed, it is deleted from the queue. When
performing a receive segment request, it finds the first available message and
prints the first segment of that message. Subsequent invocation of the request
with either a null or the absolute tree path causes the following segments of
the message to be printed. The message is deleted after the last segment of the
message is printed.

04/78 8-15 AS43A

cobol mcs cobol mcs

The receive request must be used to obtain output sent to the station
(destination). For this purpose, tree path is the user's station name. (The
" " request can be used to print the staIion name of the process.)

Request

send, s

This request duplicates the function of the send verb with one of the three
logical delimiters Cesi, emi, or egi respectively).

send delim dest 1 {dest2 destQ.}

where:

1. delim

2. desti

Note

is either eSi, emi, or egi, to indicate that the data is to be sent
as a segment, message, or, group, respectively.

is a list of one or more destinations to which the message is sent.
Up to ten destinations can be specified.

When any of the send requests are issued, the command enters an input mode,
similar to that in the edm command. Lines of input are accumulated until a line
is input with a single period. At this point, the accumulated data is sent to
the appropriate destination(s).

04/78 8-16 AS43A

cobol mcs admin cobol mcs admin

This command is usee to perform the software functions involved in COBOL
MCS administration. When the command is invoked, it reads request lines from
the user input switch. Command usage is terminated when the user enters the
quit request.

cobol mcs admin cmcs dir

where cmcs dir is the path of the desired CMCS directory.

Request Summary

Requests and their abbreviated forms are listed below and are immediately
followed by a detailed description .

04/78

. (who am I?)
prints the short name of the command.

change_cmcs psw, ccpsw
verifies and then overwrites a new password over an old password.

create cmcs queues i ccq
-creates the queues and other data bases using tree control as its

input.

execute, e
passes the remainder of the line to the system command processor.

quit
causes the termination of the cobol mcs admin session. The user is
then returned to Multics command level.

set cmcs psw, scpsw
- overwrites a new password over an old password.

start mp
- begin processing of queues that contain messages.

stop_mp
causes a logout after completion of the current message.

8-17 AS43A

cobol mcs admin cobol mcs admin

Request

This request prints the short name of the command, cmcsa.

Request

The user is asked for the old password, where password is a character
string of 1-10 characters in length. If the response is correct, the command
requests the new password. It requests it a second time to verify that the
first typein was correct. The password given is encoded and written over the
old password.

change_cmcs_psw

Request

This command reads the cmcs tree ctl.control segment in the cmcs dir
directory to obtain the defined queue names and the command line control
information associated with each queue. It creates these queues If they do not
already exist; if a given queue already exists, the queue is truncated, a
warning to that effect is printed, and the command continues. In addition, the
command creates (or recreates) the cmcs queue ctl.control segment. This segment
contains a list of the queues and, for -each queue, the message status lists and
flags for enabling/disabling input and output to and from the queues,
resoectivelv. It also creates the cmcs wait ctl.control and
cmcs system- ctl.control segments. The~e segments initIally- contain only the
header information.

04/78 8-18 AS43A

cobol mcs admin cobol mcs admin

Request

execute, e

This request is used to execute other Multics commands while operating
under the cobol mcs command.

execute command line

where command line is any command line to be passed to the Multics system. The
format is the same as input at normal command level.

Example

To print summary information on how many users are on the system, type:

execute how many users
Multics 2.0~ load 5.0/50.0j 6 users

Request

quit, q

This request causes the termination of the cobol mcs admin session. The
user is then returned to Multics command level.

quit

04/78 8-19 AS43A

cobol mcs admin cobol mcs admin

Request

The user is asked twice for a new password, the second time to verify
correctness of the first, where password is a character string of 1-10
characters in length. The password given is encoded and written over the old
password without verification of the old password.

Request

This request causes message processing processes to be awakened to begin
processing of queues that contain messages.

Note

The start mp request should not be used as long as any message processors
from a previous request are still active.

04/78 8-20 AS43A

cobol mcs admin cobol mcs admin

Request

This request is used to cause the message processing processes to log out
after completing the processing of the current message.

04/18 8-21 AS43A

cv cmcs station ctl cv cmcs station ctl

Name: cv cmcs station ctl

This command compiles a source file named cmcs station ctl.src into a
binary control file that is accessed by the CMCS runtime subroutines. In
addition, it converts a source file that contains a list of all valid stations
and becomes the master file for all station names.

cv cmcs station ctl cmcs station ctl.src

where the source file has the following syntax:

<station_name>;

end;

Notes

The binary control file is set up with the standard CMCS header, which
gives information about the compilation and the table sizes.

This compilation must be done before either the cmcs tree ctl or
cmcs terminal ctl compilations are done because the cmcs station ctl.control
segment is used to validate the station names used in the other source files.

04/78 8-22 AS43A

cv cmcs terminal ctl cv cmcs terminal ctl

Name~ cv cmcs terminal ctl

lnls command compiles a source file named cmcs terminal ctl.src In~o a
binary control file that is accessed by the CMCS runtime subroutines. In
addition, it converts a source file giving pairs of terminal subchannels (tty_
device channels) and their default station names.

cv cmcs terminal ctl cmcs terminal ctl.src

where the source file has the following syntax:

<terminal subchannel>: <default station_name>;

end;

Notes

The binary control file is set up with the standard CMCS header, which
gives information about the compilation and the table sizes.

This compilation must be done after cmcs station ctl.control is generated
as it uses information in that segment to validate the station names.

04/78 8-23 AS43A

cv cmcs tree ctl cv cmcs tree ctl

Name: cv cmcs tree ctl

This command compiles a source file named cmcs tree ctl.src into a binary
control file that is accessed by the CMCS runtime subroutInes. In addition, it
converts a source file that defines the COBOL MCS queue hierarchy, along with
controls to be associated with each message queue. A discussion of the source
segment is shown below.

cv cmcs tree ctl cmcs tree ctl.src

where cmcs tree ctl.src contains the complete queue hierarchy definitions for
application-programs and terminal users. See below for further details.

Notes

The binary control file is set up with the standard CMCS header that gives
information about the compilation and the table sizes.

This compilation must be done after cmcs station ctl.control is generated
as it uses information in that segment to validate the station names.

Source Format for the Tree Definition

1. There can be any number of subtrees, and each subtree can have from 1-4
levels. The "root" for all subtrees is an implied one; this allows the
CMCS administrator complete flexibility in the hierarchy definition.

2. The queue names specified in the queue hierarchy are entirely logical. For
the terminating queue name in any branch, there is an associated name for
the physical message queue. The physical queue name defined in the source
is append with a cmcs_queue suffix when the queue is created.

3. The source file consists of one or more PL/I-like structure declaration
statements. Each statement must begin with a "declare" or "dcl" and end
with a semicolon (;). The structure can be up to four levels deep. All
lines but the last line of a statement are terminated with a comma (,).
The source file is terminated with a statement of "end;". PL/I-style
comments may be included.

4. Immediately following the level indicator is the hierarchy level name; this
is the only required argument on higher levels. An optional control for
any line is mp line <mp line>. This control is in effect for the current
level and all subordinate levels, unless overridden at a subordinate level.
The <mp line> argument is executed, if appropriate, when the associated
queue goes non-empty.

04/78 8-24 AS43A

cv cmcs tree ctl cv cmcs tree ctl

5. When a particular level is the final level of a given tree path (terminal
node), the "queue <queue name>" control must be given. This identifies the
desired name for the given physical message queue.

6. Since all physical queues must exist in the same directory as the compiled
tree control, the associated queue names must be unique. Since they have
an appended cmcs queue suffix, the names must be fewer than 22 characters
in length. -

7. All stations (sources and destinations) must have a one level entry of the
form:

declare <station name> queue <queue_name>;

8. All physical input queues must have a corresponding declaration as a
"destination" queue. This destination is used by the terminal operator to
direct a given input transaction to the proper queue for processing by the
COBOL application programs.

Usage Example

1* COBOL MCS Hierarchy Queue Definition *1

del In a1,
2 In-a2,

3 In_a3,
4 In a4 queue_name queue 1;

dcl 1 In b1 mp line "ioa ""This is a command line (.... a, "'a).'''''',
2 In-b2 cobol program id cobol program name,

3 In b3a queue name-queue 2,- -
3 In=b3b queue=n"ame queue=3;

1* Station Queue Definitions *1

dcl station 1 queue_name station 1;
dcl station-2 queue_name station 2;
dcl station=3 queue_name station-3;

1* Input Message Queue Definitions *1

dcl t1 queue_name queue 1;
dcl t2 queue_name queue-2;
dcl t3 queue_name queue=3;

end;

In this example, the command control given in the first level 2 line causes
the <command line> to be set for both of the level 3 queues immediately
following. Effect of the command control is terminated by the following level 2
line.

04/78 8-25 AS43A

cv cmcs tree ctl cv cmcs tree ctl

Cqnstructing Command Lines for the Message Processor

The CMCS message processing command interface is designed to provide
considerable flexibility in the way COBOL application programs are invoked.
Three requirements that must be satisfied for proper operation are:

1
I • The application program must have the FOR INITIAL INPUT clause

communication description (CD) entry.
~,,-
J. VI vile

2. The program must be invoked with the 48 character absolute tree path
of the message queue causing the invocation of the message processor.

3. The programs must use the NO DATA phrase on all receive statements and
return (STOP RUN) when none are found. (This frees the message
processor process to be available for processing other messages.)

The following procedure is used by the message processor to construct a
command line that is to be given to the command processor:

04/78

1. Initialize the command string to null.

2. If there is an mp line entry in the tree ctl entry for the given
queue, append it to the command string and follow it with one blank
character.

3. If there is a cobol program id entry in the
given queue, append It to the command string
blank character.

tree ctl entry for the
and follow it with one

4. Check the command string to see if it is still null; if it is, ignore
the new message and queue up in the wait line.

5. Append the absolute tree path (as a quoted string) to the end of the
command string and pass the string to the command processor.

8-26 AS43A

COMMAND EXAMPLE

The following example takes into account most of the requests that are
associated with the cobol mcs and cobol mcs admin commands.

In the example, lines typed by the user are indicated with an exclamation
mark (!) to the left of the line. This is for illustrative purposes only; the
user does not actually type the exclamation mark. Likewise, comments that serve
an explanatory purpose are included in the example enclosed within "1* ... *1".

Refer to "Usage Example" shown under the Cy cmcs tree ctl command for the
COBOL MCS hierarchy queue definition.

04/78

cmcsa -wd
ccq

cmcsa
scpsw

1* who am I? *1

Input COBOL MCS password:
A8~DS6IBtJli 1* new password *1
Please repeat for verification ...
A8~DS6IBtJli
quit
r 815 0.178 0.110 10

cmcs -wd -term station

cmcs, station 1
accept message count In a1
Messagi count Ior "In aT" is 000000.
accept message count In b1
Message count for "In bT" is 000000.
send emi t1 t2 -
1 1* message 1 *1

1* message termination *1
accept message count In a1
Message count for "In aT" is 000001.
accept message count In b1
Message count for ''In bT" is 000001.
receive emi In a1

receive esi In b1

accept message count In a1
Message count for "In aT" is 000000.
accept message count In b1
Message count for "In bT" is 000000.
send esi t1 t2 t3 -
2 1* message 2 *1

send esi t1 t2
3 1* message 3 *1

send emi t1 t2 t3
4 1* message 4 *1

accept message count In a1
Message count for "In aT" is 000001.
accept message count In b1
Message count for "In bT" is 000002.

8-27 AS43A

04118

accept message count In b1.1n b2.1n b3a
Message count for "In bT.ln b2.1n b3a" is 000001.
accept message count In b1.In b2.In b3b
Message count for "In bT.ln b2.1n b3b" is 000001.
receive esi In a1 - -

2
receive emi

3

4
receive emi In b1

2

3

4
receive esi In b1

2
receive esi

4
receive esi
cobol mcs: Previous tree path is blank. Please reenter request with new tree path.
accept message count In a1
Message count for "In aT" is 000000.
accept message count In b1
Message count for "In bT" is 000000.
disable input In a1 -
Input COBOL MCS password:
ASgDS61BiJrfi
Please repeat for verification.:.
A8gDS61BiJrfi
send emi t1
rejected input. 1* message 5 *1

cobol mcs: A specified message queue is currently disabled. From send.
10 Type: "Send ", 10 Subtype: "Message If, Status Key: "10"
One or more destinations are disabled. Action completed.
Station Error Code
t 1 1

enable input In a1.1n a2.1n a3.1n a4
Input COBOL MCS password: -
A8gDS61BiJrfi
Please repeat for verification ...
AS6US61BiJrfi
send emi t1
accept input. 1* message 6 *1

receive emi In a1

accept input.
disable input terminal station 1
Input COBOL MeS password:
ASf5DS6IB'Jrfi
Please repeat for verification .•.
A8f5DS6IB'Jli
send emi t 1 t2
reject input. 1* message 7 *1

cobol mcs: A specified message source is currently disabled. From send.
10 Type: "Send ": 10 Subtype: "Message ", Status Key: "20"

8-28 AS43A

One or more destinations unknown. Action completed for known destinations.
No action taken for unknown destinations. Data-name-4 (ERROR KEY)
indicates known or unknown.

04/78

Station Error Code
t 1 1
t2 1

enable input terminal station 1
Input COBOL MCS password:
ASBlISEIB!JIfi
Please repeat for verification ...
ASBDSEIB!JIfi
send emi t1
accept input. 1* message 8 *1

receive emi In_a1.ln a2.ln a3.ln a4

accept input.
disable output station 1
Input COBOL MCS password:
ASBDSEIB!JIfi
Please repeat for verification ...
ASBDSEIB!JIfE
send emi t2
accept input. 1* message 9 *1

receive emi In b1
cobol mcs: A specified message destination is currently disabled. From receive.
10 Type: "Receive ", 10 Subtype: "Message, No Wait ", Status Key: ,,~O''
No error detected. Action completed.
enable output station 1
Input COBOL MCS password:
ASBDSEIB!JIfi
Please repeat for verification ...
ASBDS6IB!JIfi
receive emi In b1

accept input.
receive emi In a1
cobol mcs: No message exists in the specified queue hierarchy. From receive.
10 Type: "Receive ", 10 Subtype: "Message, No Wait ", Status Key: ,,~O''.
No error detected. Action completed.
receive emi In b1
cobol mcs: No message exists in the specified queue hierarchy. From receive.
10 Type: "Receive ", 10 Subtype: "Message, No Wait ", Status Key: "OC
No error detected. Action completed.
send esi t1
partial input. 1* message 10 *1

receive emi In a1
cobol mcs: No message exists in the specified
10 Type: "Receive ", 10 Subtype: "Message, No
No error detected. Action completed.

queue hierarchy. From receive.
Wai t ", Status Key: "00"

• send emi t1
complete input. 1* message 11, the balance of message 10 *1

receive emi In a1

partial input.

complete input.
quit
r 816 0.145 0.228 20

8-29 AS43A

SECTION IX

FILE ORDERING -- SORT-AND MERGE

CONCEPTS

Multics COBOL includes the SORT and MERGE statements to provide a
generalized file sorting and merging capability.

Sorting

Much data processihg depends upon the order in which records appear on the
files being processed. Such processing often depends upon the order of the
records being sequenced according to the values of one or more fields that
appear in each of the records. The fields upon which the ordering depends are
called the "keys" of the file.

Since data in its original form seldom occurs in well ordered sequences, a
technique, sorting, is provided by which the user can impose the desired
ordering upon the records in a file. A sorting procedure manipulates an input
file whose records are in an indeterminate sequence and produces an output file
containing the same set of data records rearranged into the desired sequence.
The number of records in the input file is usually unknown at the inception of
the sort procedure and is generally not relevant to the sorting procedure.

SORT STATEMENT

The SORT statement creates a
transferring records from another
set of specified keys; and, in
available each record from the
procedures or to an output file.

02/79

sort file by executing input procedures or by
file; sorts the· records in the sort file on a
the final phase of the sort operation, makes'
sort file, in sorted order, to some output

9-1 AS43B

General Format:

SORT file-name-l ON KEY data-name-l [, data-name-2] {
ASCENDING }

DESCENDING

Merging

[
ON {ASCENDING } KEY data-name-3 [, data-name-4] •..]

DESCENDING

[COLLATING SEQUENCE IS alPhabet-name]

f INPUT PROCEDURE IS sect1on-name-l [{ ::::UGH} section-name-2]

L USING flle-name-2 [, flle-name-3]

{

OUTPUT PROCEDURE IS section-name-3 [{ ::::UGH} section-name-4]

GIVING file-name-4

Some data processing operations are performed on a group of records that
are distributed on several files. If all of those files are themselves ordered
by the same rules, their contents may be merged into one composite file which is
ordered. A merging procedure manipulates two or more ordered input files and
produces an output file c'ontaining the total set of data records- in one ordered
sequence.

MERGE STATEMENT

The MERGE statement combines two or more ide~ticallY sequence files on a
set of specified keys, and during the process makes records available; in merged
order, to an output procedure or to an" output file.

General Format:

MERGE f1le-name-l ON {ASCENDING } KEY data-name- 1 [, data-name-2]
DESCENDING

02/79

-[ON {ASCENDING } KEY data-name-3 [-, data-name-4] .••]
DESCENDING

[COLLATING SEQUENCE IS alPhabet-name]

USING file-name-2 f11e-name-3 [, file-name-4]

{

OUTPUT

GIVING

PROCEDURE IS section-name-l

file-name-5

9-2

[{
THROUGH}] 1
THRU section-name-2 J

AS43B

Ordering

The sequencing of the output file in a sorting or merging procedure is
governed by ~he values of one or more fields in each of the records being
ordered. These fields (the keys) must appear in the same position, relative to
the start of the record, in every record being sorted or merged.

The order in which the keys are specified to the sort or merge procedure
determines their hierarchical relationship. The first key named (the major key)
is the most Significant field. Each successive key specified is of decreasing
significance until the last key (the most minor key) is reached.

Each key may also be specified as determining an ascending ordering or a
descending ordering. Ascending ordering means that those records with lower
values of that key appears in the output file prior to the records with higher
values for that key. Descending ordering implies the inverse result.

Ordering is accomplished by comparing (from major to most minor) the
corresponding keys of two records until- an inequality of value is found. The
output order is then determined by the ascending or descending rule which
applies to that particular key field. If there is no inequality of value in any
corresponding pair of keys, the orderin2 is determined by the sort or m~rge
procedure.

Program Organization

The COBOL
SORT and MERGE.
of these verbs.

langua~e contains two verbs which initiate ordering procedures,
Several additional language features are associated with both

The RELEASE verb may be used with the execution of a SORT verb
and the RETURN verb may be used with the execution of SORT and MERGE verbs. A
special form of the SELECT clause in the FILE-CONTROL paragraph of the
Environment Division is associated with the intermediate working files of the
sort procedur~ and the implicit working file of the merge procedure. In
addition, those files are described by a special type of file description (SO
rather than FD) in the Data Division.

The SORT verb invokes the execution of a set of sorting procedures. These
procedures operate with the COBOL object program to perform the sort. During
the execution of the sorting function~ the object program and sorting procedures
combine in the organization pictured in Figure 9-1. The user can include
several SORT statements in the source program. If several SORT statements are
present, they are completely independ~nt of each other.

The MERGE verb invokes the execution of a set of merging procedures
contained within the standard software library. These procedures operate with
the COBOL object program to perform the merge. During the execution of the
merging function, the object program and merging procedures combine in the
organization pictured in Figure 9-2. The user can include several MERGE
statements in the source program. If several MERGE statements are present, they
are completely independent of each other.

02/79 9-3 AS43B

02/79

Input
Processing

Ordering
Procedures __ ------------~~.

Output
Processing

Figure 9-1. Sort Program Organization

Input
Processing

Ordering
Procedures

Output
Processing

Figure 9-2. Merge Program Organization

9-4 AS43B

SORT STATEMENT

The purpose of the SORT statement is to invoke the execution of a sorting
procedure.

Sort File

The definition of the sort file serves two purposes:

1. It is ~e vehicle for ~efining the working files associated with the
sorting procedure

2. It is the file description within which all of the keys for the
ordering are described

The former role is required by both the syntax rules of the SORT statement
and the sorting procedures. The size of the data file being sorted cannot be
determined from within . the sorting procedure prioF to the inception of the
procedure. -- The file space required by this procedure is allocated by the
Hulties SORT/MERGE module.

Sort file allocation occurs on two levels: within the source program, and
at the ~ystem level. At the source program level, assignment is made in the
FILE-CONTROL paragraph with the ASSIGN clause. One or more external-file-names
are specified, each of them denoting one working file.

Sort Key Declarations

The second purpose of the sort file is to provide a vehicle for the
definition of all the sort keys which determine the record ordering. This
definition is accomplished in a special type of file ,description in the File
Section of the Data Division.

The definition is prefaced ~ith the level indicator SD. Each KEY data-name
associated with a SORT statement must be defined within the sort file-name
descr~ption referred to by the SORT statement. The keys are listed in the SORi
statement in order, from most Significant (major. key) to least significant (most
minor key), with the word ASCENDING or DESCENDING preceding KEY data-names as
appropriate. Key comparison coding is generated by the COBOL compiler, rather
than by the sorting procedure, on the basis of the key declarations in the SORT
statement.

When more than one record description entry appears in a sort file
description, the key data items need be described in only one of the record
description entries. Each key data item must occur in every data record of the
sort file. It must have the same relative position and actual format in all
records. The PICTURE and USAGE ofa given key data item must be the same in all
records in the sort file. If a key item is synchronized or justified, it must
be identically synchronized or justified in all records in the ~ort file. The
key data item descriptions must not contain an OCCURS clause or be subordinate
to entries containing an OCCURS clause. Keys must be data items that do not
require subscripting or indexing.

02/79 9-5 AS~3B

VARIABLE-LENGTH RECORDS

Although key items themselves may not be of variable length, the records
within the sort file may be of variable length. Each record must be large
enough to contain the entire set of keys described in the SORT statement.

DOMINANT RECORD.LENGTH

If the data being sorted is in variable-length rec~rd format, the sort
pFoceduFe ~U5t also be given a dominant Fecord 5ize. The do~inafit record $iza
is set equal to the size of the first record described in the sort file'
description entry (SD) in the Data Division. Whenever the efficiency of any
variable-length record sort process needs to be increased, the dominant record
length should be evaluated.

Sort Key Evaluation

When the values of a key in a pair of sort file records are compared, one
value is found to be greater than, equal to, or less than the other according to
the rules given under the "Comparison of Operands" heading in the Multics' COBOL
Reference Manual, Order No. AS44. The key comparison determines the order of
the records in th~ sort output.

All comparisons are made on the basis of the ASCII character set unless the
COLLATING SEQUENCE phrase of the SORT statement is used to specify a different
sequence.

Sort Input Processing

A choic~ must be made between having the sorting process handle the input
processing cif the file being sorted or having the user's program spe6ify the
input processing procedures~ In most cases the former technique is more
efficient but the latter may be necessary in order to accomplish selective
editing of the. input records. If such editing would result in the deletion of a
Significant portion of the input file, then the input procedure technique is
more appropriate.

USING OPTION

If the USING option is specified, the sorting process handles the input
file processing. The file specified' by file-name-2 must not be in an open state
when the SORr statement is executed. File-name-2 must have a file des~ription
(FD) entry in the Data Division. The sort file and the file referenced in the
USING phrase are, in a sense, alternative descriptions of the same set of data.

INPUT PROCEDURE OPTION

When the INPUT PROCEDURE option is, specified, the user is responsible for
all the input processing for the sorting process. An input procedure must
consist of one or more seetions. Since the input procedure is invoked by·the
sorting procedure via the same techniques used 1n the PERFORM statement
execution, the structure of the input procedure must follow the same basic rules

02/79 9-6 AS43B

as a set of sections which are the object of a PERFORM statement. Control must
not be passed to the input procedure except through the execution of a SORT
statement. The input procedure may contain any procedures needed to select,
create, or modify records for input to the sorting process. Three general
restrictions apply to the procedural statements within the input procedure:

1. An input procedure must not contain a SORT, MERGE, or RETURN
statement.

2. The input procedure must not contain ALTER statements or transfers of
control to points outside the input procedure. This means that the GO
TO and PERFORM statements in the input procedure must- not refer to
procedure-names outside the input procedure. COBOL statements that
cause an implied transfer of control to USE procedures are allowed.

3. The remainder of the Procedure Division must
statements or transfers of control to points
procedure. This means that GO TO and PERFORM
r-emainder of the Procedure Division must not refer
within the input procedure.

RELEASE Statement

not contain_ ALTER
inside the input
statements in the
to procedure-names

The RELEASE statement is u~ed to transfer logical input records from an
input procedure to the initial phase of a sorting operation. The RELEASE
statement may appear only in an input procedure and every input procedure must
contain at least one RELEASE statement.

The record-name referenced by the REL~ASE statement must be the name of a
record defined within a sort file; that is, a file described with an SD level
indicator. If ~ne sor~ file description contains more than one record
description, and if the record descriptions define records of different sizes, a
separate RELEASE statement must be specified for each record ~ize. If the FROM
phrase is used, the contents of 'identifier' must be the name of a data item in
working-storage or of an input record area. If the format of identifier is
different, from that of the - record-name, moving takes place _ according to the
rules specified for the MOVE statement without the COR-RESPONDING o-ption. The
information in the sort record area is no longer available, but the information
in the identifier area is available. It is illegal to use the same name for
both the record-name and the identifier or for the two names to reference the
same memory area.

After the RELEASE 'statement is executed, the contents of record-name are no
longer available to the COBOL procedure. The execution of a RELEASE statement
causes the contents of record-name (after the contents of identifier'have been
moved to it in the FROM phrase), to be made available to the initial phase of
the sort process. When control passes from the input procedure, the sort file
consists of all those records which were placed in it by the execution of
RELEASE statements. No~PEN, READ, WRITE, or CLOSE statements may be given for
the sort fi Ie •

GIVING OPTION

If the GIVING option is specified, the sorting process handles the output
I file processing. The file specified by fi1e-name-4 must not be in an open state

when the SORT statement is executed. Fi1e-name-4 must have a file description
(FD) entry in the Data Division. If both the USING and GIVING options are
specified, fi1e-name-2 and file-name-4 are, in a sense, alternative descriptions
of the same set of data. Therefore, all file level properties must be identical
for both files. Fi1e-name-2 and fi1e-name-4 may refer to the same file-name or

02/79 9-7 AS43B

to d.iffere,nt file-names.
the same file-name, the
collation file.

our?-UT PROCEDURE OPTION

In the special case in which USING and GIVING refer to
sort procedure does not use the GIVING file as a

When the·' OUTPUT PROCEDURE option is specified, the final output file
pr-o.ce-ss-in:8 for- the' s0rting process is the responsi bi Ii ty of the object program.
An oU'tpu.t p:·r-oc.edu:r-e must consist of one or more sections. Since the output
pro:e:ed:ure- is invo~e'i:t by the sorting procedure via the same techniques used in
the." elteeu.i:;ion o·f a F-ER·FORi-i statement, l:ne struc1:ure of tne output procedure must
follo~ the-- same basic r-ules as a set of sections which are the object of a
PE.RF-ORM statement. Control must not be passed to the output procedure except
through the-- execution of a SORT statement. The output procedure may contain any
proce:cture:s ne'ede-d: to select, modify, or copy the records which are being
retu.rned. froAt th~ sorting process. Three general restrictions apply to the
p·ro;~e-d;uP'al sta!temet'!l'ts w-ithin the output procedure:

T. An outptlt pr-oce-dure must not contain a SORT, MERGE, or RELEASE
s,tatenrent.

2. The- out·Ptl;t procedure must not contain ALTl:.ri statements or transfers of
co,nt,ral to points outside the output procedure; i. e., GO TO and
~ERFOlfM! statements in the output procedure are not per-D'litted to refer
to' pro'cedur-e--names outside the output procedure. COBOL statements
that cause- an implied transfer of control to USE procedures are
allow.e<iio-

3. Trre~ r-enraind:er of the Procedure Division must not _ contain ALTER
stra;te~nts or transfers of control to paints inside' the output
pl"'o·cedur.ej i.e., GO TO and PERFORM statements in the remainder of the
Proced'ur-e Division are not permitted to refer to procedure-names
w.-ithin th'€> o u..t pu t procedu re.

RE.nJ RN S,ta.temerrt

The RETURN st,atertlent is used to obtain logical output records from a sort
operation and to t.r-ansfer them to an output procedure. The RETURN statement may
appea,r only in an: output procedure, and every output procedure must contain at
least, one RE.TURN s·tatement.

The file-name referenced in the RETURN statement. must be described with an
SO level indicator and must be the same file-name that was referenced in the
SORT statement currently being executed.

The INTO phrase may be used only when the file referred to by file-name
contains just one type of record. The identifier must be the name of a data
ite~ in working-storage or of an output record area. If the format of the
identifier- differs from that of the input record, moving is performed according
to the rules specified for the MOVE statement without the CORRESPONDING option.
W·hen the INTO phrase is used, the logical record is still available in the sort
file'S record area.

The execution of the RETURN statement causes the next record in sorted
order (according to the keys listed in the SORT statement) to be made available
for processing in the rec6rd area associated with the ~ort file.

0211'9 9-8 AS43B

After the contents of the sort file are exhausted, the next execution of
the RETURN statement results in the execution of the imperative statement in the
AT END phrase.

After execution of the AT END imperative-statement; no RETURN statement may
be exeeuted within the ~uttent output procedure.

No OPEN, READ, WRITE, or CLOSE statements may be given for the sort file.

SORT OPERATIONAL CONSIDERATIONS

Flow of Control

Any se~uence of procedural statements may be executed before or after the
SORT statement is executed. When the SORT statement is executed, the sorting
process receives control.

If an input procedure has been specified, the sort transfers control ~o the
input procedure to start processing records. The input procedure is responsible
for opening the input file and reading the logical input records. Each time
that a record is ready for the sort file, the input procedure executes a RELEASE
statement, causing the sort to place the record in the sort file. Control then
passes to the statement following the RELEASE statement. The input proqedure
continues reading and releasing until all the input records have been given to
the sort, at which time the input procedure is responsible for closing the input
file. Control must pass to the exit point of the input procedure, thereby
returning control to the sorting process._ A simple input procedure might. be
organized as in Figure 9-3.

02/79

RELEASE
Sort File .1.---1

Record ,.

OPEN
Input File

•

READ
Input File

Normal
~.

Edit Record
and MOVE to
Sort File

AT END. CLOSE
Input File

(EXIT)
(Fall through the
exit point of
INPUT PROCEDUR£)

Figure 9-3. Sort Input Procedure Organization

9-9 AS43B

The sorting process orders the records, up to the point of determining
which record goes first in the final output sequence. If an output procedure
has been specified, the sorting process at this point transfers control to the
output procedure. The output procedure is responsible for opening its output
file, if any, and obtaining records in the final sequence by means of the RETURN
statement. When the output procedure has disposed of each record, it returns
the next, and thus continues returning records and processing them. After the
last record has been returned, the sorting process causes control to pass to the
AT END phrase the next time a RETURN statement is executed. The output
procedure is then responsible for closing its output file, if any, and allowing
control to pass to its exit point. The sorting process then terminates its own
procedures. Control then passes to the statement following the SORT statement.
A simple output procedure might be organized as in Figure 9=4.

(OUTPUT
PROCEDURE

1
.oPEN

Output File

..
:.

RETURN Sort
File Record

Normal
'lip.

Edit Record
and MOVE to
Output File

1
WRITE

Output File
Record

)

AT END CLOSE
• Output File

•
C,,--_EX_I_T _--')

(Fall th rough th e
ex it po i n t 0 f
OUTPUT PROCEDURE

Figure 9-4. Sort Output Procedure Organization

In effect, the sequence of events just described applies also when the
USING or GIVING option is used, except that the input or output procedure
becomes implicit, rather than specified in detail by the user.

02119 9-10 AS43B

Sort Examples

The following example illustrates a basic SORT prog~am:

environment division.
file-control.

select -input-file assign
select sort-file asslgn
select output-file assign

to input-virtual.
to collate-virtual.

to output-printer.

data division.
file section.
fd input-file .••
01 •.•

sd sort-fi le ••.
01 •••

fd output-file •••
01.. . .

procedure division.

Note that these files may have multiple
record types and sizes, provided the sort
file- and USING file have the same records,
the sort file and GIVING file have the
same recordi, and key descriptions and
positions are equivalent for all record
types.

sort-call. sort sort-file on
input-file giving output-file.
stop run.

using

Another SORT feature entails the use of an output procedure to deliver a
report (on any suitable device) rather than an output tape as such:

02/79

environment division.
file-control.

select input-file assign to inputfile-virtual.
select sort-file assign to sortfile-virtual.
select report-output assign to report-printer.

data division.
file section.
fd input-file ••.
0' . .. "

sd sort -fi le •••
01 •••

fd report-output; report is xyz •••

working-storage section.

report section.
rd xyz •••

9-' , AS43B

01 detail-line; type de ...

procedure division.
sort-call section.
driver. sort sort-file on using input-file

output procedure is edit. stop run.
edit section.
startup. open report-output; initiate xyz.
loop. return sort -fi Ie record; at end' go to qu it.

generate detail-line; go
quit. terminate xyz; close

MERGE STATEMENT

to loop.
report-output.

The purpose of the MERGE statement is to invoke the execution of a merging
procedure.

The Merge File

The definition of the merge file serves only to provide a location where
all the keys for the ordering are described. There is no application of the
merge file whi~h corresponds to the working file status of the sort file.
However, COBOL syntax rules require that an appropriate SELECT clause be
specified for the merge file. A file assignment control card should not be
included for the file code assigned to the merge file.

Merge Key Declarations

The definition of the merge key fields is accomplished in a special type of
file description in the File Section of the Data Division. The definition is
prefaced with the level indicator SO. Each KEY data-name associated with a
MERGE statement must be defined within the merge file-name description referred
to by the MERGE statement. The keys are listed iri the MERGE statement in order,
from most significant (major key) to least significant (most minor key), with
the word ASCENDING or DESCENDING preceding KEY data-names as appropriate. Key
comparison coding is generated by the COBOL compiler, rather than by the merging
procedure, on the basis of the key declarations in the MERGE statement.

Each key item must occur in every data record of the merge file. It must
have the same relative position and actual format in all records. The PICTURE
and USAGE of a- given key item must be the same in all records in the merge file.
If a key item is synchronized or justified, it must be identically synchronized
or justified in 311 records in the merge file. Keys must be data items which do
not require subscripting or indexing.

VARIABLE-LENGTH RECORDS

Although key items themselves may not be of variable length, the records
within the merge file may be of variable length. Each record must be large
enough to contain the entire set of keys described in the MERGE statement.

9-12 AS43B

Merge Key Evaluation

When the values of a key in a pair of merge file recoras are compared, one
value is found to be greater than, equal to, or less than the other according to
the rules gi¥en under the "Comparison of Operands" heading in the Multics COBOL
Reference Manual,- Order No. AS44. The key comparison determines the order of
th~ records 1n the merge output.

All comparisons are made on the basis of the ASCII character set unless the
COLLATING SEQUENCE phrase of the MERGE statement is used to specify a different
sequence.

Merge Input Processing

When a merging procedure is used, the merging ~rocess handles all of- the
processing of input files. The USING phrase must be specified in the MERGE
statement and must identify at least two file-names. The referenced input files·
must not be in an open state when the MERGE statement is executed. All of the
specified file-names must have file description eFD) entries in the Data
Division. The merge file and the files referenced in the USING phrase are, in a
sense, alternative descriptions of the same set of data.

Merge Output Processing

A choice must be made between having the merging process handle the output
processing of the newly merged file or having the user'i program specify the
output 'processing procedures.

GIVING OPTION

If the GIVING option is sp~.cified, theme·rgin-g proe-ess handles the output
file processing. The file specified by file-name-S must not be in an open state
when the MERGE statement is executed. File-name~S must have a file description
eFD) entry in the Data Division. File-name-S and the-files specified in the
USING phrase are, in a sense, altern~tive descriptions of the same set of data.
Therefore, all file level properties must be identical for both files.

OUTPUT PROCEDURE OPTION

When the OUTPUT PROCEDURE option is specified, the final output file
processing for the merging process is the responsibility of the object program.
An output procedure must consist of one or more sections. Since the output
procedure is invoked by the merging process via the same techniques used in the
execution of a PERFORM statement, the structure of the output procedure must
follow the same basic rules as a set of sections which are the object of a
PERFORM statement. Control must not be passed to the output ·procedure except
through the execution of a MERGE stateme~t. The output procedure may contain
any procedures needed to select, modify, or copy the records which are being
returned from the merging process. Three general restrictions apply to the
procedural statements within the output procedure:

02/79

1. An output procedure must not contain a MERGE, SORT, or RELEASE
statement.

9-13 AS43B

2. The output procedure must not contain ALTER statements or transfers of
control to points outside the output procedure; i.e., GO TO and
PERFORM statements in the output procedure are not permitted to refer
to procedure-names outside the output procedure. COBOL statements
that cause an implied transfer of control to USE procedures are
allowed.

3. The remainder of the Procedure Division must not contain ALTER
statements or transfers of control to pOints inside the output
procedure; i.e., GO TO and PERFORM statements in the remainder of the
Procedure Division are not permitted to ~efer to procedure-names
within the output procedure.

RETURN Statement

The RETURN statement is used to obtain logical output records from a merge
operation and to transfer them to an output procedure. The RETURN statement may
appear only in an output procedure, and every output procedure must contain at
least one RETURN statement.

The file-name referenced in the RETURN statement must be described with an
SO level indicator and must be the same file-n&h.~ that was referenced in the
MERGE statement currently being executed.

The INTO phrase may be used only when the file referred to by file-name
contains just one type of record. The identifier must be the name of a data
item in working-storage or of an output record area. If the format of the
identifier differs from that of the input record, moving is performed according
to the rules specified for the MOVE statement without the CORRESPONDING option.
When the INTO phrase is used, the logical record is still available in the merge
filets record area.

The execution of the RETURN statement causes the next record in merged
order (according to the keys listed in the MERGE statement) to be made available
for processing in the record area associated with the merge file.

After the contents of the merge file are exhausted, the next execution of
the RETURN statement results in the execution of the imperative statement- in the
AT END phrase.

After execution of the AT END imperative-statement, no RETURN statement may
be executed within the current output procedure.

No OPEN, READ, WRITE, or CLOSE statements may be given for the merge file.

MERGE OPERATIONAL CONSIDERATIONS

Flow of Ccnt~ol

Any sequence of procedural state~ents may be executed before or after the
MERGE statement is executed. When the MERGE statement is executed, the merging
process receives control.

02/79 9-14 AS43B

The merging process performs initial housekeeping, up to the point of
determining which record is placed first in the final output sequence. If an
output procedure has been specified, the merging process at this point transfers
control to the output procedure. The output procedure is responsible for
opening its output file, if anYI and obtaining records in the final sequence by
means of the RETURN statement. When the output procedure has disposed of each
record, it returns the' next, and thus continues returning records and processing
them. After the last record has been returned, the merging process causes
control to pass to the AT END phrase the next time a RETURN statement is
executed. The output procedure is then responsible for closing its output file
and allowing control to pass to its exit point. The merging process then
terminates its own procedures. Control then passes to the statement following
the MERGE statement. A simple output procedure might be organized as in Figure
9-5.

I

OUTPUT
PROCEDURE

1
OPEN

Output File

,

RETURN Merge
File Record

Normal
••

Edit Record
and MOVE to
Output File

WRITE
Output File

Record

)

I

-

-
AT, END .. CLOSE

• Output File

r
l

----~ EXIT
,
)

(Fall through the
exit point of
OUTPUT PROCEDURE)

Figure 9-5. Merge Output Procedure Organization

In effect, the sequence of events just described applies also when the
GIVING option is used, except that the output procedure becomes implicit, ,rather
than specified in detail by the user.

02/79 9-15 AS43B

Merge Examples

The following example illustrates a basic MERGE program:

environment division.
file-control.

select input-file-1 assign to input1-virtual.
select input-file-2 assign to input2-virtual.
select' merge-file assign to mergefile~virtual.
~.a'~"",,'" """"'''+- ,,, ~'''''''' il"'tL"': ... __ 4- _ _ _ •• .6..&"~., _ _ ...-':..-l. __ w... "''''''''''''''''''- 0;;; a /!)ll ... '" V ~.II, .. I.oJ. ~~O:::-I-'I ~III.oO:::I·.

i-a-control.

data division.
file section.
fd input-file-l ...
01 •••

fd input-file-2 ...
01 •••

sd merge-file ...
01 •••

fd output-file ...
01 •.•

procedure division.

1
f

J

Note that these file~ may have multiple
record types and sizes, provided the
merge file and USING file have the same
records, the merge file and GIVING file
have the same records, and key descrip
tions and positions are equivalent for
all record types.

merge-call. merge merge-file on
giving output-file.

using input-file-1, input-file-2,

Another MERGE feature entails the use of an output procedure to deliver a
report (on any suitable device) rather than an output tape as such:

environment division.
file-control.

select input-file-1 assign to input1-virtual.
select input-file-2 asslgn to input2-virtual.
select merge-file assign - to mergefile-virtual.
select report-output assign to report-printer.

data division.
file section.
fd input-file-l ...
01 •••

fd input-file-2 ...
o i ...

02/79

sd merge-file ...
01 •••

9-16 AS438

fd report-output, report is xyz •••

working-storage section.

report sect1....on .
-rd xyz •.•
01 detail-line, type de ••• ·

procedure division.
merge-call secnaon.
driver. merge merge-file on using

input-file-1, input-file-2, output
procedure is edit.
stop run.

edit section.
startup. open report-output, initiate xyz.
loop. return merge-file record, at end

go to quit.

generate detail-line, go
qu~t. terminate xyz, close

WORK REQUIREMENTS

to loop.
report-output.

The ~UHT and MERGE statements require work files to be allocated in the
Multics storage system. Thus the user must have sufficient quota for the work
files in addition to that required for the output file, if the output file is to
be in the storage system.

Sort Work Files

The SORT statement requires a number
in the ·directory specified by the user.
required by these_ segments is between 1.05
the input files.

of large segments which are allocated
As a first approximation, the space

and 1.15 times the total size of all

A closer approximation to the size of the SORT work files is:

F + 64.sqrt (F)

where F is the total amount of data input to the SORT, in bytes.
function does not require these work files.

Process Directory Work Files

The MERGE

Both the SORT and the MERGE statements requlre a number of segments which
are always allocated in the user's process directory. As a first approximation,
the space required by these segments is from three to six storage system records
(1024 words each). For additional detail, r~fer to the Multics SORT/MERGE
manual, Order No. AW32.

02/79 9-17 AS43B

Running COBOL Programs with the SORT Statement

When executing COBOL programs containing SORT or MERGE statements, it is
recommended that the run cobol command be used with the -sort file size
argument. If work files lor the SORT statement are expected t~ ixceea the
process directories quota, the argument -sort dir should also be used. For
additional detail, refer to the run cobol command in the MPM Commands manual.

02/79 9-18 AS438

SECTION X

DEBUG FACILITY

DESCRIPTION OF THE DEBUG FACILITY

The debugging facility described in this section is defined by the ANS
COBOL Standard. Changes must be made to a source program if the facility is to
be used. Multics also offers powerful symbolic debugging facilities (probe and
debug) which can be applied to a program without making source changes. These
facilities are described in Section VI of this manual and in the Multics Programmers
Manual - Commands and Active Functions, Order Number AG92.

The debug facility assists in error detection by:

1. Moni toring transfers of control to user-selected procedures during program
execution.

2. Monitoring values of user-selected data items during program execution.

The user-supplied statements required to accomplish such moni toring are
included in the source program and can be compiled or not depending on the
presence or absence of the DEBUGGING MODE clause in the source program. After
the user statements are compiled into the program, they can be executed or
ignored at object program execution according to the setting of a run-time switch.
The run-time switch is set 'ON' when the program is executed by using a run cobol
command with the -debug option. (The run cobol command is described in Section
V.) The decisions concerning what to monitor and what information to display on
the output device are at the discretion of the user. The main purpose of the
COBOL debug facility is to provide convenient access to such information.

EXAMPLE OF THE DEBUG FACILITY

The following example contains brief program segments that illustrate the
usage of the debug facility.

Example:

IDENTIFICATION DIVISION.
PROGRAM-ID. DEBUG-EXAMPLE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.

MULTICS WITH DEBUGGING MODE.

7/81 10-1 AS43E

Example (cont.):

7/81

01 ITEM-1.
02 KEY-1 PIC 99.
02 LINE-1 PIC X(6).
02 NAME-1 PIC X(30).
02 UNQUAL-NAME-1 PIC X(30).
02 SUB-1-1 PIC X(5).
02 SUB-2-1 PIC X(5).
02 SUB-3-1 PIC X(5).
02 CONTENTS-1 PIC X(30).

01 ITE~1-2 .
02 KEY-2 PIC 99.
02 LINE-2 PIC X(6).
02 NAME-2 PIC X(30).
02 UNQUAL-NAME-2
02 CONTENTS-2 PIC

PROCEDURE DIVISION.
DECLARATIVES.
GO-TO-DEPENDING-PROC-1

PIC X(30).
X (30) .

SECTION.
USE FOR DEBUGGING ON ALL

ALL
REFERENCES OF GO-TO-DEP-KEY

ID-2.
GO-TO-DEPEND-1.

ADD 1 TO KEY-1.
DB-COMMON-1.

MOVE DEBUG-LINE TO LINE-1.
MOVE DEBUG-NAME TO NAME-1 UNQUAL-NAME-1.
MOVE DEBUG-CONTENTS TO CONTENTS-1. .

DB-CLEAR-QUALIFIER-1.
INSPECT UNQUAL-NA~E-1 REPLACING CHARACTERS

AFTER INITIAL SPACE.
GO-TO-DEPENDING-PROC-2 SECTION.

. USE FOR DEBUGGING ON G-T-D-2.
GO-TO-DEPEND-2.

IF KEY-1 IS EQUAL TO
MOVE 2 TO KEY-2
ELSE MOVE 1 TO KEY-2.

DB-COMMON-2.
MOVE DEBUG-LINE TO LINE-2.
MOVE DEBUG-NAME TO NAME-2 UNQUAL-NAME-2.
MOVE DEBUG-CONTENTS TO CONTENTS-2.

DB-CLEAR-QUALIFIER-2.

BY SPACES

INSPECT UNQUAL-NAME-2 REPLACING CHARACTERS BY
AFTER INITIAL SPACE.

SPACES

GO-TO-DEPENDING-PROC-3 SECTION.
USE FOR DEBUGGING ON GO-TO-DEP-KEY-1.

GO-TO-DEPEND-3.
MOVE 1 TO KEY-1.

PERFORM-PROC-1 SECTION.
USE FOR DEBUGGING ON 1D-1.

PERFORM-1.
ADD 1
PERFORM
PERFORM

TABLE-PROC-1
USE FOR

TABLE-1.

TO KEY-1.
DB-COMMON-1.
DB-CLEAR-QUALIFIER-1.

SECTION.
DEBUGGING ON B-LEVEL-1

MOVE 1 TO KEY-1.
PERFORM DB-COMMON-1.
PERFORM DB-CLEAR-QUALIFIER-I.

10-2

B-LEVEL-2 B-LEVEL-3.

AS43E

Example (cont.):

1/81

DB-MOVE-SUBSC-1.
MOVE DEBUG-SUB-1 TO
MOVE DEBUG-SUB-2 TO
MOVE DEBUG-SUB-3 TO

QUAL-PROC-1 SECTION.
USE FOR DEBUGGING

QUAL- i .

SUB-1-1 .
SUB-2-1.
SUB-3-1.

ON ALL REFERENCES OF
ALL
ALL

MOVE 1 TO KEY-1.
PERFORM DB-COMMON-1.
PERFORM DB-MOVE-SUBSC-1.

END DECLARATIVES.

10-3

ABCi OF AB2
AB2
AB1

OF
OF
OF

A1
A2
A 1 •

AS43E

SECTION XI

REPORT WRITER

DESCRIPTION OF THE REPORT WRITER

The Report Writer feature emphasize8 the organization, format, and contents
of an output report. Although a report can be produced using the stahdard COROL
language, the Report Writer language characteristics provide a more concise method
for report structuring and report production. Much of the Procedure Division
coding which would normally be supplied by the user is instead provided automatically
by the Report Wri t~r Control System. Thus, the user is relieved of wri ting
procedures for moving data, constructing print lines, counting lines on a page,
numbering pages, producing heading and footing lines, recognizing the end of
logical data subdivisions, 'updating SUM counters, etc. All of these operations
are accomplished by the Report Wri ter Control System from source language statements
that appear primarily in the Report Section of the Data Division of the source
program.

A hierarchy of levels is used to define the logical organization of a
report. Each report is di vided into report groups, which in turn are di vided
into sequences of items. This hierarchical structure permits explicit reference
to a report group with implicit reference to other levels in the hierarchy. A
report group contains one or more items to be presented on one or more lines.

Data movement to a report description is directed by the Report Section
clauses SOURCE, SUM, and VALUE. Fields of data are positioned on a print line
by means of the COLUMN NUMBER clause. The PAGE clause specifies the length of
the PeI.Re, th.e size of the heading and footing areas, and the size of the area in
which the detail lines will appear. Data items may be specified to form a
control hierarchy. During the execution of a GENERATE statement, the Report
Writer Control System uses the control hierarchy to check automatically for
control breaks. When a control break occurs, summary information (SUM counters)
can be presented.

Report Format

A report may consist of any meaningful combination of the following syntax
selections:

•
•

7/81

REPORT HEADING

PAGE HEADING

(one for each report)

(one format for each report)

11-1 ASlJ3E

•
•
•
•
•

CONTROL HEADING

DETAIL

CONTROL FOOTING

PAGE FOOTING

REPORT FOOTING

(one format for each control level)

(no limit for each report)

(one format for each control level)

(one format for each report)

(one for each report)

In COBOL, each report is described in the Report Section of the Data Division.
The user specifies the intended format for each of the headings, footings, and
detail lines in the report, as well as all sources of data. A report may
utilize data described in the File Section, Working-Storage Section, and Linkage
Section. In addition, the user specifies the overall organization and intended
page layout of the report.

The compiler provides the following functions in the object program:

1. Vertical format control, including line counting, page counting, and
production of page headings and footings.

2. Detection of control breaks.

3. Production of control headings and footings.

4. Accumulation of SUM counters to any number of control levels.

5. Execution of user-defined procedures before presentation of nondetail
report groups.

Report Control in the Procedure Division

The production of a report is controlled in the Procedure Division with
four report writing statements:

• INITIATE

• GENERATE

• SUPPRESS

• TERMINATE

In addition, the BEFORE REPORTING phrase of the USE statement may also be
used to control the production of a report.

The SUPPRESS statement inhibits the presentation of a report group and may
be specified only in a USE BEFORE REPORTING procedure.

7/81 i i-2 AS43E

A possible relationship of the above statements to other Procedure Division
statements is illustrated by the following flow chart of a simple reporting
program:

(START)
\.. .. ---_ .. -- -.J

~ ..
OPEN Input File
and Report File

INITIATE
Report

READ Input
File

~ __ A_T __ E_ND_/_I_N_V_A_L_I_D __ KE_Y ____ •• TERMINATE
, Report

normal
~ ..

F<
: IF ..• No (Is this

Input Record
to be

Reported?)

Yes

GENERATE
____ .. ' Detail

....
Close Input
and Output

Files

C STOP RUN)

{

GENERATE causes tests for
control breaks and page breaks,
with appropriate actions, as
well as detail line presentation
and SUM counter accumulatIon.

Before a GENERATE statement is executed, the report must be initiated. The
INITIATE statement causes initial housekeeping values to be established.

The GENERATE statement provides for all aspects of report editing, writing,
and housekeeping, but GENERATE in itself makes no provision for reading input
data or deciding when detail lines should be produced. Instead, the user explicitly
obtains each input record via COBOL statements such as the READ statement.

7/81 11-3 AS43E

When the last GENERATE statement has been executed, the report must be
terminated. The TERMINATE statement causes final control footings and report
footings to be presented.

The immediate destination of a report is always a file specified in the
File Section of the Data Division. The file must be explicitly opened prior to
execution of the report's INITIATE statement, and the file must be explicitly
closed after the TERMINATE. The report writing statements implicitly perform
whatever writing is required for the report.

Skeletal Format for the Report Section

The definition of each report includes two types of entries:

1. The RD entry specifies the bas(c page layout and the overall o"rganization
of the report.

2. Report group description entries give the detailed formats of all elements
of the report and the sources of all information for the report.

An RD entry in the Report Section is analogous to an FD entry in the File
Section; it is the highest level of hierarchical organization for the report.
The report-name specified in each RD entry must be unique.

A level 01 report group description entry is analogous to a level 01 data
record description entry in the File Section. A level 01 report item is called
a report group. Normally, the hierarchical definition of the report group is
completed with a series of subordinate entries with levels 02-49.

An item with no subordinate items is an elementary item. Any report item
whose entry is followed by subordinate entries is a group item.

Since several reports may be defined in the Report Section, the skeletal
format of the Report Section is as follows:

REPORT SECTION.
RD report-name-1 ...
01 report-group-name ...

02 ...

01 ••.

RD report-name-2 ..•
01 ...

RD report-name-n ...

} Complete
description of
first report

For detailed reporting, a GENERATE statement refers to the data-name of a
level 01 detai 1 report group. For summary report ing, GENERATE refers to the
report-name of an RD entry instead of a detai 1 report group data-name. The
order in which level 01 report groups are speci fied for a gi ven report is not
significant.

7/81 11-4 AS43E

Within each report group, items to be printed must be described from left
to right. If the report group contains multiple lines, they must be described
in order from top to bottom.

The length of each line is determined by the user. In the formatting of a
print line, spaces are assumed except where a specific i tern is to be printed.
(In a data record, on the other hand, every character position must be described.)

RD Entries

The description of each report begins wi th an RD entry. Except for the
level indicator (RD) and the report-name, all clauses in an RD entry are optional.

The optional clauses in an RD entry. are:

Clause

CODE

CONTROL(S)

PAGE LIMIT(S)

HEADING .

FIRST DETAIL

LAST DETAIL

FOOTING

Report Group Entries

Function

To assign a two character nonnumeric label to each line
of this report on intermediate storage. (The code
character does not appear in the printed report.)

To specify data-names of control items, in the order
from most significant to least significant.

To specify the maximum number of lines per page.

To specify the line number at which page headings may
begin.

To specify the line number at which detail and control
lines may begin.

To specify the line number beyond which detail and control
heading lines must not be printed.

To specify the line number beyond which control footing
lines must not be printed. Also, to specify the line
number on or' before which a page footing must not be
printed. .

Typically, the description of a report includes two or more level 01 report
group entries, each followed by a hierarchy of subordinate entries. Depending
upon a number of factors, most clauses (except the level-number clause) are
optional. In most entries, the data-name is optional and is normally omitted.
A data-name is specified in level 01 detail report group entries and in nondetail
report groups that are referenced by the BEFORE REPORTING phrase of the USE
statement. .

7/81 11-5 AS43E

At the 01 report group level, the following clause is required:

Clause

TYPE

Function

. To specify the purpose of this report group (detail,
page or control headi~g, etc.).

The optional clauses in a report group entry are:

Clause

LINE NUMBER

NEXT GROUP

COLUMN NUMBER

BLANK WHEN ZERO

GROUP INDICATE

JUSTIFIED RIGHT

PICTURE

RESET

SOURCE, SUM, or
VALUE

USAGE

ELEMENTS OF A REPORT

Report Groups

Function

To specify vertical spacing (slewing) that is to precede
production of this report group (pre-slew).

To specify vertical spacing that is to follow production
of this report group (post-slew).

To indicate that this i tern is to be pri nte'd, and to
specify its horizontal position on the line.

To cause this item's value to be 'spaces' when the SOURCE
or SUM with which it is associated has the value zero.

To cause a repetitive item to be printed only at the
top of the page and just after each control break.

To override normal left justification when this item is
edited for output.

To specify the desired output format for this item.

To specify the control break where a SUM counter is to
be reset to zero.

To specify the source of data for this item:

1. SOURCE - a data item.

2. SUM - a SUM counter.

3. VALUE - a literal.

To declare the usage of printable items.

Each integral unit of data presented in a report, such as a page heading or
footing, control heading or footing, or detail line is called a report group. A
report group may consist of one or several actual lines in the printea report.
In the Report Section, the first entry of each report group must be level 01.

7/81 11-6 AS1~3E

The TYPE clause is a required part of each level 01 report group description
entry. The TYPE clause identifies the report group as detail or as report,
page, or control heading or footing. Each report must contain at least one TYPE
DETAIL report group. All other types are optional. A given heading type may be
used wi th or wi thout the corresponding footing, and vice versa. A report may
have several distinct detail report groups or control heading or footing report
groups, but no more than one of each of the other types.

Control Data Items

Each control heading or footing is associated with a specific control data
item. A control item may be any item described in the File Section, Working-Storage
Section, or Linkage Section.

Control i terns are related to the .report by a list of control data-names
specified in the CONTROL(S) clause of the RD entry. When control' items are
specified,. the reporting procedures in the object program automatically monitor
all control items for changes in value.

The most significant possible control level is associated with the reserved
word FINAL, which may optionally be specified in the RD entry's CONTROL(S) clause
-and in a control heading and/or control footing report group description entry.

Any control item may be associated with a specific control heading and/or a
specific control footing report group. (Control report groups may be specified
for each control item, for none, or for any subset of control items.) Control
footings may call for automatic accumulation of SUM counters.

Control
order:

FINAL CONTROL HEADING
MAJOR CONTROL HEADING

MINOR CONTROL HEADING

groups are presented in the following hierarchical

Control footing report groups are presented in the following hierarchical
order:

MINOR CONTROL FOOTING

MAJOR CONTROL FOOTING
FINAL CONTROL FOOTING

A control break is recognized whenever a control item has changed in value
between the execution of the previous GENERATE statement and the current GENERATE
statement.

If the item producing a control break is not the least significant (rightmost)
item in the list of all control items, then a control break has occurred at all
less significant levels as well.

7/81 11-7 AS43E

A control break causes the following automatic actions:

1. Rolling forward and crossfooting SUM counters.

2. Presentation-of control footings up through the control break level.

3. Resetting SUM counters to zero, up through the control break level,
unless inhibited by a RESET phrase.

4. Presentation of control headings from the control break level down
through the least significant control level.

When it is specified, a final control heading is presented only once for
the report, UllVll thE: first €:x€:e:utiofl of a GENERATE statement. Simila(-ly, a
final control footing is presented only once, upon execution of the TERHINATE
statement.

When the TERMINATE statement is executed, a final control break is understood
to have occurred, so all control footing report groups are then presented, in
order from least significant through final.

When a control break occurs, SOURCE clauses in control footings must reflect
- the old values of the control data items, while SOURCE clauses in control headings
reflect the new values of the control data items. A special provision causes
old control item values to be retained for control footings. No such provision
exists for items which are not control items. -

File Characteristics

Each report is produced on an output fi Ie by the object program. The
output file must be described by at least an FD entry in the File Section of the
Data Division plus associated Environment Division paragraphs and phrases.

A given output file may receive one or more reports. The REPORT(S) clause
of the FD entry lists the report or reports belonging to the file. This is the
only explici t relationship between a report and the file to which it belongs.
(Although a GENERATE statement does not mention the output file, any necessary
'writes' to the file are implied by each execution of a GENERATE statement.)

For a file receIvIng multiple reports, it is necessary to label each report
line uniquely so that the lines belonging to the respective reports can be
distinguished for printing. The CODE clause of the RD entry is used for that
purpose. Wi th the CODE clause, the user can associate a unique two-character
nonnumeric literal with each report; the compiler then causes every line of the
report to be labeled in a standard manner with the unique characters assigned by
the user. The code characters appear in the intermediate file only. The command,
process cobol report, is used to obtain the printed report from the intermediate
file. -

Line Counter

A line counter is implicitly provided for each report. It is used by the
generated reporting procedures to recognize page breaks, and to control vertical
page format.

7/81 11-8 AS43E

The line counter is automatically set to zero initially, and it is reset to
zero whenever a page break occurs. It is automatically set, reset, and incremented
on the basis of values specified in the LINE NUMBER and NEXT GROUP clauses in
the respective report groups. It is automatically tested on the basis of values
specified in the PAGE clause of the RD entry.

A page break occurs whenever a relative LINE NUMBER or relative NEXT GROUP
value causes the line counter to exceed the value specified in the PAGE clause.

The reserved word LINE-COUNTER may be referred to if it is necessary to
access the I ine counter contents. The report-name may be used as a qual i fier
for LINE-COUNTER; such quali fication is necessary whenever the Report Sect ion
includes more than one report.

If the last line produced has no relevant NEXT GROUP clause,
counter value is the number of the l~st line printed. Otherwise,
counter value is the number of the last line skipped.

Page Counter

the line
the line

A page counter is implici tly provided for each report. It is primarily
used as a SOURCE data item within page heading or page footing report groups, to
provide consecutive page numbers for the report.

The initial value of the page counter is one. Its value is automatically
incremented by one each time a page break occurs. (The increment follows production
of any page footing, but precedes production of any page heading.)

The reserved word PAGE-COUNTER may be referenced in a SOURCE clause or in
the Procedure Division to access the page counter value. The report-name may be
used as a qualifier for PAGE-COUNTER; such qualification is necessary whenever
the Report Section includes more than one report.

Normally, Procedure Di vi sion statements should not change the value of a
page counter. However, a Procedure Division statement may change the starting
value of a page counter if an initial page number other than one (1) is desired.

SUM Counter Manipulation

A function of the Report Writer that must be clarified to avoid producing
inefficient object code is the manipulation of SUM counters. There are three
distinct types of SUM counter manipulation; s4btotalling, rolling forward, and
crossfooting. A defini tion and illustration of each type of manipulation is
presented below.

7/81 11-9 AS43E

SUBTOTALLING

Subtotalling is the most basic type of SUM counter manipulation. In this
method, a SUM counter is augmented by the value of the SUM operand for each
execution of a GENERATE. statement of the TYPE DETAIL report group which contains
the SOURCE counterpart of the SUM operand.

Example':

01 DETAIL-l TYPE DETAIL LINE PLUS 1.
02 SOURCE IS COST.

01 MINOR TYPE CF MINR LINE PLUS 1 .
"" COr'T'D 1 COLU~N ~" PIC 2(6).99 SU~ vc.. UV.lJ\- I .-IV

01 INTERMEDIATE TYPE CF INTRM LINE PLUS
02 SCTR-2 COLUMN 50 PIC Z(6").99 SUM

01 MAJOR TYPE CF MAJR LINE PLUS 1 .
02 SCTR-3 COLUMN 50 PIC Z(6).99 SUM

01 FIN-TOT TYPE CF FINAL LINE PLUS 1
02 SCTR-4 COLUMN 50 PIC Z(6).99 SUM

COST,

1 .
COST.

COST.

NEXT GROUP NEXT PAGE.
COST.

At each execution of a GENERATE DETAIL-l, the value of COST will be added
into SUM counters SCTR-l, SCTR-2, SCTR-3, and SCTR-4. When a control break
occurs, no 'rolling forward' of counters is necessary since all counters are
effectively 'subtotalled'. The only remaining actions to be performed are:

1. Presenting the control footing report groups from the least inclusive
(MINOR) up through the control footing representing the control break
level.

2. Resetting the corresponding SUM counters to zero after each control
footing is presented.

ROLLING FORWARD

Rolling forward is a type of SUM counter manipulation in which SUM counters
defined in control footing report groups of lower control levels are added to
SUM counters defined in control footing report groups of higher control levels
during control break processing.

In the previous example, for instance, the identical results may be obtained
more efficiently by 'rolling forward' the SUM counters.

7/81 11-10 AS43E

Example:

01 DETAIL-1 TYPE DETAIL LINE PLUS 1.
02 SOURCE IS COST.

01 MINOR TYPE CF MINR LINE PLUS 1.
02 SCTR-1 COLUMN 50 PIC Z(6).99 SUM COST.

01 INTERMEDIATE TYPE CF INTRM LINE PLUS 1 .
02 SCTR-2 COLUMN 50 PIC Z(6).99 SUM SCTR-1.

01 MAJOR TYPE CF MAJR LINE PLUS 1 •
02 SCTR-3 COLUMN 50 PIC Z(6).99 SUM SCTR-2.

01 FIN-TOT TYPE CF FINAL LINE PLUS 1 NEXT GROUP
02 SCTR-4 COLUMN 50 PIC Z(6).99 SUM SCTR-3.

NEXT

The following sequence of events occurs in the above example:

PAGE.

1. At each execution of a GENERATE DETAIL-1 statement, the value of COST
is added into SUM counter SCTR-1 (subtotalling).

2. When a control break occurs on control data-name MINR, the control
footing report group called MINOR is presented; then SUM counter SCTR-1
is added (rolled forward) to SUM counter SCTR-2.

3. When a control break occurs at a higher control break level, the control
footing report groups are presented in sequence from the inclusive
(MINOR) up to and including the control footing at which the control
break occurred. After each control footing is presented, the SUM counters
for that report group are rolled forward to corresponding SUM counters
in higher level control footing report groups.

Thus, the subtotalling operation occurs only at the least inclusi ve
(MINOR) control break level. The remaining SUM counters are augmented
only when control break processing takes place.

CROSSFOOTING

Crossfooting is a type of SUM counter manipulation in which SUM counters
defined in a given control footing report group are added to other SUM counters
in the same report group during control break processing.

7/81 11-11 AS43E

Example:

01

01

01

DET AIL-l TYPE
02 SOURCE IS
02 SOURCE IS

DETAIL LINE
COST-1.
COST-2.

PLUS 1 •

MINOR TYPE
02 SCTR-l
02 SCTR-2
02 SCTR-3

CF MINR
COLUMN 50
COLUMN 60
COLUMN 70

INTERMEDIATE TYPE
02 SCTR-4 COLUMN
02 SCTR-5 COLUMN
02 SCTR-6 COLUMN

CF
50
60
70

LINE PLUS 1.
PIC Z(6).99 SUM
PIC Z(6).99 SUM
PIC Z(9).99 SUM

INTRM LINE
PIC Z(6).99
PIC Z(6).99
PIC Z(9).99

PLUS
SUM
SUM
SUM

COST-1.
COST-2.
SCTR-1,

1 •
SCTR-1.
SCTR-2.
SCTR-4,

SCTR-2.

SCTR-5.

The .following sequence of events occurs in the above example:

1. At each execution of a GENERATE DETAIL-1 statement, SUM counters SCTR-1
and SCTR-2 are augmented by the corresponding values of COST-1 and
COST-2 (subtotalling).

2. When a control break occurs for the control footing report group called
MINOR, SUM counters SCTR-1 and SCTR-2 are added into SUM counter SCTR-3
before the report group is presented (crossfooting).

3. After the report group called MINOR is presented, SUM counters SCTR-1
and SCTR-2 are added into SUM counters SCTR-4 and SCTR-5, respectively
(rolled forward).

4: SUM counters SCTR-1, SCTR-2, and SCTR-3 are reset to zero.

5. When a control break occurs for the control footing report group called
INTERMEDIATE, SUM counters SCTR-4 and SCTR-5 are added into SUM counter
SCTR-6 before the report group is presented (crossfooting).

PRODUCING A REPORT

Once a cobol program using the report writer feature is compiled, there are
two or three steps involved in getting the report printed. First, execute the
program. This produces a stream file with the name <progid).<filename) . This
file contains an intermediate representation of all reports associated with that
file in the program. To extract the desired report(s) from the file, use the
process cobol report command. This command formats the requested report(s) and
sends the output to the users terminal or a file. If the report is sent to a
file the dprint command (refer to the MPM Commands) can be used to have the file
printed on a line printer.

Report Command

",,,, T"II.

\.I V 1"1 1"1 Ii I' U

The process cobol report command (abbreviated pcr) extracts reports from a
file created by a cobol program using the report writer feature. The format is:

pcr path {-control_args}

7/81 11-12 AS43E

where:

1 . path
is the pathname of the input file.

2. control args
may be chosen from the following:

-all, -a
specifies that all reports ln ~ne report file are to be processed.
This control argument is incompatible with the -report code control
argument.

-no newpage, -nnp
specifies that newpage characters are not to be emitted when -output file
is used. The default is for each page to end with a newpage character.

-output file path, -of path
specifies that the output is to be directed to the file indicated by
path. The default is for the output to be directed to 'user _output
(terminal).

-report code STR, -rcd STR
specifies which report(s) are to be extracted from the report file.
STR consists of a string of report codes (the two character designators
supplied in the co-de phrase in the cobol program) with values separated
by commas with no spaces.. This control argument is incompati ble
with the -all control argument.

-stop, -sp
waits for a carriage return from the user before beginning typing
and after each page of output to the terminal.

Notes .

When outputting to the terminal, pcr assumes the terminal is positioned to
the top of a page for the first line of the report. .

When nei ther -all nor -report code control arguments are specified, then
the report designated by the defaul~ code is processed.

7/81 11-13 AS43E

APPENDIX A

ORDER OF COBOL SOURCE PROGRAM

An outline of the five divisions of a COBOL source program is given below.
The grouping within each division is indicated by indention as follows:

Division
Section

Paragraph

CONTROL DIVISION.
DEFAULT SECTION.

IDENTIFICATION DIVISION.
PROGRAM-ID.

INSTALLATION.
AUTHOR. }

DATE-WRITTEN. any order
DATE-COMPILED.
SECURITY.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

C!('\!IOf'"'C' f'"'('\UDTI'T'C'D vVUU"1:..-"vn.uJ.r:.n

OBJECT-COMPUTER
SPECIAL-NAMES.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
I-O-CONTROL.

DATA DIVISION.
FILE SECTION.

input files.
output files.
sort files.
merge files.

} any order

WORKING-STORAGE SECTION.
CONSTANT SECTION.
LINKAGE SECTION.
COMMUNICATION SECTION.

PROCEDURE DIVISION.
DECLARATIVES.1
(USE Sections)
END DECLARATIVES.1
(all other procedures)

Required By ANSI(X)

x
X

x
X
x
X

X

X

Required By MCOBOL(X)

External name used
less [.cobol]

iviULTI CS used
MULTICS used

X

1If used, both DECLARATIVES and END DECLARATIVES must be present.

04/78 A-1 AS43A

SEP..IES SO (LEVEL 68)
MULTICS COBOL USERS' GUIDE

ADDENDUMB

SUBJECT

Additions and Changes to the Multics COBOL Users' Guide

SPECIAL INSTRUCTIONS

This is the second addendum to AS43, Revision 1, dated December 1976.

The addendum includes description of COPY ... REPLACING, ALTERNATE
RECORD KEY, file organization and structure, use of probe, and a new section
on file ordering- SORT and MERGE. Throughout the addendum (except fo!'
new Section 9 which is not marked), change bars in the margin indicate
technical additions and changes; asterisks denote deletions'. These changes will
be incorporated into the next revision of the manual.

Insert the attached .pages· into the manual according to the collating instruc
tions on the back. of this cover.

Note:
Insert this covet sheet after the manual cover to indicate the updating
aftha document with Addendum B. .

SOFtWARE SUPPORTED

Multics Software Release 7.0

ORDER NUMBER

AS43B, Rev. 1

23229
1379

. Printed. in u.s.A.

February 1979

Honeywell.

COLLATING INSTRUCTIONS -

To update the manual, r-emove old pages and inser-t new pages as follows:

Remove

iii through vii
2-12.1, blank
2-13, blank
3-5 •. 1, 3-6.
3-13, blank
3-15, 3-16
4-3,·4-4
4-9 through 4-14
4-29, blank
5-9, 5-10
5-21, 5-22
6-1 through 6-6
7-3, 1-4

i-1 through i-5

The infonnation and specifications in this document are
subject to change without notice: This document contains
information about HoneyweH products or sen;ces that may
not be available outside the United States. Consult your

. Honeywell Marketing Representative.

~ Honeywell Information Systems Inc., 1979

02/79

Inser-t

iii through Vlll
2-12.1, 2-12.2
2-13 thr-ough 2-16
3-5.1, 3-6
3-13, blank
3-15, 3-16
4-3, 4-4
4-9 through 4-14
4-29 through 4-36
5-9, 5-10
5-21, 5-22
6-1 thr· ough 6-6
7-3, 7-4
9-1 through 9-18
i-1 through i-4
i-5, blank

File No.: 1L23

AS43B

SERIES 60 (LEVEL 68)

MULTICS COBOL USERS' GUIDE
ADDENDUM C

SUBJECT

Additions and Changes to the Multics COBOL Users' Guide

SPECIAL INSTRUCTIONS

This is the third addendum to AS43, Revision 1, dated December 1976.

The addendum is mainly related to COBOL Standards conformance and includes
a new section dealing with the COBOL debug facility. Change bars in the
margin indicate technical additions and changes; asterisks denote deletions.
Section 10 (Debug Facility) is new and does not have change bars. These
changes will be incorporated into the next revision of the manual.

Insert the attached pages into the manual according to the collating instruc
tions on the back of this cover.

Note:
Insert this cover sheet after the manual cover to indicate the updating
of the document with Addendum C.

SOFTWARE SUPPORTED

Multics Software Release 7.0b

ORDER NUMBER

AS43C, Rev. 1

24495
5C979
Printed in U.S.A.

September 1979

Honeywell

COLLATING INSTRUCTIONS

To upo~te the manual, remove old pages and insert new pages as follows:

Remove

iii through viii
12-12. 1, 2-12.2
2-13, 2-14
3-5, blank
3-5.1, 3-6
3-7, 3-8
3-10.1, blank
3-11, 3-12
3-15 through 3-20
4-3, 4-4
4-11 through 4-14
4-17 through 4-20
5-9, 5-10
5-23, 5-24
6-9, 6-10

i-1 through i-5

~ Honeywell Information Systems Inc., 1979

09/79

Insert

iii through viii
2-12.1, 2-12.2
2-13, 2-14
3-5, blank
3-5.1, 3-6
3-7, 3-8
3-10.1, blank
3-11, 3-12
3-15 through 3-20
4-3, 4-4
4-11 through 4-14
4-17 through 4-20
5-9, 5-10
5-23, 5-24
6-9, 6-10
10-1, '10-2
i-1 through i-6

File No.: 1L23

ASq3C

SERIES 60 (LEVEL 68)

MULTICS COBOL USERS' GUIDE
ADDENDUMD

SUBJECT

Additions and Changes to the Multics COBOL Users' Guide

SPECIAL INSTRUCTIONS

This is the fourth addendum to AS43, Revision 1, dated December 1976.

Change bars in the margin indicate technical additions and changes; asterisks
denote deletions. These changes win be incorporated into the next revision of
. the manual.

Insert the attached pages into the manual according to the collating instruc
tions on the back of this cover.

Note:
Insert this cover sheet after the manual cover to indicate the updating of
the document with Addendum D.

SOFTWARE SUPPORTED

Multics Software Release B.O

ORDER NUMBER

AS43D, Rev. 1

26351
7.5C1279
Printed in U.S.A.

December 1979

Honeywell

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove

iii through viii

2-1, 2-2
2-12.1, 2-12.2
3-13, blank
3-13.1,3-14
3-15, 3-16
3-19, 3-20
4-3, 4-4
4-71 4-8
5-19 through 5-22
6-1 through 6-6
i-1 through i-6

@ Honeywell Information Systems Inc., 1979

12/79

Insert

iii through viii
ix, blank
2-1, 2-2
2-12.1, 2-12.2
3-13, blank
3-13.1,3-14
3-15,3-16
3-19, 3-20
4-3, 4-4
4-7, 4-8
5-19 through 5-22
6-1 through 6-6
i-1 through i-8

File No.: 1L23

LEVEL 68

MULTICS COBOL USERS' GUIDE
ADDENDUME

SUBJECT

Additions and Changes to the Multics COBOL Users' Guide

SPECIAL INSTRUCTIONS

This is the fifth addendum to AS43, Revision 1, dated December 1976.

Change bars in the margin indicate technical additions and changes; asterisks
denote deletions. Section XI (RepOrt Writer) is a new section and does not
contain change bars. These changes will be incorporated into the next revision
of the manuai.

Insert the attached pages into the manual according to the collating instruc
tions on the back of this cover.

Note:
Insert this cover sheet after the manual cover to indicate the updating
of the document with Addendum E.

SOFTWARE SUPPORTED

Multics Software Release 9.0

ORDER NUMBER

AS43-01E

32035
5C781
Printed in U.S.A.

July 1981

Honeywell

To Upd8tp the manual, remove ol~ Da~ps and jnRPrt new pagpR 85 f011ows:

Removp

v throup-:h ix
2-5, ?-ft
2-12.1 through 2-14

3-13, blank
3-13.1 through 3-16
4-17 through 4-?2
4-23, 4-23.1
5-23, c;-24
10-1, 10-2

i-l throuflh i-R
Remarks Form (AS4~D)

The information and specifications in this document are
subject to change without notice. This document contains
information about Honeywell producta or servicee that may
not be available oul.8ide the United States. Consult your
Honeywell Marketing Representative.

@ Honeywe] J Information Systems Inc., lqRl

7/P,1

Insert

v through x
?-t), ?-ft
2-12.1 through ?-14
?-17,?-'H~
~-13, hlank
3-1~.1 through ~-1ft
4-17 through 4-2?
IJ_?~, 4-2~. 1
S-?3, S-?4
H'-1, 10-?
lfl-i, hJanlr
11-1 throuflh 11-1?
11-1~, hlank
i-l through i-HI
PpmarkR Form (AS4~F)

F i J e ~r 0.: 1 r J 2 j

ACCEPT statement 4-1, 4-2, 6-7

access
object segment access 3-16

access mode
file 4-10
object program 3-16

ACCESS MODE clause 4-10

ADD statement 6-11, 6-12

add search rules command 5-3, 5-4

ADVANCING clause 4-14, 4-26, 4-27,
6-7

ALTER statement 6-7

APPLY alause 4-18

areas
reference format areas 2-3

AT END clause 6-9

attach

INDEX

BREAK
control break i1-7

breakpoint
see debugging

CALL statement 5-2, 5-6, 6-7

CANCEL statement 5-9, 5-12

cancel_cobol_program 5-12

cancel cobol program command 5-9,
5=10 -

catalog-name ~-18, 4-23

change_wdir command 5-3

character
capitalization considerations
case considerations 2-6, 2-8
COBOL special characters 2-6
in nonnumeric literals 2-9
non-COBOL characters 2-7
source-level escape convention 2-9
use of

asterisk 2-5
backslash 2-10 attach description 4-3

attaching from command level
see 1/0 module

4-6 backspace 4-26

see 1/0 switch

BEFORE
BEFORE REPORTING phrase 11-2

binary data
description 5-18, 5-22
digit encoding 5-19
displaying and modifying 6-3
efficient use of 7-3
invalid values 6-12
PLII equivalency 5-25
sign encoding 5-20, 5-21

binding 5-5

block
1/0 control block 4-3, 4-29

BLOCK CONTAINS clause 4-22.1

7/81

carriage return 4-26
form-feed 3-5.1, 4-26
hyphen 2-3, 2-5, 2-7, 3-19
newline 2-3, 2-9, 4-2, 4-26
period 2-7
quotation marks 2-9
slash 2-5
tab 2-6
ul1derscore 2-7

character set 2-6

clause
ACCESS MODE clause 4-10
ADVANCING clause 4-14, 4-26, 4-27,

6-7
APPLY clause 4-18
AT END clause 6-9
BLOCK CONTAINS clause 4-22.1
CODE clause 11-8
DEBUGGING MODE clause 10-1
DEFAULT COMP clause 5-18
DEFAULT SIGN clause 5-22

i-1 AS43E

clause (cont)
DEPENDING ON clause 3-12.2, 4-23,

4-24, 6-7
GENERATE AGGREGATE DESCRIPTORS

clause 2-12
GENERATE DESCRIPTOR

command (cont)
cobol command 3-1, 3-18
display cobol run unit command 11-29,

S-13
file output command 4-3, 4-21
format cobol source command 2-5,

SCALAR, AGGREGATE, NO clause 5-26, 2=6, 2-13
5-26.1

GENERATE DESCRIPTOR clause 2-12
GENERATE NO DESCRIPTORS clause 2-12
NUMERIC LIMIT clause 2-12
OCCURS clause 3-12.1, 4-24
ORGANIZATION clause 4-8
PICTURE clause 5-17, 5-18
RECORD CONTAINS clause 4-23, 4-23.2
RECORD KEY clause 4-11
RELATIVE KEY clause 4-11, ll-12
REPORT(S) clause 11-8
SELECT clause 4-13
SELECT clauses 4-6
SIGN clause 2-11, 5-18,5-22
SIZE ERROR clause 6-11, 6-12
SOURCE clause 11-9
TYPE clause 11-7
USAGE clause 2-11, 3-8, 5-17, 5-18,

5-25
USING clause 2-12, 3-12.1
VALUE clause 4-20, 4-23, 4-22.1,

7-2

CLOSE statement 4-4, 4-7, 4-20

CMCS
see COBOL Message Control System

cobol command 3-1 , 3-18

COBOL data segment 5-23

COBOL MCS
see COBOL Message Control System

COBOL Message Control System
CMCS Administrator 8-5
command

cobol mcs command 8-10
cobol-mcs admin command 8-17
command example 8-27
cv cmcs station ctl command 8-22
cv-cmcs-terminaI ctl command 8-23
cv-cmcs-tree ctl-command 8-24

data-bases 8-5
design concepts 8-2
message processors 8-8
terminology 8-1

cobol mcs command 8-10

cobol mcs admin command 8-17

CODE
CODE clause 11-8

command
add search rules command 5-3, 5-4
cancel cobol program command 5-9,

5=10, 5=12
change_wdir command 5~3

1/81

help command 3-20
initiate command 5-4
io call command 4-6, 4-21, 5-6
link command 5-4
print attach table command 4-7
print-link info command 3-6, 3-16,

j-17 -
probe command 6-2
process cobol r~port command 11-12
profile-co~mand 3-13
release command 3-18, 5-16
run cobol command 5-10, 5-16
set-search rules command 5~3
start command 3-12.1, 5-5
stop cobol_run command 5-10, 5-12

command level
attaching a file from 4-6
program execution from 5-5

communication
interprogram communication 5-24

compatibility
PL/I data type compatibility 5-24

i-2

compiler
abort

see unrecoverable errors
characteristics 3-18
debugging and testing 3-14
development and testing 3-14
documentation 3-20
invoking the compiler 3-1
reentrancy 3-18
see control argument

compiling
interrupted compilations 3-18
invoking the compiler 3-1
multiple compilations 3-19
ordering control arguments 3-19

computational
data

see binary data
summary 5-18

COMPUTE statement 6-7, 6-11

com err subroutine 6-9

control
automatic return of control 5-17
control break 11-7
Control Data Items 11-7
control division 2-11, 5-18
descriptor control 2-12
I/O control block 4-3, 4-29
Report Control 11-2

AS43E

control (cont)
transferring

see statement
transfers of control 10-1

control argument
cancel cobol program

-retain data 5-12
-~etain-files 5-12

cobol
-brief 3-5
-check 3-12
-debug 3-14
-format 2-5, 2-6, 2-13
-leveli 3-5
-list 3-12, 3-5.1, 3-10.1
-map 3-10, 3-5.1
-profile 3-13
-runtime check 3-12
-severityi 3-3
-source 3-6, 3-5.1
-table 3-13.1
-temp dir 3-13.1
-time- 3-14
summary 3-15

display cobol run unit
-all -5-13,-5-14
-files 5-13, 5-15
-long 5-13, 5-14

ordering 3-19
run cobol

-cobol switch 5-10
-no stop run 5-10
-sort dir 5-10
-sort-file size 5-10

stop ,cobol run
-retain data 5-12
-retain-files 5-12

conventions
naming of source program 5-1
source level escape 2-9

COpy statement 2-12.1

COUNTER
Line Counter 11-8
Page Counter 11-9
SUM Counter Manipulation 11-9

cross-reference listing 3-8, 3-9

CROSSFOOTING 11-11

cv cmcs station ctl command 8-22

cv cmcs terminarctl command 8-23

cv cmcs tree ctl command

data
addressability 5~27
aggregate 5-25, 5-26
allocation 3-9, 5-23
COBOL data segment 5-23
Control Data Items 11-7
cross-reference 3-8
digit encoding 5-19

7/81

8-24

data (cont)
displaying data 6-3
efficiency considerations 7-2
modifying data 6-3
per-process 5-23
PL/I data type compatibility 5-24
sign encoding 5-20, 5-21
types

binary 5-18, 5-22, 5-25, 6-6, 7-3
index 6-7
nonseparate sign display 5-18,

5-21, 6-12, 7-3
packed decimal 5-18, 5-22, 6-4,

7-3
separate sign display 5-18, 5-20,

5-24, 6-12
summary 5-18
unsigned display 5-18, 5-19

use of numeric data 7-3

DATE-COMPILED paragraph 3-7

DEBUG
debug Facility 10-1
DESCRIPTION OF THE DEBUG FACILITY

10-1
EXAMPLE OF THE DEBUG FACILITY 10-1

debugging 2-6
compil~r debugging and testing -3-14
displaying and modifying data 6-3
monitoring program execution 6-2
source level debugging requirements

3-13.1

DEBUGGING MODE clause 10-1

declarative error procedures 4-24

default
default section 2-11
search rules 5-3
see clause

DEFAULT COMP clause 5-18

default section 2-11

DEFAULT SIGN clause 5-22

definition
file definition 4-8
run-unit definition 5-8

DELETF statement 6-9

DEPENDING ON clause 3-12.2, 4-23,
4-24, 6-7

DESCRIPTION
DESCRIPTION OF THE DEBUG FACILITY

10-1

i-3

DESCRIPTION OF THE REPORT WRITER
11-1

descriptor control 2-12
SCALAR, AGGREGATE, NO 5-26, 5-26.1

AS43E

DETAILED
detailed reporting 11-4

diagnostic messages
fatal errors 3-2, 3-4
format 3-2
observations 3-2, 3~4
repetition control 3-5
see control argument (-brief,

. -severity)
severity control 3-2
unrecoverable error 3-2, 3-4
warnings 3-2, 3-4

digit
digit encoding

see data

display
see binary data

DISPLAY statement 4-1, 6-7, 7-6

display cobol run unit command 4-29,
5-13 - -

DIVIDE statement 6-11, 7-5

documentation
online information 3-20
see command (help)

dynamic linking 5-4

ELEMENTARY
elementary item 11-4

encoding
see data

ENTRIES
RD Entries 11-5
Report Group Entries 11-5

entry
<io-technique> entry 4-18
entry point name 5-1, 5-2
FD entry 4-8
RD entry 11-4

entry point name 5-1, 5-2

equivalency
PL/I data type equivalency 5-24,

5-25

error
exponentiation error 6-7
fixed-point overflow error 6-12
illegal procedure condition error

6-11
input/output error 6-9
1':_1 .. _ ______ t:.. 1""\
"&'''&'11r..C5"C; 0;;1' VI U- IL

see subroutine (print cobol_error)
source error 3~2 -
subscripting error
unanticipated error
unrecoverable error

7/81

6-12
6-11
3~2, 3-4

escape
source level escape convention 2-9

EXAMPLE
command example 8-27
EXAMPLE OF THE DEBUG FACILITY 10-1

EXIT PROGRAM statement 5-9, 5-17, 6-7

exponentiation error 6-7

external
files 4-5, 4-12
switches 5-16, 5-23

FACILITY
debug Facility 10-1
DESCRIPTION OF THE DEBUG FACILITY

10-1

i-4

EXAMPLE OF THE DEBUG FACILITY 10-1

FD entry 4-8

field (key) ordering 9-3

file
activity recording 4-29
attaching from command level 4-6
closing 4-4
defining a file 4-8
device specification 4-13
external 4-5, 4-12
file state block 3-17, 4-3
fixed length records 4-11
FLR/VLR/SPANNED 4-11
indexed 4-32
internal-file-name 4-12
key

see key
opening 4-3
opening modes 4-27
print file 4-25, 6-7
relative 4-30
scope 4-5, 4-12
sequential 4-29
sharing 4-5
stream file 4-10
structure 4-8
tape files 4-23.1
temporary files 4-18
variable length records 4-11
virtual memory files 4-14

file state block 4-3

FILE-CONTROL paragraph 4-8

file_output command 4-3, 4-21

FINAL 11-7

fixed
.c"': •• _..... , ___ ~ t- _____ ~ _ II .. 1

.l..&.ACU "&'CIl5vLJ IC\,;VIUo;:, ""t-I I

fixed reference format 2-3

fixed-point overflow error 6-12

AS43E

format
command line 3-1, 3-19
data

see data
diagnostic messages 3-2
free-form format 2-5, 2-6
object segment 3-16
reference format areas 2-3
Report Format 11-1
restriction for library files 2-13
source program reference format 2-3
terminal oriented format 2-5
vertical page format 11-8

format cobol source command 2-5, 2-6,
2=13

FORWARD
ROLLING FORWARD 11-10

free format
see format

FSB
file state block

see file

GENERATE
GENERATE statement 11-4

GENERATE AGGREGATE DESCRIPTORS 2-12

GENERATE DESCRIPTOR
SCALAR, AGGREGATE, NO clause 5-26,

5":26. 1

GENERATE DESCRIPTOR clause 2-12

GENERATE NO DESCRIPTORS clause 2-12

GO TO statement 5-17, 5-23, 6-7

GROUP
NEXT GROUP 11-9
Report Group Entries 11-5

GROUPS
Report Groups 11-6

help command 3-20

I-O-CONTROL paragraph 4-8, 4-18

I/O
control block 4-3, 4-29
module

discard 4-21
summary 4-4
syn 4-5, 4-21
tape ansi 4-14, 4-22
tape-ibm 4-14, 4-22

see input/output
switch

assignment 4-12
attachment 4-3

illegal procedure condition error
6-11

independent segments 5-17, 6-7

index integrity verification 3-12.2

INITIATE
INITIATE statement 11-3

initiate command 5-q

initiation
program execution initiation 5-5,

5-11
run-unit initiation 5-5, 5-10
segment 5-2

initiation segment 5-2

INPUT-OUTPUT section 4-8

input/output
COBOL statements

see statement (ACCEPT, CLOSE,
DISPLAY, OPEN, READ, WRITE.)

efficiency considerations 7-2
errors 4-24, 6-9
Multics input/output system

see attach
section

see section (input/output)

input/output errors 6-9

INSPECT statement 7-4

internal files
see scope of files

interprogram communication 5-24

invalid values 6-12

invoking the compiler
see compiler

IOCB 4-3

io call command 4-6, 4-21, 5-6

ITEM
elementary item 11-4

ITEMS
Control Data Items 11-7

key
record key 4-11
relative key 4-12
status key 4-17

leveling 3-5

library
definition 2-12.1 error output 5-16

switch-level sharing.
user_output 5-8

4-5 see command
(set translator search rules)

7/81 i-5 AS43E

library (cont)
source format restrictions 2-13

LINE
Line Counter 11-8
LINE NUMBER 11-9

link
linkage error 6-12
linkage section 4-11, 5-23
linking

see dynamic linking

link command 5-4

linkage error 6~12

linkage section 4-11, 5-23

list file 3-5.1
cross-reference listing 3-8, 3-9
header ·3-6
object map 3-10, 3-16
see diagnostic messages
see object segment
source listing 3-6, 3-10

literals 2-4, 2-7, 2-8, 2-9, 5-23

long binary data
see binary data

lowercase
use of lowercase characters 2-6,

2-8

MANIPULATION
SUM Counter Manipulation 11-9

merge key fields 9-12

MERGE statement 9-2, 9-12

MERGE verb 9-3

messages
see diagnostic messages

mnemonic-name 4-26.1

NEXT
NEXT GROUP 11-9

non-COBOL characters 2-7

nonnumeric literals
see literals

nonseparate sign display data
see binary data

NUMBER
LINE NUMBER 11-9

NUMERIC LIMIT clause 2-12

,,""..;
VLl.J"

code suppression 3-12
environment

see run-time
listing 3-16, 3-10.1
map 3-10, 3-12, 3-16
segment creation 3-16

object segment 3-16
creation 3-16
format 3-16
see command (print link info)
suppression 3-12

observation diagnostics 3-2, 3-4

OCCURS clause 3-12.1, 4-24

OF
DESCRIPTION OF THE DEBUG FACILITY

10-1
DESCRIPTION OF THE REPORT WRITER

11-1
EXAMPLE OF THE DEBUG FACILITY 10-1
transfers of control 10-1

OPEN statement 4-7, 4-20, 4-21, 4-23,
4':'28, 7-6

opening modes 4-27

ORGANIZATION clause 4-8

overpunched data
mode see binary data

access mode 4-10
file 4-10
object program 3-16

DEBUGGING MODE clause 10-1
file opening mode 4-27

MOVE statement 6-12

MULTIPLY statement 6-11

names
catalog-name 4- 18, 4-23
entry point name 5-1, 5-2
mnemonic-name 4-26.1
reference names 5-1, 5-2, 6-8, 6-12
source program naming .5-1

7/81 i-6

packed decimal data
see binary data

PAGE
Page Counter 11-9
vertical page format 11-8

paragraph
3-7

4-8
DATE-COMPILED paragraph
FILE-CONTROL paragraph
I-O-CONTROL para~raph
PROGRAM-ID paragraph

4-8, 4-18
3-17, 4-23.1.,

5-1

AS43E

par'ameter
checking

see control argument
(-runtime check)

definition -
see section (linkage)

passing 5-24
validstion 3-12.1

PERFORM statement 6-7

PHRASE
BEFORE REPORTING phrase 11-2
RESET phrase 11-8

PICTURE clause 5-17, 5-18

PL/I data type equivalency 5-24, 5-25

print files 4-25, 6-7

print_at tach_table command 4-7

print_cobol_error subroutine 6-10

print link info command 3-6, 3-16,
3-17 -

probe command 6-2

process_cobol_report command 11-12

profile command 3-13

program.
measuring performance 7-6
monitoring program execution 6-2
object program

creation 3-16
format 3-16

size considerations 7-1
source program considerations 2-2
summary 3-10
termination 5-8, 5-9, 5-11, 5-17

program execution
continuation of

see commmand (start)
from command level 5-5
initiation of 5-4
termination of 5-8, 5-9, 5-16, 5-21
via CALL statement

see interprogram communication

PROGRAM-ID paragraph 3-17, 4-23.1,
5-1

RD
RD Entries 11-5
RD entry 11-4

READ statement 4-10, 6-9

RECORD CONTAINS clause 4-23, 4-23.2

record key 4-11

RECORD KEY clause 4-11

7/81

reentrancy 3-18

reference format
areas 2-3
fixed 2-3
terminal-oriented 2-5

reference names 5-1, 5-2, 6-8, 6-i2
see names

relative key 4-12

RELATIVE KEY clause 4-11, 4-12

release command 3-18, 5-16

RELEASE statement 9-7

REPORT
DESCRIPTION OF THE REPORT WRITER

11-1
Report Control 11-2
Report Format 11-1
Report Group Entries 11-5
Report Groups 11-6

REPORT WRITER
producing a report 11-12

process cobol report command
11=12 -

REPORT(S
REPORT(S) clause 11-8

report-name ii-9

i-7

REPORTING
BEFORE REPORTING phrase 11-2
detailed reporting 11-4
summary reporting 11-4

RESET
RESET phrase 11-8

RETURN statement 9-8

REWRITE statement 6-9

ROLLING
ROLLING FORWARD 11-10

run-time
environment

binding 5-5
dynamic linking 5-4
search rules 5-3

error checking 3-12
errors

input/output 6-9
message format 6-7.1
see control argument

(-runtime check)
see subroutine

(print_cobol_error

run-time error
anticipated
input/output

6-6
4-23.1

AS43E

run-unit
definition 5-8
external switches 5-16, 5-23
implementation specifics 5-26.1
initiation of 5-5, 5-10
related commands

see command (cancel cobol program,
display cobol run unIt,

. run unit, stop cobol run)
related statements -

see statement (EXIT program,
STOP(literal>, STOP RUN)

segmentation 5-17
termination 5-8, 5-11

run cobol command 5-10, 5-16

scope of files 4-5, 4-12

search
search rules 5-3

SEARCH statement 6-7

section
default section 2-11
INPUT-OUTPUT section 4-8
linkage section 4-11, 5-23
WORKING-STORAGE section 4-11,

segment
COBOL data segment 5-23
independent 5-17
independent segment 6-7
initiation segment 5-2
list s'egment
object segment 3-16
source segment

see source program

segmentation 5-17

SELECT clause 4-6, 4-13

separate sign display data
see binary data

separators 2-14

SET statement 3-12.2, 6-7

set search rules command 5-3

sharing
file sharing 4-5

short binary data
see binary data

sign
control 2-11
encoding 5-20, 5-21

5-8

nonseparate sign display data 5-21;
6-3, 6-12, 7-3

separate sign display data 5-20,
6-3, 6-;2, 7-3

unsigned display data 5-18, 5-19,
6-3

7/81 i-A

SIGN clause 2-11, 5-18, S-22

SIZE ERROR clause 6-11, 6-12

slewing 4-26.1

sort key 9-5

SORT statement 6-7, 9-1

SORT verb 9-3

SOURCE
SOURCE clause 11-9

source error 3-2

source listing 3-6, 3-iO

source program
area definition 2-3, 2-4
conversion considerations 2-3
creation 3-16
division of A-1
errors

see diagnostic messages
escape convention 2-9
naming convention 5-1
reference format

fixed 2-3
see control argument (-format)
terminal oriented 2-5

see character set
see library
translation 2-6, 3-13.1

source program naming 5-1

source transformation 3-13

SPANNED records 4-11

start command 3-12.1, 5-5

START statement 6-9

statement
ACCEPT statement 4-1, 4-2, 6-7
ADD statement 6-11, 6-12
ALTER statement 6-7
CALL statement 5-2, 5-6, 6-7
CANCEL statement 5-9, 5-12
CLOSE statement 4-4, 4-7, 4-20
COMPUTE statement 6-7, 6-11
COpy'statement 2-12.1
DELETE statement 6-9
DISPLAY statement 4-1, 6-7, 7-6
DIVIDE statement 6-11, 7-5
EXIT PROGRAM statement 5-9, 5=17,

6-7
GENERATE statement 11-4
GO TO statement 5-17, 5-23, 6~7
INITIATE statement 11-3
INSPECT statEmEnt '7_11 ,- . .,
MERGE statement 9-2, 9-12
~OVE statement 6=12
MULTIPLY statement 6-11

AS43E

statement (cont)
OPEN statement 4-7, 4-20, 4-21,

4-23, 4-28, 7-6
PERFORM statement 6-7
READ statement 4-10, 6-9
RELEASE statement 9~7

RETURN 9-14
RETURN statement 9-8
REWRITE statement 6-9
SEARCH statement 6-7
SET statement 3-i2.2, 6-7
SORT statement 6-7, 9-1
START statement 6-9
STOP RUN statement 5-8, 5-9, 5-11,

5-16, 5-23, 6-7
STOP statement 5-16
STRING statement 7-6
SUBTRACT statement 6~11
SUPPRESS statement 11-2
TERMINATE statement 11-4
UNSTRING statement 7-6
USE statement 4-25, 6-9
WRITE statement 4-12, 4-14, 4-21,

6-7, 6-9

status
file status 4-16
status keys 4-17

status key 4-17

STOP RUN statement 5-8, 5-9, 5-11,
5-16, 5-23, 6-7

STOP st~tement 5-16

stop_cobol run command 5-10, 5-12

stream files 4-10

string range checking 3-12.2

STRING statement 7-6

subroutine
com err 6-9
print_cobol_error_ 6-10

subscript range checking 3-12.1

subscripting
checking bounds 3-12, 3-12.1
errors 6-12

subscripting error 6-12

SUBTOTALLING 11-10

SUBTRACT statement 6-11

SUM
SUM Counter Manipulation 11-9

SUMMARY
summary reporting 11-4

SUPPRESS
SUPPRESS statement 11-2

7/81

switches
external 5-16, 5-23

SYSIN
ACCEPT ... FROM<sysin> 4-1

SYSOUT
DISPLAY ... UPON(sysout> 4-2

tape files 4-23.1

temporary files 4-18

TERMINATE
TERMINATE statement 11-4

termination·
program 4-19, 5-8, 5-11, 5-17
run-unit 5-8, 5-11

text word 2-13

THE
DESCRIPTION OF THE DEBUG FACILITY

10-1
DESCRIPTION OF THE REPORT WRITER

11-1
EXAMPLE OF THE DEBUG FACILITY 10-1

TRANSFERS
transfers of control 10-1

transformation
source 3-13

translation
source program translation 2-6, 2-9,

3-13.1

i-9

TYPE
TYPE clause 11-7

unanticipated error 6-11

unrecoverable error 3-2, 3-4

unsigned display data
see binary data

UNSTRING statement 7-6

uppercase
use of uppercase characters 2-6,

, 2-8

USAGE clause 2-11, 3-8, 5-17, 5-18,
5-25

USE statement 4-25, 6-9

USING clause 2-12, 3-12.1

VALUE clause 4-20, 4-23, 4-22.1, 7-2

variable length records 4-11

verb
MERGE verb 9-3

AS43E

verb (cont)
SORT verb 9-3

VERTICAL
vertical page format 11-8

virtual memory files 4-14, 4-23

WORKING-STORAGE section 4-11, 5-8

WRITE statement 4-12, 4-14, 4-21, 6-7,
6-9

WRITER
DESCRIPTION OF THE REPORT WRITER

11-1

7/81 i-10 AS43E

w
Z

z

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE I

I

LEVEL 68
MULTICS COBOL USERS' GUIDE
ADDENDUM E

o ERRORS IN PUBLICATION
J
«
r-
:J
u

•.. I

I
I
I
I

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. D

FROM: NAME --------.

TITl'E _____________ _

COMPANY --------

ADDRESS

ORDER NO.IAS43-01E

DATED I JULY 1981
I

DATE _______ _

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

IIIIII
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM. MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS. MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I
I
I
I
I
I ~
IJ

I lJ
I Z
~o
I ~

o
....J
o
U.

w
Z
....J

t:)
Z

~o
I ~
I 0

I ~
I u.

I
I ,
I
I
I
I
I
I
I
I

Honevwell
-- -- -- - ~ -

Honeywell Information Systems
In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5

In Mt.>xico: Avenida Nuevo Leon 250, Mexico 11, D.F.

21334,1778, Printed in U.S.A. AS43, Rev. 1

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12.0
	02-12.1
	02-12.2
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	03-01
	03-02.1
	03-02
	03-03
	03-04
	03-05.0
	03-05.1
	03-06
	03-07
	03-08
	03-09
	03-10.1
	03-10
	03-11
	03-12.0
	03-12.1
	03-12.2
	03-12.3
	03-13.0
	03-13.1
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22.0
	04-22.1
	04-23.0
	04-23.1
	04-23.2
	04-24
	04-25
	04-26.1
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26.1
	05-26
	05-27
	05-28
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07.0
	06-07.1
	06-08
	06-09
	06-10
	06-11
	06-12
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	10-01
	10-02
	10-03
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	A-01
	_001
	_002
	_003
	_004
	_005
	_006
	_007
	_008
	i-01
	i-02
	i-03
	i-04
	i-05
	i-06
	i-07
	i-08
	i-09
	i-10
	replyA
	replyB
	xBack

