
SERIES 60 (LEVEL 68)

MULTICS GRAPHICS SYSTEM
ADDENDUM A

SUBJECT

Additions and Changes to the Detailed Description of the Multics Graphics
System, Including Details of the Commands and Subroutines Used to Create,
Edit, Store, Display, and Animate Graphic Constructs

SPECIAL INSTRUCTIONS

This is the first addendum to AS40, Revision 1, dated December 1979.

Insert the attached pages into the manual according to the collatinginstructions
on the back of this cover.

Throughout the manual, change bars in the margins indicate technical additions
and changes; asterisks denote deletions. These changes will be incorporated into
the next revision of this manual.

Note:
Insert this cover after the manual cover to indicate the updating of the
document with Addendum A.

SOFrWARESUPPORTED
Multics Software Release 9.0

ORDER NUMBER

AS40-0lA

32498
5C981
Printed in U.S.A.

August 1981

Honeywell

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove

title page, preface

iii through ix, blank

2-1, 2-2

2-35 through 2-38

3-25, 3-26

3-29 through 3-38

3-43 through 3-46

4-1, 4-8

4-19 through 4-22

5-21 through 5-24

5-35 through 5-38

5-41, 5-42

5-49, 5-50

5-51, 5-52

5-51 through 5-60

5-19, 5-80

~ Honeywell Information Systems Inc., 1981

8/81

Insert

title page, preface

iii through x

2-1, 2-2
2 -2. 1, blank

2-35 through

3-25, blank
3-25.1, 3-26

3-29 through

3-43 through

4-1, 4-8

4-19 through

5-21, 5-22
5-23, blank
5-23.1,5-24

2-38

3-38

3-46

4-22

5-35 through 5-38

5-41, 5-42

5-49, 5-50
5-50.1,5-50.2
5-50.3, 5-50.4

5-51, 5-52

5-51 through 5-60

5-19, blank
5-19.1, 5-80

File No.: 1L13

AS40-01A

5-83, 5-84 5-83, 5-84

5-95, 5-96 5-95, 5-96
5-96.1, blank

5-103, 5-104 5-103, 5-104

5-107, 5-108 5-107, blank
5-107. 1, 5-108

6-1 through 6-4 6-1, 6-2
6-3, blank
6-3. 1, 6-4

6-5, 6-6 6-5, 6-6

6-7, blank 6-7, 6-8

7 -1 , 7-2 7 -1 , 7-2

8-3, blank 8-3, blank

i-1 through i-4 i-1 through i-4
i-5, blank i-5, blank

8/81 AS40-01A

SUBJECT

SERIES 60 (LEVEL 68)
MULTICS GRAPHICS SYSTEM

Detailed Description of the Multics Graphics System, Including Details of the
Commands and Subroutines Used to Create, Edit, Store, Display, and Animate
Graphic Constructs

SPECIAL INSTRUCTIONS

This revision supersedes Revision 0 of the manual dated October 1977. Change
bars indicate new and changed information; asterisks denote deletions.

Section 7 is completely new and does not contain change bars.

SOFrW ARE SUPPORTED

Multics Software Release 8.0

ORDER NUMBER

AS40-01 December 1979

Honeywell

PREFACE

This manual is a combined graphics primer and reference manual for the
Multics Graphics System. The manual is intended for users familiar with the
general characteristics of the Mul tics system, including the mechanics of terminal
usage, and assumes the user has a basic understanding of the simpler features of
the PL/I or FORTRAN Languages.

Section 2 of this manual is devoted to the primer. It is suggested that
users unfamiliar with graphics read Section 2 to acquaint themselves with the
Multics Graphics System before becoming familiar with the reference portion of
the manual (basics of the Multics Graphics System such as structure, commands,
subroutines, etc.) contained in Section 3 through 8. Periodic return to Section 2
examples while studying or referencing later sections will prove beneficial in
clarifying actual use.

Other manuals that provide additional information and that are referenced
in this manual include:

Document

Multics Programmers' Manual (MPM)-
Reference Guide

(Order No. AG91)

MPM Commands and Active Functions
(Order No. AG92)

MPM Subroutines
(Order No. AG93)

Multics PL/I Reference Manual
(Order NO'":""A"M83)

Multics FORTRAN
(Order No. AT58)

Referred To In Text As

MPM Reference Guide

MPM Commands

MPM Subroutines

PL/I Reference Manual

FORTRAN Manual

The MPM Reference Guide contains general information about the Mul tics command
and programming environments. It also defines items used throughout the rest of
the MPM and, in addition, describes such subjects as the command language, the
storage system, and the input/output system.

The information and specifications in this document are
subject to change without notice. This document contains
information about Honeywell products or services that may
not be available outside the United States. Consult your
Honeywell Marketing Representative.

~ Honeywell Information Systems Inc., 1981

8/81

File No.: 1L13

AS40-01A

The MPM Commands is organized into four sections. Section 1 contains a
list of the Mul tics command repertoire, arranged functionally. Section 2 describes
the active functions. Section 3 contains descriptions of standard Mul tics commands,
including the calling sequence and usage of each command. Section 4 describes
the requests used to gain access to the system.

The MPM Subroutines is organized into three sections. Section 1 contains a
list of the subroutine repertoire, arranged functionally. Section 2 contains
descriptions of the standard Multics subroutines, including the declare statement,
the calling sequence, and usage of each. Section 3 contains descriptions of the
1/0 modules.

The Mul tics PL/I Reference Manual, referred to in this book as the PL/I
Reference Manual, is a combined tutorial and reference manual for Multics PL/I.
It is very detailed and provides many examples of Multics PL/I language usage.

The Multics FORTRAN manual describes the Multics FORTRAN language, including
fundamental concepts and definitions of the syntactic form and meaning of each
language construct.

Changes to Multics Graphics System, Revision 1

In Section 2, new text describes "Programming Considerations."

In Section 3, "Arrays" describes treatment of arrays by the graphic compiler.
Also, the description of "Graphic Device Table" is expanded to include GDT format,
major and minor keywords and values. Although new to Section 3, "Format of a
GDT" and "Graphic-Support Procedures" contain change bars only to denote new or
changed information. "Graphic Character Tables" are now described in this section.

In Section 4, there is a new command, "compile_gct", and the "tmgc" command
has been deleted.

In Section 5, three subroutines have been deleted:

graphic char table
graphic-matrIx util
make_graphic_array_-

Section 6, "Graphic Device Table," has a description of one new GDT, "tek 4662".

Section 7 now contains the descriptions and displays of the "Graphic Character
Tables."

8/81 iii AS40-01A

I Changes to Multics Graphics System, Revision 1, Addendum!

I In Section 2, the description of "Programming Considerations" now includes
a caveat for FORTRAN users. At the end of the section, new text describes the
"Search List."

I

In Section 3, the "Specification of the Virtual Graphic Terminal" has been
expanded. Changes have been incorporated into "Graphic-Support Procedures." The
"Graphic Character Table (GCT)" now describes the handling of special format
characters.

I

In Section 5, the graphic gsp utility subroutine is new and does not contain
change bars. Changes have been made in the following subroutines: graphic chars ,
graphic_compiler_, graphic_error_table_, graphic_manipulator_, and gui_.

I

Section 6, "Graphic Device Table," describes a new GDT, rg512, which is the
RetroGraphics 512 enhancement for the ADM3A terminal. The rg512 description is
new and does not contain change bars. Changed GDTs are: tek_4002, tek_4012,
tek_4014, and tek 4662.

8/81 iv AS40-01A

Section

Section 2

Section 3

7/81

CONTENTS

Introduction

Graphics Users' Guide . • . • .
Typical Use of the Graphics System
Programming Considerations • • • • . • • • •
Basic Graphic Premises • . . • . .

Parameters of the Graphic Display
Nomenclature of Graphic Elements .••.

Positional Elements
Absolute Elements • •
Relative Elements . •

Mode Elements .• . •
Mapping Elements . . .
Structural Elements
Miscellaneous Elements .

Setting Up the Graphic I/O Environment .
Effects on the Process' Other I/O

Attachments .• • • . • • • . . .
Routing Multics Standard Graphics Code to

a Fi Ie • • . • • . • . • • • •
Using the Central Graphics System

Us~ng ~he Graphic Manipulator •
Node Values •. • . . • . .
Building Compound Elements • .

Programming Hint • • • • • •
Graphic Symbols . . • • .
Sharing Graphic Structures • . . • • .
Using Modes and Mappings • • • • •
Using Datablocks • .
Establishing Permanent Libraries of

Graphic Objects • • . • •
Using the Graphic Compiler
Using the Graphic Operator
Examples • . • • • • • .

Using Higher Level Graphic Subroutines •
Using gui •••..••••••
Using calcomp compatible subrs
Using plot .-•.••• :- •• :- •
Using the Graphic Editor •• • • •
Creating Simple and Compound Graphic
Structures • . • . . • • • • • • • •

Using Modes or Mappings to Alter Sh~red
Structures • •• ••••••••

Terminal Limitations and Peculiarities •
Search List •••••

Structure of the System • •
Graphic Structure Definition

Nonterminal Graphic Elements • • • •
Lists ••••• ••••••
Arrays • • • • • • • • •
Symbols •• • • • • • • • • • • •

Terminal Graphic Elements • • • •
Positional Elements • • • •
Modal Elements • • •• • • •
Mapping Elements • • • • • • •

v

Page

1-1

2-1
2-1
2-2
2-2. 1
2-3
2-3
2-4
2-4
2-4
2-6
2-6
2-7
2-7
2-7

2-8

2-9
2-10
2-10
2-10
2-11
2-13
2-13
2-15
,., 1 '7
c:.- I I

2-21

2-22
2-23
2-24
2-25
2-30
2-30
2-31
2-31
2-31

2-32

2-36
2-37
2-38

3-1
3-3
3-5
3-5
3-5
3-6
3-6
3-7
3-8
3-9

AS40-01A

I

i

I
I
I

I

I

I

Section 4

7/81

CONTENTS (cont)

Miscellaneous Graphic Elements .
Graphic Structure Manipulation
Graphic Structure Compilation .•. •
Dynamic Graphic Operations

Animation • • . . . • . • • . • . . • • •
Increment ..••••..•.•
Synchronize • • • •
Al ter . . . • • • • •

Graphic Input and User Interaction
Query . • • • . .
Control
Pause

Terminal Control
Screen Control • •

Erase
Display . . .

Memory Management
Delete
Reference

Multics Standard Graphics Code
Positional Operators •
Modal Operators
Mapping Operators . • •
Miscellaneous Operators
Structural Operators . •.
Animation Operators
Input and User Interaction Operators .
Terminal Control Operators

Terminal-Interfacing Considerations
Specification of the Virtual Graphic

Terminal • • • .
Graphic Device Table (GDT)

Format of a GDT
Major Keywords
Minor Keywords
Values •. • .

Graphic-Support Procedures
Modes in Graphic-Support Procedures
Examples of GDTs . . • • . . .

Sample Table for a Static Terminal
Sample Table for a Semi-intelligent

Terminal . • • • . • . . . • . • •
Sample Table for a VGT Simulator

Terminal-Resident Programming
Formats for Input Information .

"where" Input Format •
"which" Input Format • .• ••••
"what" Input Format
Control Input Format • •. ••••

Communications Control and Error Handling
Graphic Character Table (GCT) .•••.

Format of a GCT Source Segment
Format of a GCT •

Commt3.nds
Command Descriptions .

compile gct • • • •
compile=gdt . . • .
graphics editor, ge
remove graphics, rg •.
setup_graphics, sg

vi

Page

3-10
3-11
3-11
3-12
3-12
3-13
3-13
3-14
3-14
3-14
3-14
3-15
3-15
3-15
3-15
3-16
3-16
3-16
3-16
3-16
3-21
3-21
3-22
3-22
3-23
3-23
3-24
3-24
3-25

3-25
3-27
3-28
3-28
3-29
3-30
3-31
3-33
3-34
3-35

3-36
3-37
3-38
3-38
3-39
3-40
3-41
3-41
3-41
3-43
3-44
3-44

4-1
4-1
4-2
4-3
4-4
4-22
4-23

AS40-01A

Section 5

7/81

CONTENTS (cont)

Subroutines • . • • . • . •• •••
calcomp compatible subrs , ccs

calcomp compatible subrs $axis
calcomp-compatible-subrs-$dfact
calcomp-compatible-subrs-$dwhr
calcomp-compatible-subrs-$factor ••..
calcomp-compatible-subrs-$line
calcomp-compatible-subrs-$newpen
calcomp-compatible-subrs-$number
calcomp-compatible-subrs-$offset
calcomp-compatible subrs-$plot
calcomp-compatible-subrs-$plots •
calcomp-compatible-subrs-$scale .•
calcomp-compatible-subrs-$set dimension •
calcomp-compatible-subrs-$symbol
calcomp-compatible-subrs-$where •
calcomp-compatible-subrs-$wofst

gf int • -. •• -. :- • •
gr-pri'nt ••.••••..
graphic chars • • . • •

graphic chars $init
graphic-chars-$set table
graphic-chars-$get-table
graphic-chars-$long •.•
graphic-chars-$long tb

graphic code utiI • -. . •
graphic code util $decode dpi
graphic-code-util-$decode-scl •
graphic-code-util-$decode-scl nonzero
graphic ~cod-e:-:-ut il-$decode - spi -. •
graphic-code-util-$decode-uid
graphic-code-util-$encode-dpi
graphic-code-util-$encode-scl • .• ••
graphic-code-util-$encode-spi •
graphic-code-util-$encode-uid

graphic compiler ,gc • • .
Generic Arguments
Generic Entries • • • • • • • •

graphic compiler $display • •••••
graphic-compiler-$display append ..••
graphic-compiler-$display-name
graphic-compiler-$display-name append • •
graphic-compiler-$load .-•• :-. • ••
graphic-compiler-$load name •••
graphic-compiler-$expand string
Diagnostic Information -
graphic compiler $error path

graphic decompiler - .•. - •••.
graphic-dim .-•••••••••••••

PermTttect 1/0 System Calls
Opening Modes . • • • •
",..._"-~.-.' '0,.....,.... • .., __ """ __
'-'Vl1",L V.J.. .ll"::::YU"::::':>I .. ,;:)

Control Operations From Command Level • •
Status Codes • • . • •

graphic element length
graphic-error table .-••••••••••.

Messages and Error Codes • • • •
graphic gsp utility •• • • • • • • • • • •

graphTc gsp utility $clip line •
graphic-gsp-utility-$clip-text •

graphic macros , gmc - • • :- • • • • • •
graphic macros $arc • • • • • • • •
graphic-macros-$box • •
,graphic=macros=$circle

vii

Page

5-1
5-3
5-3
5-4
5-5
5-6
5-7
5-8
5-8
5-10
5-11
5-12
5-12
5-13
5-14
5-15
5-16
5-19
5-20
5-21
5-22
5-22
5-23
5-23
5-24
5-26
5-26
5-27
5-27
5-28
5-29
5-30
5-30
5-31
5-31
5-32
5-32
5-32
5-33
5-33
5-33
5-34
5-34
5-35
5-35
5-35
5-36
5-37
5-38
5-38
5-38
5-39
5-40
5-40
5-42
5-43
5-43
5-50.2
5-50.2
5-50.3
5-51
5-51
5-52
5-54

AS40-01A

I

I

I

I

I

7/81

CONTENTS (cont)

graphic macros $ellipse • • • • • •
graphic-macros-$ellipse by foci
graphic-macros-$polygon-. ~ •••••••

graphic manipulator ,gm ••.••••••
graphic manipulator $init • . •
Structure Creation Entry Points •

graphic manipulator $assign name .
graphic-manipulator-$create-array
graphic-manipulator-$create-color
graphic-manipulator-$create-data •
graphic-manipulator-$create-list .
graphic-manipulator-$create-mode •
graphic-manipulator-$create-position .
graphic-manipulator-$create-rotation .
graphic-manipulator-$create-scale
graphic-manipulator-$create-text •

Structure Manipulation-Entry Points .
graphic manipulator $add element .
graphic-manipulator-$remove symbol
graphic-manipulator-$replace element .
graphic-manipulator-$replace-node
graphic-manipulator-$replicate ••

Structure Examination Entry Points
graphic manipulator $examine color
graphic-manipulator-$examine-data
graphic-manipulator-$examine-list
graphic-manipulator-$examine-mapping •
graphic-manipulator-$examine-mode
graphic-manipulator-$examine-position
graphic-manipulator-$examine-symbol
graphic-manipulator-$examine-symtab
graphic-manipulator-$examine-text
graphic-manipulator-$examine-type
graphic-manipulator-$find structure

Graphic Structure Storage Entry Points
graphic manipulator $get struc
graphic-manipulator-$put-struc
graphic-manipulator-$save file.
graphic-manipulator-$use file

graphic operator, go • ~ •. - ..
Generic Entries • ~ • • . . • . . •

graphic operator $increment
graphic-operator-$replace element
graphic-operator-$synchronize

Input and User Interaction Entry Points
graphic operator $control
graphic-operator-$pause
graphic-operator-$what •.
graphic-operator-$where .••.
graphic-operator-$which ••••

Terminal Control Entry Points • . • • • .
graphic operator $delete . • . • • • •
graphic-operator-$dispatch .•.•
graphic=operator=$display . • • •
graphic operator $erase •• . .
graphic-operator-$reset
graphic-operator-$set immediacy

graphic terminal status • ~ • • • . • •
graphic terminal status $decode
graphic=terminal=status=$interpret

gui_
gui $garc
gui-$gbox
gui=$gcirc

viii

Page

5-54
5-56
5-57
5-58
5-58
5-59
5-60
5-61
5-61
5-62
5-63
5-63
5-64
5-65
5-66
5-67
5-68
5-68
5-69
5-69
5-70
5-70
5-71
5-71
5-72
5-72
5-73
5-74
5-74
5-75
5-76
5-77
5-77
5-78
5-79
5-79.1
5-80
5-82
5-82
5-83
5-83
5-84
5-85
5-86
5-86
5-86
5-87
5-87
5-88
5-89
5-90
5-90
5-91
5-91
5=91
5-92
5-92
5-94
5-94
5-94
5-96
5-96
5-96. 1
5-97

AS40-01A

Section 6

Section 7

Section 8

Appendix A

Index

Figure 2-1-
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.

Figure 2-7.
Figure 2-8.
Figure 3-1.
Figure 3-2.
Figure 3-3.

7/81

CONTENTS (cont)

gui $gdisp • • . •
gUi-$gdot
gui-$geras •
gui-$geqs
gui-$ginit •
gui-$gpnt
gui-$grmv
gUi-$gsft ••••
gUi-$gsps •••.
gUi-$gspt . • • •
gui-$gtxt ••••
gui-$gvec •• . •

Example of gui
plot:-...

plot $scale •. ...•
plot-$setup . .. • •••
Example of plot_ • • • •

Graphic Device Tables
ards . . . •
calcomp 915
r g5 12 :-. . .
tek 4002 .
tek-4012 .
tek-4014 •
tek-4662 .

Graphic Character Tables
gct block roman
gct-complex italic
gct-complex-roman
gct-complex-script
gct-duplex roman
gct-gothic-english
gct-gothic-german -
gct~gothic~italian
gct-simplex roman -
gct-simplex-script
gct-triplex-italic
gct=triplex=roman_-

Graphic Include Files • •

Subroutine Abbreviations

ILLUSTRATIONS

Current Graphic Position Modification •.
I/O Attachments While Using Graphics
Simple Graphic Structure .• • . . • • . •
Graphic Symbol Structure .••.•.•••••
Shared Graphic Structure • . • • • . .
Resultant Display of Multiply-Shared
Substructures . • • • • . • • . • • • • • • •

Explicit Reversion of Mode Elements ••
Automatic Reversion of Modes Using Structuring
Functional Parts of the Multics Graphics System
A Typical Graphic Structure Organization
Single-Precision Integer Format . • • • • • • •

ix

Page

5-97
5-98
5-98
5-99
5-99
5-99
5-100
5-100
5-101
5-102
5-102
5-103
5-103
5-105
5-106
5-107
5-108

6-1
6-2
6-3
6-3. 1
6-4
6-5
6-6
6-7

7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13

8-1

A-1

i-1

2-5
2-9
2-12
2-14
2-15

2-16
2-20
2-21
3-2
3-4
3-19

AS40-01A

I

I

I

I
I

I

Figure 3-4.
Figure 3-5.
Figure 3-6.

Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.

7/81

CONTENTS (cont)

Double-Precision Integer Format .
Scaled Fixed-Point Format .
Unique Identifier Format

TABLES

ASCII Character Set on Multics Graphics
"where" Input Format
"which" Input Format
"what" Input Format •
Status Message Format .

x

System

Page

3-19
3-20
3-20

3-18
3-39
3-40
3-41
3-42

AS40-01A

SECTION 1

INTRODUCTION

The Multics Graphics System (MGS) provides a general purpose
terminal-independent interface through which user or application programs can
create, edit, store, display, and animate graphic constructs.

Primitives are provided for manipulating a structured picture description
composed of lines, points, screen modes, rotations, translations (position
shifts), and scalings, in three dimensions. Primitives are also provided for
displaying parts of such a graphic structure, for animating an already displayed
structure, for obtaining graphic input, and for controlling special terminal
functions (such as screen erase). These primitives are suitable for direct use
by a knowledgeable programmer.

The structured picture description interface primitives, in addition to
being well-suited for a wide variety of graphic programming tasks, are also
well-suited for use as building blocks by application modules that provide
simpler or more application-oriented interfaces. Efficiency is enhanced by
providing several alternate forms for storing graphic information that promote
efficient editing of frequently changing graphic constructs and efficient
storage and "play-back" of background scenes and standard display pictures.

The MGS is terminal-independent; that is, a graphic program written for one
type of graphic terminal is operable on another graphic terminal of similar
capabilities without modification. Users are not isolated by the particular
type of graphic terminals used and can use graphic programs developed on
different terminals by other users. They also are not restricted by their
programs to particular terminal types, but can use any available graphic
terminal. Graphics subsystems written for specific terminals can be easily
transferred to new and better terminal types.

Terminal-independence is achieved in the MGS in the following way. The
programming interface incorporates the most useful features of existing
terminals and allows the addition of new features as graphic terminal
capabilities evolve. Users tailor their programs to use the features of the
terminal types intended for use. When the program is run, the use of any
unavailable feature can be mapped by the system into the most reasonable
compromise feature of the terillin&l being operated. Thus, users have a
reasonable guarantee that their graphic programs will produce a recognizable
picture on almost any type of graphic terminal connected to Multics. Of course,
not all graphic programs will operate equally well on any type of graphic
terminal (e.g., animation is not possible on a storage-tube terminal).

Although the MGS is discussed in this manual largely in terms of PL/I, the
MGS is designed to be usable from FORTRAN, and for the most part, from many
other Multics programming languages.

1 -1 AS40-01

I The following list identifies all abbreviations used in this document.

abbreviation

DPI
GDT
GSP
MGS
MSGC
PGS
SCL
SPI
UID
VGT
WGS

descriptive name

double precision integer (format)
graphic device table
graphic support procedure
Multics graphics system
Multics standard graphics code
permanent graphic segment
scaled fixed point (format)
single precision integer (format)
unique identifier (format)
virtual graphic terminal
working graphic segment

1-2 AS40-01

SECTION 2

GRAPHICS USERS' GUIDE

This section serves as a primer for the MGS. It contains supplementary
explanations of the major graphics commands and subroutines, along with examples
of their use.

The text closely follows the actual sequence of events ina typical session
with the MGS. Although the exact command invocations and examples shown in this
section may be duplicated for training purposes by a terminal user, they should
not be interpreted as representing a rigid and necessary sequence of operations.
Rather, each serves to outline the general function and typical usage of a
command or subroutine. The user should examine the detailed description of the
module in question in order to tailor the example to fit a particular
requirement.

Likewise, the extent of the discussion of any particular module should not
be taken to be an exhaustive description of its capabilities. Only those
features that are deemed essential or instructive to the novice user of graphics
are discussed in this section. Information necessary to exploit more advanced
featur-es of the MOB may -be gained from the appropriate module description in
Section 5, "Subroutines".

In most examples, the longest and most descriptive name by which a command
or subroutine can be referenced is used for clarity.

At times, a command or subroutine is mentioned in the text without benefit
of an example. In these cases, a reading of the appropriate module description
in the Commands or Subroutines sections should be sufficient explanation of its
use in that context.

Not all parameters
Users may refer to
"Subroutines".

to entries used in examples are explained in the text.
the appropriate module description in Section 5,

TYPICAL USE OF THE GRAPHICS SYSTEM

To use the MGS, a user must first log in on the Multics system from an
available terminal. Of course, to produce graphics on a terminal, rather than
to an offline device such as a plotter, it must be determined that the terminal
chosen is capable of graphics.

The user must set up a graphic I/O environment, using the setup graphics
command as described later. This allows the graphics system to perform graphic
I/O to the device, and informs it of the type of device being used.

2-1 AS40-01

At this point, the user may construct a program to perform graphics, use an
already existing program, or use the graphics_editor.

Graphic programs may be written in most languages supported by Multics.
These programs perform graphic operations by issuing calls to subroutines provided
by the graphics system. The typical graphic program first constructs a graphic
structure (builds the internal representation of the sequence of lines, points,
etc., which are later to be displayed). When this has been done, the program
calls the graphic compiler , which interprets this internal representation and
causes it to be displayed on the graphic device. The user then typically goes
through several iterations of cOTrecting and re-executing the program until satisfied
that it is correct. If the program is designed to construct a "canned" display,
the user may save the result in any of several forms that allow recreation of
the desired display without rerunning the program that created it.

The higher-level subroutines of the MGS such as gui_,
calcomp compatible subrs , and plot , as well as the interactive graphics editor,
are simply graphic programs, much like any that a user would write. They use
the primitive graphic subroutine calls provided by the central graphics system
(which is also directly available to users) to perform their functions.

PROGRAMMING CONSIDERATIONS

When writing graphics programs, it is the responsibility of the user to
understand the implications of choosing a particular programming language to
perform the desired task. Although the MGS is designed to be usable by programs
written in any Multics programming language, there are sometimes minor
incompatibilities between other languages and PL/I that must be compensated for
before correct results can be obtained from the MGS. Users are referred to the

I relevant reference manual and/or users' guide for the programming language of
their choice. Two very common incompatibilities merit description here.

Many subroutine entrypoints (for example, in graphic_manipulator_ and
graphic operator) return fixed bin (18). Since the prefix "graphic " begins
with the letter -"g," the FORTRAN compiler (unless otherwise informed) assumes
all these entrypoints return floating (real) quantities. It then tries to convert
the return value from "float" to "fixed," and the result is usually zero. Thus,
the FORTRAN user making this common error usually builds up a complete graphic
structure containing nothing but null nodes, even though the error codes are
zero. When displayed, this results in a screen erase and no picture, or an
error message about "Node out of bounds" or "Node not a graphic datum."

8/81 2-2 AS40-01A

To anticipate and eliminate this problem, entries that return fixed bin of I
any precision must be delcared in FORTRAN programs via:

integer graphic_manipulator_$create_list

Many entries in the MGS have declarations containing star-extents (e.g.,
"char(*)", or "dimension(*)"). FORTRAN users should be aware that the correct
operation of these entrypoints depends on the calling program creating descriptors
to accompany the arguments, which provide information on the length of the character
string supplied or the bounds of the array supplied. The FORTRAN compiler does
not provide descriptors by defaul t. The user must specifically request the
generation of descriptors via the external statement. (See the Multics Fortran
manual, Order No. AT58 for further information.) For example, a FORTRAN program
that calls graphic_compiler_$display_name must contain a statement of the form:

external graphic_compiler_$display_name (descriptors)

Failure to use this statement can result in obscure errors in the operation of
the program.

BASIC GRAPHIC PREMISES

Before any graphic programming is attempted, the user must be aware of
certain conventions of the MGS concerning screen size, terminal capability, available
graphic elements, and allowable operations on graphic elements.

8/81 2-2.1 AS40-01A

I

Parameters of the Graphic Display

The various graphic terminals and plotters that may be connected are
defined in relation to a hypothetical graphic device called the Virtual Graphic
Terminal (VGT). Although these devices may differ widely as far as origin
positioning, screen or bed size, character codes required to perform graphic
operations, and so on, the MGS defines each of these properties for the user in
terms of the VGT. In this way, any graphic program may use any graphic device
interchangeably, within reason. (Obvious exceptions include performing
animation on a plotter, and so on.)

The VGT possesses a square screen, whose area is defined in units of
"points". Points have no particular relationship to any real unit of
measurement, but are defined solely by the size of the screen, which is by
convention 1024x1024 points. This two-dimensional screen really represents a
three-dimensional viewing space of 1024x1024x1024 points. The coordinate
origin, (0,0,0), is defined to be in the center of the screen. Thus the screen
coordinates extend from -512 to +511 in each dimension. Since many terminals
actually have rectangular screen shapes, the largest (central) square area on
the screen is used as the 1024x1024 area. Although the MGS may allow the user
to display graphics outside this area, it does not guarantee device-independence
in this case. If a user whose programs take advantage of leftover vertical
space on the screen of one particular terminal type were to move to a terminal
whose screen was oriented in the other direction, those parts of the display
occupying the leftover space would be clipped off.

The axes used are standard right-handed cartesian axes. They are oriented
so that the positive x direction extends to the user's right; the positive y
direction upwards; and the positive z direction out of the screen towards the
user.

Nomenclature of Graphic Elements

For the purpose of this preliminary discussion, graphic effectors1 are
divided into six classes: positional elements, mode elements, mapping elements,
dynamic elements, structural elements, and miscellaneous elements. Dynamic
effectors are not within the scope of this introductory material, and are
described in Section 3.

The following short descriptions of graphic elements' are provided so that
the reader may have a basic understanding of the terms used in this section.
Formal definitions and full explanations of each element may be found in
Section 3. In most cases, an example is given of the use of each of these
elements later in this section.

As used in this manual, the term "graphic effector" includes every basic item
defined by the graphics system that can be used for graphic effect. "Graphic
elements" are that subset of graphic effectors which can be used as building
blocks of graphic structures to represent objects or pictures in a graphic
fashion (e.g., lines, points, and character strings), as opposed to graphic
effectors which cannot be included in structures, such as requests for graphic
input and screen erasure.

2-3 AS40-01

POSITIONAL ELEMENTS

The MGS defines a "graphic cursor" called the current graphic position. At
the start of any graphic operation, the current graphic position (analogous to
the "::pen" or "beam position") is defined to be at the center of the screen
(0,0,0). It may be modified in two ways:

_ it can be set to a known position on the screen by the use of an
absolute graphic element, or

• it can be moved a specified distance in a specified direction by a
relative graphic element.

Absolute Elements

The MGS allows two absolute elements:

1. setposition: sets the current graphic position to a specified
location on the screen. For example, a setposition of (-20,10,0)
causes the current graphic position to be set to that coordinate
location (see Figure 2-1, "Step 1").

2. setpoint: sets the current graphic position to a specified location
on the screen, and in addition displays a visible point.

Relative Elements

Unlike absolute elements, relative elements do not start or end at any
particular point on the screen. They start at the current graphic position and
proceed for a specified distance. This distance, also expressed in coordinate
notation, represents the dimensions of the element.

Three relative graphic positional elements are defined:

1. vector: draws a visible line of specified dimensions and moves the
current graphic position to the end of that line. For example, a
vector of dimensions (32,-40,0) draws a line from the current graphic
position (of slope -5/4 and length 51.2) in the x-y plane (see Figure
2-1, "step 2").

2-4 AS40-01

STEP 1

(-20,10,0) is the
grapllic p()sition after

execution of:
setposition (-20,10,0) .\

-20

20 /(0, 0, 0)

/ 20 40
(-x)--~--r---r-~r---+----+I--~I----+--~I--(x)

STEP 2 -20 \

(12,-30,0) is the
t cut'rent graphic fJositiot1
I after execution at':

-40 1 vector(32,-40,O)

(-y)

Figure 2-1. Current Graphic Position Modification

2. shift: is similar to the vector element, except that no visible line
is drawn.

3. point: is similar to the shift element, except that a visible point
is displayed at the new current graphic position (at the end of the
movement).

Graphic structures made up entirely of relative elements possess a great
deal of flexibility. Since all such elements are relocatable, they can be
positioned anywhere on the screen with no loss of generality, as well as scaled
or rotated without unexpected side effects.

2-5 AS40-01

MODE ELEMENTS

Mode elements may
defined ways without
properties of objects
color:

be used to alter the appearance of an object in certain
altering the object itself. They affect fundamental

such as intensity, linetype (e.g., dotted or solid), and

1. intensity: affects the brightness of an object.

2. blinking: affects whether an object blinks.

3. linetype: affects whether vectors in an object are drawn as solid,
dotted or dashed.

4. sensitivity: affects whether an object is sensitive to "hits" from a
light pen.

5. color: affects the color that a displayed object possesses.

MAPPING ELEMENTS

Mapping elements may be used to alter the appearance of an object in
certain defined ways without altering the object itself. They affect the
appearance of the object on the display screen with respect to orientation,
size, and extents. They affect absolute elements as well as relative elements.
The mapping elements are:

1. scaling: affects the size and proportions (independently in three
dimensions) of a displayed object.

2. rotation:
dimensions.

affects the orientation of a displayed object in three

3. extent: affects the boundaries at which a displayed object ceases to
be visible. The extent element performs cliPVing (causing farts of
objects outside a given boundary not to appear) and masking ~causing
parts of objects inside a given boundary not to appear).

2-6 AS40-01

STRUCTURAL ELEMENTS

Structural elements are used to form groups of other
array and list structural elements can be used to perform
difference between them need not concern the user at this
that the computational overhead associated with the use of
less than that associated with the list element. However,
more useful when performing animation and dynamic graphics.

MISCELLANEOUS ELEMENTS

elements. Both the
this function. The

point, except to say
the array element is
the list element is

1. text: is used in a graphic structure to include a text string to be
displayed.

2. symbol: is used to assign a mnemonic name to a graphic structure.

3. datablock: is used to include, in a graphic structure, user-defined
data that is to be stored for later examination by the user, but which
has no direct bearing on the graphical representation of the object to
which it is attached.

SETTING UP THE GRAPHIC I/O ENVIRONMENT

Graphic input and output are not performed over the default Multics
switches "user input" and "user_output". Rather, they are performed over a pair
of switches named "graphic input" and "graphic output". These switches are not
attached by the normal Multics process initialIzation, but must be attached by
the user.

Graphic I/O is routed through
The I/O module is responsible for
graphic device control for graphic
cannot determine automatically what
and so the system must be given this

a special I/O module named "graphic dim ".
performing the proper code conversTon and

operations to a graphic device. Multics
type of graphic terminal is being utilized
information by the user.

Both of these functions are performed by the setup_graphics command. The
most common usage of this command is:

setup_graphics -table gdt_name

This command attaches the necessary graphic I/O switches through the graphic I/O
module. It also informs the I/O module of the name of the graphic device table
(GDT) to use in conjunction with graphic I/O to the specific type of graphic
terminal being used.

2-7 AS40-01

Briefly, a GDT is simply a table describing one particular type of graphic
terminal. When given a certain GDT, the graphic I/O module performs terminal
control and code conversion in the native language of that specific device. The
use of these tables frees the user from dependencies on any particular features
of one graphic device. Several GDTs are provided by the system and are listed
in Section 6. The user may also provide GDTs for terminal types for which the
system does not provide GDTs.

Effects on the Process' Other I/O Attachments

Users who do not take explicit action to perform unusual Multics I/O are
generally safe from side effects caused by the interaction between nongraphic
and graphic I/O. However, a brief explanation of the unusual nature of MGS I/O
is presented below for those users who would benefit from it.

When graphics is being used in the online mode to a terminal (the normal
case; as opposed to the offline mode, e.g., creating a plotter tape) all the I/O
of a process, graphic and nongraphic, is routed through the graphic I/O module.
This keeps unexpected nongraphic I/O such as error diagnostics or inter-user
messages from being sent to the terminal without the knowledge of the graphic
I/O module. Reception of such a message by the terminal when it is in a state
where it expects all output to be graphic commands (i.e., in "graphic mode")
would cause the message to be lost, and cause confusion to the terminal.
Therefore the graphic I/O module intercepts all the output of a process and
switches the terminal between graphic mode and text mode as appropriate.

In order for correct interleaving of graphic and nongraphic I/O to work,
the I/O switches of the process are restructured in a fashion similar to that
shown in Figure 2-2.

2-8 AS40-01

user output
-

syn - -

user input user i/o tty_ i/o - -
syn graphic dim - - -

error output - syn - r-

graphic output -

graphic input
-

Sample output from an invocation of the print attach_table command.

user i/o

user input
user-output
error output
graphIc_output

graphic_input

graphic dim_ tty i/o
- stream input output

syn user i/o
syn- user-i/o
syn- user-i/o
graphic dIm tty i/o graphic

- - - stream output
graphic_dim_ tty i/o graphTc

- stream_input
tty715 stream_input output

Figure 2-2. I/O Attachments While Using Graphics

The user should never perform explicit I/O over the direct terminal switch (here
named ttY_i/o.)

Routing Multics Standard Graphics Code to a File

The Multics Standard Graphics Code (MSGC) produced by a graphic program may
be routed to a file instead of to a terminal. This file then contains the
device-independent graphic code representation of that picture. Later, when the
graphic switches are again routed to the graphic terminal, the contents of this
file may be written to the graphic output switch to produce the same picture as
many times as desired, without the necessity of rerunning the program that
generated the picture.

2-9 AS40-01

To route the graphic output switch to a file named "pic_1 .graphics" the
following commands would be-used1 :

io call attach graphic_output vfile_ pic_1 .graphics

io call open graphic_output stream_output

The program is then run to produce the graphic output. When program execution
is completed, the user can close and detach the file with the commands:

io call close graphic_output

io call detach graphic_output

The file "pic 1.graphics" contains the graphic code for the desired picture.
When the graphic I/O streams are routed to a graphic terminal, the following
command could be used to display the contents of the file:

io call put chars graphic_output -segment pic_1 .graphics -nnl

USING THE CENTRAL GRAPHICS SYSTEM

The central graphics system is the lowest level and most powerful set of
graphics system subroutines for creating, manipulating, editing, and displaying
graphical objects. These routines form a basis for the higher level subroutines
and for the utility and application packages.

Users looking for convenience and speed of programming for simple picture
generation (as opposed to fine control over their graphic representation, speed
of execution, and the ability to perform dynamic graphics) may find it
advantageous to go directly to the discussion "Using the Higher Level Graphics
Subroutines," later in this section.

Using the Graphic Manipulator

Graphic objects are created and manipulated in a temporary segment known as
the working graphic segment (WGS) by the graphic manipulator subroutine. The
WGS must be initialized by a call to graphic-manipulator-$init before any
graphic operations are attempted. This call destroys the contents of the WGS,
so it is the user's responsibility to decide when he is done with the previous
contents and wishes to delete them and build something new.

NODE VALUES

Each graphic item created is identified by a node value. A node value is a
receipt which is returned to the user each time-an-i~is created. Further
references to that item in subseauent calls to the central granhics system are
performed by supplying this node ~alue in the call. Node values are pilI fixed
binary precision (18) quantities (FORTRAN integers). Although node values are
represented as numbers they are not meant to be added, subtracted, or otherwise
operated upon arithmetically. The zero node value is a special value that
represents the "null element" (graphic no-op).

By graphic system convention, files containing MSGC are named with the suffix
"graphics". See the io call command in Section 3 of the MPM Commands.

2-10 AS40-01

lFor example, a vector of dimensions (100,200,0) would be created via the
call :

declare node fixed bin (18);

node = graphic manipulator $create_position (Vector, 100, 200, 0, code);

The returned variable "node" holds the node value representing that particular
vector. This node value may be used in subsequent calls to the central graphics
system. For example, if a user wished to learn what graphic item was
represented by this node, the following call could be issued:

call graphic_manipulator_$examine_type (node, non_terminal, type, code);

The "type"
positional
issuing:

returned would be 2 (Vector).
element, the dimensions of the

Since
vector

a vector
could be

is a terminal
ascertained by

call graphic manipulator $examine position (node, type, x_dim, y_dim,
z_dim, code); - -

The x dim, y dim, and z dim variables
respectively.

BUILDING COMPOUND ELEMENTS

would contain 100, 200, and 0,

Since there are only fifteen atomic graphic elements (e.g., setposition,
setpoint, vector, etc.), none of which are very complex, it is not surprising
that most node values find their way into higher level graphic structures.
These structures may be viewed as arrays of other elements. They serve the
purpose of:

• associating their elements into one united entity that may itself be
referenced by a single node value and treated like a single graphic
element, and

• arranging their elements with respect to the order in which they are
to be drawn at display time.

Suppose that a user has created four vectors of dimensions (25,0,0),
(0,25,0), (-25,0,0), and (0,-25,0), and wishes to construct from these a "boxll
of dimension 25x25. First, the node values must be arranged in order in a PL/I
array of sufficient size. (The following example uses an array of arbitrary
dimension 100 which is of more than sufficient size.) This array would have a
declaration similar to:

declare box_array (100) fixed binary (18);

In this example and all other examples in this section, the variable names
from the PL/I include-file lIgraphic etypes.incl.p11" have been used wherever
possible, for clarity. These variables may be distinguished by the fact that
they begin with capital letters (e.g., the mnemonic variable "Vector" is used
instead of the less meaningful constant "2" which it represents). Users are
encouraged to adopt the same policy in their programming by using the PL/I
"%include" facility, as outlined in Section 8.

2-11 AS40-01

Rather than assigning separate node variables to this array one by one, the
array elements themselves are usually supplied as the left-hand side of a
function reference to graphic manipulator $create position or a similar entry,
for example: - --

box array (1)
- code);

graphic_manipulator $create position (Vector, 25, 0, 0,

box array (2)
- code);

graphic_manipulator_$create_position (Vector, 0, 25, 0,

and so on for the remainder of the box.

This PL/I array of node values may then be turned into a graphic array by
the statement:

Now the variable "box node" contains a node value that represents a graphic item
made up of four vectors. This node value may be treated as an atomic element
which represents a box, and may in turn be utilized in even higher level graphic
structures by using the same method (see Figure 2-3).

box node P-~~~--~--~

Figure 2-3. Simple Graphic Structure

The graphic macros subroutine, which creates primitive elements
representing boxes~ polygons, and curves, simply creates a number of primitive
vectors and other elements that are used to make up the desired figure with the
desired dimensions. It then makes an array of these elements and returns the
node value representing that array, which is used by the calling program in the
same manner as any atomic graphic element.

2-12 AS40-01

Programming Hint

When assigning node values to PL/I arrays by supplying them as the
left-hand side of a function reference to graphic manipulator entries, it is
useful to code the references in the following form:

and include a small internal subroutine of the form:

next free:
-procedure returns (fixed bin);

free index = free index + 1;
if free index> hbound (box_array, 1) then {some error action}
return Tfree index);

end next_free;

If the routine is coded in this manner, it is easy to insert a call to create a
graphic element that was mistakenly omitted or delete one that was mistakenly
included, without having to renumber each subsequent array index. Also, the
call to graphic_manipulator_$create_array may then be coded as:

box node = graphic manipulator $create array
- (box_array, free_index, code);

GRAPHIC SYMBOLS

Graphic symbols provide a means of associa~lng
object. Aside from the normal mnemonic advantages of
two other benefits:

a name with a graphic
this function, there are

• graphic l~ems may refer to other graphic items by symbol names instead
of by node values;

• they also provide a name by which graphic items may be stored into and
retrieved from permanent storage 1 •

The ability to reference graphic items by symbol name instead of by node
value (number) increases the flexibility of the graphic structure. For example,
suppose an architect has a graphic structure that represents a trial design of a
colonnade. In various places in the structure, another graphic structure named
"column" is referred to by name. To explore the effect of using differently
styled columns in the overall design, the architect can simply retrieve
prefabricated graphic structures representing variously styled columns from
permanent graphic storage segments, rename each of them "column" in turn, and
display the master structure.

The entry graphic manipulator $assign name is used to create symbols.
Assuming that the variable "box node" still contains the node value of the
simple box figure that was placed there in a previous example, the following
statement would be used to assign it to a symbol named "box_example":

symbol node
code) ;

This facility is explained later in this section.

2-13 AS40-01

The node value returned in "symbol node" is the node value of the graphic symbol
"box_example". This value is not equal to the value of "box_node". Even though
"symbol node" is a node value, it represents a reference by name to the graphic
symbol IT"box_example''.

This is more easily understood if the operation of creating a graphic
symbol is thought of not as assigning a name to a structure, but as creating a
separate name-structure that references a structure. A symbol is not a name
tacked onto a structure that gives rise to some arbitrary distinction in node
values, but is a separate structure in its own right, that references another
structure (its contents). The node value of this new name-structure is the node
value of the symbol (see Figure 2-4).

symbol_node
r-----------~~

Figure 2-4. Graphic Symbol Structure

It is important to understand the distinction between the node value of a
symbol (e.g., "symbol node") and the node value of the contents of that symbol
(e.g., "box node"). -The effects of using either as an element of an array is
quite different.

For example, if "box node" were to be used as an element of a graphic
array, that element would remain the box figure indefinitely; or until the user
specifically replaced that particular element of that particular array, using a
graphic editing primitive such as graphic manipulator $replace element. In the
latter case, only that particular reference to the box figure would be altered.
Any other references in the same array (or in other arrays that were created in
the same manner) would remain unchanged. The fact that there exists a symbol
named "box_example" that refers to that node would, ln this case, be irrelevant.

On the other hand, if "symbol node" were to be used as an element of all
the graphic arrays, that element-would represent whatever graphic structure
happened to be named "box example" at any given time. Simply by naming various
graphic items "box example", one could change the contents of all the graphic
arrays to include the new figure automatically.

2-14 AS40-01

SHARING GRAPHIC STRUCTURES

Historically, primitive graphic systems have required the user to make a
subroutine call to control each movement of the pen, or to create one type of
canned figure. This design most often resulted in the user having to write
applications packages containing many subroutines, each of which was responsible
for knowing how to draw one particular object. Each subroutine was called
whenever the design that it knew how to draw was desired. These subroutines
were actually nothing but unwieldy executable picture descriptions (graphic
items) .

The great advantage of working with structured picture descriptions to
create an entire picture before any actual display operation takes place is that
such graphic items may be created once and then referenced in numerous places
through simple assignment operations.

As an example, let us assume we have a graphic object that is a
stick-figure representation of a boy scout, whose size is roughly 30x100, and
whose node value is contained in the variable "boy scout". To create a row of
four boy scouts, only the following program fragment would be needed1 :

side_shift = graphic_manipulator_$create_position (Shift, 40, 0, 0, code);

do i = 1 to 8 by 2;
node array (i) boy scout;
nOde=array (i+1) = side_shift;

end;

row node = graphic_manipulator_$create array (node_array, 8, code);

The node V Cilue .in !! row node!! represents a grapnlc
references to the boy scout and four references to
alternately (see Figure 2-5).

row node
r-~~~---p--~--~--~--~ __

object
a shift

Figure 2-5. Shared Graphic Structure

containing four
of (40, 0, 0),

All checks for "code = 0" in examples have been neglected for brevity. In an
actual program, these checks should always be made.

2-1 5 AS40-01

This object can also be shared. To create three rows of boy scouts in
parade formation, we could continue with:

back_shift = graphic manipulator $create positon (Shift,
-(4 * 40), 0, -bO, code); - -

/* go back by 60 and left by displacement of four boy scouts */

do i = 1 to 6 by 2·
node array (i)
node=array (i+1)

end;

row node;
back_shift;

troop_node = graphic_manipulator_$create_array (node array, 6, code);

The variable "troop node" now contains the node value of the desired structure.
An example of the display that would be produced by displaying "troop_node" is
shown in Figure 2-6 (the figure has been rotated for effect).

Figure 2-6. Resultant Display of Multiply-Shared Substructures

Notice that in the previous program fragment, 40 is used as the
"displacement of one boy scout"; not 30, which was given as the width of one boy
scout; nor 30 + 40, if you add the shift. This difference stems from the
distinction between the dimensions of an object and the net relative
displacement of an object. The dimensions of the boy scout are simply its
width, height, and depth. The assumption here is that the net relative
displacement of the boy scout (defined as the difference between the current
graphic position at the point where the boy scout is drawn, and where the
current graphic position is left after drawing the boy scout) is zero. That is,
that the person who previously constructed the boy scout was careful to end up
at the same point at which the figure began. If we had drawn four boy scouts
without shifts between them, all four would have been superimposed exactly on
each other. The net relative displacement between the boy scouts in the row is
due entirely to the intervening shift, therefore the number 40 was used; 30 for
the width of one boy scout; and a space of 10 before the next boy scout.

2-16 AS40-01

Since it is very useful to be able to make this assumption, it is always
considered good practice to design shared graphic substructures to have a net
relative displacement of zero. If this convention is ignored, it becomes very
difficult to use some of the more powerful editing features of the Multics
Graphics System. For example, if all the columns did not have the same net
relative displacement, the architect's colonnade mentioned previously would not
only be distorted, but would be distorted in different ways depending on the
column in use at any moment.

For more obvious reasons, graphic structures that are meant to be shared
should not contain any absolute positional elements. In fact, any graphic
structure can be given a great deal of flexibility by following this rule, at
the price of a small increase in complexity. For example, the elimination of
absolute positioning elements in a full-screen display allows a user to later
scale four such full-screen pictures to one-quarter size and display one in each
corner of the screen for a composite picture. A graphic object without any
absolute positional elements may be properly positioned by taking into account
the convention defining the current graphic position at the beginning of every
display operation as (0,0,0).

USING MODES AND MAPPINGS

Modes provide a way to alter the appearance of a graphic item without
altering the item itself. By applying modes to an object, it can be:

• caused to blink

• made dimmer or brighter

• made dotted or dashed rather than solid

• made sensitive or insensitive to a light pen

• changed in color

Mappings provide a means of altering the orientation, dimensions, or extent
of a graphic item without altering the item itself. By applying mappings to an
object, it can be:

• scaled in size independently in three dimensions

• rotated to any orientation relative to the screen

• clipped so that parts of the item outside a given area disappear

• masked so that parts of the item inside a given area disappear

The application of modes and mapuings follow a set of rules which state how
and when they combine with each other, how and when they supersede each other,
and when their effect is to be removed.

2-17 AS40-01

First, we must define the local graphic environment with respect to modes
and mappings. The local graphic environment at any level in a graphic structure
is simply all the modes and mappings that are in effect at that level. The
graphic environment at the top level of any graphic structure is always:

• blinking off

• full intensity

• solid vectors

• insensitive to a light pen

• color white 1

• unity scaling

• zero rotation

• no clipping

• no masking

Any modes or mappings encountered from this point on change the graphic
environment.

Each level of the structure carries with it its own local graphic
environment. When a level is entered, it inherits the graphic environment of
its parent structure (the list or array that referenced it.) When that level
returns to its parent, its own local graphic environment is discarded. This
means that no matter what modes or mappings occur in any substructure, the
parent structure can never be affected. For example~ a user can feel free to
make use of various c·anned graphic structures in a permanent library no matter
what modes or mappings they may use to achieve their operation. Nothing any
substructure does could possibly cause the rest of that user's structure to
suddenly become invisible, blinking, or distorted. (Note that this feature
applies to modes and mappings only. For instance, a substructure still has the
ability to modify the user's current graphic position in some unforeseen way.)

When two modes or mappings of the same type occur at the same level in a
piece of graphic structure, the most recent overrides the other. This makes it
possible for a user to create an array in which the first few items blink and
the rest do not; by assembling the array from nodes representing the graphic
items:

blink on
(vectors which are to blink)
blink off
(vectors which are not to blink)

Items of "the same type" are two color items, two scaling items, and so on. For
instance, a blinking item and a color item have no overriding effects on each
other.

When two modes or mappings which are not at the same level of the graphic
structure interact, the rules describing what occurs are more complex.

1 Equal intensities of all primary colors of light.

2-18 AS40-01

If two modes interact on different levels of a graphic structure, the more
recent overrides that of the parent. As stated above, when a level returns to
its parent, the parent's modes again take precedence. For example, if a certain
substructure explicitly contains a red color effector, no manipulation of color
items in the parent can change the color of the red part of the substructure.
However, a different type of mode can sometimes be used to have a predictable
effect on the item in question. For example, although a user could not change
the color of this substructure from the parent level, the substructure can be
"turned off" with an "intensity zero" item (provided that it did not also force
its own intensity.)

If two rotations or scalings interact on different levels of a graphic
structure, they combine. For example, if a substructure that scales parts of
itself by a factor of two is incorporated into a larger structure that scales
itself by a factor of three, the originally scaled items in the substructure
have an effective scaling factor of six. Although the mathematics of rotation
cannot be as easily explained, the concept is the same. A substructure that
rotates parts of itself to achieve an effect may be incorporated into a larger
structure that is also rotated. The effect of rotating the parent structure is
just as it would be if the substructure had been initially created to look as it
does without the aid of rotations. Put another way, regardless of what
rotations are used in a substructure, when a parent structure is rotated the
substructure follows it around in a natural manner. Again, the substructure's
contribution to the combined rotation is discarded upon return to the parent
structure.

If two clippings interact on different levels of a graphic structure, they
intersect. Only those items which reside within the intersection of both
clipping areas appear. If two maskings interact on different levels of a
graphic structure, they unite. Only those items which reside outside the union
of both masking areas appear1.

Mode and mapping
graphic_manipulator_.

items, like positional items, are created
They, too, are represented by node values.

by calls to

To create a picture containing a blinking box on the left side of the
screen and a steady box on the right, we could use the following program
fragment. (Assume that the variable "box node" still contains our box.)

node array (1) -

node array (2)
-

node array (.." \
\))

-

node array (4) -

node _array (5)

node _array (6)

picture node
-

~ra?hic_manipulator_$cre~te_position
(Shlft, -80, 0, 0, code),
graphic manipulator $create mode
(Blink,-Blinking, code); -
box_node;

graphic manipulator $create mode
(Blink,-Steady, code);
graphic manipulator $create position
(Shift,-160, 0, 0, code);
box_node;

graphi~_manipulator_$create array (node_array, 6, code);

Extent elements (clipping and maSking) although planned, are not currently
implemented in the MGS.

2-19 AS40-01

Notice that the user has to remember
referencing the second box; otherwise,
created would look like Figure 2-7.

to
it

revoke the
too would

blinking item before
blink. The structure

Figure 2-7. Explicit Reversion of Mode Elements

Another approach could have been taken, that of letting the local graphic
environment do the reversions. The following program fragment illustrates this
approach:

node array (1) = ~raphic_manipulator_$create_mode
(Blink, Blinking, code);

node_array (2) = box_node;

blinking_box = graphic manipulator_$create_array (node_array, 2, code);

node_array (1)

node_array (2)

node_array (3)

node_array (4)

~ra~hic_manipulator_$create_position
(Shlft, -80, 0, 0, code);
blinking_box;

graphic manipulator $create position
(Shift,-160, 0, 0, code); -
box_node;

graphic manipulator_$create_array (node_array, 4, code);

This is slightly more difficult to understand, but it illustrates a very
important property of modes. The structure just created is diagrammed in Figure
2-8.

2-20 AS40-01

Figure 2-8. Automatic Reversion of Modes Using Structuring

Note that by making the blinking box a substructure, we contained the effect of
the blink item only to that substructure. When the graphic display mechanism
returns to the topmost structure, the blink item is automatically reverted.
This structure results in a display that is exactly like the previous one.

USING DATABLOCKS

Datablocks are blocks of storage space associated with graphic structures.
They can be used to hold nongraphic information that may be relevant to user
programs which manipulate this structure.

Datablocks are useful to some graphic applications. However, their use is
unnecessary to most.

For an example of an application where datablocks are useful, consider the
designer of a space vehicle. As the graphic description of the creation is at
least as detailed as any of the testing and simulation programs, he has decided
to use it as the master data structure. Therefore, along with the description
of each piece, he will probably find it necessary to store its weight,
composition, and so on. He uses datablocks associated with each object to hold
this information. The program which pieces the parts together into higher level
objects will also combine the weiahts and attach this information to the new
obJect in a datablock. The testing-and simulation programs can then go as deep
into the structure as they have to, testing individual pieces; or they can
perform quick analyses using only the major component blocks of the vehicle. As
it becomes necessary to alter the configurations of pieces, he can at the same
time alter the other properties.

Datablocks may be created using the entry graphic manipulator $create data.
They are stored simply as bit strings. It is left to the user to design private
conventions so that the kind of data contained in the datablock can be
determined. either by structural position with respect to some known type of
object, or by including a descriptor along with the data.

2-21 AS40-01

To create a datablock with the contents of a PL/I variable named "my_data",
the following call could be used1 :

data node = ~raphic manipulator $create data
- (length-(unspec (my=data)),-unspec (my_data), code);

The variable "data node" holds the node value of the created datablock. l1i may
be used in higher level graphic structures like any other node value. Note that
"my_data" may be any PL/I data type, including scalar, array, or structure.

The following program fragment retrieves the contents of "my_data":

begin;

declare bit_string bit (length (unspec (my_data)));

call graphic_manipulator_$examine_data (data_node, bit string, len, code);

unspec (my_data)

end;

The contents of the datablock are now found back in the variable "my data". The
variable "bit string" was used as an intermediary since the entry requires a bit
argument. Tne expression "unspec (my data)" was not used in that position,
since a PL/I call-by-value would have resulted, which is not appropriate in an
output argument position.

ESTABLISHING PERMANENT LIBRARIES OF GRAPHIC OBJECTS

Graphic objects, once created, may be stored in permanent graphic segments
(PGS). Objects to be stored in this manner must be defined with graphic
symbols. There are two ways that an object may be stored:

• the entire contents of the WGS may be stored; or

• the structures attached to certain graphic symbols may be stored.

The entry graphic manipulator $save file may be used to store
WGS. For example, the following call stores the contents of the
segment named "misc.pgs" in the working directory:

call graphic_manipulator_$save_file (get_wdir_ (), "misc", code);

the entire
WGS into a

This operation destroys any previous contents of misc.pgs. The suffix "pgs" may
be supplied as part of the PGS name, or may be omitted.

The entry graphic_manipulator_$use_file loads the contents of a PGS into
the WGS (replacing all the previous contents of the WGS). The following
statement is used to load misc.pgs:

call graphic_manipulator_$use_file (get_wdir_ (), "misc", code);

1 "length" and "unspec" are PL/I built-in functions.

2-22 AS40-01

To move only single graphic objects between segments, the
graphic manipulator $put struc and graphic manipulator $get struc entries are
used. -The user of these entries may choose between four -modes of structure
replacement:

1. The structure defined by the symbol, including all subsidiary symbols
and their structures, is to be moved. If any symbol name matches a
symbol already defined in the target segment, abort the move and
return an error code.

2. The structure defined by the symbol, including all subsidiary symbols
and their structures, is to be moved. If any symbol name matches a
symbol already defined in the target segment, the contents of the
symbol being moved replace the previous value of the symbol. This
operation loads the symbol forcibly, destroying the contents of old
symbols whose presence would have caused a name conflict.

3. The structure defined by the symbol, including all subsidiary symbols
and their contents, is to be moved. If any subsidiary symbol name
matches a symbol already defined in the target segment, the previous
contents are used. This operation allows a user to move a
superstructure between segments without redefining any of the inferior
symbols which may be present in the target segment.

4. The structure defined by the symbol, including all subsidiary symbols
but not their contents, is to be moved. If any subsidiary symbol name
matches a symbol already defined in the target segment, the previous
contents are used; otherwise the subsidiary symbol is created with no
contents. This operation allows a user to move a superstructure
between segments, ignoring any unwanted symbol substructuring that is
not essential to the application and thus was not pre-created.

To store the "box_example" symbol, use the call:

The

call graphic manipulator $put struc (get_wdir (), "misc", "box_example",
On_dup_error, code);

similar.

Node values are not maintained across these operations. Programs that
store information about the correspondence between certain node values and
certain graphic items, and then attempt to reload a graphic structure and use
this same information, will not operate properly. If node values must be used
in such programs, they may be recomputed using the structure examination entries
in graphic manipulator_.

Using the Graphic Compiler

The graphic compiler subroutine examines a graphic structure in the WGS,
translates it into device-independent MSGC, and dispatches this code to the
proper I/O switch (usually graphic output). There are four basic entries, one
of which is usually sufficient to-perform the desired graphic compilation and
display.

Entry graphic compiler $display accepts a node value as input. The
following call erases the screen and displays the troop of boy scouts previously
described:

call graphic compiler $display (troop_node, code);

2-23 AS40-01

Entry graphic compiler $display name accepts a symbol name as input. The
following call erases the screen and-displays the graphic symbol "box_example":

call graphic_compiler_$display_name ("box_example", code);

The entry graphic compiler $display append is similar to the entry
graphic compiler $display~ This entry appends the display to the screen without
erasing-the current display.

In a similar fashion, the entry graphic compiler $display name append may
be used to complement the entry graphic_compiler_$display_name. - -

Using the Graphic Operator

Thegraphic operator subroutine may be used to perform graphic actions that
are not representable as elements of a graphic object, such as graphic input,
animation and screen erasure. A description of the syntax of the calling
sequence of each entry of the graphic operator_ subroutine may be found in
Section 5.

Graphic operations can be caused to come to a temporary halt by the use of
the graphic operator $pause entry. Graphic operations are suspended until the
user signifIes, by some interaction, readiness to proceed. This may be used,
for example, when displaying multiple graphs in sequence, to allow the user to
fully understand the information in each graph before the screen is erased and
the next graph is drawn.

The screen may be explicitly
graphic_operator_$erase entry.

erased through the use of the

Subroutine
input devices.

graphic operator is also used to request input from graphic
Three types of graphic input are defined in the MGS:

1. "where" input, consisting of one coordinate point.

2. "which" input, consisting of a node value and an index "pathname" that
uniquely identifies an instance of a possibly shared graphic
substructure or item being displayed.

3. "what" input, consisting of any graphic item or structure that is
constructed at the terminal and returned to Multics.

These types of input are requested by the graphic operator $where,
graphic_operator_$which, and graphic_operator_$what entries, respectively.

"where" input is useful when the programmer wishes the terminal user simply
to pick a point. For example, a user with a requirement to label curves on a
plot cannot easily write a routine to determine where each label should be
placed so that it is legible (does not interfere with other curves or other
labels on the graph.) However, if a "where" input is requested for each label
after the graph has been drawn, the user can manually choose a satisfactory
position for each label. The graphing program need only obtain the coordinate
point input, and construct a graphic structure that performs a setposition to
that point and displays the proper label.

2-24 AS40-01

"which" input is useful when the programmer wishes the terminal user to
choose some graphic item being displayed. For example, a computer-aided
automotive design program might display an entire automobile, and request a
"which" input to allow the terminal user to choose a certain component or
assembly for subsequent alteration. The terminal user could select the left
front wheel with the light pen. Then via local interactions with the
intelligent graphics terminal, the level of the item desired would be selected
(e.g., that wheel, the entire front suspension, or only the hubcap which was
actually touched). When satisfied with the choice, the user causes the terminal
to return this information. The Multics-resident automobile design program
might then select that substructure, display it alone, and perform further
operations.

"what" input is useful when the programmer wishes to accept an arbitrary
graphic object or structure from the terminal user. Usually, the type of input
obtained depends heavily on the graphic input device from which the input is
requested. For instance, a program may allow a user to draw an arbitrary figure
using a graphic mouse, joystick, or pen and tablet. This input would be
translated into an array of vectors, points, shifts, etc., inserted in the WGS,
and the node value returned to the program. The program may inspect it, save it
in a PGS, or incorporate it into a larger structure.

Since the operations performed by graphic operator are rather
sophisticated, users should refer to Section 5 for detailed inforiation.

Examples

The following two programs serve to illustrate a typical use of the central
graphics system. The first program creates a cube, assigns it the name "cube",
and stores it in a permanent graphic segment named "misc.pgs". In examples that
illustrate the user's interaction with the terminal, the lines typed by the user
are indicated with an exclamation mark (!) to the left of the line. This is
for illustrative purposes only; the user does not actually type the exclamation
mark. Likewise, comments that serve an explanatory purpose may be included
wi thin the program by enclosing them "';Ji thin "7* ... * /" .

make_cube: proc;

declare array (100) fixed bin (18), /* for ordering elements */
array_index fixed bin; /* index of last-used element in array */

declare (cube array, cube symbol) fixed bln (18);
/* graphic node holders */

declare code fixed bin (35),
com err entry options (variable),
get=wdir_ entry returns (char (168));

%include gm entry dcls; /* contains dcls for graphic manipulator *!
%include graphic etypes; -

/* ditto for common graphic variables (Vector, etc.) */

/* initialize the working graphic segment */
call graphic manipulator $init (code);
if code A= O-then goto err;

array_index = 0;

/* move to edge of cube */
array (next free ()) = graphic manipulator $create position

(Shift~ 250, 250, 250, code);
if code A= ° then goto err;

2-25 AS40-01

/* create faces of cube, one by one,
out of relative vectors and shifts */

array (next free ()) = graphic manipulator $create position
(Vector, 0, -500, 0, code); if code A~ ° then-goto err;

array (next free ()) = graphic manipulator $create position
(Vector, 0, 0, -500, code); if code A~ ° then-goto err;

array (next free ()) = graphic manipulator $create position
(Vector, 0, 500, 0, code); if code A=-O then goto err;

array (next free ()) = graphic manipulator $create position
(Shift~ -500, 0, 500, code); if code ~= ° then goto err;

array (next free ()) = graphic manipulator $create position
(Vector, 500, 0, 0, code); if code A=-O then goto err;

array (next free ()) = graphic manipulator $create position
(Vector, 0, 0, -500, code); if code A~ ° then-goto err;

array (next free ()) = graphic manipulator $create position
(Vector, -500 0, 0, code); if code A~ ° then-goto err;

array (next free ()) = graphic manipulator $create position
(Shift~ 0, -500, 500, code); if code ~= ° then goto err;

array (next free ()) = graphic manipulator $create position
(Vector, 0, 500, 0, code); if code A=-O then goto err;

array (next free ()) = graphic manipulator $create position
(Vector, 0, 0, -500, code); if code A~ ° then-goto err;

array (next free ()) = graphic manipulator $create position
(Vector, 0, -500, 0, code); if code A~ ° then-goto err;

array (next free ()) = graphic manipulator $create position
(Shift~ 500, 0, 500, code); if code A~ ° then-goto err;

array (next free ()) = graphic manipulator $create position
(Vector, -500, 0, 0, code); if code A~ ° then-goto err;

array (next free ()) = graphic manipulator $create position
(Vector, 0, 0, -500, code); if code A~ 0 then-goto err;

array (next free ()) = graphic manipulator $create position
(Vector, 500, 0, 0, code); if code A=-O then goto err;

/* join all the discrete elements together into a graphic array */
cube_array = graphic_manipulator_$create_array

(array, array index, code);
if code A= ° then goto err;

1* name that array "cube" by making a graphic symbol containing it */
cube symbol = graphic manipulator $assi~n name

- ("cube"~ cube array~ code);-
if code A= ° then goto err;-

/* save the symbol "cube" in "misc.pgs" in my working dir */
/* if the symbol already exists there, return an error and leave it. */

call graphic manipulator $put strue (get wdir (),
"misc" ,-"cube", On_dup_error, code); -

if code A= 0 then
err: do; /* complain if any code nonzero */

call com err (code, "make cube", "Can't continue.");
return; - - -

end;

return;

/* ------------------ */

next free: procedure returns (fixed bin);

/* simply bump array index by one and return it as next free index. */
array index = array index + 1;
return (a.rray index);

end next free; -

2-26 AS40-01

end make_cube;

The second program takes the cube found in misc.pgs and displays it,
subject to a rotation which the user specifies.

show_cube: proc;

declare (cube symbol, cube array, junk node, /* graphic node variables */
rotated cube node~ rotation node) fixed bin (18),
array (2") fixed bin (18);

declare angles (3) float bin,
(sysin, sysprint environment (interactive)) stream,
conversion condition;

declare com err entry options (variable),
code fixed bin (35);

declare get_wdir_ entry returns (char (168));

%include gm entry dcls; /* contains dcls for graphic manipulator */
%include gc=entry=dcls; /* containsdcls for graphic=compiler_ *7

/* get the contents of "misc.pgs" in the WGS */
call graphic manipulator $use file (get wdir (),

"misc",-code); if code "-;- 0 then goto err;

/* get the node value of the graphic symbol "cube" */
cube symbol = graphic manipulator $find structure ("cube",

-cube_array, code); if code "-;- 0 then goto err;

/* construct a little structure for us to use. The first element
holds a rotation (later on); the second holds the cube */

array (1) = 0; /* null node, a graphic no-op */
array (2) = cube_symbol;

rotated cube node = graphic manipulator $create array
(array,-2, code); -

if code A= 0 then goto err;

/* set up the program exit condition */
on conversion begin;

put list ("Conversion occurred; quitting. II);
goto quit;

end;

/* main program loop */
do while (1I1"b);

put list ("Enter x, y, z angles: II);
get list (angles);

1* create a ro~a~lon elemen~ from those angles */
rotation node ~ graphic manipulator $create rotation

(angles (1), angles (2), angles (3), code);
if code A= 0 then goto err;

/* replace the old rotation with the new rotation */
junk node = graphic manipulator $replace element

- (rotated cube node,-1, rotatTon node, code);
if code A= 0 then goto err; -

/* display the rotated cube */
call graphic_compiler_$display (rotated_cube_node, code);

2-27 AS40-01

err:
quit:

if code A 0 then goto err;
end;

call com err
return;

end show_cube;

(code, "show_cube", "Can't continue.");

The following script represents a sample terminal session where these two
programs were used.

First, create and save a cube.

make cube
r 1226 1.082 3.928 80

See what happens if we try to do it more than once.

make cube
make-cube: A name duplication has occurred in

moving a graphic structure. Can't continue.
r 1226 0.062 0.094 2

show cube
Enter x, y, z angles:
10, 20, 30
show cube: No I/O switch. Can't continue.
r 1226 0.486 1.850 25

The user neglected to set up graphic I/O.

setup graphics -table tek 4014
r 122b 0.400 2.380 20

show cube
Enter x, y, z angles:
10, 20, 30

2-28 AS40-01

Enter x, y, z angles:
60, 34, -10

Exit the program.

Enter x, y, z angles:
xxx
Conversion occurred; quitting.
r 1226 0.657 2.612 27

list

Segments = 5, Lengths 6.

r w 1 misc.pgs
re 1 show cube
r w 1 show-cube.p11
re 2 make cube -r w 1 make cube .p11

r 1226 O. 1 31 0.420 11

>udd>Proj>User>g>misc.pgs

1 symbol:

cube

r 1230 0.271 8.372 90

2-29 AS40-01

USING HIGHER LEVEL GRAPHIC SUBROUTINES

In addition to the central graphics system, higher level graphic
subroutines are provided for special applications. As with all graphic
routines, users of these subroutines must remember to set up their graphic 1/0
environment before attempting to perform graphic operations.

These subroutines are primarily supplied to provide~

• speed in programming small applications, and

• a simple interface to the graphics system.

In addition, each provides its own specific features, such as support for
transportability, or a simple graphing application.

None of the higher level graphics subroutines contain provisions to allow
the user to directly:

• perform graphic input,

• perform animation and dynamic graphics,

• control the sharing of graphic objects 1 ,

• edit the created graphic object,

• use graphic mappings,

• use all of the graphic modes, or

• save the created display lists2 .

The gui subroutine allows a user to create graphic objects with a minimum
of effort. These objects are assembled for the user in a linear fashion as they
are created. The user may display the contents of the display list at will,
append more elements to the display list, and display the new additions.

Most entries in gui create one element or one simple figure, and append it
to the display list. The other entries control miscellaneous functions such as
screen erasure and display list reinitialization.

An example of a program using gui may be found in Section 5, "Example of
gui_" .

Failure to do this can sometimes result in premature exhaustion of free space
in the WGS, as well as greatly increasing the execution time of the
graphic_compiler_.

2 Em'lever, thi s feature can be performed by v.ser programming through the 1..1813 of
graphic_manipulator_$save_file.

2-30 AS40-01

Users who desire the capabilities of structure editing, graphic input and
controlled sharing, may easily approximate the operation of gui by using
various entries in graphic manipulator and graphic macros, in conjunction with
the graphic manipulator $add element entry, at the-cost of a small to moderate
amount of extra programming.-

Using calcomp compatible subrs

The calcomp compatible subrs subroutine provides a compatible interface
for those programs that previously ran under other operating systems and used
the standard CalComp plotter calls. They may, of course, be used as a basis for
new programs if the user prefers these calls to those supplied by the central
graphics system or the gui subroutine.

Since the original plotter calls were highly sensitive to the width (in
inches) of the plotter in use, programs which have been transferred from other
systems must precede their use of this subroutine with a call to
calcomp_compatible_subrs_$set_dimension, to inform the graphics system of the
units to be used to dimension graphic items. Additionally, they must be
modified if they attempt to produce multiple plots by rolling the paper forward.
Instead, they should perform the proper sequence of calls to close out one plot,
and then perform the call to open the next plot. A detailed description of
calcomp_compatible_subrs_ implementation restrictions can be found in Section 5.

The plot subroutine simply provides a quick method of using the graphic
system to produce data graphs. The user issues a call to plot $setup to specify
title, axis titles and type of graph; lets plot pick the graph scaling (or uses
plot $scale to force a certain scaling); and then makes one or more calls to
plot=, supplying the data points to be plotted.

An example of a program using plot_ may be found in Section 5, "Example of
plot_"

Using the Graphic Editor

The graphic editor provides a command interface to the central graphics
system. It allows the user to construct, edit, and display graphic structures
via interactive requests to the editor.

Although the user of the graphic editor need not fully understand the
principles of operation of the centr~l graphics system, users who are performing
more than simple creation and editing of structures may find this understanding
advantageous.

Section 5 (Commands) describes the graphics editor and contains many simple
examples of its use. Users should read and attempt to understand this material
before proceeding in order to gain a feel for the syntax of requests.

The following
session using the
examples.

paragraphs provide several extended examples of a terminal
graphic editor. Explanatory notes are interspersed with the

2-31 AS40-01

Creating Simple and Compound Graphic Structures

The following example outlines the creation of a "troop of boy scouts,"
previously described in this section.

setup graphics -table tek_4014
r 1715 0.673 5.254 37

graphics editor
Edit. -

boy_scout = vector -10 20, vector 40, vector -10 -20, vector -20,
shift 10 10, /* the hat */
circle ° -20, shift ° -40, /* the head */
vector ° -10; /* the neck */

No setposition element is included since this object is just a small component
of a larger planned structure.

Display to see what it looks like so far. The origin of the object will by
default be the point (0,0,0).

display boy_scout;

Assume the hat is the wrong shape. Fix it before going further. First, get a
list of the elements of boy_scout to use as an aid.

show boy scout.*;
boy scout.1 is vector -10. 20. 0.,
boy-scout.2 is vector 40. 0. 0.,
boy-scout.3 is vector -10. -20. 0.,
boy-scout.4 is vector -20. 0. 0.,
boy-scout.5 is shift 10. 10. 0.,
boy-scout.6 is system macro "circle 0. -20.",
boy-scout.7 is shift o. -40. 0.,
boy=scout.8 is vector 0. -10. 0.;

The first five elements are the hat; change them.

boy scout.1:5 = vector -6 20, vector 52, vector -6 -20, vector -40,
- shift 20 10;

display boy_scout;

2-32 AS40-01

Assume this now looks satisfactory. Continue by adding elements to boy_scout.

= boy scout.*, /* all the previous elements of boy scout, plus: */
vec -20 0, vec -4 -50, shift 24 50, /* right arm *7
vec 20, vec 4 -45, vec -5 -5, /* left arm and hand */
vec 41 200, vec 55 -25, vec -60 -10, shift -55 -115, /* flag */
vec 0 -65, /* body */
vec 15 -20, vec 0 -50, circle 0 -5, shift -15 70, /* left leg */
vec -15 -20, vec 0 -50, circle 0 -5, shift 15 70; /* right leg */

Assume the hand does not show enough; make it longer.

show boy scout.9:20
boy scou~.9 is vector -20. O. 0.,
boy-scout.10 is vector -4. -50. 0.,
boy-scout.11 is shift 24. 50. 0.,
boy-scout.12 is vector 20. O. 0.,
boy-scout.13 is vector 4. -45. 0.,
boy-scout.14 is vector -5. -5. 0.,
boy-scout.15 is vector 41. 200. 0.,
boy-scout.16 is vector 55. -25. 0.,
boy-scout.17 is vector -60. -10. 0.,
boy-scout.18 is shift -55. -115: 0:,
boy-scout.19 is vector O. -65. 0.,
boy=scout.20 is vector 15. -20. 0.;

boy scout.14 vector -15 -5;
boy-scout.18 = shift -45 -115;
/* ~o make the flag come out even at the shoulder */

2-33 AS40-01

Assume this is now satisfactory. Now make a row of boy scouts.

row = boy scout, shift 60, boy_scout, shift 60, boy_scout, shift 60,
boy_scout, shift 60;

di row;

This is not right. It seems we forgot to give the boy scout a net relative
displacement of zero. We must fix this.

show boy scout.*;
boy scout.1 is vector -6. 20. 0.,
boy-scout.2 is vector 52. o. 0.,
boy-scout.3 is vector -6. -20. 0.,
boy-scout.4 is vector -40. o. 0.,
boy-scout.5 is shift 20. 10. 0.,
boy-scout.6 is system macro "circle O. -20.",
boy-scout.7 is shift o. -40. 0.,
boy-scout.8 is vector O. -10. 0.,
boy-scout.9 is vector -20. O. 0.,
boy-scout.10 is vector -4. -50. 0.,
boy-scout.11 is shift 24. 50. 0.,
boy-scout.12 is vector 20. O. 0.,
boy-scout.13 is vector 4. -45. 0.,
boy-scout.14 is vector -15. -5. 0.,
boy-scout.15 is vector 41. 200. 0.,
boy-scout.16 is vector 55. -25. 0.,
boy-scout.17 is vector -60. -10. 0.,
boy-scout.18 is shift -45. -115. 0.,
boy-scout.19 is vector 0. -65. 0.,
boy-scout.20 is vector 15. -20. 0.,
boy-scout.21 is vector o. -50. 0.,
boy-scout.22 is system macro "circle o. -5.",
boy-scout.23 is shift -15. 70. 0.,
boy-scout.24 is vector -15. -20. 0.,
boy-scout.25 is vector o. -50. 0.,
boy-scout.26 is system macro "circle o. -5.",
boy=scout.27 is shift 15. 70. 0.;

boy_scout.27 = shift -5 175;

2-34 A840-01

di row;

Fine! Now share the row in the same manner to make the troop in formation.

troop = row, shift -240 ° -140, row, shift -240 ° -140, row;

di troop

This is right, but it will have to be rotated if the z dimension is to show
at all.

parade = rotation 30 30, troop; display parade;

8/81 2-35 AS40-01A

I

This is not artistically pleasing, try a slightly different view.

parade.1 = rot 30 50 25; display parade;

This is satisfactory. Save the graphic structure.

save illustration

list

4 symbols in illustration.pgs:

boy scout
parade
row
troop

quit
r 1116 14.211 8.124 110

Using Modes or Mappings to Alter Shared Structures

This example outlines the u~e of a graphic superstructure to aid in the
design of a three-dimensional object. A superstructure named "orth" is created,
which shows a standard draftsman's three-view orthographic projection (plus a
projection at a nominal angle) of the graphic structure named "item".

graphics editor
Edit.

item null; /* just to define'it */

orth setposition -300 300, rot 90, item, rot 0,
setposition -300 -300, item,
setposition 300 -300, rot ° -90, item, rot 0,
setposition ° ° 0, rotation 60 40 20, item;

put (aids)
quit

1* put orth into aids.pgs */

/* top view */
/* front view */
/* side view */
/* nominal view */

At a later point, the user is faced with the task of assembling a
three-dimensional representation of an aircraft. Afte creating the first
attempt and naming it "aircraft", he desires to see t in an orthographic
projection. He retrieves the superstructure orth, proceed ng as follows:

get (aids) orth

2-36 AS40-01

He assigns "aircraft" to "item", making aircraft the object to be displayed in
orthographic projection.

item = aircraft;

display orth;

NOTE: The portion of the display commented above as "front view" actually
results in a "side view" of the aircraft. This apparent discrepancy
arises from the fact that the aircraft figure was originally
constructed in this position, making this view the "front view" of
the figure, even though it does not correspond to what is usually
considered the front view of an aircraft.

Now the user may make any desired changes to the aircraft
change, he need only retype "display orth" to see the object
orientations.

TERMINAL LIMITATIONS AND PECULIARITIES

figure. After any
again in all four

Although the MGS attempts to simulate the operation of the VGT on each
different type of graphic device, certain operations are not performed, either
because the hardware cannot directly support the operation, or because the
operation has no meaning to that particular device.

Examples of operations that are not supported because the terminal hardware
cannot directly support the operation include:

1 . the use of color elements on a terminal that is not equipped to
display colors.

2. the use of blinking elements on a plotter.

3. dynamic animation of a graphic object on a storage-tube terminal,
where pictures, Olice drawn, are permanent until the screen is erased.

2-37 AS40-01

These operations sometimes seem to be accepted, in that they may not produce
error messages when used with a particular device, but nevertheless produce no
effect on the display. This can happen for two reasons. First, the GDT describing
the terminal may flag some operations as being futile but harmless. For example,
a user sending a structure containing color elements to a monochromatic
(single-color) terminal does not receive an error, even though the color element
cannot be performed. In this case, such items are simply ignored. Second, the
GDT can contain assumptions that the terminal class it describes includes certain
features that the particular terminal in use does not. For instance, dotted and
dashed lines are an extra-cost option on some terminals. If the specific terminal
in use does not possess this option, linetype elements have no effect on the
display. Similarly, requests for graphic input from input devices that are
available and supported for a certain terminal type, but are not attached to the
specific terminal in use, are accepted; and the system waits for input that
cannot be sent. However, some of these operations may be mapped by software
into equivalent or compromise operations. For example, the "screen erase" graphic
element causes a paper advance if sent to a plotter.

Examples of operations that are not supported because the operation has no
meaning to a particular graphic device include attempts to perform graphic pauses
in plotter output; attempts to refer to the graphic structure in the memory of
the graphic terminal when that terminal has no internal memory1: and attempts
to perform graphic input from terminals that do not support any graphic input
devices.

The user of any graphic device should clearly understand the limitations of
the particular terminal being used before programming sophisticated graphic
applications. In fact, to perform every operation defined by the MGS in its
most general case, a user would need a very powerful system of graphics hardware,
complete with sophisticated internal programming. The user should be aware that
support of graphic terminals of nominal power entails compromises in terms of
flexibility.

I SEARCH LIST

I

Various entries in the graphics system use the graphics search list. For
more information about search lists, see the descriptions of the search facility
commands in MPM Commands (in part.icular, the add search paths command description).
Type: -

I print search_paths graphics

I to see what the current graphics search list is. The default search list is:

I -working dir
>system_Iibrary_unbundled

This ability constitutes the basis for all the graphic effectors that perform
dynamic animation and real-time graphic editing, among others.

8/81 2-38 AS40-01A

SECTION 3

STRUCTURE OF THE SYSTEM

The MGS is organized into two distinct functional parts:

• terminal-independent or central graphics system

• terminal-dependent interface

(See Figure 3-1 .)

User and application programs communicate almost exclusively with the
central graphics system. The central graphics system manipulates a data base
containing a structured representation of a graphic picture. When a user or
application program displays a portion of a graphic structure, the structure is
transformed into a character-string representation known as MSGC, which is
suitable for transmission through a Multics I/O switch to the terminal device.
This code contains both redundant information needed by static (storage-tube)
display terminals, and structure information useful to programmable or
"intelligent" terminals.

The terminal-dependent portion of the system examines the MSGC, consulting
a tabular description of the capabilities of the graphics terminal currently
being used to decide if any operations need to be performed on the code before
it is sent to the graphics terminal. Typical operations include discarding
structure information for static terminals and redundant information for
intelligent terminals, performing rotations and scalings for terminals lacking
these features, attempting compromise operations where necessary, and
translating the MSGC to the appropriate characters for controlling the
particular terminal.

Graphic input from the terminal is handled in a similar fashion. The
terminal interface translates the graphic input into MSGC which is interpreted
by the central graphics system and returned to user or application programs as
return arguments from a reques~ for input.

The structured data base allows graphic pictures to be represented
naturally (e.g., a door knob as pa~t of a door as part of a house as part of a
neighborhood), and to be edited efficiently. The terminal-independent MSGC can
be stored permanently in a Multics segment, to be "played backit with low
computational overhead through a terminal interface at a later time to produce a
standard background scene on any terminal type. Also, in many cases, the
terminal-dependent code produced by a particular terminal interface can also be
stored and played back to that particular terminal type at negligible
computational overhead.

3-1 AS40-01

I

I
I
I

1

I
I
I
I

I
I
I
I

i

I
I

L

•
Permanent Graphic Segments (PGS)
for storage of graphic structures

t
Graphic Structure
MAni olll 'It.nr
(graphi c_man i pu la t or_)

....

"

\
for creation, editing,
and storage of
graphic struotures

Graphic Structure Working
Compiler Graphic
(graphic_compiler_) Segrrent (WGS)

.....

trans la tes structures the gra ph i c
into ~1ul tics Standard structure
Graphics Code (MSGC) rJa ta base

T
I
I
I
I
I
I
I

I

Sraphic Support
Procedure (GSP)
for device type "A"

perforrrs speoial oorputations
oeouliar to this graphic
device type, including
operat ions the hardware
cannot perform, if they can
he sirrula ted in software

11i
Graphic Device Table

(GDT)
for cevice type "A"

tabular description of
termina 1 peculiarities
and capabili ties

11 r ~ L--i l'
Graphic Dynamism ! Ovet'atol' /~ ~

::rap:;ic I/O Hod ule
(graphic_operator_)

.... (graohic_dim_)

" ""--
performs animation,/

termina 1 control, trans la tes t1ultics Standard
graphic inpu t, and Graphics Code, performs
special func tions ~Aultics Standard da ta transmission, buffers

Graphics C00e output to physical device
(MSGC)

__ J

Termi na 1- Inde penden t Termina I-Dependent

Figure 3-1. Functional Parts or the Multics Graphics

3-2

l egen :
--?data refer ence

I
=stream I/O

===:;;;subroutine ca II

I

I
I

I
I
I
I

I
I

I
I 8 I

..

I
"- .'10.

J J
Graphi c
Device

AS40-01

The tabular description of a graphic terminal's capabilities and
peculiarities allows new terminal types to be added to the system with minimum
overhead. The ability to specify system-supplied or user-supplied utility
routines to aid graphics code translation promotes terminal independence, and
provides a handle for extending the basic capabilities of the MGS.

GRAPHIC STRUCTURE DEFINITION

Rather than treat graphic data as an unstructured collection of atomic
graphic elements, much as a sketch could be consid~red an unstructured
collection of points, lines, shadings, etc., the MGS deals instead with
tree-structured descriptions of pictures, where atomic graphic elements form
parts of higher level structures, which in turn may be parts of still higher
level structures. Substructures may be shared within higher level structures.
This organization has three advantages. First, it allows for fairly natural
representation of graphic data. Recognizable objects (automobiles, doors,
houses, etc.) can be viewed as both complex graphic entities while they are
being created and edited, and as atomic graphic elements when they are being
incorporated into larger scenes. Secondly, the ability to share graphic
substructures eliminates a great deal of redundancy in specifying a graphic
picture. (e.g., all the windows on a skyscraper can be represented by a single
window referenced many times in the graphic structure.) Finally, the structured
organization makes possible some relatively powerful graphic editing
capabilities (such as changing the shape of all the windows below the 34th
floor).

Two types of atomic elements make up a graphic structure: terminal graphlc
elements and nonterminal graphic elements. Terminal graphic elements represent
simple graphic operations most often interpreted directly by graphic terminal
hardware. These include screen positioning, line and point drawing operations,
screen modes (such as blinking, intensity, linetype (e.g., solid, dashed,
dotted, etc.), and sensitivity to a light pen), and coordinate rotations and
scalings in three dimensions. Nonterminal graphic elements are lists that
impose ordering on the elements they contain. Levels of structure are
represented by including nonterminal graphic elements within other nonterminal
graphic elementso Figure 3-3 depicts a portion nf a graphic structure
describing a simple house. The picture is structured along functional lines.
For illustrative purposes, the single window design is shared in two places, one
on each side of the house.

Each graphic element in a Multics segment representing a graphic structure
is uniquely identified within the segment by a node value that is used to
reference that element within the structure and in later operations.
Nonterminal graphic elements are simply coherent lists of node values of other
graphic elements (terminal or nonterminal).

3-3 AS40-01

house_display
1 2 3

house

foundation
123 4 5

chimney
1 2

2 window

window_cross
1 2 3

window outline
"2 11

antenna
1 2

Figure 3-? A Typical Graphic Structure Organization

3-4 AS40-01

In the following descriptions of the different graphic elements, the
notation:

element type (argument1, argument2, ... , argument~)

is used to convey the essential abstract meaning of each element. It should not
be interpreted as the syntax of a subroutine call or other specific
implementation property. The actual semantics of subroutine calls for creating
and editing graphic elements is described later in this section under "Graphic
structure Manipulation·."

Nonterminal Graphic Elements

There are three types of nonterminal graphic elements used in structuring a
graphic picture. They are:

• lists

• arrays

• symbols

LISTS

Lists are the most fundamental nonterminal graphic elements.
specified by:

A list is

list (element1, element2, •.. , element~)

where element is the node value of any graphic element. Lists serve two
purposes: to order other graphic elements, and to provide structure to a
picture. A list may contain any number of terminal and nonterminal graphic
elements.

NOTES: Circular or recursive lists (those that contain themselves or are
part of a chain of list reference that eventually leads back to
themselves) have undefined meaning and are therefore invalid.

ARRAYS

It is possible to refer to a unique element many times within one
list or from many different lists. Therefore, there is no concept
of a structure being "owned" by a superior structure, since every
piece of structure is inherently sharable.

Use of an array is structurally equivalent to use of a list, but causes all
information about the structure of its elements to be lost when the str~ct~re is
compiled into MSGC. The major use of arrays is to reduce the overhead
associated with maintaining and forwarding unneeded structural information.
This is useful for static (storage-tube) terminals that do not support dynamic
graphics and thus have no use for structural information, and for those
substructures that the user does not intend to alter dynamically (e.g.,
background scenes).

3-5 AS40-01

Arrays are treated specially by the graphic compiler. Since the internal
structure of arrays need not be preserved past the point of compilation, the
graphic compiler optimizes the contents of arrays in several ways. It combines
any number of successive nondrawing position-affecting elements (e.g., shifts,
invisible vectors, setpositions) into single elements. It applies mapping
elements (e.g., rotations, scalings, clipping, masking) during the compilation
process, so that these no longer need be computed by a GSP or by a program
running in an intelligent graphic terminal. It adjusts all elements inside the
array to compensate for the roundoff error that can otherwise occur when
elements are translated into MSGC.

A mechanism (the "Graphic Device Table", described later in this section)
exists whereby a programmer charged with the task of interfacing a particular
graphic device can specify to the MGS that all MSGC sent t~ his device in the
form of lists is to be converted to array form before transmission to the
terminal. This frees the terminal programming from having to account for and
correctly perform complex structuring operations. When an array is made in this
fashion, it is also optimized in the manner described above except that the
round-off error can no longer be compensated for, since the necessary precision
has already been lost in the initial translation of the structure into MSGC.
For this reason, and because most graphic structures are not used in a manner
that requires the preservation of their internal structure, it is recommended
that arrays be used instead of lists wherever possible.

SYMBOLS

Symbols are a
graphic constructs.

special form of nonterminal graphic
A symbol consists of two elements:

symbol (element, name)

element used for naming

where element is the node value of a terminal or nonterminal graphic element,
and name is the node value of a terminal text element (see "Terminal Graphic
Elements" below) containing the text of the symbol name. Symbols serve several
purposes, the primary one being to uniquely identify, in a mnemonic way, graphic
constructs that may be moved between several Multics segments. Symbols have
their own node values, and do not share the node value of their contents.
Operations on these two node values produce different results. For example, the
MSGC produced by compiling a symbol node contains the symbol construct, but the
code produced by compiling the node value of a symbol's contents does not
include the symbol.

Terminal Graphic Elements

Terminal graphic elements are operations often understood directly by
graphics terminal hardware or terminal-resident software. ~ne order of
appearance of terminal graphic elements in lists or arrays dictates the effect
these elements have on other elements in the list.

There are four categories of terminal graphic elements in the MGS. They
are:

• positional elements

• modal elements

• mapping elements

• miscellaneous elements

3-6 AS40-01

POSITIONAL ELEMENTS

Positional elements affect the screen position (in three dimensions) of
what might be thought of as a graphic cursor, (or "current graphic position"),
and cause lines and points to be drawn on the screen. All positional elements
use the current graphic position as their origin, cause some movement of the
beam, and leave the current graphic position at their point of termination.
Positions are computed within a virtual screen of 1024x1024x1024 points, with
the point (0,0,0) corresponding to the center of the screen. The virtual screen
is infinite in all directions but is visible on a display screen only within the
limits (-512 < x,y,z < 511).

The coordinate system is a right-handed cartesian coordinate system, with
the positive x direction toward the right, positive y upwards, and positive z
coming out of the screen. Coordinates are supplied and manipulated as
fractional quantities to minimize round-off errors in rotation and scaling
operations.

There are two types of positional elements: absolute and relative.
Absolute positional elements force the graphic cursor to a specific point on the
virtual screen. Relative positional elements move the graphic cursor to a new
position relative to its current position. The elements are:

absolute positioning relative positioning

setposition
setpoint

setposition (x, y, z)

vector
shift
point

this element sets the current screen position to
displaying any points or lines.

(x, y, z) without

setpoint (x, y, z)
this element sets the current screen position to (x, y, z), and
displays a visible point.

vector (dx, dy, dz)
this element displays a vector from the current screen position with
dimensions dX, dy, and dz.

shift (dx, dy, dz)
this element changes the current screen position by dx, dy, and dz
with no visible effect.

point (dx, dy, dz)
this element changes the current screen position by dx; dy, and dz
and displays a visible point at the new position.

Relative screen positions are accumulated within a list or array from left
to right. Absolute positioning elements (setposition and setpoint) are allowed
only in the topmost level struct~res. Substructures within a list or array may
change the screen position, although in general, shared substructures should
have a net relative shift of (0,0,0) (i.e., the sum of the relative positioning
elements in a shared list or array should normally add up to (0,0,0)).

3-7 AS40-01

MODAL ELEMENTS

Modal elements produce no effects on the screen by themselves, but affect
the properties of successive graphic elements in defined manners. The
appearance of a modal element in a list overrides a previous setting for that
particular mode for the rest of that list. The defined graphic modal elements
are:

• intensity (brightness)

• line type (solid, dotted, dashed, etc.)

• steady/blinking

• insensitive/sensitive (to a light pen)

• color (red, green, and blue)

intensity (value)
this element
in a list.
corresponds
intensity.

affects the brightness of succeeding graphic elements
Eight levels of intensity (0-7) are defined. Level 0
to invisible, and level 7 is the default, full

line type (type)
- this element causes succeeding vectors to be drawn as solid, dashed,

or other machine-defined types of lines. Type 0 is defined as solid
(the default), type 1 as dashed, type 2 as dotted, etc.

steady/blinking (value)
this element causes succeeding graphic elements to be displayed
steadily (the default), or to blink.

insensitive/sensitive (value)
this element causes succeeding graphic elements to be sensitive or
insensitive (the default) to detection by a light pen.

color (red intensity, green intensity, blue intensity)
this-element causes succeeding graphTc elements to be displayed in
the color specified by the intensities of the three primary colors
in the additive color spectrum.

Modal elements establish a local graphics environment which governs the
properties of lines and points drawn within the scope of that environment.
There are several rules governing the application of modal elements depending on
structure level and order in a list (or array):

1 •

2.

3.

When a modal element occurs in a list, it affects all successive
elements in that list up to the next modal element of the same type.

A modal element overrides a previous modal element of the same type in
the same list.

The local graphics environment (mode settings, rotations, scalings,
and clippings) at the start of a substructure is defined as that
environment in effect in the parent list at the point the substructure
is referenced. This environment is changed by successive modal
elements in the substructure. It is discarded at the end of the
substructure and the modes are restored to the current values in the
parent list. (In other words, modes are automatically reset to their
previous values at the end of a substructure. This makes it
impossible to have a substructure that changes the modes or mappings
of its parent structure.)

3-8 AS40-01

MAPPING ELEMENTS

Mapping elements cause no visible effect by themselves, but affect how
succeeding graphic elements are mapped onto the screen. There are three mapping
elements:

• rotation

• scaling

• clipping

rotation (/x, /y, /z)
this element causes succeeding graphic elements to undergo a
rotation about the x-, y-, and z-axes in that order. These axes are
stationary relative to the screen. The units of rotation are
positive degrees. Rotations are taken modulo 360 degrees.

scaling (*x, *y, *z)
this element causes succeeding graphic elements
in the three separate directions defined
coordinate system. Scalings may be negative
images.

to undergo scaling
by the stationary

to produce mirror

clipping (not currently implemented)
this element causes all succeeding normally visible graphic elements
to be clipped (become invisible) if they fall outside a
parallelepiped defined by the clipping parameters. If a graphic
element straddles the boundary, only the part within the
parallelepiped will be visible.

masking (not currently implemented)
this element causes all succeeding normally visible graphic elements
to be masked (become invisible) if they fall inside a parallelepiped
defined by the masking parameters. If a graphic element straddles
the boundary, only the part outside the parallelepiped will be
visible.

Clipping and masking are referred to as "extent elements."

Mapping elements change the local graphics environment in somewhat the same
manner as modal elements, according to three rules:

1 • When a mapping element occurs in a list, it affects all subsequent I
elements in that list up to the next mapping element of the same type.
A mapping element overrides a previous mapping element of the same
type in the same list.

2. When a mapping element occurs in a list, the net mapping is the result
of applying the mapping element to the mapping currently active in the
parent list.

3. Mapping elements in a sublist have no effect on the mappings in a
parent list.

3-9 AS40-01

Because mappings are noncommutative vector operations, the order of
application of mapping elements to constructs in a list is important. A scene
that is first scaled and then rotated will in general appear different from one
that is first rotated and then scaled. Within a list, scaling is performed
first, then rotation, then extent elements. This order may be overridden by
using several levels of structure to achieve the desired order of application.
The mappings closest to the object (on the lowest structural level) are most
binding, and are applied first. The mapping elements are defined to apply to
all graphic elements with the exception of text strings. For efficiency, the
central graphics system assumes the use of character generating facilities in
the terminal processor. Thus, the orientation and size of text strings are not
altered by mapping elements. However, the positions at which text strings occur
are altered.

MISCELLANEOUS GRAPHIC ELEMENTS

There
structure.

are two other graphic
They are:

elements that may be included in a graphic

Text

• text
for displaying textual information.

• datablock
for storing user data within the graphic structure, or extension of
the basic capabilities of the MGS.

The purpose of the text element is to allow labels and other textual
information to be included in a graphic structure. Its format is:

text (alignment, string)

where string is a text string of any length (although in general it will be
smaller than the text line length of most graphic terminals), and alignment is a
number from 1 to 9 which specifies that the text string is to be aligned in one
of nine ways relative to the current screen position, as follows:

Alignment
Portion of String at
Current Screen Position

1 · upper left
2 · upper center
3 · upper right
4 · middle left
5 · dead center
6 · middle right
7 · lower left
8 · lower center
9 · lower right

JJT~: The string is subject to active screen modes, but not necessarily
to mappings. riowever, the initial position of the string is
subject to mappings.

3-10 AS40-01

Datablock

The datablock graphic element allows arbitrary program-defined bit strings
representing user data to be stored as part of a graphic structure. The data is
passed to the graphics terminal just as any graphic effector is, which makes it
possible for a user with special applications to have his program construct
datablocks that contain terminal-dependent information or commands. This also
provides a straightforward and powerful facility for extending the basic
capabilities of the MGS by allowing user program-to-graphic-terminal
conventions.

The datablock is defined by:

datablock (user_data)

where user data is a bit string of any length. There are no system-defined type
codes for- marking the user data as representing integers, characters, etc.,
although the user program may define descriptors meaningful to it, and store
these as part of the data.

Datablocks have no system-defined effect on other graphic elements.

GRAPHIC STRUCTURE MANIPULATION

Graphic structures are created, edited, and stored in a temporary segment
in the user's process directory known as the Working Graphic Segment (WGS). I
User programs call entry points in the subroutine called graphic manipulator
(described in Section 5) to perform several categories of operations on graphic
structures in the WGS:

• creation of new elements and structures

• examination of existing structures

• alteration of elements and structures

e permanent storage of named structures

Graphic elements in the WGS are referenced by node values, valid only
within the current WGS. When a new graphic element is created, the node value
of the created element is returned to the user program as a sort of "receipt".
This node value is used in all later references to this element. Lists of
graphic elements are created from PL/I-like or FORTRAN-like arrays of node
values of the elements in the list. Permanent storage of all or a portion of a
graphic-structure is accomplished by attaching a symbol (name) to the structure.
Entry points in the Graphic Manipulator can then be used to move such named
structures between the temporary WGS and one or more PGSs anywhere in the
Multics storage hierarchy.

Node values are used for graphic-structure creation and editing. The
central graphic system uses node values as an efficient means of locating
graphic elements. Names are used for permanent storage as they are more
mnemonic, and as the operation of copying a graphic structure into a PGS may
perform an implicit storage compaction and garbage collection function, thereby
changing the node values of most graphic elements copied.

Refer to the graphic manipulator subroutine described in Section 5 of this
document for the details of the various graphic structure manipulation entry
points.

3-11 AS40-01

GRAPHIC STRUCTURE COMPILATION

When a graphic structure has been created and satisfactorily edited, a user
can then produce a character-string representation of this structure for
transmission through the Multics I/O system. The input to the compiler is a
graphic structure resident in the WGS. The structure is designated to the
graphic-structure compiler by the node value or name of its top-level list. ~ne
compiler transforms this structure into an equivalent representation in MSGC, a
standard intermediate form that is terminal-independent. This code is written
over the I/O switch named graphic output. (Entries are provided that allow the
user to substitute some other r/o switch for the duration of an operation.)
This switch may be attached to a terminal interface, thereby directing the code
to a particular graphics terminal; or it may be attached to a Multics segment,
producing a permanent copy of this terminal-independent code that can be "played
back" through any terminal interface at a later time.

Several different entries are provided in the graphic-structure compiler to
perform some common operations on the remote terminal (such as erasing the
screen, or specifying that the structure is to be loaded into an intelligent
terminal's memory, but not immediately displayed). Refer to "Specification of
the Virtual Graphic Terminal" in this section for additional information on this
subject.

DYNAMIC GRAPHIC OPERATIONS

There are several classes of graphic
interaction or take advantage of refreshed
computation in intelligent terminals:

• animation

• graphic input and user interaction

• terminal control

operations that
display screens

involve user
and real-time

The basic design philosophy relating to such dynamic operations is that the
graphic structures resident in the Multics system and those in the graphics
terminal memory are isomorphic (structurally equivalent). In other words, there
are no provisions for the user or the terminal to make changes in a
terminal-resident graphic structure without mirroring them in the
Multics-resident structure. All dynamic graphic operations are initiated at the
request of a user program or application program in the Multics system.

There are several reasons for adopting this philosophy. First, it allows a
simple and well-defined interface to a graphics terminal. Multics programs are
never faced with the difficulty of passing arbitrary inputs from a terminal, but
need only expect inputs in standard formats, and only in response to an
operation that requests information. Second, terminal-resident programming is
simplified, reducing the amount of memory required at the terminal. Finally,
the problems inherent in maintaining separate copies of a data base (in this
case a graphic structure) are eliminated. The nature of the dynamic graphic
operators is such that both Multics-resident and terminal-resident structures
are identical before and after each operaLlon.

Dynamic graphic operations are initiated by calls to entry points in the
graphic_operator_ subroutine, described in Section 5. These entry points emit
characters in MSGC to cause a terminal to perform the desired operations and
return to the user program any information returned by the terminal.

3-12 AS40-01

Animation

Animation involves moving graphic constructs on a terminal screen in a
controlled manner, and dynamically changing the structure of a graphic construct
being displayed.

The three dynamic operators that accomplish animation are:

• increment

• synchronize

• alter

INCREMENT

The increment operator allows a single positional or mapping element in the
terminal memory to be changed some number of times with a specified real-time
delay between changes.

increment (node_no no times delay template)

where node no uniquely identifies the element to be changed, no times is the
number of times the incrementation is to be performed, delay is the real-time
the terminal is to wait between successive increments, and template is a
complete graphic element of the same type as the element specified by node no,
whose arguments are the increments to each of the parameters in the element
being incremented.

The increment operator is defined to enable asynchronous operation with all
other activities at the graphics terminal, including other increments. This
allows several graphic constructs to move independently of each other. Note
that this incrementation allows only straight-line trajectories to be specified
in each occurrence of an increment operator. Curves may be realized by using
several separate increment operators.

SYNCHRONIZE

Because several constructs may be moving simu~~aneously, movements must be
coordinated to allow events to be properly sequenced (e.g., balls bouncing off
each other). The synchronize primitive simply commands the graphics terminal to
complete all operations received prior to the synchronize operator before
beginning any subsequently received operators.

synchronize (no arguments)

3-13 AS40-01

ALTER

The alter operator effects changes in the structure of graphic constructs
already in terminal memory by allowing list elements to be replaced.

alter (list_id index new_element)

where list_id is the node value of a list already resident in terminal memory,
index is the index of the element of the list to be replaced, and new element is
the node value of the new element, which must also be resident In terminal
memory. (The indicated list is updated both in the WGS in Multics, and in the
terminal-resident structure.)

Graphic Input and User Interaction

There are three operators for graphic interaction with users:

• query

• control

• pause

QUERY

It is often desirable to obtain input from a user that is more easily
expressible with a graphic input device (such as a light pen) than by keyboard
characters. There are three general classes of graphic input built into the
MGS:

1. where (coordinate position) - the user indicates one position in the
stationary x,y,z coordinate system.

2. which (structure specification) - the user indicates a particular
subtree of a displayed graphic structure.

3. what (new structure) - the user creates a new graphic structure at the
terminal and returns it to Multics.

query (input type device_type)

where input type is a code indicating which of the three inputs are desired (1
is "where"~ 2 is "which", and 3 is "what"), and device type indicates the
graphic input device from which the input is desired. (It may also indicate
that the user is to be given a choice of input devices.)

CONTROL

There is also a fairly stylized form of graphic input that allows the user
to experiment with the current displayed structure to see what it looks like
before reflecting a change to the Multics system. This kind of operation is
implemented by use of the "control" dynamic operator.

control (device_type node no)

3-14 AS40-01

where device type indicates the graphic input device from which the input is
desired (it may also indicate that the user is to be given a choice of input
devices), and node no is the unique ID of a positional modal or mapping element
in the terminal memory whose value is to be placed under control of the user via
some input device.

A typical use of this facility is to place the endpoint of a line or the
starting position of a construct under control of a light pen, to allow the user
to move it around, or to place the orientation (rotation) of a scene under
control of a trackball. Upon completion of a control interaction, the structure
resident in the system is updated to mirror the changes made.

PAUSE

Occasionally it is desirable to allow a step by step progression through a
sequence of displays at a user's own speed. If there is no new computation
required of the Multics system between steps, there is no reason for an
interaction with it between steps. The pause operation causes the terminal to
delay processing of subsequently received graphic data until it receives
indication that the user is ready to proceed. In this way, all graphic
operations for such a session can be preloaded into the terminal and operated
with a minimum of Multics interaction.

pause (no arguments)

Terminal Control

There are three housekeeping functions that need to be performed when
dealing with graphics terminals:

• screen control

• terminal memory management

• communications
this section)

SCREEN CONTROL

control and error handling (described later in

All graphics currently displayed on the screen can be erased, and graphic
structures resident in the terminal's memory selectively displayed.

Erase

To erase graphics displays from the screen, use the erase operator:

erase (no arguments)

3-15 AS40-01

I

I

I

Display

To display graphic structures selected from terminal memory use the display
operator:

display (node_no)

where node no is the unique ID of the top level of a graphic structure to be
displayed. The structure must already be in the terminal memory.

MEMORY MANAGEMENT

New graphic structures can be loaded into terminal memory and structures
that are no longer needed can be deleted. Loading is accomplished implicitly by
simply using the graphic compiler subroutine to send a new graphic structure to
the terminal. - -

Delete

The delete operator allows individual
freeing space in terminal memory:

structures to be deleted, presumably

delete (node_no)

where node no is the
be deleted. If it
deleted.

Reference

unique ID of the top-level list of
is zero, all graphic structures

a graphic structure to
in terminal memory are

The reference operator is a special operator generated only by the graphic
I/O module when communicating with dynamic graphic devices. It occurs within
graphic structures, and signifies a reoccurrence, in the structure, of a piece
of graphic structure that has already been sent to the terminal and is therefore
already in the terminal memory. The reference operator occurs in place of the
duplicate structure, which is not sent to the terminal. This not only optimizes
transmission time, but allows the programming of the graphic terminal to make a
direct shared reference to the previously-loaded piece of graphic structure
instead of having to interpret the same structure twice and replacing the old
structure with the "new" identical structure.

reference (node_no)

where node no is the unique ID of the piece of the graphic structure that occurs
again at tne given point.

Multics Standard Graphics Code

MSGC allows graphic structures and graphic operators to be represented as
character strings suitable for transmission over a Multics I/O switch. It
allows the representation of structural information useful to intelligent
terminals and redundant information necessary to display shared substructures on
nonintelligent terminals.

3-16 AS40-01

MSGC is terminal-independent in two senses: it contains no specification
of any particular terminal type, and it contains all information necessary to
produce graphics on all supported terminals.

The MSGC for a graphic structure is produced by a leftmost tree walk of the
structure in the current WGS. Terminal graphic elements are represented simply
as a single-ASCII-character element code followed by argument values coded into
ASCII characters in standard formats:

element_code arg1 arg2 ... arg~

Levels of list structure are represented by nestings of paired parentheses,
and include a list/array indicator and a node value followed by the list
elements, in order. The node value is retained to aid intelligent terminals in
constructing their internal representations of graphic structures and to allow
identification of shared substructures. Terminal elements, as well as
non-terminal elements, are considered levels of list structure, and are
therefore bounded by parentheses and contain a node value. Terminal elements
that are not arrays contain an indicator that identifies them as lists. The
specification of a (non-array) terminal element as transmitted is:

arg~)

The specification of an array terminal element as transmitted is:

(array indicator node no element codea arg~ ... argna element_codeb
arg~ ... argnb ~ ..)

The specification of a list non-terminal element as transmitted is:

(list_indicator node no subelem1 subelem2 ... subelem~)

where subelem represents subsidiary elements, each surrounded by its own
parentheses and containing its own node values.

Other graphic operations (animation, input, etc.) are also represented by
a single-ASCII-character operator code followed by arguments:

operator code arg1 arg2 ... arg~

MSGC is designed around the printing ASCII characters (from 40 to 177
octal) to prevent confusion with the ASCII control characters (0 to 37 octal).
Element and operator codes occupy the ASCII characters from 40 to 77 octal.
Argument values are encoded in the ASCII characters from 100 to 177 octal, with
the six low-order bits in each character representing data values.

3-17 AS40-01

unused

permissible
range
for

operator
arguments

r

Table 3-1. ASCII Character Set on Multics Graphic System

0 1 2 3 4 5 6

000 (NUL)

010 BS BT NL VT NP CR RRS

020 DC1*

030

pause reference increment
040 space ! " II $ % &

node-begin node-end control display ouery erase synchronize
050 () * + -,

setposition setpoint vector shift point scaling rotation
060 0 1 2 3 4 5 6

intensity line-type blinking sensitivity color symbol text
070 8 9 : ; < = >

100 @ A B C D E F

110 H I J K L H N

120 P Q R S T U V

130 X y Z [\] A

140 a I:- c d e f

i50 h .L J k 1 m n

160 P q r s t u v

170 x y z { I } -I

*in conjunction with other characters, is used to signal beginning and end of graphic
transmissions to intelligent terminals.

3-18 AS40-01

7

BEL

PRoS

alter

I
,

delete
/

extent
7

datablock
?

G

0

w

-

g

0

w

PAD

The following four figures depict the formats used for transmission of
argument values in MSGC.

The single-precision integer (SPI) format is used for transmission of small
nonnegative values from 0 to 63.

One Character

bits 023 8

•
6-bit unsigned binary integer

Figure 3-3. Single-Precision Integer Format

The double-precision integer (DPI) format is used for signed integers
ranging from -2048 to 2047.

bits

Two Characters

Char

023 8

o 0 11 1 , ,

•
high-order 6-bits

•

Char 2

o 2 3 8

o 0 11 1 , ,

•
low-order 6-bits

12-bit two's complement binary integer

Figure 3-4. Double-Precision Integer Format

3-19 AS40-01

The scaled fixed-point (SCL) format is used for numbers with fractional
parts. It has the same range as the DPI format, but is accurate to fractional
parts of 1/64.

Three

bits 0

0

Characters

2

0 11

Char

12
8

• high-order 6-bits

•

0

0

Char 2

2 ~ 8

0 11 1

• low-order 6-bits

12-bit two's complement binary integer

•

0 1 2

0 01

Char 3

1

3 8

•
6-bit unsigned
binary fraction
(implicit binary
point to left of

first bit)

18-bit two's complement fixed-point real binary value

Figure 3-5. Scaled Fixed-Point Format

The unique identifier (UID) format is used to transmit 18-bit node numbers.

Three

bits 0

0

Characters

2

0 11

Char

3 8

I

• high-order 6-bits

0

0 0

Char 2

2 3

11 1

10 "h~+
IU-U.LlI

8

•
middle 6-bits

• unsigne d cin.ar:,-"

Figure 3-6. Unique Identifier Format

3-20

Char 3

0 1 2 3 8

0 01 I
•

low-order 6-bits

AS40-01

I
I

I

I
I

Following are the character codes and argument list formats for the
operators in MSGC. (Refer to "Terminal Graphic Elements," "Dynamic Graphic
Operations," and Table 3-1 detailed earlier in this section for descriptions of
the following operators.)

POSITIONAL OPERATORS

setposition
setpoint
vector
shift
point

("0")
("1 ,,)
("2")
("3")
("4")

}
xpos ypos zpos
(SCL) (SCL) (SCL)

where xpos, ypos, and zpos are the coordinates of the desired
positioning operation.

MODAL OPERATORS

intensity ("8") value
(SPI)

where value is a number from 0 (invisible) to 7 (fully visible).

line type ("9") value
- (SPI)

where value is one of the following:

o solid line
1 dashed line
2 dotted line
3 dashed-dotted line
4 long-dashed line
5-63 reserved for expansion

blink/steady (":") value
(SPI)

where value is either 0 (steady), or 1 (blinking).

sensitivity (";") value
(SPI)

wrJ.ere ·'y'"alU8 is eithsi 0 (inse:lsitive), or (se:r:sitive).

color (,,<,,) red intensity green intensity blue intensity
- (SPI) TSPI) -(SPI)

where the arguments are the intensities of the three primary additive
colors, with 0 representing no intensity and 63 representing full
intensity.

3-21 AS40-01

I

MAPPING OPERATORS

scale ("5") xscale yscale zscale
(SCL) (SCL) (SCL)

where xscale; yscale; and zscale are the scale factors along the three
stationary coordinate axes.

rotate ("6") xangle yangle zangle
(DPI) (DPI) (DPI)

where xangle, yangle, and zangle are the numbers of degrees of
rotation around each of the three stationary axes.

MISCELLANEOUS OPERATORS

text (,,>,,) alignment length string
(SPI) (DPI) (ASCII)

where:

1 • alignment
is a number from 1 to 9 that specifies the text string is
to be aligned in one of nine ways relative to the current
screen position, as follows:

2. length

3· string

Alignment
Portion of String at
Current Screen Position

1 · upper left
2 · upper center
3 · upper right
4 · middle left
5 dead center
6 · middle right
7 · lower left
8 · lower center
9 lower right

is the number of characters in the text string.

~o a character string.

datablock ("?") length string
(DPI) (ASCII)

1 • length

2. string

is the number of data bits to follow.

is a character string with data bits packed six to a
character in the low-order bits.

3-22 AS40-01

STRUCTURAL OPERATORS

node_begin ("(") struc type node no
(SPI)- (UIDj

where:

1 . struc type
is either 0 (list), or 1 (array).

2. node no
is the unique ID associated with the list or array.

node end (") II) (no arguments)

symbol ("=") length name
(DPI) (ASC II)

where length and name are the number of characters and the text of the
symbol name associated with the immediately following graphic
structure.

reference ("%") node no
(UIDj

where node no is the unique ID of a node already resident in terminal
memory that is used in successive references to shared substructures.
Users wishing to construct and output their own graphic code should
refrain from using this operator, as it will limit their graphic code
to intelligent terminals. This operator is normally inserted into the
graphic switch at run time by the graphic I/O module.

ANIMATION OPERATORS

increment ("&") node no times dela;y template_node
(UIDj (DPI) (SCL)

where:

1 . no de no

2. times

3· delay

is the unique ID of a node already resident in the
terminal memory that is to be incremented.

is the number of times the increment is to be performed.

is the amount of time, in seconds, that the terminal is to
delay before each increment.

4. template_node
is a complete graphic element containing the relative
increment to be performed, and including the element code
in its own format.

3-23 AS40-01

I

synchronize (".") (no arguments)

alter ("'") node no index new node
(Uln) (DPI) (UID)

where:

1 . node no
is the unique ID of the list or array node being altered.

2. index
is the index in the list of the element to be replaced.

3. new node
is the unique ID of the new node to be inserted in the
list.

INPUT AND USER INTERACTION OPERATORS

query (",") input t;ype input device
(SPI) (SPI)

where:

1 • input type
- is the type of graphic input desired:

1 where
2 which
3 what

2. input_device
is the graphic input device to be used to generate the
indicated input:

o terminal processor or program
1 keyboard
2 mouse
3 joystick
4 tablet and pen
5 light pen
6 trackball
7-62 reserved for expansion
63 any device

control ("*") node no
(UID)

where node no is the unique ID of a node to be controlled by the
terminal or-user.

pause ("$") (no arguments)

3-24 AS40-01

TERMINAL CONTROL OPERATORS

erase ("_") (no arguments)

display ("+") node no
(UID;

where node no is the unique ID of the top-level list node to be displayed.

delete (!!/") node no
(UID;

where node no is the unique ID of a node which is resident in the
terminal memory and is to be deleted. If node no is zero, all nodes
are deleted.

TERMINAL-INTERFACING CONSIDERATIONS

One of the features of the MGS is its ability to accept new types of
graphics terminals with a minimum of coding. In most cases, the user need only
specify the special characteristics of the terminal in a GDT and code a
graphic-support procedure (GSP) to perform any code conversion necessary. Then
any existing program or graphic file (within the capabilities of the graphic
device) can be used and comparable resul ts obtained on the user I s own device.
Neither the GDT nor the GSP need be installed as part of the graphics system in
order to be used in conjunction with it. This section describes considerations
pertaining to the specification and creation of GDTs and GSPs for new terminal
types.

Specification of the Virtual Graphic Terminal

The terminal-independent portion of the MGS is designed to interface with
an ideal device known as the VGT. This terminal possesses all the properties
and functionality necessary to perform any valid operation that is defined in
the graphics system. Although it corresponds to no one real-world device, it
serves to define a standard interface that all graphics terminals on Multics
must simulate to the greatest possible degree. Actually, two slightly different
configurations of the VGT are defined. The first defines the VGT that may be
used for static (e.g., storage-tube) graphics. The second is a superset of the
first with abilities to perform dynamic or "intelligent" graphics (animation,
control of elements by the terminal, etc.).

8/81 3-25 AS40-01A

The VGT is the "virtual hardware embodiment" of a processor that can operate
directly on graphic structures as defined by the MGS. It is responsible for
implementing every graphic element exactly as defined in the graphic structure
definition, including their various defaul ts. For example, the VGT normally
maintains the state of modes and mappings in their defaul t state and, in the
course of normal operation, always returns these modes and mappings to their
default states after receiving and processing each complete graphic structure.

The VGT uses a system of right-handed cartesian coordinates as its screen
definition. The origin point (0,0,0) lies at the center of the screen. The
screen area is regarded as three-dimensional, extending from -512 to 511 on each
axis. The entire area of the screen is defined as (1024x1024x1024) points. The
relation between points and any measurements of real distance (such as millimeters)
is not defined. (In general, this relationship is different for different devices
seeking to simulate the VGT.) As the user is facing the screen, the positive
x-axis extends to the right, the positive y-axis extends upward, and the positive
z-axis "comes out of the screen."

8/81 3-25. 1 AS40-01A

The VGT possesses a hardware character generator that is capable of
generating all printable ASCII characters. The dimensions of the character
produced by the character generator are undefined. The terminal is able to
align the string in relation to the current graphic position by any of nine
points on the string. (Refer to "Miscellaneous Graphic Elements" previously
described in this section.)

The VGT has a mechanism by wnlcn modes and mappings may be llstacked ll as ""Gne
display mechanism searches deeper into a graphic substructure. (The concept of
stacked modes and mappings is explained more fully in the descriptions of modal
and mapping elements earlier in this section.) It can apply mode and mapping
transformations to positional effectors, at display time, to produce new values
for these effectors. (The dynamic VGT must not perform these transformations at
loading time; ideally, they should be performed by the display hardware.)

The VGT accepts and processes MSGC directly. Because of the format of
positional effectors in MSGC, the terminal can handle references to positions
outside of the (1024x1024x1024) screen area, to the range of (4096x4096x4096).
However, while a picture is being displayed, only the portion within the screen
boundaries is visible. The result of any attempt to use an area larger than the
maximum (4096x4096x4096) area is undefined.

The VGT for static graphics refuses certain graphic effectors. The
"refused" effectors are:

• reference

• increment

• alter

• control

If these effectors occur in the MSGC being sent to a static VGT, they have
no effect other than that of an error being returned to the user.

The VGT for static graphics also ignores certain other graphic effectors.
The "ignored" effectors are:

• synchronize

• symbol

• data

• delete

• display

NOTE: The transmission of a graphic structure to a dynamic VGT simply
"loads" the structure until the "display" effector is received for
that structure, whereas the act of transmitting a graphic structure
to a static VGT is interpreted as an implicit command to display it.

3-26 AS40-01

The dynamic, or intelligent VGT has sufficient processor power to manage
its own memory, decode MSGC, and generate meaningful status messages, including
error messages, if necessary. Its display mechanism is able to perform calls to
display subroutines, (corresponding to possibly shared graphic substructures) to
any depth. In addition to the required stack for modes and mappings, it
maintains a stack of return addresses to be used in conjunction with these
display subroutine calls. The terminal possesses a means of obtaining the
contents of this stack on demand, and of analyzing the sequence of subroutine
calls which has brought it to any point in the graphic structure, if necessary.
It maintains in its own memory an isomorphic (identically-structured)
representation of all structures sent to it from the WGS. Nonterminal elements
are represented as a list of display subroutine calls, and terminal elements are
represented by whatever display commands cause that type of element to be
displayed. The terminal creates and maintains a list that correlates addresses
of display subroutines in its own memory with the node values of the
substructures they represent. Operations on the contents of each piece of
substructure are performed in a manner to ensure that the value and structural
location of any effector is the same in both terminal memory and the WGS at any
point in time. Equal value ensures, for example, that the dynamic
incrementation of a vector that is under the influence of some rotation produces
an incrementation which itself is rotated. If the rotation were done at load
time, and the run-time rotation were discarded, the incrementation would be
applied to this different-valued vector. The result would be that a
retransmission of the contents of the WGS at this time would actually result in
a different picture (the correct picture) being displayed. Similar structural
location of effectors ensures that operations such as the alter operation and
the "which" graphic input operation (previously described in this section) work
correctly.

Graphic Device Table (GDT)

The GDT for a graphic terminal is basically a description of the
capabilities of that particular device in terms of the canabilities of the
defined VGT. Each effector (graphic element or action) that is defined for the
VGT is listed in the GDT, and a description is given specifying how this
particular effector is to be handled by this device. Several options are
available:

1. The MSGC representation of a particular effector is comprehensible to
the terminal, and should be transmitted directly to the terminal with
no change. This option is useful in the case of an intelligent
graphics device, which may be programmed to understand and decode MSGC
directly.

2. The action or element described by this effector is totally
unimplementable (or is presently unimplemented) on the terminal, and
an error message should inform the user of that fact. This option
covers, for example, attempts to perform dynamic movement on
storage-tube screens, or requests for graphic input on devices for
which no input handler has been written in the GSP.

3. The action or element described by this effector is unimplementable or
unimplemented by this device, but may be ignored, since its presence
is not entirely necessary to produce an understandable and useful
image on the screen. For example, this course may be chosen to
discard color effectors from the MSGC sent to a monochromatic
terminal, or blinking effectors from the MSGC sent to a plotter. (The
availability of this option to users of intelligent devices is
somewhat restricted.) Because of the requirements for structural
isomorphism, effectors cannot be deleted from the stream sent to an
intelligent terminal. Rather, they should be forwarded, and the
terminal-resident software should recognize and replace them with
no-ops, or some other sort of placeholder in the display list.

3-27 AS40-01

4. The effector must be translated from MSGC to some terminal-dependent
representation before transmittal. This option allows the creator of
a GDT to specify that a GSP entry point be called during the
code-transmission phase of processing, at every occurrence of the
effector specified. This entry point can do code conversion and any
other housekeeping functions necessary to drive the terminal. This is
the most exercised option in GDTs which deal with static devices.

5. The effector (for this case, mode and mapping effectors exclusively)
cannot be handled by the graphics hardware (or the terminal-resident
software) in the environment of "stacked modes and mappings," but must
be performed in software. This option causes the entire substructure
inferior to the list containing the current effector to be dynamically
transformed from a "stacked" list to a graphic array. This operation
resolves a graphic list structure into a one-level equivalent
structure, with inferior symbol effectors removed, and with modes and
mappings explicitly applied and reverted at points where the
"hardware" of the VGT would have specified such application and
implicit reversion. This frees the GSP from having to maintain a
stacked environment for application and reversion of modes and
mappings which have to be applied to positional effectors.

The contents of a GDT may also include the name of the GSP (if any is
required), the size of the hardware characters generated by that terminal, a
default action to be performed for effectors for which no action is explicitly
specified, and other information.

FORMAT OF A GDT

A GDT consists of many pairs, each containing one keyword and one or more
values to be associated with the keyword. The "major" keywords specify things
about the device proper and about the entire GDT. The "minor" keywords specify
values for graphic elements recognized by the MGS. These values represent
actions to be taken by the graphic I/O module when it encounters the elements
described by the keyword. Several actions are possible and provided.

Major Keywords

Character size

Default

end

specifies the character parameters of the terminal as a service to
users who may wish to write character-size dependent code (such as a
flow-charting program). It must be followed by three values, each
representing a dimension of the character. The values, in order,
represent the height, width, and spacing of the characters in
points. These numbers are interpreted as floating values. If this
keyword is omitted, the values all are -1.

sets the global default action for all minor keywords not
specifically mentioned in the body of the GDT. If this keyword is
omitted, the global default action is "pass". With the exception of
licall H , any value described below (follow..Lflg the keywords
descriptions) is acceptable.

must appear at the end of the text of a GDT.

3-28 AS40-01

Message size

Name

specifies the number of characters that may not be exceeded in one
transmission to the terminal. This is useful for avoiding input
buffer overruns when using intelligent terminals. On intelligent
terminals, each message is followed by the request for status
character (ASCII 035), and transmission does not continue until the
status requested has been received. If this keyword is omitted, it
is assumed that the terminal can handle entire graphic messages.

specifies the name of the graphic device for which the GDT is
applicable. It may be followed by any string of up to 32 characters
in length. This keyword must be supplied.

Points per inch
-specifies the defined number of VGT points per inch on this display.

This value is provided for the use of device-dependent software, and
reliance on the significance of this value by users will adversely
affect the terminal-independence of their applications. This
keyword must be followed by a value representing a floating number.
If this keyword is omitted, the value is -1.

Procedure

Type

specifies the segment name containing the GSP. This is the
procedure whose entries are specified in uses of the "call" value.
If this keyword is omitted, the default segment name is constructed
by adding the suffix " util " to the value of the "Name" keyword.

specifies which generic type of graphics terminal is being handled.
The only permissible values for this keyword are "dynamic" and
"static", signifying a refreshed, intelligent terminal, and a
storage tube or refreshed unintelligent terminal, respectively.
This keyword must be supplied.

Minor Keywords

Each minor keyword represents an allowable graphic effector within the MGS.
The keywords used to describe the effectors are:

alter increment scaling
blinking intensity sensitivity
clipping line type setpoint -color node begin setposition -control node end shift
data pause symbol
delete point synchronize
rI; "'-''''' 1 ..,TT
- ~~.....L..t.A..J

,...,,, C _TT

':!.u.v.LJ text
erase rotation vector

In addition to the above keywords, there are several that control special
actions of the graphic I/O module. These are:

3-29 AS40-01

I

I

close
specifies the action to be taken by the graphic I/O module when the
graphic switch using the specified GDT is closed. Only the call
option is valid for this keyword. The entry point is only called
once per target-switch, regardless of how many switches using the
GDT are closed. (The target-switch is the switch "closer" to the
physical device, i.e., "tty_i/o" under normal usage.)

graphic mode

input

modes

open

specifies the action to be taken by the graphic
switches the terminal into graphic mode (whenever
data after having processed nongraphic data).
valid for this keyword are "call" and "ignore."

I/O module before it
it encounters graphic
The only two values

specifies the action to be taken by the graphic I/O module when it
encounters a request for graphic input. If the call option is specified
for this keyword, the actual reading of the data and its translation
into MSGC is assumed to be done in the entry called. (Note the
definition of the second argument of the entry, "input string", under
"Graphic-Support Procedures" below, and its application to the input
keyword.)

specifies the action to be taken by the graphic I/O module when it
is requested to change the I/O modes on a graphic I/O switch. This
feature enables GSPs to define their own set of I/O modes that they
can use to identify and properly compensate for subtle differences
between mostly identical devices of the same type. (See "Modes in
Graphic-Support Procedures," below.) The only two values valid for
this keyword are "call" and "ignore."

specifies the action to be taken by the graphic I/O module when it
is notified of the GDT to be used. Only the call option is valid
for this keyword. The entry point is only called once per target-switch,
regardless of the number of switches subsequently using the GDT.

reference
specifies the action to be taken by the graphic I/O module when it
inserts a reference effector in the output buffer. Only the call
option is valid for this keyword. The entry point called must not
return any characters.

text mode
specifies the action to be taken by the graphic I/O module before it
switches the terminal into nongraphic mode (whenever it encounters
nongraphic data after having processed graphic data). The only two
values valid for this keyword are "call" and "ignore."

Values

8/81

call <entryname>
specifies that upon encountering the effector, the graphic I/O module
is to call the specified entry in the GSP so that it can perform
translation or screen position bookkeeping. The syntax of the actual
call is described later in this section under "Graphic-Support
Procedures."

3-30 As40-01A

error

expand

flush

ignore

pass

specifies that the 1/0 module is to return the error code
"graphic error table $unimplemented effector" to the user. This is
useful for flagging attempts to perform dynamic operations on a static
terminal.

specifies that the effector cannot be handled by the terminal in a
stacked-list-structure manner, and that the list containing the effector
must be forcibly expanded into an array. This operation may cause
the graphic 1/0 module to backtrack to the beginning of the enclosing
list. If the portion of code in which the effector is found is
already in array form (or has been previously expanded by the 1/0
module into an array) this value has no effect.

specifies that the DIM is to dispatch all its buffered output to the
terminal before considering this effector. This is useful for
performing the query operation in a correct manner, for example,
when one must ensure that the graphic structure that is to be used
in the query is actually already loaded and displayed, and not waiting
in the transmission buffer.

specifies that the effector should be discarded and not inserted
into the final out put switch (e. g. , to ignore dot ted-line-type effectors
at terminals without dotted-line capability).

specifies that nothing is to be done with the effector other than
passing it directly to the terminal. It is effectively a no-op, and
may be mixed with other values for clarity purposes.

Knowledge of the order in which these actions are checked for and performed
by the graphic 1/0 module may be helpful to create desirable resul ts. This
order is as follows:

1- expand
2. flush
3· ignore
4. call
5. error
6. pass

Graphic-Support Procedures

Graphic-Support Procedures (GSPs) support graphic devices whose limited (or I
~~:pVIGeTt:n~~~~e~~~e~o~~5c ~~;:~ti;~ncI~l f~f~~~~et,h:~u~~~~~:r~~i~~~~~estpe~~m~!~~!~~~
for the missing local intelligence. The GSP may perform the entire task of
simulating the VGT in the case of nonintelligent terminals, or it may simply
supply occasional assistance to an intelligent device that cannot itself perform
a certain few defined functions. In either case, the combination of the set of
functions performed by the GSP and those performed by the terminal must comprise
a complete and correct simulation of the VGT, including initial conditions and
defaul ts. For example, the GSP for a device with no local intelligence must
initialize the default values for all modes and mappings prior to every top-level
graphic structure received (see "Sample Table for a Static Terminal" below for
one means of doing this).

8/81 3-31 AS40-01A

I GSPs contain a set of entry points that are called at the times specified
in the GDT. Each entry point can perform the housekeeping or code conversion
that is necessary to implement the operation or element that causes it to be
invoked. The invocation of entry points is performed by the graphic dim subroutine
described in Section 5 under the direction of the GDT. The exact conventions of
the call, the number of arguments, and their values are explained in the compile gdt
command described in Section 4. -

GSPs rarely perform act ual I/O. Characters that are produced by code
conversion, etc., are returned to the graphic_dim_ as a returned value in one of
the arguments to the call. At times, some I/O operation (e.g., attachment of a

I tape for an offline plotter) may be in order, but this is the exception rather
than the rule. At times when this type of operation is likely to occur, the GSP
is supplied with an I/O switch name that may be used in the operation.

*

GSPs may keep any information necessary to describe the state of the terminal.
Notification will always be given (if specified in the GDT) when the terminal
changes state due to completion of graphics, unexpected terminal I/O, use of the
"quit" mechanism, and so on.

The graphic I/O module calls the GSP for a particular effector when the
"call <entryname>" value is specified in the GDT. The segment name of the GSP
is taken from the name given with the "Procedure" keyword of the GDT, and the
entryname is that specified by the "call" value. The entry is called with six
arguments, in the format shown below:

declare <segname>$<entryname> entry (fixed bin, char(*), char(*),
fixed bin(21), pointer, fixed bin(35));

call <segname>$<entryname> (operator value, input_string, output string,
chars_out, state_ptr, code); -

where:

1. operator_value (Input)
is the decimal value of the internal representation of the character
in MSGC which represents the operator.

A list of these values, including values for the special minor keywords
which are not graphic operators follows:

36 pause 47 delete 58 blinking
37 reference 48 setposition 59 sensitivity
38 increment 49 set point 60 color
39 alter 50 vector 61 symbol
40 node _begin 51 shift 62 text
41 node end 52 point 63 data
42 control 53 scaling 64 input
43 display 54 rotation 65 graphic mode
44 query 55 clipping 66 text mode
45 erase 56 intensity 68 open
46 synchronize 57 line type 69 close -

70 modes

2. Input string (Input)

8/81

- has various meanings depending on operator_value:

For operator value <= 63, input string is the operator and all its
parameters (in MSGC) being acted-upon.

3-32 AS40-01A

For operator value = 70 (modes), it is a string representing a set
of 1/0 modes:-

For all other values of operator value, it is the name of the 1/0
swi tch on which the input or out put is to be performed. This is not
the switch leading into the graphic 1/0 module (such as graphic output
under normal use), but the switch closer to the physical -device
(such as tty_i/o under normal use).

3. output string (Output)
-is the entire unused portion of the graphic 1/0 module I s output

buffer provided for the characters out put by the GSP. Since this
usually represents the better portion of a segment, it is important
that support procedures reference this string with the PL/I "substr"
pseudo-variable.

4. chars out (Output)
is the number of significant characters which the GSP is returning
to the graphic 1/0 module.

5. state_ptr (Input/Output)

6. code

is a pointer that is saved by the graphic 1/0 module and presented
to the GSP on each call. The GSP can use this pointer to identify
and differentiate between various allocations of state variables that
may be active in the same process (e.g., if the process is running
two graphic devices of the same type). Typically, the GSP allocates
and initializes a generation of state variables when called at its
open entry, and sets state ptr so that they may be located on subsequent
calls. -

(Output)
is a standard error code.

MODES IN GRAPHIC-SUPPORT PROCEDURES

The creator of a graphic-support procedure may define a set of 1/0 modes
that are to be managed by the GSP. This feature enables a GSP to identify and
properly compensate for subtle differences between similar devices of the same
type (e.g., special hardware options that implement additional modes or different
paper sizes for a plotter).

When the graphic 1/0 module is requested to change the 1/0 modes of a
graphic 1/0 switch, it first attempts to pass the entire string of modes to its
target switch. If the target switch accepts them, it returns. If the target
switch refuses them, the graphic 1/0 module checks to see if the GDT has specified
an entrypoint in the GSP that accepts 1/0 modes. If one is specified, the
graphic 1/0 module breaks up the mode string into separate single mode specifications.
Then, after having saved the current 1/0 modes of both the target switch and the
GSP, it feeds each of the new modes (in turn) first to the target swi tch, and
then (if refused) to the GSP. If both refuse the mode, the previous modes of
the target switch and the GSP are restored. Otherwise, the operation is successful.

8/81 3-33 AS40-01A

*

I

The GSP entrypoint that implements the modes operation must be able to
accept an arbitrary string of modes of the form:

mode1,mode2!mode3 ... modeN

which may also be the null string. If the GSP does not recognize a particular
I/O mode, or if some other error condition is encountered, an appropriate error
code must be returned by the GSP. In any event, the GSP must return (in the
output string argument) a similar string representing the state of the modes
after'completion of the operation, and must set the chars out argument to the
appropriate value.

Since each I/O mode
presented to the GSP, care
defining mode specifiers
modules.

EXAMPLES OF GDTS

is presented to the target switch before it is
should be taken by the creator of a GSP to avoid

that conflict with I/O modes used by system I/O

Following are three examples of proper GDTs, for devices of differing
capabilities.

The first is an example of a GDT for a typical static graphics terminal.
The terminal has no intelligence and no remote memory; therefore the structuring
information in MSGC is not useful, and the GDT creator elects to force all
graphic data to be arrays rather than lists by expanding on all node begin
effectors. (Because of this, his GSP need not handle application of mappings,
handling of zero-intensity, accounting for structural levels, and implicit
reversions of other modes due to structuring of graphic objects.) Code
conversion is necessary to convert positional effectors in MSGC into the format
understood by the terminal. The device supports some graphic input, and
possesses certain optional capabilities which the JDT creator decides to
describe in terms of modes.

3-34 AS40-01

Sample Table for a Static Terminal

Name:

Type:
Procedure:

Character size:
Points_per_inch:

1* Effector

setposition:
setpoint:
vector:
shift:
point:

scaling:
rotation:
clipping:

intensity:
line type:
blinking:
sensitivity:
color:

symbol:
text:
data:

Sample_Static;

static;
static device_n;

16, 13, 3;
100.0;

Action *1

call position;
call position;
call position;
call position;
call position;

error;
error;
error;

ignore;
call line_type;
ignore;
ignore;
ignore;

ignore;
call text;
ignore;

flush, call pause
error;
error;
error;

1* do code conversions *1

1* should never appear *1
1* in arrays *1

1* only one intensity on this device *1
1* set proper line type *1
1* can't blink *1
1* no light pen *1
1* no color on this device *1

1* unimportant to static device *1
1* put out hardware character string *1

1* put out buffer and wait for user *1
1* should never occur *1

pause~

reference:
increment:
alter:
node_begin: expand, call init_state; 1* make arrays out of

everything *1
node end:
control:
display:
query:
erase:
synchronize:
delete:

input:

text mode:
graphic_mode:

open:
close:
modes:

8/81

ignore;
error;
ignore;
call query;
call erase;
flush;
ignore;

call input;

call mode switch;
call mode=switch;

call open;
call close;
call changemode;

1* prepare for graphic input *1

1* process graphic input *1

i* prep terminal for *1
/* proper mode */

/* create state variables */

3-35 AS40-01A

I

I

..

The second is an example of a GDT for a dynamic graphics terminal with
limited intelligence. The terminal has remote memory and some capabilities for
display subroutines; however, it has no mapping hardware and insufficient memory
to properly simulate such hardware. Additionally, its display subroutine
capabilities do not include storing and reloading the state of any modes except
sensitivity, when entering and exiting display subroutines. For this reason,
the GDT creator specifies expansion of all lists that contain any mappings or
any other modes. Most other effectors are passed directly to the terminal, even
including those that represent unimplemented modes or struct ural items (e. g. ,
color). This is done to preserve the ordinality of elements within lists, so
that operations such as "alter" and "which input" may be performed properly.
(The terminal programming is assumed to use some sort of placeholding no-op in
terminal memory to represent the unimplemented effectors.)

Sample Table for a Semi-intelligent Terminal

Name:

Type:
Procedure:
Message size:
Default:

1* Effector

setposition:
setpoint:
vector:
shift:
point:

scaling~
rotation:
clipping:

intensity:
line type:
blinking:
sensitivity:
color:

symbol:
text:
data:

pause:
reference:
increment:
alter:
node begin:
node-end:
control:
display:
query:
erase:
synchronize:
delete:

8/81

Semi_Intelligent;

dynamic;
dynamic device_n;
300;
pass;

76.35;

Action *1

pass;
pass;
pass;
pass;
pass;

expand~ error
expand, error
expand, error

expand, pass;
expand, pass;
expand, pass;
pass;
pass;

pass;
pass;
pass;

pass;
pass;
pass;
pass;
pass;
pass;
flush, pass;
pass;
flush, pass;
pass;
pass;
pass;

1* terminal understands MSGC *1

1* once exp8nded 3 *1
1* should never appear *1
1* in arrays *1

1* no color on this device *1

3-36 AS40-01A

input:

text mode:
graphic_mode:

open:
close:
modes:

end;

pass;

call mode switch;
call mode=switch;

call open;
call close;
ignore;

1* prep terminal for *1
1* proper mode *1

1* create state variables *1

The third is an example of a GDT for a device with the capability of completely
simulating the Virtual Graphics Terminal. It possesses either the hardware to
perform VGT operations directly and in a structured manner, or has been programmed
to simulate the proper operation in software.

Sample Table for a VGT Simulator

Name:

Type:

Character size:
Points_per_inch:

Default:

end;

8/81

Intelligent_device;

dynamic;

20, 12, 2.4;
121.45;

pass;

3-37 AS40-01A

Terminal-Resident Programming

In order to use an intelligent graphics device with the
programming must be performed in the device itself. The apparent
intelligence of a device depends on how closely the combination of
hardware and terminal-resident software approximates the operation of
The MGS does not differentiate between the abilities of the hardware

MGS, some
level of
terminal
the VGT.

and the
resident software of an intelligent terminal, as long as the inputs to the
"black-box" are well-defined in the GDT, and the output on the screen is a
reasonable representation of the graphic structure that was sent.

A terminal possessing a refreshable screen and a programmable display
processor does not necessarily always qualify for representation as an
intelligent terminal. The most important requirement of a dynamic terminal is
that it have (or be able to simulate having) the ability to perform display
subroutine calls. Once the ability to represent references to graphic
substructures as display subroutines (the basis of structural isomorphism) can
be provided, most dynamic operations are possible.

Although the VGT is rigidly defined, there are a number of decisions
available to the programmer of an intelligent terminal that must be made. The
few examples which follow are not exhaustive:

1. The VGT ignores the datablock effector. For special functions of an
intelligent device for which the graphic system has no other
provisions for exploitation, the terminal programmer may choose to use
some special coded command contained in a datablock.

2. The definition of "what" input is purposely broad. Most programmers
of graphics devices choose to implement some subset of allowable
"what" inputs on their terminals, such as input from the keyboard, a
"where" type input, etc. A programmer may also choose to define the
"terminal processor" input device for the terminal as performing some
special function (such as allowing the terminal user, ~nrough some
protocol, to construct entire graphic substructures to be returned to
the Multics program).

3. The terminal programmer must decide whether to return an error status
or to use some equivalent existing device, should input be requested
from an unimplemented graphic input device.

4. The terminal programmer must decide whether to implement asynchronous
incrementation.

Formats for Input Information

Graphic input information and terminal status codes have defined formats
(shown below), of which the programmer of intelligent terminals must be aware.
These formats are described in the include-file "graphic_input_formats.incl.p11"
(see Section 8).

3-38 AS40-01

"where" INPUT FORMAT

Table 3-2. "where" Input Format

Character Format
Position or Literal Represents

1 " (" a node-begin character

2 SPI an array indicator ("A")

3-5 UID the zero node ID ("@@@")

6 "0" a "setposition" indicator

7-9 SCL the returned x-coordinate

10-12 SCL the returned y-coordinate

13-15 SCL the returned z-coordinate

1 6 ") " a node-end character

17 <NL> a newline character (ASCII 012)

3-39 AS40-01

"which" InpUT FORMAT

Table 3-3. "which" Input Format

Character ..(i'ormat
Position or L1 teral

1 "(,,

2-4 UID

5 SPI

6-7 DPI

8-9 DPI

Represents

a node-begin character

node ID of the top-level node in the
structure which was selected

integer representing the depth, in levels,
of the component selected

index in top-level list of inferior
substructure selected

index in next-level list (described by last
index) of inferior substructure selected

etc. to correct number of indexes (determined by depth indicator)

(N-1)

(N)

"),,

<NL>

a node-end character

a newline character (ASCII 012)

3-40 AS40-01

"what" INPUT FORMAT

Table 3-4. "what" Input Format

Character Format
Position or Literal Represents

1 " (II a node-begin character

2 SPI integer representing the input device
actually used

3 to (N-2) (see Note graphic code portion of the input
below)

(N-1) ") " a node-end character

(N) <NL> a newline character (ASCII 012)

NOTE: The "graphic code portion" of the returned string must be a valid
string of MSGC. All graphic structures must begin with a "node
begin" character and end with a "node end" character. It should not
contain any effectors that may not be found inside a graphic
structure (e.g., delete and erase). The node IDs returned need not
have any relationship with node IDs currently in the WGS -- they may
be generated se~uentially, for instance, if desired. However, the
node IDs returned are checked for uniqueness for the duration of one
input message. If one block of "what" input contains more than one
structure with the same node ID, it is assumed that the reference
signifies a shared relationship between the two occurrences of the
substructure, and the contents of the new substructure replaces the
old. Multiple (shared) references to the same substructure may be
done either in this manner or by the use of the reference effector.
The node IDs created by the decompilation process and insertion into
the WGS have no relation to the node IDs supplied in the input.

CONTROL INPUT FORMAT

No special format exists for control input. The string returned must be a
valid string of MSGC. It should consist of exactly one effector, the contents
of which include the effector code and the new values that result from the
control operation, in exactly the same format in which it could have been output
to the terminal. The returned string must be followed by a newline character
(ASCII 012).

Communications Control and Error Handling

There are several problems that fall under the heading of communications
control. It is necessary to distinguish character strings representing graphic
structures and operations from normal text. Since most intelligent terminals
are minicomputers with limited memory and terminal communication buffers, there
will often be limits on the speed with which the terminal can process incoming
graphics. And because fairly complex structures are being transmitted, some
high-level protocol for discovering and reporting errors to the Multics system
is necessary.

3-41 AS40-01

For intelligent terminals, two ASCII control sequences are defined to have
the following meanings:

(let "#" represent the character "DC1", octal 021)

#A enter graphic mode
#B enter text mode

where:

1 . "#A"
indicates that all subsequent characters should be interpreted as
representing graphic structures and operators.

2. "#B"
indicates that succeeding characters are normal text.

The problems of finite terminal input buffers and error reporting are
solved by a Multics output buffering and status reporting protocol. The GDT
describing a terminal indicates the size of the terminal's input buffer. The
strategy is to dispatch no more than this number of characters to the terminal,
followed by a request for status character (ASCII 035). The terminal then
responds with a status message in a standard format preceded by a left
J?arenthesis (,,(,,) and followed by a right parenthesis and a newline character
\ ")<NL>").

Table 3-5. Status Message Format

Character Format
Position or Literal Represents

SPI error code for discovered error

(If the error code is zero, meaning no errors detected, the
following characters need not be sent.)

2

3-5

6

7

8 on

ASCII

UID

DPI

DPI

DPI

character code of graphic element in
which error occurred

unique ID of top-level node in graphic
structure in which error was detected

depth of error in list structure

list index of top level list element

list index of each succeeding element until
done

If the error code returned is 0, then the next buffer of characters is
output to the terminal. Otherwise, the error is reflected back to the user
program and the as-yet-unsent characters are discarded.

3-42 AS40-01

A list of the short numeric error codes defined for use by an intelligent
graphics terminal and their corresponding definitions in graphic error table
may be found in the include-file "graphic_terminal_errors.incl.p11" (see SectIon 8)-:-

Because of the way status handling is performed, an intelligent graphic
terminal must return its status string before any other characters, such as
responses to queries and controls. However, the terminal should not return the
status string before all queries and controls are fully completed, so that the
possibility of errors occurring from these operations may be handled. If the
implementor of a graphics protocol on an intelligent terminal feels that buffering
a variable number of these input strings for return after the status message is
a probl em, constructs in the terminal's GDT (e. g., "fl ush") may be used to
ensure that multiple inputs or queries do not occur within one graphic message.

Many graphic elements must be sent immediately to the terminal because they
require terminal response before more graphic data is generated. However, it is
desirable to keep the frequency of status request interactions to a minimum
because half-duplex communications protocols insert rather substantial delays.
Control over when the Multics output buffer is sent is exercised in two ways.
First, in the GDT describing a terminal, it can be specified for each graphic
operator in MSGC whether the buffer must be sent when this operator occurs.
Normally, the buffer must be sent only on query and control operators, where
input from the terminal is necessary. Secondly, an entry point in the
graphic operator subroutine (described in Section 5) sets an internal mode known
as the wimmediac~" mode. When immediacy is turned on, all graphic operators are
sent immediately as they are generated, each followed by a request-for-status
message. When immediacy is off, graphic output is buffered until the buffer is
full or until a graphic operator is encountered that must be sent immediately,
in which case the entire buffer is sent.

GRAPHIC CHARACTER TABLE (GeT) -------- ---------- ----- -----

A Graphic Character Table (GCT) is a description of a character set that
provides enough information for the MGS to draw (stroke) the characters. Unlike
the text element, which relies on the hadrware character printing capability of
the graphic terminal, characters produced from GCTs may be scaled, rotated, and
otherwise manipulated like any other piece of graphic structure.

Each entry in a GCT describes the representation of one character of the
set. The character is described as a collection of shifts and vectors. Each
character carries with it its own spacing (margin) both to the left and to the
right. In general, the initial graphic position, before any character is drawn,
is considered to be at the upper-left-hand corner of an imaginary box surrounding
the character and its desired margins. The shifts and vectors prescribed for
each character must move the graphic position from that initial position, draw
the character, and set the final graphic position to the upper-right-hand corner
of the box.

The imaginary box represents a character posi tion. The width of the box
~ay vcu J for different characters. The height of the box is constant for all
the characters in a single character set. However, for anyone character set,
the height of the box in points is arbitrary and may be chosen for the convenience
of the creator; thus, it may vary from set to set. However, no dimension of the
box may exceed 511, nor may any dimension of a shift or vector comprising any
character be outside the range -512 < n < 511.

8/81 3-43 AS40-01A

For each character set, the height of the box is defined by a character
chosen as the "metric" for that character set. The metric character is one that
is defined to extend exactly to the top and bottom of the desired box. The
character "0" is usually used as the metric. It is allowable for characters to
extend above or below the bounds of the defined box. For example, many lowercase
letters such as "p," "g," or "j" will generally extend below the bottom of the
box; special characters such as parentheses may often extend above.

I
Certain characters in all character sets are considered "special format

characters" and are not defined in GCTs. These characters are the carriage
return, linefeed, space, tab, backspace, and underscore. For various reasons,
the handling of these characters (e. g., width and appearance) must be computed
at run time and cannot adequately be described in a table .

..

Format of ~ GCT Source Segment

The source for a GCT must reside in a segment with the suffix ".gct". The
compile_gct command compiles a GCT source segment into a graphic character table.
See the description of the compile gct command in Section 4 for more information
on compiling GCT source segments. -

A GCT source segment consists of an optional metric statement followed by a
number of character descriptions. Comments must be enclosed by "1* ••• * I" and
may appear anywhere.

The syntax of the metric statement is:

metric char

where char is the name of a character that is to serve as the metric for this
character set.

A character description is composed of the name of a character followed by
a colon, a list of vectors and shifts describing the character, and an end
statement. The character names used in a GCT must be selected from a list of
character names known to the compile gct command. These may be found in the
PL II inc 1 ude- fi 1 e "gct char names. incl. p 1 1" • Most charac t er name s are

I straightforward: "A" for- the-character "A," "g" for the character "g." Any
character can be defined in a GCT except the special format characters listed
above. Creators of GCTs should refer to the include file to obtain the names of
nonalphabetic characters.

The syntax of vectors and shifts is:

vector x len y len
shift x_len y_len

No punctuation is allowed other than whitespace.

The syntax of the end statement is:

end

It is required at the end of each character description. No special end statement
is needed to signify the end of the character table.

8/81 3-44 AS40-01A

Format of .§. GCT

Character tables specified in this manner are usually used with the
graphic_chars_ subroutine by specifying their names in a call to
graphic chars $set table. Occasionally, however, a user may wish to write a
program-that interprets the contents of a GCT directly. The internal format of
a GCT is described here. All of the structures described below may be found in
the PL/I include-file "graphic_char_dcl.incl.p11".

Every GCT contains two segdefs, named "character sizes" and "char ptr".
These segdefs (which are similar to entry points) may be located by the use of
the hcs_$make_ptr subroutine.

The segdef character sizes contains storage that is described by:

dcl character sizes based,
2 height fixed bin(35),
2 width fixed bin(35),
2 margin_adj fixed bin(35);

where:

1 . height
is the height of the metric character in points.

2. width
is the width of the metric character in points, including margins.
Note that the width of the metric character in no way constrains the
width of any other character in the set.

3. margin_adj
is a negative number, representing the negative of the sum of the
margins of the metric character, in points.

The segdef char_ptr contains storage that is described by:

dcl char_ptr (0 : 127) pointer based;

where:

1. char ptr (i)
- is a pointer to the character description of the (i+1)'th character

in the ASCII collating sequence.

Each character descript ion pointed to by an element of char _ptr has the
following description:

8/81

dcl 1 graphic char structure aligned based,
2 header word aligned,

3 (n elements,
wIdth,
left ~argin,
right margin) fixed bin(8) unaligned,

2 word align aligned,
3 move type (0 refer (graphic char structure.n elements»

- bit(1) unaligned, - -
2 coords (0 refer (graphic char structure.n elements» unaligned,

3 (x length, - - -
y=length) fixed bin(8) unaligned;

3-45 AS40-01A

where:

1. n elements
is the total number of vectors and shifts in the character description.
If n elements is -1, this character is one of the special format
characters listed above, and special computation must be performed
to implement it properly.

2. width
is the width of this character (including margins) in points.

3. left margin
- is the left margin of this character in points.

4. right margin
- is the right margin of this character in points.

5. move type (i)
- = "1"b if the i'th element of the character description is a vector;

= "O"b if the i'th element of the character description is a shift.

6. x length (i)
- is the x dimension of the i'th vector or shift.

1. y length (i)
- is the y dimension of the i'th vector or shift.

8/81 3-46 AS40-01A

SECTION 4

COMMANDS

COMMAND DESCRIPTIONS

This section contains descriptions of the Multics graphics commands,
presented in alphabetical order. Eaqh desGription contains the name of the
command (including the abbreviated form, if any), discusses the purpose of the
command, and shows the correct usage. Notes and examples are included when
deemed necessary for clarity.

The commands are:

1 . compile_gct
compiles a segment containing the source of a Graphic Character
Table.

2. compile gdt
compiles binary versions of Graphic Device Tables.

3. graphics editor, ge
an interactive tool which creates and edits graphic structures.

4. remove graphics, rg
-terminates a working session.

5. setup graphics, sg
- initiali~es the process environment for a particular graphics

terminal.

4-1 AS40-01

*

compile_gct compile_gct

Name: compile_gct

The compile_gct command compiles a segment containing the source of a GCT.

compile_gct segname {-control_args}

where:

1 . segname
is the name of a segment containing the source of a GCT. The
segment name must contain the suffix ".gct". If this suffix is not
an explicit part of segname, it is assumed.

2. control args

Notes

may be either of the following control arguments:

-check, -ck
specifies that the ALM assembler is not to be invoked, and that the
intermediate assembler source file is to be retained.

-list, -ls
specifies that the ALM assembler is to produce a listing of the GCT
it creates.

The compile gct command compiles a GCT source segment into an assembly
language source segment. The Multics ALM assembler is then invoked internally
to assemble this intermediate seg~ent into a GCT. The final segment produced
has the name of the source segment without the suffix ".gct".

See Section 3 for a description of Graphic Character Tables.

4-2 AS40-01

compile_gdt compile_gdt

Name: compile_gdt

The compile gdt command causes a segment containing the source af a GDT to I
be compiled.

compile_gdt segname {-control_args}

where:

1 . segname
is the name of a segment containing the source of a GDT. The
segment name must contain the suffix ".gdt". If this suffix is not
an explicit part of segname, it is assumed.

2. control args

Notes

may be either of the following control arguments:

-check, -ck
specifies that the ALM assembler is not to be invoked, and that the
intermediate assembler source file is to be retained.

-list, -ls
specifies that the ALM assembler is to produce a listing of the GDT
it creates.

A GDT source segment is conventionally named with the name of the graphic
terminal it describes, with the suffix ".gdt" (e.g., "tek 4014.gdt" or
"ards.gdt"). The compile gdt command compiles a GDT source segment into an
assembly language source segment. The Mul tics ALfJ[assembler is then invoked
internally to assemble this intermediate segment into aGDT. The final segment
produced has the name of the source segment without the suffix ".gdt".

See Section 3 for a description of Graphic Device Tables.

4-3 AS40-01

I

*

graphics_editor graphics _ edi tor

Name: graphics_editor, ge

The graphics editor is an interactive tool that may be used to create and
edit graphic structures. It is capable of storing these structures into, and
retrieving them from, permanent graphic segments.

graphics_editor {segl} {seg~} ... {seg~}

where segi is a pathname specifying a segment to be read into the graphic
editor. This segment must contain the suffix ".ge". If the suffix is not
explicitly stated in the command line, it is assumed. This segment may contain
a list of editor commands or assignments, in the same format as they might have
been typed into the editor interactively. The segments are interpreted by the
editor in the order specified.

Notes

If errors occur while reading segment specified on the command line,
processing of that file ceases.

When graphics editor is ready to receive input from the user's terminal, it
replies with "Edit:". The user may then begin to issue requests.

The Command Language

Requests fall into two categories: commands and assignments. In general,
commands may be terminated with either a semicolon (;) or a newline.
Assignments (due to their ability to be quite lengthy) may be terminated only
with a semicolon. However, sometimes one or more of the arguments of a command
may be an assignment.

The formal rules for statement terminator parsing are:

1. A semicolon is always required to end a statement if it contains any
assignments.

2. A newline does not automatically terminate a statement as long as:

a. an assignment is pending, or
b. there exist some unclosed sets of parentheses, or
c. the last token on that line is a comma.

3. Newlines regain their ability to become statement terminators when:

a. all narentheses have been closed and
h. the last token on the last (current) line is not a comma.

4-4 AS40-01

graphics_editor graphics_editor

4. Newlines never regain their ability to become statement terminators
once an assignment is performed within a statement. (This is simply a
restatement of rule 1.)

As a general rule: When in doubt, type semicolon.

Comments are enclosed by "/* ... */11 and may be interspersed with any input
lines.

Symbols

Symbols in the graphics_editor are alphanumeric representations of node
values. A node value is a ll rece ipt" returned by the graphics system whenever it
is asked to create some graphic element. Symbols have a value that consists of
exactly one such node value. (For a more cOII).plete description of node values,
refer to Section 3.)

Symbols may be divided into four classes:

•

•

system symbol
element

user symbol

predefined and represents a primitive operation or

is defined by the user at som~ time with an assignment

• macro -- is defined by the user, but takes "arguments," and has no
permanent value of its own

• system macro -- is a macro defined by the system.

SYSTEM SYrv'lBOLS

System symbols have no permanent value. They take one or more arguments,
either implied or explicit. The use of a system symbol represents a request
that a new element be created. The node value returned from that creation is
then used in any subsequent operation of that particular expression.

1 •

2.

3·

4·

Examples of system symbol expressions are:

vector 10 25

l1Axolotl l1 uc

array (a,b,c)

lin dotted

a vector of length (10, 25, 0) (see T!Illustration AT! below).

a text string containing the string l1Axolotll!, aligned by
the upper center edge.

an array containing the nodes revresented by user symbols a,
b, and c. (See l1Tuples, 11 below.)

a mode element for dotted lines.

4-5 AS40-01

graphics_editor graphics_editor

Illustration A

(y)
(vee -10 25 0) (vee 10 25 0)

(-x)~--~--~-+--~~r--+--+--;--~--+- (x)

(vee 10 -25 0)
(-y)

A list of system symbols and descriptions of their use may be found at the
end of this command description.

USER SYMBOLS

User symbols may be up to 32 characters in length, and may consist of any
combination of uppercase and lowercase alphabetics, numerals, and the underscore
I" ,.\ -;1_.:1 ..l...1 __ ..L.. ..L..1__ ~"~~_L.. !_ ~ ~ .. _.-._~ __ C"t+-..-. _...,. __ 1.-... ,_ .-- _ _
""" ""), prOV.lutju LdlC:tlJ lJIlt:: .L.Ll"tiu vIlC:tlCLvut::l .L'=' !lVUUU.'llt::l.Ll"';. I..JJ,=,uvJl! '='JlllUV..L'=', '='JOL/vii!

macros, and commands are c01.."3i dered !lreserved words," and may not be used as
user symbols. Attempts to define commands as symbols result in ill-formed
execut ion of those c01o.mands.

4-6 AS40-01

graphics_editor graphics_editor

Examples of user symbols are:

1 . foo
2. Front porch
3. bolt_23w9

User symbols are stored in the graphic symbol table of the WGS. They are transferred
to and from PGSs whenever the save, use, put, and get system commands are used.
(For a complete explanation of graphic symbols, see Section 3.)

MACROS

Macros are user symbols which take arguments like system symbols. Whenever
a macro expression is evaluated, the arguments supplied are substituted for the
dummy arguments wi th which the macro was defined. Macros must be defined by
macro assignments. For example:

macro diamond x y = vec x y, vec -x y, vec -x -y, vec x -y;

defines a macro named "diamond" with dummy arguments x and y. The reference:

diamond 10 30

represents a diamond 10 units in x and 30 units in y, and is exactly equivalent
to the expression:

vec 10 30, vec -10 30, vec -10 -30, vec 10 -30

Macro definitions must be on a single line. Macro names are stored in the I
graphic symbol table of the WGS, and may be transferred to and from PGSs with
the save, use, put, and get commands.

SYSTEM MACROS

System macros are provided so that the user may construct commonly used
graphic objects (such as circles and boxes) that are not primitive graphic objects.

System macros possess some of the properties of both macros and system
symbols. They take arguments, either actual or implied. Like system symbols,
they always represent single graphic elements (one-tuples). However, the element
is not a primitive nonterminal graphic element, but is an array of many other
g~aphic eleme~ts, as ~ay ho dOit8 with a macro. Dnlike a macro, though, once it
is used and "expanded" it does not disappear (e.g., when a structure created
wi th a macro is replayed); rather, the system keeps track of the macro and
replays it in the manner in which it was typed in.

8/81 4-7 AS40-01A

graphics_editor graphics_editor

Tuples

A tuple is simply a group of one or more values. Every complete symbol
(i.e., a user symbol, or a macro, or system symbol with its arguments) is a
tuple in itself (a one-tuple). A tuple of more than one element may be
expressed as its elements separated by commas such as:

a, b, b, vec 10 4 3, intensity 1, xxx

This is a tuple of 6 elements.

A tuple which has more than one element represents more than one graphic
entity. Therefore, it cannot have one node value. To convert a tuple to a
single graphic entity, two system symbols are available: array and list. These
two "functions" gather the elements of the tuple into a graphic array, or a
graphic list, respectively. (For a more complete explanation of graphic arrays
and lists, see Section 3.) The creation of this array or list produces a node
value that may be assigned to a user symbol, or may be used without assignment
in some larger expression. For example:

one_array array (a, b, c, d, b);

is an assignment that creates a graphic array with the elements (a, b, c, d, and
b), and assigns to "one_array" the value of this list.

Assignments

An assignment is an operation that extracts the value of
assigns it to another tuple. The assignment operator is the infix

The simple assignment:

foo = bar;

one tuple and
"=" sign.

specifies that the value of foo is to become the symbol bar. An important point
to keep in mind is that this does not mean that foo and bar both refer to the
identical piece of graphic structure-.--Rather, foo contains bar, and (of course)
indirectly also contains the entire structure contained by bar. If foo is
undefined at the time of assignment, it is created. If it had a previous value,
that value is replaced. Any other graphic structures that referenced foo still
refer to it, but now contain (indirectly) its new value. (It is possible to
assign the value of a symbol to another symbol, rather than assigning one symbol
to another; this operation is discussed below under "Qualified Expressions.")

In general, only tuples of like dimensionality (i.e., having the same
number of elements) may be assigned to each other. For example:

a, b, c = d, e, f;
x = array (p, q, r);

are both valid assignments. However,

one, two = three, four, five;

IS not a valid ascignment.

4-8 AS40-01

graphics_editor graphics_editor

Two exceptions exist for this rule: first, if the object to the right of
~ne assignment operator is a one-tuple, it may always be "promoted" into the
dimensionality of the object to the left of the assignment operator. For
example:

a, b, c = d;

is equivalent to:

a = d; b = d; c = d;

The second exception is that if the object to the left of the assignment
operator is a one-tuple, and the object to the right of the assignment operator
is not a one-tuple, then the "array" operator is assumed. For instance, the
assignments:

a = b, c, d;
a array (b, c, d);

are equivalent. Note that the promotion
operator can never be used simultaneously.
such as:

facility and the implicit-array
This feature disallows statements

one, two = three, four, five;

which more probably represents a user error than a useful statement.

Assignments also have values. The value of an assignment is the value of
the tuple into which the assignment is done. For example, the value of:

foo = bar;

is the item foo. This feature allows nested assignments, as in the following
example:

pic = some_setpos, (line

which is equivalent to:

line = vector 100;
pic = some_setpos, line;

vector 100);

Note the use of the parentheses for precedence definition. The parentheses in
the expression are necessary since tuple formation has precedence over
assignment. If the expression had been written as:

pic = some_setpos, line vector 100;

it would have oeen performed as the operations:

some setpos, line = vector 100;
pic ~ some_setpos, line;

/* a promotion */
/* an implicit array */

4-9 AS40-01

graphics_editor graphics_editor

Distinction Between Tuples and Arrays

It is worth stressing that tuples of elements do not represent arrays of
elements. The user is cautioned against letting the convenience of the assumed
array operator within assignments blur this distinction. For example, a common
error is to assume implicit array operations when using macros. Macro creations
are not true assignments, but definitions; therefore, they do not automatically
assume the array operator. Given the macro "diamond" described above, the
assignment:

big_diamond = diamond 300 300;

is equivalent to:

big_diamond = vec 300 300, vec -300 300, vec -300 -300, vec 300 -300;

which becomes (via the assumed array operation of the assignment):

array (vec 300 300, vec -300 300, vec -300 -300, vec 300 -300);

However, the use of a macro is a non-assignment context such as:

display diamond 300 300;

simply evaluates to:

display vec 300 300, vec -300 300, vec -300 -300, vec 300 -300;

which is a request to display four separate objects, each originating (via the
convention of the graphic system) at location (0,0,0). This expression will
actually result in a cross being displayed in the center of the screen (see
"Illustration B" below). The desired effect could have been obtained by the
request:

display array (diamond 300 300);

or by using the value of a temporary assignment such as:

display big_diamond diamond 300 300; (see "Illustration en below)

Illustration B

(y)

!loo I

(300'_300)~I/(300'300)

(-,) -'100 I ~ I '10
(,)

(-300,-300)/ t "HOO,30OI

-400 1
i

(-y)

4-10 AS40-01

graphics_editor

Illustration C

(y)

--+---~--~~--4---~----~--~--~----+--(X)
(0,0)

(-'y)

4-11

graphics_editor

AS40-01

graphics_editor graphics_editor

Qualified Expressions

It is possible to refer to any element (or tuple of elements) of a symbol
that represents an array or list by the use of a qualified expression. The
simplest qualified expression consists of a symbol, followed by a period. This
represents "the value of." In the first example:

foo = bar;

bar is assigned as the value of foo. The relationship of foo to bar is a
superior/inferior, or father/son relationship. If instead the user types:

foo = bar.;

then the value of bar is assigned to foo. This makes both foo and bar refer to
the identical piece of graphic structure. The symbols now have a "brother"
relationship.

Successive trailing periods denote further levels of evaluation. Assume
the following assignments:

box = vec 10, vec ° 10, vec -10, vec 0 -10;
a = b = c = d = box;

The following relations hold on these symbols: (Read "=" as "is identical to")

a. = b
a .. -= b. = c
a ... -= b.~ = c. = d
a -= b .. -:- c.. d. box

The assignment:

a ... = null;

actually assigns null to d. (This example is for illustrative purposes only,
and is not a typical use of qualified expressions.)

Additional types of qualified expressions make it possible to refer to
elements of lists. The element desired is denoted by an integer following the
appropriate levels of qualification. For example:

box.2

is the second element of box (vector ° 10). Tuples of contiguous elements may
be specified by using a range expression, which consists of two integers
(representing the first and last element desired), separated by a colon (":").
For example,

creates a symbol that contains an array made up of all elements of box except
the first.

4-12 AS40-01

graphics_editor graphics_editor

The star ("*") has a special meaning in a qualified expression. If used by
itself, e.g., "box.*", it refers to a tuple made up of a .. Ll the elements of
"box". It may also be used as the last part of a range expression, e.g.,
"box.2:*", which refers to a tuple made up of all the elements of "box" from the
second to the last. The assignment:

bottomless box = array (box.2:*);

is equivalent to the previous example. Note that if a star occurs in a
qualified expression, it must be the last character. It may neither be followed
by the second component of a range expression (e.g., "box.*:3 1t

) nor by further
levels of qualification (e.g., "box.*.1").

Because a user may not always know exactly how many levels of symbol
indirection exist between the symbol name he is working with and the arrays or
lists with which he desires to work, any reference to an element (or range of
elements) of a list found in a qualified expression will cause the evaluator to
skip any number of levels of symbol indirection. Using one of the previous
examples, this means that:

a.1 = a 1 = box. 1

This frees the user from typing long, and possibly inaccurate, strings of
periods, but it does allow the user who wants to maintain fine control of his
indirect symbol structuring to do precisely that.

Certain qualified expressions may have different meanings on the left side
of an assignment than they do on the right side. This is particularly important
to note when using nested assignments. In particular, qualified expressions
that evaluate to an element of an array or list, or to a tuple of such elements,
have different meanings in these two contexts. If such an expression occurs on
the right side of an assignment, its value consists of references to the values
of the elements that make up the list. A previous example ("bottomless_box")
showed how this usage is interpreted. On the left side of the assignment,
however, the expression denotes element replacement. For instance, assume the
following assignments:

box = vec 10, vec ° 10, vec -10, vec ° -10;
elem = box.3;
box.3 = shift -10;

4-13 AS40-01

graphics_editor graphics_editor

The first assignment defines "box". The second assignment causes "elem" to
refer to the same piece of graphic structure which is the third element of box.
The third assignment changes the "top of the box" from a visible vector to an
invisible shift by redefining the third element of "box" to be a shift of equal
magnitude. This does not change the value of "elem". It simply breaks the
association between th-e-list "box" and the construct which was its third
element. If the actual changing of that construct were desired, the third
assignment of the above example could be replaced with:

box.3. = shift -10;

This assignment would in fact change the value of "elem". A side-effect of this
property is that the expressions "symbol.n" and "symbol.n." are equivalent on
the right side of an assignment, but are not equivalent on the left side.

Node Constants

It is possible for node values to exist in the WGS without being assigned
to any symbol. For instance, a user program could be called from inside the
editor to construct a particularly intricate "canned" graphic structure which
may be inefficient or difficult to construct by hand. The program could print
the number of the top-level node in the structure, so that the user could
reference it by assigning a name to it. The number of this node may be typed
in, preceded by the character "#".

For example: if the node constant "#12345" appears as such an output, and
a user wishes to assign to this node the name "orphan", the assignment:

orphan = #12345;

may be used.

Octal node values may be expressed directly as node constants without user
conversion by immediately following the ,,#" with the lowercase letter "0", e.g.,
"#0144" is equivalent to "#100".

Although node constants and qualified expressions based on node constants
are allowed on the left-hand side of assignment statements, their use is
strongly discouraged.

Commands

Following is a list of editor commands shown in alphabetical order.
Arguments enclosed In braces {} denote optional argumcntc. Each command whooe
argument is signified by <exprn> accepts single elements, tuples, assignments,
or any combination of these as its argument. For example:

display, di <exprn>
erases the screen and displays the specified graphic structure. If
the argument is a tuple, no erase is performed between each element of
the tuple. The tuple is not collected into an implicit array, but is
disnlaved one element at a time. This means that the current graphic
position reverts to (0,0,0) before displaying each new element.

4-14 AS40-01

graphics_editor graphics_editor

display pic = array (house, street, parked cars);
serves the dual purpose of defining "pic" and displaying it.

execute, exec command line
passes the <command_line> to the command processor.

get {mode} {(pathname)} sym1 {sym2} ... {symn}
gets the structures (or macros) named "sym1 {symn}" from the PGS
specified by (pathname). (This notation means that "pathname" , if it
is given, must be within parentheses.) The mode argument determines
what action is taken on attempts to redefine an existing name:

-force
redefines the symbol and all subsidiary symbols.

-replace all, -rpa
redefines the symbol. If subsidiary symbols are duplicated in
the WGS, uses the copies in the WGS. For any subsidiary
symbols that do not exist in the WGS, uses the ones in the PGS.

-replace only, -rpo

-safe

r~defines the symbol. If subsidiary symbols are duplicated in
the WGS, uses the copies in the WGS. For any subsidiary
symbols not so duplicated, creates null (empty) symbols.

leaves the old symbol as is and prints an error message.

If mode is not specified, "-safe" is assumed. The mode and (pathname)
arguments, if present, may occur in either order, but must precede any
symbol names. If pathname is not given, the last pathname specified
for a "put" or "get!! operation is used.

help, ?
directs the user to relevant documentation.

input (device name) sym1 ... symn
reCluests- that one or mor~ "what" inputs be reCluested from device
(device name). The inputs are collected, interpreted, made into
graphic- structures, and assigned to symbols "sym1 symn". The
(device name) may be any input device name found in the include file
"graphic enames.incl.pI1" (see Section 3). The device names currently
recognized are:

... any

• joystick

• keyboard

• lightpen

• mouse

• tablet

4-15 AS40-01

graphics_editor graphics_editor

• terminal_program

• trackball

list, Is {starname1 ... starnameN} {-control args}
lists selected symbol tables. Any number of control arguments may be
specified. The following control arguments are allowed:

-all, -a
lists all of the following.

-commands, -com
lists the editor commands and their abbreviations.

-macros, -mc
lists the defined macros.

-symbols, -sym
lists the user symbols.

-system, -sys
lists the available system symbols, system macros, and their
abbreviations.

If no control arguments are given, -symbols and -macros are assumed,
with the listing of macros suppressed if there are none.

Each starnamei may be a simple item name, or may be a
properly-formed name according to the rules of the Multics star
convention facility (see description of "Star Names" in the MPM
Reference Guide). If any starnamei arguments are given, only items
which match one or more of the gIven starnames are listed. If no
starname.! arguments are given, n**n is assumed.

macro name {arg1 I ... {argn} <exprn>
macro show name1 ... {namen}
macro replay name1 ... {namen}

The first form defines a macro with name "name", and arguments
{arg1} ... {argn}. The other two forms expand the macro command (see
"replay" and "show" commands later in this description).

put {model {(pathname)} sym1 {sym2} ... {symn}
stores the structures (or macros) named sym1 {sym2} {symI!} into
the PGS specified by (pathname). The mode argument determines what
action is taken on attempts to redefines an existing name:

-force
redefines the symbol and all subsidiary symbols.

4-16 AS40-01

graphics_editor graphics_editor

-replace all, -rpa
redefines the symbol. If subsidiary symbols are duplicated in
the PGS, uses the copies in the PGS. For any subsidiary
symbols that do not exist in the PGS, uses the ones in the WGS.

-replace only, -rpo
redefines the symbol. If subsidiary symbols are duplicated in
the PGS, uses the copies in the PGS. For any subsidiary
symbols not so duplicated, creates null (empty) symbols.

-safe
leaves the old symbol as is and prints an error message.

If mode is not specified, -safe is assumed. The mode and pathname
arguments, if present, may occur in either order, but must precede any
symbol names.

quit, q
exits from the editor.

read pathname
interprets the fil'e specified by pathname as a set of edi tor commands.
If the suffix ".ge" is not explicitly provided in pathname, it is
assumed. Any read command encountered in a file switches the input
source to the specified file. When the commands in the specified file
have been exhausted, control returns to the user's terminal, or to the
original file issuing the "read." Errors encountered while reading
from a segment cause control to be immediately returned to the user's
terminal.

remove sym1 {sym2} ... {symn}
removes those elements named from the table of known user symbols.
The symbol in the WGS is also deleted, and all references to it are
transformed into direct references to whatever contents it possessed.

replay <exprn>
replay -all, -a

prints an abbreviated description of the tuple <exprn> on the user's
terminal. If the value represents a terminal graphic element, its
contents are printed, or if it represents a nonterminal element, it is
described and the number of its elements given, except that the entire
graphic subtree inferior to the chosen node is described in assignment
notation along with nested assignments where appropriate. This
command replays a graphic structure in a form acceptable as input to
the graphics editor. If the control argument "-all" is given, all
user symbols -are replayed. If this control argument is present, it
must be the only argument.

restart
reinitializes the editor, the WGS, and all associated symbol tables.
Any remaining command line, as well as any file "reads" pending, are
flushed without execution. The state of the editor after a "restart"
is the same as the state of the editor when it is first invoked.

4-17 AS40-01

graphics_editor graphics_editor

save {pathname}
saves the contents of the WGS in a PGS specified by pathname. If
pathname is not supplied, graphics editor uses the pathname that was
last supplied to a use or save command. If no such pathname exists,
an error occurs. If an error occurs during the execution of a save
command, the "last pathname" is deliberately forgotten.

show <exprn>
prints an abbreviated description of the tuple <exprn> on the user's
terminal. If the value represents a terminal graphic element, its
contents are printed. If it represents a nonterminal element, it is
described and the number of its elements given.

use {pathname}
loads the PGS specified by pathname into the WGS. This allows the
editor to use a previously-constructed set of graphic structures. If
pathname is not supplied, graphics editor uses the pathname that was
last supplied to a use or save command. If no such pathname exists,
an error occurs. If an error occurs during the execution of a use
command, the "last pathname" is deliberately forgotten.

vtype {pathname}
makes the graphic character table specified by pathname the default
character table used by subsequent varying_text elements .

. (period)
identifies the graphics_editor by name and version.

Defined System Symbols

POSITIONAL ELEMENTS

All positional elements take arguments of the form "x y z". If any of
these arguments are not supplied, they are assumed to be zero. It is possible
to supply no arguments, only "x", only "x y", or all of "x y z". No other
combinations (e.g., "x z") are parsable.

point, pnt
setpoint, spt
setposition, sps
shift, sft
vector, vec

MODAL ELEMENTS

In general, nonnumeric values for mode settings may be any string that is
used in the include file "graphic enames.incl.p11" to describe that particular
mode. Values shown here represent-the strings currently recognized.

4-18 AS40-01

graphics_editor

blink, blk

color

Argument: Integer, 0 or 1, where:

o steady
1 blinking

Argument: (up to three) must be of the form:

<color_spec> {<intensity>}

graphics_editor

The <color spec> may be "red", "blue", or "green". Intensities may be
any integer from 0 to 63. If a <color_spec> is not followed by an
intensity, 63 is assumed.

intensity, int

Argument: Integer, 0 through 7, where:

o off
7 on
7 full

linetype, lin

Argument: Integer, 0 through 4, where:

o solid
1 dashed
2 dotted
3 dashed-dotted
4 long-dashed

sensitivity, sns

Argument: Integer, 0 or 1, where:

o insensitive
1 sensitive

4-19 AS40-01

*

graphics_editor graphics_editor

MAPPING ELEMENTS

rotation, rot

Argument: "x_rotation y_rotation z_rotation" in floating or integer
degrees. If any of these arguments are not supplied, they are assumed
to be zero.

scaling, scI

Argument: "x scale y scale z scale" in integer or floating notation.
If any of these arguments are not supplied, they are assumed to be
one.

MISCELLANEOUS ELEMENTS

null

No arguments. This element represents the "zero node." It is a placeholder, or
a graphic no-op.

text "string" {position}, "string" {position}

The abbreviated form of the text string is implicitly understood. If the long
it contains no spaces or other characters used as item separators. The string
may not exceed 200 characters. The optional position argument specifies the
string alignment. (For a more complete explanation of string alignments, refer
to Section 3.) Any character may appear within the string. If it is desired
for a quote to appear as part of the string, it may be doubled, as in PL/I. The
argument may be either a string or an integer, from the following correspondence
list:

integer

1 •••••••••••••••
2
3
4
5
6
7
8
9

datablock, data <element>

string

upper left, ul
upper-center, uc
upper-right, ur
left, -1
center, c
right, r
lower left, 11
lower-center, lc
lower=right, lr

creates a datablock containing the element <element>. This element may be of a
form acceptable as a symbol name, numeric, or a string enclosed in quotes. ~~
may not be, or contain, a break character (";", ",", etc.) unless enclosed in
quotes. The string may not exceed 200 characters. Datablocks may be used to
hold information relevant to the structure, within the structure itself. The
format of the data within a datablock created by the graphic editor is arranged
strictly for the convenience of the graphic editor. User programs should not be
dependent on this format. (For a more complete explanation of datablocks, refer
to Section 3.)

8/81 4-20 AS40-01A

graphics_editor graphics_editor

Defined System Macros

creates an arc starting from the current graphic position, with center at (x dist,
y dist) from the current position. The fraction specifies what fraction of a
cIrcle (1 = entire circle) this arc is to represent.

box x_len y_Ien

creates a box whose first vector is (x_len, 0), whose second vector is (0,
y_Ien), etc. from the current position.

circle x dist {y_dist}

creates a circle starting from and ending at the current graphic position, with
center at (x_dist, y_dist) from the current position.

ellipse x_dist y_dist eccentricity axis_angle {fraction}

creates an ellipse with epicenter (geographical center) at (x dist, y dist) from
the current posi tion, wi th the given eccentricity (long axis/ short -axis), and
with the long axis at axis angle from the x axis. If fraction is- specified,
that fraction of an ellipse is drawn.

works like circle. n sides specifies how many sides the polygon is to have.

varying text "string" {position {width {height}} {character set}}
vtext "string" {position {width {height}} {character_set}} -

creates a representation of the specified character string from vectors and
shifts. (Refer to Section 5 and the graphic chars subroutine.) The position
argument is as described above for text. The string may not exceed 200 characters. I
The arguments width and height specify the average width and height of each
character of the resultant string. The character set argument specifies the
name or pathname of a graphic character table (GCTl. (Refer to Section 3 and
the documentation on graphic character tables.)

NOTE: No dynamic operations are presently defined for the graphics_editor.

8/81 4-21 AS40-01A

remove_graphics

Name: remove_graphics, rg

The remove graphics
graphics system. It
setup_graphics.

command
detaches

remove graphics {switch 1 }
remove-graphics -all, -a
remove=graphics

terminates a session of
graphic switches that

remove_graphics

working with the
were set up by

If given, the optional arguments "switch 1" to "switch N" specify the switches
to be detached. The second and third forms detach all graphic switches known to
setup_graphics, including online switches.

4-22 AS40-01

setup_graphics setup_graphics

Name: setup_graphics, sg

The setup graphics command attaches and manipulates graphics I/O switches.
Its simplest use is to inform the graphics system as to which type of graphic
device is being used.

setup_graphics {-control~args}

where -control args consists of some combination of the following control
arguments: -

-from, -fm switchname {mode spec}
specifies the graphic -switches to be attached. More than one set of
-from control arguments may be given to the command. The optional
mode spec argument specifies one of the opening modes defined by the
iox - subroutine. If mode spec arguments are not supplied,
stream input output is assumed. If no -from options appear in an
invocation - of the command, the assumed default is:
II-from graphic_output stream_output -from graphic_input stream_inputll.

-modes mode string
specifTes GDT or device modes to be a~plied (via
switches named in the -from control arg(s).

iox $modes) to the

-offline
is equivalent to ,,-to offline _graphics_ stream _ outpu.t" .

-online
specifies that the user i/o switch, as well as all the switches
mentioned in -from options, is to be channeled through the graphic I/O
module graphic dim to the user's terminal. This is the normal mode
of operation for online (i.e., terminal) devices.

-output file path, -of path
specifies that graphic I/O is to be routed to a file instead of a
graphic device. If the -table control argument is not specified, the
MSGC produced by graphic operations is routed to the specified file
without further translation. In this case, the suffix ".graphics" is
added to path, if it is not already present. If the -table control
argument is specified, the MSGC is translated into device-dependent
form before being routed to the specified file. In this case, the
name of the specified GDT is added as a suffix to path, if it is not
already present (see "Notes ii below). I

-table, -tb gdt name

-to

causes the-graphic device table named gdt name to be associated with
the graphic switches set up on this invocation of the command. This
option must appear in the command line if the -output_file control I
argument is not specified.

switch name
specifies the target
in -from options are
option is not given
"-to ttY_i/o -online"

switch name to which all the switches mentioned
to be attached, through graphic dim. If this

in the command line, the assumed default is:
(see "Notes" below).

4-23 AS40-01

setup_graphics setup_graphics

Notes

If the first argument to setup graphics is not a control argument, it is
assumed to be the name of a GDTS, as-in the -table option.

A description of modes accepted by each GDT may be found in the
descriptions of the GDTs in Section 6.

Use of the -output_file and -table control arguments to route
device-dependent character codes into a file may not always produce usable
results. Certain graphic devices possess dependencies which must be compensated
for at runtime by the graphic I/O module. Examples of these are baud rate
dependencies with respect to delays, tape record blocking for offline devices,
and graphic pauses. No guarantee is made as to the repeatability or quality of
the results achieved through the use of device-dependent files. Conversely,
files containing device-independent MSGC produce correct results, not only on
various devices of the same type, but on supported devices of other types as
well.

4-24 AS40-01

SECTION 5

SUBROUTINES

This section contains descriptions of the Multics graphics subroutines,
presented in alphabetic order. Each description contains the name of the
subroutine, discusses the purpose of the subroutine, lists the entry points, and
describes the correct usage for each entry point. Notes and examples are
included when deemed necessary for clarity. (Refer to Appendix A for a list of
subroutine and entry point abbreviations that are supported, but not documented
in the body of the te~

The following subroutines are described:

calcomp compatible subrs , ccs
- incorporates- a set of graphic subroutines identical to those

supplied by California Computer Products (CaIComp) Inc. I

interprets and prints MSGC on a nongraphic terminal.

interprets an ASCII character string and prints a text description
of the graphic action represented.

graphic_chars *
accepts a character string and creates a list of vectors to
represent those characters.

graphic_code util
contaIns a set of entries that encode into and decode from MSGC
formats.

graphic_compiler , gc
complIes a graphic structure into MSGC.

graphic decompiler
constructs a graphic structure in the WGS from a string of MSGC.

graphic dim
- -communicates with all graphic devices.

graphic element length
-- determines length of graphic effector in MSGC.

graphic error table
- contains messages and error codes for the MGS.

graphic macros , gmc
- prOVides-the ability to create common graphic objects not directly

representable as primitive graphic elements.

5-1 AS40-01

*

*

graphic manipulator , gm
- provides facIlity for the creation, editing and permanent storage of

graphic items.

graphic operator , go
- contains -entry points for animation, graphic input and user

interaction, and graphics terminal control.

graphic_terminal status
inte~prets error messages sent from a remote programm~le graphic
terminal.

gui
module to provide the casual user a means of performing simple
graphics.

user interface to create a two dimensional graph from input data.

5-2 AS40-01

calcomp_compatible_subrs_

Name: calcomp_compatible_subrs_, ccs

This subroutine incorporates a set of graphic subroutines that have names,
calling sequences, and argument conventions that are identical to those supplied
on other computers by CalComp Incorporated. These routines use entries in the
MGS to perform graphics operations, and are therefore compatible with any device
supported by the MGS.

Since the names of these subroutines do not follow the system standard
convention of having trailing underscores, the entry names are not added to
calcomp_compatible_subrs_. The entries may be called in one of two ways:

1. using calcomp compatible subrs as an explicit segment name, e.g.,
"call calcomp compatible 8ubrs $factor ... "; (the preferred method for
native Multics programs)~ or -

2. linking to calcomp compatible subrs in the system library and adding
the entry names -as alternate names to the link (allows programs
transferred from other systems to continue to work without editing).

The CalComp plotter software and the MGS differ on basic conventions such
as screen (page) size, location of origin, etc. These differences and their
resolutions are described under "Programming Considerations" at the end of this
subroutine description.

This entry causes one axis to be created, labeled, and delineated with tick
marks and coordinate values. When operating in native Multics mode, (i.e., in
points rather than inches), one tick mark is provided every 100 points. When
simulating the page size of another system through the use of the set dimension
entry point, one tick mark is provided every "inch."

declare calcomp compatible subrs $axis entry (float bin, float bin,
char(*), fIxed bin, float bIn, float bin, float bin, float bin);

call calcomp compa~lb~e subrs Saxis (x position, y position, title,
control~ axis_Ien,-angle~ first_value, delta_value);

where:

1. x_position (Input)
is the distance in the x direction between the current origin and
the desired end point of the axis.

2. y_position (Input)
is the distance in the y direction between the current origin and
the desired end point of the axis.

5-3 AS40-01

3. title (Input)

4. control

is the title to be placed along the axis.

is a general control argument that specifies:

• by its magnitude, the number of significant characters in
title;

• by its sign, the side of the axis on which the title and
coordinate values are to be placed. (A positive value places
these items on the "clockwise" side of the axis; a negative
value, on the "counterclockwise" side.)

5. axis len (Input)
is the length of the axis desired.

6. angle (Input)
is the angle at which the string (or symbol) is to be plotted. An
angle of zero plots the string in line with the x-axis, while an
angle of 90 plots the string along the y-axis, with the tops of the
characters in the -x direction. The title and coordinate values, as
well as the axis line itself, are influenced by this angle.

7. first value (Input)
is the value to be placed at the first tick mark on the axis.

8. delta value (Input)
is the difference between successive tick marks.

Notes

The variables first value and delta value may be computed using the scale
entry, or computed by the user.

This entry acts much like the factor entry point, except that it allows
independent x and y scaling factors.

declare calcomp_compatible_subrs_$dfact entry (float bin, float

where:

1. x scaling (Input)
is a scale factor to be applied to the x component of all further
picture elements.

5-4 AS40-01

2. y_scaling (Input)

Notes

is a scale factor to be applied to the y component of all further
picture elements.

The scaling factors produced by the factor and the dfact entry points are
not independent. A call to either entry destroys any scaling factors set up by
any previous call to either entry. A byproduct of this fact is that the
statement:

call calcomp_compatible_subrs_$factor (any_scale);

is exactly equivalent to the statement:

call calcomp_compatible subrs_$dfact (any_scale, any_scale);

This entry acts much like the where entry point, except that it includes
extra arguments to return the separate scaling factors that may have been set by
a call to the dfact entry point.

declare calcomp compatible subrs $dwhr entry (float bin, float bin,
float bin,-float bin); -

call calcomp compatible subrs_$dwhr (x_position, y_position, x_scaling,
y_scaling) ;

Tilhere:

1. x_position (Output)
is the distance in the x direction between the pen and the
user-defined origin.

2. y_position (Output)

3. x

is the distance in the y direction between the pen and the
user-defined origin.

scaling (Output)
is the presently active scaling factor in the x direction, as set by
a call to the factor or the dfact entry points.

4. y_scaling (Output)
is the presently active scaling in the y direction, as set by a call
to the factor or the dfact entry points.

5-5 AS40-01

Notes

The scaling returned by this entry point
reflect the effects of the scale factor
set_dimension entry point.

and the dwhr entry point does not
(if any) set by calls to the

If this entry point is called while two independent x and y scaling fact
entry pointers are active (as set by the calcomp compatible subrs $dfact entry
point), scaling is returned as the greater of the two factors, -and an error
message is printed.

This entry sets a scaling factor that applies to all graphic work following
the call. This factor prevails until the entry point is called again with a
different factor. A call to this entry point does not alter the values of
graphic elements created with a previous scaling factor.

declare calcomp compatible_subrs_$factor entry (float bin);

call calcomp_compatible_subrs_$factor (scaling);

where scaling (Input) is a scaling factor to be applied to all subsequent
graphic elements.

Notes

The scaling factors produced by the factor and the dfact entry points are
not independent. A call to either entry destroys any scaling factors set up by
any previous call to either entry. A byproduct of this fact is that the
statement:

is exactly equivalent to the statement:

call calcomp_compatible_subrs_$dfact (any_scale, any_scale);

5-6 AS40-01

This entry produces a line plot given two arrays of data points. A symbol
may be plotted at each point.

declare calcomp compatible subrs $line entry (float bin dimension(*),
float bin dimension(*j, fixed bin, fixed bin, fixed bin, fixed bin);

call calcomp compatible subrs $line (x array, y_array, n_points,
step_size, line_type, symbol_no);-

where:

1 . x array (Input)
is an array of independent variables to be plotted along the x-axis.
It must contain the values "first value" and "delta value" as the
two trailing elements of the array~ as produced by the entry point
scale, below.

2. y_array (Input)
is an array of dependent variables to be plotted along the y-axis.
It must also contain the values "first value" and "delta value".

3. n points (Input)
1S the number of significant data points in each array. It does not
include "first value" and "delta value".

4. step_size (Input)
indicates which elements of the array are to be scanned, according
to the following rules (where "n" is any positive quantity):

+n every nth element is to
The first value is to be
positive.

be scanned, starting with the first.
a minimum, and delta value is to be

-n every ~th element is to be scanned, starting with the first.
The first value is to be returned as a maximum, and delta value
is to be negative.

5. line type (Input)
specifies the type of plot to be produced:

• if zero, only lines connect the points.

• if positive, symbols are plotted every (line_type) points,
connected by lines.

• if negative, only symbols are plotted every (-line_type)
points.

6. symbol_no (Input)
is the number of a special symbol to be plotted.

5-7 AS40-01

Notes

Use of a symbol no that is not defined results in an error message being
printed and the character "*" being used instead.

Refer to Table 5-1 located at the end of this subroutine description for a
list of Multics CalComp symbols.

This entry implements color changes.

declare calcomp_compatible_subrs_$newpen entry (fixed bin);

call calcomp_compatible_subrs_$newpen (color);

where color (Input) is defined as:

Notes

1 blue
2 green
3 red

In plotting applications, it is assumed that pen #1 is a blue pen, pen #2
is a green pen, and pen #3 is a red pen.

This entry plots a floating number according to a user-supplied format
indicator.

declare calcomp compatible subrs $number entry (float bin, float bin,
float bin,-float bin); -

call calcomp compatible subrs $number (x_position, y_position, height,
float num, angle, precisIon);

5-8 AS40-01

where:

1. x_position (Input)
is the desired distance in the x direction between the current
origin and the lower left-hand corner of the character or string
(see "Notes" below).

2. y_position (Input)
is the desired distance in the y direction between the current
origin and the lower left-hand corner of the character or string
(see "Notes" below).

3. height (Input)
is the desired height of the character.
character including the space between it
(see "Notes" below).

A character (i.e., one
and the next) is square

4. float num (Input)
is the number to be drawn.

5. angle (Input)
is the angle at which the string (or symbol) is to be plotted. An
angle of zero plots the string in line with the x-axis, while an
angle of 90 plots the string along the y-axis, with the tops of the
characters in the -x direction.

6. precision (Input)

Notes

controls the precision of the drawn number according to the
following rules:

• if precision> 0, then (precision) digits are displayed to the
right of the decimal pOint.

• if preclslon = 0, only the integer portion and the decimal
point are displayed.

• if precision = -1, only the integer portion is displayed, with
no decimal point.

• if precision < -1, then <abs (precision)-1> digits are removed
from the rightmost portion of the integer part before
displaying.

The magnitude (absolute value) of precision should not exceed 9·

All values are rounded to the preclslon given, not truncated. For example,
the number "8765.432" in conjunction with precision "-2" produces 877.

5-9 AS40-01

This entry specifies the parameters of an alternate two-dimensional
coordinate system, into which selected vectors are translated before plotting.
(See the description of the "indicator" argument to the entry point plot,
below.)

declare calcomp compatible subrs $offset entry (float bin, float bin,
float bin,-float bin); -

call calcomp compatible subrs $offset (x_zero, x_factor, y_zero,
y_factor); --

where:

1 • x zero
is the x
system.

(Input)
value of the virtual origin of the alternate coordinate

2. x factor (Input)

3. y_zero

is the scale factor by which to divide the x component of vectors in
the alternate coordinate system.

is the y
system.

(Input)
value of the virtual origin of the alternate coordinate

4. y_factor (Input)
is the scale factor by which to divide the y component of vectors in
the alternate coordinate system.

Notes

The relationship of the translated x and y components to
components given as arguments to the plot entry point are:

translated x
translated=y

(given x - x zero) / x factor * x scaling;
(given=y - y=zero) / y=factor * y=scaling;

the x and y

where x scaling and y scaling are the (possibly identical) scaling factors that
may have been set by-calls to either the fact or the dfact entry points. (See
the description of these entry points for an explanation of these arguments.)

Note that x factor and y factor perform scaling by a division operation
rather than by multiplication,-as opposed to the multiplicative scaling factor
set by the factor and the dfact entry points.

If the user changes the orlgln of the primary coordinate system through a
call to the plot entry point with a negative indicator argument~ the origin of
the alternate coordinate RyRtem changes by the same amount.

5-10 AS40-01

This entry draws vectors and shifts. It may redefine the origin (0, 0) of
the picture.

declare calcomp compatible subrs $plot entry (float bin, float bin,
fixed bin); --

call calcomp_compatible_subrs_$plot (x_position, y_position, indicator);

where:

1. x position (Input)
- is the desired absolute positioning of the pen from the origin in

the x direction.

2. y_position (Input)

3.

Notes

is the desired absolute positioning of the pen from the origin in
the y direction.

indicator
is a
line:

(Input)
generalized switch controlling all other parameters of the

If indicator is negative, the action is performed as described below
as if indicator were positive. After the action is performed, the
origin is redefined to be the current (final) position.

If indicator is positive, the action is performed as follows with no
redefinition of the origin:

2
3

12

13

22
23

> 30

a visible vector is drawn
an invisible shift is drawn
a visible vector is drawn subject to the offset and scaling
given in the last call to the offset entry point
an invisible shift is drawn, subject to the offset and scaling
given in the last call to the offset entry point
same as 2
same as 3
same as -3. In addition, all undisplayed graphic work to this
point is displayed. Further graphic work may not be added to
this picture.

Unlike the CalComp packages, indicator > 30 does not "close" the graphic
device. However, it "closes" the picture, in that it is displayed to the
device, and then destroyed. Further graphic work results in a new picture.

Calls to this entry point do not advance "search records," as this
construct is without counterpart in the MGS.

5-11 AS40-01

This entry initializes calcomp compatible subrs. All static information
(e.g., current scale, current pen-position) wTth the exception of the virtual
screen size set by the entry point set dimension (see below) is destroyed and
reinitialized to default values. If thIs entry is called more than once in a
process, it destroys all undisplayed graphic work slated for the current output
device since the previous invocation of plots. (See the description of the plot
entry point above for an explanation of displayed versus undisplayed graphics.)

declare calcomp_compatible_subrs_$plots entry;

No arguments are necessary. Any arguments supplied are ignored.

This entry enables the user to place on the plotting package the burden of
scaling data arrays to be plotted. A call to this entry point causes the
calcomp compatible subrs to compute an initial value, "first value", and an
increment, "delta value"-(which is in units of given data units7(100 points) in
native Multics mode, or in given data units/inches when simulating the page size
of another system through the -use of the set dimension entry pOint.) These
values are stored at the end of the array of data values supplied. They are
more fully described in the description of the axis entry, above.

declare calcomp compatible subrs $scale (float bin dimension(*), float bin,
fixed bin,-fixed bin); -

call calcomp compatible subrs $scale (data_array, axis len, n_points,
step_size); --

where:

~
I. data array (Input/Output)

is the array of data points to be examined.

2. axis len (Input)
is the length of the axis along which this array is to be plotted.

3. n_points (Input)
is the number of useful input values in data_array.

5-12 AS40-01

4. step_size (Input)

Notes

indicates which elements of the array are scanned, according to the
following rules (where "n" is any positive quantity):

+n every nth element is scanned, starting with the first. The
first value is to be a minimum, and delta value is to be
positTve.

-n every ~th element is scanned, starting with the first. The
first value is to be returned as a maximum, and delta value is
to be-negative.

The subscripted
delta value are:

locations of the returned values, first value and

first value
delta-value

data array (n points * step size) + 1;
data=array ((n_points + 1) * step_size) + 1;

The user must ensure that enough unused elements are left at the end of
data array in which to store the returned information.

Entry: calcomp_compatible_subrs_$set dimension

This entry enables the user who has transferred working programs from other
systems to define the screen (page) dimensions of the graphic device so as to
appear to have the same dimensions as the device previously used ..

declare calcomp_compatible_subrs_$set_dimension entry (float bin);

call calcomp_compatible_subrs_$set_dimension (size);

where size (Input) is the greater of the two dimensions of the previously used
graphic device.

Notes

This entry should only be called immediately before a call to the plots
entry point. A call to this entry at any other time (i.e., during picture
construction) produces undefined results.

5-13 AS40-01

I

Since every graphic device attached to the Multics system is defined to
have a square (or cubical) working area, the user's plot requests are scaled so
that the longest dimension of the previous device corresponds to 1024 Multics
points.

The size, set by this entry point, remains in effect for the duration of
the process. It is not destroyed or reset by calls to any other entry point,
including plots. Thi-s--datum may be reset by another call to the set dimension
entry point. It may be reset to the default value by specifying size ~ 1024.

Values for scaling that are returned by entries such as the where, dwhr,
wofst, etc. entry points are unaffected by any setting of apparent screen size
performed by this entry.

or

This entry displays strings of alphanumerics and specially-defined symbols.

declare calcomp_compatible_subrs_$symbol entry options (variable);

call calcomp compatible subrs $symbol (x position, y_position,
height,-string, angle, string_len);-

* call calcomp compatible subrs $symbol (x_position, y_position, height,
symbol=no, angle,-symbol_ctl);

where:

1 . x_posi tion (Input)
is the desired distance in the x direction between the current
origin and the lower left-hand corner of the character or string
(see "Notes" below).

2. y_position (Input)
is the desired distance in the y direction between the current
origin and the lower left-hand corner of the character or string
(see "Notes" below).

3· height
IT ____ -'-\
\ .LIl}!Ll.1J)

is the desired height of the character.
character including the space between it
(see "Notes" below).

4. str ing (Input)
is the character string to be drawn.

A character (i.e., one
and the next) is square

5. symbol_no (Input)
is the number of a special symbol to be plotted.

5-14 AS40-01

6. angle (Input)
is the angle at which the string (or symbol) is plotted. An angle
of zero plots the string in line with the x-axis, while an angle of
90 plots the string along the y-axis, with the tops of the
characters in the -x direction.

7. string_len (Input)
is the length of the string (in characters) supplied in "string".
This number must be positive, to signify that a string, and not a
symbol number, has been supplied.

8. symbol_ctl (Input)

Notes

is zero or negative, to signify that a symbol number, and not a
character string, has been supplied.

o shift position to coordinates given and plot the symbol
-1 same as 0
-2 draw visible line to coordinates given and plot the symbol

If either x position or y position (or both) = 999, it is left unchanged
from the pen's current position~ i.e., where the pen was last left.

If height = 999, the last height given is used. Note that the height saved
from calls to either symbol or number is used.

The current pen position after drawing a symbol, as determined by a call to
the where entry point, is defined to be the point at which the symbol was placed
(i.e., (x position, y position)). Separate calls to concatenate symbols using
the "999"-feature return the pen to the same position after completing the new
symbol. This is true no matter how many symbols are concatenated using this
feature.

Use of a symbol no that is not defined results in an error message being
printed and the character "*" being used instead.

Refer to Table 5-1 located at the end of this subroutine description for a
list of Multics CalComp symbols.

This entry may be used to determine the present position (relative to the
user-defined origin) of the pen, and to determine the present applicable scaling
factor.

5-15 AS40-01

declare calcomp_compatible_subrs_$where entry (float bin, float bin,
float bin);

call calcomp_compatible_subrs_$where (x_position, y_position, scaling);

where:

1. x_position (Output)
is the distance in the x direction between the pen and the
user-defined origin.

2. y_posit~on (Output)
1S the distance in the y direction between the pen and the
user-defined origin.

3. scaling (Output)

Notes

is the present applicable scaling factor, as set by a call to the
factor entry point.

The scaling returned by this entry and the dwhr entry point do not reflect
the effects of the scale factor (if any) set by calls to the set dimension entry
point.

If this entry point is called while two independent x and y scaling factors
are active (as set by the dfact entry point), scaling is returned as the greater
of the two factors, and an error message is printed.

Entry: calcomp_compatible_subrs $wofst

This entry retrieves the arguments given in the last call to the offset
entry point.

declare calcomp_compatible_subrs_$wofst entry (float bin, float bin,
re .., _ _.J..... ,_ ~ __ .L' -, __ ..L 1-..! -.-. \ ...

llUC1L. UlIl, l.LUau U.LH);

where:

1 • x zero (Input)
is the x value o~ the virtual origin of the alternate coordinate
system.

5-i6 AS40-01

2. x factor (Input)

3·

is the scale factor by which to divide the x component of vectors in
the alternate coordinate system.

is the y
system.

(Input)
value of the virtual origin of the alternate coordinate

4. y_factor (Input)
is the scale factor by which to divide the y component f vectors in
the alternate coordinate system.

Programming Considerations

CalComp routines on other systems express coordinates and lengths in
inches. The MGS defines all graphic devices to have screens (or page sizes) of
1024x1024 (x1024) points. The relationship between inches and points is
different for different devices. To enable the user of
calcomp compatible subrs to use all the space available, the subroutine
initially accepts -coordTnates in points. Put another way, the graphic device
seems to have an area of 1024x1024 inches. (These ~virtual inches~ almost
invariably are much smaller than the real thing.) The user who has programs
transferred from another system may use one call to the set dimension entry to
adjust the size of the plot.

The coordinate origin (0,0) is initially defined as the point (-512,-512,0)
of the Multics virtual graphics terminal screen. The user may change the
location of this origin with the use of any of several entries.

The plots entry point performs no attachments to graphic devices. The
attachment of a graphic device must be done beforehand with the setup_graphics
command. All picture requests are processed and stored internally by the MGS.
When a call to the plot entry point is encountered with indicator > 30, the
picture is considered completed. It is then transmitted to the graphic device.
No further picture requests are honored until the plots entry point is again
called. A call to plots at this time causes an ~erase~ (page advance, on a
plotter) to be generated, and processing continues.

Special symbols are located in a permanent graphic segment named
~calcomp special symbols .pgs~, which is located by the use of the search rules.
Symbols are named "calcomp symbol nfl, where n is the integer corresponding to
the symbol in Table 5-1 below. --

The display list created by ccs_ has the name "ccs_display_list ".

Since no provlslons for returning error codes are possible,
calcomp compatible subrs calls com err with a suitable explanation if at any
time an-error cond1tion 1S detected.

5-17 AS40-01

Table 5-1. Multics CalComp Symbols

o ~
1 C)
2 6

3 +
4 X
5 ~

6 1-
7 X
8 Z
9 Y

10 X

1~ *
12 X
13 I
14 $

~5

~6 I
17 ~
18 _

20 ..[
21 :t:

22 $
23 6
24 +H-

25 /\
26 1:-
27 ±
28 L
29 V
30 ~
31 ~
32 }
33 (

I 34 il
I
I 35 IT

36 ¢
37 -e-
38 V

40 W
41 A
42 CC

43 b
44 -E
45 r,
46 D

47 '"
48 +

60 :
61 I

62 $

63 ?
64 &
65 (
66)
67 +

68 -

49 e 69 /

~! ~ II f! :
53 r- 73"
54 i
55 ~

56 T
57 00

I 74 -
75 A

76 A
77 B

58 CD I 78 C
I 19 < ~ 39 X I 59, 79 0

5-18

80 E
81 F
82 G
83 H
84 I
85 J
86 K
87 L
88 M
89 N
90 0
91 .P
92 Q

93 R
94 S
95 T

96 U
97 V
98 W
99 X

100 Y
101 Z
~02 a

103 b
104 c
105 d
106 e
107 f
~08 9

109 h
110 I

111 j

1~2 k
113 I

I

120 5

121 t
122 u
123 v
1.24 w
125 x
126 y

127 z
1.28 0
1.29 1
130 2
131 3
132 4
133 5

114 m ! 134 6
!

115 n i 135 7

116 01 I 1.36 8
117 P .1.37 9
1.18 q 1*138
1.19 r

AS40-01

This I/O module interprets MSGC and prints it in a form suitable for
inspection at a terminal that lacks graphic capabilities. It uses the
subroutine gr print to interpret and print out the graphic elements by name and
value. - -

io attach graphic_output gf_int user_output

io open graphic_output stream_output

The opening mode must be "stream output", as in the example. The target switch
must be "user_output", as gr_print_ simply calls ioa to print its data.

5-19 AS40-01

This subroutine interprets an ASCII character string assumed to contain
Multics graphics characters. For each sequence of graphics characters in the
string, an "English" text description of the graphics action represented by that
sequence is printed out.

declare gr_print_ entry (char(*));

call gr_print_ (string)

where string (Input) is the ASCII character string to be interpreted as MSGC.

5-20 AS40-01

graphic_chars_ graphic chars_

Name: graphic_chars_

This subroutine accepts a character string and creates a list of vectors
that represent those characters. Unlike the characters that compose a graphic
character string, these vector-composed characters may be scaled and rotated.

Entries exist to allow graphic chars to make use of any number of special
fonts and styles contained in graphic character tables (GCTs). Section 7 contains
a 1 ist of supported GCTs. Sect ion 3 contains in formation about creat ing new
GCTs.

Declarations for all the user-callable entries in graphic chars are contained
in the PL/I include file "gch entry dcls.incl.p11" (see Section 8'""). Users may
include this file (using the PL/I "%include" facility) in their source programs
to save typing and syntax errors.

FORTRAN programmers should check "Programming Considerations" in Section
for special instructions about entries that return fixed bin quantities.

declare graphic chars entry (char(*), fixed bin, float bin, float bin,
fixed bin(35)) returns (fixed bin(18));

node = graphic chars_ (string, alignment, x_size, y_size, code);

where:

1. node (Output)
is a node value representing a list of vectors that represent the
character string.

2. string (Input)
is a character string that is to be simulated by a list of vectors.

3. alignment (Input)
indicates which portion of the character string is to be displayed
at the current screen position. The following values are used:

1 top left
2 top center
~ +-f"'''' y>; O'ht
oJ v~y .L ~b,l.J,.V

4 middle left
5 dead center
6 middle right
7 bottom left
8 bottom center
9 bottom right

4. x size (Input)

8/81

is the desired dimension, in points, of the width of a character
(including the space between it and the next character).

5-21 AS40-01A

I

graphic chars_ graphic_chars_

5. y size (Input)
is the desired dimension, in points, of the height of a character.

6. code (Output)
is a standard status code.

This entry initializes graphic chars. Programs using graphic chars must
call this entry whenever they perform an operation that destroys -the current
contents of the working graphic segment, such as calling graphic manipulator $init
or graphic manipulator $use file (see "General Notes" at the end-of this subroutine
description.) This entry does not affect the setting of the current graphic
character table as specified in previous calls to graphic chars_$set_table.

declare graphic_chars_$init entry;

call graphic_chars_$init;

there are no arguments.

This entry selects a graphic character table other than the default character
table.

declare graphic_chars_$set_table entry (char(*), char(*), fixed bin(35));

call graphic_chars_$set_table (dirname, ename, code);

where:

1. dirname (Input)
is t.he directory portion of the pathname of the desired graphic
character table. If dirname is the null string, the graphic character
table specified by ename is located via the graphics search list
(see "Notes" below).

2. ename (Input)

8/81

is the entryname portion of the pathname of the desired graphic
character table.

5-22 AS40-01A

graphic_chars_ graphic_chars_

3· code (Output)
is a standard status code.

Notes I

The graphics search list is described fully in Section 2.

This entry returns the name of the graphic character table currently in use
by graphic chars_.

declare graphic_chars_$get_table entry (char(*), char(*);

call graphic_chars $get_table (dirname, ename);

where:

1 . d irname (Out put)
is tne directory portion of the pathname of the graphic character
table currently in use.

2. ename (Out put)
is the entryname portion of the pathname of the graphic character
table currently in use.

Entry: graphic chars_$long

This entry functions as the main entry, described at the beginning of this
subroutine. In addition, it returns values describing the coordinate differences·
between the start of the character string and the end of the character string.

8/81 5-23 AS40-01A

I

graphic_chars_ graphic chars_

declare graphic chars $long entry (char (*), fixed bin, float bin, float
bin, float bin, float bin, fixed bin(35)) returns (fixed bin(18));

node = graphic chars $long (string, alignment, x_size, y_size, x_spread
y _spread, code);-

where:

1. node

8/81

(Output)
is a node value representing a list of vectors that represent the
character string.

5-23.1. AS40-01A

2. string (Input)
is a character string that is simulated by a list of vectors.

3. alignment (Input)
indicates which portion of the character string be displayed at the
current screen position. The following values are used:

1 top left
2 top center
3 top right
4 middle left
5 dead center
6 middle right
7 bottom left
8 bottom center
9 bottom right

4. x size (Input)
is the desired dimension, in points, of the width of a character
(including the space between it and the next character).

5. y_size (Input)
is the desired dimension, in points, of the height of a character.

6. x_spread (Output)
is the x distance, in points, between the location of the start of
the character string and the end of the character string.

7. y_spread (Output)

8. code

Notes

is the y distance, in points, between the location of the start of
the character string and the end of the character string.

(Output)
is a standard status code.

The array of vectors and shifts that is produced by graphic chars is
guaranteed to begin and end at the same point, thus ensuring a net relative
shift of zero for any pseudo character-string produced by calling this
subroutine. This entry is provided mainly for the use of programmers of
applications packages who may find it necessary, for example, to append one
string to the end of another. It is of little use to the average user.

This entry is used exactly as graphic chars $long. Unlike the other
entries, which strip trailing blanks from a character string before converting
it, this entry transforms trailing blanks encountered into shifts.

5-24 AS40-01

graphic_chars_ graphic_chars_

declare graphic chars $long tb entry (char(*), fixed bin, float bin,
float bin,-float-bin, float bin, fixed bin(35)) returns
(fixed bin(18));

node = graphic chars $long tb (string, alignment, x size, y_size, x_spread,
y_spread,-code); -

All arguments are as described for graphic_chars_$long above.

General Notes

Use of any entry described here must be preceded at some point by a call to
graphic manipulator $init, which creates a WGS. These entries assume such a
segment-exists, and-attempt to create graphic structures in it.

For efficiency, once any character has been converted into vectors,
graphic_chars_ remembers its node value. A subsequent encounter of that same
character causes graphic chars to use the same list, rather than reassemble the
character from vectors-:- This "memory" must be cleared by a call to
graphic_chars_$init whenever any operation destroys the contents of the WGS. I

All entries to graphic chars, with the exception of long_tb, strip
trailing blanks from strings before aligning and converting them.

5-25 AS40-01

*

This subroutine contains a set of entries that encode into and decode from
parameter formats used in the MGS. For a description of the different formats
in the MSGC, refer to Section 3.

This entry decodes DPI-format characters into an array of numbers.

declare graphic code util $decode dpi entry (pointer, fixed bin, (*)
fixed bin); - - -

call graphic_code util $decode dpi (string_ptr, count, array);

5-26 AS40-01

where:

1 • string ptr
-points to

are taken.

(Input)
the string from which the encoded values

The string need not be aligned.
of the numbers

2. count (Output)
is the number of elements in the array, starting with the first to
be converted.

3. array (Output)
is an array of numbers, each of which has been converted from
characters.

This entry decodes SCL-format into an array of numbers.

declare graphic code util $decode scI entry (pointer, fixed bin, (*)
float bin); - - -

call graphic_code util $decode scI (string_ptr, count, float_array);

where:

1 • string_ptr
points to
are taken.

(Input)
the string from which the encoded values

The string need not be aligned.
of the numbers

2. count (Output)
is the number of elements in the array, starting with the first to
be converted.

3. float_array (Output)
is an array of numbers, each of which has been converted from
characters.

This entry decodes SCL-format into an array of numbers. This entry should
be used when decoding scaling factors, since to preserve the integrity of
rotation/scaling matrices, it always returns the value 1e-6 in place of a zero.

5-27 AS40-01

declare graphic code util $decode scI nozero entry (pointer, fixed bin,
(*) float bin);- - --

call graphic code util_$decode_scl nozero (string_ptr, count, float_array);

where:

1 • string ptr
-points to

are taken.

(Input)
the string from which the encoded values

The string need not be aligned.
of the numbers

2. count (Output)
is the number of elements in the array, starting with the first to
be converted.

3. float array (Output)
is an array of numbers, each of which has been converted from
characters.

This entry decodes SPI-format characters into an array of numbers.

5-28 AS40-0i

declare graphic code util $decode spi entry (painter, fixed bin, (*)
fixed bin); - - -

call graphic_code util $decode spi (string_ptr, count, array);

where:

1 • string ptr
-paints to

are taken.

(Input)
the string from which the encoded values

The string need not be aligned.
of the numbers

2. count (Output)
is the number of elements in the array, starting with the first to
be converted.

3. array (Output)
is an array of numbers, each of which has been converted from
characters.

This entry decodes UID-format characters into an array of numbers.

declare graphic code util $decode uid entry (painter, fixed bin, (*)
fixed bin); - - -

call graphic_code_util $decode uid (string_ptr, count, array);

where:

1. string_ptr (Input)
points to the string from which the encoded values of the numbers
are taken. The string need not be aligned.

2. count (Output)
is the number of elements in the array, starting with the first to
be converted.

3. array (Output)
is an array of numbers, each of which has been converted from
characters.

5-29 AS40-01

graphic_code_util_

This entry encodes an array of numbers into DPI-format characters.

declare graphic code util $encode dpi entry ((*) fixed bin, fixed bin,
pointer); - - - - .

call graphic_code util $encode dpi (array, count, string_ptr);

where:

1. array (Input)
is an array of numbers, each of which is to be converted to
DPI-format.

2. count (Input)
is the number of elements in the array, starting with the first to
be converted.

3. string_ptr (Input)
points to the string in which the encoded values of the numbers are
to be returned. The string need not be aligned.

This entry encodes an array of numbers into SCL-format characters.

declare graphic_code_util_$encode_scl entry ((*) float bin, fixed bin,
pointer);

call graphic_code util $encode scI (float_array, count, string_ptr);

where:

1 • float_array (Input)
is cUi a1" ray of numbers,
SCL-format.

-~ Vi
__ 1 ... ': _1 ...
Wlli\.;U lS to

2. count (Input)
is the number of elements in the array, starting with the first to
be converted.

3. string_ptr (Input)
points to the string in which the encoded values of the numbers are
to be returned. The string need not be aligned.

5-30 AS40-0i

This entry encodes an array of numbers into SPI-format characters.

declare graphic code util $encode spi entry ((*) fixed bin, fixed bin,
pointer); - - - -

call graphic_code util $encode spi (array, count, string_ptr);

where:

1. array (Input)
is an array of numbers, each of which is to be converted to
SPI-format.

2. count (Input)
is the number of elements in the array,starting with the first, to
be converted.

3. string_ptr (Input)
points to the string in which the encoded values of the numbers are
to be returned. The string need not be aligned.

This entry encodes an array of numbers into UID-format characters.

declare graphic code util $encode uid entry ((*) fixed bin, fixed bin,
pointer); - - - -

call graphic_code_util $encode uid (array, count, string_ptr);

where:

1. array (Input)
is an array of numbers, each of which is to be converted to
UID-format.

2. count (Input)
is the number of elements in the array, starting with the first to
be converted.

3. string_ptr (Input)
points to the string in which the encoded values of the numbers are
to be returned. The string need not be aligned.

5-31 AS40-01

Name: graphic_compiler_, gc_

This subroutine contains entry points that compile a graphic structure
resident in the WGS into MSGC. (See Section 3 for detailed descriptions of both
graphic structures and MSGC.)

Graphic structure compilation consists of a left-most tree walk of the
structure starting at the topmost list node. MSGC is generated for each node
encountered, and the entire character string representation of the structure is
output over the I/O switch named graphic output. (Entries exist that allow the
user to perform graphic operations on I/O switches other than graphic output.)
There are several compilation entry points to allow a graphic structure to be
indicated by node value or symbol name, to cause the terminal screen to be
erased before displaying the structure, and to allow the structure to be loaded
into the terminal memory, but not be immediately displayed.

Because of the multitude of entry points in graphic compiler, declarations
for all the user-callable entry points are contained in the PL7I include file
gc entry dCls.incl.p11 (see Section 3). Users may include this file (using the
PL7I "%Tnclude" facility) in their source programs to save typing and syntax
errors. In addition, because user programs normally call many entry points
repeatedly, many entry points are given two names: a descriptive long name, and
an abbreviation, both of which may be referenced externally.

GENERIC ARGUfv'IENTS

The entry points of this
individual argument descriptions
implied back to this paragraph.

1. node (fixed bin(18)) (Input)

subroutine (described below) do not include
with each "entry" description. Reference is

is the node value in the WGS of the topmost node of the graphic
structure to be compiled.

2. name (char(*)) (Input)
is a name in the WGS of the topmost node of the graphic structure to
be compiled.

3. code (fixed bin(35)) (Output)
is a standard status code.

GENERIC ENTRIES

Several of the entries in graphic compiler have counterparts that perform
the same operations as other entry points, except that they perform output over
a user-specified I/O switch. Each of these entries has the same calling
sequence as its counterpart, but takes one additional argument in the last
argument position:

5-32 AS40-01

graphic_compiler_

switch_ptr (Input)
is a pointer to the I/O switch on which the output is desired. If
this is null, switch "graphic_output" is assumed.

The "variable switch" entry points are named similarly
counterparts, with the suffix" switch". They are listed below.

ENTRY

display
display append
display-name
display-name append
load - -
load name

VARIABLE SWITCH COUNTERPART

display switch
display-append switch
display-name switch
display-name-append switch
load swTtch - -
load-name switch

to their

This entry erases the terminal screen, compiles the indicated graphic
structure, loads it into terminal memory, and displays it.

declare graphic_compiler_$display entry (fixed bin(18), fixed bin(35));

call graphic_compiler_$display (node, code);

This entry operates exactly as display, except that the terminal screen is
not erased. This allows several independent structures to be superimposed.

declare graphic compiler $display append entry (fixed bin(18),
fixed bin(35)); - -

call graphic_compiler_$display_append (node, code);

This entry operates exactly as display, except that the topmost node is
indicated by symbol name rather than by node value.

5-33 AS40-01

declare graphic_compiler_$display_name entry (char(*), fixed bin(35));

call graphic_compiler_$display_name (name, code);

This entry operates exactly as display append, except that the topmost node
is indicated by symbol name rather than by node value.

declare graphic compiler $display name append entry (char(*),
fixed bin(35)); - --

call graphic_compiler_$display_name append (name, code);

This entry compiles a graphic structure and loads it into terminal memory.
It does not erase the screen or display the structure.

declare graphic_compiler_$load entry (fixed bin(18), fixed bin(35));

call graphic_compiler_$load (node, code);

Notes

The loaded structure may be displayed at a later time by a call to
graphic_operator_$display.

The concept of loading but not displaying a graphic structure in a terminal
without its own memory makes no sense. Use of this entry point on such a
terminal is equivalent to the use of the display_append entry point.

5-34 AS40-01

This entry operates exactly like load, except that the topmost node is
indicated by symbol name rather than by node value.

declare graphic_compiler_$load_name entry (char(*), fixed bin(35);

call graphic_compiler_$load_name (name, code);

This entry accepts a string of MSGC representing a graphic structure, transforms
the structure into a graphic array, and returns the resultant MSGC.

declare graphic compiler $expand string entry (char(*), fixed bin(21),
pointer, fixed bin(21), fixed bin(35»;

call graphic compiler $expand string (input string, chars_used, output_ptr,
chars_output, code);

where:

1. input string (Input)
is a valid string of MSGC to be transformed into a graphic array.

2. chars used (Output)
is the number of characters scanned from input string until the end
of the graphic structure was detected.

3. output ptr (Input)
-points to the string in which the resultant MSGC array is to be

returned. It is the user's responsibility to ensure that the storage
provided is adequate to hold the entire output string.

4. chars output (Output)
- is the number of characters returned in the output string.

5. code (Output)
is a standard status code.

8/81 5-35 AS40-01A

Diagnostic Information

Various errors may occur during graphic structure compilation. For this
reason, the location in the graphic structure of the current node being compiled
is maintained in static storage during compilation. When an error occurs, users
may obtain this information to locate and fix the inconsistencies.

declare graphic compiler $error path entry (fixed bin(18), fixed bin,
fixed bin dimensionT*), fixed bin(35));

call graphic_compiler_$error_path (top_node, depth, path_array, code);

where:

1. top_node (Output)
is the node value of the top-level node of the graphic structure
being compiled at the time of the error.

2. depth (Output)
is the number of structure levels in the path to the substructure or
element in which the error was discovered.

3. path_array (Output)

4. code

Notes

is an array of list indexes comprlslng a unique path through the
structure to the substructure or element in which the error was
discovered.

(Output)
is a standard status code.

If path array is too small to hold the entire path, the error code
error table $smallarg is returned. In this case, depth contains the size of the
array-needed to hold the entire tree path.

Upon the occurrence of an error, graphic structure compilation is aborted,
and no characters are output.

8/81 5-36 AS40-01A

graphic_decompiler_ graphic decompiler_

Name: graphic_decompiler_

This subroutine accepts, as input, a string of MSGC and constructs an isomorphic
structure in the WGS from it. Node values encountered in the input string are
mapped one-to-one into different, but equivalent, node values in the WGS.

FORTRAN programmers should check "Programming Considerations" in Section
for special instructions about entries that return fixed bin quantities.

declare graphic compiler entry (char(*), fixed bin(35)) returns
(fixed bin (18)) ; -

node no = graphic_decompiler_ (string, code);

where:

1. node no (Output)
is the node value in the WGS of the structure represented by the
input string. If code is nonzero, this argument is -1.

2. string (Input)
is a string of MSGC.

3. code (Output)
is a standard status code.

Notes

This procedure does not initialize the WGS. Therefore, any call to it must
have been preceded, at some time in the process, by a call to
graphic_manipulator_$init.

8/81 5-37 AS40-01A

graphic_dim_

Name: graphic_dim

This I/O module is used to communicate with all graphic devices. Its main
purpose is to translate the device-independent MSGC into device-dependent code
with equivalent meaning, and dispatch this code to a graphic device. It also
can intercept all the output of a process in order to ensure that the terminal
is in the correct mode (graphic-accepting mode or text-accepting mode) to
display the output. It has the responsibility of polling intelligent terminals
to determine their status.

This module is not directly called by the user, but is referenced by the
Multics I/O system whenever appropriate I/O system calls are made by the user or
by other MGS subroutines (Further information on the I/O system may be found in
the MPM Reference Guide.) The following writeup describes how the graphic dim
module responds to certain I/O system calls. - -

Notes

This I/O module interfaces to all graphics terminals supported by the MGS
in a graphics capability. It is able to make many different device-dependent
translations by virtue of relying on different GDTs and GSPs, each written for a
different type of terminal. The syntax and description of both GDTs and GSPs
may be found in the compile_gdt command described in Section 4.

The term "dynamic terminal" as used here refers to a programmable
intelligent graphics terminal that is capable of performing some or all of the
dynamic effectors provided for by the MSGC. Although it is possible to have a
dynamically refreshed unintelligent terminal, this type of terminal is referred
to as "static", and is grouped with storage-tube terminals.

Any attempt to send an incomplete graphic structure over a graphic output
switch is in error. Any call to transmit a graphic structure must supply the
I/O module with a complete graphic structure.

Permitted I/O System Calls

The following I/O system calls are implemented by this module:

attach
close
control
detach
get chars
get-line
modes
open
put chars

5-38 AS40-01

Opening Modes

The following attachment mode may be specified in calls to attach:

graphic
indicates that all data coming from this switch is to be treated as
MSGC. If this attribute is not on, the I/O module treats the data
as normal text.

Control Requests

The following control requests are implemented:

set table

get sdb

causes a GDT to be associated with a switch. The switch must be
graphic. The data pointer in the order call points to a string
declared as "char(32)" which is the name of the GDT to be used. It
is located by the use of the search rules.

sets the pointer argument of the order call to point to the switch
datablock for this switch.

device info
causes information about the graphic device to be returned. The
data pointer should be supplied pointing to the following structure
which is filled in by the call:

dcl 1 device info aligned,
2 gdt name char(32) aligned,
2 gdt-ptr pointer,

/* device data is taken from graphic device_table.incl.pI1 */
2 device data aligned, -

where:

3 verslon number fixed bin,
3 terminal name char(32) aligned,
3 terminal-type char(4) aligned,
3 charsizes(3) float bin,
3 message size fixed bin(35),
3 points per inch float bin(63),
3 pad(10) fixed bin;

1 . gdt name
is the name of the GDT as supplied in the "set table" control
request.

2. gdt ptr
is the pointer to the segdef named "table start" within the
GDT.

3. version number
is the version number of the GDT.

5-39 AS40-01

I

I

I

4. terminal name
is the-name of the terminal as given in the "Name:" statement
of the GDT.

5. terminal type
is "stat" for a static terminal and "dyna" for a dynamic
terminal.

6. charsizes

7.

8.

are (in order) the height, width, and spacing of the character
set provided by the machine. (These are measured in points.)

message size
is the size of the maximum message which may be sent to a
terminal before requesting status. If the terminal can accept
entire messages, this number will be the maximum number of
characters in a segment.

points per inch
is the number of virtual points per physical inch of device
screen.

9. pad

debug

nodebug

is unused space.

prevents the graphic I/O module from going into raw output and input
mode when attempting to perform graphic I/O.

resets the effect of "debug", above.

Any control order not recognized by the graphic_dim is passed downstream.

Control Operations From Command Level

All control orders can be performed using the io call command. The general
format is:

io call control switch name order {optional_args}

where:

1 . order
is any of the control orders supported by graphic dim. If the
control order is not recognized by graphic dim_, it is passed to the
next I/O module in the line of attachment.-

2. optional_args
are as required for various
of the orders.

orders as indicated in the descriptions

5-40 AS40-01

Status Codes

The following status codes may be returned by graphic_dim_:

error table $badopt
error-table-$invalid mode
error-table-$long record
error-table-$negative nelem
error-table-$noarg -
error-table-$not attached
error-table-$not-detached
error-table-$undefined order request
error-table-$unimplemented version
graphIc error table $gdt mIssing
graphic-error-table-$impossible effector length
graphic-error-table-$incomplete-structure
graphic-error-table-$invalid node no
graphic-error-table-$node list overflow
graphic-error-table-$node-not active
graphic-error-table-$nongraphIc switch
graphic-error-table-$not a gdt -
graphic-error-table-$term bad err msg
graphic-error-table-$too many-node ends
graphic-error-table-$unimplemented-effector
graphic=error=table=$unrecognized_effector

Any graphic error message initiated by an intelligent graphics terminal is
reflected through this I/O module. In addition, the I/O module reflects any
error status from other I/O modules that appear later.

5-41 AS40-01

I
t
I
I

I

I

*
I

graphic element length_

Name: graphic_element length_

This subroutine determines the length, in characters, of any given graphic
effector in MSGC format.

I FORTRAN programmers should check "Programming Considerations" in Section 2
for special instructions about entries that return fixed bin quantities.

declare graphic element length entry (char(*), fixed bin(24» returns (fixed
bin); - - -

len = graphic_element_length_ (string, index);

where:

1. len (Output)
is the length, in characters, of the given effector.

2. string (Input)
is a string of MSGC containing the effector to be inspected.

3- index (Input)
is the index, wi thin the string, of the beginning of the desired
effector.

Notes

In the case of graphic effectors that "include" as arguments other graphic
effectors (e.g., symbol effectors or increment effectors), only the length of
the effector itself and any arguments up to the included subeffector (which is
always the last argument, if it occurs) are returned.

8/81 5-42 AS40-01A

This is an error table used in conjunction with the MGS. It is used in the
same way as error table (see MPM Reference Guide, Section 7) and contains those
messages and error codes applicable to the graphics system.

Messages and Error Codes

The following pages contain a list of the long messages in alphabetical
order. Each long message is followed by the name of the definition
correspondin~ to it, (e.g., definition "struc duplication", the short form of
the message ("strucdup") shown at the extreme rTght margin on the same line with
the definition), and an explanation of the error, which may include a
description of possible corrective action.

The table contains two types of error messages. One type is returned by
the part of the graphics system that is resident in Multics. The other is
returned by intelligent terminals wishing to report an error condition. These
latter errors may be distinguished by the fact that their definition names all
begin with the characters "term ", and that their messages specifically mention
that the terminal is returning-this error (short form messages begin with the
character "T").

A name duplication has occurred in moving a graphic structure.
(struc_duplication) strucdup

Meaning: While attempting to transfer a graphic structure between WGS and
a PGS, the user tried to redefine a name which already existed. The user
did not specify that this redefinition should be "forced," so the structure
move was aborted.

A negative delay between increments has been specified.
(neg_delay) negdelay

Meaning: The user attempted to specify a negative delay time in an
increment command.

An absolute effector appears in an array within the scope of an extent element.
(abs_pos_in_clipping) abs_clip

Meaning: The graphic compiler cannot process an array because it contains
an absolute ~raDhic effector (i.e .. setuosition or setnoint) that occurs
within the influence of an ext~nt eiement~(i.e., clipping or masking) whose
absolute extents are not known (i.e., no absolute graphic effectors
occurred in the array prior to the occurrence of the active extent
element). Such an array cannot be processed. This problem may be solved
by either removing the absolute element and replacing with an equivalent
relative element, or by inserting an absolute element at the beginning of
the array.

Data is not a graphic structure.
(not_a_structure)

Meaning: The user attempted to write on an I/O
as a graphic I/O switch, and the data written

5-43

notstruc

switch which was attached
was not in MSGC. If this

AS40-01

I

*

message is returned from the graphic compiler or the graphic operator, it
represents a graphics system malfunction.

Effector not implemented by this graphic device.
(unimplemented_effector) unimpeff

Meaning: The graphic I/O module detected the occurrence of some graphic
command that the GDT lists as meaningless to the device being used.
(Example: a query command to a plotter, or an increment command to a
storage-tube device.) If using other than a system-supplied GDT, the GDT
may be in error. If not, there is a high probability that the call causing
the error condition is to graphic operator The user should examine the
program to find occurrences of -calls that may not be applicable to the
particular device specified by the GDT.

Encountered effector has an impossible length.
(impossible_effector_length) badeffln

Meaning: The graphics system encountered inconsistent MSGC. If this
message is reflected by the graphic compiler or graphic operator, then this
occurrence should be reported as a bug.

Graphic clipping is not yet implemented.
(clipping_unimplemented) cantclip

Meaning: This error code is returned by an obsolete and
no-Ionger-documented entry in graphic_manipulator_.

Graphic device table was not specified or is internally inconsistent.
(gdt_missing)

Meaning: The graphic I/O module has not been supplied with the name of a
GDT to associate with a particular graphic I/O switch. This e~ror occurs
with any attempt to write upon such an I/O switch. Or: A GDT has internal
inconsistencies. The latter problem may be solved by a new process. If
not, and a user-supplied GDT is being used, the GDT may have been damaged
and may need to be recompiled.

Graphic input device number is not defined.
(bad_device_type) badevice

Meaning: The number supplied by the user in a request for graphic input to
specify the device type from which the input was desired has not been
assigned to any device by the MGS .

.,-.L , b· .,
~nuerna~ grap~lc compl~er error.

(compiler_error) comp_err

Meaning: The graphic compiler has experienced a software logic failure.
This should be reported as a bug.

no_wgs

Meaning: The user has attempted to use the graphics system without
initializing the WGS. The procedure for doing so is explained in the
descr'iption of graphic_manipulator_ provided later in this section.

5-44 AS40-01

Node is not a defined graphic datum.
(bad_node) bad node

Meaning: A node value specified in a call to the graphics system refers to
a node that has never been created (has invalid contents).

Not enough node ends encountered.
(incomplete structure) <nodends

Meaning: This represents an inconsistency in produced MSGC. If it is
reflected from a call to the graphic compiler or the graphic operator, it
should be reported as a bug.

Segment is not a graphic device table.
(not_a_gdt) notagdt

Meaning: A segment that has been specified as a GDT for use with the
graphic I/O module is not a GDT. Since search rules are used to find GDTs,
it is possible that a segment of the same name precedes the real GDT in the
search path. It is also possible for this message to be returned if a
user-supplied GDT is damaged.

Supplied list index is outside the bounds of the list or array.
(list_oob) list oob

Meaning: The user has requested an operation to be performed on the nth
element of a list or array, where n is negative or the list or array does
not contain n elements.

Symbol not found in symbol table.
(lsm_sym_search) nosymbol

Meaning: The symbol reauested was not found. This may occur on calls to
graphic_manipulator ent;ies (find_struc, put struc, or get struc).

Terminal cannot increment requested node.
(term_bad_increment_node) Tnoincnd

Meaning: The terminal has refused a request to increment a node because
the terminal program does not assign any meaning to the incrementing of the
graphic data type represented by the node.

Terminal cannot locate requested node.
(term_node_not_found) Tno node

Meaning: The graphics terminal cannot locate a node that was necessary to
this operation. The node may have been previously deleted by the user.

Terminal does not implement requested input device.
I , ..,. -.. ~ ,
\~erm_Oaa_lnpu~ aeVlce; Toad dev

Meaning: The user has requested a specific input device to be used in
"what" input. The terminal either is not programmed to utilize this device
or does not have such a device attached to it.

Terminal encountered an unimplemented graphic effector.
(term_bad_effector) Tbad eff

Meaning: Similar to "unimplemented effector" above. Warning: this error
message may signify a discrepancy between the terminal's capabilities and
the description in the GDT. It also may signify that software in the
graphics terminal is in error.

5-45 AS40-01

*

*

*

graphic_error_table_ graphic_error_table_

Terminal encountered too many node ends.
(term_too_many_ends) T>nodend

Meaning: Incorrect MSGC was sent to the terminal. This message may occur
if software in the graphics terminal is in error.

Terminal graphic buffer full.
(term_no_room) Tno room

Meaning: There is no more room in the terminal for graphics structure.
This message may occur if graphic structure is not deleted when it is no
longer necessary. Certain entries in the graphic compiler automatically
issue delete requests as noted in the graphic compiler subroutine
previously described in this section. (To explicitly delete structures in
the graphics terminal memory, see the description of graphic_operator_
described later in this section.)

Terminal reported error in graphic message contents.
(term_bad_message) Tgarbage

Meaning: The graphics terminal encountered an error that did not express
easily as a defined error condition. The problem may be a transmission
problem. If this message persists, it should be reported as a bug.

Terminal reported parity error in graphic message.
(term_bad_parity) Txparity

Meaning: The terminal reported a bad parity occurrence. The error is
almost certainly a hardware/transmission problem.

Terminal reported replacement node was too large.
(term_node_too_large) Tnodsize

Meaning: The terminal was requested to dynamically replace the contents of
a node. The replacement node was too large to fit into the space
originally allocated for the node. The structure should be resent with the
new contents in place of the old.

Terminal reported stack de~th overflow.
(term_too_many_levels) T>levels

Meaning: Structure depth has exceeded the number of levels supported by
the graphics terminal. Note that this may be much smaller than the number
of levels allowed by the Multics-resident portion of the system.

Terminal reported that no structure was active.
(term_no_active_structure) Tnotactv

Meaning: Some graphic operation was performed that incorrectly assumed a
structure was being displayed by the terminal. (Example: a "which" query
performed while the screen is blank of graphics.)

Terminal reported unimplemented effector in increment command.
(term_bad_increment_eff) Tnoincef

Meaning: The terminal does not implement the effector which the user is
attempting to increment. If this error message occurs, it should be
repor~ed as a bug.

5-46 AS40-01

Terminal returned a garbled error message.
(term_bad_err_message) Tbaderr

Meaning: The terminal returned data which was not in status message format
when the Multics-resident portion of the graphics system expected either an
acknowledgement or an error message.

Terminal returned an invalid error code.
(term_bad_err_no) Tbaderr#

Meaning: The terminal returned
meaning. This is most likely a
terminal's programming.

an error code that was not assigned a
transmission problem or a bug in the

The alignment provided for a text node is undefined.
(bad_align) badalign

Meaning: An attempt was made to create a text effector with an undefined
alignment code.

The directed operation is invalid.
(lsm_invalid_op)

Meaning: Ism was requested to perform an unrecognized operation. This
code should never be returned by the MGS.

The graphic effector type specified is invalid for this operation.
(inv_node_type) inv type

Meaning: A graphics system entry was called that requires as an argument a
node value representing some graphic type, but the node given was not of
this type. Example: calling an entry to examine the contents of a list,
but supplying the node value of a terminal element instead of a list.

The graphic input received was malformed.
(malformed_input) malformd

Meaning: A graphic device returned graphic input in an incorrect format.
This may be a transmission problem. It also may signify that a GSP is
receiving input from a device that it is not equipped to handle.

The graphic segment is full.
(lsm_full) Ism full

Meaning: No more room exists in the graphic segment in question. Usually
this means that the WGS is full, but it can also occur when putting
structures into PGSs.

The internal node list table has overflowed.
(node_list_overflow))nodetbl

Meaning: The table in which the graphic I/O module notes which nodes are
resident in the remote processor is full. This limit is arbitrary and may
be changed; therefore, occurrences of this message should be reported.

The node is not resident in the graphic processor.
(node_not_active) nodeinac

Meaning: An operation was requested to be performed upon a node assumed to
be in the graphics terminal memory. The Multics-resident portion of the
graphics system denies that this node is resident in the terminal memory.

5-47 AS40-01

I

I

The node value snecified is not a valid node value.
(invalid_node_ob) badnode#

Meaning: A node value, passed as an input argument to a graphics system
entry, does not correspond to any graphic element in the current WGS.

The node returned b~ the graphic terminal was not the node requested.
(mode_mismatch) wrongnod

Meaning: The terminal responded to a control request by controlling and/or
returning the wrong node. This signifies problems with the internal
terminal software.

The node value supplied is out of bounds.
(lsm_node_ob) Ism oob

Meaning: The node value provided was negative, less than the smallest
permissible node value, or greater than the greatest current node value.
This error can occur when operations are attempted using node variables
that have never been set.

The null node cannot be used to replace an existing node.
(null_replacement) replnull

Meaning: The user attempted to replace a node with the null node. The
null (zero) node is not an actual node in that it possesses no contents.
Rather, it is a list structure convention whose value (not contents) is
significant. The user can obtain results similar to what is desired by
replacing the node with (for example) a shift of zero.

The number of iterations to be performed is negative.
(bad_no_iter) bad iter

Meaning: The user specified a negative number of iterations to take place
within an increment command.

The s~ecified graphic structure is recursive.
(recursive_structure) recursiv

Meaning: An attempt was made to compile a structure possessing an array
that contained itself, possibly through some number of levels of
indirection. Such a structure is not compilable. The entry
graphic compiler $tree ptr (described earlier in this section) can provide
information on where the structure is in error.

This operation only permitted for a graphic I/O switch.
(nongraphic_switch) Agraphsw

Meaning: The graphic 1/0 module detected an attempt to perform a graphic
operation (e.g., the association of a GDT) on a nongraphic 1/0 switch.

Too many elements supplied to create a single graphic list or array.
(lsm_blk_len) >blksize

Meaning: An attempt was made to create a list or array that exceeds the
limitations of the graphics system (currently 4095 elements). The array or
list should be split into a structure of smaller arrays or lists.

5-48 AS40-01

Too many node ends encountered.
Ctoo_many_node_ends) >nodends

Meaning: Incorrect MSGC was passed to a graphics system entry. If this
message is reflected by the graphic compiler or graphic operator, then this
occurrence should be reported as a bug.

Unrecognized graphic effector encountered.
(unrecognized_effector) unreceff

Meaning: Incorrect MSGC was passed to a graphics system entry. If this
message is reflected by the graphic compiler or graphic operator, then this
occurrence should be reported as a bug.

Unrecognized special format character specified in graphic character table. I
(gct_bad_special_char) gctspchr

Meaning: A graphic character table contains an explicit definition for a
special format character (e. g., CR, NL, space, underscore). These format
characters cannot be defined in a GCT as their representations are computed
and constructed at run-time by the graphics system.

The following is a cross-index by definition name of graphic error table
defini t ions listed above. The error message or "name of the definition" is
given for each long message to assist in locating the information contained in
the first section.

abs pos in clipping
- An-absolute effector appears in an array wi thin the scope of an extent

element.
bad align

- The alignment provided for a text node is undefined.
bad device type

- GraphIc input device number is not defined.
bad no iter

The number of iterations to be performed is negative.
bad node

Node is not a defined graphic datum.
clipping unimplemented

Graphic clipping is not yet implemented.
compiler error

I

Internal graphic compiler error.
gct bad special char I

- Unrecognized special format character specified in graphic character table.
gdt missing

- Graphic device table was not specified or is internally inconsistent.
impossible effector length

Encountered effector has an impossible length.
incomplete structure

Not enough node ends encountered.
inv node type

- The-graphic effector type specified is invalid for this operation.
invalid node no

The node number specified is not a valid node number.
list oob

-Supplied list index is outside the bounds of the list or array.
Ism blk len

Too many elements supplied to create a single graphic list or array.
Ism invalid op

- The directed operation is invalid.

8/81 5-49 AS40-01A

Ism node ob
The-node value supplied is out of bounds.

Ism seg full
- The graphic segment is full.

Ism sym search
- Symbol not found in symbol table.

malformed input
The graphic input received was malformed.

neg delay
- A negative delay between increments has been specified.

no wgs yet
- No working graphic segment exists.

node list overflow
-The internal node list table has overflowed.

node mismatch
-The node returned by the graphic terminal was not the node requested.

node not active
-The-node is not resident in the graphic processor.

nongraphic switch
This operation only permitted for a graphic I/O switch.

not a gdt
- Segment is not a graphic device table.

not a structure
- Data is not a graphic structure.

null replacement
-The null node cannot be used to replace an existing node.

recursive structure
The specified graphic structure is recursive.

struc duplication
A name duplication has occurred in moving a graphic structure.

term bad effector
-Terminal encountered an unimplemented graphic effector.

term bad err message
-Terminal returned a garbled error message.

term bad err no
-Terminal returned an invalid error code.

term bad increment eff
-Terminal reported unimplemented effector in increment command.

term bad increment node
-Terminal cannot increment requested node.

term bad input device
-Terminal does not implement requested input device

term bad message
-Terminal reported error in graphic message contents.

8/81 5-50 AS40-01A

term bad parity
-Terminal reported parity error in graphic message.

term no active structure
-Terminal reported that no structure was active.

term no room
-Terminal graphic buffer full.

term node not found
-TermInal-cannot locate requested node.

term node too large
-TermInal-reported replacement node was too large.

term too many ends
-Terminal-encountered too many node ends.

term too many levels
-Terminal-reported stack depth overflow.

too many node ends
- Too-many-node ends encountered.

unimplemented effector
Effector-not implemented by this graphic device.

unrecognized effector
Unrecognized graphic effector encountered.

8/81 5-50. 1 AS40-01A

Name: graphic gsp_utility_

This module contains utility subroutines useful (but not limited) to Graphic
Support Procedure (GSP) programmers. Entries in this program can perform common
operations such as clipping displays to fit the screen.

This entry performs two-dimensional clipping on positional elements. The
caller specifies the starting and ending coordinates of the element and the
clipping limits (e.g., the coordinates of the screen edges). Values are returned
specifying the (possibly) cl ipped starting and ending coordinates, plus some
output optimization information.

declare graphic gsp utility $clip line entry (float bin dimension (2),
float bin dimension (2), float bin dimension (2,2), bit(1), bit(1),
float bin dimension (2), bit(1), float bin dimension (2));

call graphic gsp utility $clip line (from, to, limits, shifting,
goto_new_from, new_from, goto_new_to, new_to);

where:

1.

2.

3.

4.

from (Input)
are the absolute coordinates of the starting point of the element.

to (Input)
are the absolute coordinates of the final point of the element.

limits (Input)
specify the desired clipping limits in the order:
high X, high Y.

shifting (Input)

low X, low Y,

is "l"b
"O"b.

if this element is invisible or nondrawing; otherwise, it is

5. goto_new from (Output)
is "l"b if the caller must explicitly generate movement commands to
the point designated by new from; otherwise, it is "O"b. It is
assumed that the argument from-represents the caller's current graphic
position.

6. new from (Output)
specifies the (possibly clipped) absolute coordinates of the desired
starting point.

7. goto_new to (Output)

8/81

is "l"b if the caller must explicitly generate movement commands to
the point designated by new_to; otherwise, it is "O"b.

5-50.2 AS40-01A

8. new to (Output)
specifies the (possibly clipped) absolute coordinates of the desired
ending point.

This entry performs two-dimensional clipping on text elements.

declare graphic gsp utility $clip text entry (char(*), fixed bin, float bin
dimension (3),-float bIn dimension (2), float bin dimension (2,2),
fixed bin, float bin dimension (2), fixed bin, fixed bin);

call graphic_gsp_utility_$clip_text (string, alignment, char_sizes, curpos,
limits, hw_alignment, initial_shift, string_origin, string_len);

where:

1. string (Input)
is the character string to be clipped.

2. alignment (Input)
is the alignment of string (see "Notes" below).

3. char sizes (Input)
are the size parameters (in points) of a single character, in the
order: height, width, spacing.

4. curpos (Input)

5.

is the absolute current graphic position.

limits (Input)
specify the desired clipping limits in the order:
high X, high Y.

6. hw al ignment (Input)

low X, low Y,

specifies the alignment by which the terminal normally aligns its
hardware character set (see "Notes" below).

7 • initial shift (Output)
specifies the relative shift that must be oerformed before disp12ying
the (possibly clipped) string (see "Notes~ below).

8. string orlgln (Output)
-specifies the index of the first visible character of string.

9. string len (Output)
-specifies the number of visible characters in string.

8/81 5-50·3 AS40-01A

Notes

Values for alignment and hw alignment are chosen from the list of allowable
alignment values that appears in the description of the text element (see Section 3).

The caller must remain aware that the text element must not affect the
current graphic position. In particular, it is the caller's responsibility to
ensure this by compensating properly for both the initial shift given and the
action of displaying the string, after which, the beam or pen position most
likely will not coincide properly with the current graphic position.

8/81 5-50.4 AS40-01A

graphic_macros_

Name: graphic_macros_, gmc_

This subroutine easily creates common graphic objects that are not directly
representable as primitive graphic elements. All entities created are
two-dimensional figures, at the position and in the orientation specified by the
user. Each entry point returns a graphic node value that consists of an array
of vectors.

Declarations for all the user-callable entry points in graphic macros are
contained in the PL/I include file "gmc entry dcls. incl. pI 1" (see -Section 8).
Users may include this file (using the PL/I "%include" facility) in their source
programs to save typing and syntax errors.

Each of the figures produced originates at the current graphic position.
The current graphic position is left at the termination point of the figure.
For simple closed curves (polygons, circles, ellipses, boxes) this is the same
as the point of origin. For other figures (arcs, partial ellipses) it is not.

FORTRAN programmers should check "Programming Considerations" in Section
for special instructions about entries that return fixed bin quantities.

This entry creates an arc using the same criteria used by the circle entry
point.

8/81

declare graphic macros $arc entry (float bin, float bin, float bin,
fixed bin(35)) returns (fixed bin(18));

node = graphic_macros_$arc (x_dist, y_dist, fraction, code);

5-51 AS40-01A

where:

1 . node (Output)
is the returned graphic node.

2. x dist (Input)
is the x dimension of the relative distance from the current graphic
position to the desired center of the circle.

3. y_dist (Input)
is the y dimension of the relative distance from the current graphic
position to the desired center of the circle.

4. fraction (Input)

5. code

Notes

represents the fraction of a complete
fraction = 1eO, a complete circle is drawn.

(Output)
is a standard status code.

circle desired. If

Arcs are drawn counterclockwise, in the direction of increasing angle. If
a clockwise arc is desired, a negative value for fraction may be used.

Examples

Values of x_dist, y_dist, and fraction:

100, 0, .5eO 30, 30, -.75eO

~-----graphic position before display of figure

This ·entry creates a rectangular box.

5-52 AS40-01

graphic_macros_

declare graphic macros $box entry (float bin, float bin, fixed bin (35))
returns (flxed bin(18));

node

where:

1 • node (Output)
is the returned graphic node.

2. x side (Input)
is the x dimension of the box desired.

3 • y_side (Input)
is the y dimension of the box desired.

4. code (Output)
is a standard status code.

Notes

The first two vectors of the box created are a horizontal line of length
(x side) and a vertical line of length (y side). Therefore, if x side and
y side are both negative, the box is drawn to-the left and down from the current
graphic position.

Examples

Values of x side and y_side:

-300, 200

200, 100

I

~------graphic position before display of figure~
5-53 AS40-01

graphic_macros_ graphic_macros_

Entry: graphic_macros $circle

This entry creates a circle. The rim of the circle originates at the
current graphic position. The radius and orientation of the circle is
determined by the given distances to the desired center point of the circle.

declare g~aphic macros $circle entry (float bin, float bin, fixed bin(35))
returns (fTxed bin(18));

node

where:

1 . node (Output)
is the returned graphic node.

2. x dist (Input)
is the x dimension of the relative distance from the current graphic
position to the desired center of the circle.

3. y_dist (Input)
is the y dimension of the relative distance from the current graphic
position to the desired center of the circle.

4. code (Output)
is a standard status code.

This entry creates an ellipse, given the location of its epicenter
(geographical center) and information about its eccentricity.

declare graphic macros $ellipse entry (float bin, float bin, float bin,
fixed bin,-float bin, fixed bin(35)) returns (fixed bin(18));

node = graphic macros $ellipse (x dist, y dist, eccentricity,
eccentricTty_angTe, fraction~ code);-

where:

1 . node' (Output)
is the returned graphic node.

5-54 AS40-01

graphic_macros_ graphic_macros_

2. x dist
is
to

3. y~ dist
is
to

the
the

the
the

(Input)
x dimension of the distance from the current graphic position
epicenter (geographical center) of the desired ellipse.

(Input)
y dimension of the distance from the current graphic position
epicenter (geographical center) of the desired ellipse.

4. eccentricity (Input)
is the desired ratio of major axis to minor axis.

5. eccentricity angle (Input)
is the desired angle between the normal x-axis and the major axis of
the ellipse.

6.

7.

Notes

fraction (Input)

code

represents the fraction of the ellipse desired. If fraction
an entire ellipse is drawn.

(Output)
is a standard status code.

1 eO,

Like arcs, fractional ellipses are drawn counterclockwise. If a clockwise
portion of an ellipse is desired, a negative value for fraction may be used.

Fractional ellipses are computed on the basis of angle subtended by the
elliptical portion, not by circumferential measurement. Therefore, depending on
the location of the current graphic position and the angle of eccentricity,
fractions such as 0.25eO and 0.75eO may not produce the expected result.

The definition of
mathematical property
described.

Examples

eccentricity presented does
also called eccentricity by

not bear any relation to the
which ellipses are sometimes

Values of x_dist, y_dist, eccentricity, eccentricity_angle, and fraction:

0, 50, 2, 0, -40, -40, 1.5, 45, .5eO

graphic position before display of figure

5-55 AS40-01

graphic_macros_ graphic_macros_

This entry creates an ellipse given the locations of its two foci with
respect to the current graphic position.

declare graphic_macros_$ellipse_by_foci entry (float bin, float bin,
float bin, float bin, float bin, fixed bin(35)) returns (fixed bin(18));

node = graphic macros $ellipse by foci (x_dist1, y_dist1, x_dist2, y_dist2,
fraction,-code);- - -

where:

1 • node (Output)
is the returned graphic node.

2. x dist1 (Input)
is the x dimension of the distance between the current graphic
position and the first focus of the desired ellipse.

3 . y _ dis t 1 (In pu t)
is the y dimension of the distance between the current graphic
position and the first focus of the desired ellipse.

4. x dist2 (Input)
is the x dimension of the distance between the current graphic
position and the second focus of the desired ellipse.

5. y_dist2 (Input)
is the y dimension of the distance between the current graphic
position and the second focus of the desired ellipse.

6. fraction (Input)
represents the fraction of a complete ellipse desired.
fraction = 1eO, a complete ellipse is drawn.

If

7. code (Output)
is a standard status code.

Notes

Like arcs, fractional ellipses are drawn counterclockwise. If a clockwise
portion of an ellipse is desired, a negative value for fraction may be

Fractional ellipses are computed on the basis of
elliptical portion, not by circumferential measurement.
the location of the current graphic position and the
fractions such as 0.25eO and 0.75eO may not produce
result.

5-56

angle subtended by the
Therefore, depending on
angle of eccentricity,

the originally expected

AS40-01

graphic_macros_ graphic_macros_

The definition of eccentricity presented does
mathematical property also called eccentricity by
described.

not bear any relation to the
which ellipses are sometimes

This entry creates n-sided polygons.

declare graphic_macros_$poly~on entry (float bin, float bin, fixed bin,
fixed bin(35)) returns (fixed bin(18));

where:

1 • node

2 • x dist

3· Y dist

(Output)
is the returned graphic node.

(Input)
is the x dimension of the relative distance from the current graphic
position to the desired center of the polygon.

(Tnnl,+l
\ __ 4.£.1:' \oIL U I

is the y dimension of the relative distance from the current graphic
position to the desired center of the polygon.

4. n sides (Input)
is the number of sides desired.

5. code (Output)
is a standard status code.

Notes

One vertex of the polygon locates itself at the current graphic position.

5-57 AS40-01

graphic_manipulator_ graphic_manipulator~

Name: graphic_manipulator_> gm_

This subroutine contains entry points for creating, examining, and modifying
graphic structures in the user's WGS in the process directory, and in one or
more PGSs. (Refer to Section 3 for a complete discussion of graphic structures
and structure manipulation.)

Because of the mul titude of entry points in graphic manipulator , declarations
for all the user-callable entry points are contained- in the PL/I include file
"gm entry dcls.incl.pI1" (see Section 8). Users may include this file (using
the-PL/I "%include" facility) in their source programs to save typing and syntax
errors. In addition, because user programs normally call many entry points
repeatedly, many entry points are given two names: a descriptive long name, and
an abbreviation, both of which may be referenced externally.

Entries that create graphic elements usually take an integer argument to
determine which type of element (e.g., setposition, vector, shift) is to be
created. A PL/I include file, "graphic etypes.incl.pI1", that declares mnemonic
variables (e.g., Setposition, Vector, Shift) as representing these integers is
available for inclusion in any source program, through the PL/I "%include" facility.

Entries that take arrays of dimension (*) as arguments can accept arrays of
other than 1-origin (e.g., arrays may be declared "dimension (5:10)").

Unless otherwise stated, all entry points manipulate graphic st ruct ures
resident in the current WGS.

I FORTRAN programmers should check "Programming Considerations" in Section 2
for special instructions about entries that return fixed bin quantities.

This
system.

entry must be called before any other entry point
It initiates a WGS in the user's process directory.

declare graphic_manipulator_$init entry (fixed bin(35));

call graphic_manipulator_$init (code);

where code (Output) is a standard status code.

8/81 5-58

in the graphics

AS40-01A

graphic_manipulator_ graphic_manipulator_

Notes

Subsequent calls to graphic_manipulator_$init reinitialize the WGS and destroy
all previous structure.

Returned error codes may be from error _table_ (the system standard error
table) or from graphic error table (errors particular to the graphics system).
Both kinds of error codes may be -sent directly to the com err subroutine to
obtain the corresponding error message.

Structure Creation Entry Points

The following entry points create the various terminal and nonterminal elements
in a graphic structure. The newly created elements are free-standing in the
current WGS, and are not incorporated in any structure. They may be incorporated
in higher level structures through the create list and create_array entry points
(defined later in this description).

8/81 5-59 AS40-01A

I

1 •

graphic_manipulator_

The graphic structure creation entry points return two generic arguments:

code (fixed bin(35))
is a standard status code, either from error table
standard error table) or from graphic error table .
subroutine "com err " may be used in any case to' obtaIn
of error codes.- The codes that may be returned are:

graphic error table $no wgs yet
error table $Tsm node ob -
error-table-$lsm-index type
error-table-$lsm-invalId type
error-table-$lsm-seg fulT
error-table-$lsm-blk-len

- - - -

(the system
The system

explanations

2. node no (fixed bin(18))
- is the unique ID of the graphic element created, and may be used in

subsequent calls to graphic structure manipulation entry points.
This value is valid only for the current WGS. A node no of zero may
be used as input to any entry or as one of the elements of a list to
signify a null element. A call to graphic manipulator $init or
moving a structure between the WGS and a PGS generally invaTidates a
node value. If code is nonzero, node no is zero.

This entry creates a symbol nonterminal graphic element. This element
assigns a name to a graphic construct and enters that name in the graphic symbol
table in the WGS. Only graphic constructs so named may be saved in a PGS.

declare graphic_manipulator_$assign_name entry (char(*), fixed bin(18),
fixed bin(35)) returns (fixed bin(18));

node no = graphic_manipulator_$assign_name (name, value_n, code);

where:

1. node no and code (see generic arguments above).

2. name (Input)
is a character string containing the name
granhic construct subordinate to "value nil.
fir;t blank character.

3. value n (Input)

to be assigned to the
It is truncated at the

is the node value of the graphic construct being named.

5-60 AS40-01

graphic_manipulator_ graphic_manipulator_

This entry creates an array nonterminal graphic element. Although lists
and arrays may be included in an array, all structure subordinate to an array is
lost when the graphic structure is compiled. An array may be manipulated as a
list by the Multics-resident portion of the graphics system, but not inside an
intelligent graphic terminal.

declare graphic manipulator $create array entry (dimension(*) fixed bin(18),
fixed bin,-fixed bin(35)) returns (fixed bin(18));

node no graphic_manipulator_$create_array (array, array_I, code);

where:

1. node no and code (see generic arguments above).

2. array (Input)

3· array_l

is an array of node values of terminal or nonterminal graphic
elements.

is the
list.

(Input)
number of elements in the array to be used in creating the

This entry creates a graphic element that specifies color composition.

declare graphic manipulator $create color entry (fixed bin(6), fixed bin(6),
fixed bin(o), fixed bin(35) returns (fixed bin(18));

node no = graphic manipulator $create color (red_intensity, green_intensity~
-blue_intensity, code); - -

where:

1. node_no and code (see generic arguments above).

2. red_intensity (Input)
is the intensity of red in the color resulting from the composition
of three primary additive colors in the specified intensities.

3. green_intensity (Input)
is the intensity of green.

5-61 AS40-01

graphic_manipulator_ graphic_manipulator_

4. blue intensity (Input)
- is the intensity of blue.

Notes

Intensities are truncated to 6-bit positive integers upon graphic structure
compilation. Minimum intensity is 0; maximum intensity is 63. Because of the
nonlinear nature of the additive color spectrum, and the differences in CRT
phosphors, colors resulting from the same proportions of the primary additive
colors but different absolute intensities may be of different hues.

This entry creates a data block terminal graphic element. This element
allows arbitrary bit strings representing user data or special user
program-to-terminal conventions to be embedded in a graphic structure, and to be
stored in the structure and sent to the terminal.

declare graphic manipulator $create data entry (fixed bin, bit(*)
unaligned,-fixed bin(3,)) returns (fixed bin(18));

node no = graphic_manipulator_$create_data (n_bits, string, code);

where:

1. node_no and code (see generic arguments above).

2. n bits (Input)
is the number of bits in "string" that are to be included in the bit
string.

3. string (Input)

Notes

is a bit string containing data to be stored in the structure and
sent to the terminal in the first "n bits" bits.

Users may wish to use the nonstandard Multics PL/I "size" built-in function
or the standard "length" and "unspec" PL/I built-in functions (e.g., "length
(unspec (item))") as an easy method of supplying !In bits".

5-62 AS40-01

graphic_manipulator_ graphic_manipulator_

This entry creates a list nonterminal graphic element.

declare graphic manipulator $create list entry (dimension(*) fixed bin(18),
fixed bin(35)) returns-(fixed bin(18));

node no

where:

1. node no and code (see generic arguments above).

2. array (Input)
is an array of node values of terminal or nonterminal graphic
elements.

3. array_l (Input)

Notes

is the number of elements in the array to be used in creating the
list.

The size of the maximum list that may be created is 4094 elements.

Any elements of the array may contain zeroes as placeholders for future
replacements.

This entry creates all mode terminal elements.

declare graphic manipulator $create mode entry (fixed bin(6)), fixed bin,
fixed bin(35)) returns-(fixed bin(18));

node no = graphic_manipulator_$create_mode (type, mode, code);

where:

1. node no and code (see generic arguments above).

5-63 AS40-01

graphic_manipulator_ graphic_manipulator_

"I c...

3.

type

mode

(Input)
is the type of mode element to be created, and is one of the
following values:

16 intensity
17 linetype
18 sensitivity
19 blinking

(Input)
is the mode value for the particular mode element to be created.
The defined mode values are:

intensity
o invisible

[and intervening integers to]
7 full intensity (default)

linetype
o
1
2
3
4

solid line (default)
dashed line
dotted line
dashed-dotted line
long-dashed line

sensitivity (light pen)
o insensitive (default)
1 sensitive

blinking
o
1

steady (default)
blinking

Notes

Although only a small fraction of possible mode values are defined, no
checking is performed to verify that specified modes are defined. This allows
for future expansion to additional mode values.

Upon translation to MSGC (see Section 2 of this manual), mode values are
truncated to 6-bit positive integers, limiting mode values to the range (0, 63).

This entry creates all clemente.

declare ~raphic manipulator $create position entry (fixed bin, float bin,
float bin ~ -float bin ~ fixed bin~ 35)) returns - (fixed bin (18)) ;

5-64 AS40-01

graphic_manipulator_ graphic_manipulator_

node no graphic_manipulator_$create_position (type, x, y, z, code);

where:

1. node no and code (see generic arguments above).

2. type

3. x

4. y

5. z

Notes

(Input)
indicates which type of positional element is to be created among
the following values:

o
1
2
3
4

is

is

is

setposition (absolute position)
setpoint (absolute position, visible point)
vector (visible line from current position)
shift (relative position)
point (relative position, visible point)

(Input)
the x dimension of the positional element to be

(Input)
the y dimension of the positional element to be

(Input)

created.

created.

the z dimension of the positional element to be created.

Although the visible portion of the virtual screen is bounded by
-512eO < (x,y,z) < ?I leu, ~ne virtual screen allows coordinates bounaea by
-2048eO < (x,y,z) < 2047eO. This allows a user to display a picture that
exceeds the bounds of the visible screen "window" without wraparound.

This entry creates a three-dimensional rotation terminal graphic element.

declare graphic manipulator $create rotation entry (float bin, float bin
float bin,-fixed bin(35)) returns (fixed bin(18));

node_no = graphic_manipulator_$create_rotation (x_angle, y_angle, z_angle,
code);

where:

1. node no and code (see generic arguments above).

5-65 AS40-01

graphic_manipulator_ graphic_manipulator_

2. x_angle (Input)
is the number of degrees a graphic structure is to be rotated around
the x-axis.

3. y_angle (Input)
is the number of degrees a graphic structure is to be rotated around
the y-axis.

4. z angle (Input)
is the number of degrees a graphic structure is to be rotated around
the z-axis.

Notes

Rotation is performed around the x-axis first, then the y-axis, then the
z-axis. Angles are transformed into positive angles in the range
OeO < angle < 360eO. If scaling, rotation, and extent elements appear in the
same list or array, succeeding graphic constructs in the list are scaled first,
then rotated, then clipped and masked.

This entry creates a three-dimensional scaling terminal graphic element.

declare graphic manipulator $create scale entry (float bin, float bin,
float bin,-fixed bin(3,)) returns (fixed bin(18));

node_no = graphic_manipulator_$create_scale (x_scale, y_scale, z_scale,
code);

where:

1. node no and code (see generic arguments above).

2. x scale (Input)
is the factor by which all dimensions parallel to the stationary x
(left-to-right) axis are to be scaled.

3. y_scale (Input)
is the f~ctor by which all dimensions parallel to the stationary y
(bottom-to-top) axis are to be scaled.

4. z scale (Input)
is the factor by which all dimensions parallel to the stationary z
(back-to-front) axis are to be scaled.

5-66 AS40-01

graphic_manipulator_

Notes

Scale factors may be negative to
performed independently in each dimension,
scaling, rotation, and extent elements
succeeding graphic constructs in the list
clipped and masked.

graphic_manipulator_

produce mirror images. Scaling is
relative to the stationary axes. If

appear in the same list or array,
are scaled first, then rotated, then

This entry creates a text terminal graphic element.
constructs to be labeled and captioned.

This allows graphic

declare graphic manipulator $create text entry (fixed bin, fixed bin,
char(*) unaligned, fixed bin(35)) returns (fixed bin(18));

node_no = graphic_manipulator_$create_text (alignment, n_chars, string,
code) ;

where:

1. node no and code (see generic arguments above).

2. alignment (Input)

3.

indicates which portion of the character string is displayed at the
current screen position as follows:

1 top left
2 top center
3 top right
4 middle left
5 dead center
6 middle right
7 bottom left
8 bottom center
9 bottom right

n chars (Input)
is the number of characters in string to be taken as the text.

4. string (Input)
is a character string containing the string to be used in the text
element in its first "n chars" characters.

5-67 AS40-01

graphic_manipulator_ graphic_manipulator_

Notes

Character strings are not rotated, scaled, partially clipped, or masked,
but are subject to shifts of position produced by rotation and scaling. This
allows the use of character-generating facilities of a graphics terminal and
keeps labels readable.

Any printing ASCII character and newline may appear in string.

Structure Manipulation Entry Points

This entry inserts new elements in a list.

declare graphic manipulator $add element (fixed bin(18), fixed bin,
fixed bin(1S), fixed bTn(35j);

where:

1. list n (Input)
is the node value of the list or array to which an element is added.

2. index (Input)
is the index in the list after which the new element is added. It
may have the following values:

o
-1
other

the new element is added at the head of the list
the new element is added at the end of the list
the new element is added after the specified element

3. new n (Input)
is the node value of the new graphic construct added to the list.

4. code (Ou.tput)
is a standard status code.

Notes

An error occurs if the addition of an element to a list causes that list to
exceed 4094 elements.

5-68 AS40-01

graphic_manipulator_ graphic_manipulator_

This entry allows the user to "undefine" some symbol in the WGS. The
symbol node itself is replaced by a reference to whatever was its value. This
allows all graphics structures in the WGS that used that symbol by name to
continue to work, via a direct reference to whatever was the value of that
symbol before removal. All sharing relationships are preserved.

declare graphic_manipulator_$remove_symbol entry (char(*), fixed bin(35));

call graphic_manipulator_$remove_symbol (name, code);'

where:

1 •

2.

name (Input)
is the name of the symbol which is removed.

code (Output)
is a standard status code.

This entry replaces list or array elements.

declare graphic manipulator $replace element entry (fixed bin(18), fixed bin,
fixed bin (T8), fixed bin (35)) returns (fixed bin (18)) ;

old n = graphic_manipulator_$replace_element (list_n, index, new_n, code);

where:

1 . old n
is the node value of the graphic construct that was replaced.

2. list n (Input)
is the node value of the list or array in which an element is
replaced.

3. index (Input)
is the index of the list element replaced.

4. new n (Input)
is the node value of a graphic construct that is to replace the
element of the list or array pointed to by index.

5-69 AS40-01

graphic_manipulator_ graphic_manipulator_

5. code (Output)
is a standard status code.

This entry replaces all shared instances of a graphic substructure with a
given substructure.

declare graphic manipulator $replace node entry (fixed bin(1S),
fixed bin(1S), fixed bfn(35)); -

where:

1 . old n (Input)
is the node value of the old structure to be replaced.

2. new n (Input)
is the node value of the new node.

3. code (Output)
is a standard status code.

Notes

The node Hold nl! is destroyed in the process of being replaced.

Entry: graphic_manipulator_$replicate

This entry creates a new copy of a given substructure. No graphic elements
in the old and new copies are shared.

declare graphic manipulator $replicate entry (fixed bin(18), fixed bin(35))
returns (fTxed bin(18));

new n graphic_manipulator_$replicate (template_n, code);

5-70 AS40-01

graphic_manipulator_

where:

1. new n (Output)
is the node value of the new copy.

2. template n (Input)
is the node value of the graphic substructure used as a template.

3. code (Output)
is a standard status code.

Structure Examination Entry Points

This entry locates a color element and returns the intensities of the three
primary additive colors.

declare graphic manipulator $examine color entry (fixed bin(18),
float bin,-float bin, float bin~ fixed bin(35));

call graphic manipulator $examine color (node_n, int_red, int_green,
int_blue~ code); - -

where:

1. node n (Input)
is the node value of the color element.

2. int red (Output)
is the intensity of red.

3. int _green (Output)
is the intensity of green.

4. int blue (Output)
is the intensity of blue.

5· code (Output)
is a standard status code.

5-71 AS40-01

graphic_manipulator_ graphic_manipulator_

Entry: graphic_manipulator $examine data

This entry returns the bit string contents of a datablock terminal graphic
element.

declare ~raphic_manipulator_$examine_data (fixed bin(1S), fixed bin
bit(*), fixed bin(35));

where:

1 . node n (Input)
is the node value of the data block element to be examined.

2. n bits (Output)
is the number of data bits.

3. data (Output)
contains the user data.

4. code (Output)
is a standard status code.

This entry returns the contents of a list or array nonterminal graphic
element.

declare graphic manipulator $examine list entry (fixed bin(18), dimension(*)
fixed bin(TS), fixed bIn, fixed-bin(35));

call graphic_manipulator_$examine_list (node_n, array, array_I, code);

where:

1. noden (Input)
is the node value of the list or array node.

2. array (Output)
is an array of node values representing the contents of the list or
array.

5-72 AS40-01

graphic_manipulator_ graphic_manipulator_

3· array_l

4. code

Notes

is the
array.

(Output)
number of element

(Output)
is a standard status code.

of the array that represent the list or

If the array is too small to hold the entire list, the error code
"error table $smallarg" is returned. If this is the case, array 1 contains the
length of the array required to hold the entire list, and the entry may be
called again with an array of that size or larger.

This entry examines a mapping terminal graphic element.

declare graphic manipulator $examine mapping entry (fixed bin(18),
fixed bin,-float bin dTmension(*), fixed bin, fixed bin(35));

call graphic_manipulator_$examine_mapping (node_n, type, array, array_l,
co de) ;

where:

1 • node n

2. type

3· array

(Input)
is the node value of the mapping element to be examined.

(Output)
is the type of the mapping element, and is one of the following:

8 scaling
9 rotation

10 clipping

(Output)
contains the argument values of the mapping element being examined.

4. array_l (Output)
is the number of elements in the array. This should be 3 for
rotation and scaling, and 6 for clipping.

5. code (Output)
is a standard status code.

5-73 AS40-01

graphic_manipulator_

Notes

It is recommended that a user supply an array of at least dimension 6 to
avoid problems.

This entry obtains a mode value of a mode graphic element. This entry
applies only to mode elements with a single mode value, and not to mode elements
with several values (such as color).

declare graphic manipulator $examine mode entry (fixed bin(18), fixed bin,
fixed bin,-fixed bin(35)); -

call graphic_manipulator_$examine_mode (node_n, etype, mode, code);

where:

1. node n (Input)
is the node value of the mode element whose mode value is desired.

2. etype (Output)

3· mode

4. code

is the type of element, and is one of the following values:

-1 not a mode element
16 intensity
17 line type
18 sensitivity
19 blinking

(Output)
is the mode value.

(Output)
is a standard status code.

This entry locates a positional graphic element and returns the x, y, and z
coordinates.

5-74 AS40-01

graphic_manipulator_ graphic_manipulator_

declare graphic_manipulator_$examine_position entry (fixed bin(18),
fixed bin, float bin, float bin, float bin, fixed bin(35));

call graphic_manipulator_$examine_position (node_n, etype, x, y, z, code);

where:

1 • node n (Input)

2. etype

3· x

4· y

5· z

6. code

is the node value of a positional graphic element whose coordinates
are desired.

(Output)
is the type of element, and is one of the following values:

-1 not a positional element
0 setposition
1 setpoint
2 vector
3 shift
4 point

(Output)
is the x value of the element.

(Output)
is the y value of the element.

(Output)
is the z value of the element.

(Output)
is a standard status code.

This entry returns the name and node value of a named graphic substructure
associated with a particular symbol node in the graphic symbol table.

declare graphic_mani~ulator_$examine_symbol entry (fixed bin(18), fixed bin(18),
fixed bin, char(*), fixed bin(35));

call graphic_manipulator_$examine_symbol (node_n, value_n, n_chars, name,
code) ;

where:

1 . node n (Input)
is the node value of a symbol node.

5-75 AS40-01

graphic_manipulator_

2. value n (Output)
is the node value of the graphic substructure named by this symbol.

3. n chars (Output)
is the number of characters in the name.-

4. name (Output)
is the name associated with the substructure.

5. code (Output)
is a standard status code.

Notes

The normal use of this entry is to examine individual symbols after listing
the entire graphic symbol table with the graphic_manipulator_$examine_symtab
entry point.

This entry lists the symbols in the symbol table of the WGS.

declare graphic manipulator $examine symtab entry (dimension(*)
fixed binT18), fixed bin, fixed bin(35));

call graphic_manipulator_$examine_symtab (array, array_I, code);

where:

1 . array (Output)
contains the node values of the symbols in the symbol table.

2. array_l (Output)
is the number of symbols in the symbol table.

3. code (Output)
is a standard status code.

Notes

If array is too small, the error code "error table $smallarg" is returned,
and "array_I" contains the size of array needed to-hold the entire symbol table.

5-76 AS40-01

graphic_manipulator_ graphic~manipulator_

This entry returns the alignment and character string value of a text
graphic element.

declare graphic manipulator $examine text entry (fixed bin(18), fixed bin,
fixed bin,-char(*), fixed bin(35));

call graphic manipulator $examine text (node_n, alignment, n_chars, text,
code); - - -

where:

1. node n (Input)
is the node value of a text element.

2. alignment (Output)

3·

4·

5.

n chars

text

code

is the alignment of the text string.

(Output)
is the number of characters in the text string.

(Output)
is the actual text.

I '" J I \ \uu""Gpu""G)
is a standard status code.

This entry locates a graphic element and returns its type.

declare graphic_manipulator_$examine_t~pe entry (fixed bin(18), bit(1)
aligned, fixed bin, fixed bin(35));

call graphic_manipulator_$examine_type (node_n, t nt, type, code);

where:

1 . nod e n (In pu t)

2. t nt

is the node value of a graphic element whose type is desired.

(Output)
is "O"b if the node is a terminal graphic element, "1"b if it is a
nonterminal graphic element (list, array, or symbol).

5-77 AS40-01

graphic_manipulator_

'Z -'-~~-~ f" _ \
..). "'3.f:Jt;:; \VU.f:Ju. ... ,

is the type of the node, and is one of the following values:

-2 bad type
-1 null' node

0 setposition
1 setpoint
2 vector
3 shift
4 point
8 scale
9 rotate

10 clip
16 intensity
17 line type
18 sensitivity
19 blinking
20 color
24 symbol
25 text
26 data
32 list
33 array

4. code (Output)
is a standard status code.

Notes

The introductory paragraphs of this subroutine description discuss PL/I
include file "graphic etypes.incl.pI1" which is useful in decoding the "type"
argument, and similar arguments in various entries.

This entry returns the node values of the graphic structure and symbol node
of a named structure.

declare graphic manipulator $find structure entry (char(*), fixed bin(18),
fixed bin(35)) returns-(fixed bin(18));

where:

1 • (Output)
is the node value of the symbol node naming the structure, and is 0
if the name is not found.

5-78 AS40-01

graphic_manipulator_ graphic_manipulator_

2. name (Input)
is the name of the structure to be located, and is truncated at the
first blank.

3. value n (Output)
is the node value of the graphic structure with the specified name,
and is 0 if the name is not found in the graphic symbol table.

4. code (Output)
is a standard status code

Graphic structure Storage Entry Points

The following entry points move portions of graphic structures between the
WGS and one or more PGSs.

There are several generic arguments:

1. dname (char(*» (Input)
is the name of the directory containing the desired PGS. If dname I
is the null string, the PGS specified by ename is located via the
graphics search list (see "Notes" below).

2. ename (char(*) (Input)

3 •

4.

Notes

8/81

is the name of a PGS in the directory specified by dname. If the
suffix ".pgs" is not explicitly provided, it is appended.

name (char(*») (Input)
is the name of a named substructure in the WGS or PGS that is specified
by dname and ename.

code (Output)
is a standard status code.

The graphics search list is described fully in Section 3.

5-79 AS40-01A

I

I

graphic_manipulator_ graphic_manipulator_

This"entry moves a named graphic substructure from a PGS into the WGS.

declare graphic manipulator $get struc entry (char(*), char(*), char(*),
fixed bin(2), fixed bin(35));

call graphic_manipulator_$get_struc (dname, ename, name, merge, code);

where:

1. dname, ename, name, and code (see generic arguments above).

8/81 5-79.1 AS40-01A

graphic_manipulator_ graphic_manipulator_

2. merge

Notes

determines the disposition of named substructures in the structure
being moved from the PGS, and is one of the following values:

° the entire graphic substructure in the PGS is moved into the
WGS. Names of named substructures are entered into the graphic
symbol table of the WGS as they are moved. If a name already
exists in the WGS symbol table, the error code
"graphic error table $struc duplication" is returned, and
structure movement is aborted.

identical to 0, except that
and its substructure in
substructure.

on naming conflicts, the old symbol
the WGS are replaced by the new

2 instances of named substructures in the structure being copied
from the PGS are replaced by identically-named substructures
already in the WGS. If a name in the PGS is not found in the
graphic symbol table of the WGS, a symbol with that name and no
associated substructure is created in the WGS.

3 identical to 2, except that the PGS substructures with names not
in the WGS symbol table are copied into the WGS.

The merge argument provides the flexibility of global replacements of named
graphic entities. Normal usages of get_struc are:

Value of "merge" Operation

o

2 or 3

moving a structure into an empty WGS.

moving a structure into a nonempty WGS to restore named
substructures to their previously saved state (e.g.,
when one has been editing a graphic structure and has
decided to start again with a fresh copy of the
original) .

newly designed substructures in the WGS are to replace
identically named substructures in a graphic structure
in a PGS when the structure is moved into the WGS.

Node values are not preserved across this operation.

This entry moves a named graphic substructure from the WGS into a PGS.

5-80 AS40-01

graphic_manipulator_ graphic_manipulator_

declare graphic manipulator $put struc entry (char(*), char(*), char(*),
fixed bin(2), fixed bin(35));

call graphic_manipulator_$put_struc (dname, ename, name, merge, code);

where:

1. dname, ename, name, and code (see generic arguments above).

2. merge

Notes

determines the disposition of named substructures in the structure
being moved from the WGS, and is one of:

o the entire graphic substructure in the WGS is moved into the
PGS. Names of named substructures are entered into the graphic
symbol table of the PGS as they are moved. If a name already
exists in the PGS symbol table, the error code
"graphic error table $struc duplication" is returned, and
structure movement is aborted.

identical to 0, except that
and its substructure in
substructure.

on naming conflicts, the old symbol
the PGS are replaced by the new

2 instances of named substructures in the structure being copied
from the WGS are replaced by identically named substructures
already in the PGS. If a name in the WGS is not found in the
graphic symbol table of the PGS, a symbol with that name and no
associated substructure is created in the PGS.

3 identical to 2, except that the WGS substructures with names not
found in the PGS symbol table are copied into the PGS.

The merge argument provides the flexibility of global replacements of named
graphic entities. Normal usages of put struc are:

Value of "merge" Operation

o

2 or 3

moving a structure into an empty PGS.

moving a structure into a nonempty PGS when one wishes
to replace old named substructures in the PGS with new
ones of the same name.

newly designed substructures in the WGS are to replace
identically named substructures in a PGS.

Node values are not preserved over this operation.

5-81 AS40-01

graphic_manipulator_ graphic_manipulator_

This entry saves an entire graphic structure in the WGS in a PGS whose name
is specified.

declare graphic manipulator $save file entry (char(*), char(*),
fixed bin(35)); - -

call graphic_manipulator_$save_file (dname, ename, code);

where dname, ename, code (see generic arguments above).

Notes

The PGS specified by dname and ename is reinitialized (all previous
contents are destroyed) before the entire graphic structure resident in the WGS
is copied. Node values are not preserved over this operation.

This entry moves an entire graphic structure saved in a PGS into the WGS.

declare graphic manipulator $use file entry (char(*), char(*),
fixed bin(35)); --

call graphic_manipulator_$use_file (dname, ename, code);

where dname, ename, code (see generic arguments above).

Notes

The WGS is reinitialized (all previous contents are destroyed) before the
graphic structure resident in the PGS is copied. Node values are not preserved
over this operation.

5-82 AS40-01

Name: graphic_operator_, go_

This subroutine contains entry points for performing animation on a graphics
terminal, obtaining graphic input from a user, initiating graphic interactions
between a user and the terminal, and controlling special terminal functions.

All entry points generate MSGC for the operations they perform, and output
this code over the 1/0 switch named graphic output. Those entry points that
look for graphic input from a terminal expect it over the 1/0 switch named
graphic input. Entries are provided to allow users to specify their own 1/0
switches for these operations, if desired.

Complete descriptions of the various dynamic graphic operators may be found
in Section 3 of this document.

Because of the multitude of entry points in graphic operator , declarations
for all the user-callable entry points are contained in the PLn include file
"go entry dcls.incl.p11" (see Section 8). Users may include this file (using
the-p11 "%include" facility) in their source programs to save typing and syntax
errors.

FORTRAN programmers should check "Programming Considerations" in Section
for special instructions about entries that return fixed bin quantities.

Generic Entries

All of the entries in graphic operator that perform output have counterparts
that perform the same operation over a user-specified 1/0 switch. Each of these
entries has the same calling sequence as its counterpart, but takes one additional
argument in the last argument position:

switch_ptr (Input)
is a pointer to the 1/0 switch on which the output is desired. If
this is null, switch "graphic_output" is assumed.

The "variable switch" entry points are named similarly to their counterparts,
with the suffix" switch". They are:

8/81

ENTRY

control
delete
dispatch
display
erase
increment
pause
replace element
synchronize

VARIABLE SWITCH COUNTERPART

control switch
delete switch
dispatch switch
display switch
erase switch
increment switch
pause switch
replace element switch
synchronize_switch

5-83 AS40-01A

Entry points that perform both input and output have counterparts that
perform the same operation over user-specified I/O switches. Each of these
entries uses the same calling sequence as its counterpart, but takes two
additional arguments in the last argument positions:

input_switch_ptr (Input)
is a pointer to the switch on which the input is desired. If this
is null, switch "graphic_input" is assumed.

output_switch ptr (Input)
is a pointer to the I/O switch on which the output is desired. If
this is null, switch "graphic_output" is assumed.

The "variable switch" counterparts follow the same naming convention described
above. They are:

ENTRY

what
where
which

Animation Entry Points

VARIABLE SWITCH COUNTERPART

what switch
where switch
which-switch

Entry: graphic_operator_$increment

This entry increments the parameter values of a
or mapping terminal graphic element a specified
specified delay between increments.

single positional, modal,
number of times, with a

declare graphic operator $increment entry (fixed bin(18), fixed bin,
float bin~ fixed bln(18), fixed bin(35));

call graphic_operator_$increment (node_n, no_iter, delay, incr u, code);

where:

1 . node n (Input)
is the node value of the positional, modal, or mapping element
incremented.

2. no iter (Input)

3. delay

is the number of times the incrementation is performed.

(Input)
is the number of seconds of real time the graphics terminal is to
delay before performing each increment (including the first
increment) .

5-84 AS40-01

4. incr n (Input)
is the node value of a graphic element, of the same ~ as node_n,
that contains the increments for each parameter in node n.

5. code (Output)
is a standard status code.

Notes

The parameters of the graphic element whose node value is "node n" are
updated to reflect their new values after incrementation.

The terminal delays the specified number of seconds (rounded to the nearest
1/64th of a second) before each increment, including the first. The number of
seconds is truncated to 11 bits of integer precision (2047eO).

Any number of increment operations may be performed in parallel.

This entry replaces an element in a list, resident in terminal memory, with
another element, also resident in terminal memory.

declare graphic operator $replace element entry (fixed bin(18), fixed bin,
fixed bin(T8), fixed bin(35)) returns (fixed bin(18));

old n

where:

1 . old n (Output)
is the node value of the element replaced.

2. list n (Input)
is the node value of the list containing the element to be replaced.

3. index (Input)
is the index in the list of the element to be replaced.

4. new n

5 • code

(Input)
is the node value of
"list n" pointed to
terminal memory.

(Output)

the node
by index.

is a standard status code.

5-85

to
It

replace the
must already

element of list
be resident in

AS40-01

graphic~operator_

Entry: graphic_operator_$synchronize

This entry causes the graphics terminal to complete all previously received
graphic operators before processing any following graphic operators. Its
primary use is to synchronize operations going on in parallel.

declare graphic_operator_$synchronize entry (fixed bin(35));

call graphic_operator_$synchronize (code);

where coqe (Output) is a standard status code.

Input and User Interaction Entry Points

This entry places a positional graphic element in terminal memory under
control of the user. The new absolute or relative coordinates of the element
are updated in the WGS.

declare graphic_operator_$control entry (fixed bin(18), fixed bin(35));

call graphic_operator_$control (node_n, code);

where:

1 • node n (Input)

2. code

Notes

is the node value of a positional node to be placed under user
control.

(Output)
is a standard status code.

The exact nature of the interaction between the user and the terminal
during the operation is left to the terminal programming.

5-86 AS40-01

Entry: graphic operator_$pause

This entry causes the graphics terminal to pause before performing any
subsequent graphic operation. The terminal remains in this state until the user
indicates via some local interaction a readiness to proceed.

declare graphic_operator_$pause entry (fixed bin(35));

call graphic operator_$pause (code);

where code (Output) is a standard status code.

Notes

The exact nature of the interaction between the user and the terminal
during this operation is left to the terminal programming.

This entry is used to obtain a "what!! graphic input. Tne structure sent by
the terminal is decompiled and turned into an equivalent structure in the WGS.

declare graphic operator $what entry (fixed bin, fixed bin, fixed bin(35))
returns (fIxed bin(18));

node no graphic_operantor_$what (device, device_used, code);

where:

1. node no (Output)
is a node value specifying the structure in the WGS that was created
from the input returned.

2. device (Input)
tells the graphics terminal which type of graphic input device the
user will use to give a graphic input. It is one of the following
values:

-1 any device (user chooses at run time)
o terminal processor or program
1 keyboard
2 mouse
3 joystick

5-87 AS40-01

4 tablet and pen
5 light pen
6 trackball

graphic_operator_

3. dev used (Output)

4. code

Notes

is the type of graphic input device actually used to produce the
graphic input.

(Output)
is a standard status code.

The exact nature of the interaction between the user and the terminal to
produce a "what" input is left to the terminal programming.

This entry returns a "where" graphic input consisting of three absolute
coordinate positions.

declare graphic operator $where entry (fixed bin, float bin, float bin,
float bin,-fixed bin(35));

call graphic_operator_$where (device, x, y, z, code);

where:

1 . dev ice (Input)
same as in "what" entry above.

2. x (Output)
is the x coordinate of the position indicated by the user.

3· y (Output)
is the y coordinate of the position indicated by the user.

4. z (Output)
is the z coordinate of the position indicated by the user.

5. code (Output)
is a standard status code.

5-88 AS40-01

Notes

The protocol by which a user lets the terminal know which input device to
use (if there is a choice) is left to the terminal programming. Terminals not
implementing a requested device have two options: they may map the device into
an equivalent implemented device, or they may return an error to the graphics
system. This may be done either by the terminal (if intelligent) or by the
terminal's support procedure (if a static display).

This entry returns ·a "which" graphic input consisting of
the tree-structured graphic structure resident in the graphics
graphic substructure indicated by the user.

a unique path in
terminal of the

declare graphic operator $which entry (fixed bin, fixed bin(18), fixed bin,
dimension(*) fixed bin, fixed bin(35));

call graphic_operator_$which (device, top_n, depth, path_array, code);

where:

1. device (Input)
same as in "where" entry above.

2. top_n (Output)
is the node value of the top-level node of a graphic structure
resident in terminal memory.

3. depth (Output)
is the number of structure levels in the path to the substructure
indicated by the user.

4. path_array (Output)
is an array of list indexes comprising a unique path through the
structure to the indicated substructure.

5. code (Output)
is a standard status code.

Notes

If path array is too small to hold the entire path, the error code I
error table $smallarg is returned. In this case, depth contains the size of
array- needed to hold the entire tree pathname, and the input is saved in
internal static storage, where it may be obtained by a subsequent call to
graphic_operator_$which with an array of sufficient size. The input is saved

5-89 AS40-01

graphic~operator_

until a successful call to graphic operator $which returns -:+
.J.. v, or until freed by

a call to graphic_operator_$reset.- -

The interaction between the user and the terminal to produce a "which"
input is left to the terminal programming.

Terminal Control Entry Points

This entry deletes all graphic structure subordinate to and including a
given node from graphics terminal memory.

declare graphic_operator_$delete (fixed bin(18), fixed bin(35));

call graphic_operator_$delete (node_no, code);

where:

1 •

2.

Notes

node no (Input)

code

is the node value of a graphic structure already
terminal memory that is to be deleted. If zero,
structures in terminal memory are deleted.

(Output)
is a standard status code.

resident in
all graphic

If node no is not resident in terminal memory, the error message
"graphic_error table_$node_not active:: is returned.

This operation has no effect on a static device.

This operation deletes whole subtrees of graphic structure. Any other
structure that references the deleted node or any of its subordinates ceases to
function. Therefore, it is not recommended that the delete function be used
without first issuing an erase command.

5-90 AS40-01

Entry: graphic_operator_$dispatch

This entry dispatches to the terminal any graphic operators buffered while
running in nonimmediate mode.

declare graphic_operator_$dispatch entry (fixed bin(35));

call graphic_operator_$dispatch (code);

where code (Output) is a standard status code.

This entry causes the graphic structure subordinate to and including a
given node, already resident in the terminal memory, to be displayed on the
terminal screen.

declare graphic_operator_$display entry (fixed bin(18), fixed bin(35));

where:

1 . node n (Input)
is the node value of the top-level node of a graphic structure
resident in terminal memory that is to be displayed.

2. code (Output)
is a standard status code.

Notes

The node "node n" may be anv node resident in terminal memorv (e.g.~ it may
be a substructure in a larger st~ucture in terminal memory). v

This entry erases all graphics currently displayed on the terminal screen.

5-91 AS40-01

declare graphic_operator_$erase entry (fixed bin(35));

call graphic_operator_$erase (code);

graphic~operator_

where code (Output) is a standard status code.

Notes

On intelligent, refresh terminals, this entry should not erase any
information on the screen that IS not part of a graphic structure (e.g., text
from using the terminal as an alphanumeric terminal).

This entry destroys any graphic operators buffered but not yet sent to the
terminal when immediacy = "O"b. Additionally, it causes any saved "which" type
input that has not yet been obtained to be discarded.

declare graphic_operator_$reset entry;

call graphic_operator_$reset;

there are no arguments.

This entry sets an internal liimmediacyll mode for the buffering of dynamic
graphic operators to be sent to the terminal.

declare ~raphic_operator_$set_immediacy entry (bit(1) aligned,
bit(1) aligned, fixed bin(35));

call graphic_operator_$set_immediacy (immediacy, prev_immediacy, code);

5-92 AS40-01

where:

1. immediacy (Input)
determines whether dynamic graphic operators are sent as they are
generated, or buffered until sent (explicitly by a call to
graphic operator $dispatch, or implicitly by a call to an input
operator). If Immediacy = "O"b, then operators are buffered. If
immediacy = "1"b (the initial default), then operators are sent as
they are generated.

2. prev_immediacy (Output)

3. code

Notes

is the value of the immediacy mode as it was prior to the
set_immediacy call.

(Output)
is a standard status code.

Any operators already buffered whenever immediacy is set to "1"b are output
to the terminal.

5-93 AS40-01

Name: graphic terminal_status

This subroutine interprets error messages sent from a remote programmable
graphics terminal. An entry may be used to gain further information concerning
the exact cause of a terminal error that has occurred. This entry should be
used in conjunction with the information in the include file
"graphic_terminal_errors.incl.pI1" (see Section 8).

This entry interprets the character string status message sent by an
intelligent graphics terminal.

declare graphic_terminal_status_$decode entry (char(*), fixed bin(35));

call graphic_terminal_status_$decode (err_string, code);

where:

1 •

2.

err string

code

is the
terminal.

(Input)
acknowledgement

(Output)

message received from an intelligent

is a standard status code.

Notes

Only status codes from graphic error table are returned by this entry. If
the status code is nonzero, it is guaranteed to be one of the "terminal" errors
in graphic error table, distinguishable by a name of the form
"graphic error table $term ... ". (See description of graphic_error_table_ in
this section.)- - -

This entry extracts detailed information about the last graphics terminal
error that has occurred.

5-94 AS40-01

declare graphic terminal status $interpret entry (fixed bin(35), char(1),
fixed bin,-fixed bin, (*) fixed bin, fixed bin(35));

call graphic terminal status $interpret (status_code, err char, node, depth,
path, code); - -

where:

1 . status code (Output)
is the status code last returned by graphic_terminal_status_$decode.

2. err char (Output)
representation

3· node

is the SPI
terminal.

(Output)

of the status code returned by the

is the top-level node of the structure resident in the graphics
terminal that was being operated upon at the time of the error. If
this node is zero, no structure figured in the error.

4. depth (Output)

5· path

6. code

Notes

is the depth in the list structure, from the top-level node, at
which the error occurred.

(Output)
the ith element of path corresponds to the index of the element of
the -ith level list that was active on the graphics terminal's
display stack at the moment of the error. (Each element, except the
last one. refers to a subroutine call. The whole array represents a
kind of' pathname of the exact node that caused the error and
includes the history of its invocation.)

(Output)
is a standard status code.

This entry only returns one nonzero code, error table $smallarg. This
signifies that the dimension of the path argument was Tess than the value of
depth. The information is saved, however, and may be obtained on a subsequent
try with a larger array area.

5-95 AS40-01

gui gui_

Name: gui

The gui subroutine provides a means by which casual graphics users can
communicate with the MGS using PL/I or FORTRAN.

The user should be aware that graphic item calls do not transmit picture
fragments directly to the screen, but create a list structure of picture description
elements in the WGS. The list is then transmitted to the screen by a call to
gui_$gdisp.

I Declarations for all the user-callable entry points in gui are contained
in the PL /1 include file "gui ent ry dcl. incl. pI 1" (see Sect ion --s) . Users may
include this file (using the PL/I "%Include" facility) in their source programs
to save typing and syntax errors.

This entry creates a sequence of items directing that an arc be generated
that runs from the current position.

declare gui_$garc entry (float bin, fixed bin, fixed bin);

call gui_$garc (q, dx, dy);

where:

1. q

2. dx

3. dy

8/81

(InDut)
is the length (in radians/pi) of the circle to be drawn (e.g., q=2
specifies a complete circle.) If q is positive, the arc is drawn
counterclockwise. If q is negative, the arc is drawn clockwise.

(Input)
is the relative distance, in the x direction, from the current position
to the center of the desired circle.

(Input)
is the relative distance, in the y direction, from the current position
to the center of the desired circle.

5-96 AS40-01A

gui gui

This entry creates a sequence of items directing that a box (of size dx by
dy) be displayed starting from the current position. The current position defines
one corner of the box. The first two sides of the box to be drawn are of
lengths (dx, 0) and (0, dy) respectively. This allows the user to position the
current graphic position at any corner of the box by controlling the signs of
the arguments dx and dye

8/81 5-96. 1 AS40-01A

This page intentionally left blank.

8/81 AS40-01A

gui_

declare gui_$gbox entry (fixed bin, fixed bin);

call gui_$gbox (dx, dy);

gui_

where:

1 • dx (Input)
is the size of the box in the x direction.

2. dy (Input)
is the size of the box in the y direction.

This entry creates a sequence of items directing that a complete circle be
displayed starting from and ending with the current position.

declare gui_$gcirc entry (fixed bin, fixed bin);

call gui_$gcirc (dx, dy);

where:

1 • dx

2. dy

(Input)
is the relative distance, in the x direction, from the current
position to the center of the desired circle.

(Input)
is the relative distance, in the y direction, from the current
position to the center of the desired circle.

This entry directs that everything currently on the display list be
displayed. The initial call to gdisp erases the screen. Subsequent calls
append fragments to the existing picture without erasing the screen unless
gui_$geras has been called in the meanwhile.

5-97 AS40-01

gui_

declare gui_$gdisp entry;

call gui_$gdisp;

there are no arguments.

gui_

This entry directs that subsequent lines and figures should be drawn with
solid or dotted lines.

declare gui_$gdot entry (fixed bin);

call gui_$gdot (type);

where type (Input) is an integer specifying the type of line to use and is one
of the following values:

a solid line
1 dashed line
2 dotted line
3 dashed-dotted line
4 long-dashed line

A PL/I include file, "graphic etypes.incl.p11", which declares mnemonic
variables (e.g., solid, dotted) as representing these integers, is available for
inclusion in the user's source program, through the PL/I "%include" facility.

This entry ensures that the next call to gui $gdisp causes the screen to be
erased, and the entire display list to be redisplayed.

declare gui_$geras entry;

call gui_$geras;

there ~re no arguments.

5-98 AS40-01

gui gui

This entry creates a sequence of items directing that a regular polygon of
n sides be displayed starting from and ending with the current position. The
center of this polygon is at a distance (dx, dy) from the current position. The
current position defines one vertex of the polygon.

declare gui_$geqs entry (fixed bin, fixed bin, fixed bin);

call gui_$geqs (n, dx, dy);

where:

1 • n

2. dx

3· dy

(Input)
is the desired number of sides. It must be less than 200.

(Input)
is the relative distance, in the x direction, from the current
position to the center of the desired polygon.

(Input)
is the relative distance, in the y direction, from the current
position to the center of the desired polygon.

This entry initializes the WGS and creates an empty display list with the
name "gui display list ". This entry must be called prior to issuing any other
calls to gui. Subsequent calls to this entry reinitialize (i.e., destroy the
contents of)-the WGS.

declare gui_$ginit entry;

call gui_$ginit;

there are no arguments.

This entry creates an item that directs that the current position be
shifted by the specified increment in three-dimensions and directs that a
visible point be displayed at this position.

5-99 AS40-01

declare gui_$gpnt entry (fixed bin, fixed bin, fixed bin);

call gui_$gpnt (dx, dy, dz);

where:

1 • dx

2. dy

3· dz

(Input)
is the number of points by which the current position is shifted in
the x direction.

(Input)
is the number of points by which the current position is shifted in
the y direction.

(Input)
is the number of points by which the current position is shifted in
the z direction.

This entry directs that everything in the display list be removed. This
has no effect upon the current picture displayed, which remains until erased.

declare gui_$grmv entry;

call gui_$grmv;

there are Qe arguments.

This entry creates an item that directs that the current position be
shifted by the specified increment in three-dimensions. This shift is not
visible.

declare gui_$gsft entry (fixed bin, fixed bin, fixed bin);

call gui_$gsft (dx, dy, dz);

5-100 AS40-01

gui_ gui

where:

1 • dx (Input)
is the number of points by which the current position is shifted in
the x direction.

2. dy (Input)
is the number of points by which the current position is shifted in
the y direction.

3· dz (Input)
is the number of points by which the current position is shifted in
the z direction.

This entry creates an item that sets the current position in the display
space to a specified point in three-dimensions and appends this item to the
display list.

declare gui_$gsps entry (fixed bin, fixed bin, fixed bin);

call gui_$gsps (x, y, z);

where:

1 • x (Input)
is the absolute x coordinate of the desired point.

2. y (Input)
is the absolute y coordinate of the desired point.

3· z (Input)
is the absolute z coordinate of the desired point.

5-101 AS40-01

gui_ gui_

This entry is similar to gsps above, but directs that a visible point be
displayed at this position.

declare gui_$gspt entry (fixed bin, fixed bin, fixed bin);

call gui_$gspt (x, y, z);

arguments are as above.

This entry creates an item directing that a character string be displayed
starting from the current position in a horizontal direction. The current
position remains unchanged.

declare gui_$gtxt entry (char(*), fixed bin);

call gui_$gtxt (cstring, alignment);

where:

1 . cstring (Input)
is the character string to be displayed.

2. alignment (Input)
specifies by which alignment point the string is to be aligned and
is one of the following values:

1 top left
2 top center
3 top right
4 middle left
5 dead center
6 middle right
'7 "h "'++ 1"\"'" left r uv v UV.Lll

8 bottom center
9 bottom right

A PL/I include file, "graphic etypes.incl.p11", which declares mnemonic
variables (e.g., Upper left, Center) as representing these integers, is
available for inclusion in the user's source program through the PL/I "%include"
facility. - - .

5-102 AS40-01

This entry creates an item that directs that a straight line of specified
dimensions be constructed in three-dimensions starting at the current position.

declare gui_$gvec entry (fixed bin, fixed bin, fixed bin);

call gui_$gvec (dx, dy, dz);

where:

1 • dx (Input)
is the number of points by which the current position is shifted in
the x direction.

2. dy (Input)
is the number of points by which the current position is shifted in
the y direction.

3· dz (Input)
is the number of points by which the current position is shifted in
the z direction.

Example of ~

The following is an example of a program using gui_

gui demo: proc;
%include graphic_etypes;

dcl gui $gtxt entry (char(*), fixed bin),
gui-$gcirc entry (fixed bin, fixed bin),
gui=$gbox entry (fixed bin, fixed bin),

5-103 AS40-01

gui_

I

8/81

gui $gsps entry (fixed bin, fixed bin, fixed bin),
gui-$gdisp entry,
gui-$ginit entry,
gui=$garc entry (float bin, fixed bin, fixed bin);

call gui $ginit;
call gui-$gsps (300, 300, 0);
call gui-$gbox (-600, -600);
call gui-$gsps (0, 300, 0);
call gui-$gcirc (0, -300);
call gUi-$garc (2/3, sqrt (3.000eO) * 150, -150);
call gui-$garc (2/3, -sqrt (3.000eO) * 150, -150);
call gui=$garc (2/3, 0, 300);

call gui $gsps (0, -400, 0);
call gu()gtxt ("MULTICS GRAPHICS SYSTEM, " Upper_center);

call gui_$gdisp;

5-104

gui_

AS40-01A

Name: plot_

This subroutine is a user interface that creates a two-dimensional graph
from input data for use with Multics display terminals. The graph created is a
cartesian graph, scaled so as to permit maximum coverage of the screen, and
labeled in convenient increments to facilitate reading. This routine can be
made to plot with either vectors connecting the data points, with a specified
character displayed at each point plotted, or both. It also has facilities that
enable the user to append a new plot over the one being currently displayed (in
which case the new plot is scaled to match the old one), to suppress the grid
(in which case onl¥ the left-most and lowest lines are displayed, with tick
marks at increments), and to direct that the graph be scaled equally in both
directions.

Declarations for all the user-callable entries in plot are contained in
the PL/I include file "plot entry dcls.incl.p11" (see SectIon 8). Users may
include this file (using the PL/I "%include" facility) in their source programs
to save typing and syntax errors. This include file also contains declarations
of mnemonically-named "constant" variables that may be used to specify the
options and modes accepted by the various entries of plot_.

FORTRAN programmers should be familiar with the requirements described in I
Section 2 under "Programming Considerations".

declare nlot entrv ((*) float bin, (*) float bin, fixed bin, fixed bin,
char (1)j; .,

call plot_ (x, y, xydim, vec_sw, symbol);

where:

1 . x (Input)
is an array of x coordinates of points to be plotted.

2. y (Input)
is an array of y coordinates of points to be plotted.

3· xydim (Input)
is the number of elements in the x and y array pairs.

4. vec sw (Input)
can be one of the following values:

1 if the vectors, but no symbol are desired
2 if the symbol and connecting vectors are desired
3 if the symbol, but no connecting vectors are desired

5. symbol (Input)
is the symbol to be plotted at each point.

5-105 AS40-01

Notes

It is possible, by repetitive calls to plot_, to display any set of graphs
on top of one another. All graphs after the first graph are scaled to the scale
of the first. A call to plot erases the screen only if there was a call to
plot $setup prior to it. The only exception is that the first call to plot in
a process always erases the screen whether or not plot_$setup has been called.

Default values for options are dotted grid, automatic scaling, no labels,
and linear-linear plot.

The display list produced by plot_ is attached to the graphic symbol
"plot_display_list_"

No clipping of data to fit the plot grid is performed.

The data given to plot is not sorted in any manner.
plotting of relations as well-as functions.

This allows the

This entry explicitly specifies plot scaling by specifying the extent of
the axes in the x and y directions. If this scaling feature is desired, this
entry must be called before any call to plot (i.e., immediately after a call to
plot_$setup); otherwise, it is ignored. -

declare plot_$scale entry (float bin, float bin, float bin, float bin);

call plot_$scale (xmin~ xmax, ymin, ymax);

where:

1 • xmin (Input)
is the desired low bound of the x-axis.

2. xmax (Input)
is the desired high bound of the x-axis.

3· ymin (Input)
is the desired low bound of the y-axis.

4. ymax (Input)
is the desired high bound of the y-axis.

5-106 AS40-01

plot plot

This entry sets parameters controlling the type of of plotting performed.
The parameters specify the type of graph desired (log-log, linear, etc.), the
type of grid desired (if any), and whether or not plot is to scale both axes
equally. A call to this entry also ensures that the next call to plot erases
the screen.

declare plot $setup entry (char(*), char(*), char(*), fixed bin,
float bln, fixed bin, fixed bin);

call plot_$setup (title, xlabel, ylabel, type, base, grid_sw, eq_scale_sw);

where:

1. title

2. xlabel

3. ylabel

4. type

5. base

6. grid sw -

8/81

(Input)
is the title of the graph. It is placed

(Input)
is the label desired along the x-axis.

(Input)
is the label desired down the y-axis.

(Input)
can be one of the following values:

1 linear-linear plot
2 log-linear plot (log on x-axis)
3 linear log plot (log on y_axis)
4 log-log plot

(Input)

above

is the logarithm base (for logarithmic plots).

(Input)
can be one of the following values:

0 if tick marks and values are desired
1 if dotted grid and values are desired
2 if solid grid and values are desired
3 if no grid or values are desired

5-107

the grid.

AS40-01A

plot plot_

7. eq scale sw (Input)
- can be one of the following values:

o if normal scaling is desired
1 if the plot is to be scaled equally in both directions

I Notes

I

Coordinates of linear axes are represented in simple numerical form (e.g.,
"5," "20.25"). Coordinates of logarithmic axes are represented in the form
"eN," where N is the appropriate power of the base. For example, the coordinate
value "e3" appearing on a log axis with a base of 10 represents 10**3 or 1000.

8/81 5-107.1 AS40-01A

Example of plot

plot_example: proc;

declare x(180) float bin,
y(180) float bin,
i fixed bin,
pi float bin static internal initial (3.1415geO),
three_cyc float bin;

%include plot entry dcls;
declare (sin,-floatj builtin;

three_cyc = 6eO*pi/180eO;

do i = 1 to 1 80 ;
xCi) = three cyc * float (i-1);
y(i) = sin (x(i));
end;

call plot $setup ("SIN (X) VS. X", "RADIANS",
"SIN-VALUES", Linear_linear, OeO, Dotted_grid, Normal_scaling);

call plot_ (x, y, 180, Vectors_only, "");

return;
end;

S
I
N

V
A
L
U
E
S

SIN (Xl VS. X

j--- --r------T------~

I I I
I I I
I I I
I I I
I I I L_ L ______ L ____ _
I I I 0.75

0.5 ~ -----~------t----
0.25

I I I
I I I
I i I
I I I

I I
[i------t -----1---

o ------~- ----i---

-0.25

-0.5

-0.75

I I I
I I I
I I I
I I I
I I I
I I I
~------r- ----T--
I I I
I I I
I I I
I I I
I I I
I I I
~------~-- ---+-
I I I

! ! !

I
I
I
I

i i -1 L ______ L ____ _

o
2.5 7.5

5-108

12.5

RqOIANS

15 20
17.5

AS40-01

SECTION 6

GRAPHIC DEVICE TABLES

This section contains descriptions of GDTs. Use of a GDT is described in
Section 3, setup_graphics command.

8/81

The GDTs described are as follows:

ards - Advanced Remote Display Station Terminal,
Adage, Inc.

calcomp_915 - CalComp 915/1036 Plotter combination

rg512

tek 4002

- RetroGraphics 512 enhancement for ADM3A Terminals

- Tektronix Models 4002 and 4002A Terminals

tek 4012 - Tektronix Models 4012 and 4013 Terminals

tek 4014 - Tektronix Models 4014 and 4015 Terminals

tek 4662 - Tektronix Model 4662 Plotter

6-1 AS40-01A

I

ards ards

Name: ards

This GDT contains a description of the capabilities of the Advanced Remote
Display Station. It has the added name nARDS".

Description

This is a static terminal. Dynamic operators are not accepted.

Sensitivity, blinking, color, and extent are not implemented.

Any line_type other than solid is translated into the ARDS-provided dashed
line.

Intensity of zero is recognized as invisible. Other values are translated
to visible.

The query effector is not implemented.

6-2 AS40-01

Name: calcomp_915

This GDT contains a description of the capabilities of a CalComp 915/1036
Plotter combination.

Description

This is a static device. Dynamic operators are not accepted.

Sensitivity, blinking, and extent are not implemented.

Only the solid, dashed, and dotted line_types are implemented.

Intensity of zero is recognized as invisible. Other values are translated
to visible.

The query effector is not implemented.

A limited implementation of the color facility is available. Use of this
facility assumes that plotter pen "one" (rightmost) is loaded with blue ink, pen
"two" with green ink, and pen "three" with red ink.
pens may be active at a time, the pen corresponding to
greatest intensity in a given color effector is used.
a particular effector possess equal intensity,
lower-numbered pen) is used.

Since only one of these
the color possessing the
If two or more colors in
the darker pen (the

Tapes produced are in the 6-bit format, regardless of whether they are 7-,
or 9-track tapes.

Notes

This GDT cannot be used in the online mode (i.e., to the terminal). When I
specifying this GDT to the setup_graphics command, the user must also specify
the "-offline" control argument.

6-3 AS40-01

rg512 rg512

Name: rg512

This GDT contains a description of the capabilities of the RetroGraphics
512 graphic enhancement for ADM3A terminals.

Description

This is a static terminal. Dynamic operators are not accepted.

Line_type, sensitivity, blinking, color, and extent are not implemented.

Intensity of zero is recognized as invisible. Other values are translated
to visible.

Supported modes:

8/81

•

This GDT supports the following special modes:

baud=nnnn
specifies the baud rate at which the device is being used. Explicit
specification of this mode is necessary only if the device is connected
to the Multics system in such a manner as to make its baud rate indiscernible
to the system (e.g., via a multihost network).

6- 3. 1 AS40-01A

tek 4002 tek 4002

Name: tek 4002

This GDT contains a description of the capabilities of the Tektronix models
4002 and 4002A terminals. It has the added name "tek 4002A".

Description

This is a static terminal. Dynamic operators are not accepted.

Line_type, sensitivity, blinking, color, and extent are not implemented.

Intensity of zero is recognized as invisible. Other values are translated
to visible.

The query effector is implemented only for the "where" operalion, using
crosshairs. After positioning the crosshairs to the desired point, the user * should press "return" to enter the desired point.

Supported modes:

8/81

This GDT supports the following special mode:

baud=nnnn
specifies the baud rate at which the device is being used. Explicit
specification of this mode is necessary only if the device is connected
to the Multics system in such a manner as to make its baud rate indiscernible
to the system (e.g., via a multihost network).

6-4 AS40-01A

tek 4012 tek 4012

Name: tek 4012

This GDT contains a description of the capabilities of the Tektronix models
4012 and 4013 terminals. It has the added name "tek_4013".

Description

This is a static terminal. Dynamic operators are not accepted.

Line_type, sensitivity, blinking, color, and extent are not implemented.

Intensity of zero is recognized as invisible. Other values are translated
to visible.

The query effector is implemented only for the "where" operation, using the
built-in crosshairs. After positioning the crosshairs to the desired point, the
user should press "return" to enter the desired point. ..

Supported modes:

8/81

This GDT supports the following special modes:

baud=nnnn
specifies the baud rate at which the device is being used. Explicit
specification of this mode is necessary only if the device is connected
to the Mul tics system in such a manner as to make its baud :rate indiscernible
to the system (e.g., via a multihost network).

6-5 AS40-01A

tek 4014 tek 4014

Name: tek 4014

This GDT contains a description of the capabilities of the Tektronix models
4014 and 4015 terminals. It has the added name "tek 4015".

Description

This is a static terminal. Dynamic operators are not accepted.

Sensitivity, blinking, color, and extent are not implemented.

Intensity of zero is recognized as invisible. Other values are translated
to visible.

When used with a terminal possessing the Extended Graphics Module option,
this GDT implements all values of line_type.

The variable character size (a feature of models 4014 and 4015) is forced
to a known value when performing graphic text output, and reset to the smallest
available size (the normal operating mode) after output is finished.

The query effector is implemented only for the "where" operation, using the
built-in crosshairs. After positioning the crosshairs to the desired point, the * user should press "return" to enter the desired point.

Supported modes:

8/81

This GDT supports the following special modes:

baud=nnnn
specifies the baud rate at which the device is being used. Explicit
specification of this mode is necessary only if the device is connected
to the Multics system in such a manner as to make its baud rate indiscernible
to the system (e.g., via a multihost network).

extaddr, Aextaddr
specifies whether the extended addressing feature is to be used. (The
Extended Graphics Option module must be installed in the terminal for
this mode to be effective.) Extended addressing allows the screen to
be addressed to four times the usual precision but can add as much as
25% to character-transmission time and volume. By default, this mode
is off.

6-6 AS40-01A

tek 4662 tek 4662

Name: tek 4662

This GDT contains a description of the capabilities of the Tektronix model
4662 table-top plotter.

Description

This is a static terminal. Dynamic operators are not accepted.

Sensitivity, blinking, color, and extent are not implemented.

Intensity of zero is recognized as invisible. Other values are translated
to visible.

The query effector is not implemented.

The erase effector does not pause to allow the paper to be changed. As on
a normal terminal, it is expected that the user has provided some protocol to
pause after the display of one picture before it is erased and replaced by
another.

Supported modes:

This GDT supports the following special modes:

baud=nnnn
specifies the baud rate at which the device is being used. Explicit
specification of this mode is necessary only if the device is connected
to the Multics system in such a manner as to make its baud rate indiscernible
to the system (e.g., via a multihost network).

device=ch I specifies the plotter addressing code. The character ch must be A, B,
C, or D. The addressing code for a given plotter is specified via the
user-set table switches on the rear of the plotter. If this mode is
not specified, it defaults to device=A.

Notes

extaddr, Aextaddr
specifies whether the extended addressing feature is to be used. Extended
addressing allows the graphic area on the device to be addressed to
four times the usual precision but can add as much as 25% to
character-transmission time and volume. By default, this mode is off.

The Tektronix 4662 plotter contains user-settable switches that control the
baud rate of the plotter, the addressing codes used, and several other parameters.

8/81 6-1 AS40-01A

I

tek 4662 tek 4662

I The following option settings are required:

I

I
I
I

I

S/S1

Low plotting speed (A/S):
Terminal mute (A/4):
Copy mode (A/2):
CR effect (A/1):
Delete interpretation (B/S):
RS232-C select (C/2):

off (0)
on (0)
on (1)
CR -> CR (0)
DEL -> LOY (0)
on (1)

The device address setting should agree with the setting of the "device:"
mode:

Device address (C/1+D/S): A (00)
B (01)
C (10)
D (11)

The setting of the GIN terminator (B/4+B/2) is unimportant, since graphic
input is not implemented for this device.

The remaining settings (stop bits, parity, and baud) should be set according
to the communication facilities to be used:

Stop bits (B/1):

Parity (C/S+C/4):

Baud rate (D/4+D/2+D/1):

1 bit (1)
2 bits (0)
odd (11)
even (10)
none (01 or 00)
110 (100)
i50 (000)
300 (00 1)
600 (010)

1200 (011)

6-S AS40-01A

SECTION 7

GRAPHIC CHARACTER TABLES

This section contains displays of the following GCTs:

gct block roman
gct-complex italic
gct-complex-roman -
gct-complex-script
gct-duplex roman -
gct-gothic-english
gct-gothic-german -
gct-gothic-italian
gct-simplex roman -
gct-simplex-script
gct-triplex-italic
gct=triplex=roman_-

Graphic Character Tables are fully described in Section 3.

7-1 AS40-01

gct_block_roman_

* The gct_block_roman_ graphic character set is displayed below.

000 001 002 003 004 005 006 007 100 101 102 103 104 105 106 107

@ABCDEFG
010 011 012 013 014 015 016 017 110 111 112 113 114 115 116 117

HIJKLMNO
020 021 022 023 024 025 026 027 120 121 122 123 124 125 126 127

PQR5TUVW
030 031 032 033 034 035 036 037 130 131 132 133 134 135 136 137

XYZ["'J~

040 041 042 043 044 045 046 047 140 141 142 143 144 145 146 147

~ II t:t $ % & / '\ a b c d e f g
050 051 052 053 054 055 056 057 150 151 152 153 154 155 156 157

()*+) a/ h I k I mn 0 J
060 061 062 063 064 065 066 067 160 161 162 163 164 165 166 167

0.1234567 P q r s t u VW

070 071 072 073 074 075 076 077 170 171 172 173 174 175 176 177

{ I }
,.."

x y z 89=; <=>?
The Quick Brown Fox Jumps over the Lazy Dog.

8/81 7-2 AS40-01A

The gct_complex_italic_ graphic character set is displayed below. This
character set is extracted from the standard Hershey Occidental character set.

000 001 002 003 004 005 006 007 100 101 102 103 104 105 106 107

D @A B C D E F G
010 011 012 013 014 015 016 017 110 111 112 113 114 115 116 117

H I J KL MN 0
020 021 022 023 024 025 026 027 120 121 122 123 124 125 126 127

P Q R S T U V W
030 031 032 033 034 035 036 037 130 131 132 133 134 135 136 137

X YZ [\] A \
"'Af"\ f"\ A" f"\A.., f"\A"Z f"\AA f"\AC f"\A~ f"\A""7 1.11f"'\ 1 .IIII,.., ".II"Z .. .11.11 .. .IIC ".II~ .. .11""7
u"'tu U"'tl U"'tL u"'t..J u"'t"'t u"'t..J u"'to U"'tl I"'tU l"'t I I"'tL 1"'t..J l"'t"'t 1"'t..J I"'tU l"'tl , ' , # $ % &

, ,
a b c d e f g

050 051 052 053 054 055 056 057 150 151 152 153 154 155 156 157

() * + / h ~] k l mn a ,
060 061 062 063 064 065 066 067 160 161 162 163 164 165 166 167

0 1 2 3 4 5 6 7 p q r s t u v W

070 071 072 073 074 075 076 077 170 171 172 173 174 175 176 177

B 9 < - > ? X 11 Z ~ I ~ N -; J \ I I

The Quick Brown Fox Jumps over the Lazy Dog.
gct_complex_itolic_

7-3 AS40-01

The gct_complex_roman graphic character set is displayed below. This
character set is extracted ?rom the standard Hershey Occidental character set.

000 001 002 003 004 005 006 007 100 101 102 103 104 105 106 107

D @A B C D E F G
010 011 012 013 014 015 016 017 110 111 112 113 114 115 116 117

H I J K L MN 0
020 021 022 023 024 025 026 027 120 121 122 123 124 125 126 127

P Q R S T UVW
030 031 032 033 034 035 036 037 130 131 132 133 134 135 136 137

V Y Z [\ 1 /\ A \ J
040 041 042 043 044 045 046 047 140 141 142 143 144 145 146 147 , " # $ % & a b c d e f g
050 051 052 053 054 055 056 057 150 151 152 153 154 155 156 157

() * + / h 1 J k 1 mn 0

060 061 062 063 064 065 066 067 160 161 162 163 164 165 166 167

0 1 2 3 4 5 6 7 p q r s t u v W

070 071 072 073 074 075 076 077 170 171 172 173 174 175 176 177

8 9 < > ? X Y z ! I 1 r..J

The Quick Brown Fox Jumps over the Lazy Dog.
gct_complex_roman_

7-4 AS40-01

The gct complex script graphic character set is displayed below. This
character set-is extracted from the standard Hershey Occidental character set.

000 001 002 003 004 005 006 007 100 101 102 103 104 105 106 107

D @A53 1J:J) 0 g,~
010 011 012 013 014 015 016 017 110 111 112 113 114 115 116 117

JeJ :JX:fJ1K([)
020 021 022 023 024 025 026 027 120 121 122 123 124 125 126 127

Pc2:R:J5U1JW
030 031 032 033 034 035 036 037 130 131 132 133 134 135 136 137

XY2 [\] A

040 041 042 n.l'l~ n.l'l.l'l nAc;. nAt::: nAI 1.111"'\ 1 .A AI") .. A"Z 144 " Ar 146 147 v'V v.. v.v V""TV V""TI I "TV I "T I l"'t£. 1"'t.J I~;J , ,
$%&::

, (t- el I • C1t C CU Cf
050 051 052 053 054 055 056 057 150 151 152 153 154 155 156 157

() * + / h . Iv i l! I 1Th n ~

060 06i 062 063 064 065 066 067 160 161 162 163 164 165 166 167

0 1 2 3 4 5 6 7 ~ 1 "f'- ~ t u ~ W-

070 071 072 073 074 075 076 077 170 171 172 173 174 175 176 177

8 9 < - > ? 'L 'if ~ ~ I ~ f',J -
\. I)

5~ !!2uidv jJ~ ~(Y.Xj 1~ ~ ~ :£arI J)G-If.

gct_complex_script_

7-5 AS40-01

The gct_duplex_roman_ character set is displayed below. This character set
is extracted from the standard Hershey Occidental character set.

000 001 002 003 004 005 006 007 100 101 102 103 104 105 106 107

D @A B C 0 E F G
010 011 012 013 014 015 016 017 110 111 112 113 114 115 116 117

H I J K L M N 0
020 021 022 023 024 025 026 027 120 '21 122 123 124 125 126 127

P Q R S T U VW
030 031 032 033 034 035 036 037 130 '31 132 133 134 135 136 137

X y Z
r

\
1

L J A

040 041 042 043 044 045 046 047 140 141 142 143 144 145 146 147

I rr # $ %& a b c d e f 9
050 051 052 053 054 055 056 057 150 151 152 153 154 155 156 157

() * + / h k I m n 0

060 061 062 063 064 065 066 067 160 161 162 163 164 165 166 167

0 1 2 3 4 5 6 7 P q r s t u v W

070 071 072 073 074 075 076 077 170 171 172 173 174 175 176 177

8 9 < - > ? X Y z ~ I ~ N -

The Quick Brown Fox Jumps over the Lazy Dog.
gct_duplex_roman_

7-6 AS40-01

The gct_gothic_english_ graphic character set is displayed below. This
character set is extracted from the standard Hershey Occidental character set.

000 001 002 003 004 005 006 007 100 101 102 103 104 105 106 107

D @J\{fjQlj fElJfm
010 011 012 013 014 015 016 017 110 111 112 113 114 115 116 117

~lf 3J ~lliiUN®
020 021 022 023 024 025 026 027 120 121 122 123 124 125 126 127

~ ~ £1{ § en QI itf W
030 031 032 033 034 035 036 037 130 131 132 133 134 135 136 137

X~Z [\] /\

040 041 042 043 044 045 046 047 140 141 142 143 144 145 146 147

T ' , # $ %&
,

& b r h f f 9 •

050 051 052 053 054 055 056 057 150 151 152 153 154 155 156 157

() * + / q ~ ~

k 1 t ! mn II , •

060 061 062 063 064 065 066 067 160 161 162 163 164 165 166 167

n 1 2 3 4 :1 6 7 P q r s t u lJ W

070 071 072 073 074 075 076 077 170 171 172 173 174 175 176 177

8 9 • • < - > ? X Y i! ~ I ~ f"""..J
• - •

m4t ~uirk 1!irown Nox JJumps outr iqt illazy 11I0g.
gct_9 oth ic_e n 9 Ii s h_

7-7 AS40-01

The gct gothic german graphic character set is displayed below. This
character set-is ext~acted Irom the standard Hershey Occidental character set.

Notes

The German alphabet from which this character set is derived contains three
distinct versions of the letter "s" which are used variously according to
well-defined rules of typography. The "s" which is used most often occupies the
position usually occupied by "s" in the collating sequence. The other two
versions occupy otherwise unused positions. Users for whom the strict
correctness of the typography is important must perform some translation of
their input strings before submitting them to graphic_chars_.

000 001 002 003 004 005 006 007 100 101 102 103 104 105 106 107

D @Um[D~lJ~
010 011 012 013 014 015 016 017 110 111 112 113 114 115 116 117

tfJ~~Jtg9JlVlD
020 021 022 023 024 025 026 027 120 121 122 123 124 125 126 127

spnm@)~Um~

030 031 032 033 034 035 036 037

fi ~ 5
040 041 042 043 044 045 046 047 140 141 142 143 144 145 146 147

1 " # $ % &: a 6 c h r f 9
052 053 054 055 056 057 150 151 152 153 154 155 156 157

* + / ~tJt{mno
060 061 062 063 064 065 066 067 160 161 162 163 164 165 166 167

o 123 456 7 pqr ftUtJlU
070 071 072 073 074 075 076 077

8 9 < >?
170 171172173 174 175 176 177

~~J! IlN
Xl)t nuicl lliroron tJO~ ~umpf obrr t~r 2a3~ Dog.

9ct_90thic_germon_

7-8 A340-01

The gct gothic italian graphic character set is displayed below. This
character set-is extracted from the standard Hershey Occidental character set.

000 001 002 003 004 005 006 007 100 101 102 103 104 105 106 107

D @BflOO888
010 011 012 013 014 015 016 017 110 111 112 113 114 115 116 117

oIlJaOmOO
020 021 022 023 024 025 026 027 120 121 122 123 124 125 126 127

QOB§OOVm
030 031 032 033 034 035 036 037 130 131 132 133 134 135 136 137

Xga [\] A

040 041 042 043 044 045 046 047 140 141 142 143 144 145 146 147

T ' , # $%&:
, ,

u b b f 9 • r t'

050 051 052 053 054 055 056 057 150 151 152 153 154 155 156 157

() * + / ~
~ ~

k I , • I ! mn 0

060 061 062 063 064 065 066 067 160 161 162 163 164 165 166 167

D 1 2 3 Lt 5 6 7 P q r 5 t u UUJ

070 071 072 073 074 075 076 077 170 171 172 173 174 175 176 177

8 9 • • <=> ? X Y J ~ I ~ f"'..J
• , •

O~t' Ouirk Brown Box Jumps oUt'r t~t' D03Y Dog.
gct_90th ic_italian_

7-9 AS40-01

~Jame :

The gct simplex roman graphic character set is displayed below. This
character set-is extracted from the standard Hershey Occidental character set.

000 001 002 003 004 005 006 007 100 101 102 103 104 105 106 107

D @A B C 0 E F G
010 011 012 013 014 015 016 017 110 1 11 112 113 114 115 116 117

H I J K L M N 0
020 021 022 023 024 025 026 027 120 121 122 123 124 125 126 127

P Q R S T U VW
030 031 032 033 034 035 036 037 130 131 132 133 134 135 136 137

X y Z r \] /\

L
040 041 042 043 044 045 046 047 140 141 142 143 144 145 146 147

I II # $ %& a b c d e f 9
050 051 052 053 054 055 056 057 150 151 152 153 154 155 156 157

() * + / h I k I m n 0
J

060 061 062 063 064 065 066 067 160 161 162 163 164 165 166 167

0 1 2 3 4
r-

6 7
I

~ P q r s t u v W

070 071 072 073 074 075 076 077 170 171 172 173 174 175 176 177

8 9 < > ? X Y z ~ I l ~
The Quick Brown Fox Jumps over the Lazy Dog.

gct_simplex_roman_

7-10 AS40-01

gct_simplex_script_

The gct_simplex_script_ character set is displayed below. This character
set is extracted from the standard Hershey Occidental character set.

000 001 002 003 004 005 006 007 100 101 102 103 104 105 106 107

D @ A rB C f) e Yh
010 011 012 013 014 015 016 017 '10 111 112 113 114 115 116 117

J{ J 9 x£mn G
020 021 022 023 024 025 026 027 120 '21 122 123 124 125 126 127

rPfL 02 JJ YUVW
030 031 032 033 034 035 036 037 1 30 1 31 1 32 1 33 134 135 136 137

X V t [\] A

r'lAn r'lA1 nAry nA"l: "AA "A~ "At::. "A7 1A" 1 A 1 1 AI') 1A"l 1AA 1 At:: 1AC 1.11"7
v.v v •• V.L V'W v •• v'w V.V V.l •• v ••• "L, •••, •• 0 ,.,

II # $ % & t- el J OJ 0 Q; cr
050 051 052 053 054 055 056 057 150 151 152 153 154 155 156 157

() * + / fu v t ~ e m % (9.-

060 061 062 063 064 065 066 067 160 161 162 163 164 165 166 167

0 1 2 3 4 5 6 7 f Cf tv ~ t UJ 1J- W-

070 071 072 073 074 075 076 077 170 171 172 173 174 175 176 177

8 9 < - > ? T; rr ~ ~ I (('\.J -
\ I ,

d~ f2~ CB~ YCYL ~~ ~ ~ £WW jJ~.
gct_si m pi ex_scri pt_

7-11 AS40-01

The gct triplex italic grapnlc character set is displayed below. This
character set-is extracted from the standard Hershey Occidental character set.

000 001 002 003 004 005 006 007 100 101 102 103 104 105 106 107

1) @ A B eDEF G
010 011 012 013 014 015 016 017 110 1 1 1 112 113 114 115 116 117

H I JKLMNO
020 021 022 023 024 025 026 027 120 121 122 123 124 125 126 127

P Q R S T U V W
030 031 032 033 034 035 036 037 130 131 132 133 134 135 136 137

.If YZ r \ 1 " L J
040 041 042 043 044 045 046 047 140 141 142 143 144 145 146 147 , ' , # $ % &

, c a b c d e f g
050 051 052 053 054 055 056 057 150 151 152 153 1 54 1 55 1 56 1 57

() * + / h
. .

k lmn t J 0 ,
060 061 062 063 064 065 066 067 160 161 162 163 164 165 166 167

0 1 2 3 4 5 6 7 P q r s t UVW

070 071 072 073 074 075 076 077 170 171 172 173 174 175 176 177

B 9 < > ? X Y z ! I l N , I

The Quick Brown Fox Jumps over the Lazy Dog.
9 ct_ t ri pie x_i t a Ii c_

7-12 AS40-01

The gct triplex roman graphic character set is displayed below. This
character set-is extracted from the standard Hershey Occidental character set.

000 001 002 003 004 005 006 007 100 101 102 103 104 105 106 107

D @ A B C D E F G
010 011 012 013 014 015 016 017 110 1 11 112 113 114 115 116 117

H I J K L M N 0
020 021 022 023 024 025 026 027 120 121 122 123 124 125 126 127

P Q R S T U V W
030 031 032 033 034 035 036 037 130 131 132 133 134 135 136 137

X y Z [\] A

1"\.11("'\ ("'\.111 ("'\.11') ("'\.I1"l. r\i'll /",\II~ /"'\1Ie' /"'\lIr 1 ("\ 1, " ., 7 ., A A .. A r::: 146 147 v,v v, I V'L. V,,J v" v,,J v,u V~I I~U 1"1" 1 I"1"L 1"1"..J 1"1""1" l't~

" # $ % & a b c d e f g
050 051 052 053 054 055 056 057 150 151 152 153 154 155 156 157

() * / h
. .

k 1 + 1 J mn 0

060 061 062 063 064 065 066 067 160 161 162 163 164 165 166 167

0 1 2 3 4 5 6 7 P q r s t u v W

070 071 072 073 074 075 076 077 170 171 172 173 174 175 176 177

8 9 < > ? X v Z ~ I ? N
.J \ I }

The Quick Brown Fox Jumps over the Lazy Dog.
gct_triplex_roman_

7-13 AS40-01

SECTION 8

GRAPHIC INCLUDE FILES

The include files (found in the qefault translator search path) described
here are generally useful to the MGS user. This documentation is provided to
encourage the graphics system user to use common coding practices, and to avoid
errors and duplication of effort in the production of system required
declarations.

Name:

contains declarations
including declarations
an entry can be called.

gct char_names.incl.p11

for every entry point
for every combination of

in graphic compiler ,
multipl~ names by which

contains declarations of the specific ch~racter names required by
compile_gct to specify characters in graphic character tabl~s.

Name: gch_entry_dcls.incl.p11

contains declarations for every entry point in graphic_chars .

contains declarations
including declarations
an entry can be called.

Name: gmc_entry_dcls.incl.p11

for every entry point
for every combination of

in graphic manipulator ,
multiple names by which

contains declarations for every entry point in graphic macros , including
declarations for every combination of multiple names-by whIch an entry
can be called.

Name: go_entry_dcls.incl.p11

contains declarations
including declarations
an entry can be called.

for every entry point in graphic operator ,
for every· comoination of multiple names by which

Name: graphic char_dcl.incl.p11

contains the declaration of the format of graphic character tables.

8-1 AS40-01

I

I

Name: graphic_code_dcl.incl.pI1

contains mnemonically named declarations of variables that have special
meaning to programs manipulating MSGC. It includes:

1 . a declaration of every defined graphic effector;

2. the default values for all graphic modes;

3. a table describing the expected lengths of graphic effectors; (Note:
subroutine graphic element lengths is, in the general case, the
only foolproof way to extract this lnformation.)

4. miscellaneous small character constants with other meanings in MSGC.

Name: gr;aphic~device_table~incl.pI1

contains the declaration of the format of a GDT. In addition, it
contains declarations for mnemonically-named constants containing the
values understood by a GDT (for example, prepare for text, expansion,
etc.) other than those belonging to specific effectors in MSGC.

Name: graphic_enames.incl.pl1

contains declarations of constant arrays that may be indexed by numbers
returned by the graphics system to yield printable representations of
those values. (In effect, it is the inverse of the contents of include
file graphic_etypes.) It contains printable values for:

1 • element codes, as returned, for example, by
graphic_manipulator_$examine type;

2. intensity, sensitivity, blink, and line_type values;

3. text alignments;

4. graphic input device codes.

Name: graphic_etypes.incl.pI1

contains declarations for mnemonically named
contain numeric values that have meaning to
contains:

"constant" variables that
the graphics system. It

1 • graphic effector values, as
graphic_manipulator_$examine_type;

returned, for example, by

2. values used as arguments to specific graphic modes, for example,
line_types by name, intensity, blink, and sensitivity values;

3. variables containing text alignment codes;

4. merge codes
"get struc";

for graphic_manipulator entries "put struc" and

5. variables containing codes for graphic input devices.

8-2 AS40-01

Name: graphic_input_formats.incl.pI1

contains declarations describing the structure of well formed graphic
input messages for the "what," "where," and "which" types of query. It
also contains the declarations of the characters that follow the "query"
character to cause specific types of input.

Name: graphic_terminal_errors.incl.pI1

contains the declaration of an array of error codes. Status codes returned
by intelligent graphics terminals may be used to index into this array to
extract the standard Multics error code corresponding to the error. The
declarations of the standard Multics error codes used are also included.

Name: gui_entry_dcls.incl.p11

contains declarations for every entry point in gui_o

Name: plot_entry_dcls.incl.pI1

8/81

contains declarations for every entry point in plot_. In addition, it
contains declarations for mnemonically named "constant" variables that
contain numeric values that may be used to select the various modes and
functions of plot_ at several of its entry points.

8-3 AS40-01A

I
I

APPENDIX A

SUBROUTINE ABBREVIATIONS

The following list identifies all of the graphics subroutines and their
associated entry points that have software supported abbreviations, but are not
otherwise documented in this manual.

subroutine/entry point name

calcomp compatible subrs
graphic-compiler -

display
display append
display-name
display-name append
load - -
load name

graphic macros
graphic-manipulator

create array -
create-color
create -data
create-list
create-mode
create-position
create~rotation
create-scale
create-text
examine color
examine-data
examine-list
examine mapping
examine-mode
examine-position
examine-symbol
examine-symtab
examine-text
examine-type
find structure

graphic_operator

A-1

abbreviation

ccs
gc
d -
da
dn
dna
I
la
gmc_
gm_
carray
ccolor
cdata
clist
cmode
cpos
crQt
cscale
ctext
ecolor
edata
elist
emap
emode
epos
esym
esymtab
etext
etype
fstruc
go_

AS40

MISCELLANEOUS

see exclamation mark

A

abbreviations (acronyms) 1-2

absolute
elements 2-4, 3-7

set point 2-4
set position 2-4

alter 3-14, 3-24

animation operators
alter 3-14, 3-24
increment 3-23, 3-12
synchronize 3-13, 3-24

ards 6-2

array 3-5
element 2-7

ASCII characters 3-17
set 3-18

atomic graphic elements 2-11, 3-3

axes
cartesian 2-3

B

blinking 3-8
blinking/steady 3-21
mode element 2-6

building compound elements 2-11

C

calcomp_915 6-3

calcomp_compatible_subrs subroutine
5-3

cartesian
axes 2-3
coordinate system 3-7
coordinates 3-25. 1

ccs
see calcomp compatible subrs

subroutine - -

central graphics system 2-10, 3-1
example 2-25

character table 7-1
gct_block_roman_ 7-2

INDEX

i-1

character table (cont)
gct complex italic 7-3
gct-complex-roman - 7-4
gct-complex-script 7-5
gct-duplex roman -7-6
gct-gothic-english 7-7
gct-gothic-german - 7-8
gct-gothic-italian 7-9
gct-simplex roman - 7-10
gct-simplex-script 7-11
gct-triplex-italic- 7-12
gct=triplex=roman_- 7-13

color 3-8, 3-21
mode element 2-6

commands
compile gct 4-2
compile-gdt 4-3
graphics editor 4-4
io call -

example 2-10
print attach table

example 2"=9
remove graphics 4-22
setup graphics 4-23

example 2-7
using the graphic editor 2-31

communications control 3-41

compile_gct command 4-2

compile_gdt command 4-3

control 3-14, 3-24

coordinate
cartesian 3-7
cartesian coordinates 3-25.1
origin 2-3
screen 2-3
system 3-7

current graphic position 2-4, 3-7

D

datablock 2-21, 2-22
element 2-7, 3-11, 3-22

delete 3-25

device
intelligent 3-38

device table 6-1
ards 6-2
calcomp 915 6-3
rg512 0-3.1
tek 4002 6-4
tek-4012 6-5
tek-4014 6-6
tek=4662 6-7

dimensions 2-16

displacement
net relative displacement 2-16

AS40-01A

display 3-25

double-precision integer format 3-19

DPI
see double-precision integer format

effector 3-27
graphic 2-3

E

elements 3-10
absolute 2-4, 3-7
array 2-7
atomic graphic 2-11, 3-3
blinking 2-6
building compound 2-11
color 2-6
datablock 2-7, 3-11, 3-22
extent 2-6
graphic 2-3, 3-3
intensity 2-6
line type 2-6
list- 2-7
mapping 2-6, 3-9
miscellaneous 2-7
mode 2-6, 3-8
nonterminal graphic 3-3, 3-5
point 2-5
positional 2-4, 3-7
relative 2-4, 3-7
relative 3-7
rotation 2-6
scaling 2-6
sensitivity 2-6
set point 2-4
set position 2-4
shift 2-5
structural 2-7
symbol 2-7
terminal 3-6, 3-17
terminal graphic 3-3
text 2-7, 3-10, 3-22
vector 2-4

erase 3-24

error
codes 3-43
handling 3-41

example
alter shared structures 2-36
creating a blinking box 2-19
creating a box 2-11
creating a datablock 2-22
creating a vector 2-10
creating rows of a single object

2-15
creating simple and compound

structures 2-32
creating symbols 2-13
loading a PGS into the WGS 2-22
storing objects in the PGS 2-22
using the central graphics system

2-25
using the io call command 2-10
using the prTnt_attach_table command

2-9
using the setup_graphics command

2-7

exclamation mark 2-25

extent mapping elements
clipping 2-6
masking 2-6

F

for·mat
double-precision integer 3-19
input

control 3-41
what 3-41
where 3-39
which 3-40

scaled fixed-point 3-20
single-precision integer 3-19
status message 3-42
unique identifier 3-20

FORTRAN 2-2

G

GeT
see graphic character table

gc_
see graphic_compiler_

GDT

i-2

see graphic device table

ge
see graphics~editor command

gf_int subroutine 5-19

gmc_
see graphic_macros subroutine

gm_
see graphic_manipulator_ subroutine

go_
see eraphic_operator_ subroutine

graphic
atomic graphic elements 2-11, 3-3
basic graphic premises 2-2.1
central graphics system 2-10, 3-1
character table 3-43

format 3-44
see also character table
see character table
source segment format 3-44

current graphic position 2-4, 3-7
curso. 2-4, 3-7
device

see device table
device table 2-7, 3-27

examples 3-34
format 3-28

dynamic operations 3-12
effector 2-3, 3-26
elements 2-3, 3-3
functional parts of the MGS 3-2
110 environment 2-1
110 module 2-8
include files 8-1
input 2-24, 3-38

what 2-24
where 2-24
which 2-24

intelligent device 3-38
In"~l a~~nhi"q onui~"nmont 2-18,
-~~-- 3~8 -,... .. --~ _ ... -- _ _ .. -
Multics Graphics System 1-1, 2-37
nonterminal graphic elements 3-3,

3-5
parameters of the graphic display

2-3
permanent graphic segments 2-22
program 2-2
setting up the graphic 1/0

environment 2-7
shared graphic substructures 2-i5,

2-17

AS40-01A

graphic (cont)
static (storage tube) 3-26
structure 2-2, 2-17, 3-3
structure compilation 3-11
structure definition 3-3
structure manipulation 3-11
superstructures 2-36
support procedure 3-25, 3-31

modes in 3-33
symbols 2-13
terminal elements 3-6, 3-17
using higher level subroutines 2-30
using the graphic compiler 2-23
using the graphic operator 2-24
virtual graphic terminal 2-3, 2-37,

3-25, 3-26
working graphic segment 2-10, 3-11

graphic I/O module 2-8

graphic support procedures 3-25

graphic-support procedures 3-31
modes in 3-33

graphics_editor command 4-4

graphic_chars_ subroutine 5-21

graphic_code_util subroutine 5-26

graphic_compiler_ subroutine 5-32

graphic_decompiler_ subroutine 5-37

graphic_dim_ subroutine 5-38

graphic element length subroutine
5-42 - -

graphic_error_table subroutine 5-43

graphic gsp utility subroutine
5-50.2- -

graphic_macros_ subroutine 5-51

graphic_manipulator_ subroutine 5-58

graphic_operator_ subroutine 5-83

graphic terminal status subroutine
5-94 - -

gr_print subroutine 5-20

GSP
see graphic support procedure

gui subroutine 5-96

I

I/O
graphic I/O environment 2-1
graphic 1/0 module 2-8
setting up the graphic I/O

environment 2-7

include files 8-1

increment 3-23, 3-12

input and user interaction
control operator 3-14, 3-24
pause operator 3-15, 3-24
query operator 3-14, 3-24

insensitive 3-8

intelligent graphic device 3-38

i-3

intensity 3-8, 3-21
mode element 2-6

io call
see MPM Commands

L

levels of structure 3-3

line type 3-8, 3-21
mode element 2-6

list element 2-7

local graphics environment 2-18, 3-8

M

mapping 2-17, 3-6
elements 2-6, 3-9

clipping 3-9
extent 2-6
interacting 2-18
masking 3-9
rotation 2-6, 3-9
scaling 2-6, 3-9

operators
rotate 3-22
scale 3-22

using modes and mappings 2-17

masking 2-6, 3-9

memory management
delete 3-16
reference 3-i6

MGS
see Multics Graphics System

miscellaneous elements 2-7, 3-6, 3-10
datablock 2-7, 3-11, 3-22
symbol 2-7
text 2-7, 3-10, 3-22

modal
see mode

mode 3-6

mode elements 2-6, 3-8
blinking 2-6, 3-8
blinking/steady 3-21
color 2-6, 3-8, 3-21
insensitive 3-8
intensity 2-6, 3-8, 3-21
interacting 2-18
line type 2-6, 3-8, 3-21
sensitive 3-8
sensitivity 2-6, 3-21
steady/blinking 3-8

modes 2-17
using modes and mappings 2-17

MSGC
see Multics Standard Graphics Code

MSGC operators
animation 3-23
input and user interaction operators

3-24
mapping 3-22
miscellaneous 3-22
modal 3-21
positional 3-21
structural 3-23
terminal control 3-24

AS40-01A

Multics Graphics System 1-1, 2-1, 2-4,
2-37

Multics Standard Graphics Code 2-9,
3-16

N

net
mapping 3-9
relative displacement 2-16
relative shift 3-7

node value 2-10, 2-13, 3-3, 3-11
programming hint 2-13

node_begin 3-23

node end 3-23

nonterminal graphic elements 3-3, 3-5
arrays 3-5
lists 3-5
symbols 3-6

P

parent structure 2-18

pause 3-15, 3-24

permanent graphic segments 2-22

PGS
see permanent graphic segments

picture
structured picture descriptions

2-15

plot._ Sllhroutine 5-105

point 3-7, 3-21
element 2-5

positional 3-6

positional elements 2-4, 3-7
point 2-5, 3-7, 3-21
setpoint 3-7, 3-21
setposition 3-7, 3-21
shift 2-5, 3-7, 3-21
vector 2-4, 3-7, 3-21

primit i ves 1-1

programming considerations 2-2

Q

query 3-14, 3-24

R

reference 3-23

relative
elements 2-4, 3-7
positional elements 3-7

remove_graphics command 4-22

rg
see remove_graphics command

rg512 6-3.1

rotation 3-9, 3-22
mapping element 2-6

s

scaling 3-9, 3-22
mapping element c-b
scaled fixed-point format 3-20

SCL
see scaled fixed-point format

screen control
display 3-15
erase 3-15

search list 2-38

sensitivity 3-21
mode element 2-6
sensiti ve 3-8

setpoint 3-7, 3-21
element 2-4

setposition 3-7, 3-21
element 2-4

setting up the graphic I/O environment
2-7

setup_graphics command 4-23

sg
see setup_graphics command

shared graphic substructures 2-15,
2-17

shift 3-7, 3-21
element 2-5

single-precision integer format 3-19

SPI
see single-precision integer format

stacked
mappings 3-26
modes 3-26

static (storage tube) graphics 3-26

status message format 3-42

steady/blinking 3-8

storage tube 3-26

structural
elements 2-7
operators

node begin 3-23
node-end 3-23
reference 3-23
symbol 3-23

structure
alter example 2-36
compilation 3-11
creating 2-32
definition 3-3
graphic 2-17. 3-3
levels of 3-3
manipulation 3-11
parent structure 2-18
shared graphic substructures 2-15
structured picture descriptions

2-15

structured picture descriptions 2-15

i-4 AS40-01A

subroutines
calcomp compatible subrs 5-3
gf int - 5-19 -
graphic chars 5-21
graphic-code util 5-26
graphic-compiler - 5-32
graphic-decompiler 5-37
graphic-dim 5-38-
graphic-element length 5-42
graphic-error table 5-43
graphic-gsp utility- 5-50.2
graphic-macros 5-51
graphic-manipulator 5-58
graphic-operator 5-83
graphic-terminal-status 5-94
gr print 5-20-
gui 5-96
plot 5-105
using calcomp compatible subrs

2-31 - --
using gui
using plot

substructures

2-30
2-31

shared graphic substructures 2-17

symbol 3-6, 3-23
element 2-7
name 2-13

synchronize 3-13, 3-24

T

table
graphic device 3-27

tek 4002 6-4

tek 4012 6-5

tek 4014 6-6

tek 4662 6-7

terminal
control

memory management 3-16
screen 3-15

control operators
delete 3-25
display 3-25
erase 3-24

dynamic 3-38
graphic elements 3-3, 3-6, 3-17

mapping 3-6
miscellaneous 3-6
modal 3-6
positional 3-6

intelligent 3-41
interfacing 3-25
limitations 2-37
memory

delete 3-16
load 3-16

static (storage-tube) 3-5
status codes 3-38
terminal-dependent 3-1
terminal-independent 1-1, 3-1, 3-25
virtual graphic terminal 2-3, 2-37,

3-25, 3-26

text
element 2-7, 3-10, 3-22

U

UlD
see unique identifier format

i-5

unique identifier format 3-20

using calcomp compatible subrs
subroutine 2-31 -

using gui_ subroutines 2-30

using plot subroutine 2-31

using the graphic editor command 2-31

v

vector 2-11, 3-7, 3-21
element 2-4

VGT
see virtual graphic terminal

virtual graphic terminal
3-25, 3-26

2-3, 2-37,

virtual screen 3-7

w

WGS
see working graphic segment

what input format 3-41

where input format 3-39

which input format 3-40

working graphic segment 2-10, 3-11

•

AS40-01A

w
Z
..J

<.:J
Z
o
....J
~
~
:::>
u

'. I

I
I

"·1
I
I
I
I
I
I

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

SERIES 60 (LEVEL 68)
TITLE MULTICS GRAPHICS SYSTEM

ADDENDUM A

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROV.EMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. D

FROM: NAME --
TITLE __________________________ . ________ _

COMPANY --------
ADDRESS ___________________________________ __

ORDER NO. I AS40-0lA

DATED I AUGUST 1981

DATE

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM. MA 02154

ATTN: PUBLICATIONS. MS486

•• •• noneywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I
I
I
I
I
I

t
-l

C!
Z
o
-l
<l:
I
:)
U

I
I
I
I
I
I ~
I -l

I <.:J

I Z
-..:3

(

(
r'
I
I
I
I
I
I

<
o
-l
o
U.

UJ

Z

Honeywell
Honeywell information Systems

!n the U.S.A.: 200 Sm!th Street, MS 486, Wa.t!ham, ·Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1 W5

In the U.K.: Great West Road, Brentford, Middlesex TWa 90H
In Australia: 124 Walker Street, North Sydney, N.S.W. 2060

In Mexico: Avenida Nuevo Leon 250, Mexico 11, O.F.

26377, 5C1279, Printed in U.S.A. AS40-01

	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	2-01
	2-02.0
	2-02.1
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25.0
	3-25.1
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	5-001
	5-002
	5-003
	5-004
	5-005
	5-006
	5-007
	5-008
	5-009
	5-010
	5-011
	5-012
	5-013
	5-014
	5-015
	5-016
	5-017
	5-018
	5-019
	5-020
	5-021
	5-022
	5-023.0
	5-023.1
	5-024
	5-025
	5-026
	5-027
	5-028
	5-029
	5-030
	5-031
	5-032
	5-033
	5-034
	5-035
	5-036
	5-037
	5-038
	5-039
	5-040
	5-041
	5-042
	5-043
	5-044
	5-045
	5-046
	5-047
	5-048
	5-049
	5-050.0
	5-050.1
	5-050.2
	5-050.3
	5-050.4
	5-051
	5-052
	5-053
	5-054
	5-055
	5-056
	5-057
	5-058
	5-059
	5-060
	5-061
	5-062
	5-063
	5-064
	5-065
	5-066
	5-067
	5-068
	5-069
	5-070
	5-071
	5-072
	5-073
	5-074
	5-075
	5-076
	5-077
	5-078
	5-079.0
	5-079.1
	5-080
	5-081
	5-082
	5-083
	5-084
	5-085
	5-086
	5-087
	5-088
	5-089
	5-090
	5-091
	5-092
	5-093
	5-094
	5-095
	5-096.0
	5-096.1
	5-096.2
	5-097
	5-098
	5-099
	5-100
	5-101
	5-102
	5-103
	5-104
	5-105
	5-106
	5-107.0
	5-107.1
	5-108
	6-01
	6-02
	6-03.0
	6-03.1
	6-04
	6-05
	6-06
	6-07
	6-08
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	8-01
	8-02
	8-03
	A-01
	i-1
	i-2
	i-3
	i-4
	i-5
	replyA
	replyB
	xBack

