
HON EYVVE LL .

MULTICS
SYSTEM

' .. '. DIAGNOSTIC
AIDS

~.~' _ - . - SOFTVVARE

MULTICS SYSTEM DIAGNOSTIC AIDS

SUBJECT

Description of Standard Multics Commands and Facilities to Be Used in
Diagnosing System Malfunctions

SPECIAL INSTRUCTIONS

This revision supersedes Revision 2 of the manual, whose title was Multics
Hardware Diagnostic Aids, dated July 1982. Sections 2 and 3 have been merged
and their commands sorted. The title of the new section has been changed to
"Commands:' Section 4 was renamed to "Section 3."

Marginal change indicators (change bars and asterisks) indicate technical
changes. New commands do not contain change bars.

SOFTWARE SUPPORTED

Multics Software Release 10.2

ORDER NUMBER

AR97-03 December 1983

Honeywell

PREFACE

This manual contains information describing various system diagnostic aids that
are provided as part of Multics.

You should be familiar with some of the concepts and terminology of the
Multics system and the hardware on which it runs. Throughout this manual, reference
is frequently made to a number of the following manuals:

Manual Name

Multics Online Test and
Diagnostics Reference Manual

Multics Programmer's Reference
Manual

Multics Commands and Active
Functions

Multics Subroutines and 110
Modules

Multics Operator's Handbook

Multics Processor Reference
Manual

Multics Bulk I nputlOutput

SIGNIFICANT CHANGES IN AR97-03

Order No. Text Reference

AU77 Online T&D

AG91 Reference Manual

AG92 Commands

AG93 Subrouti nes

AM81 MOH

AL39 Processor Manual

CC34 Bulk 110

There are two new commands: analyze_multics and display_cpu_error. The
following commands have had changes: dump_mpc. et (now named "eis_tester. et"),
io_error_summary, mos_edac_summary. and print_syserr_log. The check_cpu_speed
command has been completely revised.

The information and specifications in this document are subject to change without notice. This
document contains information about Honeywell products or services that may not be available

. outside the United States. Consult your Honeywell Marketing Representative.

©Honeywell Information Systems Inc., 1984 File No.: lL13, lU13 AR97-03

Section 1

Section 2

Contents of the Syserr Log ..
Description of Log
Message Format
Example of Log Contents
Description of Hardware Error Messages

I/O Errors
I/O Errors for User Devices . .
Disk Errors
Operator Console Errors
Input/Output Multiplexer Errors
Main Memory or CPU Errors
MOS Memory EOAC Errors ..
OAT ANET 6600 Front-End Network Processor

(FNP)Errors
Console Messages from FNP

Commands
analyze_multics (azm)

absolute_address, absadr
add_reQuest_table, arqt
apply, ap
apte
associative_memory, am
aste
configuration_deck, cd
display, d
display _absolute, da
events, ev
history _regs, hregs ..
list_dumps, lsd
list_processes, Isp . .
machine_conditions, mc
page_trace, pgt
replace, rp
SCllS •••••••

sdw
search, srh
segmen t_name, name
segment_number, number
select_dump, sId
select_process, sIp
set
stack, sk
syserr _log, slog . . .
traffic_control_queue, tcq
value, v

iii

CONTENTS

1-1
1-1
1-1
1-2
1-3
1-4
1-4
1-5
1-6
1-6
1-7
1-9

1-9
1-9

2-1
2-2
2-4
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-14
2-14
2-15
2-17
2-17
2-18
2-20
2-20
2-21
2-21
2-21
2-23
2-23
2-24
2-24
2-25
2-26
2-27
2-28
2-28

AR97-03

Section 3

verify _associative_memory, vfam
why
Standard Subsystem Requests

check_cpu_speed . . .
daily _syserr _process . .
device_meters (dvm)
display _cpu_error
display _syserr _loLpart
dump_firmware .. .
dump_mpe
eis_tester (et)

Instruction Area
Data Areas
Notes
Page Faults
Register Assignment
Segments Used by eis_tester to Execute an

Instruction
eis_tester Printout
How to Call eis_tester
How to Write Script Input Tests
Syn tax and Metalanguage ..
inst Statement
Examples of inst Statements .
desc Statement
data Statement
page Statement
Running eis_tester with Other Users

exercise_disk
fnp_data_summary ..
io_error _summary
list_proc_required
load_mpe
mc_trace (mct)
mos_edac_summary
mpe_data_summary
patch_firmware .
poll_fnp
poll_mos_memory . .
poll_mpe
print_con figuration_deck (ped)
prin t_syserr _log
save_history _registers .. .
set_mos_pollins-time .. .
set_proc_required (sprq)
test_cpu ..
test_dcw
test_fnp ..
test_tape .

M ul tics HEALS
Description of HEALS
HEALS Reports
Examples of Reports .

iv

2-29
2-30
2-30
2-31
2-32
2-36
2-38
2-39
2-40
2-40
2-42
2-44
2-44
2-44
2-45
2-45

2-46
2-47
2-48
2-48
2-49
2-49
2-54
2-55
2-58
2-61
2-61
2-71
2-72
2-73
2-75
2-76
2-77
2-87
2-89
2-90
2-91
2-92
2-93
2-94
2-96
2-99
2-100
2-100
2-102
2-107
2-121
2-123

3-1
3-1
3-1
3-2

AR97-03

Channel Assignment Table
1/ a Error Report
Sorted 1/ a Error Report
CPU Error Report
MaS EDAC Error Report

HEALS Implementation
HEALS Usage
HEALS Installation Requirements
HEALS Commands

heals_report
prin t_heals_message
truncate_heals_log .
update_heals_log

Index

v

3-3
3-4
3-5
3-7
3-11
3-12
3-12
3-13
3-13
3-14
3-15
3-16
3-17

i-1

AR97-03

SECTION 1

CONTENTS OF THE SYSERR LOG

DESCRIPTION OF LOG

The syserr log contains all messages that are printed on the operator console by
Multics and the storage system salvager. There are also messages of the same class that
are not printed on the operator console. Tools that exist to peruse and print the
contents of this log are described in Section 2.

The syserr log is located in a special area of disk storage that is specified to the *
system via a PART LOG configuration card. Refer to the MOH for more information
concerning the PART LOG configuration card.

The general format of the syserr log consists of a header followed by a list of
threaded messages. The format of individual messages in the log is described below.

lVIESSAGE FORMAT

A syserr message consists of the following components:

sequence number

time

code

text

A number that is increased by one for each syserr message. This
generally serves to number the messages, but sequence numbers may
be missing, or they may restart at 0 at any point in the log.

The date and time when the message was logged.

This is acorn bined sorting class and action code. The low-order
decimal digit is the syserr action code. The high-order digits are the
sorting class. Both are explained below.

This is t.he text of the message.

binary data
An optional field that is used by some error messages to log more
detailed information about the cause of the error than could be
explained in the text.

1-1 AR97-03

The syserr action codes (the low-order digit of the code above) represent the
action that was taken at the time the message occurred. These are summarized below.

o print message on console. and log it.

1 ring alarm. print message on console, and crash system. (Since the system
crashes immediately, these messages do not generally find their way into
the log.)

2 ring alarm. print message on console, log it, and terminate the process
issuing the message.

3 ring alarm, print message on console, and log it.

4 log message only, but print it if there is no room in the wired syserr
buffer.

5 log message only, but discard it if there is no room in the wired syserr
buffer.

6-9 not used.

The syserr sort codes are used to indicate special classes of messages. Almost all
messages currently fall into class O. including all hardware-related messages.

EXAMPLE OF LOG CONTENTS

The following is a sample of the syserr log contents as it would be printed by
print_syserr_log, or daily _syserr_process. (See Section 2 for an explanation of these
commands.)

1-2 AR97-03

Sat 04/24/76 (est)
1310.8 34548 0 added memory e
1313.2 34549 0 added cpu b
1313.7 34550 0 RCP: Attached tape_06 for Dumper.SysDaemon.z
1313.7 34551 3 RCP: Mount Reel 50202 without ring on tape_06

1313·7
1314.9
1421 .0

1421 .0

1421 .0

1421 .0
1430.4
1430.5
1430.5
1430.5

1431.3
1432.2

1432.6

for Dumper.SysDaemon.z
34552 4 RCP: Assigned tape_06 to Dumper.SysDaemon.2
34553 0 RCP: Detached tape_06 from Dumper.SysDaemon.2
34554 0 disk control: dey attention for dskb 4

(iom-1 chan 35) cmd 25 stat 422000000100
34555 0 disk_control: dskb 4 sect=317740 cyl=214 hd=l

addr=10120
34556 0 disk control: dskb 4 detai led status =

-40 00 00 00 81 00 00 00 00
34557
34558
34559
34560
34561

34562
34563

34564

3 disk_control: dskb 4 requires intervention
4 RCP: Assigned tape_02 to Fred.AvgUser.m
o RCP: Attached tape_02 for Fred.AvgUser.m
o RCP: Note (tape_02) - 50202,den=1600
3 RCP: Mount Reel 50202 with ring on tape_02 for

Fred.AvgUser.m
o RCP: Detached tape_02 from Fred.AvgUser.m
o hardware fault: parity fault on CPU C by

Herbie.SysMaint
4 mos_memory.check: EDAC error on mem c

I
+--> Text of message.

+--> syserr code.
+-> sequence number.

+--> Time message logged.

DESCRIPTION OF HARDWARE ERROR MESSAGES

For convenience, the conventions listed below are used in the error messages
shown in the following paragraphs.

D represents a decimal number
N represents an octal number
W represents a full word. in octal

1-3 AR97-03

*

I/O Errors

I/O errors are logged in several different ways, depending on the device. They
are classified here into several groups. Each is explained in separate paragraphs.

1. User devices. This group includes all unit record devices (printers. readers.
punches), all tape drives, and I/O disks (disks not used by the storage
system).

2. Storage system disks.

3. The operator console.

4. The input/ output multiplexer (10M).

I/O Errors for User Devices

Errors for these devices are indicated by a message (as printed by print_syserr_Iog
with the -expand control argument) of the following format:

ioi_interrupt: I/O error. iom=Nl chan-N2 device=N3 statllS=W

where:

1. Nl is the 10M number.

2. N2 is the channel number.

3. N3 is the device number

4. W is the first 10M status word.

Additional messages that occur each time a user device is attached also appear in
the log. For example:

Rep: Errors (dev) = n.

where:

1. dey is the name of the device just detached.

2. n is the number of errors that occurred during the attachment.

It should be noted. however. that this error count is generated by a user ring program
that mayor may not count errors, and if it does count them. mayor may not count
them correctly.

See Section 2 for a description of the io_error_summary command. which scans
the log and summarizes I/O errors.

1-4 AR97-03

Disk Errors

. Errors encountered by operation of the storage system on disks result in messages
in the following formats:

disk_control: Queuing error
an internal coding error is given.

disk~control: Reconnected DSKX_NN Hom X chn YY)
where "DSKX_NN" is the disk subsystem name, such as "dska"; "NN" is the
drive number, in decimal; "X" is the 10M number, in octal; and "YY" is the
channel number, in octal. A disk interrupt was apparently lost. Status for the
disk did not arrive within the expected time. The system restarts the disk
operation.

disk_con trol: Placing DSKX_NN in operation
a special interrupt has been received for a disk drive marked as broken. The
system attempts to use the device.

disk_control: Unexpected 10M status SSSS for DSKX_NN Hom X chn YY)
status has been received from a channel that was not marked active. This is due
to a disk subsystem or 10M problem, or to a logic error in the supervisor. The
system ignores the status and attempts to continue operation. See the Hardware
and Software Formats, PLM manual (Order No. AN87) for an interpretation of
the SSSSstatus.

disk_con trol: DSKX_NN now operational
a disk drive that required intervention has successsfully completed an I/O
operation. The system again uses its contents.

disk_control: DSKX_NN requires intervention
a disk error has occurred that could have been
being broken or requiring operator attention.
operation several times without success. The
periodically to check if it has been repaired.

caused by the pack or drive
The system has retried the
system will try the device

disk_control: MAJOR_STAT SUBSTAT for DSKX_NN Hom X chn YY)
where "STAT" is the name of major status and substatus, in character form,
such as "dev attention." A disk error has occurred on drive DSKX_NN. The
major status and substatus are interpreted as character strings. The disk address
is given both as a Multics record address in octal (RRRR) and as an absolute
sector number in octal (SSSS). The main store address being used was AAAA.
The hexadecimal value of the detailed status is given in cases where this data is
useful. See the Hardware and Software Formats, PLM manual (Order No.
AN87) for an interpretation of this information.

disk_control: Removing channel YY on 10M X
errors occurred are indicative of a defective disk channel or MPC. The channel
receiving the errors is placed offline.

1-5 AR97-03

Operator Console Errors

Errors encountered in operation of the operator console result in a message in the
following format:

ocdcm_ (Ios-console_error): i/o error status - WI flags = W2

where:

1. WI is the 10M status word.

2. W2 is a word of software flags. The flags and switches with the
specified meanings are

fO active ON ==> this en try is in use
fl bootload_console ON ==> this is the bootload console
f2 alternate ON => console is alternate
f3 inop_device ON => console is inoperative
f4 io_device ON => console is an 101 usable device
f5 confi~change ON => console change has occurred
f6 prompt ON c> prompt for input
f7 pcw_io ON -> use PCWs instead of IDCWs
f8 io _in_progress ON c> I/O op is in progress
f9 got_special_in t ON c> RE(TURN QUEST) key was hit
flO oper_request ON -> operator has hit request key
fll break ON II:: > suspend output

Input/Output Multiplexer Errors

General 'input/ output multiplexer (10M) errors result in a message in the
following format:

jom_manager: system fault status W.

where W is an 10M system fault word.

If an I/O operation fails to complete within a reasonable time interval. a message in
the following format is printed:

ioi_timer: Timeout on 10M Nl, chan N2. de\' N3

where:

1. Nl is the 10M number.

2. N2 is the channel on which the timeout occurred.

3. N3 is the device that was connected when the timeout occurred.

1-6 AR97-03

Main Memory or CPU Errors

Errors in the operation of the CPU that result in parity, op-not-complete,
shutdown, or startup faults result in messages that have the format

hardware_fault: FFF fault on CPU TAG by User_id path

where:

1. FFF
is a fault name.

2. TAG
is the tag of the CPU on which the fault occurred. The value of TAG can be
the letters a through h.

3. User_id
is the name of the user whose process took the fault.

4. path
is the pathname of the procedure in which the fault was taken.

Machine conditions and history registers are logged in the binary portion of the
message. A sample printout of the parity fault, as would be provided by using the
-expand control argument of print_syserr_Iog or daily_syserr_process, follows:

1-7 AR97-03

Fri 05/05/83 (edt)
1555.2 74663 0 hardware_fault: parity fault on CPU C by
Jones.Multics.a in >user_dir_dir_>Mu1tics>Jones>mydoc.

Pointer Registers:
000244400043 013760000000 000116400043 000024000000
000330400043 000000000000 000072400043 003711000000
000253400043 034424000000 000253400043 034424000000
000244400043 013460000000 000244400043 000000000000
xO-7: 012222 013644 000000 000004 000007 000000 000016 000571
a: 000000000000 q: 000000000000 e:OOO t: 413500100 ra1r: 0
SCU data:
400350170041 000003150023 400330000200 000000000000
000006401200 000000000000 200000757100 000007000000
Fault Register: 013000006400
EIA Info:
000400000000 000400000000 004314000000 000077777774
000024000000 000077777774 004116000004 000000000077
OU History Reg Data:
757000757300 177777000005 237000237100 123777000001
757000757300 177777000005 237000237100 123777000001
757000757300 177777000005 237000237100 123777000001
757000757300 177777000005 237000237100 123777000001
757000757300 177777000005 237000237100 123777000001
757000757300 177777000005 237000237100 123777000001
757000757300 177777000005 237000237100 123777000001
757000757300 177777000005 757000757000 037777000006
CU History Reg DATA:
200007011000 000000042011 600137011000 000004042201
200127011000 000000002201 200007011000 000000042202
600137757100 000006042200 200127757100 000000242041
201037710000 000001042201 600137237100 000002042200
200127237100 000000042011 200007011000 000000042011
600137011000 000004042201 200127011000 000000002201
200007011000 000000042202 600137757100 000006042200
200127757100 000000242041 201005710000 000122010002
DU History Reg DATA:
777757037717 744243410015 777757037737 744242410015
737757037737 744242410015 777757037737 744243410015
737757037717 744243410015 777757037737 744243410015
777757037737 744243410015 777757037737 744243410015
737757037717 744243410015 777757037737 744243410015
737757037737 744243410015 777757037737 744243410015
777757037717 744243210015 777757037737 744243410015
737757037737 744243410015 777757037737 744243410015
APU History Reg Data:
003302007252 004160004775 003506007150 004060044775
003506007150 004060064775 003302007252 004160004775
003506007150 004060014775 003506007150 004060024775
003302007252 004160004775 003506007150 004060044775
003506007150 004060014775 003506007150 004060024775
003506007150 004060014775 003506007150 004060024775
003506007150 004060014775 003506007150 004060024775

The other three faults are handled in a similar manner.

.1-8 AR97-03

MOS Memory EDAC Errors

An EDAC error on a MOS memory is logged with a message (as printed by
print_syserr_Iog with the -expand control argument) in the following format:

mos_memory _check: EDAC error on mem M MOS S chip, Error: board B,
chip C

where:

1. M is the tag of the SC containing the bad memory where M is a letter
from a to h. The error is in the store unit containing the first
address in this SC.

2. S is the chip size, 1k or 4k.

3. B is the number of the board containing the bad chip.

4. C is the number of the bad chip on board B.

DATANET 6600 Front-End Network Processor (FNP) Errors

Certain errors in the operation of the DATANET 6600 Front-End Network
Processor result in messages in the following formats:

where:

3 system_control_: A is hung up
3 system_control_: A error W

1. A is a device name of a terminal channel controlled by the message
coordinator.

2. W is an error_table_ code.

Console Messages from FNP

Certain error conditions in the FNP cause messages to appear on the Multics
operator console. Most of these conditions are sufficiently serious to cause the FNP to
crash and generate a dump.

The general format of a crash message from the FNP is as follows:

emergency interrupt from 355 TAG: FAULT
355 instruction counter = IC

where:

1. TAG identifies the FNP that crashed.

2. FAULT is the name of the fault that occurred in the FNP.

1-9 AR97-03

3. Ie is the value of the FNP instruction counter at the time of the
fault.

If the fault is "illegal opcode," there is usually an additional message of the form

module: message

where module is the name of the FNP program that detected the error, and message
indicates the nature of the error.

A few of the FNP error messages indicate probable hardware problems, and
should be referred to Honeywell Field Engineering if they occur frequently; these
messages are listed below. Any other FNP messages indicate probable software
problems.

unrecoverable i/o error
more than 5 consecutive i/o errors
3 consecutive mailbox checksum errors
receive transfer timing error
xmit transfer timing error
send transfer timing error

In addition, if the fault identified on the first line of the message is "memory
parity" or "iom chan fault," there is probably an FNP hardware problem. In the latter
case, the message giving the FNP instruction counter is replaced by a message of the
form

channel NN, fault status = XXXXXX

where NN is a two-digit decimal number, and XXXXXX is a six-digit octal number.

The following FNP errors do not crash the system; all of them indicate possible
hardware problems.

355 iom channel fault. channel NN, fault status XXXXXX
dia i/o error, status XXXXXX
abnormal Isla status XXXXXX
excessive hsla interrupts, line NN
trouble synchronizing Isla NN. some lines may not answer.

1-10 AR97-03

SECTION 2

COMMANDS

This section contains descriptions of those Multics commands (including the ones
that extract the contents of the syserr log) that are useful for diagnosing system
malfunctions. Each description contains the name of the command (with its abbreviation.
if any), discusses its purpose, shows the correct usage, lists the arguments that can be
used, and provides notes and, when necessary. examples.

Syntax lines give the order of required and optional arguments accepted by a command
or active function. Optional portions of syntax are enclosed in braces ({}). The syntax
of active functions is always shown enclosed in brackets ([]), which are required for
active function use. To indicate that a command accepts more than one of a specific
argument, an "s" is added to the argument name (e.g., paths, {paths}, {-control_args}).

2-1 AR97-03

analyze_multics analyze_multics

Name: analyze_multics, azm

SYNTAX AS A COMMAND

azm {-control_args}

FUNCTION

invokes a subsystem that aids in system crash analysis. It can analyze dumps created by
the BOS FDUMP command and copied into the Multics hierarchy by the copy_dump
command.

CONTROL ARGUMENTS

-abbrev. -ab
enables abbreviation expansion of request lines.

-no_abbrev, -nab
does not enable abbreviation expansion of request lines. (Default)

-no_prompt
suppresses the prompt for request lines in the request loop.

-no_start_up. -nsu
does not execute any startup exec_com. (Default)

-profile PATH, -pf PATH
specifies the pathname of the profile to use for abbreviation expansion. The suffix
"profile" is added if necessary. This control argument implies -abbrev.

-prompt STR
sets the request loop prompt to STR. The default is the ioa_ STR:

"/azm/\ [(,,'d)l',] :/\2x

-request STR. -rq STR
executes STR as an azm request line before entering the request loop.

-start_up. -su
executes the exec_com "start_up.azmec" upon invocation of azm. This start_up
exec_com is first searched for in your home directory, then in your project
directory (>udd>Project_id), and last in > site. The first exec_com found is used.

-quit
exits azm after execution of other arguments. Can be used with -request.

NOTES

This command uses the standard search list mechanism to locate FDUMPs. If it does
not find a "dumps" search list. it creates one, placing>dumps in the search list as the
default. If additional search paths are desired, the add __ search_path command can be
used to define them.

2-2 AR97-03

analyze_multics analyze_multics

VIRTUAL ADDRESS CONSTRUCTS

Accessing data requires some pointer value to define an address space. The generation
of the pointer value is performed by resolving a virtual address (VIRTUAL-ADDR). A
VIRTUAL-ADDR consist of two parts: a segment number and a word offset.

The command resolves VIRTUAL-ADDRs from the following types of information:

Symbol:

Segment name:

is a symbolic name for a segment number and an offset that can be
resolved by data in definitions_ (i.e., sst$ptl can be resolved to the
correct segment number and offset of the page table lock).

a segment name can be resolved in many ways, but it can only provide
one part of the virtual address; azm uses 0 as the default offset for this
pointer value (i.e., tc_data is resolved to SEGNO I 0).

Segmen t number:
a segment number needs no resolution, but a default action needs to be
taken for the offset (the default is 0, i.e .• SEGNO 10).

Segment name/number and offset:
the VIRTUAL-ADDR in this case can be a segment name or segment
number and an octal offset (i.e.. the construct of pds 120 is translated to
SEGNO 120 or dseg 15 "is 015). The notation "I" and "$" must be used
without spaces (e.g., 24410 or sst$cmp).

Temporary pointers:
azm keeps a set of 11 temporary pointers per translation. A translation
is one complete entity such as an "FDUMP". These pointers can be set
with the set request (e.g., set sp 2301100). They can be referenced by
other requests as another type of "symbol" in a VIRTUAL-ADDR
expression. after they have been set. If not set, these pointers are null.

Offset operators:
the operators "+N" and "-N" immediately preceding an octal number. or
VIRTUAL-ADDR construct can be used to alter the offset of a virtual
address. N is a number interpreted in octal. No spaces are allowed
between the operator and the N. For example, sst$ptl +30 are resolved
to be the SEGNO for sst_seg with the offset of ptl plus 30 octal
locations; sst$pt1+ 30 is also valid.

2-3 AR97-03

analyze_multics analyze_multics

Indirection:
A VIRTUAL-ADDR can imply indirection. The indirect word can be
used as an ITS pair if it is a valid ITS word pair; if not, the upper half
of the word is used. The following VIRTUAL-ADDR construct is used
to specify indirection (sst$cmp.*). The fornlat of an indirect pointer
value is

segnoloffset,*
temp_pt r,''c

EXAMPLES OF INDIRECTION

171 230 , ,'c
sp,"c

sstI230,* sst$cmp,*+2
sp 1230,)'c

ANALYZE_MULTICS REQUESTS

absolute_address. absadr

SYNTAX

absadr VIRTUAL-ADDR

SYNTAX AS AN ACTIVE REQUEST

[absadr VIRTUAL-ADDR]

FUNCTION

segnameloffset,* symbol,*
temp_ptrloffset,*

translates a "virtual address" to an absolute memory address.

ARGUMENTS

VIRTUAL-ADDR
can be a segment number, name, or symbolic address (e.g., 64, prds, prds$am_data).
See "Virtual Address Constructs" above.

Active request example

display_absolute [absadr sst$cmpJ 2

displays the first two words of the absolute address of sst$cmp.

2-4 AR97-03

analyze_multics

add_request_table, arqt

SYNTAX

arqt PATH

FUNCTION

analyze_multics

adds a user-defined request table in the list of request tables being searched by the
current azm invocation.

ARGUMENTS

PATH
is the pathname of the request table to be added. This request table must be
consistent for use with the subsystem utility. (See Section 4 of the Programmer's
Reference Manual for request table structure.)

apply, ap

SYNTAX

ap VIRTUAL-ADDR {RANGE} command_l ine

FUNCTION

extracts all or part of a segment, specified by VIRTUAL-ADDR from the selected
FDUMP, and places a copy in a temporary segment. This pathname is passed as the
last argument in the command_line.

ARGUMENTS

VIRTUAL-ADDR
may be a segment number, name or symbolic address (e.g., 64, prds, prds$am_data).
See "Virtual Address Constructs" above.

RANGE
specifies the number of words in octal to be copied. The default is the entire
segment.

cornmand_line
is any command.

2-5 AR97-o3

analyze_multics analyze_multics

NOTES

The offset in the virtual address specifies where the copying of the segment begins.
When only part of a segment is extracted. it goes at the beginning of the temporary
segment. For example:

ap pds$am_data 400 dump_segment

puts 256 (decimal) words at the beginning of the segment.

apte

SYNTAX

apte {PROC_INDICATOR} {-control_args}

FUNCTION

displays active page table (apte) information for processes in an FDUMP that match the
states specified.

ARGUMENTS

PROC_INDICA TOR
used for specifying individual processes. It can take one of three forms:

- The decimal index (starting at zero) of a process in
the FDUMP.

- The octal apte offset of the process.
- The octal process_id of the process.

CONTROL ARGUMENTS

-all, -a
displays apte information for all processes in any state. (Default)

-blocked. -blk
displays apte information for all processes in the blocked state.

-count, -ct
specifies the total number of processes meeting the criteria specified by control_args.
With -all, it gives the counts of each process state.

-curren t, -cur
displays apte information for the current process.

-page_tbl_lock. -ptl
displays apte information for all processes marked as page table locking.

AR97-03

analyze_multics analyze_multics

-ready t -rdy
displays apte information for all processes in the ready state.

-run
.displays apte information for all processes in the running state.

-stopped, ~stop
displays apte information for all processes in the stopped state.

-wait
. displays active page table entry (apte) information for all processes in the waiting
state.

EXAMPLES

apte 2

displays information for process 2 in the FDUMP.

apte 10600

displays information for the process with apte offset 10600 (octal).

apte 3500555555

displays information for the process with octal process_id 003500555555.

associative_memory, am

SYNTAX

am {-control_args}

FUNCTION

displays SDW and/or PTW associative memories.

LOCATION CONTROL ARGUMENTS

-dump
displays the "dump" associative memories from the BOS CPU at the time the dump
was taken. (Def aul 1)

-prds
displays associative memories that have been stored in the prds of the processor on
which the current process is running.

2-7 AR97-03

analy ze_m ul tics analyze_multics

CONTROL ARGUMENTS

-all, -a
displays all entries in the associative memories. The default is to display only those
entries that are valid (Le., the full bit is on).

-ptw
displays only the PTW associative memories.

-pageno PAGENO
displays only those entries in the PTW associative memories that have a page
number that matches the value of PAGENO (which is an octal page number).

-sdw
displays only the SOW associative memories.

-segno SEGNO
displays only those entries in the SOW and PTW asSOCiatIve memories that have a
segment number that matches the value of SEGNO, which is an octal segment
number. (See assoc_mem.incl.pll.)

NOTES

If no control arguments are given, both the SDW and PTW associative memories are
displayed for the "dump" associative memories.

aste

SYNTAX

aste segno/segname {-control_args}

FUNCTION

displays active segment table (ast), page table. and trailer information. The default
displays active segment table entry (aste) and page table information only.

ARGUMENTS

segno / segname
is the segment number or segment name of interest.

CONTROL ARGUMENTS

-aste
displays active segment table information for the selected entry.

-at offset, -at virtual-addr
displays aste information starting at the offset or virtual address specified.

2-8 AR97-03

analyze_multics

-brief, -bf
displays everything excluding the page table information .

. -long. -lg
displays everything, that is, the aste, page table, and trailer information.

-page_table, -pt
displays page table information for the selected segment.

-trailer, -tr
displays trailer information about the selected segment.

configuration_deck, cd

SYNTAX

cd {card_names} {-control_args}

FUNCTION

analyze_multics

displays the contents of the configuration deck in the s~lected FDUMP. This request
works exactly like the standard pcd command, except that it gets the configuration deck
from the FDUMP.

ARGUMENTS

card_names
are the names of the particular configuration cards to be displayed. Up to 32 card
names can be specified (separated by spaces). If no card names are given, the the
complete configuration deck is printed.

CONTROL ARGUMENTS

-brief, -bf
suppresses the error message when a requested card name is nOl found. (Default)

-exclude FIELD_SPECIFIERS. -ex FIELD_SPECIFIERS
excludes particular cards or card types from being displayed. One to 14 field
specifiers can be supplied with each -exclude, and up to 16 -exclude control
arguments can be specified. To be eligible for exclusion, a card must contain fields
that match all field specifiers supplied with any -exclude argument.

-long, -lg
prints an error message when a requested card name is not found.

-match FIELD_SPECIFIERS
selects particular cards or card types to be displayed. One to 14 field specifiers
can be supplied with each -match, and up to 16 -match control arguments can be
specified. To be eligible for selection, a card must contain fields that match all
field specifiers supplied with any -match argument.

2-9 AR97-03

analyze_mul tics analyze_mul tics

NOTES

Field specifiers can consist of a complete card field or a partial field and an asterisk
(*). An asterisk matches any part of any field. Specifiers for numeric fields can be
given in octal or decimal, but if decimal they must contain a decimal point. Asterisks
cannot be specified in numeric field specifiers. All numeric field specifiers are
converted to decimal and matched against numeric card fields. which are also converted
to decimal. Hence. the field specifier "1024." matches a card containing the octal field
2000. and the field specifier "1000" matches a card containing the decimal field 512.
Note that all card names must be specified before the first -match or -exclude
argument. Field specifiers following a -match or -exclude argument include all
arguments until the next -match or -exclude argument.

display, d

SYNTAX

d VIRTUAL-ADDR {EXP} {RANGE} {-control_args}

SYNTAX AS AN ACTIVE REQUEST

[d VIRTUAL-ADDR {EXP} {RANGE} {-control_args}]

FUNCTION

displays a selected portion of a segment in the FDUMP ..

ARGUMENTS

VIRTUAL-ADDR
specifies the initial offset of the virtual address space to be dumped. May be a
segment number. name. or symbolic address (e.g.. 64. prds. prds$am_data). See
"Virtual Address Constructs" above.

EXP
is an expression, which is either an octal value or a VIRTUAL-ADDR construct
yielding an octal value. This value can be positive or negative. specified by the
plus or minus sign.

RANGE
specifies the number of words to be dumped in octal. If a RANGE is not
specified, the default action is to display one word. If the data is an ITS pair.
two words are displayed.

MODE SPECIFICATIONS

-character. -ch, -ascii
displays the selected number of characters in ASCII. Characters that cannot be
printed are represented as periods. Usage as an active request is not allowed.

2-10 AR97-03

analyze_multics analyze_multics

-instruction, -inst
displays the selected number of words as instructions. Usage as an active request is
not allowed.

-octal, -oc
displays the selected number of characters in octal. When used as an active
request, it returns the octal value of the requested address. (Default)

-ptr, -p
displays the selected number of word pairs as pointers. When used as an active
request, it returns the octal value of the form SEGNO I OFFSET.

-pptr, -pp
displays the selected number of words as a packed pointer. When used as an active
request, it returns the octal value of the form SEGNO I OFFSET.

-pptrx, -ppx
displays the selected number of words as packed pointers and expands the
SEGNO I OFFSET to a segment name. Usage as an active request is not allowed.

-ptrx, -px
displays the selected number of word pairs as pointers and expands the SEGNO I OFFSET
to a segment name. Usage as an active request is not allowed.

CONTROL ARGUMENTS

-as STRUCTURE_NAME
displays the data as a hardcore PLjI structure defined by STRUCTURE_NAME.
The STRUCTURE_NAME is a hardcore system-defined include file. The address
given in the display request is taken as the address of the beginning of the
structure. If the whole structure is being displayed, that is the address where
display begins. If only certain elemen ts are being displayed, that is the address
used to compute offsets of the elements. The structure reference following -as
must be a single string. containing no spaces. and follows the syntax described
below. The single string is used to specify structure elements. array indexes, and
substring matching. Usage as an active request is not allowed.

-long. -lg
displays each element of the structure on a separate line. This control argument is
only implemented with -as.

STRUCTURE SYNTAX

The structure reference is made up of two parts: a structure element reference and an
optional set of match strings. If no match strings are supplied, no string matching is
done. The structure element reference syntax consists of one or more element names,
separated by periods, and may contain subscripts following some of these element
names. The first name in a structure element reference must be a level-one structure
reference; partially qualified top-level references are not permitted. Intermediate levels
of qualification may be omitted as long as there is no ambiguity.

2-11 AR97-03

analyze_ffiultics analyze_multics

All subscripts must be supplied as decimal integers. The subscripts can be cross-section
references such as "(1:4)" to reference elements one through four. Asterisk bounds
cannot be used: if a cross section is desired, its upper and lower bounds must be given
as decimal constants. If an element has more subscripts than are supplied, the complete
cross section is printed for the remaining subscripts. To eliminate the need for quoting,
subscripts may be surrounded by braces instead of parentheses.

In order to specify that only certain elements be displayed (such as all those with
names containing the string "time"), a set of match strings can be given after the
structure element reference. Each match string begins with a slash and is followed by
the string itself. The final match string can be followed by a slash, but this is not
required. If match strings are specified, any element that matches at least one string is
displayed.

EXAMPLES OF STRUCTURE REFERENCES

pvt
the whole structure "pvt".

pvt. n_ en tries
the single element "n_entries" in the structure "pvt".

sst/time/. sst/time
any elements in the structure "sst" containing the string "time". Note that the final
slash is optional.

sst/time/meter /
any elements in the structure "sst" containing either the string "time" or the string
"meter".

sst. space {3}
element three of "sst. space".

sst. space {2:4}
elements two, three. and four of "sst. space".

sst. space
all elements of "ssl.space".

sst.1evel {l}
both elements of the "level" array for "sst.level {l}"

sst. level {l} .ausedp, sst.level.ausedp {l}
the single element "ausedp" of the "level" array for "sst.level {l} "

2-12 AR97-03

analyze_multics analyze_multics

STRUCTURE OUTPUT FORMAT

The default output format is a compressed form, which places as many values on a line
as will fit within the line length. The -long control argument places one value on a
line. The short form, additionally, collects all bite!) flags and displays them, at the end
of the display for each substructure or array element, in two groups: one listing all the
flags that were on ("1"b) and one for all the ones that were off ("O"b).

All PL/I data types are displayed in the same representations used by probe.
Additionally, the following special formats are used:

1. Bit strings are displayed in octal if the length is divisible by three, in hex if
divisible by four, and as bit strings otherwise.

2. Character strings are' displayed as a string concatenated with a repeated constant
if the string is padded on the right with more than 16 nulls, spaces, or octal
777 characters.

3. Large-precision (> 5!) fixed binary values are also displayed as clock readings if
their values represent clock readings within 10 years of the present.

EXAMPLES

d 751560 2

displays the two words in seg number 75 starting at offset 560.

d pdsl560 2

displays the two words in the segment named pds starting at offset 560.

d pds$trace

displays one word in the pds segment beginning at the offset specified by $ trace.

display 2441260 +20 4

displays four words of segment number 244 starting at offset 300 octal.

d sp 20

displays 20 octal words starting with the segment offset defined in the azm internal
temporary pointer (see set request).

2-13 AR97-03

analyze_multics analy ze_ffi ul tics

d sst$cmp,* +sst$cmesize sst$strsize

causes the word at sst$cmp to be used as an indirect word. or an indirect pointer if
the resultant address has ITS modification. to develop the starting virtual address. The
value derived from sst$cmesize is then added to the starting offset for the "final"
starting address. The range, or number of words to be displayed, is specified by the
value contained in sst$strsize.

d sstl2 -as apte

displays the APTE entry at the given offset in the SST as it is defined by apte.incl.pll.

display _absolute, da

SYNTAX

da ABS-ADDR {RANGE} {-control_args}

SYNTAX AS AN ACTIVE REQUEST

[da ABS-ADDR {RANGE} {-contro l_args}]

FUNCTION

dumps an absolute memory address space in the FDUMP.

ARGUMENTS

ABS-ADDR
is the starting absolute memory address, in octal.

RANGE
specifies the number of words to be dumped in oct.:1.l. If a range is not specified,
the default is one word. If the data to be dumped is an ITS pair. two words are
dumped.

MODE SPECIFICATIONS

For a description of the mode specifications. see the display request.

-character. -ch. -ascii
-instruction, -inst
-octal, -oc
-ptr, -p
-pptr, -p?
-pptrx, -ppx
-ptrx, -px

2-14 AR97-03

analyze_multics analyze_multics

events, ev

SYNTAX

ev {-control_args}

FUNCTION

displays significant events, in reverse chronological order, from an FDUMP (see
"Notes").

CONTROL ARGUMENTS

-last N, -It N
specifies the number of events to print. The default is to print all.

-long, -lg
displays disk queue events.

-time NSECS, -tm NSECS
specifies the time in seconds before the dump was taken when events were
significant. The default is 10 seconds.

NOTES

The following events are considered as significant: machine conditions (from BOS, prds,
pds~ and the mc_trace_buO, traffic control state change time, Syserr messages (from
both syserr_data and syserr_Iog), Fim frames in any stack. and connects by device and
disk queues (long report only).

history _regs, hregs

SYNTAX

hregs {HREGS_spec if i er} {-contro l_args}

FUNCTION

displays a composite analysis or octal dump of the processor history registers. This
request is useful for people who are knowledgable of the hardware. The default action
is to display the AU, CU, DU, and au history registers for the pds in a threaded
order and interpreted format.

HREGS SPECIFIERS

-condition VIRTUAL-ADDR, -cond VIRTUAL-ADDR
displays history registers from a condition frame, the location of which is described
by VIRTUAL-ADDR.

2-15 AR97-03

analyze_m ul tics analyze_multics

-dump

-pels

displays the "dump" history registers from the BOS CPU at the time the dump was
taken.

displays the history registers that have been stored in the current processes pds.
(Default)

VIRTUAL-ADDR
displays the history registers that have been stored at the address space specified by
VIRTUAL-ADDR.

CONTROL ARGUMENTS

-au
displays the AU history registers only.

-cu
displays the CU history registers only.

-du
displays the DU history registers only.

-ou
specifies that only the OU history registers are to be displayed.

-interpret
displays the interpreted form of the history registers only (default). or, if -octal is
given. include the octal representation also.

-octal. -oc
displays the octal values of history registers only, or, if -interpret is also selected,
display octal and interpreted form. If neither -octal nor -interpret is specified, the
default action is to display the interpreted form only.

-thread
displays the selected history registers in the "correct" order. (Default)

,-no_thread
display the selected history registers in serial order,. without attempting to sort
them.

2-16 AR97-03

analyze_multics

list_dumps, lsd

SYNTAX

lsd {PATH}

FUNCTION

analyze_multics

lists the FDUMPs in the selected dump directory. If PATH is not given. FDUMPs
from all the dump directories specified in the dumps search list are listed.

ARGUMENTS

PATH
is the pathname of the dump directory to be listed.

list_processes, lsp

SYNTAX

lsp {PROC_INDICATOR} {-cont~ol_args}

SYNTAX AS AN ACTIVE REQUEST

[lsp {PROC_INDICATOR} {-control_args}]

FUNCTION

lists all known processes in the selected FDUMP. As an active request. it returns the
process_ids meeting the control argument criteria.

ARGUMENTS

PROC_INDICATOR
used for specifying individual processes. It can take one of three forms:

- The decimal index (starting at zero) of a process
in the FDUMP.

- The octal apte offset of the process.
- The octal process_id of the process.

2-17 AR97-03

analyze_ffiul tics

CONTROL ARGUMENTS

-all. -a
lists all processes in the FDUMP. (Default)

-blocked. -blk
lists processes marked as blocked.

-count, -ct
counts all processes. With -all, it gives the counts of each process state.

-curren 1. -cur
lists the current process.

-page_tbI_Iock. -ptl
lists processes marked as page table locking.

-ready. -rdy
lists processes marked as ready.

-run
lists processes marked as running.

-stopped. -stop
lists processes marked as stopped.

-wait
lists processes marked as waiting.

EXAMPLES

do "select_process &l;sdw 0" ([1 ist_processesJ)

displays the SDW for DSEG for all processes in the FDUMP.

machine_conditions, me

SYNTAX

mc {Me_specifier} {-control_args}

FUNCTION

displays all or partl of machine conditions based on the given pointer.

Me SPECIFIERS

-dump
specifies the dump for the BOS CPU regs at time of dump.

2-18

analyze_multics

AR97-03

analyze_multics analyze_multics

-pels {STRl}
where STRI can be "all", "fim", "page_fault" ("pgfU

), "signaller" ("signal", "sig"). It
defaults to "all" if STR1 is not given.

-prcjs {STR2}
where STR2 can be "all", "fim", "interrupt" ("int"), "system_trouble" ("sys"). It
defaults to "all" if 110t given.

VIRTUAL-ADDR
is the virtual address construct used to define the address space containing machine
conditions.

CONTROL ARGUMENTS

-eis
displays the EIS pointers and lengths (interpreted).

-faults, -fIt
displays the fault register.

-long, -lg
displays all elements of the Me.

-mc_err
. displays the mc_err data word.

-misc
displays the miscellaneous data (i.e., mc_err. fault reg. time).

-octal, -oc
displays the eis info, scu data. or pointer registers, in octal. This control argument
is used wi th -scu, -eis, or -regs.

-pointers {PR_LIST}, -prs {PR_LIST}

-ppr

displays pointer registers selected by PR_LIST (from 0 to 7, separated by spaces).
If PR_LIST is not specified. all the pointers are displayed.

displays only the PSR and Ie from the Me.

-registers {REG_LIST}. -regs {REG_LIST}

-scu

displays only the basic OU registers. Where REGS_LIST can be any of the
following:

xO xl x2 x3 x4 x5 x6 x7 a q all.

If REG_LIST is not specified, all of the basic OU registers are displayed.

displays only the SCll data of the Me.

2-19 AR97-03

analyze_multics analyze_multics

-time, -tm
displays the MC time.

-tpr
only displays the TSR and the CA from the MC.

NOTES

If no Me specifiers are given. the temporary pointer prmc is used. The default control
arguments are -eis. -fault, -mc_err, -pointers, -scu, -time, and -tpr. Either -pds or
-prds must be supplied. The machine_conditions request sets all azm-defined temporary
pointers as seen in the machine_condition frame.

EXAMPLES

me -pds fim -seu

displays the scu data found in the fim frame of the pds currently being referenced in
the dump.

page_trace, pgt

SYNTAX

pgt {-eontrol_arg}

FUNCTION

displays the contents of the page trace table in the current process data segment (PDS).
The default is to display the last 15 trace entries. Trace entries are always displayed in
reverse chronological order.

CONTROL ARGUMENTS

-all. -a
displays all trace entries.

-last N. -It N
specifies the number of trace entries. where N is a positive decimal integer. to be
displayed.

replace, rp

SYNTAX

rp segno/segname PATH

2-20 AR97-03

analyze_multics analyze_multics

FUNCTION

replaces the segment designated by segno/segname in the current translation table, with
another segment designated by PATH.

ARGUMENTS

PATH
is the pathname of the segment. The equal convention can be used: rp
bound_system_faults [e wd] >=.new

segno / segname
the segment number or segment name within the translation table to be replaced.

NOTES

Both per-process and per-system segments can be replaced. For example, if the pds is
replaced in a process. it affects only the current process; whereas if tc_data is replaced
in a process, it affects the whole FDUMP.

sellS

SYNTAX

scus

FUNCTION

prints the memory address space (in octal) of each scu from the registers saved in the
FDUMP.

sdw

SYNTAX

sdw {segno/name} {segno/name}

FUNCTION

displays the SDWs in the current processes DSEG.

ARGUMENTS

segno/name
is the segment number or name of interest. The first is the starting segment
number and the second is the ending segment number. If only one is given. only
one is displayed; if none are given, all are displayed.

2-21 AR97-03

analyze_multics

search, srh

SYNTAX

srh VIRTUAL-ADDR {RANGE} SEARCH_STRING

SYNTAX AS AN ACTIVE REQUEST

[srh VIRTUAL-ADDR {RANGE} SEARCH_STRING]

FUNCTION

analyze_multics

searches a segment starting at VIRTUAL-ADDR matching on SEARCH_STRING. The
search is performed on a 36-bit-word boundary. As an active request. the virtual
addresses matching the criteria specified is returned.

ARGUMENTS

VIRTUAL-ADDR
is the poin ter to the address space to search.

RANGE
specifies the number of words to be searched from the start~ng offset, where range
is an octal value. The default is the rest of segment. The search is started from
VIRTUAL-ADDR.

SEARCH_STRING
is a 12-character string representing the 12 octal digits that make up a machine
word (36 bits. 3 bits per digit). This forms both the search data and search mask
by using the hyphen (-) as a "don't care character" in the string. The "'do care
digits" are octal "from 0 to 7." Any other character is illegal.

EXAMPLES

To search for

1. all words in segment 76 that have the last two digits of 43:

srh 76 ----------43

2. all words in tc_data where the upper half 070707:

srh tc_data 070707------

2-22 AR97-03

analyze_ffiultics analyze_mul tics

3. words that end in 1234 in sst_seg starting at 1000 but only searching for 200
octal words:

srh sst_seg 11000 200 --------1234

4. words that start with 45 and end with 77 starting a sst_seg$ptl for 100 words:

srh sst_seg$ptl 100 45--------77

segment_name, name

SYNTAX

name VIRTUAL-ADDR

name number

SYNTAX AS AN ACTIVE REQUEST

[name VIRTUAL-ADDR]

[name number]

FUNCTION

prints the segment name given a virtual address or a segment number. .

ARGUMENTS

VIRTUAL-ADDR
is the virtual address construct used to define the segment.

number
is the segment number of the segment to be referenced. Thus, "name 230" returns
the name associated with the segment number 230, which is "stack_O".

segment_number, number

SYNTAX

number VIRTUAL-ADDR

number name

SYNTAX AS AN ACTIVE REQUEST

[number VIRTUAL-ADDR]

[number name]

·2-23 AR97-03

analyze_multics analyze_multics

FUNCTION

prints the segment number given either a virtual address or a segment name.

ARGUMENTS

VIRTUAL-ADDR
is the virtual address construct used to define the segment.

name
is the name of a segment. e.g.. stack_O. Thus, "number sst_seg" returns the
segment number associated with the segment sst_seg. which is "77".

select_dump, sid

SYNTAX

sld {NAME} {-control_args}

FUNCTION

selects and translates an FDUMP of a system crash. Found via the dump search list,
which defaults to >dumps.

ARGUMENTS

NAME
is the ERF number or the path name of the zero component of the FDUMP. It
can also be the form path>35. where 35 is the erf number. Several control
arguments are also acceptable if NAME is not specified.

CONTROL ARGUMENTS

-first, -ft
selects the first dump (by erf number) in the dump directory found via the dump
search list.

-last, -It
selects the last (most current) dump in the dump directory according to erf
number.

-next. -nx
selects the next dump in the dump directory. This is relative to the dump
currently being looked at.

-previous, -prev
selects the previous dump in the dump directory. This is relative to the dump
currently being looked at.

2-24 AR97-03

analyze_multics

seIec~_process, sIp

SYNTAX

slp {PROC_INDICATOR} {-control_args}

FUNCTION

analyze_multics

selects a process for examination. When invoked with no arguments, the current process
is listed.

ARGUMENTS

PROC_INDICA TOR
used for specifying individual processes. It can take one of three forms:

- The decimal index (starting at zero) of a process
in the FDUMP.

- The octal apte offset of the process.
- The octal process_id of the process.

CONTROL ARGUMENTS

-brief, -bf
suppresses the message about changing processes.

-cpu TAG
selects the DBR for the process running on the CPU identified by TAG (where
TAG' is one character in the range a through h).

-dbr dbr_ value
selects the process defined by the dbr _value.

-long. -lg
prints a message announcing the new process selected. (Default)

set

SYNTAX

set PTR_N VIRTUAL-ADDR

FUNCTION

sets an internal temporary pointer like a cpu pointer register (Le., ¥lpr6" or "sp"). These
pointers can then be used as a VIRTUAL-ADDR by other azm requests.

ARGUMENTS

VIRTUAL-ADDR
can be a segment number, name, or symbolic address (e.g., 64. prds, prds$am_data).

2-25 AR97-03

analyze_multics

PTR_N
can be either the name or number of a "temporary pointer."

There are eight temporary pointers and two special-case pointers.

NUMBER NAME
prO ap
prl ab
pr2 bp
pr3 bb

prmc intended to be a pointer
prfr intended to be a pointer

EXAMPLES

set pr6 2401100

this sets a temporary ptr named pr6 (sp).

set sb 240

NUMBER NAME
pr4 lp
pr5 lb
pr6 sp
pr7 sb

to the current Mes.
to the current stack frame.

this sets the temporary ptr (sb) to the base of seg 240 (240 I 0).

NOTES

analyze_multics

The value of a temporary pointer can be displayed via the value request: v {ptrn I
-all}

stack, sk

SYNTAX

sk VIRTUAL-ADDR {-control_a~guments}

FUNCTION

traces a given stack.

ARGUMENTS

VIRTUAL-ADDR
is the virtual address construct defining the stack to be traced.

2-26 AR97-03

analyze_multics analyze_multics

CONTROL ARGUMENTS

-arguments, -ag
prints the arguments for the stack frames traced.

-for N
traces for N stack frames. If no valid stack frames exist (stack_begin_ptr ..,
stack_end_ptr), a -force must be used.

-force. -fc
forces a forward stack trace. For use when there are no valid frames for this
stack (stack_begin_ptr stack_end_ptr>.

-forward. -fwd
. traces in a forward manner.

-long, -lg
prints the arguments and an octal dump of the stack frames traced.

NOTES

The default is to trace the stack in reverse order unless -force or -forward are
specified. If the VIRTUAL-ADDR has a zero offset. then the trace starts at the offset
of the first stack (stack_header.stack_begin_ptr). If it has a nonzero offset, then the
trace is started from that offset in the given stack.

syserr _log, slog

SYNTAX

slog {-control_args}

FUNCTION

displays all or parts of the syserr_Iog and syserr_data segments from the dump. It does
not examine the perm_syserr _log. The default is to print the entire log.

CONT RDL ARGU fL1 E NT S

-action A
displays only messages with an action code specified by A. where A is a decimal
integer in the range 0 to 9.

-exclude STR -ex STR
excludes any message that contains STR. where STR is a string that is matched
against messages in the log.

-last N, -It N
starts the scan N messages back from the end of the log. where N is a decimal
integer.

2-27 AR97-03

analyze_multics analyze_multics

-match STR
displays any message that contains STR, where STR is a string to be matched
against messages in the log.

-expand, -exp
. interprets the binary data of messages. The format is generally dependent on the

text of the message.

traffic_control_queue, tcq

SYNTAX

tcq {-control_args}

FUNCTION

displays process DBR, process state, process 10, current CPU, and user ID from the
Traffic Controller's Eligible Queue. as well as the "process number" in the FDUMP.
The default is to display only the eligible queue.

CONTROL ARGUMENTS

-all
displays the eligible. real-time, interactive, and work-class queue entries. including
the un threaded en tries.

-ready, -rdy
displays the eligible. real-time, Interactive, and work-class queues, excluding the
unthreaded entries.

value, v

SYNTAX

v -all

FUNCTION

displays the current value of one or all of the temporary pointers.

2-28 AR97-03

analyze_multics analyze_m ul tics

ARGUMENTS

PTR_N
specifies which of the temporary poin ters is to be displayed. Ref er to the set
request for a list of the azm-defined pointer names.

-all, -a
specifies that all of the pointers are to be displayed. (Default)

verify _associative_memory, vfam

SYNTAX

vfam {-control_args}

SYNTAX AS AN ACTIVE REQUEST

[vfam {-control_args}]

FUNCTION

performs a consistency check on the associative memories stored at the time of a dump
by comparing them to the appropriate entries in the "dump dseg" and page tables.
When used as an active request, returns "true" if any inconsistencies are found. "false"
otherwise.

CONTROL ARGUMENTS

-ptw
restricts the verification to the PTW associative memories.

-sdw
restricts the verification to the SDW associative memories.

NOTES

If no argument is given, both SDW and PTW associative memories are checked.

2-29 AR97-03

analyze_multics

why

SYNTAX

why

FUNCTION

analyze_multics

tries to find the stack that has a call to syserr_real$syserr_real or call_bos$call_bos and
sets the temporary pointers pr6 and prfr to the stack frame. This request searches the
stacks for a frame that has a return_to_ring_O_ frame and sets the temporary pointers
from this set of machine conditions that called this entry.

NOTES

If the crash is due to fim_util$check_fault finding a problem, the machine condition
CU data is displayed and all temporary pointers are set from these machine conditions.
If this is an execute fault, then some lock info is printed and the process selected is
locked (look at PTL first then ASTL).

If this fdump is due to a manual return to BOS, then some pertinent lock info is also
printed.

STANDARD SUBSYSTEM REQUESTS

prints a line describing the current invocation of azm.

?
prints a list of requests available in azm.

abbrev, ab
controls abbreviation processing of requests lines.

answer
provides preset answers to questions asked by another request.

do
executes/returns a request line with argument substitution

execute. e
executes a Multics command line.

exec_com, ec
executes a file of azm requests that can return a value.

2-30 AR97-03

analyze_multics

help
prints information about azm requests and other topics.

if
conditionally executes/returns one of two request lines.

list_help, lh
displays the name of all azm info segments on given topics.

list_requests, Ir
prints a brief description of selected azm requests.

quit, q
exits azm.

ready, rdy
prints a Multics ready message.

ready_off. rdf
disables printing of a ready message after each request line.

ready_on, rdn
enables printing of a ready message after each request line.

su bsystem_name
prints/returns the name of this subsystem.

subsystem_ version
prints/returns the version number of this subsystem.

The standard escape convention for executing Multics command lines (..) is also
supported.

SYNTAX AS A COMMAND

FUNCTION

performs a relative check of the speed of a currently running CPU on the system.

2-31 AR97-03

daily _syserr _process

ARGUMENTS

cpu_tags
are the tags of CPUs configured on the system. If more than one is supplied. the
values must be separated by spaces. The default is to run on all CPUs listed by
the list_proc_required command that are currently marked as ON in the configuration
deck.

ACCESS REQUIRED

This command requires access to the phcs_ gate to run.

NOTES

Your process is left running with the original set of system CPUs.

The command runs on a CPU outside of your original set of CPUs if the CPU tag is
given on the command line.

Name: daily _syserr _process

SYNTAX AS A COMMAND

FUNCTION

runs once a day to process the syserr log for the preceding day. It writes out all syserr
log entries on various I/O switches.

CONTROL ARGUMENTS

-from DT
where DT is a date/ time acce.ptable to convert_date_to_binary _ (see the Subroutines
manual).

If the control argument is given. the syserr log is scanned for the first line written
after the date specified. Log processing starts from this entry. If it is not given. the
program looks for the sys_admin_data segment in the current working directory and
uses the log_control structure there to look for information describing the index of the
last entry previously processed.

2-32 AR97-03

daily _syserr _process daily _syserr _process

Distribution of the output is controlled by the control file, syserr_select_file, in the
current working directory. This file has comment lines beginning with an asterisk (*),
and selector lines of the form

swi tch_name,S,opcode, text

where:

1. switch_name

2. S

3. opcode

is the name of the I/O switch on which a line is written.

is the syserr action code to be considered. See Section 1 for an
explanati0D: of these codes. S can also be specified as fI*" to indicate
all action codes.

is the· operation code. Valid opcodes are

all

any

begin

not

nbegin

count

bcount

allx

selects all lines (at this syserr code)

selects all lines containing text

selects all lines beginning with text

inhibits all lines not containing text

inhibits all lines not beginning with text

counts all lines containing text

counts all lines beginning with text

like all, but messages with binary data have the data expanded
when printed

2-33 AR97-03

daily _syserr _process

4. text

anyx

beginx

daily _syserr _process

like any. but messages with binary data have the data expanded
when printed

like begin. but messages with binary data have the data
expanded when printed

is optional text that is the operand of opcode.

The opcodes not and nbegin must precede any selector lines they are to inhibit for a
given I/O switch.

Each entry in the syserr . log is considered. For each entry. the selector lines in
syserr_select_file mayor may not select the entry, depending on the operation code. If
the entry is selected. it is written on the named switch. A syserr log entry can are
selected (and therefore written) more than once if different switches are named.

All I/O switches named must be attached and open before daily_syserr_process is
called.

At the end of processing. total lines are written. Then, if any lines were selected. a
total count is printed out.

NOTES

This command is intended to be used by the "crank" absentee job run by the system
administrator every day. This job is controlled by the contents of master.ec contained
in >udd>SysAdmin>lib. The daily_syserr_process command itself is controlled by the
syserr_select_file segment contained in >udd>SysAdmin>accounting_library.

The system administrator and site analysts should be consulted whenever these files must
be modified so that they are more suitable for an individual installation.

EXAMPLES

Included here are excerpts of the files that are used at a representative Multics site.
These files cause all hardware-oriented messages for a given day to be printed in the
segment dailY_log_I.

2-34 AR97-03

daily _syserr _process

* syserr log control file.
,'(

da ly_log_O,S,bcount,ioi_interrupt: I/O error.
da ly_log_O,S,nbegin,ioi_interrupt: I/O error.
da ly_log_O,*,all
da ly_log_0,3,bcount,RCP: Mount Reel
da ly_log_l,3,bcount,RCP: Mount Reel
da ly_log_l, l,al 1
da ly_log_l,2,all
da ly_log_l,O,bcount,op-not-complete
da ly_log_l,O,bcount,parity
da ly_log_l,3,bcount,pxss: notify time out
da ly_log_l,O,bcount,on_l ine_salvager: begin salvaging
da ly_log_l,O,bcount,ITT overflow
da ly_log_l,O,begin,Now terminating user process
da ly_log_2,3,nbegin,RCP: Mount
da ly_log_2,3,not,setting timax
da ly_log_2,0,nbegin,RCP: Detaching
da ly_log_2,0,nbegin,RCP: Force Detaching
da ly_log_2,S,bcount, ioi_interrupt: I/O error.
da ly_log_2,S,nbegin,ioi_interrupt: I/O error.
da ly_log_2,*,all
network_log,*,any, imp
network_log,*,any,network
,'(

,'(END

2-35

daily _syserr _process

*

AR97-03

daily _syserr _process device_meters

The following excerpt from master.ec shows how the daily log files are attached and
opened. Then daily _log_process is invoked to fill the files. The· files are then closed,
detached, and dprinted.

master.ec

io_call attach dai ly_log_O vfi le_ daily_log_O
io_call attach daily_log_l vfi le_ daily_log_l
io_call attach dai ly_log_2 vfi le_ dai ly_log_2
io_call attach network_log vfi le_ network_log
io call open dai ly_log_O stream_output
io_call open dai ly_log_l stream_output
io_call open dai ly_log_2 stream_output
io_call open network_log stream_output
dai ly_syserr_process
io_call close (daily_log_O daily_log_l daily_loQ_2 network_log)
io_call detach (dai ly_log_O daily_log_1 daily_log_2 network_log)

exec - com ut i 1 dp (dai ly_log_2 bwchart.print) assurancel 2
exec com ut i 1 dp (sumry cutrpt daily_log_O crank.absout) acctsO -exec - com ut i 1 dp (da i 1 Y _109_1 bwchart .pr i nt) adminO 2
exec - com ut i 1 dp da i 1 Y _1 og_2 sysprg2
exec - com ut i I dp (dai ly_log_O bwchart.print sumry crank.absout)

!'ame: device~eters. dvnl

SYNTAX AS A COMMAND

FUNCTION

2

adminl 2

* prints out metering information for the PAse control devices. Information can be
printed for the disk subsystems.

2-36 AR97-03

device_meters device_meters

CONTROL ARGUMENTS

-error, -er
prints out error occurrence statistics for the device (see Notes below).

-reset, -rs

-left

-io

resets the metering interval to begin with the last call with -reset specified. If
-reset has never been given in a process, it is equivalent to having been specified
at system initialization time.

prints out information regarding available space on each device.

prints I/O volume statistics for each device.

-latency. -lat
prints device latency (delay) statistics.

-report_reset, -rr
generates a full report and then performs the reset operation.

NOTES

If no control argument is given. a full report is generated.

The following items are printea if -error is specified:

EDAC Corr. Errs
is a count of the times a read was performed and an error occurred, but
the EDAC (error-detection-and-correction) hardware was able to correct
the error.

Recov. Errors
is a count of the times an error occurred and the EDAC hardware was
unable to correct it, but a subsequent retry resulted in proper transmittal
of the data.

Fatal Errors
is a count of the occurrences of nonrecoverable errors.

2-37 AR97-03

Name: display _cpu_error

SYNTAX AS A COMMAND

FUNCTION

scans the syserr log and displays machine conditions and history registers.

CONTROL ARGUMENTS

-from DT. -fm DT
starts scanning the log at the date/time given.

-to DT
stops scanning the log at the date/time given.

-for T
computes the ending time from the starting time. where T is a relative time (such
as nlhourn).

-cpu CPU_LIST
displays information for the CPUs specified. where CPU_LIST is a list of CPU
tags ("a cft).

-no thread
specifies that the history registers are not to be threaded. The history registers will
be output in octal with no interpretation. The default is off.

-expand, -exp
specifies that the history registers are not to be threaded but that they are to be
in terpreted.

NOTES

If -from DT is not given. the scan starts with the earlies entry in the syserr log. The
ending time can be specified by using -for or -to. but not both. If both are omitted,
the scan terminates with the last entry in the log. All dates and times must be in a
format acceptable to convert_date_to_binary _ (see the Subroutines manual).

You must have re access to auditJate_ and r access to the perm_syserr_Iog to use this
command.

2-38 AR97-03

SYNTAX AS A COMMAND

FUNCTION

displays portions of the syserr logging partition that exist on the disk, in order to
diagnose and correct problems that might occur in the syserr logging partition.

ARGUMENTS

header. he
prin ts the syserr log partition header.

check D, ck D
checks message threads in direction specified by D and validates message formats.
Direction is specified by one of the following:

forward, f
reverse, r

message N. msg N

forward checking only
reverse checking only

displays a single message with message header information. message text and
expanded binary output, and octal message words. The message to be displayed is
specified by appending a positive or negative integer to the message argument:

N displays the log message that is N from the top
-N displays the log message that is N from the last

CONTROL ARGUMENTS

-offset ADDR, -ofs ADDR
displays message at word offset ADDR from the beginning of the syserr log.

-number N. -nb N
displays the syserr log message whose message number is N (decimal).

NOTES

If no arguments are specified, all logging paruuon information is displayed. You must
have re access to >system_library_l>phcs_ in order to use this command.

2-39 AR97-03

dump_firmware dump_mpc

Name: dump_firmware

SYNTAX AS A COMMAND

dump_firmware path mem {addr count}

FUNCTION

is used to dump the contents of a segment containing MPC firmware.

ARGUMENTS

path
is the pathname of the segment containing the firmware.

mem
must be "cs" to dump the control store overlay, "TW" to dump the read/write
overlay, or "size" to print the locations and lengths of overlays in the module. If
this argument is "size," no further arguments need be given; otherwise. the addr
and count. arguments described below must be given.

addr
is the starting address to dump. in hexadecimal. This argument must be given if
the mem argument is not "size."

count
is the number of words to dump, in hexadecimal. This argument must be given if
the mem argument is not "size."

Name: dump_mpe

SYNT AX AS A COMMAND

FUNCTION

performs a dump of the read/write memory of a MPC and selectively edits the dump,
the trace table, and MPC and device statistics.

ARGUMENTS

mpc_name
is the name of the MPC to be dump~d. This name must appear on an MPC card
in the config deck. If this argument is omitted, -channel must be given.

2-40 AR97-03

CONTROL ARGUMENTS

-dump
displays a hexadecimal dump.

-trace
displays an interpreted trace of the MPC.

-extend, -ext
extends the output· file if it exists. The default is to overwrite the file.

-stat
displays the MPC and device statistics.

-mpe
displays MPC error data only.

-channel channel_name, -chn channel_name
specifies a channel name, where channel_name is of the form [iomtag] [channel_no]
(i.e., a14). The iomtag field must be a tag of a configured 10M and the
channel_no must be a decimal channel number. If this control argument is used,
the mpc_name argument is optional. If both are used, the channel must be
connected to the mpc specified.

-output_file {path}, -of {path}
directs dump output to the segment specified by path. If path is not given, a
default segment name of [mpc_name] .list is used. If this control argument is not
given, the default is to direct output to your terminal.

-long
formats output for devices with 132 columns or more. The default is based on
output type and can be used to override the file output default.

-short
formats output for devices with fewer than 132 colums. The default is. based on
output file type and can be used to override the file output default.

NOTES

If neither the -stat, -dump, -mpc. nor -trace control arguments are specified, only the
MPC and device statistics are displayed.

Switch 4 on the MPC maintenance panel is used to control tracing in the MPC.
Tracing is only done if this switch is in the down position. If the trace table is being
dumped to see the events leading up to a particular error condition, it may be useful
to place switch 4 in the up position as soon as possible after the error occurs. This
inhibits further tracing of I/O in the MPC and reduces the chances of losing trace
data caused by the table wrapping around before the dump can be taken.

2-41 AR97-03 .

dump_mpc

*

The dump produced by this command is in a format similar to the BOS MPCD
command described in the MOH.

You must have re access to rcp_priv _ to use the dump_mpe command.

Name: eis_tester, et

SYNTAX AS A COMMAND

eis tester path {-control_args}

FUNCTION

sets up and tests EIS instructions in a controlled environment. You must prepare an
input script describing the EIS instructions to be tested. From this input script the EIS
tester builds the EIS instructions (one at a time) and the indirect words. descriptors.
and data that each instruction needs. The instruction to be tested is set up in a special
ALM segment (etx). The eis_tester command calls etx in order to execute the EIS
instruction: etx returns to eis_tester when the instruction has been executed. After
executing the instruction. eis_tester tests correct execution of the instruction. If one of
the test scripts in the ets data base fails and the successful execution of that test is
dependent upon installation of a particular FeD, the FCa number is displayed in the
error message.

ARGUMENTS

path
is the pathname of a segment that contains input script data that defines the
instructions to test.

CONTROL ARGUMENTS

-brief. -bf

-nox

suppresses all output except identification and error messages.

sets up the instruction but does not execute it: used to test the validity of the
input script.

-debug
runs the test in a debugging loop where each instruction is tested 10 times but
results from the test are not checked. Each time through the loop the instruction
is set up completely. including all the specified faults.

-select N. -sel N. -do N
processes only test N (where N is a poSltlve decimal number). This number has no
relationship to the -ns field in any test.

2-42 AR97-03

-help
displays a brief usage statement.

-instruction_type INSTR. -inst INSTR
processes only tests that contain the instruction INSTR.

-long. -lg
displays all the related test information prior to executing a test.

-repeat N, -rpt N
repeats the entire execution of the selected tests N times.

-stop_on_failure. -sof
displays the failing data, machine condition, and history register information and
return to command level if an error is detected in a test. The default is to display
the failing data and continue with the next test.

-from N, -fm N
starts processing test N (where N is a posItIve decimal number) and continues
processing all remaining tests in the input segment unless -to is used.

-to N
stops processing after test N (where N is a positive decimal number). If -from is
not used. tests one through N are processed.

NOTES

Before eis_tester calls etx to execute the instruction, it sets up some special padding
around the data field that is modified by the EIS instruction. Eight special characters
(octal 717) are put in front of and at the end of the result data string. The result area
itself is initialized to all zero bits.

When called to execute the EIS instruction, etx does the following:

1. Saves the current pointers and registers.

2. Loads the pointers and registers from values set up by eis_tester. These
are the values of the pointers and registers when the EIS instruction is

. actually being executed.

3. Sets indicators to preinstruction test values.

a. All indicators except band c below are off.

b. The BAR MODE indicator is always on.

c. If the test instruction is expected to turn on any of the three
overflow indicators (ov, eo, eu), then the om (overflow mask)
indicator is turned on so an overflow fault is not taken.

2-43 AR97-03

4. Transfers to the instruction area in etx itself where eis_tester has set up
the EIS instruction and its descriptors.

5. After the EIS instruction has been executed, etx stores the values of the
indicators, pointers. and registers so that eis_tester can examine them.

6. Reloads the pointers and registers that were saved by etx.

7. Returns to eis_tester.

After the execution of the EIS instruction. cis_tester makes the following tests:

1. Checks to see that the data resulting from the instruction is correct.

2. Checks to see that the indicators are set correctly.

3. Checks to see that a truncation fault was correctly taken or not taken.

Instruction Area

The EIS instruction is set up in a special area in etx. This area consists of seven
words. The first three words of the instruction area are set up in the last three words
of a page. The last four words of the instruction area are the first four words of the
next page. By positioning the instruction in the instruction area. you can position the
instruction on a page boundary. Those words in the instruction area that are not used
for the EIS instruction itself are set up as nop instructions. The default position of the
instruction word is in instruction area word 4. This places the instruction at word 0 of
a page.

PAGE A

PAGE B

Data Areas

WORD 1
WORD 2
WORD 3

WORD 4
WORD 5
WORD 6
WORD 7

<-- Default position of
instruction word.

The data referenced by each descriptor of the instruction is set up in a special data
area. There is one data area used for every descriptor of the instruction. Each data
area consists of three pages. The default starting position of the data is character 0 of
word 0 of page 2. The last 32 words of page 1 and the first 32 words of page 3 can
also be used to hold the test data. Thus the maximum data size of any string is 1088
words or 4352 (9-bit) characters. You can position the start of the data string so that
it starts in page 1. Thus you can define data strings that cross page boundaries. A long
data string can cross two page boundaries.

2-44 AR97-03

Notes

Depending on what modification is used by the instruction, the data areas used mayor
may not be in the same segment.

If a· descriptor is referenced via an indirect word, then the descriptor is set up in a
special page of its own. Depending upon the modification used in the indirect word,
the descriptors may be in different segments.

Page Faults

You have control over a maximum of 13 page faults during the testing of any EIS
instruction. These 13 pages have consistent meaning to eis_tester, even though for
different tests they may actually be physically different pages in different segments.

The 13 pages are

1. Page 1 of the instruction area
2. Page 2 of the instruction area
3. Page containing indirect descriptor 1
4. Page 1 of data area 1
5. Page 2 of data area 1
6. Page 3 of data area 1
7. Page containing indirect descriptor 2
8. Page 1 of data area 2
9. Page 2 of data area 2

10. Page 3 of data area 2
11. Page containing indirect descriptor 3·
12. Page 1 of data area 3
13. Page 2 of data area 3

Register Assignment

You can control the type of modification used by each EIS instruction tested. However,
for each type of modification (depending upon the descriptor number) eis_tester assigns
the register to be used. The specifk use of pointers and registers is not under your
con trol when using the eis_tester script input method.

Pointer registers not used during the instruction are set to null (7777711). Index
registers and the A and Q registers that are not used are set to 8191 decimal (17777
octal).

2-45 AR97-03

AR modification involves the use of a pointer register. Both descriptors and indirect
words can use AR modification. A general rule followed by eis_tester is that AR
modification implies the data referenced is in an external segnlent. The pointer registers
used by eis_tester for the EIS instruction are

AR modification in a descriptor

descriptor 1 prl
descriptor 2 pr2
descriptor 3 pr3

AR modification in an indirect word

descriptor I pr4
descriptor 2 prS
descriptor 3 pr7

pr6 is used to point to your current stack frame and must be preserved in a valid state
in order for any conditions to be signaled correctly.

Index register modification can be specified for descriptors and for indirect words. The
effective offsets used for index modification are always set. up by eis_tester in terms of
words. For some descriptors. the value in the index register must be in units of
characters. The character size also varies with the value of the ta field of the
descriptor. The index registers assigned by eis_tester and the effective word offset they
contain are given below.

Index register modification of a descriptor

descriptor 1
descriptor 2
descriptor 3

Xl 1 word
X2 2 words
X3 ~ words

Index register modification of an indirect word

descriptor 1
descriptor 2
descriptor 3

X4 4 words
XS 5 words
X7 7 words

RL modification can be specified for the descriptors of certain instructions. The value
put in the register is specified by you. The register assigned is controlled by eis_tester.
The following registers are used:

descriptor 1 A
descriptor 2 Q
descriptor 3 X6

2-46 AR97-03

Segments Used by eis_tester to Execute an Instruction

The execution of an instruction by eis_tester can involve up to seven segments:

etx eti!
eti2
eti3 .

etdl
etd2
etd3

The notation etiX means etil. eti2, or eti3. depending on which of the up-to-three
descriptors or operands is of current interest. Similarly, etdX means etdl, etd2. or etd3.

The first list below states the possible segments in which various items can be located.
while the second list states what segment a descriptor or an operand is in under various
conditions.

ITEM
etx

Instruction word x

Indirect word pointing to descriptor x

Descriptor x

Operand x

Is AR Used Is AR Used

SEGMENTS
et i X

x

x

etdX

x

to Access to Access Descriptor Operand
Descriptor? Operand? Location Location

No No etx etx
No Yes etx etdX
Yes No et i X etiX
Yes Yes etiX etdX

eis_tester Printout

The eis_tester program prints a message noting the beginning of each instruction test. It
also prints the number of this test. If there were errors. it prints the incorrect data or
incorrect indicators.

If you do not specify -bf (see "Usage" above) then the data that eis_tester has set up
for this instruction is printed before the instruction is executed. The following notes
describe this printout:

1. Pointers enclosed in parentheses point to where the data is set up in the
eis_tester segments.

2. If none of the pointer registers are used by the instruction. then none are
prin ted. The same is true of the registers.

2-47 AR97-03

3.

4.

5.

6.

The names of the pages that take faults cannot be the names of all the
pages specified in a page statement. See the last two complete examples at
the end of this description for clarification.

If the first word of a data string does not begin at character 0 of a
word, or if the string does not use all four characters of the last word,
then the unused characters of the first and last words of the string are
printed as blank characters.

The test string is not printed from one of the areas used by the
instruction but rather from one of the buffers used by eis_tester.

The test and result strings are both padded by eis_tester with special
characters. These special characters are not printed out in octal like the
rest of the string; instead. each of these special characters is printed as
three x's (xxx).

How to Call eis_tester

The eis_tester program is the main procedure in the EIS instruction tester. It calls
et_test to parse the statements in your data file. It translates these statements into the
data needed to build and test an EIS instruction in the external segment etx. After
building the instruction. this procedure calls etx in order to execute the EIS instruction.
When etx returns, the results of the EIS instruction are examined. The eis_tester
program continues to build and test EIS instructions until there is no data left in the
input file. The failure of one instruction only causes the termination of that one
instruction test. Any remaining instructions specified in the input file are processed and
tested. .

How to Write Script Input Tests

The script input test consists of a series of eis_tester statements. The first statement in
any test must be an inst statement. This statement signifies the beginning of one test.

An input script segment can contain several tests. All stat.ements from the beginning of
the inst statement to the beginning of the next inst statement (or. if none is found, to
the end of the segment) are considered part of the same test.

2-48 AR97-o3

The format of a statement is as follows:

name required_field {-control_args};

where:

1. name
is the four-character statement name. There are four types of eis_tester
statements:

inst defines the instruction word and many control variables.
desc defines a descriptor.
data defines the data associated with a descriptor.
page defines the page faults taken by the instruction.

These statements are discussed in detail later in this document.

2. required_field
is required information used by all but the page statement.

3. control_args
are optional control arg~ments, explained in the individual statement
descriptions.

Syntax and Metalanguage

All statements must end with a semicolon (;). There can be any number of blanks,
tabs, and newline characters between any fields in the statement, including before the
name field. Wherever blanks are permitted, there can also be comment fields. A
comment field begins with a /* character pair and ends with the next * / character
pair.

In this description. lowercase letters are used to indicate characters that are to be typed
in for input to eis_tester. Uppercase letters are to be replaced with the desired
character before the script is typed.

inst Statement

The inst statement defines the beginning of an eis_tester test. It is used to define all
of the fields in the instruction word of the EIS instruction. It is also used to set up
the following special control arguments:

1. Instruct eis_tester to execute this instruction several times.

2. Position the instruction within the instruction area.

3. Define an identifying string that is printed with the test.

2-49 AR97-03

An inst statement has the following format:

inst opcode_mnemonic {-control_args};

where:

1. lnst
is the four-character statement name.

2. opcode_mnemonic

3. control_args

-tbA

-fb

-pb

-rb

-fcA

-mcA

-In N

-io N

is the mnemonic name of a storage type EIS instruction.

are optional and can be chosen from the following:

turns on the truncation bit. The A is either y or n to signify whether
or not the instruction is to take a trunc:ation fault (y = yes. n = no).
The def aul t is n.

turns on the fill bit. The default is off.

turns on the plus sign bit. The default is off.

turns on the rounding bit. The default is off.

defines the fill character to be the character specified by A. (No
space between c and A and no quotes are permitted.)

defines the mask character to be the character specified by A. (No
space between c and A and no quotes are permitted.)

defines the loop number as X.· This is the number of times this
instruction test is performed. The default is 1. The maximum value
of X is 4.

defines the instruction offset. It is used to posltIon the instruction
relative to a page boundary. The default is O. This places the
instruction at word 0 of the second page of the instruction area. X
indicates the number of words of the instruction to be placed in the
first page of the instruction area. The maximum value of X is 3.

2-50 AR97-03

-nt "A ... A"
defines a note. It can be used to identify each test. The term
consists of a character string between quotes. Up to 32 characters can
be used. No embedded quotes are allowed.

-bo AAA
defines a Boolean operator. AAA is the name of the operator. The
names eis_tester has assigned to the Boolean operators are given
below. Next to these names are the actual BOLR codes they represent.

zer 0000
and 0001
axr 0010
mov 0011
xra 0100
ra2 0101
xor 0110
orB 0111 Type in orB. where B is a space
nor 1000
nox 1001
iv2 1010
xrx 1011
inv 1100
xxr 1101
nan 1110
set 1111

-ir {terms}
is a multifield control argument that defines the correct state of the
indicator registers after the EIS instruction has been executed. An -ir
control argument can be followed by any number of specific terms.
These terms can be in any order and can be separated by any number
of skip fields. Each term is a two-character identifier of an indicator
register bi 1.

2-51 AR97-03

A . control argument of "-ir zr" means that the zero indicator is
expected to be on at the end of the EIS instruction. Valid indicator
register term values are

-mfX {terms}

zr zero
ng negative
cr carry
ov overflow
eo exponent overflow
eu exponent underflow
om overflow mask
tr tally runout
pe pari ty error
pm pari ty mask
bm BAR mode (always turned on by eis_tester>
tn truncation
mw multiword instruction interrupt fault
ab absolute mode

If the script turns on eo, eu, or ov, then eis_tester automatically
turns on the overflow mask bit in the expected indicator's
result.

is a multifield control argument that' defines one mf field of the,
instruction. Some instructions do not have mf fields in the instruction
word for all of their descriptors. The -mfX control argument is then
used to specify any ar or reg modification in the descriptor itself. An
example is the mvt instruction. X denotes which mf field is being
defined. It must be from 1 to 3 and is associated with descriptor X.
This descriptor number can be followed by up to four terms. All
four terms are optional and can be specified in any order. The valid
terms are

ar
r] L
idA
reg

The ar term

The ar term specifies that. for this descriptor, the address register
modification is be used to access the operand. In Multics. it is called
pointer register modification. The pointer assigned is prX. When this
term is specified, the data referenced by this descriptor is placed in
the segment etdX.

2-52 AR97-03

The rl L term

The rl L term specifies that t for this descriptor, the register length
modification is be used. This term must be followed by a decimal
number L t which specifies the character length of the data. The
character size is defined within a desc statement (for 4-, 6-, or 9-bit
characters) or inferred from the instruction mnemonic (for bit
strings). This value is placed in the selected register, and the N field
of descriptor X contains the register modification tag code. The
registers assigned are

X 1 - A
X 2 - Q
X 3 - x6

The idA term

The idA term specifies that descriptor X is to be referenced via an
indirect word in the instruction. In the idA term, the A denotes what
modification is to be used in the indirect word: a for address
register, r for register, or b for both.

If no A character is given in the idA term, then there is no A
modification in the indirect word.

ida

idr

idb

specifies that address register modification is to be used to
access the descriptor. When this is specified, the descriptor is
placed in the segment etiX.

The pointer registers assigned to the indirect word are

indirect word 1 = > pr4
indirect word 2 => pr5
indirect word 3 => pr7

specifies that register modification is to be used to access the
descriptor. The indirect word is modified by index register 4,
5, or 7.

NOTE: This modification is in terms of words.

specifies both a and r modification as described above.

2-53 AR97-03

The reg term

The reg term specifies that descriptor X is to be modified by an
index register. The value in the index register is a character offset
and is (X *4). The index register assigned is index register X. The
value placed in index register X is dependent upon the type of
instruction and the appropriate character size. It is in the following
units:

WORDS

BITS

CHARS

for those descriptors that have no mf field in the instruction
word

for all bit string instructions

for all others. The actual units depend upon the character
size. The default is a 9-bit character size.

If it is necessary to write a script in which the placement of the instruction, indirect
words, descriptors, and operands in specific segments is important. the following list is
help.

Script Elements Used Descriptor Operand
in-mfX Fields Location L.ocation
-------------------- ---------- --------

ar etx etdX
id ar etx etdX

ida ar etiX etdX
idr ar etx etdX

idb ar etiX etdX

id etx etx
ida etiX etiX

idr etx etx
idb etiX etiX

2-54 AR97-03

eis_tester

Examples of inst Statements

Example 1.

inst ml r -nt "Example 1 "

-fc* 1* Comments can go anywhere except inside a term *1

-fb

-mf2 1* Note order is not important. *1
r 1 3 i d ar reg

-mf 1 ar i db reg r 1 3 ; 1"(Statement must end with ";" "cl

1* Example 2. *1 inst cmpc

-mf 1 ar
-nt II example 2" -mf2 rl 3

1* mnemonic name must
* be first term. *1

-fc 1* Use escape to enter octal character *1
-ir cr zr ; 1* Indicator bm is on by default. *1

1)'(Example 3. ,'el

inst
-mc9
-In
-io

-mf1
-mf2

I ,',
H

inst
-mf3
-rb

I ,t. ..

3
2

reg
ida;

scm

ar

-nt IIscm examp.1I

1* Make this test 3 times. *1
1* Put instruction word and first descriptor
* in page 1 of instruction area. */

Example 4. ,'el

ad3d
ar -mf2 reg -mf1 idr

-pb;
1* -mfx items can be in any order *1

Examp 1 e 5. "cl

inst csr -fb -bo and -mf 2 rl 36;

2-55 AR97-03

desc Statement

The desc statements are used to specify certain fields in the descriptors. Each desc
statement deals with only one descriptor. The fields in a descriptor not specifically set
up by a desc or an inst statement are set to zero. If zero bits in all of the fields are
needed. then no desc statement need be specified for that descriptor.

The -cp, -bp. and -cn fields of a desc statement interact with the -do field of the
associated data statement. See the complete examples at the end of the eis_tester
description for illustrations of the interactions.

In general, the order of the desc statements is not important, and the can be mixed in
with any other statements. However. if the instruction is CMPC. SCD. SCDR, SCM, or
SCMR, then the desc 2 statement cannot specify a -ta field. Descriptor 2 must use the
value specified in descriptor 1. To use this feature. the desc 1 statement must precede
the desc 2 statemen t.

A desc statement has the following format:

desc num {-control_args};

where:

1. desc

2. num

3. con trol_args

-cp N

-bp N

-cn N

is the four-character statement name.

is the number of the descriptor. It must be 1, 2. or 3.

can be chosen from the following:

is used in bit string instructions to specify a (9-bit) character offset
when developing an operand address where N must be a number from
o to 3.

is used in bit string instructions to specify a bit offset within a 9-bit
character when developing an operand address where N must be a
number from 0 to 8.

is used in character string instructions to specify a character offset
when developing an operand address where N must be a number from
o to 7. The quantity of bits associated with each character (4, 6, or 9
bits) is specified by the N argument supplied with the -ta or -tn
control argument.

2-56 AR97-03

eis_tester

-ta N

-tn N

defines the alphanumeric character type where N must be 9, 6. or 4.
The default value is 9.

defines the type of numeric character where N must be either 9 or 4.
The default value is 9.

-sd STR

-sf N

-ns N

-nn N

is the sign and decimal type. The STR argument must be one of the
following characters:

f - Floating point. leading sign
1 - Leading sign. scaled
t - Trailing sign, scaled
n - No sign, scaled

is the scaling factor where N is a signed (or unsigned) decimal
number.

is the number of characters or bits in a string where N is an
unsigned decimal number. There is no default value.

is the number of characters in a numeric string where N is an
unsigned decimal number that must not be greater than 64. There is
no default value.

2-57 AR97-03

eis_tester

EXAMPLES

Examp 1 e 1. "cl

desc -ns 8 -ta 6 -cn 5;

I ·'· .. Examp 1 e 2. "cl

desc 3 -cp 2
-bp 1* Comments can come between control argument names

* and the term. *1 5;
1* No -ns control argument. This is val id if -mf3
* control argument in inst statement
'Ie specified rl term.)'cl

Example 3. 1el

desc 2
-tn 4 -cn 3 -sd n 1* No sign. *1
-sf -100 -nn 12;

data Statement

The data statements are used to describe the data that a descriptor references. Every
test requires at least as many data statements as there are ~escriptors for the EIS
instruction being tested.

The eis_tester program can determine which descriptor references the result data. The
data entered for this descriptor is not set up in the data area referenced by the
descriptor. Instead. this data area is initialized to all ze:ro bits. The input data is saved
and used to test the result of the instruction. Some special notes about data statements
are given below:

1. For those instructions that both read and write data into the same string
(e.g., ad2d. sb2d), you must enter a data 3 statement that describes th{;
resulting data referenced by descriptor 2. The data input via the data 2
statement is the data initially referenced by descriptor 2.

2. The data pointer for each descriptor is set by default to character 0 of
word 0 of page 2 of the data area for that descriptor. You can adjust
this data pointer by certain (9-bit) character offsets.

3. The input string defined by you is placed in the data area starting at the
first character referenced by the effective data pointer. It is important to
remem ber this. If the descriptor associated with this data area specifies
that the first character of the string is not character 0 of the first word,
then the missing data must be reserved when the input string is specified.

2-58 AR97-03

eis_tester

4. The -do field of a data statement interacts with the -CPt -bp, and -en
fields of the associated desc statement. See the complete examples at the
end of the eis_tester description for illustrations of the interactions.

A data statement has the following format:

data num {-control_arg} data_fields;

where:

1. data

2. num

3. control_arg

-do X

is the four-character statement name.

is the number of the data field. It must be either 1. 2. or 3. In
some cases. a data 3 statement is valid even when there is no third
descriptor. In this case, it is used to input test data. See the last
complete example (csl instruction) at the end of this description. If
the descriptor that points to this data does not use address register or
register modification, then only offsets that are a multiple of 4 are
accepted. The data used by EIS instructions is always string type data,
and thus the input modes are limited to the two described below.

can be

where X must be a decimal integer from -128 to +4096 that
represents a 9-bit character offset from character 0 of the middle
page of the data area.

are the following types. They can be intermixed. The maximum size
of the data is 1088 words (4352 characters).

ASCII
is an ASCII string. It must be enclosed in quotes. The maximum size
of anyone field is 256 characters. Quote characters can be entered in
the string by expressing them as double quotes (nn).

OCTAL
is a string of octal digits. The first nonoctal-digit-type character
found indicates the end of a string of octal data. The converted octal
string is padded on the right with zero bits to make it an integral
number of 9-:-bit characters. For example. data 123 45 6 7777:
becomes 123 450 600 777700.

The repetition factor (XX). an unsigned decimal number enclosed in
parentheses. can be used to specify the repetition of a field. Only the
data field immediately following the repetition field is repeated.

2-59 AR97-03

EXAMPLES

data 3

data 2

data

Example 1. four characters of data starting at the
beginning of the default data area. */

Example 2.
characters.

Moves the same data field back two
This spl its the string across a page.

NOTE: The input string is the same even though it is
entered differently. */

-do -2

Example 3. The same as example 2 only it specifies
some of the data in octal. */

"ab" 143144 -do -2;

Example 4. A string of:
"12121212121212121212'1, that is 10 "12" strings. -1:/

data 2 "12" 061062 Ill" "2"
061 062
(3) "12"
(3) 061062;

data 2

"abed"

Example 5. The effective data address to be
word 1 of page 2 of the data area. However, the cn
field of the descriptor specifies that the first
character of the word that is used is character
3. Put some fi 1 1 characters in the first
three characters.

- do 4 " ~'do': " / ,': F ill c h a rae t e r s . Not
* referenced by the instruction. */

/* The actual data string with which
* the instruction works. */

2-60 AR97-03

eis_tester

page Statement

The page statement is used to control page faults during the execution of the EIS
instruction. The default case is that no page faults occur. The cis_tester program
requires that you specify those pages on which faults are to be taken.

If you specify a page that is not actually used by the instruction (for example, the
third page of a data area that has a one-character string), there is no harm. There is
also no page fault.

All the pages used by an EIS instruction have been assigned names. For pages other
than the two instruction area pages, the names can reference physically different pages.
Their use by the EIS instruction is always the same.

The format of a page statement is

page {-control_args};

where:

1. page
is the four-character statement name.

2. con trol_args
specify what pages are to have page faults and be chosen from the
following:

-in1 -in2
the two pages of the EIS instruction itself take a page fault.

-idl -id2 -id3
the pages used by descriptors ref erenced via indirect words take a
page fault.

-dll -d12 -d13
the three pages of data referenced by descriptor 1 take a page fault.

-d21 -d22 -d23
the three pages of data referenced by descriptor 2 take a page fault.

-d31 -d32

-all

the two pages of data referenced by descriptor 3 take a page fault.

specifies that all of the pages defined for this instruction take a page
fault. If other control arguments are entered along with the -all
control argument. then the pages specified do not have page faults.

2-61 . AR97-03

Running eis_tester with Other Users

If eis_tester is to be run while other users are on the system. it is not possible to
positively guarantee that selected pages will not take a page fault. The "page -all;"
statement causes eis_tester to flush all the pages of the etx, etil. eti2, eti3, etdl, etd2,
and etd3 segments out of main memory. Using "page -·all -in2;" results in flushing all
pages, touching page in2. and transferring control to etx. The touching of page in2
brings it into main memory. However, the overall system activity may be such that
eis_tester loses control before reaching page in2, eis_tester and etx being displaced by
pages for other users, control being returned to etx, execution continuing, and page in2
being no longer in memory. Then, when page in2 is needed, a page fault occurs.
Therefore, a general guideline is: if eis_tester is run when other users are on the
system, use the "page -all:" statement.

However, if eis_tester is to be run as the only user (nondaemon) process on the system
and the "page" statement is not used. the pages should be in main memory when
wanted. Some hardware problems may require running tests with and without page
faults to isolate the problem. You should be aware that just because eis_tester attempts
to avoid a page fault and the eis_tester output does not state that a page fault will
occur does not necessarily mean that a page fault will not occur.

EXAMPLES

1"(Example 1 • "(1

page -in2 -id3 -d32
-d12 -d12 -d 1 1 - i d 1 ;

I,'e Example 2.

page -all;

page

Example 3.
pages in2

-in2

'/(1

Take faults on
and id3 '/el

ALL pages EXCEPT

-all -id3; /* Notice order is not
* important. *1

2-62 AR97-o3

eis_tester

EXAMPLES OF ACTUAL TEST SCRIPTS AND THEIR OUTPUT

inst
-mf1

-mf2

desc

desc 2

data

data 2

ml r 10

This test is the same as the test mlr3 except that
the descriptors use AR. REG. and RL modification
and use indirect descriptors. The indirect
words use both REG and AR modification.

ml r -nt "10. II -io
r 1 20
ar I"e This puts the data in etd 1 . "el
reg I,'e Use index register 1 •. 'leI
idb I'I(This adds indirect descriptors. Descriptors

,', go in segments et i 1 and eti2. ,tcl

idb
r 1 20
reg
ar;

-en 2;

-en 2;

-do -20 II II (5) "abcd" . •
-do -20 000 000 (5) "abcd" 1* Fill for -en 2

* must be zeros. *1

page - i n 1 - i n2
-d22 -d21
-d 1 1 -d 12
-idl -id2
-id3 -d32;

et mlrl0 -nox

I*The absence of any output from the
*et mlrlO -nox input 1 ine means that the
*script passes the val idity checks that eis_tester performs. *1

2-63 AR97-03

et

TEST 1 (ml r)

EIS instruction:
000172100571

400034000114
500043000115

(262 13777)

->
->

Ind Desc.

100007200005
200016200006

(3271100)
(330 100)

Pointer Registers: (262120)
prO - pr3 77777711 33 2 11763 3331 1753 77777711
pr4 - pr7 327140 330130 77777711 77777711

Index Registers: (262170)
xo - X7 17777 4 10 777 4 5 17777 17777

A 000000000024 Q 000000000024

Test Indicators:
000000000200

(26211 11)

This test takes 8 page faults.
in1 in2 idl d11 d12 id2 d21 d22

data field 1
000000141142
143144141142

data field 2
Result data

test data
xxxxxxxxxxxx
143144141142
xxxxxxxxxxxx

(332 11773)
143144141142 143144141142
143144

(3331 1773)
field initialized to all zero

(262 j15776)
xxxxxxxxxxxx 040040141142
143144141142 143144141142
xxxxxx

I ,'·
" Test mvt instruction. *1

143144141142

bits.

143144141142
143144xxxxxx

inst mvt -nt 113 11 -fc j,': Char is octa 1 1. ,':j
-mf1 r 1 3 ar reg idr
-mf2 ar reg ida
-mf3 reg ar;

desc 2 -ns 8;

data -do -2 003 002 001;

2-64 AR97-03

data 2 -do -6 II 32 1 111" 1/11";

data 3 -do -1 "0" "123";

page -a 11 -in2;

et

TEST 1 (mvt)

EIS instruction: (26214000) Ind Oesc.
- - - -- - - -
001132160571
051774000014 -> 100007000005 (262152000)
500050000100 -> 200016000010 (330 100)
300025000113

Pointer Registers: (262120)
prO - p r 3 7 77 7 7 711 3 3211 767 (18) 33 31 1 756 (1 8) 334 11 74 7 (2 7)
pr4 - pr7 . 777777 1 330 30 77777711 77777711

Index Registers: (262170)
xo -X7 17777 4 ·10 777 4 5 17777 17777

A 000000000003 Q 000000017777

.Test Indicators: (2621111)
000000000200

This test takes 11 page faults.
id1 d11 d12 d13 .id2 d21 d22 d23 d31 d32 d33

data field 1 (33211777(18)
003002 001

data field 2 (33311776(18))
Result data field initial ized to all zero bits.

data field 3 (33411777(27))
060 061062063

test data (262115776)
xxxxxxxxxxxx xxxxxxxxxxxx 063062061061 061061061061
xxxxxxxxxxxx xxxxxxxxxxxx

2-65 AR97-03

eis_tester

NOTES

A standard set of scripts is provided that can be used with eis_tester. If CPU problems
with the EIS instructions are suspected, these scripts should be run. The ets segment's
standard location in the storage hierarchy is >tools>ets, but an installation can locate ets
somewhere else.

EXAMPLES

~':/

An example to illustrate the interaction between
the "-do" and the II-cn" fields.

inst mlr -ir tn -nt "-do and -cn interaction"
-mfl idb ar reg -mf2 idb ar reg;

/* The uppercase letters in the two data statements could have been
~': typed in as IA8COEFGH" and "COEF" but were typed in as they are
* shown so that explanatory remarks could be placed on the adjacent
* lines. The symbols used above and below the desc and datal ines
,': mean:

P The boundary of a page, and hence, also a word
boundary.

5----5 The operand string portion of the data fietd.
W A word boundary.

W P W ,'c/
desc -cn 2 -ns 6;data 1 -do -5 "A" "8" IIC II liD" "E" IIF" "G" "H" "1" ;
/* 5-------------------5
* Each uppercase letter in the above data statement occupies 9 bits.
* Note that the data field for the first operand starts five 9-bit
,', bytes to the 1 ef t of a page boundary. Th is is due to the "-do -5 11

* field. However, the operand string excludes the first two bytes
,', of the data fie 1 d, because of the II-en 2" fie 1 d.

desc 2 -cn 3 -ns 4;data 2 -do -1
I"~:

P W
000000 000 "e" 110" "E" "F";

5------------5

* The data field for the second operand starts one 9-bit byte to the
,', 1 eft of the page boundary due to the "-do - 'I" fie 1 d. The II- cn 3"
* field results in the operand skipping over the first three bytes of
* the data field. Another way to specify the COEF string to fall
* where it does would be to use these desc 2 and data 2 statements:
,', desc 2 -ns 4; data 2 -do 2 "CDEF";
,', The II-en 3" and 000 000 000 were used to show how to do it when
* the person writing the script wants to use the CN field in the
* second descriptor. */

page -a 11 ;

2-66 AR97-03

eis_tester

COMMENT:
COMMENT:

The output from running eis_tester with the above script is shown
below. Explanatory remarks have been inserted in the

COMMENT: output, on the lines that start with COMMENT:

ET
TEST

Test

Eis

(m 1 r)

Description:

instruction:
- - - -- - - -

000132100531
400034000114
500043000115

-do and -cn interaction

(34014000) Ind Desc.

-> 100007400006 (341 1100)
-> 200016600004 (342 100)

Pointer Registers: (340120)
prO - pr3 7777711 344 11766(27) 3451 1757(27) 7777711

COMMENT: The value in the parentheses following a word offset, which
C OMM EN T : i sin oc tal, i s the bit 0 f f set, i n dec i rna 1 •

pr4 - pr7 341 140 342 130 7777711 7777711

Index Registers: (340170)
xo - X7 17777 4 10

A 000000017777 Q

Test Indicators:
000000000300

(340 11 1 1)

This test takes 7 page faults.
in2 id1 d11 d12 id2 d21 d22

17777 4 5
000000017777

17777 17777

COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMfI,ENT:

Page d21 is included here because data_field_2 crosses the
boundary between the first and second pages of the etd2
segment. However, because of the II-cn 3" fie 1 d, operand-_.2
actually resides in only the second page. Therefore, the
first page is not be touched, and no page fault occurs

COMMENT: for page d2l.

2-67 AR97-03

data field

COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:

(344 1 1776 (27))
101 102103104105 106107110111

5------------------5
It is true that data_field_1 begins in bit 27 of word 1776.
However, because of the II-en 2" field, operand_1 begins
with bit 9 of word 1777. The address development
(in octal) for the start of operand_l is:

ITEM

desc
pr1
xl

SEGMENTIWORD

7
34411766

04

9-BITBYTE

2
3

= 34411775 11
which is 344 1777 1 or 34411777(9)
If the same calculations are carried out for the second
operand, it is seen that the data field starts in
one page but the operand starts in the next page.
Refer to the script 1 ine above that contains the
"desc 2" and Iidata 211 statements and then exami ne the
adj acent 1 i nes.

data field 2 (34511777(27)
Result data field initial ized to all zero bits.

test data
xxxxxxxxxxxx

COMMENT:

(340 1 1577 6)
xxxxxxxxxxxx 000000000103 104105106xxx

5------------5
COMMENT:
COMMENT:
COMMENT:

The xxxxxx represent fi I I supplied by eis_tester. The nine
leading octal zero digits are present because they were
suppl ied in the Iidata 211 statement.

xxxxxxxxxxxx xxxxxxxxx

/* An example to illustrate the interaction between
~'c the II-dOll and "-Cpll and II-bpll fields. ~':/

i nst cs 1 -bo or -nt II-do and -cp and -bp interact i on ll
-mfl idb ar reg -mf2 idb ar reg;

desc 1 -cp 2 -bp 3 -ns 30;
/* The symbols used above and below the data 1 ines mean:
* P The boundary of a page, and hence, also a word
* boundary.
* 5----5 The operand string portion of the data field.
* W A word boundary.
~'c W P ,':/

2-68 AR97-03

eis_tester

data 1 -do -7 123 456 701 020 203 040 123 456 765;
1* s--~--------s * Data_field_1 starts seven 9-bit bytes before the page boundary,

,'c due to the "-do -7" fie I d. The "-Cp 211 fie I d causes the processor
* to skip over the first two bytes (123 456 octal), so that
* ·operand_1 starts somewhere in the 701 octal byte. The
,'("-bp 311 fie I d causes the processor to sk i p over the firs t three
* bits (7 octal) of the 701 byte, thereby starting at bit 30
* (bits numbered 0-35) of the next to last word of a page.
,'el

desc 2 -cp 1 -bp 6 -ns 30;
/,'c Pxxx W W ''(I
data 2 -do 1 432 103 030 405 050 765 432 101;
/* S-----------S

The IIPXXX II above the "data 211 statement is intended to
indicate that the page boundary is three octal digits (the xxx)
i.e., nine bits, before the start of data field 2, as
specified by the "-do 111 field. The lI-cp-1" field specifies
skipping over the first 9-bit byte, to the 103 octal byte.
The II-bp 6" field specifies skipping the first six bits of
that byte, to the octal 3, which begins in bit position 24
(of 0-35) in the first word of a page.

W W 1el
432 103 132 425 354 765 432 101;

S-----------S
,'c The IIda ta 311 s ta tement is used because the cs 1 ins truc t i on
* stores its result in the same bit locations' from which the
,', second operand was fetched. No II-doll, II-Cpll, or II-bpll fields
,': are needed for the IIdata 311 statement because e is_tester
* associates the attributes of data field 2 and operand_2 with
,', the data suppl ied by the IIdata 3"-statement.

page -all;

ET
TEST 1 (csl)

Test Description: -do and -cp and -bp interaction

Eis instruction: (334/4000) Ind Desc.
- - - -- - - -

007132060531
400034000114 -> 100007430036 (3351100)
500043000115 -> 200016260036 (336 100)

Pointer Registers: (334120)
prO - pr 3 7777711 340 11766 (9) 341 11760 (9) 7777711
pr4 - pr7 3351 40 336130 7777711 7777711

eis_tester

2-69 AR97-o3

Index Registers: (334170)
xo - X7 17777 44 110

A 000000017777 Q

Test Indicators:
000000000200

(33411 1 1)

This test takes 7 page faults.
in2 idl dl1 d12 id2 d22 d32

17777 4
000000017777

5 17777 17777

COMMENT: Page d12 is listed here because data_field_l is in both
COMMENT: pages 1 and 2. However, operand_1 is in only page 1,
COMMENT: so a page fault does not occur for page d12.

data field 1 (34011776(9))
123456701 020203040123 456765

COMMENT: 5----------5

data field 2 (34112000(9))
432103030 405050765432 101

COMMENT: 5----------5
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:

t.est data

The address development for the start of operand_2 is
shown below. For x2, 110 octal = 72 decimal = 2 words
and no bits.

ITEM

desc 2
pr2
x2

=

5EGMENTIWORD
(OCTAL)

16
341 11760

2

341 12000

9-BIT BYTE BIT IN
IN WORD BYTE
(B I NARY) (B I NARY)

01 0110
01 0000
00 0000

10 0110

which is segment 341, word 0 of the second page, 9-bit
byte number 2 (numbering is 0-3) I and bit number 6
(of 0-8) Ii. e. , 341 12000 (24) .

(334 123776)
xxxxxxxxxxxx xxxxxxxxxxxx 432103132425 354765432101

COMMENT:
COMMENT:
COMMENT:
COMMENT:
COMMENT:

5----------5
The leading fi 1 1 of 43210 and the trail ing fi 11 of
765432101 were not affected by the execution of the
instruction, proving that bits outside the operand
strings did not enter into the instruction's execution.

xxxxxxxxxxxx xxxxxxxxxxxx

2-70 AR97-03

Name: exercise_disk

SYNTAX AS A COMMAND

FUNCTION

exercises a disk drive. Maximal arm motion occurs all over the disk, and data is
written and read back later for checking at each point. This activity can be used to
make unstable drives fail repeatedly.

ARGUMENTS

disk_type
a valid Multics disk device type (e.g., d451. d500, and d50n.

volume_id
the label of the disk pack on which the test is to be run.

CONTROL ARGUMENTS

-wri te_read, -wr
writes a known pattern over the entire disk pack, and then reads this information
back for checking purposes. This is the default.

-write, -w
writes a known pattern over the entire disk pack. The default is -write_read.

-read, -r
reads back the information on the disk pack, for checking purposes. The default is
-wri te_read.

-device STR, -dv STR
specifies the device on which you want to run the test, where STR can be dska_02,
dskb_13, etc.). Either this control argument or the assign_resource (ar) command
must be used to attach an I/O disk.

-no_data_compare, -ndc
makes no data compare on the read pass: only errors detected by the hardware are
reported. This enables testing of a disk pack without knowing what data is
recorded on it. The default is to compare the data with a known pattern.

-random
the test performs random rather than sequential seeks; the test takes several hours.
This is the default.

-sequen tial. -sq
the test runs sequentially, writing and reading from sector O.

2-71 AR97-03

-alternate_track, -altrk
removes the alternate track area of the disk from the test parameters. The default
is to use the entire pack.

-from M, -fm M
sets the lower limit of the range of addresses to be tested to M. where M is a
decimal integer specifying a valid cylinder number for the device to be tested.

-to N
sets the high limit of the range of addresses to be tested to N, where N is a
decimal integer specifying a valid cylinder number for the device to be tested.

NOTES

The exercise_disk command requests the mounting of a scratch pack.

The assign_resource command must be used in conjunction with this command to
exercise a given drive. Such drives must be configured as user I/O drives (nonstorage
system) via the UDSK CONFIG card (see the description of the UDSK CONFIG card
in the MOH) or by the use of the set_drive_usage (sdu) initializer command.

When the -from or -to control arguments are used, testing is confined to the range of
addresses specified. The seek pattern used in this mode is from inner cylinder to outer
cylinder, with M incrementing to N or the maximum address of the device, and N
decrementing to M or cylinder zero. When M reaches its inner limit, the pattern is
repeated. Testing continues until stopped by the user, by hitting the break key and then
typing the release (r 1) command.

SYNTAX AS A COMMAND

FUNCTION

reports error statistics recorded in the syserr log by the poll_fnp command. The
statistics reported include parity errors for all channe.ls and various counters for
synchronous channels whose interpretation depends on the line type of the channel.
Only nonzero statistics are reported.

ARGUMENTS

fnp_names
are the names of FNPs for which statistics are to be reported. If no fnp_names
are specified, statistics are reported for all FNPs for which any nonzero statistics
are available.

2-72 AR97-03

CONTROL ARGUMENTS

-expand
displays in expanded form every entry in the syserr log containing statistics for the

. specified FNP(s).

-extend, -ext
appends the output of the command' to the end of the output_file if it already
exists. This control argument can be specified only if -output_file (below) is
specified.

-from DATE_TIME. -fm DATE_TIME
starts scanning the syserr log from the time specified by DA TE_ TIME. which must
be a character string acceptable to convert_date_to_binary _. The default is to start
at the beginning of the log.

-for TIME
restricts the scan of the syserr log to an interval of length TIME. where TIME is
a character string representation of a time interval in a form acceptable to
convert_date_to_binary _. This control argument is incompatible with -to (below).
The default is to continue the scan up to the end of the log.

-output_file {PATH}. -of {PATH}
directs output to a file. If PATH is specified. it is the pathname of the output
file; otherwise, output is sent to fnp_data_summary.output in the current working
directory. If -output_file is not specified. the default is to direct output to your
terminal.

-to DA TE_ TIME
ends the scan of the syserr log at the time specified by DA TE_ TIME. which must
be a character string acceptable to convert_date_to_binary _. This control argument
is incompatible with -for (above). The default is to continue the scan to the end
of the log.

SYNTAX AS A COMMAND

FUNCTION

scans the syserr log and summarizes I/O errors in a brief report.

2-73 AR97-03

io_error_summary io_error _summary

CONTROL ARGUMENTS

-cylinders, -cyl
separates the disk device error by cylinder and head. Only disk_control can be
.separated.

-from DT, -fm DT
starts scanning the log at the date/time given.

-to DT
stops scanning the log at the date/time given.

-for T
computes the ending time from the starting time, where T is a relative time (such
as "1 hour").

-device STRs, -dv STRs
reports information for the device(s) named. where STRs are device types ("prt") or
device names ("prtb").

-detailed_status. -dtst
displays detailed status if available.

-hex_detailed_status. -hxdtst
displays detailed status in hexidecimal if available.

-tape_data_bit_in_error. -tdbie
displays the data bit(s) iR the detailed status that were in error.

-status status_list. -st status_list
reports information for the 10M status listed. where status_list is the IOrvI major
and substatus ("0310" or "4310").

NOTES

If -from DT is not specified. the scan starts with the earliest message in the syserr log.
The ending time can be specified by using. -for. or -to. but not both. If both are
omitted. the scan terminates with the last message in the log. All dates and times must
be in a format acceptable to convert_date_to_binary_ described in the Subroutines
manual.

You must have re access to audit_gate_ and r access to the permanent_syserr_log and
con fig_deck segments to use this command.

2-74 AR97-03

list_proc_required

SYNTAX AS A COMMAND

FUNCTION

determines the group of CPUs on which the invoking process can be run or the default
group of CPUs for all processes that have not requested specific CPUs.

SYNTAX AS AN ACTIVE FUNCTION

CONTROL ARGUMENTS

-priv
indicates that this command applies to the default group of CPUs for processes
that have not requested specific CPUs. If omitted, this command applies to the
group of CPUs for the invoking process only.

NOTES

When invoked as a command without the -priv control argument. list_proc_required
indicates that the set of CPUs needed for this process is the system default by printing
"(default)" following the list of CPUs. This information is not provided when
list_proc_required is invoked as an active function. If invoked as an active function. it
returns a string of CPU tags that represent the group of CPUs requested (e.g .•
"ABCF").

This command prints the list of CPUs required as an uppercase string. If invoked as an
active function. ,this returned list of CPU tags is in uppercase.'

ACCESS REQUIRED

It requires access to phcs_ or metering_gate_.

EXAMPLES

This command is most useful when used in conjunction with the set_proc_required
command to verify that the restriction specified in an earlier invocation of set_proc_required
is still in operation. The effect of set_proc_required can be canceled by the system
because of dyna.mic reconfiguration without notification to the process affected. If the
following set of commands are input:

2-75 AR97-03

{other commands}

an output of "A" from list_proc_required indicates that all commands between the
set_proc_required and the list __ proc_required were run entirely on CPU a. Any other
output indicates that the effect of the set_proc_required has been canceled due to
dynamic reconfiguration.

SYNTAX AS A COMMAND

FUNCTION

loads ITRs or application firmware or both into MPCs.

ARGUMENTS

mpe_name
is the name of the MPC to be tested or reloaded or both. This name must appear
on an MPC card in the config deck. If this argument is omitted, the -channel
control argument must be given.

CONTROL ARGUMENTS

channel channel_name, chn channel_name

-itr

specifies a channel name. where channel_name is of the form {iom tag} channel_no
(for example. a14). The iomtag field must be the tag of a configured 10M and is
required on multiple 10M systems. The channel_no field is an octal channel
number. If this control argument is used, the mpe_name argument is optional. If
both are used, the channel must be connected to the mpc specified.

loads only the ITRs; the standard firmware is not reloaded.

-firm
loads ony the standard firmware; ITRs are not run.

-revision R V, -rev R V
specifies which revision firmware is to be loaded, where RV is a 2-character
firmware revision code. If multiple revisions exist and this argument is omitted,
you are queried as to which revision to load.

2-76 AR97-03

-time. -tm
prints timings for each program loaded into the MPC.

-brief, -bf
. withholds printing of the names of the programs as they are run.

NOTES

By default this command suspends I/O on all devices connected to the selected MPC,
resets the controller. runs all the known ITRs, reloads the standard firmware (including
device routines for urmpc), and restores I/O on all devices connected to the controller.

If any abnormal conditions occur, the program displays the status that occurred. and
stops. I/O is left in a suspended state, because the MPC has been left in an unusable
state. In order to return the controller to operation, it is necessary to restore the
firmware. using either this command or TOLTS (documented in the Online T&D
manual).

This command can be used on disk MPCs only if they are fully cross barred.

Firmware and ITR modules are found in the Test and Diagnostics (T &D) deckfile
created by the load_tandd_library command (also documented in the T &D manual).

Name: me_trace, mct

SYNTAX AS A COMMAND

mc_trace path {-control_args}

FUNCTION

gives a snapshot of machine conditions and history registers (resulting from hardware
faults and interrupts) incurred while execu.ting another Multics command or subroutine.

ARGUMENTS

path
is the absolute or relative pathname of the segment that is to be traced.

CONTROL ARGUMENTS

-all
captures machine conditions and history registers for every fault and interrupt that
occurs in your process. This control argument cannot be used with -hc or the path
argument.

-brief, -bf
suppresses printing your prompt "-->".

2-77 AR97-03

-buffer N, -buf N
sets the machine condition trace buffer size to N, where N is a decimal integer
value from 1 to 16, and represents the buffer size in units of 1024 words (lK).
The default buffer size is 5K words.

-hc SEG
captures machine conditions and history registers for faults and interrupts that
occur in the hardcore segment SEG while your process is in execution. SEG can
be a hardcore segment name or number. This control argument cannot be used
with -all or the path argument.

NOTES

This command Inltlates the segment specified by the path argument, and creates the
machine condition trace buffer in your process directory. The number of machine
conditions and history register sets that can be stored is directly related to the size of
the trace buffer. There is an approximate 8 to 1 ratio of machine conditions to history
registers (e.g., in a 5K buffer there would be storage for 79 sets of machine conditions
and 10 sets of history registers allowing room for a trace buffer header). The trace
buffer is temporarily "wired" (Le., the segment rema.ins in main storage and is not
subject to removal by the dynamic paging mechanism). The hardcore snapshot or trace
mechanism is then enabled and mc_trace goes into a request loop after printing "-->"
as your prompt on the error_output switch. The valid user reponses while in this
request loop are as follows:

1.

2. .q

prints out the command name "mc_trace" on the user_output switch.

turns the hardcore snapshot mechanism off, unwires the machine condition
buffer, and returns to Multics command level.

3. .. <command>
calls the Multics command processor and executes <command> as a
Multics command (e.g who).

4. .rpt n <command>
calls the Multics command processor to loop n times. executing the
specified Multics command <command>: n is an integer from 1 to
99999999 (e.g., .rpt 10 who).

5. .pmc m n
displays machine conditions in octal starting with machine condition set
m for n sets. The integer m therefore represents a negative index from
the last set of machine conditions stored (e.g.. the request ".pmc 8 2"
would be interpreted to mean, "display two sets of machine conditions
starting from the last machine conditions stored at position 8"). If n is
not specified, then all machine conditions starting at m to the last
machine conditions stored are displayed. If neither m nor n are
specified, all sets of machine conditions are displayed.

2-78 AR97-03

6. .pmci m n
same as . pmc above except that the machine conditions are displayed in
interpreted format.

7. .pscu m n
same as .pmc above except that only the System Control Unit (SCD) data
for the specified number of machine conditions is printed, displayed in
interpreted format.

8. .hr m n
displays history registers in octaL starting with history register set m for
n sets. The variables m and n are defined as in .pmc above.

9. .hrou m n
same as .hr above except that only the Operations Dnit (OD) history
register is displayed in octal.

10. .hrcu m n
same as .hr above except that only the Control Dnit (CD) history
registers are displayed in octal.

11. .hrdu m n
same as .hr above except that only the Decimal Unit (DU) history
registers are displayed in octal.

12. .hrau m n
same as .hi' above except that only the Appending Unit (AU) history
registers are displayed in octal.

13. .hranl m n
same as .hr above except that the specified number of history registers
are displayed in interpreted format.

14. .hrlgd
produces a list of abbreviations used with the .hranl request above.

The mc_trace command invokes a condition handler for the "any_other" condition.
\Vhen any unusual system condition is encountered, a message indicating the condition
that was raised is displayed on the error __ output I/O switch. and control is passed to
the request loop. At this time, any of the valid requests described above can be
entered. For further information on system conditions, refer to the Programmer's
Reference Manual, Order No. AG91).

To use mc_trace, you must have re access to phcs_.

2-79 AR97-03

EXAMPLES

Assume that you have written a program that generates an op_not_complete fault while
executing a csl (combine bit strings left) EIS instruction in a particular sequence (e.g .•
descriptors fall on page boundaries). This is clearly a hardware problem. but because it
only occurs when a particular set of events take place, it is very difficult for the field
engineer to trouble-shoot. For simplicity, call this program onc_csl. To run this
program under control of mc_trace, you execute the following sequence of commands:

mc_trace onc_csl
start trace with default buffer size of 5K words.

--> .. set_proc_required a
run with only one processor, in this case processor a.

--> .• onc_csl
execute the program onc_csl

op_not_complete condition raised, enter command.

At this point. the op_not_complete condition has occurred, and the machine condition
history for the last 103 machine conditions should be preserved in the machine
condi tion buffer. You can now selec.tively display these machine conditions.

--> .. set_proc_required
reset set_proc_required (run on any processor now)

--> .. file_output onc_trace
direct the output from the user_output I/O switch to the file named
onc_trace created in your working directory.

--> .pmc
display the entire machine condition buffer. In this case, the output goes
to the onc_trace file.

--> .pmci
additionally display the machine conditions in interpretive format.

--> .pscu
also display only seu data in interpretive forniat.

--> .hr 1
display history regist.ers from last fault (in this case, the op_not_complete
fault) in octal format.

--> .hran] 1
display a composite analysis of the last set of history registers.

--> .hranl 2 1
display a composite analysis of the next to last set of history registers.

--> .. revert_output
direct the output from the user_output I/O switch from the onc_trace
file back to your terminal.

--> .. dprint onc_trace
print the onc_trace file on a remote printer.

--> .q
return to Multics command level.

2-80 AR97-03

If the op_not_complete fault does not occur on a consistent basis and it is suspected
that it only occurs randomly when a particular sequence of page faults and interrupts
occurs, you can use another program called "flush", which generates heavy paging
activity, and can loop on these commands several times by executing the following line
in place of the onc_csl command line:

--> .rpt 99999999 f1ush;onc_cs1
op_not_comp1ete condition raised, enter command
-->

At this point, you can proceed as in the above example and print the machine
conditions to a file or display them on the terminal.

OUTPUT PRODUCED WITH THE .PMC, .PMCI, AND .PSCU REQUESTS

.pmc REQUEST

The .pmc request produces an octal dump of the machine conditions, separated by the
logical data in the machine conditions (e.g., pointer registers, processor registers). The
format is dependent on the state of the user_output I/O switch. If the user_output
I/O switch is attached to a file or a terminal with a line length greater than or equal
to 104 characters, then the output is formatted in lines of eight octal words per line.
If the user_output I/O switch is attached to a terminal with a line length less than 104
characters per line, then the output is formatted in lines of four octal words per line.

*****Machine Conditions at mc_trace_bufferI2410*****

Pointer Registers
000035000043 004646000000 000017000043 000000000000
000062000043 005362000000 000135000043 000000000000
000014000043 006712000000 000062000043 000000000000
000062000043 004060000000 000356400043 000000000000

Processor Registers
011127005716 000000000031 060614000030 000015000720
000000000012 000000000004 000000000000 001714442000

SCU Data
000113050202 000000000043 400356000004 000000540000
044571000200 000000000400 700000100440 000140100540

Software Data
121040000012 420040000006 000000000000 000000000000
000000000000 000000000000 000000104422 532243555724

EIS Pointers and Lengths
000400000000 000400000000 000000000070 004077777774
000102000030 000000000000 030356000004 000000000077

2-81 AR97-03

.pmci REQUEST

The .pmci request displays the machine conditions in an interpreted format, as shown
below.

*****Machine Conditions at mc_trace_bufferI2410*****

prO (ap) 35 4646 bound_sss_wired_14646
pr1 (ab) 17 0 sst_seglO
pr2 (bp) 62 5362 pds l5362
pr3 (bb) 135!0 dirlockt_seglO
pr4 (1 p) 14 712 as_l inkage/6712
pr5 (1 b) 62 0 PdslO
pr6 (sp) 62 4060 pds 4060
pr7 (sb) 35b / 0 complex_decimal_op_IO (bound_p11_runtime_/0)

xO 1 1 127 xl 5716 x2 0 x3 31
x4 60614 x5 30 x6 15 x7 720
a 000000000012 q 000000000004 e 0
Timer reg - 1714442, Ring alarm reg - 0

SCU Data:

240 000113050202 000000000043 400356000004 000000540000
044571000200 000000000400 700000100440 000140100540

(OF 1) Page Faul t (43)
By: 113/44571 bound_fi le_system/44571
Referencing: 356/0 complex_decimal_op_IO (bound_pll_runtime_/O)
On: cpu a (#0)
Indicators: Abar
APU Status: sd-on, pt-on, ptw
CU Status: rfi
Instructions:

246 700 000 100 440 mlr
247 000 140 100 540 mlr

(rl), 0 ,fi 11 (700)
(pr , r 1) , (pr, r 1) ,f i 11 (000)

Time stored: 05/31/77 1355.3 mst Tue (104422532243555724)
Ring: 0

EIS Pointers and Lengths:

260 000400000000 000400000000 000000000070 004077777774
000102000030 000000000000 030356000004 000000000077

2-82 AR97-03

.pscu REQUEST

The .pscu request displays only the seu data from the machine conditions in an
interpreted fashion, as shown below.

*****Machine Conditions at mc_trace_bufI2410*****

SCU data at mc_trace_bufI240

240 000113050202 000000000043 400356000004 000000540000
044571000200 000000000400 700000100440 000140100540

(OF 1) Page Faul t (43)
By: 113144571 bound_file_systemI44571
Referencing: 35610 complex_decimal_op_lo (bound_pl1_runtime_10)
On: cpu a (#0)
Indicators: Abar
APU Status: sd-on, pt-on, ptw
CU Status: rfi
Instructions:

246 700 000 100 440 mlr
247 000 140 100 540 mlr

(r 1) , 0 ,f i 11 (700)
(pr, r 1) , (pr, r 1) ,f i 11 (000)

OUTPUT PRODUCED BY THE .BR REQUEST

The .hr request produces an octal dump of the history registers. The output is
separated by the history register type being dumped. The format is dependent on the
state of the user_output I/O switch. If the user_output I/O switch is attached to a
file or a terminal with a line length greater than or equal to 104 characters, then the
output is formatted in lines of eight octal words per line. If the user_output I/O
switch is attached to a terminal with a line length less than 104 characters per line.
then the output is formatted in lines of four octal words per" line. If the .hroll .. hrcu,
.hrdu. or .hrau requests are selected, only the requested history register type is dumped.

2-83 AR97-03

*****History Registers at mc_trace_bufI210*****

Operations Unit (OU) History Registers
315000315100 137777012705 450000450300 177777012707
255000255300 177777012710 221000221100 136777012711
220000221340 114777012717 220000220100 135777012720
740000740300 175777012721 741000741300 176777012722
450000450300 177777012725 446000446300 177757012726
720000720500 135777012727 440000440300 175777012730
450000450300 177777012731 621000621500 122777000051
431210431100 123777000052 431210431000 037777000054

Control Unit (CU) History Registers
700137352120 000046050200 300117352120 027342050020
200117352000 027220050024 200017252100 027574242100
700137352120 000050050200 300137352120 027344050021
200117352000 027224050024 200017252100 027576242100
600137621100 000052050200 200117621100 027566050014
200017431007 020000042014 700137370120 000054042200
300137370120 027524050021 200117370000 034304050024
300017352120 034314042020 300005352046 034314402002

Decimal Unit (DU) History Registers
737757037737 744243410017 737757037737 744243410017
777757037737 744243410017 737757037717 744243410017
737757037737 744243410017 777757037737 744243410017
737757037737 744243410017 737757037717 744243410017
777757037737 744243410017 737757037737 744243410017
737757037737 744243410017 777757037717 744243410017
737757037737 744243410017 777757037737 744243410017
737757037737 744243410017 777757037717 744243410017

Appending Unit (AU) History Registers
002342006066 027555724775 003576007262 024520464775
002342006066 027553424775 002346001420 000272204775
002342006066 027555744775 003576007262 024520504775
002342006066 027553444775 002346001420 000272244775
002342006066 027555764775 003576007262 024520524775
003576001420 000275664775 003576001420 000200004775
003576007262 024520544775 002342006066 027555244775
002556001420 000343044775 002552007370 026403144000

2-84 AR97-03

OUTPUT PRODUCED BY THE .HRANL REQUEST

The .hranl request produces a composite analysis of the history registers in the trace
buffer. The output produced is dependent on the state of the user_output I/O switch.
If the user_output I/O switch is attached to a terminal with a line length less than 104
characters. the output appears as below. If the user_output I/O switch is attached to· a
file or a terminal with a line length greater than or equal to 104 characters. then the
octal representation of the history registers is displayed in addition to the sample below:

*****History Registers at me_traee_bufI210*****

Composite Analysis of History Registers

HR e
id## Ie -- oped_ tag_ y seg#_ offset_ me flags
CU 1 epp2 n~'(415 46 4 pi pa r i i e wi it
AU 2 7 6 336046 4 ap sm pm
CU 2 II n~': n 234 27342 4 pa r i ie it el
AU 3 12 5 533342 4 ap sm pm
CU 3 II d 234 27220 4 pa ie e1 dr
AU 4 27220 4
CU 4 46 spri2 0 234 27574 24 pa it es
AU 5 12 5 533574 4 ap sm pm
CU 5 47 epp2 n~" 415 50 4 pi pa r i ie wi it
AU 6 7 6 336050 4 ap sm pm
CU 6 II n~'(n 234 27344 4 pa r i ie wi it el pb
AU 7 12 5 533344 4 ap sm pm
CU 7 II d 234 27224 4 pa ie e1 dr
AU10 27224 4
CU10 50 spri2 0 234 27576 24 pa it es
AU 11 12 5 533576 4 ap sm pm
CU 11 51 eax1 415 52 4 pi pa ie wi it
AU12 7 6 336052 4 ap sm pm
CU12 II d 415 27566 4 pa i e it 01 dr
AU13 27566 4
oU16 rb rs cf -d ar qr xl
CU13 52 fld dl d 415 20000 4 pa 01 dr
AU14 20000 4
OU17 dl rs of -d ar qr
CU14 53 epp4 no" #\ 415 54 4 pi pa r i ie wi it
AU15 7 6 336054 4 ap sm pm
CU15 II n)', n 234 27524 4 pa ri ie wi it el pb
AU16 12 5 533524 4 ap sm pm
cU16 II d 255 ~3742 4 pa ie el dr
AU17 43742 4
CU17 5Lt apID2 n* n 255 43752 4 pa r i it cl
AU20 4 4. 3225752 4 ap Sift PR1

2-85 AR97-03

OUTPUT PRODUCED BY THE .HRLGD REQUEST

The .hrlgd request produces a list of the abbreviations used with the .hranl request
above.

Abbreviations used in History Register Analysis

____________ cu Legend ____________ _
cy = cycle type (d = direct operand)
(i=instr. fetch,o=operand,F=fault)
(n=indirect,x=xec,*=nop,e=EIS)

mc = memory command
(OO=rrs,sp; 04=rrs,dp; lO=rcl,sp)
(12=rmsk,sp; 16=rmsk,dp; 20=cwr,sp)
(24=cwr,dp; 32=smsk,sp; 36=smsk,dp)
(40=rd/lck; 54=rgr; 56=sgr)
(60=wrt/ulck; 62=con; 66=xec; 72=sxc)
»>flags«<
-y = memory address inval id
br = BAR mode
cl = control unit load
cs = control unit store
dr = direct operand
fa = prepare fault address
ic = IC value is odd
it = AR/PR reference
in = inhibited instruction
01 = operations unit load
os = operations unit store
pa = prepare operand address
pb = port busy or data from cache
pi = prepare instruction address
pl port select logic not busy
pn = prepare final indirect address
pt prepare operand tally
ra = request alter word
ri = request indirect word
rp executing repeat
sa = store alter word
si = store indirect word
tr = transfer condition met
wi = request instruction fetch
xa = prepare execute interrupt address
xe = execute double from even ICT
xi = execute interrupt present
xo = execute double from odd ICT

2-86

au Legend __________ __
»flags«<
9b = 9-bit byte (IT modifier only)
ar = A-register in use
dl = first divide cycle
d2 = second divide cycle
dl = direct lower operand
du = direct upper operand
in = first ou cycle
it = IT character modifier
oa = mantissa alignment cycle
oe = exponent compare cycle
of = final au cycle
om - general au cycle
on = normalize cycle
os • second cycle of multiple ops
qr = Q-register in use
rb = opcode buffer loaded
rp = primary register loaded
rs = secondary register loaded
sd = store data avai lable
-d = data not avai lable
xO - index 0 n use
xl - index 1 n use
x2 = index 2 n use
x3 = index 3 n use
x4 = index 4 n use
x5 = index 5 n use
x6 = index 6 n use
x7 = index 7 n use

AR97-o3

____________ DU Legend __ ~~ ________ ~ ________ APU Legend __________ __
mc = data mode (b,4,6,9,w) seg# = SDWAMR and PTWAMR numbers if
offset = descriptor counter corresponding MATCH bits are set.
»>flags«< offset = final store address
Oa = prepare alignment count for mc = ring number (TSR.TRR)

numer i c oper and (1,2)
a 0 = load alpha operand (l,2)
al = adjust length
as = alpha store
bd = binary-decimal execution

bg = blanking gate
cO = force stcO
cg = character operation
dO = descriptor active (1,2,3)
da = data available
db = decimal-binary execution
dd = decimal unit idle
di = decimal unit interrupted
dl = decimal unit load
ds = decimal unit store

»>flags«<
an =
ap =
f =

final address, non-paged
final address, paged
access violation or directed
fault

fd = fetch descriptor segment PTW
fh = fault waiting
fs = fetch SDW
md = modify descriptor segment PTW
mp =
p1 =
p2 -
pm -

modify PTW
fetch PTW
fetch PTW+1
MATCH in PTWAM

sm - MATCH in SDWAM

ei = mid-instruction interrupt enabled
en = end instruction
es = end sequence
ff = floating result
fl = first data buffer load
fp = first pointer preparation
fs = end sequence
1 0 = load descr i ptor (1,2,3)
ld = length = direct
lf = end first pointer preparation
lv - level < word size
Ix = length exhaust
1< = length < 128
mp = executing MOPs
nO = load numeric operand (1,2)
nd = need descriptor
ns = numeric store
op = operand avai lable
pc = alpha packing cycle
pl = prepare operand length
pp = prepare operand pointer
rO = load rewrite register (1,2)
re = write-back partial word
rf = rounding
rl = rewrite register 1 loaded
rw = du=rd+wt control interlock
sa = select address register
5g = shift procedure

-------DU Legend------
xg exponent network
xm = extended al,ql modifier
+g add-substract execution
*g = multiply-divide execution

2-87 AR97-03

SYNTAX AS A COMMAND

FUNCTION

scans the syserr log and summarizes mos edac activity in a brief report.

CONTROL ARGUMENTS

-day_limit N
sets a threshold of N days that a memory chip can fail before including it in the
summary. The maximum value for N is 16.

-for T
specifies a relative time (such as "1 hour") used to compute the ending time from
the starting time.

-from DT. -fm DT
specifies the date/time to start scanning the log.

-limit N
sets a threshold of N edac errors for a memory chip before including it in the
summary.

-mem list
specifies a list of memories for which information is required (i.e .• mem a b c).

_·to D
specifies the date/time to stop scanning the log.

Notes

If -from DT is not specified, the scan starts with the earliest message in the
syserr log. The ending time may be specified by using -for, or -to. but not both. If
both are omitted, the scan terminates which the last message in the log. All dates and
times must be in a format acceptable to convert_date_to_binary_ described in the
Subroutines manual.

You must have re access to audit-sate_ and r access to the permanent_syserr_log
segment to use this command.

2-88 AR97-03

mpc_data_summary

SYNTAX AS A COMMAND

mpc~data_summary {list} {-control_args}

FUNCTION

scans the syserr log and summarizes the MPC statistics placed there by poll_mpc.

ARGUMENTS

list
is a list of MPC controller names that the data is to be summarized for (i.e .• mspa
mtpb urpa). The MPC controller names must be four characters long. and the first
three characters must be msp, mtp, or urp. The default list is of all MPCs found
in the log.

CONTROL ARGUMENTS

-all
reports all MPCs found in the syserr log.

-brief, -bf
reports only nonzero device statistics.

-expand
expands each syserr log entry that is used for the summary. This may cause much
output.

-extend, -ext
extends the output file if it exists. The default is to overwrite the file.

-for T
computes the ending time from the starting time. where T is a relative time (such
as Ihour or Iday).

-from DT, fm DT
starts scanning the log at the date/time given.

-long. 19
reports all device statistics. (Default)

-mpe list
displays MPC error data only.

-output_file {path}. -of {path}
directs output to the segment specified by path. If path is not given. a default
segment is used in the working directory and named mpc_data_summary.output.

2-89 AR97-03

patch_firmware

-short
formats output for devices with fewer than 132 coluJnns. The default is based on
output file type and can be used to override the file output default.

-toOT
stops scanning the log at the date/time given.

Name: patch_firmware

SYNTAX AS A COMMAND

patch_firmware path mem addr wordl ••• word2 .•• wordi

FUNCTION

patches a segment containing an image of a firmware module for an MPC.

ARGUMENTS

path
is the pathname of the segment containing the firmware.

mem
is the memory overlay to patch. This argument can be cs to patch the control
store overlay, or rw to patch the read/write memory overlay.

addr
is the starting address to patch. in hexadecimal.

wordi
is a new MPC word. in hexadecimal. All wordi arguments must be in the range
O-FFFF. At least one wordi argument must be specified. Up to 16 words can be
patched with one patch_firmware command.

NOTES

The patch_firmware command displays the old and new contents of each firmware word
patched, as well as the checksum, before the patch is made. The user is then asked
whether the patch is correct. The patch is not made unless you answer yes.

Firmware modules can be retrieved from the IF AD tape using the load_tandd_library
command (described in the Online T&D manual). Normally, firmware modules are kept
in the sequential file >system_library _tandd>tandd_deckfile.

2-90 AR97-03

SYNTAX AS A COMMAND

FUNCTION

initiates and controls automatic polling of FNPs. Polling consists of reading error
statistics from the FNP memory and logging them in either the syserr log or a file.
This command sets up timers and event call handlers within the process. Once initiated.
FNP polling is performed periodically. independent of whatever else is going on in the
process. This command is normally used by the initializer or a daemon.

ARGUMENTS

fnp_list
is a list of the FNP names to be polled. If no names are listed. all' FNPs are
polled.

CONTROL ARGUMENTS

-log
writes statistical information to the syserr log. This is the default. Access to the
hphcs_ gate is required.

-output_file path. -of path
writes statistical information to the segment specified by path. This control
argument can be used in conjunction with -log.

-time N. -tm N
specifies the polling interval in minutes. The default polling interval is 15 minutes.

-debug, db
prints extra debugging information each time polling is performed.

The following control arguments modify the polling already in process and cannot be
used on the initial invocation of the poll_fnp command.

-stop. -sp ,
stops polling for the FNPs specified with the fnp_list argument. If no FNPs have
been specified, polling of all FNPs is stopped. Polling continues to be scheduled
periodically. even though no FNPs are being polled.

start. -sr
resumes polling for the FNPs specified with the fnp_list argument. If no FNPs
have been specified, polling of all FNPs is resumed. Note that the next polling
does not occur immediately; it is performed during the next scheduled polling
cycle.

2-91 AR97-03

-finish
schedules the last polling cycle immediately. Once this cycle completes. polling is
disabled. and a new poll_fnp command is required to start it again. To stop
polling without performing one last cycle. use both -stop and -finish.

NOTES

If polling of an individual FNP fails three consecutive times. polling of that FNP is
stopped. If three consecutive scheduled polling cycles are missed because a previous
cycle did not complete. an automatic finish operation is performed, and no further
cycles are scheduled.

Polling of FNPs has no effect on the users of devices connected to the FNP.

SYNTAX AS A COMMAND

FUNCTION

reads the maintenance register of each memory on the system and prints information
about these registers on your terminal. In' addition. if the maintenance register indicates
that an EDAC error has occurred, it is logged in the syserr log.

NOTES

You must have re access to phcs_ to use this command.

This command should be used with care on systems that have core memories. Unless
the TEST /NOR1v1AL switch on the maintenance panel of the memory (not controller) is
set to TEST, the result of reading the maintenance register is undefined, and spurious
errors may be logged.

2-92 AR97-03

SYNTAX AS A COMMAND

FUNCTION

initiates and controls automatic polling of MPCs. Polling consists of reading statistics
on device usage and errors from the MPC memory and logging it in either the syserr
log or a file. If an error condition is detected, a message is entered in the syserr_Iog
with a code of 3. This sounds the BOS console alarm and prints the message on the
BOS console log on a normally configured system. This command sets up timers and
event call handlers within the process. Once initiated, MPC polling is performed
periodically, independent of whatever else is going on in the process. This command is
used by the initializer or a daemon; Utility.SysDaemon is recommended.

ARGUMENTS

mpc_list

-log

is a list of the tape or disk MPC names to be polled. If no names are listed. all
tape and disk controllers are polled.

writes statistical information to the syserr log. Access to the hphcs_ gate is
required. (Default)

output_file path, -of path
writes statistical information to the segment specified by path. This report is the
same as the one generated by the -stat control argument of the dump_mpc
command. This control argument can be used in conjunction with -log.

-time N, -tm N
specifies the polling interval in minutes. The default polling interval is 15 minutes.

-debug, -db
prints extra debugging information each time polling is performed.

The following control arguments modify the polling already in process and cannot be
used on the initial invocation of the poll_mpe command.

-stop, -sp
stops polling for the MPCs specified with the mpe_list argument. If no MPCs
have been specified. polling of all MPCs is stopped. Polling continues to be
scheduled periodically, even though no MPCs are being polled.

2-93 AR97-03

prin t_conf iguration_deck

-start, -sr
resumes polling for the MPCs specified with the mpe_list argument. If no MPCs
have been specified, polling of all MPCs is resumed. Note that the next polling
does not occur immediately; it is performed during the next scheduled polling
. cycle.

-finish
schedules the last polling cycle immediately. Once this cycle completes, polling is
disabled, and a new poll_mpe command is required to start it again. To stop
polling without performing one last cycle, use both -stop and -finish.

NOTES

If polling of an individual MPC fails three consecutive times, either because it cannot
be attached or because of I/O errors, polling of that MPC is stopped. If three
consecutive scheduled polling cycles are missed because a previous cycle did not
complete, an automatic finish operation is performed, and no further cycles are
scheduled.

Polling of MPCs has no effect on the users of devices connected to the MPC.

Name: print_configuratioD_deck, pcd

SYNTAX AS A COMMAND

FUNCTION

displays the contents of the Multics configuration deck. The data is kept up-to-date by
the reconfiguration commands and. hence, reflects the current configuration being used.

SYNTAX AS AN ACTIVE FUNCTION

[pcd {card_names} {-control_args}]

ARGUMENTS

card_names
are the names of the particular configuration cards to be displayed. Up to 32 card
names can be specified. (See the MOH, for the names of the configuration cards.)

CONTROL ARGUMENTS

-brief, -bf
suppresses the error message when a requested card name is not found. (Default)

2-94 AR97-03

prin t_conf iguration_deck

-exclude FIELD_SPECIFIERS, -ex FIELD_SPECIFIERS
excludes particular cards or card types from being displayed. One to 14 field
specifiers can be supplied with each -exclude, and up to 16 -exclude control
arguments can be specified. To be eligible for exclusion, a card must contain fields

. that match all field specifiers supplied with any -exclude argument.

-long, -lg
prints an error message when a requested card name is not found.

-match FIELD_SPECIFIERS
selects particular cards or card types to be displayed. One to 14 field specifiers
can be supplied with each -match, and up to 16 -match control arguments can be
specified. To be eligible for selection, a card must contain fields that match all
field specifiers supplied with any -match argument.

-pathname PATH.· -pn PA TH
prints card(s) from the copy of the configuration deck at PATH, rather than the
one for the running system.

NOTES

Field specifiers can consist of a complete card field or a partial field and an asterisk
(*). An asterisk matches any part of any field. For example, the field specifier "dsk*"
would match any card containing a field beginning with the characters "dsk". Specifiers
for numeric fields can be given in octal or decimal, but if decimal they must contain a
decimal point. Asterisks cannot be specified in numeric field specifiers. All numeric
field specifiers are converted to decimal and matched against numeric card fields, which
are also converted to decimal. Hence, the field specifier "1024." would match a card
containing the octal field 2000, and the field specifier "1000" would match a card
containing the decimal field 512.

Selection is performed as follows. If no card names are specified, all cards are eligible
for selection. On the other hand, if any card names are supplied, only the cards
matching those names are eligible; and if more than one card exists with a specified
name, all such cards are displayed. If a nonexistent card is requested, and the -long
control argument is specified, an error message is displayed.

If any -match arguments are supplied, those eligible cards are matched again~t all field
specifiers of each -match argument group; however. at least one -match group must
have all its field specifiers match some field on the card to make that card eligible. A
similar algorithm is used for any -exclude argument groups. So, if a card is eligible.
and if -exclude arguments are supplied, then at least one -exclude group must have all
its field specifiers match some field on the card to make that card ineligible. If no
match for a given card name or -match group is found in the config_deck, nothing is
displayed for that name or group, and no error is displayed. If no arguments are
present. the complete con fig_deck is displayed.

Note that all card names must be specified befo~e the first -match or -exclude
argument. Field specifiers following a -match or -exclude argument include all
arguments until the next -match or -exclude argument.

2-95 AR97-o3

print_configuration_deck

When called as an active function. the selected cards are returned in quotes. separated
by a single space.

No action is taken for misspelled arguments or valid arguments for which there are no
corresponding configuration cards.

EXAMPLES

pcd cpu
cpu a 7 168 80. on
cpu b 6 168 80. on
cpu c 5 168 80. off

(For the configuration deck displayed above.)

pcd cpu -match on
cpu a 7 168 80. on
cpu b 6 168 80. on

pcd -match 16 -ex off -ex b
cpu a 7 168 80. on

SYNTAX AS A COMMAND

FUNCTION

prints selected portions of the syserr log.

CONTROL ARGUMENTS

-pathname path, -pn path
where path is the pathname of the segment to be used. The default is to use the
perm_syserr _log.

The following control arguments determine which portions of the log are printed. If
none are given, the entire log is printed. They can be chosen from any of these three
groups:

2-96 AR97-03

The following control arguments specify the range of the log to be scanned:

-from DT. -fm DT
where DT is a decimal integer or a date/time. This argument specifies the starting
point of the scan. If DT is an integer. it represents a sequence number; otherwise.
it represents a date and time.

-to DT
where DT is a decimal integer. or a date/time. This argument defines the ending
point in the scan by sequence number or time.

-for DT. -next DT
where DT is a decimal integer or a date/time. If a date/time is used. it must be
a relative time (such as "1 day") that specifies how far from the starting point to
scan the log.

-last N
where N is a decimal integer. This argument specifies that the scan is to start N
messages back from the end of the log.

The starting point is specified by either -from or -last, but not both. If both are
omitted. the scan starts at the earliest recorded message. The ending time is specified
by -to or -for(-next). but not both. If both are omitted, the scan ends with the most
recent message in the log. Date/time arguments used with -from, -for, or -to must be
in a format acceptable to convert_date_to_binary_. described in the Subroutines manual.

The following control arguments specify. which messages in the range scanned are to be,
or not to be, printed:

-match STR1 ... STRn
where STRi are strings to be matched against messages in the log. Any message
that contains an STRi is a candidate to be printed.

-exclude STRl ... STRn, -ex STRl ... STRn
where STRi are strings that are matched against the log, as for -match. Any
message that contains an STRi is not printed. (Therefore. any message that does
not contain an STRi is a candidate to be printed.)

-action Al ... An
where Ai are decimal integers in the range 0 to 9. If this argument is used, only
messages with an action code specified by an Ai are candidates to be printed.

-class Cl ... Cn, -cl Cl ... Cn
where Ci are decimal integers in the range 0 to 24. If this argument is used, only
messages with a sorting class specified by a Ci are candidates to be printed.

If none of these control arguments are used, all messages in the range are printed. If
some of the above control arguments are used, only messages that pass all these tests
are prin ted.

2-97 AR97-03

prin t~syserr _log

The following control arguments specify the format of the messages printed.

-no_header, -nhe
specifies that the header that contains the range of the log under consideration is
not printed.

-expand
specifies that messages that have binary data will have that binary data interpreted.
The format is generally dependent on the text of the message.

-octal
specifies that all messages that have binary data will have that binary data printed
in octal.

-limits
specifies that the command is only to read the first and last messages in the log
and print their times and sequence numbers. No other action is performed,
regardless of what other control arguments are used.

-debug, -db
inhibits all expanding of "." messages in the log. All messages are printed exactly
as they appear in the log.

NOTES

You must have re access to auditjate_ and r access to the permanent_syserr_log
segment to use this command.

EXAMPLES

To print the entire log, type:

print_syserr_log

The command line:

print_syserr_log -match "parity fault" -ex SysDaemon -expand

scans the entire log and prints all messages containing the string "parity fault" that do
not contain the string "SysDaemon". The binary data logged with these messages is also
printed. The result of this command is to print all parity faults logged by other than
SysDaemon processes.

2-98 AR97-03

save_history _registers

To see the messages for a certain time period that contain a particular string, use a
command line of the form:

print_syserr_log -from "2/1/78 0000.0" -to "2/1/78 2400.0"
-match Rep:

The -to control argument in this example could have been replaced by -for "1 day".
All messages logged on 2/1/78 containing the string "Rep:" are printed. .

The command line:

print_syserr_log -last 500 -class 2 -nhe

scans the last 500 messages in the log and prints out any messages with a sorting class
of 2. This example also suppresses the header.

Name: save_history _registers

SYNTAX AS A COMMAND

save_history_registers {state} {-control_args}

FUNCTION

allows a user to save processor history registers upon each occurrence of a signalable
fault in the signalers stack frame. By default, the history registers are not saved, and
the history register block in the signalers stack frame is set to all zeros.

ARGUMENTS

state
can be either "on" or "off." If state is not specified, it is off.

CONTROL ARGUMENTS

-priv
specifies manipulation of the per-system state by directing the state and -print
arguments to operate on the per-system history register save switch,
wired_hardcore_data$global_hregs. When set, this switch causes all processes to save
their history registers upon each occurrence of a signalable fault in the signalers
stack frame. If -priv is not specified, then the state and -:-print arguments operate
on pds$save_history _regs, the per-process history register save switch of your
process executing this command.

-print, -pr
displays the current state of the history register save switch if it is present without
the state argument; with this argument, the state of the switch is displayed before
the new state is applied.

2-99 AR97-03

save_history _registers

NOTES

When -priv is used, hphcs_ access is required.

SYNTAX AS A COMMAND

FUNCTION

sets the time interval used by the system for polling MOS memories to check for and
log EDAC errors.

ARGUMENTS

N
is a decimal integer representing the time in minutes between MOS memory polls.
If omitted. the command prints the current polling interval. If N is O. MOS
memory polling is disabled.

NOTES

MOS memory polling is disabled when the system is initialiaed. This command must be
used to enable it.

You must have re access to hphcs_ to use this command.

1\.10S memory polling should not be enabled on systems that have core memories unless
the TEST/NORMAL switch on the maintenance panel of the memory (not controller) is
set to TEST. If this switch is set to NORMAL, spurious errors may be logged for the
memory.

Name: set_proc_required, sprq

SYNTAX AS A COMMAND

set_proc_required {tagl} ... {tag2} ... {tagi} {-control_args}

FUNCTION

restricts processes to run only on specified CPUs. It can be used to specify the set of
CPUs on which the invoking process can be run and the default set of CPUs for all
processes that have not request.ed specific CPUs.

2-100 AR97-03

ARGUMENTS

tagi
is the tag for one of the CPUs in the group being specified. It can be one of the
letters a through h or A through H. If no tag is specified, the group is assumed
to contain all CPUs (tags A through H). If -priv is given, then at least one tag is
required.

CONTROL ARGUMENTS

-priv
indicates that the group of CPUs specified is to become the default group for
processes that have not requested specific CPUs. If omitted, the group of CPUs
specified applies only to the invoking process.

NOTES

If none of the CPUs specified are online, an error message is printed, and the
command has no effect .

. This command requires access to phhcs_. If the -priv control argument is specified,
access to hphcs_ is needed.

EXAMPLES

The command line:

restricts the requesting process to run only on CPUs "A" and "B."

The command line:

allows the requesting process to run on any CPU that is online

The command line:

set_proc_required ABE -priv

restricts all processes that have not requested specific CPUs to run only on CPUs "A."
"B," and "E."

The command line:

set_proc_required -priv

allows all processes that have not requested specific CPUs to run on any CPU that is
online.

2-101 AR97-03

Name: test_cpu

SYNTAX AS A COMMAND

FUNCTION

checks the CPU hardware for problems that have existed on the processors. By running
various tests invoked by this command, you can determine whether the given CPU has
had specific problems fixed. This command is usually used with the set_proc_required
command if the system being tested has multiple CPUs configured.

CONTROL ARGUMENTS

-from TEST NUMBER/NAME, -fm TEST NUMBER/NAME
starts testing from the test identified by TEST NUMBER or NAME. The default is
to start testing from test 1.

-to TEST NUMBER/NAME
stops testing after the test identified by TEST NUMBER or NAME. The default is
to run all tests.

-test_names
lists valid test names and the associated test numbers.

-exclude TEST_LIST, -excl TEST_LIST
excludes the tests identified by TEST_LIST. where TEST_LIST is either a set of
test names or numbers, from the tests that are run.

-stop_on_failure. -sof
stops testing when a test failure occurs. The default is 10 continue testing with the
next test.

-long. -Ig
displays machine conditions and history registers from a test failure. The default is
not to display them.

-history_regs, -hregs
displays history registers when a test fails. The default is not to display them.

-machine_conditions, -mc
displays machine conditions when a test fails. The default is not to display them.

-brief, -bf
inhibits display of the test numbers. The default is to display the test number and
name as each test begins execution.

-repeat COUNT. -rpt COUNT
repeats the test sequence the number of times specified by COUNT. The default is
to run the test set one time.

2-102 AR97-03

-cycle COUNT
cycles on each test case the number of times specified by COUNT. The default is
to run each test once.

-select TEST _LIST. -sel TEST _LIST
executes only those tests specified by TEST_LIST. where TEST_LIST may be either
a valid test number or a name. The default is to run all tests.

-select TESTNAMEl. .. {TESTNAME2} ... {TESTNAMEi}.
-sel TESTNAMEl. .. {TESTNAME2} ... {TESTNAMEi} is the name of a diagnostic test. If

no test names are given. all tests are run and any failures are noted. If more than
one test name is given. a list of all the tests is printed. The tests are described
briefly below. To find out the exact details of each test, see the test_cpu program.

DI AGNOST Ie TESTS

mlrstern

tmlr

checks a failure in which the fill character is placed as the first character on a
page. This test causes a MMEI fault if the hardware fails.

tries several MLR instructions. in several working combinations. across a page
boundary. Messages are printed for any failures.

csl_oob

mvn

checks a particular use of a CSL instruction where the first descriptor is O. This
test causes an out_of _bounds fault if the hardware fails, and a MMEI fault if it
succeeds.

checks the use of an MVN instruction that moves a number to a shorter number.
The first two characters are dropped when the hardware fails.

mvn_ofl

tct

sreg

checks the use of l\t1VN to move the number O. An overflow indicates that the
hardware failed.

checks a particular TeT use. The test causes an op_not_complete if the hardware
fails, and a MMEI fault if it succeeds.

checks the use of an SREG instruction that occurs as the last instruction in a page.
The test causes an op_not_complete if the hardware fails, and a MMEI fault if it
succeeds.

csl_onc
checks a particular CSL use. The test causes an op_nol_complete if the hardware
fails, and a MMEI fault if it succeeds.

2-103 AR97-03

test_sc2
checks the use of the SC modifier interacting with page faults. A MMEI fault
occurs if the hardware fails.

test_ci
checks the use of the CI modifier interacting with page faults. A MMEI fault
occurs if the hardware fails.

rpd_test
checks a particular use of the RPD instruction as it interacts with the hardware. A
MME1 fault occurs if the hardware fails.

mlr_test
checks the use of the MLR instruction across a bounds fault boundary. The bounds
fault is followed by a segment fault and a page fault. A MME1 fault occurs if
the hardware fails.

cIs_test
checks the CSL instruction across a bound fault boundary. A MMEI fault occurs
if the hardware fails.

cmpc
checks the CMPC instruction in a way that fans if a timer runout or connect fault
occurs in midexecution when the hardware is failing. A MMEI fault occurs if the
hardware fails.

bad_fill
checks the success of moving or comparing fill characters in the first two words of
a page. Failure is indicated by a miscompare and a message to the user.

mpy_ofl
multiplies -2**35 by itself and checks for an overflow fault (which indicates
failure).

test_xed
checks a particular indexed XED usage that fails if the first executed instruction is
an APU-type instruction. Failure is indicated by a miscompare and a message to
you.

cmpc7
checks a CMPC failure when both strings begin seven words from a page boundary
and run into the next page. A MMEI fault occurs if the hardware fails.

extra_fill
checks the MLR instruction to see if extra fill characters are placed after a string
when the string crosses a page boundary. A MMEI fault occurs if the hardware
fails.

test_cmpc_fill
checks the fill mechanism of the CMPC instructio:n near a page boundary. A
MMEI fault occurs if the hardware fails.

2-104 AR97-03

acv _restart
checks that machine conditions can successfully be restarted after an access
violation fault that is caused by a reference to data via an EIS (MLR) instruction.
Failure is indicated by successive no_write_permission conditions.

scm_tally
checks to see if the SCM instruction works with the tally runout indicator set
correctly. The test calls a small aIm program that uses an SCM instruction.
Because the hardware fails erratically, the test is run 10 times to get a (limited)
statistical sampling. Failure is indicated by a message to you indicating the number
of times the SCM instruction failed.

mvt_nine_to_six
checks nine to six (ascii to bcd) conversion using the MYT instruction. A large
ascii data segment is generated. Then a bcd segment is generated using non-EIS
conversion. Three segments are then converted from ascii to bcd using the MYT
instruction, and these segments are compared to the known good bcd segment. If
any compare errors are detected, the contents of both segments are dumped in
octal at the failing location.

mvt_six_to_nine
checks six to nine (bcd to ascii) conversion using the method described for the
mvt_nine_to_six test above. If any compare errors are detected. the contents of
both segments are dumped in octal at the failing ·location.

mvt_nine_to_four
checks 9-bit to 4-bit (decimal to packed decimal) conversion using the MVT
instruction. A large segment of data, containing 9-bit characters of values 0 to 15
in a rotating pattern, is generated. Then a second segment is generated, converting
the 9-bit characters into 4-bit characters using non-EIS conversion techniques. The
9-bit data segment is then converted to three 4-bit data segments using the MYT
instruction and compared to the known good 4-bit data. If any discrepancies are
found, the contents of both segments are dumped in octal at the failing location.

mvt_four _to_nine
checks 4-bit to 9-bit (packed decimal to decimal) conversion using the method
described for the mvt_nine_to_four test above. If any compare errors are found,
the contents of both segments are dumped in octal at the Jailing location.

mvt_ascii_to_ebcdic
checks nine to nine (ascii to ebcdic) character conversion using the method
described for the mvt_nine_to_four test above. If any discrepancies are found, the
contents of both segments are dumped at the failing location.

mvt_ebcdic_to_ascii
checks nine to nine (ebcdic to ascii) character conversion using the method
described for the mvt_nine_to_four test above. If any discrepancies are found, the
contents of both segments are dumped in octal at the failing location.

2-105 AR97-03

ci_mod_case_2
checks character indirect modification with two tally words and two data character
strings. each located at a page boundary. An LDA instruction is executed on one
tally word. CI mod. and a CMPA is executed with a second tally word. CI mod .

. Both tally words point to a character string that should be equal. If the zero
indicator does not come on as a result of the CMPA, a MME1 fault is taken.
indicating that the hardware failed.

acv _restart_csl
validates that machine conditions can be successfully restarted after an access
violation fault that is caused by a reference to data via an EIS (CSL) instruction.
Failure is indicated by successive no_ write_permission conditions.

cmpn_tst
checks that numeric data moved with an MVN instruction can be successfully
compared with a CMPN instruction. Failure is indicated by a MME1 fault.

itp_mod
checks that an EPP2.* to a word pair that contains an ITP modifier with a bit
offset actually loads PR2 with the correct information. A MME1 fault indicates
failure.

mvnoosb
checks the prepage logic of the CPU for EIS numeric instructions. Failure is
indicated by a MME1 fault.

cmpb_ with_sixbit_offset
checks the CMPB instruction with a six bit offset. AM~1E1 fault indicates that
the hardware failed.

cmpb_with_rotate
checks the CMPB instruction with a rotating pattern. A MME1 fault indicates that
the hardware failed.

cmpc_pgbnd
compares a 38-character data string against a zero-length string. for a CMPC
instruction that is located at seg 11767. Either an out_of_bounds condition or a
MME1 fault indicates that the hardware failed.

csl_pgflt
checks that a CSL instruction does not get a no_write_perm condition if it causes
a page fault on the target string and the source string is read-only.

scm_pgflt
tests a problem with the SCM instruction whereby the target operand takes a page
fault and the resulting comparison is not made. Failure is indicated by a message
to you indicating the number of miscompares.

scd_con_fIt
tests a failure with the SCD instruction that fails when interrupted by a connect
fault. Failure is indicated by displaying the number of times the SCD failed.

2-106 AR97-03

Name: test_dew

SYNTAX AS A COMMAND

test_dew {device} {name} {-control_args}

FUNCTION

constructs and executes arbitrary DeW lists on any device supported by the I/O
in terf acer.

ARGUMENTS

device
is the name of the device to be used. This can be either a specific device name.
such as tltape_02" or "puna," or a generic device type. such as "printer" or "disk."
If the device name is omitted. "tape" is assumed.

name
is the name of the tape or disk volume to be mounted. This argument is only
used if the device is a tape or a disk, and is the name of the volume the operator
is requested to mount. If the tape or disk volume name is omitted, "scratch" is
assumed.

CONTROL ARGUMENTS

-read
places the device in read-only mode. This control argument only applies if the
device is a disk or a tape.

-7track. -7tr
specifies a 7-track tape drive. This argument only applies if the device is a tape.

-pri\'

-sys

specifies a privileged attac,hment (see "Device Attachment" below.)

sets the system_flag in the rcp_ info structure during attachment (see "Device
Attachment" below).

-debug, -db
runs the program in debug mode. In this mode. only the editing requests are
recognized; no execution is allowed, and no actual device attachment takes place.

2-107 AR97-03

test_dcw

DEVICE ATTACHMENT

The test_dcw command attaches the device selected using the rcp_ subroutine.
Normally, the call is made to rcp_$attach as a nonsystem process. However, if -pri\' is
used, the call is made to rcp_priv _$attach. In both cases, if -sys is used, the
system_flag in the rcp_ info structure is set, to indicate to rcp_ that you are to be
considered a system process. You must have re access to the rcp_sys_ gate to make this
kind of attachment. If the device specified in the command line is a device type rather
than a specific device, rcp_ is relied upon to select the actual device to be used. In
either case, the name of the device actually attached is printed after attachment
completes.

COMMANDS

After the test_dcw command is invoked, commands are read from the user_input I/O
switch. The following commands are recognized:

tdcw
constructs a transf er new

idcw
constructs an instruction new

nidcw
constructs a nondata transfer IDCW

iotp
constructs an I/O transfer and proceed DeW

iotd
constructs an I/O transfer and disconnect DCW

iontp
constructs an I/O transfer and proceed DeW

odcw
constructs a DeW from octal input

pew
constructs a pew

opcw
constructs a pew from octal input

edit, e
selects a DeW list to edit

update, u
places editor in "update" mode

2-108 AR97-03

test_dew

insert. i
places editor in "insert" mode

delete, dl, d
deletes a new from the list

print, p
prints a DCW list

name
names a DCW list so that it can be referenced by name instead of number

save
saves all the current new lists in a segment

restore
restores DCW lists from a segment created by the save command

execute, x
executes a new list

getstat. g
checks for status from a previous operation

block, b
blocks process until an event occurs

xs
executes a DeW list, but leaves process blocked until special interrupt occurs

xr
,executes a DeW list repeatedly, until some unusual status is returned

xre
executes a, DCW list repeatedly, regardless of whether the operations succeed or
fail

status, st
sets the current status reporting mode

rs
reprints the status from a previous operation

dump
dumps data from the I/O buffer on terminal,

patch
inserts data into the I/O buffer from terminal

2-109 AR97-03

pattern

survey

dtstat

chan

time

prompt

susp

reI

?

quit, q

inserts data into the I/O buffer from the terminal by storing repeated copies of
the data given

displays data returned by a "survey devices" tape controller command

displays data returned by a "read detailed status" tape handler command

selects a specific 10M and channel for I/O

sets or prints the current time limit for ioi timeout

stores a character string to be used as a prompting message

suspends I/O on devices connected to an MPC by calling ioi_$suspend_devices

restores I/O on devices connected to an MPC by calling ioi_$release_devices

types out the current DeW list number. current DeW number, and the current
editor mode

types the word "test_dew" to verify that the test_dcw command is still in
control

releases attached device and returns

I/O BUFFER AREA

Once the device is attached, an I/O buffer is allocated using the ioi_ subroutine. The
default length is 1024 words, although this can be changed later. The first 32 words of
the buffer are reserved for DCW lists. and the second 32 words are reserved for the
ioi_ status queue. When constructing a DCW list. care should be taken to avoid
modifying the first 64 words (100 octal) of the buffer, or results (especially status
reporting) may be unpredictable.

2-110 AR97-03

Dew LIST PREPARATION

The test_dcw command contains an editor that can create and update Dew lists using
simple input statements. Up to 32 different· DCW listst each up to 32 words in lengtht

can· be created and selectively updated and executed. Each Dew list also has a PCW
associated with it that, if present, is used instead of the system-supplied PCW when the
list is executed. The 32 DeW lists are numbered from 1 to 32 in decimal. Each DeW
list can also be given a name. The 32 DeWs in each list are numbered from 0 to 37
in octal.

The DCW editor keeps track of several quantities as DeWs are entered. These are the
current list, the current DeW number, and the current mode. When the test_dcw
command is invoked, the current list is 1. the current new is 0, and the mode is
update.

When a DeW is entered in update mode, the new new replaces the current Dew in
the current list, and the current new number is increased by one.

The editor can also be placed in insert mode. In this mode, when a new new is
entered, all Dews starting with the current Dew are shifted one position down the
list, the new new replaces the position formerly occupied by the old current DCW,
and the current new is increased by one. DCWs shifted out of position 37 octal are
lost.

The edit command can be used to select a Dew list to edit, as follows:

edit {list} {name}

where:

1. list

2. name

is either the name or number of the DCW list to edit. The list can also be
specified as "*", in which case, the first available empty list is used.

is the name given to the DeW list selected by the first argument. If
omitted, the name of the list is not changed.

This command sets the current list to the one specified, the current DeW to 0, and the
mode to update. If the list argument is omitted. the current list is not changed, but
the current new and mode are set to 0 and update respectively.

2-111 AR97-03

A new list can be given a name (or a new name) with the name command.

name {name}

where:

1. name
is the name to be placed on the current list. If omitted. the current list
becomes unnamed. If some other list has the name specified, that list
becomes unnamed.

The mode of the editor is controlled by the insert and update commands, as follows:

update {n}
insert {n}

where:

1. n
is a DeW number, in octal. The update command puts the editor in update
mode and sets the current DeW to n. Similarly, the insert command places
the editor in insert mode. If n is omitted, the current new is not changed.

A DeW can be deleted from the middle of the list with the delete command.

delete {n}

where:

1. n
is a DeW number, in octal. DCW n is deleted by moving everything after it
in the list up one position. If n is omitted. the current DeW is deleted. The
current DeW number is not changed.

Any of the following commands can be used to create a DCW:

idcw
nidcw
tdew
iotd
iotp
iontp
odcw

After a DeW is constructed with any of these commands. it is edited into the current
list. in the current position. according to the current mode, as described above. In all
of the DCW commands described below, all numeric quantities are entered in octal.
Any of the parameters shown are optional, and if omitted. the corresponding new
field is zero (except for the device address field that is set to the address of the device
assigned).

2-112 AR97-93

To create an IDCW. the command is entered as follows:

idcw {dn {args}

where:

1. di

2. args

is the value to be placed in the device instruction field.

are used to set the remaining fields in the IDCW and can be selected from
the following:

da 00

places the value 00 in the device address field.

ci 00

places the value 00 in the channel instruction field.

ae 00

places the value 00 in the address extension field.

t 00

places the value 00 in the tally field.

ec
sets the extension control bit (ec bit).

cont
sets the continue bit.

mark
sets the marker status bit.

A non data transfer IDCW can be entered more easily using the nidcw command. It is
identical in format to the idcw command. but the tally defaults to 01 and the channel
instruction defaults to 02.

A transfer DCW is created as follows:

tdcw {addr} {args}

where:

1. addr

2. args

is the value to be placed in the address field.

are used to set the remaining bits in the TDCW and can be selected from
the following:

2-113 AR97-03

ec
sets the extension change bit (ec).

res
sets the restricted bit.

reI
sets tbe relative mode bit.

IOTD.IOTP. and IONTP DCWs can be entered using the commands shown below.

iotd {addr } { tally} {cp}
iotp {addr} {tally} {cp}
iontp {addr} {tally} {cp}

where:

1. addr
is the value to be placed in the address field.

2. tany
is the value to be placed in the tally field.

3 .. cp
is the value to be placed in the character position field.

Any arbitra.ry DeW can be entered using the dcw command.

odcw {word}

where:

1. word

test_dcw

is the octal DCW to be used. If word is omitted. "an all-zero (and invalid)
DCW is created.

Each DeW list can have one pew associated with it. The PCVl can be entered with
the following command:

pcw {dn {args}

where:

1. di
is the value to be placed in the device instruction field.

2-114 AR97-03

2. args
are any of the optional args listed under the idcw command, with the
following additions:

mask
sets the mask bit.

reset
sets bits 21, 22, and 23 to form a reset PCW.

Any arbitrary PC\V can be entered with the opcw command as follows:

opcw {word}

where:

1. word
is the octal PCW to be used. If word is omitted, an all-zero PCW is created
and the system-supplied PCW is used on subsequent executions of the DCW
list.

The DCW list can be displayed at any time using the print command.

print {list}

where:

1. list
is either the name or number of a DCW list. If list is omitted. the current
list is displayed. If list is specified, the current list is set to that list, the
curren t DCW is set to 0, and the mode is set to update. Instead of a list
name, "all" can be used to indicate that all DeW lists are to be displayed, or
"names" can be used to list the names of all Dew lists.

SAV f NG DeW Lf STS

Once edited, a permanent copy of all the current DCW lists can be saved in a segment
for later use by invoking the save command.

save path

where:

1. path
is the pathname of the segment where the data is to be saved. The segment
always has a suffix of "test_dcw", which is supplied automatically.

2-115 AR97-03

To restore the previously saved DCW .lists,

restore path

where:

1. path
is the name of the segment created by the save command. If the command
was not invoked in debug mode, all IDCWs and PCWs are updated with the
device address of the device currently assigned.

I/O BUFFER EDITING

Several commands are available to edit and display the contents of the I/O buffer. To
enter data into the buffer. the patch command is used.

patch offset word 1. .. word2 ... wordi

where:

1. offset
is the octal offset in the buffer to be patched.

2. wordi
is the value to be placed in word offset+i.

Offsets less than 100 octal should not normally be used, as this could interfere with the
DCW list, or the status queue.

If a repeating pattern is desired, use the pattern command.

pattern offset repeats word1. .. word2 ... wordi

where:

1. offset
is the octal offset in the buffer where the data is to start.

2. repeats
is an octal number representing the number of times the data is to be
repeated.

3. wordi
are the data words to be repeated.

2-116 AR97-03

To display the contents of a buffer (in octal), use the dump command.

dump {offset} {length}

where:

1. offset
is the offset in the buffer to be dumped. If omitted. 100 octal is assumed.

2. length
is the number of words to dump. in octal. If omitted. 10 octal is assumed.

If the data consists of 8-bit bytes in binary mode (unaligned. 9 in each two words). the
dump command can be used to dump them. The format is the same as the dump
command. except that the data is displayed in binary. and the length is given in bytes.
instead of words.

If the data to be displayed is the output of a survey devices command issued to a tape
controller. a special command can be used to display the data in a more meaningful
way.

survey {offset}

where:

1. offset
is the location in the 110 buffer where the data has been stored. If the
offset is omitted, 100 octal is assumed.

If the data to be displayed consists of the. output of a read detailed status command
issued to a tape handler, it can be displayed with

dtstat {offset}

where:

1. offset
is the location in the buffer where the status has been stored. If omitted.
100 octal is used.

2-117 AR97-03

test_dcw

EXECUTING THE DCW LIST

Once the new list is constructed. it can be executed as follows:

execute {list}

where:

1. list
is the name or number of the new list to execute. If omitted, the current
list is executed. If specified. the current list is changed to that list, the
curren t DeW is set to 0, and the mode is set to update. The current list is
copied into the I/O buffer starting at 0, and ioi_$connect is called to
connect to relative address O. If the list executed has a PCW associated with
it. a call is made to ioi_$connect_pcw instead. After the connect is made,
the process becomes blocked until an interrupt occurs. The status of the
interrupt is then printed. If the status indicates that the channel is still
running. the process goes blocked again waiting for another interrupt. If the
channel is not running. test_dew is ready to accept another command after
the status is displayed.

If the new list being executed generates a terminate interrupt and a special interrupt
(such as loading a tape drive). the following command can be useful:

xs {list}

This command is identical to the execute command. except that the process goes
blocked after displaying the status from each interrupt until a special interrupt occurs.

A DCW list can be executed repeatedly using the following command:

xr {list}

This command executes the new list specified without displaying any status until an
error condition is detected. The final status is printed normally.

Another variation of this can be used when it is necessary to repeat the DeW list. even
though it has errors.

xre {list}

executes the list specified repeatedly regardless of the status. To terminate this, it is
necessary to quit and to use the Multics program_interrupt command, afterwards.

Two other commands are occasionally useful in executing a DCW list.

block, b
getstat. g

2-118 AR97-03

The block command causes the process to go blocked waiting for an interrupt to occur.
When it occurs, the resulting status is printed and test_dew is ready for another
command. The getstat command checks to see if any status is available, and prints it if
it has occurred. The getstat command does not cause the program to go blocked if no
status is available.

Using the block command (or if a channel fails), it is possible to put the process in a
state where it is waiting for an event that never occurs. If this happens. a quit
followed by a Multics program_interrupt command can be used to return to the
test_dew input routine.

STATUS REPORTING

Status is normally reported when received by printing it on the terminal. Status can be
reported in three modes, as follows:

1. brief, bf
is the default mode. The status message consists of the interrupt level in
decimal, two words of 10M status in octal. and the major and minor status
fields in binary.

2. long, 19
consists of all eight words of the ioi_ status queue entry, in octal.

3. edited, ed
is an English-language interpretation of the status.

The status mode is initially set to brief, but this can be changed as follows:

status {mode}

where:

1. mode
is one of the three status modes described above. If omitted, the current
mode is printed.

The previous status can also be redisplayed using the. reprint status command.

rs {mode}

where:

1. mode
is one of the three modes described above. If omitted. edited mode is
assumed.

2-119 AR97-03

OTHER COMMANDS

Several other commands exist that can be useful. To set the length of the ioi_ timeout
interval. use the time command.

time in}

where:

1. n
is the time limit in decimal seconds. If n is omitted, the command prints the
curren t limi t.

To change the size of the I/O buffer.

work in}

where:

1. n
is the buffer length desired in decimal words. If n is omitted. the work
command displays the current buffer length.

To select a specific 10M and channel for I/O, the chan command can be used.

chan {jom} {channel}

where:

1. channel
is the 10M channel. in octal.

2. iom
is the 10M selected.

If channel is specified, but 10M is omitted, the 10M is assumed to be 1. If both are
omitted. both are set to 0, indicating that ioi_ should make its own selection. The
test_dcw command must be invoked with the -prj" control argument in order to use
this feature.

To suspend I/O on devices to connect to an MPC.

susp

To restore I/O. use

reI

2-120 AR97-03

These commands call the appropriate ioi_ entry points to accomplish their task. They
are valid only if test_dew was invoked with the -priv control argument and the device
is connected to an MPC.

To read the special device status stored by the previous operation,

To read the detailed device status stored by the previous operation. use

get_detail_status

If a prompt message is desired when test_dew is ready for input, it can be supplied by
you a~ follows:

prompt {chars}

where:

1. chars
is the data to be used for prompting. If chars is omitted, no prompt message
is used.

To exit from the test_dew command,

quit, q

The I/O device currently attached is detached. and the program terminates.

SYNTAX AS A COMMAND

FUNCTION

tests DN66xx FNPs with the FED-supplied FNP test programs.

ARGUMENTS

FNP_tag
is the tag of the FNP to be tested. This FNP must have been shut down or
FDUMPed; it cannot be involved in testing by another process. Level 6 FNPs
cannot be tested with this command.

2-121 AR9i-03

CONTROL ARGUMENTS

-exec name
specifies the FNP executive to be run initially. The name can be either "BOS" or

. "IDS." The default is BOS.

-input_switch name. -isw name
specifies the I/O switch from which operator input is read. The default switch is
user_input.

-message_switch name. -msw name
specifies the I/O switch to which messages intended for the T &D line printer are
written. The default switch is user_output. The FNP T&D programs generate
output of this form if its query "IS A PRINTER A V AILABLE?" is answered
affirmatively.

-output_switch name, -osw name
specifies the I/O switch to which messages intended for the operator console are
written. The default switch is user_output.

NOTES

The FNP type of the FNP selected for testing is obtaine.d from information contained
in the Channel Definition Table (>system_control_l>cdt). If the user does not have
access to this data base. a user query is issued in the form:

TEST _FNP: What is the FNP Type of FNP TAG?
Anwser: DN6600. DN6670. DN355. or quit.

If the "quit" response in entered. control is returned to the current command processor.

Users should be familiar with the FED offline version .of TST3BT. The test options,
queries, and message diagnostics relevant to FNP testing are produced by the FNP test
programs themselves. The documentation for the offline version of TST3BT running
under the PAS2 EXEC. and the T&D documentation for the FNP tests. contain
information on actual dialogue with this program: it is the same as the dialogue with
the offline version.

The operator console of TST3BT is simulated by the Multics terminal controlling the
process running test_fnp. By default. test output appears on the terminal, and responses
are expected from the terminal. Normal Multics input line editing applies to all
responses, and lowercase input is acceptable.

The response "quit" to any query of test_fnp. regardless of how it was generated.
terminates the test session, releases the FNP. and returns to command level.

The REQUEST button of the operator console is simulat.ed by striking the QUIT key
and using the program_interrupt (pi) command to return to test_fnp. Normally, the
REQUEST button causes an interrupt to be sent to the FNP directing the FNP
executive to enter its request loop.

2-122 AR97-03

Access to the tandd_ gate is required. Access to >sc1>cdt is required to obtain
the correct model number of the FNP. If you do not have access to the COT, the
default model number is DN6678.

The tests executed by test_fnp are sorted in the keyed sequential vfile_
>system_library_tandd>tandd_deck_file. These tests are loaded from the FE distributed
"FNP binary deck tapes" by the load_tandd_library command (described in Multics
Online I&D).

Name: test_tape

SYNTAX AS A COMMAND

FUNCTION

tests a tape drive or tape reel.

CONTROL ARGUMENTS

-volume ID. -vol 10
specifies a tape by its volume identification number, which can have a maximum of
nine characters. If -volume is not given. a default of "test_tape" is used.

-comment SIR, -corn STR
allows you to pass additional information about the requested volume mount to the
operator.

-device STR, -dv SIR
selects a specific tape unit: STR must be the complete device name. If this control
argument is not given, the system finds a free tape unit (e.g .. -device. tapb_08). It
is incompatible with -compare.

-compare SIR, -comp STR
writes and then reads a tape on device STRl, and then automatically has the
operator mount the tape on device STR2 and read the tape. The mounting and
reading continues to device STRn. At least two devices must be specified. Only
one device is attached at a time. The full device name (e.g., -comp tapa_OS
tapa_07) must be used. This control argument cannot be used with -device.

-densi ty N, -den N
indicates the tape density, where N can be either 6250. 1600, or 800. The default
is 1600.

-track7, -tk7
specifies a 7-track tape drive as the test unit. The default is 9 track.

2-123 AR97-03

-wait Nt -wt N
attempts to attach the device N times, after one-minute waits. if the device desired
is being used by another process. If after N waits the device still cannot be
attached. the program bypasses the device. The default for N is two times.

-count N. -ct N
indicates the number of records to be written or read. where N is a decimal
integer. Each write operation creates one 1040 word physical record. If this
control argument is not given. then the entire tape is written or read.

-no_data_compare. -ndc
disables comparison of the data read to a known pattern. This control argument is
useful for verifying that a tape can be read without knowing what data is on the
tape.

-random
fills the data buffers with a known random data pattern. It cannot be used with
-pattern.

-pattern N. -pt.rn N
specifies N as the word of octal data to fill the data buffers, where N can be a
maximum of 12 octal digits. If fewer than 12 digits are given. the field is padded
on the left with zeroes. If this control argument is not given, a pattern of
222222222222 is used. The -pattern control argument cannot be used with -random.

-wri te_read. -wr
identifies the mode of the test. The tape is written and 'the read pass is
pref ormed. (Def aul t)

-write. -w
identifies the mode of the test. The tape is written and the read pass is bypassed.

-read. -r
identifies the mode of the test. The tape is mounted without a write ring and the

* read-only pass is preformed.

-raw
displays raw hex detailed status with each error message in addition to an
interpreted display.

NOTES

The test_tape command senses the End of Tape Mark (EDT) and stops even if the
record count has not been exhaust.ed. Typing test_tape with no control arguments ha~
the same effect as:

test_tape -vol test-tape -den 1600 -ct 100000 -ptrn 222222222222 -wr

2-124 AR97-03

Listed below is a summary of the default control argument values.

-volume (test-tape) -count (100000 {entire tape})
-comment (NONE) -ndc (OFF)
-device (one previously assigned, -random (OFF)

or a free device) -pattern (222222222222)
-compare (OFF) -write (ON)
-density (1600) -read (ON)
-track (9) -raw (OFF)
-wait (OFF)

2-125 AR97-03

SECTION 3

MUL TICS HEALS

DESCRIPTION OF HEALS

HEALS (Honeywell Error Analysis and Logging System) assists field engineering
and operations personnel in monitoring the performance of the hardware and provides a
record of hardware operation for diagnosing transient malfunctions. tracking performance
of hardware modules. and predicting scheduled maintenance.

HEAL SREPORTS

HEALS reports are initiated by the heals_report command (described later in this
section). The names of desired reports. the time period of the reports. and the
pathname of the report file are specified by arguments to the command. The reports
are

io_error report
all I/O errors logged to syserr log by the ioi_. disk_control, dn355, and
bulk_store_control subroutine. The entries are in syserr log time sequence
and contain the full octal status return word.

sorted_io_error report
the I/O errors of the io_error report orders by day and by device
address (lOM number, channel number. and device number); grouping the
errors for the convenience of maintenance personnel. Within a device
address. entries are further ordered by power off, major status. sub
status, initiate/terminate interrupt, device command. 10M status. and
record count r~sidue. The octal status word is replaced (to keep the
format width to 72 columns) by additional details of tape and disk
errors.

3-1 AR97-03

cpu_error report
history register data and other pertinent data for op_not_complete,
parity, command, startup, and shutdown faults.

mos_edac_error report
the MOS EDAC error entries in syserr log.

media_io_error report
similar in content to the sorted_io_error report except that the primary
sort key is media volume name (e.g .. tape reel number).

EXAMPLES OF REPORTS

Examples of the HEALS reports that result from invocation of the heals_report
command are shown on the following pages. The media_io_error report is not
shown--its format and content are similar to the sorted_io._error report. If a problem
is detected in processing an entry for the io_error report or the sorted_io_error report,
the problem is reported with a comment line in place of data in the report entry. If
the system is reconfigured between the time of logging an error and the time of
execution of a HEALS run, reassigned channels or device names different from those
obtained from the configuration table are not known to the report generators. These
are reported as "ch_unkn" or "dv_unkn". The configuration known to HEALS is
printed preceding an io_error or sorted_io_error report. If a device address cannot be
determined, it is assigned 10M number 0 and channel number 0 so that the entries are
grouped at the beginning of the sorted_io_error report. The numbers assigned 0.0 flag
the entries as having invalid addresses.

Each entry of a report contains the syserr log sequence number and log time so
that entries can be cross-referenced to the original syserr log (see Sections 1 and 2) and
the HEALS log, and between the io_error and sorted_io_error reports.

Examples of the various HEALS reports follow.

3-2 AR97-03

Channel Assignment Table

The configuration known to HEALS that is printed out prior to an io_error or
sorted_io_error report is shown below.

CHANNEL ASSIGNMENT TABLE AT TIME OF HEALS RUN
RUN DATE: 08/15/77 RUN TIME: 1620.4,
SYSTEM_'D: MR6.0 S'TE_'D: Honeywell

10M CHNL DEVICE MODEL
NUM NUM NAME NUMBER

08 prtd 1600
09 prta 1200
10 rdra 301
1 1 puna 300
12 prte 301
14 rdrb 201
15 punb 201
16 ope
17 355a
18 tape 500
24 dska 451
25 dska 451
26 dska 451
27 dska 451
28 dskb 451
29 dskb 451
30 dskb 451
31 dskb 451

3-3 AR97-03

10_ERROR_REPORT: 08/14/77 1619.8 TO 08/15/77 1619.8 PAGE

SYSERR LOG DEVICE STATUS TLY TAPE_NO STATUS_RETURN
------------ --------------- ------
TIME NUMBER NAME I-CC-DD CM MJ-SB-I DISK_AD

DATE: 08/14/77 DATE: 08/14/77

1725.4 34421 rdra 1-10-01 01 02-01-t 5 N/A 420140000000
1809.8 34427 prtd 1-08-01 34 03-10-t 2 N/A 431000000000
1809.9 34429 prtd 1-08-01 34 02-01-i 1 N/A 420102000000
1822.4 34440 prtd 1-08-01 34 03-04-t 1 N/A 430400000000
1834.6 34441 prtd 1-08-01 34 02-01-i 1 N/A 420102000000
1917·5 34447 tape 1-18-01 15 13-22-t 5 532200000000
1926.5 34457 tape 1-18-03 15 13-22-t 1 me019 532200000000
1939.5 34458 tape 1-18-03 15 13-22-t 1 me019 532200000000
1955.4 34482 tape 1-18-04 15 13-22-t 1 me020 532200000000
2000.8 34490 tape 1-18-02 15 13-22-t 1 me021 532200000000
2006.7 34491 tape 1-18-02 15 13-22-t 1 me021 532200000000
2012.3 34499 tape 1-18-01 15 13-22-t 1 me022 532200000000
2017.7 34504 tape 1-18-03 05 12-10-t 1 m2088 521000000000
2017.9 34505 tape 1-18-03 05 12-10-t 1 m2088 521000000000
2018.4 34508 tape 1-18-01 15 13-22-t 2 me022 532200000000
2023.2 34516 tape 1-18-04 15 13-22-t 1 me023 5322000000.00
2034. 1 34519 tape 1-18-04 15 13-22-t 7 me023 532200000000
2045.2 34527 tape 1-18-02 15 13-22-t 1 me024 532200000000
2047.9 34528 tape 1-18-02 15 13-22-t 1 me024 532200000000
2053.7 34536 tape 1-18-03 15 13-22-t 1 me025 532200000000
2103.8 34549 tape 1-18-03 15 13-22-t 3 me025 532200000000
2116.8 34557 tape 1-18-04 15 13-22-t 1 me026 532200000000
2120.8 34571 tape 1-18-01 15 13-22-t 1 mb025 532200000000
2208.2 34582 tape 1-18-03 15 03-10-t 1 rn2068 431000000000
2357.9 34586 tape 1-18-01 15 13-22-t 2 mb025 532200000000

DATE: 08/15/77 DATE: 08/15/77

0700.3 34610 dska 1-26-02 31 02-20-t 422000000100
0700.3 34612 dska 1-26-02 31 422456
0700·3 34614 dska 1-26-02 31 extended: (40 00 00 00 82 00 00 00 00)
0714.0 34617 tape 1-18-01 15 13-22-t 2 mb026 532200000000
0728.2 34626 tape 1-18-02 15 13-22-t 1 mb027 532200000000

END: 10 -ERROR_REPORT

3-4 AR97-03

SORTED_IO_ERROR_REPORT: 08/14/77 1619.8 to 08/15/77 1619.8 PAGE

DEVICE STATUS TLY TAPE_NO DENS RING TR< SYSERR LOG
------ ------ ------
I-CC-DD NAME CM MJ-SB-I DISK_AD CYL HEAD SEC TIME NUMBER

DATE: 08/14/77 DATE: 08/14/77

1-08-01 prtd 34 02-01-i 1 N/A 1809.9 34429
1-08-01 prtd 34 02-01-i 1 N/A 1834.6 34441
1-08-01 prtd 34 03-04-t 1 N/A 1822.4 34440
1-08-01 prtd 34 03-10-t 2 N/A 1809.8 34427
end: prtd errors

1-10-01 rdra 01 02-01-t 5 N/A 1725.4 34421
end: rdra errors

1-18-01 tape 15 13-22-t 5 1917·5 34447
1-18-01 tape 15 13-22-t 1 me022 1600 ys df 2012.3 34499
1-18-01 tape 15 13-22-t 2 me022 1600 ys df 2018.4 34508
1-18-0 'I tape 15 13-22-t 1 mb025 1600 ys df 2120.8 34571
1-18-01 tape 15 13-22-t 2 mb025 1600 ys df 2357.9 34586
1-18-02 tape 15 13-22-t 1 me021 1600 ys df 2000.8 34490
1-18-02 tape 15 13-22-t 1 me021 1600 ys df 2006.7 34491
1-18-02 tape 15 13-22-t 1 me024 1600 ys df 2045.2 3"4527
1-18-02 tape 15 13-22-t 1 me024 1600 ys df 2047.9 34528
1-18-03 tape 15 03-10-t 1 m2068 800 ys df 22,08.2 34582
1-18-03 tape 05 12-10-t 1 m2088 800 ys 9 2017.7 34504'
1-18-03 tape 05 12-10-t 1 m2088 800 ys 9 2017·9 34505
1-18-03 tape 15 13-22-t 1 meOl9 1600 ys df 1926.5 34457
1-18-03 tape 15 l3-22-t 1 me019 1600 ys df 1939·5 34458
1-18-03 tape 15 13-22-t 1 me025 1600 ys df 2053.7 34536
1-18-03 tape 15 13-22-t 3 me025 1600 ys df 2103.8 34549
1-18-04 tape 15 13-22-t 1 me020 1600 ys df 1955.4 34482
1-18-04 tape 15 13-22-t 1 me023 1600 ys df 2023.2 34516
1-18-04 tape 15 13-22-t 7 me023 1600 ys df 2034. 1 34519
1-18-04 tape 15 13-22-t 1 me026 1600 ys df 2116.8 34557
end: tape errors

DATE: 08/15/77 DATE: 08/15/77

1-18-01 tape '15 13-22-t 2 mb026 1600 ys df 0714.0 34617
1-18-02 tape 15 13-22-t 1 mb027 1600 ys df 0728.2 34626
end: tape errors

1-26-02 dska 31 02-20-t 0700.3 34610
1-26-02 dska 31 422456 555 16 16 0700.3 34612
1-26-02 dska 31 extended: (40 00 00 00 82 00 00 00 00) 0700.3 34614

3-5 AR97-03

DEVICE STATUS TLY TAPE_NO DENS RING TRK SYSERR LOG

I-CC-DD NAME CM MJ-SB-I DISK_AD CYL HEAD SEC TIME NUMBER

DATE: 08/13/77 DATE: 08/13/77

1-17-07 tapa 00 02-04-i 1 0902.7 34690
1-17-07 tapa 00 02-04-i 1 1013.6 34929
1-17-07 tapa 00 02-04-i 1 1046.3 35044
1-16-05 tapa 00 03-10-t 6 0842.3 34641
1-16-05 tapa 00 03-10-t 1 0842.6 34643
1-16-05 tapa 00 03-10-t 3 0844.6 34645
1-16-05 tapa 00 03-40-t 3 0847.7 34647
1-16-05 tapa 00 03-40-t 1 0847.8 34650
1-16-05 tapa 00 03-40-t 1 0847.8 34652
1-17-05 tapa 00 03-10-t 1 0842.3 34642
1-17-05 tapa 00 03-10-t 1 0843.5 34644
1-17-05 tapa 00 03-40-t 1 0847.7 34649
1-17-05 tapa 00 03-40-t 1 . . . 0847.8 34651
1-26-01 dska 00 00-03-t 1 0001496 1 18 16 1126.7 35133
1-26-01 dska 00 00-03-t 1 0001507 1 18 27 1129.3 35145
1-28-11 dskb 34 00-01-t 1 0081464 107 3 24 1332.3 35465
1-26-07 dska 00 00-20-t 1 0120512 158 10 32 0925.9 34736
1-26-07 dska 00 00-02-t 1 0121272 159 10 32 0926.0 34737
1-24':'07 dska 35 00-03-t 1 0402248 529 5 08 0954.2 34843
1-26-07 dska 00 00-20-t 1 0404640 532 8 00 0954. 1 34841
1-26-07 dska 35 00-20-t 1 0405400 533 8 00 0954.2 34842
1-20-01 dskc 34 00-20-t 1 0444384 584 13 24 1053. 1 35075
1-20-01 dskc 00 00-20-t 1 0445144 585 13 24 1053.0 35074
1-28-11 dskb 00 00-20-t 1 0592040 779 0 00 133 1 .8 35464
1-16-04 tapa 00 03-10-t 1 dp012 dflt ys df 1355·3 35516
1-16-04 tapa 00 03-10-t 5 dp012 df1t ys df 1358.5 35522
1-16-01 tapa 00 03-40-t 1 1 dp 126 df1t ys df 0838.7 34630
1-16-03 tapa 00 03-10-t 1 dp 127 df1t ys df 0839.6 34640
1-16-03 tapa 00 03-10-t 2 dp127 df1t ys df 0849.6 34660
1-16-03 tapa 00 03-40-t 2 dp127 dflt ys df 0849.6 34663 .

END: SORTED_IO_ERROR_REPORT

3-6 AR97-03

CPU ERROR REPORT:
HEALS RUN-OF 08/19/77

from 08/12/77 1081.7
1102.0 ON SYSTEM MR6.0

to 08/12/77 1300.0

____________ CU Legend ____________ _
cy - cycle type (d - direct operand)

___~ _________ OU Legend ____________ _
»flags«<

(i-instr. fetch,o=operand,F=fault) 9b = 9-bit byte (IT modifier only)
(n~indirect,x-xec,*=nop,e=EIS) ar = A-register in use

mc - memory command dl = first divide cycle
(OO=rrs,sp; 04=rrs,dp; 10=rcl,sp) d2 = second divide cycle
(12=rmsk,sp; 16=rmsk,dp; 20=cwr,sp) dl = direct lower operand
(24=cwr,dp; 32=smsk,sp; 36=smsk,dp) du = direct upper operand
(40=rd/lck; 54=rgr; 56=sgr) in = first ou cycle
(60=wrt/ulck; 62=con; 66=xec; 72=sxc) it = IT character modifier
»>flags«< oa = mantissa alignment cycle
-y = memory address invalid oe = exponent compare cycle
br = BAR mode of final OU cycle
cl = control unit load am = general OU cycle
cs = control unit store on = normalize cycle
dr = direct operand os = second cycle of multiple ops
fa = prepare fault address qr = Q-register in use
ic = IC value is odd rb = opcode buffer loaded
in = inhibited instruction rp = primary register loaded
01 - operations unit load rs = secondary register loaded
as = operations unit store sd = store data available
pa = prepare operand address -d = data not available
pb = port busy or data from cache xO = index 0 n use
pi = prepare instruction address xl = index 1 n use
pl = port select logic not busy x2 = index 2 n use
pn = prepare final indirect address x3 = index 3 n use
pt = prepare operand tally x4 = index 4 n use
ra = request alter word x5 = -index 5 n use
ri = request indirect word x6 = index 6 n use
rp = executing repeat x7 = index 7 n use
sa = store alter word
si = store indirect word
tr = transfer condition met
wi = request instruction fetch
xa = prepare execute interrupt address
xe = execute double from even ICT
xi = execute interrupt present
xo = execute double from odd ICT

3-7 AR97-03

____________ OU Legend ____ ~-------
mc = data mode (b,4,6,9,w)
offset = descriptor counter
»>flags«<
Oa = prepare alignment count for

numeric operand (1,2)
a 0 = load alpha oper and (1,2)
al = adjust length
as = alpha store
bd = binary-decimal execution

bg = blanking gate
cO = force stcO
cg = character operation
dO = descriptor active (1,2,3)
da = data avai lable
db = decimal-binary execution
dd = decimal unit idle
dl = decimal unit interrupted
dl = decimal unit load
ds = decimal unit store
ei = mid-instruction interrupt enabled
en = end instruction
es = end sequence
ff = floating result
fl = first data buffer load
fp = first pointer preparation
fs = end sequence
1 0 = load descr i ptor (1,2,3)
Id = length = direct
If = end first pointer.preparation
Iv = level < word size
Ix = length exhaust
1< = length < 128
mp = executing MOPs
n{) = load numeric operand (1,2)
nd = need descriptor
ns = numeric store
op = operand available
pc = alpha packing cycle
pl = prepare operand length
pp = prepare operand pointer
rO = load rewrite register (1,2)
re = write-back partial word
rf = rounding
rl = rewrite register 1 loaded

3-8

APU Legend __ --------~
seg# = SDWAMR and PTWAMR numbers if
corresponding MATCH bits are set.
offset = final store address
mc = ring number (TSR.TRR)

»>f1ags«<
an = final address, nonpaged
ap = final address, paged
f = access violation or directed

fault
fd = fetch descriptor segment PTW
fh = fault waiting
fs = fetch SOW
md = modify descriptor segment PTW
mp = modify PTW
pI = fetch PTW
p2 = fetch PTW+l
pm = MATCH in PTWAM
sm = MATCH in SOWAM

AR97-o3

rw = du=rd+wt control interlock
sa = select address register
sg = shift procedure
xg = exponent network
xm = extended al,ql modifier
+g.= add-subtract execution
*g = multiply-divide execution

syserr sequence #33228, at 08/12/77 1238.7;
syserr_log text: op_not_complete fault on CPU B by

Initializer.SysDaemon.z.

000033570041 000000000027 400326000120 000000000000
000230000200 342000000005 000006757120 000006757120

pointer registers: 6115070 6115120 331446 61/4720
15 1374 15 1374 61 4720 6110

index registers: 003126 005070 001260 000000
000002 000030 000241 000200

a: 000000002000 q: 000446000000 exp: 000 timer: 000331342 ring_alarm: 0

eis info: 000400000000 000400000000 004620252000 771077777707
000000002000 000077777670 004576002004 000077777734

fault register: 010400000000

NUM
1
2
3
4
5
6
7
10
1 1
12
13
14
15
16
17
20

OU registers
627000627100 137767003101
213000213100 123777013505
450000450300 177777013522
756000236340 113777003107
736000736100 133777003110
621000621100 136777003122
431210431100 123777003123
275210275500 127777010221
757000757300 177777010222
740000740300 175777010223
213000213100 123777012172
735000235340 107777000224
735000735100 127777000225
035000035500 127777000226
735000735100 127777000227
413000735240 023777000230

3-9

CU registers
200107764000 000033050020
201037710100 000447050200
201137710000 000224050200
300007235120 005072050020
200007235000 004145042011
600137735000 000226042201
200127735000 000007050015
300007035120 005074050020
200007035000 000050042011
600137735000 000230050201
200127735000 000003050015
300007413120 001464050021
200007413005 002000550010
700137757120 000232044201
300127757120 005076050021
300125757120 005076050002

AR97-o3

NUM DU registers AU registers
1 777757037717 744243410017 000614006144 023321450775
2 737757037737 744243410017 000336012000 001145460775
3 737757037737 744243410017 000336001020 000001470775
4 777757037737 744243410017 000612006144 023331740775
5 737757037717 744243410017 000144006450 005621500775
6 777757037737 744243410017 000336012000 001145500775
7 737757037737 744243410017 000336001020 000001430775
10 777757037737 744243410017 000153000000 001775740775
1 1 777757037717 744243410017 000152201000 023521720775
12 737757037737 744243410017 000152011000 000403640775
13 777757037737 744243410017 000715000000 001775740775
14 777757037737 744243410017 000714201100 023521620775
15 737757037717 744243410017 040040040040 040040040040
16 777757037737 744243410017 040040040040 040040040040
17 737757037737 744243410017 000224400043 006440000000
20 737757037737 744243410017 077777400043 000001000000

HR e
id## IC __ oped_ tag_ y seg#_ offset_ me flags

CU 1 Iprp4 0 33 4 pa ie -y e1
CU 2 tra 447 4 pa tr wi it
CU 3 447 tra i 224 4 pa tr ie wi
CU 4 224 1da n"c n 5072 4 pa ri -y it e1
CU 5 II 0 4145 4 pa -y 01 pb
OU14 rp rs in of ar
CU 6 225 als 61 226 4 pi pa ie wi pb
AU 1 2 2332145 0 ap sm pm
cu 7 II d 33 7 4 pa ie wi -y 01 dr pb
OU15 rs of -d ar
CUI0 226 ad1a n"c n 33 5074 4 pa r i -y it e1
CUll II 0 33 50 4 pa -y 01 pb
OU16 rb rs of -d ar
CUl2 227 als 33 230 4 pi pa ie wi pb
AU 2 0 114546 0 an sm
CUl3 II d 33 3 4 pa ie wi -y 01 dr pb
OU17 rs of -d ar
CU14 230 rser n"c n 33 1464 4 pa ri -y it el pb
CU15 II a1 0 33 2000 54 pa '-y 0 I
CU16 231 staq n)'t 33 232 4 pi pa r i ie wi it pb
AU 3 147 0
AU 4 2 2333174 0 ap sm pm
CUl7 II n"c n 14 5076 4 pa r i ie wi -y it el pb
CU20 II n"c F 14 5076 4 pa r i ie wi -y fa it pI
OU20 rp in -d ar qr

END: CPU_ERROR_REPORT

3-10 AR97-03

MaS EDAC ERROR REPORT: from 08/01/77 1059.5
HEArS Rui Of 8719/77 1059.7 ON SYSTEM MR6.0

to 08/07/77 1059.5

LAST ERROR TALLY ERROR SYSTEM CONTROLLER REGISTER
LOG_NUM DATE TIME RATE

/MIN

21019 08/01/77 1435·7 1 5.00 000000000000 542177400001
EDAC error on mem b store b. MaS, 4k chip, Error: board M, chip A77

21589 08/02/77 1049.8 1 5.00 000000000000 542177400001
EDAC error on mem b store b. MOS, 4k chip, Error: board M, chip A77

21649 08/03/77 1709.8 1 5.00. 000000000000 542177400001
EDAC error on mem b store b. MaS, 4k chip, Error: board M, chip A77

22193 08/04/77 1146.8 2 5.00 000000000000 542177400001
EDAC error on mem b store b. MaS, 4k chip, Error: board M, chip A77

22273 08/04/77 1256.8 2 5.00 000000000000 140737400001
EDAC error on mem b store a. MaS, 4k chip, Error: board Q, chip A67

22274 08/04/77 1256.8 1 5.00 000000000000 542177400001
EDAC error on mem b store b. MaS, 4k chip, Error: board M, chip A77

22428 08/04/77 144 1 .8 4 5·00 000000000000 140737400001
EDAC error on mem b store a. MaS, 4k chip, Error: board Q, chip A67

22549 08/04/77 1646.8 4 5·00 000000000000 140737400001
EDAC error on mem b store a. MaS, 4k chip, Error: board Q, chip A67

22661 08/04/77 1951 .8 2 5.00 000000000000 140737400001
EDAC error on mem b store a. MaS, 4k chip, Error: board Q, chip A67

22730 08/05/77 0001 .9 1 5.00 000000000000 542177400001
EDAC error on mem b store b. MaS, 4k chip, Error: board M, chip A77

23343 08/05/77 1606.2 5·00 000000000000 340077400001

EDAC error on mem b store a. MOS, 4k chip, Error: board R, chip A78
23573 08/06/77 0412.3 1 5.00 000000000000 000137400001

EDAC error on mem c store a. MOS, 4k chip, Error: board Q, chip A17

3-11 AR97-o3

HEALS IMPLEMENTATION

The functions of an error analysis and logging system are:

1. Capturing and logging hardware data.
2. Sorting and analyzing the data.
3. Presenting the analyzed data in a series of reports.

The logging function is performed by the syserr mechanism to syserr log as
described in Section 1. The other functions are performed by the facilities described in
this section.

The syserr log contains a number of entries not needed for the HEALS reports,
and the time interval of syserr log data is normally not as large as may be desired for
HEALS error data analysis. Therefore, the syserr log entries of interest to HEALS are
extracted from the syserr log and written to an independent segment named
>system_control_1>heals_dir>heals_log (hereafter referred to as the HEALS log).

The update_heals_log, truncate_heals_log, and print_heals_message commands are
provided to manage the HEALS log.

The heals_report command creates a report for the specified time intervals and
appends it to the output file, which is created if none exists. The default pathname of
the output file is heals_reports in the working directory. The HEALS log is not
updated or otherwise changed by the heals_report command. If the latest syserr log
entries are wanted in the reports, the heals_report command must be preceded by the
update_heals log command.

The. segment heals_log and a control data segment <heals_log_info) are contained
in the directory >system_control_1>heals_dir. Management of the HEALS log is
expected to be done by field engineering personnel.

HEALS USAGE

HEALS is for use on both routine reporting of hardware errors and for specific
reports on demand.

All HEALS reports should be generated on a daily basis following a HEALS log
update to maintain a continuous record of hardware errors and malfunctions. This
HEALS activity should be triggered by a scheduled absentee process such as the
administratii;e "crank."

Any time that specific reports are wanted for monitoring or diagnostic purposes.
the heals_report command can be invoked at the terminal with the name of the specific
report desired (e.g.. heals_report!io_error). Similarly, update_heals_log can be invoked
by a privileged user of HEALS.

3-12 AR97-03

HEALS INSTALLATIOr\ REQUIREMENTS

The directory >system_control_1>heals_dir. created by asu.ec
(system accounting startup), must exist.

The heals_log segment is created by the first invocation of the update_heals_log
command.

HEALS COMMANDS

The commands that can be invoked to produce the HEALS reports are described
in the remainder of this section. Command descriptions are presented in alphabetical
order.

3-13 AR97-03

Name: beals_report

SYNTAX AS A COMMAND

heals_report {report_names} {-control_args}

FUNCTION

produces reports of interest to site-support and field-engint::ering personnel. The reports
are appended to a report file specified in the -output_file control argument or by
default to the heals_reports segment in the working directory. The ASCII report
segment can be displayed. perused by you on the terminaL or prinfed on a high-speed
line printer.

ARGUMENTS

report_names
can be one or more names from the following list (see -all below):

io_error
selects the I/O error report.

sorted_io_error
selects the sorted I/O error report.

media_io_error
is similar to the sorted io error report except that the primary sort key is the
media volume name (e.g .. tape reel number).

cpu_error
selects the CPU error report.

mos_edac_error
selects the MOS EDAC error report.

CONTROL ARGUMENTS

-output_file path. -of path
puts the report file in the file specified by path.

-from DT. -fm DT
specifies the date and time after which errors are reported. If this argument is not
given. the default value is the value of -to time minus 24 hours.

-to DT
specifies the date and time up to which errors are reported. If this argument is
not given, the default value is the current date and time.

-all. -a
specifies that all reports are to be generated. This argument can be used instead of
listing all report names.

3-14 AR97-03

NOTES

The dates specified after the -fm, -from, and -to control arguments must be acceptable
to convert_date_to_binary _ (see the Subroutines manual).

You must have r access on >system_control_1 >heals_dir > heals_log.

EXAMPLES

If the command line:

heals_report jo_error -from 03/01/78 -to 03/02/78

is issued at 2:00 PM; an ASCII report segment named heals_reports suitable for printing
is created in the current working directory, containing the I/O Error Report for the
period from 2:00 PM, March 1. 1978 to 2:00 PM. March 2, 1978.

SYNTAX AS A COMMAND

FUNCTION

is a tool to be used by administrators for the maintena.nce of the HEALS log (the
segment named >system_control_1>heals_dir>heals_log). It allows the printing of all or
selected messages currently in the log. It can also be used to delete bad records from
the log as well as to print out parts of each logged record.

CONTROL ARGUMENTS

-time DT
selects all messages that occurred after the specified time. If omitted, a value of 0
is assumed.

-update
allows you to delete selected messages from 'the HEALS log if you have the
appropriate access. (See "Notes" below.)

-match STR
selects messages with text containing the match string.

NOTES

You must have rw access on >system_control_l>heals_dir>heals_log for the update
function; otherwise, r access is sufficient.

3-15 AR97-03

The date/time following the -time control argument musl be of a form acceptable to
convert_date_to_binary _ described in the Subroutines manual.

The print_heals_message command opens the heals_log segment with a mode of
keyed_sequential_update to allow messages to be deleted. If a message is selected by
using either the -time or the -match control argument, you can issue the following
requests:

quit,q
discontinues message processing and returns to command level.

next
selects the next message that meets the specified selection requirements.

delete
deletes the current record.

data
prints the octal data contained in the current record.

EXAMPLES

The command line:

print_heals_message -time 01/01/78 -match ioi_interrupt

sends to the user_output I/O switch all messages that were received after 01/01/78
whose ASCII text contains the string "joi_interrupt".

SYNTAX AS A COMMAND

truncate_heals_log N
or

truncate_heals_log {-control_argsJ

FUNCTION

deletes records from >system_control_l>heals_dir>heals_Jog. It is used with the
update_heals_log command.

ARGUMENTS

N
is the number of days, counted back from the current time, for which messages
are to remain in the HEALS loge

3-16 AR97-03

CONTROL ARGUMENTS

-from DT, -fm DT
starts deleting messages from the specified date/time. If this control argument is
omitted, a clock value of 0 is assumed; that is. the truncate_heals_log command
starts deleting messages from the beginning of the log.

-to DT
stops deleting messages from the specified date/time. If omitted. a clock value
equal to the current time is assumed.

NOTES

You must have rw access to the heals_log and heals_log_info segments. both located in
>system_control_l>heals_dir. in order to delete messages from the HEALS log.

The date/times following the control arguments must be in a form acceptable to
convert_date_to_binary _ (see the Subroutines manual).

SYNTAX AS A COMMAND

FUNCTION

copies messages of interest to HEALS from the syserr log file into the HEALS log.,
The messages copied are those new messages added to the syserr log since the last
invocation of this command by any process.

NOTES

In order to update the log. the· directory >system_control_l>heals_dir must already exist.
and you must have access to system files as follows:

re to audit __ gate and to phcs_
r to system_control_l>perm_syserr_log
rw to system_control_l>heals_dir>heals_log
rw to system_control_l>heals_dir>heals_log_info

If either the segment >system_control_l>heals_dir>heals_log or the segment
>system_control_l>heals_dir>heals_log_info does not exist, it is created: in this case, you
need sma access on >system_control_l>heals_dir. The heals_log_info segment contains
information about the current heals_log segment.

3-17 AR97-03

CONTROL ARGUMENTS

-from DT, -fm DT
starts deleting messages from the specified date/time. If this control argument is
. omitted, a clock value of 0 is assumed; that is, the truncate_heals_log command
starts deleting messages from the beginning of the log.

-to DT
stops deleting messages from the specified date/time. If omitted, a clock value
equal to the current time is assumed.

NOTES

You must have rw access to the heals_log and heals_log_Jnfo segments, both located in
>systcm_control_l>heals_dir. in order to delete messages from the HEALS log.

The date/times following the control arguments must be in a form acceptable to
convert_date_to_binary_ (see the Subroutines manual).

SYNTAX AS A COMMAND

copies messages of interest to HEALS from the syserr log file into the HEALS log.
The messages copied are those new messages added to the syserr log since the last
invocation of this command by any process.
update_heals_log

NOTES

In order to update the log, the directory >system_control_l>heals_dir must already exist.
and you must have access to system files as follows:

re to audit_gate and to phcs_
r to syslcm_control_1>perm_syserr _log
rw to system_con trol_l > heals_dir> heals_log
rw to system_con trol_l > heals_dir > heals_log_inf 0

If either the segment >system_control_l>heals_dir>heals_log or the segment
>system_control_l>heals_dir>heals_log_info does not exist, it is created; in this case, you
need sma access on >system_control_l>heals_dir. The heals_log_info segment contains
information about the, current heals_log segment.

3-18 AR97-03

A

ALM segment (etx)
eis_tester 2-42

analyze_multics command 2-2

AU
see history registers

B

BOS
dump analysis

analyze_multics 2-2

C

CPU
default set

set_proc_required 2-100
speed

check_cpu_speed 2-31

INDEX

CPU hardware problems
checking

test_cpu 2-102

CPU usage
1 ist_proc_required 2-75

crash analysis
analyze_multics 2-2

CU
see history registers

D

dai ly_syserr_process command 2-32

DCW lists
test_dcw 2-107

device_meters command 2-36

disk drive
exercise disk 2-71

disk subsystems
information

device_meters 2-36

display_cpu_error command 2-38

i-1 AR97-03

DN66xx FNPs
testing

test_fnp 2-121

DU
see history registers

dump analysis
analyze_multics 2-2

dump_firmware command 2-40

dump_mpc command 2-40

dvrn
see device_meters

E

EDAC errors
set_mos_poll ing_time

EIS 2-80

EIS instructions
eis_tester 2-42

eis_tester command 2-42

et
see eis_tester

2-100

exercise_disk command 2-71

FCO number
eis tester

FNPs
DN66xx

2-42

test_fnp 2-121

F

i-2

FNPs (cont)
FED

test_fnp 2-121
polling

poll_fnp command 2-91
poll_mpc 2-93

fnp_data_summary command 2-72

H

HEALS 3-1

HEALS log
maintenance

print_heals_message 3-15

heals_report command 3-14

history registeres
list i ng

mc_trace 2-77

history registers
Appending Unit (AU) 2-79
Contro 1 Un it (CU) 2-79
Decimal Unit (DU) 2-79
Operations Unit (OU) 2-79
processor

save_hi story_registers 2-99

Honeywell Error Analysis and Logging
System (HEALS) 3-1

r/O errors
reporting

io_error_summary 2-73

I/O interfacer
test_dcw 2-107

io_error_summary command 2-73

AR97-03

ITRs 2-76

L

1 i st_proc_requi red command 2-75

load_mpc command 2-76

machine conditions
1 i st i ng

mc trace 2-77

M

maintenance register
poll_mos_memory 2-92

mct
see mc_trace command

mc_trace command 2-77

metering
information

device_meters 2-36

Mas memories
polling

set_mos_pol 1 in9_time 2-100

mos_edac_summary command 2-87

MPC 2-76
dumping

dump_mpc 2-40
po 11 i ng

poll_mpc 2-93

MPC firmware
dump_f i rmware
patch_firmware

2-40
2-90

mpc_data_summary command 2-89

o

au
see history registers

p

page control devices
metering information

device_meters 2-36

patch_firmware command 2-90

pcd
see print_configuration_deck

polling
MaS memories

set_mos_pol ling_time 2-100

poll_fnp command 2-91

poll_mpc command 2-93

print_configuration_deck command 2-94

i-3

print_heals_message command 3-15

print_syserr_log command 2-96

process
1 i st i ng

list_proc_required 2-75

processor
history registers

save_history_registers 2-99

AR97-03

reconfiguration commands
print_configuration_deck 2-94

records
deleting

truncate_heals_log 3-16

S

save_history_registers command

SCU
see System Control Unit

signalers stack frame
registers

save_history_registers 2-99

sprq
see set_proc_.requ i red command

storage system salvager
messages 1-1

syserr log
contents 1-1
EDAC error

poll_mos_memory 2-92
entries

dai ly_syserr_process 2-32
error handling

po ll_mpc 2-93

2-99

history registers
display_cpu_error 2-38

logging partition
display_syserr_log_part 2-39

machine conditions
display_cpu_error 2-38

mos edac activity
mos_edac_summary 2-87

MPC statistics
mpc_data_summary 2-89

i-4

syserr log (cont)
printing

print_syserr_log 2-96
processing

daily_syserr_process 2-32
scanning

i o __ error _summary
mpc_data_summary

statistics
fnp_data_summary
poll_fnp command
poll_mpc 2-93
update_hea1s_log

updating
update_heals_log

2-73
2-89

command
2-91

3-17

3-17

System Control Unit 2-79

tape drive testing
test_tape 2-123

tape ree 1 tes t i ng
test_tape 2-123

T

test_cpu command 2-102

test dcw command 2-107

test_fnp command 2-121

test_tape command 2-123

2-72

truncate_heals_log command 3-16

U

AR97-03

w
z
:J
(!)
z
o
....J
<{

~
::J
U

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE MULTICS SYSTEM DIAGNOSTIC AIDS

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. 0

FROM: NAME ------~----------------------------------
TITLE ______________ . _________ _

COMPANY ---------.
ADDRESS _______________________________________ __

ORDER NO. ~IA_R_9_7_-0_3 ________ ~

DATED I DECEMBER 1983

DATE

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

w
Z
:;
C)
z
o
..J
ocr
~
:l
U

t
01

I
I
I
I ~
I ..J

I 0
I Z g

I

~

o
-oJ
o
u..

I
tw
I Z
I...J
Ie)
.2 ' ________ """"! ___ ,.....- 0" .- 0

I~
10

Honeywell

t 5-
t ""'
I
I
I
f
I
I
f
I
I
f
f,

J
1
I
I
I
!
!

Together. we can find the answers.

Honeywell
Honeywell Information Systems

U.S.A.: 200 Smith St., MS 486, Waltnam, MA 02154
Canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7

U.K.: Great West Rd., Brentford, Middlesex TW8 9DH Italy: 32 Via Pirelli, 20124 Milano
Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. Japan: 2-2 Kanda Jimbo-cho Chiyoda-ku, Tokyo

Australia: 124 Walker St., North Sydney, N.S.W. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K.

39546, 7.5C184, Printed in U.S.A. AR97-03

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	2-123
	2-124
	2-125
	2-126
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	Index-01
	Index-02
	Index-03
	Index-04
	replyA
	replyB
	xBack

