
SUBJECT

LEVEL 68

STANDARDS
SYSTEM DESIGNERS' NOTEBOOK

Description of the Standards, Conventions, and Guidelines Used in the Software
and Documentation of the Multics Operating System

SOFTWARE SUPPORTED

Multics Software Release 8.0

ORDER NUMBER

AN82-00 June 1980

Honeywell

PREFACE

Multics System Designers' Notebooks (SDNs) are intended for use by Multics
system maintenance personnel, development personnel, and others who are
thoroughly familiar with Multics internal system operation, and also can be used
by application programmers or subsystem writers.

Since internal interfaces are added, deleted, and modified as design
improvements are introduced, Honeywell does not ensure that the internal
functions and internal module interfaces will remain compatible with previous
versions.

This SDN describes the standards, conventions, and guidelines used in the
development of all Multics software and documentation.

Throughout this manual, the term Multics refers to the Multics Operating
System.

It is important that the standards in this manual be followed to
consistently maintain and support the development of the Multics Operating
System. If you are a system programmer, permission should be obtained from your
Technical advisor to deviate from the standards; if you are not werking for
Multics System Development, you can deviate from the standards.

~Honeywe11 Information Systems Inc., 1980 File No.: 1L13

AN82-00

Section

Section 2

Section 3

Section 4-

Section 5

Section 6

CONTENTS

Introduction.
How to Use This Document .
Volatility of Contents
General Issues .
Registered Names
Topics

Interface Standards
Command Interfaces

Storage System Conventions
Command Arguments
Pathname Conventions.
Control Argument Conventions
Output Conventions
User Interaction Conventions ..

Subroutine Interface Standards ...•.
Subroutine Names.
Argument Standards

General Programming Standards . .
Command Standards
Naming Standards
Storage System Conventions

Output Conventions.
Use of On Units for the Cleanup Condition
Coding Conventions.

Modularity
Program Structure ..
Compilable Unit Size
Generality of Mechanism ..
External Availability of Mechanism
Binding and Bindfiles

Contents of Bound Segments..
Names of Bound Segments .
Bindfile Contents . . .
Bindfile Formatting

Env ironment Independence..
Reentrancy
Transparency
Interruptibility
Condition Handling .
Access Assumptions
Use of Standard Mechanisms
Pathnames and Search Rules . . . • .

Program Format.•.
Comments in Programs "

Copyright Notice.•.
Journalization Notice
Interface Descriptions.
Program Comments.

General Layout of a PL/I Program
Standard Format •

ALM Program Considerations

iii

Page

1-1
1-1
1-1
1-1
1-2
1-2

2-1
2-1
2-1
2-2
2-3
2-3
2-4
2-5
2-5
2-5
2-6

3-1
3-1
3-1
3-2
3-2
3-2
3-3

4-1
4-1
4-1
4-1
4-1
4-2
4-2
4-2
4-2
4-3

5-1
5-1
5-1
5-1
5-2
5-2
5-2
5-2

6-1
6-1
6-1
6-1
6-1
6-2
6-2
6-3
6-3

AN82-00

Section 7

Section 8

Section 9

CONTENTS (cont)

Page

Include File Format and Constraints 7-1
Include File Format. 7-1
Use of Include Files 7-1
Naming Include Files 7-2
PL/I and ALM Include Files . . 7-2

PL/I Language Conventions . .
Constraints
Efficient PL/I Constructs ..

The Alignment Attributes
Attributes with Arithmetic and
Pointer Variables .

Use of the Alignment Attributes with
Short Strings

Use of the Alignment Attribute with
Long Strings

Use of Unaligned Short Variables in
Arrays and Structures

Use of the Precision Attribute in Offset
and Length Expressions

The Use of Internal Static to Simulate
Named Constants

Use of the Initial Attribute
The Assignment Operation.

The Multiple Assignment Statement.
Conversions. . .
Pictures

Arithmetic Operations ..
Binary Operations ..
Decimal Operations .

String Operations • . .
Special Case of Concatenation •.
Operations on Long Strings .
Aggregate Operations ...

Use of the Builtin Functions.
Arithmetic Builtins ..
String Builtins
Mathematical Builtins .. .

The Call Statement and Function
References

Determining the 'Quickness' of a Block
Using Constant Argument Lists •.

Using If Statements
Optimization of Comparisons
Other Constructs That Are Costly or

Dangerous.•...

Storage Management ..
Use of the Storage System.

Pathnames • • .
Naming Conventions
Working Directory Use .
Access Control List Management
Making Segments Known and Unknown
Pathnames vs. Segment Pointers .•
Multisegment Files.
Use of the Bit Count..

Storage Allocation • . .
Internal Static Storage .
PL/I Areas
Temporary Segments. . . .

iv

8-1
8-1
8-2
8-2

8-2

8-2

8-2

8-3

8-3

8-3
8-4
8-4
8-4
8-5
8-5
8-6
8-6
8-6
8-6
8-6
8-7
8-7
8-7
8-8
8-8
8-9

8-9
8-9
8-10
8-10
8-11

8-11

9-1
9-1
9-1
9-1
9-2
9-2
9-2
9-3
9-3
9-4
9-4
9-4
9-4
9-5

AN82-00

Section 10

Section 11

Section 12

Appendix

Appendix

Appendix

Appendix

Index

Table A-1
Table A-2

A

B

C

D

CONTENTS (cont)

Documentation Standards • .
Location of Documents .•

Page

. 10-1

. 10-1

Info Segments. 11-1
Style. 11-1
Physical Appearance. 11-1
Naming Conventions . . . 11-2
Syntax of Info Segments. . . 11-2

Title. 11-2
Paragraphs. 11-2
Sections. • 11-2
Command Descriptions. • 11-3
Subroutine Descriptions 11-3
Other Info Segments . . . 11-4

Rules for Translator Writers. •. . 12-1
The Command Program.•.. 12-1
The Object Segment Created. 12-1
Listing Output 12-2
Miscellaneous Requirements. 12-2

Registered Control Arguments. .
Registered Suffixes

List of Suffixes . .
Registered 1/0 Switch Names

List of 1/0 Switch Names

Registered Condition Names. .
List of Condition Names.

.

TABLES

Approved Standard Control Arguments
Approved Special Control Arguments ..

v

.
.

.

A-1

B-1
B-1

C-1
C-1

D-1
D-1

i-1

A-1
A-5

AN82-00

SECTION 1

INTRODUCTION

HOW TO USE THIS DOCUMENT

This document should be read in its entirety in order to understand its
contents. It should then be used as a reference document whenever relevant to
the work being done.

VOLATILITY OF CONTENTS

The information in this document will be updated. Because the standards
change as the system evolves, much of the system will not completely conform to
the standards. As part of the development effort, software should be upgraded
to meet the requirements of the new or changed standards whenever this is
possible.

GENERAL ISSUES

To expound upon the general issues that comprise the design goals of the
Multics Operating System is beyond the scope of this document. However, it is
useful to remind the reader of some of the most important issues. Multics
interfaces are designed with the average user in mind. As a result the needs of
the very inexperienced or the very sophisticated user may be slighted.
Consistency among all parts of the system is stressed in order to make this very
complicated system possible to use and to allow different subsystems to be
combined in ways not originally planned.

The issue of general style has always been considered important. For
example, minimal use of jargon and the use of correct English is considered to
be very important for both the documentation and the system interfaces
themselves. Thus, diagnostic messages are sentences that begin with an upper
case letter and end with a period.

1-1 AN82-00

REGISTERED NAMES

One of the most important parts of the user interface that must be kept
consistent is that of the several classes of names used by commands and
subroutines. This manual contains a number of appendices that register these
names. Only those names registered here may be used; if new names are required
they must be registered.

Appendix A lists control arguments.
Appendix B lists suffixes.
Appendix C lists 1/0 switch names.
Appendix D lists condition names.

TOPICS

Main topics included in this manual are interface standards (including both
commands and subroutines), programming standards, modularity, environment
independence, program format, include file format, PL/I language conventions,
storage management, use of the storage system, documentation standards, info
segments, and rules for translator writers.

1-2 AN82-00

SECTION 2

INTERFACE STANDARDS

COMMAND INTERFACES

Comman~s are a special class of programs designed with the terminal user in
mind.-TheYserve as the principal interface between the system and all of its
users. Since many commands are used by both naive and sophisticated users, they
must be designed with a two-fold purpose. The naive user should not be burdened
with information he doesn't understand; the sophisticated user must not be
denied the facilities that he needs.

Commands should not be too powerful. The result of a typing error should
not be a disaster for the user.

Commands should be recursive, i.e., they should be able to be interrupted
in midstream and invoked again. If it is inappropriate for a particular command
to be used in this way, protection should be built into the command to query or
inform the user.

Commands should not retain information from one invocation to the next in
such a way that behavior of the second invocation
implication of the first. For example, the use of
in one invocation should not make all future output
other hand, a metering command that accumulates data
to reset the accumulated values.

Storage System Conventions

is affected by some hidden
the -brief control argument
be in -brief form. On the
should have a -reset option

In general, commands should deal with multisegment files as well as
segments, unless inappropriate.

Commands should not perform write operations on the components of archive
segments, except for the archive, archive sort, and reorder arch.ive commands.
Commands should have no knowledge of the structure of archive segments, except
for the commands mentioned above and the bind command.

Generally, commands should chase links, i.e., they should perform the
operation on the storage system entry to which a link points. However, there
are two exceptions. Links should not be chased when the command can manipulate
the attributes of the link, for example, the rename command. Links should also
not be chased by default when a starname is given. The -chase control argument
should be used to explicitly cause chasing of links. Refer to the copy command
in the MPM Commands and Active Functions, Order No. AG92.

A command name
each word separated

generally starts with a verb. Multiword names should have
with an underscore. A command name should consist only of

2-1 AN82-00

lowercase letters and the underscore character. The pl1 command is an obvious
exception, but doesn't invalidate the rule. Its name was chosen by another
guideline for constructing names.

A command name should be short enough so that it may be conveniently typed.
A two to four letter abbreviation should be selected using the first letter of
the words or syllables of the name. If the command is in the tools library, it
should not be supplied with an abbreviation. The system libraries should be
checked to ensure that there are no conflicts with other installed command names
and abbreviations.

New command names should be chosen with the following distinction in mind.
Commands whose names start with print should have no knowledge of the structure
of the input and deal with ASCII data. Commands whose names start with display
should know about the data structure of the input and produce highly structured
output. Commands whose names start with dump should have little knowledge of
the contents of the data, may produce octal output, and may format the output in
blocks.

Commands that are part of a subsystem should have the subsystem name or an
abbreviation as a leading name.

In general, the suffix command should be the principal command that
processes a segment whose name ends in .suffix. This is particularly true for
language translators, for example, the pl1 command.

Command Arguments

Commands should check carefully for argument validity and warn users of
possible misunderstandings. They should be consistent in behavior and interface
with other commands.

Commands that always require arguments should print a usage line when
invoked with no arguments. Commands that require no arguments should print a
usage line if arguments were given.

Command arguments should be order independent unless the order dependency
serves a useful purpose (e.g., -update of the bind command).

Commands whose interface is simple (such as the add name command) should
accept multiple arguments if appropriate.

Commands that deal with segments whose names have a fixed suffix should not
force the user to type the suffix; however, they should permit the user to
include the suffix as part of the name. The expand pathname $add suffix
subroutine performs suffix handling for such commands. - --

A series of related commands should have a similar or parallel syntax and
control arguments.

Arguments for which sensible
omitted, i.e., the last access name
default pathname to many commands.

defaults exist should be allowed to be
to set acl and the working directory as a

2-2 AN82-00

It is desirable to check the validity of all arguments before beginning its
execution or before terminating the command.

Command arguments should be used, whenever appropriate, to inform the
command what to do. The user should not have to type additional lines of input
to control the behavior of the command. For cases where there is a great deal
of input it should be possible to put the input in a control segment and to
specify the pathname of the control segment as an argument to the command.

The use of octal numbers is discouraged. An exception is the use of octal
numbers to represent a segment number or segment offset, and in such cases it
may be more appropriate/to use a virtual pointer (as interpreted by the cv ptr
subroutine) or a virtual entry (as interpret,ed by the cv_entry_ subroutine): -

Pathname Conventions

Commands that accept pathnames
pathnames or absolute pathnames
expand_pathname_ and absolute_pathname_.

as
as

arguments
interpreted

should
by

accept relative
the procedures

Commands that accept pathnames should honor the star convention whenever
appropriate. Careful consideration of the interaction between the star
convention and links must be given. Links are not chased by default when given
a starname as an input argument. A control argument (-chase) should cause links
to be chased when doing star processing (e.g., the copy command).

Commands that accept pairs of pathnames should honor the equal convention,
for example, the compare_ascii command.

Commands that take segment names as arguments should accept pathnames and
not reference names unless the command is dealing with reference names
explicitly, such as the where command.

The -name control argument should be used by commands that normally take a
segment number as an argument to indicate that the argument looks like a segment
number but really is a pathname. The -pathname control argument should be used
by commands that normally take a pathname to distinguish pathnames beginning
with a minus (-) from control arguments.

Control Argument Conventions

Commands should accept control arguments that are appropriately named and
that specify needed options. Similar commands should accept the same control
arguments, for example, the copy and move commands. Commands that produce
output should accept the control arguments -brief; -no_header~ -long: and
-totals, if appropriate.

2-3 AN82-00

Invalid or inappropriate control arguments should be diagnosed and the
operation of the command terminated.

Entry names beginning with minus signs should be considered invalid by most
commands. Any unrecognized string beginning with a minus sign should be
diagnosed as an invalid control argument, rather than being treated as an entry
name (even by commands that do not take control arguments). If there is a need
to accept entry names with a leading minus sign, the -pathname control argument
may be used.

New control arguments should not be invented when there
that serve the purpose. All control arguments should be

are existing ones
registered. (See

Appendix A for a list of registered control arguments.)

Control arguments that are used only by commands in the tools library
should not have abbreviations.

Control arguments that take arguments should do so uniformly (from one
command to another) and should always take the same type of argument.

Output Conventions

Unless the purpose of a command is to produce output, it should not produce
terminal output during its normal operation. The success of a command doing its
job is indicated by the absence of output. However, a command that takes a long
time to execute should print a short message to reassure the user that it has
started, for example, the pl1 command.

Normal output from a command should be written to the 1/0 switch
user output.

Error output by a command should be printed by the com err subroutine.
The long name of the command should be included in the com err message. The
com err message should give additional information to- resolve possible
ambiguity about the source of the error. The user's argument that is in error
should always be included in the call to com err. Calls to com err should
include the appropriate nonzero status code. The subroutine actTve fnc err
should be used in a similar fashion for error reporting by active-function
procedures.

Error messages about storage system entries should include the absolute
pathname of the entry in error. Those messages concerning input arguments
should include the argument as given by the user.

Frivolous use of com err should be avoided. It should not be used unless
an error has actually occurred, as the condition command error is signalled.

Other output should be done by means of iox $put_chars or ioa .

Red
properly.

shift should not be used, since few terminals-handle
Messages with underlining should be avoided.

this mode

Commands that produce a large amount of output (e.g., the PL/I compiler
issuing diagnostics) should write all the messages on user_output and write a
single error message with com err indicating that there were errors.

2-4 AN82-00

Commands should not write terminal-directed output to 1/0 switches other
than user_output except when specified by control arguments.

Commands that produce only one line of output should not emit blank lines.

User Interaction Conventions

When a command that interacts with the typist produces an error message
that the typist does not expect, it should perform a resetread operation on
user input so that the user can modify his subsequent input.

Commands normally should not handle the quit condition.

Commands that interact with the typist should be prepared to handle the
program interrupt condition signalled by the program interrupt command. This is
particularly important for commands that produce a large amount of output that
the user might want to abort.

Commands that ask questions should do so by means of the subroutine
command_query_ so that the command question condition is signalled.

SUBROUTINE INTERFACE STANDARDS

Subroutine Names

Names of subroutines or data bases should be descriptive of the function
they perform. The name should not be so long as to be inconvenient to use.

Names of segments created by system programs that are to remain as segment
names in a directory should end in underscore, to avoid naming conflicts with
user-defined names.

Names should consist only of lowercase letters, the underscore character,
and the dollar sign. Subroutine names which will appear as names on segments in
the system libraries should end in an underscore to avoid conflicts with user
program names.

Total
characters;
underscore.

length of subroutine names
the entry point portion

of the form a$b
of such a name

should not exceed 32
should not end in an

Names of subroutines or data bases belonging to a subsystem should start
with the name of the subsystem or a consistent abbreviation.

2-5 AN82-00

Argument Standards

Standard status codes should always be returned if
an error code. Either codes in the system data
registered subsystem error table should be used.

the subroutine returns
base error table or a

The status code should be the last argument to a subroutine.

Arguments
Output, Output.

in a calling sequence should be grouped: Input, Input, ... ,
Arguments that are both input and output should be avoided.

Arguments that are used for many subroutines should be declared in the same
way for all such uses.

Subroutines that return more than one argument or that have side effects
should not be called as functions.

The type of each argument should be chosen with the use and meaning of the
argument in mind.

Subroutines should not check the number or type of input arguments, but
assume they have been called correctly. Subroutines should not validate the
correctness of their input arguments, unless it is part of their intended
operation. However, subroutines which accept structure arguments should check
the input structure version number for validity.

Character string arguments should be passed instead of a ptr to a string
and its length. They should be declared unaligned and usually declared char(*)
unless the length is fixed.

2-6 AN82-DD

SECTION 3

GENERAL PROGRAMMING STANDARDS

This section documents conventions (to be used by system programs) that are
of a general nature and do not fall within the province of the other sections of
this document.

COMMAND STANDARDS

Commands should not call other commands.

Commands that perform general purpose service functions used by other
commands or subsystems should be modularized into a command and a subroutine
interface that implement the service function. The subroutine usually should
not print messages but should return a standard status code to indicate an error
condition.

Commands 'that accept arguments should accept a Variable number of arguments
and should not explicitly declare a fixed number of arguments. The subroutine
cu $arg ptr should be used to obtain each argument and the subroutine
cu=$arg=count should be used to obtain the number of arguments.

Commands should invoke standard approved general purpose subroutines and
internal interfaces developed specifically for the command or subsystem. They
should not call internal interfaces of other commands or subsystems.

Commands that are also active functions should print the results that would
be returned by the active function.

Active functions that would be meaningful commands should also be invokable
as commands.

NAMING STANDARDS

Programs that produce output in a file should name the output
sensible fashion. Listing output from the processing of segment
should be placed in xxx.list.

file in a
xxx.suffix

The names of all new condition names should end in an underscore to avoid
naming conflicts with user-defined names. Unless an 1/0 switch name is an input
argument, the names of all 1/0 switches created for use by the program should
identify the program subsystem to provide meaningful output from
print attach table. Also, the names should include a unique string to
differentiate switches used by recursive invocations of the program or
subsystem.

3-1 AN82-00

STORAGE SYSTEM CONVENTIONS

Programs that require temporary segments should use the subroutines
get temp segment and get temp segments to obtain them and should call
release_temp_segment_ or reTease=temp_segments_ when they are finished.

Programs should terminate any reference names that they associate with a
segment. Programs generally should initiate a segment with a null reference
name.

System programs should not allocate storage in the user free storage area.
Storage is allocated in the user free area unless an <in option> is given in the
PL/I <allocate statement> and <free statement>. Therefore, <in option>s must be
used. Such programs should use the area obtained by calling

Programs should have a cleanup condition handler to free allocated storage
and temporary segments.

The duplicate name convention implemented by the subroutine nd handler
should be honored by user ring programs.

Programs should use the subroutine delete for deleting storage system
entries. If a nonzero error code is returned, the subroutine dl handler should
be used to resolve the error. Programs should use the subroutine term for
terminating segments that may have nonnull reference names associated with-them
or that may have links snapped to them.

Output Conventions

Programs other than commands generally should not produce output or print
error messages except for those subroutines whose explicit purpose is to perform
these functions. The exact nature of the output should be documented in the
interface description.

If a subroutine prints an error message, it should use the com err
subroutine (if printing a fatal error on the caller's behalf where the caller
has too little information to print a meaningful message), or the sub err
subroutine (if printing a nonfatal error which can be restarted selectively
under control of the caller or the user). The name of the command invoking the
subroutine should be given in such error messages, implying that this name must
be an input argument to the subroutine.

Use of On Units for the Cleanup Condition

The on unit for the cleanup condition must not be a goto statement, and the
on unit (or any procedure or block invoked from the on unit) must not contain a
nonlocal goto statement, as this will interfere with the nonlocal transfer that
originally signalled the condition.

Cleanup tasks include freeing allocated storage and releasing temporary
segments.

Cleanup handlers should never print anything.

3-2 AN82-00

Coding Conventions

Programs should only be written in the PL/I language, except with explicit
permission. Exceptions usually are made when performance is an issue.

All variables should be declared.

All parameter lists for external entries should be fully declared, except
for those entries accepting a variable number of arguments. These should be
declared as options (variable).

Declarations should be grouped in a readable fashion.

All pad fields in data structures should be explicitly declared, i.e.,
there should be no gaps.

All pad fields that are documented to be zero should be set to zero
explicitly. This operation allows for future expansion of a data item. A name
such as mbz1 should be used to declare pad fields to make it clear that the
caller must zero such fields.

Whenever possible, avoid including system parameters as constants in a
program. For example, if the maximum number of words for a segment is required,
the external variable sys_info$max_seg_size should be referenced.

Programs should not use external state variables to pass data values
between external programs. This obscures the operation of such programs.
Instead, the data should be passed as arguments.

3-3 AN82-00

SECTION 4

MODULARITY

The Multics Operating System is modularized to simplify debugging and
modification and to increase reliability. In the following section, the issues
and modularity which are important to designers and implementors are discussed.

PROGRAM STRUCTURE

Overall structure of each program component is to be designed with the
newest techniques. Small parts of programs are to be as understandable as the
total program. Using PL/I internal procedures is encouraged because they are
almost as efficient as in-line code.

COMPILABLE UNIT SIZE

Programs are recommended to be no longer than a few hundred lines of
executable code. Try not to combine small components into one very large
program, unless performance is affected.

GENERALITY OF MECHANISM

Much of the uniformity of mechanism and function in the Multics system has
been attained by attempting to generalize mechanisms so that they can be shared.
This eliminates the need for similar facilities in distinct parts of the system
that are likely to produce incompatible effects or later require unwieldy
simultaneous extension. Do not generalize a mechanism if it is not justifiable,
however.

EXTERNAL AVAILABILITY OF MECHANISM

Make each designed mechanism externally available to the rest of the system
only if it is useful and there is a demand for it. Making a mechanism
externally available has implications to future changes, as compatibility must
then be maintained. As a result, the designer should lean towards not making it
available.

4-1 AN82-00

BINDING AND BINDFILES

The individual program components of the Multics system are usually bound
together by the Multics binder. This is done to reduce the number of separate
components visible in the system, to make internal interfaces unavailable, to
conserve segment numbers, and to minimize the number of linkage faults.

Contents of Bound Segments

Programs that are logically related should be bound together and placed in
an order chosen to minimize the number of page faults taken when various subsets
and usage patterns of the components within are used.

Names of Bound Segments

Every bound segment is named with a functionally related name starting with
the string "bound" and terminating with an underscore. The bindfile is named
bound segment name .bind. The bindfile and all of its components are stored in
a single archIve segment whose name is bound_segment name_.archive.

Bindfile Contents

The contents of the bindfile should abide by the following conventions:

1. The order statement is required to specify binding order.

2. An objectname statement is required to state the name of the bound
segment.

3. A global: delete; statement is required to ensure that extraneous
definitions are deleted.

4. An addname statement is required to specify all names that are to be
known externally.

5. Statements used only for debugging purposes are not to be used (e.g.,
No_link, Force_Order).

6. An objectname statement should be included for each component that has
other attributes specified. Components with no attributes specified
should not have a corresponding objectname statement since they will
already have been named in the Order statement.

7. The retain statement is to be used only for those definitions that
must be retained because they are externally available interfaces.

8. The synonym keyword is to be used to specify all synonyms for each
component.

4-2 AN82-00

Bindfile Formatting

The following formatting rules are to be used for ease of reading of the
bindfile:

1. Tabs should be used to separate keywords from their arguments.

2. Each objectname statement should be preceded by one blank line.

3. Synonym, delete, retain, and global statements should be indented one
space with arguments lined up under the arguments of the objectname
statement.

4. Comments should be included at the beginning of the bindfile that give
the logical relationship of bound components, and that state the date,
author and reason for each change.

5. A comment containing the word END should be placed at the end of the
bindfile.

4-3 AN82-00

SECTION 5

ENVIRONMENT INDEPENDENCE

Subsystems, commands, and subroutines should be implemented so that they
may be used in a variety of environments without other portions of the
environment affecting them and without their affecting other components of the
environment. This is referred to as the principle of surroundability.
Surroundability is important because it makes it possible for users and
subsystem designers to integrate many portions of the Multics system to compose
a new subsystem without having to change any of the components they are
integrating.

REENTRANCY

Components of the Multics Operating System should be reentrant. This is
accomplished by proper use of pure procedures, the recursive nature of the PL/I
language and its implementation, and careful use of static storage. If making a
subsystem reentrant results in performance degradation or implemention problems,
it is permissible for the subsystem to not be reentrant. In this case, checks
are to be implemented to detect possible misuses of the subsystem and are to
either prevent the misuse or warn the user of the possible conflict.

TRANSPARENCY

The operation of a program should be transparent to the environment. This
is accomplished by correct storage management techniques, programs cleaning up
any temporary environment changes, naming conventions, 1/0 attachments, and
avoiding other static effects on the environment. For example, if a program
changed the working directory without that being a specified property of that
program, then subsequent programs would behave differently than expected.

INTERRUPTIBILITY

Programs are to be implemented so their operation can be interrupted and
resumed at a later time. Programs must take precautions while they are making
critical modifications ~v the environment. They should either prevent
interrupts or be prepared to recover properly if interrupted and not resumed
until after other operations that also affect the environment have been
performed. For example, the 1/0 system should mask IPS signals when modifying
IOCBs so that the quit handler will not be invoked to write a message at a time
when the 1/0 system will not work correctly.

5-1 AN82-00

CONDITION HANDLING

Programs should handle conditions that may be signalled because of their
operation and pass on all other conditions that they cannot handle better than
the default handler.

ACCESS ASSUMPTIONS

Programs should execute properly under a wide range of access conditions.
Access checking and condition handlers can achieve this. Programs using
privileged entry points for some functions, but that are also usable by the
general user, should be prepared to handle a call by a user with insufficient
access.

USE OF STANDARD MECHANISMS

Programs ought to use the standard mechanisms that are available in the
system, not their own. This is important since these mechanisms are provided to
permit surroundability and modularity. For example, if a subsystem needs to use
a number of temporary segments, it should use the system-provided temporary
segment manager, not any other.

PATHNAHES AND QC'IIDru
I.",)LnH\J1J

DrlT C'Q
HU.L."L."L..J

Programs should not have pathnames built into them. The standard search
rule mechanism should be used to find other programs and data bases, found
through the linker. Commands or subsystems for data segments should use the
standard search path facility. The default search paths for a subsystem should
be chosen with the general user in mind and for a specific application.

5-2 AN82-00

SECTION 6

PROGRAM FORMAT

This section gives guidelines and requirements for the format of programs.
Recommendations mostly apply to any source language, but a few are specific to
the indicated language.

COMMENTS IN PROGRAMS

All programs installed in the Multics system must have a set of comments.
These comments include a copyright notice to protect the rights of the owners
and sponsors of the Multics system, a journalization notice for each
installation to record changes, a set of comments describing the interfaces of
the program, and comments that help the reader understand the program itself.

Copyright Notice

Each separately compilable program must have a copyright notice. The
copyright notices should be created and modified by th~ add copyright.command to
ensure that all requirements are met. \ ,~ _~ -----/

Journalization Notice

Each time a program is submitted for installation to the system it must
have a comment added that summarizes the reason for the change. The minimal
information required is the date, name of submitter, and a one-line summary of
the change, including all relevant MCR numbers. These journalization notices
are to be placed after the copyright notice with the latest notice at the end.
If a program is completely rewritten, a note should be made and all previous
journalization notices deleted. Similarly, very old notices that no longer
serve a useful purpose can be deleted.

Interface Descriptions

Each program that is an internal interface to some portion of the Multics
system should have a set of comments, written in MPM style, specifying the
interface or calling sequence. (If the program is an external interface that is
documented in the MPM or a PLM, no such notice is necessary. A reference to the
MPM or PLM volume by name and order number should, however, be included.)

6-1 AN82-00

Program Comments

Each major block of the program has to contain comments describing its
function. Comments describing important variables, particularly those whose
value have a significant effect on the flow of control through the program, but
whose names do not indicate the meaning, should be included.
Statement-by-statement comments are discouraged if they give little or no
additional information. For example,

len = 0; 1* set len to zero *1

gives no additional information, whereas,

len = 0; 1* for this case we have a null string *1

offers extra information that may aid the reader.

Good choice of variable names eliminates the need for excessive commenting.
However, if the names chosen are too long, they might not be able to fit on one
line and may be hard to read.

GENERAL LAYOUT OF A PL/I PROGRAM

White space in the form of new pages, tabs and blank lines should separate
independent sections of code. A new page should follow:

1 • journalization notices

2. local declarations

3. include files

Although the following
formatted as follows:

is not a strict rule, a readable program might be

1. the copyright notice,

2. a general description of the program followed by the journalization
notice,

3. a new page,

4. the main procedure statement,

5. declarations for variables not in include files,

6. a new page,

7. an optional set of include files,

7a. a new page if include files were included,

8. the executable code for the main body of the program,

9. a new page,

10. internal procedures for the program, and

11. another optional set of include files.

6-2 AN82-00

Declaration statements are to be grouped by storage class or function, and
should rarely take up more than one line of code except for structure
declarations. Comments should accompany variables whose use may not be obvious.
Factoring of attributes should not be done to more than one attribute at a time.

Standard Format

All PL/I programs must be formatted with the standard formatting command.
Programs should be structured so that subsequent invocations of the standard
formatting command, such as by installation procedures, do not destroy the
format.

ALM PROGRAM CONSIDERATIONS

There are conventions which ALM programs should follow. These are:

1. all entry's and segdef's should be at the beginning of the program,

2. use blank lines to separate logical statements,

3. always use include files for references to variables in structured
data bases,

4. segref should not be used (use <seg>: [offset])

5. avoid VFD pseudo-ops if ALM has a cleaner way to define the data,

6. use new pages for subroutines,

7. "declarations" (equ's, temp's etc.) should be at the beginning,

8. the "push" pseudo-op should not be used with an argument, and

9. no IC references should be made when the value is greater than 2. For
example,

*+3
3,ic

are both invalid.

6-3 AN82-00

SECTION 7

INCLUDE FILE FORMAT AND CONSTRAINTS

INCLUDE FILE FORMAT

The include files used in the Multics Operating System should be in the
following form:

1. Header lines (in comments) gIvIng the date the include file was
created, dates when it was modified, as well as why, how, and by whom.
The header should begin with:

BEGIN INCLUDE FILE xxx.incl.lang

where xxx and lang are filled in appropriately.

2. The body of the include file giving declarations (or whatever). All
declared variables must be commented. Any strange constructs should
be clearly described.

3. The last line of an include file should be of the form:

END INCLUDE FILE xxx.incl.lang

commented appropriately.

The following constraints apply to the variables and structure of include
files:

1. Structures in include files should be based.

2. If a structure in an include file is based on a particular pointer,
that pointer should be declared (without explicit storage class) in
the include file.

3. Include files should not contain partial PL/I statements.

4. Include files should be formatted in a manner consistent with the
system standards for the language in which they are written.

USE OF INCLUDE FILES

An include file should be used whenever more than one program references
structured data. Include files can also be used to guarantee identical
assumptions about naming conventions and systems of encoded values. Include
files should not be used to include code that can be referenced by a subroutine
call.

If an include file exists that describes a given data structure, that
include file should be used rather than creating a slightly different one
describing the same structure.

7-1 AN82-00

NAMING INCLUDE FILES

The name of an include file is simply:

xxxxx,incl.lang

where xxxxx is the name used in the "include" statement and lang is the name of
the language for which the include file applies. The primary name of the
include file (xxxxx) should end in an underscore for externally advertised
include files.

Include files used by (or supporting use of) a particular subsystem should
have names beginning with a prefix which identifies the subsystem. For example:

.; ""V """"rio", ; nr>1 1"'\1 1
~vr.. _lU.V """~ • ..L """'''''''' • t" I

pI 1 s t a c k f ram e . inc 1 . pI 1
mrds_users.incl.p11

PL/I AND ALM INCLUDE FILES

When a structure or data base is described in both PL/I and ALM include
files, the include files are to make reference to each other. Also, the
variable names should correspond exactly.

7-2 AN82-00

SECTION 8

PL/I LANGUAGE CONVENTIONS

This section highlights the coding rules for system programs that are to be
written in the PL/I language. Recommendations for generating efficient code are
included. The rules are to be taken as guidelines; there will be rare programs
that follow every rule. Refer to "Efficient PL/I Constructs" below.

PL/I is the Multics Operating System programming language. However, there
are several features in the language which should be avoided either because they
are inefficient, they are not implemented well by our compiler, or they lead to
complex coding constructs. The following language features should be avoided by
subsystem programs:

1. use of PL/I inp~t/output statements

2. aggregate expressions (except for assignment)

3. condition prefixes

4. use of "returns (char (*»"

5. use of the built-in function decat

CONSTRAINTS

The following list describes some general restrictions and requirements;

1. all variable names have to be declared in a declare statement

2. each reference to a member of a structure must be qualified by the
name of the level-one containing structure

3. no compilation warning messages or error messages are allowed

4. implicit conversions should not be used

5. multiple block closures by an end statement should not be used

6. the default statement should not be used

7. executable statements should be used to initialize automatic variables
to make the action more explicit, rather than the initial attribute.

8. no variable names should be the same as keywords in the PL/I language.

8-1 AN82-00

EFFICIENT PL/I CONSTRUCTS

This subsection is an informal guide to efficient use of the Multics PL/I
compiler. It provides advice on how to take advantage of the good features of
the compiler while avoiding its weaknesses. Emphasis is placed on constructs
which produce more efficient code than others. The reader is assumed to be
familiar with PL/I.

For a semiformal definition of the language supported by the Multics PL/I
compiler, see the Multics PL/I Language Specification, Order No. AG94.

The Alignment Attributes

The use of the aligned attribute and the unaligned attribute can have a
great effect on the speed of a program and the size of its data base. Unaligned
items can start on a bit boundary (character boundary for character strings,
pictures, and decimal variables), aligned items must start on at least a
fullword boundary and occupy an integral number of fullwords. If a value
requires 72 bits or less of storage to represent it, access of the value will be
faster if its generation of storage is aligned because it can be directly loaded
into the aq registers.

ATTRIBUTES WITH ARITHMETIC AND POINTER VARIABLES

Access of aligned binary and pointer variables is usually faster than that
of unaligned variables. The only exception to the above is that unaligned
pOinters that the compiler recognizes as aligned are accessed at speeds
comparable to that of aligned pointers, but the former cannot be indi~ected
through. You should use aligned binary and pointer variables for local scalar
variables, and only use unaligned binary and pointer variables in large data
structures where size is important, but speed of access is not.

The alignment attribute has no effect on the access time of decimal
variables or varying strings.

USE OF THE ALIGNMENT ATTRIBUTES WITH SHORT STRINGS

A short string is defined to be a nonvarying string with constant extents
whose length is less than or equal to 72 bits (eight characters). Access of
aligned short strings is usually much faster than that of unaligned short
strings. Thus, it is recommended that one use aligned short strings for local
scalar variables, and restrict the use of unaligned short strings to large data
structures where space is important.

USE OF THE ALIGNMENT ATTRIBUTE WITH LONG STRINGS

All nonvarying strings that are
Because these strings are too long to

not short are considered to be long.
fit into the aq registers or their length

is not known at compile time, the use of the
their access. It is recommended that
attribute--unaligned.

8-2

",1icrno" ",ttl"'ihlltO "'-'0'" n,-,t ",noo" I1n '-""""""' .. 0.&..1 1o.AVV.l. .. _\,Au __ ~ ~,v LJp ""'''''' VIp

one use the default alignment

AN82-00

USE OF UNALIGNED SHORT VARIABLES IN ARRAYS AND STRUCTURES

For the purposes of this discussion, short variables are those variables
which occupy no more than 72 bits (eight characters) of storage and are declared
with constant extents.

When accessing an element of an array of short unaligned variables, the
access code is quicker if a constant subscript is used, because the compiler
uses an EIS (Extended Instruction Set) instruction, when the subscript is not
constant, in accessing the variable. If an unaligned short variable is
contained in an array of structures, and the variable is accessed with a
nonconstant subscript, access code is faster if the array is declared aligned,
because the use of an EIS instruction is avoided.

Use of the Precision Attribute in Offset and Length Expressions

Because the Multics CPU's index registers can only hold 18 bits of
information, while up to 24 bits may be needed to express the offset or length
of a string for use in an EIS instruction, the compiler must make use of the
preclslon attribute in deciding which register to use. If a subscript
expression, the second or third argument of the substr builtin, or the declared
length of a string has a precision of 18 or less, it can be kept in an index
register, whereas if the precision is more than 18, it must be kept in the a or
q register. This means, for example, that if a user knows that he wants a
substring that may be more than 262,143 items long, then the precision of the
third argument of substr should reflect that fact (otherwise the high-order bits
of the length may be lost). Conversely, if the user knows that a string is less
than 262,144 items long, he should reflect that knowledge in the precision used
for subscripts and arguments to substr. (Besides looking at the precision of
the length and offset expressions, the compiler also makes use of the declared
string size in cases of constant extents to determine where the offset or length
may be kept.)

The general guideline is to always declare variables with the correct
preclslon. The following precisions are guidelines when a user is not sure a
smaller precision will suffice. A word offset into a segment should be declared
fixed bin(18). A number of words on a segment should be declared fixed bin(19).
Character string indexes and lengths should be declared fixed bin(21). Bit
string indexes and lengths should be declared fixed bin(24).

The Use of Internal Static to Simulate Named Constants

If a variable is declared to be internal static with an initial attribute
and is never set within a program, the compiler will treat it as if it were a
constant. (A variable is considered set if it appears on the left side of an
assignment statement, is the first argument of a pseudovariable, or a reference
of a defined attribute.) Converting an internal static variable to a constant
means that more efficient code will often be generated to use the variable,
sometimes avoiding storage references, and that the variable will not have to be
copied into the combined linkage section upon initiation of the segment. Since
passing a variable as an argument is equivalent to setting it, one must enclose
the variable in parentheses if it is to appear in an argument~ist. This will
make the variable be passed by value and force a copy to be made at call time.
The options(constant) attribute may be used to tell the compiler that the
variable is not set even if passed as an argument. Making sure that such an
internal static variable, which the user intends to use as a constant, is
considered by the compiler to be a constant is worthwhile if the variable is not
a long string which is only used in a few calls. This feature of the compiler
is a good substitute for named constants which the PL/I language generally does
not provide.

8-3 AN82-00

When "options(constant)" is added to the declaration of an internal static
initialed variable, the variable is allocated in the text section whether or not
it is set or passed as an argument. The user is responsible for ensuring that
the variable is not actually set, however, as this would cause faults or other
errors.

Use of the Initial Attribute

The compiler's implementation of the initial attribute for automatic,
based, and controlled arrays is inefficient compared with the code the user can
get from explicit assignment statements. Therefore, using the initial attribute
in the above cases is discouraged. Since the use of the initial attribute does
not generate code for static variables, the above statement does not apply in
that case. Users are warned, however, that use of the initial attribute can
make a program more difficult to read in some cases, and that initialization of
large external static arrays this way can cause creation of a larger object
segment than intended.

The Assignment Operation

THE MULTIPLE ASSIGNMENT STATEMENT

In deciding whether or not to use a multiple assignment statement rather
than separate assignment statements, it is useful to know under which
circumstances multiple assignment statements produce inefficient code. A
multiple assignment statement of the form:

T1, T2, Tn = E;

where E is not a constant, is semantically equivalent to the separate
statements:

v = E;

T1 = V;

T2 = V;

Tn = V;

If the temporary represented by V can be kept in a machine register throughout
the assignment, then the multiple assignment statement is efficient. Clearly,
this implies that if E is longer than two words, the multiple assignment
statement will not be efficient, since E cannot fit in a register. Thus,
multiple assignment statements are not efficient when the right hand side is a
long string, a varying string, an entry value, a label value, a file value, a
format value, an area, a decimal value, a complex value, Or an aggregate.

8-4 AN82-00

CONVERSIONS

All of the PL/I conversions are efficient, many of them producing inline
code, while the others produce calls to any to any. Inline code is produced
for all cases where neither the source nor- target are complex, decimal,
character string, or picture (see the discussion of pictures below). Of the
other cases, the following produces inline code:

complex float binary (precision~27) = real binary;

real binary = complex float binary (precision~27); -
real decimal :: real decimal;

complex decimal = compl ex decimal;

real binary integer = real decimal;

real decimal = real binary integer;

character = real fixed decimal;

character = real binary integer;

All other cases produce calls to any_to_any_o

The convert builtin function can be used to effect conversion between
character and binary and to avoid intermediate conversions that other builtins
might cause.

PICTURES

The use of pictures provides a convenient way to get efficient controlled
conversion between arithmetic and character. When using pictures, the user can
avoid PL/I's inconvenient conversion rules by specifying the desired format.

While picture unpacking (going from character to arithmetic form) is done
by p11 operators, the most common cases of picture editing (going from
arithmetic to character form) are done inline. Inline code is generated for the
majority of cases of editing into real fixed pictures. The cases of editing
into real fixed pictures that is done by p11 operators are any of the
following: - -

• the absolute value of the number's scale is greater than 31

• a "y" picture character appears in a drifting field picture (e.g.,
$$$y99)

• a zero suppression character or drifting character appears to the
right of the "v" picture character

• the inline sequence requires more than 63 micro-ops for the MVNE
instruction

8-5 AN82-00

ARITHMETIC OPERATIONS

Most arithmetic operations are implemented with fast inline code. The one
general exception is the power operator (e.g. **) which is sometimes
implemented by p11 operators or subroutine calls. Users are cautioned against
using the "I" oper~tor with 1ixed point operands as the PLII precision rules may
cause unexpected results. Use the divide builtin function instead.

BINARY OPERATIONS

Most binary arithmetic operations produce inline code. Multiplication of
fixed binary (precision>36) numbers utilizes p11 operators references, all
fixed binary division invoked by the "/" operator-causes references to slow
p11_operators_ routines.

The "**" operation generates p11 operators calls for real operands and
full subroutine calls for complex operands. If the operands are both real, and
the second operand is a positive integer constant that could be represented as a
fixed bin(35) value, inline code will be generated to do the power operation as
repeated multiplications.

DECIMAL OPERATIONS

efficient inline code to be
one or both of the operands

This case will often cause

Most decimal arithmetic operations cause
generated. The major exception is the case of
having a scale greater than 32 or less than -31.
additional assignments or multiplications to be
hardware only handles scales within the range -31 to

generated since the 6180
32.

If the power operator has decimal operands, a conversion to and from binary
andlor a subroutine call will be generated.

String Operations

All string operations (as opposed to builtins) cause inline code to be
generated. In addition, some special cases cause better than usual code to be
generated.

SPECIAL CASE OF CONCATENATION

Concatenation is often used in constructing varying strings. A normal
concatenation of the form:

a = b :: c;

results in three (3) moves -- band c are moved into a temporary, and the result
is moved into a. However, a concatenation of the form:

vs = vs :: c;

8-6 AN82-00

where vs is a varying string, results in just one move -- c is moved to the end
of vs. The latter special case can be used to great advantage in building
varying strings. Consider the following example:

vs = a :: b :: c;

results in four moves and perhaps some instructions to allocate temporaries,
while:

vs = a;

vs = vs :: b;

vs = vs : Ie;

results in three moves with no temporaries allocated.

OPERATIONS ON LONG STRINGS

Most statements of the form:

a = b <bool_op> c;

a = translate (b, ...);

a = bool (b,c,<bolr»;

where a, b, and c are long nonvarying strings, cause code to be generated that
performs the operation in a temporary and then moves the result into a.
However, if a is the same length as the temporary would be, and if the compiler
believes that a could not possibly overlap with b or c, then the operation will
be performed directly in a and no temporary will be allocated.

In a statement of the form:

if a <op> b ...

or

if bool (a, b, <bolr» ...

where a and b are long strings, the compiler will attempt to do the operation
without allocating a temporary, by using an SZTL instruction if the value is not
needed elsewhere.

AGGREGATE OPERATIONS

Most aggregate operations, other than simple assignment and the use of the
string and unspec builtins and pseudovariables, are relatively inefficient in
the present Multics PLII implementation and should be avoided. By simple,
assignment, we mean assignment statements of the form:

P -> aggregate = q -> aggregate;

Use of the Builtin Functions

Most of the standard PLII builtin functions and pseudovariables are
implemented efficiently in the Multics compiler. However, there are exceptions
and special cases.

8-7 AN82-00

ARITHMETIC BUILTINS

With the exception of the divide builtin, all the arithmetic builtins cause
efficient code to be generated. The divide builtin is inefficient only for some
cases in which a fixed binary result is produced. If a fixed binary result is
produced, a reference to a very slow p11 operators divide routine is generated
unless the result and both operands are unscaled wIth a precision less than or
equal to 35.

STRING BUILTINS

Efficient inline or out-of-line code is generated for all but one string
builtin~ decat. Execution of the decat builtin is about 50 times slower than
might be expected.

There are special cases of some of the other string built ins that cause
more efficient code to be generated than is normally generated for the general
case. These are:

index «char str>, <char1»

index «char str>, <char2»

index (reverse«char str», <char1»

index (reverse«char_str», <char2»

index (reverse«char str», reverse«char2»)

search «char1>, <char str»

verify «char2>, <char str»

search C<char_str>, <constant»

verify «char str>, <constant»

search (reverse«char_str», <constant»

verify (reverse«char_str», <constant»

translate «char str>, <constant> [,<constant>])

before «char str>, <char1» -
before «char _str>, <char2»

after «char _str>, <char1»

after «char str>, <char2» -
Itrim «char _str>, <constant»

rtrim «char str>, <constant» -
copy «char1 constant>, expression)

8-8 AN82-00

MATHEMATICAL BUILTINS

References to the mathematical builtin functions are compiled either into
fast references to p11 operators or into slower subroutine calls. The
following math built ins are implemented in p11_operators_ if they have real
arguments:

atan exp sin tand

atand log sind

cos log10 sqrt

cosd log2 tan

All other cases produce subroutine calls.

The Call Statement and Function References

When a call statement or function reference is executed, in the general
case, an argument list must be constructed which takes 3 + 2*number_of_arguments
words. When the new procedure block is entered, a new stack frame is
established by a p11 operators routine that takes around 30 instructions. This
is a high overhead -to have when using an important feature of PL/I that is
necessary for good programming practice. The Multics system PL/I compiler has
two optimizations which can greatly reduce this overhead. First, it can decide
that an internal procedure or begin block may share the stack frame of another
block rather than obtaining its own. A block that does not obtain its own stack
frame is called a "quick" block or procedure. Second, the compiler can build
argument lists to quick procedures at compile time, if the arguments have
constant addresses known at compile time. These two optimizations greatly
reduce the cost of call statements and function references.

DETERlviINING THE OF A DT(")("V
i..JJ..."VVl'\,

The Mul tics PL/I compiler goes through a two stage process to determine
which (procedure or begin) blocks can be quick, that is, which ones need not
obtain stack frames. The first stage excludes blocks from being quick because
of their properties. The following properties can make a block non-quick.

• it is the external procedure block

• it is an ON-unit

• it has 110 statements

• it has format statements

• it has ON, or revert statements

• it has automatic variables with expression extents

• it has an entry that is assigned to an entry variable or passed as an
argument

• it has an entry with a star-extent return value

• it has an entry with a star-extent parameter that is called with the
corresponding argument being an expression whose length is
non-constant

8-9 AN82-00

• it has an entry that is referenced in the argument list of such a call
after the aforementioned argument

In the second stage, the compiler uses a graph of the calls between blocks,
to determine which of the remaining eligible blocks can be quick. The algorithm
used in this stage is an iterative one based on the constraint that a quick
block may use the stack frame of one and only one non-quick block and thus may
effectively be invoked from only one non-quick block. In fact, the algorithm
states that a quick block may be invoked from only one stack frame, and an
invocation from a quick block is considered an invocation from its owner's stack
frame.

A user can determine which blocks have been made quick by examining the
symbol s 1 i st ing prod uc ed by the compil er . In the sec t ion marked, "STORAGE
REQUIREMENTS FOR THIS PROGRAM" is a list of all the blocks in the program. If
the line for a particular block contains the words, "shares stack frame of",
that block is quick.

USING CONSTANT ARGUMENT LISTS

In generating a quick procedure call, the Multics PL/I compiler can often
generate a constant argument list if the addresses of the arguments are known at
compile time. This saves the cost of executing instructions to set up the
argument list at runtime. At this time the following constraints must be
satisfied for the compiler to generate a constant argument list:

• the quick procedure must contain no non-quick blocks

• the stack frame of the caller must be smaller than 16,384 words

• the arguments must be constants, expressions with operators, builtin
references, function references, or automatic variables

• all automatic arguments must be allocated in the stack frame of the
caller

• all automatic arguments must have constant extents

• all subscripted arguments must have constant subscripts

Using If Statements

In handling if statements containing logical operators, such as:

if x = 0 : p "'= null : x + 3<z
then call a;

if z>3 & q = null & loaded
then call b;

the Multics system PL/I compiler (as of MR4.0) attempts to generate code that
uses the minimum number of operations to decide the result. This is a change
from previous releases of the compiler that always evaluated the complete
expression in the if statement. In order for this optimization to take place,
the user must specify the -optimize control argument for the compilation, there
must be no irreducible function references in the expression, and the expression
must evaluate to a bite 1) value. Thus a user should feel free to use logical
operators in if statements without worrying about their efficiency.

8-10 AN82-00

NOTE: no program may depend on the order of evaluation of operands in the
expression of an if statement. Thus, the statement:

if P "'= null
& p --> q = 0 then ...
is illegal

Any program that depends on complete or incomplete evaluation of
expression is in error, unless the expression contains irreducible
references, in which case complete evaluation takes place.

Optimization of Comparisons

such an
function

The Multics system PL/I compiler (as of MR4.0) remembers in its abstract
machine state model the most recent comparison or indicator setting operation at
any particular point in time in generating object code. This enables it to
remove redundant comparisons in constructs such as the following:

if a<b
then call foo;
else if a = b

then

Other Constructs That Are Costly or Dangerous

• default statements

• multidimensional arrays with star bounds

• arrays of elements of star extents

• programs requiring a stack frame of more than 16,384 words

8-11 AN82-00

SECTION 9

STORAGE MANAGEMENT

USE OF THE STORAGE SYSTEM

System programs often request the storage system to perform certain actions
on "objects" in the storage system hierarchy. These objects are directories,
segments, and links. Multiie~ment files (MSFs) are implemented as a collection
of specially named segments (components) in a directory whose bit count (not
otherwise used for directories) reflects the number of components. Although
multisegment files are not part of the storage system, some of the rules
governing their use are similar to those of segments.

Functions performed by the storage system are: listing an ACL, setting a
bit count, and making a segment known. These requests are made through the hcs
gate. Sometimes less primitive interfaces are used to perform the functions:
These are preferred because of the "side effects" they provide.

The hcs interfaces accept either a pathname (consisting of a directory
pathname and an entry name) or a segment pointer. System subroutines should not
use relative pathnames or reference names to identify an object in the storage
system.

?athnames

All storage system interfaces that accept pathnames also expect descriptors
for the pathnames. The argument description in the declare statement for the
entry should be "char (*)". (Some programs written with previous compilers in
mind use "char (*) aligned".) The programmer is advised to make reference to
the interface description.

Naming Conventions

Programs do not change the name of an eXisting storage system object.
Objects are created with only one name. System programs should preserve all the
names of existing entries which are manipulated. System programs should be
aware of the command system's conventions concerning entry names and not violate
them. Nonprinting characters, for example, are to be avoided.

System programs must be designed to be aware of the "primary name" concept
and preserve it.

9-1 AN82-00

Working Directory Use

System programs creating new storage system objects (other than temporary
segments) should place them in the user's current working directory, unless a
target directory is specified.

Access Control List Management

System programs creating new segments and directories should set access
control lists according to the convention listed below. If the segment is being
changed in place, the program, upon exit, should leave the ACL as it was before
the program was executed. Sometimes, a program that needs w access to change
the contents of a segment finds the segment exists without w access to the
current user. The program must change the ACL in order to change the contents
of the segment and then restore the ACL to its former value upon completion. In
this instance, a cleanup handler should be established to restore the ACL if
execution is aborted. If the branch is being created, the ACL should be added
to rather than replaced to ensure that the initial ACL entries are placed on the
branch. The ACL entry for *.SysDaemon.* should be preserved. The access to be
given to the user creating the branch is:

Segment Type Access Ring Brackets

directory sma 7,7

object segment re V,V,V

data segment rw V,V,V

where V is the current validation level of the user. Access identifiers should
not contain specific instance tags. The instance tag should be "*,, except when
the associated ACL entry is placed on a branch for a short period of time.

Making Segments Known and Unknown

A pointer to a segment is obtained by making the segment known. Segments
should be made known by calling hcs $initiate, hcs $initiate count, or
hcs_$make_seg. These primitives all have the secondary effect of associating a
reference name with the segment as well. This reference name must be null.
Segments should be made unknown when processing of the segment is complete. The
entry hcs $terminate noname should be used if the segment was made known with an
associated null reference name. The subroutine hcs $terminate name is used in
the rare case of removing a nonnull reference name-from the name space of the
process.

If snapped links point to a segment which is unknown, the subroutine term
is used to cause the necessary links to be restored to their original unsnapped
state.

The copy control switch and reserved segment number switch parameters to
the initiate subroutines should be 0 except in rare cases.

9-2 AN82-00

Pathnames vs. Segment Pointers

Many functions of the storage system can be handled by either of two
interfaces to the supervisor, one requiring an absolute pathname and the other
requiring a segment pOinter. The programmer is therefore faced with deciding
which of these interfaces to use. The issues are based on two facts. First,
the pathname interfaces are more expensive, and second, the pointer interfaces
are more prone to errors in that segment numbers are reusable within a process.
If a segment's contents are addressed directly, the pointer interfaces should be
used since getting a pointer to the segment is required anyway. If several
calls must be made to the supervisor for the same segment, pointer interfaces
should be used due to their speed. If only one storage system request is made
and the segment is not accessed, the pathname interface should be used to avoid
the cost of making the segment known.

System programs calling storage system primitives with a pointer should do
so with a pointer that points to the base of the segment.

If pointer calls are made in cleanup handlers, the validity of the pointer
must be maintained by the program establishing the cleanup handler. If a
segment is made unknown or deleted, a flag should be set to indicate that the
pointer is invalid. (Frequently this is done by setting the pointer to nUll.)
The cleanup handler should check the value of this flag before using the pointer
to identify the segment. If this is not done, the cleanup operation may be
performed on a different segment. Sometimes it may be better to use a pathname
interface in a cleanup handler.

A program should keep a pointer (in internal static) to a data base which
is referenced often rather than resolving a pathname each time the data base is
referenced. Appropriate warnings should be given describing the problems of
deleting the segment while it is in use. (Although using the pathname each time
is safer, it is not foolproof.)

Multisegment Files

System programs operate correctly if given a multisegment file -- whenever
reasonable. It is not expected that the source for a translator, for example,
will reasonably overflow into a multisegment file, and, hence, translators need
not expect multisegment files as input source segments. However, the listing
output of translators will often require a multisegment file.

Standard subroutines perform actions on multisegment files rather than
embedding knowledge of the structure of multisegment files throughout the
system. The procedures msf manager, tssi, make_msf_, copy_seg_ and delete
allow manipulation of multisegment fIles.

Programs that open multisegment files must ensure that all such files are
closed when through. Cleanup handlers are thus required. (Opening and closing
multisegment files is analogous to making a segment known and unknown.)

System programs should not destroy the structure of a multisegment file,
i.e., cause it to become nonstandard. System programs should not assume
knowledge of the multisegment file format since it is internal to the system and
may change.

9-3 AN82-00

Use of the Bit Count

Data bases must be kept consistent by system programs. Bit counts should
be updated when a change to the content and size of a segment are complete. A
cleanup handler should be enabled to make sure the bit count is set correctly if
the program aborts.

The bit count is used for different purposes by various programs. The
standard meaning of the bit count is that it defines the last meaningful bit in
a segment. Nonzero bits in a segment beyond the bit count may lead to
confusion. If necessary, programs that set the bit count should also truncate
the segment and zero unused bits in the last word.

STORAGE ALLOCATION

Several choices are open to the programmer to obtain temporary storage.
The preferred method is to assign space in the user ring stack segment by means
of declaring automatic storage. This should be done if the maximum amount of
storage is fixed, known at compile time, and is not likely to overflow the
user's stack.

If the amount of storage is unknown until runtime and is again unlikely to
cause a stack overflow, a begin block or an internal procedure invocation can be
performed to allocate precisely the amount of automatic storage required.

Automatic storage is desirable because
established.

Internal Static Storage

no cleanup handlers need to be

Internal static is not recommended for any variables that are not static by
nature. Using internal static as a replacement for named constants is
acceptable in the some cases.

PL/I Areas

Another means of allocating storage is to use the area mechanism. If areas
are to be used, the PL/I allocate and free statements should be used.

Areas can be declared to be automatic or a standard user-ring area segment
may be used. A pointer to this area is obtainable by calling
get_system free area. Since a number of system programs make use of this
segment, the cost is shared. Programs producing allocations in areas should
free storage when it is no longer required. In addition, cleanup handlers must
be provided to free the space if the program aborts abnormally.

9-4 AN82-00

Temporary Segments

Creation of temporary segments in the user's process directory is another
way of obtaining storage. This should be done when the amount of space required
will probably be large but is actually unknown. The subroutines
get temp segment , get temp segments , release temp segment , and
release temp segments should be-used to -manage a program's temporary segments.
Programs should always release such temporary segments upon completion.

All system programs that procure temporary segments should establish
cleanup handlers to release these segments if execution is aborted abnormally.

9-5 AN82-00

SECTION 10

DOCUMENTATION STANDARDS

There are two forms of documentation for the Multics system. The primary
form is published manuals distributed through the marketing organization, and
must conform to Honeywell Documentation Standards. This set of documents
includes the Multics Programmer's Manual, the Language Manuals, the System
Designer Notebooks, the Administrator Manuals, and the Program Logic Manuals.

The second form of documentation is online information that can be read
with the help command or printed. This documentation is distributed with each
release of the Multics system, and must also conform to Honeywell Documentation
Standards.

LOCATION OF DOCUMENTS

Every command must have a module description in standard MPM form. The
placement of this module description is determined by the nature of the command.
If the command is for the general user, the description is included in the MPM
itself. If it is for Administrators, Operators, or Field Engineers, it is
included in the manual pr9vided for that class of user.

Every subroutine
externally available,
standard MPM format.
for commands.

whose name and entrypoint are retained, and thus is
has a subroutine module description prepared in the

The document location is determined on the same basis as

Each available command or subroutine has an info segment that describes its
use. The info segment conforms to the info segment standard described in this
document.

10-1 AN82-00

SECTION 11

INFO SEGMENTS

STYLE

Info segments are provided to help the user. They are not intended to
offer instruction in the use of Multics. When writing an info segment, use the
following guidelines:

1. Be brief, concise, and terse.

2. Minimize words; minimize white space.

3. Assume some knowledge and experience on the part of the reader.

4. Use active verbs in the present tense.

5. Provide only essential facts; reference manuals for complex detail.

6. Remember that info segments do not replace, but rather supplement the
manuals.

PHYSICAL APPEARANCE

Info
Therefore:

segments must be readable on all ""'--.; _,
... el iliJ... llQ..1.'::>

1. Employ a maximum line length of 71 characters.

\... .. uy t-1ul tics.

2. Avoid tabs and needless spacing
to a minimum.

they slow output. Keep indentation

3. Avoid underlining. Underlined text is illegible on many terminals.

4. Avoid control characters; they may not be transparent when the system
is accessed via certain terminals. This means that the use of 006 in
info segments is discontinued and being replaced by a new convention
described in this document.

5. Do not put the string "(END)" at the end.

6. Use MPM conventions regarding punctuation, capitalization, etc.
(Described in this manual).

11-1 AN82-00

NAMING CONVENTIONS

The help command respects the star convention for segment names.
Therefore, the following naming conventions should be followed:

1. XXX.info for command XXX, subroutine XXX, or topic XXX; e.g.,
help. info, random_.info, new_rates. info.

2. XXX.changes.info for changes to XXX; e.g., random.changes.info.

3. XXX.status.info for
basic.status.info.

status of bug fixes to XXX; e.g.,

4. XXX.gi.info for text info segments on general information; e.g.,
master_directories.gi.info.

5. MRn-n.gi.info for system release summary info segments;
e.g.,MR4-0.gi.info.

SYNTAX OF INFO SEGMENTS

There are three kinds of info segments: command descriptions, subroutine
descriptions, and all others. Rules for the first two types are strict so that
the user can search efficiently for particular items.

Title

Some rules apply to all three types of info segments.
every info segment must be a brief title line, beginning with
modification. This line should be appropriate for a table
command or subroutine descriptions it will give the name(s)
including abbreviations.

Examples of title lines:

Paragraphs

05/13/76
06/21/76
06/22/76

announcements of future changes
qedx, qx
random

The first line in
the date of last
of contents; for
of the program,

+- - -- --
Info segments consist of a series of paragraphs:separate~ _ by two blank

lines. The help command pauses at the end of every paragr-a'ph -and asks, """More
help?" so paragraphs should be neither too long, nor too short. Ten lines is
the recommended maximum length for most paragraphs.

Sections

A section of an info segment consists of one or more paragraphs grouped
under a title. The title is on the first line of the section; it ends with a
colon, and is followed by the rest of the first paragraph. Subsequent
paragraphs in the section have no titles, (i.e. their first line has no colon).
The help command allows the user to print only a specified section of an info
segment, or to obtain a list of the section titles in an info segment.

11-2 AN82-00

Command Descriptions

For command descriptions, the following sections must be present:

Syntax
Function

If the command has arguments or control arguments then the following
sections are required:

Arguments
Control arguments

If other sections are necessary they may be provided. The following names
may be used:

Access requirements
Notes
Examples

Other section names may be used only with the permission of the info
segment censor.

The
exampl e:

"Syntax"
~

section gives a sample invocation of the command. For

Syntax: list iacl dir {path} {User ids} {-control_args}

In the syntax line, optional arguments are enclosed in braces.

The "Function" section should be a terse one- or two-line description of
what the command does. Since one mode of the help command allows the user to
search for paragraphs containing a specified string, it is desirable to describe
the function of the command using terms that a user may be searching for; but
only if this can be done concisely.

The "Arguments" section gives a one-line description for each argument to
the comman(f":---';fh"'e "Control arguments" section gives a one-line description of
each control argument. These section titles are plural even if only one item is
described. For control arguments, default values should be indicated by the
string "(default)". If an argument is too complicated to explain completely on
one line, or if the command takes many interrelated control arguments, it should
cross reference a longer section identified by section name at the bottom of the
segment.

Subroutine Descriptions

For subroutines, the following sections are required:

Function
Syntax per-entry
Arguments per-entry

The "Syntax"
invocation of the
be used from PL/I.

section should have an example of
subroutine in the PL/I language unless

11-3

the declaration and
the subroutine cannot

AN82-00

The "Arguments" section is like the MPM description of the argument, but
should be kept to one line per argument, with a reference to further info if
necessary.

Multiple entry procedures have multiple Syntax and Arguments sections, one
for each entry point.

Other Info Segments

For info segments describing other topics, the only explicit syntax rules
are that the title be in standard form, and that paragraphs be of reasonable
size. Section titles, when used, should not be fanciful. For segments like
Installations.info, the section title should be the date; for
pending changes.info, it should be the date and the name of the program or
function being changed. The name of info segments that contain general
information should be topic.gi.info.

See info seg format. info and the documentation for input info seg and
validate info seg -for detailed descriptions of info segment syntax. Also, see
list.info, io-calI.info, and convert date to binary.info for examples of command
and subroutine info segments. - --

11-4 AN82-00

SECTION 12

RULES FOR TRANSLATOR WRITERS

THE COMMAND PROGRAM

The command program that invokes the translator should expect to find a
source program with the suffix .lang if lang is the name of the command.

The command program
temporary storage being
termination.

should establish a cleanup handler to
used by the translator in case of

clean up any
an abnormal

The command program should establish
unexpected faults. All system conditions
default handler.

an any other handler to trap all
should be passed on to the system

The command program should detect that it is being invoked reentrantly
(i.e., with a suspended invocation dormant in the process) and, if the
translator can not be used in this fashion, should ask the user if he wishes to
continue and act accordingly.

THE OBJECT SEGMENT CREATED

Translators should create Multics standard object segments. The object
segments should not make reference to any system data bases other than the stack
segment header. No assumptions should be made about the call/push/return
conventions and the format of a stack frame header. The first 32 words of a
stack frame header are reserved for system use and should not be referenced by
the object code.

An operator segment, containing code and necessary references to system data
bases, should be used to guarantee compatibility from one system release to
another. The operator segment should be found (by the object code) by means of
the operator_pointers_ mechanism in the stack header.

As many code sequences as posslDle should be placed in the operator segment
to minimize the size of the object segment.

The operator segment should contain all of the system dependent code used
by the object segment (e.g., references to system data bases).

A standard
table should be

table gIvIng names of the operators should be provided.
called lang_operator_names where lang is the name of

translator command.

This
the

12-1 AN82-00

LISTING OUTPUT

The translator should create an optional listing of the translation. This
listing should be created whenever the control arguments -list, -map, -symbols,
or -source are specified. The -map control argument should cause the translator
to generate the "most commonly wanted" form of output.

The output listing, which must allow for multisegment files, should contain
the following:

1. descriptive lines indicating when the program was compiled, by which
version of the translator, and with what control arguments

2. a line-numbered listing of the source used, include file source should
be distinguishable from top-level source

3. pathnames of all source segments used including include files

4. a list of externally referenced names

5. a list of operators used

6. a list of variables used
variables were referenced

giving storage attributes and where the

7. a table of the storage requirements used by the compiled program.

If the -list control argument is specified, the following should also be
included:

1. a listing of all constants and literals used by the program

2. a listing of the source lines that generated the object code
interspersed with the object listing appropriately

3. "comments" in the object listing indicating which variable is being
referenced, which operator is being used, etc.

4. relocation information with each word of generated code

5. appropriate interpretation of noninstruction data (e.g., ASCII data
should be printed out in ASCII as well as octal)

MISCELLANEOUS REQUIREMENTS

The translator should use the standard search path facility to locate any
include files (or analogous constructs) used by the program being translated.

The subroutine tssi
files.

should be used to create object segments and listing

The ACL on an object segment should be left after translation just as it
was before translation.

12-2 AN82-00

APPENDIX A

REGISTERED CONTROL ARGUMENTS

This section lists all approved control arguments and their abbreviations.
Only these control arguments should be documented and accepted by commands.
This applies to all commands whether they are standard user accessible commands
or special tools for a particular class of users.

For reasons of compatibility with the past, many commands are permitted to
accept control arguments that have been previously documented. An exception is
made for commands that are of very limited interest that accept a large number
of potentially obscure control arguments; these commands may have nonstandard
control arguments. If these commands are upgraded for more general use, their
control arguments will have to be modified.

If a command needs a control argument that is not registered in this list,
it and its abbreviation should be defined. If the command is a special purpose
tool and the control argument itself is not of general interest, no abbreviation
should be defined.

Two different lists of control arguments are presented. Table A-1 consists
of general purpose control arguments, which are already used by system commands
and may be expected to cover most situations. System programmers should use
items from this list whenever possible. Table A-2 consists of more specialized
control arguments, which cover a more limited range of situations.

Table A-1. Approved Standard Control Arguments

-absentee
-absolute pathname
-access
-access class
-access name
-account
-acknowledge
-acl
=address
-admin
-after
-alarm
-all
-arguments, -argument
-ascending
-ascii
-assignments
-attributes
-author
-authorization
-bcd

-as
-absp
-ac
-acc
-an

-ack

-addr
-am
-af
-al
-a
-ag
-asc

-asm
-attr
-at
-auth

A-1 AN82-00

-before
-bit count
-bit-count author
-block
-branch
-brief
-brief table
-call
-category
-character
-chase
-check
-comment
-console input
-copy
-copy switch
-count
-current length
-date -
-date time contents modified
-date-time-dumped
-date-time-entry modified
-date-time-used -
-date-time-volume dumped
-debug - -
-decimal
-default
-delete
-delimiter
-density

"')~~+-J...
-UC}JlIll

-descending
-destination
-device
-directory
-else
-entry
-every
-exclude
-execute
-extend
-field
-file
-fill
-first
-force
-from
-gen type
-header
-hold
-home dir
-id
-indent
-input file
-input-switch
-io swItch
-label
-last
-length
-level
-limit, -limits
-line length
, ~ ---:::

-..L..LIIC;:)

-link
-link path
-list-
-logical volume
-long -
-map

A-2

-be
-bc
-bca
-bk
-br
-bf
-bftb

-cat
-ch

-ck
-com
-ci
-cp
-csw
-ct
-cl
-dt
-dtcm
-dtd
-dtem
-dtu
-dtvd
-db
-dc

-dl
-dm
-den
-dh
-dsc
-ds
-dv
-dr

-et
-ev
-ex

-fl
-f
-fi
-ft
-fc
-fm
-gt
-he
-hd
-hdr

-ind
-if
-isw
-iosw
-lbl
-It
-In
-lev
-Ii
-11

-lk
-lp
-Is
-Iv
-lg

AN82-00

-mask
-match
-max length -ml
-maxlines
-minchars
-minlines
-mode -md
-model
-modes
-multisegment_file -msf
-name -nm
-next
-nl
-nnl
-no acknowledge -nack
-no-address -naddr
-no-header -nhe
-no-offset -nofs
-no-fill -nfi
-no-link translation -nlt
-no-list- -nls
-no-notify -nnt
-no-numbers, -no number -nnb
-no-pagination -npgn
-no-print -npr
-no-quote -nq
-no-restore -nr
-no-totals, -no total -ntt
-no-update -nud
-non null link -nnlk
-notIfy -nt
-number -nb
-octal -oc
-off
-offset -ofs
-on
-optimize -ot
-ordered field -ofl
-outer module -om
-output file -of
-output=switch -osw
-owner -ow
-page -pg
-page length -pl
-parameter -pm
-pass
-pathname -pn
-po si tion -psn
-previous -prev
-primary -pr i
-print -pr
-profile -pf
-project -pj
-query
-queue -q
-quit
-quota
-record -rec
-records used -ru
-repeat -rpt
-replace -rp
-request
-request type -rqt
-reservation -resr
-reset -rs
-resource -rsc
-restart -rt
-reverse -rv
-revert

A-3 AN82-00

-ring -rg
-ring brackets -rb
-safety switch -ssw
-search- -srh
-section -scn
-segment -sm
-sender
-severity -sv
-short -sh
-sort
-source -sc
-start -sr
-stop -sp
-string -str
-subscriptrange -subrg
-subsystem -ss
-switch
-symbols, -symbol -sb
-system -sys
-table -tb
-tab
-target
-terminal input -ti
-terminal type -ttp
-then
-time -tm
-title
-to
-total, -totals -tt
-times
-track -tk
-truncate -tc
-type -tp
-unique -uq
-unique id -uid
-update- -ud
-user
-volume -vol
-wait -wt
-working_dir -wd

A-4 AN82-00

Table A-2. Approved Special Control Arguments

-4bit
-7punch -7p
-abort
-accept
-access label -albl
-action-
-age
-append -app
-attached -att
-attachments -atm
-ball -bl
-bottom label -blbl
-bottom-up -bu
-brief 'header -bfhe
-cancel
-card
-cc
-change default auth -cda
-change-default-project -cdp
-change-password -cpw
-check ansi
-chpass
-cl
-class
-class indentifiers -cli
-cmf
-cobol switch -cs
-collection, -colI -col
-compile
-complete -comp
-comp volume dump switch -cvds
-copy-release names -crn
-contInue - -ctu
-control -ct
-control_arg -ca
-convert
-cput
-date time
-day
-day name
-debug cg
-deferred indefinitely
-definition

-dfi
-def

-defs
-delay -dly
-detach -det
-dir mode
-dont free
-dprint -dp
-dpunch -dpn
-ebcdic8
-ebcdic9
-edit -ed
-entry numbers -etn
-entry=point -ep
-exec com -ec
-expand
-expanded
-files
-file input -fi
-flush
-fnp
-fold
-format -fmt

A-5 AN82-00

-foreground
-free
-fw
-generate_password
-go
-govern
-hex8
-hex9
-hyphenate
-immediate
-in
-incremental
-inccost
-inc pf
-inc-volume dump_switch
-inc vcpu
-in reply to
-inItial string
-inout -
-input description
-interactive
-interactive message
-interrupt -
-invisible
-keyed
-library
-line numbers
-lmargin
-log
-loop
-long id
=lo\-.'er case
-mailbox
-mcc
-message id
-meter, ~metering
-min
-minute
-month
-no abort
-no-canonicalize
-no:=endpage
-no exec com
-no-freeIng
-no-hold
-no-interactive_message
-no-label
-no:=log
-no message id
-no-null -
-no-orginal
-no-preempt
-no-print off
-no-prompt
-no-request loop
-no-stop run
-no-start up
-no-subject
-no:=symbols, -no_symbol
-no warning
-non edited
-nogo
-notape
=old_original
-open
-original
-original path
-out -
-output

A-6

-fg

-gpw

-gv

-hph

-ivds

-irt
-istr

-ids
-ia
-im
-int
-iv

-lib
-In
-1m

-lgid
-lc
-mbx

-mid
-mt

-ncan
-nep
-nec

-nhd
-nim
-nlbl

-nmid

-no_orig
-np
-nprf

-nrql
-nsr
-ns
-nsj
-nsb
-nw
-ned

-old

-orig

,-, Y'; ~
~. ~b

-orig_path

AN82-00

-output_description -ods
-own
-pdd
-prefix
-print delay
-print-edit
-print-linkage fault

-pr dly
-pr:=edit

-print-new lines -pnl
-print:=off- -prf
-process overseer -po
-prompt -
-proxy
-raw
-realt
-relocatable -rIc
-remove -rm
-rename -rn
-reply to
-report reset

-rpt
-rr

-request loop
-retain -

-rql
-ret

-retain data -retd
-return-value -rtv
-runtime check -rck
-safe_optimize -safe ot
-save -sv
-secondary
-seg
-seg mode
-separate static -ss
-set -
-set bc
-set-nl
-single -sg
-single_name -snm
-size
-skip -sk
-sleep
-sort dir -sd
-sort file size =sfs
-source swItch -ssw
-static-
-status -st
-stop proc
-stt -

-spp

-subject -sj
-subtotal -stt
-subtree -subt
-sys
-sys id
-sysId
-tape
-tape7
-tape9
-temp dir -td
-template -tmp
-text -tx
-time ot
-timers
-top label -tlbl
-total cost
-total-mem units
-total-pf
-total-vcpu
-to queue
-to-request
-trace

-to q
-to=rqt

-trace linkage faults
-train- - -tn

A-7 AN82-00

-unlabeled common -uc
-upper case -uc
-use be
-use-count -use
-use-nl
-verbose -vb
-warn
-watch
-year
-zero on alloc
-zero-on-free
-zone

A-8 AN82-0

APPENDIX B

REGISTERED SUFFIXES

This section lists all registered entryname suffixes and their general
meaning. Programs should follow the conventions implied by these suffixes.

LIST OF SUFFIXES

absin absentee input segment

absout absentee output segment

alm ALM source progr~m statements

apl APL saved workspace

archive archive segment

basic BASIC source program statements'

bcpl BCPL source program statements

bind bindfile for'the bind command

breaks break segment for the debug command

cds cds source program statements

chars auxiliary output file produced by runoff and compose

ckrout output segment form the check_mst command

cmdb data model source segment for the create mrds dv command

cmdsm data submodel source segment for the create mrds dsm command

cobol COBOL source program statements

code enciphered segment produced by the encode command

compin compose source statements

compout primary output file produced by compose

control control file for miscellaneous commands

crl control segment for the cross_reference command

crlout output file of the cross reference command

dict dictionary segment used by dictionary commands

B-1 AN82-00

dir info

dsm

ec

fortran

gcos

gdt

ge

header

incl.alm

incl.bcpl

incl.cobol

incl.fortran

incl.lisp

incl.pl1

info

Id

lisp

list

lister

listform

listin

map

mbx

memo

mexp

motd

ms

order

pfd

pfl

pl1

print

probe

directory information segment output by the save dir info
command

output file produced by the create mrds dsm command

segment containing exec_com lines

FORTRAN source program statements

file in GCOS Standard System Format

graphics device table source segment input to the
compile_gdt command

input segment to the graphics_editor command

header file for MST generator

ALM include files

BCPL include files

COBOL include files

FORTRAN include files

LISP include files

PL/I include files

segments formatted according to help command conventions

source for the library descriptor command

LISP source program statements

listing file produced by a compiler assembler or binder

data base used by lister commands

control segment defining document format used by
process_list command

segment used by create list command to input or update a
lister file

map segment produced by binder or library_ map

ring 1 mailbox

database used by memo command

mexp source program statements

database for the print_motd command

ring 1 message segment

control segment for the reorder archive command

output file created by the profile command

listing file used by the profile command

PL/I source program statements

output of the library_print command

break segment for the probe command

B-2 AN82-00

profile

qedx

rd

runoff

runout

search

symbol s

teco

volumes

wl

user profile used by abbrev and check_info_segs

qedx macro

reduction compiler source statements

runoff source statements

primary output file produced by runoff

search directories for MST generator

symbol dictionary used by the Speedtype commands

teco macro

output segment of the manage_volumes_pool command

wordlist segment used by the wordlist commands

B-3 AN82-00

APPENDIX C

REGISTERED 1/0 SWITCH NAMES

This section lists the names and meanings of all 1/0 switches that are used
by system programs.

LIST OF 1/0 SWITCH NAMES

audit i/o.HHMM.T

debug_output

ec switch nn

error_output

filenn

fo_!uniquename

switch used bu audit facility, where HHMM.T is the time
switch was attached

switch from which the debug command takes its input
requests

switch onto which the debug command writes its output

switch associated with the nn switch attached by the
exec com command

switch onto which commands write their error messages

switch associated with unitnn in FORTRAN programs

switch attached by file_output command

fo_save_!uniquename switch used by file_output to save previous attachment

graphic_input

graphic_output

lib_map_

lib_print_

user ilo

user_input

user_output

!uniquename.lila

!uniquename.rel

!uniquename.res

switch used for graphics input

switch used for graphics output

switch used by lfbrary_map command

switch used by library_ print command

switch attached to interactive users primary 1/0 device

switch from which commands and the command processor
take their input

switch onto which commands _.; ~- their normal output WI .1. 1:::;

switch name used by LINUS

switch name used by LINUS

switch name used by LINUS

C-1 AN82-00

APPENDIX D

REGISTERED CONDITION NAMES

This section lists all registered condition names.

LIST OF CONDITION NAMES

active function error
alrm
any_other
area
bad area assignment
bad-area-format
bad-area-initialization
bad-dir
bad-outward call
cleanup
command abort
command-error
command-query error
command:=questIon
conversion
cput
cross ring transfer
db conversIon
derail
endfile
end page
error
fault tag 1
fault-tag-3
finish -
fixedoverflow
gate error
illegal modifier
illegal-opcode
illegal-procedure
illegal:=return
io error
ioa error
isot fault
key
linkage error
listing-overflow
lockup -
lot fault
message segment error
mme1 -
mme2
mme3
mme4
name
no execute permission
no:=read_permission

D-1 AN82-00

no write permission
not a gate
not-in call bracket
not-in-execute bracket
not-in-read bracket
not-in-write bracket
o p not-complete
out of-bounds
overflow
page fault error
parity -
program interrupt
quit -
record
record quota overflow
return-conversion error
seg fault error
simfault nnnnnn
size
stack
storage
store
stop run
stringrange
stringsize
sub error
subscriptrange
sus
timer manager err
trm - -
transmit
truncation
unclaimed signal
undefinedfile
underflow
unwinder error
zerodivide

D-2 AN82-00

A

access control list 9-2

ALM program conventions

bind file
contents
formatting

4-2
4-3

bindfiles 4-2

binding 4-2

bit count 9-4

bound segments
contents 4-2
names 4-2

B

c

6-3

command interfaces 2-1
control argument conventions
control arguments 2-2
output conventions 2-4
pathname conventions 2-3
storage system conventions
user interaction conventions

compilable unit size 4-1

condition handling 5-2

D

2-3

2-1
2-5

INDEX

include files (cont)
use of 7-1

info segments 11-1
naming conventions 11-2
physical appearance 11-1
style 11-1
syntax 11-2

command descriptions 11-3
paragraphs 11-2
sections 11-2
subroutine descriptions 11-3

title 11-2

interface standards 2-1

internal static storage 9-4

interruptability 5-1

introduction 1-1
general issues 1-1
main topics 1-2
registered names 1-2
usage of this manual 1-1

L

layout of a PL/I program 6-2

M

mechanism
external availability 4-1
generality 4-1

modularity 4-1

multisegment files 9-3

documentation 10-1 P
location 10-1

E

environment independence
condition handling 5-2
interruptability 5-1
pathnames 5-2
reentrancy 5=1
search rules 5-2
standard mechanism 5-2
transparency 5-1

include files 7-1
ALM 7-2
format 7-1
naming 7-2
PL/I 7-2

I

5-1

i-1

pathnames 5-2, 9-1

PL/I language 8-1
aggregate operations 8-7
alignment attributes 8-2
arithmetic builtins 8-8
arithmetic operations 8-6
assignment operation 8-4
attributes with arithmetic and

pointer variables 8-2
attributes with long strings
attributes with short strings
binary operations 8-6
builtin functions 8-7
call statement 8-9
constant argument lists 8-10
constraints 8-1
constructs 8-2
conversions 8-5
decimal operations 8-6
function references 8-9
mathematical builtins 8~9

8-2
8-2

AN82-00

PL/I language (cont)
multiple assignment statement 8-4
operations on long strings 8-7
optimization of comparisons 8-11
pictures 8-5
quickness of blocks 8-9
string builtins 8-8
string operations 8-6
use of

if statements 8-10
initial attribute 8-4
internal static to simulate named

constants 8-3
precision attribute in offset and

length expressions 8-3
unaligned short variables in

arrays 8-3
unaligned short variables in

structures 8-3

program format 6-1
ALM program conventions 6-3
comments 6-1
copyright notice 6-1
interface descriptions 6-1
journalization notice 6-1
layout of a PL/I program 6-2
program comments 6-2
standard PL/I program foramt 6-3

program structure 4-1

programming standards 3-1
coding conventions 3-3
command standards 3-1
condition handling 5-2
interruptability 5-1
naming standards J-'
on unit for cleanup condition 3-2
output conventions 3-2
pathnames 5-2

search rules 5-2
reentrancy 5-1
search rules 5-2
standard mechanism 5-2
storage system conventions 3-2

R

reentrancy 5-1

registered condition names D-1

registered control arguments A-1
approved special control arguments

A-5
approved standard A-1

registered 1/0 switch names C-1
list of C-1

registered suffixes B-1
list of B-1

s

search rules 5-2

standard mechanism 5-2

standard PL/I program format 6-3

storage allocation 9-4
PL/I areas 9-4
temporary segments 9-5

storage management 9-1
access control list management 9-2
bit count 9-4
internal static storage 9-4

storage management (cont)
making segments known and unknown

9-2
multisegment files 9-3
naming conventions 9-1
pathnames 9-1
pathnames versus segment pOinters

9-3
use of

storage system
working directory

9-1
9-2

subroutine interfaces 2-5
argument standards 2-6
subroutine names 2-5

T

temporary segments 9-5

translator writer rules 12-1
command program 12-1
listing output 12-2
miscellaneous requirements 12-2
object segment created 12-1

transparency 5-1

w

working directory 9-2

i-2 AN82-00

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

LEVEL 68
TITLE STANDARDS SYSTEM DESIGNERS I NOTEBOOK

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments wil! be investigated by appropriate technica! personnel

and action will be taken as required. Receipt of all forms will be rJ

acknowledged; however, if you require a detailed reply, check here. U

FROM: NAME ----

TITLE

COMPANY

ADDRESS ______ .

OROERNO·I ANB2-00

DATED JUNE 1980

DATE

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honev",ell ..,

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

--c

HoneY-~well

Honeywell Information Systems
In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1 W5

In the UK: Great West Road,Brentford, Middlesex TWa 9DH
In Australia: 124 Walker Street, North Sydney, N.S.W. 2060

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

27662. 1680. Printed in U.S.A.

c

c

c
AN82-00

	0001
	0002
	0003
	0004
	0005
	0006
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	04-03
	04-04
	05-01
	05-02
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	10-01
	10-02
	11-01
	11-02
	11-03
	11-04
	12-01
	12-02
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	D-01
	D-02
	i-01
	i-02
	replyA
	replyB
	xBack

