
SUBJECT

SERIES 60 (LEVEL 68)

MULTICS LIBRARY MAINTENANCE
PROGRA-MLOG-IC MANUAL

PRELIMINARY EDITION

RESTRICTED DISTRIBUTION

Preliminary Description of the Organization of the MuItics System Libraries,
and of the Procedures and Tools Used to Maintain These Libraries. The Organi
zational Information and Procedures Can Be Applied to Subsystem Libraries
Developed under MuItics, as well as to the System Libraries

SPECIAL INSTRUCTIONS

This preliminary Program Logic Manual (PLM) describes certain internal
modules constituting the MuItics System. It is intended as a reference for only
those who are thoroughly familiar with the irnplementation details of the
Multics operating system; interfaces described herein should not be used by
application programmers or subsystem writers; such programmers and writers
are concerned with the external interfaces only. The external interfaces are
described in the Multics Programmers' Manual, Commands and Active Func
tions (Order No. AG92), Subroutines (Order No. AG93), and Subsystem Writers'
Guide (Order No. AK92).

As Multics evolves, Honeywell will add, delete, and modify module descriptions
in subsequent PLM updates (refer to Appendix A for an outline of planned
additions to each of the missing sections of this document). Honeywell does not
ensure that the internal functions and internal module interfaces will remain
compatible with previous versions.

The infonnation contained in this document is the exclusive property of
Honeywell Information Systems. Distribution is limited to Honeywell
employees and certain users authorized to receive copies. This document shall
not be reproduced or its contents disclosed to others in whole or in part.

ORDER NUMBER

ANSO-OO May 1979

Honeywell

Preface

Multics PLMs are intended for use by Multics system maintenance personnel,
development personnel, and others who are thoroughly familiar with Multics
internal system operation. They are not intended for application programmers
or subsystem writers.

The PLMs contain descriptions of modules that serve as internal interfaces
and perform special system functions. These documents do not describe external
interfaces, which are used by application and system programmers.

Since internal interfaces are added, deleted, and modified as design improve
ments are introduced, Honeywell does not ensure that the internal functions
and internal module interfaces will remain compatible with previous versions.

© Honeywell Information Systems Inc., 1979 File No.: 2L13 AN80

Throughout this manual, references are frequently made to
the six manuals that are collectively referred to as the Multics
Programmers' Manual (MPM). For convenience, these references are
as follows:

Document

Reference Guide
(Order No. AG91)

Commands and Active
Functions
(Order No. AG92)

Subroutines
(Order No. AG93)

Subsystem Writers' Guide
(Order No. AK92)

Peripheral Input/Output
(Order NOe AX49)

Communication Input/Output
(Order No. CC92)

Referred To In Text As

MPM Reference Guide

MPM Commands

MPM Subroutines

MPM Subsystem Writers' Guide

MPM Peripheral I/O

MPM Communications I/O

Section I

Section II

Section III

Section IV

Section V

CONTENTS

Introduction to Library Maintenance .

Library Organization

The Multics System Libraries

The Library Descriptor Commands • .
Commands Which Use a Library
Descriptor • • . • . • • • . • . • •

Input to the Search Mechanism • .
Default Input Values •••••.

Listing the Default
Values • . • • • .

Changing the Default
Values •

Maintaining User Libraries with the
Library Tools . • •

The Rationale for Library
Descriptors ..••...•..

Contents of a Library Descriptor
The Library Description Language

General Syntax • • • • • •
Description Delimiters
A Complete Library
Description • • • .

Descriptor Statement . . . •
Define Statements • . •
Define Commands Statement • .

Command Statement .
Unsupported Command
Statement • • • • • • .

Notes . • . • . • • • • •
Root Definitions •..

Root Statement • • . • • • •
Type Statement • • . . . • •
Path Statement . • •
Search Procedure
Statement . • •• ...

End Statement •
Preparing a Library Description •

Descriptor Names . . .
Defining Commands • • . • . •

iv

Page

1-1

2-1

3-1

4-1

4-1
4-2
4-3

4-4

4-5

5-1

5-1
5-2
5-4
5-4
5-4

5-6
5-6
5-7
5-7
5-8

5-8
5-9
5-9
5-10
5-11
5-11

5-11
5-12
5-12
5-12
5-13

AN80

Section VI

Section VII

Section VIII

Section IX

Section X

Section XI

Section XII

CONTENTS (cont)

Page

Root Names . • . . • • . • . 5-13
A Sample Library Description 5-14

Coding a Library _Search Procedure 5-16

Cross Referencing Tools . • •

Online Library Modification •

Supervisor Library Modification .

6-1

7-1

8-1

Communications Library Modification • 9-1
The Multics Communication System 9-1
The Communications Library • • • 9-2
Strategy for Communication

Systems Modification . • • • • e e _ 9-3
Create Directories to Hold the
Modification • • • . • • • • • • •. 9-3

Preparing the Modification for
Installation • • • • • . . • . • . • 9-4

Generating a New Macro File • • • 9-4
Compiling New or Modified

Communication Programs . • • • . 9-5
Generating Core Images • • . 9-6

Binding Object Segments
Together • • • . • • • 9-7

Converting Single Object
Segments • . • • . . • • 9-8

Linking To and Using the New Core
Images • • • • •• ••• 9-8

Installing the Modification . • . 9-8
Testing the Modification • . . . 9-8
De-Installing the Modification •• . 9-9
Documenting the Modification . . • . 9-9
Modification Tools . . • . . • . 9-9

Bootload Library Modification •

When The System Libraries
Self-Destruct

Library Maintenance exec com's

. 10-1

• • • 11- 1

. 12-1

Section XIII Library Tools. . • • . 13-1
bind fnp • • • . . 13-2
Ifree name, Ifn .••.•••..•. 13-3

Ifree name$restore,
Ifn$restore . • • • . ••. 13-4

library cleanup, lcln . . •.• 13-5
library-descriptor, Ids. . .•. 13-8
library=descriptor_compiler, Idc •• 13-12

v AN80

Section XIV

Appendix A

CONTENTS (cont)

Page

library fetch, If . • . 13-13
library-info, Ii • 13-19
library-map, 1m . • . • • . • 13-23
library-print, Ipr ••.• • •• 13-33
map355 -. . • . • . . . • • •. . 13-39
update seg, us . • •. • 13-40

inItiate ••••••.••.•• 13-48
print defaults •••.••••• 13-51
set defaults • • . • • • • 13-52
add-. • • . • • . 13-53
delete ••••.••.••.•• 13-55
replace. • • • . 13-57
move . • . • • • • • 13-60
print. • . • • • . . • •. • 13-63
list ••••.•.•••• 13-65
install •••••••• 13-67
de install • • •• . 13-72
clear. . .• ••. • .• 13-76

Library Subroutines and Data Bases
multics libraries ••..
multics-library search

Planned Documenation Additions

vi

• 14-1
· 14-2
· 14-8

A-1

AN8D

Figure 5-1.
Figure 5-2.
Figur e 9-1.

Table 4-1 .
Table 5-1 •

Table 1 3-1 •

Table 13-2.

Table 1 3- 3.

Table 14-1 ..

Table 14-2.
Table 14-3.
Table 14-4.
Table 14-5.

Table 14- 6.

Table 14-7.

ILLUSTRATIONS

Page

A Typical Library Tree • . •• .. ~ • 5-3
A Sample Library Description . . • • 5-14
Structure of the Communications
Library •• • • • • • • 9-1

TABLES

Library Descriptor Commands •
Library Description Language

Page

4-2

Delimiters. • . • • . . •• •••. 5-5
Initial Values for update seg Global
Defaults •..•.••• - ..•••••• 13-49

Severity of update seg Installation
Errors • • . . . ~ • . .

Severity of update seg
De-Installation Errors • • .

Logical Libraries of the Multics
System . • • . • . . . • . • .. e

Multics System Library Directories
Multics Library Groups ..•.•.
Directories in Each Multics Library •
Library Descriptor Command Defaults

for the Multics System Libraries .
Comparison of multics library search

• . 13-69

13-74

" 14-3
· 14-4
· 14-5

.. • 14-6

· 14-7

entry points •..•..••...•.• 14-11
Default Output Arguments for Online

and Offline Search Procedures • 14-12

vii AN80

SECTION I

INTRODUCTION TO LIBRARY MAINTENANCE

(to be supplied)

1-1 AN80

SECTION II

LIBRARY ORGANIZATION

(to be supplied)

2-1 ANSO

SECTION III

THE MULTICS SYSTEM LIBRARIES

(to be supplied)

3-1 AN80

SECTION IV

THE LIBRARY DESCRIPTOR COMMANDS

Section II introduced the concept of a library descriptor
data base and its accompanying library search procedures. The
descriptor and search procedures provide information about the
organization and contents of a library, and they provide a
mechanism for finding particular library entries and for
obtaining entry status information. This section describes how
various library maintenance commands use library descriptors to
help perform their maintenance function.

COMMANDS WHICH USE A LIBRARY DESCRIPTOR

Currently, five library maintenance
information in library descriptors to perform
functions on the Multics System Libraries.
listed in Table 4-1 below. Because they
descriptors, the commands are collectively
descriptor commands. Detailed descriptions of
be found in Section XIII.

commands use the
their maintenance
These commands are
all use library

called the library
the commands may

While the commands listed in Table 4-1 perform widely
divergent maintenance functions, they all share a common
interface to the library descriptor and this leads to
similarities in their user interfaces and modes of internal
operation. The discussion in this section highlights these
similarities.

4-1 AN80

Table 4-1. Library Descriptor Commands

library fetch fetches entries from the library into
the user's working directory.

library info prints information about library entries
on the user's terminal.

library_map generates a map of the library, giving
selected status information about each
library entry.

library_print generates a file containing the contents
of selected, printable library entries
preceded by information about their
current status. Page footings and an
index are supplied to make it easy to
find entries.

library cleanup
deletes selected entries from the
library. Selection is based upon the
names of entries, and the time which has
passed since their directory entry was
last modified.

INPUT TO THE SEARCH MECHANISM

The lib descriptor subroutine is the interface procedure
between the library descriptor commands and the information and
search procedures defined in a library descriptor. Each library
descriptor command calls a separate entry point in the
lib descriptor subroutine to get information about entries in
the-library. The calling sequences for each of these entry
points share the following set of arguments:

1. the name of the library descriptor to be used.

2. an array of library names identifying the libraries to
be searched.

3. an array of search names identifying the library
entries being searched for.

The user can specify values for these input arguments when
invoking each library descriptor command by using the
-descriptor, -library (-lb), and -search name control arguments,
respectively. In addition, each of the commands allows search
names to be specified without using the -search name control
argument.

4-2 AN80

The lib descriptor subroutine uses the descriptor name to
obtain a poInter to the library descriptor data base. This data
base contains the names of all libraries defined by the
descriptor. The array of library names provided as an input
argument is compared with the defined library names to determine
which libraries are to be searched.

Associated with each library name is the pathname of the
physical directory or archive which contains the library, and a
procedure which can be called to search for entries in the
library. The pathname of each identified library directory or
archive is passed to its search procedure, along with the array
of search names. The search procedure then returns a tree of
status information describing the library entries which are
found. This status information is sufficient to allow the
library descriptor commands to perform their function on the
found library entries.

Default Input Values

When the user invokes one of the library descriptor commands
without giving library names, search names, or a -descriptor
control argument, then the command calls the lib_descriptor
subroutine with an empty name array or a blank descriptor name in
place of the missing data. The lib descriptor subroutine then
uses default values to fill in the missing information.

The name of the default library descriptor is stored as an
internal static variable by the lib descriptor subroutine. Each
of the library descriptor commands- uses this default library
descriptor when the user has not given the -descriptor control
argument. The initial default library descriptor defines the
Multics System Libraries, and has the name multics libraries.
However, the default library descriptor can be changed as
described under "Changing the Default Values" below.

Default library names and search names are stored in the
library descriptor. Different defaults are defined for each
library descriptor command when the descriptor is created. These
defaults are used by the commands when the user has not given any
library names or search names as command arguments.

The default library and search names must be stored in the
library descriptor because each descriptor defines a unique set
of libraries containing different types of entries stored under
differing naming conventions. One set of default library names
and search names cannot be appropriate for all possible library
definitions.

Similarly, different default library and search names must
be stored for each of the library descriptor commands because the
functions performed by the commands are often more logically
applied to some of the libraries defined by a descriptor than to
others, and to some types of library entries than to others. For

4-3 AN80

example, the default values for the library print command might
cause printing all of the info segments in the info library;
whereas, those for library map might cause mapping the status of
all entries in all of the lIbraries.

The particular default values which are used for a given
command invocation are returned as output arguments in the blank
library descriptor name string, and in the empty library and
search name arrays. This allows the commands to use these
default values in error messages and warnings which may be
printed.

LISTING THE DEFAULT VALUES

The library descriptor (lds) command prints information
about library des~riptors. It can be used to print the name of
the default library descriptor; to print the default library
names and search names for a given library descriptor and a given
descriptor command; or to print information about the libraries
which are defined by a given descriptor.

For example, the command:

library_descriptor name

prints the name of the default library descriptor on the user's
terminal.

library descriptor default library_map

prints the
library map
descriptor.

default library
command, as

names and search
defined by the

names
default

for the
library

library descriptor default -descriptor rdms libraries

prints the default library and
descriptor commands which are
library descriptor.

search names for all library
defined by the rdms libraries

See the description of the library descriptor command in
Section XIII for complete details on its usage.

4-4 ANSO

CHANGING THE DEFAULT VALUES

The library descriptor command can also be used to change
the name of the default library descriptor in a given user
process. The command:

library descriptor set rdms libraries

makes the rdms libraries the default library descriptor for the
process in which the command is issued.

The default library names and search names for any of the
library descriptor commands can be changed by redefining these
values in the library descriptor source segment and recompiling
the descriptor. These operations are described in Section V.

4-5 AN80

SECTION V

MAINTAINING USER LIBRARIES WITH THE LIBRARY TOOLS

It may have occurred to you to ask, "Why use library
descriptors to define tpe structure of the Multics System
Libraries?" Library descriptors were introduced in Section II as
a means of defining the logical structure of a library. However,
this structure information could just as well have been built
into the library maintenance commands, rather than using a
separate data base. So far, the justification for having library
descriptors has been implied, but not stated.

This section tries to answer the question above, and in so
doing, it points out how the tools and procedures used to
maintain the Multics System Libraries can be used for other
libraries as well.

THE RATIONALE FOR LIBRARY DESCRIPTORS

As suggested in the opening paragraph of this section,
library structure information could have been built into each
library maintenance tool, rather than defining library structure
in a library descriptor. In fact, this was done in the earliest
versions of the maintenance tools. However, the pitfalls of this
scheme were quickly discovered as the Multics System Libraries
expanded and were reorganized to meet changing system needs. The
following pitfalls were found.

1. Code to define the library structure and to search for
library entries had to be duplicated in each library
command. Since th~ 00mm2nds were prcgrammed by
different people at different times, different
mechanisms were usually used to define the structure
and to search for entries, leading to differing user
interfaces for the commands, duplication of design
effort, and increased likelihood of bugs in the code.

5-1 AN80

2. All of the library commands had to be modified whenever
a new library was added to the Multics System
Libraries. During a period of rapid library growth,
this led to modifications of all of the commands every
few months.

3. When a new library organization was created
(thankfully, an infrequent occurrence), mechanisms for
defining its structure and searching for its entries
had to be added to each of the library commands; this
required an integration of the new mechanism with all
of the different mechanisms which existed in these
commands.

4. Although the commands performed generally useful
library maintenance functions, they could only be used
for the Multics System Libraries, much to the
displeasure of subsystem writers.

To avoid these pitfalls, the early library commands have
been rewritten to use a centralized, external subroutine to find
library entries. The subroutine gets library structure
information from a separate, easily modified, user-identified
data base associated with each group of libraries. The
subroutine is the lib descriptor subroutine, and the data base
is, of course, the library descrIptor.

The basic operation of the lib descriptor
already been discussed in Section IV. The next
describe what library structure information
library descriptor, and how a Multics system
subsystem writer can define or change a library

subroutine has
few paragraphs

is stored in a
programmer or a
descriptor.

CONTENTS OF A LIBRARY DESCRIPTOR

In Section II under "The Logical Structure of Libraries", it
was pointed out that most program libraries are logically
structured like a tree with root directories or archives
containing the different types of library entries (source
segments, object segments, bind segments, listings,
unbound executable segments and data segments, etc).
shows such a tree-structured library.

5-2

bound and
Figure 5-1

AN80

I I I
I I I

source dir listing dir object dir execution dir -

I I I I I I I I I I
I I I I I I I I I I

H a N a a a H a E a
compilation/bind bound/unbound

listing segs object segs

I I I I I I I I I
I I I I I I I i I

a a a source source H a a object object
source segs arch 1 arch 2 object segs arch 1 arch 2

I
I

I I I I I I I I ----I I I I I I
I I I I I I I I I I I I I I

N N H a H a a a a a I'l a I'l H
source archive components object archive components

Figure 5-1 . A Typical Library Tree

The library descriptor contains information about the roots
of a library. lib descriptor uses this information to find
library entries. For each library root, the library descriptor
defines the following set of information.

1. The logical library names by which the library root can
be referenced.

2. The t-una r..f'
VJ t-''- v ... library root (either directory or archive).

3. The Multics storage system pathname of the physical
directory or archive which is the library root.

4. The name of a program which knows how to search for
library entries in the subtree below each library root.
This program is called the search procedure for the
library root.

In addition to the definitions of the library roots, a
library descriptor defines which library descriptor commands can
be used on the library, and what default library names and search
namps are to be used with each of these commands. Recalling from
Section IV, when the user invokes a library descriptor command
without giving library names or search names, then
lib descriptor uses default values defined in the library
descriptor. The default library names and search names depend
upon the structure of the libraries which the command is
searching. Since this structure is defined in the library
descriptor, the default library names and search names are also
defined there.

5-3 AN80

With the library structure information and the command
default information defined in a central data base which is used
by all library descriptor commands, the system programmer can
easily add new libraries by modifying the descriptor, and the
subsystem writer can define a new library structure and use a
ready-made set of commands to maintain the library.

THE LIBRARY DESCRIPTION LANGUAGE

Library descriptors are created by the
library descriptor compiler command, which is described in
Section-XIII. ThIs compiler accepts a source language
description of a library structure as input, and produces an ALM
data segment as output. When assembled, the ALM data segment
becomes the library descriptor.

The source language
library descriptor compiler is called
language. It contains statements
descriptor, for defining the roots of a
for defining library descriptor command

General Syntax

accepted by the
the library description

for naming a library
library structure, and

default values.

The statements in the library description language have the
general syntax:

keyword: parameters;

where:

1. keyword is an identifier which names the statement.

2. parameters are one or more values associated with the
statement. Parameters are separated from one
another by one or more spacing characters (see
Table 5-1 below).

Description Delimiters

The delimiters shown in Table 5-1 below are used in the
library description language. These delimiters separate the
statements in a library description source segment, and they
separate the statement components (keywords and parameters)
within each statement.

5-4 AN8a

Table 5-1. Library Description Language Delimiters

"

(

)

/*

*/

keyword delimiter. It follows the keyword which names
the statement, and separates this keyword from the
parameter value.

statement delimiter. It ends each statement.

quoting character. It begins and ends each quoted
string. A quoted string is treated as a single unit in
the language, even though it may contain other
delimiters. The PL/I quoting convention is followed:
a pair of quoting characters ("") appearing together in
a quoted string represents a single quoting character
in that string.

begins a group of root name components in a compound
root name appearing in a Root statement.

ends a group of root name components in a compound root
name appearing in a Root statement.

begins a comment.

ends a comment.

space,
horizontal tab,
new line,
new page spacing characters. These characters may appear before

or after any statement component or delimiter. The
separate parameters from one another and space
statements across the page for improved readability of
the source.

5-5 AN80

A Complete Library Description

A complete library description:

1. begins with a Descriptor statement

2. contains a Define statement with several sUbstatements
to define attributes associated with the entire
descriptor

3. has one or more Root statements with substatements
which describe the roots of a library structure

4. ends with an End statement

The structure is:

Descriptor:
Define:

Root:

End:

Each of the statements listed above is a major statement in
the library description language and each defines a unit of data
in the descriptor. Major statements have a keyword identifier
which begins with a capital letter.

Define and Root statements may be followed by minor
statements which add information to the definition or root
description. Minor statements have a keyword identifier which
begins with a lower case letter.

The major statements and their minor statements are
described below in detail. A detailed example which shows how to
use each of the major and minor statements is included under "A
Sample Library Description" below.

Descriptor Statement

A Descriptor statement begins a library description and
defines the name of the library descriptor. It must be the first
statement of a library descriptor definition.

5-6 AN80

A Descriptor statement has the syntax shown below.

Descriptor: descriptor_name;

where descriptor name is the name of the descriptor. It must
begin with an -alphabetic character, and may contain 1 to 32
alphanumeric characters or underscores ().

Define Statements

A Define statement and its minor statements
attributes associated with the library descriptor.

define

Currently,
by the library
statement.

only one kind of Define statement is implemented
description language: the Define commands

Define Commands Statement

A Define commands statement adds no information to the
library description, but serves mainly as a delimiting statement.
It identifies the minor statements which follow as statements
defining which library descriptor commands are supported for use
on the libraries defined by the descriptor, and what their
default library and search name command arguments are. As a
delimiting statement, it has a fixed parameter value as shown
below.

Define: commands;

Two kinds of minor statements may follow a Define commands
statement. A command statement defines a library descriptor
command which is supported for use on the libraries described by
the descriptor. An unsupported command statement defines a
library descriptor command which is not supported for use on
these libraries. These two minor statements are described in the
next few paragraphs.

A Define commands statement and its minor statements have
the syntax shown below.

Define: commands;

library names: star names;
search names: star=names;

unsupported command: command name;

One or more minor statements must follow the Define commands
statement. At least one of these must be a command statement.

5-7 AN80

COMMAND STATEMENT

A command statement is a minor statement. It defines a
library descriptor command which is supported for use on the
libraries described by the descriptor.

A command statement has the syntax shown below.

command: command_name;

where command name is the full name or abbreviated name of any of
the library descriptor commands listed under "Commands Which Use
a Library Descriptor" in Section IV.

A command statement may be followed by one or both of the
following minor statements: a library names statement, and a
search names statement. A library names statement defines the
default library names to be used with the command when the user
omits library names from the command line. A search names
statement defines the default search names to be used with the
command when the user omits search names from the command line.

These two minor statements have the syntax shown below.

library names: star_names;

search names: star_names;

where star names are one or more entrynames in which the Multics
star convention may be used to identify several libraries or
library entries with a given entryname. If several star names
are given, they are separated from one another by spacing
characters (see Table 5-1 above).

UNSUPPORTED COMMAND STATEMENT

An unsupported command statement is a minor statement. It
defines a library descriptor command as not supported for use on
the libraries described by the descriptor. Any attempt to use
the command on these libraries fails with an appropriate error
message.

An unsupported command statement has the syntax shown below.

unsupported command: command_name;

where command name is the full name or abbreviated name of any of
the library descriptor commands listed under "Commands Which Use
a Library Descriptor" in Section IV.

5-8 AN80

An unsupported command statement might be used when it is
undesirable or inappropriate to allow a particular library
descriptor command to be used on a set of libraries, or when the
search procedure for the libraries is not programmed to search
for library entries according to the requirements of the command.

NOTES

If no command or unsupported command statement appears for a
given library descriptor command, then that command is not
supported for use on the library structure described by the
descriptor. Making the commands unsupported by default gives the
library maintainer a chance to evaluate new library descriptor
commands before allowing them to be used on the libraries.

Since library descriptors are used solely by the library
descriptor commands, it follows that a Define commands statement
followed by at least one command minor statement must appear in
every library description. If this were not the case, then no
library descriptor commands would be supported for use on the
libraries described in the descriptor, and the descriptor would
be useless.

If no library names statement or search names statement
follows the command statement for a particular library descriptor
command, then no corresponding default values are defined for
that command. The user is required to give the library names or
search names each time that command is invoked.

The same library descriptor command should not be given in
more tnan one command statement or unsupported command statement.
However if this should occur by error, the last such definition
is compiled into the library descriptor. Note that the user is
not informed of such duplication.

Root Definitions

The main purpose of a library descriptor is to describe a
library structure. Each root of this library structure is
described by a Root statement followed by several minor
statements: an optional type statement; a path statement; and
a search procedure statement. These statements are described in
the next few paragraphs.

A complete root definition has the syntax shown below.

Root: root names;
type: root type;
path: root-pathname;
search procedure: search_entry_point;

5-9 AN80

ROOT STATEMENT

A Root statement begins the description of a library root.
It defines the logical names by which the library root is
referenced in library descriptor commands. All minor statements
following the Root statement (until the next major statement is
encountered) further describe the root.

A Root statement has the syntax shown below.

Root: root_names;

where root names are the logical names of the library root. The
root names may be given in two forms: single root names and
compound root_names.

A single root name is a name consisting of to 32 ASCII
characters except the characters: < > () * ? = %. Single
root names are separated from one another by spacing characters
(see Table 5-1 above). Examples of single root_names are:

online standard.source languages.execution lib1.exp.source

A compound root name is a collection of names represented as
the cross-product of several groups of name components. Each
group of components is enclosed in parentheses and separated from
the group which follows by a period. An example is:

(online standard).(source s)

This example is equivalent to the single root names:

online.source online.s standard.source standard.s

The root names formed by the cross-product must meet the
requirements of single root names. They must consist of 1 to 32
ASCII characters except the ~haracters: < > () * ? = %. A
compound root_name has the syntax shown below.

(root name components){.(root name components)} ...

where the root name components are ASCII characters (except: < >
() * ? = %) separated from one another by spacing characters.

While null character strings (1111) cannot be used as single
root names, they can be used as root name components in a
compound root name. If a null string component is found while
performing the-cross-product operation for a compound root name,
then the null component is omitted from that step of the
cross-product operation. For example:

(online standard 1111). (source s 1111)

5-10 AN80

is equivalent to the root names:

online.source online.s online standard.source
standard.s standard source s

Note that, when the cross-product operation selects a null
string from all groups of components, the resulting root name is
a null string. Since null strings are illegal root names, the
null string is ignored by the cross-product operation~

TYPE STATEMENT

A type statement is a minor statement which defines the type
of library root being described. Directories and archives may be
defined as library roots.

A type statement has the syntax shown below.

type: root_type;

where root_type may be "directory" or "archive".

A type statement is optional. If it is omitted from a root
description, then the root is assumed to be a directory.

PATH STATEMENT

A path statement is a minor statement which defines the
library root's pathname in the Multics storage system.

A path statement has the syntax shown below.

path: root_pathname;

where root pathname is the absolute pathname of the library root.

A path statement is required in each root description. It
must appear after the Root statement which names the library
root, and before the next major statement.

SEARCH PROCEDURE STATEMENT

A search procedure statement is
defines the procedure entry point which
library root.

a minor statement which
finds entries in the

A search procedure statement has the syntax shown below.

where
Either

search procedure: search entry_point;

search entry point is the name of a procedure entry point.
of the following forms may be used for the

5-11 AN80

search_entry point.

ref name
ref-name$entry_point_name

Refer to "Reference Names" and "Entry Point Names" in Section III
of the MPM Reference Guide for more information about the terms,
reference name and entry_point name.

A search procedure statement is required in each root
description. It must appear after the Root statement which names
the library root, and before the next major statement.

End Statement

An End statement ends a library description. It must be the
last statement of a library descriptor definition.

An End statement has the syntax shown below.

End: descriptor_name;

where descriptor name is the name of the library descriptor which
was given in the-Descriptor statement.

PREPARING A LIBRARY DESCRIPTION

The paragraphs above define the syntax and semantics of the
library description language. The next few paragraphs provide
practical hints on how to use the various statements in the
library description language, and they show an example of a
library description.

Descriptor Names

There should be a direct mapping between the descriptor name
used in the Descriptor statement of a library description and the
entryname of the source segment which contains that description.
The entryname should be the descriptor name followed by an ld
suffix. For example, a descriptor named multics libraries would
be defined in a source segment called multics libraries.ld.

The mapping must be maintained to avoid user confusion.
Confusion can occur if the names are different. The entryname on
the source segment is used to name the compiled library
descriptor segment. However, the descriptor name compiled into
the library descriptor is reported by the library descriptor
command as the name of the current descriptor. A user might be
confused if the library descriptor command reported the name of
the current descriptor as-descriptor 1, but there was not segment
called descriptor 1 in the user's search directories.

5-12 AN80

Multics system naming conventions for system subroutines and
data bases require that the descriptor name of system library
descriptors end with an underscore (). These conventions should
be followed when selecting a descriptor_name.

Defining Commands

When a library descriptor command is given in an unsupported
command minor statement of the Define commands statement, then
that library command is prevented from operating on the library
structure defined by the descriptor. Any attempt to use the
command with this library descriptor causes an error message to
be printed stating that the library descriptor does not support
the command.

An unsupported command statement should be used when the
function performed by a particular library descriptor command is
not appropriate to the libraries defined by the descriptor, or
when the search procedures used for these libraries do not
support a particular library descriptor command.

When default library names or search names are defined for
use with a supported library command on a given library
structure, the user can determine these default values before
using the command by way of the library descriptor command.
Also, any default values which are used by the command are
printed when errors occur to ensure that user knows what default
values were being used when the error occurred.

Each library descriptor command prints an error
it is invoked without a search name or library
default search names or library names were given
command statement in the library descriptor.

Root Names

message

after

if
no

its

When more than one library is described by a library
description, it is common to give the roots multicomponent names.
The first component identifies the library, and the second
component identifies the type of entries stored in that root of
the library. The example in Figure 5-2 below demonstrates this
usage.

5-13 AN80

A Sample Library Description

Figure 5-2 below shows a sample description of a library
structure.

Descriptor: sample libraries;

Define: commands;
unsupported command: library cleanup;
command: library fetch;
command: library-info;

library names: **;
command: library map;

library names: -source object;
search names: **;

command: library print;
library names: -source include;
search names: *.p11 *.alm *.incl.* *.ec;

/* Define the standard library */

Roo t : (s tan dar d s t d ''''). (s 0 u r c e s '''') bot h ;
type: directory;
path: >ldd>standard>source;
search procedure: standard search$source;

Root: (standard std "").(object 0 "") both;
type: archive;
path: >ldd>object>standard.archive;
search procedure: standard search$object;

/* Define the experimental library */

Roo t : (ex per i men tal x''''). (s 0 u r c e s " ") bot h ;
/* defaults to type: directory; */

path: >ldd>experimental>source;
search procedure: experimental search procedure;

Root: (experimental x n").(object 0 "H)-both;
type: archive; /* type statement required here. */
path: >ldd>object>experimental.archive;
search procedure: standard search$object;

1* Define include directory shared by both libraries. */

Root: (standard std experimental x "").(include incl "")
both;

path: >ldd>both>include;
search procedure: experimental search_include;

End: sample libraries;

Figure 5-2. A Sample Library Description

5-14 AN80

The example in Figure 5-2 describes the following two libraries.

LIBRARY ID

standard, std

experimental, x

LIBRARY CONTENTS

the library containing standard;
fully-tested programs and data.

the library containing experimental
programs and data.

Each of these libraries contains the following library roots.

ROOT ID

source, s

object, 0

include, incl

ROOT CONTENTS

source segments for the programs
and data in the library.

object segments for the programs
and data in the library.

include
compile
library.

segments required to
the source programs in the

The following library naming conventions have been applied in the
library description above.

1. A library identifier from the table above can be used
as a library name to reference all of the roots of that
library.

2. A root identifier from the table above can be used as a
library name to reference all library roots of the same
type (e.g., source roots, object roots, include root).

3. A two-component library name of the form:

library identifier.root identifier

can be used to reference a particular root within a
given library. For example, standard.saurce 01

experimental. include are such two-component library
names.

4. The roots of both libraries can be referenced by the
library name "both".

5-15 AN80

In addition, the following attributes of library descriptor
commands are defined by the description in the example in Figure
5-2.

COMMAND

library cleanup

library fetch

library info

library_map

library_print

DEFAULT
LIBRARY NAMES

(unsupported)

(none)

**

source, object

source, include

CODING A LIBRARY SEARCH PROCEDURE

DEFAULT
SEARCH NAMES

(none)

(none)

**

*.pI1, *.alm,
.incl., *.ec

The techniques for coding a library search procedure will be
described sometime in the future. However, the search procedure
used for the Multics System Libraries, multics library search,
can be used for other libraries as well, as-long as-they are
organized like the Multics System Libraries. Refer to the
description of multics library search in Section XIV for more
information about this search procedure~

5-16 AN80

SECTION VI

CROSS REFERENCING TOOLS

(to be supplied)

6-1 AN80

SECTION VII

ONLINE LIBRARY MODIFICATION

(to be supplied)

7-1 AN80

SECTION VIII

SUPERVISOR LIBRARY MODIFICATION

(to be supplied)

8-1 AN80

SECTION IX

COMMUNICATIONS LIBRARY MODIFICATION

This section describes the procedures used to modify the
Multics Communications System.

THE MULTICS COMMUNICATION 'SYSTEM

The Multics Communication System is a series of programs
written to operate the Multics Front-End Network Processor (FNP).
This FNP handles the communication functions between Multics and
user terminals and other remote devices. The FNP is a
minicomputer with an 18-bit word and an instruction set similar
to (though more limited than) that of the Honeywell 68/80
computer.

Communication programs are written in a special FNP
assembler language called map355. An assembler for the map355
language is available on Multics under the GCOS Environment
Simulator. The map355 command described in
manual provides a convenient, compiler-like
GCOS assembler.

Section XIII of this
interface to this

Communication programs employ several assembler macros to
perform macro-operations. These macros are defined in a single
segment, macros.map355, which must be compiled by a GCOS job
using the GCOS Environment Simulator. For information about this
simulator, refer to the gcos module description in the MPM
Commands, and to the GCOS Environment Simulator manual, Order No.
AN05.

The object segments generated by map355 for the
communication programs are bound together by the bind fnp command
to form a core image which can be leaded into the FNP-by Multic3.
Some programs must be kept unbound from the majority of
communication programs. Core images for these programs are
created by the coreload command. Refer to the bind fnp and
coreload module descriptions in Section XIII for information
about these commands.

For more information about the communication programs, and
the data structures they use, refer to the Multics Communications

9-1 AN80

System PLM, Order No. AN85.

THE COMMUNICATIONS LIBRARY

The source, object, and core images of the communications
system reside in the Communications Library. This library has
the structure shown in Figure 9-1.

I
I

>source

>ldd
I
I

>comm
I
I

>fnp
I
I
I
I

>object
I
I

>info

Figure 9-1. Structure of the Communications Library

The source segments for communication programs have a suffix
of map355, and reside in the source directory. The object
segments have a suffix of objdk, and reside in the object
directory. The core image segments have no suffix, and also
reside in the object directory. The source and object for the
macros, the GCOS job used to assemble the macros, and the
bindfile segment controlling the binding of communication
programs by bind fnp all reside in the info directory.

The Multics library descriptor identifies this library as
the communications library (com or comm), with directories:
source (s), object-Co), and info. The communications library is
a member of the offline libraries (offline or off) group of
libraries.

9-2 AN80

STRATEGY FOR COMMUNICATION SYSTEMS MODIFICATION

Modifying the communication system involves five steps.

1. Create a modification directory and a listings
directory. The modification will be prepared in these
directories.

2. Prepare the modification. This involves one or more of
the following operations.

A. Reassemble the macro file, if changes were made to
the macros.

B. Compile modified communication source programs to
produce object decks.

C. Bind or core load object decks to produce core
images which can be loaded into the FNP.

3. Place links from the modification directory of the new
Supervisor system which is to contain the modification
to the core image segments in the modification
directory ..

4. Generate a new Multics Supervisor system tape
containing the modification.

5. Install the modification in the Communications Library
whenever the Supervisor modification is installed in
the Supervisor Library.

These steps are described in more detail below.

The core images produced by step 2C above are listed in the
Multics Supervisor header segment, and are included in the
Multics Supervisor when a new Supervisor system tape is
generated. During Supervisor tape generation, the core image
segments are referenced by way of the links created in step 3
above. Refer to Section VIII for information about generating a
new Multics Supervisor system tape.

CREATE DIRECTORIES TO HOLD THE MODIFICATION

The first step in modifying is to create a modification
directory, and listing directory. The following command does
this.

ec)LDD)EC)init m N

where N is the version number of the new communication system.

9-3 AN80

The modification directory is created at

)ldd)comm)fnp)mcs.N

Copy into this directory the new or modified source segments
(NAME.map355, etc), macro source (macros.map355), and bindfiles
(mcs.bind fnp, etc). These segments will be prepared in the
modificatIon directory for installation.

The listings directory is created at

)ldd)listings)mcs.N

As the modification is prepared, all listings which are generated
are placed in the communication listings directory to separate
the listings from the actual segments of the modification.

PREPARING THE MODIFICATION FOR INSTALLATION

Perform the following steps to prepare the modification for
use and for installation into the Communications Library.

Generating a New Macro File

If the modification includes a new set of macros, then the
source for these macros must be compiled. Otherwise, skip to
"Compiling New or Modified Communication Programs" below.

The source for the macros is named macros.map355. To
compile this source, issue the following command.

ec)LDD)EC)compile m N macros.map355

where N is the version number of the
and macros.map355 names the macro
macros.map355 source segment must
directory.

new communication system,
source segment. The new

be in the modification

compile m.ec issues a geos command to compile the macros.
This command runs the GCOS job,

)ldd)comm)fnp)info)macros asm

under the GCOS Environment Simulator.

9-4 AN80

compile m.ec uses or generates the following segments as
part of the compilation process.

macros.map355
The macro source segment which is compiled. It must
be in the modification directory.

355 macros The new set of macros which is created in the
modification directory, and which will be used when
compiling other map355 segments.

355 macros. list
A listing of the compilation results, which is placed
in the listings directory.

macros asm.sysprint.list
macros asm.sysprint

- Extraneous segments created by the GCOS job. They
are normally deleted by compile m.ec, but if the
exec com is interrupted, these segments may be
present in the modification directory. Run
compile_m.ec to completion, and it deletes them.

Compiling New or Modified Communication Programs

The next step in preparing a modification is to compile any
new or modified source programs. Segments with a map355 suffix
contain the source for the various communication programs. For
example, a segment called NAME.map355 would contain the source
for the NAME program. To compile new or modified programs, issue
the following command.

ec >LDD>EC>compile m N SOURCE_SEG_NAMES.map355

where N is the version number of the new communication system,
and SOURCE SEG NAMES.map355 are the segment names of one or more
source segments-to be compiled, including the map355 suffix. The
source segments must be in the modification directory. For
example, the following command compiles the init and utilities
programs.

ec >LDD>EC>compile m 2.01 init.map355 utilities.map355

The star convention
SOURCE SEG NAMES.map355,
For example,

may not
but the segs

be used in the
active function can be.

ec >LDD>EC>compile m 2.01 [segs *.map355J

9-5 AN80

compile m.ec issues a map355 command to compile each source
segment. map355 provides a compiler-like interface to the
compiler of the map355 language which exists under the GCOS
Environment Simulator.

compile m.ec invokes map355 with control arguments which
produce a compiled object segment and a compilation listing for
each source program which is compiled. The segments used or
generated by compile_m.ec are summarized below.

NAME.map355 The communication source program which is compiled.

NAME.objdk

NAME. list

It must be in the modification directory.

The communication object segment generated from the
source segment in the modification directory.

The compilation listing which documents the
compilation. It is moved to the listings directory.

If a new copy of 355 macros exists in the modification
directory, then compile_m.ec uses this copy in compiling the
source programs. For this reason, it is important to compile the
new macros BEFORE compiling any other source programs.

NOTE: If map355 is interrupted while compiling a segment
(by a system crash or fatal process error, etc.), the
links which it creates to reference segments in the
process directory will still exist in the new
process. When map355 is run in the new process, it
will attempt to reuse these links to the old process
directory (which no longer exists) and will encounter
errors. In such cases, map355 prints a suitable
error message, unlinks the bad links, and returns.
Therefore, subsequent invocations of map355 in the
new process will work correctly.

Generating Core Images

The last step in preparing a modification is to convert the
object segments into core images which can be loaded directly
into the FNP. This conversion is performed for different object
segments in one of two ways:

1 • Many object segments are bound together into
core image, using the bind fnp command
control of a bindfile.

a single
under the

2. Single object segments are converted into core images
by using the coreload command.

9-6 AN80

The mcs and site mcs core images are created by bind fnp; the
gicb core image 1S created by coreload.

BINDING OBJECT SEGMENTS TOGETHER

To bind several object segments into a single core image,
issue the following command.

ec)LDD)EC)bind m N BINDFILE.bind_fnp

where N is the version number of the new communication
and BINDFILE.bind fnp is the name of the bindfile
bind fnp to control which segments are bound. The name
end with a bind_fnp suffix.

system,
used by

should

bind m.ec invokes the bind fnp command to create a core
image. b1nd fnp searches for the object segments named in the
bindfile first in the -modification directory, and then in the
Communications Library object directory,)ldd)comm)fnp)object.

bind m.ec invokes bind fnp with control arguments which
produce a core image segment and a bind listing. bind m.ec uses
or generates the following segments.

NAME. bind fnp The bindfile which controls which communication
object segments are bound together, etc. If this
bind file is being modified as part of the
modification, then the modified copy must be in
the modification directory. Otherwise, bind m.ec
use the installed copy of the bind file in the
Communications Library info directory,
)ldd)comm)fnp)info.

NAME The core image segment which bind fnp creates in
the modification directory.

NAME. list The bind listings which documents the binding
process. It is moved to the listings directory.

As an example, if the Multics communication system bind file
(mcs.bind fnp) is being changed as part of Version 2.00, then the
new bindfile should be in the modification directory. The
following command creates a new communication system core image.

ec >LDD)EC)bind ill 2.00 mes.bind fnp

If Version 2.01 does not change the bindfile, then the bindfile
installed in the Communications Library info directory,
)ldd)comm)fnp)info, is automatically used as shown in the
following command:

ec)LDD)EC)bind m 2.01 mcs.bind fnp

9-7 AN80

bind_m.ec prints out the names of the object programs which
were bound, and the bind map entries for those programs found in
the modification directory. This information can be used to
check that all new or modified programs which should be included
in the core image actually were included.

CONVERTING SINGLE OBJECT SEGMENTS

To convert a single object segment into a core image, issue
the following command, while in the modification directory.

coreload NAME.objdk

where NAME.objdk is the object segment to be converted. The
core load command then creates NAME in the modification directory.

LINKING TO AND USING THE NEW CORE IMAGES

Generation of core image segments by bind m.ec or by the
coreload command completes the preparation of-a modification to
the communication system. All that remains is to use the
modified core image segments in a new Multics Supervisor system.

To use th~ new core images, place a link from the new
Supervisor modification directory to each new core image segment
in the modification directory. Then generate the new Supervisor
system, as described in Section VIII.

If a totally new core image segment has been created as part
of the modification to the communication system, then the
Supervisor header segment must be modified to name this new core
image. Modification of the header segment is also described in
Section VIII.

INSTALLING THE MODIFICATION

(to be supplied)

TESTING THE MODIFICATION

(to be supplied)

9-8 AN8a

DE-INSTALLING THE MODIFICATION

(to be supplied)

DOCUMENTING THE MODIFICATION

(to be supplied)

MODIFICATION TOOLS

The following is a summary of the tools used to modify the
communication system. All exec com segments reside in >LDD>EC.
Other tools reside in >tools, or are in the one of the other
Multics System Libraries.

ec >LDD>EC>init m N

creates a communication modification directory and a listings
directory (>ldd>comm>fnp>mcs.N) (>ldd>listings>mcs.N).

ec >LDD>EC>compile_m N SOURCE SEG NAMES.map355

compiles communication source programs and a macro source
segment. Segments to be compiled must reside in the modification
directory. Compiled object segments are placed in this
directory, and listings are placed in the communication listings
directory.

ec >LDD>EC>bind_m N BINDFILE.bind fnp

binds several communication object segments together into a
single core image segment. The bindfile must reside in the
modification directory if it has been modified, or in the
Communications Library info directory (>ldd>comm>fnp>info)
otherwise. Object segments reside either in the communication
modification directory or in the Communications Library object
directory (>ldd>comm>fnp>object). The core image segment is
created in the modification directory, and a bind listing is
moved to the listings directory.

bind fnp BINDFILE>bind fnp -list

used by bind m.ec to bind several object segments into a core
image segment.

9-9 AN8a

coreload NAME.objdk

converts a single communication object segment into a core image
segment.

gcos)ldd)comm)fnp)info)macros asm -list -lower case -brief

used by compile_m.ec to compile a new macro source segment.

map355 NAME.map355 -list -macro file 355 macros

used by compile m.ec to compile a communication system source
program, optionally with a modified set of macros.

9-10 AN8a

SECTION X

BOOTLOAD LIBRARY MODIFICATION

(to be supplied)

10-1 AN80

SECTION XI

WHEN THE SYSTEM LIBRARIES SELF-DESTRUCT

(to be supplied)

11-1 AN80

SECTION XII

LIBRARY MAINTENANCE EXEC COM'S

(to be supplied)

12-1 AN80

SECTION XIII

LIBRARY TOOLS

This section contains command descriptions for the tools
used in library maintenance. The use of many of these tools have
been discussed in Section IV, Section VI, Section VII,
Section VIII, Section IX, and Section X. In addition, many of
these commands are used by the exec com segments described in
Section XII.

13-1 AN80

bind fnp bind fnp

Name: bind fnp

This command produces a core image segment that can be
loaded into the FNP. It uses two control segments: a bindfile
which specifies the configuration that the FNP will support, the
names and ordering of the object segments included in the core
image, and the size of certain software tables; and an optional
search rules segment which specifies which directories are
searched to find the object segments.

This command is fully described in the MAM Communications
manual, Order No. CC75.

13-2 AN80

lfree name lfree name

Names: lfree_name, Ifn

This command is part of the Multics Installation
System (MIS) which is used to install modifications in the
Multics Online Libraries. The comm-and interfaces with the
installation subroutine which frees names on one directory entry
so that those names can be used on a replacement entry.

Usage

An entryname is freed according to the following algorithm:

1. If the name ends with an integer suffix, then the name
is freed by incrementing the suffix by 1. For example,
qedx.1 becomes ~edx.2.

2. If the name does not end with an integer
the name is freed by adding a 1 suffix.
edm becomes edm.1.

suffix, then
For example,

3. If the freed name is longer than 32 characters, then
the portion of the name preceding the integer suffix is
truncated before the integer suffix is added or
incremented. For example,

bound misc translatrs .s.archive
becomes

bound misc translatrs .s.archi.1

4. If another entry which has ~ne freed name already
exists in the directory, then that entryname is freed.
This means that, if teco and teco.1 are names on two
segments in the same directory, freeing the name teco
produces tecoQ1; this causes teco.1 to be freed,
producing teco.2.

lfree name pathname

where pathname is the relative or absolute pathname which
identifies the entry whose name is to be fr~ed. Only the final
entryname of the pathname is freed. All other names on the entry
remain intact. The Multics star convention may not be used.

13-3 AN80

lfree name lfree name

Entries: lfree_name$restore, lfn$restore

This entry point in the command unfrees (or restores) a
freed entryname by reversing the algorithm described above.

Usage

lfree_name$restore pathname

where pathname is the relative or absolute pathname which
identifies the restored entryname. A freed name is constructed
from this entryname, the directory entry having the freed name is
found, and its name is restored to entryname.

Note

lfree name calls an installation subroutine which is part of
the Multics Installation System to free entry names. This
installation subroutine, in turn, calls the installation tools
gate into ring 1 to allow the names on ring 1 library segments to
be freed. However, maintainers of outer ring libraries do not
have access to this privileged gate. They can use lfree name to
free and restore entrynames by initiating the hcs gate wIth the
reference name installations tools once per process before using
lfree name. The following command-will perform this function:

initiate [get_pathname hcs] installation tools

Examples

If a bound segment in the working directory has the names
bound_qedx , qedx, and qx, then the command

Ifree name (bound_qedx qedx qx)

frees those names. If qedx.1 already exists in the working
directory, that name is freed to qedx.2.

lfree name$restore (bound_qedx qedx qx)

restores all of these names to their original values. Note that
the arguments given to lfree name and lfree name$restore are the
same, the unfreed entrynames~ lfree name frees these entrynames,
while lfree name$restore constructs freed names from these
entrynames, and restores entrynames which match those freed

13-4 AN80

library cleanup library_cleanup

Names: library cleanup, lcln

This command deletes library entries which are no longer
needed ... S.egments, links, and multisegment files may be deleted
in this manner.

Library entries matching one or more search name arguments
are selected as candidates for possible deletion. If they have
not been modified within a given grace period, then they are
eligible for deletion.

By default, library cleanup only lists the entries eligible
for deletion. The -delete control argument must be given to
cause deletion of these entries.

This command uses a library descriptor and library search
procedures, as described in Section IV.

library_cleanup {search names} {-control_args}

where:

1 • search names

2. control args

-delete, -dl

-list, -Is

are entrynames which identify the library
entries which are candIdates for deletion.
The Multics star convention may be used to
identify a group of entries with a single
search name. Up to 30 search names may be
given in the command. If none are given,
then any default search names specified in
the library descriptor are used.

are selected from the following list of
control arguments and can appear anywhere in
the command:

causes the library entries which are eligible
for deletion to be deleted~

causes the library entries which are eligible
for deletion to be printed on the user's
terminal. This is the default if neither
-delete, -list, nor -long is given.

13-5 AN80

library cleanup

-long, -lg

-time days
-tm days

library cleanup

causes all library entries which match the
search names to be printed on the user's
terminal, even if they are not eligible for
deletion according to their date/time entry
modified. Entries which are eligible for
deletion are flagged with an asterisk (*).

gives a grace period in
library entries whose
modified falls within this
not eligible for deletion.
period is seven days.

days. Matching
date/time entry

grace period are
The default grace

-library library name,
-lb library name-

- identifies a library which is to be searched
for entries to be deleted. The Multics star
convention may be used to identify a group of
libraries with a single library name. Up to
30 -library control arguments may be given in
each command. If none are given, then any
default library names specified in the
library descriptor are used.

-search name search name
identifies a search name which begins with a
minus (-) to distinguish the search name from
a control argument. There are no other
differences between the search names
described above and those given with the
-search name control argument. One or more
-search-name control arguments may be given
in the command.

-descriptor desc name
gIves a pathname or reference name which
identifies the library descriptor describing
the libraries to be searched. If no
-descriptor control argument is given, then
the default library descriptor is used.

13-6 AN80

library_cleanup library_cleanup

Notes

If the -delete and -list control arguments are used
together, then the library entries being deleted are printed on
the user's terminal.

If an entry which is eligible for
inner ring, library cleanup must
installation tools gate-to change its
deleting it. If the user does not have
the entry in not deleted, and a linkage

13-7

deletion resides in an
call the restricted

ring brackets prior to
access to this gate, then
error occurs.

AN80

library_descriptor library descriptor

Names: library descriptor, Ids

A library descriptor is a data base which associates
directories or archives in the Multics storage system with the
roots of a logical library structure. Library descriptors are
discussed in detail in Section II.

This command prints information about library descriptors on
the user's terminal, and controls the use of library descriptors
by the other library descriptor commands. It can print the
pathname of the directory or archive associated with a library
root; can print detailed information about one or more library
roots; can set and print the name of the default library
descriptor used by the other library descriptor commands; and it
can print the default library and search names associated with
each library descriptor command. The relationship between
library descriptor and the other library descriptor commands is
discussed further in Section IV.

Usage

library_descriptor key {arguments}

where the keys and their arguments are described in the
paragraphs which follow.

Key: name, nm

The name key returns the name of the default library
descriptor which is currently being used. library descriptor may
be invoked as an active function when the name key-is used.

Usage

library_descriptor name

Key: set

The set key sets the name of the default library descriptor.

13-8 AN80

library_descriptor library_descriptor

Usage

1 •

library_descriptor set desc name

desc name is the pathname or reference name of the new
default library descriptor. If a reference
name is given, the descriptor is searched for
according to th search rules, which are
documented in Section III, see Reference
Names, of the MPM Reference Guide.

Key: pathname, pn

The pathname key returns the pathname of the library root(s)
which are identified by one or more library names.
library descriptor may be invoked as an active function when the
pathname key is used.

Usage

library_descriptor pathname library_names {-control_args}

where:

1 •

2.

library names are the names of the libraries whose
pathnames are to be returned. The Multics
star convention may be used to identify a
group of libraries. Up to 30 library names
may be given.

are selected from the following list of
control arguments and can appear anywhere
after the key in the command:

-descriptor desc name
gIves the pathname or reference name of the
library descriptor defining the library roots
whose pathnames are to be returned. If the
-descriptor control argument is not
specified, then the default library
descriptor is used.

13-9 AN80

library_descriptor library_descriptor

-library library name
-lb library name-

- identifies a library name which begins with a

Key: default, dft

minus (-) to distinguish the library name
from a control argument. There are no other
differences between the library names
described above and those given with the
-library control argument. One or more
-library control arguments may be given in
the command.

The default key prints
search name(s) associated
descriptor commands.

the
with

default
one or

library
more of

name(s) and
the library

Usage

library_descriptor default {command names} {-control arg}

where:

1. command names are the names of the library descriptor
commands whose default library and search
names are to be printed. If no command names
are given, the defaults for all of the
library descriptor commands are printed.

2. control arg may be the -descriptor control argument as
described above. It may appear anywhere
after the key in the command.

Key: root, rt

The root key prints detailed information about library roots
on the user's terminal. The information includes the names on
each library root, its pathname, and its type.

13-10 AN80

library_descriptor library_descriptor

Usage

library_descriptor root library_names {-control_args}

where:

1. library names identify the library roots about which
information is to be printed. The Multics
star convention may be used to identify a
group of libraries. Up to 30 library names
may be given.

2. control_args are selected from the following list of

-name, -nm

control arguments and can appear anywhere
after the key in the command:

causes all of the names on each library root
to be printed.

-primary, -pri causes the primary name on each library root
to be printed.

-match causes all library root names which match any
of the library names to be printed. This is
the default.

-descriptor desc name
is as above.

-library library name
-lb library name-

- is as above.

13-11 AN80

library_descriptor_compiler library_descriptor compiler

Names: library_descriptor_compiler, ldc

This command compiles a library description to produce a
library descriptor data segment.

Refer to "Library Description Language" in Section V for a
discussion of the syntax and semantics of the library description
language.

Usage

library_descriptor compiler desc name {-control_arg}

where:

1 . desc name

2.

-brief, -bf

-long, -lg

Notes

is the relative pathname of the segment
containing the library description to be
compiled. If this pathname does not end
with an ld suffix, then one is assumed.

may be either of the following control
arguments:

indicates that the brief form of error
messages is to be used for all errors
diagnosed during the compilation. (See
"Notes" below.)

indicates that the long form of error
messages is to be used for all errors
diagnosed during the compilation. (See
"Notes" below.)

If the segment being compiled is called descriptor name.ld,
then the compilation generates a segment - called
descriptor name.alm in the working directory. This segment can
be assembled by the aIm command to produce the library descriptor
data segment.

If neither the -brief nor -long control argument is used,
then the long form of error messages is used for the first
occurrence of an error, and the brief form is used for subsequent
occurrences of that error.

13-12 AN80

library_fetch library_fetch

Names: library_fetch, If

This command copies entries from a library into the user's
working directory. Control arguments allow copying the entries
into another directory or renaming them as they are copied;
select which library entrynames are placed on the copy; allow
copying the library entry which contains a matching entry instead
of the matching entry itself (ecg., copy the archive which
contains a matching archive component); or copying all of the
components of the containing entry* A documentation facility is
provided for recording in a file the status of each entry which
is copied.

This command uses a library descriptor and library search
procedures, as described in Section IV.

Usage

library fetch {search names} {-control_args}

where:

1 .

2.

search names are entrynames which identify the library
entries to be copied. The Multics star
convention may be used to identify a group of
entries with a single search name. Up to 100
search names may be given in the command. If
none are given, then any default search names
specified in the library descriptor are used.

are selected from the following list of
control arguments and can appear anywhere in
the command:

-library library name,
-lb library name-

-name, -nm

- identifies a library which is to be searched
for entries matching the search names. The
Multics star convention may be used to
identify a group of libraries to be searched.
Up to 100 -library control arguments may be
given in each command. If none are given,
then any default library names specified in
the library descriptor are used.

indicates that all of the names on each
matching library entry are to be placed on
the copy. See the discussion of naming
considerations under "Notes" below.

13-13 AN80

library fetch library_fetch

-primary, -pri indicates that the first name of each
matching library entry is to be placed on the
copy. See the discussion of naming
considerations under "Notes" below.

-match

-into path

-chase

-no chase

-long, -lg

-brief, -bf

-container

indicates that, for each matching library
entry, the entrynames which match any of the
search names are to be placed on the copy.
See the discussion of naming considerations
under "Notes" below. This is the default.

identifies the directory into which library
entrie~ are copied and indicates how they are
renamed. An absolute or relative pathname
may be given. The directory portion of the
pathname identifies the directory into which
each library entry is copied. The final
entryname of the pathname is used to rename
each library entryname being placed on the
copy, under control of the Multics equal
convention. Only one -into control argument
may appear in a command line. If -into is
not given, matching entries are copied into
the user's working directory and no renaming
occurs.

indicates that the target of a matching
library link is to be copied.

indicates that a warning message is to be
printed when a matching link is found in the
library, and that no copying is to occur.
This is the default.

causes the pathname of each matching entry to
be printed on the user's terminal as the
entry is copied.

suppresses printing the pathname of matching
entries. This is the default.

causes the library entry which contains each
matching entry to be copied, instead of the
matching entry itself. See the discussion
under "Notes" below.

13-14 AN80

library_fetch

-components

-entry, -et

library fetch

causes all of the component library entries
of a matching library entry to be
rather than just the matching entry
It also causes all components of a
entry containing a matching component
copied. See the discussion under
below.

copied,
itself.
library
to be

"Notes"

causes each matching library entry itself to
be copied. This is the default.

-search name search name,
identifies a search name which begins with a
minus (-) to distinguish the search name from
a control argument. There are no other
differences between the search names
described above and those given with the
-search name control argument. One or more
-search-name control arguments may be given
in the command.

-descrIptor desc name
gIves a pathname or reference name which
identifies the library descriptor describing
the libraries to be searched. If no
-descriptor control argument is given, then
the default library descriptor is used~

-retain, -ret indicates that library entries which are
awaiting deletion from the library (as
determined by the library search program) are
to be copied.

-omi t indicates that library entries awaiting
deletion from the library are to be omitted
from the s~arch, and are not to be copied.
This is the default.

-output file file,
-of file indicates that status information for each

-all, -a

copied llDrary entry is to be appended to a
file. A relative or absolute pathname of the
file may be given. If it does not have a
suffix of fetch, then one is assumed.

indicates that all available status
information for copied library entries is to
be recorded in the output file.

13-15 AN80

library fetch library_fetch

-default, -dft indicates that only default status

Notes

information is to be recorded in the output
file. This is the default.

Any combination of the control arguments governing naming
(-name, -primary, and -match) may be given in the command.
However, the following groups of control arguments are mutually
exclusive, and only one argument from each group may be given in
the command: -chase and -no chase; -long and -brief;
-container, -components, and -entry; -retain and -omit; and
-all and -default.

An -all or -default control argument may only be specified
when the -output file control argument is also given. The
particular status Information recorded in the output file for the
-default control argument is under the control of the library
search program. It includes the information deemed most
important for the type of entry contained in the library.

If the file given in the -output file control argument does
not exist, it is created by library fetch. If it does exist, new
status information is appended to the end of the file preserving
any previously recorded status. This feature allows the user to
build a history of the entries copied out of a library.

When using the -into control argument, care must be taken to
ensure that the equal name included in the -into pathname can be
applied to all names to be placed on each of the copied entries.
Name duplications can easily result when more than one library
entry matches the search names.

The -container and -components control arguments are
provided to facilitate copying all of the library entries
included in a given bound segment or related to a given
subsystem. For example, by identifying a component of the source
archive for a bound segment and using the -container control
argument, the entire source archive is copied into the user's
directory. Similarly, by identifying a directory in the library
containing all of the component entries of a subsystem and using
the -components control argument, each component is copied into
the user's directory.

When the -container, -components, or -chase control
arguments are used, it may happen that none of the entrynames on
a copied library entry matches any of the search names. Because
the user may have requested that only matching names be placed on
the copies, the library search program causes the first entryname

13-16 AN80

library_fetch library_fetch

to be placed on
arguments is used,
user.

the copy when
in addition to

one of these three control
requested by the

The user is automatically given reaccess to object segments
which are copied, r access to peruse text object segments, and rw
access to all other segments.

Examples

library fetch abbrev.pl1 -into)udd)Multics)user)new_=.=

copies the source segment abbrev.pl1 into the directory
)udd)Multics)user, renaming the copy new_abbrev.pI1.

library_fetch bound_runoff_.** -library online

copies all of the segments in the online libraries whose names
begin with bound runoff into the user's working directory. This
might include the source archive, bindable object archive, bound
object segment, and bind listing.

If bound runoff .** -library online.source -components

copies all of the source components from the source archive for
bound runoff into the user's working directory.

If qedx.pl1 -components

copies all of the source components in the archive containing
qedx.pli into the user's working directory.

library_fetch *.alm -lb network. source -into new =.alm

copies all ALM source segments from the network source library
into the user's working directory, and adds a new prefix to the
names placed on each segment.

library_fetch pl1 status.info -nm -lb info

copies the pl1 status.info segment from the info segment
libraries into the user's working directory, copying all
entrynames from the library entry onto the copy.

13-17 AN80

library_fetch library_fetch

library_fetch **.ec -library online.??????

copies all exec com segments from the online source and object
libraries into the user's working directory.

library fetch -lb supervisor.bc bound sss_wired .*

copies the bind segment from the bindable object archive called
bound sss wired .archive. Note that although the object archive
itself matches the search name which was given, only the matching
archive component is copied because the -container control
argument was not given. .

library_fetch -lb include stack frame.incl.*

copies the stack frame declaration include segments for all
source languages from the include library into the user's working
directory.

13-18 AN80

library info

Names: library info, Ii

This command selects entries from a library, and prints the
status of these entries on the user's terminal. The entries are
printed in alphabetic~l order by ~ii~a~y name.

A full range of status information can be included in the
output by using one or more of the output arguments. Besides
information returned by the status command, the output can
include access information, object segment attributes and other
segment contents information, quota information, etc.

This command uses a library descriptor and library search
procedures, as described in Section IV. When no output arguments
are given, the information included by default is controlled by
the search program for the particular library being searched.
The default output includes the information most appropriate for
library maintenance.

Usage

library_info {search names} {-control_args} {lm_output_args}

where:

1 •

2.

search names

control args

are entrynames which identify the library
entries to be output. The Multics star
convention may be used to identify a group of
entries with a single search name. Up to 100
search names may be given in the command. If
none are given, then any default search names
specified in the library descriptor are used.

are selected from the following list of
control arguments and can appear anywhere in
the command:

-library library_name,
-lb library name

- identifies a library which is to be searched
for entries matching the search names. The
Multics star convention may be used to
identify a group of libraries with a single
library name. Up to 100 -library control
arguments may be given in each command. If
none are given, then any default library
names specified in the library descriptor are
used.

13-19 AN80

library info

-components

-container

-entry, -et

-chase

-no chase

library info

causes status information for all the
components of a matching library entry, in
addition to the output for the matching
entry. It also causes status information for
all components of a library entry containing
a matching entry. See the discussion under
"Notes" below.

causes status information for the library
entry which contains each matching entry, in
addition to the output for the matching
entry. See the discussion under "Notes"
below ..

causes status information to be printed for
only the library entries which match one of
the search names. This is the default.

suppresses status information for any
intermediate links which exist between a
library link and its eventual target.

causes status information for the
intermediate links. This is the default.

-retain, -ret causes status information for library entries
awaiting deletion from the libraries (as
determined by the library search program).

-omit suppresses status information for library
entries awaiting deletion from the libraries.
This is the default.

-search name search name
identifies a search name which begins with a
minus (-) to distinguish the search name from
a control argument. There are no other
differences between the search names
described above and those given with the
-search name control argument. One or more
-search-name control arguments may be given
in the command.

-descriptor desc name
gIves a pathname or reference name which
identifies the library descriptor describing
the libraries to be searched. If no
-descriptor control argument is given, then
the default library descriptor is used.

13-20 AN80

library info

3. lm_output_args control which status information is included

Notes

in the output. Any of the output arguments
accepted by the library map command
(d-escrib.ed la.ter in this section) may be used
for library info as well. The output
arguments can-appear anywhere in the command.

Any combination of output arguments may be used in a command
since the use of several output arguments merely causes more
information to be included in the output. However, the following
groups of control arguments are mutually exclusive, and only one
argument from each group may be given in a command: -chase and
-no chase; -retain and -omit.

The -container and -components control arguments are
provided to facilitate information gathering on all library
entries related to a given bound segment. When only one
component of a bound segment archive is matched, -entry causes
status information to be printed for only the matching library
entry; -container and -components cause status for related
library entries as well. -container and -components may be used
singly or together, but neither can be used with -entry.

The following example liiustrates ~ne effect of using
-container and -components. If a search name is given which
matches a component in a source archive, giving -entry would
produce status for only that component. Giving -container
instead would produce status for the source archive, as well as
for the matching component. Giving -components would produce
status for all of the components of the source archive containing
the matching component. Giving both -container and -components
would produce status for the source archive and all of its
components.

Examples

library_info abbrev.* -lb source

returns information about the source segment for the abbrev
procedure.

13-21 AN80

library info

library info
-components

bound_apl .**.archive -lb unb.s -container

returns status for
(bound apl .1.s.archive
of theIr components.

library_info listen

both of the APL source archives
and bound apl .2.s.archive), and for all

-lb supervisor.bndc -contents

returns information about the compilation and object attributes
of the listen procedure. Refer to the description of output
arguments in the library map command for information about the
-contents control argument.

13-22 AN80

Names: library_map, 1m

This command selects entries from a library, and writes the
status of these entries into a map file suitable for dprinting.
The entries in the file are alphabetized by primary name.

A full range of status information can be included in the
map items by using one or more of the output arguments. Besides
information returned by the status command, the map items can
include access information, object segment attributes and other
segment contents information, quota information, etc.

This command uses· a library descriptor and library search
procedures, as described in Section IV. When no output arguments
are given, the information included by default in the map items
is controlled by the search program for the particular library
being mapped. The default map item includes the information most
appropriate for a library map.

Usage

library_map {search names} {-control args} {output_args}

where:

1 •

2.

search names are entrynames which identify the library
entries to be output. The Multics star
convention may be used to identify a group of
entries with a single search name. Up to 100
search names may be given in the command. If
none are given, then any default search names
specified in the library descriptor are used.

are selected from the following list of
control arguments and can appear anywhere in
the command:

-library library name,
-lb library name-

identifies a library which is to be searched
for entries matching the search names. The
Multics star convention may be used to
identify a group of libraries with a single
library name. Up to 100 -library control
arguments may be given in each command. If
none are given, then any default library
names specified in the library descriptor are
used.

13-23 AN80

-output file file,
-of fife identifies the output file in which the

library map is to be generated. A relative
or absolute pathname may be given for the
file. If it does not have a suffix of map,
then one is assumed. If no -output file
control argument is given, then the map is
generated in the library.map file which is
created is the user's working directory.

-header heading,
-he heading gives a character string which is used as a

-footer footing

heading line on the first page of the map to
identify which libraries have been mapped.
If the string contains blanks, then it must
be enclosed in quotes. Only the first 120
characters of the string are used. If no
-header control argument is given, then a
default heading line is used. See the
discussion under "Notes" below.

-fo footing gives a character string which is used in the

-entry, -et

-components

-container

footing line at the bottom of each page to
identify the libraries being mapped. If the
string contains blanks, then it must be
enclosed in quotes. Only the first 45
characters of the string are used. If no
-footer control argument is given, then a
default character string is used in the
footing line. See the discussion under
"Notes" below.

causes map items to be included in the output
only for library entries which match one of
the search names.

causes map items for all the components of a
matchIng ~lorary entry, in addition to the
item for the matching entry. It also causes
map items for all components of a library
entry containing a matching entry. See the
discussion under "Notes" below.

causes a map item for the library entry which
contains each matching entry, in addition to
the item for the matching entry. See the
discussion under "Notes" below. This is the
default.

13-24 AN80

3.

-cross reference, -cref
causes cross reference map items to be
included in the output for the secondary
names on library entries which are output.
See the discussion under "Notes" below. This
is the default.

-no cross reference, -ncref

-chase

-no chase

suppresses cross reference map items.

suppresses map items for any intermediate
links which exist between a library link and
its eventual target.

causes map items for the intermediate links.
This is the default.

-retain, -ret causes a map item for library entries
awaiting deletion from the libraries (as
determined by the library search program).

-omit suppresses the map item for library entries
awaiting deletion from the libraries. This
is the default.

-search name search name
identifies a search name which begins with a
minus (-) to distinguish the search name from
a control argument. There are no other
differences between the search names
described above and those given with the
-search name control argument. One or more
-search-name control arguments may be given
in the command.

-descriptor desc name

output args

gIves a pathname or reference name which
identifies the library descriptor describing
the libraries to be searched. If no
-descriptor control argument is given, then
the default library descriptor is used~

are selected from the following list of
output arguments and can appear anywhere in
the command:

13-25 AN80

library_map

-all, -a causes all available information
output.

to be

-default, -dft causes default information to be output, in
addition to the information requested by
other output arguments. This is the default
when no other output arguments are given.

-status, -st

-access

-contents

causes all status information printed by the
command "status -all" to be output, except
for access control information.

causes'all access control information to be
output. This includes: the user's access
mode to the library entry, its ring brackets,
ACL, access class, AIM attributes, safety
switch setting, and for directory entries the
initial ACLs.

causes information describing the contents of
library entries to be output. This includes:
compilation information, object attributes,
and segment printability information.

The following output arguments are available, but are
probably not of interest to every user. They provide more
selective control over which status information is included in
the output.

-name, -nm causes all names to be output.

-primary, -pri causes the primary name to be output.

-match

-type, -tp

causes all names which match any of the
search names to be output.

causes the type of each library entry to be
output. Types include: link, segment,
archive, archive component, multisegment
file, multisegment file component, and
directory.

-pathname, -pn causes the pathname of the parent of each
library entry to be output.

-link target causes the pathname of the target of each
library link to be output.

13-26 AN80

-date, -dt causes the date/time contents modified,
date{time used, date/time entry modified,
date/time dumped, and date/time compiled to
be output.

-date time contents modified, -dtcm
- causes the date/time modified to be output.

-date time_used, -dtu
causes the date/time used to be output.

-date time entry modified, -dtem
ciuses' the date/time entry modified to be
output. For archive components, this
corresponds to the date/time component
updated into the archive.

-date time dumped, -dtd
causes the date/time dumped to be output.

-date tiloe compiled, -dtc
- - causes the date/time compiled to be output.

-length, -In causes the records used, current length (if
different from the records used), maximum
length (if different from
sys info$max_seg slze), bit count, archive
component offset, and directory quota
information to be output.

-records, -rec causes the records used to be output.

-current length

-max length

causes the current length to be output (if
different from records used).

causes the maximum length to be output (if
different from sys info$max_seg size).

-bit count causes the bit count to be output.

-offset, -ofs causes the word offset of an archive
component within its archive to be output.

13-27 AN80

-quota

-author, -at

-unique id

-device, -dv

-copy, -cp

-safety

-mode, -md

causes directory quota information to be
output for library directory entries. This
includes: quota set on the directory, quota
used, terminal quota switch setting (if on),
a count of inferior directories with terminal
quota (if nonzero), the time/record product
for the directory, and the date/time
time/record product updated. If a directory
is a master directory, this information is
also printed.

causes the author and bit count author (if
differ~nt from the author) to be output.

causes the unique identifier to be output.

causes the name of the logical volume on
which the entry resides to be output, for
non-directory, non-MSF entries; causes the
name of the son's logical volume to be output
for directory and MSF entries. Also causes
the setting of the
transparent-to-paging-device switch to be
output.

causes the setting of the copy-an-write
switch to be output (if on) .

causes the setting of the safety switch to be
output (if on).

causes the user's mode of access to the
library entry to be ou tpu t.

-ring_brackets, -rb
causes the ring brackets to be output.

-acl causes the access control list to be output.

-access class causes the access class to be output (if
other than system low). Also, the setting of
the security-out-of-service switch, the audit
switch, and the multiple access class switch
is output (if on).

-initial acl causes the
associated
be output.

initial access control lists
with library directory entries to

13-28 AN80

Notes

-compiler_name causes the name of the
segment to be output.

object

-compiler version
causes the version information
compiler of an object segment to be

for the
output.

-compiler_options

-object info

-non ascii

-error

-level

causes the compiler option information stored
in an object segment to be output.

causes information about format of an object
segment and its entry bound to be output.

causes an indication
contains non-ASCII

that a library entry
characters to be output.

causes messages indicating errors
occurred while obtaining the
information to be output.

which
status

causeS a level number to precede each output
entry. This number indicates the
relationship between a library entry and its
components. Normally, this relationship is
indicated only by indenting the component
names beneath those of the library entry.

-new_line, -nl causes a line to be skipped between each
level 1 entry in the output. Normally, no
lines are skipped between entries.

Any combination of output arguments may be used in a command
since the use of several output arguments merely causes more
information to be included in each map entry. However, the
following groups of control arguments are mutually exclusive, and
only one argument from each group may be
-cross reference and -no cross reference;
-retain and -omit.

given in a command;
-chase and -no_chase;

The -container and -components control arguments are
provided to facilitate the mapping of library entries related to
a given bound segment. When only one component of a bound
segment archive matches one of the search names, -entry causes a
map item for only the matching library entry; -container and
-components cause map items for entries related to a matching
entry as well. -container and -components may be used singly or

13-29 AN80

together, but neither can be used with -entry.

The following example illustrates the effect of using
-container and -components. If a search name is given which
matches a component in a source archive, giving -entry would
produce a map item for only that component. Giving -container
instead would produce a map item for the source archive, as well
as one for the matching component. Giving -components would
produce map items for all of the components of the source archive
containing the matching component. Giving both -container and
-components would produce map items for the source archive and
all of its components.

When the -cross reference control argument is used, a cross
reference map item is included in the map for each secondary name
on a matching library entry. The cross reference item includes:
the secondary name; the date/time modified for the library
entry; and its pathname. The pathname ends with the primary
name of the library entry, providing a reference to the map item
which includes complete information about the entry.

The library map is generated in an output file identified by
the -output_file control argument. If the -output file control
argument is not given, then a file called library.map is created
in the user's working directory. If the output file already
exists, it is truncated before the new map is created. Thus
several library map commands executed in the same working
directory (in the same or different processes) without an
-output file control argument can produce unpredictable results.
In such cases, the -output file control argument should be used
to create a different map fiTe in each command.

If the -header control argument is given, then the heading
line is centered on the first page of the map beneath the lines:

Map of the nn Entries

of the

The heading line should be worded with this in mind. For
example:

Map of the 35 Entries

of the

13-30 AN80

Standard Library Bind Listing Directory

If -header is not given, a default heading line is constructed by
concatenating the names of the libraries which were searched, as
shown below:

Map of the 350 Entries

of the

Libraries

standard library.list, unbundled librarY.list,
tools library.list, user_library.list,-network librarY.list

If the -footer control argument is given, then the footing
line placed at the bottom of each page of the library map
contains the footing character string given with the control
argument, alung with a page number, and the names of the first
and last map items which appear on the page. If -footer is not
given, then the concatenated library names used in the heading
line are also used in the footing line.

Examples

library map -lb info -lb mpm
documentation

**.info **.runoff -of

creates the documentation.map file in the working directory,
which contains a map of the entries in the info and MPM libraries
which match the search names **.info or **.runoff.

library_map -lb online.* ** -of online -dtd -dft

creates the online.map file which contains a map of all of the
entries in the online.* libraries. Each map entry includes the
date dumped, as well as whatever default information was
specified by the library search program.

13-31 AN80

creates a map in the library.map file of the working directory
which contains map items for those entries in the default library
(or libraries) which match the default search name(s). These
default values are specified in the default library descriptor
data base.

13-32 AN80

library_print library_print

Names: library_print, lpr

This command selects library entries whose contents is
printable, and writes the contents of these entries into a file
suitable for dprinting. Printable library entries are those
which contain only ASCII characters. The ASCII portion of peruse
text object segments is also printable. Thus, library print can
print source segments, listings, bind segments, info segments,
peruse text object segments, exec com and absentee control
segments, printable multisegment files, etc.

The entries in the print file are alphabetized by the
primary name on the library entry. Each entry is preceded by a
header which lists the status of the entry. An index of all
entry names appears at the end of the print file.

This command uses a library descriptor and library search
procedures, as described in Section IV. When no output arguments
are given, the status information included by default in each
entry's heading is controlled by the search program for the
particular library being printed. The default heading includes
information most appropriate for library maintenance.

Usage

library_print {search names} {-control_args} {lm_output_args}

where:

1 . search names are entrynames which identify the library
entries whose contents is to be output. The
Multics star convention may be used to
identify a group of entries with a single
search name. Up to 100 search names may be
given in the command. If none are given,
then any default search names specified in
the library descriptor are used.

13-33 AN80

library_print library print

2. are selected from the following list of
control arguments and can appear anywhere in
the command:

-library library name,
-lb library name

- identifies a library which is to be searched
for entries matching the search names. The
Multics star convention may be used to
identify a group of libraries with a single
library name. Up to 100 -library control
arguments may be given in each command. If
none are given, then any default library
names specified in the library descriptor are
used.

-output file file,
-of file identifies the output file in which the

printed contents is to be generated. A
relative or absolute pathname may be given
for the print file. If it does not have a
suffix of print, then one is assumed. If no
-output file control argument is given, then
the prInt file is generated in the
library.print file which is created is the
user's working directory.

-header heading,
-he heading gives a character string which is used as a

-footer footing

heading line on the first page of the print
file to identify which libraries have been
printed. If the string contains blanks, then
it must be enclosed in quotes. Only the
first 120 characters of the string are used.
If no -header control argument is given, then
a default heading line is used. See the
discussion under "Notes" below.

-fo footing gives a character string which is used in the
footing line at the bottom of each page to
identify the libraries being printed. If the
string contains blanks, then it must be
enclosed in quotes. Only the first 45
characters of the string are used. If no
-footer control argument is given, then a
default character string is used in the
footing line. See the discussion under
"Notes" below.

13-34 AN80

library print

-components

-container

-entry, -et

-chase

-no chase

library_print

causes all the components of a matching
library entry to be output, instead of the
entry itself. It also causes all components
of a library entry containing a matching
entry to be output. See the discussion under
"Notes" below.

causes the library entry which contains each
matching entry to be output as a whole,
rather than the matching entry. See the
discussion under "Notes" below.

causes only the contents of library entries
which match one of the search names to be
output. This is the default.

suppresses entry heading information for any
intermediate links which exist between a
library link and its eventual target whose
contents is output.

causes entry heading information for the
intermediate links. This is the default.

-retain, -ret causes library entries awaiting deletion from
the libraries (as determined by the library
search program) to be output.

-omit suppresses library entries awaiting deletion
from the libraries. This is the default.

-search name search name
identifies a search name which begins with a
minus (-) to distinguish the search name from
a control argument~ There are no other
differences between the search names
described above and those given with the
-search name control argument. One or more
-search-name control arguments may be given
in the command.

-descriptor desc name
gIves a pathname or reference name which
identifies the library descriptor describing
the libraries to be searched. If no
-descriptor control argument is given, then
the default library descriptor is used.

13-35 AN80

library_print library_print

3. lm_output_args control which information is included in the

Notes

entry headings. Any of the output arguments
accepted by the library map command may be
used for library print as well. The output
arguments can appear anywhere in the command.

Any combination of output arguments may be used in a command
since the use of several output arguments merely causes more
information to be included in the heading for each entry.
However, the following groups are control arguments are mutually
exclusive, and only one argument from each group may be given in
a command: -components, -container, and -entry; -chase and
-no chase; -retain and -omit.

The -container and -components control arguments are
provided to facilitate the printing of library entries related to
a given bound segment. When only one component of an archive is
matched, -en~ry causes only the matching library entry to be
output; -container and -components cause the other components of
the archive to be output as well. -container causes the entire
archive to be output as a whole, rather than just the matching
component. -components causes all of the archive components to
be output, rather than just the matching component.

The print file is generated in an output file identified by
the -output file control argument. If the -output file control
argument is not given, then a file called library. print is
created in the user's working directory. If the output file
already exists, it is truncated before the new print file is
created. Thus, several library print commands executed in the
same working directory (in the same or different processes)
without an -output file control argument can produce
unpredictable results. In such cases, the -output file control
argument should be used to create a different print file in each
command.

If the -header control argument is given, then the heading
line is centered on the first page of the print file beneath the
lines:

Print Out of the nn Entries

of the

13-36 AN80

library_print library_print

The heading line should be worded with this in mind. For
example:

Print Out of the 35 Entries

of the

Standard Library Bind Listing Directory

If -header is not given, a default heading line is constructed by
concatenating the names of the libraries which were searched, as
shown below:

Print Out of the 350 Entries

of the

Libraries

standard library.list, unbundled library.list,
tools library.list, user library.list, network library.list

If the -footer control argument is gIven, then then footing
line placed at the bottom of each page of the print file contains
the footing character string given with the control argument,
along with a page number and the name of the entry being output.
If -footer is not given, then the concatenated library names used
in the heading line are also used in the footing line.

Examples

library print -lb info -lb mpm **.info **.runout -of
documentation

creates the documentation.print file in the working directory:
which contains a print out of the entries in the info and mpm
libraries ~hich match tile ~earch names **.info or **.runout.

13-37 AN80

library_print library_print

library print -lb online.object **.bind -of online -dtd -dft

creates the online.print file which contains a print out of all
of the bind control segments in the online object libraries.
Each entry includes a header with the date dumped, as well as
whatever default status information was specified by the library
search program.

library_print

creates a print out in the library.print file of the working
directory which contains the contents of those entries in the
default library (or libraries) which match the default search
name(s). These default values are specified by the default
library descriptor data base.

13-38 AN80

map355 map355

Name: map355

This command is used to assemble a program written in the
FNP assembler language, map355. The command does not assemble
the program directly. Instead, it prepares a GCOS job deck to
perform the assembly and calls the GCOS Environment Simulator to
do the work.

This command is fully described in the MAM Communications
manual, Order No. CC75.

13-39 AN80

update seg

Names: update_seg, us

This command is
modification, and to
one or more libraries.

update seg

used to define the contents of a
install or de-install the modification in

A modification is a group of physically- or
logically-related segments which must be installed in a library
at the same time in order to maintain library consistency and
integrity. For example, a source segment and its compiled object
segment are physically-related segments which must be installed
concurrently to ensure that library source segments correspond to
library object segments. On the other hand, two object segments
which interact with one another are logically-related segments
which must be installed concurrently to ensure proper operation.

The update seg command is the library maintainer's interface
to the Multics Installation System (MIS). MIS installs the
related segments of a modification into a library at the same
time (or nearly so):

1. by dividing the installation of each segment into a
series of steps (getting the unique id, names, and ACL
of new and old segments, copying the target segment,
adding to and deleting from the target segment's names,
freeing names on the old segment, etc).

2. by performing one step for all segments of the
modification before moving on to the next step.

3. by installing the segments which are used by library
users (e.g., object segments) as a group after
installing the other segments in the modification
(e.g., source segments, archives, and info segments).

Using this strategy, the installation window (the period of
library inconsistency) can be reduced to less than one minute per
modification, and is usually about five seconds per modification.

MIS offers several benefits to the library maintainer. The
MIS subroutines which perform each installation step are all
restartable. If a system failure or a process failure occurs
during an installation, the installation can be resumed from the
point of interruption, as long as the Multics Storage System
remains intact across the failure.

The MIS subroutines are also reversible. Each MIS
subroutine performs a specific installation function when invoked
in "installation" mode with a group of arguments. The same MIS
subroutine will perform the logical inverse of its installation
function (a de-installation function) when it is invoked in
"de-installation" mode with the same group of arguments. If a

13-40 AN80

update seg

bad modification has been installed, it can be removed from the
libraries by invoking HIS in !!de-installation ii mode, without the
use of supplementary tools or special procedures.

MIS provides planned automatic error recovery. If MIS
detects a fatal installation error, it can recover automatically
from the error by invoking, in "de-installation" mode, the
installation subroutines which completed before the fatal error
occurred. Most common installation errors (name duplication,
entry not found, record quota overflow, etc) are handled in this
manner.

MIS allows a limited degree of rerunnability. All MIS
subroutines are rerunnable after having been invoked in
"de-installation" mode, as long as the segments in the
modification have not been changed since the de-installation.
The installer can correct many minor errors (e.g., name
duplications) without having to start the installation from the
very beginning.

Finally, MIS automatically documents an installation.
MIS subroutine creates a description of a modification,
appends this description to an ASCII installation log as a
of the installation. In addition, a paragraph summarIzIng
modification can be inserted at the top of an installations
segment to notify users of changes to the libraries.

An
and

part
the

info

update seg stores the definition of a modification in an
installation object (io) segment as a list of tasks. The task
list consists of one or more task blocks, each representing a
call to one of the MIS installation subroutines. The defined
modification is installed by sorting these task blocks by type of
installation step and calling the MIS subroutines associated with
the order task blocks. The update seg command interfaces with
the MIS task list processor and installation subroutines to
perform the definition and installation operations.

13-41 AN80

update seg update seg

Usage

update seg opname arguments

where:

1 • opname designates the operation to be performed.

2. arguments may be one or more arguments, depending upon
the particular operation to be performed.

The opnames permitted, followed by their alternate forms
where applicable, are shown below in five functional groupings:

set defaults, sd
initiate, in
print_defaults, pd

add
delete, dl
move, mv
replace, rp

print, pr
list, Is

install
de install

clear

Creation operations

Definition operations

Listing operations

Installation operations

Clearing operation

The creation operations create and initiate an installation
object Cio) segment in which a modification is defined. The
definition operations define the segments of the modification,
and the steps which must be performed to install those segments.
The listing operations list the segments of the modification and
the installation steps to be performed for those segments. The
installation operations install and de-install the modification.
Finally, the clearing operations reset an io segment when an
installation has failed and the modification has been installed.

Usage is explained below under a separate heading
designated operation. The explanations are
functionally, as shown above.

13-42

for each
arranged

AN80

update seg update seg

GENERIC CONTROL ARGUMENTS

The following control arguments are accepted by several
update seg operations. To avoid describing them with each of
these operations, the control argument syntax is described here.
The description of each operation includes a list of control
arguments accepted by that operation, and it states how the
operation is affected by each control argument.

1 • -acl mode1 User id1 ... moden -User idn-
defines an access control list
pairing each access mode with
control name which follows,

(ACL) by
the access

where:

a. modei is a valid access mode for segments. It may
be any or all of the letters rew to indicate
read, execute, and write access respectively.
Use null, un", or "n to specify null access.

b. User idi is an access control name that must be of the
form Person id.Project id.tag. Missing
components in the access control name are
assumed to be "*,, If the last modei has no
User idi following it, the library
maintainer's Person id and current Project id
are assumed.

2. -add name names
-an names defines a list of names to be added to the

target segment of a definition operation,
where names are one or more entrynames.

3. -archive, -ac specifies that the segment being defined in a
definition operation is an archive, and that
the names of its archive components are to be
added to the target segment of the definition
operation. Normally the archive component
names are not added to the target segment.

13-43 AN80

4. -defer, -df

5. -delete acl
-da User ids

6. -delete name
-dn names

7. -max length
-ml -=N-

N > a

N = a

N omitted

update seg

specifies that the installation subroutines
which gather information about the segments
in a definition operation should defer their
information gathering until the installation
operation is performed. Thus, changes made
to the segment after the modification is
defined will be reflected in the installed
segment. Normally, name and ACL changes made
between the definition and installation
operations are not reflected in the installed
target segment. Segment replacements during
this period cause a fatal installation error.

User ids
defines a list of ACL entries which are to be
removed from the ACL of the target segment of
a definition operation, where User ids are as
defined for -acl above.

names
defines a list of names to be removed from
the target segment of a definition operation,
where names are one or more entrynames.

-N-
specifies that the maximum length attribute
of the target segment of a definition
operation is to be set as shown below.
Normally, the maximum length is set to
sys info$default max length for regular
segments, and to the current length of the
segment being installed for special segments.
See -special seg below for information about
special segments.

the maximum length is set of N words.

the maximum length is set to the current
length of the segment being installed.

the maximum length is set to
sys info$max seg_size.

13-44 AN8a

8. -name names
-nm names

update seg

defines the list of names to be placed on the
target segment of a definition operation,
wher~ names are one or more entrynames.

9. -ring brackets r1 -r2- -r3-
-rb r1 -r2- -r3-

where:

a. r1

b. r2

c. r3

defines a set of ring brackets,

is the write bracket.

is the read bracket. If omitted, it is set
to the maximum of the following values: the
write bracket, the current validation level,
or 5.

is the gate bracket. It may not be specified
unless r2 is also specified. If omitted, it
is set to the maximum of the following
values: the read bracket, the current
validation level, or 5.

iO. -set acl model User id1 .•. moden -User idn-
=sa -model User id1 ~ .. -moden -User idn--

1 1 • -set log dir
-sId path

12. -special seg
-ss

defInes a list of AcI entries which are to be
added to the ACL of the target segment of a
definition, where modei and User idi are as
defined for -acl above.

path
defines the directory identified by path as
the directory containing the installation log
and installation info segments. These
segments are described further under
IfAutO!!l2tic Dacumentation" below.

defines the target segment of a definition
operation as a special segment. The
properties of special segments are described
below under "Special Segments".

13-45 AN80

update seg update seg

Ring Brackets

The ring brackets given in a -ring brackets control argument
control the intraprocess use of the segments being installed. A
description of ring brackets and intraprocess access control can
be found in the MPM Reference Guide.

Automatic Documentation

The directory defined in a -set log dir control argument is
called the documentation directory. Two types of information
about a modification are logged in segments contained in this
directory.

1 • A summary of the modification is inserted at the
beginning of Installations.info. This is a segment
designed to inform users of recent changes to the
libraries.

2. Detailed information about which segments and bound
segment components are changed by the modification is
appended to Installations.log, along with the summary
described above. This log contains a permanent record
of all installations.

These documentation segments are multiplexed
different update seg installers by using a
segment InstallatIons.lock.

Special Segments

among several
lock word in the

The -special seg control argument is used to reduce the
installation window for the user~visible segments of a
modification. For example, if a modification contains two bound
segments, one of which calls the other, then it is important to
reduce the time between the installation of the first segment and
the installation of the second. Otherwise, users of the first
segment could receive errors when it tried to reference the
second.

13-46 AN80

To reduce the length of user-observable installation
windows, the segments of a modIfication being installed in user
search directories can be defined as special segments which have
the following properties:

1. The final installation of all special segments (adding
names to these segments) is deferred until all regular
segments have been installed.

2. The de-installation of a modification causes the
regular segments which were installed to be deleted
from the library. Special segments are renamed instead
of being deleted.

3. The default setting for the maximum length attribute of
segments differs for special segments from that used
for regular segments. Special segments use the current
length of the segment being installed as the default
maximum length. Regular segments use
sys_info$default_max length.

Deferring the final installation of special segments until
the last possible moment provides several desirable advantages.
If a fatal error occurs while installing a regular segment, no
special segments will have been installed and the user-visible
portions of the libraries will remain in a consistent state. In
addition, the installation window for special segments is
shortened by grouping them together at the end of the
installation, because there are fewer segments going through the
final installation step (adding names) at the same time. This
further reduces the user's expose to library inconsistencies.

Special segments cannot be deleted by a de~installation
operation because some users may being using them. However,
renaming the special segments prevents more users from using them
after they have been de-installed.

13-47 AN80

update seg update seg

Operation: initiate

This operation is the first operation required to install a
rnodification. It creates a new installation object (io) segment
and initiates it for use by update_seg.

Only one io segment can be initiated in a process at any
given time. This restriction allows the library rnaintainer to
ornit the io segment name from most update seg operations. When
the io segment name is omitted, then the-operation refers to the
io segment which is currently initiated. This is usually the io
segment segment named in the last initiate operation.

Besides creating new io segments, the initiate operation can
be used to switch to and initiate another existing io segment, or
to change the attributes of an existing io segment.

Usage

update seg initiate {io_seg} {-control_args}

where:

1 •

2.

-restart, -rt

is the pathname of the io segment to be
initiated. If the final entryname does not
have an io suffix, then one is assumed. If
io seg is omitted, then the attributes of the
currently-initiated io segment are changed.

are selected from the following list of
optional control arguments:

indicates that the io segment
io seg exists and is to be
Normally a new io segment is
io_seg is given.

identifed by
reinitiated.

created when

-acl rnode1 User id1 ... moden -User idn-
defines the default ACL used by the initiated
io segment. This ACL is placed on new
segments being added to a library when no
-acl control argument is given in an add
definition operation. Normally, the global
default ACL is used as the default ACL on a
new io segment.

13-48 AN80

update_seg update seg

Notes

-ring brackets r1 -r2- -r3-
-rb r1 -r2- -r3-

defines the default ring brackets used by the
initiated io segment. These ring brackets
are placed -·onnew se-gments be ingadd-ed -to a
library when no -ring brackets control
argument is given in an add definition
operation. Normally, the global default ring
brackets are used as the default ring
brackets on a new io segment.

-set log dir path
-sId-path gives -the pathname of the documentation

-log

directory to be used by the io segment.
Normally the global documentation directory
is used.

indicates that a summary of the modification
is to be typed in as part of the initiate
operation. This summary is placed in one or
more documentation segments, as described
under "Automatic Documentation" above.
Normally, no summary is associated with a new
io segment.

The global default ACL, ring brackets, and documentation
directory have the values shown in Table 13-1 below.

Table 13-1. Initial Values for update_seg Global Defaults

ACL:
ring brackets:

documentation directory:

re *.*.*
1 ,5, 5
working directory

These vdlues may be changed for the life of the library
maintainer's hu

-J

current global defaults
print_defaults operation.

using the
may be

13-49

c::!or ~of'~ll1 r c::! AT'\OY'~r; AYl
..., "'" __ "'-'4 ~....,._ "'t"' """""...,~.....,6~. The

by using the

AN80

update seg update seg

When the -log control argument is given, the initiate
operation responds by printing "Input". All subsequent lines
typed by the library maintainer are used as a summary of the
modification being defined in the io segment. Input of the
summary ends when the library maintainer types a line containing
only a period (.). The summary is placed in both of the
documentation segments when the modification is installed.

The summary lines are truncated or filled out to 65
characters to improve the readability of the documentation
segments. A completely blank line or a line beginning with a
space or horizontal tab (HT) character will force a break in the
filling of the previous line.

The summary of a modification can be changed at any point
before the modification is installed (before an installation
operation). Reinitiating the io segment with the -log control
argument causes any previously-defined summary to be replaced by
a new summary.

The summary associated with any io segment can be printed as
described below under the print operation.

13-50 AN80

Operation: print_defaults

This operation prints the global default ACL, ring brackets,
and documentation directory. It also prints the default values
associated with an io segment. The default documentation
directory is printed only if different from the working
directory.

Usage

where io seg is an optional argument which specifies the pathname
of an exIsting io segment whose defaults are to be printed. If
the final entryname does not have an io suffix, then one is
assumed.

Notes

If an io seg argument is given with the print defaults
operation, the named io segment is reinitiated, and remains
initiated after the defaults have been printed. Thus, all
further update seg operations will refer to this initiated io
segment.

If no io seg argument is given, then the defaults of the
initiated io segment are printed if one is initiated.

13-51 AN80

update seg update seg

Operation: set defaults

This operation sets the global default ACL, ring brackets,
and documentation directory.

Usage

update_seg set defaults {-control_args}

where:

1 •

Notes

are selected from the following list of
control arguments:

-acl mode1 User id1 ... moden -User idn
defines a new global default ACL.

-ring brackets r1 -r2- -r3-
-rb r1 -r2- -r3-

-set log dir
-sId-path

defines a new set of global default ring
brackets.

path
defines a new global
directory.

default documentation

If none of the control arguments listed above are specified,
then the corresponding global default value remains unchanged.

13-52 AN80

Operation: add

This operation defines a segment which is to be added to a
library as part of a modification. The definition is appended to
the currently-initiated io segment. The following installation
steps are required for the most common case of the add operation.

Usage

1. Get the unique id of the new segment.
2. Get the names on the new segment.
3. Gather detailed information about the new segment for

documentation of the installation.
4. Create a uniquely-named target segment in the library,

and copy the contents of the new segment into the
target segment.

5. Set the ring brackets on the target segment.
6. Set the ACL on the target segment.
7. Add the new segment's names to the uniquely-named

target segment.
8. Remove the unique name from the target segment.
9. Document the addition of the new segment to the

libi'ary.

where:

1 •

2.

3.

target seg

control args

is the pathname of the new segment to be
added to the library. A relative or absolute
pathname may be given.

is the pathname of the target segment which
is to be created in the library directory. A
relative or absolute pathname may be given,
and the Multics equal convention may be used
to equate components in the final entrynames
in the new seg and target seg pathnames.
Note that an error will occur if the final
entryname of the target seg pathname is not
Ano Ar Tho n~~o~ ~'~no~ ~~ ~ho ~~_N~~ ~ON~~~~
___ "'...., ... 06 ~I.I.&"t...J t"...L.4..o&""""'A 'oJl" ",1. ... '- VU.l O'\"",. V U""O".I."'.1.1 V

as it is installed.

are selected from the following list of
optional control arguments:

-acl mode1 User id1 ... moden -User idn-
defInes the -ACL to be placed on the target
segment. Normally the default ACL is used.

13-53 AN80

update seg update seg

-add name names
-an names defines a set of names to be added to the

target segment.

-archive, -ac specifies that the new segment is an archive
whose components names are to be added to the
target segment.

-defer, -df specifies that the information gathering in
steps 1-3 above is to be deferred until the
installation operation.

-delete acl
-da User ids

-delete name
-dn names

-log

-max length
-ml -N-

-name names
-nm names

User ids
defines ACL entries to be
target segment.

names

removed from the

defines a set of names to be removed from the
target segment.

specifies that detailed information about the
installation of the new segment is to be
logged in Installations.log.

-N-
defines the maximum length attribute setting
for the target segment. Normally the default
setting is used.

defines the names to be placed on the target
segment. Normally, the names on the new
segment are placed on the target segment.

-ring brackets r1 -r2- -r3-
-rb r1 -r2- -r3-

defines the ring brackets to be placed on the
target segment. Normally, the default ring
brackets are placed on the target segment.

-set acl mode1 User id1 ... moden -User idn-
-sa -mode1 User id1 ~ .. -moden -User idn--

-special_seg
-ss

defInes ACL entries to be added to the ACL on
the target segment.

defines the target segment to be a special
segment.

13-54 AN80

Operation: delete

This operation defines a segment which is to be deleted from
a library as part of a modification. The definition is appended
to the currently-initiated io segment. The following steps are
required for the most common case of the delete operation.

1. Get the unique id of the segment to be deleted
(the target segment).

2. Get the names on the target segment.
3. Gather detailed information about the segment being

deleted for documentation of the installation.
4. Add a unique name to the target segment.
5. Free the names on the target segment.
6. Document the deletion of the target segment from the

library.

At the time of the installation operation, the segment is
not actually deleted from the library. Instead, the segment's
names are freed and a unique name is added to the segment to mark
it as a candijate for deletion by the library cleanup command at
some later date. The segment cannot be deleted because it cannot
be terminated in the process of any library user who might be
using it.

The segment's names are freed: by adding an integer suffix
to the primary segment name, as descrloed in ~ne Ifree name
command description in Section XIII; and by deleting any other
names on the segment. The renamed primary name is retained to
identify the segment. The remaining names are deleted to prevent
library users from referencing the segment.

Usage

update seg delete target_seg {-control args}

where:

1 • target seg

2. control args

-defer, -df

is the pathname of the segment to be deleted
from the library. A relative or absolute
p8thn8me m8y he givpn.

are selected from the following list of
optional control arguments:

specifies that the information gathering in
steps 1-3 above is to be deferred until the
installation operation.

13-55 AN80

update seg

-log

-special seg
-ss

update seg

specifies that detailed information about the
deletion of the segment is to be logged in
Installations.log.

defines the target segment to be a special
segment.

13-56 AN80

update seg update seg

Operation: replace

This operation defines a segment which is to replace another
segment~ in a ±ibrary as part of a modification. The-definition
is appended to the currently-initiated io segment. The following
steps are required for the most common case of the replace
operation.

1 •

2.
3.
4.
5.

6.
7e

8.

9.

10.

1 1
I I •

12.
13.
14.
15.

Usage

Get the unique id of the segment to be replaced (the
old segment).
Get the names on the old segment.
Get the ACL on the old segment.
Get the ring brackets on the old segment.
Get the unique id of the segment to replace the old
segment (the new segment).
Get the names on the new segment.
Gather detailed information about the new segment for
documentation of the installation.
Create a uniquely-named target segment in the library,
and copy the contents of the new segment into this
target segment.
Set the ring brackets on the target segment to those on
the old segment.
Set the ACL on the target segment to that on the old
segment.
Add a unique name to the old segment.
Free the names on the old segment.
Add the new segment's names to the target segment.
Remove the unique name from the target segment.
Document the replacement of the library segment.

update seg replace new_seg old seg {target seg}
{-control_args}

where:

1 • new

2. old seg

is of 1\
n. the pathname the

relative or absolute pathname can be given.

is the pathname of the library segment which
is to be replaced. A relative or absolute
pathname may be given, and the Multics equal
convention may be used to equate components
in the final entrynames of the new seg and
old seg pathnames. Note that, if the
target_seg argument is omitted, an error will
occur if the final entryname of the old seg

13-57 AN80

update seg update seg

3.

4. control args

pathname is not one of the names placed on
the target segment as it is installed.

is the optional pathname of the target
segment, if this differs from the pathname of
the old segment. A relative or absolute
pathname may be given, and the Multics equal
convention may be used to equate components
in the final entrynames of the target seg and
old seg pathnames. Normally the pathname of
the old segment is formed by using the
directory portion of old seg and the final
entryname portion of new seg (i.e.,
[directory old seg]>[entry new_seg]). Note
that an error will occur if the final
entryname of the target seg pathname is not
one of the names placed on the target segment
as it is installed.

are selected from the following list of
optional control arguments:

-acl mode1 User id1 ... moden -User idn-
defines the ACL to-be-placed on the target
segment. Normally, the ACL on the old
segment is placed on the target segment.

-add name names
-an names defines a set of names to be added to the

target segment.

-archive, -ac specifies that the new segment is an archive
whose component names are to be added to the
target segment.

-defer, -df specifies that the information gathering in
steps 1-7 above is to be deferred until the
installation operation.

-delete acl
-da User ids

User ids
defines ACL entries to be
target segment.

-delete name names

removed from the

-dn names defines a set of names to be removed from the
target segment.

-log specifies that detailed information about the
installation of the reolacement library
segment is to be documented in

13-58 ANSO

update seg

Notes

-max length
-ml =N-

-name names
-nm names

-old name
-onm

Installations.log.

-N-
defines the maximum length attribute setting
for the target-segment. Norm~lly the default
setting is used.

defines the names to be placed on the target
segment. Normally, the names on the new
segment are placed on the target segment.

specifies that the names on the old segment
are to be placed on the target segment.
Normally, the names on the new segment are
placed on the target segment.

-ring brackets r1 -r2- -r3-
-rb r1 -r2- -r3-

defines the ring brackets to be placed on the
target segment. Normally, the ring brackets
on the old segment are placed on the target
segment.

-set acl model User idl 0 •• moden -User idn-
-sa mode1 Use~ id1 : .. moden -Us~r idn--

-special_seg
-ss

defInes ACL entries to be added to the ACL on
the target segment.

defines the target segment to be a special
segment.

The -name and -old name control arguments are mutually
exclusive. If both are given in a replace operation, then the
last one given is used.

Just as in a delete operation: the olrl ~eement in a replace
operation in not deleted at the time of the installation
operation. Instead, the old segment's names are freed, and a
unique name is placed on the segment to mark it as a candidate
for deletion by the library cleanup command at a later date.

13-59 AN80

update seg update seg

Operation: move

This operation defines a segment
to be moved to another library

which is a library segment
directory as part of a

modification. The definition is appended to the
currently-initiated io segment. The
for the most common case of the move

following steps are required
operation.

1. Get the unique id of the segment to be moved (the old
segment).

2. Get the names on the old segment.
3. Get the ACL on the old segment.
4. Get the ring brackets on the old segment.
5. Gather detailed-information about the old segment for

documentation of the installation.
6. Create a uniquely-named target segment in the other

library, and copy the contents of the old segment into
this target segment.

7. Set the ring brackets on the target segment to those on
the old segment.

8. Set the ACL on the target segment to that on the old
segment.

9. Add a unique name to the old segment.
10. Free the names on the old segment.
11. Add the old segment's names to the target segment.
12. Remove the unique name from the target segment.
13. Document the movement of the library segment.

Usage

update seg move old seg target seg {-control args}

where:

1 •

2. target seg

is the pathname of the segment to be moved.
A relative or absolute pathname may be given.

is the pathname of the segment into which the
old segment is moved. A relative or absolute
pathname may be given, and the Multics equal
convention may be used to equate components
in the final entrynames of the old seg and
target seg pathnames. Note that an error
will occur if the final entryname of the
target seg pathname is not one of the names
placed on the target segment as it is
installed.

13-60 AN80

update seg update seg

3. are selected from the following list of
nnti nn~l i"'nntrnl ~rcrllm~nt_~·,.t' ...,~....., "'""- "...., v,.-. "-"60"""" ",_·

-acl model User idl ..• moden -User idn-
difi~es the ICL to-be-placed on the target
segment. Normally, the ACL on the old
segment is placed on the target segment.

-add name names
-an names defines a set of names to be added to the

target segment.

-archive, -ac specifies that the old segment is an archive
whose component names are to be added to the
target segment.

-defer, -df specifies that the information gathering in
steps 1-5 above is to be deferred until the
installation operation.

-delete ccl
-da User ids

User ids
defines ACL entries to be
target segment.

removed from the

-delete name names
-dn names defines a set of names to be removed from the

-log

-max length
-ml -=N-

-name names
-nm names

target segment.

specifies that detailed information about the
movement of the library segment is to be
documented in Installations.log.

-N-
defines the maximum length attribute setting
for the target segment. Normally the default
setting is used.

defines the names to be placed on the
segment. Normally, the names on

target
the old

-ring brackets r1 -r2- -r3-
-rb rl -r2- -r3-

defines the ring brackets to be placed on the
target segment. Normally, the ring brackets
on the old segment are placed on the target
segment.

13-61 AN80

Note

-set acl mode1 User id1 ... moden -User idn-
-sa -mode1 User id1 ~ .. -moden -User idn--

-special_seg
-ss

defInes ACL entries to be added to the ACL on
the target segment.

defines the target segment to be a special
segment.

Just as in a delete operation, the old segment in a move
operation is not deleted at the time of the installation
operation. Instead, the old segment's names are freed, and a
unique name is placed on the segment to mark it as a candidate
for deletion by the library_cleanup command at a later date.

13-62 AN8a

update_seg update seg

Operation: print

This operation prints information on the terminal about the
modification . d~fined in_ C3_l1 __ jQ_::tegme.nt ~ _.One set of informatio-n is
included- fo-r -e-a-ch---segrrlent of the modification. This information
normally includes the following items.

Usage

1. The type of definition operation (add, delete, replace,
or move), and the pathnames of the target segment, old
segment, and/or new segment given in the definition of
each modification segment.

2. A list of the control arguments given in the definition
operation.

3. The names, ACL, and ring brackets to be placed on the
target segment.

4. The detailed information about the modification segment
to be included in Installations.log when the -log
control argument was given in the definition operation.

where:

1 •

2. control args

-log

-brief, -bf

-long, -lg

is an optional argument which specifies the
pathname of an existing io segment whose
modification is to be printed. If the final
entryname does not have an io suffix, then
one is assumed. See "Notes" below for a
discussion of this argument.

are selected from the following list of
optional control arguments:

specifies that only the summary of the
modification provided when the io segment was
initiated l~ to be printed.

suppresses information items 2-4 given above
from the printed output.

adds a list of the installation steps
required to install each modification segment
to the printed information.

13-63 AN80

update seg

-error, -er suppresses information about all modification
segments except those which encountered an
error during the most recent attempt to
install or de-install the modification. The
printed information includes the installation
step in which the error occurred, and an
error message describing the error.

Notes

If an io seg argument is given with the print operation, the
named io segment is reinitiated, and it remains initiated after
the modification information has been printed. Thus, all further
update_seg operations will refer to this initiated io segment.

If no
information
initiated.

io seg argument is given, then the modification
for the initiated io segment is printed, if one is

The -brief and -long control arguments can be used together
to suppress information items 2-4 given in the list above while
including a list of installation steps. Similarly, the -long and
-error control arguments can be used together to print all of the
installation steps, rather than just those in which an error
occurred.

13-64 AN80

update seg update_seg

Operation: list

This operation creates an installation listing segment
containing information about ,an io segment. The listing segment
is created in the working directory. If the listed io segment is
named io seg.io, then its listing segment is named io seg.il.
The installation listing normally contains the following
information items.

1. The pathname of the io segment.
2. The date and time at which the installation listing was

created.
3. The access identifier of the process which created the

io segment.
4. The version of update seg used to create the io

segment. -
5. The date and time at which the last creation,

definition, or listing operation was performed on the
io segment.

6. If the modification has been installed, the access
idelltifier of the process which installed the
modification, and the date and time of installation.

7. If the modification has been de-installed, the access
identifier of the process which de-installed the
modification, and the date and time of de-installation.

8. If the io segment has been cleared (see the clear
operation below), the access identifier of ~ne process
which cleared the io segment, and the date and time of
clearing.

9. The summary of the modification, if one was defined
when the io segment was initiated.

10. A list of the definition operations performed on the io
segment. This list includes the pathnames of the
target segment, old segment, and/or new segment for
each definition operation.

11. If the modification has been installed, a list of any
errors which occurred during the installation.

12. A description of the modification which includes the
following information for each modification segment:

a. The type of definition operation (add, delete, replace,
or move), and the pathname3 of the target segment, old
segment: and/or new segmpnt given in the definition of
each modification segment.

b. A list of control arguments given in the definition
operation.

c. The names, ACL, and ring brackets to be placed on the
target segment.

d. The detailed information about each modification
segment used to document the installation.

13-65 AN80

update seg

Usage

where:

1 •

2.

-brief, -bf

-long, -lg

Notes

update seg

is an optional argument which specifies the
pathname of an existing io segment which is
to be listed. If the final entryname does
not have an io suffix, then one is assumed.
See "Notes" below for a discussion of this
argument.

are selected from the following list of
optional control arguments:

suppresses item 12 above from the listing.

appends to the listing a detailed description
of the modification which includes the
installation steps required to install each
modification segment.

If an iQ seg argument is given with the list operation, the
named io segment is reinitiated, and it remains initiated after
the io segment has been listed. Thus, all further update seg
operations will refer to this initiated io segment. -

If no io seg argument is given, then the currently-initiated
io segment is-listed, if one is initiated.

The -brief and -long control arguments can be used together
to provide a detailed description of the modification without the
regular description outlined in item 12 abovee The detailed
description includes all of the information in the regular
description. However because of the length of the detailed
description, it is often useful to have both the shorter regular
description as a quick reference, and the longer detailed
description for an installation step reference.

13-66 AN80

Operation: install

This operation installs the modification defined in an io
segment.

Usage

update_seg install {io_seg} {-control_args}

where:

1 •

2. control args

-severity N
-sv N

-stop

Notes

is an ~ptional argument which specifies the
pathname of an existing io segment defining
the modification to be installed. If the
final entryname does not have an io suffix,
then one is assumed. See "Notes" below for a
discussion of this argument.

are selected from the following list of
optional control arguments:

defines the severity level of fatal
installation errors. All errors whose
severity is equal to or greater than N are
treated as fatal errors. N must be an
integer from 1 to 5 inclusive. The default
severity is 1, making all installation errors
fatal. Refer to "Controlling the Fatality of
Installation Errors" below for a description
of the severity levels associated with the
various kinds of installation errors.

disables the automatic error recovery
mechanism, causing update seg to stop when a
fatal installation error occurs. Refer to
"Installation Errors" below for more
information.

If an io seg argument is given with the install operation,
the named io segment is reinitiated, and it remains initiated
after the modification has been installed. Thus, all further
update_seg operations refer to this initiated io segment.

13-67 AN8a

update seg

If no io seg argument is given, then the modification
defined in the currently-initiated io segment is installed, if
one is initiated.

Any error codes which were set during a prior installation
operation are automatically cleared before beginning the
installation. This ensures that all errors which may be reported
pertain to the current installation operation.

The Multics Installation System calls entries in the
installation tools gate in order to install Multics System
Library segments- into ring 1. Maintainers of outer ring
libraries do not have access to this privileged gate. They can
use update seg to install segments by initiating the hcs gate
with the reference name installation tools once per process
before using the install operation. -The f~llowing command will
perform this function:

initiate [get_pathname hcs] installation tools

Installation Errors

If an error occurs
modification, a message
types of errors may occur:
The diagnostic message for
caption, while that for
caption.

during the installation of a
is printed to diagnose the error. Two
nonfatal errors, and fatal errors.

a nonfatal error begins with a Warning
a fatal error begins with an Error

Nonfatal errors do not stop the installation, but are merely
diagnosed as they occur so that the library maintainer can take
corrective action after the installation is complete.

Fatal errors have a more serious impact on the installation.
Normally, the occurrence of a fatal error stops the installation
of the modification, and automatically de-installs all portions
of the modification which were installed prior to the error.
When the -stop control argument is given, the occurrence of an
error merely stops the installation.

The -stop control argument should be used with care because
stopping the installation of a modification will probably leave
the target library in an inconsistent state. When -stop is used,
the library maintainer must recover from any installation errors
as quickly as possible to reduce this period of inconsistency.
Because the normal error recovery procedures minimize the period
of library inconsistency and are so fast and easy to use, the
~stop control argument is not recommended for general uSe.

13-68 AN80

update_seg

Controlling the Fatality of Installation Errors

A given installation error may be nonfatal or fatal,
depending upon the severity level associated with that error, and
upon the fatal severity level given in th~ -severity control
argument.

The Multics Installation System defines four severity
levels, numbered 1 through 4. One of these severity levels is
assigned to each possible installation error, depending upon how
severely that error impacts the installation. Errors with a high
severity level impact an installation more severely than those
with a lower severity. The errors which fall into each severity
level are described in Table 13-2 below.

Table 13-2. Severity of update_seg Installation Errors

SEVERITY TYPES OF ERRORS

Errors incurred while: adding a name which is already
on the target segment; deleting a name or ACL entry
which is not on the target segment; or processing an
archive with more than 100 components.

2 Errors incurred while: adding an invalid ACL entry to
the target segment; adding a name which is already on
another entry in the target directory; setting the
target segment's bit count, maximum length attribute,
or safety switch; deleting the final name from the
target segment; and freeing the names on the old
segment.

3 All other errors except for record quota overflows.

4 Record quota overflow errors.

The library maintainer must determine which severity levels
in 'T'-::.h1,... 1? ') _l-.~ •• ~

.LUL.f.L1;;;; I .;-c:.... ClUVVt' contain errors fatal to the
installation being performpd. The maintainer should then set the
fatal severity level for the installation by using the -severity
control argument.

Determination of the fatal severity level greatly depends on
the type of modification being installed. A severity 1 error
occurring during the modification of a heavily-used user search
directory could have severe consequences for the library users,

13-69 AN80

update seg

and would probably warrant a fatal severity level of 1. On the
other hand, a severity 1 error occurring during the installation
of new information segments into a documentation directory would
have less impact on library users, since no users would be
depending upon the new segments. A fatal severity level of 2
might be appropriate in this case.

Low fatal severity levels are recommended for general use.
The automatic error recovery for fatal errors is very fast, and
subsequent reinstallation of the modification is easy do to.
High fatal severity levels should be used only in unusual
circumstances and with extreme caution.

Correcting Fatal Installation Errors

If a fatal installation error occurs, the normal error
recovery procedure automatically de-installs all portions of the
modification installed before the error occurred. The library
maintainer can follow one of the two strategies below to correct
the error:

1. If the error did not involve the definition of the
modification (the contents, attributes or pathnames of
any of the segments in the modification), then the
library maintainer can correct the cause of the error
and reinstall the modification using the install
opeiation. An example of such an error is a record
quota overflow in the target directory, or a name
duplication between the target segment and an existing
library entry.

2. If the error did involve the definition of the
modification, then the library maintainer must redefine
the modification correctly in a new io segment and
reinstall the modification using the install operation.
An example of such an error is an attempt to place the
wrong name on a target segment causing a name
duplication, or a -delete name control argument
attempting to delete the final name from a target
segment.

13-70 AN80

update seg

If the -stap cantral argument was given with the install
aperatian, then the installatian is stapped if a fatal errar
accurs withaut de-installing whatever partians af the
mbdification .. wer.e _ ins.tall.ed pr.io.r to. the error. The -library
maintainer can fallaw ane af three strategies to. carrect the
errar:

1 . If the errar did nat
definitian, the library
errar and cantinue the
install aperatian.

invalve the
maintainer can
installatian by

madificatian
carrect the
using the

2. If the errar did nat invalve the madificatian
definitian, the library maintainer can use the
de install aperatian to. de-install the madificatian
until the errar is carrected, and then use the install
aperatian to. reinstall the madificatian.

3. If the errar did invalve the madificatian
the library maintainer must use the
aperatian to. de-install the madificatian,
redefine the madificatian carrectly in a new
and install that segment using the install

Recavering Fram a Crash

definitian,
de install
must then
ia segment
aperatian.

If the system shauld crash during an installatian, or a
fatal pracess errar accur during an installatian, then the
installatian af the madificatian can be cantinued by using the
install aperatian. Alternately, parts of the modification
installed priar to. the crash can be de-installed by using the
de install aperatian.

While it is usually safe to. attempt to. de-install a
madificatian after a system crash, the de-installatian will
prabably fail if the crash has affected any Multics starage
system directary referenced as part af the madificatian. If such
a failure accurs, it is necessary to. camplete the de-installatian
manually by using the lfree name. lset ring brackets, lsetacl~
ldelete, ldeletename, and lrename cammands.

13-71 AN80

update seg update_seg

Operation: de install

This operation de-installs the modification defined in an io
segment. The modification must have been previously installed,
either completely or partially.

Usage

update_seg de install {io_seg} {-control_args}

where:

1 •

2.

-severity N
-sv N

-stop

Notes

is an optional argument which specifies the
pathname of an existing io segment defining
the modification to be de-installed. If the
final entryname does not have an io suffix,
then one is assumed. See "Notes" below for a
discussion of this argument.

are selected from the following list of
optional control arguments:

defines the severity level of fatal
de-installation errors. All errors whose
severity is equal to or greater than N are
treated as fatal errors. N must be an
integer from 1 to 5 inclusive. The default
severity is 1, making all de-installation
errors fatal. Refer to "Controlling the
Fatality of De-Installation Errors" below for
a description of the severity levels
associated with the various kinds of
de-installation errors.

disables the automatic error recovery
mechanism, causing update seg to stop when a
fatal de-installation error occurs. Refer to
"De-Installation Errors" below for more
information.

If an io seg argument is given with the de install
operation, the named io segment is reinitiated, and it remains
initiated after the modification has been de-installed. Thus,
all further update seg operations refer to this initiated io
segment.

13-72 AN80

update seg

If no io seg argument is given, then the modification
defined in the currently-initiated io segment is de-installed, if
one is initiated.

As with the install operation, the de install operation uses
the installation tools gate to de-install-segments from ring 1.
Maintainers of outer rIng libraries should issue the command:

initiate [get_pathname hcs_J installation_tools

once per process before using the de install operation.

De-Installation Errors

If an error occurs during the de-installation of a
modification, a message is printed to diagnose the error. As
with installation errors, the message for a de-installation error
has a Warning caption for a nonfatal error or an Error caption
for a fatal error.

A nonfatal error does riot stop the de-installation. A fatal
error stops the de-installation and automatically reinstalls the
modification. When the -stop control argument is given, a fatal
error stops the de-installation without reinstalling it.

Controlling the Fatality of De-Installation Errors

A given de-installation error may be nonfatal or fatal,
depending upon the severity level associated with that error, and
upon the fatal severity level given by the library maintainer in
the -severity control argument. The errors which fall into each
severity level are described in Table 13-3 below.

13-73 AN80

Table 13-3. Severity of update_seg De-Installation Errors

SEVERITY TYPES OF ERRORS

1 Errors incurred while: restoring a name which is
already on an old segment; removing a name which is
not on the target segment; or deleting the target
segment.

2 Errors incurred while: restoring a name on an old
segment which is already on another entry in the old
segment's directory; removing the final name from the
target segment;, or resetting the ACL or ring brackets
on the target segment.

3 All other errors.

Correcting Fatal De-Installation Errors

Fatal de-installation errors usually occur because the
segments in the target directory (or their attributes) have been
changed since the modification was installed. Such modifications
could occur: if a subsequent modification affected one or more
of the segments of the modification; if the Multics storage
system was reloaded, causing a new unique identifier to be
assigned to each segment; if a system crash forced the target
directory to be salvaged; etc.

The proper corrective action for most de-installation errors
involves returning the segments in the modification to their
state just after installation. In some cases, this may be as
simple as de-installing a subsequent modification. In other
cases, returning to the installation state may be undesirable.
For example, the de-installation of a subsequent modification
could restore a module with a serious bug. It might be better to
replace all bad modules with fixed versions if these are
available, rather than restoring to modules with worse bugs.

In some cases, returning to the installation state may be
impossible. It would be very difficult to restore the unique
identifiers for segments in a reloaded directory. The update seg
clear -uid operation is provided to disable unique identifier
checking by update seg in such cases. However, it must be used
with extreme caution~ Without this checking, other segments
besides those in the modification may be affected by the
de-installation.

13-74 AN80

Finally, it may not be possible to restore segments in a
salvaged directory to their original state. In such cases, it
may be necessary to use -severity 4 in the de-install operation
to- de-instal-l- other port-ions of the -ins-tallatio-n ,a-n-d---tnen-to
de-install portions in the salvaged directory manually. Care
must be taken in such operations, because the library will be
inconsistent until both the automatic and manual de-installation
operations are complete. Having such a large de-installation
window may necessitate performing the de-installation during a
special session of Multics when users are not allowed to log on.

Recovering from a Crash

As with an install operation, a de-installation interrupted
by a system crash can be restarted by using the de install
operation, or can be reversed by using the install operatIon.

13-75 ANBO

update seg update_seg

Operation: clear

This operation clears all error codes set during a prior
installation or de-installation operation. This allows the io
segment to be printed or listed prior to a reinstallation of the
modification without having prior error messages appear in the
output.

The clear operation also clears segment unique identifiers
stored in the modification definition. These unique identifiers
are stored to ensure that the segments defined in modification
definition operations are those which are actually installed or
de-installed. Clearing these identifiers disables such checking,
and allows the de-installation of a modification whose segment
unique identifiers have been reset by a Multics storage system
reload.

Usage

NOTE: Extreme care should be taken when
unique identifiers to ensure
segments will be de-installed
de install operation.

clear ing segmen.t
that the correct

by the subsequent

update seg clear {io_seg} {-control_args}

where:

1 •

'"' c.. control args

-error, -er

-uid

is an optional argument which specifies the
pathname of an existing io segment which is
to be cleared. If the final entryname does
not have an io suffix, then one is assumed.
See "Notes" below for a discussion of this
argument.

must be one or both of the control arguments
listed below:

specifies that error codes stored in the
modification definition are to be reset.

specifies that unique identifiers for the
segments in the modification are to be
reset, thus disabling unique identifier
checking during subsequent installation and
de-installation operations.

13-16 ANSO

Notes

If an io seg argument is given with the clear operation, the
named io segment is reinitiated, and it remains initiated after
the io segment has be-en cleared. Thus, all further update seg
operations refer to this initiated io segment.

If no io seg argument is given, then the currently-initiated
io segment is-cleared, if one is initiated.

Examples

The following are typical examples of terminal sessions
using update seg to modify segments. Brief explanations of each
command line typed by the user are given below each example.

13-77 AN80

Example 1

update seg initiate >udd>Multics>example1
r 1521 .613 11.729 153

2 update seg add >udd>Multics>seg1 >sss>seg1
r 1521- .188 4.161 61

3 update seg replace >udd>Multics>seg2 >sss>seg2
r 1521- .220 4.188 37

4 update seg delete >sss>seg3
r 1521- .109 3.038 61

5 update seg move >sss>seg4 >unbundled>seg4
r 1521- .199 2.394 31

6 update seg install
Installation beginning.
Installation complete.
r 1521 2.009 19.592 304

7 update seg list
r 1522- .610 9.418 98

8 dprint example1.il
1 request signalled, 0 already queued.
r 1522 .088 1.142 35

line 1: Create and initiate an io segment called example1.io in
the directory >udd>Multics. Use global default values
for the default ACL and ring brackets.

line 2: Define segment >udd>Multics>seg1 as a modification
segment to be added to the >sss directory. Put the
default ACL and ring brackets on this segment.

line 3: Define segment >udd>Multics>seg2 as a modification
segment which is to replace segment >sss>seg2. Put the
old segment's ACL and ring brackets on the target
segment.

line 4: Define segment >sss>seg3 as a modification segment
which is to be deleted.

line 5: Define segment >sss>seg4 as a modification segment
which is to be moved to the directory >unbundled.

line 6: Install the modification defined in the initiated io
segment (>udd>Multics>example1.io).

line 7: Create a listing segment which describes the
modification, and includes any installation errors.
The segment is called example1.il, and is created in
the working directory.

line 8: Dprint the listing.

13-78 AN8a

update seg

Example 2

1 us initiate example2 -acl re User.Multics -rb 4 5 5
r 1523 .536 5.210 104

2 us add >udd>Multics>seg5 >sss>seg5
r 1523 .185 3.554 62

3 us add seg6 >sss>seg6 -acl re *.Multics -rb 1 5 5
r 1523 .126 1.106 25

4 us replace seg7 >sss>== -acl re User.Multics n * -ss -log
r 1523 .375 4.834 88-

5 us install
Installation beginning.
Copying special target segments.
Adding names to special target segments.
Installation complete.
r 1523 2.098 19.673 344

line

line

line

line

line

1 :

2:

':2 •
.J.

4:

5:

Initiate example2.io, setting the default ACL to
re User.Multics and the default ring brackets to 4,5,5.
Define >udd>Multics>seg5 as a modification segment to
be added to the directory >sss. The default ACL and
ring brackets will be placed on this segment.
Define segment seg6 in the working directory as a
modification segment to be added to the directory >sss.
Put ACL of re *.Multics.* and ring brackets 1,5,5 on
the target segment.
Define seg7 in the working directory as a modification
segment which is to replace >sss>seg7. Put an ACL of
re User.Multics.* and null *.*.* on the target segment.
Put the ring brackets of >sss>seg7 on the target
segment. Also treat the target segment as a special
segment and log the modification of this segment in
Installations.log.
Install the modification defined in example2.io.

13-79 AN80

Example 3

1 update seg initiate)udd)Multics)example1 -restart
r 1536- .486 6.066 110

2 update seg de install
De-installation beginning.
Non-special target segments deleted.
De-installation complete.
r 1536 1.504 9.525 174

3 update seg de install example2
De-installation beginni~g.
Names removed from special target segments.
Non-special target segments deleted.
De-installation complete.
r 1537 1.092 11.523 169

4 update seg list -long
r 1538- .610 9.418 98

line 1: Reinitiate)udd)Multics)example1.io, the io segment
created in Example 1 above.

line 2:
line 3:

line 4:

De-install the modification defined in this io segment.
Reinitiate example2.io, an io segment created in the
working directory as part of Example 2. De-install the
modification defined in this io segment.
Create a listing segment, example2.il, in the working
directory which describes the modification defined in
example2.io.

13-80 AN80

Example 4

us initiate library -log
Input.

2 MeR 1-28: F-ixbu-g -in- the d-e-Ie-te -c-ommand (boun-d fscom 1)
3 which prevented segments whose copy switch is on from-
4 being deleted.
5

r 1547 1.600 8.856 169

6 us rp bound fscom1 .s.archive >ldd>sss>s== -archive
r 1547 1.750 11.898 222

7 us rp bound fscom1 .archive >ldd>sss>o>== -archive
r 1547 .310 6.534 55

8 us rp bound fscom1 .list >ldd>sss>lists>bound fscom1 .list
r 1547 .239 3.822 38

9 us rp bound fscom1
r 1548 .729 9.802

>sss>== -ss -log -rb 1 5 5 -acl re *
165

10 us install
Installation beginning.
Copying special target segments.
Adding names to special target segments.
Installatiqn complete.
r 1548 5.759 32.104 566

line 1: Create and initiate a new io segment in the working
directory, library.io. _Use the -log control argument
to add a summary of the modification to the io segment.
update seg responds by typing "Input".

line 2: Lines 2 through 5 typed by the library maintainer are
the summary of the modification. This summary is
inserted at the top of Installations.info, and appended
to the end of Installations.log when the modification
is installed.

line 6: Define bound fscom1 .s.archive in the working directory
as a modIfication segment which is to replace
>ldd>sss>s>bound fscom1 =s"archive~ Add its archiv~
component names to the target segment. Put the old
segment's ACL and ring brackets on the target segment.

line 7: Define bound fscom1 .archive in the working directory
as a modIfication segment which is to replace
>ldd>sss>o>bound fscom1 .archive, and add its
components names-to the-target segment.

line 8: Define bound fscom1 .list as a replacement for
>ldd>sss>lists>bound fscom1 .list.

13-81 AN80

line 9: Define bound fscom1 as a replacement for
>sss>bound_fscom1 , logging the replacement of this
segment in Installations.log. Put ring brackets of
1,5,5 on the target segment, an ACL of re *.*.*, and
treat the target segment as a special segment. The
names on bound fscom1 are placed on the copy installed
in >sss by default.

line 10: Install the modification defined above.

13-82 AN80

SECTION YTU
.ll.~ V

LIBRARY SUBROUTINES ~AND DATA BASES

This section contains the descriptions of important
subroutines and data bases which are used to maintain the Multics
Libraries.

14-1 AN80

multics libraries multics libraries

Name: multics libraries

This data base is the library descriptor for the Multics
System Libraries. Like all library descriptors, it defines: the
roots of the Multics System Libraries; the names by which these
roots can be referenced in library descriptor commands; and the
default library names and search names used by each of the
library descriptor commands when operating on the Multics System
Libraries.

The general organization of libraries is described in
Section II, "Library Organization", and the organization of the
Multics System Libraries is described in Section III. The use of
library descriptors is discussed further in Section IV, "The
Library Descriptor Commands". The library description language
which is used to define library descriptors is described in
Section V, "Maintaining User Libraries with the Library Tools".

The Multics System Libraries

The Multics System is composed of the "logical libraries"
listed in Table 14-1 below. Each of the libraries is, in turn,
composed of several directories containing the different kinds of
library entries (source and object segments; bind lists; info,
include, and peruse text segments; multisegment files) which are
stored in the libraries. These directories are listed in
Table 14-2 below. A library descriptor command can reference an
entire logical library by name, or it can reference one or more
of its directories.

Note that the logical library structure defined below does
not map directly onto the physical library organization in the
Multics storage system. However, the library descriptor tools
can reference all of the physical libraries by logical library
name.

14-2 AN80

multics libraries multics libraries

Table 14-1. Logical Libraries of the Multics System

LIBRARY IDENTIFIER LIBRARY CONTENTS

standard~library,std

languages_library, lang

unbundled library, unb

tools library, tools

installation library, inst

user_library, user

network_library, net

supervisor library, sup,
hardcore, hard, h

bootload_library, boot, bos

communications library,
com, mcs

most use-r commands and subroutines,
and the system support routines for
these commands and subroutines.

Multics PL/I and ALM translators
and their support routines.

Honeywell program products
other unbundled software.

and

system
maintenance
subroutines.

administrative
commands

installation-maintained

and
and

software.

user-provided software installed at
the installation to facilitate
sharing.

nonsupervisory software
connecting the Multics
the ARPA Network.

the supervisor (hardcore)
of the Multics System.

used in
System to

software

software for the Bootload Operating
System (BOS).

software for the Multics
Communications System (MCS).

Each of the above logical libraries contains one or more of the
following logical directories. A listing of which directories
are part of which library is given in Table 14-4 below.

14-3 AN80

multics libraries multics libraries

Table 14-2. Multics System Library Directories

DIRECTORY ID DIRECTORY CONTENTS

source, s

object, 0

lists, 1

execution, x

bound comp,
bndc,-bc

info, i

include, incl

the so~rce
translated
directory
which are
segments.

language segments which can be
into library object segments. The
also contains exec com segments

used to create lIbrary object

the object segments produced by translating
the library source segments. The directory
also contains exec com and absentee input
segments, and multisegment files intended for
use by users.

the listings produced by binding several
library object segments together into bound
segments.

the bound and unbound object segments and
data bases used by Multics users. The
directory also contains exec com segments and
absentee input segments intended for use by
users. The directory is generally included
in the search rules of some or all users.

the object archives which may be bound into
bound segments.

information segments which can be printed on
the user's terminal under control of the help
command. These segments describe the
commands and subroutines included in the
library, and they outline library problems,
command status, upcoming changes, etc.

the source segments which are included as
part of several other source segments, under
control of a source language translator.

14-4 AN80

multics libraries multics libraries

Library Names

One or more libraries or directories may be referenced in a
library descriptor command by giving the appropriate com~inations
of library idehtifier- and directory IdentItier a-s library names.

1. A particular library identifier from the table above
can be used as a library name to reference all of the
directories in that library.

2. A particular directory identifier from the table above
can be used as a library name to reference all
directories of - a given type (e.g., all source
directories, all object directories, etc)o

3. A two-component library name of the form:

library_identifier.directory_identifier

can be used to reference a particular directory in a
given library. For example, standard.source and
lang.incl are such two-component library names.

4. A library name employing the star convention can be
used to reference several libraries or directories.
For example, *.?????? references all source and object
dir~ctoriesi and ** references all library directories.

5. Two groups of libraries can be referenced by using the
library identifiers shown in Table 14-3 below. These
identifiers may be used separately or in combination
with directory identifiers.

Table 14-3. Multics Library Groups

LIBRARY ID

online libraries,
online~ on

offline libraries,
offline-;- off

GROUP OF LIBRARIES REFERENCED

standard library, languages library,
unbundled library, tools library,
installation library, user library,
1JlI"\ ,.'I'-._1 .. 1': \...._7 __ _
l1'1;;;"'"Vln. ..L..LUIOIY.

supervisor library, boot load library,
communicatIons library.

14-5 AN80

multics libraries multics libraries

Not all of the libraries listed above contain each type of
directory. Table 14-4 below shows which library/directory
combinations are valid.

Table 14-4. Directories in Each Multics Library

std.source
std.object
std.lists
std.execution
std. info
std. include

inst.source
inst.object
inst.lists
inst.execution
inst.info
inst.include

sup. source
sup.object
sup. include
sup.bound_comp

lang. source
lang.object
lang.lists
lang.execution
lang. info
lang. include

tools.source
tools.object
tools.lists
tools.execution
tools. info
tools. include

user. source
user.object
user.lists
user.execution
user. info
user. include

bos.source
bos.object
bos.include

Some examples of library names are:

online libraries
off.source
standard library. info
include -
user.x
network library.lists
std.??????

14-6

unb.source
unb.object
unb.lists
unb.execution
unb.info
unb.include

net. source
net. object
net.lists
net.execution
net. info
net. include

com. source
com.object

AN80

multics libraries multics libraries

Library Descriptor Command Defaults

Table 14-5 below shows the default library names and search
names defined fo~ each-of ~he library descriptor commands.

Table 14-5. Library Descriptor Command Defaults
for the Multics System Libraries

COMMAND

library_cleanup

library fetch

library_info

library_map

library_print

DEFAULT
LIBRARY NAMES

online

online.source,
sup. source

online

online.source,
online.object,
online. lists,
online.execution

info

14-7

DEFAULT
SEARCH NAMES

I??????????????

(none)

(none)

**

*.**.info

AN80

multics library_search multics library search

Name: multics library_search

This subroutine is the library search procedure for the
Multics System Libraries. Its entry points are referenced by
multics libraries , the library descriptor for the Multics System
Libraries. These-entry points may also be used to search other
libraries which have directories structured like those of the
Multics System Libraries.

Section II discusses the general organization of libraries,
and Section III describes the organization of the Multics System
Libraries. Refer to the multics libraries data base description
in Section XIV for more· information about this library
descriptor.

The entry points described below conform to the calling
sequence for library search procedures described in Section V
under "Coding a Library Search Procedure". Therefore, the usage
of these entry points is not repeated here.

Instead,each entry point description below discusses the
types of directories which can be searched with the entry point.
In addition, Table 14-6 compares the following attributes of each
entry point.

1. The types of library entries supported by the entry
poiqt (links, segments, archives, and MSFs).

2. The kind of default output arguments used with each
entry point (either online defaults or offline
defaults). These default output arguments are defined
in Table 14-7.

3. The kinds of checks made automatically. These can
include checking for archives, checking for object
segments, and checking the printability of a library
entry. An entry is printable if it only contains ASCII
characters, or if it is a peruse_text object segment.

4. The kinds of checks inhibited, even if requested by the
user.

5. The special naming conventions which are applied. The
search names given by the user may be mapped into
different names which are actually used to search the
directory. Alternately, some search entry points may
require that the names of archive components be used as
additional names on the archive to speed the search
process. In some libraries, entries awaiting deletion
from the library (obsolete entries) are marked with a

14-8 AN80

multics library_search_

unique name (returned by the unique_chars subroutine).
These entries are not found by a search unless the
-retain control argument is given in a library
descriptor command. Refer to the MPM Subroutines for a
description of ihe unique_chars subroutine.

6. The use of a system identification data base by the
search entry point.

This entry point searches directories organized like the
Multics online source directories. These directories contain
archived and unarchived source segments, and exec com control
segments which are used to create object segments. The names of
all archive components must be placed as additional names on
their respective archives.

Entry: multics library_search $online_object_dirs

This entry point searches directories organized like the
Multics online object directories. These directories contain
archived and unarchived object segments, backup copies of
exec com and absentee control segments intended for user usage,
and Sackup copies of MSFs. The names of all archive components
must be placed on their respective archives.

Entry: multics library_search_$online list info_dirs

This entry point searches directories organized like the
Multics online lists, info, and include directories5 These
directories contain printable segments.

Entry: multics library_search $online_execution_dirs

This entry point searches directories organized like the
Multics online execution directories. These directories contain
bound and unbound ubjecL segments, data bases, exec com and
absentee control segments, and MSFs used by users.- Such
directories are usually included in user search rules.

14-9 AN80

multics library_search multics library_search_

Entry: multics library_search_$hardcore source_dir

This entry point searches the Multics supervisor source
directory. It is inappropriate for use on other libraries
because it uses a specialized system identification data base.

This entry point searches the Multics supervisor bound
components directory. It is inappropriate for use on other
libraries because it uses a specialized system identification
data base.

Entry: multics library_search $hardcore_object_dir

This entry point searches the Multics supervisor object
directory. It is inappropriate for use on other libraries
because it uses a specialized system identification data base.

This entry point searches the Multics
directories. It is currently identical
$online_source_dirs entry point.

80S and MCS source
in function with the

Entry: multics library search $offline_object_dirs

This entry point searches the Multics
directories. It is currently identical
$online_object_dirs entry point.

14-10

80S and MCS object
in function with the

AN80

multics library_search_ multics library_search_

Table 14-6. Comparison of multics_library search_ entry points

ENTRIES SUPPORTED:
links

segments
archives

multisegment riles

OUTPUT DEFAULTS:
online

offline

AUTOMATIC CH~CKS:

archives
printability

object segments

INHIBITED CHECKS:
archives

printability
object segments

NAMING:
search names

archive names
obsolete entries

SYSTEM ID DATA:
supervisor

online source dirs
on 1 i'ne-ob-jectdi rs

online list-info dirs
online execution dirs

x X X X
X X X X
X X
X X X X

hardcore source dir
hardcore bc dIr

hardcore_object dir

offline source dirs
offline object dirs
I--
I
I
I
I
I

X X
X X X

X X X X
X X

X X X X X X

X v
.II..

2 2
1 1

X X
X X
X X

X X
X X X X

X X X

X X
2 2
1 1

X
X 1
X

X

X X X

X X
2
1

X
X

X X
X X

1. Checks made or inhibited only for the library fetch command.
2. Automatic checks made only for the library_prInt command.

14-11 AN80

multics library search

o
N
L
I
N
E

Table 14-1. Default Output Arguments
for Online and Offline Search Procedures

multisegment file comp
multisegment file
archive (ONLINE)
segment (ONLINE)

link

archive comp (-container)

archive comp

o
F
F
L
I
N
E

archive
segment

(OFFLINE)
(OFFLINE)

OUTPUT DEFAULTS
-name

-primary
-match

-type
-path name

-link_target

-dtcm
-dtem
-dtd
-dtc

-current length
-records

-max length
-bit count

-copy
-safety

-ring brackets

-compiler version
-compiler-options

-object info

MP MP
CFIMP CFIMP
CFIMP CFIMP

IMP
FIMP
FIMP

FIMP
FIMP
FIMP

I
I
I
I

MP
FIMP
FIMP

CFIMP CFIMP F FIMP FIMP
CFIMP CFIMP F FIMP FIMP

CFIMP

CFIMP F FIMP
C MP C IMP FIMP FIMP MP

M M
F F F F

M
M
M

F M F F F

CF MP
C M

F
F
F

M

F

F
F
F

F
F
F

F MP
M

F
F
F

-level C IMP C IMP IMP IMP IMP
FIMP
FIMP

MP

-new line CFIMP CFIMP FIMP FIMP
-error CFIMP CFIMP FIMP FIMP

-cross reference MP M
C = library cleanup F = library fetch I = library info

-M = library_map P =-library print

14-12 AN80

APPENDIX A

PLANNED DOCUMENATION ADDITIONS

This section outlines the planned additions to this document
(by major heading only) to provide the user with a general idea
of what the completed PLM will consist of.

SECTION I

SECTION II

SECTION III

SECTION VI

SECTION VII

Introduction to Library Maintenance
Maintenance and Modification Functions
Survey of the Maintenance Tools

Library Organization
The Logical Structure of Libraries
Structure Definitions in the Library

Descriptor
Contents Definitions in the Search

Procedure
Using the Definitions in Library Tools
Defining A Library Structure

The Multics System Libraries
The Online and Offline Libraries
The Online Libraries
The Offline Libraries
The Multics Library Descriptor

Cross Reference Tools
Cross Reference Functions
Object Segment Cross Reference
Include Segment Cross Reference

Online Library Modification
Overview of the Online Libraries
Strategy For Library Modification
Preparing a Modification
Testing the Modification
Installing the Modification
Documenting the Modification
Modification Tools

A-1 AN8a

SECTION VIII

SECTION X

SECTION XI

SECTION XII

SECTION XIII

Supervisor Library Modification

Overview of the Supervisor
Strategy For Library Modification
Preparing a Modification
Testing the Modification
Installing the Modification
Updating the Modification
Documenting the Modification
Modification Tools

Bootload Library Modification
Overview of the Bootload Operating

System (BOS)
Strategy for BOS Modification
Preparing a Modification
Testing the Modification
Installing the Modification
Updating the Modification
Documenting the Modification
Modification Tools

When The Systems Libraries Self-Destruct
Problems Which Can Occur
Special Tools for Correcting Problems

Library Maintenance Exec Com's
BOS exec com's

Library Tools
check mst, ckm
compare entry names, cen
cross reference, cref
edit mst header, emh
gate-macros
generate mst, gm
include cross reference, icref
laddname, lan-
ldelete, ldl
ldeleteacl, Ida
ldeletename, ldn
lnames
Ipatch
lrename, lren
lset ring brackets, lsrb
lsetacl, Isa
object submission test, ost
setcopysw -
source submission test, sst
sys dates
translator search rules
updater, upd

A-2 AN80

w
z
:i
v
z
o
....J
<:::

HONEYWEll INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE SERIES 60(LEVEL 68) MULTICS LIBRARY MAINTENANCE
PLM PRELIMINARY EDITION

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

ORDER NO. IAN8o, REV. a

DATED I MAY 1979

,J\ Your comments will be promptly investigated by appropriate technical personnel and action will be taken r-:-1 LJ as required. If you require a written reply, check here and furnish complete mailing address below. U ,
FROM: NAME __ ___ DATE ______________ __

TITLE __ __

COMPANY __ __

ADDRE~, __ __

PLEASE FOLD AND TAPE -
NOTE: U. S. Postal Service will not deliver stapled forms

I
J

I
I
I
I
I

('
z
o
.J
<{

f
::::>
u

I
I
I
I
I
I
I
I

---+

ATTENTION: PUBLICATIONS, MS 486

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

FIRST CLASS
PERMIT NO. 39531
WALTHAM,MA
02154

I
I
I
J
I
I
I
I
I
I
I
I

-f'
I
I
I
I
I
I
I
I
I
I

~--~.

Honeywell

I
I
I
I
I
I
I
I
J
I
I
I
I
I
I
I

i
1'i
I
I
I
I
I
I

Hone)well
Honeywell Information Systems

In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Wlilowdale, Ontario M2J 1W5

In Mexico: Avenlda Nuevo Leon 250, Mexico 11, D.F.

24014, 5C679, Printed in U.S.A. ANSO-OO

	001
	002
	003
	004
	005
	006
	007
	01-01
	02-01
	03-01
	04-01
	04-02
	04-03
	04-04
	04-05
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	06-01
	07-01
	08-01
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	10-01
	11-01
	12-01
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	13-33
	13-34
	13-35
	13-36
	13-37
	13-38
	13-39
	13-40
	13-41
	13-42
	13-43
	13-44
	13-45
	13-46
	13-47
	13-48
	13-49
	13-50
	13-51
	13-52
	13-53
	13-54
	13-55
	13-56
	13-57
	13-58
	13-59
	13-60
	13-61
	13-62
	13-63
	13-64
	13-65
	13-66
	13-67
	13-68
	13-69
	13-70
	13-71
	13-72
	13-73
	13-74
	13-75
	13-76
	13-77
	13-78
	13-79
	13-80
	13-81
	13-82
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	A-01
	A-02
	replyA
	replyB
	xBack

