SYSTEM INITIALIZATION
SYSTEM DESIGNER'S NOTEBOOK

SUBJECT:

Internal Organization of Multics System Initialization

SPECIAL INSTRUCTIONS:

DATE:

This document supersedes the previous edition of the manual,
order number AN70-00, dated February 1975,

This System Designers’ Notebook describes certain internal
modules constituting the Multics System. It is intended as
a reference for only those who are thoroughly familiar with
the implementation details of tThe Multics operating system;
interfaces described herein should nct be used by aspplica-
tion programmers or subsystem writers; such programmers and

writers are concerned with the external interfaces only.
The external interfaces are described in the Myltics
Brogrammers' Manual, Commands and Active Functions (Order

No. AG92) and Subroutines {(Order No. ABGS3) .

As Multics evolves, Honeywell will add, delete, and modify
module descriptions in subsequent SDN updates. Honeywell
does not ensure that the . internal functions and internal
module interfaces will remain compatible with previous
versions,

05/29/84

ORDER NUMBER:

AN70-01

1 AN70-01

Multics System Designers' Notebooks {(8SDHNs) are intended for
use by Multics system maintenance personnel, development person-
nel, and others who are thoroughly familiar with Multics internal
system operation. . They are not intended for application
programmers or subsystem writers.

The 8DNs contain descriptions of modules +that serve as
internal interfaces and perform special system functions. These
documents do not describe external interfaces, which are used by
application and system programmers.

This 8SDN contains a description of the software that
initializes the Multics system. This description is by no means
complete in all its details; for a thorough understanding of
Multics initialization, or of any particular area within this
system, this SDN should be used for reference in conjunction with
the source of the relevant programs,

(C) Honevwell Information Systems Inc., 1984 File No.: 2L13

3/ 84 AN70-01

In addition to this manual, the volumes of the Multics

Programmers' Manual (MPM) should be referred to for details of
software concepts and organization, external interfaces, and for

specific usage of Multics Commands and subroutines. These
volumes are:
MPM Reference Guide, Order No. ABG91
MEPM Commands and Active Functions, Order No. AG92
MPM Subroutines, Grder No. AGS3
AN70-01

3784 iii

CONTENTS

Page

Section 1 Summary of Initialization . . . e e s i-1
Hardware and PL/1 Env1ronment

initialization 1-2

Page Control initialization . 1-2

File System initialization 1-3

Cuter ring Envirenment initialization 1-3

Bootload Command Envirocnment (bce) 1-3

Crash Handler (toehold) 1-4

Section 2 Collection 0O . e e e aa

Getting started

Programming in Collectxon 0

Module Descriptions .
bootload_abs_mode. alm .
bootload_0.alm
The firmware collectlon
bootload_console.alm
bootload_dseg.alm
bootload_early_dump.alm
bootload_error.alm
bootload_faults.alm
bootload_flagbox.alm .
bootload_formline.alm . o o
beetload_ info.cds . .-+ . v &
bootload_ioc.alm
bootload_linker.alm
bootload_loader.alm
bootload _slt_manager.alm
bootload_tape fw.alm . . ,
template_slt_.alm .

LI D R D N DR N A |
CRNNNOOPONVUARADWNNN -

Section 3 Collection 1 e .
Summary of Collect:on 1 Passes
normal (boot) pass
service pass .
early pass « e e
crash pass . . .« . « + + « 4 a w4 e
re_early pPass . . .« + « « 5 & a4
bce_crash pass foe e e e e e
shut pass . . e e e e e e s
Module Descr;ptions

1
PN NNUAN =~

WRWRWWLOWRAWY NNNNNI})NNNNNNNNNNNNNNN

iv AN70-01

CONTENTS (cont)

announce_chwm. pl1l
boot_rpv_subsystem.pl]l

boot_tape_
bootload _1.alm

io.pl1

collect_free_core, p11
create_rpv_partition.pll
delete_segs. pli
disk_reader.pll ., .
establish_ confxg_deck p11
fill_vol_extents_.pll

find_rpv_subsystem.pll

get_
get_

main.pl1l

io_segs.pll

he_load_mpc. pl]
init_aste_pools.pll
init_clocks.pl1l
init_early_config.pll
init_empty_root.pll
init_hc_part.pl1
init_partitions.pll
init_pvt.pil
init_root_vols.plil
init_scu.pll
init_sst.pll N
init_vol_header_.pl1
initial_error_handler,
initialize_faults.pll

initialize_+faults_data. cds

initializer.pll
data_init.pl1
load_disk_mpcs.plil
load_mst. p11
make_sdw.pl]l .
make_segs_paged. pll

iom_

move_non_perm_wired_segs. p11

ocdem_.pl1 .
prds_lnlt pli .
pre_link_hc.pllt . . .
read_disk.pl1 .
read_disk_label.pl1l

real_

scas_init.pl1

scs_and_clock_

SYS_
tape_reader. pll

tc_

info.cds

init.pl1

3

pl1

initializer.pll. pmac

init.pl1
segment_loader. pll
slt_manager.pll

-
()
Q
1]

| I S |

1

i
MOMNN=2—=-—=000

wwwmwwwwgwmwwwwwww

]
—
M

AN70-01

CCONTENTS (cont)

-
o
Q
0]

Section 4 The Bootload Command Environment
Initiatlization . . .
Environment and Fac111t1es
Restrictions . . . e e
Mcecdule descrlptxons .

bce_abs_seg.pll
bee_alert.pli
bee_alm_die.alm
bece_ appendlng_sxmulatlon pll
bce_check_abort.pll .
bce_command_phocessor_.p11 .
bce_console_io.plil
bce_continue. pli . .
bce data.cds,
bce_die.pll . .
bce dlsplay_lnstructlon p11
bece_display_scu_.pll
bece_dump. pll
boce_error.pll
bece_esd.pll .
bece_exec_com_.pl1l
bce_exec_com_input.pll
bce_execute_command_.pl]
bece_fwload. pli . s e
boce_get_flagbox.pll . . .,
bce_get_to_command_level, pl1
bece_inst_length_.pll
bce_list_requests_.pl1l
bece_listen_.plt
bce_map_over_requests_.pll
bce_name_to_segnum_.pll
bce_probe.pll. pmac

Request routines

Internal Routines

1
- s e i e e e e 2 QRO OOOENNNNYNOO R MDD -

N2 =2 0000

ALLALLLJ&-&LLLALA&LJ}LL&Lbbhhhhhhhh-hhh

bece_probe_data. cds s e e e -14
bece_probe_fetch_.pll e h e 4-14
boe_guery.pll«« . . . 4-14
bce_ready.pll 4-15
bce_relocate_instructien_.pll . . . 4-15
bce_request_table_.alm 4-15
bce_severity.pll o e e e e e 4-15
bece_shutdown_state.pll e e 4-158
bce_state.pll . . . C e e e 4-16
bootload_disk_post. p11 e e e e 4-186
bootload_+s_.pl1l e e e e 4-16
bootload_fs_cmds_.pl1, 4-17
bootload_gedx.pll1 4~17
config deck_data_.cds 4-17

vi AN70-01

CONTENTS (cont)

Page
config deck_edit_.p11 4-17
establish_temp_segs.plt 4-17
find _file_partition.pl1 ., 4-18
init_bce.pll C e 4 s e .. 4-18

Section 5 Crash Handling e e
Early Crashes,
The teoshold .
Module Descrlptlons
fim.alm . .
Sinit_ toehold p11 e e
save_handler_wmc.alm ,

1

1
RNNNON = ==

1

Section 6 Collection 2« .« . . .
Order of execution
Module Descriptions

accept_fs_disk.pll
accept_rpv.pli
create_root_dir.pl1l
create_root_vtoce,. pl1
dbm_man.pll v s
dir_lock_init.pl1l e e s
fnp_init.ptl1 C o e e e e
getuid, alm . .
init_branches. p11
init_dm_journal_seg.pll
init_hardcore_gates.pll
imit_lvt. pll
init_processor.alm
init_root_dir.pl1
Anit_scavenger_data.pll o e
init_sst_name_seg.pll
init_stack_0.pl1
init_str_seg.pll .
init_sys_var.pll o e
init_volmap_seq.pll
init_vtoc_man.pli
initialize_faults.pll
kst_util.pll o e e
start_cpu.pll < . .
syserr_log_init.pl1
te_init.pl1l

| B T N T N DN R T SR S |

]

'
2O OCUOOOENNN-NNOOODNUDBDALMLAMRDOR——

o

|

Section 7 Collection 3 . o e e e e
Grder of Executlon A e e e

Module Descriptions .

init_proc.pt1

io_config_init.pl1 .o

1

R R i IS I mmmmmmmmmmmmmmmo‘)mmmmmmmmmmmmm aaaaguad

]
S

vii AN70-01

CANTENTS {(cont)

ioi_init.pl1
ioi_page_table. p11
load_system.pll
te_init.pll

Section 8 Mechanisms . . .
Hardcore Segment Creatlon
Hardware and Configuration
Initialization \
Interconnection of Multlcs hardware
Configuration of Multics hardware
CPU and [I0M hardware configura-
tion
sScu hardware coanguratlon
SCU addressing
Inter-module communication
Interrupt Masks and Assignment
Operations upon masks
Sequence of Initialization
Page Control Initialization
Segment and Directory Control
Initialization .
Segment Number A331gnment
Traffic Control Initialization

Section 8 Shutdown and Emergency Shutdown

Order of Execution of Shutdown

Order of Execution of Emergency

Shutdown

Module Descrlptions . A
deactivate_for_demount. pll .
demount_pv.pl1
disk_emergency. pli .
emergency_shutdown.alm ., .
fsout_vol.pll
scavenhger.pli
shutdown.pll v . v
shutdown_+ile_system. p11 . .
switch_shutdown_file_system.alm .
tc_shutdown.pllt
wired_shutdown.pll

Appendix A Glossary
Appendix B Initialization and Initialized Data Bases

_linkage (active init 1linkage)
as linkage (active supervisor 11nkage)

viii

1
o mach

1
- ONOOU R

W=-=0

L T U B T |

A
oaA

]
—

1 Pr o
SNNNNOOOUOAD DR

]
—

ml?m T O OOOUOOOLOLODOCO OO (Q(? G R LOR® QO VO N~

AN70-01

CCONTENTS {(cont)

bce_data (bootload command environment
data) « .« < . .
bootload_info

config_deck . .,

core_map ,

dbm_seg (dumper b:t map seg)
dir_lock_sed . . . « « « + « « « .
disk_post_gueue_seg .

disk_seg . .

dm_Jjournal_ seg_ .

dn355_data.

dn355_mai lbox .

dseg (descriptor segment] .

fault_vector (fault and lnterrupt vec-
tors) 0 0 e e,

flagbox . .

inzr_stk0 (inltlalzzer stackl
1nt_unpaged_page_tab1es

fo_config data
io_page_tables . . e .

jioi_data

iom_data «

iom_mailbox

kst (known segment table)

vt (logical volume table)l

name_table . s e e

oc_cata . . .

physical_ record buffer .

pvt (physical volume table) .

scas (system controller addressing
segment) e s e e e e

scavenhger_data

scs (system communxcatxohs segment)
slt (segment loading table) Ve e
sst (system segment table) . . .
sst_hames_ e e e

stack_O_data , .,

stock_seg . .

str_seg (system tra:ler segment)

sys_info .,

sys_beoot_info v L v . . .

syserr_data o . . . 0 s

sygerr_log ,

tc_data . . o e e e e e

tc_data_ header v e e e e e

toehold .,« .+ .+ v 0 0 0 e e

LEy_@rea s e

Tty _buf C o v e e

ix

-
D
Q
o]

L DN S D R R D D R B B |

}
WO OVROERONNNDIOOOAUNT ADABARIRIXNND-—-

oo WWUJW'UTUJ[DWWUJW(DU‘JEDW DO EEWom

i

AN70-01

CONTENTS (cont)

Page

Tty _tables . . . x4 s 4 e e .. B-14
unpaged_page_ tables Vo e e e e e e B-14
vtoc_buffer_seg C e e e e e e B-14
_linkage (wired init 1linkage) e B-15

h1red hardcore_data . . . B-15
wWS_ 11nkage {(wired supervxsor llnkage) B-15

Appendix C Memory Lavout« ¢ . 4 v e C-1

I ndex e e e e e e e e e e i-1

X AN70-01

SECTION 1

SUMMARY OF INITIALIZATION

- Multics initialization, as described in this SDN, can be
thought of as divided into the following parts:

% Hardware and PL/1 Environment initialization (Collec-
tion 0Q)

X Page Control initialization (Collection 1 service pass)

* Beootlocad Command Environment (bce) (Collection 1 multi-
ple passes)

* Crash Handler (toechold)

£ File System initialization (Collection 2)

% Outer ring Environment initialization (Collection 3)

The parts listed before collection 2 are collectively called
"Bootload Multics."”

A collectich ig simply a set of initialization routines
that are read in and placed into operation as a unit to perform a
certain seat, or a certain subset, of the tasks required to
initialize a portion of the Multics supervisor. Each collection
consists of a distinct set of programs for reasons discussed
throughout this SDN. Even though each . collection mostly exists
to perform a particular set of functions, they are normally
referred to by their number (which have only historical signifi-
cance) rather than the name of their function.

Initialization may also be thought of as having three
separate functions:

Bringing up the system
This role is obvious, The description of this role
follows along the functions needed to perform it. Each
portion of initialization runs, utilizing the efforts
of the previous portions tTo build up more and more
mechanism until service Multics itself can run.

Providing a command environment before the Ffile system is

activated from which to perform configuration and disk
maintenance functions

1-1 AN70-01

Providing an environment to which service Multics may crash
which is capable of taking a dump of Multics and
initiating recovery and reboot operations

These last two functions are the role of bootleocad Multics
{bce) ., They take advantage of +the fact that during
initialization an environment is built that has certain
facilities that allow operations such as disk manipulation to
occur but it is an environment in which the disks themselves are
not vet active for storage system operations. This environment,
at an intermediate point in initialization, forms the bootload
command environment {(bcej).

The bootload command environment is saved before further

initialization operations occur, When service Multics crashes,
service Multics 1is saved and this bce "crash" environment is
restored, This safe environment can then examine or dump the

service Multics image and perform certain recovery and restart
operations without relving on the state of service Multics,

HARDWARE AND PL/1 ENVIRONMENT INITIALIZATION
The purpose of collection 0 is to set up the pl/iil
environment and to start collection 1. It has a variety of

interesting tThings to perform in the process, First of all,
collection 0 must get itself running. When Multics is booted
from BOS, this is an easy matter, since BGS will read in the
beginning of collection 0, leaving the hardware in a known and
good state and providing a description of the configuration
{config_deck) around. When not booted from BOS, that is, when
beooted via the I6M boot Ffunction, collection 0 has the task of
getting the hardware into a good and known state and finding out
on what hardware it is working. fnhce collection 0 has set up the
hardware, it can load colliection 1 into memory. Collection 1
contains the modules needed to support programs written in pl/1;
thus, this loading activates the pl/1 environment, After this
time, more sensible programs can run and begin the true process
of initialization. The result of this collection is to provide
an environment in which pl/1 programs can run, within the
confines of memory.

PAGE CONTROL INITIALIZATION

The main task of collection 1 is 1o make page control
operative. This is necessary so that we may page the rest of the
initialization programs (initialization programs all have to fit
into memory until this is donhe). The initialization of page
control involves setting up all of the disk and page control data
bases, Also, the interrupt mechanism must be initialized. The
result of this collection is to provide an environment in which
i/o devices may be operated upon through normal mechanisms (i.e.,

1-2 AN70-01

via page faults or direct calls to the standard device control
moedules) but in which the storage system is not active. At the
final end of collection 1, this environment becomes paged, using
a special region of the disks {the hardcore partition) so that
the storage system is not affected.

Collection 1 can be run multiple times. The effect of
making a pass through collection 1 is to set up the device tables
{and general configuration describing tables) to reflect a new
configuration, The various passes of collection 1 are the key to
the operation of bce. There are several times when the running

of collection i is necessary. It is necessary when we first
start up, te allow accessing the hardware units "discovered” by
collection O, fnce the correct configuration is determined via

bce activities, collection 1 must be re-run to allow all of the
devices to be accessible during the rest of initialization and
Multics service proper. Finally, when the crash environment is
restored (see below), another pass must be made to provide
accessibility to the devices given the state at the time of the
crash,

EILE SYSTEM INITIALIZATION

With paging active; collection 2 can be read into a paged
environment. Given this environment, the majeor portion of the
rest of initialization occurs. Segment, directory and traffic
control are initialized here, making the storage system accessi-
ble in the process. The result of this collection is an
environment that has active virtually all hardcore mechanisms
heeded by the rest of Multics.

QUTER RING ENVIRONMENT INITIALIZATION

» Collection 3 is basically a collection of those facilities
that are reguired to run in outer rings. In particular, it
contains the programs hneeded to provide the initializer's ring
one environment, especially the code to perform a reload of the
system (especially the executable libraries). After the execu-
tion of this collection, the lnitializer enters into a ring one
command environment, ready toc load the system (if necessary) and
start up the answering service. {Activities performed from ring
one onward are not covered in this SDN.)

BOOTLOAD COMMAND ENVIRCONMENT (BCE)

The bootload command environment is an environment that can
perform configuration and disk management functions, It needs to
be able to support i/o to devices in a pl/1 environment. Also,
since bce must be able to operate on arbitrary disks, it must be
capable of running before the storage system is active, Thus, it

1-3 AN70-01

is equivalent to the collection 1 environment before the environ-
ment becomes paged. In this environment, built by a special run
of collection 1, a series of facilities provides a command
environment that allows pl/1 programs to run in a manner similar
to their operation in the normal Multics programming environment.

CRASH HANDLER (TOEHCLD)
When Multics has crashed, Multics is incapable of

performing the types of analysis and recovery operations desired
in its distressed state. Thus, a safe environment is invoked to
provide these facilities. Since bece is capable of accessing
memory and disks independently of the storage system {and the
hardcore partitions), it becomes the obvious cheoice for a crash
environment. When Multics crashes, bce is restored to operation.
Facilities within bce can perform a dump of Multics as well as
start recovery and reboot operations, The crash environment
consists of the mechanisms needed to save the state of Multics
upon a crash and to re-setup the bootload command environment.
These mechanisms must work in the face of varving types of system
failures; they must also work given the possibility of hardware
reconfiguration since the time the safe environment was saved.

1-4 AN70-01

SECTION 2

COLLECTICN ©

_ Collection 0O .in Bootload Multics is an ensemble of ALM
programs capable of being booted from BOS or the I0M, reading
themselves off of the boot tape, loading tape firmware if needed,
setting up an 1/0 and error handling environment, and loading
collection 1.

Collection 0 is organized into two modules:
bootload_tape_label, and bound_bootload_0. The first is an MST
label program designed to read the second into its correct memory
location, after being read in by the [6M bootload program. The
second is a bound collection of ALM programs, bound_bootload_0
takes extensive advantage of the binder's ability to simulate the
linker within a bound unit, The programs in bound_bootload_0 use
standard external references to make intermodule references, and
the binder, rather than any run-time linker or pre-linker,
resolves them to TSR-relative addresses, Any external references
{such as to the config deck) are made with explicit use of the
fact that segment numbers for collection 0 programs are fixed at
assembly time.

e

_ bootload_tape_label is read in by one of tTwo means, In
native mode, the IOM or 110C reads it into absolute location 30,
leaving the PCW, DCW's, and other essentials in locations O

through 5. The 1I10C leaves an indication of its identity just
after this block of information.

In BOS compatikility mode, the BGS BOOT command simulates
the 10M, leaving the same information. However, it also leaves a
config deck and flagbhox (although bce has its own flagbox) in the
usual locations. This allows Bootload Multics to return to BOS
if there is a BOS to return to. The presence of BUOS is indicated
by the tape drive number being non-zero in the idcecw in the "I10M"
provided information.

2-1 AN70-01

The lakel overlays the interrupt vectors for the first two
I0M's. Because the label is formatted as a Multics standard tape
record, it has a trailer that cannot be changed. This trailer
over lays the interrupt vectors for channels B9 and B10, Without
a change in the label format, the bootload tape controller cannhot
use either of these channels as a base channel, because the label
recotrd wipes out the vectors that the [10M bootload programs sets
up. This prevents control from transferring to the 1label
program,

The label program first initializes the processor by
loading the Mode Register and the Cache Mode Register, and
clearing and enabling the PTWAM and the SDWAM. it then reads aii
of bound_bootload_0 off the tape. This action places the toehold
and bootload_early_dump into their correct places in memory, in
as much as these 1two modules are bound to be the first two
objects in bound_bootload_0. If this is successful, it transfers
to the beginning of bootload_abs_mode through an entry in the
toehold. {This entry contains the address of bootload_abs_mode,
via the 1linking performed by the binder.) This program copies
the template descriptor segment assembled into template_slt_ to
the appropriate location, copies int_unpaged_page_tables and
unpaged_page_tables 1tTo their correct locations, loads the DSBR
and the pointer registers, enters appending mode, and transfers
to bootload_ 0.

PROGRAMMING IN COLLECTICGN Q

Collection O programs are impure assembly lanhguage pro-
grams. The standard calling sequence is with the tsx2 instruc-

tion. A save stack of index register 2 values is malintained
using id and di modifiers, as in traffic control. Programs that
take arguments often have an argument list following the tsx2
instruction. Skip returns are used to indicate errors.

The segment bootload_info, a cds program, is the repository
of information that is needed in later stages of initialization.
This includes tape channel and device numbers and the like. The
information is copied into the collection 1 segment svys_boot_info
when collection 1 i3 read in.

MODULE DESCRIPTIONS

bootload abs mode.alm

As mentioned above, bootload_abs_mode is the first program
to run in bound_bootload 0. The label program locates it by
virtue of a tra instruction at a khown place in the tochold
(whose address is fixed); the tra instruction having been fixed
by the binder. It first clears the memory used by the Collection

2-2 AN70C-01

D data segments, then copies the template descriptor segment,
int_unpaged_page_tables and uhpaged_page_tables from
template_slt_. The DSBR is loaded with the descriptor segment
SDW, the pointer registers are filled in from the ITS pointers in
template_slt_, and appending mode is entered. bootload_ abs_mode
then transfers control to bootload_Ofbegin, the basic driver of
collection zero initialization.

bootload O.alm

bootload_0's contract is to set up the 1/0, fault, and
console services, and then load and transfer control 1o collec-
tion 1. As part of setting up the 170 envircnment, it must load
tape firmware in the bootload tape MPC if BOS is not present.
bootload_ 0 makes a series of tsx2 calls to set up each of these

facilities in turn, It calls bootload_io%preinit to interpret
the bootload program left in low memory by the IGM/IIGC/ 10X,
including checking for the presence of BOS;

boeotload_flagbox$preinit to set flagbhox flags according to the
presence of BOS; bootload faults®init to Ffill in the fault
vector; bootleoad_slt_manager$init_slt to copy the data Ffrom
template_slt_ to the SLT and name_table; bootload_io%init to set
up the I/0 environment; bootload_console$init to Ffind a working
console and initialize the console package; bootload_loadertinit
to initialize the MST loading package; bootload_tape_fwhboot to
read the tape firmware and load it into the bootload tape
cohtroller; bootload_loader$load_collection to lecad Cellection
1.0; bootload_loadertfinish to copy the MST loader housekeeping
pointers to their permansnt homes; and bootload_linker$prelink to
shap all links in Collection 1.0,

Finally, the contents of bootlvad_info are copied into
sys_boot_info. Control is then transferred to bootload_1.

' R collectic

As descr ibed below under the heading of
"bootload_tape_fw.alm", tape firmware must be present on the MST
as ordinary segments. It must reside in the low 258K, becausc

the MPC's deoe not implement extended addressing for firmware
loading. The tape firmwvare segments are not needed after the MPC
is 1loaded, so it is desired to recycle their storage. It is
desired to load the MPC before collection 1 is lcaded, so that
backspace error recovery can be used when reading the tape. The
net result is that they need to be a separate collection. To
avoid destroyving the old correspondence between c¢ollection num-
bers and sys_info$initialization_state values, this set exists as
a sub-collection. The tape firmware is collection 0.5, since it
is loaded before collection 1. The segments in collection 0.5
have a fixed naming convention. Each must incltude among its set
of names a nhame of the form "fwid. Tnnn", where "Thnnn" is a four

2-3 AN70-01

character controller type currently used by the BOS FWLOAD
facility. These short names are retained for two reasons.
First, they are the controller types used by Field Engineering.
Second, there is no erase and kill processing on input read in
this environment, so that short strings are advantageous. Note
that if the operator does make a typo and enters the wronhg
string, the guestion is asked again.

koot load conscle.alm

bootioad_console uses bootload_io to do console [/0. Its
initialization entry, init, finds the conscle on the bootload
[OM. This is done by first locking in the config deck, if BOS
left us one, or, if not, by trying to perform a 51 (Write Alert)
comment to each channel in turn).. Only console channels respond
to this command. When a console is found, a 57 (Read ID) command
is used to determine the model.

The working entrypoints are write, write_nl, write_alert,
and read_line. write_nl is provided as a convenience, All of
these take appropriate buffer pointers and lengths. Read_1line
handles timeour and operator error statuses,

There are three types of console that bootload_cochsole must
support, The Ffirst is the original EMC, CSUB00D1. It requires
all its device commands to be specified in the PCW, and ignores
IDCH's, The second is the LCC, CSUG601. It will accept commands
in either the PCW or IDCW's. The third type is the IPC-CONS-2.
In theory, it should be just like the LCC except that it does NOT
accept PCW device commands, wWhether or not it actually meets
this specification has yet to be determined.

Te handle the two different forms of /0 (PCW commands
versus IDCW's), bootload console uses a table of indirect words
pointing te the appropriate PCW and DCW 1lists for each operation. -
The indirect words are setup at initialization time. The LCC is
run with IDCW's to exercise the code that is expected toc run on
the IPC-CONS-2.

bootload dseg. alm

bootload _dseg's task is to prepare SDW's for segments

1loaded by bootload_loader, the collection zero loader.
bootload_dsegimake_sdw takes as an argument an sdw_info structure
as used by sdw_util_, and constructs and installs the SDW, The
added entrypoint bootload_dsegimake_core_ptw is used by

bootload_loader to generate the page table words for the unpaged
segments that it creates.

2-4 AN70-01

bootload early dumb.&lm

When an error occurs during early initialization,

bootload_ecarly_dump is called. It is called in three ways,
First, if bootload_error is called for an error (as opposed to a
warning), this routine is called. Secendly, if a crash should

occur later in initialization (after collection 0) but before the
toechold is set up (and bce running), the toehold will transfer
here. Third, the operator can force a transfer to this routine
through processor switches any time up until collect_free_core
runs. (This includes while bce is running.) This is done by
force executing a "tra 300000" instruction.

bootload_early_dump starts by reestablishing the collection
0 environment (masked, pointer registers appropriately set,
etc.). It then uses bootload_conscole to ask for the number of a
tape drive on the bootlioad tape controller to wuse for the dump.
When it gets a satisfactory answer, it dumps the first 512k of
memory (that used by early initialization and bcel), one record at

a time, with a couple of miscellanecus valuess used by
read_ecar ly_dump_tape (which constiructs a normal format dump). I+
an error occurs while writing a record, the write is simply
retried {(no backspace or other error recovery). After 16

consecutive errors, the dump is aborted, a status message
printed, and a new drive number requested,

bootload error.alm

bootload_error is responsible for all the error messages in

collection O, It is similar in design to page_error.alm; there
is onhe entrypoint per message, and macros are used to construct
the calls to bootload_formline and bootload_console,
bootload_error also contains the code to transfer to
bootlicad_ear ly_dump. There are two basic macros used: "error",
which causes a crash with message, and "warning", which prints

the message and returns, A1l the warnings and errors find their
parameters via external references rather than with call parame-
ters. This allows tra's to bootload_error to be put in error
return slots, like:

tax2 read_word
tra booctload_error$console_error

" earror, status in

" bootload_conscleslast_error_status
s " normal return

Warnings asre called with tsx2 calls,

2-5 AN70-01

beotload faults.alm

bootload_faults sets up the segment fault_vector. Al
faults except timer runout are set to transfer to
bootload_error$unexpected_fault. All interrupts are set to
transfer control to bootload_error$unexpected_interrupt, since no
interrupts are used in the collection Zero environment. The same
structure of transfers through indirect words that is used in the
service fault environment is used to allow individual faults Lo
be handled specially by changing a poeinter rather than
constructing a different tra instruction (also, instructions do
not allow “its”™ pointers within theml. The structure of the
scuw/tra pairs {but not the values of +the pointers) formed by
bootload_faults is that used by the rest of Initialization and
service,

bootload flagbox.alm

bootload_flagbox =zeroes the bee flagbox. It also zeroes
the cold_disk_mpc flag when BOS is present for historical
reasons, Various values are placed in the flagbox tThat no one
locks at. This program is responsible for the state of the BOS
toehold as well. It copies the BOS entry sequences into the bce
toehold and sets the bce entry seguence into the BOS toshold for
the sake of operators who enter the wrong switches.

bootload formline.alm

This program is a replacement for the BOS erpt facility.
[t provides string substitutions with ioa_-like format controls,
1t handlies octal and decimal numbers, BCD characters, ascii in
units of words, and ACC strings. Its only client is
bootload_error, who uses it to format error message. The BCD
characters are used to print firmware IID's found in firmware
images. Its calling sedquence is elaborate, and & macro,
"formline", is provided in bootload_formline. incl.alm

bootload info.cds

The contents of this segment are described under data
bases.

bootload ioc.alm

bootload_i¢o is an (o packags designed to run on [OM's and
110C"' s, It has entrypoints to connect to channels with and
without timeouts. It always waits for status after a connection,
It runs completely using abs mode i/0, and its callers must fill
in their DCW lists with absoclute addresses, This is done because

2-6 ‘ AN70-01

NSA I0M's do not support rel mode when set in PAGED mode, and
there is no known way to find ocut whether an I10M is in paged
mode. Under normal operation, the config card for the IOM is
available to indicate whether the I0OM is in paged mode or not,
relieving this difficulty.

The preinit entrvpoint is called as one of the first
operations in collection O, Besides setting up for i/0, it
copies and determines from the I10M/1]10C/BOGS provided boot info
the assume_config_deck (BOS present) filag and the system_type
value,

bootload linker . alm

bootload linker is responsible Ffor snapping all tinks

between collection onhe segments. It walks down the LOT looking
for linkage sections to process. For sach one, it considers each
link and shaps it. It uses bootlocad_slt_manager$get_seg_ptr to

find external segments and implements its own simple definitions
search.

bootload loader.slm

bootlioad_loader is the collection zero 1loader (of collec-
tions 0.5 and 1). It has entrypointe f1o initialize the tape
loader (init), locad a collection (load collection), gskip a
collection (skip_collection}, and clean up (finish). The loader
is an alm implementation of segment_loader.pll, the collection 1
loader. It reads records from the mst, analvzes them, splitting

them into slt entries, definitions and linkage sections, and
segment contents, Memory is obtained for the segment contents
using allocation pointers in the stt. Page tables are allocated
for the segment within the appropriate unpaged_page_tables seg-
ment. When proper, the breaskpoint_page is added as another page
to the end of the segment, Definitions and linkage sections are
added to the end of the proper segments (ai_linkage, wi_linkage,
ws_1linkage, as_linkage). The loader has a table of speciatl
segments whose segment numbers (actually ITS pointers) are
recorded as they are read in off of the tape. These include the
hardcore linkage segments, needed to l1cad linkage sections,
definitions_, and others, The leoader maintains its current
allocation pointers for the linkage and definitions segments in
its text. bootload_loader$finish copies them into the headers of
the segmenhts where segmenti_ loader expects to find them.

bootload sl1t manager.alm
bootload_slt_manager is responsible for managing the Seg-
ment Loading Table (SLT) for collection =zero, It has three

entries. bootload_sit_managersinit_slt copies the SLT and name

2-7 AN70-01

table templates from template_slt_ to the slt and name_table

segments, bootload_slt_manager$build _entry is called by
bootload_loader to allocate a segment number and fill in the SLT
and hame table from the information on the MST.

bootload_slt_manager$get_seg ptr is called by bootload_linker to
search the SLT for a given name. It has imbedded in it a copy of
hash_index_ used <to maintain a hashed list of segment names
compatible with the list for slt_manager in further collections.

bootload tape fw.alm

bootload _tape_fw is responsible for isading the bootload
tape MPC. It begins by loading collection 0.5 into memory with a
call to bootlcad_loader$load_collection. By remembering the
value of slit. last_init_seg before this call, bootload_tape_+w can
tell +the range in segment numbers of the firmware segments,
Firmware segments are assighed init_seg segment numbers by
bootload_loader, but are loaded low Iin memory, for recasons
described above, bootload_tape_fw then determines the correct
firmware type. I+ bootload_info specifies the controller type,
then it proceeds 1o search the SLTE names of the firmware
segments for the appreopriate firmware. If bootload_info does nox
specify the firmware type, then bootload_tape_fw must ask the
operator to supply a controller type. This is because there is
ne way to get a controller to identify itself by model.

Each of the firmware segments has as one of its SLTE names
(specified in the MST header) the six character MPC type for
which it is <to be used, bootload_tape_fw walks the slt looking
for a firmware segment with the correct name. I+ it cannot find
it, it re-queries (or queries for the first time) the operator
and tries again.

Having found the right firmware, the standard MPC bootload
sequence s initiated to boot the . tape - MPC, The firmware
segments' 8SDW's are zeroed, and the slt allocation pointers
restored to their pre-collection-0.5 values. bootload_ +tape_+w
then returns,

template slt .alm
This alm program consists of a group of involved macros
that generate the SLTE's for the segments of collection =zero. It

is NOT an image of the segment slt, because that would include
many zero SLTE’s between the last sup seg in collection zerc and
the first init seg. Instead, the init seg SLTE's are packed in
just above the sUp segs, and bootload_slt_manager$init_slt
unpacks them, It also contains the template descriptor segment,
packed in the same manher, and the template name table. The
initial cohtents of int_unpaged_page_tables ancl
unpaged_page_tables are alss generated. Also present are the

2-8 AN70-01

absolute addresses, lengths, and pointers to each of the collec-
tion D segments for use elsewhere in bound_bootload_O0,

2-9 AN70-01

SECTICON 3

COLLECTION 1

The basic charter of collection 1 is to set up paging,
fault handling, as well as various data bases nheeded for paging
and other like activities, Collection 1 can run multiple times,
for various reasons.

SUMMARY OF COLLECTICN 1 PASSES

The first run through collection 1 is known as the "early”
pass which is described below. It is arun in which we are
restricted to work within 512K and in which only the rpv is
known; in fact, it is +this pass which finds the rpv and the
config deck. If BOS is present, this pass is not necded. The

end of this pass is the arrival at "early" command level, used to
fix up the config deck, in preparation for the "boot"” pass.

The second pass, which is khown as "bootload Multics
initialization", also runs only within S12K. It, however, has
knowledge of all disks and other peripherals through the config
deck supplied either by BOS or the early initialization pass.
This pass is made to generate a crash-to-able system that can ke
saved onto disk for crash and shutdown purposes. After the crash

handler (this image) is saved, the bootiocad Multics “"boot"
command level can be entered. This level allows the booting of
Multics service. After Multics has shut down, a slight variant

of this pass, the "shut" pass, is run in a manner similar to that
for the "crash" pass, described below.

The third pass (which actually comes after the fourth) is
another run of bootload Multics initialization performed after
Multics has crashed. This pass is made to re-generate various
tables to describe the possibly different configuration that now
exists after having run Multics, Beotload Multics "crash"
command level is then entered,

The fourth pass through collection 1 is called "service
initialization”, which runs using all memory and devices, The

3-1 AN70-01

result of this pass is suitable for running the later collec-
tions, and bringing up service.

The "early" pass creates a safe environment consisting of a
set of programs in memory and a synhnthesized config deck that
describes known hardware. This is saved away tc¢ handle crashes
during the "boot" pass. I+ the "boot" pass fails, the tochold
resteores this earlier saved envircnment which then runs a
"re_early" pass. This is really & hnormal pass, but using the
saved awvay config deck of known good hardware, The "re_early"
pass comes back to an "early" command level to allow the operator
to fix the deck or hardware.

When the "boot" pass succeeds, it alsc saves a good memory
image and the now confirmed site config deck. After the "boot"
pass saves this image, the "boot" command level is entered and
eventually it boots Multics, running the "service" pass. If this
fails, the toechold restores the saved image. A "bce_crash" pass
then runs, This is a normal pass but one in which the saved
config deck is used. This pass is run on the assumption that,
cither a bce command died and the operator may now examine it, or
that the "service" pass found a problem. The "bce_crash” level
allows the operator to fix things.

Once the boot of service Multics completes collection 1, a
crash or shutdown will invoke the toehold to restore bce. This
time, however, the current config deck is used to utilize any
reconfigurations that have occured. bce will come o the "crash"
or "boot" command levels,

We'll start by looking at the basic initialization pass,
that used to come to the normal ("boot") bce command level,

NORMAL (BOGT) PASS

The sequence of events in a normal initialization pass is
given here. As of the time of the start of a normal
initialization pass, the config deck has been found, gither by
BOS or the early initialization pass. All other data bases
besides sys_boot_info and sys_info set or created during previous
initialization passes have been deleted. The pass starts with
saving certain attributes, such as free core extents, for later
restoration at the end of the pass (before running another).

scs_and_clock_init fills in the initial scs (system config-
uration segment) data from the config deck. This is information
on the processors and the memory controllers.

get_io_segs, iom_data_init, ocdem_$init_all_consoles, and

scas_init are run to set up the disk_seq, pvt, iom_data,
ioi_data, oc_data and the system controller addressing segment.

3-2 AN70-01

te_init initializes tc_data's apte and itt lists,

init_sst generates the sst and core map appropriate for the
pass. This is the last real memory allocation. After this time,
allocation of memory based upon the data in the slt is
deactivated,. The remaining tables either have memory already
allocated for them or are generated paged, once paging is
started, anhounce_chwm anncunces memory usage.

initialize_faults$interrupt_init initializes the interrupt
vector, With iom_data and oc_data set up, this permits ocdcm_ to
be used for console (/4. The interrupt mask is opened with a
call to pmuitfset_mask.

The basic command environment facilities (/0 interfaces
and a free area) are . set up in acall to init_bce. {BCE is an

acronym for Bootload Command Environment). This allows programs
that qguery the operator to do so in a more friendly fashion than
raw calls to ocdcm_. Further descriptions of bce facilities

follow later.

load_disk_mpcs runs {(only during a "boot" pass and only
when we do not have BUOS present) to make sure that all disk mpcs
have firmware active within them.

init_pvt, read_disk$init and init_root_vols together have
the net effect of setting up disk and page control. No segments
are paged at this time, though, except for rdisk_segq,. Once we
reach here, we know that the config deck describes a set of
hardware sufficient (and valid) encugh to reach command level and
s0 we save the config deck as safe_config deck.

establish_temp_segs maps the bootload paged temp segments
onto the reserved area for them in the "bce" partition.
find_file_partition maps the bce file system area
(bootload_file_partition) unio the “"file" partition.

load _mst$init_commands maps the pagable bce programs onto
the areas of disk in which they were read by load_mst earlier.

If this is a "early" or "boot" pass, this environment is
saved and the tochold setup to invoke it, This is done by
init_tochold. The "early" pass saves the entire environment; the
"boot" pass simply saves the safe_config_deck so determined by
this pass.

bece_get_to_command_lavel can now be called to provide the
appropriate bce command level, At the "early" command level, the
config deck must be made to be correct. At the "boot" command
level, the mpcs (other than the bootload tape mpec and all of the
disk mpcs) need to be loaded.

3-3 AN70-01

Within the command level, the config deck (on disk,
disk_config_deck) may have been modified. This 1is read in, via
establish_config_deck, for the next initialization pass. For
cold boots, the generated config deck is written out instead.

when the pass is over, the states saved at the beginning of
the pass are restored, the system is masked, and we proceed to
perform another pass.

SERVICE PASS

The sequence of events in 2 service pass differs from ths
normal pass in many ways.

After initialize_faultssfault_init_one runs,
move_non_perm_wired_segs is called to move the segments loaded by
collection 0 to their proper places, thereby utilizing all of the
bootload memory.

[Collection 0O assumes 512K of bootload memory, for two
reasons, First, if BGOS and the config deck are not present,
there is no easy way of finding out how much memory there is, so
some assumption is needed. Second, the crash handler will have
to run in some amount of memory whose contents are saved on disk,
512K is a reasonable amount of space to reserve for a disk
partition. At current memory and disk prices it is hard to
imagine anyone with a bootload controller with less that S12K, or
a problem with the disk partition.

When setting up the service environment, though, it is
hecessary to move the segments that have been allocated in the
512K limit. It is desirable to have sst_seg and core_map at the
high end of the bootload memory controller, (Cn the one hand,
the controller they reside in cannot be deconfigured. ©n the
other hand, only the low 256K of memory can be used for 1/0
buffers on systems with I0M's not in paged mode. While we could
just start them at the 256K point, that might produce
fragmentation problems, So the top of the controller is best.)
If the controller really has 512K of memory, collection 1 paged
segments will be there. move_non_perm_wired_segs takes the
segments that the collection zerce loader allocated high (paged
segmentis and init segments that are not firmware segments) and
moves them to the highest contiguously addressable memory,
hopefully leaving the top of the low controller for the sst_seg
and core_map.]

te_init sets the number of aptes and itt entries on the
basis of the tcd card, A normal bce pass really needs no such
entries.

init_sst generates the sst and core map appropriate for all
of memory at the top of the bootload memory, A normal pass

3-4 AN70-01

allocates these tables through normal off-the-slt allocation
{ because the top of the 512k area is filled with temp segs).

Since the service pass does not come to bce command level,
establ ish_temp_segds, find file_partition and
load_mst$init_commands are not run,

init_tocheld is not run since upon a crash we want to
return to the bootload environment and not to a state in which we
are booting.

init_partitions checks the "part” config cards,.

Now, the routine we've all been waiting for runs.
make_seqs_paged causes all pagable segments 1o be paged into the
var ious hardcore partitions thereby no longer needing memory. We
can thenh run collect_free_core to regain the freed space.

delete_segsttemp deletes the segments temporary to collec-
tion 1. We can then load, link, and run collection 2 (performed
by segment_loader;, pre_link_hc and beyond).,

EARLY PASS

The early initialization pass is a pass through collection
1 whose job is to set up paging and obtain the config deck from
its disk partition so that a normal initialization pass may be
run vhich knows about the complete set of hardware.

It starts with init_early_config constructing a config deck
based on assumptions and information available in sys_boot_info.
This config deck describes the bootload CPU, the low GS12K of
memory, the bootload I0M, the bootload tave controller and the

bootlioad console. Given this synthetic deck, we can proceed
through scs_and_clock_init, etc. to setup . the environment for
paging. scs_and_clock_initSearly fills the bootload CPU port

humber into the config deck, which is how it differs from
scs_and_clock_initSnormal.

scas_init and init_scu (called from scas_init) have special
cases for early initialization that ighnore any discrepancy
between the 512K used for the bootload controller and any larger
size indicated by the CPU port logic. :

During the early pass (or, actually during the first "boot"
pass, if an early pass is never run), init_bcelwired sets up
references in bce_data to wired abjects. This =llows
bece_console_io and other friendlier routines to run.

To locate the RPY subsystem, find_rpv_subsystem looks in

sys_boot_info. If the data is there, it will try to boot the RPV
subsystem firmware (if needed). I+ not, it gueriss the coperator

3-5 AN70-01

for the data. I+, later in initialization, the data should prove
suspect (e.g. RPY label does not describe the RPV), control
returns here 1o re-query the operator. The operator is first
asked for & command line specifying the RPV subsystem model and
base c¢hannel, and the RPV drive model and device number. The
operator may request that the system. generate a query in detaitl

for cach item, Cold boot is also requested in the
find_rpv_subsystem dialog. The simple command processor,
bce_commahd_processor_, is used to parse the “"cold" and “rpv"

request lines described above.

The RPV data is Filled into the config deck, and
initialization continues with init_pvt and friends.
init_root_vols is called through its early entrypoint so as to
allow for an error peturn. Errcrs occuring during the initing of
the rpv will cause a re-guery of the rpv data by returning to the
call to get_io_segs.

Firmware is booted in the RPYV controller by
boot_rpv_subsystem, called from Ffind_rpv_subsystem, which finds
the appropriate firmware image and calls hc_load_mpc. A database
of device models and firmware types and other configuration
rules, config_data_.cds, is used 1o validate operator input and,
for example, translate the subsystem model into a firmware
segment nhame.

init_roots_vols checks for the presence of and creates
certain key partitions on the rpv, The "conf" partition, if not
present, is created by tTrimming 4 pages off of the hardcore
partition. The "bece" (bece crash handler, temporary area and MST
storage) and “"file" (bootload file system) partitions are
created, if any is not found, by a call to create_rpv_partition,
This program shuffles the disk pages to find enough contiguous
space at the end of the disk for the partitions.

After running establish_temp_segs and find_file_partition,
the rest of the MST is read. This step is performed during the
"early" pass or whatavenr is the first boot pass.
tape_reader$init sets up tape reading. load_mst reads in collec-
tion 1.2 {config deck sources and exec_coms) into bce file system
objects, collection 1.5 (bce paged programs and firmware images)
into mst area pages leaving around traces for
lvad_met®init_commands (which maps them intoc the bce address
space) and saves collections 2 and 3 on disk for warm booting.
tape_reader$final shuts down the tape. load_met$init_commands
then runs,

The carly or the first boot pass then initializes bce_data
references to paged objects with init_bceSpaged.

An early command level is now entered, using a subset of

the real bce command level commands, This level is entered to
allow editing of the contfig deck,

3-6 AN70-01

After leaving command level, init_clocks is called. This
is the time when the operator sets the clock. Up until this
time, the times shown were random, If the operator realizes at
this time that he must fix the config deck, or whatever, he has a
chance to return to the early command level. When the clock is
set, control proceeds.

At this point, early initialization's work is done. The
real config deck is read in (by establish_config_deck), and the
system can rebuild the wired databases to their real sizes.
Interrupts are masked, completion of pending console /0 is
awaited, and the slt aliocation pointers are restored to their
pre-collection-1 values, Control then moves 1o the "boot" pass.

CRASH PASS
The crash pass recreates a "boot" environment from which
dumps can be taken and emergency_shutdown can be invoked, It

differs from the "boot" pass only in the verbosity (to avoid
printing many messages at breakpoints) and in the command level
that is reached.

RE EARLY PASS

A re_early pass is run to restore a safe environment
following a failure to boot to the "boot" command level, It is
identical to a "boot" pass except that it uses a saved config
deck known to be good and reaches a "early” command level.

BCE _CRASH PASS

The bce_crash pass is run to restore a safe environment
feollowing a failure to boot the "service" pass. This may also be
the result of a failure of a bce utility invoked at the "boot"
command level. This pass is identical to the boot pass except
that it uses a saved config deck known to be good and reaches the
"bece_crash" command level.

SHUT PASS

The shut pass is run when Multics shuts down, as opposed to
crashing. It differs from the boot pass onhly in that
load_disk_mpecs is not run, because it shouldn't be ncessary
(Multics was using the mpcs okay) and because it would interfere
with possible auto ex=c_com operation.

3-7 AN70-01

MODULE DESCRIPTICNS

Bootload Command Environmant modules are not included in
this section.

anhounce chwm.pll

The name of this program means
anhounce_Core_High_Water_Mark. It will announce the extent to
which memory is filled during the various passes of collection 1
when the “"chwn" paramster appears on the “parm" card in the
config deck, Near the beginning of each pass, this program
announces the amount of memory used, based upon information in
the slt. At the end of service initialization, it walks down the
core map entries, looking for pages that are available to page
control and those that are wired. The difference between the
memory size and the total figure given here is the amount taken
up by non-page control pages, the sst for example. As a side
bonus, the before entrypoint announces the usage of
int_unpaged_page_tables; the after entrypoint announces the usage
for unpaged_page_tables.

beot rpv subsystem.pll
boot_rpv_subsystem is the interface between

find_rpv_subsystem and hc_load_mpc, the hardcore firmware leoading
utility. All that it really has to do is find the appropriate

firmwvare segment in collection 1. config_data_ is used +to map
the controller model to a firmware segment name, of the usual
(T&D) form (fw. XXXnnn. Ymmm), The segment and base channel are

passed to hce_load_mpc, and the results (success or failurel are
returned to find_rpv_subsystem,

This is the program that performs reading of the MST by
collections 1 and bevyond. It uses the physical record buffer as
an i/0 area, io_manager is used to perform the i(/¢o, with dow

lists generated within this program,

beotload 1.alm

bootload_1 is the first collection 1 program, called
directly by collection 0, It fills in the stack headers of the
prds and inzr_stkl to initialize the PL/1 environment. It then
calls initializer.pll which pushes the first stack frame,

3-8 AN70-01

collect free core.pll

At the end of collection 1 service initialization, this
program is called to free the storage taken up by the previously
wired initialization segments. It does this by marking all core
map entries for pages still unpaged (judged from the address
field of the sdws of all segments) as wired and marking all of
the rest as free (available for pagingl. It special cases
breakpointable segments to avoid freeing references to
breakpoint_page.

create rpv partition.pll

To save the effort of creating the new Bootload Multics
partitions by regquiring all sites to perform a rebuild_disk of
their rpv, this program was created, It creates partitions on
rpvy (high end) by shuffling pages about so as to vacate the
desired space. The pages to move are found from the vtoces. The
vtoces are updated <to show the new page location and the volmap
is updated to show the new used pages. This program uses
read_disk to read and write the pages. Mo part of the file
system is active when this program runs,

delete segs.pl]

delete_segs is called after the various collections to
delete the segments specific only to that collection (temp segs).
It is also called at the end of collection 3 to delete segments
belonging te all of initialization (init segs). It scans the ast
list for the appropriate segments, uses pcdtiruncate to free their
pages {in the hardcore partition) or pckcleanup to frec the core
frames for abs-segs and then threads the astes into the free
list. This program is careful not to truncate a breakpoint_page
threaded onto a segment.. - : : -

disk reader pl]

disk_reader is used by the collection 1 lcocader (of collec-

tion 2}, segment_ loader, and by the collection 2 1loader,
load_system, 1o read the mst area of disk. It operates by paging
disk through disk_mst_seg. The init entrypoint sets up

disk_met_seg unto the first 256 pages of the mst area to be read,
As redquests come in to read various words, they are paged from
this segment. When a request comes in that is longer than what
is left in this segment, the remainder is placed inte the
caller's buffer, and disk_mst_seg re-mapped onto the next 258
pages. This continues as needed,

3-9 AN70-01

establish config deck .pll

The config deck is stored in the "conf" partition on the
RPV in between bootloads, It runs in one of two ways, depending
oh whether it is setting up for service or bce use. For bce use,
a abs-seg is created which describes the disk wversion.
config_deck still describes the memory wversion, If it is
hecessary to read in the disk version, abs_seg is copied to
config deck. Likewise, if some program I{(config_deck_edit_ in
particular) wants to update the disk version, abs_seqg is again
used, receiving the contents of config_deck,. During service,
config_deck is itself both wired an an abs-seg on the disk
partition. This is done by creating an aste whose ptws describe
memory. We make the core map entries for the pages occupied by
config_deck describe this aste and the disk records of the conf
partition. These cme's are threaded into page controls list
(equivalent of freecore) providing a wvalid wired segment, at the
address of config_deck.

F£ill vol extents .pll

This is the ring 1 program that obtains, through the
infamous "init_vol loop”, the desired parameters of a disk to
initialize, It is called in initialization by init_empty_root
when performing = cold booct to determine the desired partitions
and general layout desired for the rpv.

find rpv subsystem.pll

find_rpv_subsystem initializes configuration and firmware
for the RPV disk subsystem, When available, it uses information
in sys_boot_info,. When that information is not present, the
cperator is gqueried. The basic aquery is for a request line of
the form: :

rpv Icc MPC_model RPV_model RPV_device
or
cold Ice MPC_model RPVY_model RPV_device

as described in the MCGH,
If the operator makes a mistake, or types help, the

operator is offered the copportunity to enter into an extended,
item by item dialog to supply the data.

The information is checked for consistency against
config_data_, a cds program that describes all supported devices,
models, etc, The mpc is tested through

hce_load_mpcstest_controller, to see if firmware is running in it.
If the response is power off, then boot_rpv_subsystem is called
to load firmware. Then init_carly_configddisk is cailed to fill

3-10 AN70-01

this data into the config deck. If a later stage of
initialization discovers an error that might be the result of an
incorrect specification at this stage, control is returned here
to give the operator another chance.

The operator is also allowed tTo enter "skip_load" or
"gskip", as a request before entering the rpv data. This forces a
skip of the firmware loading, regardless of the apparent state of
the mpc.

get ic seas.pli

A scan through the config deck determines the sizes of the
various hardcore (/0 databases which this program allocates.
This program alse fills in some of the headers of these databases
as a courtesy for later initialization programs. The key
determiners of the sizes of the tables allocated are the number
of subsystems, the number of logical channels <to devices, the
humber of drives, the number of ioms, etc. get_main is used to
allocate the areas, using entries in the slt to find the memory.
Areas allocated are: the pvt, the stock_segs, the disk_seg,
ioi_data, iom_data and io_config_data.

get main.pll

get_main is used to create a segment that is to reside in
main memory. It runs in ohe of two ways, depending on whether
allocation off the slt (slt.free_core_start) is allowed. When
this is not allowed (later in initialization),
make_sdwdunthreaded 1is used to genherate the segment/aste.
pc_abstwire_abs_contig forces this segment to be in memory.
Earlier in initialization (before page control is activel, the
segment is allocated from the free core values in the sl1t, These
values determine the placement in memery of the to be created
segment., get_main allocates a page table for this segment in
either int_unpaged_page_tables or unpaged_ _page_tables {(depending
on whether the segment will eventually be made paged). The ptws
are filled in and an sdw made. The given_address entrypoint of
get_main can be used to uWtilize its unpaged segment page table
genheration capabilities (as in init_sst).

he load mpec . pll

hc_load_mpc embodies the protocol for loading all MPC's.
It is an io_manager client. Since the firmware must be in the
low 256K, a workspace is allocated in free_area_l1 and the
firmware image is copied out of the firmware segment and into
this buffer for the actual 176G, The urc entrypeoint is used to
load urc mpcs. This entry accepts an array of firmware images to
load. It scans the list 1o determine <to which channels sach

3-11 AN70-01

overlay applies. The extra entrypoint test_controller, used by
find_rpv_subsystem and load_disk_mpcs, tests a controllier by
executing a recquest status operation. The results of this are
used to see if the mpc seems to be running (has firmware in it),.

init aste pools.pll

This program is called exclusively from init_sst and really
does most of its work, It builds the four aste pools with empty
astes appropriately threaded, Each aste is Filled in with ptws
indicating null pages.

init clocks.pl

_ This program performs the setting of the system clock. It
starts by providing the time and asking if it is correct. If it
is, fine. If the operator says it's not, the operator is

prompted for a time in the form:
yvyy mm dd hh mm {ss}

The time is repeated back in English, in the form "Monday,
November 15 1982". If the bootload memory is a SCU, the operator
is invited to tvpe “ves" to set this time {(when the time is met},
cr "no" to enter another time. The +time is set in all the
configured memories, to support Future Jjumping c¢clock error
recovery. Cn 6000 SC's, the program translates tTimes to SC
switch settings. The program gives the operator time to set the
clock by waiting for an input line. At any time, the operator
may enter "abort", realizing that something is wrong.
init_clecks tThen returns, real_initializer will re-enter the
early command level in this case.

init_early_config fabricates a config deck based on the
information available after collection zero has completed. The
bootload CPU, IGM, console, and tape controller are described,
The port number of the bootload CFU is not filled in here, since
it is not easily determined, instead, scs_and_clock_init$early
fills it in, Appropriate parm, sst, and tcd cards are
constructed, and placeheolders are filled in for the RPV
subsystem, so that iom_data_init will reserve encugh channel
slots. init_esarly_configbdisk is used to fill in the real values
for the RPV subsystem once they are known.

12 AN70-01

W
1

init empty root.pll

fill_vol_extents_, the subroutine used by the user ring
init_vol command, has been adapted to provide the main function
of this program,. It provides a reguest loop in which the
operator can specify the number of vtoces, partition layout, etc.
The operator is provided with a default layout, including the
usual set of partitions and the default (2.0) average segment
length, If it is changed, the operator is required to define at
least the hardcore and bece reguired partitions and (for the
moment}) the bos partition.

init he part.pll

_ init_hc_part builds the appropriate entries so that paging
and allocation may be dohe against the hardcore partition. It
builds a pseudo volmap (volmap_abs_seq) describing the hardcore
partition (which is withdrawn from the beginning thereof)
allowing withdrawing of pages from the partition. A record stock
is also created of appropriate size for the partitions.

init titio 11

This program makes sure that the partitions the operator
specified in the config deck are really there. It checks the
labels of tThe config deck specified disks for the specified
partitions, Disks that do have partitions so listed are listed
as un-demountable in their pvt entries,

init pvt . pl1l

The pvt contains relatively static data about each disk
drive (as opposed to dynamic information such as whether ifo is
in progress), init_pvt sets each entry to describe a disk. No
i7o is done at this time so logical volume information, etc. can
not ke filled in. Each disk is presumed to be a storage system
disk, until cotherwise determined later,

init_root_vols finds the disks that will be used for
hardcore partitions. It mostly finds the disks from root cards
and finds the hardcore partitions from the labels, For the rpv,
it will alse call init_empty_root, if a cold boot is desired,

call create_rpv_partition, if various required partitions are
missing (MR11 asutomatic upgrade), and set various pvt entries to
describe the rpv. During the service pass, init_hc_part is

called to establish paging (and allow withdrawing) against the
hardcore partition,

3-13 AN70-01

init _scu.pll

This routine is used within scas_init to init a given scu.
It compares the scu configuraticn information (from its switches)
with the supplied size and requirements. When called for
bootload Multics purposes, the size of the scu may be larger than
that specified (generated) in the config deck without a warning
message. It generates ptws so it can address the scu registers
{see the description in the Jdlossary for the scas). The execute
interrupt mask assignment and mask/port assignment on the
memories is checked here,

init sst . pll

init_sst starts by determining the size of the pools.
Nermally, this is found in the sst config card (although init_sst
will generate one of 400 150 50 20 if one isn't found). For
early and bootload Multics initialization, though, the pools
sizes are determined from the current requirements given in
figures in bootlead_info. The size of the core_map is determined
from the amount of configured memory for normal operation and is
set to describe 12K for early and bootload Multics operation.
The area for the sst is obtained, either from the top of the
bootload scu for normal operation, or from the slt allocation
method for early and bootload Multics operation. The headers of
the sst and core map are filled in. init_aste_pools actually
threads the astes generated. The pages of memory hot used in low
order (or bootload (512k)) memory are added to the core_map as
free., For normal operation, the other scu's pages are also added
to the free list. collect_free_core will eventually add the
various pages of initialization segments that are later deleted.

jinit vel hesder .pll

init_empty_root uses this program to initialize the rpv.
This rouytine writes ocut the desired label (which describes the
partitions filled in by fill_vol_extents_), generates an empty
volmap and writes it out, and generates empty vtoces and writes
them out.

This any_other handler replaces the fault_vector “unexpect-
ed fault" assignments, It implements default_restart and

guiet_restart semantics for conditions signalled with info, and
crashes the system for all other circumstances,

W
1

14 AN70~-01

initialize faul 11

initialize_faults has two scparate entries, one for setting
things up for collection 1, and one for collections 2 and beyond.

This description is for collection 1
{initialize_faults$fault_init_onel. initialize_faults_data
describes which faultis have their fault vectors set to
fim$primary_fault_entry { scu data to pds$Sfim_data)l,
fimssighal_entry { scu data to pds$signal_data)l,
fimSonc_start_shut_entry {scu data to pdssfim_data)l or
wired_fim$unexp_fault (scu data to prpdstsys_trouble_data) (all
cthers). Special cases are: lockup and timer runout faults are

set to an entry that will effectively igners them. Dergils go to
fimédrl_entry to handle breakpoints and special drl traps.
Execute faults are set to wired fim$xec fault (scu data to
prds$sys_troukle_data). Page faults are set to pagefault$fault
{scu data to pdsSpage_fault_data)l. And connect faults are set to
prdstfast_connect_code (scu data to prds$fim_data). Write access
is forced to certain key programs to set values within them.
Access is reset afterwvards. These are pointers which must be
known by certain programs when there will be no mechanism for the
programs themselves to find them. An example is the peointers
within wired_fim specifying where scu data is to be stored. The
last thing done is to set the signal_ and sct_ptr in the
inzr_stk0 stack header so that signalling can occur in collection
1.

initialize faults data,cds

This cds segment describes which faults go te where so that
initialize_faults can so set them. For collection 1, the major
faults set are! command and +trouble to fimbprimary_fault_entry
(scu data in pds$fim_datal)l, access violation, store, mme, fault
tag 1, 2 and 3, derail, illegal procedure, overflow, divide,
directed faults 0, 2 and 3, mme2, mme3d, mmed to fimbsignal_entry
{scu data to pds$signal_data), shutdown, op hot complete and
startup to fimbonc_stari_shut_entry (scu data to pdstfim_cdata)
and the rest to wired_fim$unexp_fault {scu data to
prdss$sys_trouble_data).

initializer.pl]

initializer consists of only calls to real_initializer,
delete_segsdelete_segs_init, and init_proc. real_initializer is
the main driver for initialization. It is an init seq.
initializer exists as = scparate program from real_initializer
because, after the call to delete init segs, there must still be
a program around that can call init_proc. This is the one,

3-15 AN70-01

The function of this program is to set up the data bases

used by io_manager. These include jom_data and the actual
mailboxes used in communicating with the iom. The iom cards are
validated here. The overhead channel mailboxes are set for the

descr ibed channels.

load disk mbes.pll

During the "booi" pass, ail disk mpcs must have firmware
loaded into them, This ies done by load disk_mpcs. This program
scanhs the config deck, searching for disk mpcs. It tests each
one (with hc_load_mpcitest_controller) to determine a 1list of
apparently non-loaded disk mpcs, If this list is not ampty, it
prints the list and asks the operator for a sub-set of these to
load. bce_fwload is used to perform the actual leoading.

load mst.pll

lcad_mst reads in the MST. It contains a routine which
understands the format of a MST. This routine is supplied with
various entry variables to do the right thing with the cbjects
read from the various collections. For collection 1.2, the
objects are placed into the bce file system through bootlocad_+s_.
For collection 1.5, the segments have linkages combined, etc.
jJust as in segment loader. The objects are placed on disk, in
locations recorded in a table. These are paged bce programs.
Collections 2 and 3 are simply read in as is, scrolling down the
mst area of the "bce" partition using the abs-seg disk_mst_seg.
The init_commands entrypoint uses the table built while reading
collection 1.5, The appropriate bce segments are mapped onhto
disk using the locations therein.

make sdw.pll

make_sdw i the master sdw/aste creation program for
collection 1 and beyond. It contains many special cases to
handle the myriad types of segments used and generated in
initialization. It's first Jjob is to determine the size of the

desired segment. The size used 1is the maximum of the slte's
current length, maximum length and the size given on a tbls card
(if the segment's name is in variable_tables). Also, an extra
page is added for breakpoints when needed. Given this size, an
appropriate size aste is found and threaded into the appropriate
list, either init segs, temp segs, or normal segs. Wired segs
aren't threaded; they are just listed as hardcore segments. The

page table words are initialized to null addresses. If the
segment is wired and is breakpointable, the last ptw is instead
set to point to breaskpoint_page. For abs-segs, this is the end;

3-16 AN70-01

abs segs and other "funny" segs must build their own page tables
and a real sdw to describe thenm. For a normal segment, however,
the page table entries are filled as follows!: ah appropriate
hardcore partition to hold the pages is chosen. abs_seg's sdw is
set to indicate this null address page table. The various pages
are touched, causing page control <to be invoked to withdraw an
appropriate page against the hardcore partition whose drive index
is in the aste. (abs_seg's sdw is then freed.) make_segs_paged
and segment_loader, the main clients of make_sdw, will then copy
the desired data (either from wired memory or from the tapel) into
these new (pagable) pages.

make segs paged.pll

make_segs_paged, +that most famous of initialization pro-
grams, actually, in a way, has most of its work performed by
make_sdw. make_segs_paged examines all of the initialization
segments, looking for those it can page {(i.e., nhot wired, not
already made paged, non-abs-segs, etc.). It walks down this list
of segments from the top of memory down, using make_sdw to
generate an aste, an sdw, and a page table full of disk pages for
it. The sdw is put into dseg, and the contents of the wired
segment is copied into the paged version. The pages of memory
are then added to page control's free pool The dseg is also
copied with a new dbr generated to describe it.

Breakpointable segments are special cased in twe ways.
First of all, when the pages of the old segment are freed,
occurences of breakpoint_page are not. Also, when copving the
segment, breakpoints set within it must be copied. All of
breakpoint_page cannot be copied since it includes breakpoints in
other segments. Thus, we must copy each breakpoint, one at a
time by hand.

move non perm wired seas.pll

This program takes the segments allocated high addresses by
collection 0 (paged segments and init segments that are not
firmware segments) which were put at the top of the 512K early
initialization memory, and moves them to the top of the
contiguously addressable memory, leaving the top of the low
controller for the sst_seg and core_map.

This program depends on the knowledge that the loader
assigns segment numbers in monotonically increasing order to
permancnt supervisor and init segs, and that the high segments
are allocated from the top of memory down, Thus it can move the
highest segment (in memory address)l first, and so on, by stepping
along the SLTE's.

W
1

17 AN70-01

The copying of the segment can be tricky, though, since not
ohly must the contents be moved but the page table must be
changed to reflact the new location. For this, we build abs_seg0
to point to the new location. The segment is copied into
abs_seg0. We now make the sdw for the segment egual to that for
abs_seg0. The segment is now moved, but we are using the page
table for abs_seg0 for it, not the one belonging to it. So, we
fix up the old page table to pecint to the new location, and swap
back the old sdw. This starts using the new ptws in the old
vlace.

Segments that were breakpointable (had breakpoint_page in
them) must be special cased neot e move the breakpocint page.

Within initialization, the init_all_consoles entrypoint of
ocdcm_ is called. This entrypoint sets up oc_data to a nice safe
(empty) state. The various console specific parms are found and

saved, The main loop examines all prph opc cards. They are
validated (and later listed if clst (s specified). For each
console, a console entry is filled describing it. The bootload
cohsole, when found, is specifically assigned as bootload con-

sole. As a last feature, the number of cpus is found, This is
because the lonhgest lock time (meaningful for determining
time-outs) is a function of the number of processers that can be
waiting for an i/fo.

ocdecm_ also provides for bce a special function. It
maintains wired_hardcore_data$abort_recuest, set to true whenever
the operator hits the request key when this was not solicited (no
read pending). This Fflag is used by bece_check_abort to
conditionally abort undesired bce operations.

This program simply initializes certain header variables in

the prds, This includes inserting the fast_connect_code, the
processor tag, etc.

ere link he.pll

The linker for collecticn 2, this program performs a
function analogous to that performed by bootload_linker. It
walks down the linkage sections of tThe segments in guestion,
locking for 1links to snap. slt_manager is used to resolve
references to seghments, A definition search is imbeded within

this program,

W
1

18 AN70-01

read disk.pll

reac_disk is the routine used to read a page from or to
write a page to disk. The init entry point sets up rdisk_seg as
a ohe page paged abs segment for such purposes, Actual page
reading and writing consists of wusing disk_control to +test the
drive (unless the no_test entrypoints were used), and then page
control to page the page. For reads, we construct a page table
word describing the page of disk. Touching rdisk_seg then reads
it in, For writing, we generate a hull address page table entry.
When we write to it, a page of memory is obtained. By forcing
the core map entry to describe the desired page of disk, unwiring
the page and performing =2 pcScleznup {(force writel, the page
makes it to disk.

read disk label.pll

To read a disk label, we call read_disk_label. 1t uses
read_disk to preform the i/0, Several such reads will be
performed. if necessary. The iabel is wvalidated through a
simple check of label . Multics, label. version and

label.time_registered,

real_initializer is the main driver for initialization. It
largely just calls other routines to set things up, in the proper
order.

There are many paths through real_initializer ss described
above. All paths set an any_other handler of
initial_error_handler to catch unclaimed signals, which eventual-
ly causes a crash,

‘The main path through real_initializer calls collection_l
(an internal subroutine) multiple times and then passes through

to collections 2 and 3. Each call to collection_1, in the normal
case, "increments" sys_infoScollection_1_phase, thus preoducing
the main set of collection 1 passes, Various deviations from
this exist. Aborting disk mpc loading resets the phase to
re_ecarly and branches back to the "early” command level. A
failure when finding the rpv during the "early" pass retries the
"early" pass. The reinitialize command resets the phase to

"early" and then simulates the bce "“boot” function, thus making
the next pass become a new "boot" pass.

When Multics crashes or shuts down, the toehold restores
the machine conditions of bce saved in the toehold. These return
the system to save_handler_mc, which guickly returns through
init_toechold to real_initializer. The routine collection_]
senses this and returns te the main collection_l calling loop.

3-18 AN70-01

real_initializer keys off the memory_state (determines between
crashing and shutting down) and old_memory_state (state of
crashed memory - determines crashed c¢ollection 1 phase) in the
toehold to determine the pass to run next.

real_initializer includes a stop-on-switches facility.
pli_macro is used t¢ assign & unigue number to each step in
initialization. This number can also be used in the future to
meter initialization, Before each step in initialization, a call
is made to the internal procedure check_stop. I+ the switches
contain "123"k3 |1 "PNNN"b8, where PNNN is the error number in
binary coded decimal (P is the collection 1 phase, MNN is the
stop number obtained from a2 listingl), bee is called (if the
toehold is active). :

scas_init inits the scas (system controller addressing
segment), It is the kKegper of things cpu and scu. The config
deck is searched for cpu and mem cards which are validated and
the boxes' switches validated against the cards. The scsbcow
{ connect operand words) are filled in here with values so that we
may send conhects to the various processors, init_scu i=s called
to set masks and such for the various scus. The port enables are
set for the ioms, The cpu system controller masks are checked.
Finally, if the cpus and ioms do not overlap in port numbers, the
cyclic priority switches are set on the scus.

sce anhd clock init.pbl]

This program initializes most of the data in the scs, In
previous systems, the scs was mostly filled in its cds source,
To support multiple initializations, though, the segment must be
reset for each pass. This program also has the task of setting.
sys_info$clock_ to point to the bootload SCU. Finally, at its
$ecarly entrypeoint, it fills in the bootload SCU memory port
number in the config deck, since it wused that data in scs
initialization. Initializing the scs consists of initiating data
about cpus and scus,

segment loader .pll

segment_lcoader is used to load collections 2.0 and bevond,
It uses disk_reader to read records from the MST of disk. The
various records from the MST are either collection marks, header
records (denoting a segment) or - the data forming the segments.

Given information in the segment header, an appropriately sized
area in wi_linkage$, ws_linkage$, ai_linkage$ or as_linkage$ is
generated. slt_manager$build_entry chooses the next segment

number {(either supervisor of initialization) for the segment and

3-20 AN70-01

creates the slt entry. make_sdw creates an sdw an the page table
and allocates disk space in the hardcore partition for the

segment, With read/write access forced for this hew (pagable)
segment, the segment is read from disk, Access is then set as
desired in the header record. We loop in this mannher until we

ehcounter a collection mark when we stop.

slt manscer.pll

This is a relatively simple program.
slt_manager$build_entry looks at the header read from an MST and
builds =2 sl1t entry. The header defines whether this is a

supervisor or an initialization segment (which defines from which
set of segment numbers (superviscry start at 0, initialization
start at 400 _octal) it is given), what names - to add To the name
table, and whether this segment has a pathname which needs to be
added to the name table (so that init_branches can thread them
into the hierarchy). While it is building the entry, it hashes
the names in the same mannetr as bootload_slt_manager.

slt_manager$get_seg_ptr uses this hash list to search for the
segment name redquested.

sys info.cds

sya_info is described under data bases.

EQEE_EQQQEB*ELL

tape_reader uses boot_tape_io to read MST tape records, It
is capable of reading several 1tape records and packing them into
a user supplied buffer. It validates the tape records it reads
for Multics-ness, performing the (old) reading re-written record
error recovery mechanism, :

tc init.pll

tc_init is run in two parts, the second called part_2 run
in collection 2. FPart one, just called tc_init, allocates an
appropriately sized te_data {see the description of
tc_data_header, above) given the supplied number of aptes and itt
entries. The workclass entries are initialized to <their
defaults, Workclass 0 is set up for the initializer as realtime,
etc. Everyone else is put initially into workclass 1. The aptes
and itts are threaded into empty lists. Initial scheduling
parameters are obtained from the schd card. The length of the
prds is set (either default or from tbls card}. The stack_0_data

segment (which keeps track of the ring 0 stacks given to
processes when they gain eligibility) is initialized. Apte
entries for the initializer and idle {(bootlcad cpu) are created.

3-21 AN70-01

Finally, memory is allocated for the pds and dseg of the various
idle processes {(which won't actually be started wuntil
te_initSpart_2).

3-22 AN70-01

SECTION 4

THE BOGTLOAD COMMAND ENVIRONMENT

Bootload Multics must provide a certain npumber of
facilities when the storage system is not available. Examples
are system dumps to disk, disk saves and restores , interactive
hardcore debug (patch and dumpl), and automatic crash recovery.

INITIALIZATIGN

There are two ways that the command environment is entered.
When an existing system is booted from power-up (cool boot), the
command environment is entered to allow config deck maintenance
and the like. When the service system crashes, the command
environment becomes the crash recovery environment that oversees
dumping and automatic restart. A full cold boot is a special
case of a cool boot.

The heart of the bootload Multics command envirohment (bce)
runs mostly wired, The paged segments are paged temp segments,
managed by get_temp_segment_ and friends, for such purposes as
gedx buffers and active function expansion. The bce file system
is paged. Also, some bce command programs . are paged, through the
grace of load_mst. These are mapped onto an area of the bce
partition. bce does not use the storage system, nor the hardcore
partition.

Certain special programs are run so as to initialize bce.
These are: init_bce to enable the basic facilities of switches
and areas and such; find_file partition 1o enable the bootload
Multics file system; establish_temp_segs to provide paged temp
segments; and, load_mst$init_commands to allow refercnces to
paged bce programs. load_mst was described under the bootload
Multics initialization pass in collection 1.

ENVIRONMENT AND FACILITIES

The basic facilities of the command environment are:

4-1 AN70-01

a free area. free_area_l is initialized with define_area_,
and a pointer left in stack_header.user_free_area and
stack_header. system_free_ares, so that allocate statements
with no "in" gualifiers work. get_system_free_area_ () will
return a pcinter to this area. This area is used for global
data needed between commands. Each command normally finds
its own local area, normally on a paged temp segment.

standard input, ocutput and error entries that hide the
distinction betwean conscle and "exec_com” input. These are
entry variables in the cds program bce_data. cds, They are
hardly ever callied directly, as more sophisticated
interfaces are defined atop them. The entry variables are
bce_databget_1line, bce_data$put_chars and
bce_data$error_put_chars, get_chars is not sensible in the
console environment, for +the conscole will not +transmit a
partial line. The module bce_console_io is the usual target
of the entry variables. It uses ocdcm_, oc_trans_input_ and
oc_trans_output_. bce_data also contains the pointers
get_line_data_ptr, put_chars_data_ptr and
error_put_chars_data_ptr which point to control information
needed by the target of the entry variable. The pair of
values of an entry variable followed by the data pointer is
what constitutes & bce switch. A pointer to this switch is
passed arocund much as an iocb pointer is passed around in
Multics. Both ioca_. and formline_. understand these bce
switches so that normal calls may be made.

bce_aguery and bce_guerybves_no. Each takes a response
argument, ioz_ control string, and arguments, and asks the
question on the console, Anh active fFfunction interface is
provided.

bce_error is the local surrogate for com_err_, used by
various non command level programs, [t does not sighal any
conditions in its current. implementation. com_err_ and

active_fnc_err_ simply call bce_error appropriately when in
bce.

a command processor, The standard command_processor_ is
used to provide a ssu_-like subsystem facility. The various
command programs are called with a pointer to

bce_subsystem_info_, of which the arg_list_ptr is the impor-
tant information.

a reguest line processor, Any program that wants to parse
lines using standard syntax (without guotes, parentheses, or
active functions, for now) calls bce_command_processor_ with
the command line, a procedure that will find the command,
and a return code. find_rpv_subsystem, for example, calls
it with an internal procedure that checks that the command
is either "rpv", "cold", "help", or "7", and returns the
appreopriate internal procedure %o process the command.

4-2 AN70-01

These procedures use the usual cu_ entrypoints to access
their arguments.

The paged temp segments bootload_temp_1 .. bootload_temp_N.
These are each of 128/N pagdes long, and mapped as abs-seg's
onto a part of the bce partition. N is established by the
number of such segments listed in the MST header (and
computed by establish_temp_segs). These segments are
managed by get_temp_segmenits_ and friends,

A primitive file system, bootload_fs_ manages a simple file
system mapped onto the *"file" partition on the rpv. This
file system can hold config Files or exec_coms. It is
writable from within Multics service. The objects in the
file system have a max length of 128/N pages, matching that
of the temp segments, and have a single name. :

The standard active function set.

Disk i/0 facilities. Several exist. Some utilities call
(read write)_disk. If they do not need the disk test that
this routine performs (as when accessing the (already)
trusted rpv)}, they call the no_test versions of these
entrypoints. Ancther mechanism is to build a paged segment
onto the desired disk area, normally wvia map_onto_disk.
This mechanism trusts the built in mechanisms of page
contrel (and traffic control disk polling) 1o ensure that

the i/¢ is noticed. A final mechanism is tTo call
dctli$bootload_(read write), which allows the gueueing of
multiple i/os to different disks. This is used for high

volume operations, such as pack copying.

TI1O

Various Multics facilties are not present within bce... Some.

are listed below.

E

No operations upon the file system hierarchy are allowed
({except for indirect references by bce_probe to segments in
the Multics image).

Mormal segment itruncation/deletion/creation is not allowed,
The ptws must be manually freed,

Segments may not be grown (nho withdrawing of pages is
allowed) . They must be explicitly mapped onto the desired
free area of disk or memory.

No iox_ operations are allowed. Pseudo-iocbh's do exist,
though.

4-3 AN70-01

* Only a finite (and small) number of paged/wired work areas
can exist. They also have comparatively small lengths.

X Dynamic linking is not done. References to cobject names are
done with slt_manager$get_seg_ptr.

% Wakeups and waiting for wakeups can not be done. A program
must loop waiting for status or use pxss facilities.

¥ Timers (cput and alrm) may not be set, Programs must loop
waiting for the time,

% There are ne ips signals so ne masking is involved. The
real guestion is the masking of interrupts (pmut$set_mask).

S Any routine that itself, or through a subsidiary routine,
calls bece_check_abort (which includes any output operation),
must be prepared to be aborted at these times. Thus, they

must have a pending cleanup handler at these times, or
simply have nothing that needs to be cleaned up.

MODULE DESCRIPTIONS

bce _abs sea.pll
This relatively' uninteresting program maintainsg a list of
abs-segs built during an initialization pass. This is done so

that real_initializer can free them, en masse, when it needs to
reinitialize before another pass.

bece alert.pll

Console alert messages (mostly for . bce exec_.com's) are

produced by bce_alert. It simply appends its arguments,
separated by a space) into one string which it prints through
bece_databconsole_alert_put_chars, This prints the message with

audible alarnm.

bce alm die.alm

‘bce_alm_die wipes out the bce toechold and enters a "dis"
state.

bece appending simulation. pll
All references to absclute and virtual addresses within the

saved Multics image are performed by bece_appending_simulation.
It has multiple entrypoints for its functions.

4-4 AN70-01

The "init" entrypoint must be called before all others. It
initializes certain purely internal variables, for later effi-
ciency. As an added bonus, it sets the initial dbr for the
appending simulation based on whether it is desired 1o examine
the crash image or bce itself.

The entrypoint "new_dbr"” sets a new dbr for the simulation.
This entrypoint takes apart the dbr supplied. The main purpose
of this entrypeoint is to find this new address space's dseg, so
it can evaluate virtual addresses. This fetching of the descrip-
tion (aste/page table/sdw) of dseg can be done using the absolute
fertching routines of bce_appending_simulation and by manually
disecting sdws and ptws, This entrypoint must alsc find the
core_map, if present, which i8 needed by the virtual entrypoints
to find out-of-service pages.

The "(get put)_(absolute virtuall)" address entrypoints
actually perform the fetching or patching of data. They take the
input address and fetch or replace data in pieces, kegping each
piece within a page. This is done because different pages
desired may reside in totally different locations.

"get_absolute" and "put_absolute” work in relatively simple
waySs, They examine the address to determine its location. Some
low memory pages will be in the image on disk and fetched through
the paged abs-segs multics_(low highl)_mem. Cther pages are in
memory (above 5B12kl. These are fetched through the abs-seg
abs_segl which this program slides onto a 256k block as needed,
References to absolute locations in examine-bce mode always use
the abs_seg0 approach to fetch evervthing from memory. These
entries keep a page_fault_error handler to catch disk errors, a
store handler to handle memeory addreses not enabled at the
processor ports and an op_not_complete handler to catch refernces
to scu’'s who have our processor disabled. .

Before virtual addresses may = be fetched/patched, the

"mew_segment" entrypoint must be called. The purpose of this
entrypoint is to fetch the sdw/aste/page table for the segment
for later ease of reference, This is done by using the

"get_virtual” entrypoint, referencing dseg data given the previ-
ously discovered description of dseg (in the "new_dbr"
entrypoint). For efficiency in fetching the sdw (meaningful for
the dump command which calls this entrypoint for every segment
number valid in a process and ends up fetching null sdws), a dseg
page is kept internal to this routine.

Virtual addresses ars manipulated by the "{get
putl_virtual" entrypoints. These entrypeoints break apart the
request into blocks that fit into pages. For each page of the
segment that it needs, it examines its ptw (found in the segment
description found and provided by +the "new_segment" entrypoint)
to determine its leocation. Pages flagged as in memory are
obtained by the absolute entrypocint. Pages on disk can be easily

4-5 AN70-01

manipulated by mapping rdisk_sedg onto the page and paging it. I+
it is in neither catagories, something is either wrong or the
page is out of service. For out of service pages (pages with i/o0
in progress upon them), the "correct" page is found (the page at
the scurce of the i/¢) and this manipulated. If this is a put
operation, it is necessary to replace this page in both locations
{both memory and the disk page in use) to make sure that the
effect is felt. Alsgo, for any put operation, the proper page
table word must have its modified bit set sc page control notices
the modification.

bece check abort.pll

bece_check_aboert contains the legic for possibly aborting
bce functions uponh operator request, When called, it checks
wired_hardcore_datatabort_request, which is set by ocdcm_ whenev-
er an unsolicited request is hit. If this bit is set,

bece_check_abort prompts the operator with “Abort?" to which the
response determines the degree of abort. Both this query and the
responhse i/o are performed through bce_databconscle_[whateverl to
force them to appear on the console. A response of "ho" simply
returns. "wves" and "request" signals sub_reguest_abort_, which
is intercepted by the bce_exec_com_. and bce_listen_, or by a bce
subsystem. Entering “command” sighals request_abeort_, handled by
bce_exec_com_ and bece_listen_. to abort & subsystem. Entering
"all” performs a non-local goto to <sub-sys info>.abort_label,
which returns to bceg_listen_ at top level.

bece_check_abort is called on the output side of
bce_console_io and other output oriented bce i/70 modules. Thus,
most operations will notice guickly the operator's intent teo

abort, However, any program that can enter an infinite
computational loop (such as the exex_com processor 1irying to

follow an infinite &goto . & label loop) must call
bece_check_abort within the loop to provide a way out.

bce command processor .pbll

This routine is a scaled down versiohn of
command_processor_. It does not support active functions or
iteration sets, Written as such, it does not need the various
work areas that command_processor_ neads and can run completely
wired. It separates the command line into the usual tokens,
forming an argument list of +the various argument strings. It
uses a routine supplied in its call to find an entry variable to
perform the command found. It is used in various very early

initialization programs like init_clocks and find_rpv_subsystem
{(which obvicusly canhot page) as well as some bootload Multics
programs that can deal with the simplicity and wish hot to power
up command_processor_.,

4-6 AN70-01

bce console jo.pll

bece_console_io is the interface 1o the console dim ocdoem_,
[ts function is to perform translation appropriate to the console
{oc_trans_input_ and oc_trans_output_] and to call
ocdem_Spriority_io to perform the i/o. bce_console_iobget_line
is the routine normally found in the entry wvariable
bce_data$get_line and bce_console_io$put_chars is the routine
hormally found in bce_data$put_chars and
bce_dataSerror_put_chars,

bece continue.pll

bce_continue restarts the interrupted image. It flushes
memory and uses pmutdspecial_bce_return to invoke the tochold.
As it passes, it resets all rtb flags Iin the flagbox except
ssenb. This is so that the next return to bce does not show the
current rtb flags.

Also present in this module is the bos command, which
flushes memory and uses pmut$special_bce_return to invoke the BGS
toechold.

bce data.cds

This cds segment contains data pertinent to the command
environment activities of bce. It holds the entry and data
pointers used to perform ifo on the pseude switches
bce_databget_line, bce_datasput_chars, bce_dataerror_put_chars
and bce_dats$exec_com_get_line, It keeps track of the current
exec_com level, through bce_data$command_abs_data_ptr (part of
the exec_com_get_line switch). It also holds the top level

subsystem info for the command level in bce_data$tsubsys_info_ptr.

bce die.pll

This module just checks to sce if it is okay to die, which
is actually performed by bce_alm_die.

bece display jnstruction .pll

One of the bce_probe support utilities,
bce_display_instruction_ displays ohe (possibly multi-word)
instruction, It uses op_mhemcnic_ for its information. The

result is to print an instruction and teo return the number of
words dumped.

4-7 AN70-01

bece display scu .pll

bece_display_scu_ is another bce_probe utility. It displays
the scu data found in machine conditions supplied to it.
bce_display_instruction_ is used to interpret the instruction

words from the data.

bece dump.pll

The disk dumping facility of bece is found in bce_dump. It
is actually a rather simple program but with a few tricky special
decisions made within it. After parsing the coemmand line
arguments, it figures out the process and segment options to use,
These options are merged together in a hierarchical fashion; that
is, options applyving to all processes apply to eligible; all that
apply to elgible apply to running, etc. The dump header is
filled in with machine state information ¥from the toechold. The
dump header on disk is flagged as invalid. An abs-seg (dump_seg,
created by establish_temp_segs) is built to run down the dump
partition during segment placing. Given this out of the way,

dumping can start. Each apte is read from the saved image
{ through bece_appending_simulation). For each, the segment
options applying to each are determined. Given the segment

limits in the dbr for this process, each segment is examined to
see if it meets the segment options. Mest of the options are
self-explanatory. When it comes to dumping non-hardcore seg-
ments, though, it is desired toc dump any hierarchy segment only
once, This is done by keeping a pseudo bit-map of the sst, where
each bit says that a segment has been dumped. (Since the
smallest possible aste in the sst is 16 words, there can be at
most 258K/16 astes, Given an address within the sst from a
segments' sdw, we assume that any aste that crosses the mod 16
boundary near this address describes the same segment as this and
heed not be dumped again.) If a segment is to be dumped, we read
pages from its end, looking for the first non-null page. Al
pages from the beginning of the segment up to and including this
page are appended to the dump. {The dump_seg abs-seg is adjusted
to indicate these pages.) When all is dumped, we update the
header and write it out.

bce error.pll

A simplified form of com_err_, bce_error simply fetches the
text of an error message from error_table_ and constructs an
error message which is printed through bce_data$error_put_chars.
The com_err entrypoint is used to Fformat a com_err_ style
message, used by com_err_ whenh called during initialization.

4-8 AN70-01

bce esd.pll

An emergency shutdown of Multics is initiated by bce_esd.
It uses bece_continue to invoke the toehold to restart the image.
However, before doing this, it patches the machine conditions in
the toehold to force the image to transter to
emergency_shutdownl 0, to perform an esd,

bce exec com .pll

bce_exec_com_, along with bce_exec_com_input, form the bce

eauivalent of version 1 exec_com's. boce_eoxec_com_ is a merging
of functions found in exec_com with those found in
abs_io_$attach, It finds the ec and builds an appropriate

ec_info and abs_data structure to describe it. The ec attachment
is made (bce_datatexec_com_get_line) is made +to refer to this ec

invocation, after saving the previcus level. Commands are read
from the ec tThrough bce_exec_com_input and executed through
command_processor_%Ssubsys_execute_line. nce bee_exec_conm_info

returns a code for end of file, the ec attachment is reverted.

bece exec com input.pll

bce_exec_com_ input performs +the parsing of exec_coms. It
is a pseudo i/0 mocdule, in the stvle of bce_conhsole ioSget_line.
It is called in two possible cases. The Ffirst is +to fetch a
command line for execution by bce_exec_com_. In this case, the

switch is bce_datatexec_com_get_line. When an S&attach appears in
an ec, bce_exec_com_input will have attached itself (by making
bce_datatget_line point to itself) and then calls to
bece_datatget_line will call bece_exec_com_input for a line where
the switch (bce_data®get_linel will point to the abs_data for the
ec that performed the &attach. The basic code is stolen from
abs_io_vi_get_line_. The major changes are. to delete
non-meaningful operations like &ec_dir.

bee execute command .pll

This routine is the caller for the various bce command
programs, It is passed as an argument 1o, and is called, from
command_processor_%$subsys_execute_line. It is given a peinter to

an argument list generated by command_processor_, as well as the
request hame, bce_execute_command_. uses bce_map_over_reguests_

to scan through bce_request_table. to find the entry to call. It
understands the difference in calling between Multics routines
(like active functions stolen from Multics) and bce routines. It

also understands the flags indicating within which command levels
a command is valid.

4-9 AN70-01

bce oad.pl

Firmware is loaded into various mpcs by bce_fwload. Its
objective is to find, for each mpc desired, the set of firmware
images needed for it. he_load_mpe does the actual loading. For
a normal (disk, tapel) mpe, this involves just finding the mpc

card which shows the model. The model implies the firmware
module needed (config_data_$mpc_x_names. fw_tag). The desired
moduie is found through sli_manager. {Firmware images for disk

were part of cellection 1 and are wired (they needed to be in
memory to be able to load the rpv controller); other images were
part of paged collection 1.5.) For urc controllers, the main
firmware can also be derived frem the mpe's mpe card., However,
it iIs necessary to check all prph cards to find peripherals
accessible through that urc, For each, and depending on the urc
channel it 1is attached to, the appropriate firmware overlay is
found and put in the correct slot in the list of firmware to
load.

bece get flacbox.pll

This module performs the bce {get set) _flagbox
commands/active functions. It is basically a wversion of the
corresponding Multics routine, modified to make direct references
to the flagbox instead of a gated access.

bece get to command level.pll

The routine to get from real_initializer into command level
is bce_get_to_command_level. It builds a bce_subsystem_info_
structure which it passes to bece_listen_. I+ examines the
current state to determine if the initial command should be null
{manual entry), the fFflagbox bece command (normal) or probe
(breakpoint entryl. Since it is the routine below
real_initializer on the stack, it is the routine to which control
must return so that real_initializer can be returned to to
perform boot and re_initialize functions, Thus, boot and
re_initialize are entrypoints within this program. re_initialize
just returns, setting the collection_1_phase to "early” so that
real_initializer will end up running another boot pass. This
will cause bootlcad Multics to pick up any changes that have been

made to the config_deck. boot scans the arguments which are
inserted into the intk card,. It then returns.

Another bce_probe utility, This routine is used to deter-
mine the 1length of an instruction, so that it may be correctly
relocated, It differs from the real probe's version in that it
dees not attempt to deal with xec instructions.

4-10 AN70-01

bece list reguests .pll

This program implements the list_reguests (1r) bootload
Multics command. It does a simple minded walk down the bootload
Multics request table, using bce_map_over_reguests_, with a
printing routine to print the reguest names and the description
within the table. It understands the dont_list flag, as well as
understanding flags indicating at which levels a given command is
valid,

bee listen .pli

bce_listen is a simple loop that reads a command line from
bce_datatget_line and executes it through command_processor_
{using bece_execute_command_ to actually execute the redquest), It
contains the sub_regquest_abort_ and request_abort_ handlers to
work with the coperation of bce_check_abort.

bce map over redguests .pbll

Programs that wish to walk down the bootload Multics
request table (bce_list_requests_ and bce_execute_command_) call
bce_map_over_requests. with a routine that is called on each
entry in the table. As such, the format of the table itself is
known only to this routine.

bce name to seonum .pll

This bce_probe utility maps segment numbers to names. It
searches the silit and name_tables Ffrom the saved image.
Entrypoints exists 1o convert a segment number to a hardcore
segment name (bce_segnum_to_hame), a segment pointer to a
virtual name (bece_segptr_to_name_), and a segment. name - to a
segment number {(bce_name_to_segnum_).

bece probe.pll . pmac

The main portion of bce's probe support, bece_probe contains
the main drivers for most of probe's facilities, It contains the
request line parser, address and wvalue parsers and most of the
functional routines.

bece_probe starts by examining its arguments and its envi-
rohment to determine its operating mode, It defaults +to
examining the breakpoint image if the flagbox indicates a break,
tTo examining the crash image, when at bce_crash or crash command
levels or to examining bce otherwise, Given its operating mode,
it initializes the appending simulation package accordingly and

4-11 AN70-01

establishes a few initial constants, If in break mode, it
determines the point of break for operator information.

bce proceeds to read request lines from the console. The

first "string” in the ltine (or partial line left, if this is a
multiple request 1line) found by internal routine get_string
becomes the request name, This is looked up Iin a table and

dispatched through a "case" statement.

REQUEST ROUTINES

The before reqguest finds the desired address. It is
validated to ensure that it is virtual and that the segment named
is breakpointable. Finding the breakpoint page for this segment,

this request locks for an empty break slot. The original
instruction is relocated there (bce_relocate_instruction.) and
replaced by a transfer to the break block. The break block
consists of a “"drl -1" instruction, which causes the break,

followed by the relocated instruction, followed by a transfer
back to just after the original instruction in the code, This
break block and the transfer to the block are patched into the
segment such that failure at any time will not damage the
segment,

The continue request validates itself and calls
bce_continue,

The dbr request fetches its arguments, Constructing a hew
dbr, it calls internal routine new_dbr.

The display request gets and validates its arguments. It
loops, fetching (through bce_probe_fetch_) at most a page at a
time to display (since we only allocate a one page buffer for the
fetchl. The internal routine “"display" displays the data in the
specified mode. Since data to be displaved may cross page
boundaries, any data "display” cannot display (because it would
need data from the next page to fill out & line) is "scrolled" in
front of the page buffer and a new page worth's of data fetched.
This continues until the last page is fetched.

The let reqguest finds the address and sets up for patching
of same, It then loops, finding values from +the request line,
converting them to binary. These are appended unto a word based
buffer, When all are fetched, they are patched into place.

The list_requests request simple prints a canned list of
reqguests,

The mc request gets its address and uses bce_display _scu_.

The name request uses bce_segnum_toc_name_.

4-12 AN70-01

The proc request fetches the desired apte from tc_data in
the image. A new dbr value found therein is passed to internal
routine "new_dbr".

The quit request quits.

The reset request performs the inverse of the before
reguest, After wvalidating its address (for wirtualness,
breakpointability, erc.), it undoes the effect of before, in
reverss order to prevent damage to the segment.

The segnoc redgquest uses bce_name_to_segnum_.

The stack request validates its argument. Given the word
offset therein, it decides whether to start from the specified
stack header or frame. The needed data is fetiched and displaved
in interpreted form. Each stack pointer fetched is validated,
hot only to insure that it is a valid pointer, but to insure that
stack frame loops do not cause bce probe loops.

The status request uses the internal routine "status" to
display breakpoints set, It simply validates its argument and
decides between listing breakpoints for a segment versus listing
breakpecinted segments.

INTERNAL RCOUTINES

check_no_more_args insures that no more arguments appear on
the request line; that is, that we are locking at a semi-colen or
new-line,

display displays data in a specified mode, It determines
the bit sizes to display, alignments, etc. Ite only trick is
when processing the end of a pbuffer full that .doesn't fill a
display line. This causes it to hot finish its display. Its
caller (the display reduest) then appends what was not displayved
to the front of the next buffer full so that it may appear in the
next group.

function is used 1o parse functional references, such as
"regiralr)®. function extracts the arguments to the function
(whose identity was determined by its caller), builds an argument
list from these strings, and calls the function,

gdet_address contains the logic to parse a bce probe

address, It fills in the structure, bce_probe_databaddress to
define the current address, [t special cases the dot (*."]
forms, checks for virtual formse (those with a "|" in them),

notices absolute addresses (single octal number) and uses func-
tion for the pseudo-variable type of addresses (reg and disk)}.

4-13 AN70-01

Internal routines to get_address, called by function, build the
address structure for these types.

get_string finds the next "string" in the request line,.
Its bagsic job is to pass whitespace and find string delimiters.

get_value finds a let reguest value, It looks for ascii
strings (values starting with a guote character), which it must
parse separately {(since guoted strings confuse the notion of

string contained in get_string), finds virtual pointers (strings
containing "1"), and finds the various numeric types.
line_error is used to print error messages. Besides

printing the given message, opticonally with or without the
current reguest line arg or error code, it also aborts the
current reqguest line.

nhew_dbr is the counterpart to the new_dbr entrypoint to the
appending package. It exists tTo set up references to a few
popular segments (slt and name_table) whenever the dbr changes.

pass_white passes whitespace.

status displays breakpoint status. Since break blocks are
zeroed when not in use it is possible to find them easily. For
any segment listed in the image’'s a1t as being breskpointable,
status fetches the last page (that which holds the breakpoints)
and examines each break block, Any with a valid
original_instr_ptr are displaved.

bce probe data, cds

Information communicated between probe and its support
routines is done so through bce_probe_data. This cds contains
the current value of "." {current address), as well as pointers

to bce_appending_seg_info structures describing key segments in
the image used by the support routines.

bce probe fetch .pl1l

This support utility to bce_probe fetches data, given a
length and the current address (in bce_probe_data$address). It
simply uses bce_sppending_simulation for absolute and virtual
address and read_disk for disk addresses, Register addresses
must be specially handled by the caller,

bece guery.pll

bee_query i3 a simple-minded counterpart to command_query_.
It uses bce_data$put_chars to print a question and

4-14 AN70-01

bece_data$get_line to read an answer, The main entrypoint accepts
any answer and bce_queryives_no accepts only yes or ho which it
returns as a bit. This routine is called with no prompt by some
routines who find its return result (char (%)) to be better that
the buffer and length and return length returned by
bce_datatget_1line,

bece ready . pll
bce_ready prints the bce ready message:
bce (BCE_COMMAND_LEVEL)Y TIME:
It has a nnl entrypoint to print the message without new-line (as

a prompt), The nermal entry prints the line (for ready message
within exec_com).

bece relocate instruction .ptl

This is another support routine for bce_probe. It differs
from the standard Multics version in that it does not allow
relocation of "xec" instructions. {Service probe allows this by

attempting to examine the target of the xec, something bce_probe
does not attempt.)

bece request table .glm

The bootload Multics reguest table is a nhormal ssu_ reduest
table built with ssu_reguest_macros. Each entry contains a
poeinter 1o the routine that performs a reguest, the name and
short name of +the request, and a short description of the
reqguest, The actual threading of the entries is khown only to
bce_map_over_requests_, which performs the walking . down of this
table, The last three flags in each rg_.data entry is used to
specify whether the command is wvalid at the three main bce
command level types: carly, boot and crash.

bee severity.pll

This is the bce counterpart to the Multics severity

command/active function, It does not work as the Multics routine
does, however, Instead, it knows the set of programs that
recognize a severity indicator. For the desired oneg, it calls

the severity entrypoint thereof to find the severity.

N
1

15 AN70-01

bce shutdown state.pll

The current shutdown state of the storage system (rpv
label. shutdown_state) is found by this routine. It uses
read_disk to find this information.

bce state.pl]

This command/active function simply returns the name of the
current bce state.

bootload disk post.pll

_ ~ This routine is uJsed in conjunction with the high volume
disk facility of bce (dectl$bootload_(read write)l. Whenever a
disk i/0 queued -through this means is posted for completion, it
is done so through bootload_disk_post, called by either dctl or

disk_control,. The result is posted in a structure described by
bootload_post_area. incl.pll. This area must be maintained by the
caller.

bootload fs .pll

bootload_fs_ contains wvariocus routines to act upon the
bootload Multics file system, The format of the bootload Multics
file system is known only to this program. The file system is
kept in a8 single abs-seg (bootload_file_partition), mapped (and
paged} off the bece partition on the rpv. A two page header at
the start of the partition contains a directory of 174 entries
(max that fits) listing the name, size and placement of the file
within the segment. Also present is a free block map. Files are
allocated as a contiguous series of blocks (64 word blocks)

within the segment. The segment is automatically compacted by
this routine when necessary, Entrypeoints to this routine are:
loockup (find the length of a file given its name), list

(allocates a list of file names and sizes within a user supplied
areal, get (copies a file into a user supplied buffer), get_ptr
(returns a pointer and length to a given file (hes_S$initiate?)),
put (allocates area within the file system for a file and copies
a user supplied buffer into it), put_ptr (allocates an area
within the file system large ehough for a given file and returns
a pointer teo it) (both put and put_ptr take an argument allowing
for the deletion of a file with the same name as the one
desiredl, delete (deletes a directory entry and frees the space
used), rename (renames a file (does not allow name duplicationl),
and init (clear out the bootload file system entirely).

b
1

16 AN70-01

bootload fs cmds .pll

This program simply calls bootload_fs_. to perform the
functions of the bootload Multics commands print, list, delete,
rename, and initialize. This routine supports the star and egual
conventions for most of its operations through match_star_name_
and get_equal_hame_.

beootload gedx.pll

bootload_cgedx is a modified version of qgedx. it differs in
its use of Ffile system operations (bootload_fs_) and its use of
temp segs.

confia deck data .cds

The config deck editor's source of config card descriptions
is found in config_deck_data_. This c¢ds provides labels for the
fields, numbers and types of fields, etc,

confia deck edit .pll

This is +the program that editse config decks, It calls
gedx_ to perform text editing, specifying the caller_does_io
option. With this option, gedx_ calls config deck_edit_ to
perform read and write coperations on buffers,. Any read/write not
to the config deck uses bootload_fs_. Reads/writes to <config
deck> (buffer 0) use the config deck conversion routines, This
program makes use of config_deck_parse_, the routine that can
convert from ascii (possibly labeled) form to and from binary
form. The conversions are performed using a set of tables
(config_deck_data_) that describe the names of the fields, the
required and optional number thereof, the data types of the.

fields, etc. Also allowed by the conversion routines are cards
of tvpes not recoghizable starting with a dot (.) which are not
val idated, This is8 to allow for future expahsion and site

formatted cards.

When a command line argument is supplied, the file
specified is accessed (bootload_fs_S$Sget_ptr) and the object
obtained is supplied to the internal routine write_config_deck
which sets this new deck,

establish temp segs.pll
Whenever bce needs (paged) temp segments, it calls
get_temp_segments_. get_temp_segmenhts_ gets these segments from

the pool of segments bootload_temp_1..N. esteablish_temp_segs
divides the temp seg pages allocated in the bce partition (128

4-17 AN70-01

pages) up into the N segments (N is determined from the number of
such segments listed in the mst header}. The paged segments are
built as abs-seg's onto this area of the determined length. This
size is saved in sys_infofbce_max_seg_size. establish_temp_segs
also creates the bcece segments multics_{low high)_mem, used to
access the saved image, dump_ segq, used to access the dump
partition and disk_config_deck, used to access the rpv (real?)
copy of the config_deck (as opposed to our runhing copy in
config_deck),

find file partition.pll

find_file_partition maps the bootload Multics Ffile system
abs-seg (bootload_file_partition) onto the bce partition on the
repv in much the same manher as establish_config_deck maps the
config deck. It alse calls bootload_fs_$init to begin accessing
the segment. If bootload _fs_ states that the file system is bad,
find_file_partition will call bootload_fs_$init again, this time
to clear out the file system.

init bece.pll

init_bce initializes the bootload Multics command environ-
ment features reqguired for future programs. It is called early
in initialization. At its wired entrypoint, it sets up

free_area_1 as an area, setting the inzr_stk0 stack header to
point to it so that allocates without an area work correctly and

so that get_system_free_area_ also works. This routine also
initially sets bce_dataget_line, bce_dataput_chars and
bece_dataferror_put_chars to their appropriate entry values
{bce_console_iolget_line, bece_console_io$put_chars and
bce_console_iosput_chars, respectively) s0 that calls to
bce_dguery, bce_error and especially ioa_, will work, At its

paged entrypoint, it finishes up references to paged obiects, in
particular, to the exec_com routines.

FN
i

18 AN70-01

SECTIGN 5

CRASH HANDLING

Bootload Multics must be able to save the salient state of
a crashing system and st up the command environment for dumping
and other intervention.

EARLY CRASHES

Crashes in collection 0 or the early initialization pass of
collection one should be very rare. Since the system uses a
generated config deck, the set of possible operator inputs is
small, and it is possible to do a much more thorough job of
testing than can be done with BES or service initialization.
However, hardware problems will happen, ahd softwarse bugs will
sneak through. To cover these cases, collectien 0 includes a
crash handler that can write a core image to tape, prompting the
operator for the drive number.

THE TOEHOLD

~ The toehold, tochold.alm, is an impure, wired, privileged
program that resides in a khown location in absolute memory
{240000) , It has entrypeoints at the beginning that can be
entered in one of two ways: with the execute switches processor
function, or by being copied into the fault vector. The toehold,
therefore, is entered in absolute mode. It must save the D12K
memory image off to disk, and then load in the crash handler.

The memory image includes the complete machine state. All
absolute addresses, channel programs, port and channel numbers,
and other configuration dependent information is stored into the
toehold by a PL/I program, init_toehold.pll. Thus the alm code
does hot have to khow how to do any of these things, which
simplifies it considerably.

The tochold starts with the various entry sequenhces; ohe

for manual entry, one for Multics entry {(which differs from
manual entry in that the means of entry is 1o execute the entry

S5-1 AN70-01

through a fault vector ehtry; it is necessary to update the
machine conditions in this case to pass the instruction that
caused the fault vector execution) and one for restarting the
machine image. The crash entries save the entire machine state.
This is done under the protection of the memory_state so that the
machine state is not overwritten if the toeheold is invoked again
after being inveocked after a crash. An internal routine performs
i/o given a set of dew lists (built by init_toehold). After the
memory is saved and the crash handler read in, the machine state
of bce is restored. {It was saved by save_handler_mc.) This
causes a return inte save_handler_mc, which quickly returns to
init_toehoid, which guickly returns to real_initializer who
quickly starts the appropriaste crash initislization pass.

gn the restore side, the system is masked and the internal
routine called to read back the saved image. The machine

conditions are restored from the toehold fwhich is not
saved/restored during the memory shuffle).

MODULE DESCRIPTIGNS

fim.alm

fim is listed in the crashing set of modules in as much as
that it contains the bce breakpoint handler. A bce breakpoint

consists of a "drl -1" instruction. fim's drl handler special
cases these (in ring Q), saves the machine state in
breakpoint_page (after advancing the ic to pass the drl instruc-
tion) and calls pmutSbcece_and_return. It alse performs the

restart from a breakpoint.

init toehoid.pl]l

This pll program constructs the channel programs to save
and restore the 512K memory image, and fills it and other data
inte the text of toehold. After saving the bce image (crash
handler) on disk, it calls save_handler_mc to save the current
machine state of bce in the toechold. wWhen bce is invoked upon a
crash, the bce restore operation will return to the return in
save_handler_mc which will return to this point in init_toehold,
init_toechold notices this and quickly returns to real_initializer
who will perform the desired crash initialization pass.

save handler mc.alm
The save_handler_mc program, called from init_toechold right

after it saves the crash handler to disk, saves in the toehold
the maching conditions appropriate for bce. Besides register

5-2 AN70-01

contents and such, it saves the return address to the return in
save_handler_mc.

5-3 AN70-01

SECTION ©

COLLECTION 2

. The main task of collection 2 is to make the storage system
accessible. Along its way, it loads collection 38 intoc the
storage system and places the appropriate entities from collec-
tions 1 and 2 into the hierarchy. The sub-tasks are to enable
segment control and directory control, The real traffic control
is also started, Since collection 2 runs in a paged environment,
it does not have the memory restrictions that collection 1 had,
This is the reason why it Is in a different collection from
collection 1.

ORDER CF EXECUTION

The operations performed in collection 2 are described
below.

initialize_faults$fault_init_two is called to change the
fault vectors into the desired values for normal service opera-
tion, now that the code for such has been loaded,

Initialization now runs performing several intermingled
functions, All hardcore secgments must be created now, before
traffic control is fully initialized. This is so that the
address space inherited by the new processes {(idle in particular)
encompasses all of hardcore.

tty_buf, tty_area and tty_tables are generated through a
call to fnp_init. They won't be needed at this time but must be
allocated before tc_initspart_2,

Unique id (uid) generation is initialized by a call to
getuiddinit. This is required before segments in the hierarchy
(in particular, >sl11 and >pdd) can be created.

init_vtoc_man allocates and initializes the

vioc_buffer_seg. We are therefore eligible to read and write
(and create) vtoces.

6-1 AN70-01

cdbm_seg is allocated and initialized to an area by

dom_mansinit. init_scavenger_cdata allocates the scavenger_datas
segment, used by the volume scavenger. The page control data
base, dm_journal_seg_, used to control synchronous page opara-
tions (data management), is initialized by init_dm_journal_seg.
dir_lock_seq, used to Kkeep track of directory lockings and
waitings thereupon, is initialized by dir_lock_init, Again,

these are created before tc_initspart_2 is run.

After this point, changes to the hardcore descriptor
segment may not be reflected in idle process and hproc¢ descriptor
segments, This is bpbecause init_sys_var, which sets various
system variables, uses the number of supervisor segments present
(which is the expected total set thereof) to set the stack base
segment humber in various variables and in the dbr.

We can now run tc_initspart_2, which creates the idle
processes and starts multiprogramming. At this time, only the
bootload cpu will be running but the idle process will be enabled
to rUn on it.

With multiprogramming active, syserr_log_init can create
the syserr hproc (after it makes the syserr partition accessi-
ble}. We then log a message to the effect that this was dohe.

The activation of segment control, which began with the
creation of the sst, continues now with the creaticon of the
system trailer seg (str_seq) by init_str_sed. I[f the astk (ast
track) parm was specified, init_sst_name_seg initializes the
sst_hames_ segment with the names of paged hardcore segments.

The entrybounds of hardcore gates are set via a call to
init_hardcore_gates, which also stores linkage pointers into the
gates for a reason described under the description of the
program,

We can finally make the volumes of the rlv accessible for
storage system activity by a call to accept_rpv. This sets up
the volume and vtoc maps and stocks for the drives, allowing
vioc_man and the page creation/destruction functions to work
against the paging region of the disks.

The logical wvolume table (lvt) is initialized to describe
the riv by init_1lvt.

bad_dir_ and seg_fault_handlers are now set up as we are
about to access our first directory. init_root_dir makes the
root directory known in the Initializer's process, creating it if
this is a cold boot,. The functions performed here are those that
will allow future hierarchy segment references through segment
control (kst creation, in particular). kst_util$garbage_collect
is called just to make the kst neat. At this time, we can
consider segment control te be active, We can call upon it to

6-2 AN70-01

create, delete or whatever. The presence of the reoot will allow
these activities by wvirtue of the special casing performed by
segment control when it discovers a segment with no parent (the
root).

The hardcecore entities which need to be placed inte the
hierarchy (deciduous segments) are done so by init_branches,
which also creates >sl11 and >pdd appropriately. These entities
will be needed when we try <to leave ring zero, Of course, other
required segments are needed; these are the contents of collec-
tion 3,

init_stack_0 then runs to create the varicus stack_0's 1o
be shared between eligible processes, now +that it has a place to
put them.

delete_segs$temp can now run, deleting collection 2 tempo-
rary segments. This ends collection 2.

MODULE DESCRIPTIONS

accept fs disk.pll

A disk is accepted into the file system by accept_fa_disk.
[t validates the pvte for the disk. The label is read. (If this
is a pre-MR10 pack, salvage pv is called to convert the vtoc
region for stock operations.) The pvid and lvid of this disk are
copied into the pvt, finally making this data valid. The volmap
and vtoc map are initialized and the stocks made active by
init_volmap_seg. If this fails, the volume salvager is called
and we <try again. The partition map from the label is checked
against the volmap to make sure that no partition claims pages in
the paging region. The updated disk label is writtenh out as we
exit. _

accept rpv.pll

The volumes of the rlv are accepted for storage system use
by accept_rpv. First, the variocus disks that have hardcore
partitions are validated, from their labels, to be part of the
rliv. We then scan the intk card to see if the rpv or rlv desire
salvaging; these facts are stored in the pvt. If the rpv needs
salvaging, this is done now (salvager$volume_salvage). For
information purposes, we log (or print, if the hcpt parm was
specified), the amount of the hardcore partition used on the
various disks, accept_fs_disk is called to accept the rpv in the
normal way. wired_shutdown is enabled as the storage system is
considered to bke enabled. Appropriately, make_sdwbreset_hcp is
called to prevent further attempts to allocate from the hardcore
partition. Contrary to the name (accept_rpv), the entire rlv is

6-3 AN70-01

accepted next by calling the salvager, if necessary, and
accept_fs_disk for the other rlv volumes, We can then clear
salv_datasrpv to keep the salvager from salvaging the rpv later.

create root dir.pll

Dur ing a cold boot, the root is initialized by
reate_root_dir. It locks the root, setting its uid to all ones,
The various dir header variables are set, pvid, master_dir flag,
etc. A directory style area is set up along with a directory

hash table. The dir is then unlocked and we exit.

create root vtoce.plil

create_root_vtoce creates a vtoce for the root directory
during a cold boot. The vtoce created describes the root as a
master directory of appropriate length, maximum guota limit,
created as of the current time, primary name of ">", etc.
vtoc_man is used to allocate space in the vtoc map for this and
To write it out.

dom man.pll

dbm_man manages the dbm_seg (dumper bit map) for the veolume
dumper. The init entrypoint used during initialization allocates

and initializes ithe dbm_seg. Its size is determined from the
number of disk drives configured and allocated out of the
hardcorea partition by make_sdw, This routine changes dbm_seg

from its MST status (an abs_seg) to being a real segment.

The segment used to keep track of directory lockings and
waitings therecupon, dir_lock_seg, is allocated and initialized by
dir_lock_inid. The size of this segment is based upon
max_max_eligible (the maximum number of readers of a lock) and
sys_info$max_tree_depth (maximum lock depth one canh hold). The
dir_lock_seg is converted from an abs_seg to & real seg, paged
eyt of the hardcore partition. Initially, ten dir_lock's are
allocated, threaded appropriately.

fnp_init initializes the data bases used in Multics-fnp
communication. tty_buf is allocated in wired memory either with
a default size or a size specified by the ttyb parm. Var ious
header variables are set up. If a tty trace table is called for
by a config parm, it is allocated in the tty_buf free_space asrea.

6-4 AN70-01

tty_area is initialized as an empty area. tty_tables also has
its header filled in and its ztable_area set to ah empty area.
The config file is scanned for fnp cards; each one sets the
fpp_config_flags appropriate to it. The hardware fixed
dn355_mai lbox for each fnp is zeroed. fnp_info is set. Finally,
io_managers$assign is called to assign each fnp with an interrupt
handler of dn355%interrupt.

getuid.aim

getuid is the generator of uid's {(unigue identifiers) for
storage system objects. 1t operates by aeffectively incrementing
to_datatsid under its own form of lock. The init entrypoint used
during initialization stores an initial uid "seed" in tc_data$id
generated from the clock wvalue, -

init pbranches.pll

The program that places the appropriate hardcore segments
into the hierarchy, creating >sll and >pdd as it goes, is
init_branches. To start with a clean slate, it renames the old
>process_dir_dir and >pdd teo a screech name. append then creates
a hew r>process_dir_dir (added name of >pdd) which is then

initiated. The per_process sw i8 set on for this dir. It is
given the maximum quota possible. The old >system_library_1
(>sl1) is also renamed and a new onhe created and initiated,

Access is set to s for %.%.% on it, We then walk down the
various sst pools looking for segments to have branches created,
The sst entry leads us to the slt entry for the segment to be

placed in the hierarchy. create_branch is called (running
recursivelyl) to create a branch for the segment (it creates all
necessary containing directories and a vtoce for the segment). A

pointer to the parent directory and its aste is found. The aste
for the hardcore segment is threaded into the parent entry. - The
per_process sw, max_length and uid fields are set in the aste.
It is then threaded out of the hardcore 1lists and inte the
appropriate segment list. The vtoc index provided for the
segment (found in its entry in the parent directory) is copied
into the aste so wvtoc_man will work,. The entrybound of the
segment is placed into the directory entry. If aste tracking is
going on, a sstnt entry is added,. Its vioce is updated, putting
the correct information from the initialization created aste into
the vtoce, The parent directory is then unlocked and terminated.

The per_process sw is turned on in the aste for >pdd so
that it can propogate down to sons activated off it We walk
down >pdd to propogate this switch. The maximum length of the
slt and name_table are explicitly set, not trusting the slte
fields for them. A maximum quota is reset on >pdd, The default
acl term of sma *.SysDaemon is removed from >pdd and the acl term
of sma Initializer.SysDaemon.z is added. >dumps is Ccreated and

6-5 AN70-01

salvaged if needed. The hierarchy is now properly created and
active.

init dm journal sea.pll

init_dm_Jjournal_seg initializes the page control data base
dm_Jjournal_seg_ used to conirol synchronous page operations.
This routine parses the dbmj card. This card describes the sizes
of the various journals needed. Once the size of dm_journal_seg_
is found, its memory {(wired’ is obtained from make_sdw. Various
header parameters {(pool thresholids, pages held, events) are
filled in,. The various journal entries have their time stanp
initialized to tc_datatend_of_time. The various page_eéentry's are
threaded into a list. After +this, sstdm_enhabled is set for the
world to khow,

init hardcore gates.pll

init_hardcore_gates performs a variety of functions to make
those things which are hardcore gates into future usable
entities, [t recognizes anything in the slt with ring brackets
of 0, 0O, n as a hardcore gate. It finds within the text (given
the definitions) the segdef .my_lp and stores there (having
forced write access) the linkage pointer for the gate. This is
done because, the gate, khown in outer rings by a segment number
different from the hardcore number, would not be able to find its
linkage by indexing into the lot by its segment number as nhormal
outer ring programs do, Given the segdef .tv_end found for the
gate, the entrybound is set in the gate's sdw. Finally, the ring
brackets for restart_fault and return_to_ring_0_ are set from

their slt values so that these segments may be used in outer

rings with their hardcore segment numbers, {return_to_ring_0O_
has a pointer to it stored as the return pointer in the stack
frame by signaliler, _return_to_ring O_ finds. restart_fault

through a text imbeded pointer.)

init lvt. ol

The logical volume table is initialized by init_ivt. it
sets up the header and then uses logical_volume_manager$add to
add the entry for the rlv.

init processcor.alm

A processor is inited by init_processor. The init
entrypoint stores the absolute address of various variables into
init_processcr itself for execution within abscolute mode when
started on other cpus. When run to start a cpu, it performs socme
collection of tests;, enters appending mode, fiddles with associa-

6-6 AN70-01

tive memories and cache, informs pxss that it is runnhing (through
its apte), initializes pds and prds time values, sends out a
conhect to preampt the processor and then opens the mask to allow
interrupts. (We will be interrupted at this time (by the connhect
we sentl}, This will cause us to find our way back to pxss to
schedule something to run on this processor.) The idle loop for
a processor is contained within init_processor following this.
The idle loop flashes a moving psttern in the aq lights when it
is on the processor. At this +time, x4 contains the number of
eligible processes, x5 the term processid and x6 the number of
ready processes for the sake of checking system operation.

Init root dir.pll

The root directory is made known by init_root_dir. We
start by checking to see if this is a cecld boot. I+ so,
create_root_vioce is called, The root wvtoce is read. An aste is
obtained for the root dir (64 pages), which is initialized from
the data in this vtoce. pc is used to Fill the page table.
search_ast hashes in this aste. We can now begin the process
that will allow future segment accessing activity through segment
control. The Initializer's kst is built, by initialize_kst. The
pathname "associative memory"” used to map segment numbers to
pathnames is initialized by pathhame_am$initialize. makeknown_
is called to make the root {uid of all ones) known {(found in the
kst). If this is a cold boot, this segment just made known must
be initialized to a directory by create_root_dir. Finally, this
directory is salvaged, if necessary.

init scavenger data.pll

The segment scavenger_data is initialized by
init_scavenger_data.

init sst hame seg.pll

The sst_hames_ segment is initialized by init_sst_name_seg
whenever the astk parm appears. It walks down the slt, locking
for segments that are paged with page tables in the sst. For
each, it copies the primary name into the sst_names_ segment.

init stack O0.pl1

The wvarious ring 2zero stacks (stack_0) are created by
init_stack_0. Since a process cannot lose eligibility while in
ring 0, the number of processes that can have frames down on ring
Zzero stacks is eqgual to the maximum possible number of eligible
processes (max_max_eligible). We thus create this many ring 0O
stacks which are used by eligible processes. The various

6-7 AN70-01

stack_0.nhn segments are created in >sl1. They are, in turn,
initiated, truncated, and prewithdrawn tc be 16k long. The vtoce
is updated accordingly. The stack header from the initializer's
ring zero stack is copied into the header of these stacks. The
stack is then terminated. The acl for Initializer is removed.
The first stack slot is claimed for the Initializer; the current
stack being put into the slot in stack_0_data.

init str seg.pll

init_str_seg initializes the system traiier segment
{str_seg) into a list of free trailer entries.

Now that all of the hardcore segments have either been read
in or created, we can now stand back and observe hardcore. The
next supervisor segment number (mod 8) becomes the ring 0 stack

segment number (stack base) which is stored in
active_all_rings_data$stack_base_segho and hcscnt. We make sure
that the dsegs for the idle processes will be big enough to
describe these segments, The stack base is stored in the dbr
value in the apte. Various other system variables are set:

sys_info$time_of_bootload, sstipvhip (physical volume hold table
pointer), sst$rgover (record quota overflow error code, which is
moved to this wired place from the paged errcor_table_), and
sst$checksum_filemap (depending on the nock parm).

init volmap seg.pll

init_volmap_seg initializes a volmap and vtoc map segment
allowing us to reference such things on a given physical volume.
It starts by acguiring an aste for the volmap_.seg (for the
segment abs_seq) and one for the vtoc header (for the segment
volmap_abs_seg) (vtoc map) which are then mapped onto the desired
areas of the disk. {This is done under the ast lock, of course.)
The free count of records is redetermined from the volmap. The
same is done for the vtoc map. If this is a member of the rlv
and volume inconsistencies were previousiy found and the number
of free vioces or records is below a certain threshold, a volume

salvage is called for. If we will not salvage, we can accept the
disk. Use of the hardcore partition ocnh the disk is terminated
through a call tTo init_hc_partdterminate_hc_part. Vtoc and

record stocks are allecated. The pointers in the pvte to these
stocks are set as are various cocther status and count fields. The
number of free records and the basec address of the first record
in cach stock page is computed. The dumper bit map from the disk
is allocated into the dbm_seg (previously created by
dem_mans init_map). Finally, under the ast lock, we clean up the
abs_seg and volmap_abs_seg segments {(free their sdwsl.

6-8 AN70-01

init vtoc man.pll

The vtoc_buffer_seg is initialized by init_wvitoc_man. This
routine acguires enough conhtiguous memory for the
vtoc_buffer_seg, determining the number of vtoc buffers either
from the config vtb parm or from a default. Various vteoec buffer
headers are initialized here.

initigli faul 11

initialize_faults was described earliier, under collection
1. The entry point fault_init_two, used by collection 2, sets up
fault vectors for normal (file system) operations. It prevents

timer run-out faults during operation through a call to pmut$ldt.
initialize_faults_data is used 1o set the main faults. Faults
set are: command, trouble, segment and linkage to
fim$primary_fault_entry (scu data to pds$fim_data)l, store, mme,
ft1, lockup, ipr, overflow, divide, df3, mme2, mme3, mmed and ft3
to fim$signal_entry (scu data to pds$signal_data)l, and fault
numbers 26 to 30 to wired_fimfunexp_fault {scu data to
prdsiisys_trouble_datal. Access vicolations are routed specially
to fimdaccess_viclation_entry which maps the acv fault into our
sub-faults. Timer rJunouts are sent to wired fim$timer_runout
{(who bpnormally calls pxss} with the scu data stored in
prds$fim_data. Parity goes to fimdparity_entry. Finally, we set
up the static handlers for the no_write_permission, isct_fault
and lot_fault conditions,

kst util.pll
kst_util performs utility functions with regard to
maintaining the kst. The garbkbage collect entrypeoint cleans up

the kst by terminating any segment not known in any ring or a
directory with no active inferiors, :

start cpu.pl]

start_cpu might best be described as a reconfiguration
program, It is used during initialization <to start a idle
process on ecach configured cpu (at the appropriate timel. When

starting the bootload cpu in collection 2, it fFfills in the apte
entry for the idle process for the ¢pu in question. Some more
variables in init_processor are set (contreller_data). A simple
call out to init_processor$start_bootload_cpu can be made.

syserr log init.pll

The syserr logging mechanism is made operative by
syserr_log_init. It creates the segment syserr_log which it maps

6-9 AN70-01

onto the leg partition, wherever it is. A consistency check is
made of the partition; if the check fails, the partition is
re-inited. The syserr hproc (SyserrlLogger.Daemon.z)'s ring 0O
stack (syserr_daemon_stack) is initialized,. The hproc is created
by create_hproc$early_hproc with a stack of syserr_daemon_stack,
dseg of syserr_daemon_dseg, pds of syserr_daemon_pds, and proce-
dure of syserr_logger. A fast channel is defined for communica-
tion through syserr_data to the hproc, Logging is now ecnabled,.

tc init.pll

tc_init was described ecarlier to set up snd initialize
tc_data. te_init$part_2, in collection 2, starts up
multiprogramming by creating the idle processes. This entry can
only be called once the initialzer's dseg is completely filled in
by all those who read or create hardcore segments, Various
variables in template_pds are filled in which are spplicable to

the idle processes, For each configured processor, a copy of
template_pds and the initializer's dseg is made inte appropriate
entries in idle_dsegs and idle_pdses. The stack_0 for these
processes is made te be the prds for the given processor. The
"initial process for the bootload processor (the initializer
himself) is created by threading in an apte specifying
init_processor as an initial procedure, It is placed in work

class zero. tocm is initialized to indicate only this one process
running. Various pelling times are set for when polling becomes
enabled as we start multiprogramming. init_processorsinit sets
up the rest of the state, We can now call start_cpu to start the
bootload cpu idle process,

6-10 AN70-01

SECTICON 7

COLLECTION 3

The main task of collection three is to read itself into
the hierarchy. Collection three consists of those programs that
are necessary to reach ring onhe in the initializer's process and
to be able to perform a reload function (and other maintenance
functions). A few extransgous functions are also performed in
collection three.

ORDER OF EXECUTION

Collection three starts with its main function:
load_system is called to read the remaining mst entities into the
hierarchy. At this time, the mst reading function is shut down,

io_config_init initializes the data in io_config_data for
use Iin later econfiguration activities, ioi_init is called to
prepare for outer ring usage of physical devices,

te_initdistart_other_cpus starts up the other processors.
We NOoW consider collection three done and set
sys_info$initialization_state to 4.

real_initializer finally finishes, returning to
initializer. initializer can then delete init segs through
delete_segs$init, real_initializer being part of ohe.

Initialization then finishes by a call to init_proc, to call out
to ring one command level,

MODULE DESCRIPTIONS

init o 11

init_proc is the first program run in ring zero in a normal
process, It calls out to the initial procedure for a process in
the outer ring. For the Initializer, the initial_proc is made to
be system_startup_. The setting of the werking dir is skipped,

7-1 AN70-01

since we can't be sure it's there yet. The ring one stack is
created explicitly, by makestack. system_startup_ is initiated.
call_outer_ring_ is called to "return” out 1o ring one (outward
calls are not allowed)l to transfer to system_startup_.

io_config_data is initialized by io_config_init, (1t was
allocated memeory and its base pointers set up by dget_io_segs.)
The tables are initialized in the order: iom and mpc, channel

and then devices {(as it indesed must be).

Filling in the iom and controller entries is easy; they are
ohe for ohe with iom and mpc cards.

A walk is made of prph'cards twice, The first pass is made

to fill in the channel entries. Each prph card is found. If the
peripheral is a disk or tape (has an mpc), we also find a chnl
card (if present). Each channel is added to the channel list.

The internal routine controller_idx_from_chanid looks up the
index into the controller array for the controller owning this
channel (via joi_configsfind_controller_card), The internal rou-
tine iom_idx_from_chanid finds the corresponding iom array entry.
After all of this, each channel is linked to its base physical
channel via calls to ioi_confighfind_base_channel.

A second pass over prph cards is made to fill in the device
entries. For each device, we start by FfTinding its physical
channels, (This is done by walking down all the channels (from
the prph and chnl cards), looking up the base channel (from the
channel entries)? and making an array of the physical channels

found (template_pchan_array), If any of these chanhels is
configured (it was marked configured above because its iom was
on), the device becomes configured on, The device entry is

filled in from the card. For disks and tapes, . though, we add a
device entry for the controller and one each for each drive.

ici init.pll

ioi_init sets up the various ici_ data bases. It walks the
config deck, allocating group table entries for each channel
garoup. Each device whose channel is accessed through a control-
ler has its group entry flagged as a psia. The device table

entries and channel table entries are allocated from information
on the prph card. Then, for each chnl card, the group table
entry corresponding is found and the chanhel table entries

allocated from the information oh the c¢hnl card. The base
logical channel for each group is found, The group entries are
then traversed to find storage system disk channels. All

hon-storage system disk channels are assigned to ioi_ through

7-2 AN70-01

i o_manager, As a final gesture, the ici_ page tables are setup
(ioci_page_table$init).

icoi page tapble.pll

The init entrypoint of ici_page_table is called during
initialization to set up the io_page tables segment. It starts
by abs wiring the segment as one page {initially) and zeroing it.
The header is initialized. Sixty-four word page tables are
allocated and initialized within this page, as many as will fit.

load system.pll

Collection three is loaded into the hierarchy by
load_system. It reads the mst scurce (disk_reader) looking for
segments, For each, init_branches$branch is called to create the
branch (init_branches is described under collection two). The
appropriate acl is set up, given the mst information. The
segment cohtents are copied into the created branch, If the

Initializer does not have write access to the final segment, the
acl is cleared of this acl entry.

tc init.pll

tc_init was described earlier. The entrypoint
start_other_cpus, starts cpus other than the bootload cpu at the
end of collection three (after their interference won't matter).
A prds for the various non-bootload processors is created and
entry-held, The pde and dseg for the other cpu's idle processes
was already created so we can now call start_cpu on this new cpu
as we would normally during reconfiguration.

7-3 AN70-01

SECTION &

MECHANISMS

This chapter describes certain tricky and not so tricky
mechanisms used within initialization to get things done, Also
included is a lecok at the mechanism by which the various parts of
the supervisor come inte operation.

HARDCORE SEGMENT CREATION

There are various ways that segments come into being within
the hardcore. These mechanisms are usually aquite distinct from
the normal methed of creating a segment within the hierarchy
{appendfifoo) .

The first group of segments that are created are those
nheeded by collection zero. Collection =zero itself is read in in
absolute mode; no segments exist other than those hardware
supplied. To save collection zero the problem of generating
segments for its use in absoliute mode, its segments are generated
by macros within template_slt_.alm. These macros genherate not
ohly the slt entries for collection zero segments (and various
segments at fixed absolute memory addresses); they also generate
the page tables and the segment descriptor words for the
segments, A much simpler program in absolute mode moves these
page tables and sdws (the dseg) to appropriate places and loads
the dbr (also generated by tTemplate_slt_). Thus, these early
segments come cquickly and magically into being. All of the
segments described by the template_slt_. are data segments with nho
initial content except for bound_bootload_0 itself, which was
loaded into the correct memory address by the bootload tape
label, and toehold, by virtue of being the first part of
bound_bootload_O,

The second group of segments to come into being are the
collection one segments loaded by collection =zero. These seg-
ments are created through a mechanism imbeded in bootload loader
and bootload_dseg. When the segment header (actually a slit
entry) is read from the MST, the need for a segament of a certain
size is called for. Values in the slt header keep track of the

&-1 AN70-01

extent of memory allogcated. The type of segment (permanent
"unpaged" or not) determines from what end of memory the space

will be obtained. A page table of appropriate size is
constructed in the proper area (either the segment
unpaged_page _tables for permanent "unpaged"” segments or
int_unpaged_page_tables for temporary or to be made paged seg-
ments) . A new sdw pointing to this page table is tacked onte the
appropriate end of dseg (low segment numbers for permanent
segments, high for temporary or init segs}). With write access

set on in this sdw, the segment contents can be loaded from tape
into the memory area, Proper access is then set in the sdw. The
segment is now existent.

Collection one creates certain data segments that are wired
and contiguous, The mest obvious is the sst. These are created

by the routine gei_main, get_main might be considered the
counterpart of the collection zero segment creation mechanism
when called in collection one, It also allocates memory space

from values in the slt header, A page table of appropriate
length in one of the twe unpaged page table segments is
constructed and a sdw fabricated to this page table. The caller
of get_main forces this sdw into dseg and performs the appropri-
atec associative memory clearing function.

The other type of segment created by collection one is a
paged segment. There are two cases of this. The Ffirst is a
paged segment that i3 to be mapped against a previously defined
area of disk. This is done vhen we want to access a partition or
part thereof, as when we want to read the config deck from disk.
To do this, make_sdw is called, specifying that we want an sdw
for an abs-seg. make_sdw finds us an aste of appreopriate size
and threads it inte the hardcore lists, but senses the abs-seg
switch and does not allocate pages or whatever, The cailer of
make_sdw builds its own page table within the aste obtained by
calling ptw_util_%S$make_disk to make each page table word point to
the correct disk . record. The pvitx of the desired disk is
inserted into the aste, Thus, references to this segment (whose
sdw points to the page table in this aste) will wake up page
cohntrol who will page in the proper pages. This mechanism
appears in several places; the desired way of generating such a
segment is to call map_onto_disk.

The second type of paged segment created by collection one
(or two for that matter) is a segment paged off the hardcore
partition. In this case, allocation of pages is done by page
control. make_sdw is called as before, but, this timg, it not
only creates an aste for the segment, but it finds space for it.
A disk with a hardcore partition with enough free space to hold
the segment is selected. This pvtx is put into the aste. As an
added bonus, since such segments will not have trailer entries,
the trailer pointer in the aste is set to the hardcore segment
number (for those programs that need to map the hardcore aste
list entries to g1t entries’. The page table words are set to s

&-2 AN70-01

nulled state. make_sdw then touches each page, causing page
control, when the page fault occurs, to withdraw a page from the
partition. {init_hc_part created a vol map and record stock that
page control can use which describes only +the hardcore parti-
tion.) With the segment now in existence, the caller of make_sdw
can how lecad the segment. For collection one or two, this
involves eijther initializing the data segment or copying in the
segment contents read from the mst.

When collection two needs a wired contiguous data space, it

calls get_main also. In this case, though, get_main calls
make_sdwbunthreaded which will obtain an aste and sdw and page
space. pc_zbs$wire_abs_contig is then called 10 wire thnis

segment into contiguous memory pages. A paged segment to be
mapped onto a particular area of disk is created as described for
collection one.

Hardcore seaments that need to be placed into the hierarchy
{deciduocus segments) are so placed as follows. append is called
to create a branch, This creates a vtoce for the segment and
makes active, creating If necessary, all parent directories.
Normally, segment control activities would then create an aste
for this being created segment which would be threaded as a son
of tThe parent directory's aste, In this initialization case,
though, the aste for the new segment already exists, We hand
thread this aste intce the noermal segment lists and thread it as a
soh of the parent directory's aste. The directory entry for this
segment created by append gives the vitoc index of the vtoce for
it. By placing this vtocx into the o2ld aste for the new segment,
vtoc_man can make the vtoce for this now deciduous segment
reflect the placement of this segment in the hardcore partition
(where it was allocated during hardceore initialization). The
segment is now properly active and accessible from the hierarchy.

The initialization of the hardware and configuration infor-
mation pertaining to it (basically scs8 (and also iom_datal) is a
little understood process, Te better understand the method of
initialization, it is necessary to start with an understanding of
the operation of the hardware on which Multics runs, This
description pertains to the DPS-8 hardware series. The descrip-
tion for the Level-B8 series is similar but is not included.

Interconpection of Multics hardware
A Multics system consists of a set of system control uhits

{SCU's), central processing units (CPU's) and input/output
multiplexors (I10M's),

&-3 AN70-01

A SCU controls access to memory. Each SCU owns a certain
range of (absolute) memory. Any active unit (a CPU or an [0M)
that requires access 1o memory does so by requesting the access
from the SCU that owns the given range of memory.

A CPU performs the actual computations within the system.
It operates by requesting instructions and data from the appro-
priate SCUs, operating upoh them, and placing the results into
appropriate locations in SCUs.

An I0M performs input and ocutput to physical devices, It
reqguests data from SCUs to send to devices and takes data from
devices, storing it inte SCUs,

IoMs and CPUs are not directly connected to one another.
The only method of communication between active modules is
through a SCU, The connection of modules in a Multics system is
therefore something like the following.

I 1e6M A 1 1 IeM B |
1 N !
I PN I
| MEM A 1---1 8CU Al | sSCUB I---1 MEM B |
! N |
I P |
|l CPRUA Il | CPUB I

The crosses indicate that both I6Ms and both CPUs connect
to both SCUs: the CPUs and [0Ms are not themselves connected.

The active modules (CPUs and I[C0Ms) have up to four ports
that go to SCUs. These are referred to as the memory ports of
the active module in guestion. The 8CUs have up to eight ports
that can go to active modules, These are referred to as the
active module ports of the SCU or just simply as SCU ports,

A1l CPUs and I0Ms must share the same layout of port
assignments to SCUs. Thus, if memory port B of CPU C goes to SCU
D, the memory port B of all other CPUs and I0OMs must go to SCU D,
All CPUs and I0Ms must describe this SCU the same; all must agree
in memory sizes, Also, all SCUs must agree on port assignments
of CPUs and [0Ms. Thus, if port 3 of SCU C goes to CPU A, then
port 3 of all other SCUs must alsco go to CPU A,

8-4 AN70-01

The wvarious hardware modules need varying amounts of
configuration description information with which to run.

CPU AND I0OM HARDWARE CONFIGURATION

The CPUs and [OMs reguire access to main memory. They
resolve their ownh internal concept of memory address (virtual or
io page table) into an absolute main memory address, This
address must describe a location in one and only ohe memory store
unit., which itself must be connected to only one SCU. The 1GM or
CPU must determine which SCU owns the memory location desired,
and supply that SCU with the address relative to its base of the
location desired. . The CPU and I10M do this with the memory
configuration infermation known to them by configuration switches
and changed under software control.

The configuration data khowh to the processor (at the
hardware level) is found via the rsw instruction with operands of
1 and 2, which can be obtained by calling pmutdrsw with these
operands. The format of the data returned is described in
rsw.incl.pll and also shown below.

The data returned by the rsw 2 instruction is shown below.
bits meahing

0-3 d-word/2-word interlace (if enabled)
4-5 processor type (01 for DPS-8)
6-12 seven msbh's of the fault base

13-13 id prom installed

18-18 dps (marketing) option

20-20 8k cache option

23-23 Multics model CPU

24-24 Multics mode enabled

29-32 cpu speed (0 = 8/70, 4 = 8/52)

33-35 cpu humber

The data returned by rsw 1 consists of four nine bit bytes
describing each of the four possible memory (SCUY ports of the
processor, The bytes appear in order in the result, SCU 0 in the
high order bits. The format of the byte is:

bits meaning

0-2 pert assignment

- port is enabled
system initialize is enabled
port is interlaced with neighbor
memory size

m{{lh(p)
QU LW

&-5 AN70-01

The actual memory size of the memory attached to the SCU attached
to the processor port in question is 32K % 2 x*x (encoded memory
size). The port assignment couples with the memory size to
determine the base address of the SCU connected to the specified
CPU port (absolute address of the first location in the memory
attached to that SCU). The base address of the SCU is the
(actual memory sizel) * (port assignment).

The 16M has similar port description information
interpreted similarly. This information is not readable from the
CPU,

8SCU HARDWARE CONFIGURATIGON

The SCU also has description of its ports {(to CPUs and
I0Ms) as well as description of the store wuhits attached to it.
This information is determined by the rscr instruction
(pmut$rscr), given the SC_CFE argument. (The explanation of the
rscr instruction appears later.) The portions of the result that
pertain to SCU port and store unit configuration are shown below.

bits meaning

09-11 lower store size
12-15 store unit (A A1 B B1) on-line
21-21 SCU in program mode {(vs manual}

z22-22 non-existant address checking enabled
23-29 non-existant address limit

30-30 store unit interlace enabled

31-31 B is lower addressed store (vs A)
32-35 port enable mask for ports 0-3

57-83 cyclic priority (0/1-6/7)

B88-71 port enable mask for ports 4-7

A DPS8-8 SCU may have up to four store units attached te it.
If this is +the case, two store units form =a pair of units. The
size of a pair of units (or a single unit) is 32K %x 2 xx%x (lower
store size) above.

I+ the non-existant address flag is on, any address to a
store unit whose high order bits (above the lower 15) is greater
than or equal to the non-existant address 1imit generates a
noh-~existant address SCU illegal action,

A SCU will respond to and provide information to only those
ports that are enabled (port enable mask above),

SCU ADDRESSING
There are three ways in which an SCU is addressed, In the

normal mode of operation (memecry reading and writing), an active

&-6 AN70-01

unit (IEM or CPU)} translates an absocliute address into a memory
port f(on it} and a relative memory address within the memory
described by the memory port. The active module sends the
address to the SCU on the proper memory port. If the active
module is enabled by the port enable mask in the referenced SCU,
the SCU will take the address given to it and provide the
necessary memory access.,

The other two ways pertain to reading/setting control
registers in the SCU itself. For each of these, it is stilil
hnecessary to spacify somehow the memory port on the CPU whose SCU
registers are desired. For the rmcm, smcm and smic instructions,
this consists of providing a2 virtual address to the processer for
which bits 1 and 2 are the memory port desired.

The rscr and sscr instructions, though, key off the final
absolute address 1o determine the SCU (or SCU store unit)
desired. Thus, software needs a way to translate a memory port
number inte an absolute address to reach the SCU. This is done
with the paged segment scas, generated by [nit_scas (and
init_scu). scas has a page corresponding to each SCU and to each
store unit in each SCU, pmutdrscr and pmut$sscr use the memory
port number desired to generate a virtual address intco scas whose
absolute address (courtesy of the ptws for scas) just happens to
describe memory within that SCU.

The cioc instruction (discussed below) also depends on the
final absolute address of the target operand to identify the SCU
to perform the operation. In the case of the cioc instruction,
though, this has no particular impact in Multics software. All
target operands for the cioc instruction when referencing [10Ms
are in the low order SCU, When referencing CPUs, the SCU
performing the connecting has ne real bearing.

As mentioned earlier, communication between active modules

(CPUs and 10Ms) can only be performed through SCUs,

CPUs communicate to I[GMs and other CPUs via the cioc
conhnect i/o channel) instruction. The operand of the instruction
is a word in memory. The 8CU containing this operand is the SCU
that performs the connect function. The word fetched from memory
contains in its low order bits the identity of a port on the SCU
to which this connect is to be sent. This only succeeds if the
target port is enabled (port enable mask) on the SCU. When the
target of the connect is an I0M, this generates a conneci stirobe
to the 10M, The 10M examines its mailkbox in memory to determine
its course of action, When the target of the connhect is another
CPU, this generates a connect fault in the target processor. The
target processor determines what course to follow on the basis of
information in memory analyzed by software. When a connect is

8-7 AN70-01

sent to a processor (including the processor issuing the con-
hect), the connhect is defzrred until the processor stops
executing inhibited code (instructions with the inhibit bit set).

Sighals sent from an IC0OM to a CPU are much more involved,
The basic flow is as follows. The I0M determines an interrupt
number. (The interrupt number is a five bit value, from 0 to 31.
‘The high order two bits are the interrupt level.

0 - system fault

1 - terminate
2 - marker
3 - special

The low order three bits determines the [0OM and I0M channel
group,) _ - . _ .

0 - I0M 0 channels 32-83
1 - I6M 1 channhels 32-63
2 - 1I6M 2 channels 32-63
3 - I0M 3 channels 32-63
4 - 10M 0 channels 0-31
5 - I6M 1 charnnels 0-31
6 - 10M 2 channels 0-31
7 - I6M 3 channels 0-31

[t also takes the channel number in the group (D-31 meaning
either channels 0-31 or 32-63) and sets the <channel number>th
bit in the <interrupt number>th memory location in the interrupt
mask word (IMW) array in memory, It then generates a word with
the <interrupt number>th bit set and sends this to the bootload
SCU with the SXC (set execute cells) SCU command, This sets the
execute interrupt cell register in the SCU and sends an XIP

(execute interrupt present) signal to various processors
connected to the SCU, (The details of this are covered in the
hext section,) One of the processors (the first te get to it)

sends an XEC (execute interrupt cells) SCU command to the SCU who
generated the XIP signal. The SCU provides the interrupt number
to the processor, who uses it to determine the address of a fault
pair in memory for the "fault" caused by this interrupt. The
processing of the XEC command acts upon the highest priority
{lowest numberaed) bit in the execute interrupt cell register, and
also resets this bit in the register.

lnterrupt Masks and Assignment

The mechanism for determining which processors are candi-
dates for receiving an interrupt from an IC8M is an invelved
topic, First of all, a processor will not be interrupted as long
as it is executing Iinhibited instructions (instructions with the
inhibit bit set). Beyond this, though, lies the question of
interrupt masks and mask assignment.

8-8 AN70-01

Internal to the SCU are two sets of registers (A and B},
ecach set consisting of the execute interrupt mask register and

the interrupt mask assignment register. Each execute interrupt
mask register is 32 bits long, with each bit enabling the
corresponding bit in the execute interrupt cell register. Each

interrupt mask assignment register has two parts, an assigned bit
and a set of ports to which it is assigned (8 bits). When a bit
is set in the execute interrupt cells register, the SCU ands this
bit with the corresponding bit in each ¢f the execute interrupt
mask registers,. I¥f the corresponding bit of execute interrupt
mask register A, for example, is on, the SCU then looks at the A
interrupt mask assignment register. If +this register is not
azsigned (enabled), ne further zction takes place in regards to
the A registers. (The B registers are still considered (in
parallel , by the wayl).) If the register is assignhed (enabled),
then _interrupts. will be sent to all ports (processors) whose
corresponding bit is set in the interrupt mask assignment
register. Thus, only certain interrupts are allowed to be
sighalled at any given time (based on the contents of the execute
interrupt mask registers) and only certain processors wiltl
receive these interrupts (as controlled by the interrupt mask
assignment registers).

In Multics, only one processer is listed in each of the two
interrupt mask assignment registers, and noc processor appears in
both. Thus, there is a onhe for one correspondence between
interrupt masks that are assigned {interrupt mask registers whose
assignhned (enabled) bkit is on) and processers who have an
interrupt mask (SCU port number appears in an interrupt mask
assignment register). So, at any one time only 1two processors
are eligible to receive interrupts, Other processors need not
worry about masking interrupts.

The contents of the interrupt mask registers may be
obtained with the SCU configuration information with the rscr
instruction and set with the sscr instruction. - : SR

bits meaning

00-07 ports assigned to mask & {(interrupt mask assignment A)
0e-08 mask A is unassigned {(disabled)
36-43 ports assignhed to mask B (interrupt mask assignment B)
44-44 mask B is unpassignhed (disabled)

The contents of a execute interrupt mask register are
obtained with the rmcm or the rscr instruction and set with the
smem or the sscr instruction. The rmem and smem instruction only
work if the processor making the reguest has a mask register

assigned to it. If not, rmcm returns zero (no interrupts are
enabled to it) and a smcm is ighored (actually, the port mask
setting is till donel, The rscr and sscr instructions allow the

examining/setting of the execute interrupt mask register for any
port on a SCU; these have the same effect as smem and rmeom if the

&-9 AN70-01

SCU port being referenced does not have a mask assigned to it.
The format of the data returned by these instructions is as
follows,

bits meaning

00-15 execute interrupt mask register 00-15
32-35 SCU port mask 0-3
36-51 execute interrupt mask register 16-3]
68-71 SCU port mask 4-7

Operations upon masks

Since at most two processors have interrupt masks assignhed
to them, not all processors can manipulate their own masks. But,
to remove the need for processors to ask whether they have a mask
before operating upon them (in partiuclar, to mask interrupts), a
mechanism has been devised. It's execution is carried out by by
pmut$set_mask and pmutdread mask. The code fragment of pmut that
reads/sets the mask follows.

read_mask:

1x11 prds$processor_tag

tprpab sceSmask_ptr, x1

xec scsdread_mask, x1
set_mask:

1x11 prds$processor_tag

lprpap scsEmask_ptr, x1

Xec scs$set_mask, x1

For each processor tag, then, there is a set of data pointers and
instructions in scs$mask_ptr, scs$read_mask and scs$set_mask that
either operate upon the processor’s mask or pretend they did,
When the processor in guestion does not have an interrupt mask;
the data is as follows:

mask_ptr - packed pointer to
prdstsimulated_mask

read_mask:
tdag akl0

set_mask:
stag ablD

which will succeed in doing nothing. When the processor does
have an interrupt mask, the data is as follows:

mask_ptr - packed pointer to
scsiport_addressing_word{bootload scul

@
1

10 AN70-01

read_mask:

rmcm abl 0, x
set_mask:
smcm abiQ, x
which will read and set the mask, The array

scs$port_addressing_word contains the data words required as
operands for the rmcm, smcm and smic instructions, They contain
the memory potrt number in their low order bits ({.e.;, their array
index is their contents). The smic instruction uses
scsbinterrupt_contiroller (the low order memory port {address 0)})
as ian array index to perform the smic against the low order SCU.

The operands of the pmut$read_mask and pmutdset_mask opera-
tions (rmcm. and smcm instructions, respectively) were described
above, The value scs$sys_level masks all interrupts, It has
zeroes for all bits loaded into the execute interrupt mask
register but has all ones for all ports of the SCU to which
enabled active modules are connected. scs$open_level has the
same SCU port enable kbits but has ones for all interrupts of all
levels from both channel sets of all I10Ms currently active.

Sequence of lnitialization
Configuration initialization sccurs primarily within

scs_and_clock_init, iom_data_init, scas_init and init_scu called
from within scas_init.

The name of this routine should probably be just scse_init,.
The clock portion is really just a check of clock functioning
{and setting up clock data in generall. It fills in the
scstport_addressing_word's as descr ibed above,
scsbprocessor_switch_data is read to get the ceonfiguration and
data switch values. scs$bos_processeor_tag is set . to indicate
this cpu (currently the only one running) as the bootload cpu.
scs$read_mask, scs$set_mask and scs$mask_ptr are set to the dummy
values mentioned above. wWhen scs_and_clock_init is run, alil
interrupts are masked, and no one really needs to think about its
masks. The various processcor ports are examined looking for
memor ies. The port number of the low order memory so far is set
into scs$interrupt_controller and sys_infoSclock_. When
scs_and_clock_init is finsihed, then, the configuration data for
the bootload cpu is khown, as well as for the various memories
attached to 1it. Examination of this data and setting of masks
waits for later programs.

iom_data_init initializes the data needed by io_manager.
This includes descriptions of the various I1OMs and their chan-
nels. The basic setup of this information (numbers of [0Ms,
numbkers of channels) was set up by get_ic_segs who obtained this
data from the config_deck. Most description of 10Ms appears in

8-11 AN70-01

iom_data so no major changes take place to scs within
iom_data_init.

Aside from filling in scw's and lpw's for each
channel_table and mailbox entry, the more interesting part of
iom_data_init is the main IOM card processing loop. [t examines
each 10M card, making sure that ho I0M is duplicated, that the
field wvalues are reasonable, that no card claims an SCU port
claimed by another 10M (and sets scsdSport_data to claim the 10M)
etc. The iom_data.per_iom data is initialized as to configured,
on_ling, paged, etc. This routine adds to scsiopen_level the
necessary bits to enable interrupts from the 10Ms, { Interrupts
are not ehabled until initialize faulstSinterrupt_init,)

The conclusion of configuration initialization occurs in
scas_init and its servant, init_scu, At its entry, scs$port_data
has been set up to only describe the [0Ms, This routine will set
these for processors, [t also initializes scas, as its name
implies. This requires determining all memories and store units.
Aside from this, the routine checks the peort enable switches for
the processor ports for correcthess.

The first locp of interest scans all CPU cards. It checks
them for reasonableness, that no CPU is mentioned twice, that no
other active module claimg this SCU port, etc. The cow's

{connect operand words) used when perfoming cioc's to this
processor are set,

What follows this is the SCU scanning loop. 1t takes each
MEM card and checks it for reasonablencss, whether tags are
duplicated, whether the memory extent (from rsw_utill matches and
does not overlap any other memory, etc. init_scu is then called.

init_scu initializes an SCU. This is the routine that sets
up scas for a particular SCU. This is done by installing ptw's
into the page table for scas to describe the SCU. Reading the
configuration from the SCU, the data is compared against the
computed data given the processor configuration information
{which scas_init compared against the config_deck description of
the memotyl. If the configuration from the SCU indicates
aditional store units, the scas pages for them are set (to allow
getting the store unit mode registers with an rscrl.

The mask checking part of init_scu makes sure +that each
interrupt mask that is assigned on the SCU is assigned to a
processor (as opposed to an I0M) and that no more than one mask
indicates a given processor. This is done by walking down the
CPU data in scs and comparing the mask data recorded for the
other processor ports for duplication. This also records which
masks assigned for this SCU are claimed by processors, Any mask
that is assigned that does not appear in the description of a
processor is mis-assigned.

8-12 AN70-01

‘ After the SCUs have been initialized in this way, a little
‘more work is left. The bootload CPU's ports are checked, so that
no extra port is enabled. For each [GM (and the bootload CPU},
the port enable bit is set in sach SCU,

For each processor, we find the processors with masks
assigned. For these, we set scsset_mask, scsread_mask and
scsbmask_ptr to actually perform the rmem and smem instructions
as described above to manipulate their masks. We c¢check to be
sure that the bootlocad CPU cwns one of the masks.

The final loop examines the ordering of active modules on
the SCUs to see if the cyclic priority switches can be set. This
is only done if the I0OM group does not overlap the CPU group.

PAGE CONTROL INITIALIZATIGN
Page contrel initialization consists of a variety of
activities run during collection one. init_sst build the sst and

core_map. The sst is needed since we need to have an aste for
page contral so that it can find what disk needs i/¢0 (from the
pvix within the astel. The core_map is necded since it shows the
status of memory pages (initially free between the groups of
initialization segments, currently wired). Page control needs
this information so it can find a free memory frame into which it
can read a desired page. init_pvt performs the function of
creating the pvt. It is the index into the pvt for the device
from which a page (or other i/0) is desired that is needed by
disk_control (dctll, read_disk$init is needed to initialize page
reading/writing through rdisk_seg. This routine builds the paged
segment rdisk_seg, which can be mapped onto the desired page of
disk to read. The aste for rdisk_seg contains the pvitx of the.

disk to read. The page table word for rdisk_seg provides the
disk address. At this point, we can actually read or write a
page by touching rdisk_seg within read_disk. read disk sets up
the aste and page table word, as described. When +the page is
touched, a page fault will wake up page control,. It will find a

free memory frame, read the page in, and resolve the page fault.

read_disk_label uses read disk, then, to read a disk label,.
init_root_vols uses read_disk_label to read the label of hardcore
partition volumes. Given the label, it finds the partition map
and finds the hardcore partition, A small volmap is built that
describes this partition and is mapped onto the beginning of the
partition. A small record stock is built to describe the volmap.
Given this initial stock, attempts to create or free pages onh a
disk (within the hardcore partition) can succeed. Now, we <an
create hardcore segments by building null page tables and taking
page faults. Page control will find a free page from the volmap
for the partition (whose pvtx is in the aste) and resolve our
page fault, At this point, all of the services we need of page
control are available. For the case of later activities who need

8-13 AN70-01

various partitions to map paged areas onto, init_partitions is
called to validate the part information. We now page happily.

Later, in collection two, the real volmaps and record
stocks are set up by accept_rpv. After this point, page control
will simply shift its page creation/freeing activity to that
described by the paging region. All hardcore segments had their
pages pre-withdrawn from the hardcore partition, so no possibili-
ty exists that we will accidentally put a paging region page into
a hardcore segment.

SEGMENT AND DIRECTORY CONTROL INITIALIZATION

Segment and directory control are initialized in stages
throughout collections one and two. It started in collection one
when the sst was built. It continues into collection two with
getuidbinit. This allows us to generate uhigque ids for newly
created segments and directories, init_vtoc_man paves the way
for vtoc_man to perform i/o on vitoces. Segment control's trailer
segment is created by init_str_sedqg. accepti_rpv sets up the real
vtoc maps and vtoc stocks. Now vtoc_man can really read and
write vtoces, as well as create and free them. Now, if we were
to try a hormal activation of a segment, given its pvix/vtocx, we
could find the segment and thread the segment intc the right
astes and trailers. init_lvt builds an initial rlv (in the l1wvt)
out of the disks listed as having hardcore partitions. This
allows segment control's disk selection algerithm to be able te
find a disk to use when segments try to be created. We now have
enough mechanism in place to utilize most of +the facilities of
segment control, but we cannot yet access and activate hierarchy
segments.

The initialization of directory control is imbedded within

the initialization of segment conptrol. It started with
dir_lock_init providing us with an initially empty list of locked
directories. The real start up of directory control, though,

occurs in init_root_dir, This builds the kst (used at secgment
fault time 1o resolve segment numbers into an understanding of
what needs activation) and creates (if need be) and activates and
initiates by hand the root directory. Directory control can how
reference hierarchy objects with segment control's help. Any
attempt +to create a hierarchy segment (appendl can succeed by

selecting a disk (lvt lookup), vtoce creation (vtoc_man using
vtoc stock, vtoc map and vtoc buffers) and aste creation (using
sst and the trailer segq). Also, deactivation is possible since

the trailer is built to describe what to setfault and the kst is
present to be able to re-activate, At this point, we are able to
handle segment faults, given the information in the kst and by
recursively traveling down the hierarchy by virtue of the fact
that the root is now and always active.

8-14 AN70-01

SEGMENT NUMBER ASSIGNMENT

There are basically three classes of segments as far as
segment hnumber assignment is concerned. The first is segments
that will be a permanent part of the supervisor. These are
assigned consecutive segment numbers, starting at 0. dseg is
always 0, of course.

The second class is initialization and collection temporary
segments, These are assigned consecutive numbers starting at 400
octal. Although temporary segments are deleted at the end of
each collection, their numbers are not re-used, We continue to
assign the next non-used number to the next temporary or
initialization segment.

The order of assignment of these numbers is purely
according to the order that the segments are encountered. The
first few segments are assigned numbers by template_slt_; but,
again, this is in order of encounterance. The only recuirements
are that dseg must be segment 0 and that the slt must be segment
7 (assumed by all dump analyzers).

Normal hierarchy segments fall inte the third class of
scgments, as far as segment number assignment is concerned. As
for these, the sequence is as Ffollows, The next higher mod 8
segment humber after the last permanent supervisor segment is
chosen as the stack base (ring zero stack number). The next
seven numbers are assigned to the outer ring stacks, in order.
Since the root is made active after this, and the root becomes
the first real hierarchy segment initiated, it gets the segment
number after stack_7. Other segments are assighed progressively
higher segment numbers according to segment control's normal
rules, We do not need to worry about running into segment number
400 octal since these segments will be deleted before we ever get
that far, Cnly permanent supervisor segments will show up in
one's dsegq.

Some supervisor segments (deciduous segments) get initiated
inte the normal user's address space. Regular stacks are
initiated by special handling (makestack called from the segfault
handler) and are directly referred to by the reserved stack

segment humbers, A normal segment like bound_ library_1_ is
activated through normal scgment control means. Thus, it will
appear in two places in the user's address space; one in the

supervisor segment number range (with ring brackets of 0, 0, O,
by the way) and once in the user ring segment number range
(greater than the root's segment number) (with ring brackets of
0, n, nl, ‘

This is a problem for hardcore gates, though, relative to
their 1inkages. A user ring call to bound_library_1_ will cause
modules within it to find their linkage section from the 1ot
entry for this segment. Any module called from bound_library_1_

8-195 AN70-01

will also be in the user ring, so the wuser ring linkage section
for the segment number corresponding to the user ring version of
bound_library_1_ will find the called module. Hardcore gates,
however, don't call hierarchy entities but instead call entities
that can only be found through the linkage section generated via
pre-linking during initialization which resides in the ring zero
linkage section corresponding to the hardcore segment number. To
make it possible to find this easily, init_hardcore_gates stored
into the hardcore gate secgdef .my_lp the pointer to this linkage
section. Thus, when called from the cuter ring with the ocuter
ring segment number, hardcore gates will quickly switch over to
the hardcere linkage section and funciion properly.

IRAFFIC CONTROL, INITIALIZATION

All three collections contribute efforts toward enabling
traffic control, Collection one starts by building the tc_data .
segment in tc_init, full of empty aptes to describe processes.
At this time, though, a flag in tTc_data indicates that
mult-programming is not active, Any call to traffic contreol to
pxssbwait will simply loop for notification (which will come from
a call to pxssnotify in some interrupt routinel. No polling
routines are run at this time. Other initialization activities
proceed to build the supervisor address space.

Collection two starts up multi-programming. It does this
through te_initspart_2. Multi-programming regquires
multi-processes; initially this is the Initializer and an idle
process, but it soon encompasses anhswering service created
processes and hardcore processes (hprocs). Creating an idle
process reguires creating a pds, stack_0O (prds) and dseg for it.
The dseg and pds are simply copies of those for the Initializer,
how that they are filled in. apte entries for the Initializer

and for idle are created. We can now consider multi-programming
o be on. start_cpu is called to start the processor. . For the
bootload processor, this means calling init_processor in a
special case environment (non-absolute mode, if nothing else).
init_processor (the idle 1loop) marks itself as a running
precessor, sends itself a connect, and unmasks the processor.

The connect will go to traffic control, who will pre-empt idle
and return contirol to Initializer.

In collection three, start_cpu is called {from
tce_initbstart_other_cpus) in the same manner as would be done for
adding a cpu during reconfiguration. This is somewhat described
in the reconfiguration manual.

8-16 AN70-01

SECTICON 9

SHUTDOWN AND EMERGENCY SHUTDOWN

The goal of shutdown, obviocusly enough, is to provide an
orderly cessation to service, A normal shutdown is onhe in which
the system shuts itself down, following tThe direction of the
operator's "shut" command. An emergency shutdown is that opera-
tion invoked by bce which forces Multics to run
emergency_shutdewn, which performs the clean up operaticns below,

One could consider the system to be shutdown if one simply
forced a return to bece, but this is not encugh. Proper shutdown
involves, at first, the answering service function of logging out
all users, The ansvering service then shuts itself down,
updating final accounting figures. Now with just the Initializer
running, the task of shutdown described here follows,

The major goal of shutdown and emergency_shutdown is to
maintain consistency of the storage system. It is necessary to
move all updated pages of segments to disk, to update all
directories in question with new status information, to update
vtoces of segments referenced, and to clear up any effects caused
by the creation of supervisor segments.

These functions must be performed in several stages. Also,
the ordering of operations is such as to minimize the degree of
inconsistency within the storage system that would occur if a
failure were 1o occur at any point.

Since these same functions are performed for an emergency

shutdown, the operations are performed so as to assume as little
as possible from the infermation in memory,.

ORDER OF EXECUTION OF SHUTDOWN

The module shutdown is called via hphces_$shutdown. It
starts by removing the fact that we were called from an outer
ring, so we won't accidentally return. An any_other handler is

set up to flag any possible error, later. The first action of

9-1 AN70-01

shutdown is to force itself to run on the bootload cpu and to
stop the others (stop_cpu).

disk_emergency$test_all_drives checks out all of the stor-
age system drives at once to avoid errors later.

tc_shutdown destroys the remnants of any processes and
turns off multi-processing.

scavehger$shutdown cleans up any scavehges that were in
progress,

We then switch over to the stack inzr_stk0 for the rest of
shutdown, This is performed through the alm routine,
switch_shutdown_file_system, which starts the file system shut
cown.

shutdown_~Ffile_system is the first program called on
inzr_stko, It is a driver for the shutdown of the file system.
It starts by updating the rpv wvolmap, vtoc header (and vtoc map)
and label of the rpv to show the current state (in case problems
occur later).

The most important step, from the user's point of view, is
to fFflush all pages in memory (considered to be part one of

shutdown) with pcsflush, This is relatively easy and safe to
perform since it only reguires walking down ccore map entries; sst
threads, etc. do not have to be trusted. This marks the

completion of (emergency) shutdown, part 1.

The stack zero segments are released so that demount_pv can
deactivate them.

deactivate_for_demount$shutdown deactivates all
non-hardcore segments and reverts deciduous segments (removes
from the hierarchy those supervisor segments put inte the
hierarchy during initialization), This updates the directories
containing those segments that were active at shutdown time (and
their vtoces).

Our next task is to remove the pages of these updated

directories from memory. We start by demounting all operative
disks (other than the rpv] with demount_pv. After this, if any
locks remain set, we set the shutdown state to three; it is

noermally four.

If any disks are inoperative, we just perform another
memory flush (to remove rpvy directory pages), wait for console
ifo to finish (ocdem_$drain_io) and return to bce.

If all was okay, we demount the rpv with demount_pv. The

storage system is now considered to be shut down. The ssenb flag
in the flagbox is reset to show this, We flush memery once more,

°-2 AN70-01

to get the last log messages out. The message "shutdown
complete" is printed; we wait for console completion, Shutdown
can how return to bce,

ORDER OF EXECUTION OF EMERGENCY SHUTDOWN

emergency_ _shutdown is called from bce. bce modified the
machine conditions of the time of return to bce to cause a return
to emergency_shutdownl O, This module initializes itself through
text imbeded pointsrs to its linkage section, etc. and enters
appending mode.

Multi-programming is forced off (tc_datatwait_enable).

~ The apt, metering and various apte locks are forced
unlocked.

The return to bce earlier stopped all of the other cpus.
scstprocessor is set to show this fact.

The connect lock is forced unlocked.

Various trouble pending, etc, flags are reset in case of
another failure.

scs masks, etc. are set up for single (bootload) cpu
operation. We mask down to sys_level.

A switch is made to the idle process, This 1is done by
using scstidle_aptep to find the idle's apte. Its dbr is lcaded.

A1l other cpus are set to delete themselves, in case they
try to start.

The idle process has prds as its stack, A stack frame is
pushed onto this stack by hand,

The ast and reconfiguration locks are forcibly unlocked,

The first external module is called. ocdcm_$esd_reset
resets oc_data, and the conscole software.
syserr_real$syserr_reset rescets the syserr logger and the
syserr_data segment and flags.

io_manager$reset resets iom_data status.

pagetesd_reset resets its view of the disk dim,

pc_recover_sst recomputes the page contraoal state.
pagettime_out is called.

-3 AN70-01

disk_emergencydtest_all_drives_masked runs as for normal
shutdown, but in a masked state.

The prds is abandoned as a stack (it is reset) and the

stack pointer set %o null (idle process), The first page of
template_pds is wired and the sdw for pds set to point to
template_pds (hopefully a good pds)., The first page is touched,
hopefully successfully paging in the page. The stack pointers
are then set to inzr_stko, We then call

wired_shutdown$wired_emergency.

wired_shutdown sets an any_other handier and unmasks the
processor., It makes a few checks to see if the storage systom
was c¢chabled, If a vtoc_buffer is in the unsafe state, its
physical volume has its trouble count incremented.

For each pvte, the'scavénger data is reset as in & normal
shutdown. page$reset_pvte is called. Emergency shutdown part 1
is started.

fsout_vol updates the rpv information on disk as for
shutdown.

Pages of segments are flushed from information in the core
map entries (pciflush). The rpv information is again written.
This ends part one of emergency shutdown,

vitoc_mand$stablilize gets vitoc buffers into shape.

We can now call shutdown_file_system and let normal opera-
tions carefully +try to update directories and vtoces, as for a
normal shutdown.

MODULE DESCRIPTICNS

deactivate for demount.pll

Cther than the flushing of pages themselves, the
deactivation of segments (updating their directory entries and
vtoces) performed by deactivate_for_demount is one of the most
important functions of shutdown. The deactivations are performed
by hand so0o as not to disturb aste threads. The operation
cohnsists of walking cdown the ast hierarchy (tree)-wise,
recognizing that each active segment has all of its parent
directories also active. We start at the root. For each segment
to consider, we look down its inferior list. Each 1look at an
aste and an inferior element is performed with a wvariety of
validity checks on the aste (within pool boundaries, parent/son
peinters correct, etc), Af inferiors exists, they are pushed
onto a stack (max hierarchy depth deep) of astes to consider.
When we push an aste with no inferiors, we consider it directly.

8-4 AN70-01

If it was a hardcore segment (deciduous), it is removed from the
aste list it is in and its vtoce freed. Non-hardcore segments
have their pages flushed (pcScleanup) if they are not entry-held
{entry-held segments, such as pdses had their pages flushed
earlier and will be caught in the final flush) and their vtoces
updated {(update_viocebSdeact). After a segment is considered, its
brothers are considered, When they are dohge, we return back to
their parent for consideration. We proceed in this manner until
we consider and pop the root aste off the stack. Segment control
is now no longer active.

demount pv pll

demount_pv demounts a physical volume. It starts by
waiting for everyvoneg to relinquish the drive; that is, no one can
be in the middle of a physical volume operation. All segments on
the volume are deactivated. For the shutdown c¢ase described
here, a special deactivation is performed to avoid possible
problems in the case of emergency shutdown. Each aste pool is
traversed (by numerical order, not link order because of possible
mis-linkings). All non-hardcore segments (except the root) are
deactivated in-line by calling pcicleanup and update_viocebdeact
on the segment, We then wait for all vtoc i/0 to complete to the
disk. fsout_vol is called to update the volmap, vtoc header and
map anhd the label. Finishing, we clean up the pvt entry,

disk emergency. . pll

To ease the burden on shutdown of drives being inoperative,
disk_emergency$test_all_drives is called. It tests all storage
system drives by first assuming that cach one is good, then
running disk_control$test_drive. If the drive is declared inop-
erative this time, it is marked as such with an error regport
printed. Shutdown of objects on this drive will be suspended.

emergency shytdown.alm

bce, when crashed to, received the machine conditions at
the time of the call to bce. For an emergency shutdown [(esd),
bce patches these 1to force a transfer to emergency_shutdownlO.
Multi-programming is forced off (tc_datastwait_enable). The apt,
metering and various apte locks are forced unlocked. The return
to bece earlier stopped 211 of the other cpus. scs$processor is
set to show this fact. The connect lock is forced unlocked,
Various trouble pending, etc. flags are reset in case of another
failure, acs masks, etc. are set up for single (bootlocad) cpu

operation. We mask down to sys_level. & switch (s made to the
idle process. All other cpus are set to delete themselves, in
case they try to start. The idle process has prds as its stack.
A stack frame is pushed onte this stack. The ast and

e-5 AN70-01

reconfiguration locks are forcibly unlocked, ocdcm_$esd_reset

resets oc_data, and the console software,
syserr_recal$syserr_reset resets the syserr logger and the
syserr_data segment and flags. io_manager$reset resets iom_data
status. pagebesd_reset resets its view of the disk dim.
pc_recover_sst recomputes the page control state, pagedtime_out
is called. disk_emergency$test_all_drives_masked runs as for

normal shutdown, but in a masked state. The prds is abandoned as
a stack (it is reset) and the stack peinter set to null (idle
process) . The first page of template_pds is wired and the sdw
for pds set to point to template_pds (hopefully a good pds). The
tirst page is touched, hopefully successfTully paging in the page.
The stack pointers are then set te inzr_stkO, We then call
wired_shutdown$wired_emergency.

fsout vol.oll

fsout_vol is called whehever a volume is demounted. This
includes the shutdown equivalent function. It endeavors to
update the volume map, vtoc header and map and label for a
physical volume. It drains the wvtoce stock for the disk
{vtoc_stock_manddrain_stock) to return those vtoces withdrawn
previously. The vtoc map is then forced out to disk. We can

then free the vtoc stock. We similarly drain, write out and free
the record stock/map. The dumper bit map is freed and updated to
disk. The time map updated and mounted is updated in the label.
If this is the root, this is the program that records in the
label such useful information as the disk_table_vtocx and wuid and
the shutdown and esd state,

s (=] 1

The shutdown entrypoint to scavenger is called during
shutdown to clean Up any scavenge operations in progress.. It
walks down scavenger_data looking for live entries. For each, it
clears the corresponding pvte fields deposit_to_volmap,
scav_check_address and scavenger_block_rel which affects the
operation of page control,

toow i
This is the starting driver for shutdown operations. It is
called from hphes_$shutdown from the Initializer command
shutdown. It forces itself to run on the bootload cpu and it

stmps the others. disk_emergencystest_all_drives test the drives
before use. tc_shutdown stops and destroys the other processes,
scavenges are stopped (scavengersshutdown). We then switch
stacks back to inzr_stk0 and proceed through shutdown within
switch_shutdown_file_system.

g-6 AN70-01

shutdeown file system.pll

shutdown_+file_system is the driver for the shutdown of the
file system. It runs on inzr_stkO. Its operations include:
fsout_vol updating of the rpv, flushing pages of segments,
releasing stack_0 segments for deactivation purposes, running
deactivate_for_demount$shutdown to deactivate non-hardcore seg-
ments and revert supervisor segmenis threaded intc the hierarchy
at initialization (updating directories as a result) and then
flushing memory again (by calls to demouni_pv for the various

disks). This module keeps track of the state of operativeness of
drives; if any asre incperative, we just perform a final flush and
auit; otherwise we can demount the rpv also. & FTinzal flush is

performed to get syserr 1og pages out. After console i/70 has
drained, we can return to bce.

switch shuytdown file system.alm

switch_shutdown_+ile_system is the first program in a set

to shut down the file system, It moves us back to inzr_stk0, the
initialization stack for our processing. While it is fiddling
with stack pointers, it also sets pdsSstack_0_ptr and
pds$stack_0_sdwp. On this new stack, it calls

shutdown_file_system,

tc shutdown.pli

Traffic control is shutdown by tc_shutdown. It flags the
system as being in a shutting down state
(tc_databsystem_shutdown) . It also sets wait_enable to 0O,
disabling multi-programming. For each process in the sapt,

deactivate_segs is called, destroying the process and finishing
our task.

wired shutdown.pll

The module wired_shutdown is the counterpart to shutdown in
the esd case. It starts by setting an any_other handler and
unmasking the processor, It makes a Ffew checks to see if the
storage system was ehnabled. If a vtoc_buffer is in the unsafe
state, its physical volume has its trouble count incremented.
For each pvte, the scavenger data is reset as in a normal
shutdown. page$Sreset_pvte is called. Emergency shutdown part 1

is started, fsout_vol updates the rpv information on disk as for
shutdown. Pages of segments are flushed from information in the
core map entries (pcsflush)., The rpv information is again
written, This ends part one of emergency shutdown.
vtoc_mandstablilize dgets vtoc buffers into shape. We can now
call shutdown_file_system and let normal operations carefully try
1o update directories and vioces, as for a normal shutdown.

8-7 AN70-01

APPENDIX A

GLOSSARY

abs-seg

bce

An abs-seg is a reserved segment number in the hardcore
address space used to access disk or memory outside of the
normal mechanisms. That is, they are not built by the
nermal functions that append to the storage system nor are
they built by the functions that create segments out of the
hardcore partition or initialization memory. Examples of
abs-segs are segments mapped onte an area of disk to allow
paging to be used to read/write them (such a mechanism is
used to read the config deck from disk) or segments mapped
onte an area of memory for examination (page control does
this to examine pages being evicted), abs-segs are managed
(i.e., created and deleted), each in its own way, by a set
of software created For the purpose; ne may hnot use the
standard system functions to operate upon them (such as
segment deletionl. However, the contents of the segments
are addressed through normal mechanisms; that (s, memory
mapped abs-segs are referencable wvia the hardware and
abs-segs built with an aste/page table pair in the sst are
allowed to have page faults taken against them.

The Bootload Command Environment within bootload Multics,
that is, the collection of programs and facilities that make
up a command level that allows certain critical functions to
be performed before storage system activation occurs during
system initialization.

bootload Multics

cold

Those early parts of initialization that are capable of
booting bce from a cold, bare machine, including bce itself.

boot
A bootload in which the state of all hardware and peripher-
als is unknown. In particular, the Multics file system is

either non-existant or has been destroyved. This is also
khown as an initial boot.

A-1 AN70-01

collection

A "collection" is a set of programs read in as a unit that
together perform a function during initiatization. Collec-
tions are referred to by number, starting with zero. Each
collection depends on the mechanisms initialized by the
collections that preceded it. As each collection finishes
its task, some of that collection is deleted and some is
kept, depending on the requirements of future collections.

There are alse fractionally numbered collections, which
consist of support entities for the preceding collection.

The division of initialization intoe <¢ollections is done
based upon varicus restrictions imposed by the course of
initialization. For example, since the first few cocllec-
tions must run entirely within memory, restrictions on
available memory (and the amount that can be reguired of a
system) force unessential programs into later collections.

contiguous

cool

crash

A contiguous segment is one whose memory locations describe
contiguous absolute memory locations. Most segments do nhot
have this reguirement; their pages may appear arbitrarily in
memory. Certain segments, though, such as the sst_seg must
have their locations in order, due to hardware reguirements
for placement of their contents.

boot

A bootload in which the Multics file system is on disk and
believed to be good but in which the state of memory and
other peripherals is unknown. In particular, booctload
Multics is not running. The mpc's may or may not have
firmware running in them. The system is loaded from the MST
(tape) and initiated via iom switches.

A failure of Multics. This may be the result of a hardware
or software failure that causes Multics to abort itself or
the result of an operator aborting it. A crash of Multics
during early initialization can produce a tape dump of
memory. Crashes after this time can be examined with bce
utilities or saved to disk by bce and analyzed later.

deciducus segments

These are segments generated or read in as part of
initialization which are given branches in the hierarchy (by
init_branches). Although they become part of the hierarchy,
their pages remain in the hardcere partition and are
therefore destroyved between bootloads, Examples are the
segments in >8l11 and <the lnitializer's pds. { The name
suggests the leaves of trees,)

A-2 AN70-01

deposit
A page conhtrol concept, It means to add an object to a list
of free objects.

dseg
descriptor secgment {sece data bases)

dump
& subset of Multics segments saved after a crash that can be
examined through various dump snalysis tools to determine
the cause of the preceding crash. A dump is either a disk
dump, a dump performed to the dump partition of disk by the
dump facility of bee, or an "ezrly dump”, ohe performed to
tape during early initialization.

early initialization o
Those parts of Iinitialization needed +to reach bootload
Multics command level. All activities after leaving
bootload Multics command level are referred tTo as service
initialization,

emergency shutdown

’ A Multics operation, invoked by bce, that runs a subset of
the hardcore facilities to shut down the file system (put
the storage system intc a cohsistent state) after a crash.

esd
emergency shutdown

hardcore
The supervisor of Multics, loosely defined. This is a
collection of programs and segments geherated or read in
during initialization.

hproc

A hardcore process, Such a process is created by a call to
create_hprocg, as oppesed to being created through the
answer ing service. Such hprocs (currently
SyserrlLogger. Daemon and MCS_Timer_Daemon. SysDaemon) perform
activities integral to the system operation and must be
created prior to, and independent of, the answering service.

init segments
Segments needed only during the course of initialization.
-These are deleted after the end of +the last hardcore
collection.

initialization
The action of starting Multics, This consists of placing
the appropriate software modules in the appropriate places
and constructing the appropriate software tables such that
an event, such as someone trying to dial a login line, or a
page fault occuring, ectc. will invoke the proper software

A-3 AN70-01

which will be in a position to perform the necessary
operation.

kst

knhown segment table (see data bases)
vt

logical volume table (see data bases)
MST

Multics system tTape

Multics system tape
The "tape" is the set of Multics programs that will make up
the supervisor in un-pre-linked form. This set of programs
originates on a tape; some of them spend part of their lives
in a disk partition.

nondeciduous
A hardcore segment not mapped into the hierarchy. These
segments live in the hardcore partition and are known only
by having sdw's in the hardcore address space.

partition

An area of a storage system disk, other than the label,
vtoco, volume map and paging area. These areas can be
accessed by paging mechanisme but are not used to hold pages
of storage system segments. Hardcore segments are msapped
onto the hardcore partition so that they may be used, and
early initialization can run, without touching the file
system proper.

pre-linking

As the Multics supervisor is read from the MST, the various
modules are linked together. This ocperation, called
pre-linking, is similar to linking (binding} that occurs
during normal service operation for user programs, except
that it consists of running through all segments and finding
all external references and resolving them. This is done
during initialization for efficiency, as well as for the
fact that the dynamic linker cannot be used to link itself.

ptw

page table word
ptwam

page table word associative memory
pvt

physical velume table {(see data bases)

reot physical volume
The main disk drive, It can never be deleted. This drive

A~-4 AN70-01

is used to hold the original hardcore partition as well as
the partitions required by bce and is therefore required at
an early point in Multics initialization,

rpv
root physical voliume
scas
system controller addressing segment (see data bases)
scS
system communications segment (see data bases)
sdw
segment descriptor word
sdwam
segment descriptor word associative memory
shutdown
The orderly cessation of Multics service, performed such as
to maintain consistency of the storage system.
slt

segment loading table (see data bases)

supervisor
A collection of software needed for operation of user's
software and support software provided for the user. This
would include software to make disk accessing possible, to
provide scheduling activity, etc. The supervisor in Multics
is referred to as "hardcore".

temp segments
Segments needed only during one collection. They are
deleted at the end of the major cecllection, before loading
the next collection,

uid
unique identifier (of a segment)

unpaged
A segment that is not paged under the auspices of page
control, Such a segment has its page table either in

unpaged_page_tables or int_unpaged_page_tables. Except for
the possible presence of the breakpoint_page, these segments
are contiguous. During sarly initializstion, all segments
are generated to be of this tvpe. The program
make_segs_paged forms paged segments that are copies of the
pagable initialization segments. Certain wired segments,
though, are left unpaged.

A-5 AN70-01

vitoc

warm

In previous releases, unpaged segments were literally
unpaged, that is, they had no page table and had the unpaged
flag set in their sdw. Currently only fault_vector,
iom_mailbox, dn385_mai lbox, isolts_abs_seq, abs_seg and
abs_segl are of this type but will receive page tables in a
future release,.

The volume takle of contents of a storage system volume.
The vtoc is divided into entries (vtoce), each of which
describes a hierarchy segment contained on that volume.

boot
A bootload in which the Multics file system is present on
disk and believed good, and in which bootload Multics is

running on the processor. This type of bootload of Multics

is performed from disk.

wired

A page, or set of pages, is wired if it cannot be moved from
memory by page control,

withdraw

A page control concept, said of records and vitoces. It
means to remove an object from a list of free objects.

A-6 AN70-01

APPENDIX B

INITIALIZATIGN AND INITIALIZED DATA BASES

_ This appendix describes wvarious data bases kept by
initialization or that are generated by initialization. As such,
this list incorporates the most significant data bases within the
system,

Al LINKAGE (ACTIVE INIT LINKAGE)

This initialization segment corresponds to area. linker for
initialization programs that will be paged. This area is built
by bootload_loader and segment_loader from linkage sections found
on the MST.

AS LINKAGE (ACTIVE SUPERVISOR LINKAGE)
This hardcore segment corresponds to area.linker for paged
sypervisor programs. It i shared across processes, and can

therefore contain only per-system static such as initialization
static wvariables (when only one progcess is runningl or system
wide counters, etc. The linkage areas are formed in here by the
various MST loading programs,

BCE DATA (BCOTLOAD COMMAND ENVIRCONMENT DATA)

bce_data keeps information that pertains to the command
environment features of bootlvad Multics, It contains entries
that describe the main pseude (/0 switches (input, output and
error) as well as the state of exec_com and subsystem execution.

BOOTLOAD INFG
bootload_info, generated initially from bootload_info.cds,
contains variocus information about the state and configuration of

early initialization. It contains: the location of the bootload
tape (iom, controller channel, drive number and drive and

B-1 AN70-01

controller type provided by the I[I6M boot function), status about
firmware loading into the bootload contiroller, the location of
the rpv (iom, controller, drive number and drive and controller
tvpe provided in the find_rpv_subsystem dialeg), the location of
the bootload console {(and typel)l, a variety of pointers to other
data bases, as well as the master flags indicating the presence
of BES and the nzed for a cold bkoot. All of this data is copied
into sys_boot_info dur ing geheration and during system
initiatization. Most references to this data are therefore to
sys_boot_info.

bootload_info.cds has provisions to contain site-supplied
configuration infoermation, I+ these values are provided, no
operator queries will be needed to bring the system up, Only
cold site boots or disk problems would require coperator interven-
tion during boot. It is intended that an interface will be
provided to fill in these values, such that dJgenerate_mst could
set the values into the segment and +the checker could report
their settings in the checker listing.

CONFIG DECK

Historically named, the config_deck contains +the descrip-
tion of the configuration. It contains one entry (card) for each
iom, cpu, memory, peripheral subsystem, etc,. in the configura-
tion. It also describes various software parameters. These
entries are referenced by programs too numerous to count, It is
built initially by init_early_config to describe enough of the
system to find the rpv and read in the real config_deck saved in
a partition thereon. (If this is a cold boot, in which there
would be no config _deck, the config_deck is entered manually or
from the MST <through the config deck editor.) After this time,
it becomes a wired (at its initialization address) abs-seg mapped
onto the "conf" partition. Various reconfiguration programs
modify the entries.

CORE MAP

Che of the page control data bases, the core_map describes
frames of memory available for paging. Each entry describes a
page frame. wWhen a frame is used (it has a pitw describing it),
the disk address of the page occupving the frame is kept in the
core_map entry. init_sst initially builds the core_map. It is
updated to accurately describe the state of pagable memory by
make_segs_paged, which frees certain unpaged segments and
collect_free_core which works tTo +Ffind wvarious holes between
segments. Page contre¢l maintains these entries,

B-2 AN70-01

DBM SEG (DUMPER BIT MAP SEG)

dom_seg holds the dumper bit maps used by the volume

dumper. It is paged off the hardcere partition. Its
initialization as an area was performed by dbm_mansSinit. Each
configured disk drive has two maps here, one for the incremental
dumper and one for the consclidated dumper. The segment starts

with the usual lock, ceontrel information, and meters. After this
comes an area in which the bit maps are allocated. Each bit map
consists of a bit corresponding to each vitoce on the volume in

qgquestion. The bits indicate the need to dump the various
segments,
DIR LOCK SEG

dir_lock_seq keeps track of 1lockings of directories and on
processes waiting thereupon, It has a header with a lock and

various status. Each dir_leck entry contains the uWid of that
which is locked, variocus flags, threads to a more recently locked
entry, and the array of process ids for the variocus lockers (more
than ohe only for all readers).

DISK POST QUEUE SEG

A part of page_control, disk_post_queue_seg is an obscure
data base used to keep track of disk i/o0 postings that could not
be made because the page table was locked at the time of i/fo
completion.

DISK_SEG

The disk seg contains the various tables (except the pvt)
used by disk_cohtrol and dctl to perform ifo to disks. It is
split into the tables disk_data, disktabk, chantab, devtab as well
as the dqueue of disk i/0 requests. disk_data contains entries
giving the names and locations within disk_seg of the disktab
entry for each configured disk subsystem, The disktab entry
contains various subsystem meters, as well as holding the gqueue
entries for the subsystem. Also contained herein are the chantab
and devtab entries for the subsystem. Each chantab entry lists a
ifo channel to use to perform i/o to the subsystem, given as an
io_manager index. It also holds various per channel meters, and,
most importantly, the dcw list that performs i/0 on the channel.
The devtab entries, one per subsystem drive, describe the drives.
This consists of status information (incperative, etc.) as well
as per drive statistics.

B-3 AN70-01

DM _JOURNAL SEG_

A page control data base, dm_Jjournal_seg_ is used to keep
track of page syhchronization operations for data management. It
is allocated and initialized by init_dm_journal_segq. It starts

with a lock for manipulating the journal entries as well as the
usual wait event information. Also present are information about
the number of pages held in memory, the maximum pages held, the
humber of journals, etc, Corresponding to each aste pool is a
structure containing a threshold and number of active,
synchronized segments. Following this are various meters. Then
comes the journal entries and then the page entries, Each
Journal entry contains the time stamp that determines when pages
of the segment being held can be written (when the journal was
written), the number of pages held, and a relative thread to the
list of page entries for the pages being held. A page entry
contains the threads that make up this list, a relative pointer
to the core map entry for the page, and a relative pointer to the
journal entry for the page.

DN355_DATA
This data seq, initialized by fnp_init, contains global
information on each configured fnp. Data for each fnp includes:

a pointer to the hardware mailbox, pointers to the dcew lists and
the physical channel blocks (pcb), the number of subchannels, the

iom/channel info, indexes into the pchb for l1lslas and hslas
(hmlcs), status of the delay gueues, various flags about the
state of fnp operations, the 1ct (logical channel table) entry
pointer, status of bootloading, and wvarious counts of free
blocks, input and output data and contrel transaction counts,
etc.
DN355 MAILBGX

The dn3585_mailbox is a set of mailboxes at fixed hardware
addresses. They start with the fnp pcocw. Also present are

various counts of redquests and the fnp crash data. Following
this are 8 Multics initiated sub-mailboxes and 4 fnp initiated
sub-mai lboxes. The sub-mailboxes describe the line for which the
eperation is hkheing performed along with the data for that
operation.

DSEG (DESCRIPTOR SEGMENT)

The descriptor segment is a hardware known data base, It
contains a sdw (segment descriptor word) for each segment within
a process' address space. The ultra important processor register
dsbr (descriptor segment base register), also called the dbr,
indicates the absolute address of the page table describing it.

B-4 AN70-01

The sdw of a segment indicates the address of the page table of
the segment (which c¢ontain the locations of the pages of the
segment) and other information, such as the length of the

segment, accesses allowed, etc, dseg must be segment O, The
initial dseg is generated by template_slt_. and copied into dseg
by bootload_abs_mode. Entries are added by bootload_dseg,

get_main and make_sdw as segments are loaded from the M3T. The
generation of sdws is integrated with the creation of slt
entries, and the allocation of memory/disk that the sdw/page
tables effectively describe.

FAULT VECTOR (FAULT AND INTERRUPT VECTORS)
This is another hardware khown data base, at a fixed
absolute memory address (0). It contains two words Ffor each

possible fault and interrupt. Normally, each entry contains a
scu instruction, to store all machine conditions, and a tra

instruction, to transfer to the code that handles the
fault/interrupt, These two instructions are force executed in
absolute mode on the processor. The entries are filled in by

bootload_faults and initialize_faults. During some phases of
initialization, when a particular fault/interrupt is to be
ignored (such as a timer running out), the fault vector entry is
set to a scul/rcu pair, which stores machine conditions and then
reloads them, returning to the point of interruption. The scu
and tra instructions actually perform indirect references through
"its" pointers that are present following the interrupt vectors
within this segment. During normal operations, ohly these
pointers are changsd.

ELAGBOX

The flagbox is an areca of memory, at a known address, that
allows communication between Mulitics operaticn and . bootload
Multics, This area contains information from Multics to bootload
Multics such as the fact that we are crashing, and here's what
exec_com to run, Bootload Multics can pass information up when
booting, such as being in unattended mode so that Multics will
khow how to boot, The area is examined by various programs and
set through commands/active functions in both Multics and
bootlioad Multics operation, This area is within the bce tochold.

INZR STKO (INITIALIZER STACK)

This is the stack used by initialization and shutdown. The
hame stands for initializer stack. fOriginally wired, it becomes
paged during initialization. Once the actual ring 0 stacks are
created and after cellection 3, initialization will leave this
stack (in init_prog). Shutdown will return to this stack for
protection as the stack_0's are deleted.

B-5 AN70-01

INT_UNPAGED PAGE TABLES

The page tables for init and temp segments are kept here.
It gets anh initial value through template_sli_ and is managed by .

the various segment creation routines. Once make_segs_paged is
run, ho unpaged segments exists whose page tables are here. So,
we delete this segment. The page table for this segment is

contained within it.

10 CONFIG DATA

The inter-relationship between periphearals, mpc's and icm's
is described in io_config_data. It contains a set of arrays, one
cach for devices, channels, centrollers and ioms. Each entry,
besides giving the name of each instance of said cobjects, gives
indexes into the other tables showindg the relaticnship between it
and the rest, (That is, for example, each device shows the
physical channels going to it; each channel shows the mpc for it,
etc.)

10 PAGCE TABLES

The page tables referenced by a paged mode iom for ioi_
operations are found in io_page_tables. It is a abs-wired
segment, maintained by ici_page_table. It starts with a lock and

indexes of the start of free page table lists, The headsr ends
with the size and in_use flags for each page tabkle. The page
tables themselves are either 64 or 258 words long; each page
table of length N starts at a 0 mod N boundary and does not cross
a page boundary within the segment.

101 DATA

ioi_data contains information pertinent to ieoi_ (the i/o
interfacer). It holds icvi's data itself (ioi_data), as well as
group channel and device entries for ioi handled devices.
ioi_data contains counts of groups, chanhels and devices,
reconfiguration lock, some flags, and then the channel, group and
device entries. A channel/device group entry describes a group
of devices available through a channel. [t contains a lock,

subsystem identifier, various flags describing the device group,
the number of devices and some counters. A channel table entry
describes the state of a channel, It holds status flags, the
io_manager index for the channel, and a place for detailed
status, A device table entry holds the wired information for an
ioi device. Besides pointers linking it to the group and channel
entries, it contains wvarious status bits, workspace pointer,
ring, process_id and event channels for communication with the
outer ring caller, timeout and other time limits, offsets into

B-6 AN70-01

the user's workspace for status storage, and the idcw, pcw, tdcw
and status areas.

1OM DATA

iom_data describes data in use by io_manager,. It starts
with 1lpw, dew, scw and status area for stopping arbitrary
channels. This 1is followed by various meters, such as
invalid_interrupts. Following this, for each iom are various
pieces of state information, on-lineg, paged mode, etc, It
concludes with more meters and ending with devtab entry indices,
For each device, a status are is followed by various flags
(in_use), channel identification, pcw, 1pw and scw, status guecue
ptr, and various times and meters.

I10M MALLBGOX

This segment ig another hardware known and fixed segment,
It is used for communication with the various ioms. The segment
is split intoe the imw area, which contains a bit per channel per
iom per interrupt level indicating the presence of an interrupt,
followed by the mailboxes for sending information to the ioms and
receiving status back.

KST (KNOWN SEGMENT TABL.E)

The known segment table is a per-process segment that keeps
track of hierarchy segments knowh in a process. Hardcore
segments do nhot appear in the kst. The kst effectively provides
the mapping of segment number to pathname for a process, It is
the keeper of the description of segments that are initiated but
not active within a process {(as well as those that are active).
The Initializer's kst is initialized by init_reoot_dir. . It starts
with a header providing the 1limits of the kst, as well as
information such as the number of garbage collections, pointers
to the free 1list, what rings are pre-linked, the 2568k segment
enable Fflag, a uid hash table, the kst entries and finally a
table of private logical volumes connected to this process, Each
kst entry contains a used list thread, the segment number of the
segment;, usage count per ring, wuid, access information, various
flags (directory, transparent usage, etc), an inferior count for
directories or the 1lv index for segments and the pointer to the
containing directory entry. It is this pointer that allows the
hame of the segment to be found. Also, the segment number of the
directory entry pointer allows us to find the kst entry for the
containing directory, etc., allowing us to walk up the hierarchy
to find the pathname of a segment.

B-7 AN70-01

LVT (LOGICAL VOLUME TABLE)

The logical wvolume table consists of an array of entries
that describe +the various logical volumes, It starts with a
count of entries as well as a maximum count limit. Following
this is a relative pointer to the first entry and a hash table
for hashing 1lvid (logical volume ids) into 1lvt entries, The
entries that follow, onhe per legical volume, contain a relative
pointer to the threaded 1list of pvt entries for <the logical
volume, the 1vid, access class info for the volumes and then
various flags like public and read_only. It is initialized by
init_lvt to describe the riv and maintained by
logical_volume_manager.

The name_table contains a list of all of the various names
by which the segments in the slt (see below) are known. This
table is used by the sl1t management routines but especially by
the various pre-linkers, who wuse it to resolve references to
initialization modules. 1t is generated from template_slit_ and
by the slt management routines, who tead in the names from
entries on the system tape.

gC_DATA
oc_data describes data used by ocdcm_. to handle consoles,

It starts with the reduired lock, version, device counts, etc.
Various flags are kept, such as crash on recovery failure, The

prompt, discard notice are kept here, Status pointers, times,
etc. are followed by information on the process handling message
re-routing. Following this are indices into gueues of entries

folleoewed by the gueuss, An entry exists for pricority i/o (syserr
output, which always forces a wait until completel, one for a
pending read, and 8 for queued writes. After this are meters of
obscure use. The segment ends with an entry for each configured
console followed by an entry for each element of a event tracing
gueue. Each console entry provides its name, state, type,
channel, status, etc. Each i/0 gueue entry provides room for the
input or output text, time gqueued, flags (alert, input/output,
etc), and status,

PHYSI1CAL. RECORD PBUFFER
The physical_record_buffer is & wired area of memory used

by collection Q's and collection 1's MST tape reading routine for
i7o buffers.

B-8 AN70-01

PYT (PHYSICAL VOLUME TABLE)

One of +the disk describing tables, the physical volume
table containg an entry for each configured disk drive. It can
in some ways be considered the master disk describing table in as
much as performing i/co to a disk drive requires the pvtx (pvt
index) of the drive (the index number of the entry in the pvt for
that drive). The pvt entry contains the physical and logical
volume id for the drive, various comparatively static flags about
the drive (such as storage_system, being_demounted,
device_inoperative, etc.), information for the volume dumper and
information about the size, fullness, volmaps and stocks {both
record and vtoc) of the drive. This table is allccated by
get_io_segs, and built by init_pvt. The various brothers in a
logical volume are chained together in a list by the
logical_volume_manager so that the vtoc_man can have a set of
disks from which to select a target for a new segment. Dur ing
initialization, make_sdw$thread_hcp (for init_root_vols) uses
these threads (before the disk_table is accessed) to form the
list of drives which contain hardcore partitions (those eligible
to contain hardcore segmentsl.

SCAS (SYSTEM CONTROLLER ADDRESSING SEGMENT)

This is a very curiocus pseudo-segment, built by scas_init
out of page table words generated inte scs. It contains one
paseudo-page for each memory contreller (and another page for each
individual store other than the lowest). The address of the page
is the base address of the store/controller. This segment makes
references to it of the form N¥x1024 to form an absolute address
to controllier n. Thus, instructions like rscr (read system

controller register) can use this segment (as indeed they do
inside privileged _mode_ut) to reference the desired system con-
troller registers.

SCAVENGER DATA

scavenger_data contains information of interest to the
volume scavenger. Its header is initialized by
init_scavenger_data. The segment starts with the usual lock and
wait event. Following this is the pointer to the scavenger
process table. Then come the meters, The scavenger process
table, which follows, describes the processes performing

scavehging operations, Each entry contains a process id of a
scavending process, the pvtx of the drive being scavenged, and
indices of scavenger blocks in use. Scavenger blocks contain
record and overflow blocks used to keep track of pages of a disk
(its claiming vtoce and its state).

B-9 AN70-01

SCS (SYSTEM COMMUNICATIONS SEGMENT)

The scs is a hodge-podge of information about conficuration
and communication between active elements. It contains informa-
tion about the scus and the cpus. It contains the cow's (conhect
operand words) needed 10 conhnect to any given cpu/iom, the
interrupt masks used to mask/unmask the system, the various smic
patterns (set memory Iinterrupt cells), instructions to clear
associative memories and the cache, connect and reconfiguration
locks, varicus trouble flags/messages used for keeping track of
pending communication of faults to bce, cyclic priority switch
settings, port numbers for controliers, configuration data from
the controllers, processor data switch values/masks, controiler
sizes, and the scas page table (see scas).

SLT (SEGMENT LEADING TABLE)

Bne of the most sighificant initialization data bases, the
slt describes each initialization segment. [t is built initially
from template_slt_, an alm program that not only builds the

appropriate slt entries for collection 0 segments, but also
generates the dseg for collection 0, Each entry in the slt
contains: pointers into name_table of the names and the final

storage system pathname (and acl), if any, for the segment;
access modes, rings, etc. for the segment; various flags used
for generation/ loading of the segment, such as

abs/init/temp/supervisor segment, wired/paged, etc.; the length
and bit_count, etc. It is maintained by bootload_slt_manager and
slt_manager, who build entries based on information on the MST.
These entries are maintained so that the varicus pre-linkers
{bootload_linker and pre_link_hc) can find the target segments of
the variocus references.

The sst (which contains the active segment tablel)l is one of
the most important tables in Multics. It is the keeper of active
segments, Each active segment has an entry describing it (its
aste). The aste contains information used by segment control and
comnunicated with page control on the state of a segment. The
most important part of the entry is the page table words (ptws)
describing the disk/memory location of each page. There are four
pools of astes of different lengths to hold page tables of four

possible maximum lengths: 4, 16, B84 and 256 ptws. The entries
are threaded into various lists, The free entries of the various
pools are threaded inte lists. Active segments have their own

lists, Separate lists are generated for temp and init (supervi-
sor) segs. Aside from thess threads, each aste also contains
threads used to link segments to their parents and their trailer
seg entry. Status information includes: the segment’'s uwid, the
current length, maximum length and receords used, the pvtx and

B-10 AN70-01

vitocx of the segment (which couple with the ptws to find the
pages of the segment), various status bits of more ckhscure use,

and finally the quota computation information, init_sst origi-
nhally builds this table. The page table words are maintained by
page control, The entries themselves are maintained by segment
control,
SST_NAMES

The sst_names_ segment contains the names of paged segments
described by the sst, It is initialized by init_ssi_name_seg
during collection 2 and maintained by segment control only if the
astk parm sppears. It starts with information describing the

four aste pools followed by the paged segment primary names.

STACK O DATA

stack_0O_data contains information keeping track of the ring
0 stacks (stack_0.nnn) that are shared between processes (ohe per
eligible process)., It is initialized by init_stack_0. It has a
lock used to contrel threading of a pool of such stacks. Each
entry contains a list thread, a relative pointer to the aste for
the segment, a relative pointer to the apte for the heolding
process, and the sdw for the stack. When this stack is given to
a process, this sdw is forced into its dseg; the acl of the stack
is kept as a null acl.

STOCK SEG

stock_seg contains the record and vitoce stocks, a part of
the reliable storage system. Whenever a hew page or vitoce is
needed for a drive, it is obtained from thase stocks. The stocks
are filled by pre-withdrawing a number of records or vtoces from
the drive. This mechanism is used so that, upon a crash, it is
guaranteed that any records or vitoces being created were marked

in the record or vtoc maps as in use, This prevents re-used
addresses.
STR SEG (SYSTEM TRAILER SEGMENT)

The str_seg is a paged segment used by segment control to
perform setfault functions. It is initialized inteo a list of
free entries by init_str_seg. Each entry contains the usual

backward and forward threads forming a list of trailers for a
given segment {the list itself is found by a relative pointer in
the aste for the segment). When needing to fault a segment, this
list shows all processes containing the segment. The entry shows
the segment number, for a process with this segment active, of

B-11 AN70-01

the segment and a relative pointer to the aste for the dseg of
that process (which is where we need to fault the sdw).

SYS INFO

sys_info is a keegper of all sorts of information about the
state of the system, The most important entries to
initialization are sys_infosinitialization_state, which takes on
values of 1, 2, 3 and 4 correspending tc whether we are running
initialization collection 1, 2, 3 or whether we are running
service (beyond cecllection 382, and sys_info$colliection_i_phase,
which takes on values defined in collection_1_phases. incl.pll
corresponding to runhing early, re_early, boot, bce_crash, ser-
vice and crash passes through collection 1. Alse included are
key things like: the scu keeping the current time, the current
time 2zone, various limits of the storage system, and some ips
signal names and masks. The variable "max_seg_size" records the
max imum length of a segment, This value is changed during bce
operation to describe the maximum length of a bce paged temp
segment. This allows various Multics routines to work without
overflowing segments. Also in sys_info is "bce_max_seg_size",
this bce maximum segment length, This is available for any user
ring programs who desire to 1limit the size of objects they
prepare for the bce file system.

8YS BOCT INFO

See bootload_info, above.

SYSERR_DATA

The syserr_data segment is part of the syserr logging
mechanism. syserr actually just writes messages into this
segment and not to the paged log to avoid problems of paging
during possible system trouble. It is wp to the syserr hproc to

move these messages from syserr_data 1o the log.

SYSERR LOG

The paged abs-seg syserr_log, which describes the log
partition of disk, is used to hold the syserr log. It is mapped
onto the log partition by syserr_log_init, The syserr mechanism
involves putting syserr messages into syserr_data (which are
possibly written to the console) and then waking up the syserr

hproc which copies them into the paged partition. This is done
so that page faults are taken by the hproc, not by the syserr
caller who may be in trouble at the time. It starts with a

header providing the length of the segment, a lock, relative
pointers 1o the first and last messages placed there and also

B-12 AN70-01

copied out (by the answering service), the threshold that shows
how full the partition can get before the answering service is
notified to copy out the messages, the event channel for
notification (of tThe answering servicel and the event for
locking. Following this are entries for the various syserr
messages. Each message is8 threaded with the others:; it has a
time stamp, id number, and the text and optional data portions of
the message.,

JC DATA

tc_data containsg information for the +Lraffic controllse.
The most obvious entry list herein is the 1list of aptes (active

process table entries). There is one apte for every process.
The apte lists activation information for the process, such as
its dbr, its state (blocked/running/stopped/etc.), var ious
per-process meters (such as cpu usage), its work class, and other

per-process scheduling parameters. Follewing the apt is the itt
(inter-process transmission table), maintained by pxss (the
traffic controller) to hold wakeups not yvet received by a target
process, The call to hcs_Swakeup (or its pxss equivalent) places
an entry in the itt containing the target process id, the event

channel, the message data, etc, The next call to
hcs_$read_events obtains the events waiting for the targe:
process, Also present in tc_data is wvarious meters (tcm. incl)
and other flags. Imbeded within this is the wect (work class

table) which keeps track of the status of scheduling into work
classes, tc_init builds these tables (see tc_data_header).

JC DATA HEADER

This is a trick initialization segment. tc_data_header is
allocated wired storage by tc_init to hold the real tc_data,
tc_data, originally build just from a cds segment and therefore
just describing the header of tc_data, is copied in. The sdws
for tc_data and tc_data_header are then swapped. As such, the
initialization segment tc_dats_header (which describes the read
in tc_data) is deleted, but tc_data (now mapped onto the
allocated tc_data_header arca) remains,

TOEHGLD

The toehold is another area for Multics/bootload Multics -
communication, (IA particular, the flagbox is contained within
it.) The toechold is a small program capable of getting to

bootload Multics from a crashing/shuting down Multics service.
(Its name is meant to suggest holding on by one's toes, in this
case to bootload Multics.) init_toehold builds a dcw (device
control word) list that, when used by the toehold program, can
write the first 512k of memory (those used by bootload Multics)

B-13 AN70-01

out to the bce partition and read in bootload Multics (saved in
the bce partition by init_toehold). The program runs in absolute
mode. It is listed here because it contains the flaghox and the
all important dcw lists.

ITY AREA
Terminal control blocks {(tch's) are allocated in tty_area.

It is (initialized to an area by fnp_init and managed by the
various communication software.

ITY BUF

The tTty_buf segment contains, cbviously enough, the tity
buffers used for manipulating data communicated with the fnp. It
contains various meters of characters processed, number of calls
to various operations, echo-negotiation, etc. , trace control
information and timer information. Following this is the
tty_trace data, if present, and the tty_buffer_block's, split

into free blocks and blocks with various flags and characters in
chains. The layout of this segment into empty areas is done by
fnp_init.

ITY TABLES
tty_tables is an area in which tables (conversion and the

like) are allocated. It has the usual lock and lock event. It
is initialized by frnp_init.

UNPAGED PAGE TABLES

All permanent nhon-per-process unpaged segments have their
page tables in unpaged_page_tables. The page table for this
segment is also within it. It is generated initially by

template_slt. a2and added to by the various segment creation
routines, The header of unpaged_page_tables contains the abso-
lute address extents of all hardcore segments that contain page
tables; these are unpaged_page_tables, int_unpaged_page_ tables
and s8st_sed. Dump analyzers 1look here to resolve abscolute
addresses from sdws into virtual addresses of page tables,

VIGC BUFFER SEG

vtoc buffers live in the vtoc_buffer_segq. The segment is
allocated and initialized by init_vtoc_man. It starts with the
usual gleobal lock and wait event, Following this are various
parameters of the amount and usage of the wvtoc buffers, including
information about the vtoc buffer hash table, Then comes the

B-14 AN70-~01

vtoc_man meters. Finally comes the hash table, the vtoc buffer
descriptors (pvtx - vitocx info, etc.) and the vtoc buffers
themselves,

WI LINKAGE (WIRED INIT LINKAGE)

This initialization segment corresponds to area. linker for
wired initialization segments. It is built by the MST loading
routines,

WIRED HARDCORE DATA
Another collection of data for hardcore use, this segment
is permanent, 1t contains the size of a page, the amount to wire

for temp-wiring applications, the history register control flag,
the trap_invalid_masked bit, a flag specifving the nead for
contiguous i/o buffers (if a non-paged iom exists), the debg card
options, the fim fault_counters and the bce abort_request lag.

WS LINKAGE (WIRED SUPERVISCR LINKAGE)

This wired hardcore segment, shared between processes,
corresponds 1o area.linker for wired hardcore programs, It is
buiit by the MST loading routines.

B-15 AN70-01

APPENDIX C

MEMCORY LAYOUT

In the memory layout charts below, the starting absolute
address and length for each data area is given (in octall, When
a number appears in brackets (L[]), this means that it is really a
part of the segment listed above it,

The memory layout after the running of collection 0 (the
loading of collection 1) follows,

start length contents
4] 600 fault_vector
1200 2200 iom_mailbox
3400 3000 dn355_mai lbox
10000 2000 bos_toehold
12000 10000 conf ig_deck
24000 22000 bound_bootload 0O
[240001 [40001 Eibootlioad Multics) toesholdl
[240001] [20001] [flagbox (overlays the toehold)]
[300001 inl [bootlocad_ecarly_dumpl
46000 4000 toehold_data . . _
52000 2000 unpaged_page_tables
54000 2000 int_unpaged_page_tables
56000 2000 breakpoint_page
60000 o000 physical_record_buffer
66000 2000 dseg
70000 10000 name_table
100000 4000 slt
104000 2000 lot
106000 and up wired segments
fabricated segments
1777777 and down all other segments
The absolute addresses of most of these segments is
arbitrary. Hardware known data bases must be at their proper
places, though; also, the tochclds are placed at addresses known
to operators. Except for these exceptions, the segments may be

moved, Their addresses are contained in bootload_egus, incl.aim.

Cc-1 AN70-01

All programs refering to this include file must be reassembled if
these addresses are changed. Certain interdependencies exist
that one must be aware of. First of all, the tochold is placed
at a 0 mod 4 page address. physical_record_buffer must be the
last of the fixed memory address segments. The length of all
segments is an integral number of pages. The two unpaged page
tables segments must be large ehough to meet the demands on them;
refer to announce_chwm. Also, the length given for
bound_boottoad_0 must hold the text thereof.

After collection 1 has finished, segments have been made
paged and collection 1 temp segments have beenh deleted, the
memory lavout is as follows.

start length contents
0 600 fault_vector

1200 2200 iom_mailbox

3400 3000 dn355_mai lbox

10000 2000 bos_toehold

12000 10000 conf ig_deck ‘
24000 4000 toehold {(bootload Multics)
[240001 E20001 [flagbox (overlays the toechold}l
46000 4000 tochold_data

52000 2000 ‘ unpaged_page_tables

56000 2000 breakpoint_page

60000 and up paging area

high mem sst_segd

c-2 AN70-01

INDEX

aborting bce requests
see bece, aborting requests

abs-seg 3-10, 3-13, 3-186,

: 3-17, 3-18, S8-19, 4-3,
4-5, 4-16, 4-18, 6-8, A-1,
B-2

absolute mode 2-2

accept_fs_disk 6-3

accept_rpv 6-3, B-14
active init linkage
see ai_linkage

active segment table
see sst

active supervisor linkage
see as_linkage

ai_linkage 2-7, 3-20, B-1

announce_chwm 3-8
appending simulation 4-4
see alsoe bce_dump and

bece_probe

area, linker
see linkage sections

assume_config_deck 2-7

aste pools

as_1inkage

bce

3-12, B-10

2-7, 3-20, B-1

B
1-3, A-1
aborting requests 3-18, 4-6,
4-11
alert messages 4-4
area usage 4-2
command level 4-10, 4-15

bce_crash 3-2
boot 3-1
crash 3-1
early 3-1
command processing 4-2, 4-9,
4-11
communication with Multics
B-5
config_deck manipulation
4-17
data B-1
disk accessing 4-3, 4-186
error reporting 4-2, 4-8
exec_com 4-9
facilities 4-1
file system 3-16, 4-3, 4-16,
4-18
firmwvare
loading 4-10
i‘o switches 4-2, 4-7, 4-18,
B-1
initializastion 4-1, 4-18
invocation upon a crash
B-14

AN70-01

bce (cont)
machine state 5-2
paged programs 3-186
partitions
creation 3-6, 3-8, 3-13
usage 3-16, 4-1, 4-3,
4-186, 4-17, 4-18

bce_execute_command._. 4-9
bce_exec_com_. 4-9
bce_exec_com_input 4-8

bce_fwload 3-16, 4-10

probe 4-7, 4-8, 4-10, 4-11,
4-14, 4-15 bece_get_flagbox 4-10
current address 4-13,
4-14 bce_get_to_command_level 4-10
guestion asking 4-2;, 4-14
ready messages 4-15 bce_inst_length_. 4-10
reinitialize 4-10
request processing 4-2, 4-6 bece_listen_ 4-11
request table 4-15
restrictions 4-3 bce_list_requests_ 4-11
temp segments 4-3, 4-17
bce_map_over_requests_ 4-11

bce_abs_seg 4-4

bce_name_to_segnum_ 4-11
bce_alert 4-4

bece_probe 4-11
bce_alm_die 4-4 see also bce, probe
bece_appending_simulation 4-4, bce_probe_data 4-14

4-8, 4-14

bce_query 4-14
bece_check_abort 4-6

bce_ready 4-15
bce_command_processor_ 4-6

bece_relocate_instruction_

bce_console_io 4-7 4-15
bce_continue 4-7 bce_request_table_ . 4-15
bece_crash bce command level bece_severity 4-195
see bce, command level,
bece _crash bee shutdown_state 4-15

bece_data 4-7, B-1 bce_state 4-18
bce_die 4-7 boot

cold 3-13, 6-4, 6-7, A-1
bce_display_instruction_ 4-7 cool A-2

from bce 4-10
bece_display_scu_ 4-8 from BGOS 2-1

from disk A-6
bce_dump 4-8 from iom 2-1

from tape A-2
bce_error 4-8 initial A-1

warm A-8
bce_esd 4-9

i-2 AN70-01

booct bce command level

see bce, command level, boot

bootload command environment
see bce

bootload command environment
data
sce bece _data

bootload Multics 1- A1

b,
bootlocad_ 0 2-3
bootload 1 3-8
bootload_abks_mode 2-2
bootload_console 2-4
bootload_disk_post 4-18
boqtload_dseg 2-4, 8-1
bootload_earliy_dump 2-5

bootload_error 2-5

bootload_faults 2-5

bootload_file_partition 4-16,

4-18
bootload_flagbox 2-6
bootload_formline 2-6
bootload_fs_. 4-16
bootload_+s_cmds_ 4-17
bootload_info B-1
bootload_io 2-6
bootload_linker 2-7
bootload_loader 2-7, 8-1
bootload_gedx 4-17

bootload_slit_manager 2-7

bootload_tape_fw 2-8

bootload_tape_label 2-1, 8-1

beot_rpv_subsystem 3-8
boot_tape_io 3-8

BGS
getting to from bce
presence of 2-7

4-7

bound_kootload 0 2-1, 8-1
breakpeoints 3-15, 3-1g, 3-17,
4-12, 4-13, 4-14, 5-2
see also breakpoint_page

breakpoint_page 2-7, 3-9,
3-18, &-17%, 3-18, A-5
see also breakpoints

c

central processor
see cpu

channel table entry 7-2, B-6"
chantab B-3

clock
_setting 3-12

cold boot
see boot, cold

collection 1-1, A

collection 0 1-2,
console support
data B-1
error handling 2-5
input/output 2-6
interrupts 2-6
main driver 2-3
programming in

-2
2-1
2-4

2-2

1-2, 3-1
2-2, 3-7

collection 1
bce_crash pass

AN70-01

collection 1 {(cont)
boot pass

sequence 3-2

bootload Multics pass 3-1
crash pass 3-1, 3-7
early pass 3-1

sequence 3-5
passes summary 3-1
re_early pass 3-2, 3-7

see also bce

service pass
seguaence

shut pass

3-1
3-4
3-1, 3-7
collection 2 1-3

loading 3-20

pre-linking 3-18

sequence 6-1

collection 3 1-3, 7-1

collection_1_phase B-12
collect_free_core 3-9

conditions _
signalling 3-15

configuration
data
see config_deck and scs
initialization sequence
8-11
memory 8-95

config_deck 3-10, B-2
changes to 4-10
editing 4-17

initial generation 3-12

setup 3-5
config_deck_data_ 4-17
config_deck_edit_ 3~-10, 4-17

cohhect operand words 3-20

console
collection 0 2-4
driver
see ocdom_
locating 2-4

contigucus A-2
cool boot
see boot, cool

core high water mark 3-8

core_map 3-14, 3-17, 8-13,
B-2

cow
see connect cperand words

cpu
data B-10
description 8-4
initialization of data
starting 6-9, 7-3

3-20

crash A-2
early in
handler
handl ing
image

access 4-4

restarting 4-7, 5-2
machine state 5-1
memery saving 5-1
memory state B-13
memory swapping B-13

initialization 5-1
3-1, 3-8
1-4, 5-1

crash bce command level
see bce, command level,
crash
create_root_dir 6-4

create_root_vtoce 6-4

create_rpv_partition 3-9
cte
see channel table entry

data
about
about
about
about

active segments B-10
bce B-1
bootload tape B-1

collection 0 B-1

AN70-01

data (cont)
about configuration
see config_deck and scs
see io_conhfig_data
about core frames B-2
about cpus B-10
about hardcore segments
B-10
" about processes B-13
about rpv B-2
about storage system B-12
about system controllers
B-10
about system state B-12

data bases B?1

dbm_man 6-4

dom_seqg 6-4, B-3

dor B-4
deactivate_for_demount 9-4
deciduous segments

see segments, deciducus

delete_segs 3-9
demount_pv 9-5
deposit A-3

descriptor segment
see dseg

descriptor segment base
register
see dbr
device table entry 7-2, B-8
devtab B-3

directory
locking B-3
dir_lock_init -4, 8-14

dir_lock_seg 8-4, B-3

disk
accessing 3-19, A-1,
iZo posting B-3
storage system
acceptance 6-3
demounting 9-5

B-9

disk queue B-3
disktab B-3
disk_data B-3

disk_emergency 9-5

disk_post_queue_seg B-3

disk_reader 3-9

disk_seg 3-11, B-2
dm_Jjournal_seqg_ 6-5, B-4
dn355_data B-4
dn355_mailbox 6-5, B-4

dseg 2-8, 3-17, A-3, B-4

dte
see device table entry

dump
early 2-5, A-3
to disk 4-8, A-3
to tape A-3

dumper bit map seg
see dbm_seg

early bce command level
see bce, command level,
early

early initialization
dumps 2-5
see initialization, early

emergency shutdown 4-9

AN70-01

emergency shutdown (cont)

see shutdown, emergency
emergency_shutdown 9-5
errors
handling
in bce 3-14

in collection 0 2-5
reporting

bce 4-8

syserr B-12
see also failures

esd _ . .
see shutdown, emergency

establish_config_deck 3~10

establish_temp_segs 4-8, 4-17
execute interrupt cell
register 8-8

execute interrupt mask
register 8-9

failures
of boot initialization
of Multics A-2
of service initialization
3-2
see also ertrors

3-2

fast conhect code 3-18

fault_vector 2-5
see also vectors

fill_vol_extents_ 3-10
fim 5-2
find_file_partition 4-18

find_rpv_subsystem 3-10

firmware
loading
general mpcs
in bce 4-10
into boot tape controller

3-11

2-8
non-bootload disk mpcs
3-3, 3-16

rpv disk mpe 3-6, 3-8
location 4-10

for boot tape mpc 2-3
naming 2-3

flagbox B-5
management 2-6, 4-7, 4-10

fnp_init 6-4

fsout_wvol ©-6

gates
initialization:
linkages 8-15

6-6

getuid 6-5, 8-14

get_io_segs 3-11

get_main 3-11, &-2

group tabkle entry 7-2, B-6.

gte
seg group table entry

hardcore A-3, A-5
address space 6-1

hardcore partition
accessing 3-13
allocation from 3-17, 6-3
amount of utitization 6-3
locating 3-13
usage ©-8, 8-2, A-2, A-4

AN70-01

hardcore segments
creation 8-1
nhumbering 6-8, 8-15

hardware

' configuration 8-5

inter-connection 8-3

inter-module communication
8-7

he_losd_mpe 3-11

hproc 8-10, A-3

idle loop 8-7
idle process 6-9, 6-10, 8-16

3-9
init

init segments
see segments,
initialization A-3
bce 4-1, 4-18
boot failure 3-2
configuration 8-3
sequnce 8-11
directory control
disk contrel 3-3
early A-3
file system
gates 6-6
hardware 8-3
linking of A-4
page control 1-2, 3-3, 8-13
pl/1 environment 1-2
rpvy 3-14
scu 3-14
segment contreol ©-1,
service failure 3-2
storage system 6-1
summary 1-1
traffic control
8-16

6-1, 8-14

1-3

8-14

3-21, 6-1,

initialization_state B-12

initializer 23-15

initializer stack
see stack, initialization

initialize_faults 3-15, B6-9
initialize_faults_data 3-15
initial_error_handier 3-14
init_aste_pools 3-12
init_bce 4-18
init_branches 6-5, A-2
init_cfocks. 3-12
init_dm_Jjournal_seg 6-6
init_early_config 3-12
init_empty_root 3-12

init_hardcore_gates B-6

init_hc_part 3-13

init_lvt 6-6, 8-14
init_partitions 3-13, 8-14
init_proc 7-1
init_processor 6-86, 8-18
init_pvt 3-13, 8-13
init_root_dir 6-7, 8-14
init_root_vols 3-13, 8-13

init_scavenger_data 6-7
init_scu 3-14
init_sst 3-14, &-13
init_sst_name_seg 6-7
init_stack_0 6-7

init_str_seg 6-8, 38-14

AN70~01

init_sys_var 6-8

init_toehold 5-1, 5-2, B-13

init_volmap_seg 6-8

init_vol_header 3-14

init_vtoc_man 6-9, 8-14
input/output
in collection 0 2-6

inter-process transmission
_ table
see ittt

interrupt mask assignment
register 8-9

interrupt wvectors
see vectors, interrupt

interrupts

collection 0O 2-8
mask assignment 8-9
mask operations 8-10
mask values 8-11

int_unpaged_page_tables
see segments, unpaged

inzr_stkO

see stack, initialization

ioi_ 7-2

ici_data 3-11, B-86
ioi_init 7-2
ioi_page_table 7-3

iom
description 858-4

iom_data 3-11, 3-186, B-7

iom_data_init 3-16, 8-11
iom_mailbox B-7

io_config_data 3-11, 7-2, B-6

‘1oad‘disk_mpcs

io_config_init 7-2

io_page_tables
see page tables,
iom

paged mode

itt B-13

khnown segment table
see kst

kst 6-9, 8-14, A-4, B-7

kst_util 6-9

let B-4

linkage sections
B-1, B-15
hardcore gates finding 6-6

2-7, 38-20,

linking
sec pre-linking

loading
of collection O
.of cellection 1
of collection 2
3
3_

of collection

o \!(JIDNN
WN -
o

1
lead_mst 3-16
load_system 7-3

locking
directories 6-4

logical channel table
see lct

logical volume table
see 1vt

AN70-01

mai lboxes
datanets B-4
iom 3-18, B-7
make_sdw 3-18, 3-21, 8-2
make_segs_paged 3-17, A-5,
B-6

memory
accessing A-1
allocation 3-11
allocation from slt
3-11, 8-2
extent of usage 3-9
freecing 38-9, 3-17
layout A-2
after collection 0 C-1
after make_segs_paged C-2
anhouncing 3-8
placement 3-17
required placement
paging use 3-8
requirements for bootload
3-4

3-3,

c-1

move_non_perm_wired_segs 3-17

MST 3-16, 3-20, A-4
disk reading 3-9
tape reading 3-8, 3-21
multi-programming 6-10

Multics system tape
see MST

hame_table 2-8, B-8

nondeciduous segments
see segmenhts, nohdeciduous

o]
ocdem_ 3-18, 4-8, 4-7
data B-8
oc_data B-8

see alsc ocdcem_, data

page table word
see piw

page table word associative
memory
see ptwam

page tables
absolute to virtual
addresses B-14
active segments B-10
paged mode iom 7-2, B-8
scas B-10
see also unpaged page tables
unpaged segments
see segments, unpaged
paging
of bce segments 3-16, 4-1
of initialization segments
3-17

partition A-4
see bece, partitions
see hardcore partition

pathname associative memory
6-7

physical volume
see disk

physical volume table

see pvt
physical_record_buffer B-8
pll environment
setup 3-8
AN70-01

prds_init 3-18
pre-linking 2-1, A-4
initialization A-4
of collection O 2-1
of collection 1 2-7
2 3-18

of collection

pre-withdrawing B-11

pre_link_hc 3-18
probe
see bece, probe 4-7
ptw A-4
ptwam A-4, A-5
pvt 3-11, 3-13, 8-138, A-4,
B-8 :

read_disk 3-19, 8-13

read_disk_label 3-18, 8-13
read_early_dump_tape 2-5
real_initiaslizer 3-19

reinitialize 4-10

reload 7-1

request tabte

see bce, request table
ring 1 command level 7-1
root dir

activation
creation

6-7
6-4, 6-7

root physical volume
see rpv

rpv A-5
initiatlization
layout 3-10

3-12

rev {cont)
locating 3-10

S

safe_config_deck 3-3
salvaging 6-3, 6-5, 6-8
save_handler_mc 5-2
scas 3-20, A-5, B-9
sdés_init 3-20
scavenger 98-8

scavenger_data 6-7, B-9

scs 3-20, A-5, B-10
scs_and_clock_init 3-20,
SCcuU

addressing 8-6

data B-10

description 8-3

8-11

initialization of data 3-20

register access B-8

sdw
creation

2-4, 8-2, A-5, B-4
3-186

segment descriptor word
see sdw

segment descriptor word
associative memory
see sdwam

segment loading table
see sit

segments
activation
deactivation
deciduocus
9-4, A-2

hardcore
cdata B-10

information
a-4

i-10

6-5, 8-3, 8-

B~-7

135,

AN70-01

segments (cont) start_cpu 6-9, 8&-16
hardcore

permanent : stocks 3-11, 8-13, 9-6, B-9,
numbering 8-15 B-11
hierarchy
numbering 8-15 stock_seg B-11
init 3-9, A-3
numbering 8-195 stop on switches 3-20
nondeciducus A-4
humber i g str_seg 6-8, B-11
fixed 8-15
outer ring B-7 supervisor
synchronized 6-8, B-4 see hardcore
temp 3-9, A-5
numbering 8-15 switches
unpaged A-5, B-8, B-14 iZo

sce bece, i/0 switches

segment_loader 3-20
switch_shutdown_file_system

setfault B-11 a-7
shutdown 9-1, 9-8, A-5 synchronized segments
emergency 4-9, 9-3, 9-5, see segments, synchronized
A-3
rart 1 2 syserr_data B-12

9_
normal 8-7
syserr_log 6-9, B-12
shutdown_file_system 9-7
syserr_log_init 6-9
shutdown_state 9-8
system communications segment

slt 2-7, 2-8, 3-21, A-5, B-8, see scs
B-10
memory allocation from system controliler
see memory, allocation see scu
" from sl1t

system controller addressing
slt_manhager 3-21 segment
see scas
sst 3-14, 3-17, 8-13, 8-14,
B-11 system segment table
see 85t
sst_hames_ 6-7, B-11
system trailer segment

stack see stir_seg
collection 0 2-2
initialization B-5 system_type 2-7
ring 0 86-7, B~11
segment numbering 8-15 sys_boot_info B-1

shutdown 9-4, 9-5, 9-7, B-BS
sys_info B-12
stack_O_data B-11

i-11 AN7Q-01

sys_info$Sbce_max_seg_size
4-18

tape_reader 3-21
tcb B-14
tc_data 3-21, B-13

tc_data_header B-13

tc_init 3-21, 6-10, 7-3, 8-16

tc_shutdown 9-7

temp segments 3-9
see segments, temp

template_slt_ 2-8, 8-1,
B-6, B~-8, B-10, B-14

B-5,
terminal control blocks
see tch

tochold 2-5, 5-1,
entry points 5-1

8-1, B-13

traffic control
data B-13
initialization
see initialization,
" traffic control
shutdown 9-7

tty_area 6-4, B-14

tty_buf 8-4, B~14

tty_tables 6-5, B-14
U

uid 8-5, 8-14, A-5

unigue identifier
see uid

i-12

unpaged page tables 2-7, 2-8,
3-8, 3-11, 8&-2

unpaged segments

see segments, uhpaged
14
veciors
fault B-5

initialization 3-15
collection 2 6-9

interrupt B-S5

see also fault_vector

setup 2-5

volmap_seg 6-8

volume table of contents
see vtoc

vitoc A-O
accessing ©6-8
updating 9-5, 9-6

vtoce A-8
accessing 6-3, 6-9, 8-14
buffers 6-9, 8-7, B-14
creation
deciduous segments
8-3 '
initial 3-14
~ root dir 6-4
deactivation 8-5
dumper bit B-3
scavenger B-9
specifying number 3-13
stock 9-6, B-8, B-11
updating 6-8, 9-1, 9-4
updating for partition
creation 3-9

6-5,

vtoc_buffer_seg B-14

W

wakeups B-13

AN70-01

warm
see

wired

wired
see

wired
see

wired
wired
withd
wi_11i

ws_ 11

boot
boot, warm

A-B

init linkage
wi_linkage

supervisor 1inkage
ws_1linkage

_hardcore_data B-15
_éhutdown Q-7

raw A-6

nkage 2-7, 3-20, B-15

nkage 2-7, 3-20, B-15

i-13

AN70-01

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	7-01
	7-02
	7-03
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	C-01
	C-02
	i-01
	i-02
	i-03
	i-04
	i-05
	i-06
	i-07
	i-08
	i-09
	i-10
	i-11
	i-12
	i-13

