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PREFACE 

Multics Program Logic Manuals (PLMs) are intended for use by 
Multics system maintenance personnel, development personnel, and 
others who are thoroughly familiar with Multics internal system 
operation. They are not intended for application programmers or 
subsystem writers. 

The PLMs contain descriptions of modules that serve as 
internal interfaces and perform special system functions. These 
documents do not describe external interfaces, which are used by 
application and system programmers. 

Since internal interfaces are added, deleted, and modified 
as design improvements are introduced, Honeywell does not ensure 
that the internal functions and internal module interfaces will 
remain compatible with previous versions. To help maintain 
accurate PLM documentation, Honeywell publishes a special status 
bulletin containing a list of the PLMs currently available and 
identifying updates to existing PLMs. This status bulletin is 
distributed automatically to all holders of the System 
E~ogr£millgrs' ~~plement to the Multics Programmers' Manual (Order 
No. AK96) and to others on request. To get on the mailing list 
for this status bulletin, write to: 

Large Systems Sales Support 
Multics Project Office 
Honeywell Information Systems Inc. 
Post Office Box 6000 (MS A-85) 
Phoenix, Arizona 85005 

~ 1975, Honeywell Information Systems Inc. File No.: 2L13 
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SECTION I 

OVERVIEW 

This Program Logic Manual (PLM) describes the in~tialization 
of the Multics system. The term initialization, with respect to 
Multics, is used to describe the bringing up of the Multics 
operating system. lvlul tics does not require a "system 
generation," i.e., a creation of a version of Multics tailored to 
the requirements of a particular installation. Multics tailors 
itself to installation requirements, as specified on a deck of 
cards (the CONFIG deck) provided at initialization time (see the 
Hultics QQ.erators' Handbook, Order No. AM81 for details). Thus, 
the Multics System Tape (MST), which contains the Multics system, 
can be used at any site. The operational procedure of taking an 
MST and loading it (via BOS, the Bootload Operating System; see 
the Bootload .Q..Q.erating System (BOS) PLM, Order No. AN74, for 
details) is known as a boot load or boot. At the time of a 
bootload, programs on the Multics System Tape create the Multics 
environment and read the programs and data on the tape into main 
memory and virtual memory. Configuration-dependent data is 
processed and system data bases are initialized. The process of 
creating the Multics environment is known as initialization. 

This PLM describes the procedures, data bases, strategies, 
and policies used during Multics system initialization. This is 
to be distinguished from process initialization, which is the 
initialization of each Multics process shortly after it is 
created. Process initialization is covered in Process and 
EroCl§.ssor Control PLM, 0 rder No. AN60. This manua"l does not 
cover the initialization of the system control, answering 
service, and accounting facilities. These facilities are 
described in System and User Control, Order No. AN66 and System 
Administration, Order No. AN72. Thus, this manual describes only 
the initialization of the hardcore supervisor at system bootload 
time. 
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A large part of initialization consists of the 
initialization of various subsystems within the supervisor. In 
many cases, this initialization is a crucial part of the 
operation of an individual subsystem and thus is also covered in 
some detail in the PLM describing that subsystem. This is 
particularly true of Storage System, Order No. AN61, Process anq 
Processor Control, Order No. AN60, and Reconfiguration, Order No. 
AN71. 

This PLM also covers system shutdown, whose organization and 
implementation are related to initialization. Shutdown consists 
of the orderly stopping of a Multics system, either by operator 
command, or by BOS command following a system crash. The latter 
is known as an emergency shutdown. 

This PLM is organized as follows. Section I gives overviews, 
and discusses policies and environments not specific to any part 
of initialization or shutdown, but of interest during all of it. 
These descriptions are in some sense a collection of information 
about these policies throughout initialization. Because of its 
supreme importance throughout initialization, the Segment Loading 
Table (SLT) is described in Section I. Many of the details in 
the SLT description are not apparent until later sections. 
Sections II and III describe the two major phases of 
init~alization. Descriptions of the programs, the building of 
the environment and overviews are provided. Section IV describes 
shutdown. Section V is a module-by-module listing of 
initialization and shutdown modules, providing capsuled 
descriptions of their function. Some miscellaneous modules are 
also described. 

STRATEGY OF INITIALIZATION 

The overall strategy of initialization is that of a 
"bootstrap" process. That is, the first procedure of 
initialization runs in an environment devoid of all software 
assistance. Each new mechanism (segmentation, stacks, symbolic 
linkage, 1/0, interrupts, paging, etc. ,) is made operative as 
soon as possible and then used to enrich the environment in which 
further mechanisms are made operative. Many mechanisms have 
subsystems of the supervisor that control them and these 
subsystems must be initialized before the associated mechanism 
can be used. The initialization of most subsystems is 
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accomplished by a call from the initialization driver programs to 
an entry point in that subsystem devoted to the specific purpose 
required. Most of these subsystem initializations consist mainly 
of the setting up of data bases (threading of lists, 
initialization of arrays, etc.), frequently based upon 
configuration dependent data specified in the CONFIG deck. 

Initialization can be viewed as the loading of the 
procedures and data bases (in part) of the hardcore supervisor 
from the Multics System Tape. The programs on the tape 
constitute precisely enough information to bring a bare hardware 
system (containing no data other than firmware) to Multics 
command level and allow a reloading of files to take place. (The 
previous existence of BOS and the CONFIG deck is assumed.) Some 
of the segments (procedures and data bases) on the MST ultimately 
wind up in the Multics Storage System; most do not .. All of the 
hardcore supervisor is on the HST. None of it is retained from a 
previous bootload. Segments are arranged on the MST in such an 
order that the earlier segments allow as many mechanisms as 
possible to be used in loading the later segments. For this 
purpose, the MST is divided into three collections, to be 
described later. 

Initialization can be viewed as the loading of collection 1, 
the initialization of collection 1, the loading of collection 2, 
the initialization of collection 2, and the loading of collection 
3. This is a very rough description, meant only to illuminate 
the use of collections. 

Among the last mechanisms to become operative are the 
traffic control and ring mechanisms. One processor (the 
bootload processor or bootload CPU) performs all of 
initialization. The bootload processor, while performing 
initialization, runs exclusively in ring O. As traffic control 
is not operative, it is not meaningful to ask in-which process 
initialization is performed. However, the per-process data bases 
used by initialization ultimately become the corresponding data 
bases of the initializer process, Initializer.SysDaemon.z. Thus, 
it can be said in general terms that the initializer process 
performs system initialization. The last step in system 
initialization is the calling of the first user-ring procedure of 
the initializer (system_startup_), or system control process. 
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THE SEGMENT LOADING TABLE (SLT) 

There are two data bases of paramount importance to 
initialization. The first of these, the CONFIG deck, describes 
all configuration-dependent data, including table sizes, various 
software allocations, interrupt cell, port and channel 
assignments, and available hardware. The CONFIGdeck is 
constructed by BOS, and is described in detail in the Multics 
Operators' Handbook. 

The other data base is the Segment Loading Table. The SLT 
consists of two logical parts, implemented as the two segments 
known as sIt and name_table, respectively. The first part, or 
the SLT proper, consists of some fixed information and an array, 
indexed by segment number, describing all that is known about 
each segment loaded from the MST. This :lnformation is supplied 
by the MST segment header, a four-word block supplied by the MST 
generator (see generate_mst in the Systerg Tools PLM, Order No. 
AN51), which precedes each segment on the tape. The MST 
generator derives the information from both the system header 
file and the segment itself. The information can be modified by 
initialization procedure in some cases. 

As procedures and data bases are loaded from the MST by 
initialization, they are accessed via the segmentation mechanism. 
This allows the SLT to be accessed as an array indexed by the 
segment number assigned at that time. Thus, the SLT is 
essentially a map of the descriptor segment used by 
initialization. The segment number assigned is used thereafter 
by every process to access that segment when in ring O. This is 
explained more fully in Section III under "Hardcore and Outer 
Ring Segment Numbers". 

Associated with each SLT entry, or SLTE, is a variable 
amount of variable-length ASCII-coded information. The 
information includes names of the segment and a possible access 
control list (ACL) to be associated with the segment if it is 
ultimately to go in the Multic~ storage system hierarchy (see 
"Branch Creation and Connection" in Section III). To allow the 
SLT to be accessed as an array, this information is stored in the 
SLT Name Table, which is in the segment name_table. Pointers in 
the SLTE connect the SLTE to the array of names for each segment 
in the name table. These names are needed to allow the various 
initialization procedures to reference themselves and their data 
bases by name. Twice in initialization a special linker known as 
the prelinker runs, resolving as many outward references of 
initialization procedures as is possible at that time. When we 
speak of the name of an initialization procedure or data base, it 
is the name stored in the SLT Name Table to which we refer. 
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These names are also used as entrynames for those segment~ that 
ultimately go into the storav,e system and are added via the 
normal storage system name appending primitives (see 
hcs_$append_branch and hcs_$append_branchx in the Multics 
Programmers' Hanual Subroutines, Order No. AG93, also the Storage 
System PLM). 

The segments used by initialization may be divided into two 
broad categories: those us~d only by initialization and 
subsequently discarded and those that are part of the normal 
Multics system. The former are known as initialization segments, 
the la tter as supervisor segments. These terms are' used only 
with respect to initialization. The segment numbers assigned to 
supervisor segments by initialization start at zero; 
initialization segment numbers start at 400. (All numbers given 
here are octal unless otherwise specified. Numbers given in 
English, e.g., thirty seven, are decimal. All numbers in PL/I 
declarations are decimal.) 

Consider the declaration of the SLT. 

declare 1 sIt based (sltp) aligned, 

2 name_seg_ptr pointer, 
2 entry_length fixed bin(18), 
2 first_sup_seg fixed bin(18), 
2 last_sup_seg fixed bin(18), 
2 first_init_seg fixed bin(18), 
2 last_init_seg fixed bin(18), 
2 free_core_start bit(18) unaligned, 
2 free_core_size bit(18) unaligned, 
2 seg (0:8191) aligned, 

j sIte like sIte; I*slte declaration given below*1 

where: 

1 • 

2. 

3 • 

4 • 

is an ITS pointer to the SLT Name 
Ta b 1 e, wo r dO. 

is 4. 

is 0, the segment number or the 
lowest-numbered supervisor segment. 

is the segment number of the 
highest-numbered (hence the last) 
supervisor segment loaded. 
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5 • 

6 • 

7. 

8 • 

9 • seg 

is 400, the 
lowest-numbered 
segment. 

is the segment 
highest-numbered 
segment loaded. 

number of the 
initialization 

number of the 
initialization 

is the address, rounded up mod 
64(10) and divided by 64(10) of 
the first free block of main memory 
after the permanent unpaged 
segments. This is explained under 
"Memory Management" and 
"bootstrap1." 

is the number of whole 64 (10) word 
blocks (a block must start on a 64 
(10) boundary) available between 
the end of the permanent unpaged 
segments and the beginning of the 
temporarily unpaged segments (also 
to be explained), after bootstrap1 
has run. 

is the array of SLT entries. 

Now consider the SLT entry declaration. Remember for 
segments that have the header attribute linkage, the linkage 
section has been stripped off by the MST generator and made into 
a separate segment. This segment has the names of the main 
(text) segment, with the suffix link appended to each and, with 
its header, follows the text segment immediately on the MST. 

declare sIte based (sltep) aligned, 

( 2 names_ptr bit (18), 
2 path_ptr bit(18), 

1* \vord 0 *1 

2 access bit(4), 1* word 1 *1 
2 cache bit(1), 
2 pad 1 bit ( 1 ) , 
2 pad2 bit(6), 
2 wi red bi t ( 1 ) , 
2 paged bi t ( 1 ) , 
2 per_process bit(1), 
2 ds bit ( 1 ) , 
2 dirsw bit(1), 
2 acl_provided bit(1), 
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where: 

1 • 

2. 

3 • access 

4 • cache 

2 pad3 bit(3), 
2 branch_required bit(1.), 
2 init_seg bit(1), 
2 temp_seg bit(1), 
2 link_provided bit(1), 
2 link_sect bit (1), 
2 link_sect_wired bit(1), 
2 combine_link bit(1), 
2 pre_linked bit(1), 
2 pad4 bit(7), 

2 cur_length bit(9), 1* word 2 *1 
2 ringbrack(3) bit(3), 
2 segno bit(18), 

2 pad5 bit(3), 1* word 3 *1 
2 ma x_I en gt h ( 9) , 
2 bit_count bit(24» unaligned; 

is the offset into the name table 
segment of the name structure for this 
segment, which is declared below. 

is the offset into the name table 
segment of the directory pathname 
structure (declared below) of this 
segment if sIte. branch_required is on. 
This is the name of the directory in the 
storage system hierarchy in which this 
segment is to be ultimately placed. 
Only some segments from the MST go into 
the storage system heirarchy. 

is the first four bits of the access 
field of the SDW that are constructed by 
initialization for this segment. These 
are the Bead, ~xecute, ~rite, and 
frivileged bits. This is not the access 
that goes into any ACL entry in the 
branch. This is the same access. used 
in the hardcore descriptor for this 
segment in every process. 

is the SDW cache bit for the hardcore 
and initialization SDWs constructed for 
this segment. If on, the segment is to 
be allowed in the cache. 
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5. wired 

6 • paged 

7 . per_process 

8 • ds 

9 • dirsw 

11. branch_required 

if this bit and the paged bit (see 
below) are on in this SLTE, this segment 
is to have all its pages wired (made 
nonreplaceable in main memory to page 
control). The segments pds and 
pl1_operators_ are special-cased and 
partly vii red . I f the paged bi t is off, 
this bit is not meaningful. 

specifies that the segment is to be made 
paged at an appropriate time. A paged 
segment can also be wired. 

specifies, if on, that the SDW for this 
segment, as created by initialization, 
should nob be used by process creation 
(see the Process and Process6r Control 
PLM for details--o-f--process creation) 
when descriptor segments for new 
processes are created. By default, all 
of the SDWs for supervisor segments are 
put in a new descriptor segment when a 
process is created. 

is on in the SLTE for the descriptor 
segment itself. This flag is used to 
prevent threading of the descriptor AST 
entry of the segment (see "The Iv1aking 
Paged of Segments" in Section II). 

specifies 
directory. 

that this segment 
Not currently used. 

is a 

specifies that an ACL (access control 
list) structure, declared below, was 
supplied by the MST generator for this 
segment. It follows the pathname 
structure in the name table segment. 
This bit is only meaningful when the 
branch_required bit is on. 

specifies that this segment is to gain 
the Multics Storage System hierarchy. A 
directory pathname, for the directory to 
contain this segment, is pointed to by 
the path_ptr field (see above). 
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14. link_provided 

17. combine_link 

specifies that this segment is an 
initialization segment, to be discarded 
at the end of initialization. If this 
segment is a ternp-seg, this bit is not 
on. 

specifies that this segment is a 
t em p - s e g . T his is a t y p e 0 f 
initialization segment that is to be 
discarded at the first purging of such 
segments after it has been loaded. See 
"Hemory r~anagement" in this section. 

specifies that the 
this segment has 
the MST generator 
segment on the tape. 

linkage section of 
been stripped off by 

and follows this 

specifies that this segment is the 
linkage section of some other segment, 
stripped off by the MST generator. If 
on, the segno field specifies the 
segment number assigned to the 
corresponding text segment. 

specifies that the linkage for this 
segment, which must be a text segment 
with the linkage_provided bit on, must 
be wired. This information is used by 
the prelinker to determine whether the 
linkage for this segment should be 
combined with wired linkage for wired 
segments or nonwired linkage for 
nonwired segments. 

spec~fies if the linkage for this 
segment, which again must have the 
linkage_provided bit on, should be 
combined at all. Linkage segments, in 
general, are temp-segs, that are 
combined and then discarded. Some are 
simply discarded, while others remain as 
self-standing supervisor segments. See 
the paragraph on prelinking in Section 
II. 
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19 • cur_length 

20. ringbrack 

21. s egno 

is a flag created and used by the 
prelinker. If on, it indicates that the 
prelinker has already processed the 
linkage section of this segment. It 
prevents the prelinker from combining 
linkage twice on a segment. 

is the cur_length attribute specified 
for this segment in the header, in 
pages. For segments in collection 2 and 
paged segments in collection 1, it is 
used by make_sdw to determine which size 
AST entry should be allocated for this 
segment~ cur_length is usually exactly 
enough pages to include as many \l1ords as 
specified by the slte.bit_cQunt field. 
(This can only be overridden by 
supplying both the cur_length and 
bit_count attributes in the MST header). 
bootstrap1 redefines the bit count and 
cur_length fields for the data segments 
for disk subsystems not part of the 
configuration being bootloaded, zeroing 
them. The cur_length (and possibly 
max_length) fields for certain tables in 
collections! 1 and 2 can also be 
dynamically changed at bootload time by 
the TBLS CONFIG card. 

is the array of ring brackets to go in 
the branch for this segment if it goes 
in the storage system hierarchy. For 
the two segments return_to_ring_O_ and 
restart_fault_, however, these are the 
ring brackets that go in hardcore 
descriptors for these segments. In no 
other case do these ring brackets go in 
the hardcore descriptors in any process. 
These two special cases are necessary 
for the user-ring fault signalling 
mechanism (see "Hardcore and Outer Ring 
Segment Numbers" in Section III and the 
Process and Proc~~ Control PLM). 

is the segment number allocated to the 
linkage section of this segment if the 
linkage_provided bit is on, or the text 
segment corresponding to this segment if 
the link_sect bit is on. This field is 
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used by the prelinker to locate 
definition sections and fill in LOT 
entries. (See the Binding, Linking, and 
Makespace Management PLM, Order No. 
AN81, for details on linking). This 
field is filled in by bootstrap1 and 
segment_loader, the two segment loading 
programs, as the text-linkage pairing is 
determined. 

specifies the max_length attribute given 
in the MST header. This is the maximum 
length, in pages, to which this segment 
is allowed to grow. It is ignored in 
the loading of segments in collection 1. 
If given~ it is used to as~ign an AST 
entry of proper size for paged segments 
in collections 1 and 2. It overrides 
the cur_length attribute. It is also 
used to set the max_length attribute in 
the branches of segments that go in the 
storage system hierarchy. 

The max_length in the branches of the 
SLT and name_table themselves are 
special cases,however (in the procedure 
init_branches), as their own SLT entries 
do not reflect their correct length at 
the time that this branch creation is 
done. 

is the actual length, in bits of the 
segment. This number is used to 
determine how much space should be 
allocated for this segment in main 
memory if it is ever copied or moved. 
Furthermore, this is the number set in 
the branch of any segment that goes into 
the file hierarchy as its bit count. 
See cur_length above. 
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declare name_seg based (names_ptr) aligned, 
2 pad bit(18) unaligned, 
2 next_Ioc bit(18) unaligned; 

where next_Ioc is the relative address into the segment of the 
next available location where data can be stored. 

1 . 

2. 

3 · 

4. 

The structure for one name is as follows: 

declare 1 segnam based (namep) aligned, 
2 count fixed bin, 
2 names (50 refer (segnam.count», 

3 size fixed bin(17), 
3 n am e ch a r ( 32) ; 

count is the number of names given in this name 
structure. 

names are the structures giving the individual names. 

size is the number of significant characters in the 
name. 

n arne is the actual name, left-justified. 

Pathname Structure 

If slte.branch_required is on, slte.path_ptr 
relative address into the name_table segment of this 

gives the 
structure. 

declare 1 path based (pathp) aligned, 
2 size fixed bin(17), 
2 name char (168 refer (path.size»; 

where: 

1 • size 

2. name 

is the number of significant characters in the 
pathname. 

is the pathname of the directory in the storage 
system hierarchy into which this segment is to be 
placed. Note that only as many words as are 
needed to contain the significant characters are 
required. 
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If slte.acl_provided is on, the ACL structure immediate11 
follows the pathname structure. A description follows: 

declare 1 acls based (aclp) aligned, 
2 count fixed bin, 
2 acl (50 refer (acls.count», 

3 userid char(32), 
3 mode bit(36) aligned, 
3 pad bit(36) aligned, 
3 code fixed bin; 

where: 

1 • count 

2. acl 

userid 

4 • mode 

5 • code 

is the number of ACL terms provided in this 
structure. 

is the array of ACL terms. 

is the User_id (e.g., Greenberg.Multics.a) of this 
ACL term. 

is the access mode for that userid. Currently, 
only the first three bits (read, execute, write) 
are defined. 

is part of the user interface to ACL terms and is 
not used by initialization. 

Creation of the SLT 

The SLT is created by bootstrap1, the very first program of 
initialization. The first few entries in it are prefabricated in 
bootstrap1 and describe the descriptor segment, mailboxes and the 
fault vector, the processor utility segment,1 the 
configuration deck, and the SLT name table themselves. The SLT 
entries are described in the include file slt_init.incl.alm, also 
used by the MST checker (see check_mst in the System Tools PLM). 
There are also a few entries built in this way for initialization 

1The processor utility segment (processor_utility_segment), 
contains the floating fault vector (see the Processor Manual, 
Order No. AL39). Multics does not now use the floating fault 
feature. 
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segments, namely bootstrap1 and the physical record buffer, the 
latter used for reading tape during initialization. Those 
segments whose SLT entries are created by bootstrap1 from this 
include file (these segments are never loaded, ~~) are 
sometimes referred to as collection o. 

The SLT and name table are permanent supervisor segments. 
They become paged at the time that other segments become paged. 
They are not wired. They are eventually put in the storage 
system hierarchy in >system_library_1. The segment number of the 
SLT is known to be seven as BOS uses it to find other segments 
and must start somewhere. 

The SLT is also used by some user-ring debugging tools to 
obtain names of hardcore segments for error messages (see User 
Debugging .§1lQ. Tracing 100ls, Order No. AN79) and by ,some tools 
(see the ~stem Tools PLM, and System pump Analysis, Order No. 
AN5 3) • 

THE ENVIRONMENT PASSED TO INITIALIZATION 

The following discussion describes machine state and data 
given to bootstrap1, the first program of initialization. 

The command BOOT is given to BOS to initiate the 
bootloading of the Multics system. BOS maintains an "image" of 
Multics core, consisting of all of the core configured into the 
system not used by BOS, plus a disk buffer area representing the 
core that is held by BOS. The management of this buffer is 
described in the BOS PLM, Order No. AN14. The final operation 
invoked by the BOOT command is the transfer of this buffer into 
actual core and the transfer of control to a set location. 

Multics expects all of core to contain zeroes, except for 
four items, described later. Thus, the BOOT command zeroes the 
entire Multics core image. 

Multics expects the data contained in the configuration 
(CONFIG) deck, in its mostly ASCII format as produced by BaS, to 
reside in location 6000, occupying one page. Thus, the BOOT 
command copies this information from its storage area within BOS 
to this point in the Multics core image. 

Throughout all of Multics and BOS operation, the page at 
location 4000 contains a program known as the BOS toehold. This 
program is described in detail in the BOS PLH. Among its 
functions are the reading of the disk portion of the Multics core 
image into core and transfer of control as the last stage of a 
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BOOT or GO command, and the return of control to BaS and saving 
of the Multics core image as a result of an orderly or unexpected 
return to BaS. Multics expects this program to be in this 
location. 

Location 4004 is known to contain a pair of instructions 
that, if executed in absolute mode, cause a restartable return to 
BOS, (nrestartable" means that BaS can return to Multics at the 
instruction following the instruction that caused execution of 
the pair at location 4004.) The occupancy of this page and the 
location of that pair constitute all of the knowledge that 
Multics has of BaS. The area containing this toehold is not 
considered part of the Multics core image and is neither written 
out when the latter is saved on disk, nor restored when it is 
read back. 

bootstrap1 also expects that the 10M mailbox contains 
sufficient information to determine the 10M channel number and 
device number of the tape drive on which the MST is mounted. BaS 
copies this information into the place in the Multics core image 
that corresponds to the 10M mailbox. 

The final item expected by Multics is the first tape record 
(past the label and following end-of-file mark) of the Multics 
tape (MST)to be loaded into the core image. The first program 
on the tape is bootstrap1. Its first record is loaded so that 
location zero of this program is at location 10000, absolute. 
Preceding bootstrap1 on the MST are its MST control words (see 
generate_mst in the .§.Y..§..telJl Tools PLM) and its SLT entry (from the 
MST header). This data in turn lies on a Multics standard tape 
record, which has a header eight words long. Thus, the physical 
tape record has to be loaded into some location lower than 10000. 
However, to facilitate the loading of the physical record into 
location 10000, the MST generator strips the first 40 words off 
bootstrap1 and pads enough words so that when the record is read 
into location 10000, location zero of bootstrap1 is indeed at 
location 10000. 

Summarizing, the data items expected to be in core at the 
time control is transferred to bootstrap1 are the CONFIG deck, 
the BOS toehold, the first record of bootstrap1 itself, and the 
tape data in the 10M mailbox. 

Multics also expects the DATANET 6600 FNP to have been 
properly bootloaded by BaS. It also expects the DATANET mailbox, 
the floating fault vector (currently not used) and the bulk store 
mailbox to be defined in their standard locations. 
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At BOOT time, BaS modified the CONFIG deck by the addition 
of a card known as the INTK (for INTaKt <sic». Its format is 

INTK bootsw part 

where bootsw is nonzero if this is a "warm" boot (a hierarchy is 
present on disk) and zero if cold (not present). part is the 
name of the partition on disk (normally MULT, but SALV if the 
salvager is being booted) that Multics is expected to use. This 
card is looked at by the procedures that must initialize access 
to the hierarchy (see "Branch Creation and Connection" in Section 
I I) . 

bootstrap1 expects one and only one processor to be running. 
It expects to receive control at location 40 relative to its base 
in absolute mode. It expects that the system . controller 
containing it has the processor on which it is running as control 
processor. It expects the cache on this processor to be 
inhibited. It expects index register 2 to contain the absolute 
location of word zero of bootstrap1, hence it makes no 
assumptions about where it is, other than that it is on a page 
boundary in the low-order memory. It expects that index register 
o contains the absolute address of the 10M mailbox and index 1 
contains the base address of the interrupt vector, which, on the 
Model 6180, is always zero. It expects that the tape drive 
selected by the PCW in the 10M mailbox is in the right data mode 
and correctly positioned to read the second physical record of 
bootstrap1. 

To facilitate system debugging and problem analysis, 
initialization interrogates the processor data switches on the 
bootload processor (the processor that entered bootstrap1) at 
several times, looking for specific patterns. If these patterns 
are found at the times they are sought, control is returned to 
BaS in an orderly fashion, allowing dumping and patching. A 
subsequent GO command issued to BaS restores control to the point 
where control left Multics. These patterns (in octal, where "x" 
represents "don't care") and the points at which they reenter BaS 
are: 

123 4xx xxx xxx 

123 2xx xxx xxx 

123 1xx xxx xxx 

bootstrap1 has just received control from 
BaS. Only its first record is in core. 

bootstrap1 has read itself 
Nothing else has been read 
absolute mode. 

into core. 
in, still in 

bootstrap1 in appending mode, with most of 
its data bases initialized. Collection 1 not 
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123 x4x xxx xxx 

123 x2x xxx xxx 

123 x1x xxx xxx 

123 xx4 xxx xxx 

123 xx2 xxx xxx 

loaded yet. 

bootstrap 1 
bootstrap2. 

ready to transfer control 
Collection 1 loaded. 

to 

Collection 1 loaded and initialized, ready to 
load collection 2. 

Collection 2 loaded. 

Collection 2 loaded and initialized, ready to 
load collection 3. 

Collection 3 loaded. Traffic control and 1/0 
not yet initialized. 

In the above patterns, the first nine bits (123) identify 
the data switch settings as "debugging return to BOS." The 
remaining bits are not mutually exclusive, i.e., more than one 
may be set, causing many returns to BOS. (These switch patterns 
can be remembered by the assumption that there are four pairs of 
values corresponding to stopping before and after loading 
collections 0, 1, 2, and 3. The 123 is ASCII for S, as in STOP.) 

THE INITIALIZATION ENVIRONMENT 

The following discussion describes the growth of the Multics 
environment during initialization. This growth might be viewed 
as an extraction of relevant information from descriptions of the 
various parts of initialization. This discussion attempts to 
answer questions such as "~vhen does paging first become 
effective?" 

Faults and Interrupts 

Control is passed to bootstrap1 in absolute mode. The 
processor is functioning without any ~egmentation or paging. For 
the first few instructions, all instructions have the inhibit bit 
(bit 28) on. No assumptions are made about the contents of the 
fault and interrupt vectors in main memory. The timer register 
of the processor is loaded almost immediately with a very large 
number to prevent timer runouts. 

One of the first tasks of bootstrap1 is to mask out 
interrupts, so that it can cease its use of the inhibit bit. 
Taking advantage of the inhibit bit could create a lockup fault, 
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so its use is to be minimized. bootstrap1 determines to which· 
port on the low-order (bootload) memory the bootload processor is 
attached by interrogation of that system controller with an RGR 
command generated by an RseR instruction. The execute interrupt 
mask assigned to that port is then masked so that no interrupts 
are allowed. The channel mask in the controller is set fully 
open as it has not yet been determined precisely what the 
configuration is. 

Once this is done, use of the inhibit bit is curtailed. 
bootstrap1 now fills in all of the interrupt vector pairs in main 
memory to ignore interrupts. The fault vector is set to cause a 
fatal crash on all faults except timer runout, which is ignored. 
All interrupts are then enabled. Appending mode is soon entered. 
bootstrap1 eventually transfers to bootstrap2 after the loading 
of collection 1, which eventually gets to call (through 
initializer and init_collections) 
initialize_faults$fault_init_one. 

This is one of the earliest calls in initialization as it 
must take responsibility for fault handling away from bootstrap1. 
Here, the fault vector pairs for timer and lockup are set to 
pairs that ignore these faults, as are all interrupt vector 
pairs. This fault and interrupt ignoring is handled by 
wired_fim$ignore, storing seu data at prds$ignore_data. Page 
faults (directed fault 1) are directed to the proper entry, 
page_fault$fault, as are segment faults (directed fault 0, 
directed to fim$primary_fault_entry), and connect faults (wired 
fim$connect_handler). Segment fault handling must be initialized 
at this time because it is used in collection 2 initialization 
before all of the faults relevant to collection 2 have been 
initialized properly. All other faults are directed to 
ii$unexp_fault, storing seu data at prds$sys_trouble_data. 
Hence, unexpected faults during most of initialization store 
their seu data here and this area is the first place to analyze 
during system problems relating to initialization. The floating 
fault vector, assumed at location 1020, is initialized to direct 
floating faults to a handler in fim, which crashes the system. 
The floating fault feature, under the control of the processor 
mode register, is currently not used by Multics. 

Later in collection 1 initialization, data extracted from 
the configuration deck is used to determine the assignment of 
interrupt cells. This is done after system configuration (system 
controllers, processors) has been ascertained and verified. At 
this time, initialize_faults$interrupt_init is called. This 
entry directs all interrupts to their final handlers, in most 
cases the interrupt interceptor (ii). During interrupt 
initialization (initialize_faults$interrupt_init), all interrupts 
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other than the system trouble interrupt are masked off. When 
this is complete, all legal system interrupts are then unmasked 
and the channel mask on the bootload system controller set 
properly. These masks are determined from the configuration 
data. All unassigned interrupts are directed to 
syserr$syserr_int. Collection 2 is now loaded. Immediately 
before the accessing of the storage hierarchy, when bounds faults 
on directories are possible, all faults are directed to their 
proper handlers. This is done by 
initialize_faults$fault_init_two. 

All errors, unexpected faults included, encountered by 
bootstrap1 or the fault vectors set up by it, result in the 
processor halting (on a DIS instruction) with an error code 
stored in the accumulator and registers stored in main memory. 
The identity of these errors must be ascertained from analysis of 
these quantities. Once initialize_faults$fault_init_one has run, 
unexpected faults cause a return to BOS with machine conditions 
stored at prds$sys_trouble_data. Soon after this entry has been 
called, the procedures to initialize the operator's console under 
Multics (its data bases, DCW lists, etc.) are called. Note that 
until interrupts are fully initialized, the operator's console 
runs without the use of interrupts. As the time zone in which 
Multics is running has not been established at this point, 
messages reported on the operator's console until the time zone 
has been established are generally incorrect (assumed Greenwich 
Mean Time) in their time designation. 
initialize_faults$fault_init_one sets some pointers used for 
clock reading to temporary values, simply to allow clock reading 
to function without causing problems. The operator's console 
logging mechanism is not initialized until the end of 
collection 1 initialization as this requires the support of the 
full paging mechanism. After the operator's console has been 
initialized successfully, most errors detected by programs 
(configuration inconsistencies, errors normally detected by 
Multics, etc.) cause a message to be printed on the operator's 
console and possibly logged. If the error is fatal, i.e., causes 
a return to BOS, the problem can be analyzed by tracing the call 
history of syserr, the operator's console manager. 

There are several circumstances in which errors detected by 
programs cause a return to BOS without a message. These include 
the taking of certain faults when disallowed. These returns to 
BOS areacco~plished via the system trouble interrupt, a 
software-defined interrupt that causes all processors to halt, 
except the bootload processor, which returns to BOS. Again, 
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except the bootload processor, which returns to BaS. Again, 
machine conditions are stored at prds$sys_trouble data, allowing 
identification of the program that sent the system trouble 
interrupt. 

Difficulty in initializing the operator's console 
causes a return to BaS without a message. 

Segmentation and Paging 

also 

bootstrap1 receives control in absolute mode. As soon as it 
has read itself in (remember that BOS loads only its first 
record), a descriptor segment is set up. This descriptor 
segment, as all segments set up by bootstrap1, is a contiguous, 
unpaged segment. It is set up off of the end of bootstrap1. 
SDWs are created in this descriptor segment to d~scribe the 
descriptor segment itself, bootstrap1 itself, the interrupt 
vector (including the fault vector), the DATANET 6600 FNP 
mailbox, the bulk store and 10M mailboxes, the configuration deck 
as passed by BaS and the floating fault vector. The SLT and the 
SLT name table are then laid out following the descriptor 
segment. They are unpaged segments and descriptors are made to 
describe them. The physical record buffer, a segment used as an 
1/0 buffer for initialization's reading of the MST, is laid out 
following this. The physical record buffer and bootstrap1 are 
initialization segments--all of the rest are permanent 
(supervisor) segments. Appending mode is then entered. As 
segments are loaded by bootstrap1, descriptors are constructed 
for them. All of these segments are unpaged. The first paged 
segment to be constructed is the SCAS, or System Controller 
Addressing Segment. A segment named scas is loaded by bootstrap1 
from the MST. It, like all others at this time is unpaged. The 
procedure scas_init, running at collection 1 initialization, 
constructs in this segment a page table, eight entries long, for 
a segment. This segment has the zeroth word of its nth page 
being the zeroth word of main memory in the system controller on 
processor port n (starting from zero). The "unpaged" bit of the 
SDW for this segment is turned off and the bound set to the 
minimum, 16( 10) words. This segment is used for addressing 
system controllers for functions other than storing and 
retrieving data, specifically the RSCR and SSCR instructions. 
The page table for this segment is completely outside of the 
domain of page control, which is unaware of the existence of this 
page table. The areas of main memory pointed to by the scas page 
table are not reserved--they are used as normal pages of main 
memory, subject to other constraints. The SCAS is discussed more 
fully in "Configuration Initialization" in Section II. 
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The procedure initialize_dims creates the first real paged 
segment. The File System Device Configuration Table (FSDCT), 
must be accessed if this is a warm bootload or created if a cold 
bootload. (See the Storage §y~tem PLM for details on the use of 
FSDCT.) An AST entry containing a page table initially filled 
with null addresses is allocated. A descriptor describing a 
paged segment, using this page table, replaces the descriptor for 
the zero-length segment fsdct. At this time, page control and 
its 1/0 routines have been sufficiently initialized so that page 
faults can be taken. Nevertheless, pages cannot yet be withdrawn 
from or returned to the FSDCT as the latter is not yet wired, and 
a page fault during a page fault would result if an attempt were 
made to access it. If this is a warm boot, it is defined that 
the first page of the FSDCT resides on record 0 of the MULT 
partition of the master device (the device with the lowest device 
ID that has a MULT partition.) This device address is inserted 
into the address field of the zeroth PTW of the FSDCT. It is 
defined that a file map (array of device addresses) for the FSDCT 
begins somewhere on its zeroth page. This file map is copied 
from the FSDCT into its own page table, other than the zeroth 
PTW. This access to the FSDCT causes a page fault, but there are 
no other pages in core that could get written out (causing 
deposits to the FSDCT if zero) and no page faults have been taken 
on pages with null address, causing no withdrawals from the 
FSDCT. As soon as the FSDCT is in core, it is wired and deposits 
and withdrawals can now function. Paging may be said to be 
operative at this point, although none of it is going on and only 
one legitimate (non-SCAS) segment is paged. In the case of a 
cold boot, the FSDCT is created from scratch. Disk space is 
allocated for all pages of it, withdrawing it from the FSDCT 
being created to avoid later withdrawals by page control. It is 
wired in this case too. 

The procedure make_segs_paged (formerly update_sst_pI1) is 
responsible for making the segments that should be paged into 
paged segments. This is true only for collection 1 segments, as 
segments in collections 2 and 3 are always paged. This procedure 
obtains an Active Segment Table Entry (ASTE) and page table for a 
new descriptor segment, that will be paged. This descriptor 
segment will be used by initialization and the initializer 
process from that point on. This procedure obtains ASTE/page 
tables for all of the segments to be paged. It copies the 
unpaged segments (through an auxiliary procedure, 
privileged_mode_ut$swap_sdw_in_use) into their new paged 
incarnations. The new SDW for the paged segment replaces the SDW 
for the unpaged segment in both the current (constructed by 
bootstrap1) descriptor segment and the descriptor segment being 
built (the paged one). Hore will be said about this in the "Main 
Memory Management" in this Section and in "The Making Paged of 
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Segments" in Section II. Finally, the SDW of the new descriptor· 
segment is loaded into the DBR. Paging and segmentation are 
fully operative at this point. 

At the time collection 2 is being loaded, an ASTE/page table 
is allocated for each segment before it is loaded. The size of 
this page table, like those in collection 1, is determined by the 
procedure make_sdw from the cur_length and max_length attributes 
in the SLTE of the segment, which precedes the text of the 
segment on the MST. The tape reading routine (tape_reader) 
copies the segments being loaded directly into the segment being 
constructed. SDWs with correct access information are placed in 
the descriptor segment after the particular segment is loaded. 

The initiation of segments and segment faults do not occur 
until the initialization of collection 2. The procedure 
init_root_dir makes a call (to initialize_kst) to set up the KST 
of initialization (to become the KST of Initializer.SysDaemon.z) 
to be able to initiate segments. The root is initiated and a 
segment faul t occurs on it. Hore is said about this under "Root 
Directory Initialization" in Section III, and the Storage System 
PLH. Segment faults can now be taken on all segments and 
branches can be appended and initiated via the normal storage 
system interfaces. Thus, the segments in collection 3 are loaded 
by simply appending branches to the storage system and copying 
segments from the physical record buffer, piece by piece, into 
the newly created segments. Access is set to allow this copying 
and set appropriately afterwards. 

Branches must be created for some segments in collections 1 
and 2. However, since segment faults taken by processes look to 
the branches of segments to find their AST entries, if active, 
collection 1 and 2 segments that are to have branches (be in the 
hierarchy), must have ASTEs and thus page tables and therefore 
must be paged. This requires many of those segments in 
collection 1 to be paged. Other than the FSDCT, shutdown stack, 
Paging Device Map Segment, and PRDS, all of the wired paged 
segments in collection 1 are paged for this reason. 

The hardcore supervisor never takes a linkage fault. The 
initialization of the system search rules (thus initializing the 
linker mechanism) is one of the very last things done by system 
initialization. 
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The PL/I Environment 

bootstrap1 runs in privileged mode since issuing 1/0 
instructions is one of its functions. It uses pointer registers 
to point to the SLT, Name Table, fault vector, physical record 
buffer, 10M mailbox, configuration deck, the descriptor segment, 
and each segment being loaded. It uses no stacks and all calls 
are made via index registers, i.e., TSXn instructions. It is 
impure; it modifies its own code and data. It makes no external 
references as there is no program to resolve such links. It does 
not even have a linkage section. It remembers the segment number 
of "interesting" segments as it passes them in loading. 

bootstrap1 passes control to bootstrap2 once coll~ction 1 is 
loaded.. Among the informa tion passed wi th control is the segment 
number of the segment pds, which will be used as a stack, and the 
segment number of the SLT manager, an initialization program that 
can resolve a segment name into a segment number from the SLT. 
As both bootstrap2 and its linkage section are initialization 
segments, the former precedes the latter immediately on the MST, 
and the fact that their segment numbers are contiguous is known 
to bootstrap2. Thus, bootstrap2 loads the linkage pointer 
register with a pointer to the base of the segment whose segment 
number is one greater than the segment number of bootstrap2, the 
latter being determined with an EPAQ instruction. bootstrap2 now 
establishes a stack frame on the segment pds, (known as "the 
PDS") . Mul tics standard calls can now be made, bu t not through 
links, as these have not been snapped. Some information in the 
stack base of the pds is initialized. Its pointer to the 
signalling procedure is initialized to point to segment -2, word 
2 which would cause a fatal process error. The SLT manager is 
now called to ascertain the segment number of the prelinker. 
This call is made based upon the segment number passed by 
bootstrap1, who noticed and remembered it as this segment was 
being loaded. As no links have been snapped, all' of the 
procedures that run before prelinking (including bootstrap2, but 
not bootstrap1) are called via transfer vectors at their zeroth 
through nth words, different offsets corresponding to different 
functions. Once prelinking is complete, these procedures are 
called in the normal PL/I fashion. Among the information passed 
to the prelinker by bootstrap2 is the segment number of the SLT 
manager. The prelinker (the programs pre_link_1 and pre_link_2) 
attempts to snap all links in all hard core linkage sections, 
which are conditionally (based on the SLT) combined into combined 
linkage segments. There is one combined linkage segment that 
always remains wired and one that is paged and unwired. Again, 
the decision to place a linkage section in one or the other is 
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based upon SLT bits. A Linkage Offset Table (LOT), is created. 
(See the Binding, Linking, and Makespace Management PLM, Order 
No. AN81, for details on the LOT.) Once the prelinker returns to 
bootstrap2, symbolic calls can be made. bootstrap2 initializes 
pointers in the base of the PDS to point to various operators 
within the PL/I operator segment and PL/I programs can now be 
used (all programs were assembler-coded up to this point). The 
call-push-return mechanism is fully operative, and the PDS is 
being used as a stack (it is unpaged now and thus may not grow, 
but it may grow after being made paged) and all symbolic 
references capable of being resolved have been resolved. Thus, 
the program initializer is called (not transferred to). 
Signalling and the condition mechanism are not operative. All 
attempts to signal cause the process-terminating pointer to be 
indirected through, causing the system to terminate operation 
(attempts to terminate the initializer process are always fatal 
to the system). After collection 2 is loaded, it is prelinked to 
and from collection 1 and itself. 
initialize_fault_$fault_init_two sets this pointer to the normal 
signalling procedure, signal_. This is the earliest time that 
signalable faults are allowed. 

The PDS is used as a stack as soon as stacks are used at 
all. It becomes paged when other segments become paged, creating 
a unique problem involving the return from the segment paging 
routine which will be discussed under "The Making Paged of 
Segments" in Section II. The PRDS is used as a stack during 
interrupts and page faults, as in normal operation. It too 
becomes paged at the time that segments are made paged. The 
stack frame laid down by bootstrap2 remains on the PDS until the 
program initializer finally calls out (via init_proc and 
gate_init) to ring 1. Shutdown uses a special stack, shutdown 
stack, early in emergency shutdown or for the wired portion of 
normal shutdown. 

Traffic Control and Rings 

Initialization runs in the address space that is to become 
the address space of the Initializer process, 
Initializer.SysDaemon.z. Until traffic control is initialized, 
after the loading of collection 3, control never leaves the 
initializer process. If any event (specifically, a disk page 
fault) must be waited on, a special loop in the program wired_fim 
is entered by the traffic controller. This loop waits for a flag 
to be set by a routine that is called when an attempt is made to 
notify an event, invoked by an interrupt. These special 
handlings are done because the flag tC_data$wait_enable is zero 
until traffic control is initialized. No directories should ever 
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be locked. Idle processes do not exist or run, and the body of 
the traffic controller (scheduler) is never entered until traffic 
control has been initialized by the procedure tc_init. 
Initialization runs in hardware ring 0, not leaving this ring 
until init_proc calls system_startup_ in ring 1, after all of the 
hardcore has been initialized. 

I/O Management 

Input/Output during initialization consists of tape reading, 
operator's console writing, and paging. bootstrap1 has a 
physical tape reading routine in its first physical tape record. 
This routine is initialized to read the MST, from data left by 
BOS in the 10M mailbox. It sets up LPWs, DCWs and PCWs to read 
the HST, and issues connects to the 10M. Once boot.strap 1 has 
been read in, a more sophisticated tape reading routine within 
bootstrap1, which is knowledgeable about the format of Multics 
Standard Tapes, including error retry conventions, is used to 
interface to the simpler routine. The sum of these two routines 
reads the segments and SLT headers of collection 1, using the 
segment physical_record_buffer as a single record tape buffer. 
The smaller routine that has read bootstrap1 is not knowledgeable 
about these things, hence, bootstrap1 must be written on the MST 
without error. 

During collection 1 initialization, the 10M manager and its 
data bases are initialized. This is the first initialization 
after the first fault initialization (see "Faults and Interrupts" 
earlier in this section). The operator's console is initialized 
next, without the logging facility. It uses the 10M manager to 
perform physical I/O. The clock reading and interrupt mechanisms 
for this work through interim methods that have already been 
described. 

Collection 2 is loaded by a program called segment_loader, 
invoked by the program initializer. This program calls a tape 
reading package called tape_reader to read the MST. This program 
is again knowledgeable about Multics Standard Tapes. It uses a 
program called tape_io to perform physical I/O via the 10M 
manager. A device index is assigned to the bootload tape 
drive/channel at the time this package is initialized, 
immediately before the loading of collection 2. Collection 3 is 
loaded by a program called load_system (see "Memory Management" 
in this section), which also utilizes this tape reading package 
(tape_reader and tape_io),. After collection 3 has been loaded, 
the bootload tape drive is rewound via a call to 
tape_reader$final. 
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Paging 1/0 is initialized by the individual 1/0 routines for' 
the storage system devices (disks, bulk store, etc.). These 
routines are called at initialization entry pOints by 
initialize_dims, during collection 1 initialization. This 
happens after both the 10M manager and interrupts are 
initialized, but before paging is operative. These routines 
report to the 10M manager for device index assignment (except the 
bulk store control routine, as the bulk store interfaces directly 
to the system controllers, and hence, does not use the 10M). 
This initialization of communication with the 10M manager (see 
the Supervisor InputlOutput PLM, Order No. AN65, for details on 
the 10M manager) includes communication of the identity of the 
interrupt handler of the routine, and base,address for DCW lists. 
These routines are fully operative after this reporting has been 
done. 

Other 1/0 device control routines (teletypes, 1/0 
interfacer) are initialized after initialization of traffic 
control which follows the loading of collection 3. These 
routines are fully operative after initialization. The Network 
software is initialized by a call from an outer ring, via a gate, 
if a Network attachment is present, and is thus not part of 
system initialization. 

Communication with the DATANET 6600 FNP needs no 
initialization. This processor is bootloaded by BaS. The 
initializations performed by Multics at collection 2 
initialization time, in the module dn355_init, consist solely of 
setting up some data for the DATANET communication routines. In 
pre-24.4 systems, this is done at collection 1 initialization 
time. 

MEMORY MANAGEMENT 

The following discussion covers the development and use of 
different strategies for manipulating and managing main memory 
and virtual memory during initialization. 

Collections 

As has been described, the Multics System Tape (MST) is 
divided into three collections of segments. The segments are 
separated by special control words known as collection marks, 
which are recognized by bootstrap1, segment_loader and 
load_system, the three segment loading programs. The 
significance of the three collections is as follows. There is 
much more data on the MST than can fit into main memory at any 
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one time. Hence, much of it will have to be loaded into virtual 
memory, i.e., loaded in the presence of an operative paging 
environment. Thus, a goal of initialization is the establishment 
of paged segmentation at the earliest possible time. Collection 
1 contains precisely those programs that are required to 
accomplish this. All segments that are unpaged, as opposed to 
paged and wired, appear in Collection 1. This is because only 
bootstrap1 can allocate unpaged, contiguous core in this way. 
Before System 24.4, the ability to wire segments in Collection 2 
did not exist, and all wired segments were in Collection 1. 
Collection 2 contains all of the rest of the hardcore supervisor, 
i.e., all of the rest of the programs that will run in ring zero, 
and must be prelinked to programs in ring O. The segments are 
loaded by the program segment_loader directly into the virtual 
memory. Collection 3 consists of programs that are not part of 
the supervisor. These programs constitute precisely ,enough of 
the system control and user environment to allow a reload of the 
storage system hierarchy to be performed. All of the programs in 
collection 3 are loaded directly into the hierarchy by the 
program load_system. 

Supervisor; Init and Temp Segs 

As the first two collections are loaded, programs that will 
be used only by initialization and programs that will remain as 
part of the Multics supervisor are added to the virtual memory. 
These segments are known as initialization segments and 
supervisor segments, respectively. Each of the first two 
collections contains both types of segments. Among the 
initialization segments, many are used only once (e.g., scs_init, 
which initializes configuration-dependent data concerning port 
assignment and interrupt cells), and many are used more than once 
(e.g., tape_io, which reads the Multics System Tape). Thus, a 
further subdivision is made within initialization segments: temp 
segs are segments that are to be discarded at the first 
opportunity following their use, and init segs proper, that are 
to be discarded at the end of initialization. Discarding these 
segments frees the AST entries they utilize, increasing the AST 
pool, and the disk and bulk store storage that they may occupy. 
Furthermore, it removes their SDWs from the descriptor segment 
that will belong to the initializer process. In order to 
facilitate the use of this mechanism, many of the temp segs that 
will be discarded after collection 1 are bound into a single 
bound segment, bound_temp_1. Temp segs to be discarded after 
collection 2 (those, obviously, are loaded in collection 2) are 
in bound_temp_2. Init segs loaded in collection 1 are in 
bound_init_1, those loaded in collection 2 (used for loading 
collections 2 and 3, and initializations after collection 3 has 
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been loaded, e.g., the traffic controller) are in bound_init_2. 
Most linkage sections, stripped off of theLr text segments by the 
MST generator, are temp segs. The keywords init_seg and temp_seg 
in the MST header specify the assignment of these attributes to 
segments. 

There are seven lists of ASTEs in the Active Segment Table 
(AST). There are four lists used by Multics while running, for 
the allocation and deallocation of ASTEs for segments on which 
segment faults have been taken. These correspond to the four 
sizes of AST entries, 4, 16, 64, and 256 (decimal, page table 
size in words.) A fifth list is called the hardcore list. AST 
entries for supervisor segments loaded in collection 2, and 
supervisor segments from collection 1 that obtain AST entries at 
the time that segments are made paged, are put on this list. 
However, those supervisor segments that ultimately go in the 
storage system hierarchy are not put on this list, but in one of 
the four normal lists. This allows shutdown to process these 
segments when other active segments of the storage hierarchy are 
deactivated and/or have their branches updated. Shutdown also 
uses the hardcore list to delete (free the disk storage of) the 
hard core supervisor segments. Clearly, the code that does this 
and runs after this must not delete itself. Hence, all wired, 
paged, supervisor segments appear on no AST list in 24.4 and 
later systems. Most of shutdown, however, is unpaged code. A 
sixth AST list is maintained for init_segs. AST entries 
allocated for init segs made paged in collection 1 initialization 
or loaded in collection 2 are put on this list. At the end of 
initialization this list is traversed, all of these entries are 
freed, and their segments deleted. The seventh list is the list 
of ASTEs of temp segs. Temp segs made paged in collection 1 or 
loaded in collection 2 have AST entries on this list. Before 
collection 2 is loaded, and again before collection 3 is loaded, 
this list is traversed and AST entries and secondary storage 
freed. Clearly, segments that are not paged and hence have no 
AST entries, occupy main storage permanently (if they are still 
not paged after segments are made paged.) The program 
delete_segs is responsible for traversing AST lists and deletion 
of segments (for a description of delete_segs see Section V). 

Some special paged segments have their AST entries threaded 
out of any AST list to prevent both deletion or branch updating, 
which happens on the other lists. These segments are the PRDSs 
of processors, the shutdown stack, and the FSDCT, all of which 
must be used at shutdown time as segments are being deleted, and 
have no branches. The root is special-cased by shutdown to avoid 
deletion and branch updating. 
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Figure 1-1 shows the layout of main memory as bootstrap1-1 
receives control from BaS. The only information in main memory 
is the CONFIG deck, the BaS toehold, the information identifying 
the bootload tape drive and channel in the 10M mailbox and the 
first record of bootstrap1. The fault vectors, floating fault 
vectors, DATANET 6600 FNP and bulk store mailboxes are present, 
but contain no valid information. 

bootstrap1 proceeds to read itself in. It then lays out its 
descriptor segment, the SLT and SLT name table, and the physical 
record buffer directly after its own text. Descriptors are made 
to describe the mailboxes, CONFIG deck, and fault vectors. 
Figure 1-2 describes the layout of main memory at this.time. 

bootstrap1 now loads collection 1. As you will recall, all 
segments are unpaged at this time. Supervisor segments that are 
to remain unpaged are loaded following the end of the physical 
record buffer. This is where they will remain throughout Multics 
operation. They are loaded contiguously, one after the other, in 
ascending address order in main memory. Keep in mind that the 
mailboxes as well are permanent unpaged supervisor segments, but 
they were created as segments in preassigned location by 
bootstrap1 before collection 1 was loaded. All other segments 
loaded by bootstrap1 (including init and temp segs, and segments 
in collection 1 that are to be made paged) are loaded starting at 
the high-addressed end of available memory. They are allocated 
contiguously, one after the other, in descending address order in 
main memory. ~en all of these segments have been loaded, the 
starting address and length of the unused core remaining are 
copied in to the SLT (see the SLT discussion earlier in this 
section) for the later initialization of the pageable memory 
pool. Figure 1-3 now shows the layout of main memory. 
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Figure 1-1 

Main Memory as bootstrap1 Receives Control 
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Main Memory After Loading Collection 1 
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Collection is now initialized. All of the segments now 
existent are unpaged, and hence, no page faults are taken until 
creation of the FSDCT segment. Before this happens, though, the 
procedure init_sst runs. This procedure creates the core map 
(see the St..Q.r..age Qyst,em PLM, Order No. AN61) among other data 
bases, and creates a core used list, consisting of all of the 
core blocks that lie entirely within the free region left by 
bootstrap1. Thus, the first few page faults on the FSDCT and the 
new paged descriptor segment ar~ resolved in this area. If there 
is not enough room left to resolve these page faults, Multics 
will crash during initialization. 

Once there is a minimal core used list, and paging is 
operative, the procedure make_segs_paged copies each of the 
segments at the high end of main memory (the temp, init, and 
paged supervisor segs) into paged segment~, for which it has 
asked make_sdw to fabricate AST entries based upon the SLTE 
information available. These segments are copied in descending 
address order, starting at the high end of memory. As each full 
page is copied, i.e., one core block worth of information from 
the high end of memory has been copied into paged segments, the 
core block is freed, i.e., added to the core used list (the 
pageable memory pool). During this operation, the amount of 
pageable memory increases due to this freeing. The occasional 
wiring of paged segments tends to decrease the amount of 
available memory. If at any time, the amount of available 
page able memory becomes zero, Multics will crash. The time when 
the minimum amount of pageable memory is available during this 
opera t ion is known as the "core high \-1a ter mark" 0 f 
initialization. 

As each of these segments is successfully copied, the 
descriptor for the new paged segment replaces the descriptor for 
the unpaged segment in both the old (unpaged). descriptor segment 
and the new (paged) one. This allows the main memory occupied by 
the old unpaged copy to be freed immediately. The configuration 
deck, the SLT, and its Name Table are also copied into paged 
segments. As they are not contiguous with the segments at the 
high end of main Memory whose memory is freed sequentially, their 
main memory is not freed at this time. After all of this copying 
is done, a procedure called collect_free_core runs. This program 
does a marking-type garbage collection of main memory. All core 
blocks found to be not in the core used list, but to contain a 
word of an unpaged segment, are marked. The entire core map is 
then scanned, and any core block which is marked is unmarked. 
Any core block that is found unmarked, and is in a currently 
configured (ON) system controller is added to the core used list. 
This frees the core formerly occupied by bootstrap1, the SLT and 
SLT name table and the physical record buffer before they were 
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made paged, and any other pages never freed (e,g., the page at 
2000). The unpaged descriptor segment is then freed, after the 
new one is in useo 

One may note that the physical record buffer becomes paged, 
and is wired. The initialization tape reader, tape_io, 
constructs DCW lists that are cognizant of the fact that this 
segment is not contiguous in memory. 

From this point on, main memory control is completely under 
control of page control. Figure 1-4 shows the current layout of 
main memory. The unpaged supervisor segments remain in place 
throughout Multics. Wired as well as unwired segments share the 
pageable core pool. The deletion of init_segs removes the 
physical record buffer from memory (unwiring and deleting it). 

Shutdown deletes segments, but has no particular effect on 
main memory allocation. 

SUMMARY OF INITIALIZATIONS CALLS 

This subsection is a summary of all of the calls made by 
bootstrap2, initializer, and init_collections, the latter two 
being simple call dispatchers. This is intended to give an 
overview of the sequence of initialization before we descr~be 
these procedures in detail in the next two secti~ns. 

bootstrap1 transfers to bootstrap2, collection 1 having been 
loaded. 

call sIt_manager ascertain segment 
prelinker. 

prelink collection 1. 

number of 

call initialize_faults$fault_init_one 
sets up interim fault handling, 
most faults set to be fatal. Page 
and segment faults legal. Interim 
clock reading set up. 

10M manager 
Channel tables 
channels set 
initialized. 

1-34 
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up. Mail boxes 
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Figure 1-4 

Main Memory After make_segs_paged 
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call scas_init 

call trace_init 

Initializes operator's console data 
bases. Reports to 10M manager for 
device index assignment. 

system controller addressing 
segment (SeAS) set up. Processor 
and system controller configuration 
data processed and interpreted. 
RSW and RSCR instructions issued to 
verify this data. 

interrupt assignments ascertained. 
System masks fabricated. Process 
interrupt handlers set up. 
Interrupt handler entry points set 
up for interrupt interceptor. 
Control processor relations set up. 

debugging printer/tape facility set 
up, if selected. Reports to 10M 
manager for device assignment. 

system segment table (SST) 
organized. Core and PD maps and 
used lists set up. AST entries 
created, threaded into free lists. 
Core left by bootstrap1 freed. 

call initialize_faults$interrupt_init 

call clock_init 

call initialize_dims 

interrupts directed to interrupt 
interceptor. Data collected by 
scs_init used to assign correct 
entry point. 

local time zone 
configuration 
sys_info. 

ascertained 
deck, put 

from 
in 

storage system I/O routines called 
to report to 10M manager. FSDCT 
accessed or constructed based upon 
INTK card. First page faults 
taken. 
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call delete_segs$temp 

call tape_reader$init 

call trace_rsw 

call segment_loader 

call getuid$init 

new paged descriptor segment made. 
All segments other than permanent 
unpaged supervisor segments made 
paged. Main nemory for 
initialization segments freed. 

segment made to access LOG 
partition of disk. Operator's 
c9nsole logging made operative. 

collection 1 temp segs deleted. 

DEBG card interrogated 
debugging options set. 

system 

initialize tape package, with 
respect to 10M manager. DeW lists 
to read tape into paged buffer 
segment set up. 

check switches to return to BaS. 

load collection 2. Prelink it. 

system trailer segment set up as 
list of free trailers. 

linkage pointers set in hardcore 
gates for performance optimization. 
Ring brackets set in SDWs for fault 
restart mechanism. 

an obsolete 
constructed. 

data base is 

storage system unique ID generation 
initialized. 

miscellaneous system variables 
initialized. Required error table 
codes copied into wired data bases. 

root constructed on cold 
initialize_kst called to 
segment initiation. 
initiated. 

boot. 
allow 

Root 

call initialize_faults$fault_init_two 
all fault handlers set up. 
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call init_branches 

call delete_segs$temp 

call trace rsw -
call load _system 

call trace rsw -
call tape_reader$final 

call tc init -

segments which would go into the 
hierarchy are put there. Branches 
constructed, and connected to AST 
entries. Branch attributes copied 
from SLT. 

collection 2 temp segs deleted 

check switches to return to BaS. 

load collection 3. Loaded into 
hierarchy, not prelinked. 

check switches for return to BaS. 

MST rewound, tape_io ceases 
communication with 10M manager. 

traffic controller set up. 
Initializer process made out of 
current state of system. Bootload 
idle process set up. 

typewriter package set up, sets up 
buffers and control words. I/O 
interfacer initializes self. 
DATANET 6600 FNP communication 
initialized. 

call delete_segs$delete_segs_init 

call init_proc$multics 

all initialization 
deleted. Current 
(initializer) is a 
segment. 

segments 
procedure 

supervisor 

system search 
system_start up_ 

rules set up. 
in ring 1 called. 
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SECTION II 

COLLECTION 1 

Collection 1 of the Multics System 
procedures and data bases necessary 
Since all programs and data must fit in 
is operative, collection 1 contains 
segments necessary to attain this end. 

Tape contains ~ll of the 
to make paging operative. 
main memory before paging 

the minimal number of 

Collection 1 must contain the programs and data necessary to 
take the minimal informition passed by BOS, including the CONFIG 
deck, and construct a paged Multics environment. The proper 
routing of faults and interrupts and the determination of the 
system configuration are among the functions performed by these 
programs. The creation of the PL/I environment, e.g., stacks and 
symbolic references, is another. 

All of the programs and data bases loaded as part of 
collection 1 are loaded by the program bootstrap1 (with the 
exception of bootstrap1 itself). All of these procedures and 
data bases are loaded into contiguous unpaged segments in main 
memory. After loading, a call to 
init_collections$init_collection_1 makes calls to many procedures 
in collection 1 to initialize many of the data bases and 
subsystems loaded. By the time this has been done, many of 
these segments are paged. 
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bootstrap1 

bootstrap1 loads itself into main memory, 
appending environment, sets up segments 
hardware-defined areas and information passed by BOS, 
the rest of collection 1. 

sets up an 
describing 
and loads 

The first tape record of bootstrap1 receives control from 
BOS in absolute mode at location 40 relative to the base of 
bootstrap1. Immediately, the processor maintenance panel 
switches are checked for a pattern to cause a return to BOS (see 
Section I, liThe Environment Passed To Initialization"). Next, 
interrupts are masked. All code up to this point has been 
running with the inhibit bit set on, but this usage must be 
minimized if lockup faults are to be avoided. Thus, bootstrap1 
determines which port on the bootload system controller the 
bootload processor is connected to by issuing a RSCR-tFG (read 
system controller registers, configuration) instruction, directed 
at the bootload controller. Among the information returned by 
this instruction is this port number. Knowing this number allows 
the SSCR-IER (set system controller registers, interrupt enable 
register) instruction to be issued, setting the interrupt mask 
assigned (via the EIMA 1 switches) to that port. Once this 
mask has been set, masking all interrupts, the inhibit bit is no 
longer used, preventing a lockup fault. The interrupt vector is 
now filled with NOP pairs, causing all interrupts to be ignored. 
The fault vector is set to ignore timer runout faults. The timer 
(processor timer register) is also loaded with a very large 
number. The interrupt mask is now set to enable all interrupts, 
as they will be effectively ignored. 

bootstrap1 now obtains an 10M PCW left by BOS in the first 
words of the 10M mailbox to determine the tape channel and drive 
number of the Multics System Tape (MST). PCWs and IDCWs to be 
used ~ the tape-reading routine in the first record of 
bootstrap1 are appropriately initialized,. A loop is now entered 
that reads in all of the remaining records of bootstrap1, using 
these PCWs and IDCWs. The length of bootstrap1, i.e., the number 
of tape records to be read, is determined from the SLT entry of 

1 EIMA stands for Execute Interrupt Mask Assignment. There are 
four EIMA switches on a Series 6000 system controller. Each 
switch is associated with a mask, which masks the system 
controller interrupt cells. Each switch selects a port on the 
controller. If an interrupt cell is set, and unmasked by the 
corresponding bit of a given mask, the port selected by the 
corresponding EIMA switch is sent a signal to create an 
interrupt. 
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bootstrap1, which, as you will recall from the last section, 
precedes bootstrap1 on the MST and is loaded as part of it. 

When all of bootstrap1 is read in, the switches are checked 
for a return to BaS and a descriptor segment is set up at a fixed 
location relative to the beginning of bootstrap1. Descriptors 
are constructed for all of the hardware-defined areas of main 
memory (DATANET 6600 FNP mailbox, the 10M mailbox, the bulk store 
mailbox, fault and interrupt vectors, floating fault vector) and 
the configuration deck. The address of the 10M mailbox was 
supplied by BaS in an index register. All of these other areas 
are assumed to be at known locations. these segments are all 
permanent supervisor segments. The Segment Loading Table (SLT) 
and its Name Table are laid out as areas following the descriptor 
segment. Descriptors are constructed for them, and they too are 
permanent supervisor segments. The Physical Record Buffer is 
laid out following the SLT Name Table, and descriptors describing 
it and bootstrap1 are constructed, being the first two 
descriptors for initialization segments. The pointer registers 
are loaded with pointers to the base of several of these 
segments. A transfer instruction is executed whose final address 
was prepared via appending, causing appending mode to be entered. 

The interrupt vector is now filled with SCU-TRA pairs, 
ignoring all interrupts but causing machine conditions to be 
stored. The fault vector is set to cause a fatal error if any 
fault is encountered except timer runout, which is ignored. 
These SCU-TRA pairs use ITS pointers to prepare their final 
addresses. These ITS pointers are set up following the fault and 
interrupt vectors. The actual SCU and TRA instructions never 
change from this point on. Only the ITS pointers are changed. 
The segment loading table is initialized with a template 
describing all segments set up so far. A more powerful 
tape-reading routine, which is part of bootstrap1, is now 
initialized. This initialization includes priming its buffer 
with the next tape record. The amount of available main memory 
is ascertained from the configuration deck MEM cards. The data 
switches are again checked for a possible return to BaS. 

Collection 1 is now read in. Preceding each segment is the SLT 
entry for this segment, which is itself preceded by a header word 
glvlng its length. The SLT entry is loaded into a standard 
location and the names and possible ACLs and directory pathname 
that follow the SLT entry are copied into the name table. A 
segment number is allocated to the segment being loaded,with the 
next sequentially available segment number, starting at zero for 
supervisor segments and 400 for initialization segments. Checks 
are made that the segment being loaded follows in the proper 
sequence of text and linkage segments, i.e., that each text 
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segment with the link_provided bit on is followed by exactly one 
linkage segment. The first name of the segment is checked 
against a table known as interesting __ names, which directs 
special-case action to be taken for certain segments. This 
action consists of either remembering the segment number of the 
segment being loaded for the transfer to bootstrap2, or setting 
the length of the segment based upon the configuration deck 
(e.g., zeroing the length of d190_seg if no DSS190 subsystem is 
configured and setting the length of tty_buf from the TTYB card). 

Space is allocated for the new segment. This space is the 
next available space in main memory of the length specified by 
the possibly-adjusted bit count, either starting at the low end 
of memory for unpaged supervisor segments, or starting at the 
high end for all others. (See Section I, "Main Memory 
Management"). 

Next, a SDW is created for the segment, using the bit count 
in the SLT entry (which may have been modified by the 
special-casing). This SDW allows read and write access for the 
purpose of loading. The adjusted SLT entry is copied into the 
correct place in the SLT and the number of words specified by the 
MST header word are read into the new segment. (This header word 
precedes the text of the segment and tells how many words are 
written on the tape as opposed to the bit count, which tells how 
much space should be allocated.) Finally, the access bits 
specified in the SLT entry, including the encacheability control 
bit, are placed in the SDW. 

A special MST header word signals the end of collection 1. 
At the time this is encountered, bootstrap1 computes the amount 
of main memory remaining between the supervisor segments and the 
temporarily-unpaged segments and places its address and length in 
the SLT header. The data switches are again checked for a 
possible return to BaS. Pointer register seven (SB) is made to 
point to the base of the segment pds, whose segment number was 
remembered during t he special-casing j.n loading. The· time r 
register is reloaded with a very large number and the processor 
tag of the bootload CPU is ascertained with an RSW instruction 
(which must be done by a privileged procedure). The processor 
tag and the segment numbers of the SLT and the SLT manager (the 
latter's segment number was also remembered during the special 
casing) are loaded into index registers. A transfer is made to 
the first word of the procedure bootstrap2, whose segment number 
was similarly remembered. 

At this time, the fault and interrupt handlers of bootstrap1 
are still referenced by the fault vector, but are not used except 
in case of error. 

2-4 AN70 



bootstrap2 AND PRELINKING 

bootstrap2 is the program transferred to by bootstrap1. It 
is loaded by bootstrap1 with the rest of collection 1. It is 
responsible for setting up the PL/I environment, i.e., setting up 
enough mechanisms so that PL/I programs can be used. The 
principal features of this environment are stacks, stack segments 
(with various pointers in their bases, see the Runtime 
Environment PLM, Order No. AN84, for information on the PL/I 
environment), and symbolic references. 

bootstrap2 begins by initializing the linkage pointer 
register (LP) to the base of its own linkage section. This is 
possible without SLT searching because the linkage section of 
bootstrap2 follows bootstrap2 on the MST and both are 
initialization segments and hence, their segment numbers are 
contiguous. This allows bootstrap2 to make symbolic 'references 
after prelinking has occurred. Next, a stack frame is set up. 
This involves the initialization of stack begin and end pointers 
in the PDS, used as the stack (recall that pointer register 7 
points to the base of the PDS at this time) and the in-line 
execution of a standard Multics push macro. This having been 
done, a stack frame is available for use and others can execute 
push and return macros when called by bootstrap. 

The program sl t_manager is used by prelinking and the 
remainder of initialization to build SLT entries and scan the SLT 
for segment names. It must be initialized next by passing it the 
segment number of the SLT, which was passed by bootstrap1. It 
then scans the SLT (which contains a pointer to the name table) 

.for the segments lot and lot_maintainer, which it us~s during 
prelinking. All of these segment numbers are stored in impure 
storage in the procedure sIt_manager. The call to sIt_manager is 
made via a transfer vector at the beginning of that program. All 
calls made between bootstrap2, sIt_manager, lot_maintainer, 
pre_link_1 and pre_link_2, until prelinking is complete, are made 
via such transfer vectors at their respective beginnings as links 
for symbolic references have not been resolved. 

Once the initialization of the SLT manager is complete, 
bootstrap2 calls the SLT manager (again, of course, via the 
transfer vector at the latter's beginning) to ascertain the 
segment numbers of pre_link_1 and pre_link_2. pre_Iink_1 is now 
called, with the segment number of theSLT manager as an 
argument. pre_link_1 is responsible for scanning the entire SLT 
to locate all links that can be snapped at this time. It is also 
called after the loading of collection 2 to snap all links that 
can be snapped at that time. pre_link_1 begins by calling the 
SLT manager to obtain the segment numbers of the LOT maintainer, 
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the LOT segment, the hardcore combined linkage segments 
(active_sup_linkage and wired_sup_linkage), the descriptor 
segment, the SLT, pre_link_2 (the second half of the prelinker), 
and the initialization combined linkage segments 
(active_init_linkage and wired_init_linkage). pre_link_1 scans 
the SLT entries for all of the supervisor segments loaded so far 
(segment numbers begin at zero) and then all of the 
initialization segments loaded so far (segment numbers begin at 
400). The highest and lowest segment numbers in each category 
are determined from the SLT header. The SLT entry of each 
segment is inspected to see if the link_provided bit is set. 
This bit is turned on by the use of the linkage keyword in the 
MST header file. It indicates that a separate linkage segment is 
provided for this segment, whose segment number is in the segno 
field of the SLT entry. If there is a linkage segment provided, 
the combine_link bit is inspected to see if that linkage section 
should be combined into an appropriate combined linkage segment 
or left self-standing. 

The choice of an appropriate combined linkage segment into 
which to combine a linkage section is based upon whether the 
o\\l'Oing segment is a supervisor or initialization segment and 
whether or not the link_sect_wired bit in the SLT entry for the 
segment is on. The appropriate selection of active_sup_linkage, 
wired_sup_linkage, active_init_linkage, and wired_init_linkage is 
made from these considerations. If the linkage section is to be 
combined, it is combined in the appropriate linkage segment and a 
pointer to that section of the combined linkage segment is placed 
in the LOT entry (in the segment lot, which is the linkage offset 
table for the supervisor) for the segment whose linkage is being 
processed. If the linkage is not to be combined, a pointer to 
the uncombined linkage section is placed in the LOT. A bit 
(slte.pre_linked) is set in the SLTE of the segment so that 
pre~link_1, when called again after the loading of collection 2, 
does not reattempt to combine the linkage for this segment. 
After the LOT entry has been set, the appropriate pointers at the 
head of the linkage section are initialized, just as in normal 
linking. The procedure 10tJllaintainer, \-lhich is used by the 
normal system linker, is used for many of these functions, but it 
is called via transfer vectors at its beginning for these uses. 

pre_link_1 causes all of the LOT entries for procedures and 
data bases loaded in collection 1 to be set and all of the 
linkage of collection 1 that must be combined to be combined. 
After this has been done, the linkage sections of all of these 
procedures and data bases are scanned for unsnapped links. (The 
linkage sections of data bases should not have links, but are 
useful insofar as they are set to contain pointers to the 
definition sections of their owning segments. Use of the 
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pseudo-op movdef in the assembly of these data bases normally 
causes the actual definition section to reside in the linkage 
section as well to avoid its being overwritten when the data base 
is actually used.) During collection 1 prelinking, all links are 
found to be unsnapped. During collection 2 prelinking, after 
collection 2 has been loaded, all links that were snapped during 
collection 1 prelinking will be found to be already snapped. 
pre_link_2$force_link is called to snap each link. This 
procedure is responsible for locating the target of each link, 
using the SLT manager to convert an external name into a segment 
number for most links and scanning definition sections of text 
segments for' inbound symbol names. This procedure contains code 
to search definition sections for symbols, identical to that in 
get_defptr (see get_defptr in the Binding, Linking, £nd Makespace 
Management PLM, Order ~o. AN81 for details on definition 
sections) used by the standard system. linker. Links that 
cannot be snapped at this time, i.e., which either reference a 
segment not loaded yet or in error, are left unsnapped. Such 
links are enumerated by the MST Checker Program (see check_mst in 
the System IQQls PLM, Order No. AN51) as "not found." It is 
legal and legitimate for programs in collection 1 to reference 
programs and data bases in collection 2. Only the actual 
execution of such referencing code before collection 2 prelinking 
is illegal. Attempts to make such references cause linkage 
faults, which are directed to the unexpected fault entry of the 
interrupt interceptor, causing system failure. 

After the prelinking of collection 1 is complete, control is 
returned to bootstrap2. bootstrap2 can now make symbolic 
references and proceeds to do so at once. The bootload CPU tag, 
passed by bootstrap 1 in an index register, is stored at 
scs$bootload_cpu_tag, in the system communication segment (SCS). 
This information is needed at reconfiguration time. The pointers 
to the required operators in the p11_operators_ operator segment 
are stored in the correct places in the stack headers of the PDS, 
which is currently being used as a stack, and the PRDS (segment 
prds), which is used as a stack at interrupt, page fault, and 
scheduling times. A pointer to the linkage offset table (LOT) of 
the supervisor, segment lot, is placed in the appropriate place 
in both of these stack headers. A pointer that would cause a 
fatal fault (out of segment bounds on descriptor segment) is 
placed in the position in both stack headers where a pointer to a 
signalling procedure is expected. This causes system failure if 
any attempt is made to signal any condition before the fault 
mechanism is fully initialized in collection 2 initialization. 
The SDW for bootstrap1 is also zeroed at this time as a matter of 
cleanliness. 
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Finally, a call is made to initializer, a PL/I program that 
is a permanent supervisor segment. This procedure, the first 
PL/I program that runs, dispatches further calls for" 
initialization. One of its last actions is to delete all of the 
initialization segments. Hence, it must be a supervisor segment. 
Initializer calls init_collections$init_collection_1 to 
initialize the data bases and subsystems loaded in collection 1. 
Initializer then calls segment_loader to load and prelink 
collection 2 and init_collections$init_collection_2 to initialize 
the data bases and subsystems in collection 2. Finally, a call 
is made to exit the supervisor environment into the 
administrative ring. 

The loading of collection 3, a fairly easy task, is one of 
the functions performed by collection 2. 

The rest of this section is devoted to the initializations of 
the various subsystems and data bases loaded in collection 1. 

COLLECTION 1 FAULT INITIALIZATION 

At this point in collection 1 initialization, the fault and 
interrupt vectors still point into bootstrap1, whose SDW was 
destroyed just a moment ago. There are no legal faults or 
interrupts at this time. The first call made by 
init_collections$init_collection_1 is to 
initialize_faults$fault_init_one to set up another temporary 
fault-handling policy and do some permanent initialization of the 
fault-handling mechanism. 

First, the read switches (RSW) instruction is issued to 
ascertain which port on the bootload CPU is connected to the 
bootload system controller. From this information, a word that 
produces an effective address (internal segment offset) whose top 
three bits are this port number, is placed in sys_info$clock_ and 
prds$proc_contr_ptr. This allows the clock in the bootload 
system controller to be read at any time after this. The clock 
is ready by issuing a RCCL (read calendar clock) instruction, 
which indirects through sys_info$clock_. This measure is done 
now so that syserr, the operator's console error logging routine, 
can print out the time of day in its messages before the full CPU 
port-system controller port correspondence is determined. 
prds$proc_contr_ptr is set so that wire_stack, which is called in 
case of a syserr call, can set system controller masks. The 
value of these masks before they are initialized are the 
assembled-in values in the segment scs, a fully open channel mask 
and a fully closed interrupt mask. 
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Next, all interrupt ITS pairs in the fault vector segment 
are filled in, directing all interrupts to wired_fim$ignore, 
which summarily does an RCU when such an interrupt happens. The 
SCU data is directed at prds$ignore data. Note that the actual 
SCU and TRA instructions created by bootstrap1 are not changed; 
only the ITS pairs they reference are modified. All fault ITS 
pairs are now set to route all faults to ii$unexp_fault, storing 
SCU data at prds$sys_trouble data. Once all fault ITS pairs are 
set to this, lockup and timer-runout faults are redirected to 
wired_fim$ignore; timer runouts' are meaningless until traffic 
control is initialized after collection 3 has been loaded. The 
mechanism to signal faults such as lockup is not yet ready. 
Connect faults are directed to wired_fim$connect_handler at this 
time. They are set up now since connect faults are part of the 
paging mechanism, which is initialized in collection 1 (although 
connect faults should not be received until other processors are 
configured in.) 

Page faults (direbted fault 1) are directed to 
page_fault$fault, their final destination, as there is paging 
before collection 2 is loaded. Segment faults (directed fault 0) 
are also directed to their final destination, 
fim$primary_fault_entry, as there are segment faults in 
collection 2 initialization before the remainder of the fault 
mechanism is initialized in collection 2. (Segment faults occur 
as soon as segments can be initiated. See "Root Directory 
Initialization" in Section III.) 

Next, several programs (ii, fim, wired_fim, 
emergency_shutdown, restart_fault, page_fault, return_to_ring_O_) 
are modified by storing selected pointers in their texts. This 
is done by temporarily changing the access in the SDWs of these 
segments to allow such writing, storing the necessary pointers, 
and then restoring the access. The reasons for storing such 
pointers are several. Generally, these programs receive control 
from fault and interrupt vector TRA instructions. To save the 
pointer registers, these programs cannot use instructions that 
involve pointer registers in their address preparation as the 
contents of the pointer registers are unknown, and the pointer 
registers cannot be loaded until saved. Hence_ the only legal 
type of address preparation is that involving operands and 
indirect words relative to the text segment (instruction bit 
29 = 0) and ITS pointers. Since these procedures must be shared, 
pointer registers and other data cannot be stored in their text. 
Hence, at initialization time we store ITS pointers to the 
locations where pointer registers are to be saved in the texts 
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ITS pointers to allow the ordinary (A, Q, index, etc.) registers 
to be stored in the same way are also set up.~ These procedures 
also frequently restore machine conditions stored at fault or 
interrupt time. In such sequences, the last instruction must be 
a Restore Control Unit (RCU) instruction. Again, since the 
pointer registers contain unknown quantities (viz., their 
contents at the time of the fault or interrupt) immediately 
before restoration of the control unit, text-imbedded pointers 
must be used for the address preparation of the RCU instruction. 
Also, these procedures ascertain their own settings of the 
linkage pointer (LP) register from text-imbedded pointers. These 
procedures cannot use the LOT to determine their linkage pointers 
as they have no way of locating the LOT, as no stack can be 
located until the correct stack segment (pds, prds) can be found. 
They find the stack segment via links, requiring LP to be set. 
The procedure return_to_ring_O_ also requires a text-imbedded 
pointer, this time to the first word of restart_fault (the latter 
is a gate segment, with a call limiter of 1). These programs are 
used by the fault-restarting mechanism (see the Process and 
E~oce~sor Control PLM for information on the fault-restarting 
mechanism), which can operate in the user ring and provide an 
orderly return into ring O. This is discussed in detail in 
"Hardcore and Outer Ring Segment Numbers" in Section III. Notice 
that the SDWs describing both of these procedures 
(return_to_ring_O_ and restart_fault_) by their hardcore segment 
numbers must also allow access in the user ring. 

HARDCORE 1/0 AND OPERATOR CONSOLE INITIALIZATION 

Once the fault mechanism has been initialized for 
collection 1, allowing at least returns to BOS that can be 
analyzed in case of difficulty, the next area to be initialized 
is hardcore 1/0. Hardcore 1/0 must be initialized so that the 
operator's console can be made operative as early as possible, so 

1These ITS pointers, like the ones referenced by the fault and 
interrupt vectors, point to locations in the pds and prds 
reserved for the saving and restoring of SCU data. Although 
these locations have the same address (segment number and offset) 
in all processes and to all processors, the binding of this 
segment number is to a unique per-process segment (pds), or a 
unique per-processor segment (prds). Thus, the actual storage 
location referenced as this "shared" address is process or 
processor-dependent. 
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that informative error messages can be printed out in case of 
difficulty. Furthermore, the general aim of collection 1 is to 
make paging operative and 1/0 for the storage system is necessary 
for this end. 

Initialization of the 10M manager and its 10M mailbox is the 
first and most important step of hardcore initialization. The 
device table array is zeroed. All per-10M pointers are set to 
null until the per-10M initialization, which is to follow. The 
absolute address of the 10M mailbox segment is stored in the 10M 
data segment (iom_data). The 10M stop LPW and stop DCW (see the 
~~ervi~ InputlOutput PLM for information on the use of LPW and 
DCW control words) are set up. A loop is now entered for all 
configured IOMs doing a per-10M initialization. The 10M tag, 
mailbox, and status queue pointers (special and system-fault) in 
the 10M data segment are set up for each 10M. Locks, IMWs, PCWs 
and other miscellaneous quantities are zeroed. The mailbox of 
every channel is initialized with zero SCWs, and zero DCWs. The 
"stop LP\v" (stopping channel operation if used) is put in the LPW 
of the mailbox of each channel. The pointer to the interrupt 
handler for each channel is initialized to null. The connect 
operand word (COW) for each 10M is set up. A connect operand 
word contains the port number (on the system controller 
containing the COW) of the device to be connected. This number 
is ascertained from the CONFIG deck. The connect channel LPW and 
DCW are set up_ The LPW for the connect channel for each 10M is 
set up. The LPW is set to point to a single PCW pair. 

The two overhead channels of interest for each 10M (system 
fault and special status) are next to be initialized. 
Nonexistent "devices" supposedly using these channels are 
assigned device indices by calls to iom_manager$iom_assign. This 
allows the proper entries in the 10M manager to be assigned as 
interrupt handlers for these channels. DCWs are set up for the 
special and system-fault status queues, and are stored in the DCW 
and SCW slots in the mailboxes for these channels, which do not 
use SCWs. LPWs are set up to replenish the DCW from the SCW 
slot, with a "no-change" bit, so that the same DC\I is continually 
refetched, providing circular status queues. 

Any error occuring during 10M initializatin causes a return 
to BOS without a message. The operator console has not yet been 
initialized. It is the next mechanism to be set up. 

Information about the nature of the 
(ASCII or BCD) and its channel number 
ascertained from the PRPH OPC CONFIG card. 
if there is no such card. The configured 
wired log buffer into syserr and dim 

2-11 

operator's console 
and 10M number are 

Defaults are supplied 
partitioning of the 
call regions are also 
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determined and the segment oc_data is laid out correspondingly. 
Free area pointers used to allocate buffers in these regions are 
initialized to point to their respective beginnings. Clock times 
in the syserr data area are initialized. The 10M manager is 
called to assign a device index to the operator's console and set 
up ocdcm_$int_handler as the handler for operator's console 
interrupts. The absolute address of the syserr data region is 
stored in the data segment, for use in fabricating DCWs. The 
necessary DCWs for turning on the audible alarm, reading and 
writing data, and causing carriage returns on the operator's 
console are set up. A BCD carriage return escape sequence is 
also set up. If the type of the operator's console requires it, 
a prefabricated string is output to it at this time to set the 
tabs on this console. The operator's console can now be 
considered operative, although the logging mechanism is not yet 
set up. 

At this point 1/0 assignments can be made for hardcore DIMs 
and operator messages can be typed out. The DIMs of the storage 
system have not yet made their assignment calls. This is done at 
the time page control is initialized. 

CONFIGURATION INITIALIZATION 

Although some 1/0 device control routines (DIMs) have 
reported to the 10M manager at this time and set up interrupt 
handlers, all interrupts are still being ignored. To utilize 
interrupts, the relation between CPUs and system controllers and 
the various port assignments must be determined. This 
determination allows masks and port addressing words (words that 
may be indirected through to direct commands to given system 
controllers) to be constructed. ~rthermore, the amount of 
available memory must be determined, and its onloff status, to 
allow page control to be initialized. Variables used by 
reconfiguration must be set to reflect the initial configuration 
of the system. The configuration specified by the configuration 
deck must be verified to the fullest extent possible by 
interrogation of processors and system controllers with the RSW 
and RSCR instructions, respectively. It is the goal of 
configuration initialization, performed by scas_init and 
scs_init, the next two procedures called by 
initialize_collections$init_collection_1, to perform all of 
configuration initialization .. 

SCAS stands for system controller addressing segment. To 
motivate its need, we digress briefly for a discussion of system 
controller addressing. Most instructions encountered by a 
Multics CPU refer to data in main memory_ The appending process 
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converts a segment number and a word number into an ~bsolute 
address if no fault is taken in address preparation. This 
absolute address refers to sone location in main memory. As main 
memory is distributed amon~ the configured system controllers, 
the CPU port lo~ic (similnr lo~ic exists in other active modules, 
e. ~., the rOft!) must decide which system contt"oller contains the 
data being referenced. This decision is made based upon the 
8bsolute address computed and the port assi~nment switches on the 
pr'ocessor maintenance panel. A data request is then directed to 
the appropriate system controller. A Multics system controller, 
however, has other functions besides its principal function as an 
interface to main memory. Interrupt cells, masks td nask these 
cells, and execute interrupt mask assignment (EIf'lA) swi tches to 
direct the interrupts set in these cells to processors also 
reside in the system controller. Furthermore, a controller 
serves as a routing station for connect signals sent by a CPU 
issuinG a connect (ClOC) instruction to other active c10dules. A 
system controller can also be asked for clock time or to set or 
report the contents of many of its internal registers, including 
its confi~uration switches. The CPU instructions that cause 
these specialized commands to be issued to a system controller 
(RSCH, SSCR, HCCL, SfvIIC, CIOC, Ht'1Cf'vl, St1CI'1) must somehoH specify 
to which system controller the executin~ processor is to direct 
the specialized com~and--that is, out of which processor port the 
specialized command is to be sent. For the set memory interrupt 
cell (Sr1IC), read calendar clock (RCCL), set mask (Sl'1Cl'1), and 
rea d met s k (R H C f1 ) ins t r u c t ion s, the pro c e s s 0 r po r t log i c ins p e c t s 
the top three bits of the ~[f.~Ct..hY..€2. address (internal segment 
offset) computed by the i~struction and directs the specialized 
command out of the port selected by those bits. For the RSCH and 
S3CR (and also CIOC) instructions, however, the port out of which 
the specialized cOQmand is to be directed is selected based upon 
the ~~~Ql~t~ address cooputed by the instruction, as for most 
other instructions. Hence, to use these instructions, which in 
their most general foem cequest configuration information from a 
systeM controller, a technique must be peesent for creating an 
absolute address lyin~ withi~ the memory contained Hithin a given 
system controller. 1'·lultics provides a paged segment, the SeAS, 
whose nth pageCstarting at zero) has an abSolute address within 
the 'nemory cornnanded by the system controller on port n. The 
areas pointed to by the pa~e table woeds (PTWs) of this segment 
are not dedicated to this segment. Other pages or segments can 
move in and out of these areas. As the SCAS is accessible only 
in ring 0 and no data is either stored or read throu~h this 
se~ment, it is not a security problem. 

The first task of scas init is to construct the seAS. A 
segment n.ame d seas is loaded as part of collection 1 . It i.s 
unpa.f\ed and 64 ~JO rds long. s ca~3 init builds a pap;e table in 
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this segment, which later is the page table for the SCAS. The 
segment named scas in which this table is being constructed 
is not the scas. scas_init scans the configuration deck for MEM 
cards de~cribing system controllers. These cards describe system 
controller port assignment, memory size, and on/off (currently 
configured/not configured) status. For example, 

MEM C 128. ON 

says that a system controller containing 128 (10) pages (1024 
(10) words each) of memory is attached to port 21~ of all 
active modules, and is currently part of the configuration. The 
order in which these cards appear in the configuration deck must 
correspond to the order of memory addresses they represent. They 
must not overlap and must (with the OFF cards considered) be 
contiguous. Duplicate cards for the same controller ar~ flagged. 
The size of each controller (from the second parameter on the MEM 
card) and the starting address (the sum of all previous sizes) of 
each controller are stored in the SCS (system communication 
segment or system configuration segment, as you prefer). A page 
table word for the corresponding port, pointing to the first word 
of the memory in that controller is put in an appropriate place 
in the segment scas. The memory stated as being the bootload 
memory (the first MEM card encountered) is checked to be declared 
ON, and its port number remembered. The identity of all 
processor ports to which it is claimed that system controllers 
are attached is remembered. Finally, the unpaged bit in the SDW 
for the segment scas is set and a bounds field describing an 
eight-page segment placed in that SDW. Thus, pointers 
referencing the segment scas now reference the SCAS, the system 
controller addressing segment, which has "a page in every port." 

Next, the bootload processor is interrogated with an RSW 
instruction (this does not involve any of the system controller 
addressing techniques described) and its CPU tag compared with 
the tag specified on the first CPU configuration card. If they 
disagree, the first CPU configuration card, which must be for the 
bootload processor, is in disagreement with the tag switches of 
the bootload processor about the identity of the boot load 
processor. Next, data about CPU port interlace is extracted from 
the data returned by the RSW instruction a.nd copied into the SCS. 

!1Letters on CONFIG cards representing ports are assigned as 
follows: A is port 0, B is port 1, etc., through H. Letters 
representing CPU tags, however, assign A to1, B to 2, etc. 
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Another variant of RSW is issued to interrogate the 
processor port logic as to how much memory is attached to each 
port. For each port stated to have been configured, this data is· 
validated against the data in the SCS, which was ascertained from 
the configuration deck. An RSCR instruction is issued to the 
bootload memory to ascertain which port of the system controller 
made this request. If this number disagrees with the port number 
specified on the CPU card for the bootload CPU, an error is 
indicated. Finally, a check is made that only one EIMA switch is 
set on the bootload memory, and that it is set pointing at the 
bootload processor. This ensures that the bootload processor and 
only the bootload processor receives all interrupts until other 
processors are configured in. 

The system configuration segment (SCS) contains all data 
relating to processor-system controller port assignments. It 
also contains masks for setting system controller interrupt masks 
and arrays of interrupt handlers and arguments for the same to be 
used by the interrupt interceptor. The SCS is used heavily at 
reconfiguration time, when it is protected by a lock. The 
procedure scs_init, which runs immediately after scas_init, is 
responsible for initializing all of those items in the SCS not 
yet initialized by scas_init. 

First, several redundant (with respect to scas_init) checks 
are made about the configuration cards for the boot load processor 
and memory. Some interrupt initialization is performed. We 
delay discussion of it briefly. 

Next, a loop, per-processor port (which is to say, per 
possible system controller) is executed. For each controller 
possible (i.e., each processor port), a port addressing word 
(element of the array scs$port_addressing_word) is set up. This 
is a word whose top three bits contain the port number. When 
ihdirected through by address preparation for SMIC, SMCM, RMCM, 
or RCCL, it causes the system controller specified to receive a 
specialized command. Also, an array of ITS pointers (actually 
ITS pointers with further indirection), scs$proc_contr_ptr, is 
set to point at these words. This second set of pointers is 
retained for compatibility with earlier versions of the Multics 
hardware when SMIC, etc., used the same addressing technique as 
currently used by RSCR. A third array of pointers is 
constructed, pointing to the 1024*nth word of the SCAS, for 
addressing the nth port. This array, scs$system_controller_ptr, 
can be indexed and indirected through for SSCR and RSCR 
instructions, the index specifying the processor port out of 
which the specialized command is to be sent. The pointer 
sys_info$clock_, initialized for early use of syserr, is 
redundantly initialized to contain the bootload memory port 

AN70 



number on the system active modules for use in clock reading. 
This is done only for the bootload system controller. As each 
configured system controller is processed, the next processor 
appearing in the configuration deck (on a CPU card) is assigned 
as its control processor (the first EIMA switch of the controller 
must point at that processor). The system controller port to 
which this processor is connected (must be the same for all 
controllers) is saved. A check is made that no more than one 
CONFIG card for the same CPU (same tag) has been supplied and a 
table giving controller port, indexed by CPU tag, is constructed. 
When there are more system controllers than CPUs (there must be 
more or the same number) each system controller processed after 
the last CPU has been processed is assigned the last processed 
CPU as a control processor (the actual configuration must agree 
with these assignments). A check is made that there are not more 
processors than system controllers. 

INTERRUPT CONFIGURATION INITIALIZATION 

When all of the system controller and processor data has 
been processed in this manner, interrupt configuration 
intialization is performed. Although some of this processing is 
performed before the CPU/system controller initialization, it is 
logically one step. 

The idea of this interrupt initialization is to construct 
several quantities: the channel mask, which is set in system 
controllers, describing which of their ports are in use; the 
interrupt masks, which are masks set in the system controllers 
via SMCM instructions, allowing different interrupts at different 
times; and the array of interrupt handlers to be used by the 
interrupt interceptor (ii) at interrupt time. A fourth quantity 
constructed at this time is the simulate pattern, a quantity 
that, when set in the interrupt cells of the bootload system 
controller, causes all possible critical interrupts to happen. 
(See the Reconfiguration PLM for further information on this 
quantity.) 

The configuration deck is scanned for all cards that 
describe active modules and those that can create interrupts (set 
interrupt cells in system controllers). As each device (10M, 
Bulk Store, or CPU) that is connected to a system controller port 
is processed (the processing for CPUs is done by the loop 
described previously, that assigns control processors) a bit is 
set in the channel mask being constructed, indicating that port 
is in use. 
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Interrupt cell assignments, i.e., which interrupt cell in 
system controllers are used for what purpose, are described by 
configuration card parameters for devices that produce interrupts 
and by a special card (the INT card) for software interrupts. 

There are currently six software-created interrupts: 

1. stop--used to force a process into the traffic controller 
to enter the "stopped" state. 

2. Preempt--used to force a processor into the traffic 
controller to possibly give up its process. 

3. Interprocess Signal (IPS)--used to force a process to 
respond to an interprocess signal (see the Prpcess and 
Processor Control PLM for details on the use of IPS 
interrupts. 

4. Processor Initialize--used to cause a processor being 
configured in to come to life. 

5. System Trouble--used to force all processors into the 
interrupt interceptor, and all to stop, except the 
bootload processor, which returns to BOS. 

6. Syserr Log--used to cause an arbitrary nonidle process to 
take an interrupt, to copy data from the wired syserr 
buffer into the paged log partition. 

The nature of an interrupt cell specification on either the 
INT card or 10M, D355 or BULK cards, is that of a (possibly 
degenerate) three digit octal number. The second and third 
digi ts specify the interrupt ce,ll associated wi th the specified 
interrupt. The first digit gives the "interrupt state", or 
masking level, associated with this interrupt. State zero means 
this interrupt can be taken no matter what level the system is 
masked at. State one means that it can be taken if the system is 
masked at level 1, 2, or 3. State 2 means that it can only be 
tak~n at level 2 or 3, state 3 means level 3 only. The four 
masks corresponding to level 0, 1 , 2, and 3 are known as 
sys_Ievel, page_level, swap_level, and open~level, respectively. 
Only the system-trouble interrupt may be taken at sys_Ievel (it 
has state zero). All interrupts may be taken at open level. As 
each interrupt cell assignment is processed by scs_init, the 
state assignment of that interrupt is determined, stored in an 
array (interrupt_state) in the SCS, and used to turn on a bit in 
a per-state interrupt cell assignment word, which is used to 
construct the masks. As each interrupt cell assignment is 
processed, the corresponding element in the per-interrupt cell 
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array scs$int_hlrs (interrupt handlers) is set to a pointer to 
the entry point that is to be called by the interrupt interceptor 
upon occurence of this interrupt. Furthermore, an array of 
arbitrary arguments for interrupt cell (ses$argument) is set up. 
These arguments, set by scs_init now, are passed by the interrupt 
interceptor to the interrupt handler at the time of an interrupt 
and their meaning differs depending upon the nature of the 
interrupt. Patterns for sending to system controllers with a 
SMIC instruction, for generating the six software interrupts are 
constructed as the INT card is processed. This pattern is used 
when reconfiguration requires throwing an EIMA switch on the 
bootload system controller, and its use generates all possible 
hardware interrupts. See the Reconfiguration PLM for more detail 
on the use of this pattern. 

When all interrupt cell assignments have been proc~ssed, the 
four masks are constructed from the per-interrupt-state 
information gleaned from the cell assignments. scs_init now 
returns. 

After the return of scs_init, 
initialize_faults$interrupt_init is called. As this procedure 
modifies the ITS pointers for interrupt transfer vectors, its 
first step is to mask to sys_level, using the newly-constructed 
sys_level mask to mask out all interrupts except system trouble. 
The state information in scs$interrupt_state is now inspected. 
All inter.rupts declared as having state zero are sent to 
ii$paging_interrupt_entry, all others to 
ii$pageable_interrupt_entry. Machine conditions are set to be 
stored at prds$interrupt_data and pds$interrupt_data, 
respectively. Preempt and sys_trouble interrupts are directed 
from the interrupt vector directly to their appropriate handlers. 
The interrupt interceptor is avoided for two different reasons l 
for these two interrupts. Processor initialize interrupts are 
directed to wired_fim$ignore. These interrupts are redirected at 
the time processors are added, during reconfiguration or later 
initialization. Finally, per-processor information in s~gment 
prds (the bootload CPU processor data segment) is set up via a 

1preempt interrupts require per-process data to be saved, as 
the processor will usually give up the process as a result of 
this interrupt. Hence, preempt cannot be treated as a normal 
non-paged interrupt, which would set up a frame on the prds. 
sys_trouble should modify as little data as possible, and use as 
few mechanisms as possible, for the system may be partially 
non-functional at the time it is issued, and information for 
crash analysis must be left as it was when the interrupt was 
sent. 
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call to prds_init. This information includes pointers that can 
be indirected through for system-controller addressing (set up in 
the interim by initialize_fault$fault_init_1, as was described in· 
Section I, for interim mask setting), processor tag information, 
and patterns to be used for s~nding connects to other processors. 
Only after the SCS has been initialized can this information be 
ascertained. Finally, initialize_faults$interrupt_init unmasks 
(i .. e., sets the "open_level" mask in the bootload system 
controller), and returns. 

One other minor detail performed 
intialization is the determination of local 
difference from Greenwich Mean Time. 

during 
time 

configuration 
zone and its 

By the end of configuration initialization the interrupt 
mechanism is fully operative. Note that the interrupt ,mechanism 
was not necessary, however, for the printing of syserr 
(operator's console) messages, which could function without it. 

The next step in initialization is the initialization of 
page control. 

INITIALIZING PAGE CONTROL 

Initializing page control is the last and most important 
step in collection initialization. This initialization 
consists of three stages: setting up of the System Segment Table, 
containing most of the data bases used by page control; 
initializing the storage system device control routines and the 
accessing or creating of the FSDCT; and paging all segments that 
have to be paged. These three major functions are performed by 
the procedures init_sst, initialize_dims, and make_segs_paged, 
respectively. Other functions, performed along the way, will be 
described. 

~ettinK-~~he System Segment Table (SST) 

The SST contains several data bases: 

1. The SST proper, consisting 
information, one-of-a-kind 
flags, and the like. 

of meters, configuration 
counters and indicators, 

2. The CNT (counters), consisting of mainly meters, but also 
some counter-type information about core usage and a 
table keeping track of temporarily-wired procedures. 
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3. The Core Map (CMP), which is an array with an element for 
each page of configured (ON or OFF), core, describing the 
contents and status of that page. These entries (Core 
Map Entries, or CMEs) are threaded into a list maintained 
by the page replacement algorithm. 

4. The Paging Device Map, which is an array with an element 
for each record of paging device, describing the contents 
and status of that page. These entries (Paging Device 
Map Entries, or PDMEs), are threaded into a list 
maintained by the Paging Device replacement algorithm. 

5. The Paging Device Hash Table, which is used at segment 
activation and deactivation time to ascertain if a given 
disk record has a copy on the paging device, and if it 
does, its location. 

6. The AST or Active Segment Table, consisting of Active 
Segment Table Entries (ASTEs) describing the status of 
each active segment. Part of each ASTE is its Page 
Table. 

7. Page Tables--Although each ASTE contains a page table, 
the page tables are a somewhat independent (of the AST) 
data base. The page table words (PTWs), which make up 
the Rage tables, are maintained by page control and used 
by the hardware. 

The initialization of the SST consists of organizing these 
various data bases. First, fixed constants in the SST proper are 
set up, e.g., the sizes of the different AST entries, the 
absolute address of the SST, etc. Space is allocated for the 
core map, based upon the system controller information in the SCS 
gathered by scas_init. If there is a PAGE configuration card, 
the existence of a paging device is inferred. The device ID of 
this paging device is transformed into a paging device ID, i.e., 
eight is added to it and the resulting "paging device id" saved 
in the SST. Space is laid out for the paging device map to 
describe all of the records specified as being used by the PAGE 
card. The pointer sst.pdmap, which points to the base of the 
paging device map array, is set to point to the origin of the 
Paging Device map array (the entry describing record zero) even 
if record zero is not currently being used. Hence, if record 
zero is not being used, this pointer points to some location 
below the actual paging device map and possibly below the actual 
origin of the SST. The Paging Device Map (PDMAP) is started on a 
page boundary in the SST as it is periodically written out to the 
paging device via page control primitives. As the first 
record(s) of the part of the paging device being used will 
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contain this nap, the first PDMAP entry is never used and thus 
contains a small header describing the PDMAP and its location in 
the SST. This header, filled in now and again by initialization, 
can be accessed by the salvager and BOS to allow them to 
interpret the copy of the PDMAP saved on the paging device. The 
paging device hash table is laid out after the PDMAP. Its size 
is a function of the number of PDMAP entries. Information about 
the hash table is also put in the PDMAP header. 

Following the PDMAP hash table, on the next eight-word 
boundary, is the AST. AST entries of the four sizes are set up, 
smallest first, and threaded into circular lists" one list for 
each size. The number of each is determined from the SST 
configuration card. The marker fields (the low six bits of each 
ASTE, which allow it to be distinguished from a PTW in a 
backwards search by page control) are set up at this time. 

Following the setup of the AST, the system controller 
information in the SCS, 'gathered by scas_init, is scanned. All 
complete main memory page frames between the end of the permanent 
unpaged supervisor segments and the first temporarily unpaged 
(to-be-paged) segment (remember, all segments are still unpaged) 
are added to a list of such page frames that is the core used 
list of page control. These page frames are marked as free. The 
core map entries of all page frames in the bootload memory are 
marked as abs-usable (cannot be deconfigured), and all those 
corresponding to page frames occupied by unpaged segments as 
abs-wired, meaning that they cannot be moved. 

Finally, all of the space between the end of the AST, after 
all ASTEs have been set up, and the end of the SST, if it 
contains any integral page frames, is added to the core used 
list. This is done by the procedure free_unused_pages. This 
space is marked as not abs-usable, indicating that it might be 
claimed for the SST at any time, even though this feature is not 
currently implemented. 

One other minor initialization might be mentioned. The first 
eight words of the SST are set to all ones. Page and segment 
control frequently use pointers relative to the SST. In case of 
programming error, wild stores to very low locations in the SST 
are easily detected because of this initialization. 
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Initializing Storage System Devices and the FSDCT 

The procedure initialize_dims is called after the SST has 
been set up. It is responsible for making paging operative. 

The INTK (INTaKT <sic» card left by BOS, describing which 
partition of disk is to be used by Multics and whether or not a 
file hierarchy exists, is interrogated. If the partition name is 
SALV, a switch is set in the SST indicating that the salvager, 
not Multics, is being bootloaded. In any case, the configuration 
cards for all disk storage subsystems are scanned, in order of 
device ID. The lowest ID device having a partition of the same 
name as that specified in the INTK card (usually MULT, if not the 
salvager) is defined to be the "master device." The extents and 
starting record numbers of these partitions are copied into 
arrays in the SST. A call is made to device_control$~nit (via 
the transfer vector page$init) for each storage system device 
(disks and bulk store) configured. These calls are dispatched to 
the initialization entry points of the various device control 
routines. These calls allow the latter routines to report to the 
10M manager for device index assignment and interrupt handler 
recognition. 

Once these device control routines are ready to operate, the 
File System Device Configuration Table (FSDCT) must be accessed 
if this is _a warm bootload, or constructed if a cold bootload. 
The FSDCT contains a bit map of free records on all of the 
various storage system devices, a file map for the root 
directory, information about MULT partitions, a file map for 
itself, and information relating to the relative success of the 
last shutdown and the existence of a paging device. The FSDCT is 
accessible to BOS and the salvager. In either case (warm or 
cold) the first step in the use of the FSDCT is the creation of 
its page table. make_sdw, which allocates page tables for 
segments during initialization, is called to perform this task. 
A page table is allocated, using the max_length supplied in the 
SLT. This page table is not threaded into any AST list as it 
neither has a branch nor is to be deleted at any time during 
shutdown or initialization. The flags aste.gtpd (assuring that 
the FSDCT never goes on the paging device, for several reasons) 
and aste.dnzp ("don't null zero page", assuring that access to 
the FSDCT via PTWs is not turned off should a page of it become 
zero) are set on in the AST entry of the FSDCT. An SDW is 
created and inserted in the descriptor segment. We now consider 
separately the cases of warm and cold bootloads. 

In the case of a warm boot, we must access the existent 
FSDCT on disk. The first page of the FSDCT is defined to reside 
on the first record of the MULT partition of the master device 
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(which, you will recall, is the lowest ID device having such a 
partition). It is guaranteed that the file map of the FSDCT 
resides within this first page. Hence, the device address of the 
first record of the master device MULT partition is inserted into 
the first PTW of the page table of the FSDCT. Now, the device 
addresses of all of the rest of the pages are copied from the 
FSDCT into the page table for the FSDCT. This first reference to 
the FSDCT, to extract its own file map, causes a page fault on 
the first page, which is properly resolved as the device address 
in the PTW has already been filled in. The information about the 
previous sizes of MULT partitions is checked with the 
configuration deck to make sure that they have not shrunk. A 
message is printed if the information about the state of the 
last shutdown indicates that the salvager has been run. 

In the case of a cold boot, the FSDCT must be constructed. 
A fixed number of records, starting from the first record of the 
master device MULT (or SALV) partition are logically allocated to 
the FSDCT. These record addresses are placed in the PTWs of the 
FSDCT. The first page of the FSDCT is now faulted on, read in, 
zeroed, and certain constants initialized. Each device having a 
MULT (or SALV for the salvager) partition is processed in device 
ID order. The information about the partition size is put in the 
FSDCT being constructed. Constant information (per-device) is 
set up. The bit map tables are set to all zeroes. This 
indicates that all of the records in the device are in use. 
Next, via calls to the page control page freeing primitive (via a 
special entry that does not consider possible duplication of a 
page on the paging de~ice) every record in that partition of the 
device. is freed. Finally, the page table of the FSDCT is scanned 
and the device addresses of all pages in core are withdrawn 
(marked as in use) from the FSDCT itself. Pages not in use are 
marked as being zero as the disk records that were logically 
assigned to them earlier were never actually withdrawn from the 
FSDCT. Finally, the file map of the root is nulled out. 

In either the warm or the cold case, the FSDCT is now wired, 
allowing its use. It is very important to note that in all 
paging up to· this point, the only paged segment being referenced 
was the FSD9T. As it has the aste.dnzp switch on, no pages of it 
can ever be deposited (returned to the FSDCT as free). As all 
pages of it are logically assigned in the PTWs in advance, no 
pages of it are ever withdrawn. Hence, the FSDCT is never used 
for its normal function before it is wired and, hence, fatal page 
faults on it (with the page tables locked) cannot be taken. 

Next, the pdmap_seg segment is set up. This 
provides a means whereby the PDMAP can be written out 
first records of the in-use portion of the paging device. 
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entry (with page table) is created for this segment by make_sdw. 
It, like that of the FSDCT, is not threaded into any AST list. A 
descriptor (SDW) is created for it and placed in the descriptor 
segment. The aste.gtpd bit is turned on in its AST entry, 
inhibiting copies of this page from being made by the 
page-multilevel algorithm on the pa~ing device. The device ID 
assigned to this segment is that of the device being used as a 
paging device. I t is !1Q.t.. the paging device ID discussed 
earlier. 1 

Device addresses are assigned to this segment at th~s time. 
They are the first sequential records on that device being used 
as a paging device. Hence, when this se~ment is written out, it 
is to the first records of the paging device device. At shutdown 
time, the paging device map is copied from the SST into this 
segment and every page of the segment forcibly written out. This 
updates the entire PDMAP to its residence on the device of the 
paging device. At other times, pa~e control causes the pages of 
the SST corresponding to the PDMAP to be written directly to the 
device of the paging device. (See the StQ.r.£K§l ~y~t..~m. PLt1 for 
information on paging and the paging device.) The salvager also 
uses the PDt1AP segme nt to access a previously saved P Df'1AP, when 
flushing the paging device during a salvage. 

At this time, the Paging Device Used List is set up. All of 
the allocated pa~ing device map entries are threaded into the 
Paging Device Used List. The paging device records specified as 
bein~ not in use on the PAGE CONFIG card are then deleted from 
the used list. If this is Hultics being booted (as opposed to 
the salvager), information about the paging device is copied into 
the FSDCT. Finally, static variables in the SST describing the 
paging device are set up. 

At this stage, page control is now fully operative. The 
FSDCT (which is now wired and usable) and the PDMAP segment are 
the only paged segments at this time. The next step in the 
initialization of page control is to make all segments paged that 
are stated in the SLT to be paged. 

1The paging device ID is the device ID of the device being used 
as a paging device, or'ed with "1000"b. 
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The Making Paged of Segments 

At this stage of initialization, all segments read in by 
bootstrap1 are in main memory in unpaged contiguous segments. 
Those unpaged for the duration of the system are in low memory. 
The others, including initialization segments, are in high 
memory. There is now sufficient mechanism to make these 
"temporarily unpaged" segments paged., This is done by the 
procedure make_segs_paged (formerly update_sst_pI1). The basic 
strategy of this conversion is to copy these segments into paged 
segments, replace the SDW for the old segment by that of the new 
segment, and free the memory used by the old segment. 

make_segs_paged begins by creating the new (paged) 
descriptor segment it is ultimately to use. make sdw is called 
to create the ASTE/page table for this new segment. It is not 
threaded into any AST list (the flag slte.ds in the SLT entry of 
the descriptor segment informs make_sdw of this fact). The 
abs_seg (see Appendix A for a discussion of abs_segs) ds_seg is 
used to address this new descriptor segment. The first page is 
wired. Next, the SLT is scanned for segments marked as being 
paged. They are not now paged, but will be made paged. (The 
FSDCT and the PDMAP seg are not marked as paged in the SLT.) The 
segment numbers of these segments are put in an array and sorted 
on the base address of their segments, i.e., their order in main 
memory. During this processing, the SDWs for all permanently 
unpaged segments are copied from the old (unpaged) descriptor 
segment (dseg$) into the new (paged) one (ds_seg$). 

Once the array of segment numbers sorted by ascending memory 
address is complete, it is processed from the highest address to 
the lowest. An ASTE/page table is created for each segment by a 
call to make_sdw (or make_sdw$unthreaded for the PRDS). make_sdw 
previously determined (from the SLT) the appropriate list (see 
"Hemory Management" in Section I) onto which to thread the ASTE, 
as well as the appropriate size of page table. The descriptor 
for this segment, with write access temporarily added, is placed 
in the descriptor segment slot (in the current descriptor 
segment) for the abs_seg dir_seg. It is also placed unmodified, 
in its correct position in the new descriptor segment (ds_seg). 
An assembler-coded utility, privileged_mode_ut$swap_sdw_in_use, 
is called to copy, word by word, the unpaged segment into 
dir_seg, place the SDW for the new segment in the current 
descriptor segment, and clear the associative memory of the 
processor. 

It is critical that the same program that moves each segment 
also clear the associative memory. This is because the PDS, 
which is being used as a stack, is copied by these means. Assume 
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that some other program than the one used to move the segment 
cleared the associative memory. Then the first program would 
move the segment, which in the case of interest is the PDS, being 
used as a stack. It would then call the second program to clear 
the associative memory, with either one of these programs 
actually changing the SDW in the descriptor segment. The SDW for 
the old PDS, which has just been copied, remains in the 
associative memory. The call to the second program involves 
saving the return point of the first program. This is done on 
the old PDS as the associative memory has not yet been cleared. 
When the second program clears the associative memory, it finds 
that the return point of the first program was not saved on the 
new PDS. Hence, the same program must both move the segment and 
clear the associative memory. 

When the new segment is in use the main memory occupied by 
the old unpaged segment is freed if it was contiguous to previous 
memory freed by the mechanism or the highest-located segment in 
memory. Hence, all of the temporarily-paged segments at the high 
end of memory are freed in sequence, starting at the high end. 
This freeing consists of adding the page frames used by these 
segments to the core used list as each frame becomes free in 
sequence. This process does not free memory used by bootstrap1, 
the SLT, and other segments of collection zero. 

The wiring of paged segments is accomplished by make sdw in 
24.4 and later systems. The page table words of these segments 
are marked with the wired bit before the AST entry is handed back 
to make_segs_paged. This allows segments in collection 2 to be 
wired in the same manner. The wirings of the descriptor segment, 
the PDS, and bound_sss_wired_ are special-cased by make_sdw. 
Only the first page of the descriptor segment and the PDS are 
wired. That portion of bound_sss_wired_ that contains the 
p11_operators_ segment is wired. This is determined from a 
special segdef in this segment. Wiring is done conditionally, 
controlled by the "wired" bit in the SLT entry of a segment. In 
pre-24.4 systems, wiring of paged segments was done by 
update_sst_p11, the predecessor of make_segs_paged, and there 
were no wired segments in collection 2. 

When all segments that were to be paged are paged, several 
special paged segments are set up. An ASTE for the root 
directory is allocated on the proper AST used list. (make_sdw 
cannot be used for this purpose. The root is not a segment that 
has an SLT entry). The file map of the root is copied out of the 
FSDCT into the page table in this AST entry_ Flags are set in 
the ASTE of the root. The root cannot be deactivated, is not 
permitted to go on the paging device (for integrity reasons), has 
a terminal quota account, has very lar"ge quota, no quota 
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checking, resides on the master device, and has its file-modified 
switch set. Its current-length is set appropriately. The 
ASTE/page table for the shutdown stack is set up at this time. A 
small ASTE is allocated, and threaded out of its used list. All 
of its pages are marked as null not in core, but wired (i.e., if 
brought in, they remain in). It is set to be on the master 
device, have no quota checking, and marked as a hardcore segment. 

When all of the above has been done, that is, all segments 
that are to be made paged (except the descriptor segment) are 
paged and the root and shutdown stack are set up, a program 
called collect_free_core is invoked. This program frees all of 
the core occupied by collection zero segments and any other core 
that was simply never freed (the page at location 2000 is such a 
page). This program is essentially a garbage collector. It 
walks through the descriptor segment, looking through all of the 
SDWs for supervisor segments that describe unpaged segments (all 
unpaged segments at this time must be supervisor segments) and 
inspects the core map entries for any page frame of core that 
contains one or more words of the unpaged segment. If the core 
map entry indicates that the entry is in the core used list, it 
is left alone. Otherwise, it is specially marked. At the end of 
this process, all core map entries for page frames that contain 
any words of paged or unpaged segments or are emtpy, but part of 
the pageable core pool, are either in the core used list or 
specially marked. Now, the page frames containing the BOS 
toehold and the page table for the SCAS are marked as they are in 
use but do not contain any words of any segment (although the 
page frame with the SCAS page table almost always contains other 
segments). vuth all marking complete, the core map array is 
scanned. Any page frame in a system controller currently 
configured (ON) whose core map entry was specially marked is 
unmarked and added to the core used list. This assures that all 
cpre that can be used is available. 

The FSDCT i.s now updated to disk (for integrity purposes, to 
allow a better chance of a successful salvage should the system 
fail at any point from here on). privileged_mode_init$ldbr is 
now invoked to switch the processor onto the new (paged) 
descriptor segment. The address spaces described by the old and 
new descriptor segment are almost identical. Thus, the loading of 
the DBR does not effect a transfer of control, stack switch, or 
other erratic behavior. Finally, the page occupied by the old 
descriptor segment is freed. The initialization of page control 
is now complete. 
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FINAL INITIALIZATIONS OF COLLECTION 1 

With page control fully operational, the operator's console 
logging mechanism can be initialized. The PART LOG card is 
located in the CONFIG deck and the device ID, location, and 
extent of the syserr log partition are determined from it. An 
ASTE/page table is allocated for the syserr_log segment. It is 
not threaded into any AST list. The device addresses in its page 
table words are set to the device addresses of the records of the 
LOG partition. Flags are set in the ASTE of the syserr log 
partition: it should not go on the paging device 
(integrity/reliability), has no quota checking (it is in no 
directory), and should not have any zero pages nulled (it is not 
in the MULT partition--should a page become zero, it could not be 
freed, as its pages are not represented in the FSDCT). An SDW 
for the syserr log is constructed and installed in the descriptor 
segment. The syserr log is inspected,. If empty,' it is 
initialized. Pointers in the wired syserr buffer are set up, 
describing the log partition. A flag is set declaring logging to 
be operative. 

At this stage in collection initialization, all of the 
temp segs in collection 1 are deleted, via traversal of the temp 
seg AST list (see Section I, "Memory Management"). These 
segments include those that initialized configuration, I/O, and 
page control. Finally, debug_check$copy_card is called. This 
procedure sets several system-wide debugging options from the 
DEBG CONFIG card. These debugging options are interrogated by 
various system programs and are used to help locate system 
problems. 

RETROSPECT ON COLLECTION 1 

The order of initializations for collection 1 is reviewed 
below. 

Segments are loaded by bootstrap1. Prelinking and the 
setting up of a PL/I environment is accomplished next. Then PL/I 
programs are used almost exclusively. Interim fault and 
interrupt handlers are set up--only a very few faults are now 
legal. I/O handling is set up, and the operator's console is 
initialized. System configuration data is ascertained and data 
allowing system controllers to be addressed and used for paging 
are set up. Interrupts are directed to appropriate handlers once 
system controller and CPU data is available. Masks are set up. 
Page control data bases are initialized. Some early paged 
segments, viz., the FSDCT and the PDMAP segment, are set up. The 
FSDCT is accessed from the storage system. Segments are copied 
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into paged segments. 
put into effect. 
segments is freed. 
made operative. 

The final main memory management policy is 
Main memory occupied by collection zero 

The operator's console logging mechanism is 
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SECTION III 

COLLECTIONS 2 AND 3 

The loading and initialization of collection 1 accomplished 
all that was necessary to set up a paged environment. With this 
paged environment, there are no more space constraints 
restricting the loading of segments. Hence, collection 2 
contains the rest of the hardcore supervisor. The segments in 
collection 2 are copied from the physical record buffer directly 
into paged segments. There are no unpaged segments in collection 
2. 

The major tasks of the initialization of collection 2 are 
the accessing of the storage system hierarchy, the placing of 
segments loaded by initialization in the storage system 
hierarchy, the loading of collection 3, and the setup of traffic 
control. Collection 3 constitutes all those parts of the user 
and system control environments necessary to perform a storage 
system reload, which can load anything else. The programs in 
collection 3 are copied directly into segments in the storage 
system hierarchy. There is nothing to be initialized. Hence, 
the loading of collection 3 is part of the initialization of 
collection 2. The setup of traffic control involves the creation 
of the bootload idle process and the setup of the full 
wait/notify mechanism. The initialization of traffic control is 
left until last. 

At this stage in initialization (collection loaded and 
initialized), paging is fully operative. The system is running 
in a paged, segmented environment. Descriptors for all existing 
segments that were loaded from the MST or created are in place in 
the descriptor segment. The root directory has an AST entry but 
no descriptor. There is no concept of process and only one 
processor is running. The MST is positioned ready to read 
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collection 2. No segments are "known" (have KST entries, as the 
KST of any process has not been initialized) and segment faults 
cannot be taken. Nothing in ,the storage system hierarchy is' 
known to exist other than the root directory. 

LOADING OF COLLECTION 2 

After the loading and initializing of collection 1 is 
complete, initialize_collections$init_collection_1 returns to the 
program initializer. initializer then calls· tape_reader$init to 
set up the collection 2 tape reader (which will be described 
shortly). A check is made for the correct pattern in the 
processor maintenance panel data switches for a conditional 
return to BOS. Then, the program segment_loader is invoked to 
load collection 2. 

segment_loader' is a program knowledgeable about the format 
of a Multics system tape, i.e., header words, collection marks, 
SLT entries, etc. To read the MST, it calls tape_reader, which 
is knowledgeable about the format of a Multics Standard Tape, of 
which the Multics System Tape is one. tape_reader is 
knowledgeable about headers, trailers, administrative records, 
retry conventions, etc. To read the actual tape, tape_reader 
calls tape_io. tape_io is knowledgeable about tape controller 
commands, DCW lists, status, etc. To actually perform the 1/0, 
tape_reader uses the 10M manager. 

tape_reader$init, called by initializer, calls tape_io$init, 
which sets a static variable counting the number of reels 
encountered and returns. tape_io$init inspects the physical 
record buffer, the segment of the same name, and picks up the PCW 
used for reading the MST left there by bootstrap1. In it are the 
MST drive and channel numbers. Keep in mind that the physical 
record buffer, which was unpaged when it was used by bootstrap 1 , 
is now a paged, wired, segment, an init seg" tape_io$init sets 
up DeW lists for reading tape into the physical record buffer 
segment, paying attention to the fact that the buffer segment is 
not contiguous in main memory. Constant information in the 
header of the segment is set up. A call to 
iom_manager$assign_devx is made to assign a device index to the 
channel identified in the PCW as the MST channel for future calls 
to the 10M manager. This channel will be unassigned when 
initialization tape reading is complete. 

segment_loader reads the MST header word for the SLT header 
for each segment on the tape and then reads the entire SLT header 
(SLT entry, names and ACLs) into an automatic array. 
slt_manager$huild_entry is then called (via'a standard PL/I call, 
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as opposed to the special techniques bootstrap2 used to call 
sIt_manager) to place this entry into the SLT and SLT name table 
(which are now paged, permanent supervisor segments). Next,' 
make_sdw uses the SLT entry of the segment (which has already 
been set up) to determine which AST list and what size AST entry 
are appropriate. The SDW returned by make_sdw is then placed in 
the appropriate place in the descriptor segment, with write 
access added, so that the segment can be read in. tape_reader is 
then called to read the segment header word (specifying how many 
words of the segment are actually on the tape), and that many 
words of tape are then read into the new segment. Finally, the 
correct access is placed in the SDW. segment_loader also checks, 
like bootstrap1, that the correct sequence of text segments and 
linkage segments appears on the tape. Each segment is loaded in 
this way. Segment numbers are assigned as in bootstrap1. 

When the collection mark (a special type of MST header word) 
indicating the end of collection 2 is reached, pre_Iink_1 is 
called, to reprelink the system. The entire prelinking process, 
as described in Section II, is repeated. The only difference 
this time is that most links in the linkage sections of 
collection 1 segments will be found to already have been snapped. 
The SLT bit slte.pre_Iinked signals the prelinker not to attempt 
to recombine the already-deleted and prelinked linkage sections 
of collection 1. When the second prelinking is complete, another 
check of the switches is made for a conditional return to BOS. 
segment_loader then returns to initializer and 
init_collections$init_collection_2 is called to dispatch the 
calls for the initialization of collection 2. 

PRELIMINARY COLLECTION 2 INITIALIZATIONS 

Before segments of the storage system hierarchy can be 
accessed, via the normal segment-fault mechanism, several 
preliminary mechanisms must be set up. These include the AST 
trailer segment and many minor system variables. Hence, before 
the first segments are initiated, many small-order 
initializations are performed. 

The first of these is the setup of the AST trailer segment 
str_seg (system trailer segment). This segment is used to store 
lists associating active segments with all of the SDWs of various 
processes which might describe them (see the Storage System PLM, 
for more details on the use of this segment). It is used at 
segment-fault time, deactivation time, termination time, and at 
certain times when a segment changes its encacheability state. 
The initialization of this segment consists of filling it with a 
list of free (trailer) entries. The SLT cur_length field (as 
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possibly modified by the TBLS oard) is used to determine the 
length of this segment. The head of this list is saved in the 
SST (sst.tfreep). 

Next, the storage system unique ID generator is initialized. 
This program generates unique binary identifiers for processes 
and storage system segments, based upon the clock time of 
bootload. Its starting value is initialized from the clock. 
Hardcore gates are initialized at this time. This initialization 
consists of storing linkage pointers into the texts of hardcore 
gates, similar to what is done for fault and interrupt handlers 
( see " ColI e c t ion 1 Fa ul tIn it i ali z a t ion" i n Se c t ion I I ) . 
Hardcore gates (gates into ring 0) must ascertain their linkage 
pointers from text-stored pointers as they cannot use the segment 
number by which they were called to ascertain their linkage 
pointers via the LOT in their own ring. This is because the 
segment number by which they were called varies from process to 
process and these gates have no way of determining the segment 
number by which they were loaded at initialization time (their 
hard core segment number) to enable them to use the LOT. The 
linkage pointers supplied in the outer ring cannot be trusted. 
(See the discussion of "Hardcore and Outer Ring Segment Numbers" 
later in this section). Another initialization performed by 
init_hardcore-Eates (which stores the linkage pointers in the 
hardcore gates) is the setting of outer-ring accessible ring 
brackets in the SDWs for return_to_ring_O_ and restart_fault, the 
programs of the fault restarting mechanism. These ring brackets 
are set (from the ring brackets supplied in the SLT, the only 
time that SLT ring brackets go directly into a descriptor) so 
that these two programs can be used in the outer ring with their 
hard core segment numbers. Signaller stores a pointer to 
return_to_ring_O_ as the return pointer in its stack frame, which 
was developed via a prelinked link, and return_to_ring_O calls 
restart_fault via the text-imbedded pointer already described. 
See the Process and Processor Control PLM for a fuller 
description of this mechanism. 

Next, many minor initializations are performed by the 
program init_sys_vars. The identification of the console to be 
used as the initializer's console and the name of the routine 
that will be used to attach it at the appropriate time are copied 
from the CONFIG deck (if supplied; otherwise defaults are used) 
into a system data base (active_all_rings_data). The Device 
Table in active_hardcore_data, describing the available storage 
system devices, is initialized from the SST. This data base is 
used ~ the procedure assign_device, at the time that segments 
are assigned devices when they are created by the storage system. 
The current clock time is stored in a system variable at the time 
of bootload. The error_table_ code for rec6rd quota overflow is 
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stored in the SST. This is necessary because page control needs 
the value of this code to signal record quota overflow errors, 
and error_table_ is not wired and, hence, may not be referenced 
by page control. The next segment number available for a 
supervisor segment is rounded up to the next zero mod eight 
number and stored in active_hardcore_data as the number of 
supervisor segments. This quantity is used to determine if a 
given segment number represents a hardcore segment number or an 
outer ring segment number (see the following discussion). It is 
also used as the first available user-ring segment number in 
process initialization. This number is also set in the segment 
pds as the stack base segment number for the initializer process 
(see Process and' Processor Control, Order No. AN60) and in the 
descriptor for the descriptor segment, so that it is loaded into 
the DBR stack base field at the time traffic control is 
initialized. 

HARDCORE AND OUTER RING SEGMENT NUMBERS 

Before proceeding with the discussion of root and KST 
initialization, a consideration of hardcore segment numbers and 
multiple segment number assignments is in order. 

A segment is an ordered array of bits that can be accessed 
via a segment descriptor word that describes that segment (either 
via a page table or directly). Hence, any number of segment 
descriptor words, possibly in the same or different descriptor 
segments, can describe the same segment. The paging mechanism 
provides a means for swapping pieces of segments into and out of 
main memory automatically. It does not affect the notion of 
segment. Any AST entry filled by any means describes a (paged) 
segment. Any descriptor that points at the page table within 
that AST entry allows access to that segment. Similarly, file 
maps in the storage system hierarchy describe segments as they 
can be converted into AST entries via the mechanism of 
activation. Any contiguous region of main memory is potentially 
a segment as a descriptor can be constructed to describe it. A 
segment number is simply an index, relative to the descriptor 
segment of a given process, for accessing an SDW. If more than 
one SDW describing the same segment appears in a descriptor 
segment, then more than one segment number can be used in that 
process to access that segment. 

The segments loaded by initialization in collections 1 and 2 
are all described by AST entries or are contiguous areas of main 
memory. In the initialization environment, there is a descriptor 
segment and precisely one SDW for each segment. These segments 
reference each other via their linkage segments (and in some 
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casas via pointers stored 1n their texts) where the prelinker has 
stored the segment numbers of referenced segments. 

The segments that constitute the initialization environment 
at the end of initialization in fact constitute the hardcore 
supervisor. Now as Multics shares its supervisor. among all 
processes and the supervisor references itself via segment 
numbers that are part of it at the end of initialization, it is 
clear that all processes must assign the same segment numbers to 
the supervisor segments. If there were no text-imbedded pointers 
and copies were made (per-process) of hardcore linkage sections 
(which would clearly have to be prelinked per-process and some of 
them wired, a clearly unreasonable overhead) this would not be 
so. However, due to the need for text-imbedded pointers, shared 
hardcore linkage sections, and pOinters that must retain their 
meaning across processes, in general, hardcore segment numbers 
must be constant across processes. (Another reason for this 
constancy is that the code that switches processes must have the 
same segment number in all processes, or it would get lost as 
soon as it loaded the DBR). 

Some of the segments that are part of the supervisor, i.e., 
loaded ~ initialization as permanent segments in collections 1 
and 2, are also intended for use by outer-ring (nonsupervisor) 
programs. These segments include the gates into the supervisor 
and utilities (e.g., the p11_operators_ segment, the area 
management package, and the signalling routines) used by the 
supervisor as well as by outer ring programs. The only way that 
outer-ring programs obtain access to segments is via the storage 
system hierarchy. A segment is initiated via a recursive 
mechanism (see the Storage ~ystem PLM). This consists of 
recursively locating the directory containing the segment, given 
its pathname, and searching that directory for the branch of the 
segment of interest. Any available segment number is assigned to 
the segment in the per-process Known Segment Table (KST) and 
information identifying the containing directory and the location 
of the branch in the containing directory stored in the KST. 
Later, when the segment number that was assigned is used in the 
process for the first time, a segment fault occurs, for there is 
no descriptor. The KST is inspected and the branch of the 
segment identified via the information left in the KST at 
initiation time is accessed. A field in the branch (entry.astep) 
tells if the segment is active (has an ASTE/page table). If not, 
the file map in the branch is oonverted into an ASTE via the 
process of activation. In either case, an SDW can now be 
constructed pointing at the page table in that ASTE and placed in 
the descriptor segment of the process~ (If the segment was 
active, entry.astep locates its ASTE.) When an attempt is made 
to initiate a segment (make it known), the ~torage system unique 
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ID of the segment, found in the branch, is hashed into a hash 
table in the KST nf that process to determine if that segment is 
already known. If so, a new number is not allocated, no action 
is taken, and the existent number is returned. Thus, it is never 
possible to initiate a segment with more than one segment number 
in the same process. 

The KST management algorithm starts assigning segment 
numbers at the number stored in active~hardcore_data$hcscnt (the 
number of supervisor segments rounded up mod eight in an 
initialization that has just been described). -Actually, seven 
segment numbers above this are reserved' for stacks (see the 
Process and Processor Control PLM). Hence, when a process is 
created, no segment number above active_hardcore_data$hcscnt 
corresponds to a segment as the KST is void (other than the first 
entry, which is set to describe the ring 0 stack (PDS) of the 
process). \fuen segments are initiated (first by the supervisor 
init_proc on behalf of the outer rings, and later by outer ring 
programs) segment numbers are allocated to these segments via the 
KST allocation algorithm described. Whether or not the segment 
being initiated is part of the supervisor is not known at this 
time. All that is certain is that it has a branch in a directory 
and is thus capable of being initiated. If it had no branch (like 
most of the segments in the hardcore supervisor, which are 
described only by their AST entries, or are contiguous areas of 
main memory) there would be no way to identify it. Thus, all of 
those segments of the supervisor that are to be initiated by 
outer ring programs must have branches. At the time of the first 
use of the segment number allocated in the KST, the segment fault 
that results causes the branch of the segment to be inspected. 
The field entry.astep will be found at this time to indicate that 
the segment is indeed active and its AST entry is identified as 
that set up by make_sdw during initialization. 

There will be, therefore, two descriptors for initiated 
supervisor segments in a process: one was placed there at the 
time the descriptor segment was created, and is a copy of that 
made by make_sdw during initialization. The other is created by 
the segment fault mechanism. The first of these SDWs has ring 
brackets of (0, 0, 0) and is intended for use only by the 
supervisor (it can only be used in ring 0). The access control 
bits in this descriptor are those specified in the SLT. The 
second descriptor has ring brackets and access control 
information derived from the branch. Hence, the segment can be 
referenced via two segment numbers in the process. We call the 
one created by initialization the hard core segment number of the 
segment and the other the KST segment number. The segment is 
actually known by the KST segment number. The descriptor 
corresponding to the hardcore segment number (the hardcore 
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descriptor) is permanent--it cannot be modified by access control 
primitives, segment control primitives, initiation, or 
termination. 

Now that the distinction between hardcore and KST segment 
numbers has been made clear, several special cases can be 
explained. Hardcore gates are initiated in user rings via the 
normal initiation mechanism. They, therefore, have two segment 
numbers in a process. When called, they execute in ring ° due to 
the ring brackets in the KST associated descriptors for these 
gates. At the time they execute, they are running as the segment 
of their KST segment number in that process. They have no way to 
determine their hardcore segment number (an EPAQ instruction 
would return the KST segment number) and find their linkage 
sections via the ring ° LOT. Hence, text-imbedded pointers 
provide the only technique for location of their linkage sections 
(text_relative code can be addressed without recourse to pointer 
registers). 

The procedure signaller is a supervisor segment. It is 
invoked via the fault-handling mechanism in ring ° when a 
signalable fault occurs. It saves the faulting machine 
conditions in its stack frame, which it has set up on whatever 
stack the fault occurred (in whatever ring), and calls (via a 
RTCD instruction) the per-ring signalling procedure in that ring 
to locate an appropriate condition handler. This call 
constitutes an outward transfer. signaller sets the return 
pointer in its own stack frame so that, when control is returned 
to that frame, control passes to the procedure return_to_ring_O_. 
This procedure will transfer control back into ring ° via a call. 
Thus, when the handler returns to the frame of signaller, 
return_to_ring_O_ calls back to ring 0. return_to_ring_O_ calls 
(via a CALL6 instruction) a special' gate , restart_fault, to 
validate and reload (possibly modified) the machine conditions. 
This pointer to return_to_ring_O_ is developed via a link in the 
linkage section of the procedure signaller. Hence, it uses the 
hardcore segment number of return_to_r.1ng_O_ (which never has a 
KST segment number in any process, as it is not in the 
hierarchy). return_to_ring_O_ calls restart_fault via a 
text-imbedded pointer, again set up during collection 1 
initialization and using a hardcore segment number. Hence, the 
hardcore descriptors for restart_fault and return_to_ring_O_ must 
be accessible in all rings. This modification of these SDWs is 
performed by init_hardoore_gates. This descriptor is later 
copied for the descriptor segment of each process This 
special-casing could have been avoided if the pointers to 
restart_fault and return_to_ring_O_ were stored in an accessible 
place in each ring. These pointers would have to be created by 
initiating these segments (which would then' have to go in the 
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hierarchy) at an appropriate validation level as each ring is 
initialized. This was ruled out as too expensive. 

ROOT DIRECTORY INITIALIZATION 

At this point in initialization, the major task remalnlng 
with respect to the address space and the hierarchy is the 
initialization of the hierarchy (if a cold boot) and the 
connection of branches in the hierarchy to the ASTEs of user ring 
accessible supervisor segments. The most 'obvious way to access 
the necessary directories to perform these initializations is to 
initiate them in the normal manner. Presumably, abs-segs, forced 
activations, and other heavy-handed techniques could have been 
used, but there is no reason not to use the normal mechanism when 
it is available. 

To initiate segments, a KST will have to be used. The KST 
currently described in the descriptor segment of initialization 
is an empty segment called (in the SLT) kst_seg. This KST will 
be the KST of the initializer process. The decision is made to 
use this KST to initiate the necessary directories during 
initialization. As this KST will become the KST of the process 
Initializer.SysDaemon.z, the segments initiated by initialization 
remain known to that process. 

The next step in initialization is to make this KST usable. 
The program init_root_dir is responsible for these phases of 
initialization. First, initialize_kst is called with a special 
parameter. This procedure, initialize_kst, is used during 
process initialization. When called by init_proc for ordinary 
process initialization, it sets up the KST of the calling process 
(initializes hash tables, allocation areas, etc.) and sets the 
default search rules of the process. The special parameter 
passed at this time tells initialize_kst to perform only the 
first set of these per-process initializations; i.e., not attempt 
to set up the search rules at this time. The allocation areas 
and fixed constants in the KST are set up. The first seven 
segment numbers are reserved (via the normal segment number 
reservation mechanism) for the stacks of rings 0 through ring 6. 
The descriptor for the PDS (normally the PDS of whatever process 
is being initialized--in this case, the segment pds loaded in 
collection 1) is copied into the SDW slot in the descriptor 
segment for the ring 0 stack. 

With the initialization of the KST (to be the KST of 
Initializer.SysDaemon.z) complete, segments can now be initiated 
if they exist. The root directory is known to exist. It was 
created by initialize_dims (its file map was filled with null 

3-9 AN70 



addresses) if it did not exist and it was activated by 
make_segs_paged. A call to makeknown$pname is performed, passing 
the name of the root (» as a parameter. This primitive 
special-cases the initiation of the root. To make the root 
known, it is only necessary to allocate a KST entry (and segment 
number) as always and indicate (by placing the convention-defined 
unique ID of the root 777777777777, in the unique ID field of the 
KST entry allocated) that it is the KST entry of the root. The 
root is made known by its own reference name, >, so that future 
calls to initiate segments will find it. In a normal process, 
the root is made known by the first initiate call in the process, 
when recursive analysis of the pathname of' the segment to be 
initiated finally leads to a search of the root for the correct 
ancestor of that segment. The root is always made known in the 
same way, i.e., placing a unique ID of 777777777777 in a KST 
entry. The only reason that the root is made known 'explicitly 
during system initialization is that this may be a cold boot and 
the root must be initialized as a legitimate directory and no 
other segments exist in the hierarchy. 

It is possible to initiate the root simply by setting up 
such a KST entry because the unique ID in the KST entry is 
inspected by the segment fault handler, explicitly for this 
purpose, before an attempt is made to search the containing 
directory for the branch. If a segment fault is taken on a 
segment stated in the KST as having a unique ID of 777777777777, 
the variable sst.root_astep in the SST is interrogated to locate 
the ASTE of the root (which can never move). An SDW is 
constructed to point to the page table in this ASTE. 

With the root now known in the initialization environment, 
it is now locked. Even if the root was void (just created), it 
can be locked as its lock word would be zero. In in either case, 
the active quota switch (which indicates that quota accounting is 
managed in the AST for this directory) in the root is turned on. 
The INTK CONFIG card is now inspected to determine if this is a 
cold or a warm boot. If warm, the root is unlocked. If a cold 
boot, the root is simply a segment with one bit turned on and a 
word (the lock word of a directory) nonzero. Thus, the normal 
initializations performed on a new directory are performed. The 
directory header and hash tables are set up. The root is given a 
quota equal to that set in its AST entry by make_segs_paged. 
Having been made into a normal directory, the root is now 
unlocked. init root dir returns to 
initialize_collections$inIt_coIlection_2. 

At this time, segments can be initiated and created via the 
normal storage system primitives. These are used to create 
branches for those segments loaded by init'ialization that are to 
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At this time, segments can be initiated and created via the 
normal storage system primitives. These are used to create 
branches for those segments loaded by initialization that are to 
go in the hierarchy. This is the next step. 

li~ANCH CREATION AND CONN~CIJON 

All the preceding mechapisms in collection 2 initialization 
have led us to the point where we can create and delete branches 
in the storage system hierarchy at will. We can now make the 
connections between branches in the storage system (~hich we will 
create if necessary) and the AST entries of segments loaded by 
initialization. This is the major task performed by 
init_branches, the next program called in the initialization of 
collection 2. 

The first step in these hierarchy initializations is to 
delete the entire subtree rooted by >process_dir_dir, if indeed 
there is one, left over from the last bootload. The directories 
in this subhierarchy were the process directories of processes 
long since gone. The storage space occupied by this subhierarchy 
must be freed. Thus, a call is made to del_dir_tree, the normal 
system subhierarchy deleter, to delete the recursive descendants 
of >process_dir_dir. Next, a call is made to delete 
>process_dir_dir itself. The quota parameters of the root are 
saved before these calls and restored after them. The quota 
assigned to >process_dir_dir is set at bootload time and is a 
function of the number of processes allowed as specified by the 
TCD CONFIG card. It is set to this value at bootload time, and 
hence, is not drawn off the root. Thus, it is not returned to 
the root at the time this subtree is deleted. 

Next, the four AST used lists corresponding to page table 
sizes of 4, 16, 64, and 256 Hords (as opposed to the temp_seg, 
init_seg, and hardcore lists) are traversed to find all those 
supervisor segments that must go in the hierarchy. The current 
occupants of these lists are all those supervisor segments that 
are to go in the hierarchy (they were threaded onto these lists 
by make_sdw, which determined this by the presence of 
sIte. branch_required) and any directories that have been 
activated up to this point (including the root). There are also 
free entries on this list. Entries corresponding to anything 
except supervisor segments are skipped. The segment number is 
determined from the aste.strp field, which normally starts the 
trailer thread if this ASTE was creat~d by make_sdw. (This field 
is then zeroed.) Otherwise, the segment nunber is determined 
from any trailers that this segment may have. This segment 
number is used in the determination of whether or not this is a 
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supervisor segment. This segment number is then used to access 
the SLT entry for this segment. init_branches$branch is then 
called to create a branch for this segment, based upon the 
pathname and ACL information provided in the SLT. 

init_branches$branch is a utility that oreates a branch from 
SLT information and initiates the (usually void) segment that 
results from that creation. init_branches$branch calls 
make_branches to create the actual branch. 

make_branches attempts to append a branch of the specified 
name (the first SLT name) to the directory specified in the SLT 
pathname field. If the branch already exists, make_branches 
destroys it and tries again. If the parent directory does not 
exist, make_branches calls itself recursively to create that. In 
either case, once the branch is created, make_branches sets the 
ACL specified in the SLT for this segment in the branch and 
returns. 

init_branches$branch then deletes the ACL term rw 
*.SysDaemon.* that the append call created if no ACL was 
specified in the SLT. The newly-created segment is then 
initiated and the max_length in the branch set (via the normal 
storage system primitive) to as many words as specified in the 
SLTE bit count. The pointer to the segment returned by the 
initiate call is returned. 

Going back to the main loop of init_branches, which has just 
called init_branches$branch to create a branch for a supervisor 
segment, sum$getbranch_root_my is called to access the 
neWly-created branch. This primitive, normally called at segment 
fault time, accepts a pointer to a segment, inspects the segment 
number to locate the KST entry of the segment, inspects the KST 
entry to locate the branch of the segment in its containing 
directory, locks that containing directory, and returns a _pointer 
to the branch. 

When the branch has been located, the segment is "activated" 
by placing the SST-relative pointer to the AST entry of the 
segment in the entry.astep of the branch~ Thus, any process that 
takes a segment fault on this segment, accesses the AST entry 
created by initialization. The AST entry is then cross-linked 
(via its rep and par_ring fields) to the AST entry of its 
containing dlrectory (which must have been active at the time the 
branch was touched, and will not have been deactivated since, 
since no segment faults were taken since then, and no other 
process is running). The AST entry of the segment is threaded 
into the inferior list of its containing di~ectory. If it is the 
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first segment in its containing directory to be activated by this 
or any other means, the quota account of the containing directory. 
is activated (i.e., set in the AST entry and marked in the 
directory as being there). The master-limit switch (indicating a 
descendent of >process_dir_dir) is set in the AST entry from the 
newly-created branch. The entry bound (call limiter) and entry 
bound switch are set in the new branch from the hardcore SDW, 
located via the segment number determined earlier from aste.strp. 
(This is the hardcore segment number for this segment. The 
segment number in the pointer returned by init_branches$branch is 
a KST segment number). 

Finally, the maximum length of the segment is determined from 
slte.max_length (if given, otherwise from slte.cur_length) and a 
file map of the proper size is allocated in the dire9tory for 
this branch, replacing the small one allocated by default when 
the branch was created. This is done now because bounds faults 
cannot be taken on these entry-hold-active segments, so the 
largest file map needed is set up now. 

When all this has been done for a segment, updateb, the 
segment control primitive that updates a branch from an AST entry 
is called, which has the effect of copying the file map as 
maintained in the ASTE by page control up to this point into the 
directory. Also, it calculates the number of records actually 
used by this segment at this time, and places it in the branch. 
We will need this information shortly to update the quota 
accounts of the ancestors 1 of this segment. The directory 
containing the segment is then unlocked and quota account of the 
first ancestor of this segment, which has a terminal quota 
account, is updated. The segment is then terminated, removing it 
from the KST. 

When this loop through the AST used lists is complete, all 
supervisor segments to be in the hierarchy are in the hierarchy, 
with their entry-hold switches on and hardcore SDWs pointing at 
them. Next, the maximum length in the branches for the SLT and 
its name table are set, via standard storage system calls, to 
their current lengths as determined by a storage system status 
call. This is necessary because their lengths at this time are 
different from their lengths specified in the SLT; they grew 
during initialization. 

1 An ancestor of a segment is either the containing directory of 
that segment, or the containing directory of the containing 
directory, and so on. 
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Next, >process_dir_dir is initialized. The name >pdd is 
added to this directory. Quota is set on this directory 
proportional to the maximum number of processes allowed as 
specified on the TCD configuration card. The standard allocation 
of quota for one process is moved to 
>process_dir_dir> zzzzzzzbBBBBBB, the process directory of 
Initializer.SysDaemon.z. This directory must exist as the 
s'egment pds was placed in it by make_branches. The ACL on 
>system_librarY_1 is set to sma for Initializer.SysDaemon.z, and 
status (s) for *.*.*. The ACLs on >process_dir_dir and 
>process_dir_dir> zzzzzzzbBBBBBB (the process directory of the 
Initializer) are set to sma for the Initial~zer. The name s11 is 
added to >system_Iibrary_1. The directory >dumps is created if 
not already there, and given an ACL. The segment 
>online_salvager_output is created if not there, and given access 
rw to *.*.*. The ring brackets on this segment are (0;0,0). 

The initialization of the hierarchy is now complete. 

COLLECTION 2 WRAPUPS 

Once the hierarchy has been initialized, most of the work of 
collection 2 is done. initialize_fault$fault_init_two is called. 
First the timer is loaded with a very large number (to allow 
changing the timer fault vector), and then all faults are 
directed to their normal handlers. The signalling procedure 
pointer in the base of the PDS is set to signal_$signal_, the 
normal procedure used for this purpose. The floating fault 
vector is set up and scs$faults_initiatized set to indicate that 
the full fault mechanism is initialized~ Bounds faults can now 
be taken. (Remember that the vector for segments faults was set 
up during collection 1 initialization.) The search rules for 
Initializer.SysDaemon.z have not been set up yet, but the 
supervisor takes no linkage faults. This will be part of the 
process initialization of Initializer.SysDaemon.z. 

Now, the temp segs of collection 2 are deleted, via a call 
to delete_segs$temp. The AST temp seg list is again traversed, 
and all of these segments truncated and destroyed. 

COLLECTION 3 

We are now ready to load collection 3. There is sufficient 
mechanism set up at this time to make this loading trivial. 
Collection 3 requires no SLT entries, no hardcore descriptors, 
and no special casing in the AST. Its segments are not even part 
of the supervisor, but must be in the hierarchy in order for 
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Multics to come to initializer command level. The data switches 
are checked for a conditional return to BOS. load_system is 
called to load collection 3. The data switches are then again 
checked for a conditional return to BOS. 

load_system operates by reading each remaining SLT header on 
the MST into an automatic array. No SLT entry is made. 
init_branches$branch is called, as in collection 2, to create the 
necessary branch and directories, set the necessary ACL, and 
initiate the segment created. init_branches$branch is 
instructed, however, to provide write access for 
Initializer.SysDaemon.z if not already present. The MST header 
word for the segment is then read (tape_reader is used to read 
the MST) and as many words as specified therein are read in to 
the newly-created segment. If there was no write access for the 
Initializer specified in the SLT, it is taken back. 

During this loop, the segments created are not terminated; 
they are touched in order to restore the SDW that may have been 
faulted by the revoking of write access. This allows BOS to 
patch these segments if the conditional return to BOS after 
loading collection 3 is invoked. 

When the collection mark indicating the end of collection 3 
is encountered, loading of segments stops. 

All initialization of the supervisor is now complete except 
the initialization of traffic control and the initialization of 
user-accessible I/O. After this is performed, the initialization 
of the process of Initializer.SysDaemon.z will be performed, and 
initialization will be complete. 

INITIALIZATION OF TRAFFIC CONTROL 

When all other mechanisms of the supervisor are functional, 
the bootload idle process must be set up to occupy the bootload 
processor when it is not needed. The ability to share the 
available processor(s) among many processes and the ability to 
create these processes also must be set up. The initialization 
environment, as it stands now, must be transformed into the 
process of Initializer.SysDaemon.z. These are the goals of 
traffic control initialization. 

The first task of traffic control initialization is to 
establish the usability of the segment tc_data, which contains 
the data bases of traffic control: the Active Process Table 
(APT), the Device Signal Table (DST), and the Interprocess 
Transmission Table (ITT). The sizes of these tables are copied 
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off the TCD CONFIG card. These tables are laid out in the 
segment tc_data, and pointers to their bases set in the header of 
tc_data. APT entries and ITT entries are threaded into free 
lists. 

Next, the scheduling parameters (max eligible, min eligible, 
working set factor, etc.) are copied from the SCHD configuration 
card into an assigned location in tc_data, so that they can be 
used by the scheduler. 

Next, the procedure build_template_pds is called. The 
output of this procedure 1S a super-vis·or segment called 
template_pds. This segment is copied by process creation (see 
the frocess and Processor Control PLM), when processes are 
created in order to create their PDSs. It is set up by copying 
the current PDS (>pdd> zzzzzzzbBBBBBB)pds) from its base through 
the end of its first stack frame. Before this copying is done, 
however, the first stack frame on (our) PDS is modified to appear 
as through the instruction before the entry point 
init_proc$init_proc has made an external call. This is done so 
that when a new PDS is returned to by the traffic controller, the 
first time a new process 1 runs, init_proc$init_proc receives 
control. As the traffic controller assumes that pds$last_sp 
points to the last valid stack frame on a PDS to which it is 
returning, this location in the template PDS is set to point to 
the stack frame being fabricated. The segment number in all 
pointers constructed by build_template_pds is that of the current 
PDS. That is the segment number of the PDS of any process in 
that process. The stack_begin_pointer and stack_end_pointer 
pointers in the template PDS are set appropriately. 

As hardcore address spaces for all processes are essentially 
the same, descriptor segments for new processes are copied from 
the descriptor segment of the initializer. Thus, all hardcore 

. SDWs are the same and in the same position as the process of the 
initializer. SDWs for the KST, PDS, and descriptor segment of 
new processes, however, are placed in the positions -in the 
descriptor segment of the new process corresponding to the 
positions occupied by the supervisor segments kst, pds, and dseg 

'1The traffic controller checks a flag when returning to a 
process to see if this is the first time that this process has 
ever been entered. If so, getwork (the dispatching routine) was 
never invoked in the new process, and thus cannot return to its 
caller. In this case, a return sequence is executed on the PDS, 
to a stack frame previously set up. This special exit will play 
an important role later on, when the Initializer becomes a 
process. 

3-16 AN70 



in the descriptor segment of initialization (and thus the 
descriptor segment of Initializer.SysDaemon.z). The KST, PDS, 
and Descriptor segment itself of initializer.SysDaemon.z are 
those of initialization. The descriptor corresponding to the 
hard core segment prds, however, is another matter. This will be 
described more fully. 

Once the ability to create processes has been set up, the 
next step is to convert the initialization environment into the 
process of the initializer, Initializer.SysDaemon.z. An APT 
entry is allocated. A process ID, defined as APT entry offset 
concatenated with 777777 of the initializer,·i~ defined for the 
initializer and set in tc data as tc data$initializer ide The 
pointer pds$apt_ptr in the- PDS, to -become the PDS- of the 
initializer, is set to describe this APT entry. A lock ID is 
obtained from the storage system unique ID generator and stored 
in the PDS and the new APT entry as the lock ID of the 
initializer. The initializer is set to have a timax of zero, 
ensuring good response time for this crucial process. The AST 
entry offsets of the descriptor segment and PDS in use at this 
time and to become those of the initializer, are stored in the 
new APT entry. The DBR value for the initializer process is 
copied from the descriptor segment, being the descriptor for the 
descriptor segment itself. You will recall that the stack base 
segment number for the initializer process was stored in this 
descriptor in the field corresponding to the stack base field of 
the DBR as one of the early initializations of collection 2. 
Finally, the new APT entry is threaded into the now-void APT 
ready queue and set to describe a process that is eligible, 
loaded, ready (not running), and has never run. The APT ready 
queue has never been inspected and the traffic controller getwork 
routine (see Multiprogramming and Scheduling, Order No. AN73) has 
never run. The number of eligible processes in the system is set 
to 1. 

A minor initialization is performed now: all of the polling 
time clocks are set to the current clock time. This forces all 
pollings to be done the first time these clocks are inspected. 

The last and most important step in traffic control 
initialization is the creation of the bootload idle process and 
the starting of the bootload CPU. 
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Idle Processes 

An idle process is a process that does no useful work. 
Except when interrupted by preempt or other interrupts, it is in 
the program init_processor, in ring 0, masked at open level, 
usually executing a DIS instruction. Like all other processes, 
it is very egotistical, considering only its own useless work 
important and all interrupts simply diversions. Some interrupts, 
i.e., preempt, cause the process to be suspended and resumed at a 
later time. An idle process exists for essentially no other 
reason than to be preempted. It is always eligible and loaded. 
It is always in the traffic controller ready' queue, although in a 

. special place" When a processor in getwork seeks work, there is 
always the useless work of the idle process to do if nothing else 
can be found. Its work can always be resumed and is infinite in 
extent. As a processor must have an idle process ava~lable at 
all times, there must be one per processor. They are created and 
destroyed (by start_cpu and stop_cpu, respectively) as processors 
are added and deleted, during initialization and reconfiguration. 
When a processor is started, it picks up the DBR value of its 
associated idle process and runs in that process. It may be 
preempted but, from the viewpoint of that idle process, it always 
comes back to run that process. Every time it proceeds from its 
DIS instruction (a return from an interrupt causes the next 
instruction to be returned to), it proceeds once more to execute 
this DIS. However, every time that this loop is restarted, 
reconfiguration flags are checked. There are two such flags. 
The first tells a processor to delete itself. Deletion consists 
of being sure that all interrupts directed at this processor are 
now directed at some other one, being sure that no interrupts are 
lost, indicating that we are deleting ourselves and stopping in a 
nonpreemptable loop. Once this has been done the idle process 
for the CPU is deleted (to be described later). The second flag 
tells a processor that it is now the control processor of some 
other System Controller than it had been until now--it should 
change the proc_contr_ptr pointers in the SCS and its own PRDS. 
Whenever either of these functions is necessary, the idle process 
of the CPU that performs these tasks is given top priority in the 
ready queue and given its processor via preemption. (See the 
Reconfiguration PLM, for more details about these reconfiguration 
operations.) 

The creation of an idle process consists of creating its 
descriptor segment, its PDS, and the PRDS of the processor to be 
started, and sending the processor being started, into 
init_processor in this process. The deletion of an idle process 
consists of deleting the processor (as described) and destroying 
the PDS, descriptor segment, and PRDS associated with that 
processor and its idle process. 
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It can be seen at once that a processor and its idle process 
are intimately associated. Each, in some sense, belongs uniquely. 
to the other. A processor starts in that process, returns to 
that process, and deletes itself in that process. That process 
~s run only by that processor. Associated with the processor and 
its idle process is a"PRDS, or processor data segment. Other 
than the per-processor data in the SCS, this is the major 
per-processor data base. Other than at the time it is created, 
it is accessible only to its native processor. When a 
(nonbootload) idle process is created, a PRDS is created for it 
(plm$makeseg performs these creations). It is initialized by 
prds_init, just as the bootload processor PRDS was during 
initialize_collections$interrupt_init. An SDW describing it is 
put in the descriptor segment being built for the idle process in 
the position corresponding to the supervisor segment prds loaded 
during initialization in the initialization descriptor' segment. 
(When the idle process of the bootload CPU is created, this 
descriptor is copied from the descriptor segment of 
initialization. Hence, in each idle process, from the time it 
starts, the segment number corresponding to the SLT name prds 
references the PRDS native to that processor and idle process. 
What is more, every time a processor switches processes in the 
traffic controller it carries the SDW for its PRDS with it in the 
AQ register and places it in the same position in the descriptor 
segment of the new process. Thus, for any processor, no matter 
what process it is in, the segment number assigned in the SLT to 
the name "prds" refers to the PRDS of that processor. This is 
most useful when the PRDS is used as a stack during process 
switching. It is also useful for accessing per-processor data in 
a uniform manner. 

Idle processes take no page faults and 
always run in ring zero. They have no 
interaction with the storage hierarchy, other 
of interrupts. Idle processes can handle any 
not involve page faults. 

Startin&- Processors 

never wait. They 
KSTs and have no 

than the handling 
interrupt that does 

Having discussed idle processes and their uses, we now 
proceed to discuss the starting of processors. Traffic control 
initialization (as performed by the program tc_init) causes the 
starting of the bootload processor. Dynamic reconfiguration 
starts other processors. Starting a processor consists of 
creating its idle process and sending the processor to be started 
an "initialize" software interrupt to force it to enter that 
process. What is meant by "starting" the bootload CPU will be 
explained below. 

3-19 AN10 



Creating an idle process consists of allocating an APT entry 
and setting it to describe a loaded, eligible, and ready process, 
which i~ also marked as idle and has the proc~ssor required bit 
set, indicating that only the proc~ssor for which it is intended 
may run ,-it. A ·process·· 10'" is fa:bricated. for it,' and it is 
threaded· into the ready list as an idle process. A descriptor 
segment a~d PDS'are create~'for it' (by plm$hc and plm$makeseg, 
respecti-v"ely) . The SDWs for each are set in the new descriptor 
segment and the PDS is initialized from template_pds. The first 
page of each is wired. The relative AST entry pointers of these 
two segments are put in the'appropriate places in the AST entry 
of the segment (to find them when it,is time to delete the idle 
process, not for loading, as a normal. process). Some per-process 
variables in· the new pDS'are ioit~alized~ Next, if this is not 
the idle' ,.process of. -··th~ ",b'ootI9ad CP U , a PRDS is created, 
initialilzed', 'and-'wired I and 'its ~DW st-ored in the descriptor 
segme n t of the.-·' idle process. ,"' I f' this 'is the idle process of the 
bootload CPU being created, the SDW of of the segment prds of 
initialization is used. In either case, the relative AST entry 
offset of the PRDS is stored in the APT entry of the idle 
process. 

Once the idle process is thus ready for use, a program called 
init_processor is called (at the entry point init_processor). 
This impure procedure stores the DBR of the idle proces.s it is to 
start in a location in its own text segment. Pointer registers 
and another pointer are stored too. Next, the absolute addresses 
of an SCU data area and a sequence of code 
(init_processor$first_steps) are computed, and absolute-mode SCU 
and TRA instructions addressed to these locations stored in the 
interrupt vector for the software initialize interrupt. The 
current system controller mask for the processor now executing is 
saved. A mask allowing initialize interrupts is now set as the 
mask for this processor. An initialize interrupt is sent, via a 
system controller, to the processor being started (which. may be 
this processor). A loop is entered to await the acknowledgement 
of this interrupt by the processor started. An error is 
returned (after restoring the mask and interrupt vector) if no 
acknowledgement is received after a fixed time. A code 
indicating successful starting is returned if the acknowledgement 
was returned in time. 

What does a processor, particularly the bootload processor 
do when given the initialize interrupt? It stores its SCU data 
at location scu_data in init processor. Still in absolute mode, 
it transfers to init_processor$first_steps. The DBR is loaded 
via an IC-format (instruction-counter relative addressing) 
instruction, using the value saved by the call side of 
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init_prdcessor. An ITS pointer set up by the call sIde is 
indirected through, by a transfer instruction, causing entry into 
appending mode in the desired idle process. The pointer 
registers' are also loaded from values again stored in . the text 
section of init~processor by the call side. A check is made to 
see if the processor that caused the processor initialization is 
the same processor that took the initialize interrupt. This 
should happen only once for the bootload CPU. A check is made 
that t~e processor tag as r~ad from the switches corresponds to 
the tag put in the hew PRDS, derived from the CONFIG deck. If 
all checks pass, the processor is ready for use. Its mode 
register .is set (for stopping history registers on' faul ts) and 
its cache is enabled. The value of its timer register, is saved 
in'its PRDS. (for traffic control calculations). The APT entry of 
this idle proces~ is set to indicate that the idle process is 
running. Finally, the flag to acknowledge the successful 
initializatiori to the processor t~at sent, the initialize 
in terrupt is set. T h,e bi t ar ray (scs$processor) in the SCS, 
showing which ~ocessors are running, is set to indicate that 
this proc.§..ssor is running. A stack frame is set up, for 
init_processor in the page fault trape array in the PDS of the 

. idle process. Since the idle process takes no p~ge or segment 
fau~ts,this are~ is never used. The stack frame must be set up 

,here, as ,this area is wired. This stack frame ·is, necessary for 
the"call/~eturn sequence with the traffic controller at preempt 
time. Incidentally, ,all of the above code is inhibited. 

The last step taken by a newly-initialized processor before 
entering its idle loop (check reconfiguration switches, DIS, 
loop), is to send itself a preempt interrupt. This causes the 
processor to pass through the getwork routine of the traffic 
controller to see if there is any more worthy process to run. If 
there is none, the traffic controller returns to the idle 
process~ (By definition, the idle process is the least worthy 
process. The tra'ffic controller al~Y§.chooses the idle process 
when there is no more worthy process to run.) 

Now all of this is quite necessary for the initialization of 
any processor. For each processor, an idle process must be 
created and started. As was mentioned before, this is d6ne at 
initialization time by tc_init for the b60tload processor. 
'DYrlq,micreconfiguration starts;all others. Most processors 
started'in this manner were executing a DIS at the time of the 
ini t'ialize int'errupt. '" ,The,ir previous state, was not meaningful. 
For the boatload processor at initialization time, however, this 
is not the '6ase~ Its previous state was involved with running 
system initialization; Somehow, this'work must be picked up by 
someone. This was the entire point of setting up the APT entry 
,of Initializer;SysDaemon.z to indicate a ready process, eligible 
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and loaded, which has never run. vfuen the bootload id'le process 
preempts itself before entering its idle loop, it finds a more 
worthy process to run, namely, Initializer.SysDaemon.z. It is 
ready, eligible, and loaded. Hence, the decision is made to run 
that process. The flag that· ·says this process has never run 
causes the traffic controller to pick up pds$last_sp in that 
process and return into that frame on the PDS. 
To_~ke this~ork, the call side of init_processor ingeniously 
stored its current stack pointer in the back pointer of its own 
stack frame (after saving it), and in pds$last_sp, and set the 
procedure return point in its frame to the label where 
acknowledgement from, the started processor is awaited. Hence, 
when the process of Initializer.SysDaemon.z is picked up, the DBR 
of initialization is loaded the process of the initializer is set 
to r.!d1l!ling, and a return is made into the stack frame set up by 
the call side of init_processor. Initialization has now become 
Initializer.SysDaemon.z. Initialization proceeds in ring zero of 
the initializer process. 

Th§....£omplet.ion of Traffic Control Ini tializatioll 

When the bootload CPU has been started, the flag in tc_data 
(tc_data$wait_enable) that allows the full, normal waitlnotify 
mechanism to function is set. (It is necessary that there be 
idle processes for this mechanism to function.) Traffic control 
is now initialized. 

After tc_init has created idle processes, started the 
bootload processors, and made the notion of process function, 
user-accessible I/O is initialized. This consist$ of the 
communications control software and the 1/0 interfacer. It is 
done after traffic control initialization for no good reason, but 
just done. 

Communications Initialization 

The DATANET 6600 FNP control program is called to initialize 
its data areas at this time. There is no reason why this need be 
done now. The fact that the DATANET 6600 FNP control program was 
loaded as part of collection 1 (due to its being wired) seems 
sufficient reason to initialize it in collection 1. DATANET 
information is extr~cted from the D355 configuration cards. 
Per-DATANET information is stored in the dn355_data segment. 
This includes mailbox pointers, port and interrupt cell numbers, 
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and DATANET numbers. The 10M manager is called to assign device 
indices to each DATANET. They are connected through rOM special 
channels. This allows data transfer to the DATANET via the rOM. 
The interrupt handler is not assigned at this time, as the 
DATANET interrupts not through the rOM interrupt mechanism, but 
via its own setting of an interrupt cell. LSLA/HSLA indices are 
also ascertained from the CONFIG deck at this time and stored in 
the DATANET data area. 

There is one program, tty_init, that has the major 
responsibility for initializing all data bases necessary for the 
subsequent use of the ring 0 typewriter control s~ftware. The 
primary data base is tty_buf. This is a segment that consists of 
various control and Metering variables in its header. This is 
followed t~ one eight word control structure for each 
communications line specified in the CONFIG deck. The remainder 
of the segment (whose length in 1024 word blocks may be specified 
on a config card) is allocated into chained sixteen word buffers. 
These ~ffers are shared among all terminals dialed to the 
system. tty_init is responsible for the initialization of a 
portion of another data base, dn355_data. 

tty_init begins its work by initializing several variables 
in the header of tty_buf such as the time, the absolute address 
of tty_buf, etc.. Then it reads all of the LSLA and HSLA config 
cards. These cards are checked for consistency and any errors 
are reported via syserr. If there are no errors, dn355$assign is 
called once for each configured line. This will cause a table in 
dn355_data that maps device index (devx) into physical typewriter 
line number to be filled for later use in the ring 0 typewriter 
software. In addition to initializing this table, one eight word 
entry is made in tty_buf for each configured line. These entries 
are in an array that is indexed by devx, and follow the header 
information in tty_buf. In each entry is placed an initial 
terminal type that is set based on the baud rate of the line. 
This is so the typewriter software can make some initial 
decisions when receiving a dialup on a given line. An entry is 
also made in the lOAM data base by calling ioam_$define_name for 
each configured line. 

Once all of the configured lines have been processed, the 
last task is to take the remaining unused space in tty_buf and 
chain this into a threaded list of 16 word buffers. Each buffer 
has the relative address of the next buffer in its first 18 bits, 
and a special pattern of alternating ones and zeroes in its last 
word to mark the buffer as free. The address of the first buffer 
in the chain is stored in the variable, free, in the header of 
tty_buf. 
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THE END OF INITIALIZATION 

After traffic control and user I/O initialization, 
init_collections$init_collection_2 returns to initializer. A 
call is made to delete_segs$init to delete all initialization 
segments, including init_collections but not including 
initializer itself (this is a supervisor segment). 
Initialization, or more precisely the initialization environment, 
is now the process of Initializer.SysDaemon.z in ring o. A call 
is made to init_proc$multics. init_proc$init_proc is usually the 
first procedure invoked in a process. It initializes the process 
KST and makes a pointer, via the linker at the validation level 
of the startup ring of the process, to the first user-ring 
program, usually user_init_admin_. It then proceeds to call this 
program, via an outward call. init_proc$multics, however, calls 
initialize_kst with a special parameter since the KST for the 
initializer process was almost entirely set up by the call to 
initialize_kst with another special parameter by init_root_dir. 
Hence, the system search rules are set up (the default search 
directories are created if they do not exist) and the search 
rules of the initializer (like those of any process) set up 
following that~ A pointer is made to system_control instead of 
init_admin_. This is the first outer_ring procedure for the 
initializer. ~ outward call is made via this pointer to this 
procedure. Initialization is complete and Multics is operative. 

RETROSPECT ON COLLECTION 2 

The basic goals of collection 2 initialization are to set up 
the ability to initiate segments and take segment faults, to 
access the storage hierarchy via storage system primitives, to 
set up traffic control and the notion of process, including idle 
processes, to load collection 3, and to start the Initializer 
process. 

This happens in the following order. 

The segment fault mechanism (the trailer segment) is set up. 
The root directory is accessed and initialized. Supervisor 
segments that are to go in the hierarchy are put in the 
hierarchy. All fault handlers are set up. Collection 3 is 
loaded directly into the hierarchy. The bootload idle process is 
set up_ Initialization is picked up by the bootload CPU in the 
process of the initializer. The process of 
Initializer.SysDaemon.z is initialized and started on its way. 
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SECTION IV 

SF:! U T DO~JIJ 

Shutdown consists of the orderly cessation of service of a 
nul tics system. Ii crash or failure consists of a system problem 
causing a return to BOS, either via a call to syserr, a system 
trouble interrupt sent upon detection of a problem, or an 
operator-initiated execute fault or manual transfer, initiated 
from the maintenance panel. After a crash, an orderly shutdown 
can be attempted via an operation known as an Emergency Shutdown 
(ESD). This operation restarts Multics at a special point and 
attempts to complete a normal shutdbwn. 

, . 

~J hat con s tit ute san 0 r de r 1 y c e:3 sat ion 0 f s e r vic e ? I tis the 
responsibility of the answering service to shed the user load of 
the system at the time of an operator-initiated shutdown. At the 
time of a crash, that u~er load is shed in a disorderly fashion. 
The responsibility of system shutdown is to ensure the 
consistency of the storar;e system. Hain memory and the paging 
device are a buffer for the storage system, which resides totally 
on disk between bootloads. The goals of an orderly shutdown are 
to: 

1. Drive all pages out of main memory and out of the pa~ing 
device onto disk. 

2. Ensure the integrity of directories--that all branches, 
specifically file maps, are updated from information in 
the AST. No branch must indicate that its segment is 
active or the next bootload will believe it. 

3. Ensure the integrity of the FSDCT--that all changes Made 
to the FSDCT (including the file map of the root 
directory and all changes made durin~ shutdown) are 
reflected to the disk copy. 
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4. Relinquish disk storage used by segments not in the 
hierarchy, i.e., the paged supervisor segments not in the 
hierarchy. 

The responsibility of emergency shutdown is to try to 
accomplish as much of the above as is possible, in an environment 
deficient in an unknown way. 

Shutdown is somewhat akin to initialization in the sense 
that the environment in which it runs is gradually depleted as 
opposed to the continually growing environment of initialization. 

Thus, shutdown consists primarily of: 

1. Flushing main memory--several times. 

2. Deactivating any segments that can be deactivated. 

3. Updating the branches of any segments that cannot be 
deactivated (i.e., entry-hold segments, like those 
supervisor segments in the hierarchy). 

4. Deleting the hardcore nonhierarchy segments via the AST 
traversal mechanism of initialization. 

5. Flushing the paging device. 

6. Updating the FSDCT, perhaps several times. 

The flowchart, Figure 4-1, shows the sequence of these 
operations for both normal and emergency shutdown. The module 
(or entry point) responsible for performing each function is 
given at the bottom of each box. 

4-2 AN70 



NORMAL 
SHUTDOWN 

• 
DESTROY ALL 
PROCESSES EXCEPT 
INITIALIZER AND 
IDLE PROCESSES 

tc shutdovvn 

DEACTIVATE ALL 
SEGMENTS THAT CAN 
BE DEACTIVATED 

shutdown 

DIS,cIBLE 
WAIT/NOTI FY 

shutdown 

FLUSH 
MAIN MEMORY 

pc$flush 

UPDATE ALL 
REMAINING ACTIVE 
BRANCHES OF 
ACTIVE SEGMENTS 

shutdown 

SWITCH TO 
SHUTDOWN STACK 

shutdown switch 1 
FLUSH MAIN 
MEMORY AGAIN 

pc$flush I 

1 
FREE SUPERVISOR 
DISK STORAGE 

delete _ segs$hardcore' ~ 

FREE DISK STORAGE 
OF INITIALIZER'S 
DESCRIPTOR 
SEGMENT 

wired shutdown 

FLUSH PAGING 
DEVICE, TURN OFF 
PAGING DEVICE 

pc$pd _flush _all 

FLUSH MAIN 
MEMORY ONCE 
MORE 

pc$flush 

UPDATE THE 
FSDCT 

p.c$fsout 

RETURN TO 
BOS 

Figure 4-1. 

EMERGENCY 
SHUTDOWN 

STOP TRAFFIC 
CONTROL 
WAIT/NOTIFY 

emergency _ shutdown! 

FIND A SUITABLE 
PROCESS TO RUN IN 

emergency _shutdown ~ 

CLEAR LOCKS 

emergency _shutdown 1 

RESET 10M AND 
STORAGE SYSTEM 
DIMS 

iom manager$iom reset I 
device _ control$time _out 

'-----.... 

ShutdoHn 

SWITCH TO 
SHUTDOWN STACK 

shutdown switch 

UPDATE THE 
FSDCT 

pc$fsout 

FLUSH 
MAIN MEMORY 

pc$flush 

UPDATE THE 
FSDCT 

pc$fsout 

UPDATE THE 
PDMAP 

pc$write _pdmap 
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NORMAL SHUTDOWN 

Normal shutdown is performed by the procedure shutdown and 
the programs it calls. ~fhen shutdown has finished its work, it 
switches stacks to the segment shutdown_stack and invokes the 
procedure wired_shutdown. Once in this procedure, no nonwired 
paged hardcore segments are utilized. This procedure ultimately 
returns to BOS via a call to pmut$bos. 

Shutdown begins with a call to tc_shutdown. tc_shutdown 
sets the flag tC_data$system_shutdown to 1. This flag changes 
the Multics locking strategy to allow any process to lock any 
lock, regardless of whether or not it is already locked. This 
strategy is based upon the fact that only one process is running. 
(This applies to only wait/notify type locks, such as directory 
locks and the AST lock.) This flag also prohibits the depositing 
of disk records (to be discussed) and modifies the behavior of 
the utility program wire_stack and the teletype control package. 

tc shutdown continues by calling deact_proc$destroy to 
destroy all existing processes (save the initializer and idle 
processes). This destruction is done via the normal process 
destruction mechanism, which is not graceful. Graceful removal 
of processes is the responsibility of the operator, before 
shutdown is invoked. Only the initializer process is allowed to 
perform a normal shutdown--this check is made at the very onset 
of the program shutdown. 

The next step of shutdown is to deactivate all segments that 
can be deactivated. Not only does this force their pages out of 
main memory, ensuring their consistency, but ensures that the 
branches, including the file maps for these segments, are 
consistent. The issue of pages on the paging device is left 
aside for a moment. The existence of such pages does not affect 
the information in the branches. This deactivation is done as a 
loop over all of the regular (four sizes of page tables for 
hierarchy segments) AST lists. The hardcore AST list will be 
dealt with later. Supervisor segments that are in the hierarchy 
are on the regular lists, not the hardcore list. 

For each AST list, the list is traversed to find each active 
segment with no inferiors active. If it is not entry-hold active 
(supervisor segments will be entry_hold active, as will KSTs and 
PDSs of other processes during an emergency shutdown, and the KST 
and PDS of the initializer in all cases), it is deactivated. 
After each segment is deactivated, an inner loop is made, 
checking its parent, and its parent, and so on, to deactivate 
them if they now have no inferiors active as the result of the 
preceding deactivation. As this inner loop proceeds, a check is 

4-4 AN70 



made that the next ASTE to be inspected by the outer loop (trying 
to find any ASTE with no active inferiors) was not the segment 
being deactivated by the inner loop. The root is special-cased, 
and not deactivated. Figure 4-2 shows this loop. 

When the above loop is finished, the only segments left 
active on the regular AST lists are those whose entry-hold-active 
switch is on and their containing directories. The branches for 
these segments are updated next. First, however, the switch 
tc_data$wait_enable is set to 0, its value prior to the 
initialization of traffic control. This disables the wait/notify 
mechanism and reverts this mechanism to the more primitive 
mechanism of initialization (see "Traffic Control and Ringslt in 
Section I). Also, pc$flush is called to write out the contents 
of main memory. This is done at this time to cause all pages in 
main memory to have device addresses assigned at the time that 
their branches are updated in the next sequence of calls. (This 
check is somewhat redundant.) 

The AST lists for hierarchy segments are now traversed once 
more. The routine updateb, which updates branches from AST 
entries, is called to update the branch of each active segment. 
This assigns device addresses (redundantly) to all pages still in 
main memory if they have none, and updates file maps and time 
used/modified information in the branch. Quota accounting is 
also updated at this time. Also at this time, the astep fields 
in the branches of these segments are zeroed. This critical step 
is the inverse of that performed by init_branches and ensures 
that the first segment fault on any such segment during the next 
bootload finds that the segment is not active and must activate 
it. The salvager also performs this critical operation should 
shutdown (or emergency shutdown) fail. If neither of these 
measures succeeds, system failure is almost certain on the next 
bootload. 

Pages in main memory that are zero are not assigned device 
addresses by page$pwrite, the primitive called by pc$flush. 
Thus, pages of entry-hold-active segments in main memory that are 
zero are assigned device addresses by updateb at the time their 
branches are updated and later paging activity causes those pages 
to be discovered to be zero and freed by normal paging activity. 
Were such pages discovered to be zero by pc$flush, the following 
problem would result. As this depositing was not noted in the 
already-updated file map, an unprotected address (causing fatal 
system failure) would be noted at the next bootload when such 
pages were deleted via segment deletion. The prevention of this 
effect is the point of disabling page-depositing during shutdown. 
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When all these steps of shutdown are complete, the procedure 
wired shutdown is called via the interface shutdown switch. The 
latter interface abandons the current stack (which for a normal 
shutdown is the PDS of the initializer process and for an 
emergency shutdown is already shutdown_stack) and establishes a 
stack frame at the base of the supervisor segment shutdown_stack. 
The segment shutdown_stack is a segment consisting of zeroes; it 
is loaded from the MST, but its AST entry is threaded out of the 
AST lists by make_segs_paged (see "The Making Paged of Segments" 
in Section II). Its PTWs are marked as "wired" but not in core. 
shutdown_switch touches all of its pages, bringing them into main 
memory permanently. A stack header is copied from the current 
stack and a stack frame set up at the base of shutdown_stack. 
All code from this point on takes no page faults--all paged, 
nonhierarchy supervisor segments are deleted. Finally, 
shutdown-switch invokes the procedure that it was called to 
invoke, in this case wired_shutdown. 

wired_shutdown begins by calling pc$flush to write out all 
of main memory once more. This is to ensure that changes made by 
the previous loop in shutdown are reflected to secondary storage. 
Next, disk LRU metering is turned off as the segment 
disk_traffic_data is deleted by the next call, which deposits 
disk addresses (these would cause references to disk traffic data 
if LRU metering were on). A call is made- to 
delete_segs$hardcore. This procedure, delete_segs, is used 
during initialization to traverse the AST init seg and temp seg 
lists to delete these types of segments. Here, it traverses the 
hardcore seg list, deleting all supervisor segments that are not 
in the hierarchy. Thus, any segment that is paged must be in the 
hierarchy and wired if it is to be used beyond this point. The 
point of deleting these segments is to relinquish their disk and 
paging device storage. If this were not done, this (disk) 
storage would be unusable until the next "long" run of the 
·salvager. Next, the disk and paging device storage occupied by 
the descriptor segment of the initializer is relinquished. This 
does not, however, delete this segment, which is still in use. 

Next, the paging device is flushed via a call to 
pc$pd_flush_all. This causes read-write sequences (rws) for all 
modified (with respect to disk) pages on the paging device and 
the freeing of all others. The paging device is then disabled, 
and another call to pc$flush made to write out all pages that 
were in main memory, but had copies on the paging device at the 
time of the call to pcd$pd_flush_all. Such pages were driven off 
of the paging device by pc$pd_flush_all as the latter noticed 
that they had copies in main memory, which would be written out. 
Next, the updated paging device map is written out to the paging 
device, pc$write_pdmap for the benefit of the salavager. 
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Finally, the FSDCT is written out, reflecting all changes to' 
device allocations and the root file map during the entire run 
and shutdown. BOS is then invoked via pmut$bos and shutdown is 
complete. 

pc$flush is called several times during shutdown--before the 
deactivate loop, after the updateb loop, and after the flush of 
the paging device. While only the last of these is strictly 
necessary, the repeating of this step serves as a hedge against 
failure of any of the intervening steps. This is also done as 
one of the first steps of emergency shutdown. 

Also at several times during shutdown, a variable in the 
FSDCT indicating the relative success of shutdown is updated. 
This allows the salvager and BOS to make decisions based upon the 
relative success (last point passed successfully) of shutdown. 

EMERGENCY SHUTDOWN 

After an unexpected return to BOS due to a system failure, 
the operations performed by shutdown must still be performed if 
the consistency of the storage system is to be maintained. 
However, the state of the Multics environment at this time is 
unclear--it is not known which mechanisms are functional and how 
much so. Thus, many redundant measures have to be taken to 
ensure the success of as many steps as possible. 

After Multics has returned to BOS due to an unexpected 
error, a DUMP or FDUMP can be taken by the operator. After this, 
the BOS command ESD can be given to initiate an emergency 
shutdown. This command alters the machine state saved by BOS at 
the time of entry to BOS. The segment emergency_shutdown is 
located by BOS from the SLT. The machine conditions are altered 
such that a GO (CONTIN) command resumes control at the first word 
of this segment. Such a command is then issued. The procedure 
emergency_shutdown assumes control. This procedure is so written 
that it can be entered in absolute mode if its base address is 
known. Thus, it first establishes its linkage pointer and a text 
base pointer from text-imbedded points set up by 
initialize_faults$fault_init_one. It then enters appending mode. 

emergency_shutdown sets the flag tc_data$system_shutdown 
disabling locking and zeroes tc_data$wait_enable, reverting to 
the initialization wait/notify mechanism. These measures reduce 
the dependency on locking mechanisms operating properly. It is 
not even known that locks were in a consistent state at the time 
of the crash. The SCS is updated to show that only the bootload 
processor is running, thus disabling connects sent by page 
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control. The sys_level (no interrupts other than sys_trouble' 
allowed) mask is set. The APT is then scanned for a process 
that is loaded and eligible. The process that crashed may have 
been an idle process, which has no usable PDS, or may be 
defective in some other way. The crashing process is used only 
if no other is found. If a usable process is found, an LDBR is 
done switching into that process. The PRDS SDW is carried along 
as when LDBR is performed by traffic controller. 

Next a stack frame is set up on the PRDS to allow calls to 
be made to entries in wired code which expect a wired stack. 
Next, the reconfiguration, AST, page table, and traffic 
controller locks are forcibly unlocked. They may have been 
locked at the time of the crash and will never be unlocked 
otherwise. Directory locks are special-cased by means of the 
switch tC_data$system_shutdown. Also at this time, the process 
ID of the running process is changed to 777777777776, so that no 
lock may ever appear to this process to be locked by it (mylock 
error). The in_bos flag set by the interrupt interceptor (see 
the Process and Processor Control PLM) is also reset. 

Calls are now made to forcibly reset the operator's console, 
the syserr logging mechanism, and the 10M manager. Special 
entries are provided within these mechanisms to forcibly reset 
possibly inconsistent states at this time. A call is made to 
device_control$timeout to post any disk status that may be 
unprocessed. An entry to wired_shutdown, 
wired_shutdown$wired_emergency, is now called via 
shutdown switch. The latter enables and initializes the shutdown 
stack, switches to it, and calls wired_shutdown$wired_emergency. 

wired_shutdown$wired_emergency, running on the shutdown 
stack, writes out the FSDCT, flushes main memory, writes out the 
FSDCT once more, writes out the paging device map, and then calls 
shutdown$emergency, which proceeds with normal shutdown just 
beyond the point where tc_shutdown is called (i.e., starting with 
the deactivation loop). The idea of all of these measures is to 
do each one as early as possible in case the next one fails due 
to unknown or unpredictable causes. Writing out the FSDCT is 
very important and very easy. Thus, it is wise to do this before 
flushing main memory, which is less likely to succeed and less 
important (An inconsistent FSDCT can cause reused address 
failures, while inconsistent segment contents is a less fatal 
problem. Neither is truly acceptable, though). As the FSDCT 
will likely be modified by writing out main memory, it must be 
written out before the deactivate/update loop, which is even less 
likely to succeed. This philosophy prevails during shutdown. 
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SECTION V 

MODULE DESCRIPTIONS 

Most of the modules used during initialization and shutdown 
are intended to be called only once. They perform specific 
functions that can on~y be done before certain functions are 
performed and after certain others. Most of these procedures are 
invoked with no arguments. It is impossible to describe these 
procedures in module descriptions. Any comprehension of their 
purpose or function must be gained by understanding them in 
context. Hence, the names of these modules are given below, with 
a brief description of what they do and references to earlier 
sections for a full understanding of their function. 

Some modules, specifically init_processor, make_branches, 
start_cpu, prds_init, shutdown_switch and the prelinker, can be 
called more than once, but· their function is again highly 
specialized, and not of general utility. Descriptions are 
included below. 

SPECIALIZED MODULES 

bootstrap1.alm 

bootstrap2.alm 

accepts environment from BOS. Sets 
up segmentation, loads collection 1 
into unpaged segments. 

sets up stacks, calls prelinker. 
Creates PL/I environment. 

makes a template PDS for process 
creation. PDS contains stack frame 
for return to init_proc. 

initializes bulk store mailbox. 
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clock_init.p11 

disk_init.p11 

emergency_shutdown.alm 

init_branches.pI1 

init_collections.pI1 

init_processor.alm 

initialize_dims.pI1 

ascertains time zone and delta from 
GMT from CONFIG deck. 

adds unused pages of main memory to 
paging pool .. 

initializes disk control routines, 
establishing their communication 
with 10M manager. 

sets up DATANET 6600 FNP" variables 
and 10M manager communication". 

accepts control from 
emergency shutdown. 
environment where much 
allowed. 

BaS for 
Creates 

freedom is 

adds unused portions of unpaged 
segments to paging pool. 

places those supervisor segments 
to go in the hierarchy in the 
hierarchy. Initializes >pdd, other 
sons of root. 

dispatches initialization calls. 

stores text-imbedded link pointers 
in hardcore gates, sets up special 
SDWs for fault restart programs. 

starts a CPU. Contains first code 
executed by a CPU and code for idle 
process. 

makes root directory 
legitimate directory. 

into 

sets up core map, PD map, AST. 

a 

makes free list of system trailers 
in str_seg. 

sets up random system variables. 

creates or accesses FSDCT, 
dispatches device initialization 
calls. Sets up paging. 
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initialize_faults.p11 

initialize_kst.pI1 

initializer.pl1 

make_branohes.pI1 

make ..... segs_paged 

sets up fault and interrupt ~ector 
ITS pointers and text-imbedded 
pointers. 

used by process initialization. 
Used by system initialization to 
allow segments to be initiated by 
setting up the KST of the 
initializer. Also sets up search 
rules. 

permanent supervisor segment that 
dispatches initialization calls, 
mainly to init_collections and 
delete_segs. 

sets up lOB mailboxes and control 
words. Sets up overhead channel 
handling. 

reads collection 
hierarchy. 

3 into the 

recursively creates the storage 
system branch for segments loaded 
from the MST. 

makes paged segments of unpaged 
ones. Sets up root and other 
special ASTEs. Formerly called 
update_sst_p11. 

sets up PRDS for a processor. 

prelinker driver. Scans linkage 
sections for links to be snapped. 

snaps a given link. 

initializes configuration data 
about system controllers. Sets up 
system controller addressing 
segment (SeAS). 
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segment_loader.p11 

shutdown.p11 

shutdown_switch. aIm 

start_cpu. p11 

syserr_init.p11 

trace_init.p11 

wired_shutdown.p11 

sets up CPU configuration 
more system·~ controller 
Assigns interrupt cells. 
mask,s. 

loads collection 2. 

data, 
data. 

Creates 

coordinates 
Deactiva tes 
branches. 

normal 
segments 

shutdown. 
and updates 

establishes use 
as a stack. 
sets up frame. 

of shutdown_stack 
Initializes header, 

builds SLT entries, searches the 
SLT. 

sets up segments for an i'dle 
process. Calls init_processor. 

sets up operator's console, 
lists, wired buffers, etc. 

DCW 

initializes logging of operator's 
console messages. Sets' up LOG 
partition as a segment. 

sets up traffic controller data 
bases, sets up ini tializer 
process. Starts bootload CPU, sets 
up wai tin otify. 

initializes system debugging trace, 
if selected. Sets DCW lis ts, 'etc. 

initializes 
package. 

typewriter 

finishes normal 
shutdown. 
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UTILITY MODULES 

Other modules are called more than once. They are utility 
modules used possibly several times during initialization and/or 
shutdown. We describe them briefly here, giving their calling 
sequence, descriptions, and references to the earlier sections. 
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This procedure traverses AST lists, deleting all segments on 
that list. This deletion consists of calling pc$truncate to hand 
back the disk and paging device storage occupied by the segments. 
SDWs for these segments are zeroed as well. There are three 
entries. No arguments are needed by these calls. 

Usage 

declare delete_segs$temp entry; 

call delete_segs$temp; 

causes all temp segs to be deleted. Used at the end of the 
initialization of each of collections 1 and 2. 

declare delete_segs$init entry; 

call delete_segs$init; 

causes all init and temp segs segments to be deleted. Used at 
the end of initialization. This call is made by initializer, a 
supervisor segment. 

declare delete_segs$hardcore entry; 

call delete_segs$hardcore; 

causes all supervisor segments not in the hierarchy to be 
deleted. Used by wired_shutdown at shutdown time. 
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find find 

Name: find 

This utility module is used to locate selected cards in the 
CONFIG deck. 

Usage 

declare find entry (char(4) unaligned, ptr); 

call find (name, p); 

where: 

1 • name 

2. p 

ExamQles 

more: 

is the name of the type of CONFIG card sought. 
(Input) . 

is both input and output. If given as null, the 
configuration deck is searched from its beginning. 
Otherwise, it is searched from the point pointed to 
by p. As a return value, p points to the first card 
image of the type req~ired, having searched from the 
required point. If returned as null, there are no 
more cards of that type. 

i=O; 
p=null; 
call find ("cpu", p); 
if p=null then go to no_more; 

1=i+1; 
go to more; 
1* i contains the number of "cpu" cards *1 
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free core free core 

Name: freecore 

This procedure is used to explicitly add a page frame of 
main memory to the paging pool. It should be used only for such 
page frames as were not in it at the time of the call. It is 
used during reconfiguration and initialization. 

declare freecore entry (fixed bin(17»; 

call freecore (n); 

where n is the number of the page frame to be freed, i.e., 3 
means the block at address 6000 octal. (Input) 

declare freecore$reserve entry (fixed bin(17»; 

This entry is like freecore. However, if the page frame 
being freed is in abs_usable memory, i.t is not marked as 
abs-usable. This prevents 1/0 buffers from using it. 
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This procedure is used to create an AST entry (including 
page table) for a segment on the MST, thread it into an 
appropriate AST list, and return an SDW describing that segment. 
It is used by make_segs_paged for collection 1 paged segments and 
segment_loader for all collection 2 segments. 

declare make_sdw entry (fixed bin(18), fixed bin(71), 
ptr, ptr); 

call make_sdw (segno, tsdw, astep, ptp) 

where: 

1 • 

2. 

3 · 

4. 

segno 

tsdw 

astep 

ptp 

is the segment number of the segment for which an 
ASTE is constructed. This segment number is used 
to access the SLT. (Input) 

is an SDW using the newly-created page table. 
This can be placed in the descriptor segment using 
appropriate calls. 

is a pointer to the ASTE created. (Output) 

is a pointer to the page table created. (Output) 

make_sdw determines the proper size AST entry from the 
max_length and cur_length fields of the SLTE. The TBLS card 
overrides both of these. The appropriate list on which to- thread 
the AST entry is critical. It is determined by the following 
algorithm: 

ELSE 

ELSE 

if unthreaded entry, or the segment has wired 
pages, then not threaded at all. 

if slte.temp_seg is on, then threaded on the 
temp_seg list. 

if sIte. branch_required is on, then threaded on 
the regular AST list with AST entries of this 
size. 
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ELSE 

ELSE 

if slte.init_seg is on, then threaded on the 
irit_seg list. 

threaded on the hardcore list, aste.hc turned on. 

aste.ehs and aste.hc_sdw are turned on in all ASTEs, except in 
the unthreaded case. 

make_sdw$unthreaded is called in the same way as make_sdw, but 
causes the creation of an un threaded entry_ 
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This procedure is called to perform physical tape I/O on the 
MST. It is called by tape_reader. 

declare (tape_io$init_tape, tape_io$final_tape) entry; 

declare (tape_io$get_unit, tape_io$get_unit) entry 
(fixed bin(6)); 

declare (tape_io$read. tape_io$backspace, tape_io$rewind, 
tape_io$unload, tape_io$skip_file, tape_io$set_density_800, 
tape_io$set_density_1600) entry fixed bin (5); 

declare tape_io$tape_interrupt entry (fixed bin(12), fixed bin(12), 
fixed bin(71), fixed bin(3)); 

sets up the MST reading package. 
The PCW left by bootstrap1 in 
physical_record_buffer is 
inspected. 

closes the package. The tape 
channel is marked and deassigned. 

call tape_io$get_unit (unit_no) 
extracts the current tape unit 
number from the PCWs being used by 
tape_io. 

call tape_io$set_unit (unit_no) 

call tape_io$read (status) 

sets the current tape unit number 
to be used by tape_io. 

starts a read 
physical_record_buffer. 
status is returned through 
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call tape_io$backspace 
through 

call tape_io$set_density_1600 

~--

perform functicns appropriate to 
their names, returning status. 

call tape_io$tape_inte~rupt (devx, listx, ·status~ level) 
is performed by the 10M manager at 
interrupt time. 
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This program, which reqds Multics Standard Tape, is called 
to read the MST. It uses tape_io to perform its 1/0. 

declare tape_reader entry (ptr, fixed bin(18)); 

call tape_reader (p, n); 

where: 

1 • p is a pointer to where words are to be read. (Input) 

2. n is a count of how rna ny words are to be read. ( Input) 

declare tape_reader$init entry; 

call tape_reader$init; 

This call initializes this prograM, and calls tape_io$init_tape. 

declare tape_reader$final entry; 

call tape_reader$final; 

Rewinds the MST and calls tape_io$final_tape. 
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APPENDIX A 

abs-segs 

The concept of an abs-seg is used many times during 
initialization and plays a critical role in the procedure 
make_segs_paged. For those who are not familiar with this 
concept, we provide here an explanation of the use and 
construction of abs-segs. 

A program running in the Multics hardcore, including 
initialization and shutdown, has access to the descriptor segment 
it is using. It is therefore possible for a hardcore program to 
construct an SDW pointing to any legitimate page table or 
contiguous region of main memory. This SDW can be stored at any 
place in the descriptor segment, and the segme;nt thus pointed to 
can be referenced via the segment number describing that 
descriptor segment slot. 

Furthermore, the meaning of pointers and symbolic references 
to that segment number change as the SDW is changed. The segment 
described by that segment number takes on different identities as 
the SDW is changed. It is not any given segment at all, but 
different ones at different times. The segment of changing 
identity assigned to that segment number is known as an abs-seg. 
The reserving of segment numbers for such use is valuable as it 
allows symbolic references to be made to the abs-seg, which in 
fact reference different segments as the SDW is changed. 

Two examples of abs-segs follow. 

Page control must check for zero pages of main memory, when 
it is time to write a page out. It is not known if the page 
belongs to a segment that is known in this process or not. 
Hence, page control constructs an SDW describing that page only 
and places it in the descriptor segment position for the segment 
abs_seg1. Now, page control need only check the first 1024 words 
of abs_seg1 to see if they are zero. 

A-1 AN70 



Segment control searches the AST for an AST entry to preempt 
when one is needed. It decides to deactivate a given segment but 
must update the branch in the containing directory of the 
segment. An AST entry contains a relative pointer to th~ AST 
entry of the containing directory of its segment. Thus, segment 
control fabricates an SDW describing the page table in the AST 
entry of the containing directory and places it in the descriptor 
segment position for the segment dir_seg. ·A pointer to dir_seg 
is now passed to the branch updating routine, as a pointer to the 
containing directory of the segment. Neither the segment being 
deactivated nor its contain~ng directory need be known in the 
current process. 
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A 

AST 1-8, 1-10ff, 1-21ff, 
1-27ff, 1-35, 1-39ff, 
2-20ff, 2-28, 3-1, 3-3, 
3-5, 3-7, 3-10ff, 3-20, 
4-1ff, 4-4, 4-6ff, 4-9, 
5-2 

B 

BaS 1-1ff, 1-14ff, 1-19ff, 
1-25ff, 1-29, 1-39ff, 
2-1ff, 2-10ff, 2-17, 
2-21ff, 2-27, 3-2ff, 3-15, 
4-1, 4-4, 4-7ff, 5-1ff 

bootstrap1 1-6, 1-10ff, 
1-13ff, 1-23, 1-25ff, 
1-29, 1-31, 1-33, 1-35, 
1-38ff, 2-1ff, 2-7ff, 
2-25ff, 2-28, 3-2ff, 5-1, 
5-8 

bootstrap2 1-17ff, 1-23ff, 
1-38, 2-4ff, 2-7, 3-3, 5-1 

build_template_pds 3-16, 
5-1 

C 

CONF1G deck 1-1, 1-3ff, 
1-10, 1-14ff, 1-29, 1-31, 
2-1, 2-11, 2-14, 2-16, 
2-24, 2-28, 3-4, 3-10ff, 
3-16,3-21,3-23,5-2, 
5-5ff 

clock_init 1-39, 5-2 
collect_free_core 1-35, 

2-27, 5-2 
config 1-1, 1-3ff, 1-10, 

1-14ff, 1-29, 1-31, 2-1, 
2-11,2-14,2-16,2-24, 
2-28, 3-4, 3-10ff, 3-16, 
3-21, 3-23, 5-2, 5-5ff 

D 

DATANET 6600 FNP 1-15, 
1-20, 1-26, 1-29, 1-41, 
2-3, 3-22, 5-2 

dn355_init 1-26, 5-2 

E 

emergency_shutdown 1-2, 
1-24, 2-9, 4-1ff, 4-4, 
4-6, 4-8, 5-2, 5-4 

F 

fault vector 1-13, 1-15, 
1-18ff, 1-23, 1-29, 1-31, 
2-2ff, 2-9, 3-14 

fim 1-18, 1-24, 2-9 
free_unused_pages 2-21, 5-2 

H 

hierarchy 1-4, 1-7ff, 
1-10ff, 1-14, 1-16, 1-19, 
1-22, 1-27ff, 1-40, 2-22, 
3-1ff, 3-5ff, 3-8ff, 
3-13ff, 3-19, 3-24, 4-2, 
4-4, 4-6ff, 5-2ff, 5-5 

I 

idle process 1-41, 3-1, 
3-15, 3-17ff, 3-24, 4-8, 
5-2, 5-4 

10M 1-15ff, 1-20, 1-23, 
1-25ff, 1-29, 1-38ff, 
2-2ff, 2-11ff, 2-16ff, 
2-22, 3-2, 3-23, 4-9, 
5-2ff, 5-9 

ini t_branches 1-11, 1-40, 
3-11ff, 4-6, 5-2 

init_collections 1-18, 
1-38, 3-24, 5-2ff 

init_hardcore_gates 1-40, 
3-4, 3-8, 5-2 

init_processor 3-18, 
3-20ff, 5-1ff, 5-4 

init_root_dir 1-22, 1-40, 
3-9ff, 3-24, 5-2 

init_sst 1-35, 1-39, 2-19, 
5-2 

init_str_seg 1-40, 5-2 
init_sys_var 1-40, 3-4, 5-2 
initialize_dims 1-21, 1-26, 

1-39, 2-19, 2-22, 3-9, 5-2 



initialize_faults 1-18, 
1-19, 1-24, 1-34, 1-36, 
1-37, 2-8, 2-18, 2-19, 
4-8, 5-3 

initialize_kst 1-22, 1-40, 
3-9, 3-24, 5-3 

ini·tiali.zer (process) .. 1-3, 
1-21ff, 1-24ff, 1-27, 
1-38, 2-8, 3-9, 3-14ff, 
3~21ff, 4-6ff, 5-3ff 

initializer (program) 1-18, 
1-24, 3-2, 3-24, 4-4 

interrupts 1-2, 1-4, 
1-16ff, 1-24ff, 1-38ff, 
2-1ff, 2-7ff, 2-15ff, 
2-22, 2-28, 3-4, 3-18ff, 
4-1, 4-8ff, 5-3ff, 5-8ff 

iom_data_init 1-38, 5-3 

K 

KST 1-22, 1-40, 3-2, 3-5ff, 
3-12ff, 3-16ff, 3-19, 
3-24, 4-4, 5-3 

L 

load_system 1-25ff, 1-40, 
3-15, 5-3 LOT 1-1-1, 1-24, 
2-5ff, 2-10, 3-4, 3-8 

M 

make_branches 3-12, 3-14, 
5-1, 5- 3 

make_segs_paged 1-21, 1-35, 
1-39, 2-19, 2-25ff, 3-10, 
4-7, 5-3ff, 5-7 

mask, masks 1-17ff, 1-38, 
2-2, 2-8, 2-12ff, 2-15ff, 
2-28, 3-20, 4-8, 

p 

prds_init 2-19, 3-19, 5-1, 
5-3 

pre_Iink_1 1-23, 1-38, 
2-5ff, 3-3, 5-3 

R 

reconfiguration 1-2, 2-7, 
2-121 2-15ff, 2-18, 
3-18ff, 3-21, 4-9, 5-6 

S 

scas~init 1-20, 1-38, 
2-12ff, 2-20ff, 5-3 

SCS 1-27, 1-38ff, 2-7ff, 
2-12, 2-14ff, 2-17ff, 
3-18ff, 3-21, 4-8, 5-4 
scs_init 1-27, 1-38ff, 
2-12, 2-15, 2-17ff, 5-4 

segment_loader 1-11, 
1-25ff, 1-40, 2-8, 3-2ff, 
5-4, 5-7 

shutdown (system) 1-2, 
1-22, 1-24, 1-28, 2-22ff, 
2-27, 4-1ff, 5-1ff, 

shutdown (program) 5-4 
shutdown_switch 4-6ff, 4-9, 

5-1, 5-4 
S L T 1-2, 1-4 f f, 1 - 1 1 , 

1-13ff, 1-20, 1-23ff, 
1-31, 1-33, 1-35, 1-38, 
1-40, 2-2ff, 2-22, 2-24ff, 
3-2ff, 3-7, 3-9, 3-12ff, 
sIt_manager 1-23, 1-38, 
2-4ff, 2-7, 3-3, 5-4 

start_cpu 3-18, 5-1, 5-4 
syserr_Iog_init 1-39, 5-4 

T 

tc_init 1-25, 1-41, 3-19, 
3-21ff, 5-4 

trace_init 1-39, 5-4 
tty_init 3-23, 5-4 

w 

wired_shutdown 4-4, 4-6ff, 
4-9, 5-4ff 
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