
Honeywell SYSTEM INITIALIZATION
PROGRAM LOGIC MANUAL

SERIES 60 (LEVEL 68) MULTICS

RESTRICTED DISTRIBUTION

SUBJECT:

Internal Organization of Multics System Initialization.

SPECIAL INSTRUCTIONS:

DATE:

This Program Logic Manual (PLM) describes certain internal modules
constituting the Multics System. It is intended as a reference for only
those who are thoroughly familiar with the implementation details of the
Multics operating system; interfaces described herein should not be used by
application programmers or subsystem writers; such programmers and writers
are concerned with the external interfaces only. The external interfaces
are described in the Multics frogrammers' Manual, Commands and Active
Functions (Order No. AG92), Subroutine§.. (Order No. AG93), and Subsystem
~vri ters' Quide (Order No. AK9 2) .

As Multics evolves, Honeywell will add, delete, and modify module
descriptions in subsequent PLM updates. Honeywell does not ensure that the
internal functions and internal module interfaces will remain compatible
with previous versions.

This PU1 is
frogrilllli!l~rs'
No. AK96).

one of a set which, when Domplete, will supersede the System
Supplement to the tvlul tics Programmers' t1anual (Order

THE INFORMATION CONTAINED IN THIS COPYRIGHTED DOCUMENT IS
THE EXCLUSIVE PROPERTY OF HONEYHELL INFOR~1ATION SYSTEf.1S.
DISTRIBUTION IS LIMITED TO HONEYHELL EMPLOYEES AND CERTAIN
USERS AUTHORIZED TO RECEIVE COPIES. THIS DOCUMENT SHALL NOT
BE REPRODUCED OR ITS CONTENTS DISCLOSED TO OTHERS IN WHOLE
OR IN PART.

February 1975

ORDER NUMBER:

AN70, Rev. °

PREFACE

Multics Program Logic Manuals (PLMs) are intended for use by
Multics system maintenance personnel, development personnel, and
others who are thoroughly familiar with Multics internal system
operation. They are not intended for application programmers or
subsystem writers.

The PLMs contain descriptions of modules that serve as
internal interfaces and perform special system functions. These
documents do not describe external interfaces, which are used by
application and system programmers.

Since internal interfaces are added, deleted, and modified
as design improvements are introduced, Honeywell does not ensure
that the internal functions and internal module interfaces will
remain compatible with previous versions. To help maintain
accurate PLM documentation, Honeywell publishes a special status
bulletin containing a list of the PLMs currently available and
identifying updates to existing PLMs. This status bulletin is
distributed automatically to all holders of the System
E~ogr£millgrs' ~~plement to the Multics Programmers' Manual (Order
No. AK96) and to others on request. To get on the mailing list
for this status bulletin, write to:

Large Systems Sales Support
Multics Project Office
Honeywell Information Systems Inc.
Post Office Box 6000 (MS A-85)
Phoenix, Arizona 85005

~ 1975, Honeywell Information Systems Inc. File No.: 2L13

AN70

Section I

Section II

CONTENTS

Overview
Strategy of Initialization
The Segment Loading Table (SLT).

Name Table 0.'
Pathanme Structure •
Creation of the SLT

The Environment Passed to
Initialization

The Initialization Environment .
Faults and Interrupts .
Error Handling . 0 0 0 • • •

Segmentation and Paging
The PL/I Environment 0 • • • • 0 • •

Traffic Control and Rings . . . 0

I/O Management '
Nemory Hanagement 0 0 0 • •

Collections . . 0 0 • • •

Supervisor, Init and Temp Segs
Main Memory Management

Summary of Initialization Calls. 0 •

Collection 1 o. • • 0 • 0 • 0 • • • • •

bootstrap1 0 •••••• 0 •

bootstrap2 and Prelinking 0 0

Collection 1 Fault Initialization ..
Hardcore I/O and Operator Console
Initialization. 0 • 0 • 0 0 0

Configuration Initialization .
Interrupt Configuration
Initialization ... ' 0 • 0 •

Initializing Page Control
Setting Up the System Segment

Table (SST)

iii

Page

1- 1
1-2
1-4
1-12
1-12
1-13

1-14
1-17
1-17
1-19
1-20
1-23
1-24
1-24
1-26
1-26
1-27
1-29
1-34

2-1
2-2
2-5
2-8

2-10
2-12

2-16
2-19

2-19

AN70

Section III

Section IV

Section V

CONTENTS (cont)

Initializing Storage System
Devices and the FSDCT

The Making Paged of Segments.
Final Initialization of
Collection 1

Retrospect on Collection 1 • • • • •

Collection 2• '.
Loading of Collection 2 ••••
Preliminary Collection 2
Initializations

Hardcore and Outer Ring Segment

· . .

Page

2-22
2-25

2-28
2-28

3-1
3-2

3-3

Numbers 3-5
Root Directory Initialization. ... 3-9
Branch Creation and Connection. . . •. 3-11
Collection 2 Wrapups •. 3-14
Collect~on 3 3-14
Initialization of Traffic Control. . •. 3-15

Idle Processes . . • •. 3-18
Starting Processors. 3-19
The Completion of Traffic Control
Initialization 3-22

User 1/0 Initialization. . . 3-22
Communications Initialization 3-22

The End of Initialization. 3-24
Retrospect on Collection 2 . . . 3-24

Shutdown
Normal Shutdown .. .
Emergency Shutdown . . .

Module Descriptions . .
Specialized Modules
Utility Modules.

delete_segs .
find . . .
freecor~
make_sdw
tape_io
tape_reader .

iv

· . .
· . .

4-1
4-4
4-8

5-1
5-1
5-5
5-6
5-7
5-8
5-9
5-11
5-13

AN70

CONTENTS (cont)

Appendix A. abs_segs.

ILLUSTRATIONS

Figure 1-1 . Main Hemory as bootstrap1 Receives Control.
Figure 1-2. Main Memory before Loading Collection 1
Figure 1-3. Main t1emory after Loading Collection 1 . · .
Figure 1-4. Main Memory after make _segs_paged . · .
Figure 4-1. Shutdown
Figure 4-2. Deactivation Loop of Shutdown ·

v

Page
A-1

1-30
1-31
1-32
1-35
4-3
4-6

AN70

SECTION I

OVERVIEW

This Program Logic Manual (PLM) describes the in~tialization
of the Multics system. The term initialization, with respect to
Multics, is used to describe the bringing up of the Multics
operating system. lvlul tics does not require a "system
generation," i.e., a creation of a version of Multics tailored to
the requirements of a particular installation. Multics tailors
itself to installation requirements, as specified on a deck of
cards (the CONFIG deck) provided at initialization time (see the
Hultics QQ.erators' Handbook, Order No. AM81 for details). Thus,
the Multics System Tape (MST), which contains the Multics system,
can be used at any site. The operational procedure of taking an
MST and loading it (via BOS, the Bootload Operating System; see
the Bootload .Q..Q.erating System (BOS) PLM, Order No. AN74, for
details) is known as a boot load or boot. At the time of a
bootload, programs on the Multics System Tape create the Multics
environment and read the programs and data on the tape into main
memory and virtual memory. Configuration-dependent data is
processed and system data bases are initialized. The process of
creating the Multics environment is known as initialization.

This PLM describes the procedures, data bases, strategies,
and policies used during Multics system initialization. This is
to be distinguished from process initialization, which is the
initialization of each Multics process shortly after it is
created. Process initialization is covered in Process and
EroCl§.ssor Control PLM, 0 rder No. AN60. This manua"l does not
cover the initialization of the system control, answering
service, and accounting facilities. These facilities are
described in System and User Control, Order No. AN66 and System
Administration, Order No. AN72. Thus, this manual describes only
the initialization of the hardcore supervisor at system bootload
time.

1-1 AN70

A large part of initialization consists of the
initialization of various subsystems within the supervisor. In
many cases, this initialization is a crucial part of the
operation of an individual subsystem and thus is also covered in
some detail in the PLM describing that subsystem. This is
particularly true of Storage System, Order No. AN61, Process anq
Processor Control, Order No. AN60, and Reconfiguration, Order No.
AN71.

This PLM also covers system shutdown, whose organization and
implementation are related to initialization. Shutdown consists
of the orderly stopping of a Multics system, either by operator
command, or by BOS command following a system crash. The latter
is known as an emergency shutdown.

This PLM is organized as follows. Section I gives overviews,
and discusses policies and environments not specific to any part
of initialization or shutdown, but of interest during all of it.
These descriptions are in some sense a collection of information
about these policies throughout initialization. Because of its
supreme importance throughout initialization, the Segment Loading
Table (SLT) is described in Section I. Many of the details in
the SLT description are not apparent until later sections.
Sections II and III describe the two major phases of
init~alization. Descriptions of the programs, the building of
the environment and overviews are provided. Section IV describes
shutdown. Section V is a module-by-module listing of
initialization and shutdown modules, providing capsuled
descriptions of their function. Some miscellaneous modules are
also described.

STRATEGY OF INITIALIZATION

The overall strategy of initialization is that of a
"bootstrap" process. That is, the first procedure of
initialization runs in an environment devoid of all software
assistance. Each new mechanism (segmentation, stacks, symbolic
linkage, 1/0, interrupts, paging, etc. ,) is made operative as
soon as possible and then used to enrich the environment in which
further mechanisms are made operative. Many mechanisms have
subsystems of the supervisor that control them and these
subsystems must be initialized before the associated mechanism
can be used. The initialization of most subsystems is

1-2 AN70

accomplished by a call from the initialization driver programs to
an entry point in that subsystem devoted to the specific purpose
required. Most of these subsystem initializations consist mainly
of the setting up of data bases (threading of lists,
initialization of arrays, etc.), frequently based upon
configuration dependent data specified in the CONFIG deck.

Initialization can be viewed as the loading of the
procedures and data bases (in part) of the hardcore supervisor
from the Multics System Tape. The programs on the tape
constitute precisely enough information to bring a bare hardware
system (containing no data other than firmware) to Multics
command level and allow a reloading of files to take place. (The
previous existence of BOS and the CONFIG deck is assumed.) Some
of the segments (procedures and data bases) on the MST ultimately
wind up in the Multics Storage System; most do not .. All of the
hardcore supervisor is on the HST. None of it is retained from a
previous bootload. Segments are arranged on the MST in such an
order that the earlier segments allow as many mechanisms as
possible to be used in loading the later segments. For this
purpose, the MST is divided into three collections, to be
described later.

Initialization can be viewed as the loading of collection 1,
the initialization of collection 1, the loading of collection 2,
the initialization of collection 2, and the loading of collection
3. This is a very rough description, meant only to illuminate
the use of collections.

Among the last mechanisms to become operative are the
traffic control and ring mechanisms. One processor (the
bootload processor or bootload CPU) performs all of
initialization. The bootload processor, while performing
initialization, runs exclusively in ring O. As traffic control
is not operative, it is not meaningful to ask in-which process
initialization is performed. However, the per-process data bases
used by initialization ultimately become the corresponding data
bases of the initializer process, Initializer.SysDaemon.z. Thus,
it can be said in general terms that the initializer process
performs system initialization. The last step in system
initialization is the calling of the first user-ring procedure of
the initializer (system_startup_), or system control process.

1-3 AN70

THE SEGMENT LOADING TABLE (SLT)

There are two data bases of paramount importance to
initialization. The first of these, the CONFIG deck, describes
all configuration-dependent data, including table sizes, various
software allocations, interrupt cell, port and channel
assignments, and available hardware. The CONFIGdeck is
constructed by BOS, and is described in detail in the Multics
Operators' Handbook.

The other data base is the Segment Loading Table. The SLT
consists of two logical parts, implemented as the two segments
known as sIt and name_table, respectively. The first part, or
the SLT proper, consists of some fixed information and an array,
indexed by segment number, describing all that is known about
each segment loaded from the MST. This :lnformation is supplied
by the MST segment header, a four-word block supplied by the MST
generator (see generate_mst in the Systerg Tools PLM, Order No.
AN51), which precedes each segment on the tape. The MST
generator derives the information from both the system header
file and the segment itself. The information can be modified by
initialization procedure in some cases.

As procedures and data bases are loaded from the MST by
initialization, they are accessed via the segmentation mechanism.
This allows the SLT to be accessed as an array indexed by the
segment number assigned at that time. Thus, the SLT is
essentially a map of the descriptor segment used by
initialization. The segment number assigned is used thereafter
by every process to access that segment when in ring O. This is
explained more fully in Section III under "Hardcore and Outer
Ring Segment Numbers".

Associated with each SLT entry, or SLTE, is a variable
amount of variable-length ASCII-coded information. The
information includes names of the segment and a possible access
control list (ACL) to be associated with the segment if it is
ultimately to go in the Multic~ storage system hierarchy (see
"Branch Creation and Connection" in Section III). To allow the
SLT to be accessed as an array, this information is stored in the
SLT Name Table, which is in the segment name_table. Pointers in
the SLTE connect the SLTE to the array of names for each segment
in the name table. These names are needed to allow the various
initialization procedures to reference themselves and their data
bases by name. Twice in initialization a special linker known as
the prelinker runs, resolving as many outward references of
initialization procedures as is possible at that time. When we
speak of the name of an initialization procedure or data base, it
is the name stored in the SLT Name Table to which we refer.

1-4 AN70

These names are also used as entrynames for those segment~ that
ultimately go into the storav,e system and are added via the
normal storage system name appending primitives (see
hcs_$append_branch and hcs_$append_branchx in the Multics
Programmers' Hanual Subroutines, Order No. AG93, also the Storage
System PLM).

The segments used by initialization may be divided into two
broad categories: those us~d only by initialization and
subsequently discarded and those that are part of the normal
Multics system. The former are known as initialization segments,
the la tter as supervisor segments. These terms are' used only
with respect to initialization. The segment numbers assigned to
supervisor segments by initialization start at zero;
initialization segment numbers start at 400. (All numbers given
here are octal unless otherwise specified. Numbers given in
English, e.g., thirty seven, are decimal. All numbers in PL/I
declarations are decimal.)

Consider the declaration of the SLT.

declare 1 sIt based (sltp) aligned,

2 name_seg_ptr pointer,
2 entry_length fixed bin(18),
2 first_sup_seg fixed bin(18),
2 last_sup_seg fixed bin(18),
2 first_init_seg fixed bin(18),
2 last_init_seg fixed bin(18),
2 free_core_start bit(18) unaligned,
2 free_core_size bit(18) unaligned,
2 seg (0:8191) aligned,

j sIte like sIte; I*slte declaration given below*1

where:

1 •

2.

3 •

4 •

is an ITS pointer to the SLT Name
Ta b 1 e, wo r dO.

is 4.

is 0, the segment number or the
lowest-numbered supervisor segment.

is the segment number of the
highest-numbered (hence the last)
supervisor segment loaded.

1·-5 AN70

5 •

6 •

7.

8 •

9 • seg

is 400, the
lowest-numbered
segment.

is the segment
highest-numbered
segment loaded.

number of the
initialization

number of the
initialization

is the address, rounded up mod
64(10) and divided by 64(10) of
the first free block of main memory
after the permanent unpaged
segments. This is explained under
"Memory Management" and
"bootstrap1."

is the number of whole 64 (10) word
blocks (a block must start on a 64
(10) boundary) available between
the end of the permanent unpaged
segments and the beginning of the
temporarily unpaged segments (also
to be explained), after bootstrap1
has run.

is the array of SLT entries.

Now consider the SLT entry declaration. Remember for
segments that have the header attribute linkage, the linkage
section has been stripped off by the MST generator and made into
a separate segment. This segment has the names of the main
(text) segment, with the suffix link appended to each and, with
its header, follows the text segment immediately on the MST.

declare sIte based (sltep) aligned,

(2 names_ptr bit (18),
2 path_ptr bit(18),

1* \vord 0 *1

2 access bit(4), 1* word 1 *1
2 cache bit(1),
2 pad 1 bit (1) ,
2 pad2 bit(6),
2 wi red bi t (1) ,
2 paged bi t (1) ,
2 per_process bit(1),
2 ds bit (1) ,
2 dirsw bit(1),
2 acl_provided bit(1),

1-6 AN70

where:

1 •

2.

3 • access

4 • cache

2 pad3 bit(3),
2 branch_required bit(1.),
2 init_seg bit(1),
2 temp_seg bit(1),
2 link_provided bit(1),
2 link_sect bit (1),
2 link_sect_wired bit(1),
2 combine_link bit(1),
2 pre_linked bit(1),
2 pad4 bit(7),

2 cur_length bit(9), 1* word 2 *1
2 ringbrack(3) bit(3),
2 segno bit(18),

2 pad5 bit(3), 1* word 3 *1
2 ma x_I en gt h (9) ,
2 bit_count bit(24» unaligned;

is the offset into the name table
segment of the name structure for this
segment, which is declared below.

is the offset into the name table
segment of the directory pathname
structure (declared below) of this
segment if sIte. branch_required is on.
This is the name of the directory in the
storage system hierarchy in which this
segment is to be ultimately placed.
Only some segments from the MST go into
the storage system heirarchy.

is the first four bits of the access
field of the SDW that are constructed by
initialization for this segment. These
are the Bead, ~xecute, ~rite, and
frivileged bits. This is not the access
that goes into any ACL entry in the
branch. This is the same access. used
in the hardcore descriptor for this
segment in every process.

is the SDW cache bit for the hardcore
and initialization SDWs constructed for
this segment. If on, the segment is to
be allowed in the cache.

1-7 AN70

5. wired

6 • paged

7 . per_process

8 • ds

9 • dirsw

11. branch_required

if this bit and the paged bit (see
below) are on in this SLTE, this segment
is to have all its pages wired (made
nonreplaceable in main memory to page
control). The segments pds and
pl1_operators_ are special-cased and
partly vii red . I f the paged bi t is off,
this bit is not meaningful.

specifies that the segment is to be made
paged at an appropriate time. A paged
segment can also be wired.

specifies, if on, that the SDW for this
segment, as created by initialization,
should nob be used by process creation
(see the Process and Process6r Control
PLM for details--o-f--process creation)
when descriptor segments for new
processes are created. By default, all
of the SDWs for supervisor segments are
put in a new descriptor segment when a
process is created.

is on in the SLTE for the descriptor
segment itself. This flag is used to
prevent threading of the descriptor AST
entry of the segment (see "The Iv1aking
Paged of Segments" in Section II).

specifies
directory.

that this segment
Not currently used.

is a

specifies that an ACL (access control
list) structure, declared below, was
supplied by the MST generator for this
segment. It follows the pathname
structure in the name table segment.
This bit is only meaningful when the
branch_required bit is on.

specifies that this segment is to gain
the Multics Storage System hierarchy. A
directory pathname, for the directory to
contain this segment, is pointed to by
the path_ptr field (see above).

1-8 AN70

14. link_provided

17. combine_link

specifies that this segment is an
initialization segment, to be discarded
at the end of initialization. If this
segment is a ternp-seg, this bit is not
on.

specifies that this segment is a
t em p - s e g . T his is a t y p e 0 f
initialization segment that is to be
discarded at the first purging of such
segments after it has been loaded. See
"Hemory r~anagement" in this section.

specifies that the
this segment has
the MST generator
segment on the tape.

linkage section of
been stripped off by

and follows this

specifies that this segment is the
linkage section of some other segment,
stripped off by the MST generator. If
on, the segno field specifies the
segment number assigned to the
corresponding text segment.

specifies that the linkage for this
segment, which must be a text segment
with the linkage_provided bit on, must
be wired. This information is used by
the prelinker to determine whether the
linkage for this segment should be
combined with wired linkage for wired
segments or nonwired linkage for
nonwired segments.

spec~fies if the linkage for this
segment, which again must have the
linkage_provided bit on, should be
combined at all. Linkage segments, in
general, are temp-segs, that are
combined and then discarded. Some are
simply discarded, while others remain as
self-standing supervisor segments. See
the paragraph on prelinking in Section
II.

1-9 AN70

19 • cur_length

20. ringbrack

21. s egno

is a flag created and used by the
prelinker. If on, it indicates that the
prelinker has already processed the
linkage section of this segment. It
prevents the prelinker from combining
linkage twice on a segment.

is the cur_length attribute specified
for this segment in the header, in
pages. For segments in collection 2 and
paged segments in collection 1, it is
used by make_sdw to determine which size
AST entry should be allocated for this
segment~ cur_length is usually exactly
enough pages to include as many \l1ords as
specified by the slte.bit_cQunt field.
(This can only be overridden by
supplying both the cur_length and
bit_count attributes in the MST header).
bootstrap1 redefines the bit count and
cur_length fields for the data segments
for disk subsystems not part of the
configuration being bootloaded, zeroing
them. The cur_length (and possibly
max_length) fields for certain tables in
collections! 1 and 2 can also be
dynamically changed at bootload time by
the TBLS CONFIG card.

is the array of ring brackets to go in
the branch for this segment if it goes
in the storage system hierarchy. For
the two segments return_to_ring_O_ and
restart_fault_, however, these are the
ring brackets that go in hardcore
descriptors for these segments. In no
other case do these ring brackets go in
the hardcore descriptors in any process.
These two special cases are necessary
for the user-ring fault signalling
mechanism (see "Hardcore and Outer Ring
Segment Numbers" in Section III and the
Process and Proc~~ Control PLM).

is the segment number allocated to the
linkage section of this segment if the
linkage_provided bit is on, or the text
segment corresponding to this segment if
the link_sect bit is on. This field is

1-10 AN70

used by the prelinker to locate
definition sections and fill in LOT
entries. (See the Binding, Linking, and
Makespace Management PLM, Order No.
AN81, for details on linking). This
field is filled in by bootstrap1 and
segment_loader, the two segment loading
programs, as the text-linkage pairing is
determined.

specifies the max_length attribute given
in the MST header. This is the maximum
length, in pages, to which this segment
is allowed to grow. It is ignored in
the loading of segments in collection 1.
If given~ it is used to as~ign an AST
entry of proper size for paged segments
in collections 1 and 2. It overrides
the cur_length attribute. It is also
used to set the max_length attribute in
the branches of segments that go in the
storage system hierarchy.

The max_length in the branches of the
SLT and name_table themselves are
special cases,however (in the procedure
init_branches), as their own SLT entries
do not reflect their correct length at
the time that this branch creation is
done.

is the actual length, in bits of the
segment. This number is used to
determine how much space should be
allocated for this segment in main
memory if it is ever copied or moved.
Furthermore, this is the number set in
the branch of any segment that goes into
the file hierarchy as its bit count.
See cur_length above.

1-1 1 AN70

declare name_seg based (names_ptr) aligned,
2 pad bit(18) unaligned,
2 next_Ioc bit(18) unaligned;

where next_Ioc is the relative address into the segment of the
next available location where data can be stored.

1 .

2.

3 ·

4.

The structure for one name is as follows:

declare 1 segnam based (namep) aligned,
2 count fixed bin,
2 names (50 refer (segnam.count»,

3 size fixed bin(17),
3 n am e ch a r (32) ;

count is the number of names given in this name
structure.

names are the structures giving the individual names.

size is the number of significant characters in the
name.

n arne is the actual name, left-justified.

Pathname Structure

If slte.branch_required is on, slte.path_ptr
relative address into the name_table segment of this

gives the
structure.

declare 1 path based (pathp) aligned,
2 size fixed bin(17),
2 name char (168 refer (path.size»;

where:

1 • size

2. name

is the number of significant characters in the
pathname.

is the pathname of the directory in the storage
system hierarchy into which this segment is to be
placed. Note that only as many words as are
needed to contain the significant characters are
required.

1-12 AN70

If slte.acl_provided is on, the ACL structure immediate11
follows the pathname structure. A description follows:

declare 1 acls based (aclp) aligned,
2 count fixed bin,
2 acl (50 refer (acls.count»,

3 userid char(32),
3 mode bit(36) aligned,
3 pad bit(36) aligned,
3 code fixed bin;

where:

1 • count

2. acl

userid

4 • mode

5 • code

is the number of ACL terms provided in this
structure.

is the array of ACL terms.

is the User_id (e.g., Greenberg.Multics.a) of this
ACL term.

is the access mode for that userid. Currently,
only the first three bits (read, execute, write)
are defined.

is part of the user interface to ACL terms and is
not used by initialization.

Creation of the SLT

The SLT is created by bootstrap1, the very first program of
initialization. The first few entries in it are prefabricated in
bootstrap1 and describe the descriptor segment, mailboxes and the
fault vector, the processor utility segment,1 the
configuration deck, and the SLT name table themselves. The SLT
entries are described in the include file slt_init.incl.alm, also
used by the MST checker (see check_mst in the System Tools PLM).
There are also a few entries built in this way for initialization

1The processor utility segment (processor_utility_segment),
contains the floating fault vector (see the Processor Manual,
Order No. AL39). Multics does not now use the floating fault
feature.

1-13 AN70

segments, namely bootstrap1 and the physical record buffer, the
latter used for reading tape during initialization. Those
segments whose SLT entries are created by bootstrap1 from this
include file (these segments are never loaded, ~~) are
sometimes referred to as collection o.

The SLT and name table are permanent supervisor segments.
They become paged at the time that other segments become paged.
They are not wired. They are eventually put in the storage
system hierarchy in >system_library_1. The segment number of the
SLT is known to be seven as BOS uses it to find other segments
and must start somewhere.

The SLT is also used by some user-ring debugging tools to
obtain names of hardcore segments for error messages (see User
Debugging .§1lQ. Tracing 100ls, Order No. AN79) and by ,some tools
(see the ~stem Tools PLM, and System pump Analysis, Order No.
AN5 3) •

THE ENVIRONMENT PASSED TO INITIALIZATION

The following discussion describes machine state and data
given to bootstrap1, the first program of initialization.

The command BOOT is given to BOS to initiate the
bootloading of the Multics system. BOS maintains an "image" of
Multics core, consisting of all of the core configured into the
system not used by BOS, plus a disk buffer area representing the
core that is held by BOS. The management of this buffer is
described in the BOS PLM, Order No. AN14. The final operation
invoked by the BOOT command is the transfer of this buffer into
actual core and the transfer of control to a set location.

Multics expects all of core to contain zeroes, except for
four items, described later. Thus, the BOOT command zeroes the
entire Multics core image.

Multics expects the data contained in the configuration
(CONFIG) deck, in its mostly ASCII format as produced by BaS, to
reside in location 6000, occupying one page. Thus, the BOOT
command copies this information from its storage area within BOS
to this point in the Multics core image.

Throughout all of Multics and BOS operation, the page at
location 4000 contains a program known as the BOS toehold. This
program is described in detail in the BOS PLH. Among its
functions are the reading of the disk portion of the Multics core
image into core and transfer of control as the last stage of a

1-14 AN70

BOOT or GO command, and the return of control to BaS and saving
of the Multics core image as a result of an orderly or unexpected
return to BaS. Multics expects this program to be in this
location.

Location 4004 is known to contain a pair of instructions
that, if executed in absolute mode, cause a restartable return to
BOS, (nrestartable" means that BaS can return to Multics at the
instruction following the instruction that caused execution of
the pair at location 4004.) The occupancy of this page and the
location of that pair constitute all of the knowledge that
Multics has of BaS. The area containing this toehold is not
considered part of the Multics core image and is neither written
out when the latter is saved on disk, nor restored when it is
read back.

bootstrap1 also expects that the 10M mailbox contains
sufficient information to determine the 10M channel number and
device number of the tape drive on which the MST is mounted. BaS
copies this information into the place in the Multics core image
that corresponds to the 10M mailbox.

The final item expected by Multics is the first tape record
(past the label and following end-of-file mark) of the Multics
tape (MST)to be loaded into the core image. The first program
on the tape is bootstrap1. Its first record is loaded so that
location zero of this program is at location 10000, absolute.
Preceding bootstrap1 on the MST are its MST control words (see
generate_mst in the .§.Y..§..telJl Tools PLM) and its SLT entry (from the
MST header). This data in turn lies on a Multics standard tape
record, which has a header eight words long. Thus, the physical
tape record has to be loaded into some location lower than 10000.
However, to facilitate the loading of the physical record into
location 10000, the MST generator strips the first 40 words off
bootstrap1 and pads enough words so that when the record is read
into location 10000, location zero of bootstrap1 is indeed at
location 10000.

Summarizing, the data items expected to be in core at the
time control is transferred to bootstrap1 are the CONFIG deck,
the BOS toehold, the first record of bootstrap1 itself, and the
tape data in the 10M mailbox.

Multics also expects the DATANET 6600 FNP to have been
properly bootloaded by BaS. It also expects the DATANET mailbox,
the floating fault vector (currently not used) and the bulk store
mailbox to be defined in their standard locations.

1-15 AN70

At BOOT time, BaS modified the CONFIG deck by the addition
of a card known as the INTK (for INTaKt <sic». Its format is

INTK bootsw part

where bootsw is nonzero if this is a "warm" boot (a hierarchy is
present on disk) and zero if cold (not present). part is the
name of the partition on disk (normally MULT, but SALV if the
salvager is being booted) that Multics is expected to use. This
card is looked at by the procedures that must initialize access
to the hierarchy (see "Branch Creation and Connection" in Section
I I) .

bootstrap1 expects one and only one processor to be running.
It expects to receive control at location 40 relative to its base
in absolute mode. It expects that the system . controller
containing it has the processor on which it is running as control
processor. It expects the cache on this processor to be
inhibited. It expects index register 2 to contain the absolute
location of word zero of bootstrap1, hence it makes no
assumptions about where it is, other than that it is on a page
boundary in the low-order memory. It expects that index register
o contains the absolute address of the 10M mailbox and index 1
contains the base address of the interrupt vector, which, on the
Model 6180, is always zero. It expects that the tape drive
selected by the PCW in the 10M mailbox is in the right data mode
and correctly positioned to read the second physical record of
bootstrap1.

To facilitate system debugging and problem analysis,
initialization interrogates the processor data switches on the
bootload processor (the processor that entered bootstrap1) at
several times, looking for specific patterns. If these patterns
are found at the times they are sought, control is returned to
BaS in an orderly fashion, allowing dumping and patching. A
subsequent GO command issued to BaS restores control to the point
where control left Multics. These patterns (in octal, where "x"
represents "don't care") and the points at which they reenter BaS
are:

123 4xx xxx xxx

123 2xx xxx xxx

123 1xx xxx xxx

bootstrap1 has just received control from
BaS. Only its first record is in core.

bootstrap1 has read itself
Nothing else has been read
absolute mode.

into core.
in, still in

bootstrap1 in appending mode, with most of
its data bases initialized. Collection 1 not

1-16 AN70

123 x4x xxx xxx

123 x2x xxx xxx

123 x1x xxx xxx

123 xx4 xxx xxx

123 xx2 xxx xxx

loaded yet.

bootstrap 1
bootstrap2.

ready to transfer control
Collection 1 loaded.

to

Collection 1 loaded and initialized, ready to
load collection 2.

Collection 2 loaded.

Collection 2 loaded and initialized, ready to
load collection 3.

Collection 3 loaded. Traffic control and 1/0
not yet initialized.

In the above patterns, the first nine bits (123) identify
the data switch settings as "debugging return to BOS." The
remaining bits are not mutually exclusive, i.e., more than one
may be set, causing many returns to BOS. (These switch patterns
can be remembered by the assumption that there are four pairs of
values corresponding to stopping before and after loading
collections 0, 1, 2, and 3. The 123 is ASCII for S, as in STOP.)

THE INITIALIZATION ENVIRONMENT

The following discussion describes the growth of the Multics
environment during initialization. This growth might be viewed
as an extraction of relevant information from descriptions of the
various parts of initialization. This discussion attempts to
answer questions such as "~vhen does paging first become
effective?"

Faults and Interrupts

Control is passed to bootstrap1 in absolute mode. The
processor is functioning without any ~egmentation or paging. For
the first few instructions, all instructions have the inhibit bit
(bit 28) on. No assumptions are made about the contents of the
fault and interrupt vectors in main memory. The timer register
of the processor is loaded almost immediately with a very large
number to prevent timer runouts.

One of the first tasks of bootstrap1 is to mask out
interrupts, so that it can cease its use of the inhibit bit.
Taking advantage of the inhibit bit could create a lockup fault,

1-17 AN70

so its use is to be minimized. bootstrap1 determines to which·
port on the low-order (bootload) memory the bootload processor is
attached by interrogation of that system controller with an RGR
command generated by an RseR instruction. The execute interrupt
mask assigned to that port is then masked so that no interrupts
are allowed. The channel mask in the controller is set fully
open as it has not yet been determined precisely what the
configuration is.

Once this is done, use of the inhibit bit is curtailed.
bootstrap1 now fills in all of the interrupt vector pairs in main
memory to ignore interrupts. The fault vector is set to cause a
fatal crash on all faults except timer runout, which is ignored.
All interrupts are then enabled. Appending mode is soon entered.
bootstrap1 eventually transfers to bootstrap2 after the loading
of collection 1, which eventually gets to call (through
initializer and init_collections)
initialize_faults$fault_init_one.

This is one of the earliest calls in initialization as it
must take responsibility for fault handling away from bootstrap1.
Here, the fault vector pairs for timer and lockup are set to
pairs that ignore these faults, as are all interrupt vector
pairs. This fault and interrupt ignoring is handled by
wired_fim$ignore, storing seu data at prds$ignore_data. Page
faults (directed fault 1) are directed to the proper entry,
page_fault$fault, as are segment faults (directed fault 0,
directed to fim$primary_fault_entry), and connect faults (wired
fim$connect_handler). Segment fault handling must be initialized
at this time because it is used in collection 2 initialization
before all of the faults relevant to collection 2 have been
initialized properly. All other faults are directed to
ii$unexp_fault, storing seu data at prds$sys_trouble_data.
Hence, unexpected faults during most of initialization store
their seu data here and this area is the first place to analyze
during system problems relating to initialization. The floating
fault vector, assumed at location 1020, is initialized to direct
floating faults to a handler in fim, which crashes the system.
The floating fault feature, under the control of the processor
mode register, is currently not used by Multics.

Later in collection 1 initialization, data extracted from
the configuration deck is used to determine the assignment of
interrupt cells. This is done after system configuration (system
controllers, processors) has been ascertained and verified. At
this time, initialize_faults$interrupt_init is called. This
entry directs all interrupts to their final handlers, in most
cases the interrupt interceptor (ii). During interrupt
initialization (initialize_faults$interrupt_init), all interrupts

1-18 AN70

other than the system trouble interrupt are masked off. When
this is complete, all legal system interrupts are then unmasked
and the channel mask on the bootload system controller set
properly. These masks are determined from the configuration
data. All unassigned interrupts are directed to
syserr$syserr_int. Collection 2 is now loaded. Immediately
before the accessing of the storage hierarchy, when bounds faults
on directories are possible, all faults are directed to their
proper handlers. This is done by
initialize_faults$fault_init_two.

All errors, unexpected faults included, encountered by
bootstrap1 or the fault vectors set up by it, result in the
processor halting (on a DIS instruction) with an error code
stored in the accumulator and registers stored in main memory.
The identity of these errors must be ascertained from analysis of
these quantities. Once initialize_faults$fault_init_one has run,
unexpected faults cause a return to BOS with machine conditions
stored at prds$sys_trouble_data. Soon after this entry has been
called, the procedures to initialize the operator's console under
Multics (its data bases, DCW lists, etc.) are called. Note that
until interrupts are fully initialized, the operator's console
runs without the use of interrupts. As the time zone in which
Multics is running has not been established at this point,
messages reported on the operator's console until the time zone
has been established are generally incorrect (assumed Greenwich
Mean Time) in their time designation.
initialize_faults$fault_init_one sets some pointers used for
clock reading to temporary values, simply to allow clock reading
to function without causing problems. The operator's console
logging mechanism is not initialized until the end of
collection 1 initialization as this requires the support of the
full paging mechanism. After the operator's console has been
initialized successfully, most errors detected by programs
(configuration inconsistencies, errors normally detected by
Multics, etc.) cause a message to be printed on the operator's
console and possibly logged. If the error is fatal, i.e., causes
a return to BOS, the problem can be analyzed by tracing the call
history of syserr, the operator's console manager.

There are several circumstances in which errors detected by
programs cause a return to BOS without a message. These include
the taking of certain faults when disallowed. These returns to
BOS areacco~plished via the system trouble interrupt, a
software-defined interrupt that causes all processors to halt,
except the bootload processor, which returns to BOS. Again,

1-19 AN70

except the bootload processor, which returns to BaS. Again,
machine conditions are stored at prds$sys_trouble data, allowing
identification of the program that sent the system trouble
interrupt.

Difficulty in initializing the operator's console
causes a return to BaS without a message.

Segmentation and Paging

also

bootstrap1 receives control in absolute mode. As soon as it
has read itself in (remember that BOS loads only its first
record), a descriptor segment is set up. This descriptor
segment, as all segments set up by bootstrap1, is a contiguous,
unpaged segment. It is set up off of the end of bootstrap1.
SDWs are created in this descriptor segment to d~scribe the
descriptor segment itself, bootstrap1 itself, the interrupt
vector (including the fault vector), the DATANET 6600 FNP
mailbox, the bulk store and 10M mailboxes, the configuration deck
as passed by BaS and the floating fault vector. The SLT and the
SLT name table are then laid out following the descriptor
segment. They are unpaged segments and descriptors are made to
describe them. The physical record buffer, a segment used as an
1/0 buffer for initialization's reading of the MST, is laid out
following this. The physical record buffer and bootstrap1 are
initialization segments--all of the rest are permanent
(supervisor) segments. Appending mode is then entered. As
segments are loaded by bootstrap1, descriptors are constructed
for them. All of these segments are unpaged. The first paged
segment to be constructed is the SCAS, or System Controller
Addressing Segment. A segment named scas is loaded by bootstrap1
from the MST. It, like all others at this time is unpaged. The
procedure scas_init, running at collection 1 initialization,
constructs in this segment a page table, eight entries long, for
a segment. This segment has the zeroth word of its nth page
being the zeroth word of main memory in the system controller on
processor port n (starting from zero). The "unpaged" bit of the
SDW for this segment is turned off and the bound set to the
minimum, 16(10) words. This segment is used for addressing
system controllers for functions other than storing and
retrieving data, specifically the RSCR and SSCR instructions.
The page table for this segment is completely outside of the
domain of page control, which is unaware of the existence of this
page table. The areas of main memory pointed to by the scas page
table are not reserved--they are used as normal pages of main
memory, subject to other constraints. The SCAS is discussed more
fully in "Configuration Initialization" in Section II.

1-20 AN70

The procedure initialize_dims creates the first real paged
segment. The File System Device Configuration Table (FSDCT),
must be accessed if this is a warm bootload or created if a cold
bootload. (See the Storage §y~tem PLM for details on the use of
FSDCT.) An AST entry containing a page table initially filled
with null addresses is allocated. A descriptor describing a
paged segment, using this page table, replaces the descriptor for
the zero-length segment fsdct. At this time, page control and
its 1/0 routines have been sufficiently initialized so that page
faults can be taken. Nevertheless, pages cannot yet be withdrawn
from or returned to the FSDCT as the latter is not yet wired, and
a page fault during a page fault would result if an attempt were
made to access it. If this is a warm boot, it is defined that
the first page of the FSDCT resides on record 0 of the MULT
partition of the master device (the device with the lowest device
ID that has a MULT partition.) This device address is inserted
into the address field of the zeroth PTW of the FSDCT. It is
defined that a file map (array of device addresses) for the FSDCT
begins somewhere on its zeroth page. This file map is copied
from the FSDCT into its own page table, other than the zeroth
PTW. This access to the FSDCT causes a page fault, but there are
no other pages in core that could get written out (causing
deposits to the FSDCT if zero) and no page faults have been taken
on pages with null address, causing no withdrawals from the
FSDCT. As soon as the FSDCT is in core, it is wired and deposits
and withdrawals can now function. Paging may be said to be
operative at this point, although none of it is going on and only
one legitimate (non-SCAS) segment is paged. In the case of a
cold boot, the FSDCT is created from scratch. Disk space is
allocated for all pages of it, withdrawing it from the FSDCT
being created to avoid later withdrawals by page control. It is
wired in this case too.

The procedure make_segs_paged (formerly update_sst_pI1) is
responsible for making the segments that should be paged into
paged segments. This is true only for collection 1 segments, as
segments in collections 2 and 3 are always paged. This procedure
obtains an Active Segment Table Entry (ASTE) and page table for a
new descriptor segment, that will be paged. This descriptor
segment will be used by initialization and the initializer
process from that point on. This procedure obtains ASTE/page
tables for all of the segments to be paged. It copies the
unpaged segments (through an auxiliary procedure,
privileged_mode_ut$swap_sdw_in_use) into their new paged
incarnations. The new SDW for the paged segment replaces the SDW
for the unpaged segment in both the current (constructed by
bootstrap1) descriptor segment and the descriptor segment being
built (the paged one). Hore will be said about this in the "Main
Memory Management" in this Section and in "The Making Paged of

1-21 AN70

Segments" in Section II. Finally, the SDW of the new descriptor·
segment is loaded into the DBR. Paging and segmentation are
fully operative at this point.

At the time collection 2 is being loaded, an ASTE/page table
is allocated for each segment before it is loaded. The size of
this page table, like those in collection 1, is determined by the
procedure make_sdw from the cur_length and max_length attributes
in the SLTE of the segment, which precedes the text of the
segment on the MST. The tape reading routine (tape_reader)
copies the segments being loaded directly into the segment being
constructed. SDWs with correct access information are placed in
the descriptor segment after the particular segment is loaded.

The initiation of segments and segment faults do not occur
until the initialization of collection 2. The procedure
init_root_dir makes a call (to initialize_kst) to set up the KST
of initialization (to become the KST of Initializer.SysDaemon.z)
to be able to initiate segments. The root is initiated and a
segment faul t occurs on it. Hore is said about this under "Root
Directory Initialization" in Section III, and the Storage System
PLH. Segment faults can now be taken on all segments and
branches can be appended and initiated via the normal storage
system interfaces. Thus, the segments in collection 3 are loaded
by simply appending branches to the storage system and copying
segments from the physical record buffer, piece by piece, into
the newly created segments. Access is set to allow this copying
and set appropriately afterwards.

Branches must be created for some segments in collections 1
and 2. However, since segment faults taken by processes look to
the branches of segments to find their AST entries, if active,
collection 1 and 2 segments that are to have branches (be in the
hierarchy), must have ASTEs and thus page tables and therefore
must be paged. This requires many of those segments in
collection 1 to be paged. Other than the FSDCT, shutdown stack,
Paging Device Map Segment, and PRDS, all of the wired paged
segments in collection 1 are paged for this reason.

The hardcore supervisor never takes a linkage fault. The
initialization of the system search rules (thus initializing the
linker mechanism) is one of the very last things done by system
initialization.

1-22 AN70

The PL/I Environment

bootstrap1 runs in privileged mode since issuing 1/0
instructions is one of its functions. It uses pointer registers
to point to the SLT, Name Table, fault vector, physical record
buffer, 10M mailbox, configuration deck, the descriptor segment,
and each segment being loaded. It uses no stacks and all calls
are made via index registers, i.e., TSXn instructions. It is
impure; it modifies its own code and data. It makes no external
references as there is no program to resolve such links. It does
not even have a linkage section. It remembers the segment number
of "interesting" segments as it passes them in loading.

bootstrap1 passes control to bootstrap2 once coll~ction 1 is
loaded.. Among the informa tion passed wi th control is the segment
number of the segment pds, which will be used as a stack, and the
segment number of the SLT manager, an initialization program that
can resolve a segment name into a segment number from the SLT.
As both bootstrap2 and its linkage section are initialization
segments, the former precedes the latter immediately on the MST,
and the fact that their segment numbers are contiguous is known
to bootstrap2. Thus, bootstrap2 loads the linkage pointer
register with a pointer to the base of the segment whose segment
number is one greater than the segment number of bootstrap2, the
latter being determined with an EPAQ instruction. bootstrap2 now
establishes a stack frame on the segment pds, (known as "the
PDS") . Mul tics standard calls can now be made, bu t not through
links, as these have not been snapped. Some information in the
stack base of the pds is initialized. Its pointer to the
signalling procedure is initialized to point to segment -2, word
2 which would cause a fatal process error. The SLT manager is
now called to ascertain the segment number of the prelinker.
This call is made based upon the segment number passed by
bootstrap1, who noticed and remembered it as this segment was
being loaded. As no links have been snapped, all' of the
procedures that run before prelinking (including bootstrap2, but
not bootstrap1) are called via transfer vectors at their zeroth
through nth words, different offsets corresponding to different
functions. Once prelinking is complete, these procedures are
called in the normal PL/I fashion. Among the information passed
to the prelinker by bootstrap2 is the segment number of the SLT
manager. The prelinker (the programs pre_link_1 and pre_link_2)
attempts to snap all links in all hard core linkage sections,
which are conditionally (based on the SLT) combined into combined
linkage segments. There is one combined linkage segment that
always remains wired and one that is paged and unwired. Again,
the decision to place a linkage section in one or the other is

1-23 AN70

based upon SLT bits. A Linkage Offset Table (LOT), is created.
(See the Binding, Linking, and Makespace Management PLM, Order
No. AN81, for details on the LOT.) Once the prelinker returns to
bootstrap2, symbolic calls can be made. bootstrap2 initializes
pointers in the base of the PDS to point to various operators
within the PL/I operator segment and PL/I programs can now be
used (all programs were assembler-coded up to this point). The
call-push-return mechanism is fully operative, and the PDS is
being used as a stack (it is unpaged now and thus may not grow,
but it may grow after being made paged) and all symbolic
references capable of being resolved have been resolved. Thus,
the program initializer is called (not transferred to).
Signalling and the condition mechanism are not operative. All
attempts to signal cause the process-terminating pointer to be
indirected through, causing the system to terminate operation
(attempts to terminate the initializer process are always fatal
to the system). After collection 2 is loaded, it is prelinked to
and from collection 1 and itself.
initialize_fault_$fault_init_two sets this pointer to the normal
signalling procedure, signal_. This is the earliest time that
signalable faults are allowed.

The PDS is used as a stack as soon as stacks are used at
all. It becomes paged when other segments become paged, creating
a unique problem involving the return from the segment paging
routine which will be discussed under "The Making Paged of
Segments" in Section II. The PRDS is used as a stack during
interrupts and page faults, as in normal operation. It too
becomes paged at the time that segments are made paged. The
stack frame laid down by bootstrap2 remains on the PDS until the
program initializer finally calls out (via init_proc and
gate_init) to ring 1. Shutdown uses a special stack, shutdown
stack, early in emergency shutdown or for the wired portion of
normal shutdown.

Traffic Control and Rings

Initialization runs in the address space that is to become
the address space of the Initializer process,
Initializer.SysDaemon.z. Until traffic control is initialized,
after the loading of collection 3, control never leaves the
initializer process. If any event (specifically, a disk page
fault) must be waited on, a special loop in the program wired_fim
is entered by the traffic controller. This loop waits for a flag
to be set by a routine that is called when an attempt is made to
notify an event, invoked by an interrupt. These special
handlings are done because the flag tC_data$wait_enable is zero
until traffic control is initialized. No directories should ever

1-24 AN70

be locked. Idle processes do not exist or run, and the body of
the traffic controller (scheduler) is never entered until traffic
control has been initialized by the procedure tc_init.
Initialization runs in hardware ring 0, not leaving this ring
until init_proc calls system_startup_ in ring 1, after all of the
hardcore has been initialized.

I/O Management

Input/Output during initialization consists of tape reading,
operator's console writing, and paging. bootstrap1 has a
physical tape reading routine in its first physical tape record.
This routine is initialized to read the MST, from data left by
BOS in the 10M mailbox. It sets up LPWs, DCWs and PCWs to read
the HST, and issues connects to the 10M. Once boot.strap 1 has
been read in, a more sophisticated tape reading routine within
bootstrap1, which is knowledgeable about the format of Multics
Standard Tapes, including error retry conventions, is used to
interface to the simpler routine. The sum of these two routines
reads the segments and SLT headers of collection 1, using the
segment physical_record_buffer as a single record tape buffer.
The smaller routine that has read bootstrap1 is not knowledgeable
about these things, hence, bootstrap1 must be written on the MST
without error.

During collection 1 initialization, the 10M manager and its
data bases are initialized. This is the first initialization
after the first fault initialization (see "Faults and Interrupts"
earlier in this section). The operator's console is initialized
next, without the logging facility. It uses the 10M manager to
perform physical I/O. The clock reading and interrupt mechanisms
for this work through interim methods that have already been
described.

Collection 2 is loaded by a program called segment_loader,
invoked by the program initializer. This program calls a tape
reading package called tape_reader to read the MST. This program
is again knowledgeable about Multics Standard Tapes. It uses a
program called tape_io to perform physical I/O via the 10M
manager. A device index is assigned to the bootload tape
drive/channel at the time this package is initialized,
immediately before the loading of collection 2. Collection 3 is
loaded by a program called load_system (see "Memory Management"
in this section), which also utilizes this tape reading package
(tape_reader and tape_io),. After collection 3 has been loaded,
the bootload tape drive is rewound via a call to
tape_reader$final.

1-25 AN70

Paging 1/0 is initialized by the individual 1/0 routines for'
the storage system devices (disks, bulk store, etc.). These
routines are called at initialization entry pOints by
initialize_dims, during collection 1 initialization. This
happens after both the 10M manager and interrupts are
initialized, but before paging is operative. These routines
report to the 10M manager for device index assignment (except the
bulk store control routine, as the bulk store interfaces directly
to the system controllers, and hence, does not use the 10M).
This initialization of communication with the 10M manager (see
the Supervisor InputlOutput PLM, Order No. AN65, for details on
the 10M manager) includes communication of the identity of the
interrupt handler of the routine, and base,address for DCW lists.
These routines are fully operative after this reporting has been
done.

Other 1/0 device control routines (teletypes, 1/0
interfacer) are initialized after initialization of traffic
control which follows the loading of collection 3. These
routines are fully operative after initialization. The Network
software is initialized by a call from an outer ring, via a gate,
if a Network attachment is present, and is thus not part of
system initialization.

Communication with the DATANET 6600 FNP needs no
initialization. This processor is bootloaded by BaS. The
initializations performed by Multics at collection 2
initialization time, in the module dn355_init, consist solely of
setting up some data for the DATANET communication routines. In
pre-24.4 systems, this is done at collection 1 initialization
time.

MEMORY MANAGEMENT

The following discussion covers the development and use of
different strategies for manipulating and managing main memory
and virtual memory during initialization.

Collections

As has been described, the Multics System Tape (MST) is
divided into three collections of segments. The segments are
separated by special control words known as collection marks,
which are recognized by bootstrap1, segment_loader and
load_system, the three segment loading programs. The
significance of the three collections is as follows. There is
much more data on the MST than can fit into main memory at any

1-26 AN70

one time. Hence, much of it will have to be loaded into virtual
memory, i.e., loaded in the presence of an operative paging
environment. Thus, a goal of initialization is the establishment
of paged segmentation at the earliest possible time. Collection
1 contains precisely those programs that are required to
accomplish this. All segments that are unpaged, as opposed to
paged and wired, appear in Collection 1. This is because only
bootstrap1 can allocate unpaged, contiguous core in this way.
Before System 24.4, the ability to wire segments in Collection 2
did not exist, and all wired segments were in Collection 1.
Collection 2 contains all of the rest of the hardcore supervisor,
i.e., all of the rest of the programs that will run in ring zero,
and must be prelinked to programs in ring O. The segments are
loaded by the program segment_loader directly into the virtual
memory. Collection 3 consists of programs that are not part of
the supervisor. These programs constitute precisely ,enough of
the system control and user environment to allow a reload of the
storage system hierarchy to be performed. All of the programs in
collection 3 are loaded directly into the hierarchy by the
program load_system.

Supervisor; Init and Temp Segs

As the first two collections are loaded, programs that will
be used only by initialization and programs that will remain as
part of the Multics supervisor are added to the virtual memory.
These segments are known as initialization segments and
supervisor segments, respectively. Each of the first two
collections contains both types of segments. Among the
initialization segments, many are used only once (e.g., scs_init,
which initializes configuration-dependent data concerning port
assignment and interrupt cells), and many are used more than once
(e.g., tape_io, which reads the Multics System Tape). Thus, a
further subdivision is made within initialization segments: temp
segs are segments that are to be discarded at the first
opportunity following their use, and init segs proper, that are
to be discarded at the end of initialization. Discarding these
segments frees the AST entries they utilize, increasing the AST
pool, and the disk and bulk store storage that they may occupy.
Furthermore, it removes their SDWs from the descriptor segment
that will belong to the initializer process. In order to
facilitate the use of this mechanism, many of the temp segs that
will be discarded after collection 1 are bound into a single
bound segment, bound_temp_1. Temp segs to be discarded after
collection 2 (those, obviously, are loaded in collection 2) are
in bound_temp_2. Init segs loaded in collection 1 are in
bound_init_1, those loaded in collection 2 (used for loading
collections 2 and 3, and initializations after collection 3 has

1-27 AN70

been loaded, e.g., the traffic controller) are in bound_init_2.
Most linkage sections, stripped off of theLr text segments by the
MST generator, are temp segs. The keywords init_seg and temp_seg
in the MST header specify the assignment of these attributes to
segments.

There are seven lists of ASTEs in the Active Segment Table
(AST). There are four lists used by Multics while running, for
the allocation and deallocation of ASTEs for segments on which
segment faults have been taken. These correspond to the four
sizes of AST entries, 4, 16, 64, and 256 (decimal, page table
size in words.) A fifth list is called the hardcore list. AST
entries for supervisor segments loaded in collection 2, and
supervisor segments from collection 1 that obtain AST entries at
the time that segments are made paged, are put on this list.
However, those supervisor segments that ultimately go in the
storage system hierarchy are not put on this list, but in one of
the four normal lists. This allows shutdown to process these
segments when other active segments of the storage hierarchy are
deactivated and/or have their branches updated. Shutdown also
uses the hardcore list to delete (free the disk storage of) the
hard core supervisor segments. Clearly, the code that does this
and runs after this must not delete itself. Hence, all wired,
paged, supervisor segments appear on no AST list in 24.4 and
later systems. Most of shutdown, however, is unpaged code. A
sixth AST list is maintained for init_segs. AST entries
allocated for init segs made paged in collection 1 initialization
or loaded in collection 2 are put on this list. At the end of
initialization this list is traversed, all of these entries are
freed, and their segments deleted. The seventh list is the list
of ASTEs of temp segs. Temp segs made paged in collection 1 or
loaded in collection 2 have AST entries on this list. Before
collection 2 is loaded, and again before collection 3 is loaded,
this list is traversed and AST entries and secondary storage
freed. Clearly, segments that are not paged and hence have no
AST entries, occupy main storage permanently (if they are still
not paged after segments are made paged.) The program
delete_segs is responsible for traversing AST lists and deletion
of segments (for a description of delete_segs see Section V).

Some special paged segments have their AST entries threaded
out of any AST list to prevent both deletion or branch updating,
which happens on the other lists. These segments are the PRDSs
of processors, the shutdown stack, and the FSDCT, all of which
must be used at shutdown time as segments are being deleted, and
have no branches. The root is special-cased by shutdown to avoid
deletion and branch updating.

1-28 AN70

Figure 1-1 shows the layout of main memory as bootstrap1-1
receives control from BaS. The only information in main memory
is the CONFIG deck, the BaS toehold, the information identifying
the bootload tape drive and channel in the 10M mailbox and the
first record of bootstrap1. The fault vectors, floating fault
vectors, DATANET 6600 FNP and bulk store mailboxes are present,
but contain no valid information.

bootstrap1 proceeds to read itself in. It then lays out its
descriptor segment, the SLT and SLT name table, and the physical
record buffer directly after its own text. Descriptors are made
to describe the mailboxes, CONFIG deck, and fault vectors.
Figure 1-2 describes the layout of main memory at this.time.

bootstrap1 now loads collection 1. As you will recall, all
segments are unpaged at this time. Supervisor segments that are
to remain unpaged are loaded following the end of the physical
record buffer. This is where they will remain throughout Multics
operation. They are loaded contiguously, one after the other, in
ascending address order in main memory. Keep in mind that the
mailboxes as well are permanent unpaged supervisor segments, but
they were created as segments in preassigned location by
bootstrap1 before collection 1 was loaded. All other segments
loaded by bootstrap1 (including init and temp segs, and segments
in collection 1 that are to be made paged) are loaded starting at
the high-addressed end of available memory. They are allocated
contiguously, one after the other, in descending address order in
main memory. ~en all of these segments have been loaded, the
starting address and length of the unused core remaining are
copied in to the SLT (see the SLT discussion earlier in this
section) for the later initialization of the pageable memory
pool. Figure 1-3 now shows the layout of main memory.

1-29 AN70

LOCATION, OCTAL

o .-------- ---....,
INTERRUPT AND
FAULT VECTORS

100 1-------------\

4000 1--------

BOS TOEHOLD

6000 1-------- ----I

CONFIG
DECK

10000 1--______ , ,----I

BOOTSTRAP 1 ,
FIRST RECORD

12000 1-------------\

UNUSED
(ZEROES)

Figure 1-1

Main Memory as bootstrap1 Receives Control

1-30 AN70

LOCATION, OCTAL

O~-----------.
INTERRUPT AND
FAULT VECTORS

100~------------------~

6001-------------1
DATANET 6600
FNP MAILBOX

1000 --------.-
1020 1--------------1

FLOATING VAULT
VECTOR

1100 f----------
BULK STORAGE
MAILBOX

1200 f-----------------1

10M IMW AREA

14001-------------1
10M
MAILBOXES

4000 1-----------------1

BOSTOEHOLD

60001-------------------~

CONFIG
DECK

BOOTSTRAPl

14000 1-----------------1
DESCRIPTOR
SEGMENT

16000 f----------------1

SLT

20000 --------

22000 1------------------1

34000 1---------------------1

36000

40000

PHYSICAL RECORD BUFFER

42000 I-------U-N-U-S-E-D------I

Figure 1-2

10M MAILBOX
SEGMENT

l-1ain t1eraocy Before Loadin~ Collection

1-31 AN70

LOCATION, OCTAL

O~-----------------,

FAULT AND
INTERRUPT VECTORS,
MAILBOXES

4000 1-------------1

BOS TOEHOLD

100001------------------1

BOOTSTRAP1

140001-----------
DESCRIPTOR
SEGMENT

160001-------------,-...,

SLT AND
NAME TABLE

20000 -------

24000 --------

340001-------------·--1

PHYSICAL RECORD
BUFFER

FREE

INIT SEGS, TEMP SEGS,
AND SUPERVISOR SEGS
WHICH ARE TO BE MADE
PAGED

figure 1-3

Main Memory After Loading Collection 1

1-32 AN70

Collection is now initialized. All of the segments now
existent are unpaged, and hence, no page faults are taken until
creation of the FSDCT segment. Before this happens, though, the
procedure init_sst runs. This procedure creates the core map
(see the St..Q.r..age Qyst,em PLM, Order No. AN61) among other data
bases, and creates a core used list, consisting of all of the
core blocks that lie entirely within the free region left by
bootstrap1. Thus, the first few page faults on the FSDCT and the
new paged descriptor segment ar~ resolved in this area. If there
is not enough room left to resolve these page faults, Multics
will crash during initialization.

Once there is a minimal core used list, and paging is
operative, the procedure make_segs_paged copies each of the
segments at the high end of main memory (the temp, init, and
paged supervisor segs) into paged segment~, for which it has
asked make_sdw to fabricate AST entries based upon the SLTE
information available. These segments are copied in descending
address order, starting at the high end of memory. As each full
page is copied, i.e., one core block worth of information from
the high end of memory has been copied into paged segments, the
core block is freed, i.e., added to the core used list (the
pageable memory pool). During this operation, the amount of
pageable memory increases due to this freeing. The occasional
wiring of paged segments tends to decrease the amount of
available memory. If at any time, the amount of available
page able memory becomes zero, Multics will crash. The time when
the minimum amount of pageable memory is available during this
opera t ion is known as the "core high \-1a ter mark" 0 f
initialization.

As each of these segments is successfully copied, the
descriptor for the new paged segment replaces the descriptor for
the unpaged segment in both the old (unpaged). descriptor segment
and the new (paged) one. This allows the main memory occupied by
the old unpaged copy to be freed immediately. The configuration
deck, the SLT, and its Name Table are also copied into paged
segments. As they are not contiguous with the segments at the
high end of main Memory whose memory is freed sequentially, their
main memory is not freed at this time. After all of this copying
is done, a procedure called collect_free_core runs. This program
does a marking-type garbage collection of main memory. All core
blocks found to be not in the core used list, but to contain a
word of an unpaged segment, are marked. The entire core map is
then scanned, and any core block which is marked is unmarked.
Any core block that is found unmarked, and is in a currently
configured (ON) system controller is added to the core used list.
This frees the core formerly occupied by bootstrap1, the SLT and
SLT name table and the physical record buffer before they were

1-33 AN70

made paged, and any other pages never freed (e,g., the page at
2000). The unpaged descriptor segment is then freed, after the
new one is in useo

One may note that the physical record buffer becomes paged,
and is wired. The initialization tape reader, tape_io,
constructs DCW lists that are cognizant of the fact that this
segment is not contiguous in memory.

From this point on, main memory control is completely under
control of page control. Figure 1-4 shows the current layout of
main memory. The unpaged supervisor segments remain in place
throughout Multics. Wired as well as unwired segments share the
pageable core pool. The deletion of init_segs removes the
physical record buffer from memory (unwiring and deleting it).

Shutdown deletes segments, but has no particular effect on
main memory allocation.

SUMMARY OF INITIALIZATIONS CALLS

This subsection is a summary of all of the calls made by
bootstrap2, initializer, and init_collections, the latter two
being simple call dispatchers. This is intended to give an
overview of the sequence of initialization before we descr~be
these procedures in detail in the next two secti~ns.

bootstrap1 transfers to bootstrap2, collection 1 having been
loaded.

call sIt_manager ascertain segment
prelinker.

prelink collection 1.

number of

call initialize_faults$fault_init_one
sets up interim fault handling,
most faults set to be fatal. Page
and segment faults legal. Interim
clock reading set up.

10M manager
Channel tables
channels set
initialized.

1-34

initialization.
and overhead

up. Mail boxes

AN70

LOCATION, OCTAL

O~----------------~
FAULT AND
INTERRUPT VECTORS,
MAILBOXES

2000 I-----------------~

AVAILABLE
FOR PAGING

40001-------------1

BOS TOEHOLD

6000 t-----------~

AVAILABLE
FOR PAGING

420001------------1

PERMANENT UNPAGED
SUPERVISOR SEGMENTS

AVAILABLE
FOR PAGING

Figure 1-4

Main Memory After make_segs_paged

1-35 AN70

call scas_init

call trace_init

Initializes operator's console data
bases. Reports to 10M manager for
device index assignment.

system controller addressing
segment (SeAS) set up. Processor
and system controller configuration
data processed and interpreted.
RSW and RSCR instructions issued to
verify this data.

interrupt assignments ascertained.
System masks fabricated. Process
interrupt handlers set up.
Interrupt handler entry points set
up for interrupt interceptor.
Control processor relations set up.

debugging printer/tape facility set
up, if selected. Reports to 10M
manager for device assignment.

system segment table (SST)
organized. Core and PD maps and
used lists set up. AST entries
created, threaded into free lists.
Core left by bootstrap1 freed.

call initialize_faults$interrupt_init

call clock_init

call initialize_dims

interrupts directed to interrupt
interceptor. Data collected by
scs_init used to assign correct
entry point.

local time zone
configuration
sys_info.

ascertained
deck, put

from
in

storage system I/O routines called
to report to 10M manager. FSDCT
accessed or constructed based upon
INTK card. First page faults
taken.

1-36 AN70

call delete_segs$temp

call tape_reader$init

call trace_rsw

call segment_loader

call getuid$init

new paged descriptor segment made.
All segments other than permanent
unpaged supervisor segments made
paged. Main nemory for
initialization segments freed.

segment made to access LOG
partition of disk. Operator's
c9nsole logging made operative.

collection 1 temp segs deleted.

DEBG card interrogated
debugging options set.

system

initialize tape package, with
respect to 10M manager. DeW lists
to read tape into paged buffer
segment set up.

check switches to return to BaS.

load collection 2. Prelink it.

system trailer segment set up as
list of free trailers.

linkage pointers set in hardcore
gates for performance optimization.
Ring brackets set in SDWs for fault
restart mechanism.

an obsolete
constructed.

data base is

storage system unique ID generation
initialized.

miscellaneous system variables
initialized. Required error table
codes copied into wired data bases.

root constructed on cold
initialize_kst called to
segment initiation.
initiated.

boot.
allow

Root

call initialize_faults$fault_init_two
all fault handlers set up.

1-37 AN70

call init_branches

call delete_segs$temp

call trace rsw -
call load _system

call trace rsw -
call tape_reader$final

call tc init -

segments which would go into the
hierarchy are put there. Branches
constructed, and connected to AST
entries. Branch attributes copied
from SLT.

collection 2 temp segs deleted

check switches to return to BaS.

load collection 3. Loaded into
hierarchy, not prelinked.

check switches for return to BaS.

MST rewound, tape_io ceases
communication with 10M manager.

traffic controller set up.
Initializer process made out of
current state of system. Bootload
idle process set up.

typewriter package set up, sets up
buffers and control words. I/O
interfacer initializes self.
DATANET 6600 FNP communication
initialized.

call delete_segs$delete_segs_init

call init_proc$multics

all initialization
deleted. Current
(initializer) is a
segment.

segments
procedure

supervisor

system search
system_start up_

rules set up.
in ring 1 called.

1-38 AN10

SECTION II

COLLECTION 1

Collection 1 of the Multics System
procedures and data bases necessary
Since all programs and data must fit in
is operative, collection 1 contains
segments necessary to attain this end.

Tape contains ~ll of the
to make paging operative.
main memory before paging

the minimal number of

Collection 1 must contain the programs and data necessary to
take the minimal informition passed by BOS, including the CONFIG
deck, and construct a paged Multics environment. The proper
routing of faults and interrupts and the determination of the
system configuration are among the functions performed by these
programs. The creation of the PL/I environment, e.g., stacks and
symbolic references, is another.

All of the programs and data bases loaded as part of
collection 1 are loaded by the program bootstrap1 (with the
exception of bootstrap1 itself). All of these procedures and
data bases are loaded into contiguous unpaged segments in main
memory. After loading, a call to
init_collections$init_collection_1 makes calls to many procedures
in collection 1 to initialize many of the data bases and
subsystems loaded. By the time this has been done, many of
these segments are paged.

2-1 AN70

bootstrap1

bootstrap1 loads itself into main memory,
appending environment, sets up segments
hardware-defined areas and information passed by BOS,
the rest of collection 1.

sets up an
describing
and loads

The first tape record of bootstrap1 receives control from
BOS in absolute mode at location 40 relative to the base of
bootstrap1. Immediately, the processor maintenance panel
switches are checked for a pattern to cause a return to BOS (see
Section I, liThe Environment Passed To Initialization"). Next,
interrupts are masked. All code up to this point has been
running with the inhibit bit set on, but this usage must be
minimized if lockup faults are to be avoided. Thus, bootstrap1
determines which port on the bootload system controller the
bootload processor is connected to by issuing a RSCR-tFG (read
system controller registers, configuration) instruction, directed
at the bootload controller. Among the information returned by
this instruction is this port number. Knowing this number allows
the SSCR-IER (set system controller registers, interrupt enable
register) instruction to be issued, setting the interrupt mask
assigned (via the EIMA 1 switches) to that port. Once this
mask has been set, masking all interrupts, the inhibit bit is no
longer used, preventing a lockup fault. The interrupt vector is
now filled with NOP pairs, causing all interrupts to be ignored.
The fault vector is set to ignore timer runout faults. The timer
(processor timer register) is also loaded with a very large
number. The interrupt mask is now set to enable all interrupts,
as they will be effectively ignored.

bootstrap1 now obtains an 10M PCW left by BOS in the first
words of the 10M mailbox to determine the tape channel and drive
number of the Multics System Tape (MST). PCWs and IDCWs to be
used ~ the tape-reading routine in the first record of
bootstrap1 are appropriately initialized,. A loop is now entered
that reads in all of the remaining records of bootstrap1, using
these PCWs and IDCWs. The length of bootstrap1, i.e., the number
of tape records to be read, is determined from the SLT entry of

1 EIMA stands for Execute Interrupt Mask Assignment. There are
four EIMA switches on a Series 6000 system controller. Each
switch is associated with a mask, which masks the system
controller interrupt cells. Each switch selects a port on the
controller. If an interrupt cell is set, and unmasked by the
corresponding bit of a given mask, the port selected by the
corresponding EIMA switch is sent a signal to create an
interrupt.

2-2 AN70

bootstrap1, which, as you will recall from the last section,
precedes bootstrap1 on the MST and is loaded as part of it.

When all of bootstrap1 is read in, the switches are checked
for a return to BaS and a descriptor segment is set up at a fixed
location relative to the beginning of bootstrap1. Descriptors
are constructed for all of the hardware-defined areas of main
memory (DATANET 6600 FNP mailbox, the 10M mailbox, the bulk store
mailbox, fault and interrupt vectors, floating fault vector) and
the configuration deck. The address of the 10M mailbox was
supplied by BaS in an index register. All of these other areas
are assumed to be at known locations. these segments are all
permanent supervisor segments. The Segment Loading Table (SLT)
and its Name Table are laid out as areas following the descriptor
segment. Descriptors are constructed for them, and they too are
permanent supervisor segments. The Physical Record Buffer is
laid out following the SLT Name Table, and descriptors describing
it and bootstrap1 are constructed, being the first two
descriptors for initialization segments. The pointer registers
are loaded with pointers to the base of several of these
segments. A transfer instruction is executed whose final address
was prepared via appending, causing appending mode to be entered.

The interrupt vector is now filled with SCU-TRA pairs,
ignoring all interrupts but causing machine conditions to be
stored. The fault vector is set to cause a fatal error if any
fault is encountered except timer runout, which is ignored.
These SCU-TRA pairs use ITS pointers to prepare their final
addresses. These ITS pointers are set up following the fault and
interrupt vectors. The actual SCU and TRA instructions never
change from this point on. Only the ITS pointers are changed.
The segment loading table is initialized with a template
describing all segments set up so far. A more powerful
tape-reading routine, which is part of bootstrap1, is now
initialized. This initialization includes priming its buffer
with the next tape record. The amount of available main memory
is ascertained from the configuration deck MEM cards. The data
switches are again checked for a possible return to BaS.

Collection 1 is now read in. Preceding each segment is the SLT
entry for this segment, which is itself preceded by a header word
glvlng its length. The SLT entry is loaded into a standard
location and the names and possible ACLs and directory pathname
that follow the SLT entry are copied into the name table. A
segment number is allocated to the segment being loaded,with the
next sequentially available segment number, starting at zero for
supervisor segments and 400 for initialization segments. Checks
are made that the segment being loaded follows in the proper
sequence of text and linkage segments, i.e., that each text

2-3 AN70

segment with the link_provided bit on is followed by exactly one
linkage segment. The first name of the segment is checked
against a table known as interesting __ names, which directs
special-case action to be taken for certain segments. This
action consists of either remembering the segment number of the
segment being loaded for the transfer to bootstrap2, or setting
the length of the segment based upon the configuration deck
(e.g., zeroing the length of d190_seg if no DSS190 subsystem is
configured and setting the length of tty_buf from the TTYB card).

Space is allocated for the new segment. This space is the
next available space in main memory of the length specified by
the possibly-adjusted bit count, either starting at the low end
of memory for unpaged supervisor segments, or starting at the
high end for all others. (See Section I, "Main Memory
Management").

Next, a SDW is created for the segment, using the bit count
in the SLT entry (which may have been modified by the
special-casing). This SDW allows read and write access for the
purpose of loading. The adjusted SLT entry is copied into the
correct place in the SLT and the number of words specified by the
MST header word are read into the new segment. (This header word
precedes the text of the segment and tells how many words are
written on the tape as opposed to the bit count, which tells how
much space should be allocated.) Finally, the access bits
specified in the SLT entry, including the encacheability control
bit, are placed in the SDW.

A special MST header word signals the end of collection 1.
At the time this is encountered, bootstrap1 computes the amount
of main memory remaining between the supervisor segments and the
temporarily-unpaged segments and places its address and length in
the SLT header. The data switches are again checked for a
possible return to BaS. Pointer register seven (SB) is made to
point to the base of the segment pds, whose segment number was
remembered during t he special-casing j.n loading. The· time r
register is reloaded with a very large number and the processor
tag of the bootload CPU is ascertained with an RSW instruction
(which must be done by a privileged procedure). The processor
tag and the segment numbers of the SLT and the SLT manager (the
latter's segment number was also remembered during the special
casing) are loaded into index registers. A transfer is made to
the first word of the procedure bootstrap2, whose segment number
was similarly remembered.

At this time, the fault and interrupt handlers of bootstrap1
are still referenced by the fault vector, but are not used except
in case of error.

2-4 AN70

bootstrap2 AND PRELINKING

bootstrap2 is the program transferred to by bootstrap1. It
is loaded by bootstrap1 with the rest of collection 1. It is
responsible for setting up the PL/I environment, i.e., setting up
enough mechanisms so that PL/I programs can be used. The
principal features of this environment are stacks, stack segments
(with various pointers in their bases, see the Runtime
Environment PLM, Order No. AN84, for information on the PL/I
environment), and symbolic references.

bootstrap2 begins by initializing the linkage pointer
register (LP) to the base of its own linkage section. This is
possible without SLT searching because the linkage section of
bootstrap2 follows bootstrap2 on the MST and both are
initialization segments and hence, their segment numbers are
contiguous. This allows bootstrap2 to make symbolic 'references
after prelinking has occurred. Next, a stack frame is set up.
This involves the initialization of stack begin and end pointers
in the PDS, used as the stack (recall that pointer register 7
points to the base of the PDS at this time) and the in-line
execution of a standard Multics push macro. This having been
done, a stack frame is available for use and others can execute
push and return macros when called by bootstrap.

The program sl t_manager is used by prelinking and the
remainder of initialization to build SLT entries and scan the SLT
for segment names. It must be initialized next by passing it the
segment number of the SLT, which was passed by bootstrap1. It
then scans the SLT (which contains a pointer to the name table)

.for the segments lot and lot_maintainer, which it us~s during
prelinking. All of these segment numbers are stored in impure
storage in the procedure sIt_manager. The call to sIt_manager is
made via a transfer vector at the beginning of that program. All
calls made between bootstrap2, sIt_manager, lot_maintainer,
pre_link_1 and pre_link_2, until prelinking is complete, are made
via such transfer vectors at their respective beginnings as links
for symbolic references have not been resolved.

Once the initialization of the SLT manager is complete,
bootstrap2 calls the SLT manager (again, of course, via the
transfer vector at the latter's beginning) to ascertain the
segment numbers of pre_link_1 and pre_link_2. pre_Iink_1 is now
called, with the segment number of theSLT manager as an
argument. pre_link_1 is responsible for scanning the entire SLT
to locate all links that can be snapped at this time. It is also
called after the loading of collection 2 to snap all links that
can be snapped at that time. pre_link_1 begins by calling the
SLT manager to obtain the segment numbers of the LOT maintainer,

AN70

the LOT segment, the hardcore combined linkage segments
(active_sup_linkage and wired_sup_linkage), the descriptor
segment, the SLT, pre_link_2 (the second half of the prelinker),
and the initialization combined linkage segments
(active_init_linkage and wired_init_linkage). pre_link_1 scans
the SLT entries for all of the supervisor segments loaded so far
(segment numbers begin at zero) and then all of the
initialization segments loaded so far (segment numbers begin at
400). The highest and lowest segment numbers in each category
are determined from the SLT header. The SLT entry of each
segment is inspected to see if the link_provided bit is set.
This bit is turned on by the use of the linkage keyword in the
MST header file. It indicates that a separate linkage segment is
provided for this segment, whose segment number is in the segno
field of the SLT entry. If there is a linkage segment provided,
the combine_link bit is inspected to see if that linkage section
should be combined into an appropriate combined linkage segment
or left self-standing.

The choice of an appropriate combined linkage segment into
which to combine a linkage section is based upon whether the
o\\l'Oing segment is a supervisor or initialization segment and
whether or not the link_sect_wired bit in the SLT entry for the
segment is on. The appropriate selection of active_sup_linkage,
wired_sup_linkage, active_init_linkage, and wired_init_linkage is
made from these considerations. If the linkage section is to be
combined, it is combined in the appropriate linkage segment and a
pointer to that section of the combined linkage segment is placed
in the LOT entry (in the segment lot, which is the linkage offset
table for the supervisor) for the segment whose linkage is being
processed. If the linkage is not to be combined, a pointer to
the uncombined linkage section is placed in the LOT. A bit
(slte.pre_linked) is set in the SLTE of the segment so that
pre~link_1, when called again after the loading of collection 2,
does not reattempt to combine the linkage for this segment.
After the LOT entry has been set, the appropriate pointers at the
head of the linkage section are initialized, just as in normal
linking. The procedure 10tJllaintainer, \-lhich is used by the
normal system linker, is used for many of these functions, but it
is called via transfer vectors at its beginning for these uses.

pre_link_1 causes all of the LOT entries for procedures and
data bases loaded in collection 1 to be set and all of the
linkage of collection 1 that must be combined to be combined.
After this has been done, the linkage sections of all of these
procedures and data bases are scanned for unsnapped links. (The
linkage sections of data bases should not have links, but are
useful insofar as they are set to contain pointers to the
definition sections of their owning segments. Use of the

2-6 AN70

pseudo-op movdef in the assembly of these data bases normally
causes the actual definition section to reside in the linkage
section as well to avoid its being overwritten when the data base
is actually used.) During collection 1 prelinking, all links are
found to be unsnapped. During collection 2 prelinking, after
collection 2 has been loaded, all links that were snapped during
collection 1 prelinking will be found to be already snapped.
pre_link_2$force_link is called to snap each link. This
procedure is responsible for locating the target of each link,
using the SLT manager to convert an external name into a segment
number for most links and scanning definition sections of text
segments for' inbound symbol names. This procedure contains code
to search definition sections for symbols, identical to that in
get_defptr (see get_defptr in the Binding, Linking, £nd Makespace
Management PLM, Order ~o. AN81 for details on definition
sections) used by the standard system. linker. Links that
cannot be snapped at this time, i.e., which either reference a
segment not loaded yet or in error, are left unsnapped. Such
links are enumerated by the MST Checker Program (see check_mst in
the System IQQls PLM, Order No. AN51) as "not found." It is
legal and legitimate for programs in collection 1 to reference
programs and data bases in collection 2. Only the actual
execution of such referencing code before collection 2 prelinking
is illegal. Attempts to make such references cause linkage
faults, which are directed to the unexpected fault entry of the
interrupt interceptor, causing system failure.

After the prelinking of collection 1 is complete, control is
returned to bootstrap2. bootstrap2 can now make symbolic
references and proceeds to do so at once. The bootload CPU tag,
passed by bootstrap 1 in an index register, is stored at
scs$bootload_cpu_tag, in the system communication segment (SCS).
This information is needed at reconfiguration time. The pointers
to the required operators in the p11_operators_ operator segment
are stored in the correct places in the stack headers of the PDS,
which is currently being used as a stack, and the PRDS (segment
prds), which is used as a stack at interrupt, page fault, and
scheduling times. A pointer to the linkage offset table (LOT) of
the supervisor, segment lot, is placed in the appropriate place
in both of these stack headers. A pointer that would cause a
fatal fault (out of segment bounds on descriptor segment) is
placed in the position in both stack headers where a pointer to a
signalling procedure is expected. This causes system failure if
any attempt is made to signal any condition before the fault
mechanism is fully initialized in collection 2 initialization.
The SDW for bootstrap1 is also zeroed at this time as a matter of
cleanliness.

2-7 AN70

Finally, a call is made to initializer, a PL/I program that
is a permanent supervisor segment. This procedure, the first
PL/I program that runs, dispatches further calls for"
initialization. One of its last actions is to delete all of the
initialization segments. Hence, it must be a supervisor segment.
Initializer calls init_collections$init_collection_1 to
initialize the data bases and subsystems loaded in collection 1.
Initializer then calls segment_loader to load and prelink
collection 2 and init_collections$init_collection_2 to initialize
the data bases and subsystems in collection 2. Finally, a call
is made to exit the supervisor environment into the
administrative ring.

The loading of collection 3, a fairly easy task, is one of
the functions performed by collection 2.

The rest of this section is devoted to the initializations of
the various subsystems and data bases loaded in collection 1.

COLLECTION 1 FAULT INITIALIZATION

At this point in collection 1 initialization, the fault and
interrupt vectors still point into bootstrap1, whose SDW was
destroyed just a moment ago. There are no legal faults or
interrupts at this time. The first call made by
init_collections$init_collection_1 is to
initialize_faults$fault_init_one to set up another temporary
fault-handling policy and do some permanent initialization of the
fault-handling mechanism.

First, the read switches (RSW) instruction is issued to
ascertain which port on the bootload CPU is connected to the
bootload system controller. From this information, a word that
produces an effective address (internal segment offset) whose top
three bits are this port number, is placed in sys_info$clock_ and
prds$proc_contr_ptr. This allows the clock in the bootload
system controller to be read at any time after this. The clock
is ready by issuing a RCCL (read calendar clock) instruction,
which indirects through sys_info$clock_. This measure is done
now so that syserr, the operator's console error logging routine,
can print out the time of day in its messages before the full CPU
port-system controller port correspondence is determined.
prds$proc_contr_ptr is set so that wire_stack, which is called in
case of a syserr call, can set system controller masks. The
value of these masks before they are initialized are the
assembled-in values in the segment scs, a fully open channel mask
and a fully closed interrupt mask.

2-8 AN70

Next, all interrupt ITS pairs in the fault vector segment
are filled in, directing all interrupts to wired_fim$ignore,
which summarily does an RCU when such an interrupt happens. The
SCU data is directed at prds$ignore data. Note that the actual
SCU and TRA instructions created by bootstrap1 are not changed;
only the ITS pairs they reference are modified. All fault ITS
pairs are now set to route all faults to ii$unexp_fault, storing
SCU data at prds$sys_trouble data. Once all fault ITS pairs are
set to this, lockup and timer-runout faults are redirected to
wired_fim$ignore; timer runouts' are meaningless until traffic
control is initialized after collection 3 has been loaded. The
mechanism to signal faults such as lockup is not yet ready.
Connect faults are directed to wired_fim$connect_handler at this
time. They are set up now since connect faults are part of the
paging mechanism, which is initialized in collection 1 (although
connect faults should not be received until other processors are
configured in.)

Page faults (direbted fault 1) are directed to
page_fault$fault, their final destination, as there is paging
before collection 2 is loaded. Segment faults (directed fault 0)
are also directed to their final destination,
fim$primary_fault_entry, as there are segment faults in
collection 2 initialization before the remainder of the fault
mechanism is initialized in collection 2. (Segment faults occur
as soon as segments can be initiated. See "Root Directory
Initialization" in Section III.)

Next, several programs (ii, fim, wired_fim,
emergency_shutdown, restart_fault, page_fault, return_to_ring_O_)
are modified by storing selected pointers in their texts. This
is done by temporarily changing the access in the SDWs of these
segments to allow such writing, storing the necessary pointers,
and then restoring the access. The reasons for storing such
pointers are several. Generally, these programs receive control
from fault and interrupt vector TRA instructions. To save the
pointer registers, these programs cannot use instructions that
involve pointer registers in their address preparation as the
contents of the pointer registers are unknown, and the pointer
registers cannot be loaded until saved. Hence_ the only legal
type of address preparation is that involving operands and
indirect words relative to the text segment (instruction bit
29 = 0) and ITS pointers. Since these procedures must be shared,
pointer registers and other data cannot be stored in their text.
Hence, at initialization time we store ITS pointers to the
locations where pointer registers are to be saved in the texts

2-9 AN70

ITS pointers to allow the ordinary (A, Q, index, etc.) registers
to be stored in the same way are also set up.~ These procedures
also frequently restore machine conditions stored at fault or
interrupt time. In such sequences, the last instruction must be
a Restore Control Unit (RCU) instruction. Again, since the
pointer registers contain unknown quantities (viz., their
contents at the time of the fault or interrupt) immediately
before restoration of the control unit, text-imbedded pointers
must be used for the address preparation of the RCU instruction.
Also, these procedures ascertain their own settings of the
linkage pointer (LP) register from text-imbedded pointers. These
procedures cannot use the LOT to determine their linkage pointers
as they have no way of locating the LOT, as no stack can be
located until the correct stack segment (pds, prds) can be found.
They find the stack segment via links, requiring LP to be set.
The procedure return_to_ring_O_ also requires a text-imbedded
pointer, this time to the first word of restart_fault (the latter
is a gate segment, with a call limiter of 1). These programs are
used by the fault-restarting mechanism (see the Process and
E~oce~sor Control PLM for information on the fault-restarting
mechanism), which can operate in the user ring and provide an
orderly return into ring O. This is discussed in detail in
"Hardcore and Outer Ring Segment Numbers" in Section III. Notice
that the SDWs describing both of these procedures
(return_to_ring_O_ and restart_fault_) by their hardcore segment
numbers must also allow access in the user ring.

HARDCORE 1/0 AND OPERATOR CONSOLE INITIALIZATION

Once the fault mechanism has been initialized for
collection 1, allowing at least returns to BOS that can be
analyzed in case of difficulty, the next area to be initialized
is hardcore 1/0. Hardcore 1/0 must be initialized so that the
operator's console can be made operative as early as possible, so

1These ITS pointers, like the ones referenced by the fault and
interrupt vectors, point to locations in the pds and prds
reserved for the saving and restoring of SCU data. Although
these locations have the same address (segment number and offset)
in all processes and to all processors, the binding of this
segment number is to a unique per-process segment (pds), or a
unique per-processor segment (prds). Thus, the actual storage
location referenced as this "shared" address is process or
processor-dependent.

2-10 AN70

that informative error messages can be printed out in case of
difficulty. Furthermore, the general aim of collection 1 is to
make paging operative and 1/0 for the storage system is necessary
for this end.

Initialization of the 10M manager and its 10M mailbox is the
first and most important step of hardcore initialization. The
device table array is zeroed. All per-10M pointers are set to
null until the per-10M initialization, which is to follow. The
absolute address of the 10M mailbox segment is stored in the 10M
data segment (iom_data). The 10M stop LPW and stop DCW (see the
~~ervi~ InputlOutput PLM for information on the use of LPW and
DCW control words) are set up. A loop is now entered for all
configured IOMs doing a per-10M initialization. The 10M tag,
mailbox, and status queue pointers (special and system-fault) in
the 10M data segment are set up for each 10M. Locks, IMWs, PCWs
and other miscellaneous quantities are zeroed. The mailbox of
every channel is initialized with zero SCWs, and zero DCWs. The
"stop LP\v" (stopping channel operation if used) is put in the LPW
of the mailbox of each channel. The pointer to the interrupt
handler for each channel is initialized to null. The connect
operand word (COW) for each 10M is set up. A connect operand
word contains the port number (on the system controller
containing the COW) of the device to be connected. This number
is ascertained from the CONFIG deck. The connect channel LPW and
DCW are set up_ The LPW for the connect channel for each 10M is
set up. The LPW is set to point to a single PCW pair.

The two overhead channels of interest for each 10M (system
fault and special status) are next to be initialized.
Nonexistent "devices" supposedly using these channels are
assigned device indices by calls to iom_manager$iom_assign. This
allows the proper entries in the 10M manager to be assigned as
interrupt handlers for these channels. DCWs are set up for the
special and system-fault status queues, and are stored in the DCW
and SCW slots in the mailboxes for these channels, which do not
use SCWs. LPWs are set up to replenish the DCW from the SCW
slot, with a "no-change" bit, so that the same DC\I is continually
refetched, providing circular status queues.

Any error occuring during 10M initializatin causes a return
to BOS without a message. The operator console has not yet been
initialized. It is the next mechanism to be set up.

Information about the nature of the
(ASCII or BCD) and its channel number
ascertained from the PRPH OPC CONFIG card.
if there is no such card. The configured
wired log buffer into syserr and dim

2-11

operator's console
and 10M number are

Defaults are supplied
partitioning of the
call regions are also

AN70

determined and the segment oc_data is laid out correspondingly.
Free area pointers used to allocate buffers in these regions are
initialized to point to their respective beginnings. Clock times
in the syserr data area are initialized. The 10M manager is
called to assign a device index to the operator's console and set
up ocdcm_$int_handler as the handler for operator's console
interrupts. The absolute address of the syserr data region is
stored in the data segment, for use in fabricating DCWs. The
necessary DCWs for turning on the audible alarm, reading and
writing data, and causing carriage returns on the operator's
console are set up. A BCD carriage return escape sequence is
also set up. If the type of the operator's console requires it,
a prefabricated string is output to it at this time to set the
tabs on this console. The operator's console can now be
considered operative, although the logging mechanism is not yet
set up.

At this point 1/0 assignments can be made for hardcore DIMs
and operator messages can be typed out. The DIMs of the storage
system have not yet made their assignment calls. This is done at
the time page control is initialized.

CONFIGURATION INITIALIZATION

Although some 1/0 device control routines (DIMs) have
reported to the 10M manager at this time and set up interrupt
handlers, all interrupts are still being ignored. To utilize
interrupts, the relation between CPUs and system controllers and
the various port assignments must be determined. This
determination allows masks and port addressing words (words that
may be indirected through to direct commands to given system
controllers) to be constructed. ~rthermore, the amount of
available memory must be determined, and its onloff status, to
allow page control to be initialized. Variables used by
reconfiguration must be set to reflect the initial configuration
of the system. The configuration specified by the configuration
deck must be verified to the fullest extent possible by
interrogation of processors and system controllers with the RSW
and RSCR instructions, respectively. It is the goal of
configuration initialization, performed by scas_init and
scs_init, the next two procedures called by
initialize_collections$init_collection_1, to perform all of
configuration initialization ..

SCAS stands for system controller addressing segment. To
motivate its need, we digress briefly for a discussion of system
controller addressing. Most instructions encountered by a
Multics CPU refer to data in main memory_ The appending process

2-12 AN70

converts a segment number and a word number into an ~bsolute
address if no fault is taken in address preparation. This
absolute address refers to sone location in main memory. As main
memory is distributed amon~ the configured system controllers,
the CPU port lo~ic (similnr lo~ic exists in other active modules,
e. ~., the rOft!) must decide which system contt"oller contains the
data being referenced. This decision is made based upon the
8bsolute address computed and the port assi~nment switches on the
pr'ocessor maintenance panel. A data request is then directed to
the appropriate system controller. A Multics system controller,
however, has other functions besides its principal function as an
interface to main memory. Interrupt cells, masks td nask these
cells, and execute interrupt mask assignment (EIf'lA) swi tches to
direct the interrupts set in these cells to processors also
reside in the system controller. Furthermore, a controller
serves as a routing station for connect signals sent by a CPU
issuinG a connect (ClOC) instruction to other active c10dules. A
system controller can also be asked for clock time or to set or
report the contents of many of its internal registers, including
its confi~uration switches. The CPU instructions that cause
these specialized commands to be issued to a system controller
(RSCH, SSCR, HCCL, SfvIIC, CIOC, Ht'1Cf'vl, St1CI'1) must somehoH specify
to which system controller the executin~ processor is to direct
the specialized com~and--that is, out of which processor port the
specialized command is to be sent. For the set memory interrupt
cell (Sr1IC), read calendar clock (RCCL), set mask (Sl'1Cl'1), and
rea d met s k (R H C f1) ins t r u c t ion s, the pro c e s s 0 r po r t log i c ins p e c t s
the top three bits of the ~[f.~Ct..hY..€2. address (internal segment
offset) computed by the i~struction and directs the specialized
command out of the port selected by those bits. For the RSCH and
S3CR (and also CIOC) instructions, however, the port out of which
the specialized cOQmand is to be directed is selected based upon
the ~~~Ql~t~ address cooputed by the instruction, as for most
other instructions. Hence, to use these instructions, which in
their most general foem cequest configuration information from a
systeM controller, a technique must be peesent for creating an
absolute address lyin~ withi~ the memory contained Hithin a given
system controller. 1'·lultics provides a paged segment, the SeAS,
whose nth pageCstarting at zero) has an abSolute address within
the 'nemory cornnanded by the system controller on port n. The
areas pointed to by the pa~e table woeds (PTWs) of this segment
are not dedicated to this segment. Other pages or segments can
move in and out of these areas. As the SCAS is accessible only
in ring 0 and no data is either stored or read throu~h this
se~ment, it is not a security problem.

The first task of scas init is to construct the seAS. A
segment n.ame d seas is loaded as part of collection 1 . It i.s
unpa.f\ed and 64 ~JO rds long. s ca~3 init builds a pap;e table in

;~~ - 1 3 A1J 70

this segment, which later is the page table for the SCAS. The
segment named scas in which this table is being constructed
is not the scas. scas_init scans the configuration deck for MEM
cards de~cribing system controllers. These cards describe system
controller port assignment, memory size, and on/off (currently
configured/not configured) status. For example,

MEM C 128. ON

says that a system controller containing 128 (10) pages (1024
(10) words each) of memory is attached to port 21~ of all
active modules, and is currently part of the configuration. The
order in which these cards appear in the configuration deck must
correspond to the order of memory addresses they represent. They
must not overlap and must (with the OFF cards considered) be
contiguous. Duplicate cards for the same controller ar~ flagged.
The size of each controller (from the second parameter on the MEM
card) and the starting address (the sum of all previous sizes) of
each controller are stored in the SCS (system communication
segment or system configuration segment, as you prefer). A page
table word for the corresponding port, pointing to the first word
of the memory in that controller is put in an appropriate place
in the segment scas. The memory stated as being the bootload
memory (the first MEM card encountered) is checked to be declared
ON, and its port number remembered. The identity of all
processor ports to which it is claimed that system controllers
are attached is remembered. Finally, the unpaged bit in the SDW
for the segment scas is set and a bounds field describing an
eight-page segment placed in that SDW. Thus, pointers
referencing the segment scas now reference the SCAS, the system
controller addressing segment, which has "a page in every port."

Next, the bootload processor is interrogated with an RSW
instruction (this does not involve any of the system controller
addressing techniques described) and its CPU tag compared with
the tag specified on the first CPU configuration card. If they
disagree, the first CPU configuration card, which must be for the
bootload processor, is in disagreement with the tag switches of
the bootload processor about the identity of the boot load
processor. Next, data about CPU port interlace is extracted from
the data returned by the RSW instruction a.nd copied into the SCS.

!1Letters on CONFIG cards representing ports are assigned as
follows: A is port 0, B is port 1, etc., through H. Letters
representing CPU tags, however, assign A to1, B to 2, etc.

AN70

Another variant of RSW is issued to interrogate the
processor port logic as to how much memory is attached to each
port. For each port stated to have been configured, this data is·
validated against the data in the SCS, which was ascertained from
the configuration deck. An RSCR instruction is issued to the
bootload memory to ascertain which port of the system controller
made this request. If this number disagrees with the port number
specified on the CPU card for the bootload CPU, an error is
indicated. Finally, a check is made that only one EIMA switch is
set on the bootload memory, and that it is set pointing at the
bootload processor. This ensures that the bootload processor and
only the bootload processor receives all interrupts until other
processors are configured in.

The system configuration segment (SCS) contains all data
relating to processor-system controller port assignments. It
also contains masks for setting system controller interrupt masks
and arrays of interrupt handlers and arguments for the same to be
used by the interrupt interceptor. The SCS is used heavily at
reconfiguration time, when it is protected by a lock. The
procedure scs_init, which runs immediately after scas_init, is
responsible for initializing all of those items in the SCS not
yet initialized by scas_init.

First, several redundant (with respect to scas_init) checks
are made about the configuration cards for the boot load processor
and memory. Some interrupt initialization is performed. We
delay discussion of it briefly.

Next, a loop, per-processor port (which is to say, per
possible system controller) is executed. For each controller
possible (i.e., each processor port), a port addressing word
(element of the array scs$port_addressing_word) is set up. This
is a word whose top three bits contain the port number. When
ihdirected through by address preparation for SMIC, SMCM, RMCM,
or RCCL, it causes the system controller specified to receive a
specialized command. Also, an array of ITS pointers (actually
ITS pointers with further indirection), scs$proc_contr_ptr, is
set to point at these words. This second set of pointers is
retained for compatibility with earlier versions of the Multics
hardware when SMIC, etc., used the same addressing technique as
currently used by RSCR. A third array of pointers is
constructed, pointing to the 1024*nth word of the SCAS, for
addressing the nth port. This array, scs$system_controller_ptr,
can be indexed and indirected through for SSCR and RSCR
instructions, the index specifying the processor port out of
which the specialized command is to be sent. The pointer
sys_info$clock_, initialized for early use of syserr, is
redundantly initialized to contain the bootload memory port

AN70

number on the system active modules for use in clock reading.
This is done only for the bootload system controller. As each
configured system controller is processed, the next processor
appearing in the configuration deck (on a CPU card) is assigned
as its control processor (the first EIMA switch of the controller
must point at that processor). The system controller port to
which this processor is connected (must be the same for all
controllers) is saved. A check is made that no more than one
CONFIG card for the same CPU (same tag) has been supplied and a
table giving controller port, indexed by CPU tag, is constructed.
When there are more system controllers than CPUs (there must be
more or the same number) each system controller processed after
the last CPU has been processed is assigned the last processed
CPU as a control processor (the actual configuration must agree
with these assignments). A check is made that there are not more
processors than system controllers.

INTERRUPT CONFIGURATION INITIALIZATION

When all of the system controller and processor data has
been processed in this manner, interrupt configuration
intialization is performed. Although some of this processing is
performed before the CPU/system controller initialization, it is
logically one step.

The idea of this interrupt initialization is to construct
several quantities: the channel mask, which is set in system
controllers, describing which of their ports are in use; the
interrupt masks, which are masks set in the system controllers
via SMCM instructions, allowing different interrupts at different
times; and the array of interrupt handlers to be used by the
interrupt interceptor (ii) at interrupt time. A fourth quantity
constructed at this time is the simulate pattern, a quantity
that, when set in the interrupt cells of the bootload system
controller, causes all possible critical interrupts to happen.
(See the Reconfiguration PLM for further information on this
quantity.)

The configuration deck is scanned for all cards that
describe active modules and those that can create interrupts (set
interrupt cells in system controllers). As each device (10M,
Bulk Store, or CPU) that is connected to a system controller port
is processed (the processing for CPUs is done by the loop
described previously, that assigns control processors) a bit is
set in the channel mask being constructed, indicating that port
is in use.

2-16 AN70

Interrupt cell assignments, i.e., which interrupt cell in
system controllers are used for what purpose, are described by
configuration card parameters for devices that produce interrupts
and by a special card (the INT card) for software interrupts.

There are currently six software-created interrupts:

1. stop--used to force a process into the traffic controller
to enter the "stopped" state.

2. Preempt--used to force a processor into the traffic
controller to possibly give up its process.

3. Interprocess Signal (IPS)--used to force a process to
respond to an interprocess signal (see the Prpcess and
Processor Control PLM for details on the use of IPS
interrupts.

4. Processor Initialize--used to cause a processor being
configured in to come to life.

5. System Trouble--used to force all processors into the
interrupt interceptor, and all to stop, except the
bootload processor, which returns to BOS.

6. Syserr Log--used to cause an arbitrary nonidle process to
take an interrupt, to copy data from the wired syserr
buffer into the paged log partition.

The nature of an interrupt cell specification on either the
INT card or 10M, D355 or BULK cards, is that of a (possibly
degenerate) three digit octal number. The second and third
digi ts specify the interrupt ce,ll associated wi th the specified
interrupt. The first digit gives the "interrupt state", or
masking level, associated with this interrupt. State zero means
this interrupt can be taken no matter what level the system is
masked at. State one means that it can be taken if the system is
masked at level 1, 2, or 3. State 2 means that it can only be
tak~n at level 2 or 3, state 3 means level 3 only. The four
masks corresponding to level 0, 1 , 2, and 3 are known as
sys_Ievel, page_level, swap_level, and open~level, respectively.
Only the system-trouble interrupt may be taken at sys_Ievel (it
has state zero). All interrupts may be taken at open level. As
each interrupt cell assignment is processed by scs_init, the
state assignment of that interrupt is determined, stored in an
array (interrupt_state) in the SCS, and used to turn on a bit in
a per-state interrupt cell assignment word, which is used to
construct the masks. As each interrupt cell assignment is
processed, the corresponding element in the per-interrupt cell

AN70

array scs$int_hlrs (interrupt handlers) is set to a pointer to
the entry point that is to be called by the interrupt interceptor
upon occurence of this interrupt. Furthermore, an array of
arbitrary arguments for interrupt cell (ses$argument) is set up.
These arguments, set by scs_init now, are passed by the interrupt
interceptor to the interrupt handler at the time of an interrupt
and their meaning differs depending upon the nature of the
interrupt. Patterns for sending to system controllers with a
SMIC instruction, for generating the six software interrupts are
constructed as the INT card is processed. This pattern is used
when reconfiguration requires throwing an EIMA switch on the
bootload system controller, and its use generates all possible
hardware interrupts. See the Reconfiguration PLM for more detail
on the use of this pattern.

When all interrupt cell assignments have been proc~ssed, the
four masks are constructed from the per-interrupt-state
information gleaned from the cell assignments. scs_init now
returns.

After the return of scs_init,
initialize_faults$interrupt_init is called. As this procedure
modifies the ITS pointers for interrupt transfer vectors, its
first step is to mask to sys_level, using the newly-constructed
sys_level mask to mask out all interrupts except system trouble.
The state information in scs$interrupt_state is now inspected.
All inter.rupts declared as having state zero are sent to
ii$paging_interrupt_entry, all others to
ii$pageable_interrupt_entry. Machine conditions are set to be
stored at prds$interrupt_data and pds$interrupt_data,
respectively. Preempt and sys_trouble interrupts are directed
from the interrupt vector directly to their appropriate handlers.
The interrupt interceptor is avoided for two different reasons l
for these two interrupts. Processor initialize interrupts are
directed to wired_fim$ignore. These interrupts are redirected at
the time processors are added, during reconfiguration or later
initialization. Finally, per-processor information in s~gment
prds (the bootload CPU processor data segment) is set up via a

1preempt interrupts require per-process data to be saved, as
the processor will usually give up the process as a result of
this interrupt. Hence, preempt cannot be treated as a normal
non-paged interrupt, which would set up a frame on the prds.
sys_trouble should modify as little data as possible, and use as
few mechanisms as possible, for the system may be partially
non-functional at the time it is issued, and information for
crash analysis must be left as it was when the interrupt was
sent.

2-18 AN70

call to prds_init. This information includes pointers that can
be indirected through for system-controller addressing (set up in
the interim by initialize_fault$fault_init_1, as was described in·
Section I, for interim mask setting), processor tag information,
and patterns to be used for s~nding connects to other processors.
Only after the SCS has been initialized can this information be
ascertained. Finally, initialize_faults$interrupt_init unmasks
(i .. e., sets the "open_level" mask in the bootload system
controller), and returns.

One other minor detail performed
intialization is the determination of local
difference from Greenwich Mean Time.

during
time

configuration
zone and its

By the end of configuration initialization the interrupt
mechanism is fully operative. Note that the interrupt ,mechanism
was not necessary, however, for the printing of syserr
(operator's console) messages, which could function without it.

The next step in initialization is the initialization of
page control.

INITIALIZING PAGE CONTROL

Initializing page control is the last and most important
step in collection initialization. This initialization
consists of three stages: setting up of the System Segment Table,
containing most of the data bases used by page control;
initializing the storage system device control routines and the
accessing or creating of the FSDCT; and paging all segments that
have to be paged. These three major functions are performed by
the procedures init_sst, initialize_dims, and make_segs_paged,
respectively. Other functions, performed along the way, will be
described.

~ettinK-~~he System Segment Table (SST)

The SST contains several data bases:

1. The SST proper, consisting
information, one-of-a-kind
flags, and the like.

of meters, configuration
counters and indicators,

2. The CNT (counters), consisting of mainly meters, but also
some counter-type information about core usage and a
table keeping track of temporarily-wired procedures.

2-19 AN70

3. The Core Map (CMP), which is an array with an element for
each page of configured (ON or OFF), core, describing the
contents and status of that page. These entries (Core
Map Entries, or CMEs) are threaded into a list maintained
by the page replacement algorithm.

4. The Paging Device Map, which is an array with an element
for each record of paging device, describing the contents
and status of that page. These entries (Paging Device
Map Entries, or PDMEs), are threaded into a list
maintained by the Paging Device replacement algorithm.

5. The Paging Device Hash Table, which is used at segment
activation and deactivation time to ascertain if a given
disk record has a copy on the paging device, and if it
does, its location.

6. The AST or Active Segment Table, consisting of Active
Segment Table Entries (ASTEs) describing the status of
each active segment. Part of each ASTE is its Page
Table.

7. Page Tables--Although each ASTE contains a page table,
the page tables are a somewhat independent (of the AST)
data base. The page table words (PTWs), which make up
the Rage tables, are maintained by page control and used
by the hardware.

The initialization of the SST consists of organizing these
various data bases. First, fixed constants in the SST proper are
set up, e.g., the sizes of the different AST entries, the
absolute address of the SST, etc. Space is allocated for the
core map, based upon the system controller information in the SCS
gathered by scas_init. If there is a PAGE configuration card,
the existence of a paging device is inferred. The device ID of
this paging device is transformed into a paging device ID, i.e.,
eight is added to it and the resulting "paging device id" saved
in the SST. Space is laid out for the paging device map to
describe all of the records specified as being used by the PAGE
card. The pointer sst.pdmap, which points to the base of the
paging device map array, is set to point to the origin of the
Paging Device map array (the entry describing record zero) even
if record zero is not currently being used. Hence, if record
zero is not being used, this pointer points to some location
below the actual paging device map and possibly below the actual
origin of the SST. The Paging Device Map (PDMAP) is started on a
page boundary in the SST as it is periodically written out to the
paging device via page control primitives. As the first
record(s) of the part of the paging device being used will

2-20 AN70

contain this nap, the first PDMAP entry is never used and thus
contains a small header describing the PDMAP and its location in
the SST. This header, filled in now and again by initialization,
can be accessed by the salvager and BOS to allow them to
interpret the copy of the PDMAP saved on the paging device. The
paging device hash table is laid out after the PDMAP. Its size
is a function of the number of PDMAP entries. Information about
the hash table is also put in the PDMAP header.

Following the PDMAP hash table, on the next eight-word
boundary, is the AST. AST entries of the four sizes are set up,
smallest first, and threaded into circular lists" one list for
each size. The number of each is determined from the SST
configuration card. The marker fields (the low six bits of each
ASTE, which allow it to be distinguished from a PTW in a
backwards search by page control) are set up at this time.

Following the setup of the AST, the system controller
information in the SCS, 'gathered by scas_init, is scanned. All
complete main memory page frames between the end of the permanent
unpaged supervisor segments and the first temporarily unpaged
(to-be-paged) segment (remember, all segments are still unpaged)
are added to a list of such page frames that is the core used
list of page control. These page frames are marked as free. The
core map entries of all page frames in the bootload memory are
marked as abs-usable (cannot be deconfigured), and all those
corresponding to page frames occupied by unpaged segments as
abs-wired, meaning that they cannot be moved.

Finally, all of the space between the end of the AST, after
all ASTEs have been set up, and the end of the SST, if it
contains any integral page frames, is added to the core used
list. This is done by the procedure free_unused_pages. This
space is marked as not abs-usable, indicating that it might be
claimed for the SST at any time, even though this feature is not
currently implemented.

One other minor initialization might be mentioned. The first
eight words of the SST are set to all ones. Page and segment
control frequently use pointers relative to the SST. In case of
programming error, wild stores to very low locations in the SST
are easily detected because of this initialization.

2-21 AN70

Initializing Storage System Devices and the FSDCT

The procedure initialize_dims is called after the SST has
been set up. It is responsible for making paging operative.

The INTK (INTaKT <sic» card left by BOS, describing which
partition of disk is to be used by Multics and whether or not a
file hierarchy exists, is interrogated. If the partition name is
SALV, a switch is set in the SST indicating that the salvager,
not Multics, is being bootloaded. In any case, the configuration
cards for all disk storage subsystems are scanned, in order of
device ID. The lowest ID device having a partition of the same
name as that specified in the INTK card (usually MULT, if not the
salvager) is defined to be the "master device." The extents and
starting record numbers of these partitions are copied into
arrays in the SST. A call is made to device_control$~nit (via
the transfer vector page$init) for each storage system device
(disks and bulk store) configured. These calls are dispatched to
the initialization entry points of the various device control
routines. These calls allow the latter routines to report to the
10M manager for device index assignment and interrupt handler
recognition.

Once these device control routines are ready to operate, the
File System Device Configuration Table (FSDCT) must be accessed
if this is _a warm bootload, or constructed if a cold bootload.
The FSDCT contains a bit map of free records on all of the
various storage system devices, a file map for the root
directory, information about MULT partitions, a file map for
itself, and information relating to the relative success of the
last shutdown and the existence of a paging device. The FSDCT is
accessible to BOS and the salvager. In either case (warm or
cold) the first step in the use of the FSDCT is the creation of
its page table. make_sdw, which allocates page tables for
segments during initialization, is called to perform this task.
A page table is allocated, using the max_length supplied in the
SLT. This page table is not threaded into any AST list as it
neither has a branch nor is to be deleted at any time during
shutdown or initialization. The flags aste.gtpd (assuring that
the FSDCT never goes on the paging device, for several reasons)
and aste.dnzp ("don't null zero page", assuring that access to
the FSDCT via PTWs is not turned off should a page of it become
zero) are set on in the AST entry of the FSDCT. An SDW is
created and inserted in the descriptor segment. We now consider
separately the cases of warm and cold bootloads.

In the case of a warm boot, we must access the existent
FSDCT on disk. The first page of the FSDCT is defined to reside
on the first record of the MULT partition of the master device

2-22 AN70

(which, you will recall, is the lowest ID device having such a
partition). It is guaranteed that the file map of the FSDCT
resides within this first page. Hence, the device address of the
first record of the master device MULT partition is inserted into
the first PTW of the page table of the FSDCT. Now, the device
addresses of all of the rest of the pages are copied from the
FSDCT into the page table for the FSDCT. This first reference to
the FSDCT, to extract its own file map, causes a page fault on
the first page, which is properly resolved as the device address
in the PTW has already been filled in. The information about the
previous sizes of MULT partitions is checked with the
configuration deck to make sure that they have not shrunk. A
message is printed if the information about the state of the
last shutdown indicates that the salvager has been run.

In the case of a cold boot, the FSDCT must be constructed.
A fixed number of records, starting from the first record of the
master device MULT (or SALV) partition are logically allocated to
the FSDCT. These record addresses are placed in the PTWs of the
FSDCT. The first page of the FSDCT is now faulted on, read in,
zeroed, and certain constants initialized. Each device having a
MULT (or SALV for the salvager) partition is processed in device
ID order. The information about the partition size is put in the
FSDCT being constructed. Constant information (per-device) is
set up. The bit map tables are set to all zeroes. This
indicates that all of the records in the device are in use.
Next, via calls to the page control page freeing primitive (via a
special entry that does not consider possible duplication of a
page on the paging de~ice) every record in that partition of the
device. is freed. Finally, the page table of the FSDCT is scanned
and the device addresses of all pages in core are withdrawn
(marked as in use) from the FSDCT itself. Pages not in use are
marked as being zero as the disk records that were logically
assigned to them earlier were never actually withdrawn from the
FSDCT. Finally, the file map of the root is nulled out.

In either the warm or the cold case, the FSDCT is now wired,
allowing its use. It is very important to note that in all
paging up to· this point, the only paged segment being referenced
was the FSD9T. As it has the aste.dnzp switch on, no pages of it
can ever be deposited (returned to the FSDCT as free). As all
pages of it are logically assigned in the PTWs in advance, no
pages of it are ever withdrawn. Hence, the FSDCT is never used
for its normal function before it is wired and, hence, fatal page
faults on it (with the page tables locked) cannot be taken.

Next, the pdmap_seg segment is set up. This
provides a means whereby the PDMAP can be written out
first records of the in-use portion of the paging device.

2-23

segment
to the

An AST

AN70

entry (with page table) is created for this segment by make_sdw.
It, like that of the FSDCT, is not threaded into any AST list. A
descriptor (SDW) is created for it and placed in the descriptor
segment. The aste.gtpd bit is turned on in its AST entry,
inhibiting copies of this page from being made by the
page-multilevel algorithm on the pa~ing device. The device ID
assigned to this segment is that of the device being used as a
paging device. I t is !1Q.t.. the paging device ID discussed
earlier. 1

Device addresses are assigned to this segment at th~s time.
They are the first sequential records on that device being used
as a paging device. Hence, when this se~ment is written out, it
is to the first records of the paging device device. At shutdown
time, the paging device map is copied from the SST into this
segment and every page of the segment forcibly written out. This
updates the entire PDMAP to its residence on the device of the
paging device. At other times, pa~e control causes the pages of
the SST corresponding to the PDMAP to be written directly to the
device of the paging device. (See the StQ.r.£K§l ~y~t..~m. PLt1 for
information on paging and the paging device.) The salvager also
uses the PDt1AP segme nt to access a previously saved P Df'1AP, when
flushing the paging device during a salvage.

At this time, the Paging Device Used List is set up. All of
the allocated pa~ing device map entries are threaded into the
Paging Device Used List. The paging device records specified as
bein~ not in use on the PAGE CONFIG card are then deleted from
the used list. If this is Hultics being booted (as opposed to
the salvager), information about the paging device is copied into
the FSDCT. Finally, static variables in the SST describing the
paging device are set up.

At this stage, page control is now fully operative. The
FSDCT (which is now wired and usable) and the PDMAP segment are
the only paged segments at this time. The next step in the
initialization of page control is to make all segments paged that
are stated in the SLT to be paged.

1The paging device ID is the device ID of the device being used
as a paging device, or'ed with "1000"b.

2-24 AN70

The Making Paged of Segments

At this stage of initialization, all segments read in by
bootstrap1 are in main memory in unpaged contiguous segments.
Those unpaged for the duration of the system are in low memory.
The others, including initialization segments, are in high
memory. There is now sufficient mechanism to make these
"temporarily unpaged" segments paged., This is done by the
procedure make_segs_paged (formerly update_sst_pI1). The basic
strategy of this conversion is to copy these segments into paged
segments, replace the SDW for the old segment by that of the new
segment, and free the memory used by the old segment.

make_segs_paged begins by creating the new (paged)
descriptor segment it is ultimately to use. make sdw is called
to create the ASTE/page table for this new segment. It is not
threaded into any AST list (the flag slte.ds in the SLT entry of
the descriptor segment informs make_sdw of this fact). The
abs_seg (see Appendix A for a discussion of abs_segs) ds_seg is
used to address this new descriptor segment. The first page is
wired. Next, the SLT is scanned for segments marked as being
paged. They are not now paged, but will be made paged. (The
FSDCT and the PDMAP seg are not marked as paged in the SLT.) The
segment numbers of these segments are put in an array and sorted
on the base address of their segments, i.e., their order in main
memory. During this processing, the SDWs for all permanently
unpaged segments are copied from the old (unpaged) descriptor
segment (dseg$) into the new (paged) one (ds_seg$).

Once the array of segment numbers sorted by ascending memory
address is complete, it is processed from the highest address to
the lowest. An ASTE/page table is created for each segment by a
call to make_sdw (or make_sdw$unthreaded for the PRDS). make_sdw
previously determined (from the SLT) the appropriate list (see
"Hemory Management" in Section I) onto which to thread the ASTE,
as well as the appropriate size of page table. The descriptor
for this segment, with write access temporarily added, is placed
in the descriptor segment slot (in the current descriptor
segment) for the abs_seg dir_seg. It is also placed unmodified,
in its correct position in the new descriptor segment (ds_seg).
An assembler-coded utility, privileged_mode_ut$swap_sdw_in_use,
is called to copy, word by word, the unpaged segment into
dir_seg, place the SDW for the new segment in the current
descriptor segment, and clear the associative memory of the
processor.

It is critical that the same program that moves each segment
also clear the associative memory. This is because the PDS,
which is being used as a stack, is copied by these means. Assume

2-25 AN70

that some other program than the one used to move the segment
cleared the associative memory. Then the first program would
move the segment, which in the case of interest is the PDS, being
used as a stack. It would then call the second program to clear
the associative memory, with either one of these programs
actually changing the SDW in the descriptor segment. The SDW for
the old PDS, which has just been copied, remains in the
associative memory. The call to the second program involves
saving the return point of the first program. This is done on
the old PDS as the associative memory has not yet been cleared.
When the second program clears the associative memory, it finds
that the return point of the first program was not saved on the
new PDS. Hence, the same program must both move the segment and
clear the associative memory.

When the new segment is in use the main memory occupied by
the old unpaged segment is freed if it was contiguous to previous
memory freed by the mechanism or the highest-located segment in
memory. Hence, all of the temporarily-paged segments at the high
end of memory are freed in sequence, starting at the high end.
This freeing consists of adding the page frames used by these
segments to the core used list as each frame becomes free in
sequence. This process does not free memory used by bootstrap1,
the SLT, and other segments of collection zero.

The wiring of paged segments is accomplished by make sdw in
24.4 and later systems. The page table words of these segments
are marked with the wired bit before the AST entry is handed back
to make_segs_paged. This allows segments in collection 2 to be
wired in the same manner. The wirings of the descriptor segment,
the PDS, and bound_sss_wired_ are special-cased by make_sdw.
Only the first page of the descriptor segment and the PDS are
wired. That portion of bound_sss_wired_ that contains the
p11_operators_ segment is wired. This is determined from a
special segdef in this segment. Wiring is done conditionally,
controlled by the "wired" bit in the SLT entry of a segment. In
pre-24.4 systems, wiring of paged segments was done by
update_sst_p11, the predecessor of make_segs_paged, and there
were no wired segments in collection 2.

When all segments that were to be paged are paged, several
special paged segments are set up. An ASTE for the root
directory is allocated on the proper AST used list. (make_sdw
cannot be used for this purpose. The root is not a segment that
has an SLT entry). The file map of the root is copied out of the
FSDCT into the page table in this AST entry_ Flags are set in
the ASTE of the root. The root cannot be deactivated, is not
permitted to go on the paging device (for integrity reasons), has
a terminal quota account, has very lar"ge quota, no quota

2-26 AN70

checking, resides on the master device, and has its file-modified
switch set. Its current-length is set appropriately. The
ASTE/page table for the shutdown stack is set up at this time. A
small ASTE is allocated, and threaded out of its used list. All
of its pages are marked as null not in core, but wired (i.e., if
brought in, they remain in). It is set to be on the master
device, have no quota checking, and marked as a hardcore segment.

When all of the above has been done, that is, all segments
that are to be made paged (except the descriptor segment) are
paged and the root and shutdown stack are set up, a program
called collect_free_core is invoked. This program frees all of
the core occupied by collection zero segments and any other core
that was simply never freed (the page at location 2000 is such a
page). This program is essentially a garbage collector. It
walks through the descriptor segment, looking through all of the
SDWs for supervisor segments that describe unpaged segments (all
unpaged segments at this time must be supervisor segments) and
inspects the core map entries for any page frame of core that
contains one or more words of the unpaged segment. If the core
map entry indicates that the entry is in the core used list, it
is left alone. Otherwise, it is specially marked. At the end of
this process, all core map entries for page frames that contain
any words of paged or unpaged segments or are emtpy, but part of
the pageable core pool, are either in the core used list or
specially marked. Now, the page frames containing the BOS
toehold and the page table for the SCAS are marked as they are in
use but do not contain any words of any segment (although the
page frame with the SCAS page table almost always contains other
segments). vuth all marking complete, the core map array is
scanned. Any page frame in a system controller currently
configured (ON) whose core map entry was specially marked is
unmarked and added to the core used list. This assures that all
cpre that can be used is available.

The FSDCT i.s now updated to disk (for integrity purposes, to
allow a better chance of a successful salvage should the system
fail at any point from here on). privileged_mode_init$ldbr is
now invoked to switch the processor onto the new (paged)
descriptor segment. The address spaces described by the old and
new descriptor segment are almost identical. Thus, the loading of
the DBR does not effect a transfer of control, stack switch, or
other erratic behavior. Finally, the page occupied by the old
descriptor segment is freed. The initialization of page control
is now complete.

2-27 AN70

FINAL INITIALIZATIONS OF COLLECTION 1

With page control fully operational, the operator's console
logging mechanism can be initialized. The PART LOG card is
located in the CONFIG deck and the device ID, location, and
extent of the syserr log partition are determined from it. An
ASTE/page table is allocated for the syserr_log segment. It is
not threaded into any AST list. The device addresses in its page
table words are set to the device addresses of the records of the
LOG partition. Flags are set in the ASTE of the syserr log
partition: it should not go on the paging device
(integrity/reliability), has no quota checking (it is in no
directory), and should not have any zero pages nulled (it is not
in the MULT partition--should a page become zero, it could not be
freed, as its pages are not represented in the FSDCT). An SDW
for the syserr log is constructed and installed in the descriptor
segment. The syserr log is inspected,. If empty,' it is
initialized. Pointers in the wired syserr buffer are set up,
describing the log partition. A flag is set declaring logging to
be operative.

At this stage in collection initialization, all of the
temp segs in collection 1 are deleted, via traversal of the temp
seg AST list (see Section I, "Memory Management"). These
segments include those that initialized configuration, I/O, and
page control. Finally, debug_check$copy_card is called. This
procedure sets several system-wide debugging options from the
DEBG CONFIG card. These debugging options are interrogated by
various system programs and are used to help locate system
problems.

RETROSPECT ON COLLECTION 1

The order of initializations for collection 1 is reviewed
below.

Segments are loaded by bootstrap1. Prelinking and the
setting up of a PL/I environment is accomplished next. Then PL/I
programs are used almost exclusively. Interim fault and
interrupt handlers are set up--only a very few faults are now
legal. I/O handling is set up, and the operator's console is
initialized. System configuration data is ascertained and data
allowing system controllers to be addressed and used for paging
are set up. Interrupts are directed to appropriate handlers once
system controller and CPU data is available. Masks are set up.
Page control data bases are initialized. Some early paged
segments, viz., the FSDCT and the PDMAP segment, are set up. The
FSDCT is accessed from the storage system. Segments are copied

2-28 AN70

into paged segments.
put into effect.
segments is freed.
made operative.

The final main memory management policy is
Main memory occupied by collection zero

The operator's console logging mechanism is

2-29 AN70

SECTION III

COLLECTIONS 2 AND 3

The loading and initialization of collection 1 accomplished
all that was necessary to set up a paged environment. With this
paged environment, there are no more space constraints
restricting the loading of segments. Hence, collection 2
contains the rest of the hardcore supervisor. The segments in
collection 2 are copied from the physical record buffer directly
into paged segments. There are no unpaged segments in collection
2.

The major tasks of the initialization of collection 2 are
the accessing of the storage system hierarchy, the placing of
segments loaded by initialization in the storage system
hierarchy, the loading of collection 3, and the setup of traffic
control. Collection 3 constitutes all those parts of the user
and system control environments necessary to perform a storage
system reload, which can load anything else. The programs in
collection 3 are copied directly into segments in the storage
system hierarchy. There is nothing to be initialized. Hence,
the loading of collection 3 is part of the initialization of
collection 2. The setup of traffic control involves the creation
of the bootload idle process and the setup of the full
wait/notify mechanism. The initialization of traffic control is
left until last.

At this stage in initialization (collection loaded and
initialized), paging is fully operative. The system is running
in a paged, segmented environment. Descriptors for all existing
segments that were loaded from the MST or created are in place in
the descriptor segment. The root directory has an AST entry but
no descriptor. There is no concept of process and only one
processor is running. The MST is positioned ready to read

3-1 AN70

collection 2. No segments are "known" (have KST entries, as the
KST of any process has not been initialized) and segment faults
cannot be taken. Nothing in ,the storage system hierarchy is'
known to exist other than the root directory.

LOADING OF COLLECTION 2

After the loading and initializing of collection 1 is
complete, initialize_collections$init_collection_1 returns to the
program initializer. initializer then calls· tape_reader$init to
set up the collection 2 tape reader (which will be described
shortly). A check is made for the correct pattern in the
processor maintenance panel data switches for a conditional
return to BOS. Then, the program segment_loader is invoked to
load collection 2.

segment_loader' is a program knowledgeable about the format
of a Multics system tape, i.e., header words, collection marks,
SLT entries, etc. To read the MST, it calls tape_reader, which
is knowledgeable about the format of a Multics Standard Tape, of
which the Multics System Tape is one. tape_reader is
knowledgeable about headers, trailers, administrative records,
retry conventions, etc. To read the actual tape, tape_reader
calls tape_io. tape_io is knowledgeable about tape controller
commands, DCW lists, status, etc. To actually perform the 1/0,
tape_reader uses the 10M manager.

tape_reader$init, called by initializer, calls tape_io$init,
which sets a static variable counting the number of reels
encountered and returns. tape_io$init inspects the physical
record buffer, the segment of the same name, and picks up the PCW
used for reading the MST left there by bootstrap1. In it are the
MST drive and channel numbers. Keep in mind that the physical
record buffer, which was unpaged when it was used by bootstrap 1 ,
is now a paged, wired, segment, an init seg" tape_io$init sets
up DeW lists for reading tape into the physical record buffer
segment, paying attention to the fact that the buffer segment is
not contiguous in main memory. Constant information in the
header of the segment is set up. A call to
iom_manager$assign_devx is made to assign a device index to the
channel identified in the PCW as the MST channel for future calls
to the 10M manager. This channel will be unassigned when
initialization tape reading is complete.

segment_loader reads the MST header word for the SLT header
for each segment on the tape and then reads the entire SLT header
(SLT entry, names and ACLs) into an automatic array.
slt_manager$huild_entry is then called (via'a standard PL/I call,

3-2 AN70

as opposed to the special techniques bootstrap2 used to call
sIt_manager) to place this entry into the SLT and SLT name table
(which are now paged, permanent supervisor segments). Next,'
make_sdw uses the SLT entry of the segment (which has already
been set up) to determine which AST list and what size AST entry
are appropriate. The SDW returned by make_sdw is then placed in
the appropriate place in the descriptor segment, with write
access added, so that the segment can be read in. tape_reader is
then called to read the segment header word (specifying how many
words of the segment are actually on the tape), and that many
words of tape are then read into the new segment. Finally, the
correct access is placed in the SDW. segment_loader also checks,
like bootstrap1, that the correct sequence of text segments and
linkage segments appears on the tape. Each segment is loaded in
this way. Segment numbers are assigned as in bootstrap1.

When the collection mark (a special type of MST header word)
indicating the end of collection 2 is reached, pre_Iink_1 is
called, to reprelink the system. The entire prelinking process,
as described in Section II, is repeated. The only difference
this time is that most links in the linkage sections of
collection 1 segments will be found to already have been snapped.
The SLT bit slte.pre_Iinked signals the prelinker not to attempt
to recombine the already-deleted and prelinked linkage sections
of collection 1. When the second prelinking is complete, another
check of the switches is made for a conditional return to BOS.
segment_loader then returns to initializer and
init_collections$init_collection_2 is called to dispatch the
calls for the initialization of collection 2.

PRELIMINARY COLLECTION 2 INITIALIZATIONS

Before segments of the storage system hierarchy can be
accessed, via the normal segment-fault mechanism, several
preliminary mechanisms must be set up. These include the AST
trailer segment and many minor system variables. Hence, before
the first segments are initiated, many small-order
initializations are performed.

The first of these is the setup of the AST trailer segment
str_seg (system trailer segment). This segment is used to store
lists associating active segments with all of the SDWs of various
processes which might describe them (see the Storage System PLM,
for more details on the use of this segment). It is used at
segment-fault time, deactivation time, termination time, and at
certain times when a segment changes its encacheability state.
The initialization of this segment consists of filling it with a
list of free (trailer) entries. The SLT cur_length field (as

3-3 AN70

possibly modified by the TBLS oard) is used to determine the
length of this segment. The head of this list is saved in the
SST (sst.tfreep).

Next, the storage system unique ID generator is initialized.
This program generates unique binary identifiers for processes
and storage system segments, based upon the clock time of
bootload. Its starting value is initialized from the clock.
Hardcore gates are initialized at this time. This initialization
consists of storing linkage pointers into the texts of hardcore
gates, similar to what is done for fault and interrupt handlers
(see " ColI e c t ion 1 Fa ul tIn it i ali z a t ion" i n Se c t ion I I) .
Hardcore gates (gates into ring 0) must ascertain their linkage
pointers from text-stored pointers as they cannot use the segment
number by which they were called to ascertain their linkage
pointers via the LOT in their own ring. This is because the
segment number by which they were called varies from process to
process and these gates have no way of determining the segment
number by which they were loaded at initialization time (their
hard core segment number) to enable them to use the LOT. The
linkage pointers supplied in the outer ring cannot be trusted.
(See the discussion of "Hardcore and Outer Ring Segment Numbers"
later in this section). Another initialization performed by
init_hardcore-Eates (which stores the linkage pointers in the
hardcore gates) is the setting of outer-ring accessible ring
brackets in the SDWs for return_to_ring_O_ and restart_fault, the
programs of the fault restarting mechanism. These ring brackets
are set (from the ring brackets supplied in the SLT, the only
time that SLT ring brackets go directly into a descriptor) so
that these two programs can be used in the outer ring with their
hard core segment numbers. Signaller stores a pointer to
return_to_ring_O_ as the return pointer in its stack frame, which
was developed via a prelinked link, and return_to_ring_O calls
restart_fault via the text-imbedded pointer already described.
See the Process and Processor Control PLM for a fuller
description of this mechanism.

Next, many minor initializations are performed by the
program init_sys_vars. The identification of the console to be
used as the initializer's console and the name of the routine
that will be used to attach it at the appropriate time are copied
from the CONFIG deck (if supplied; otherwise defaults are used)
into a system data base (active_all_rings_data). The Device
Table in active_hardcore_data, describing the available storage
system devices, is initialized from the SST. This data base is
used ~ the procedure assign_device, at the time that segments
are assigned devices when they are created by the storage system.
The current clock time is stored in a system variable at the time
of bootload. The error_table_ code for rec6rd quota overflow is

3-4 AN70

stored in the SST. This is necessary because page control needs
the value of this code to signal record quota overflow errors,
and error_table_ is not wired and, hence, may not be referenced
by page control. The next segment number available for a
supervisor segment is rounded up to the next zero mod eight
number and stored in active_hardcore_data as the number of
supervisor segments. This quantity is used to determine if a
given segment number represents a hardcore segment number or an
outer ring segment number (see the following discussion). It is
also used as the first available user-ring segment number in
process initialization. This number is also set in the segment
pds as the stack base segment number for the initializer process
(see Process and' Processor Control, Order No. AN60) and in the
descriptor for the descriptor segment, so that it is loaded into
the DBR stack base field at the time traffic control is
initialized.

HARDCORE AND OUTER RING SEGMENT NUMBERS

Before proceeding with the discussion of root and KST
initialization, a consideration of hardcore segment numbers and
multiple segment number assignments is in order.

A segment is an ordered array of bits that can be accessed
via a segment descriptor word that describes that segment (either
via a page table or directly). Hence, any number of segment
descriptor words, possibly in the same or different descriptor
segments, can describe the same segment. The paging mechanism
provides a means for swapping pieces of segments into and out of
main memory automatically. It does not affect the notion of
segment. Any AST entry filled by any means describes a (paged)
segment. Any descriptor that points at the page table within
that AST entry allows access to that segment. Similarly, file
maps in the storage system hierarchy describe segments as they
can be converted into AST entries via the mechanism of
activation. Any contiguous region of main memory is potentially
a segment as a descriptor can be constructed to describe it. A
segment number is simply an index, relative to the descriptor
segment of a given process, for accessing an SDW. If more than
one SDW describing the same segment appears in a descriptor
segment, then more than one segment number can be used in that
process to access that segment.

The segments loaded by initialization in collections 1 and 2
are all described by AST entries or are contiguous areas of main
memory. In the initialization environment, there is a descriptor
segment and precisely one SDW for each segment. These segments
reference each other via their linkage segments (and in some

3-5 AN70

casas via pointers stored 1n their texts) where the prelinker has
stored the segment numbers of referenced segments.

The segments that constitute the initialization environment
at the end of initialization in fact constitute the hardcore
supervisor. Now as Multics shares its supervisor. among all
processes and the supervisor references itself via segment
numbers that are part of it at the end of initialization, it is
clear that all processes must assign the same segment numbers to
the supervisor segments. If there were no text-imbedded pointers
and copies were made (per-process) of hardcore linkage sections
(which would clearly have to be prelinked per-process and some of
them wired, a clearly unreasonable overhead) this would not be
so. However, due to the need for text-imbedded pointers, shared
hardcore linkage sections, and pOinters that must retain their
meaning across processes, in general, hardcore segment numbers
must be constant across processes. (Another reason for this
constancy is that the code that switches processes must have the
same segment number in all processes, or it would get lost as
soon as it loaded the DBR).

Some of the segments that are part of the supervisor, i.e.,
loaded ~ initialization as permanent segments in collections 1
and 2, are also intended for use by outer-ring (nonsupervisor)
programs. These segments include the gates into the supervisor
and utilities (e.g., the p11_operators_ segment, the area
management package, and the signalling routines) used by the
supervisor as well as by outer ring programs. The only way that
outer-ring programs obtain access to segments is via the storage
system hierarchy. A segment is initiated via a recursive
mechanism (see the Storage ~ystem PLM). This consists of
recursively locating the directory containing the segment, given
its pathname, and searching that directory for the branch of the
segment of interest. Any available segment number is assigned to
the segment in the per-process Known Segment Table (KST) and
information identifying the containing directory and the location
of the branch in the containing directory stored in the KST.
Later, when the segment number that was assigned is used in the
process for the first time, a segment fault occurs, for there is
no descriptor. The KST is inspected and the branch of the
segment identified via the information left in the KST at
initiation time is accessed. A field in the branch (entry.astep)
tells if the segment is active (has an ASTE/page table). If not,
the file map in the branch is oonverted into an ASTE via the
process of activation. In either case, an SDW can now be
constructed pointing at the page table in that ASTE and placed in
the descriptor segment of the process~ (If the segment was
active, entry.astep locates its ASTE.) When an attempt is made
to initiate a segment (make it known), the ~torage system unique

3-6 AN70

ID of the segment, found in the branch, is hashed into a hash
table in the KST nf that process to determine if that segment is
already known. If so, a new number is not allocated, no action
is taken, and the existent number is returned. Thus, it is never
possible to initiate a segment with more than one segment number
in the same process.

The KST management algorithm starts assigning segment
numbers at the number stored in active~hardcore_data$hcscnt (the
number of supervisor segments rounded up mod eight in an
initialization that has just been described). -Actually, seven
segment numbers above this are reserved' for stacks (see the
Process and Processor Control PLM). Hence, when a process is
created, no segment number above active_hardcore_data$hcscnt
corresponds to a segment as the KST is void (other than the first
entry, which is set to describe the ring 0 stack (PDS) of the
process). \fuen segments are initiated (first by the supervisor
init_proc on behalf of the outer rings, and later by outer ring
programs) segment numbers are allocated to these segments via the
KST allocation algorithm described. Whether or not the segment
being initiated is part of the supervisor is not known at this
time. All that is certain is that it has a branch in a directory
and is thus capable of being initiated. If it had no branch (like
most of the segments in the hardcore supervisor, which are
described only by their AST entries, or are contiguous areas of
main memory) there would be no way to identify it. Thus, all of
those segments of the supervisor that are to be initiated by
outer ring programs must have branches. At the time of the first
use of the segment number allocated in the KST, the segment fault
that results causes the branch of the segment to be inspected.
The field entry.astep will be found at this time to indicate that
the segment is indeed active and its AST entry is identified as
that set up by make_sdw during initialization.

There will be, therefore, two descriptors for initiated
supervisor segments in a process: one was placed there at the
time the descriptor segment was created, and is a copy of that
made by make_sdw during initialization. The other is created by
the segment fault mechanism. The first of these SDWs has ring
brackets of (0, 0, 0) and is intended for use only by the
supervisor (it can only be used in ring 0). The access control
bits in this descriptor are those specified in the SLT. The
second descriptor has ring brackets and access control
information derived from the branch. Hence, the segment can be
referenced via two segment numbers in the process. We call the
one created by initialization the hard core segment number of the
segment and the other the KST segment number. The segment is
actually known by the KST segment number. The descriptor
corresponding to the hardcore segment number (the hardcore

3-7 AN70

descriptor) is permanent--it cannot be modified by access control
primitives, segment control primitives, initiation, or
termination.

Now that the distinction between hardcore and KST segment
numbers has been made clear, several special cases can be
explained. Hardcore gates are initiated in user rings via the
normal initiation mechanism. They, therefore, have two segment
numbers in a process. When called, they execute in ring ° due to
the ring brackets in the KST associated descriptors for these
gates. At the time they execute, they are running as the segment
of their KST segment number in that process. They have no way to
determine their hardcore segment number (an EPAQ instruction
would return the KST segment number) and find their linkage
sections via the ring ° LOT. Hence, text-imbedded pointers
provide the only technique for location of their linkage sections
(text_relative code can be addressed without recourse to pointer
registers).

The procedure signaller is a supervisor segment. It is
invoked via the fault-handling mechanism in ring ° when a
signalable fault occurs. It saves the faulting machine
conditions in its stack frame, which it has set up on whatever
stack the fault occurred (in whatever ring), and calls (via a
RTCD instruction) the per-ring signalling procedure in that ring
to locate an appropriate condition handler. This call
constitutes an outward transfer. signaller sets the return
pointer in its own stack frame so that, when control is returned
to that frame, control passes to the procedure return_to_ring_O_.
This procedure will transfer control back into ring ° via a call.
Thus, when the handler returns to the frame of signaller,
return_to_ring_O_ calls back to ring 0. return_to_ring_O_ calls
(via a CALL6 instruction) a special' gate , restart_fault, to
validate and reload (possibly modified) the machine conditions.
This pointer to return_to_ring_O_ is developed via a link in the
linkage section of the procedure signaller. Hence, it uses the
hardcore segment number of return_to_r.1ng_O_ (which never has a
KST segment number in any process, as it is not in the
hierarchy). return_to_ring_O_ calls restart_fault via a
text-imbedded pointer, again set up during collection 1
initialization and using a hardcore segment number. Hence, the
hardcore descriptors for restart_fault and return_to_ring_O_ must
be accessible in all rings. This modification of these SDWs is
performed by init_hardoore_gates. This descriptor is later
copied for the descriptor segment of each process This
special-casing could have been avoided if the pointers to
restart_fault and return_to_ring_O_ were stored in an accessible
place in each ring. These pointers would have to be created by
initiating these segments (which would then' have to go in the

3-8 AN70

hierarchy) at an appropriate validation level as each ring is
initialized. This was ruled out as too expensive.

ROOT DIRECTORY INITIALIZATION

At this point in initialization, the major task remalnlng
with respect to the address space and the hierarchy is the
initialization of the hierarchy (if a cold boot) and the
connection of branches in the hierarchy to the ASTEs of user ring
accessible supervisor segments. The most 'obvious way to access
the necessary directories to perform these initializations is to
initiate them in the normal manner. Presumably, abs-segs, forced
activations, and other heavy-handed techniques could have been
used, but there is no reason not to use the normal mechanism when
it is available.

To initiate segments, a KST will have to be used. The KST
currently described in the descriptor segment of initialization
is an empty segment called (in the SLT) kst_seg. This KST will
be the KST of the initializer process. The decision is made to
use this KST to initiate the necessary directories during
initialization. As this KST will become the KST of the process
Initializer.SysDaemon.z, the segments initiated by initialization
remain known to that process.

The next step in initialization is to make this KST usable.
The program init_root_dir is responsible for these phases of
initialization. First, initialize_kst is called with a special
parameter. This procedure, initialize_kst, is used during
process initialization. When called by init_proc for ordinary
process initialization, it sets up the KST of the calling process
(initializes hash tables, allocation areas, etc.) and sets the
default search rules of the process. The special parameter
passed at this time tells initialize_kst to perform only the
first set of these per-process initializations; i.e., not attempt
to set up the search rules at this time. The allocation areas
and fixed constants in the KST are set up. The first seven
segment numbers are reserved (via the normal segment number
reservation mechanism) for the stacks of rings 0 through ring 6.
The descriptor for the PDS (normally the PDS of whatever process
is being initialized--in this case, the segment pds loaded in
collection 1) is copied into the SDW slot in the descriptor
segment for the ring 0 stack.

With the initialization of the KST (to be the KST of
Initializer.SysDaemon.z) complete, segments can now be initiated
if they exist. The root directory is known to exist. It was
created by initialize_dims (its file map was filled with null

3-9 AN70

addresses) if it did not exist and it was activated by
make_segs_paged. A call to makeknown$pname is performed, passing
the name of the root (» as a parameter. This primitive
special-cases the initiation of the root. To make the root
known, it is only necessary to allocate a KST entry (and segment
number) as always and indicate (by placing the convention-defined
unique ID of the root 777777777777, in the unique ID field of the
KST entry allocated) that it is the KST entry of the root. The
root is made known by its own reference name, >, so that future
calls to initiate segments will find it. In a normal process,
the root is made known by the first initiate call in the process,
when recursive analysis of the pathname of' the segment to be
initiated finally leads to a search of the root for the correct
ancestor of that segment. The root is always made known in the
same way, i.e., placing a unique ID of 777777777777 in a KST
entry. The only reason that the root is made known 'explicitly
during system initialization is that this may be a cold boot and
the root must be initialized as a legitimate directory and no
other segments exist in the hierarchy.

It is possible to initiate the root simply by setting up
such a KST entry because the unique ID in the KST entry is
inspected by the segment fault handler, explicitly for this
purpose, before an attempt is made to search the containing
directory for the branch. If a segment fault is taken on a
segment stated in the KST as having a unique ID of 777777777777,
the variable sst.root_astep in the SST is interrogated to locate
the ASTE of the root (which can never move). An SDW is
constructed to point to the page table in this ASTE.

With the root now known in the initialization environment,
it is now locked. Even if the root was void (just created), it
can be locked as its lock word would be zero. In in either case,
the active quota switch (which indicates that quota accounting is
managed in the AST for this directory) in the root is turned on.
The INTK CONFIG card is now inspected to determine if this is a
cold or a warm boot. If warm, the root is unlocked. If a cold
boot, the root is simply a segment with one bit turned on and a
word (the lock word of a directory) nonzero. Thus, the normal
initializations performed on a new directory are performed. The
directory header and hash tables are set up. The root is given a
quota equal to that set in its AST entry by make_segs_paged.
Having been made into a normal directory, the root is now
unlocked. init root dir returns to
initialize_collections$inIt_coIlection_2.

At this time, segments can be initiated and created via the
normal storage system primitives. These are used to create
branches for those segments loaded by init'ialization that are to

3-10 AN70

At this time, segments can be initiated and created via the
normal storage system primitives. These are used to create
branches for those segments loaded by initialization that are to
go in the hierarchy. This is the next step.

li~ANCH CREATION AND CONN~CIJON

All the preceding mechapisms in collection 2 initialization
have led us to the point where we can create and delete branches
in the storage system hierarchy at will. We can now make the
connections between branches in the storage system (~hich we will
create if necessary) and the AST entries of segments loaded by
initialization. This is the major task performed by
init_branches, the next program called in the initialization of
collection 2.

The first step in these hierarchy initializations is to
delete the entire subtree rooted by >process_dir_dir, if indeed
there is one, left over from the last bootload. The directories
in this subhierarchy were the process directories of processes
long since gone. The storage space occupied by this subhierarchy
must be freed. Thus, a call is made to del_dir_tree, the normal
system subhierarchy deleter, to delete the recursive descendants
of >process_dir_dir. Next, a call is made to delete
>process_dir_dir itself. The quota parameters of the root are
saved before these calls and restored after them. The quota
assigned to >process_dir_dir is set at bootload time and is a
function of the number of processes allowed as specified by the
TCD CONFIG card. It is set to this value at bootload time, and
hence, is not drawn off the root. Thus, it is not returned to
the root at the time this subtree is deleted.

Next, the four AST used lists corresponding to page table
sizes of 4, 16, 64, and 256 Hords (as opposed to the temp_seg,
init_seg, and hardcore lists) are traversed to find all those
supervisor segments that must go in the hierarchy. The current
occupants of these lists are all those supervisor segments that
are to go in the hierarchy (they were threaded onto these lists
by make_sdw, which determined this by the presence of
sIte. branch_required) and any directories that have been
activated up to this point (including the root). There are also
free entries on this list. Entries corresponding to anything
except supervisor segments are skipped. The segment number is
determined from the aste.strp field, which normally starts the
trailer thread if this ASTE was creat~d by make_sdw. (This field
is then zeroed.) Otherwise, the segment nunber is determined
from any trailers that this segment may have. This segment
number is used in the determination of whether or not this is a

3-11 AN70

supervisor segment. This segment number is then used to access
the SLT entry for this segment. init_branches$branch is then
called to create a branch for this segment, based upon the
pathname and ACL information provided in the SLT.

init_branches$branch is a utility that oreates a branch from
SLT information and initiates the (usually void) segment that
results from that creation. init_branches$branch calls
make_branches to create the actual branch.

make_branches attempts to append a branch of the specified
name (the first SLT name) to the directory specified in the SLT
pathname field. If the branch already exists, make_branches
destroys it and tries again. If the parent directory does not
exist, make_branches calls itself recursively to create that. In
either case, once the branch is created, make_branches sets the
ACL specified in the SLT for this segment in the branch and
returns.

init_branches$branch then deletes the ACL term rw
.SysDaemon. that the append call created if no ACL was
specified in the SLT. The newly-created segment is then
initiated and the max_length in the branch set (via the normal
storage system primitive) to as many words as specified in the
SLTE bit count. The pointer to the segment returned by the
initiate call is returned.

Going back to the main loop of init_branches, which has just
called init_branches$branch to create a branch for a supervisor
segment, sum$getbranch_root_my is called to access the
neWly-created branch. This primitive, normally called at segment
fault time, accepts a pointer to a segment, inspects the segment
number to locate the KST entry of the segment, inspects the KST
entry to locate the branch of the segment in its containing
directory, locks that containing directory, and returns a _pointer
to the branch.

When the branch has been located, the segment is "activated"
by placing the SST-relative pointer to the AST entry of the
segment in the entry.astep of the branch~ Thus, any process that
takes a segment fault on this segment, accesses the AST entry
created by initialization. The AST entry is then cross-linked
(via its rep and par_ring fields) to the AST entry of its
containing dlrectory (which must have been active at the time the
branch was touched, and will not have been deactivated since,
since no segment faults were taken since then, and no other
process is running). The AST entry of the segment is threaded
into the inferior list of its containing di~ectory. If it is the

3-12 AN70

first segment in its containing directory to be activated by this
or any other means, the quota account of the containing directory.
is activated (i.e., set in the AST entry and marked in the
directory as being there). The master-limit switch (indicating a
descendent of >process_dir_dir) is set in the AST entry from the
newly-created branch. The entry bound (call limiter) and entry
bound switch are set in the new branch from the hardcore SDW,
located via the segment number determined earlier from aste.strp.
(This is the hardcore segment number for this segment. The
segment number in the pointer returned by init_branches$branch is
a KST segment number).

Finally, the maximum length of the segment is determined from
slte.max_length (if given, otherwise from slte.cur_length) and a
file map of the proper size is allocated in the dire9tory for
this branch, replacing the small one allocated by default when
the branch was created. This is done now because bounds faults
cannot be taken on these entry-hold-active segments, so the
largest file map needed is set up now.

When all this has been done for a segment, updateb, the
segment control primitive that updates a branch from an AST entry
is called, which has the effect of copying the file map as
maintained in the ASTE by page control up to this point into the
directory. Also, it calculates the number of records actually
used by this segment at this time, and places it in the branch.
We will need this information shortly to update the quota
accounts of the ancestors 1 of this segment. The directory
containing the segment is then unlocked and quota account of the
first ancestor of this segment, which has a terminal quota
account, is updated. The segment is then terminated, removing it
from the KST.

When this loop through the AST used lists is complete, all
supervisor segments to be in the hierarchy are in the hierarchy,
with their entry-hold switches on and hardcore SDWs pointing at
them. Next, the maximum length in the branches for the SLT and
its name table are set, via standard storage system calls, to
their current lengths as determined by a storage system status
call. This is necessary because their lengths at this time are
different from their lengths specified in the SLT; they grew
during initialization.

1 An ancestor of a segment is either the containing directory of
that segment, or the containing directory of the containing
directory, and so on.

3-13 AN70

Next, >process_dir_dir is initialized. The name >pdd is
added to this directory. Quota is set on this directory
proportional to the maximum number of processes allowed as
specified on the TCD configuration card. The standard allocation
of quota for one process is moved to
>process_dir_dir> zzzzzzzbBBBBBB, the process directory of
Initializer.SysDaemon.z. This directory must exist as the
s'egment pds was placed in it by make_branches. The ACL on
>system_librarY_1 is set to sma for Initializer.SysDaemon.z, and
status (s) for *.*.*. The ACLs on >process_dir_dir and
>process_dir_dir> zzzzzzzbBBBBBB (the process directory of the
Initializer) are set to sma for the Initial~zer. The name s11 is
added to >system_Iibrary_1. The directory >dumps is created if
not already there, and given an ACL. The segment
>online_salvager_output is created if not there, and given access
rw to *.*.*. The ring brackets on this segment are (0;0,0).

The initialization of the hierarchy is now complete.

COLLECTION 2 WRAPUPS

Once the hierarchy has been initialized, most of the work of
collection 2 is done. initialize_fault$fault_init_two is called.
First the timer is loaded with a very large number (to allow
changing the timer fault vector), and then all faults are
directed to their normal handlers. The signalling procedure
pointer in the base of the PDS is set to signal_$signal_, the
normal procedure used for this purpose. The floating fault
vector is set up and scs$faults_initiatized set to indicate that
the full fault mechanism is initialized~ Bounds faults can now
be taken. (Remember that the vector for segments faults was set
up during collection 1 initialization.) The search rules for
Initializer.SysDaemon.z have not been set up yet, but the
supervisor takes no linkage faults. This will be part of the
process initialization of Initializer.SysDaemon.z.

Now, the temp segs of collection 2 are deleted, via a call
to delete_segs$temp. The AST temp seg list is again traversed,
and all of these segments truncated and destroyed.

COLLECTION 3

We are now ready to load collection 3. There is sufficient
mechanism set up at this time to make this loading trivial.
Collection 3 requires no SLT entries, no hardcore descriptors,
and no special casing in the AST. Its segments are not even part
of the supervisor, but must be in the hierarchy in order for

3-14 AN70

Multics to come to initializer command level. The data switches
are checked for a conditional return to BOS. load_system is
called to load collection 3. The data switches are then again
checked for a conditional return to BOS.

load_system operates by reading each remaining SLT header on
the MST into an automatic array. No SLT entry is made.
init_branches$branch is called, as in collection 2, to create the
necessary branch and directories, set the necessary ACL, and
initiate the segment created. init_branches$branch is
instructed, however, to provide write access for
Initializer.SysDaemon.z if not already present. The MST header
word for the segment is then read (tape_reader is used to read
the MST) and as many words as specified therein are read in to
the newly-created segment. If there was no write access for the
Initializer specified in the SLT, it is taken back.

During this loop, the segments created are not terminated;
they are touched in order to restore the SDW that may have been
faulted by the revoking of write access. This allows BOS to
patch these segments if the conditional return to BOS after
loading collection 3 is invoked.

When the collection mark indicating the end of collection 3
is encountered, loading of segments stops.

All initialization of the supervisor is now complete except
the initialization of traffic control and the initialization of
user-accessible I/O. After this is performed, the initialization
of the process of Initializer.SysDaemon.z will be performed, and
initialization will be complete.

INITIALIZATION OF TRAFFIC CONTROL

When all other mechanisms of the supervisor are functional,
the bootload idle process must be set up to occupy the bootload
processor when it is not needed. The ability to share the
available processor(s) among many processes and the ability to
create these processes also must be set up. The initialization
environment, as it stands now, must be transformed into the
process of Initializer.SysDaemon.z. These are the goals of
traffic control initialization.

The first task of traffic control initialization is to
establish the usability of the segment tc_data, which contains
the data bases of traffic control: the Active Process Table
(APT), the Device Signal Table (DST), and the Interprocess
Transmission Table (ITT). The sizes of these tables are copied

3-15 AN70

off the TCD CONFIG card. These tables are laid out in the
segment tc_data, and pointers to their bases set in the header of
tc_data. APT entries and ITT entries are threaded into free
lists.

Next, the scheduling parameters (max eligible, min eligible,
working set factor, etc.) are copied from the SCHD configuration
card into an assigned location in tc_data, so that they can be
used by the scheduler.

Next, the procedure build_template_pds is called. The
output of this procedure 1S a super-vis·or segment called
template_pds. This segment is copied by process creation (see
the frocess and Processor Control PLM), when processes are
created in order to create their PDSs. It is set up by copying
the current PDS (>pdd> zzzzzzzbBBBBBB)pds) from its base through
the end of its first stack frame. Before this copying is done,
however, the first stack frame on (our) PDS is modified to appear
as through the instruction before the entry point
init_proc$init_proc has made an external call. This is done so
that when a new PDS is returned to by the traffic controller, the
first time a new process 1 runs, init_proc$init_proc receives
control. As the traffic controller assumes that pds$last_sp
points to the last valid stack frame on a PDS to which it is
returning, this location in the template PDS is set to point to
the stack frame being fabricated. The segment number in all
pointers constructed by build_template_pds is that of the current
PDS. That is the segment number of the PDS of any process in
that process. The stack_begin_pointer and stack_end_pointer
pointers in the template PDS are set appropriately.

As hardcore address spaces for all processes are essentially
the same, descriptor segments for new processes are copied from
the descriptor segment of the initializer. Thus, all hardcore

. SDWs are the same and in the same position as the process of the
initializer. SDWs for the KST, PDS, and descriptor segment of
new processes, however, are placed in the positions -in the
descriptor segment of the new process corresponding to the
positions occupied by the supervisor segments kst, pds, and dseg

'1The traffic controller checks a flag when returning to a
process to see if this is the first time that this process has
ever been entered. If so, getwork (the dispatching routine) was
never invoked in the new process, and thus cannot return to its
caller. In this case, a return sequence is executed on the PDS,
to a stack frame previously set up. This special exit will play
an important role later on, when the Initializer becomes a
process.

3-16 AN70

in the descriptor segment of initialization (and thus the
descriptor segment of Initializer.SysDaemon.z). The KST, PDS,
and Descriptor segment itself of initializer.SysDaemon.z are
those of initialization. The descriptor corresponding to the
hard core segment prds, however, is another matter. This will be
described more fully.

Once the ability to create processes has been set up, the
next step is to convert the initialization environment into the
process of the initializer, Initializer.SysDaemon.z. An APT
entry is allocated. A process ID, defined as APT entry offset
concatenated with 777777 of the initializer,·i~ defined for the
initializer and set in tc data as tc data$initializer ide The
pointer pds$apt_ptr in the- PDS, to -become the PDS- of the
initializer, is set to describe this APT entry. A lock ID is
obtained from the storage system unique ID generator and stored
in the PDS and the new APT entry as the lock ID of the
initializer. The initializer is set to have a timax of zero,
ensuring good response time for this crucial process. The AST
entry offsets of the descriptor segment and PDS in use at this
time and to become those of the initializer, are stored in the
new APT entry. The DBR value for the initializer process is
copied from the descriptor segment, being the descriptor for the
descriptor segment itself. You will recall that the stack base
segment number for the initializer process was stored in this
descriptor in the field corresponding to the stack base field of
the DBR as one of the early initializations of collection 2.
Finally, the new APT entry is threaded into the now-void APT
ready queue and set to describe a process that is eligible,
loaded, ready (not running), and has never run. The APT ready
queue has never been inspected and the traffic controller getwork
routine (see Multiprogramming and Scheduling, Order No. AN73) has
never run. The number of eligible processes in the system is set
to 1.

A minor initialization is performed now: all of the polling
time clocks are set to the current clock time. This forces all
pollings to be done the first time these clocks are inspected.

The last and most important step in traffic control
initialization is the creation of the bootload idle process and
the starting of the bootload CPU.

3-17 AN70

Idle Processes

An idle process is a process that does no useful work.
Except when interrupted by preempt or other interrupts, it is in
the program init_processor, in ring 0, masked at open level,
usually executing a DIS instruction. Like all other processes,
it is very egotistical, considering only its own useless work
important and all interrupts simply diversions. Some interrupts,
i.e., preempt, cause the process to be suspended and resumed at a
later time. An idle process exists for essentially no other
reason than to be preempted. It is always eligible and loaded.
It is always in the traffic controller ready' queue, although in a

. special place" When a processor in getwork seeks work, there is
always the useless work of the idle process to do if nothing else
can be found. Its work can always be resumed and is infinite in
extent. As a processor must have an idle process ava~lable at
all times, there must be one per processor. They are created and
destroyed (by start_cpu and stop_cpu, respectively) as processors
are added and deleted, during initialization and reconfiguration.
When a processor is started, it picks up the DBR value of its
associated idle process and runs in that process. It may be
preempted but, from the viewpoint of that idle process, it always
comes back to run that process. Every time it proceeds from its
DIS instruction (a return from an interrupt causes the next
instruction to be returned to), it proceeds once more to execute
this DIS. However, every time that this loop is restarted,
reconfiguration flags are checked. There are two such flags.
The first tells a processor to delete itself. Deletion consists
of being sure that all interrupts directed at this processor are
now directed at some other one, being sure that no interrupts are
lost, indicating that we are deleting ourselves and stopping in a
nonpreemptable loop. Once this has been done the idle process
for the CPU is deleted (to be described later). The second flag
tells a processor that it is now the control processor of some
other System Controller than it had been until now--it should
change the proc_contr_ptr pointers in the SCS and its own PRDS.
Whenever either of these functions is necessary, the idle process
of the CPU that performs these tasks is given top priority in the
ready queue and given its processor via preemption. (See the
Reconfiguration PLM, for more details about these reconfiguration
operations.)

The creation of an idle process consists of creating its
descriptor segment, its PDS, and the PRDS of the processor to be
started, and sending the processor being started, into
init_processor in this process. The deletion of an idle process
consists of deleting the processor (as described) and destroying
the PDS, descriptor segment, and PRDS associated with that
processor and its idle process.

3-18 AN70

It can be seen at once that a processor and its idle process
are intimately associated. Each, in some sense, belongs uniquely.
to the other. A processor starts in that process, returns to
that process, and deletes itself in that process. That process
~s run only by that processor. Associated with the processor and
its idle process is a"PRDS, or processor data segment. Other
than the per-processor data in the SCS, this is the major
per-processor data base. Other than at the time it is created,
it is accessible only to its native processor. When a
(nonbootload) idle process is created, a PRDS is created for it
(plm$makeseg performs these creations). It is initialized by
prds_init, just as the bootload processor PRDS was during
initialize_collections$interrupt_init. An SDW describing it is
put in the descriptor segment being built for the idle process in
the position corresponding to the supervisor segment prds loaded
during initialization in the initialization descriptor' segment.
(When the idle process of the bootload CPU is created, this
descriptor is copied from the descriptor segment of
initialization. Hence, in each idle process, from the time it
starts, the segment number corresponding to the SLT name prds
references the PRDS native to that processor and idle process.
What is more, every time a processor switches processes in the
traffic controller it carries the SDW for its PRDS with it in the
AQ register and places it in the same position in the descriptor
segment of the new process. Thus, for any processor, no matter
what process it is in, the segment number assigned in the SLT to
the name "prds" refers to the PRDS of that processor. This is
most useful when the PRDS is used as a stack during process
switching. It is also useful for accessing per-processor data in
a uniform manner.

Idle processes take no page faults and
always run in ring zero. They have no
interaction with the storage hierarchy, other
of interrupts. Idle processes can handle any
not involve page faults.

Startin&- Processors

never wait. They
KSTs and have no

than the handling
interrupt that does

Having discussed idle processes and their uses, we now
proceed to discuss the starting of processors. Traffic control
initialization (as performed by the program tc_init) causes the
starting of the bootload processor. Dynamic reconfiguration
starts other processors. Starting a processor consists of
creating its idle process and sending the processor to be started
an "initialize" software interrupt to force it to enter that
process. What is meant by "starting" the bootload CPU will be
explained below.

3-19 AN10

Creating an idle process consists of allocating an APT entry
and setting it to describe a loaded, eligible, and ready process,
which i~ also marked as idle and has the proc~ssor required bit
set, indicating that only the proc~ssor for which it is intended
may run ,-it. A ·process·· 10'" is fa:bricated. for it,' and it is
threaded· into the ready list as an idle process. A descriptor
segment a~d PDS'are create~'for it' (by plm$hc and plm$makeseg,
respecti-v"ely) . The SDWs for each are set in the new descriptor
segment and the PDS is initialized from template_pds. The first
page of each is wired. The relative AST entry pointers of these
two segments are put in the'appropriate places in the AST entry
of the segment (to find them when it,is time to delete the idle
process, not for loading, as a normal. process). Some per-process
variables in· the new pDS'are ioit~alized~ Next, if this is not
the idle' ,.process of. -··th~ ",b'ootI9ad CP U , a PRDS is created,
initialilzed', 'and-'wired I and 'its ~DW st-ored in the descriptor
segme n t of the.-·' idle process. ,"' I f' this 'is the idle process of the
bootload CPU being created, the SDW of of the segment prds of
initialization is used. In either case, the relative AST entry
offset of the PRDS is stored in the APT entry of the idle
process.

Once the idle process is thus ready for use, a program called
init_processor is called (at the entry point init_processor).
This impure procedure stores the DBR of the idle proces.s it is to
start in a location in its own text segment. Pointer registers
and another pointer are stored too. Next, the absolute addresses
of an SCU data area and a sequence of code
(init_processor$first_steps) are computed, and absolute-mode SCU
and TRA instructions addressed to these locations stored in the
interrupt vector for the software initialize interrupt. The
current system controller mask for the processor now executing is
saved. A mask allowing initialize interrupts is now set as the
mask for this processor. An initialize interrupt is sent, via a
system controller, to the processor being started (which. may be
this processor). A loop is entered to await the acknowledgement
of this interrupt by the processor started. An error is
returned (after restoring the mask and interrupt vector) if no
acknowledgement is received after a fixed time. A code
indicating successful starting is returned if the acknowledgement
was returned in time.

What does a processor, particularly the bootload processor
do when given the initialize interrupt? It stores its SCU data
at location scu_data in init processor. Still in absolute mode,
it transfers to init_processor$first_steps. The DBR is loaded
via an IC-format (instruction-counter relative addressing)
instruction, using the value saved by the call side of

3-20 AN70

init_prdcessor. An ITS pointer set up by the call sIde is
indirected through, by a transfer instruction, causing entry into
appending mode in the desired idle process. The pointer
registers' are also loaded from values again stored in . the text
section of init~processor by the call side. A check is made to
see if the processor that caused the processor initialization is
the same processor that took the initialize interrupt. This
should happen only once for the bootload CPU. A check is made
that t~e processor tag as r~ad from the switches corresponds to
the tag put in the hew PRDS, derived from the CONFIG deck. If
all checks pass, the processor is ready for use. Its mode
register .is set (for stopping history registers on' faul ts) and
its cache is enabled. The value of its timer register, is saved
in'its PRDS. (for traffic control calculations). The APT entry of
this idle proces~ is set to indicate that the idle process is
running. Finally, the flag to acknowledge the successful
initializatiori to the processor t~at sent, the initialize
in terrupt is set. T h,e bi t ar ray (scs$processor) in the SCS,
showing which ~ocessors are running, is set to indicate that
this proc.§..ssor is running. A stack frame is set up, for
init_processor in the page fault trape array in the PDS of the

. idle process. Since the idle process takes no p~ge or segment
fau~ts,this are~ is never used. The stack frame must be set up

,here, as ,this area is wired. This stack frame ·is, necessary for
the"call/~eturn sequence with the traffic controller at preempt
time. Incidentally, ,all of the above code is inhibited.

The last step taken by a newly-initialized processor before
entering its idle loop (check reconfiguration switches, DIS,
loop), is to send itself a preempt interrupt. This causes the
processor to pass through the getwork routine of the traffic
controller to see if there is any more worthy process to run. If
there is none, the traffic controller returns to the idle
process~ (By definition, the idle process is the least worthy
process. The tra'ffic controller al~Y§.chooses the idle process
when there is no more worthy process to run.)

Now all of this is quite necessary for the initialization of
any processor. For each processor, an idle process must be
created and started. As was mentioned before, this is d6ne at
initialization time by tc_init for the b60tload processor.
'DYrlq,micreconfiguration starts;all others. Most processors
started'in this manner were executing a DIS at the time of the
ini t'ialize int'errupt. '" ,The,ir previous state, was not meaningful.
For the boatload processor at initialization time, however, this
is not the '6ase~ Its previous state was involved with running
system initialization; Somehow, this'work must be picked up by
someone. This was the entire point of setting up the APT entry
,of Initializer;SysDaemon.z to indicate a ready process, eligible

3-21 AN70

and loaded, which has never run. vfuen the bootload id'le process
preempts itself before entering its idle loop, it finds a more
worthy process to run, namely, Initializer.SysDaemon.z. It is
ready, eligible, and loaded. Hence, the decision is made to run
that process. The flag that· ·says this process has never run
causes the traffic controller to pick up pds$last_sp in that
process and return into that frame on the PDS.
To_~ke this~ork, the call side of init_processor ingeniously
stored its current stack pointer in the back pointer of its own
stack frame (after saving it), and in pds$last_sp, and set the
procedure return point in its frame to the label where
acknowledgement from, the started processor is awaited. Hence,
when the process of Initializer.SysDaemon.z is picked up, the DBR
of initialization is loaded the process of the initializer is set
to r.!d1l!ling, and a return is made into the stack frame set up by
the call side of init_processor. Initialization has now become
Initializer.SysDaemon.z. Initialization proceeds in ring zero of
the initializer process.

Th§....£omplet.ion of Traffic Control Ini tializatioll

When the bootload CPU has been started, the flag in tc_data
(tc_data$wait_enable) that allows the full, normal waitlnotify
mechanism to function is set. (It is necessary that there be
idle processes for this mechanism to function.) Traffic control
is now initialized.

After tc_init has created idle processes, started the
bootload processors, and made the notion of process function,
user-accessible I/O is initialized. This consist$ of the
communications control software and the 1/0 interfacer. It is
done after traffic control initialization for no good reason, but
just done.

Communications Initialization

The DATANET 6600 FNP control program is called to initialize
its data areas at this time. There is no reason why this need be
done now. The fact that the DATANET 6600 FNP control program was
loaded as part of collection 1 (due to its being wired) seems
sufficient reason to initialize it in collection 1. DATANET
information is extr~cted from the D355 configuration cards.
Per-DATANET information is stored in the dn355_data segment.
This includes mailbox pointers, port and interrupt cell numbers,

3-22 AN70

and DATANET numbers. The 10M manager is called to assign device
indices to each DATANET. They are connected through rOM special
channels. This allows data transfer to the DATANET via the rOM.
The interrupt handler is not assigned at this time, as the
DATANET interrupts not through the rOM interrupt mechanism, but
via its own setting of an interrupt cell. LSLA/HSLA indices are
also ascertained from the CONFIG deck at this time and stored in
the DATANET data area.

There is one program, tty_init, that has the major
responsibility for initializing all data bases necessary for the
subsequent use of the ring 0 typewriter control s~ftware. The
primary data base is tty_buf. This is a segment that consists of
various control and Metering variables in its header. This is
followed t~ one eight word control structure for each
communications line specified in the CONFIG deck. The remainder
of the segment (whose length in 1024 word blocks may be specified
on a config card) is allocated into chained sixteen word buffers.
These ~ffers are shared among all terminals dialed to the
system. tty_init is responsible for the initialization of a
portion of another data base, dn355_data.

tty_init begins its work by initializing several variables
in the header of tty_buf such as the time, the absolute address
of tty_buf, etc.. Then it reads all of the LSLA and HSLA config
cards. These cards are checked for consistency and any errors
are reported via syserr. If there are no errors, dn355$assign is
called once for each configured line. This will cause a table in
dn355_data that maps device index (devx) into physical typewriter
line number to be filled for later use in the ring 0 typewriter
software. In addition to initializing this table, one eight word
entry is made in tty_buf for each configured line. These entries
are in an array that is indexed by devx, and follow the header
information in tty_buf. In each entry is placed an initial
terminal type that is set based on the baud rate of the line.
This is so the typewriter software can make some initial
decisions when receiving a dialup on a given line. An entry is
also made in the lOAM data base by calling ioam_$define_name for
each configured line.

Once all of the configured lines have been processed, the
last task is to take the remaining unused space in tty_buf and
chain this into a threaded list of 16 word buffers. Each buffer
has the relative address of the next buffer in its first 18 bits,
and a special pattern of alternating ones and zeroes in its last
word to mark the buffer as free. The address of the first buffer
in the chain is stored in the variable, free, in the header of
tty_buf.

3-23 AN70

THE END OF INITIALIZATION

After traffic control and user I/O initialization,
init_collections$init_collection_2 returns to initializer. A
call is made to delete_segs$init to delete all initialization
segments, including init_collections but not including
initializer itself (this is a supervisor segment).
Initialization, or more precisely the initialization environment,
is now the process of Initializer.SysDaemon.z in ring o. A call
is made to init_proc$multics. init_proc$init_proc is usually the
first procedure invoked in a process. It initializes the process
KST and makes a pointer, via the linker at the validation level
of the startup ring of the process, to the first user-ring
program, usually user_init_admin_. It then proceeds to call this
program, via an outward call. init_proc$multics, however, calls
initialize_kst with a special parameter since the KST for the
initializer process was almost entirely set up by the call to
initialize_kst with another special parameter by init_root_dir.
Hence, the system search rules are set up (the default search
directories are created if they do not exist) and the search
rules of the initializer (like those of any process) set up
following that~ A pointer is made to system_control instead of
init_admin_. This is the first outer_ring procedure for the
initializer. ~ outward call is made via this pointer to this
procedure. Initialization is complete and Multics is operative.

RETROSPECT ON COLLECTION 2

The basic goals of collection 2 initialization are to set up
the ability to initiate segments and take segment faults, to
access the storage hierarchy via storage system primitives, to
set up traffic control and the notion of process, including idle
processes, to load collection 3, and to start the Initializer
process.

This happens in the following order.

The segment fault mechanism (the trailer segment) is set up.
The root directory is accessed and initialized. Supervisor
segments that are to go in the hierarchy are put in the
hierarchy. All fault handlers are set up. Collection 3 is
loaded directly into the hierarchy. The bootload idle process is
set up_ Initialization is picked up by the bootload CPU in the
process of the initializer. The process of
Initializer.SysDaemon.z is initialized and started on its way.

3-24 AN70

SECTION IV

SF:! U T DO~JIJ

Shutdown consists of the orderly cessation of service of a
nul tics system. Ii crash or failure consists of a system problem
causing a return to BOS, either via a call to syserr, a system
trouble interrupt sent upon detection of a problem, or an
operator-initiated execute fault or manual transfer, initiated
from the maintenance panel. After a crash, an orderly shutdown
can be attempted via an operation known as an Emergency Shutdown
(ESD). This operation restarts Multics at a special point and
attempts to complete a normal shutdbwn.

, .

~J hat con s tit ute san 0 r de r 1 y c e:3 sat ion 0 f s e r vic e ? I tis the
responsibility of the answering service to shed the user load of
the system at the time of an operator-initiated shutdown. At the
time of a crash, that u~er load is shed in a disorderly fashion.
The responsibility of system shutdown is to ensure the
consistency of the storar;e system. Hain memory and the paging
device are a buffer for the storage system, which resides totally
on disk between bootloads. The goals of an orderly shutdown are
to:

1. Drive all pages out of main memory and out of the pa~ing
device onto disk.

2. Ensure the integrity of directories--that all branches,
specifically file maps, are updated from information in
the AST. No branch must indicate that its segment is
active or the next bootload will believe it.

3. Ensure the integrity of the FSDCT--that all changes Made
to the FSDCT (including the file map of the root
directory and all changes made durin~ shutdown) are
reflected to the disk copy.

4-1 A1J70

4. Relinquish disk storage used by segments not in the
hierarchy, i.e., the paged supervisor segments not in the
hierarchy.

The responsibility of emergency shutdown is to try to
accomplish as much of the above as is possible, in an environment
deficient in an unknown way.

Shutdown is somewhat akin to initialization in the sense
that the environment in which it runs is gradually depleted as
opposed to the continually growing environment of initialization.

Thus, shutdown consists primarily of:

1. Flushing main memory--several times.

2. Deactivating any segments that can be deactivated.

3. Updating the branches of any segments that cannot be
deactivated (i.e., entry-hold segments, like those
supervisor segments in the hierarchy).

4. Deleting the hardcore nonhierarchy segments via the AST
traversal mechanism of initialization.

5. Flushing the paging device.

6. Updating the FSDCT, perhaps several times.

The flowchart, Figure 4-1, shows the sequence of these
operations for both normal and emergency shutdown. The module
(or entry point) responsible for performing each function is
given at the bottom of each box.

4-2 AN70

NORMAL
SHUTDOWN

•
DESTROY ALL
PROCESSES EXCEPT
INITIALIZER AND
IDLE PROCESSES

tc shutdovvn

DEACTIVATE ALL
SEGMENTS THAT CAN
BE DEACTIVATED

shutdown

DIS,cIBLE
WAIT/NOTI FY

shutdown

FLUSH
MAIN MEMORY

pc$flush

UPDATE ALL
REMAINING ACTIVE
BRANCHES OF
ACTIVE SEGMENTS

shutdown

SWITCH TO
SHUTDOWN STACK

shutdown switch 1
FLUSH MAIN
MEMORY AGAIN

pc$flush I

1
FREE SUPERVISOR
DISK STORAGE

delete _ segs$hardcore' ~

FREE DISK STORAGE
OF INITIALIZER'S
DESCRIPTOR
SEGMENT

wired shutdown

FLUSH PAGING
DEVICE, TURN OFF
PAGING DEVICE

pc$pd _flush _all

FLUSH MAIN
MEMORY ONCE
MORE

pc$flush

UPDATE THE
FSDCT

p.c$fsout

RETURN TO
BOS

Figure 4-1.

EMERGENCY
SHUTDOWN

STOP TRAFFIC
CONTROL
WAIT/NOTIFY

emergency _ shutdown!

FIND A SUITABLE
PROCESS TO RUN IN

emergency _shutdown ~

CLEAR LOCKS

emergency _shutdown 1

RESET 10M AND
STORAGE SYSTEM
DIMS

iom manager$iom reset I
device _ control$time _out

'-----....

ShutdoHn

SWITCH TO
SHUTDOWN STACK

shutdown switch

UPDATE THE
FSDCT

pc$fsout

FLUSH
MAIN MEMORY

pc$flush

UPDATE THE
FSDCT

pc$fsout

UPDATE THE
PDMAP

pc$write _pdmap

AN70

NORMAL SHUTDOWN

Normal shutdown is performed by the procedure shutdown and
the programs it calls. ~fhen shutdown has finished its work, it
switches stacks to the segment shutdown_stack and invokes the
procedure wired_shutdown. Once in this procedure, no nonwired
paged hardcore segments are utilized. This procedure ultimately
returns to BOS via a call to pmut$bos.

Shutdown begins with a call to tc_shutdown. tc_shutdown
sets the flag tC_data$system_shutdown to 1. This flag changes
the Multics locking strategy to allow any process to lock any
lock, regardless of whether or not it is already locked. This
strategy is based upon the fact that only one process is running.
(This applies to only wait/notify type locks, such as directory
locks and the AST lock.) This flag also prohibits the depositing
of disk records (to be discussed) and modifies the behavior of
the utility program wire_stack and the teletype control package.

tc shutdown continues by calling deact_proc$destroy to
destroy all existing processes (save the initializer and idle
processes). This destruction is done via the normal process
destruction mechanism, which is not graceful. Graceful removal
of processes is the responsibility of the operator, before
shutdown is invoked. Only the initializer process is allowed to
perform a normal shutdown--this check is made at the very onset
of the program shutdown.

The next step of shutdown is to deactivate all segments that
can be deactivated. Not only does this force their pages out of
main memory, ensuring their consistency, but ensures that the
branches, including the file maps for these segments, are
consistent. The issue of pages on the paging device is left
aside for a moment. The existence of such pages does not affect
the information in the branches. This deactivation is done as a
loop over all of the regular (four sizes of page tables for
hierarchy segments) AST lists. The hardcore AST list will be
dealt with later. Supervisor segments that are in the hierarchy
are on the regular lists, not the hardcore list.

For each AST list, the list is traversed to find each active
segment with no inferiors active. If it is not entry-hold active
(supervisor segments will be entry_hold active, as will KSTs and
PDSs of other processes during an emergency shutdown, and the KST
and PDS of the initializer in all cases), it is deactivated.
After each segment is deactivated, an inner loop is made,
checking its parent, and its parent, and so on, to deactivate
them if they now have no inferiors active as the result of the
preceding deactivation. As this inner loop proceeds, a check is

4-4 AN70

made that the next ASTE to be inspected by the outer loop (trying
to find any ASTE with no active inferiors) was not the segment
being deactivated by the inner loop. The root is special-cased,
and not deactivated. Figure 4-2 shows this loop.

When the above loop is finished, the only segments left
active on the regular AST lists are those whose entry-hold-active
switch is on and their containing directories. The branches for
these segments are updated next. First, however, the switch
tc_data$wait_enable is set to 0, its value prior to the
initialization of traffic control. This disables the wait/notify
mechanism and reverts this mechanism to the more primitive
mechanism of initialization (see "Traffic Control and Ringslt in
Section I). Also, pc$flush is called to write out the contents
of main memory. This is done at this time to cause all pages in
main memory to have device addresses assigned at the time that
their branches are updated in the next sequence of calls. (This
check is somewhat redundant.)

The AST lists for hierarchy segments are now traversed once
more. The routine updateb, which updates branches from AST
entries, is called to update the branch of each active segment.
This assigns device addresses (redundantly) to all pages still in
main memory if they have none, and updates file maps and time
used/modified information in the branch. Quota accounting is
also updated at this time. Also at this time, the astep fields
in the branches of these segments are zeroed. This critical step
is the inverse of that performed by init_branches and ensures
that the first segment fault on any such segment during the next
bootload finds that the segment is not active and must activate
it. The salvager also performs this critical operation should
shutdown (or emergency shutdown) fail. If neither of these
measures succeeds, system failure is almost certain on the next
bootload.

Pages in main memory that are zero are not assigned device
addresses by page$pwrite, the primitive called by pc$flush.
Thus, pages of entry-hold-active segments in main memory that are
zero are assigned device addresses by updateb at the time their
branches are updated and later paging activity causes those pages
to be discovered to be zero and freed by normal paging activity.
Were such pages discovered to be zero by pc$flush, the following
problem would result. As this depositing was not noted in the
already-updated file map, an unprotected address (causing fatal
system failure) would be noted at the next bootload when such
pages were deleted via segment deletion. The prevention of this
effect is the point of disabling page-depositing during shutdown.

4-5 AN70

START ON
NEXT AST
LIST

Figure 4-2.

YES

E CHANGE THE
DEACTIVATE ~----f NEXT SEGMENT
THIS SEGMENT TO BE CONSID

ERED BY "X"

CONSIDER THE
PARENT OF
THIS SEGMENT

Deactivation Loop of Shutdown

4-6 AN10

When all these steps of shutdown are complete, the procedure
wired shutdown is called via the interface shutdown switch. The
latter interface abandons the current stack (which for a normal
shutdown is the PDS of the initializer process and for an
emergency shutdown is already shutdown_stack) and establishes a
stack frame at the base of the supervisor segment shutdown_stack.
The segment shutdown_stack is a segment consisting of zeroes; it
is loaded from the MST, but its AST entry is threaded out of the
AST lists by make_segs_paged (see "The Making Paged of Segments"
in Section II). Its PTWs are marked as "wired" but not in core.
shutdown_switch touches all of its pages, bringing them into main
memory permanently. A stack header is copied from the current
stack and a stack frame set up at the base of shutdown_stack.
All code from this point on takes no page faults--all paged,
nonhierarchy supervisor segments are deleted. Finally,
shutdown-switch invokes the procedure that it was called to
invoke, in this case wired_shutdown.

wired_shutdown begins by calling pc$flush to write out all
of main memory once more. This is to ensure that changes made by
the previous loop in shutdown are reflected to secondary storage.
Next, disk LRU metering is turned off as the segment
disk_traffic_data is deleted by the next call, which deposits
disk addresses (these would cause references to disk traffic data
if LRU metering were on). A call is made- to
delete_segs$hardcore. This procedure, delete_segs, is used
during initialization to traverse the AST init seg and temp seg
lists to delete these types of segments. Here, it traverses the
hardcore seg list, deleting all supervisor segments that are not
in the hierarchy. Thus, any segment that is paged must be in the
hierarchy and wired if it is to be used beyond this point. The
point of deleting these segments is to relinquish their disk and
paging device storage. If this were not done, this (disk)
storage would be unusable until the next "long" run of the
·salvager. Next, the disk and paging device storage occupied by
the descriptor segment of the initializer is relinquished. This
does not, however, delete this segment, which is still in use.

Next, the paging device is flushed via a call to
pc$pd_flush_all. This causes read-write sequences (rws) for all
modified (with respect to disk) pages on the paging device and
the freeing of all others. The paging device is then disabled,
and another call to pc$flush made to write out all pages that
were in main memory, but had copies on the paging device at the
time of the call to pcd$pd_flush_all. Such pages were driven off
of the paging device by pc$pd_flush_all as the latter noticed
that they had copies in main memory, which would be written out.
Next, the updated paging device map is written out to the paging
device, pc$write_pdmap for the benefit of the salavager.

4-7 AN70

Finally, the FSDCT is written out, reflecting all changes to'
device allocations and the root file map during the entire run
and shutdown. BOS is then invoked via pmut$bos and shutdown is
complete.

pc$flush is called several times during shutdown--before the
deactivate loop, after the updateb loop, and after the flush of
the paging device. While only the last of these is strictly
necessary, the repeating of this step serves as a hedge against
failure of any of the intervening steps. This is also done as
one of the first steps of emergency shutdown.

Also at several times during shutdown, a variable in the
FSDCT indicating the relative success of shutdown is updated.
This allows the salvager and BOS to make decisions based upon the
relative success (last point passed successfully) of shutdown.

EMERGENCY SHUTDOWN

After an unexpected return to BOS due to a system failure,
the operations performed by shutdown must still be performed if
the consistency of the storage system is to be maintained.
However, the state of the Multics environment at this time is
unclear--it is not known which mechanisms are functional and how
much so. Thus, many redundant measures have to be taken to
ensure the success of as many steps as possible.

After Multics has returned to BOS due to an unexpected
error, a DUMP or FDUMP can be taken by the operator. After this,
the BOS command ESD can be given to initiate an emergency
shutdown. This command alters the machine state saved by BOS at
the time of entry to BOS. The segment emergency_shutdown is
located by BOS from the SLT. The machine conditions are altered
such that a GO (CONTIN) command resumes control at the first word
of this segment. Such a command is then issued. The procedure
emergency_shutdown assumes control. This procedure is so written
that it can be entered in absolute mode if its base address is
known. Thus, it first establishes its linkage pointer and a text
base pointer from text-imbedded points set up by
initialize_faults$fault_init_one. It then enters appending mode.

emergency_shutdown sets the flag tc_data$system_shutdown
disabling locking and zeroes tc_data$wait_enable, reverting to
the initialization wait/notify mechanism. These measures reduce
the dependency on locking mechanisms operating properly. It is
not even known that locks were in a consistent state at the time
of the crash. The SCS is updated to show that only the bootload
processor is running, thus disabling connects sent by page

4-8 AN70

control. The sys_level (no interrupts other than sys_trouble'
allowed) mask is set. The APT is then scanned for a process
that is loaded and eligible. The process that crashed may have
been an idle process, which has no usable PDS, or may be
defective in some other way. The crashing process is used only
if no other is found. If a usable process is found, an LDBR is
done switching into that process. The PRDS SDW is carried along
as when LDBR is performed by traffic controller.

Next a stack frame is set up on the PRDS to allow calls to
be made to entries in wired code which expect a wired stack.
Next, the reconfiguration, AST, page table, and traffic
controller locks are forcibly unlocked. They may have been
locked at the time of the crash and will never be unlocked
otherwise. Directory locks are special-cased by means of the
switch tC_data$system_shutdown. Also at this time, the process
ID of the running process is changed to 777777777776, so that no
lock may ever appear to this process to be locked by it (mylock
error). The in_bos flag set by the interrupt interceptor (see
the Process and Processor Control PLM) is also reset.

Calls are now made to forcibly reset the operator's console,
the syserr logging mechanism, and the 10M manager. Special
entries are provided within these mechanisms to forcibly reset
possibly inconsistent states at this time. A call is made to
device_control$timeout to post any disk status that may be
unprocessed. An entry to wired_shutdown,
wired_shutdown$wired_emergency, is now called via
shutdown switch. The latter enables and initializes the shutdown
stack, switches to it, and calls wired_shutdown$wired_emergency.

wired_shutdown$wired_emergency, running on the shutdown
stack, writes out the FSDCT, flushes main memory, writes out the
FSDCT once more, writes out the paging device map, and then calls
shutdown$emergency, which proceeds with normal shutdown just
beyond the point where tc_shutdown is called (i.e., starting with
the deactivation loop). The idea of all of these measures is to
do each one as early as possible in case the next one fails due
to unknown or unpredictable causes. Writing out the FSDCT is
very important and very easy. Thus, it is wise to do this before
flushing main memory, which is less likely to succeed and less
important (An inconsistent FSDCT can cause reused address
failures, while inconsistent segment contents is a less fatal
problem. Neither is truly acceptable, though). As the FSDCT
will likely be modified by writing out main memory, it must be
written out before the deactivate/update loop, which is even less
likely to succeed. This philosophy prevails during shutdown.

4-9 AN70

SECTION V

MODULE DESCRIPTIONS

Most of the modules used during initialization and shutdown
are intended to be called only once. They perform specific
functions that can on~y be done before certain functions are
performed and after certain others. Most of these procedures are
invoked with no arguments. It is impossible to describe these
procedures in module descriptions. Any comprehension of their
purpose or function must be gained by understanding them in
context. Hence, the names of these modules are given below, with
a brief description of what they do and references to earlier
sections for a full understanding of their function.

Some modules, specifically init_processor, make_branches,
start_cpu, prds_init, shutdown_switch and the prelinker, can be
called more than once, but· their function is again highly
specialized, and not of general utility. Descriptions are
included below.

SPECIALIZED MODULES

bootstrap1.alm

bootstrap2.alm

accepts environment from BOS. Sets
up segmentation, loads collection 1
into unpaged segments.

sets up stacks, calls prelinker.
Creates PL/I environment.

makes a template PDS for process
creation. PDS contains stack frame
for return to init_proc.

initializes bulk store mailbox.

5-1 AN70

clock_init.p11

disk_init.p11

emergency_shutdown.alm

init_branches.pI1

init_collections.pI1

init_processor.alm

initialize_dims.pI1

ascertains time zone and delta from
GMT from CONFIG deck.

adds unused pages of main memory to
paging pool ..

initializes disk control routines,
establishing their communication
with 10M manager.

sets up DATANET 6600 FNP" variables
and 10M manager communication".

accepts control from
emergency shutdown.
environment where much
allowed.

BaS for
Creates

freedom is

adds unused portions of unpaged
segments to paging pool.

places those supervisor segments
to go in the hierarchy in the
hierarchy. Initializes >pdd, other
sons of root.

dispatches initialization calls.

stores text-imbedded link pointers
in hardcore gates, sets up special
SDWs for fault restart programs.

starts a CPU. Contains first code
executed by a CPU and code for idle
process.

makes root directory
legitimate directory.

into

sets up core map, PD map, AST.

a

makes free list of system trailers
in str_seg.

sets up random system variables.

creates or accesses FSDCT,
dispatches device initialization
calls. Sets up paging.

5-2 AN70

initialize_faults.p11

initialize_kst.pI1

initializer.pl1

make_branohes.pI1

make segs_paged

sets up fault and interrupt ~ector
ITS pointers and text-imbedded
pointers.

used by process initialization.
Used by system initialization to
allow segments to be initiated by
setting up the KST of the
initializer. Also sets up search
rules.

permanent supervisor segment that
dispatches initialization calls,
mainly to init_collections and
delete_segs.

sets up lOB mailboxes and control
words. Sets up overhead channel
handling.

reads collection
hierarchy.

3 into the

recursively creates the storage
system branch for segments loaded
from the MST.

makes paged segments of unpaged
ones. Sets up root and other
special ASTEs. Formerly called
update_sst_p11.

sets up PRDS for a processor.

prelinker driver. Scans linkage
sections for links to be snapped.

snaps a given link.

initializes configuration data
about system controllers. Sets up
system controller addressing
segment (SeAS).

5-3 AN70

segment_loader.p11

shutdown.p11

shutdown_switch. aIm

start_cpu. p11

syserr_init.p11

trace_init.p11

wired_shutdown.p11

sets up CPU configuration
more system·~ controller
Assigns interrupt cells.
mask,s.

loads collection 2.

data,
data.

Creates

coordinates
Deactiva tes
branches.

normal
segments

shutdown.
and updates

establishes use
as a stack.
sets up frame.

of shutdown_stack
Initializes header,

builds SLT entries, searches the
SLT.

sets up segments for an i'dle
process. Calls init_processor.

sets up operator's console,
lists, wired buffers, etc.

DCW

initializes logging of operator's
console messages. Sets' up LOG
partition as a segment.

sets up traffic controller data
bases, sets up ini tializer
process. Starts bootload CPU, sets
up wai tin otify.

initializes system debugging trace,
if selected. Sets DCW lis ts, 'etc.

initializes
package.

typewriter

finishes normal
shutdown.

5-4

and

control

emergency

AN70

UTILITY MODULES

Other modules are called more than once. They are utility
modules used possibly several times during initialization and/or
shutdown. We describe them briefly here, giving their calling
sequence, descriptions, and references to the earlier sections.

5-5 AN70

This procedure traverses AST lists, deleting all segments on
that list. This deletion consists of calling pc$truncate to hand
back the disk and paging device storage occupied by the segments.
SDWs for these segments are zeroed as well. There are three
entries. No arguments are needed by these calls.

Usage

declare delete_segs$temp entry;

call delete_segs$temp;

causes all temp segs to be deleted. Used at the end of the
initialization of each of collections 1 and 2.

declare delete_segs$init entry;

call delete_segs$init;

causes all init and temp segs segments to be deleted. Used at
the end of initialization. This call is made by initializer, a
supervisor segment.

declare delete_segs$hardcore entry;

call delete_segs$hardcore;

causes all supervisor segments not in the hierarchy to be
deleted. Used by wired_shutdown at shutdown time.

5-6 AN70

find find

Name: find

This utility module is used to locate selected cards in the
CONFIG deck.

Usage

declare find entry (char(4) unaligned, ptr);

call find (name, p);

where:

1 • name

2. p

ExamQles

more:

is the name of the type of CONFIG card sought.
(Input) .

is both input and output. If given as null, the
configuration deck is searched from its beginning.
Otherwise, it is searched from the point pointed to
by p. As a return value, p points to the first card
image of the type req~ired, having searched from the
required point. If returned as null, there are no
more cards of that type.

i=O;
p=null;
call find ("cpu", p);
if p=null then go to no_more;

1=i+1;
go to more;
1* i contains the number of "cpu" cards *1

5-1 AN10

free core free core

Name: freecore

This procedure is used to explicitly add a page frame of
main memory to the paging pool. It should be used only for such
page frames as were not in it at the time of the call. It is
used during reconfiguration and initialization.

declare freecore entry (fixed bin(17»;

call freecore (n);

where n is the number of the page frame to be freed, i.e., 3
means the block at address 6000 octal. (Input)

declare freecore$reserve entry (fixed bin(17»;

This entry is like freecore. However, if the page frame
being freed is in abs_usable memory, i.t is not marked as
abs-usable. This prevents 1/0 buffers from using it.

5-8 AN70

This procedure is used to create an AST entry (including
page table) for a segment on the MST, thread it into an
appropriate AST list, and return an SDW describing that segment.
It is used by make_segs_paged for collection 1 paged segments and
segment_loader for all collection 2 segments.

declare make_sdw entry (fixed bin(18), fixed bin(71),
ptr, ptr);

call make_sdw (segno, tsdw, astep, ptp)

where:

1 •

2.

3 ·

4.

segno

tsdw

astep

ptp

is the segment number of the segment for which an
ASTE is constructed. This segment number is used
to access the SLT. (Input)

is an SDW using the newly-created page table.
This can be placed in the descriptor segment using
appropriate calls.

is a pointer to the ASTE created. (Output)

is a pointer to the page table created. (Output)

make_sdw determines the proper size AST entry from the
max_length and cur_length fields of the SLTE. The TBLS card
overrides both of these. The appropriate list on which to- thread
the AST entry is critical. It is determined by the following
algorithm:

ELSE

ELSE

if unthreaded entry, or the segment has wired
pages, then not threaded at all.

if slte.temp_seg is on, then threaded on the
temp_seg list.

if sIte. branch_required is on, then threaded on
the regular AST list with AST entries of this
size.

5-9 AN70

ELSE

ELSE

if slte.init_seg is on, then threaded on the
irit_seg list.

threaded on the hardcore list, aste.hc turned on.

aste.ehs and aste.hc_sdw are turned on in all ASTEs, except in
the unthreaded case.

make_sdw$unthreaded is called in the same way as make_sdw, but
causes the creation of an un threaded entry_

5-10 AN70

This procedure is called to perform physical tape I/O on the
MST. It is called by tape_reader.

declare (tape_io$init_tape, tape_io$final_tape) entry;

declare (tape_io$get_unit, tape_io$get_unit) entry
(fixed bin(6));

declare (tape_io$read. tape_io$backspace, tape_io$rewind,
tape_io$unload, tape_io$skip_file, tape_io$set_density_800,
tape_io$set_density_1600) entry fixed bin (5);

declare tape_io$tape_interrupt entry (fixed bin(12), fixed bin(12),
fixed bin(71), fixed bin(3));

sets up the MST reading package.
The PCW left by bootstrap1 in
physical_record_buffer is
inspected.

closes the package. The tape
channel is marked and deassigned.

call tape_io$get_unit (unit_no)
extracts the current tape unit
number from the PCWs being used by
tape_io.

call tape_io$set_unit (unit_no)

call tape_io$read (status)

sets the current tape unit number
to be used by tape_io.

starts a read
physical_record_buffer.
status is returned through

5-11

into
Major

status.

AN70

call tape_io$backspace
through

call tape_io$set_density_1600

~--

perform functicns appropriate to
their names, returning status.

call tape_io$tape_inte~rupt (devx, listx, ·status~ level)
is performed by the 10M manager at
interrupt time.

5-12 AN10

This program, which reqds Multics Standard Tape, is called
to read the MST. It uses tape_io to perform its 1/0.

declare tape_reader entry (ptr, fixed bin(18));

call tape_reader (p, n);

where:

1 • p is a pointer to where words are to be read. (Input)

2. n is a count of how rna ny words are to be read. (Input)

declare tape_reader$init entry;

call tape_reader$init;

This call initializes this prograM, and calls tape_io$init_tape.

declare tape_reader$final entry;

call tape_reader$final;

Rewinds the MST and calls tape_io$final_tape.

5-13 AN70

APPENDIX A

abs-segs

The concept of an abs-seg is used many times during
initialization and plays a critical role in the procedure
make_segs_paged. For those who are not familiar with this
concept, we provide here an explanation of the use and
construction of abs-segs.

A program running in the Multics hardcore, including
initialization and shutdown, has access to the descriptor segment
it is using. It is therefore possible for a hardcore program to
construct an SDW pointing to any legitimate page table or
contiguous region of main memory. This SDW can be stored at any
place in the descriptor segment, and the segme;nt thus pointed to
can be referenced via the segment number describing that
descriptor segment slot.

Furthermore, the meaning of pointers and symbolic references
to that segment number change as the SDW is changed. The segment
described by that segment number takes on different identities as
the SDW is changed. It is not any given segment at all, but
different ones at different times. The segment of changing
identity assigned to that segment number is known as an abs-seg.
The reserving of segment numbers for such use is valuable as it
allows symbolic references to be made to the abs-seg, which in
fact reference different segments as the SDW is changed.

Two examples of abs-segs follow.

Page control must check for zero pages of main memory, when
it is time to write a page out. It is not known if the page
belongs to a segment that is known in this process or not.
Hence, page control constructs an SDW describing that page only
and places it in the descriptor segment position for the segment
abs_seg1. Now, page control need only check the first 1024 words
of abs_seg1 to see if they are zero.

A-1 AN70

Segment control searches the AST for an AST entry to preempt
when one is needed. It decides to deactivate a given segment but
must update the branch in the containing directory of the
segment. An AST entry contains a relative pointer to th~ AST
entry of the containing directory of its segment. Thus, segment
control fabricates an SDW describing the page table in the AST
entry of the containing directory and places it in the descriptor
segment position for the segment dir_seg. ·A pointer to dir_seg
is now passed to the branch updating routine, as a pointer to the
containing directory of the segment. Neither the segment being
deactivated nor its contain~ng directory need be known in the
current process.

A-2 AN70

A

AST 1-8, 1-10ff, 1-21ff,
1-27ff, 1-35, 1-39ff,
2-20ff, 2-28, 3-1, 3-3,
3-5, 3-7, 3-10ff, 3-20,
4-1ff, 4-4, 4-6ff, 4-9,
5-2

B

BaS 1-1ff, 1-14ff, 1-19ff,
1-25ff, 1-29, 1-39ff,
2-1ff, 2-10ff, 2-17,
2-21ff, 2-27, 3-2ff, 3-15,
4-1, 4-4, 4-7ff, 5-1ff

bootstrap1 1-6, 1-10ff,
1-13ff, 1-23, 1-25ff,
1-29, 1-31, 1-33, 1-35,
1-38ff, 2-1ff, 2-7ff,
2-25ff, 2-28, 3-2ff, 5-1,
5-8

bootstrap2 1-17ff, 1-23ff,
1-38, 2-4ff, 2-7, 3-3, 5-1

build_template_pds 3-16,
5-1

C

CONF1G deck 1-1, 1-3ff,
1-10, 1-14ff, 1-29, 1-31,
2-1, 2-11, 2-14, 2-16,
2-24, 2-28, 3-4, 3-10ff,
3-16,3-21,3-23,5-2,
5-5ff

clock_init 1-39, 5-2
collect_free_core 1-35,

2-27, 5-2
config 1-1, 1-3ff, 1-10,

1-14ff, 1-29, 1-31, 2-1,
2-11,2-14,2-16,2-24,
2-28, 3-4, 3-10ff, 3-16,
3-21, 3-23, 5-2, 5-5ff

D

DATANET 6600 FNP 1-15,
1-20, 1-26, 1-29, 1-41,
2-3, 3-22, 5-2

dn355_init 1-26, 5-2

E

emergency_shutdown 1-2,
1-24, 2-9, 4-1ff, 4-4,
4-6, 4-8, 5-2, 5-4

F

fault vector 1-13, 1-15,
1-18ff, 1-23, 1-29, 1-31,
2-2ff, 2-9, 3-14

fim 1-18, 1-24, 2-9
free_unused_pages 2-21, 5-2

H

hierarchy 1-4, 1-7ff,
1-10ff, 1-14, 1-16, 1-19,
1-22, 1-27ff, 1-40, 2-22,
3-1ff, 3-5ff, 3-8ff,
3-13ff, 3-19, 3-24, 4-2,
4-4, 4-6ff, 5-2ff, 5-5

I

idle process 1-41, 3-1,
3-15, 3-17ff, 3-24, 4-8,
5-2, 5-4

10M 1-15ff, 1-20, 1-23,
1-25ff, 1-29, 1-38ff,
2-2ff, 2-11ff, 2-16ff,
2-22, 3-2, 3-23, 4-9,
5-2ff, 5-9

ini t_branches 1-11, 1-40,
3-11ff, 4-6, 5-2

init_collections 1-18,
1-38, 3-24, 5-2ff

init_hardcore_gates 1-40,
3-4, 3-8, 5-2

init_processor 3-18,
3-20ff, 5-1ff, 5-4

init_root_dir 1-22, 1-40,
3-9ff, 3-24, 5-2

init_sst 1-35, 1-39, 2-19,
5-2

init_str_seg 1-40, 5-2
init_sys_var 1-40, 3-4, 5-2
initialize_dims 1-21, 1-26,

1-39, 2-19, 2-22, 3-9, 5-2

initialize_faults 1-18,
1-19, 1-24, 1-34, 1-36,
1-37, 2-8, 2-18, 2-19,
4-8, 5-3

initialize_kst 1-22, 1-40,
3-9, 3-24, 5-3

ini·tiali.zer (process) .. 1-3,
1-21ff, 1-24ff, 1-27,
1-38, 2-8, 3-9, 3-14ff,
3~21ff, 4-6ff, 5-3ff

initializer (program) 1-18,
1-24, 3-2, 3-24, 4-4

interrupts 1-2, 1-4,
1-16ff, 1-24ff, 1-38ff,
2-1ff, 2-7ff, 2-15ff,
2-22, 2-28, 3-4, 3-18ff,
4-1, 4-8ff, 5-3ff, 5-8ff

iom_data_init 1-38, 5-3

K

KST 1-22, 1-40, 3-2, 3-5ff,
3-12ff, 3-16ff, 3-19,
3-24, 4-4, 5-3

L

load_system 1-25ff, 1-40,
3-15, 5-3 LOT 1-1-1, 1-24,
2-5ff, 2-10, 3-4, 3-8

M

make_branches 3-12, 3-14,
5-1, 5- 3

make_segs_paged 1-21, 1-35,
1-39, 2-19, 2-25ff, 3-10,
4-7, 5-3ff, 5-7

mask, masks 1-17ff, 1-38,
2-2, 2-8, 2-12ff, 2-15ff,
2-28, 3-20, 4-8,

p

prds_init 2-19, 3-19, 5-1,
5-3

pre_Iink_1 1-23, 1-38,
2-5ff, 3-3, 5-3

R

reconfiguration 1-2, 2-7,
2-121 2-15ff, 2-18,
3-18ff, 3-21, 4-9, 5-6

S

scas~init 1-20, 1-38,
2-12ff, 2-20ff, 5-3

SCS 1-27, 1-38ff, 2-7ff,
2-12, 2-14ff, 2-17ff,
3-18ff, 3-21, 4-8, 5-4
scs_init 1-27, 1-38ff,
2-12, 2-15, 2-17ff, 5-4

segment_loader 1-11,
1-25ff, 1-40, 2-8, 3-2ff,
5-4, 5-7

shutdown (system) 1-2,
1-22, 1-24, 1-28, 2-22ff,
2-27, 4-1ff, 5-1ff,

shutdown (program) 5-4
shutdown_switch 4-6ff, 4-9,

5-1, 5-4
S L T 1-2, 1-4 f f, 1 - 1 1 ,

1-13ff, 1-20, 1-23ff,
1-31, 1-33, 1-35, 1-38,
1-40, 2-2ff, 2-22, 2-24ff,
3-2ff, 3-7, 3-9, 3-12ff,
sIt_manager 1-23, 1-38,
2-4ff, 2-7, 3-3, 5-4

start_cpu 3-18, 5-1, 5-4
syserr_Iog_init 1-39, 5-4

T

tc_init 1-25, 1-41, 3-19,
3-21ff, 5-4

trace_init 1-39, 5-4
tty_init 3-23, 5-4

w

wired_shutdown 4-4, 4-6ff,
4-9, 5-4ff

"

w
z
::J
C!)
z
o

J

HONEYWELL INFORMATION SYSTEMS
Publications Remarks Form*

TITLE:
SERIES 60 (LEVEL 68) MULTICS SYSTEM
INITIALIZA TION PROGRAM LOGIC MANUAL

ERRORS IN PUBLICATION:

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION:

(Please Print)

FROM: NAME ____________________________________ __

COMPANY __________________________________ __

TITLE ________________________ _

ORDER NO.:! AN70, REV. 0

DATED: I FEBRUARY 1975

DATE: ________________ _

*Your comments will be promptly investigated by appropriate technical personnel, action will be taken as
required, and you will receive a written reply. If you do not require a written reply, please check here. n

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

POSTAGE WILL BE PAID BY:

HONEYWELL INFORMATION SYSTEMS
60 WALNUT STREET
WELLESLEY HILLS, MASS. 02181

ATTN: PUBLICATIONS, MS 050

Honeywell

FIRST CLASS
PERMIT NO. 39531
WELLESLEY HILLS,
MASS. 02181

UJ
z
:::i
(!)
z
o
....J
«
I
::::>
u

UJ
Z
....J
(!)
Z

, 0
,J

«
a
....J
o
U.

UJ
z
:::i
(!)

, z , g
, «

a
....J
o
U.

12863
2.5C375
Printed in U.S.A.

The Other Computer Company:

HoneY"'ell

HONEYWELL INFORMATION SYSTEMS

In the U.S.A.: 200 Smith Street, MS 061, Waltham, Massachusetts 02154
I n Canada: 2025 Sheppard Avenue East, Willowdale, Ontario AN70, Rev. 0

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	A-01
	A-02
	Index-1
	Index-2
	replyA
	replyB
	xBack

