
Honeywell

SERIES 60 (LEVEL 68)

SOFTWARE

RESTRICTED DISTRIBUTION

ALM ASSEMBLER
PROGRAM LOGIC MANUAL

MULTICS

Honeywell ALM ASSEMBLER
PROGRAM LOGIC MANUAL

SERIES 60 (LEVEL 68) MULTICS

RESTRICTED OlSTRIBUTION'

SUBJECT:

This Document is a Description of the ALM Assembler.

SPECIAL INSTRUCTIONS:

DATE:

This Program Logic Nanual (PLM) describes certain internal modules
constituting the Multics System. It is intended a~ a reference for only
those who are thoroughly familiar with the implementation details of the
Hultics operating system; interfaces described herein should not be used by
application programmers or subsystem l.1riters; such programmers and writers
are concerned with the external interfaces only. The external interfaces
are described in the Hultics Programmers' Hanual, Commands and Active
Functions (Order No. AG9'2), Subroutines (Order No. AG93), and Subsystem
\Jri ters' Guide (Order No. AK92).

As Multics evolves, Honeywell will add, delete, and modify module
descriptions in subsequent PLM updates. Honeywell does not ensure that the
internal functions and internal module interfaces will remain compatible
with previous versions.

This PLt1 is" one of a set which, when complete, wi 11 supersede the Sys t em.
Programmers' Sunplement to the Hultics Programmers' Hanual (Order
No. AK96).

",
II J'. HE INF'ORt-lATIO. N CONTAINED IN TH. IS COPYR IG. HTED. . DOCU.I'.1EHT IS I
" THE EXCLUSIVE PROPERTY OF HONEY\JELL INFORf1ATION SYSTEt1S. I DISTRIBUTION IS LIMITED TO HONEYWELL EMPLOYEES AND CERTAIN
1 USERS AUTHORIZED TO RECEIVE COPIES. THIS DOCUHENT SHALL NOT I

BE REPRODUCE0 OR ITS CONTENTS DISCLOSED TO OTHERS IN WHOLE
OR IN PART.

February ~ 975

ORDER NUt1BER:

AH63, Rev. 0

PREFACE

Multics Program Logic Manuals (PLMs) are intended for use by
Multics system maintenance personnel, development personnel, and
others who are thoroughly familiar with Multics internal system
operation. They are not intended for application programmers or
subsystem writers.

The PLMs contain descriptions of modules that serve as
internal interfaces and perform special system functions. These
documents do not describe external interfaces, which are used by
application and system programmers.

Since internal interfaces are added, deleted, and modified
as design improvements are introduced, Honeywell does not ensure
that the internal functions and internal module interfaces will
remain compatible with previous versions. To help maintain
accurate PLM documentation, Honeywell publishes a special status
bulletin containing a list of the PLMs currently available and
identifying updates to existing PLMs. This status bulletin is
distributed automatically to all holders of the System
Programmers' Supplement to the Multics Programmers' Manual (Order
No. AK96) and to others on request. To get on the mailing list
for this status bulletin, write to:

Large Systems Sales Support
Multics Project Office
Honeywell Information Systems Inc,
Post Office Box 6000 (MS A-85)
Phoenix, Arizona 85005

~ 1975; Honeywell Information Systems Inc. File No.: 2L23

AN63

This PLM assumes that the reader is familiar with the
description of the ALM language in the Multics Programmers'
Manual, Subsystem Writers' Guide (Order No. AK92).

Throughout this manual, references are frequently made to
two of the four manuals that are collectivelv referred to as the
Multics Programmers', Manual (MPM). For

w

convenience, these
references'will be as follows:

Document Referred To In Text As

Subroutines MPM Subroutines
(Order No. AG93)

Subsystem Writers' Guide MPM Subsystem Writers' Guide
(Order No. AK92)

iii AN63

Section I

Section II

Section III

Section IV

CONTENTS

Overview•....•..•••...••••••..•.•.•.
Features Available•...•.•••.•...
Features Not Available ••............•.•.

Ove raIl Operation .•...•......•...•..••.•.••
The First Pass: pass1_•.•....••••..
The Se cond Pas s: p ass2_ .•..•......••...•
The Post Assembly Processor: postp2_ ..•

Details of Internal Operation ..•..........•
Access to the Assembler.~ ...•.....••..•.
Structure of the Data Base, glpl_•
Assignment Table Structure, table_
Evaluation of Variable (Operand/Address)
Field•..........•..

Linkage and List Maintenance ...•...•.•••
Evaluating Data Fields (Constants) ...•.•
Input •..•.................••......••••..
Output ..••..............•......••.....•.
Output of the Listing .•......•..........
Utility Programs•........•.•...••..

Subroutine Summary t •••••••••••••••••••

iv

Page

1-1
1-1
1-2

2-1
2-1
2-3
2-4

3-1
3-1
3-1
3-1

3-4
3-7
3-13
3-14
3-14
3-15
3-15

4=1

AN63

CONTENTS (c·ont)

Page
ILLUSTRATIONS

Figure 2-1. Assembler List Maintenance Block •.••••.•••. 2-3
Figure 3-1 Internal Symbol Block .•.••••••••.•.••••.••• 3-2
Figure 3-2 Multiple Location Symbol Block ••.•..••••••• 3-2
Figure 3-3 Literal List Block Structure ••••••••.•••.•• 3-7
Figure 3-4 Structure of a namlst Block •.•••..••••••••• 3-8
Figure 3-5 Structure of a Type-Pair Block ••••.•••••••• 3-9
Figure 3-·6 Structure of a Trap-Pointer List Entry ••••• 3-9
Figure 3-7 Structure of a Normal explst Block ••••.•••• 3-10
Figure 3-8 Structure of an Entry Point Interlude

Block .•••.••••.••••••••• " •••••••.•••.•••••• 3-11
Figure 3-9 Structure of a segdef Block ••..•••••..••••• 3-11
Figure 3-10 Schematic Object Code for "Ida"

Instruction •••.•.•.••••••••••••••.•.•••••• 3-12

v AN63

SECTION I

OVERVIEW

The ALM (assembly language for Multics) assemble~
translates a stream of ASCII characters, which represents the
source code for a Multics program written in the ALM language,
into a Multics standard binary object segment. It optionally
produces a listing of the text of the program fo.llowed by linkage
data, symbol definitions, and a cross-reference table. The
assembler is accessed by invoking the aIm command with
appropriate arguments. (See MPM Subsyste~ Writers' Guide.)

FEATURES AVAILABLE

The following is a partial list of the features that are
available to the ALM programmer.

1. The entire machine instruction repertoire can be used.

2. Pointer register names are known to the assembler so
that "epp4" and "epplp" can be used interchangeably.

Data generation and storage allocation
pseudo-operations can be used.

4. Variable field literals can be used.

5." Literals with du and dl modification can be used.

6. Complete address field modification can be used.

7. User-defined location counter controls are available.

1-1 AN63

FEATURES NOT AVAILABLE

The following is a list of features that are not available
to the ALM programmer.

1. Macro and macro-related operations

2. Most listing control pseudo-operations.

NOTE: Throughout the rest of this manual, pseudo-operations
will be identified as pseudo-ops.

1-2 AN63

SECTION II

OVERALL OPERATION

The ALM assembler is a tw.o-pass translator. It also
includes a post assembly processor that produces Multics
inter-segment linkage data and symbol table data for the object
program. (The linkage format and symbol table data are described
in the MPM Subsystem Writers' Guide.) The first and second
passes and the post assembly processing are' handled by the
pass1_, pass2_, and postp2_, procedures. These procedures are
essentially administrative procedures that call common
subroutines to perform the required functioris. A list of these
subroutines can be found in Section IV of this manual.

THE FIRST PASS: pass1_

The primary function of the first pass is to define all
symbols internal to the program being assembled. An internal
table of symbols and their values are generated. The values are
used qy pass2_ to generate the variable address fields of the
instructions .. The predefined system location counters used by
pass1_ are initialized as though they were internal symbols
within the object program.

Symbols are defined by pass1_ as follows. A program counter
is updated as each source instruction is processed. In the case
of cer.tain pseudo-ops, the counter is incremented by 1 for a
group of instructions. Each value of the program counter
represents one binary word in the object segment. The'values are
used by pass2_ to assign locations to the binary words. Each
time pass1_ encounters a new symbol in the label field of a
statement, it defines the symbol with the current value of the
program counter; the symbol is assigned to the internal symbol
table by the subroutine table_,

2-1 AN63

Symbols that have been defined by pseudo-ops are handled
differently depending on the pseudo-op being processed.

1. Internal symbols are defined as described above.

2. External symbols, possibly including a trap pointer,
are assembled as a result of the basref and segref
pseudo-ops.

3. External symbols defined relative to the stack pointer
base (pr6) result from the temp, tempd, and temp8
pseudo-ops.

4. Symbols resulting from the use pseudo-op are defined as
internal location counter references and are collected
at their corresponding join pseudo-ops.

5. The bool, equ, and link pseudo-ops cause symbols to be
defined in terms of expressions given in the arguments
of the pseudo-ops.

For more details on pseudo-ops, see the aIm command
description in the MPM Subsystem Writ~rs' Guide. If a symbol
cannot be defined in pass1_, pass2_ will attempt to define it.

Literals are also processed by pass1_. They are evaluated
and assigned to the pool of literals (literal table). They are
not assigned a specific location until pass2_ because the length
of the object program up to its end statement is not known during
pass1_. No literal appears twice. The pool is maintained in
order by pointers associated with each literal. (See Section III
of this manual for more detail.)

2-2 AN63

The first pass does not produce an intermediate or collation
segment; the second pass rereads the input stream from the
beginning. A list, ordered by the value of the program counter
after each source statement has been processed, is generated by
pass1_. This list is checked for correspondence by pass2_, If
it does not correspond, a phase error is signalled. The format
of each block in the list is given in Figure 2-1 below.

previous next
block . ---+ block

program
pointer to counter • value next block

error flags for statement

value of current 0
location counter

Figure 2-1. Assembler List Maintenance Block

THR ~RCOND PAS~: pass2_

The second pass of the ALM assembler generates the binary
output associated with each input statement. It also generates
the assembly listing and completes information (literals, segdef
names, etc.) to be generated by the post assembly processor
postp2_.

The binary code for a normal instruction is generated as
follows. The oplook_ subroutine is called to find the binary
equivalent of the symbolic operation code in a table
(alphabetically ordered) that is associated with the oplook_
procedure. The binary value of the variable address field is
determined by the varevl_ subroutine. The operation code and
address field are assembled in a binary word equivalent to the
symbolic instruction. When a newline character (ASCII code 012)
is encountered, prwrd_ is called to generate the listing.

The binary code for pseudo-ops is generated as follows.
First the symbols are evaluated to make sure their values are the
same as those determined by pass1_, System pseudo-ops (call,
push, return, entry, etc.) are expanded to generate the special
code they imply. Single word pseudo-ops (zero, setlp, vfd, etc.)
are evaluated individually and their binary values generated.

2-3 AN63

Since many pseudo-ops generate more than one word of equivalent
printed output, the listing for a given source line is maintained
in a buffer by the prwrd_ subroutine until a newline character
indicat~ng the end of a source statement is encountered.

The pass2_ procedure checks the input stream for syntax
errors and monitors the assembler itself for possible
malfunctions. The errors that were detected by pass1_ are
transmitted to pass2_, which may add to or duplicate the errors
signalled for a given statement. If a phase error occurs (pass1_
and pass2_ program and/or current location counters do not
match), the assembly is aborted.

THE POST ASSEMBLY PROCESSOR: postp2_

The post assembly processor for the ALM assembler serves two
major functions:

1 • It processes and generates all the
information (i.e., the contents of the
section of the object segment).

definition
definition

2. It generates the linkage block' and' the symbol table
header for the object segment.

For the text portion, postp2_ generates binary output for:

1. literals

2. entry points

For the defin~tion section, postp2_ generates binary output for:

1. segdef definitions

2. external names

3~ trap-pointer words

4. type-pair words

5. internal expression words

The order of output of this information is important because the
previous items are referenced by the later ones and thus the
binary locations must be known.

2-4 AN63

For the linkage block, the post assembly processor writes
out the linkage header and the linkage pairs.

The post assembly processor has the overall task of defining
the locations for all the information it puts out. Relative
pointers are th~ only connection within the assembler among. the
linkage pairs, expression words, type-pair words, trap-pointer
words, external names, and segment names.

2-5

SECTION III

DETAILS OF INTERNAL OPERATION

ACCESS TO THE ASSEMBLER

The assembler 1s entered from the aIm command by a call to
the alm_6180_ procedure. This central procedure calls the main
programs of the assembler and reports assembly on the user_output
switch.

STRUCTURE OF THE DATA BASE, glpl_

Every item of information maintained by the assembler is
kept in a list structure. The total list structure is accessed
via entry points of glpl_ (general list processing language).

ASSIGNMENT TABLE STRUCTURE, table_

The table of symbols (aSSignment table) is maintained as a
list of all symbols that have been defined within the program.
The list and structure is managed by the table_ procedure.

The assigned symbols fall into a number of classes (eight at
present), which include internal, external, and stack. The class
is indicated in the flag field of the table entry (see Figure 3-1
below). "A given symbol can be assigned to more than one class
with nQ conflict since the class of symbol is recognized by its
contextual use.

The symbols are constructed from a character string (up to
31 ASCII characters) and the count of the string.

The assignment table is not one long list of symbols, but
211 (a convenient prime) lists. The symbols are distributed
randomly among these lists according to the following procedure.

3-1 AN63

The first word of the symbol is taken; a constant is added to it;
the resultant value mod 211 is extracted. This value specifies
which of the 211 lists is to be searched for the symbol. The
list entries for internal symbols and multiple location counter
symbols are, respectively, the three-word or five-ward blocks
pictured in Figures 3-1 and 3-2 below.

from ----+
prior block

ACCstring ~
relative

~
relative

pointer to pointer
symbol

to
next block

flags value

rei ptr to
associated unused
loe ctr in
table

Figure 3-1. Internal Symbol Block

- --. ... to

flags current
value

ACC string next block

prev loe ctr
nextloe
ctr (right

(left join) join)

origin max value

mod. value 0= text
1 = link
2 = symbol

Figure 3-2. Multiple Location Symbol Block

3-2 AN63

The
and 3-2.

following

value

flags

.i

li~t
{

explains the terms used in Figures 3-1
' ..

is ~n 18-bit number that is the value of the
program counter when the . symbol was
encountered.

is : a 3-bi t class number and
indicator field.

Cla·as number:

clunk 0 undefined

clint 1 internal

clept 2 external

a

clbas 3 pointer register (unused)

clstk 4 stack

clridx 5 index register (unused)

clmlc 6 multiple location counter

7 unused

15-bit

Note: If a symbol belongs to more than one
class, a different block for each class will
appear in the list.

Indicator bits:

fdaf 00001 symbol defined

fmal 00002 multiple definition

fpks 00004 in phase error

fset 00010 symbol resettable

frel 00020 relocatable

fabs 00040 absolute

fhol 00100 Boolean

3-3 AN63

fcom

find

00200

00400

in common

value is indirect reference

Note: Only nine of the 15 are used; they may
be ORed together.

EVALUATION OF THE VARIABLE (OPERAND/ADDRESS) FIELD

The variable field is evaluated by two subroutines, varevl_
and expevl_, Instructions and pseudo-ops are treated
differently. The variable field of instructions may contain an
external reference followed by an internal expression or simply
an internal expression, either of which may be followed by a
comma and modifier. Some pseudo-ops are constructed like normal
instructions while others have specific requirements, e.g., the
evaluation of internal or Boolean expressions. The varevl_
subroutine handles the evaluation and formatting of external
references. Arithmetic or Boolean expressions are evaluated by
expevl_, which may be called either by varevl or the main
passes.

The values of symbols and expressions may be either absolute
or relative to some location counter (lc). The operands of the
arithmetic operators are restricted to the combinations in the
following list:

operand 1 operator operand ,g = result

absolute + absolute = absolute

relative to Ie + absolute = relative to lc

absolute + relative to lc = relative to lc

absolute absolute = absolute

relative to lc absolute = relative to lc

relative to lc relative to lc = absolute

absolute * absolute = absolute

absolute / absolute = absolute

-none- e unary)- absolute = absolute

3-4 AN63

Expressions evaluated by pass1_, such as those appearing in
eQu and org pseudo-ops, must be absolute.

Procedure varevl_ may be called in three cases:

1. to evaluate a full address field (possibly external,
.possibly literal);

2. to evaluate a complete internal expression with no
modifier.

3. to evaluate a pure Boolean expression with no modifier.

If the address field is an external reference, varevl_
checks for an address in one of the foI"lowing forma ts:

1 •

t" 2.

kl 3.

~. 4.

5.

6.

7.

8.

<seg>I[xname]±inexp,mod

<seg>linexp,mod

pr![xname]±inexp,mod

pr!inexp,mod

stackname±inexp,mod

inexp,mod

=literal,mod

The first six examples above are references external to the
segment being assembled and cause varevl_ to turn on bit 29 of
the instruction. Examples 1, 2, 3, and 5 cause entries to be

. made in the link, type block, and external name lists and force
the instructions to be referenced through the linkage segment
(e.g., use pr4 = Ip with bit 29 set on). Conversely, examples 4
and 6 cause reference to be made directly to the segment without
making entries in any of the assembler's tables or lists. The
internal expressions, the literals, and the modifiers are
evaluatea by expevl_, litevl_, and modevl_, respectively.

Subroutine expevI_ is responsible for evaluating arithmetic
and Boolean expressions consisting entirely of symbols, numbers,
operators (+, ,*, and I), parentheses, and expression
terminators (e.g., blank, comma, semicolon, etc.). Parentheses
bracket subexpressions and they may be nested to any level up to
100 pairs. Expressions are evaluated by a stack technique in

3-5 AN63

which the operators and delimiters are examined in order of
precedence as follows:

Name Order Meaning

lndt 1 left end terminator

rndt 2 right end terminator (all others)

(3 left parenthesis

) 4 right parenthesis

+ 5 binary plus or Boolean OR

5 binary minus or exclusive OR

* 6 binary multiply or AND

/ 6 binary divide or AND NOT

neg 7 Unary minus

not 7 Unary NOT

Any unknown operator is given a precedence of 2, which is
synonymous with the right end terminator. An excessive right
parenthesis is treated as a terminator and if the field ends with
an unbalanced left parenthesis, an error is reported and the
field is set to zero.

A literal is recognized by varevl_ by the presence of the
equal sign (=) in the first position of the variable field and
causes varevl_ to invoke subroutine litevl_, Subroutine litevl_
determines the -specific type of literal (e.g" its, ~tp, vfd,
etc.) and invokes a particular data field evaluator to process
the field. The literals thus evaluated are then placed in a list
of literais (the literal pool) in such a way that no literal
appears twice.

3-6 AN63

The structure of a block in the literal list is shown in
Figure 3-3 below.

fro~ ,. . --.1 location _-+-_~~ to _0 _

previous iiterai t----------1~----_I next literal

pointer to
current loe
ctr

N of words
in literal

Figure 3-3. Literal List Block Structure

The location of the literal is not assigned until pass2_ when the
Ii teral is actually used in the 0 bject . ·code • All mul t iword
literals are located at an even location. Single word literals
may be located at an odd or even location and are placed in the
table so as to fill in any "holes" betwee·n mul t1word entries
first. Subrou~ine litevl_ also checks for the du and dl
modifiers and returns the proper address and modifier~-~in such
uses. No entry is made in the literal list if du or "'l dl is
specified.

The modifier field is evaluated by subroutine modevl_. All
types of symbolic (named) modifiers are allowed including the
numeric,modlfiers.

LINKAGE GENERATION AND LIST MAINTENANCE

The information required for intersegment communication is
generated and maintained by the following eight entries.

lstman_$calser (obsolete)

lstman_$eptasn

lstman_$lnkasn

3-7 AN63

lstman_$outasn (obsolete)

lstman_$sdfasn

lstman_$trpasn

The namasn entry of lstman is responsible for assigning
external (s·egment and location) names to the namlst list and
making sure that those names are entered only once. The
structure of a namlst block is as shown in Figure 3-4 below.

---+ to
next block

previous block .--+
in namlst

~

ACC string

0 0

Figure 3-4. Structure of a namlst Block

3-8 AN63

The blkasn entry of lstman_ is responsible for maintaining
the list of type-pair blocks, blklst. A given unique type-pair
block is entered only once in the list. The format of a
type-pair block is as shown in Figure 3-5 below.

previous
block

.. .

type

segment

ptr to
trap block

external

..

-

to
next block

block in
trplst

name name

! !
ACC string ACC string

Figure 3-5. Structure of a Type-Pair Block

The trpasn entry of lstman_ is responsible for maintaining
the list of trap-pointer words, trplst. No trap-pointer word is
entered more than once in the list. A block in this list is
constructed as shown in Figure 3-6 below.

from --+ value . to
previous block next block

calptr a rgp tr

Figure 3-6. Structure of a Trap-Pointer List Entry
1

3-9 AN63

The following list explains the terms used in Figure 3-6.

calptr

argptr

value

is the l~nk number of the call to the trap
routine

is the link number of the associated argument
list

is assigned
location of
generated

by postp2_ as the
the trap-pointer

relative
word when

The lnkasn entry to lstman_ generates and maintains lists of
linkage data. The explst is a list of internal expressions. An
entry in the explst is a block of the format shown in Figure 3-7
below.

list of internal
expression words---.
(explst)

absolute
location

blkptr inexp

active location ctr

----- -- - ------- ---------- ----

.. next internal
expression word

--

next block in
dat~ list . 1 --+--.... - list of linkage I inka~e ---'1

1---------+-------1 data
inexp modifier

~-----~------~
Figure 3-7. Structure of a Normal explst Block

The follo~ing list explains the terms used in Figure 3-7.

blkptr points to the associated type-pair data in
the blklst entry

modifier is the address modifier in the original
instruction

3-10 AN63

The eptasn entry to lstman_ assigns entry points to the link
structure list. A block in the list has the format shown in
Figure 3-8 below.

transfer
vector'
list

r-+ 0

tvno

loc ctr

entry pt
location

inhib setting
of top

"
next entry
point block

--+ 2 .. -linkage next
data list linkage block

Inkno 1

- to vector inhib setting
link of entry

Figure 3-8. Structure of an Entry Point Interlude Block

Information about external names (segdefs) is entered by the
sdfasn entry to lstman into the definition list, sdflst. An
entry in sdflst "is formatted as shown in Figure 3-9 below.

external (segd
name list

ef).-..

ACCs tring

entry name

Inkno

trap ptr

1

link loe
ctr

--. - next segdef
block

Figure 3-9. Structure of a segdef Block

3-11 AN63

The overall structure of the linkage information in the
above lists implies that the order of definition of final values
in the linkage section of the object segment must be 1) names, 2)
trap-pointer words, 3) type-pair words, and 4) the internal
expression words.

The l.ists just mentioned (namlst, blklst, trplst, explst,
lnklst, sdflst, outlst) are interconnected with pointers much
like words are linked in the text and linkage portions of the
object segment. For example, if the instruction:

Ida <sega>l[namea]+inexp,mod

were assembled, the resulting object code in terms of relative
pointers would be as shown in Figure 3-10 below.

text data

instruction

origin of
definitions

expression
word

type-pair
block

segment
name

external
name

N
,..... -o M

K I LDA

I I inexp
I

1------.---
0
-

4 type=4

I
J

L.I : I s I e I 9 I
L.1:1:lalml

linkage data

at IpIK: I K-* I ft2 J
I ,modi

I
I

Figure 3-10. Schematic Object Code for "Ida" Instruction

3-12 AN63

EVALUATING DATA FIELDS <CONSTANTS)

Literals and pseudo-ops that produce constants are evaluated
by calls to subroutines especially designed for that purpose.
Five basic types of constants are allowed: ASCII, BCD, decimal,
octal, and vfd. The first two types of fields are evaluated by
the subrou~ine ascevl_, The last three are evaluated by decevl_,
octevl_, and vfdevl_, respectively.

Subroutine ascevl_ is used to evaluate the variable field of
the acc, aci, and bci pseudo-ops. The variable (character) field
is bounded by a nonblank character. No more than 40 words (159
characters for the acc pseudo-op, 160 characters for the aci
pseudo-op, and 240 words for the bci pseudo-op may be generated.
Literal fields containing ASCII characters are evaluated by
either litevl_ or decevl_ depending on their format.

Subroutine decevl is used to evaluate the operand field of
a dec pseudo-op and to evaluate a decimal field. The field may
be integer, fixed, floating, or double precision with the usual
conventions for the (decimal) point, and the letters B, D, and E.
ASCII literals of the form "=naxxx" (e.g., "=3aSYM") are also.
evaluated by decevl_, Decimal words are manipulated by the
various entry points in decsub_, which handles the decimal values
in "triple" precision, one word for the exponent and two words
for the mantissa.

Subroutine octevl_ evaluates the subfields in the operand
field of the oct pseudo-op and evaluates octal literals of the
form "=oxxx (e.g., "=0675432"). No signs are allowed, and a
check is made for more than 12 characters or a nonoctal digit in
the data field.

Subroutine vfdevl_ evaluates the entire field of a vfd
pseudo-op and also evaluates vfd literals of the form "=vxxx".
Three types of vfd subfields "are allowed: arithmetic, Boolean
(octal), and ASCII. The arithmetic and Boolean subfields are
processed by expevl_, while the ASCII subfields are evaluated by
vfdevl_.

3-13 AN63

INPUT

All input to the assembler is processed by inputs_$next and
inputs_$nxtnb. These entry points read the next character from
the input segment and store the ASCII character with its
corresponding code type for the user. The inputs_$next entry
handles any legitimate Multics character. The inputs_$nxtnb
entry reads any character except a space or horizontal tab. If
the previous character was a statement terminator (newline, ASCII
code 012; semicolon, 073; or carriage return, 015),
inputs_$nxtnb simply returns to the calling program.

The entry getid collects the next complete symbol identifier
(up to 31 alphanumeric characters, the first of which must be a
letter, period, or underline) and associated break character
(tab, blank, comma, etc.). The entry getnam collects the next
symbol, which may contain any legitimate character. The
subroutine setid_, like getid_, collects the identifier but also
assigns it to free storage for subsequent use by the assembler.
The procedure getid_ is a transfer vector to access these three
entries (getid_, getnam, and setid_).

OUTPUT

Output operations consist of the generation of an object
segment and an optional listing segment. Output for the object
segment and the processing of the relocation bits are done as
follows:

1. The text is written directly into the final object
segment, as it is being assembled.

2. The relocation bits for the text, linkage, and symbol
as well as the object linkage and symbol words are
tempo~arily stacked in the assembler's scratch segment.
All the entries in the subroutine object_ manipulate
this scratch segment.

3. After postp2_ has completed its processing, subroutine
pakbit_ is called to process all the relocation bits.

4. Subroutine merge_ then appends all the object linkage
and symbol words, including the packed' words of
relocation bits from pakbit_, to complete the object
segment being assembled.

3-14 AN63

OUTPUT OF THE LISTING

The major part of processing the optional listing segment is
done qy the prwrd_ subroutine. During pass2_, each input
character that is read is placed in a one character per word
buffer. W1en a newline character (ASCII code 012) is
encountered, prwrd_$source_only is called to comD~ne ~ne input
statement from the source segment with the printed equivalent of
the binary word. Whenever a word of binary output is generated,
a call is made to prwrd_ to convert that word and its associated
location and error flags to printable characters and place the
result into the output segment. Subroutines prlst_ and prnam_
are also used to generate printable output for the listing
segment. The prlst_ program is used to insert a line of noninput
characters (e.g., headings, etc.) into the listing segment. The
prnarn_ program generates the characters for ASCII names (e.g.,
segment names, entry points, etc.) that are inserted in the
object segment.

Error comments are transmitted to the user's error_output
1/0 switch (e.g., terminal) and placed in the (optional) listing
segment by subroutine prnter_. This program calls ioa_ and
prlst_ to write out the actual line of text. (For a description"
of ioa_, see the MPM Subroutines.)

UTILITY PROGRAMS

The .assembler
perform frequently
following:

uses a number
executed tasks.

of smaller subroutines to
These programs are the

1& glpl_ is a set of routines for performing fast list
processing.

2. utils is a set 'of routines for performing
miscellaneous tasks that were required to support the
FORTRAN in which the assembler was originally written.

All programs of the assembler use a common data segment
named eb_data_. This data segment contains pure information in
its text portion and impure information in its linkage portion.
For details, consult the segment and/or the calling procedures.

3-15 AN63

SECTION IV

SUBROUTINE SUMMARY

The following is a list of the various subroutines of the
assembler, ordered by function:

1 \I M:iin control ptdgrams

aIm

aIm 6180 -. -
pass1_

postp1_

postp2_

pakbit_

command interface

drives the major programs of the
assembler

first pass of ALM

post processor for joining multiple
location counter

second pass of ALM

post processor for linkage
symbol data

packs relocation bits

and

appends linkage and symbol data to
the object segment

handles EIS multiword instruction
pseudo-ops

2. Assignment table maintenance

assigns or searches the internal
symbol table

4-1 AN63

3. Variable field evaluation

varevl_

expevl_

modevl_

litevl_

evaluates an operand

evaluates a complete expression

determines the address modifier·

evaluates literals

4. Processing list of linkage data

Istman_$namasn

lstman_$blkasn

Istman_$lnkasn

Istman_$trpasn

Istman_$outasn

Istman $calser

Istma~_$eptasn

Istman_$sdfasn

assigns a symbol to the external
name list

assigns a type-pair block

assigns a linkage-pair block

assigns a trap-pointer block

assigns a mastermode/executeonly
call-out node (obsolete)

searches for
mastermode/executeonly
node (obsolete)

assigns an entry point node

assigns a segdef node

a
call-out

puts out the symbolic definition
region

5. Data Generating Subroutines

ascevl - evaluates acc, aci, and bci
variable fields

decevl evaluates decimal fields -
octevl evaluates octal fields -
vfdevl evaluates vfd fields -

4-2 AN63

6. General Utility Programs

oplook_

inputs_

collects the characters
identifier

same as getid_

of an

searches for an
pseudo-op symbol

op-code or

performs
operations'

high-speed logical

manages the "free storage" segment

reads the source segment

7. Printing-associated routines

prnter_

converts a binary ~ord to printable
characters

inserts a line of noninput into the
listing

reports an errol" message on the
error_output lID switch and in the
listing

converts and deposits printable
characters into the listing segment
from a binary word containing ASCII

8.. liinage binary words for the output segment

putout_ determines the portion of the
object segment and calls the
appropriate subroutine to write out
a list or single word into the
object segment handler

writes a binary word and the
associated relocation bits for the
text portion of the object segment

writes a binary word and the
associated relocation bits for the
linkage portion of the object
segment

4-3 AN63

object_

9. Relocation bit processor

getbit_

pakbit_

10. Symbol table management

sthedr_ (obsolete)

writes a binary word and the
associated relocation bits for the
symbol portion of the object
segment

manages a rigidly formatted scratch
segment of binary data

creates the source map for the
object segment

formats and prints the
cross-reference table

manages include files

determines the relocation bits from
the components of an assembled
binary word

collects and packs the relocation
bits for the. object segment

template for symbol table header

new version of sthedr

4-4 AN63

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE
SERIES 60 (LEVEL 68) MULTICS ALM
ASSEMBLER PROGRAM LOGIC MANUAL

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

ORDER No·1 AN6 3 , REV. 0

DATED I FEBRUARY 1975

r\. Your comments will be promptly investigated by appropriate technical personnel and action will be taken 0 1I as required. If you requi-re a written reply, check here and furnish complete mailing address below.

FROM: NAME __ __ DATE ______________ _

TITLE __________________________________ _

COMPANV ___________________________________ __

ADDRE~ ____________________________________ __

, .

PLEASE FOLD AND TAPE -
NOTE: U. S. Postal Service will not deliver stapled forms

w
z
::i
'-'
2
0
..J
<:
I-
::>
U

I
I
I
I
I w
I 2
I ..J

I ~

---i- S
1 6

ATTENTION: PUBLICATIONS, MS 486

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United Stites

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

FIRST CLASS
PERMIT NO. 39531
WALTHAM,MA
02154

I ~
I
J

l
I
I
I
1
I w
I z
I ~
I z

--~-------------------------~g

Honeywell

I ...r

1:3
I~
I
I
I
I
I
J

	000
	001
	002
	003
	004
	005
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	4-01
	4-02
	4-03
	4-04
	replyA
	replyB

