
SERIES 60 (LEVEL 68)

MULTICS STORAGE SYSTEM
PROGRAM LOGIC MANUAL

ADDENDUM A

RESTRICTED DISTRIBUTION

SUBJECT

Description of the Multics Storage System

SPECIAL INSTRUCTIONS

This is the first addendum to the Program Logic Manual (PLM) that describes
certain internal modules constituting the Multics System. It is intended as a
reference for only those who are thoroughly familiar with the implementation
details of the Multics operating system; interfaces described herein should not
be used by application programmers or subsystem writers; such programmers
and writers are concerned with the external interfaces only. The external
interfaces are described in the M ultics Programmers' Manual, Commands and
Active Functions (Order No. AG92) , Subroutines (Order No. AG93), and Subsystem
Writers' Guide (Order No. AK92).
Change bars indicate where technical changes have been made. Appendix A is
new and does not contain change bars. The changes contained in this addendum
will be incorporated into the next revision of the manual.

Note:
Insert this cover after the manual cover to indicate the updating of the
document with Addendum A.

The Information Contained in This Document is the
Exclusive Property of Honeywell Information Systems.
Distribution is Limited to Honeywell Employees and Certain
Users Authorized to Receive Copies. This Document Shall
Not be Reproduced or its Contents Disclosed to Others in
Whole or in Part.

SOFTWARE SUPPORTED

Multics Software Release 6.0

ORDER NUMBER

AN61A, Rev. 0

27275
2.5C480
Printed in U.S.A.

September 1978

Honeywell

COLLATING INSTRUCTIONS

To update this manual, remove old pages and insert new pages as follows:

Remove

iii through vi
1-1,1-2
2-5,2-6
2-9,2-10
2-21,2-22
3-1 through 3-8
4-3,4-4
4-7 through 4-10
4-15 through 4-18
4-21,4-22
4-25,4-26
5-3 through 5-6
5-9,5-10
5-13,5-14
6-3 through 6-14

6-17 through 6-20
6-23,6-24
7 -1 through 7-4
9-13,9-14
16-1,16-2
16-5 through 16-8
17-5 through 17-8

© 1978, Honeywell Information Systems Inc.

Insert

iii through vi
1-1,1-2
2-5,2-6
2-9,2-10
2-21,2-22
3-1 through 3-8
4-3,4-4
4-7 through 4-10
4-15 through 4-18
4-21,4-22
4-25,4-26
5-3 through 5-6
5-9,5-10
5-13,5-14
6-3 through 6-10
6-10.1, blank
6-11 through 6-14
6-17 through 6-20
6-23,6-24
7-1 through 7-4
9-13,9-14
16-1,16-2
16-5 through 16-8
17-5 through 17-8
A-I throughA-19, blank

FileNo.: 2113
9178

AN61A

SUBJECT

SERIES 60 (LEVEL 68)

MULTICS STORAGE SYSTEM
PROGRAM LOGIC MANUAL .

--' - if ...

RESTRICTED DISTRIBUT.ION
- -

Description of the Multics Storage System

SPECIAL INSTRUCTIONS

This Program Logic Manual (PLM) describes certain internal modules
constituting the Multics System. It is intended as a reference for only those who
are thoroughly familiar with the implementation details of the Multics
operating system; interfaces described herein should not be used by application
programmers or subsystem writers; such programmers and writers are
concerned with the external interfaces only. The external interfaces are
described in the Multics Programmers' Manual, Commands and Actiue
Functions (Order No. AG92), Subroutines (Order No. AG93), and Subsystem
Writers' Guide (Order No. AK92).
As Multics evolves, Honeywell will add, delete, and modify module descriptions
in subsequent PLM updates. Honeywell does not ensure that the internal
functions and internal module interfaces will remain compatible with previous
versions.
This PLM is one of a set, which complete, will supersede the System
Programmers' Supplement to the Multics Programmers' Manual (Order No.
AK96).

SOFTWARE SUPPORTED

Multics Software Release 5.0

The infol"mation contained in this document is the
exclusive property of Honeywell Information Systems.
Distribution is limited to Honeywell employees and
certain users. authorized to receive copies. This document
shall not be reproduced or its contents disclosed to others
in whole or in part.

ORDER NUMBER

AN61, Rev. 0 July 1977

Honeywell

PREfACE

Multics Program Logic Manuals (PLMs) are intended for use by Multics system
maintenance personnel, development personnel, and others who are thoroughly
familiar with Multics internal system operation. They are not intended for
application programmers or subsystem writers.

The PLMs contain descriptions of modules that serve as internal interfaces
and perform special system functions. These documents do not describe external
interfaces, which are used by application and system programmers.

Since internal interfaces are added, deleted, and modified as design
improvements are introduced, Honeywell does not ensure that the internal
functions and internal module interfaces will remain compatible with previous
versions. To help maintain accurate PLM documentation, Honeywell publishes a
special status bulletin containing a list of the PLMs currently available and
identifying updates to existing PLMs. This status bulletin is distributed
automatically to all holders of the System Programmers' Supplement 1Q ~
Multics Programmers' Manual (Order No. AK96) and to others on request. To get
on the mailing list for this status bulletin, write to:

Large Systems Sales Support
Multics Project Office
Honeywell Information Systems Inc.
Post Office Box 6000 (MS K-2b)
Phoenix, Arizona 85005

This PLM explains and describes the subsystems and data bases involved in
the reader's understanding of the organization, goals, and design of the
software involved. This is not to say that explanations as detailed and
thorough as in more traditional PLMs do not appear. However, these discussions
are not intended to be read unless all of the Sections preceding these
discussions have been understood. It is hoped that the reader will appreciate
this approach.

This Program Logic Manual (PLM) -describes the internal organization of
those parts of the Multics supervisor responsible for implementing the Multics
virtual memory. This informatioti is accurate as of Multics Release 5.0. The
subsystems described by this document are commonly known as page control,
segment control, and volume management.

This PLM assumes familiarity with the overall functional organization of
the Multics Operating System, and the user interface as presented in the Multics
Programmers' Manual, Order Nos. AG91, AG92, AG93, AK92, AX49. Some familiarity
with the Honeywell 68/80 processor is assumed.

Other relevant Program Logic Manuals are:

Order No ~

AN71 Reconfiguration

AN70 System Initialization

~ 1977, Honeywell Information Systems Inc. File No.: 2L13

AN61

Section

Section 2

Section 3

Section 4

9/78

CONTENTS

Introduction ••.••••••••••••

Segment Coritrol Overview and Concepts • • • • •
VTOC, and Disk-resident Segment Images •

Activation Information •..••
File Map .••.•.••••
Permanent Information ~ ~ •

Active and Nonactive Segments •.
VTOC Attributes ••.••.••
AST Hash Table and Determining Activity.
AST Hierarchy .••••.••••••••••
Breakdown of the AST Entry • • • • • •
AST Lists and Threads. • . • ••.
AST Replacement Algorithm ••
AST Trickle •..••••••••
Locking Conventions ••
Trailers and Setfaults
Boundsfaults • . . • • • • • .
Segment Moving • . • • • •
Encacheability Control •

The VTOC Manager •..•••
Introduction and Overview •••
General Policies . • • • •
VTOC Buffer Segmen t. • • • •

Description of the VTOC Buffer Control
Word, vtoc_buffer. b. • . • • •

Organization of the VTOC Manager • • • • • •
VTOe Buffer Replacement Strategy •
Error Strategy • • • • • • • • • •
ESD Strategy • • . • • • • • • • •
VTOCE AllocationlDeallocation Service of

VTOC Manager. • • • •• • •••••
Services of VTOC Manager for Demounting.

Services of Segment Control
Creation of Segments • •

Physical Volume Selection Algprithm .
Deletion of Segments • • • •
Segment Truncation • • • • • .
Satisfying Segment Faults •••

Significance of +activate+.
Segment Fault Handler •••
Activation . • • • • • •
Deactivation • •• • •••
VTOCE Updating ••
Descriptor Segment Management.
Boundsfault Handling ••••...•••
Setting and Reporting on VTOC Attributes
PDS and KST Management • . • • • • • • •

iii

Page

1-1

2-1
2-1
2-4
2-7
2-7
2-9
2-10
2-10
2-10
2-11
2-17
2-18
2-19
2-19
2-21
2-22
2-22
2-22

3-1
3-1
3-2
3-3

3-4
3-5
3-7
3-8
3-8

3-9
3~9

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-12
4-13
4-14
4-17
4-18
4-20
JI ') 1
.,.-,- I

AN61A

Section 5

Section 6

Section 7

Section 8

9/78

CONTENTS (cont)

Page

Semi-Permanent Activation (grab_aste). 4-23
101 and FNP6600 Buffer Segment
Special-Casing. . . • • • • • • • • • 4-25

Segment Moving • . • • • • • . • • • • 4-25
Special Services for sweep_pv. • • • • • 4-29
Services on Behalf of the Hierarchy Salvager 4-31
Demand Deactivation of Segments. • • • • • . 4-34
Services at Demount/Shutdown Time. • • • 4-34

Page Control Overview and Concepts •••••••
Basic Goals and Services of Page Control
Basic Organization of Page Control • • •
Page Table Lock. • • • • • • • • • • • •
Outline of the Data Bases of Page Control ••
Zero Pages • . • • • • • • • • • •
Main Memory Replacement Algorithm.
Paging Device Management Algorithm (Page
Multilevel) •••••••••

Page Control Data Bases • • • •
Page Control Device (devadd) •••••
Paging Data Objects ••••••••
PTW, or Page Table Word ••••••••
Core Map . • . . • • . • • • • •
Core Map Entry (CME) .•.•••••
Paging Device Map. • . .
Paging Device Map Entry (PDME) •••••••
PDMAP Header • . • • • • • • •
PVTE Variables for Page Control.
Synopsis of Relevant SST Variables • • • • •

Address Management Policy • • • . • • • • • • •
Introduction and Nulled Address .•
Implications of Finite Packs • • r • • • • •

Non Segment-Movability of the Supervisor ••
Guaranteed Bootability of the Supervisor ••
RPV Parasite Segments .•.••••..
abs-segs (Explicit Address Management)

Mechanisms. • • . . .••
Policies, Protocols, and Organizations.

Global Page Lock •••.•••.•..••
Wait Events Used by Page Control ..
Wait Protocols of Page Control.
DIM Interface and +Running+ . • ~ •
ALM Page Control Environment •••
Error Strategy •••••••••••
Stack Management and Interface with the
Traffic Controller •

Page States • • . • • • • • • • •
TraCing Mechanisms ••..•.•••

Individual Mechanisms •••••••••
Waiting for the Page Table Lock
FSDCT Paging ••••.•.•••••
Per-Process Trace List •••••
Disk Record Allocation/Deallocation •

Internal Interfaces ...•••.••.
Main Memory Frame Allocation ••••.••
Replacement Algorithm Writebehind .
Page Writing/Purification ..•
Page Reading••..•••..••
Paging Device Record Allocator •••

iv

5-1
5-2
5-4
5-6
5-6
5-9
5-9

5-12

6-1
6-1
6-4
6-4
6-7
6-7
6-10
6-10. 1
6-14
6-15
6-16

7-1
7-1
7-4
7-5
7-5
7-7
7-8

8-1
8-1
8-1
8=4
8-6
8-11
8-14
8-15

8-18
b-21
8-29
o 1"'1 o-c.'j
8-29
8-30
8-32
8-32
8-33
t>-35
8-35
8-36
8-38
8-39

AN61A

Section 9

Section 10

Section 11

Section 12

Section 13

Section 14

9/78

CONTENTS (("' lnt)

RWS Initiator ••••••••••
Paging Device Housekeeping and

Replacement •.••••.••..
Eviction Cleanup ••••••
Per-Page Cache Management •
Demand Eviction • • • _
Page abs-wiring • • •
1/0 Posting . . • •
Utility Subroutines •

Services of Page Control ••
Page Fault Handling •••
Services for Segment Control • • • • .

Activation-Time Service •
File-map/Activation Attribute Reporting •
Deacti va tion Service. • • • •
Call-Side PD Eviction Subroutine.
Trunca tion Service. • • •
Boundsfault Service •••••
Modified-Switch Setting ••••

Post-Crash PD Flush •••••••••••••
Shutdown and Demounting Services • •
Record Address DepOSiting Services .••••
Paging Device R~c0rd Deletion ••••
Forced Segment I/O and Wiring •••••.••
Abs-Wiring Service • • • • • • • • • . • • •
Main Memory Deconfiguration Service ••
Services for Traffic Control •

Process Loading • •• • •
Process Unloading • •
Post-Purging •.•••

Page

8-40

8-41
8-42
8-43
8-43
8-45
8-46
8=49

9-1
9-1
9-4
9-4
9-5
9-6
9-7
9-7
9-8
9-9
9-10
9-13
9-14
9-15
9-15
9-17
9-18
9-19
9-19
9-20
9-20

Peripheral Services of Page Control
Procedure Wiring • • • .

• 10-1
10-1

Paging Device Reconfiguration ••
Main Memory Frame Freeing.

• ••• 10-2
· • 10-4

11-1

• • • 12-1

Quota Management ••.•••••

Ring Zero Volume Management • •
Introduction and Overview. • •
Concepts • . • • • • • • • •
Preacceptance •.••

• • • • 12-1
• • • 12-1

• 0 • • 12-3

Data Bases of Ring Zero Volume Management
Volume Label • • • • •
Volume Map • • •
VTOC Header ••.•••
Bad Track List • •• • . . • • • •

• 13-1
• • 13-1

• 13-5
13-6
13-7

FSDCT .•••••
Physical Volume Table (PVT).

• 13-7
13-10

Logical Volume Table (LVT) ••
PVT Hold Table • • • • • • • •

• 13-14
• •••• 13-15

Operations of Ring-O Volume Management •••
Acceptance of Physical Volumes • • • •
Physical Volume Demounting • . • • • •

Demount Protection •••••••••
Ring Zero Logical Volume Management ••
Bootstrapping of Logical Volume Hierarchy

• • 14-1
• 14-1
• 14-2
• 14-4
• 14-6

(the' RPV) . • • • • • •• ••••••• 14-7
RPV-only Directories. • • •• 14-8
Cold Boot of the RPV. • • • • • 14-8

v AN61A

Section 15

Section 16

Section 17

Appendix A

9/78

CONTENTS (cont)

Page

Sons-LVID Setting •••••••••••••• 14-8
RPV-only Directory Setting ••••••••• 14-9
Disk_Table Location Setting ••••••••• 14-9
Explicit Disk Reading, Writing, and Testing

(read_disk) •••••••••••••••• 14-9

Physical Volume Salvager Interaction •••••
Assumptions Made Valid By the Physical

Volume Salvager • • • • • • • • • • • • •
Forms of Damage Corrected by the Physical

Volume Salvager • • • • • • • • • • •
Other Volume Salvager Actions ••
The Disk Rebuilder • • •• • • • •
Assumptions Not Checked By the Volume
Salvager. . • • • ~ •

Scenarios . • • • • •
A Segment Fault •••••••••
A Page Fault, In Page Multilevel •

Glossary •.••••

Changes for MR 6.0. . .••
Prewithdrawing Policy •••••••
Per-process Hardcore Segment Policy.

• 15-1

• 15-2

15-2
• 15-3
• 15-3

• 15-3

· 16-1
• 16-1
• 16-4

• 17-1

A-1
A-1
A-2
A-2
A-4

Volume Dumper Support •••••.••••••
Page Posting Queue • • • • • • • • • • •
Page Control Traffic Control Interface •
Page Control Consistency ~ • • • • • •
Page Control Error Policy ••••••••••
Large Volume Map Space • • • • • • • •
Damaged Segments • • • • • • • •

A-7
A-7
A-10
A-12

Quota Validator ••.••••••
Support of Hierarchy Salvager ••
Limited Update Backlog •
Partial Shutdown . . •. •
Other Considerations ..•••

vi

A-12
A-13
A-16
A-17
A-18
A-1S

AN61A

CONTENTS (cont)

Page

ILLUSTRATIONS

Figure 5-1 The Clock Algorithm · · · · · · · · · · · · 5-10
Figure 6-1 Page Control Data Bases Page not .,VI Main ..r.u

Memory 01" on Paging Device · · · · · · · · 6-25
Figure 6-2 Page Control Data Bases Page in Main Memory

not on Paging Device · · · · · · · · · · · 6-26
Figure 6-3 Page Control Data Bases Page in Main Memory

and on Paging Device · · · · · · · · · · · · · 6-27
Figure 6-4 Page Control Data Bases Page on Paging Device,

not in Main Memory · · · · · · · · · · · · · · 6-28
Figure 6-5 Page Control Data Bases: Read-Write Sequence. · 6-29
Figure 8-1 Traffic Controller Interface Stack Management · 8-20
Figure 8-2 States of Page. . . · · · · · · · · · · · · 8-23
Figure 8-3 States of Page in Macro States. · 8-24
Figure 8-4 Read-Evict, Write-Mod Cycles. · ~ ~ · · · 8-25
Figure 8-5 States of Main Memory Frames. · 8-26
Figure 8-6 States of Paging Device Record. · · · · · 8-27
Figure 8-7 States of Disk Address. · · · · · 8-28
Figure 8-8 ALM Page Control Call Flow. · · · · · · · 8-34
Figure 8-9 Page Control Interrupt Side, normal posting 8-48
Figure 8-10 Page control Interrupt Side, RWS posting. · 8-49
Figure A",,1 Coreadd Queue Locking · A-7
F'igure A-2 Quota Valida tor . . · · · · · · · · A-15

9/78 vii AN61A

SECTION 1

INTRODUCTION

This PLM describes the construction, modularization, operation, and
interaction of those subsystems of the Multics supervisor that implement the
Multics virtual memory. The subsystems are:

o Segment Control; responsible for maintaining the disk-resident images
of segments and their attributes (the VTOC), and creating and
multiplexing the Active Segment Table Entries, that allow disk-resident
segments to be ~ccessed as part of user address spaces. Segment
control is responsible for performing physical operations (creation,
deletion, truncation, max-length setting) upon nonactive segments, and
relaying responsibility for performing these operations upon active
segments.

o Page Control; responsible for bringing pages of segments in and out of
maln memory and the paging device (bulk store), if present. It manages
the movement of all pages, and the assignment and deassignment of
secondary storage addresses. Page control performs services on behalf
of diverse subsystems such as traffic control (to load and unload
processes at time of gain/loss of eligibility) and reconfiguration
(vacating memory controllers at deconfiguration time) when use or nouse
of pages of segments or frames of any kind of storage are an issue.
Page control is also responsible for performing physical operations
upon active segments, and implementing the main-memory sharing (page
replacement algorithm of the system).

o Volume Management; responsible for the dynamic introduction and removal
of physlcal and logical storage system volumes from the running system.
It is also responsible for maintaining the integrity of volumes across
multiple bootloads and crashes, and the repatriation of permanent
volume-resident information in case of crash. Volume management
implements as well the logical volume sharing policy, and the
per-process attachment concept.

The following two subsystems, although intimately related to the storage
system, are not described here.

o

9118

Directort Control; responsible for creating, maintaining, and
lnterpre lng the contents of directories, being branches for segments
and directories, Access Control Lists (ACLs), names, and pointers to
segment VTOC entries (VTOCEs). Directory control is accessed primarily
through the user gate (hcs) and implicitly relies upon the serVlces of
the other subsystems of the virtual memory, directories being simply
segments to these sUbsystems.

1-1 AN61A

I

o The directory and physical volume salvager subsystems, although not
invoked during normal operation of Multics, playa critical role in
ensuring the integrity of the storage system, and automatic invocation
of these salvagers is relied upon to force the truth of certain
predicates about disk contents. The Directory Salvager, a descendant
of the old Regular Salvager of systems of earlier genre than 4.0,
checks and corrects the physical structure of directory contents. The
Physical Volume Salvager reconstructs critical tables on packs that
must be developed from scratch after a fatal (ESD fails) crash, and
ensures the consistency of VTOC entries (VTOCEs).

These subsystems are logical, rather than actual, organizations of code and
data bases. Many critical and interesting programs fall into several of them
simultaneously, or none exactly. These artificial functional divisions are
created as an attempt to guide the description, and help the reader focus
attention more precisely. Therefore, this PLM is divided into three sections,
describing segment control, page control, and volume management independently.

9/78 1-2 AN61A

SECTIOt.l II

SEGMENT CONTROL OVERVIEW AND CONCEPTS

Segment control is that subdivision of the Multics supervisor that is
responsible for the maintenance of disk-resident segment images (VTOC entries),
and the management of active segments. A large part of segment control consists
of the mechanism necessary to activate and deactivate segments: another major
part is the buffering and reading/writing of VTOC entries. These terms will all
be clarified later.

The segment control portion of this PLM is organized in three sections:

1. Section II, Control Overview and Concepts

2. Section III, The VTOC Manager

3. Section IV, Services of Segment Control

The plan of discourse is to lead up to Section IV. Segment control, as all
subsystems in a computer system, performs a set of services fulfilling a set of
needs of the rest of the system. Among these services, in the case of segment
control, are the activation of segments in response to segment faults, the
truncation of segments, and the reporting of dynamic attributes of segments. In
order to understand the implementations of the mechanisms that perform these
services, detailed in Section IV, the overall organization and basic internal
mechanisms of segment control must be understood. These are stated in Section
IV. Included herein is a detailed breakdown of the data bases used by segment
control, the ASTE, the VTOCE, and the VTOC buffer segment, and an explanation of
locking policies used.

The VTOC manager is a large and important part of segment control, which is
fairly well isolated. An entire chapter is devoted to its organization and
implementation.

VTOC. AND DISK-RESIDENT SEGMENT IMAGES

Since release 4.0, each segment of the Multics storage system resid~s on
one and only one secondary storage physical volume. This is a basic design
policy that limits the amount of damage caused by the failure of one physical
volume of the hardware on which it is mounted. For a segment to "reside" on a
physical volume means that all of the pages of the segment are allocated. This
means that nonzero pages of the segment are assigned page frames (records) on
that physical volume, from which they are read, and to which they are written
when and if each such page is evicted from main memory or the paging device.

AN61

Therefore, each physical volume contains a complete set of segments. This set
of segments is described by the Volume Table of Contents, or VTOC of the
physical volume. The VTOC is an array of fixed-length elements called VTOC
Entries (VTOCEs). The VTOC is at a fixed place on each physical volume (see
disk-pack.incl.pI1). Each VTOCE either describes a segment or is ~,
available for later assignment to a segment. The VTOC is of fixed size, and is
created at pack initialization time.

Each segment residing on a given pack is therefore uniquely identified by
the VTOC index of its VTOCE on that pack~ VTOC indices are o~igined at zero.
Therefore, the pair of physical volume and VTOC index uniquely identifies any
segment in the storage system hierarchy. It is this form of identification, in
the form (physical volume ID, VTOC index) that appears in directory branches.
Free VTOC entries are chained in a list on each pack, the head of this list
being maintained in the Physical Volume Table Entry (PVTE) while the volume is
mounted or the ~ Header of the pack when not. (The VTOC Header is actually a
small collection of parameters such as this, kept at a fixed place on each pack.
(See disk_pack.incl.pI1».

Each VTOCE consists of three logical parts, which are designated as the
activation information, the file ~, and the permanent information of the
segment. The activation information is all other information than the file map
that is needed to use the segment, or more technically, to activate it. It also
holds all of the information that is likely to be changed by virtue of the
segment having been active (used). Such information includes some information
implicit in the file map but expensive to determine, such as current length and
number of records used, some information necessary for checking, such as the
segment unique identifier (QIQ), and date-times of last modification and use.
Quota cells and accounts for directories reside in the VTOCEs of the directories
as well, among the activation information. This is because simply being active
(having inferior segments gain and lose pages) can affect this information.
Almost all of the activation information resides in the Active Segment Table
Entry (described later) while the concerned segment is active.

The file map is an array of 256 record addresses or null addresses detailing
where on the physic?l volume each page of the segment resides. A nY1l address
(not to be confused with the nulled addresses used internally by page control
(see Section V) is an 16-bit quantity, which, when appearing in a file map,
means that no record of the pack is assigned to that page of the segment, the
page logically contains zeros, and does not count against quota used, or the
current length of the segment. For example, when a segment is created, the file
map of its VTOCE is filled entirely with null addresses as the contents of the
segment is logically zero. Null addresses in VTOCE file maps are recognized by
their high-order bit (400000 DU) being QN. The lower bits are debugging
information, describing by which agen~y the null address was created. (See
null_addresses.incl.pI1). A record address is the address of a record of the
physical volume. All volumes are divided into key-word records, and start at
record zero. It is one of the design goals of page control that no record
address ~ appears or is allowed to remain in a VTOCE file map unless it is
known for a fact that data from that page actually appears on the physical pack;
this eliminates the possibility of windows during which if the system crashed,
the VTOCE file map would describe a record containing uninitialized data,
potentially a security problem.

The permanent information in a VTOCE consists of attributes that are either
determined forever at segment creation time, or rarely changed. Such
information includes the unique ID pathname (array of segment unique IDs of
superior directories) access class, date/time dumped by the physical volume
dumper, and the primary segment name, placed there only for debugging and the
physical volume salvager.

2-2 AN61

The structure of a VTOC entry in detail is sp=lled out below. The current
VTOC entry is 192 words long, consisting of three s~ctors of MSU0400 or MSU0451
disk. Most of this entry is the file map (12b words). Thus, most accessing of
VTOCEs deals only with the activation information and a small portion of the
file map (most segments are only a few records long). Therefore, VTOCEs were
organized such that the activation information (about 20s10S Nords) is at the
beginning of the VTOCE, followed by the file map, and then the permanent
information. This makes it so that most interactions with VTOCEs deal with only
the first few (say 30s10S) words. In order to take advantage of this fact,
VTOCEs are accessed via sector-by-sector 1/0, as opposed to residing in pages of
segments. Were the latter the case, each reference to a VTOCE would require
paging in 1024 words when perhaps as few as thirty, or at most 192, were needed.
A large complex mechanism (the ~ Manager, vtoc_man) and program exist to
manage these sector~by-sector 110s and their buffering. However, the physical
volume salvager and other subsystems, notably BOS SAVE, prefer to deal uniformly
with pages. In the case of the physical volume salvager, this allows it to use
read-ahead entries in page control to optimize performance. Therefore, the VTOC
is laid out in pages, such that any VTOCE can be accessed by readinglwriting a
given record, preferably by accessing it via paging, so as to leave the other
VTOCEs unaffected. This allows five and one-third VTOC entries per page
(1024/192). Due to the possibility of having pages split across cylinders,
which would create "slow" pages, Multics does not use fractional pages at ends
of cylinders. Therefore, if VTOCEs were packed 5-1/3 per page, some VTOCEs
would not in fact be contiguous on the disk, eliminating the possibility (not
now realized) of single-operation 1/0 in a uniform manner to transfer an entire
VTOCE. Thus, VTOCEs are packed five per page, with a 64-word unused region at
the end of each page. Each VTOCE therefore consists of three (192/64)
contiguous 64 word sectors. These sectors define three physical regions of the
VTOCE, or vtoce-parts; known as Part I, Part II, and Part III. Part I contains
the activation information and the start of the file map, Part II the middle of
the file map, and Part III the end of the file map and the permanent
information. Thus, most VTCCE transactions consist of reading or writing Part
I, 64 words, 1 sector, of some VTOCE.

We now consider the individual items in a VTOC entry (VTOCE), with some
discussion of their significance.

dcl 1 vtoce based (vtocep) aligned,

(2 next_free_vtocx fixed bin (17),
2 incr_dmpr_thrd fixed bin (17), .

2 uid bit (36)~

2 msl bit (9),
2 csl bit (9),
2 records bit (9),
2 pad2 bit (9),

2 dtu bit (30),

2 dtm bit (36),

2 nqsw bit (1),
2 deciduous bit (1),
2 nid bit (1),
2 dnzp bit (1),
2 gtpd bit (1),
2 per_process bit (1),
2 pad3 bit (12),
2 dirsw bit (1),

2-3 AN61

2 master_dir bit (1) ,
2 pad4 bit (16) ,

2 infqcnt (0: 1) fixed bin (17) ,

2 quota (0: 1) fixed bin (17) ,

2 used (0: 1) fixed bin (17) ,

2 received (0: 1) fixed bin

2 trp (0: 1) fixed bin (71) ,

2 trp_time (0: 1) bit (36),

2 fm (0:255) bit (1 b) ,

2 pad6 (10) bit (36),

2 ncd bit (1) ,
2 pad7 bit (17) ,
2 cons_dmpr_thrd fixed bin

2 dtd bit (36),

2 volid (3) bit (3b) ,

2 master_dir_uid bit (36) ,

2 uid_path (0:15) bit (36),

2 primary_name char (32),

2 time_created bit (36),

2 par_pvid bit (36),

2 par_vtocx fixed bin (17),

(17) ,

(17) ,

2 branch_rp bit (1ti» unaligned,

2 cn_salv_time bit (36),

2 access_class bit (72),
2 checksum bit (36),
2 owner bit (36);

Activation Tn~orm~~;nn

next_free_vtoce
is meaningful only in free VTOCEs. It is the VTOC index of the next
free VTOCE in the free VTOCE chain. Note that -1 is the end of the
chain. In an occupied VTOCE, this field is zero.

incr_dmpr_thread
is not used.

2-4 AN61

uid

msl

csl

records

dtu

dtm

nqsw

deciduous

is the segment unique identifier, assigned at segment creation time.
This matches an identical field in the directory branch for the
segment. It must be zero in a free VTOCE, and zero UID implies a
free VTOCE. This quantity is checked every time the VTOCE is used,
to check that the right VTOCE is being accessed, and that no damage
has occurred to the VTOC or the pack. Failure of the segment unique
ID (UID) to check is known as a connection failure.

is the maximum segment length, in pages.
into the SDW (segment descriptor word)
segment fault.

This information is put
of a process handling a

is the current length of the segment, in pages. This may be defined
as one plus the index (starting at zero) of the highest nonnull
address in the file map. The physical volume salvager computes it
this way. The most interesting property of vtoce.csl is that it
tells those reading the VTOCE whether or not they have to read Part
II, or even Part III, to acquire the entire nonnull portion of the
file map.

is the number of nonnull addresses in the file map. Again, this is
computed by evaluating this criterion by the physical volume
salvager. This number may also be viewed as the number of quota
units consumed by the segment. When the segment is active, a
parallel quantity is maintained by page control, and periodically
updated to vtoce.records. Since there can be records that count
against quota that do not appear in the VTOCE file map yet, as they
have not been written, (see the discussion of record address above),
the statement "Records used changed from <number> to <smaller
number>" by the VTOC salvager indicates that a segment has lost
pages in this way. This number exists to avoid the necessity to
recompute it every time the segment is activated, as page control
ne~ds it.

is the "file system time" (upper 36 bits of real-time clock)
recording the "date-time used" attribute of the segment. Other than
segments activated with "transparent usage" (such as by the
Hierarchy Dumper), this is generally the time that the VTOCE was
last updated (from the AST).

is the file-system time recording the "date-time modified" attribute
of the segment. This quantity is maintained by page control (as
aste.dtm) when the segment is active. It, like other activation
attributes, is updated from the Active Segment Table.

is a switch indicating that page control should suppress checking of
quota overflow for this segment. This switch is never intentionally
turned on in a VTOCE; it is simply a reflection of an AST switch
used for certain special segments.

similarly is a reflection of an AST switch, which is never, and
cannot be explicitly turned on in a VTOCE. It marks the VTOCE of a
deciduous segment, primarily so that the physical volume salvager
may reclaim pages of such segments. A full discussion of deciduous
segments is given in the Multics Initialization PLM, Order No. AN70.
The definition is repeated here: ---

A deciduous segment is one that is loaded by system
initialization in collections 1 or 2, is part of the global or
initializer's hard core address space, and acquires a branch in
the hierarchy, via the program init branches in collection 2.--

2-5 AN61

nid

dnzp

I

gtpd

per_process

dirsw

master dir

infqcnt

I
quota

used

9/78

for "no incremental dump". A so-called "VTOC Attribute" (see later
discussion of "VTOC Attributes"), restraining the physical volume
dumper from dumping this segment in an incremental dump.

for "don't null zero page". Both a "VTOC Attribute" and used for
deciduous and other special-case segments. When this segment is
active, the AST reflection of this bit (aste.dnzp) prevents page
control from detecting, and thus scheduling for deposit, pages of
zeros. A zero page of a "dnzp segment" is as good as any other
page. This is necessary for "PTW-Ievel abs-segs" and the
prewithdrawing policy (see Section VII).

for "global transparent to paging device". Prevents pages of this
segment from migrating to the paging device (bulk store subsystem).
Just about everything said for vtoce.dnzp is true for vtoce.gtpd as
well.

developed at VTOCE creation time and at update time. If on, the
segment owning this VTOCE is either >process dir dir or a descendant
of a segment with vtoce.per process on. PrincIpal use of this bit
is to allow the physical vol~me salvager to di~card such VTOCEs and
free the pages they claim.

identifies the VTOCE of a directory. Principally informative, it
must check with the directory switch in the branch of the segment at
activation time, or a connection failure is indicated. Biases the
physical volume salvager in favor of this segment in resolving page
conflicts.

marks the VTOCE of a master directory. This is necessary to
facilitate the redistribution of quota at dir.ectory deletion time:
the delete vtoce program must know whether or not to pass quota back
up based on this bit. (See "Segment Deletion".)

previously count of inferior directories with quota accounts, for a
directory VTOCE, this field is now considered obsolete.

is the amount of quota assigned to the directory (must be the case
if nonzero) owning this VTOCE. Like vtoce.infqct, vtoce.used,
vtoce.received, vtoce.trp, and vtoce.trp time, this field is
actually a two-element array, the zeroth Tleft-hand) element for
segment quota, and the first, (right-hand) for directory page quota,
currently partially implemented. ---- -----

is the amount of quota used by inferior segments and directories,
(see vtoce.quota above):-It can be recomputed only by recursively
summing the vtoce.records fields of all VTOCEs for segments inferior
in the hierarchy. This is the number reported by hcs $quota get
(the get quota command, for example) as used, it does not include
used tota1s of inferior accounts. Maintainea-for active segments by
page control, vtoce.used is derived from the ASTE. Validly nonzero
only for directory VTOCEs.

2-6 AN61A

received

trp

File Mao

fm

is the sum of the quota given to this (directory) and the
vtoce.received for all inferior directories, if any. Of course,
validly nonzero only for directory VTOCEs. This quantity is
necessary in order to determine if any quota has been delegated
below any point of the hierarchy. It is a peculiar quantity (also
true of vtoce.trp) in that it is one of two items in the VTOCE
activation information that must be read in from the VTOCE, i.e.,
cannot be derived solely from bits and fields of the Active Segment
Table, at VTOCE update time. This field, like vtoce.trp and
vtoc.trp_time, is only used for directories with quota accounts,
i.e., vtoce.quota (0 or l)~ o.

is the page-second time-record usage
quota-account-owning directory that must own
vtoce.received, above.

product for
this VTOCE.

the
See

is the file-system time at which vtoce.trp was updated; this is
always the time of a VTOCE update (see "VTOCE Updating," in Section
IV) .

is the array of packed, l8-bit null addresses and record addresses
describing which pages of the segment owning this VTOCE are
logically nonzer0, and where the images reside. The interesting
(containing other than null addresses)· extent of the file map' is
told by vtoce.csl. Those who need the file map are satisfied not to
read the particular null addresses that may appear; the differences
between the types of null addresses is solely for debugging.

Permanent Information

ncd
for "no complete dump". Treated like a "VTOC Attribute". When on,
restrains the physical volume dumper, when performing a complete
dump, from dumping the segment owning the VTOCE. Among the
permanent information (in Part III) due to the relative infrequency
of complete dumps.

cons_dmpr_thrd

dtd

volid

is not used.

is the file-system time that this VTOCE, and its segment, were
dumped by the physical volume dumper.

is an array of backup medium identifiers, set by the physical volume
dumper, identifying the volumes of backup medium (tape) on which the
last incremental, consolidated, and complete dumps of this segment
and its VTOCE were performed. Inspection of those volumes produces
maps giving earlier volumes, and so forth through the life of the
segment.

AN61

master_dir_uid

primary_name

time_created

par_pvid

is the segment UID of the master directory against whose master
directory quota account the pages of the segment owning this VTOCE
are counted. This information is used by master directory control,
and is updated by the hierarchy salvager, if necessary, when running
in connection-checking mode.

is an array of the Segment Unique IDs (UIDs) of all directories
§yper1Qr 1Q ~ segment. Thus, the zeroth element of
vtoce.uid_path for every VTOCE in the system except the VTOCE of the
root (» is the J.!l.Q.Qf.tM.I:Q..Q..t. ("777777777777"b3). The VTOCE of a
son of the root (e.g., >user_dir_dir) contains only one element, the
UID of the root, etc. The UID of the segment owning the VTOCE,
which appears among the activation information in Part I, is nQ1 in
vtoce.uid_path. This UID path places the VTOCE exactly in the
hierarchy. It is only used explicitly by master directory control,
to identify directories that have been given master directory quota
accounts, in a manner insensitive to renaming of these directories.
It is checked and corrected (given that fQrward connection failure,
the kind described previously, does not exist), by the hierarchy
salvager when running in VTOCE-checking mode. The array
vtoce.uid_path can also be used, if assumed accurate, to determine
if a segment has no branch, no parent, or no grandparent, etc. Such
a segment, which can arise in certain crash situations and salvaging
situations, is called an prphan, and is said to suffer a reverse
cQnnection fail~r~. The online pack utility sweep_pv is capable of
locating and deleting such VTOCES, which can tie up pages. (See
"Special Services for sweep_pv" in Section IV.)

is the name appearing in the branch for the segment at the time the
segment was created. Ordinary rename operations will not u~date
vtoce.primary name, due to the expense of reading and writing Part
III to update permanent information. The hierarchy salvager,
running in VTOCE-checking mode, however, will. The name in the
VTOCE is never seen by users. The physical volume salvager prints
it out when VTOCE problems are encountered. Since it is not
accurate, it is only a clue to the identity of the segment. As long
as the VTOCE was not freed by the physical volume salvager, the
vtoc_pathname tool may be given the volume name and VTOC index
printed out by the physical volume salvager. The BOS SST name table
filler (SSTN) also picks up these names and puts" them in the segment
sst_names_ at crash time." Thus, it is these names that appear in
BOS dumps and FDUMPS.

is the file-system time at which the VTOCE (and therefore the
segment owning it) was created. Principally of historical value
(sweep-pv reports it when deleting orphans).

is the physical volume ID of the volume containing the directQry
containing the segment owning this VTOCE. Not transparent to
segment-moving (see "Segment Moving" below); this field is set; but
not now used.

is the VTOC index of the VTOCE of the directorv containing the
segment owning ~ VTOCE in its physical volume. As vtoce.par_pvid
above, it is not transparent to segment moving and not currently
used.

is the relative offset of the directory branch describing this VTOCE
in its directory. Intended for debugging, it is maintained by the
hierarchy salvager operating in VTOCE-checking mode. Note that
online salvaging of a directory causes branches to move around.

2-8 . AN61

cn_salv_time

access class

is not currently used. It was intended to be the time at which lack
of reverse-connection-failure was last checked by the reverse-going
(branch-checking) mode of the physical volume salvager, since
decommissioned.

- is the AIM access class of the segment owning this VTOCE.

checksum

owner

currently not used.

intended to be the physical volume ID of the volume on which this
segment and its VTOCE reside, this field is not used.

ACTIVE AND NONACTIVE SEGMENTS

The VTOC entry and the records designated by its file map are the permanent
record of a segment on disk. They are the entire and accurate record of the
segment when the pack is not mounted or the system is shut down. In order for a
segment to be accessed via the hardware, it must have a page table in main
memory, and much of the VTOC information, specifically the file map and
activation information, must be in main memory where page control can use it to
resolve page faults, and modify it as pages are created and zeroed. A segment
in this state is called an active segment. A segment not in this state is
called a nonactive segment. The repository of activation information for a
segment is the system data base, the Active Segment Table (AST). This table,
which resides in the System Segment Table (SST), -con5istsof AST entries
(ASTEs). An ASTE contains, when in use, the activation information for one
segment. Following each ASTE, part of the ASTE in some sense, although not part
of the ASTE proper, is the page table for that segment. The page table is
maintained by page control, WhlCh uses-and updates the activation information
resident in the ASTE as the segment is used. The file map is handed to page I
control by placing it in the page table.

The AST is an unpaged data base. Since it is finite, the number of AST
entries is limited. Currently, there are four fixed sizes, those whose page
tables can describe 4, 16, 64, and 256 pages respectively. The AST is thus
divided into four pools, whose sizes are set by the four specifications on the
SST CONFIG card, a critical system tuning parameter. Since we have just defined
activity as the state of having page table and activation information in main
memory, and this is a precondition for use of the segment, only active segments
can actually be addressed by the hardware. Thus, all segments must be made
active before they can actually be used. Therefore, the fixed number of AST
entries must be multiplexed among all of the segments in the hierarchy. It is
one of the prime responsibilities of segment control to multiplex this resource.
When an attempt is made to reference a segment that is not active (this is one
of the possible outcomes of a segment fault), the segment must be activated, or
made active (given an ASTE t and the activation information and file map copied
out of the VTOCE into it). If there are no free ASTEs of the appropriate size
available, some segment must be deactivated to free an ASTE. This deactivation
consists of making the segment inaccessible to user processes, "evicting aii
pages of the segment from main memory and the paging device, updatin~ the VTOCE
by copying the (possibly modified) activation information back into It-rFOm-tne
ASTE t depositing n~lled addresses (see "Address Management Policy"; Section
VII), and freeing the ASTE. Once this has been done, the segment deactivated is
in the same state as one that has not been activated, and a segment fault and
subsequent activation result from an attempt to referertce it. Choosing a proper
segment to deactivate is a complex issue that must choose that segment which
will probabilistically and heuristically be reactivated at the furthest time in
the future. The algorithm used to make this choice (in the program get aste) is
described further on under "AST Replacement Algorithm" in this section.-

9/78 2-9 AN61A

There are segments that are active during the entire life of a bootload;
all hardcore supervisor and all deciduous segments are this way. These segments
are used by software, such as the virtual memory control software being
described here, that are not dependent upon the dynamic activation/deactivation
features that they implement in order to operate; similarly, the page control
software does not itself take page faults. There are segments that may not be
deactivated for long periods of time: such segments are the PDS (Process Data
Segment) and KST (Known Segment Table) of processes, for they become part of the
supervisor in some processes, and thus are used to implement the virtual memory
in that process. There are segments, namely the paged, nondeciduous segments of
the supervisor, and the descriptor segments of processes, that do not have
VTOCEs, but only have ASTEs. They are always active.

VTOC ATTRIBUTES

When a normal, VTOCE-owning segment is nonactive, the VTOCE is the
repository of the file map and activation information. All requests for this
data must go to the VTOCE of the segment. When a segment is active, however,
the ASTE is the only valid repository of this information.' Information such as
current segment length can change as processes store data into the segment.
Quota used can change as such operations are performed on segm~nts inferior to a
given directory.

User-interface programs, and directory control, who have need to know
activation attributes must therefore go to either one of two places to get these
attributes. In order to localize this knowledge, all programs outside of
segment control that need to ascertain or set activation attributes of segments
call the procedure vtoc attributes at one of its many entry points to obtain or
set this information. -This procedure determines whether or not the segment is
active (see "AST Hash Table and Determining Activity" below), and inspects or
modifies the appropriate data object. These attributes, which have been called
"activation attributes" in the context of the VTOCE, are called "VTOe
attributes" in the context of other storage-system features such as bit count,
access mode, etc. It is through this means, for instance, that hcs $status long
(through the hardcore module "status") obtains current length/rec~rds usea for
segments.

AST HASH TABLE AND DETERMINING ACTIVITY

Every segment that has a branch in the hierarchy (this excludes
nondeciduous hard core segments, unpaged supervisor segments, descriptor
segments, and PROSs) can either be active at any instant or not. A process that
attempts to use such a segment, by performing a segment fault upon it, must
determine whether or not it is active. If it is, it is a simple matter to add
an SDW (Segment Descriptor Word) describing the page table in the segment's ASTE
to the descriptor segment of that process. If not, the segment must be
activated (which may, as outlined above, entail deactivating other segments)
before an SDW can be so added. Similarly, vtoc attributes must know whether or
not a segment is active to know where to obtaIn or change these parameters.
Thus, a hash table is kept, called the AST Hash Table, which locates the ASTE of
any active segment, or the fact that i~s not actlve. This table is an array
of thread heads, kept in the internal static of the procedure search ast (in the
supervisor, this makes it a global data base as opposed to per-process internal
static) (but also locatable from the pOinter sst.asthp for debugging and dump
analysis). Each bucket starts a list (which ends in zero) of AST entries the
UIDs of whose segments have the same low six bits. Thus, given the UID of any
segment, we can find the bucket numbered by the low six bits of this UID, and
chase the thread (through the field aste.ht fp) until either a zero is
encountered (segment not active), or an ASTE whose field aste.uid contains the
UID we have been given, in which case this is the ASTE for that segment, and of
course, it is active.

9/78 2-10 AN61

The AST hash table is protected by the AST lock (see "Segment Control
Locking Policies" below). Deciduous segments are hashed into this table as soon
as they acquire branches, at which point they acquire the UID in that branch and
stay hashed in for the life of that bootload.

AST HIER~

The root directory (» cannot be deactivated. Other than that, no segment
may be active unless its parent is active. This is so because the quota account
parameters against which a segment's records-used are charged is maintained in
(is an activation attribute of) the ASTE of one of its ancestors (its parent, or
that one's parent,etc.). Another reason for requiring the activity of parents
is that date-time modified for directories is in fact date-time modified for the
last-modified segment in the subtree rooted at that directory; this allows the
hierarchy dumper to determine if a subtree need be walked by inspecting the
date-time modified of its root. Keeping date-time modified, a VTOC (activation)
attribute up to date for a straight line back to the root, requires all
directories in that line to be active, so that page control can modify this
attribute. Thus, it is necessary that each ASTE have a pointer to its parent's
ASTE (the root has zero in this field, otherwise like all pointers in the SST
segment other than aste.strp, it is a relative offset into the SST segment).
There exists an operation called a boundsfault, wherein a segment grows, and
requires a larger ASTE. Should this happen to 'a directory with active inferior
segments and directories, all of the parent-pointers in the inferior ASTEs would
become wrong when the directory changed ASTEs. Therefore, a first-son-brother
thread is maintained among ASTEs, so that all inferior ASTEs can be located in
the case of a boundsfault. This technique is also used at segment-move time
(see "Segment Moving", below).

BREAKDOWN OF THE AST ENTRY

The following is a detailed discussion of all of the fields and bits in an
ASTE (AST entry). Remember that many of these fields and bits are but
reflections of similar fields in the VTOCE. Such fields are marked with an (*).

dcl 1 aste based (astep) aligned,

(2 fp bi t (18),
2 bp bi t (18),

2 infl bit (18),
2 infp bi t (18),

2 strp bit (18),
2 par_astep bit (18),

2 uid bit (36),

2 msl bit (9),
2 pvtx fixed bin (8)~
2 vtocx fixed bin (17) ,

2 usedf bit (1),
2 init bit (1),
2 gtus bit (1),
2 gtms bit (1),
2 hc bit (1),
2 hc_sdw bit (1),
2 any_access_on bit (1),
2 write_access_on bit (1),
2 inhibit_cache bit (1),
2 explicit_deact_ok bit (1),

2-,11· AN61

2 pad 1 bi t (9),
2 ehs bit (1),
2 nqsw bit (1),
2 dirsw bit (1),
2 master_dir bit (1),
2 pad4 bit (1),
2 tqsw (0:1) bit (1),
2 ic bit (10),

2 dtu bit (36),

2 dtm bit (36),

2 quota (0:1) fixed bin (17),

2 used (0:1) fixed bin (17),

2 csl bi t (9),
2 fmchanged bit (1),
2 fms bit (1),
2 npfs bit (1),
2 gtpd bit (1),
2 dnzp bit (1),
2 per_process bit (1),
2 pad2 bit (3),
2 records bit (9),
2 np bit (9),

2 ht_fp bit (18),
2 fmchanged1 bit (1),
2 pc os bit (1),
2 pack_ovfl bit (1),
2 pad3 bit (7),
2 ptsi bit (2),
2 marker bit (6» unaligned;

aste.fp
is the forward pointer (rel pointer in SST segment) to the next ASTE
in the so-called "used list". There is one used list (ASTE chain)
for each pool (size) of ASTE. Free ASTEs are at the head of this
chain, others follow .. Some nondeactivatable ASTEs are not in the
list, such as supervisor segments (including deciduous ones),
descriptor segments, and PRDSs. There are special lists for special
segments. See "AST Replacement Algorithm".

aste.bp

aste.infl

aste.infp

is the backward pOinter to the previous ASTE in the appropriate used
list.

for "inferior list", is a (relative) pOinter to the next ASTE in a
list of ASTEs whose segments have the same parent as the ASTE of
this segment. We will.contract this terminology to say "a list of
ASTEs who have the same parent ASTE". See "AST Hierarchy" above.
This is really a "brother's list".

is a (rel) pointer to the first ASTE in the li~t (through aste.infl,
described above) of ASTEs of which ~ ASTE is the parent. Like
all ASTE lists and pointers, it is ~ if there is none.

2-12" AN61

aste.strp
is a relative pointer to the first trailer in the system trailer
segment, str_seg, zero if there are none, for this ASTE. An ASTE
acquires a trailer for each SDW constructed via a segment fault,
which describes the page table in this ASTE. It facilitates
revocation of SDWs when the segment is deactivated, deleted, or
suffers an access change (see "Trailers and Setfaults" below). For
nondeciduous supervisor and initialization segments, this
system-wide segment number is stored here.

aste.par_astep

aste.uid

aste.msl

aste.pvtx

aste.vtocx

aste.usedf

aste.init

is a relative pointer to the parent ASTE of 1hi§ ASTE, if this ASTE
is for any segment in the hierarchy other than the root directory
(». Page control uses this quantity to chase up the hierarchy to
find quota cells at page creation time, and to update aste.fms (see
below) up the hierarchy to trigger the hierarchy dumper.

*is the UID of the segment owning this ASTE. It agrees with
vtoce.uid, which must be the same as the UID in the directory
branch. Not only is this field necessary to allow the AST hash
table to be used, but is necessary to reconstruct Part I of the
VTOCE at deactivation/update time without reading it, as the UID of
the segment is among this information.

*is the maximum segment length in pages. An activation attribute,
attempted connections to this segment at segment fault time check
their address of reference against this quantity, and, shifted
appropriately, it is placed into the SDW constructed. (See "Segment
Fault Handling".)

is the Physical Volume Table Index (PVTX) for the mounted physical
volume on which this segment appears. See the discussion of the
Physical Volume Table in Section XIII. This number identifies a
mounted physical volume.

is the VTOC index of the VTOCE of the segment owning this ASTE on
the physical volume on which it resides. This is gotten from the
directory branch for the segment, and is used to specify the VTOCE
of the segment at deactivation/update time.

when on, differentiates an in-use AST entry from a free one. See
"AST Replacement Algorithm" below.

turned on by page control when the last page of a segment migrates
out of main memory. One of the inputs of the AST replacement
algorithm. Turned off when any page comes in. (See "AST
Replacement Algorithm" for motivation.)

AN61

aste.gtus

aste.gtms

aste.hc

*(A VTOe attribute) "global transparent usage switch". When this is
on, the segment is in "transparent usage". This means that the
date-time used in the VTOe entry is saved in aste.dtu and put back
intact at deactivation time, thus leaving no evidence that the
segment had been used. The hierarchy dumper causes all segments it
dumps to be activated for "transparent usage" by setting switches in
its KST. This allows the dumper to run without advancing the
date-time used of segments it dumps. Like aste.gtms and aste.dnzp
below, this segment attribute is cumulated as processes connect (to
satisfy segment faults on, construct SDWs for) this segment.

·see aste.gtus above. "global transparent modified switch" causes
page control not to set the file modified switch", thus preventing
advancing of aste.dtm (date-time modified) as modification of pages
is noticed. This is used principally for directories, whose
date-time modified is not the time that they were stored into, but
the time that either directory control deems that they were modified
(calls sum$dirmod) or inferior segments were modified.

is set for ASTEs of segments created by initialization (supervisor
and initialization segments) that are neither deciduous nor unpaged.
These are unthreaded and delete-at-shutdown segments. See the
Multics Initialization £LM, Order No. AN70. This bit is principally
historical.

is on for all ASTEs for segments created by initialization,
deciduous, delete-at-shutdown, or unthreaded. If aste.uid (and
therefore segment is in the hierarchy), this segment is deciduous.
Therefore, this bit reflects into the VTOCE as vtoce.deciduous.

aste.any_access_on
aste.write_access_on

are the encacheability control bits. The following table describes
the number and access of all SDWs pointing at this segment (used
only for segments for whom SDWs are created by segment faults):

~
o
1

o

HaQ
o
o

No SDWs point at this segment.
One or more SDWs describe this segment.
None of them allow write access.
Exactly one SDW describes this segment.
It allows write access.
More than one SDW describes this segment.
At least one of them allows write access.

See "Encacheability Control" later in this section.

aste.inhibit_cache

aste.ehs

prohibits the .resetting of the encacheability bits to state "00"
above upon "set acl" or "set max length" operations (setfaults).
Used for I/O buffer segments that are not encacheable because of rOM
access, not multiprocessor sharing. See "Encacheability Control"
and "Trailers and Setfaults" below.

is the entry-hold switch. Although many entries that may not be
deactivated are threaded out of the AST used lists, some segments
acquire and lose this property dynamically, such as PD8s and 110
buffer segments. This bit is placed on for all segments in the used
lists that may not be deactivated, and causes the AST replacement
algorithm to skip this ASTE. It is also put on in all segments that
have aste.hc_sdw (see above) for consistency. It also has an effect
upon the interpretation of aste.dnzp (see below).

2-14 AN61

aste.nqsw

aste.dirsw

*suppresses quota checking on this segment. On for all segments
that have no parent, such as supervisor segments, all initialization
and initialization-created segments, and the root. Notably, this
flag prevents page control from chasing a nonexistent parent pOinter
at page creation time.

*on for a directory's
deactivation/VTOCE update
parameter updating.

ASTE.
time to

Used
make

for metering,
decisions about

and at
quota

aste.master_dir

aste.tqsw

aste.ic

aste.dtu

aste.dtm

aste.quota

aste.used

aste.csl

*Same as vtoce.master dir, which see.

an array, one for each kind of quota. Says that this is the ASTE of
a directory with a terminal quota account. Causes page control to
stop looking upward and check here when making a record-quota
overflow decision. Tells VTOCE updater to read in Part I in order
to get time-record product parameters in order to update them.

is the count of inferior ASTE entries. This nonzero parameter is an
input to the AST replacement algorithm (simply if nonzero). Since
aste.infp has the same information, this field is superfluous.

*is the file-system date-time used copied from the VTOCE field of
the same name. Normally, vtoce.dtu is set to the time of VTOCE
update; it is only for segments activated in "transparent usage"
(see aste.gtus above) that this field is updated, unchanged, to the
VTOCE.

is the file-system date-time-modified, initialized by reading in
vtoce.dtm at activation time. This field is advanced to the current
time every time aste.fms (see below) is seen on. This includes all
VTOCE updates, and whenever vtoc_attributes asks for this value.
The advanced value is set back in the VTOCE at deactivation/update
time.

*is an array (segment quota, directory quota) with the same meaning
as vtoce.quota, the quota account values of a directory that has
one.

*is similarly the reflection of vtoce.used. When aste.used tries to
surpass aste.quota, and aste.tqsw is on (all for segment or
directory quota consistently), a record quota overflow will occur.
The aste.used field, as vtoce.used, has totals for all segments (or
directories) below this point for ~ directory, not only those with
quota accounts.

-is the current length of the segment, in pages. It is maintained
by page control as the end of the segment goes up and down.

aste.fmchanged
is the "file map changed" bit. This bit is put on by page control
any time the state of the file map of the segment has been changed.
This happens at page allocation time and page address resurrection
time, as well as at zero detection time. The fact that address
reporting to the VTOCE is inhibited (see "Address Management Policy"
in Section PC) causes the creation of a page to trigger a VTOCE
update

AN61

aste.npfs

aste.gtpd

aste.dnzp

the "no page fault switch" causes page control not to honor page
faults on this segment, but convert them into segment faults. It is
never set except gratuitously, and is obsolete.

*"Global transparent to paging device" causes page control not to
allow pages of this segment on the paging device. Its principal
uses are for abs-segs, where paging is being used to address
portions of disk as opposed to implementing segments, and as a
user-settable performance control (as a VTOC attribute).

*"Don't null zero page". Causes page control not to recognize zero
pages. See the remarks under vtoce.dnzp When aste.dnzp and aste.ehs
are on cOjointly, this bit causes pc$get_file_map, which reports
file maps and activation attributes to update_vtoce, to not notice
nulled addresses, but to leave them in the page table. This
prevents the trickle update (see "AST Trickle" below) from negating
the effects of prewithdrawing PDSs (Process Data Segments) (see
"Address Management Policy" in Section VII).

aste.per_process

aste.nid

aste.ncd

*is used to get vtoce.per_process, and for metering. It also
propagates recursively.

*for "no incremental dump". Same as VTOCE bit vtoce.nid. Tells the
volume dumper, when running an incremental dump, that incremental
backup of this segment is not to be performed.

*for "no complete dump". Same as VTOCE bit vtoce.ncd. Tell~ the
volume dumper, when running a complete dump, that complete dumping
of this segment is not to be performed.

aste.explicit_deact_ok

aste.records

aste.np

Constructed from KSTE bits of all processes connected to this
segment, this bit allows the procedure demand_deactivate to
explicitly deactivate the segment in response to a user call to
phcs_$deactivate, generally on behalf of the hierarchy dumper. Only
if all processes connecting to this segment have this bit on in the
KST does it remain on in the ASTE.

*is the number of records (pages) used by this segment.
this quantity is loaded from VTOCE quantity. The only
this quantity is its use as a user-readable VTOC
available'without scanning the page table.

Typically,
reason for
attribute,

Number of pages in main memory. Used solely as an input to the AST
replacement algorithm. Maintained by page control. The aste.init
field is turned on when this becomes zero.

forward pointer in the AST hash chain of ASTEs with UIDs of the same
low six bits. Zero at end of chain. See "AST Hash Table and
Determining Activity" above.

aste.fmchanged1
this bit is turned on when aste.fmchanged is turned off, and turned
off bY'update_vtoce when the VTOCE has been updated. Should the
system crash between the turning off of aste.fmchanged and the
turning off of aste.fmchanged1, the presence of the latter will
signify to emergency-shutdown to reinstate the bit aste.fmchanged,
for in fact, this crit1cal bit has been turned on and the VTOCE
possibly not updated.

AN61

aste.pcos
page control out-of-service. Not used yet, this bit causes a
segment fault error with code error_table_$seg_busted when an
attempt is made to connect to this ASTE. This will be used to
notify users when the system has committed an error upon the
segment.

aste.pack_ovfl

aste.ptsi

aste.marker

is turned on by page control when an attempt to allocate a new page
for this segment has failed. In this case, page control faults the
SDW for the segment, and restarts the fault. This causes a segment
fault to occur, and the segment fault handler, noticing
aste.pack_ovfl, invokes the· segment mover to initiate a segment
move. (See the general discussion, "Segment Moving" below.)

is the page table size index, 0, 1, 2, or 3, being the index of the
AST pool to which this ASTE belongs. This and aste.marker, below,
are attributes of the ASTE even when empty.

always contains "02"b3, which can never be the last six bits of a
PTW (page table word). This used to be used for searching backwards
through PTWs for the end of the ASTE, but has not since ASTE
pointers began to appear in the core map. It is now looked at by
the AST walking loop of demount_pv, simply as a check that it has
not gone awry due to destroyed parameters in the SST header.

AST LISTS AND THREADS

AST entries may be threaded onto one of several lists, via the relative
pointers aste.fp and aste.bp, or none at all. There are seven such lists;
auxiliary lists such as the hash threads and father-son-brother lists are not
under consideration in this discussion. These lists are the four "~sed" lists,
the "init" seg list, the "temp" seg list, and the "hardcore" list. The four
"used" lists s as mentioned above, contain all free ASTEs and those managed by
the AST replacement algorithm. The "init" and "temp" seg lists receive "init"
and "temp" segs of initialization (See Multics Initialization f1H, Order No.
AN70), allocated and placed there by the initialization ASTE allocator,
make_sdw. These lists are traversed at the end of initialization and the end of
each collection of initialization in order to delete these segments, deletion in
this case being tantamount to freeing of the ASTEs and the records allocated to
these segments.

The "hardcore" list, which used to contain all nondeciduous segments loaded
by initialization that were not "init" or "temp" segments, now contains only
those that are deleted at shutdown time, for only these need be sought out.
These "delete-at-shutdown" segments are large segments that obtain record
allocations as parasites on the Root Physical Volume (RPV) instead of being
prewithdrawn against the hardcore partition. Thus, in a successful shutdown
situation, their records must be relinquished. See "Address Management Policy"
in Section VII for full details of this mechanism.

The four AST "used" lists thread all free and replaceable' ASTEs of each
(pool) size. The array of four reI-pointers in aste.level.ausedp pOints to
either the first free ASTE in the list, if any, or the first candidate for
inspection for replacement if there are none. All of the free ASTEs are
contiguous in the list. All of the AST lists are double-threaded circular
lists: therefore, in the used lists, aste.bp of the ASTE pointed to by
aste.level.ausedp of this pool is the one that is the last candidate for
inspection by replacement.

2-17' AN61

It is useful to note that all active segments in the hierarchy are in the
four used lists, except the deciduous segments, for it is known at the time
deciduous segments are created that they will never be deactivated or subject to
deactivation. The deciduous segments, therefore, have their ASTEs threaded QY1.

AST REPLACEMENT ALGORITHM

The AST replacement algorithm is that algorithm, implemented in the
procedure get_aste, that returns a free ASTE in a given pool on demand. When
there are no free ASTEs in the appropriate pool, this algorithm must select an
active 'segment for deactivation. Since activating segments is expensive, it is
advantageous to this algorithm to choose those segments to deactivate that will
cause the fewest number of reactivations per time. This is a classic example of
a demand replacement multiplexing algorithm, identical in purpose to page
replacement algorithms, and index register management algorithms in compiler
code generators, and the area is well covered in the literature. It can be
shown that the best choice of segment to deactivate is the one that will next be
used furthest in the future; this result follows from classic work in this
area.

Of course, it is impossible to predict, in a general-purpose computer
utility, the future use patterns. Therefore, the replacement algorithms try to
predict the future based on the past. The AST replacement algorithm under
consideration uses list position in the used list and number of pages in main
memory as indications of frequency and intensity of use; the more lightly and
less recently used, the lesser the indicated probability that the segment will
be needed in the near future. Number of pages in main memory is also an
important factor to consider in choosing a candidate for deactivation because
work (page writing) is required for the modified fraction of such pages, to
evict them from main memory.

The following is a description of the AST replacement algorithm. For full
details, read the listing of get_aste.

If there are free ASTEs of the needed size available, return the first one,
moving aste.level.ausedp at the appropriate level forward one, to make the next
(possibly free) ASTE available to the next invocation of the algorithm. This
also puts the returned ASTE in the ~ likely position for replacement, should
the caller of get_aste decide to leave it there. This is consistent with the
fact that the segment that will own the ASTE is now being used.

If there are no free ASTEs available, the used list at the required pool
level is circumnavigated possibly several times: essentially once to find a
segment with Q pages in main memory, that failing, then for a segment with 1
page in main memory, then~, etc., etc., until a number equal to the page table
size of the pool is reached. In each pass, segments with fewer than the sought
number of pages in main memory (not seen earlier because the system is moving
while all this goes on) are accepted J too. When such a segment is found, it is
thus, modulo the window mentioned above, one of the segments with the few~st
number of pages in main memory, in that used list. This segment is chosen for
deactivation, and deactivated via a call to the procedure "deactivate". The
newly-freed ASTE (deactivation frees the ASTE) is returned.

When the list-scanning settles at a particular ASTE for deactivation, the
list-head pointer aste.level.ausedp is moved up to that ASTE, and after
deactivation, to right ahead of it (as in the "some are free" case above). This
tends to give the ASTEs skipped over in the scan a property of being "rejected
for deactivation", and thus promoted to a less likely position to be seen next
time, by virtue of this observation of ~being recently used".

2-18 AN61

The replacement algorithm skips over ASTEs that cannot be deactivated; not
only are these the ones with aste.ehs on (see the discussion of this flag
above), but those with active inferior (directories who claim this ASTE as ASTE
of their parent). All of the various reasons for skipping and moving on cause
meters to be incremented, as well as file_system_meters (see the Multics System
Metering i1H, Order No. AN52) that displays these statistics.

There is one circumnavigation of the required used list done before the
"zero" pass: a preliminary "zero" pass is made that seeks segments with zero
pages in main memory anQ the flag aste.init being off. This pass also turns off
the flag aste.init when on, and all succeeding passes skip segments that have it
on. Referring back to the description of aste.init, it is seen that this flag
is turned on by page control when a segment acquires the property of having no
pages in main memory. The effect of this policy is to allow segments that have
zero pages in main memory to survive exactly one circumnavigation of the AST
used list for that pool before being considered for replacement. This pass is
the so-called "grace lap". It is an implementation of the policy: "if a segment
just happens to have all of its pages float out of main memory, give it just one
chance to get some back in before jumping on it to deactivate it." The
file_system_meters command reports such skips as -"skips init".

AST TRICKLE

Since the AST replacement algorithm is constantly inspecting all portions
of the AST used lists, the opportunity is taken in that algorithm to notice
ASTEs whose file maps have changed, and to update their VTOCEs at this time.
This reduces the loop time of the AST replacement algorithm (reported as "grace
time" by file_system_meters") to be a lower bound on the amount of time by which
a VTOCE can be out of date. This is totally a hedge against fatal cra~hes;
successful shutdown updates all VTOCEs of active segments. As mentioned before,
this periodic update causes the physical volume salvager to notice certain
incongruencies. Unfortunately, however, at times of light load, this lower
bound is rather long.

LOCKING CONVENTIONS

There is one lock that protects the AST data base; it is called the "AST
Lock", and is, in fact, sst.astl. It is a standard-format wait-type lock,
managed by the procedure "lock". There are special entry pOints, lock$lock_ast
and lock$unlock_ast to manipulate this lock, and limit knowledge of its location
and format. The event for waiting on this lock is "400000000000"b3.

The AST lock has no cleanup mechanism; a crawlout with the AST lock locked
(one is said to "have the AST locked" in this state), detected by verify_lock,
or a process termination with the AST locked, crashes the system. The AST lock
"protects" certain activities: this means that these activities may not be done
unless the process attempting to perform them has the AST locked before
commencing. These activities are:

1. Deactivation

2. Updating of VTOCEs (from the AST)

3. Manipulating the AST used lists, or following them, including the
allocation and deallocation of ASTEs.

4. Using, following, or changing the AST hash table,
determination of activity.

2-: 19-

and thus,

AN61

5. The calling of call-side page control entries on deactivatable
segments.

6. Setfaults (see "Trailers and Setfaults" below).

The AST lock also protects against completion of the following activities:
this is to say, these activities may be commenced by a process, but will not
complete until that process ~ (~, i.e., locked to that process) the AST
lock.

1. Activation

2. Volume Demounting

The AST lock holds a position in the locking hierarchy ~ ~ directory
locks and ~ wired locks as the traffic control and page control locks. It
is below the VTOC buffer lock (see "VTOC Manager": "General Policies").

Since touching any nonsupervisor segment, such as a directory, can cause a
segment fault, which would lock the AST, no directories or user-supplied
supervisor arguments may be referenced by a process that holds the AST lock.

Note two major differences in the above . policies from pre-4.0 locking
policies:

1. The parent directory lock is .ll.Q longer protection against deactivation
of a segment.

2. Locked directories are ~ guaranteed to remain active, and thus
cannot be· locked by a process holding the AST lock.

The AST lock does nQ1 protect modification of VTOCEs. The directory lock
of the directory containing the branch for the segment that owns a given VTCOE
is the lock Q.n that VTOCE if .s.nQ .2.D.ly .ll the segment is .nQ.t. active. Since, when
it is active, it may be deactivated at any time that a process seeking to
deactivate it has the AST locked, the AST lock protects VTOCEs· Qllly ~ the
segment owning the particular VTOCE is active. Thus, a procedure (such as
vtoc_attributes) seeking to modify a VTOCE must perform the following protocol:

1. Lock the parent directory .. If the segment is not active, it cannot
become active while we hold the directory lock, for a directory lock
fully protects activation Qf ~ inferiors. Procedures that wish to
deal with segments and their VTOCEs in this way usually have the
directory lock locked anyway.

2. Lock the AST lock. We cannot determine whether or not the segment is
active without the AST locked, for not only is it not permissible to
inspect the AST hash table without the AST locked, but lest the AST be
locked to us, i.e., prevented from being locked by others, the segment
might be deactivated at any time, or is being deactivated as we watch.

3. Determine if the segment is active. If it is, it may be sufficient to
inspect or modify the activation attributes in the AST. Otherwise, in
the case where the segment is active and dealing with the AST will not
suffice, we must perform the modification while we have the AST
locked, otherwise, another process might be trying to deactivate the
segment, and thus engage in a simultaneous-update race with our
process.

4. If we did not do so in step 3, unlock the AST and read and possibly
change and write back the VTOCE. Since it was determined that the
segment was n21 active in step 3, it cannot become active now, as we
hold the parent directory lock, and this parent directory lock thus
protects the VTOCE.

AN61

5. End of protocol; procedure may unlock the parent directory lock. See
also "Services of Segment Control," in Section IV for utility of this
behavior.

Note that in 4.0 and later systems, one can lock a directory without
actually touching or inspecting the directory, simply by handing the directory's
UID to the lock procedure. Thus, one can protect a VTOCE simply by inspecting
its permanent information (vtoce.uid_path) to determine the UID of its parent,
and handing this to the lock primitive. The procedure priv_delete_vtoce
performs such machinations to delete orphans.

As mentioned above in passing, the lock on the parent directory of a
segment totally protects activation of any segment; activation cannot commence
until the activating process holds the parent directory lock.

There is a system of multiple-reader single-writer half-locks protecting
against demounting; this is covered in Sections XIII and XIV.

TRAILERS AND SETFAULTS

One major feature of Multics is dynamic access control; as soon as a
set_acl command is performed upon a segment, processes using the segment
immediately take faults. This is implemented via the trailer mechanism, and the
operations known as setfaults, implemented by the procedure of the same name.

Descriptor segments of processes contain SDWs. SDWs point to page tables,
that reside in ASTEs. When ASTEs are replaced, all SDWs that pOint to that ASTE
must be found, and faulted. Faulting an SDW consists of removing the bit
sdw.df, and perhaps changing other information in the SDW. Setting this bit
off, followed by a call to clear all the associative memories of the processors
of the systems (privileged_mode_ut$cam) that might contain this SDW, causes the
process attempting to use this SDW to take directed fault 0, which is known to
Multics as a segment fault. Since this faulting is always done by deactivation,
which has the AST locked, the process attempting to process the segment fault
cannot determine whether or not the segment on which the fault was taken was
even active until it can procure the AST lock, i.e., until the process doing the
deactivating has fully deactivated the segment.

Since all SDWs pointing to a given segment must ~e revoked (faulted to be
invalid) when a segment is being deactivated (or boundsfaulted on or
segment-moved (see "Segment Moving", below), it is more efficient to keep a list
of such SDWs, rather than search all of the descriptor segments in the system.
This list is called the trailer list of the segment, and is stored in the
segment (nondeciduous, paged, nonwired supervisor segment) str_seg. An entry in
this list is ,described by the include file str.incl.p11. Each entry consists of
a forward thread to the next (zero if none), the AST offset of the ASTE for the
descriptor segment of a process, and the segment number of the segment of whose
ASTE this is the trailer, in that process. The ASTE field aste.strp gives the
relative offset in str_seg of the first trailer entry of the trailer for the
segment that owns the ASTE.

Trailer entries are threaded onto the front of the list for an ASTE each
time the segment fault mechanism (in the procedure seg_fault) constructs an SDW
(while protected by the AST lock). The manipulation or use of the trailer
segment is protected by the AST lock. The SDWs constructed by segment-faulting
upon deciduous segments in nonhardcore rings acquire trailer entries. The SDWs
for deciduous (and all other hard core and initialization segments) constructed
by System Initialization do not, as they cannot be and are never revoked.

9/78 2-21 AN61A

The trailer mechanism also locates all SDWs when an access change is
performed upon an active segment (as via user command). This causes segment
faults in all processes (see the description of "Segment Fault Handling" under
"Services of Segment Control"). These segment faults will cause recalculation
of access by these processes.

Needless to say, deletion of segments is a special case of the deactivation
of active segments. This causes similar setfaults actions to be performed.

Set faults are performed via the procedure "setfaults". The entry of
greatest interest to segment control is setfaults$setfaults, which given an AST
entry, "cuts the trailer", removing all trailer entries and revoking all SDWs.
Setfaults also play a crucial role in encacheability management (see
"Encacheability Control" below.) See also "Descriptor Segment Management" under
"Service of Segment Control" for more about setfaults.

BOUNDSFAULTS

A boundsfault is the detection of a reference, by a process, to a word
outside of the legal limit for the segment set in the SDW in that process. If
outside of the maximum length of the segment (aste.msl), a boundsfault is
signalled (the out_of_bounds condition). If not, this is simply a request tol
find a larger ASTE for the segment. This involves performing a "setfaults" on
the old one, finding a new one, updating page control data bases
(pc$move_page_table) and rethreading inferior father pointers. This operation
is described in detail under "Services of Segment Control."

SEGMENT MOVING

It is possible for a segment to try to grow by a page when there are no
more records available on the volu~e of its residence. If there is only one
physical volume in the logical volume, this causes an error to be signalled
(error_table_$logical_volume_full, as a subcondition of seg_fault_error). If
however, there are other physica~ volumes in the logical volume, one of which
has enough space to hold the grown segment, it is the system's responsibility to
move that segment there transparently. This operation is known as segment
moving, and involves a very complex interaction of page control and segment
control, and is the most involved single service of segment control. Segment
moving may also be performed on demand via the gate hphcs_, on behalf of the
online pack utility sweep_pv, in order to vacate physical volumes (logical
volume compression) and volume rebalancing. The details of this operation are
given under "Services of Segment Control."

ENCACHEABILITY CONTROL

It would seem that the most appropriate place for the description of the
policy used to manage the 68/80 cache is at this point.

The Ob/JO cache is an associative memory of words from main memory in each
u%O ~1ultics processor. It is a write-through cache. That is to say, no word
that the processor stores modifies a location in cache without modifying the
encached location of main memory.

9/78 2-22 AN61A

The fact that this cache is not transparent to the software, i.e., needs to
be managed at all is a reflection of the fact that it is in the processors (for
purpose of speed and modularity), and not in the 6000 SCU. Thus, words which a
processor fetches from cache may have their copies on main memory modified by
other processors, an rOM (or FNP6600 Communications Processor via the rOM), or a
Bulk Store Subsystem, and the processor would not be able to observe these
changes.

The Multics cache has a novel and powerful feature known as the
encacheability Qf segments. This is to say that each Segment Descriptor Word
(SDW) contains a bit (sdw.cache, bit 57) whose absence prohibits the processor
port logic from loading words of that segment into the cache. Note that in
absolute mode, where no SDW is used, .a.l.l loaded words are eligible to ·be put in
the cache. Thus, there are encacheable and non-encacheable s.egments, with
sdw.cache "1"b and "O"b respectively. All SDWs used for a segment, be they
created via segment faulting, or via initialization, must agree on
encacheability.

For a start, all segments that are read or written by the rOM or bulk store
for any reason other than paging, are nonencacheable. This includes a finite
set of supervisor segments (e.g., tty_buf, dn355_mailbox, bulk_store_mailbox,
iom_data, etc.), and all segments used as rOr·Buffer segments (see "rOr Buffer
Segments" under "Services of Segment Control" below). For the supervisor
segments, the SDWs used are all created by initialization or copied from them.

Other supervisor segments are encacheable or not depending upon their
"access". This "access" is the access that appears in all descriptor segments,
developed from the one created by initialization for the initializeI'. Any
segment with write access is not encacheable; all others are. Since
segmentation restricts which segments are wri teable n .all. , let alone· by
multiple processors, the only supervisor segments that are writeable at all are
not encacheable. Thus, no supervisor segments may suffer the anomaly of being
modified by one CPU while still visible in the cache of another. Two important
exceptions to this rule are the PDS and PRDS created in the initializer process
by initialization, and all KSTs, PDSs and PRDSs created thereafter. PRDSs
(Processor ~ata segments), after being initially created, are carried around by
processors from process to process. After their creation, they are referenced
by Qnly one processor. Since only one processor can reference a given PRDS, it
is encacheable; it is very important that it be encacheable, as it is used as a
stack in wired and interrupt side ring zero. PDSs and KSTs are a special case
of per-process segments, described immediately below.

Any segment may be encacheable if all of the SDWs describing it allow no
write access (only read or execute). This has the same truth as for supervisor
segments as above. However, if we take the same approach, we find that no
writeable segments may be encacheable. This is unduly restrictive, for some
writeable segments, such as stacks, linkage segments and KSTs, are among the
most heavily used segments. rt has been discovered that any segment accessible
to only one process can be made encacheable if a simple rule is followed: any
time a process switches processors (nQi the inverse), the new processor taking
up that process must totally clear its cache. This specifically means that
every processor as it switches to a new process need llQi necessarily clear its
cache.

The proof of this theorem is as follows: assume a process P runs on CPU A,
and some words of per-process segment X come into CPU A's cache. With no loss
of generality, assume that CPU B has no words of segment X in its cache. As CPU
A switches processes to and fro, there cannot be a problem until P runs on some
other CPU, say B. This is because, by hypothesis, P has not run on B, and since
it only has run on A, all words in A's cache are accurate, because the only
process that can modify segment X, being P, has never run, by hypothesis, on any
other CPU. When P finally runs on B, there is still no problem, because by
hypothesis, CPU B's cache contains no words of segment X. Assume now that P
modifies and fetches words from X liberally while running an B, specifically

AN61

changing words that are still in A's cache. As long as P runs on B, whether or
not other processes run in between runs of P, there is no problem, as these
wrong words appear only in A's cache, and P is running only on B. When P is run
the next time on A, the problem appears. There are words in A's cache that are
inaccurate. The solution is simple: clear the entire cache of A. Thus, it is
simple to do this every time when a process runs on a processor that is nQ1 the
last one it ran on, clear the new processor's cache. This, of course, also
fixes any potential problem when P transfers back to CPU B. Thus, are
per-process segments like PDSs and KSTs encacheable. The traffic controller
maintains the identity of the last processor on which a process ran, so the
decision to clear the cache is easy.

The computation of encacheability for all nonhardcore segments is done in a
uniform manner, in the procedure se&-fault. It will be seen that this policy
allows per-process segments to be encacheable as a corollary.

Two bits in the AST entry of a segment describe one of four possible states
with respect to the encacheability of the segment. Since only active segments
have pages in main memory or SDWs describing them, only active segments are an
issue. These states are:

1. No SDWs describe this segment. Its encacheability is not an issue.

2. One or more SDWs describe this segment.
access. The segment ~ encacheable.

None of them allow write

3. Only one SDW describes this segment. It allows write access. Since
this is, at this time, a per-process segment by implication, as only
one process can reference it, it ~ encacheable.

4. More than one SDW describes this segment, and at least one of them
allows write access. The segment is nQi encacheable.

These bits are aste.any_access_on and aste.write_access_on. See the ASTE
structure breakdown earlier for the correspondence between the states above and
these bits.

All segments, when activated, are in state 1 above. Since only active
segments have pages in main memory, the segment, when activated, has no pages in
main memory. Page control clears out·of all processor caches all words of a
page being evicted from main memory (see Section VIII). Thus, a segment being
activated has none of its words in any cache of the system, allowing the
hypotheses of the preceding proof to be valid.

When any SDW, including the first, for an active segment, is created, the
seg_fault procedure changes the encacheability state of the segment by modifying
the two encacheability control bits in the ASTE of the segment. If it is moving
from an encacheable state to a nonencacheable state, then setfaults$cache is
called to revoke all of the cache bits in all of the SDWs that describe this
se~ment. and cause an associative memorv clear to force all nrocessors to
recognize H this bit. This special setfaults entry does not revoke the SDWs,
which would cause segment faults. This is not necessary here. The
encacheable/nonencacheable status of the new SDW being added is derived from the
encacheability status indicated in the ASTE.

When a system-wide setfaults is done, including a setfaults$cache, a clear
of all processor's associative memories ~ caches is conducted by setfaults, by
calling page$cam. When setfaults revokes all SDWs for a segment, therefore, it
resets the cache state to state (1) above, for no SDWs describe the segment and
no words of it appear in any processor's cache.

AN61

101 Buffer segments, and the segment used to load the FNP6600
communications processor, cannot be encacheable, as stated above, even though
they are only used in one process. Thus, at the time that they are
force-activated, (see "101 Buffer segments" in "Services of Segment Control")
grab_aste_grab_aste_io sets the encacheability state to state 4 above, causing
all SDWs constructed for the segment to specify nonencacheability, and sets
aste.inhibit_cache on, whose sole purpose is to prevent setfaults from resetting
the encacheability state when all SDWs are revoked (e.g., a set_acl was done on
a buffer segment). This bit is reset by grab_aste$release_io.

Directories are not encacheable generally for historical reasons; they used
to be addressable outside of the segment-fault-trailer mechanism, and thus were
not subject to the policy above. Still, they are left nonencacneable, as it is
felt that the referencing patterns of directories make it more desirable to not
let them replace other segments in the cache, and thus ought to stay
nonencacheable.

The encacheability attribute of hardcore segments is supplied by the MST
generator; it is developed from the "access" and "cache" header statements.
(See the Multics System ~ Reference Manual, Order No. AZ03.)

A limitation of the above encacheability policy is the lack of
recalculation of encacheability as processes 'vanish or terminate segments,
withdrawing their SDWs. It was felt that the class of segments that would
benefit by such recalculation was small, and the overhead of being able to do
this properly would be large.

AN61

SECTION III

THE VTOC MANAGER

INTRODUCTION AND OVERVIEW

Critical to the operation of Release 4.0 and all later systems is the
concept of VTOC, the Volume Table of Contents, already detailed in the Segment
Control Overview and Data Bases secti.ons. VTOCEs are not part of the virtual
memory, except when accessed by the physical volume salvager. This allows more
efficient single-sector lID to be performed on the VTOCEs. In order to make
this 1/0 efficient, a buffering scheme for VTOCEs and their fractions must
exist. This scheme is implemented by the VTOC manager, the procedure vtoc_man.

All VTOCEs are divided into three logical sections: the activation
information, the file map·, and the permanent information. A VTOCE may also be
viewed as being divided into three physical parts, Part I, Part II, and Part
III, as detailed earlier. Each physical subsection of a VTOCE comprising 64
words, is called a vtoce-part. The three vtoce-oarts comprise the VTOCE.

All access to VTOCEs, othel· than that performed by the Physical Volume
Salvager (and of course, .BOS), is performed by calling entries in vtoc_man. The
most general entries, vtoc_man$get_vtoce and vtoc_man$put_vtoce, read and write
whole VTOCEs or single vtoce-parts. Other entries free a whole VTOCE
(vtoc_man$free_vtoce), await completion of 1/0 on a VTOCE (vtoc_man$await_vtoce)
and write a VTOCE to a free VTOCE, making it not free, and returning its VTOe
index (vtoc_man$alloc_and_put_vtoce). There are also "global" entries to the
VTOC manager that deal with no single VTOCE: vtoc_man$cleanup_pv, called at
volume demount and shutdown time (see Section VM), and vtoc_man$stabilize,
called at ESD time to ensure consistency in the state of the VTOC manager's data
base.

The VTOC manager uses the segment vtoc_buffer_seg as a data base,
containing all variables needed in VTaC management, which are not global
parameters to a given volume. Many of the variables in the Physical Volume.
Table, (PVT), such as the heads of VTOCE free chains, and number of free VTOCEs,
are for use by the VTaC manager. The VTOC buffer segment, vtoc_buffer_seg,
contains up to sixty-four vtoce-part buffers. Each buffer, 64 words long, is
either free or contains one vtoce-part. Vtoce-parts may be from any mounted
physical volume, and no two buffers contain the same vtoce-part. There is no
free list of any kindp Thus s any vtoce-part of a mounted volume is either in
exactly one vtoce-part buffer or not in any. Note that a vtoce-part buffer
containing a vtoce-part of a ~ ~ is llQi a free vtoce-part buffer; the
latter is one that contains n2 vtoce-part of ~ VTOCE.

There is a table in the VTOC buffer segment containing single word buffer
descriptors, also known as buffer control words. Each describes the status of
one vtoce-part buffer, stating which part of which VTOCE if any is contained
there, and other status information. The format of this control word is
described later.

3-1 AN61

It is the goal of the VTOC manager to provide interface to VTOCEs, for
segment control programs, without these programs being aware of the buffers,
their existence or their organization. The VTOC manager must implement a buffer
multiplexing, and therefore, a sharing algorithm. The VTOC manager is unaware
of the content of VTOCEs, other than the manipulation and maintenance of the
VTOC free thread. It is also the responsibility of the VTOC manager to
interface to the disk control software to actually perform the VTOC 1/0.

GENERAL POLICIES

The VTOC manager, at its lowest level, manages vtoce-parts and their
buffering. At any given entry to the VTOC manager, the vtoc buffer segment
contains a given set of vtoce-parts: in order to satisfy a request for most
calls, the requested set of vtoce-parts are either among the set in the buffers
in part, in whole, or not at all. If they are all there, this data may be used
or returned without any 1/0. If the requested vtoce-parts are in part or in
whole not in the buffers, they must be brought in.

Searches and replacements of vtoce-part buffers are protected by the VTOC
Buffer Lock. This lock is standard-format wait-lock, managed by the locking
procedure "lock." Its notify event is "3330000xxxxx"b3, where xxxxx is one
greater than the number of vtoce-part buffers. It is higher than the AST lock.
When the VTOC manager waits for 1/0, it unlocks this lock so as not to tie up
this resource. Therefore, vtoce-parts that were present when this 1/0 was
started may not be present when the 1/0 is complete, for operations involving
more than one vtoce-part. This situation is analogous to the paging behavior of
multi-operand EIS decimal instructions: they continue to fault, with no
assurance that they will be satisfied in any given time constraint, until all
pages are found present at once.

The policy of getting together all buffers at once (implemented via the
internal routines GET_BUFFERS_READ and GET_BUFFERS_WRITE described below) is the
implementation of a design constraint that all calls to the VTOC manager be
unitary operations with respect to volume demounting. This is to say, when
modifying VTOCEs, a call to the VTOe manager will cause either all requested
vtoce-parts to be modified as needed or none, given a volume demounting at any
stage of the operation. This policy allows procedures such as vtoc_attributes
to read VTOCEs and write them back via only two calls to the VTOe manager, the
second call either wholly succeedi~g or wholly failing. Thus, such a procedure
need not be explicitly protected against demounting. (See Section XIV for a
discussion of Demount Protection.)

Furthermore, operations to modify vtoce-parts, which write them wholesale
(the VTOC manager does not modify or inspect parts of vtoce-parts), must use the
buffers occupied by these vtoce-parts if there are any; were this not the case,
some vtoce-parts would have more than one buffer associated with them, and a
question of relative legitimacy would arise, as well as issues of multiple 1/0
operations on a given vtoce-part at ~nno Thus, this policy of only one buffer
per vtoce-part assures not only a finite small set of buffer states, but a
similar small set of states of any vtoce-part in the system with respect to the
VTae manager.

The VTOe manager receives requests in terms of VTOCEs, with masks
specifying which vtoce-parts are being dealt with, in the "get" and "put"
entries, as well as pointers to data areas to copy to and from. The
specification of a VTOCE is via a PVT index (the PVT is the Physical Volume
Table, the table of all mounted physical volumes) and a VTaC index. The
circumstances under which Physical Volume Table indices may validly be derived
and USed are given in Section XIV of this document. It is part of that protocol
that no volume demount may complete while the demounting process does not have
the VTaC buffer lock locked. Therefore, the VTae manager is protected against
demounting. However, procedures that call the VTaC manager are not protected

9/78 ~-?

against demounting. Therefore, the P,:_i! (physical vclume ID) of the volume that
the caller expects to be dealing 'Iith is passed as an argument to the VTOe
manager. If, while the VTae buffer lock is locked, the supplied PVT index
indeed checks with this PVID (by inspecting the PVT), all is well. Every time
the VTOe buffer lock is relocked, this check must be made. If it does not, the
caller is informed that the volume being referenced was demounted
(err_table_$pvid_not_found). If this parameter is passed as nOrtb, it means that
the caller has some other protection against demounting such as having the AST
locked.

The procedure vtoc_interrupt is the interrupt side of the VTOe manager. It
is called from the disk DIM at any time that the disk DIM processes status.
This procedure does nQ1 lock the VTOe buffer lock. As vtoc_interrupt is called
in a wired, masked environment, in which the running process may even have the
global page table lock set (see Section XIII), were it to lock the VTOe buffer
lock, that would mean that all procedures that lock this lock, notably vtoc_man,
would have to run in masked, wired environments, which 2re expensive to obtain.
Thus, the interrupt side of the VTOe manager runs asynchronously. This
procedure modifies bits in the VTOe buffer control words, specifically b.os and
b.err, completely asynchronously. The rest of the VTOe manager must be prepared
for these bits to change for any buffer for which I/O is in progress, at any
time.

Every call to the VTDe manager, other than the global call
vtoc_man$stabilize, deals with one specific mounted physical volume. A variable
is kept in the VTDe buffer segment, vtoc_buffer.unsafe_pvtx, which designates a
physical volume being processed. Should the system crash, ESD will inspect this
field and schedule that volume for volume salvage (see Section XIV).

The individual procedures and entry pOints of the VTDe manager are clearly
documented in the program listing. Thus, we now provide a detailed breakdown of
the data structures of the VTOe manager, being the VTDe buffer segment and the
buffer control words therein, and describe after that the basic subroutinization
strategy of the program vtoc_man.

VToe BUFFER SEGMENT

lock I

is the VIOe buffer lock. It is a standard format wait-lock, whose
event ID is stored in vtoc_buffer.lock.ind.

is the number of vtoce-part buffers in the VTOe buffer segment. It
is computed by init_vtoc_man, from a parameter on the PARM VTS
eON FIG card.

is the absolute address of the base (word 0) of the VTOe buffer
segment. It is contiguous in main memory. This allows the VTOe
manager to compute the absolute address of each buffer for calls to
the disk DIM.

event_constant
is a constant from which all VTDe buffer wait events are

The wait event for
number n is
the wait event for

current

constructed. This constant is "333000000000"b3.
the completion of 1/0 in buffer
vtoc buffer. event constant + n. For example,
awaiting lID on b~ffer 5 is "33300000000S"b3.

is the current replacement pointer, a buffer index.
Buffer Replacement Algorithm" below.

3-3

See "VTDe

AN61

is the index in the Physical Volume Table (PVT) of the single
physical volume on which operations are in progress when the VTOC
buffer lock is locked on behalf of an operation on a specific
volume. It is inspected by Emergency Shutdown to schedule a salvage
for that volume if found nonzero. It is cleared when the VTOC
buffer lock is unlocked.

inhibit_await

mtr

is for debugging use only. When nonzero, it inhibits the feature of
awaiting successful completion of VTOC I/O before addresses are
deposited (the function performed by vtoc_man$await_vtoce). This
feature is critical to the address management policy of Multics (see
"Address Management Policy" in Section VII).

is a group of meters, most
vtoc buffer meters tool.
vtoc_buffer.mtr.parts_read and
are distributions of read
combinations of vtoce-part.

of which are printed out by the
Of particular interest are
vtoc_buffer.mtr.parts_write, which

and write requests, indexed by

Description of the VTOC Buffer Control Word. vtoc buffer.b

b.used

b.os

b.op

b.waitsw

b.ioq

b.err

9/78

indicates whether or not this buffer contains a vtoce-part. If
b.used is "O"b, no other bits in the buffer control word are valid.

for "out-of-service" indicates that I/O has been queued for this
buffer, and has not been posted (completed). This bit is turned on
by vtoc_man prior to calling the disk DIM, and turned off only by
vtoc_interrupt, asynchronously (and by vtoc_man$stabilize, called
only at ESD time). This bit and b.err, below, are the only two bits
managed asynchronously. As in page control, "out-of-service" means
"I/O in progress", not "damaged" or "unusable".

indicates the last operation, or the one in progrpss, on this
buffer. Zero is read, one is write.

tells whether or not (1 equals "yes") some process is waiting for
I/O complete on this buffer. If on, vtoc_interrupt will call the
traffic controller to notify the event constructed as described
under vtoc_buffer.event_constant. This bit also prejudices the
replacement algorithm (See "VTOe Buffer Replacement Algorithm",
below) against this buffer.

Is set to "on" after a request for I/O has been queued. This is
used to reduce uncertainty about whether or not I/O completion will
be posted at ESD time. Any buffer encountered at ESD time with both
b.os and b.ioq on can expect a completion posting from the disk DIM.
See the "VTOC Manager ESD Strategy" description below.

is set on asynchronously by vtoc_interrupt, at buffer I/O completion
time if this I/O completed with an error. When found on for a read
operation, the process that was waiting for this read to complete
notices this and returns error_table_$vtoc_io_err out of vtoc_man,
and frees the buffer, as it contains no good vtoce-part. For a
write request, the vtoce-part becomes "hot": this is to say that it
is known that this buffer must be updated to disk at some later
time, for the
modifications.

VTOCE on disk is known
See "Error Strategy" below.

3-4

to have these

AN61A

b.partno

b.pvtx

t"I.vtocx

tells which vtoce.-v:u'c of a VTOCE, 01,10, or 11, resides here.

is the PVI index of the mounted physical volume to which this
vtoce-part belongs.

is the VTOC index of the VTOCE, in the VTae of the mounted physical
volume to which this vtoce-part belongs.

There are also two internal static variables of vtoc_man: alloc_state and
select_state. These are pseudoclocks that are advanced whenever an allocation
or VTDe buffer selection i respectively, is performed. By saving and comparing
these values to their saved values, vtoc_man is able to determine whether or not
these operations have occurred during an unlocking of the VTOe buffer lock.

ORGANIZATION OF THE VTDe MANAGER

The structuring of the VTOC manager must be comprehended
understand and diagnose problems and changes in this area.
vtoc_man should be on hand to best follow this section.

in order to
A listing of

The critical intermediate level subroutines are the two named
GET_BUFFERS_READ and GET_BUFFERS_WRITE. These subroutines receive the
specification of the VTDCE to be dealt with (PVT index and VTOC index) via
global program variables: a :.hree-bit vtoce-part mask is passed as an argument,
as is a return code. The fur.~tion of both of these procedures is to ase~ct~~e·
~ to ~ Qyff~r~ with the r~~U~$~~D ytoce-parts. For r __ d~~_J
(GET_BUFFERS_READ) this includes perforping (initiating and completing) 1/0 to
read in these vtoce-parts if they are not already in the VTOC buffer segmertt.
For writing, this maans finding buffers containing any of the requested
vtoce-parts, if any, and allocating new buffers for those not already in the
VTDC buffer segment. In both cases, these routines return the indices of the
found/filled/allocated buffers via the array nAn, being in A(1), A(2), A(3) for
the respective·vtoce-parts, when requested. In both cases, the routines are
responsible for performing these operations consistently, which means observing
changes that happen during unlocking, and retrying the buffer-gathering when
nece~sary (see the "General Policies". discussion earlier).

These two primitives are very powerful; the implementation of
vtoc_ma~$get~vtoce is little more than a call to GET_BUFFERS_READ. The
implementation of vtoc_man$put_vtoce is little more than a call to
GET_BUFFERS_WRITE, copying of the data supplied into these buffers, and calls to
the WRITE subroutine to start I/O on those vtoce-parts. Thus we proceed to
discuss the operation of GET_BUFFERS_READ and GET_BUFFERS_WRITE.

Both routines start by establishing a retry pOint. If any operation causes
an unlocking, and subsequent relocking shows that buffers involved in this
operation have been replaced, the operation is restarted from this retry point
(label START in both routines.) Both routines then call the subroutine INIT, to
fill up the array A with either -1 (vtoce-part wanted, not yet found) or gotten
or -2 ·Cvtoce-part not even wanted), and get the minimum and maximum part number
out of 1, 2, and 3. The routine SEARCH is now called to scan the VTOC buffers.
to fill in "An with the indices of all found vtoce-parts (that are needed) of
this VTOCE. The value returned by this routine is the number of vtoce-parts
found. At this point, GET_BUFFERS_READ and GET_BUFFERS_WRITE differ.
GET_BUFFERS_READ proceeds by ~ selecting a new buffer and ~ starting a
read (subroutine READ) for each vtoce-part wanted but not found by SEARCH. The
buffer selector, SELECT_BUFFER, which implements the buffer replacement
algorithm, is careful not to disturb buffers already pointed at by "An.
GET_BUFFERS_READ then calls WAIT, to wait for any of the gotten buffers which
were, or are now, out-of-service (lID in progress). Since this waiting

3-5 AN61

(performed by calling WAIT_OS on each out-of-service buffer) may unlock the
buffers, it is necessary to check that each buffer described by "A" still
contains the vtoce-part it did when put in A. This check is performed by the
routine "VANISHED", which makes precisely this check. A branch to the retry
point START is performed if it fails. This check is bypassed if it is
determined that the select pseudoclock (see above) has not moved during the
unlocking. The WAIT routine is intelligent about seeing that all buffers in A
are not out-of-service when it returns.

GET_BUFFERS_WRITE, having searched for all relevant vtoce-parts, proceeds
by calling WAIT so that they are no longer out-of-service. While this waiting
is not strictly necessary in the write case, it is a very conservative action.
At the end of this operation, the check for "VANISHED" and conditional branch
back to the retry point are undertaken. Then the selector, which is careful
about not disturbing buffers described by A, is called to get buffers to
associate with those vtoce-parts that were not found by SEARCH.

All the rest of the subroutines are basically support for GET_BUFFERS_READ
and GET_BUFFERS_WRITE: these and the few other subroutines will be described
below.

csyser

LOCK_BUFFERS

subroutine to crash system by calling syserr. It exists in order to
common code printing out drive identification, and set
vtoc_buffer.unsafe_pvtx to schedule a volume salvage.

a debugging subroutine that checks the third vtoce-part for
reasonability. From times when there were problems in this area.

A lowest-level primitive to wait for the buffer specified by its
first argument to stop being out-of-service. This subroutine
concerns itself with the traffic controller wait-retry-addevent
protocol, and the locking and unlocking of the VTOC buffer lock
around real waiting. The event for which it waits is described
under the description of vtoc_buffer.event_constant. The code
returned is that returned by LOCK_BUFFERS, if nonzero. See that
description below.

calls the system lock primitive lock$lock_fast to lock the VTOC
buffer lock. It also checks, upon every relocking, that the PVID
supplied by the caller of vtoc_man still corresponds to the PVT
index given, and that a demount has not started, nor the drive
become inoperative. The occurrence of these conditions is reflected
in LOCK_BUFFERS' return code.

UNLOCK_BUFFERS

VANISHED

INIT

WAIT

9/78

unlocks the VTOC buffer lock, using the system unlocking primitive,
lock$unlock_fast.

Described above. Scans the array A to see if the buffers described
by "A" still contain the vtoee-parts of the VTOCE being processed
(in the right order), after an unlocking during which the select
pseudoclock has moved.

described above, initialized the array "A" for GET_BUFFERS_READ and
GET_BUFFERS_WRITE. -1 is wanted but not yet found or got, -2 is not
even wanted.

calls WAIT_OS for each vtoce-part in a VTOCE being processed that is
out-of-service. Returns only when none are out-of-service.

3-6 AN61A

SEARCH
Fills up the array A with buffer indices for all vtoce-parts n~eded,
by searching the VTDe buffer segment for all vtoce-parts that are
there already.

READ and WRITE
Given the
call disk
routines
progress)
control.

vtoce-part number (part number) these routines actually
control to start 1/0 on the vtoce-part and buffer. These
set up the buffer control words, placing b.os (lID in
~, and b.ioq ~ after the return from the call to disk

RECORD, SECTOR and CORE .
are used by READ and WRITE to convert VTOC indices into Hultics
record number and sector within that record (taking the particular
vtoce-part into account), and to get the absolute main memory
address (see description of vtoc_buffer.abs_address.)

VERIFY_ERROR_FREE
is used by the vtoc_man$await_vtoce entry to wait for all
vtoce-parts of a given VTOCE to complete their lIDs, and report
whether or not all of these IIOs were successful. The successful
completion of the 1/0 for a write is a necessary prerequisite for
address deposition (see "Address Management Policy" in Section VII,
and "Segment Truncation" under "Segment Control Services").

SELECT_BUFFER
is used to obtain a new buffer for GET_BUFFERS_READ or
GET_BUFFERS~WRITE when a requested vtoce-part is not already in the
VTOC buffer segment. It gets a new one by replaCing an old one. It
does not unlock the VTOe buffer lock in any case. In replacing an
old one, it im~lements the VTOC buffer replacement str~tegy
described below.

VTOC BUFFER REPLACEMENT STRATEGY

Free vtoce-part buffers are needed by GET_BUFFERS_READ and
GET_BUFFERS_WRITE when not all requested vtoce-parts are found in the VTOC
buffer segment. The routine SELECT_BUFFER in vtoc_man allocates buffers in an
essentially FIFO manner. A Circulating pointer (vtoc_buffer.current) marks the
next point to be inspected for replacement, behind this being the last one
allocated. Buffers are allocated by circumnavigating the buffer segment a very
large number of times, if necessary, until a buffer is found which 1s not
out-of-service or "hot" (see "Error Strategy" below), and is not a vtoce-part of
the VTOCE for whom buffers are being sought. (This prevents it from undoing its
previous work by accident). Unused buffers fall into this category, as well as
just ordinary buffers that meet these criteria. The first pass around the
buffers, in a given call to SELECT_BUFFER, buffers with b.waitsw are skipped.
These are buffers on which 1/0 was completed (remember, b.os was found QIf), and
processes have been notified for, and will use when they get the VTOe buffer
lock. Since these are only preempted in a bad case (second pass), this is not a
performance problem. The process which comes back will find that the primiti\e
"VANISHED" is now true, and will retry its buffer-gathering.

The pointer vtoc_buffer.current is advanced as each new buffer is
allocated. When a very large number of passes over the VTOe buffer segment have
failed, system operation is terminated. Note that the longer one scans, the
more 1/0 operations complete, and buffers become claimable.

3-7 AN61

ERROR STRATEGY

We speak here of the "errors" encountered by the VTOC manager as a result
of 1/0 operations completing with an error (b.err is on). The expectable
"errors" of volumes being demounted or buffers vanishing are not errors at all,
but designed features, and have been covered.

Disk errors can occur on reads and on writes, the only two operations
performed by the VTOC manager. The strategy for a failing VTOC read is simple.
If the buffer has not vanished by the time the process (or any process) which
wanted to read it, this process notices' the error (b.err is on), frees the
buffer (so that the next call will not find it here, as it does not contain the
vtoce-part it is supposed to, and so that the next call retries the operation),
and returns error_table_$vtoc_io_err to its caller.

Write errors are substantially more difficult. In general, the completion
of a write operation is not waited for by any process, and there is thus in
general no process that can be relied upon to process the buffer in error. When
a buffer is posted with a write error (vtoc_interrupt issues a syserr message in
this case), the buffer concerned enters a state called "hot" (a .!1.Q.i buffer). It
is so called, when b.op = b.err = "1"b, because the vtoce-part in it must be
written to disk at some time before the system is shut down or the volume
demounted, and if it cannot be, the volume must be salvaged before ever being
mounted again. Furthermore, the "hot" buffer cannot be replaced, because it is
the only valid copy of that vtoce-part, because, by hypothesis, we could not
write it to disk. Thus, all calls to GET_BUFFERS_READ or GET_BUFFERS_WRITE must
find the vtoce-part in this buffer. This buffer may not be replaced, so that
vtoc_man$await_vtoce will find that the writes that were requested via
vtoc_man$put_vtoce have failed, and so that the caller will know in this case
that the VTOCE was not successfully written to disk. In this case, the usual
callers (truncate_vtoce, update_vtoce, etc.) must not deposit addresses culled
from the file map, for should the system crash before the VTOCE is written out,
those addresses find their way into some other VTOCE, and a reused address
results. (See "Address Management Policy" in Section VII, and "Segment
Truncation" under "Services of Segment Control," Section IV.)

Every time some new caller of vtoc_man tries to issue a write on that
buffer, the error bit is turned off, and mayor may not be turned on depending
on whether the operation succeeds, or fails again. Thus, each attempt to do a
put_vtoce on that vtoce-part retries the failing operation, until successful.

One last try to write out all hot buffers is made at volume demount time
(regular or emergency shutdown is effectively demount time for all volumes
mounted then). If this last try fails, the disk being demounted is scheduled
for salvage the next time it is mounted. This operation is performed in
vtoc_man$cleanup_pv.

ESD STRATEGY

The basic problem of the VTOC manager at ESD time is to restart all 1/0 for
buffers that ate marked out-of-service, but for which the disk DIM does not
currently have 1/0 under way. Since there is no way to determine this by
interrogating the disk DIM, heuristics are used. The idea is to restart those
and only those operations that are in this indeterminable state. If 1/0 is
requeued for a buffer for which the disk DIM later posts completion, a double
posting and double 1/0, reading or writing of the wrong data will happen.

9/78 3-8 AN61A

This would be detected by vtoc_interrupt when a buffer was not out-of-service
received an I/O completion. On the other hand, if we do not start I/O for a
buffer for which I/O was not actually pendent in the disk DIM, we would wait
forever for its completion. Since b.os being on the b.ioq being off identify
all buffers in this uncertain state, if there are any, a wait of thirty-five
seconds is performed, for the disk DIM to post it if it is ever going to be
posted. If it is not posted in this time, it is declared not-to-be
out-of-service, and the I/O is requeued.

Emergency shutdown, as all shutdown, flushes "hot" buffers as described
under "Error Strategy" above.

VTOCE ALLOCATION/DEALLOCATION SERVICE OF VTOC MANAGER

The VTOC manager is responsible for allocating and deallocating VTOCEs upon
request. As mentioned before, a free chain of actual free VTOCEs on each volume
is kept threaded through them, the head of the chain being in the PVT entry for
that volume.

Deallocating VTOCEs is rather simple: a vtoce-part of zeros, with a free
thread logically replaces the first vtoce-part of the VTOCE being freed. The
VTOC index of this VTOCE becomes the new head of the chain in the PVT.
GET_BUFFERS_WRITE is used herein. Allocating is more complicated. It is
necessary to read the VTOCE that is designated as the head of the free chain in
order to get the next fr~e chain head. Since a waiting (with consequent
unlocking of the VTOC buffers: must be performed to do this, it is possible that
another process can attempt to allocate the same VTOCE as this process is
allocating. This is because the PVT chain head cannot be changed until 'this
VTOCE has been (first vtoce-part thereof) read in. Thus, the pseudoclock
"alloc_state" is used every time this first phase of allocation is undertaken.
If, upon relocking, an allocating process notices that this clock has moved, the
operation is restarted. The nonmoving of the pseudoclock signifies that no
other process has attempted to allocate that VTOCE during the unlocking. The
entry vtoc_man$alloc_and~put_vtoce writes the new contents of the VTOCE out,
once it has succeeded in allocating it. This protects the allocate-and-put
primitive from demounting: if it got as far as changing the PVT thread head
(actually performed the allocation), it actually started the writes. The writes
being in progress (b.os is on) when the VTOC buffers are unlocked prevent the
volume from demounting until the writes are complete (see Section XIV). The
routines GET_BUFFERS_READ and GET_BUFFERS_WRITE are both used to fullest
advantage in the allocate-and-put primitive.

SERVICES OF VTOC MANAGER FOR DEMOUNTING

When a volume is being demounted (recall that both normal and emergency
shutdown are special cases of volume demounting for the entire mounted
hierarchy), vtoc_man$cleanup_pv is invoked on behalf of that volume as one of
the last stages of demounting. (See Section XIV). The vtoc_man routine makes a
final try at outputting all "hot" buffers. Then vtoc_man waits for all VTOC I/O
on the volume to cease; it has been guaranteed that no more can start by the
setting of the bit pvte.demounting2 by demount_pv. (This bit is inspected by
all attempts to lock the VTOC buffers: see the description of LOCK_BUFFERS
above). No more VTOC I/O transpires on this volume; the VTOC is updated and
quiescent. All vtoce-part buffers that had contained vtoce-parts of the
demounted volume are marked as empty (free).

3-9 AN61

SECTION IV

SERVICES OF SEGMENT CONTROL

This section describes the meaning, organization, and implementation of the
services provided by segment control to Multics. These are the functions that
segment control performs; its reason for being. These services are built upon
the mechanisms and data structures described earlier in this section.

These are the basic services of segment control:

1. Creating segments.

2. Destroying (deleting) segments.

3. Truncating segments.

4. Making segments addressable by processes (satisfying segment faults).
This involves activation and deactivation as described.

5. Descriptor segment management.

6. Handling boundsfaults.

7. Setting and reporting "VTOC attributes" of segments.

These are the auxiliary services of segment control:

1. Special-casing per-process nardcore segments (PDSs and KSTs) with
forced activations and special address management policies.

2. Special-casing of 101 buffer and FNP6600 Communications Processor
bootloading segments.

3. Performing segment moving, both on demand and in response to physical
volume overflows.

4. Performing special services on behalf of the online pack utility,
sweep_pv, such as anonymous VTOCE deletion.

5. Supporting the hierarchy salvager.

6. Demand deactivation.

7. Shutting down segment control.

4-1 AN61

The segments above are only segments in the storage system hierarchy; the
nondeciduous hardcore segments, PRDSs and descriptor segments are created by
means external to segment control (see the Multics Reconfiguration and MYltics
InitializatiOQ PLMs, Order Numbers AN71 and AN70), and are dealt with by other
parts of the supervisor by direct interaction with page control. Such segments
have neither branches nor VTOCEs, do not count against any record quota, and are
never activated or deactivated or in any AST list, hash thread, or
father-son-brother chain.

Many of the top-level services of segment control (creation, truncation,
deletion) are performed by similarly-named procedures (create_vtoce,
truncate_vtoce, and delete_vtoce) in bound_vtoc_man. These deceptively named
procedures do not in general perform operations upon VTOCEs, but either upon
VTOCEs, AST entries, or some combination of the two, usually by calling page
co~trol primitives when operations upon ASTEs are required. It is these
procedures that decide where the appropriate data about the segment being dealt
with lies, and call appropriate entries to the VTOC manager when necessary.
These procedures are called by the directory control programs append, truncate,
and delentry, which create and delete directory branches, and check access and
locate branches in all cases. Thus, create_, truncate_, and delete_vtoce should
be thought of as create_, truncate_, and delete_segment.

The procedure vtoc_attributes falls right into this model, as an
intermediary between the directory control primitives "set" and "status",
setting or returning the so-called VTOC attributes in either the ASTE or VTOCE
as necessary.

All of these primitives are called with the parent directory of the segment
under consideration locked.

Among the descriptions of the services provided by segment control will be
found a description of the VTOC update function, update_vtoce. While this
function is entirely organizational, an artifact of implementation rather than
of services, its critical role in the segment control panorama requires that it
be described in detail in this section.

CREATION OF SEGMENTS

Creation of segments is performed via creating VTOCEs for them, by the
procedure create vtoce. The input parameter to this program is a complete
directory branch. The principal output parameters are a physical volume ID
(PVID) and VTOC index of a VTOCE that was created. The VTOCE creation function
is called both by append (normal creation of segments) and the segment mover,
segment_mover (See the detailed description later on in this discussion of
Segment Moving).

The principal goals of VIC~S are
these:

1 . Crea te a local image of the VTOCE to be Cl' ()!:i ted. Fill in UID, primary
name, VTOCE permanent information, ini tial ii?l11.es of acti vation
information, a null (all pages null addresses) file map. Determine
the UID path and fill that in too.

2. Find an appropriate physical volume for residence of the new segment.
This must be one of the physical volumes of the logical volume that is
the sons_lvid of the directory in which the given branch appears.
Special case the rpv_only directory, ">lv". Select the most
appropriate physical volume, as described below under "PV Selection
Algorithm". (See Section XIV for motivation for this policy.)

4-2 AN61

3. Invoke the VTOC manager Cvtoc_man$alloc_and_put_vtoce) to allocate a
VTOCE on a selected physical volume, and write out the VTOCE
constructed in step 1 to it. Receive back the VTOC index of the VTOC
chosen by the VTOC manager.

4. Return to PVID of the physical volume selected by step 2 and the VTOC
index of the VTOCE selected by step 3 to the caller, who usually
places them in the branch (entry.pvid and entry.vtocx).

This function is not protected against demounting of volumes. However, nothing
it does until the call of vtoc_man$alloc_and_put_vtoce has any side effect.
Thus, should the call to vtoc_man fail because of demounting, create_vtoce will
simply go back, select another physical volume and retry, until either no more
physical volumes that are acceptable are left, or the logical volume becomes
unavailable.

When operating on behalf of the segment mover, create_vtoce does not
consider all physical volumes in the logical volume as potential candidates for
the new VTOCE, but only those not yet inspected during this segment move. (See
"Segment Moving", later in this section.)

Physical Volume Selection Algorithm

This algorithm is used by create_vtoce to find an appropriate volume for a
new VTOCE, and thus segment, being created. Its main goal is to try, when not
being invoked on behalf of the segment mover, to optimize balancing segments
over the physical volumes of a logical volume, without causing undue I/O
contention by placing many new segments in the same place.

The algorithm is to walk the chain (through pvte.brother_pvtx) of mounted
physical volumes of a mounted logical volume. The head of this chain is kept in
the logical volume table (LVT) (See Section XIII of this document for more
details on these data bases.) In the case of the segment mover, this chain is
walked from the last point it was at during this segment move until any
acceptable physical volume is found; in the normal case, the whole chain is
walked until the "optimal" physical volume is found. No physical volume is
acceptable in any case if it is "vacating" (pvte.vacating is on, signifying that
sweep_pv is trying to vacate this volume, or inhibit creation upon it), or has
no free records left (records left is recorded and maintained by page control in
the PVT entry). For segments that must be on the RPV (sons of the ROOT
directory (» or sons of >lv), no volume but the RPV is acceptable. The optimal I
physical volume, for all cases except per-process segments, is that which has
the highest percentage of space available, in terms of unused paging records.
This criterion, rather than absolute amount of paging space available, allows
different capacity packs to be put in the same logical volume and fill up
uniformly.

Per-process segments, those with entry. per_process in their branches, are
dealt with differently. This is because these segments see heavy use, and the
policy used above for other segments would place many new per process segments
in the same place, such as a new pack added to a logical volume, causing a
severe I/O bottleneck on that pack. Thus, a rotating pointer through the
logical volume chain, Ivte.cycle_pvtx is maintained by create_vtoce, pointing to
the next Physical Volume in the round robin that will receive the next segment
creation in that logical volume. The other acceptability criteria are still
used; rpv-only creations, those on behalf of the mover, and those for which this
round robin technique causes detectable looping (volumes seem to become
unacceptable as they are inspected) cause the non-per-process algorithm to be I
defaulted to.

The significance of zero in Ivte.cycle_pvtx is that it has either never
been used, or has cycled around to the end of the chain.

9/78 4-3 AN61A

The create_vtoce procedure operates with the knowledge that neither the
logical volume table nor the PVT thread are protected by locks, and therefore.
treats these quantities as asynchronously variable.

DELETION OF SEGMENTS

Deletion of segments, at the segment control level, is performed by th-e
procedure delete_vtoce. The input parameter to this procedure is a dire'ctory
branch (this implies that the directory in which it resides is locked to this
process). There are no output parameters, other than the oblig.atory status
code. The segment deletion function is called from the directory control
program "delentry", which resolves pathname or segment number references to
segments to be deleted, locates the branch for the segment, and checks that the
caller's access is adequate to perform this deletion.

Deletion at the segment control level consists of the following main steps:

1 • Make the segment inaccessible, if acti ve, via a setfaults. Rec'al.l
that the parent directory is locked, and segment fault.! on this
segment cannot be processed by other processes until this process
releases the parent directory lock. The entry setfaults$if_active
performs exactly the flavor of setfaults needed here.

2. Truncate the segment to zero-length. The procedure truncate_vtoce
comes right into play here, almost exactly as if called by the
directory control truncate primitive. This releases all disk, bulk
store, and main memory pages occupied by the segment. No more can be
created, since all SDWs were revoked in Step 1, and the segment is
inaccessible.

3. If this is a directory with a ~uota account being deleted, call the
page control quota move primitive, quotaw$mq, to relinquish its quota
to its superior. If this is any kind of a directory being deleted,
directory control has already made sure that there are no segment or
directory branches in this directory, so it has no inferiors, or
inferior segments which might count against quota.

4. If this segment is active, deactivate it. This releases its ASTE.
All pages of the segment were released in Step 2.

5. Free the VTOCE with a call to vtoc_man$free_vtoce.

Among the fine points of delete_vtoce:

This procedure~ as described, is not protected against volume demounting.
Thus, were a volume on which delete operation were under way demounted while the
delete operation was between steps 2 and 5, a truncated segment would appear the
next time this pack were mounted: whereas we desire either the original segment,
or the lack of a segment. Thus, for multistep operations such as VT.oCE
deletion, a form of demounting protection known as "demount protectiop
brackets", described fully in Section XIV of this document, was developed.
Basically, a call to get_pvtx$hold_pvtx before step 1 prevents the volume from
being deoounted, or returns the fact that it has already been demounted, before
step 1 above even begins. A call to get_pvtx$release_pvtx after step 5 releases
the volume for demounting. See Section XIV of this document to find out what
happens when a crawlout, process termination or crash happens while a process
has such a grip on a volume. Since truncate_vtoce normally also makes such
calls, a special entry to truncate_vtoce <truncate_vtoce$t.runcate_vtoce_delete)
is used! which avoids making such calls knowing that delete_vtoce is doing it
instead.

4-4 AN&l

The program truncate_vtoce is capable of indicating a connection failure:
this is to say the VTOCE designated by the PVID and VTOCX in the branch is
either free or contains a uID other than the one in the supplied branch. In
this case, delete_vtoce wryly notes that it is being asked to delete something
which has clearly vanished of its own accord (can happen in crashes; the
Physical Volume Salvager also sometimes creates this situation deliberately),
buries the error, and returns indicating successful completion (after releasing
the physical volume for demounting, of course).

SEGMENT TRUNCATION

Truncation of segments is performed by the procedure truncate_vtoce. This
procedure is invoked both by the directory-control program "truncate", which
converts pathname and segment number references to segments to be truncated into
branch pointers, and checks appropriate access, and the segment deletion
primitive already described. The inputs to this procedure are a branch pointer
(with the directory of course locked) and a page number from which to start
truncating •. For the delete case, this number is assumed zero. The only output
parameter is the error code.

Truncation may be defined as associating logical zeros with the contents of
all pages beyond a certain point in a segment. For active segments, this is
done by the page control primitive pc$truncate (which can also be used on
nonstorage-system-hierarchy segments). For nonactive segments, it is done by
freeing nonnull record addresses in the VTOCE file map, and replacing them with
null device addresses.

Among the major issues in truncation is the implementation of the address
management policy as described in Section VII of this document. The
repercussion here is that record addresses may not be deposited (placed in the
free storage poo~ for that pack, by calling pc$deposit_list) until it is known
for a fact that the VTOCE from which they were removed has been successfully
written out to disk. Were this not so, it would be possible that some addresses
might be deposited, picked up by a new segment, and written out to that VTOCE.
Then, if the VTOCE which had the addresses originally was not yet successfully
written out, or badly written out, and the system crashed at that point, two
VTOCEs would both contain the same record address, a situation known as a
"reused address" which is a bad security violation. Thus, the primitive in the
VTOC manager, vtoc_man$await_vtoce, 1s provided for just the purpose of waiting
for successful 1/0 completion on the writing of VTOCEs.

Another issue in truncation of segments is the updating of quota used
figures for the quota account against which the truncated segment is charged.
This involves some machination in the program truncate_vtoce to locate this
quota account.

The truncation of active segments is performed entirely by pc$truncate,
there is not as much as an error code in this case. Records are not deposited,
but rather, "nulled", by page control, as described in "Truncation" under "Page
Control Services" in Section IX of this document.

The basic steps of truncation are:

1. Determine if the segment is active, which involves locking and
searching the AST. If not, it cannot become active, (parent directory
is locked) so unlock the AST and proceed with step 2 secure in this
knowledge. If active, invoke pc$truncate on the segment, unlock the
AST, and return, the truncation being complete.

4-5 AN61

2. Read in the VTOCE file map. This must be done by obtaining the first
vtoce-part, containing the current length and the first part of the
file map (also the UID: here is the check for connection failure), and
using the current length to determine which other vtoce-parts, if any,
are needed. Get them if any.

3. Begin the indivisible operation which must be bracketed by calls to
get_pvtx$hold_pvtx and get_pvtx$release_pvtx. Replace the real record
addresses in the portion of the file map being truncated with null
addresses. Save the addresses in the file map so being replaced, for
step 5.

4. Write back the VTOCE with a call to vtoc_man$put_vtoce.
only those vtoce-parts which were read in.

Write back

5. If there were any record addresses collected in step 3, i.e., real
truncation was performed, ~ await the successful completion of the
VTOCE writing started by step 4, via a call to vtoc_man$await_vtoce,
and second, upon this successful completion, call pc$deposit_list upon
the collection of record addresses gathered in step 3, making them
available for use in 6ther segments. This step (5) is skipped for
deciduous segments, as their addresses belong to the hardcore
partition, and are managed differently (See "Address Management
Policy" in Section VII).

6. End of critical section bracketed by get_pvtx calls. Find the record
quota account to which this segment's pages are charged, by activating
its parent (via a call to activate), and passing the ASTE returned by
this activation and the incremental quota change to the page control
quota cell manager, quotaw, at entry quotaw$cu.

A fine point of the truncate_vtoce function is the special service
performed on behalf of priv_delete_vtoce, described ~ater along with other
auxiliary segment ~ontrol services. If the "owner" field of the supplied branch
is "777777777776"b3, which cannot be the UID of any directory, then this branch
is a dummy branch for an orphan VTOCE being deleted by sweep_pv. This
suppresses step 6 above, as the segment's parent may not even exist, let alone
be addressable in this process.

The special treatment of demount protection (i.e., not calling get
pvtx$release_pvtx or get_pvtx$hold_pvtx) for calls on behalf of delete_vtoce has
already been described under the description of that function.

SATISFYING SEGMENT FAULTS

The most important externally visible manifestation of segment control is
that part of it which satisfies segment faults for Multics processes. The
technique for using a Multics segment, as implemented by the procedures called
through hcs_$initiate, and similar, is as follows: it is called "making a
segment known":

1
I. Use the directory portion of the pathname given to make the parent

directory of the requested segment known. When this is done, the
Multics virtual memory interprets hardware references to the resultant
segment number as references to that directory.

2. Search this directory for the branch that has the entry name supplied
to hcs_$initiate in this call.

3. Search the KST (Known Segment Table) of this process, for a segment
that has the UlD (saved in the KST) the same as the one in the branch
found in step 2. If found, the segment is already known; the index of
the KST entry is its segment number.

4-6 AN61

4. If not found in step 3, allocate a new entry in the KST of this
process. Put in it the UrD of the segment, from the branch found in
step 2, and a pointer to that branch. Both are necessary because
branches (i.e., segments) can be deleted, or simply moved around by
the on-line Salvager. This double-check ensures the binding between
branch and segment. Again, the index in the KST of this entry is the
segment number.

These operations as described are more properly a part of Address Space
Management. The point of restating them here is that they are the preparation *
in any process for segment control to add the segment to the address space of
the process, when that segment number is used in that process. Basically, an
attempt to use the segment number gotten in step 3 or 4 causes a segment fault,
(directed fault 0, the result of there being "no SDW", i.e., one with sdw.df =
"O"b). The segment fault handler (seg_fault~ the basis of much of the following I
discussion) inspects the KST entry in this process specified by the segment
number faulted upon (which is in the Appending Unit information in the SCU data
stored by the segment fault (see the Multics Processor Manual, Order No. AL39)).
The UID therein may be used to find if the requested segment is active; if so,
an SDW may be constructed describing the ASTE of the segment. If not active,
the segment may be activated from information in the branch of the segment, and
then the SDW may be constructed.

Clearly, the construction and use of SDWs, as well as the interrogation of
the AST requires all kinds of locking protection, as has been described
previously. Thus, this operation of satisfying a segment fault is somewhat more
complicated than this. Central to these proceedings is the procedure
"activate"; before we describe activation, we first describe the functional
interface and purpose of the procedure "activate".

S~gn~ficance of "activate"

The procedure "activate" is called with a pOinter to a directory branch,
and returns an ASTE pointer for the segment whose branch was supplied, and a
status code. This statement alone says much about what this procedure does; it
is the contract of "activate" to make §. segment active if it is not, and in
either case, return the ASTE (via a pointer) of the segment. Since a decision
about whether or not a given segment is active is not even meaningful unless the
deciding process has the AST locked, "activate" returns to its caller with the
AST locked. It had to lock the AST to find out whether the segment was active
in the first place, and once it was activs, the usefulness of its activity is
limited to operations protected by the AST lock.

The procedure "activate" is given a branch pointer. In general, branch
pOinters are not valid unless the process using them has the containing
directory locked. (The branch pointers in the KST are an exception to this
generalization: the UID in the KST entry allows them to be dynamically
revalidated every time they are used.) ThUS, activate is called, and returns
with, the parent directory of the supplied branch locked to the calling process.
This fact makes the parent directory lock of a segment implicitly a protection
against simultaneous activation; "activate" does not unlock the parent
directory at any time.

9/78 4-7 AN61A

I

The operation of the procedure "activate" is thus to obtain information
from the branch given (such as the UID),(1) lock the AST, search it for that
UID, and return the found ASTE pOinter if found, with the AST still locked. If
not found, activate proceeds to activate the segment as described under
"Activation" below.

SEGMENT FAULT HANDLER

Having set up the necessary framework for understanding of the segment
fault handler, seg_fault, we proceed to describe the action taken in response to
a segment fault.

The segment fault handler, seg_fault, is invoked by the module "fim" (fault
interceptor module, see the Multics Process and Processor Control f1H, Order No.
AN60) in response to a directed fault zero. As the segment fault handler
returns a zero (successful) or nonzero (error) status code to fim, so does fim
restore the machine conditions for that fault (so that the interrupted Control
Unit cycle may be retried (see the Multics Processor Manual») or cause the
condition "seg_fault_error" to be signalled at the point at which the fault
occurred.

The basic steps of the segment fault handler are as follows:

1. Obtain the segment number faulted upon from the machine conditions at
the time of the fault, passed by fim as a parameter. If this is in
the range of valid stack segment numbers, and pds$stacks for that
number is null, call makestack.

2. Locate the KST entry for the segment (call get_kstep). If this is the
root being faulted on, obtain its ASTE pOinter (the root is always
active: aste.ehs = "1"b, and thus the ASTE need not be locked to use
this pointer) skip steps 3 to 6, lock the AST, and proceed directly
with step 7.

3. Obtain a valid pointer to the branch of the segment. The procedure
sum$getbranch_root_my (see the Multics Address and ~ Space
Management PLM) is used to do this; it makes the necessary validation
checks as described previously, and returns with th~ parent directory
locked, ensuring the validity of this pOinter (as well as the
existence of the segment and a protection against another process
trying to simultaneously activate this segment) for as long as this
process leaves that directory locked to it.

4. Obtain access, ring-brackets, entry-bound, and other
directory-resident information about the segment from the branch. The
procedure update_kste_access is used to obtain the access mode that
will be put in the SDW to be constructed. It manages a copy of the
access mode kept in the access field of the SDW, and checks whether or
not this information is obsolete by comparing date-time-branch
modified in the branch given with a copy saved in the KST entry of the
segment. If the branch is ahead of the KST, directory control must be
called to recompute the access. Recall that this process has this
directory locked; no process is now changing the ACL of the segment.
See below.

(1) Note that the AST must not be locked to touch directories: see "Locking
Conventions H , thus it is part of activate's calling rule that the AST is not
locked to the calling process at time of call.

9/78 4-8 AN61A

5. Check that the logical volume on which the segment resides is either
public or private and mounted to this user. Check that it is mounted
at all. logical_volume_manager$lvtep and private_Iogical_volume$lvx
provide these services. (See Section XIV of this document.)

6. Call "activate" to obtain an ASTE pointer for this segment, and lock
the AST to this process in so doing. As stated, this causes the
segment to be activated if not active: other segments may be
deactivated in the course of so doing.

7~ The AST is now locked to this process, and we inspect the ASTE for the
segment being faulted upon. If the referencing address is greater
than the maximum length in the ASTE, cause the segment fault handler
to return to fim (after appropriate unlockings~ of course), so that an
error can be signalled. If pack overflow has been observed on this
segment (see "Segment Moving" below), invoke the segment mover, and
return to fim with the status code returned by the segment mover.

8. Construct a trailer entry in the system trailer segment describing
this process' connection to this segment. The fact that we are now
committed to constructing and using an SDW means that we must make a
trailer entry. See "Trailers and Setfaults" earlier.

9. Compute the new encacheability state of the segment based upon the
current encacheability state (see "Encacheability Control" earlier)
and the access mode of the SDW being constructed. Directories are
generically unencacheable.

10. Build an SDW out of a page table address derived from the ASTE pointer
gotten in step 6 (or 2 for the root); mode, ring-brackets and
entry-bound derived from the information gotten in step 4 (zero ring
brackets, read-write access for any directory); and the encacheability
derived in step 9. Install this SDW in the descriptor segment, making
it liable to revocation (see "Trailers and Setfaults" earlier) when
the AST is unlocked. The process is now said to be "connected" to the
segment.

11. Assuming that the operation has progressed this far, unlock the AST
(subjecting the SDW to setfaults and the segment to deactivation) and
the parent directory (allowing access change, reactivation, or
deletion of the segment). Return "no error" to fim.

Some notes on segment fault handling:

The segment fault handler uses the SDW in the descriptor segment as an
information repository even at times when the SDW is not valid. These fields I
(address, ring-brackets, and access entry-bound) are used to avoid recomputation
when the reason that the SDW was revoked did not involve changing these
quantities. For instance, if a segment is activated and deactivated several
times, revoking and re-creating SDWs in many processes, no access or
ring-bracket ,fields need to be changed if no set-acl or set-ring-bracket
operations have been performed on the segment. Similarly, if SDWs were revoked
because of a set-acl, set-ring-brackets or similar operation, the address in the
SDW need not be invalid (or the trailer cut; see "Trailers and Setfaults" above)
if the ASTE is not being freed.

Any time that access, ring-brackets, entry-bound, or maximum length
(segment bound) of a segment are changed, directory control calls the procedure
change_dtem to advance the "date-time-entry-modified" (entry.dtem field of the
directory branch). Saving old values and comparing to new values of this
pseudoclock can thus be used to see if an older computation of any of these
attributes has since been invalidated. This technique is used, as described in
step 4 above, to avoid expensive access recalculation in the case of SDW
revocation as a result of deactivation. Similarly, the nonzero quality of the
SDW field sdw.add is used to avoid freeing and re-creating trailers in the case
of access change on an active segment. The procedure setfaults follows these
conventions when revoking SDWs, being careful not to destroy these fields of the
SDW.

9/78 4-9 AN61A

The global transparency attributes (so-called page control switches)
aste.gtpd, aste.dnzp, aste.gtus, aste.gtms, (See the ASTE breakdown earlier) are
computed from the old values and KST flags each time an SDW is added by the
segment fault handler. Thus, segments have these attributes in their ASTE only
if the only process that is conne~ted to the segment requests these attributes.

The special case of segment faults on the stack segments of processes is
part of the scheme wherein stacks are automatically initialized to the necessary
contents for processes to run in the ring of that stack. These references are
noticed by the segment fault handler, which does nothing else except call the
procedure "makestack", if this has not yet been done for that ring (pds$stacks
is an array of per-ring pointers, whose null or nonnull content indicate this).
This procedure creates a stack segment, and in initializing it, takes a
"recursive" segment fault the first time it touches it. However. it will have
changed pds$stacks for that ring to be nonnull by that time, so that segment
fault will not be one corresponding to this special case.

A critical aspect of segment fault handling is that any process can
"invoke" the segment fault handler (by taking a segment fault) any time it
touches any nonhardcore segment Qr directory. Since such segments can be
deactivated at any time that the AST is not locked, any reference to a
nonhardcore segment (such as user-supplied arguments) or directories is subject
to taking a segment fault at that point. Since segment faults cause directories
anQ ~ ASI to be locked, any orocess touching Y$~ segments ~ directories pgn
lQQk directories ~ ~ ~ ~ simoly s result Qf ~ reference. One
implication of this statement is that a process that has a directory locked may
not touch any directory or user segment unless it has the following property: A
segment fault at that instant would result in locking only such directories that
would not cause the process (given that it has this directory locked) to violate
the locking hierarchy. One implication of that fact is that ~ reference to
a l~ QiLe~~ry is subject to such a segment fault; since a segment fault
upon any directory (or segment) will cause locking of its parent, and a
directory's parent's lock is higher in the hierarchy than its own (for this ~
reason) directories may be referenced without causing deadly embraces in the
case where a process has a single directory (explicitly) locked.

Another consequence of this implementation is that a directory may be
referenced with the AST locked to a process if anQ Qllly if that directory can be
established as being active at the time that the AST was locked (for with the
AST locked, it, and consequently its parents, cannot be deactivated). Multics
does not now make use of this feature". However, the contrapositive of this
statement asserts that in general llQ directory may Qg touched with the AST
locked, for lest it be shown to be active at the time the AST was locked, the
resulting segment fault would cause a "mylock" on the AST (which crashes the
system), as well as an attempt to lock the (higher) lock of the parent of the
directory being faulted upon.

ACTIVAllQN

The most important step in segment fault handling, the connection of
processes to segments, is the activation of the segment faulted upon, in the
case where it is not active at the time the segment fault handler locks the AST.
The code for activation of segments is in the procedure "activate", whose
interface and significance have already been described.

Activation is that action taken by activate when it finds that the segment
whose branch was passed in is found, under the AST lock, not to be active.

4-10 AN61

These are the basic steps of activation:

1. Unlock the AST, having found the segment not active. Since the parent
directory is locked, and the segment was found not active, no other
process can be attempting to activate it.

2. Get as much of the VTOCE as is necessary to obtain the entire file
map. Read the first vtoce-part to determine this; also check the UID
of this VTOCE against that in the branch to determine if a connection
failure exists; return an error if so.

3. It will be necessary to ensure that the parent of this segment is
active (of course, under the AS! lock), due to the requirement that
all active segments other than the root have active parents. Once we
have threaded this segments ASTE into the inferiors list of the
parent, it will stay this way. But we must get it this way. This is
done by locking the AST, and checking the SDW for this segment to see
it has not been revoked (since the AST is locked to this process, it
now cannot be). If it has not been revoked, the SDW may be used to
find the parent's ASTE (remember that SDWs contain page table
pointers, and the page table is in the ASTE).. If it ~ been revoked,
unlock the AST, touch the parent, relock the AST and retry this until
it is found active under the AST lock. Although a more complex
approach that does not involve nondeterministic retry is possible,
this action is no more nondeterministic than a process trying to
satisfy a page fault.

4. Obtain a new free ASTE for the segment being activated via a calIon
the AST replacement algorithm in procedure get_aste (see "AST
Replacement Algorithm" earlier). This may involve deactivating some
other segment (Hoyefully not the parent obtained in step 3 -- see
below) .

5. Thread the ASTEgotten in step 4 into the inferior list of the parent
ASTE found in step 3. Fill in the ASTE with all of the VTOCE
"activation information" (See the discussion of the VTOCE structure
earlier), and initialize cumulated flags (aste.dnzp, aste.gtus,
encacheability, etc., see the last section) to default values.

6. Invoke page control (pc$fill_page_table), passing it the VTOCE file
map, to initialize the page table and other page control information.
Since we are activating this segment, and the parent directory is
locked, no one is trying to use this segment, or even knows it is
active or being activated, other than this process.

7. Place the UID in the ASTE (see below) and hash it into the AST hash
table.

8. Return, with the AST locked, the AST entry (as a pointer) from step 4.

Some subtleties of activation:

The nondeterministic looping and unlocking to obtain the parent ASTE must
be done before the obtaining of the new ASTE in step 4. Otherwise, the new ASTE
would be in a peculiar inconsistent state during these unlockings. Thus, we
determine the parent ASTE before getting the new ASTE. However, there is a
distinct danger that the AST replacement algorithm might choose the very ASTE of
the parent as the segment to deactivate to provide the new ASTE. Not only would
this invalidate the saved pointer to the parent ASTE, but would cause the new
ASTE to be threaded as its own parent, causing infinite looping at page control
quota management time. Thus, the bit aste.ehs (entry hold switch) is saved, and
temporarily s~t on, and restored, in the parent's ASTE, to prevent the parent
from being deactivated by the AST replacement algorithm. The same is true
during a boundsfault (see "Boundsfaults" later on).

4-11 AN61

The UrD is the last item placed in an AST entry. This is so that if the
system should crash while filling in the AST entry, emergency shutdown could use
the fact that the UrD is zero as a cue to avoid invoking a VTOCE update on an
inconsistent, invalid ASTE. Normally, shutdown (emergency and regular) causes
VTOCE updates on all active hierarchy segments. Since the AST hash table
manager (search_ast) relies on aste.uid, it cannot be called until step 7 has
filled in this field.

DEACTrVATlQH

Deactivation is the removal of a segment from the AST, the revocation of
its "active status". Deactivation is a simple mechanism that is invoked on
behalf of the AST replacement algorithm, to free an ASTE to make room for a new
one, deletion of segments (see "Deleting Segments", above) to relinquish their
AST resources, and volume demounting, to take the segment out of use and update
its VTOCE and file map to make the disk being demounted accurate (see Section
XIV).

Deactivation, performed by the procedure "deactivate", is composed of the
following steps:

1. Check for segments which may not be deactivated, (such as those with
the flag aste.ehs on, those with no parent (hardcore) or those with
active inferiors). The demand deactivator (see "Demand Deactivation"
in this section) can cause this to occur.

2. The AST is locked as a precondition of deactivation. Totally cut the
trailer, revoking all SDWs for this segment (setfaults). No process
can now use the segment until the AST, at least, is unlocked.

3. Call page control (pc$cleanup) to remove all pages of the segment from
the bulk store subsystem or main memory, writing all modified pages to
disk (see "Services of Page Control" in Section IX)~ This resurrects
all assigned addresses and finds all zero pages, nulling their
addresses (see "Address Management Policy" in Section VII).

4. Update the VTOCE from the now quiescent ASTE, putting final values of
file map and all activation information in the VTOCE (see "VTOCE
Updating" below).

5. Thread the entry out of inferior lists, decrement parent's inferior
count, hash it out of the AST hash table.

6. Make the ASTE free. The put_aste procedure is called to do this: it
clears all fields, reinitializes the page table to debugging values,
and places the entry at the head of the appropriate used list.

VTOCE updating is not strictly a service of segment control or an artifact
of its implementation; it is a necessity of the data organization and function
of Multics segmentation.

4-12 AN61

VTOCE updating consists of observing the activation attributes and file map
of an active segment, and making the activation attributes and file map in the
VTOCE of that segment reflect any changes that have occurred since the VTOCE was
last updated, or the segment activated. VTOCE updating is performed routinely
every time a segment is deactivated (see "Deactivation" earlier), and when the
system is shut down (all VTOCEs of active segments are updated, for both
emergency and regular shutdown). VTOCE updating is also invoked periodically by
the AST trickle in get_aste (see the earlier discussion "AST Trickle") as
necessary, and at certain times in segment moving.

VTOCE updating is performed by the procedure update_vtoce, upon an AST
entry (hence the AST is always locked when this activity is performed). In the
case of trickle-initiated updates, the information updated may become invalid
while it is being updated, but yet, it is a snapshot of some valid state of the
segment at some time. The trickle update is a hedge against a fatal crash.
Should a fatal crash occur, the pages of the segment that appear in the next
bootload, and the state of the segment as a whole, will be that state reflected
the last time the VTOCE was updated. Thus the trickle causes periodic and
regular update (except under times of very light load) of segments that stay
active a long time, and thus, do not enjoy the VTOCE update performed at
deactivation. VTOCE updating manifests a critical facet of the system address
management policy (see "Address Management Policy, Section VII). Record
addresses reported to a VTOCE must be guaranteed to have data from the segment
owning the VTOCE, lest the system crash and "uninitialized" pages containing
other people's data appear. Furthermore, no record address may ever be freed
(added to the free pool of record addresses) unless it is guaranteed that it is
not in the VTOCE from which it was culled (See the discussion of "Segment
Truncation" earlier in this section).

The steps of VTOCE updating are few and simple.

1. Obtain, from the VTOC manager, as many vtoce-parts as will be
necessary to reconstruct the new image of those vtoce-parts that will
be changed (see below). For most segments, this is none at all, as
the first vtoce-part is usually constructable entirely from the ASTE.
(See below).

2. Call page control (pc$get_file_map) to put the latest file map (record
addresses and null addresses) in the copy of the VTOCE being prepared.
Also, get the latest activation information from a copy ASTE handed
out by pc$get_file_map, and" put this information in the copy of the
VTOCE being prepared. pc$get_file_map also returns a list of record
addresses that must be deposited ~ ~ YIQQE ~ been successfully
written.

3. Compute and ·update time-record products if this is the VTOCE of a
directory with a quota account.

4. Call the VTDC manager to write out the new copy of the VTOCE, actually
initiating its update onto disk.

5. If step 3 returned any record addresses to be deposited, ~ call
vtoc_man$await_vtoce to await the successful completion of the I/O
started in step 3, and second, .pendent this successful completion,
call pc$deposit_list to free these addresses. Again, see the earlier
discussion "Segment Truncation".

6. Turn off aste.fmchanged1 if aste.fmchanged was on in the copy of the
ASTE returned in step 2 (see below).

4-13" AN61

It is quite difficult to determine which vtoce-parts have to be read by
step 1. If step 3 must be executed, the current time-record product must be
obtained, and thus, the first vtoce-part must be read. Otherwise, the first
vtoce-part can be written with information wholly derived from the ASTE, and
thus need not be read. The second vtoce-part need never be read; either it will
be filled with some record addresses and some null addresses as obtained from
the file map in step 2, or it will describe a region beyond the current length
of the segment when updated, and thus be invalid, and hence not written. If
parts of the file map residing in the third vtoce-part must be updated, this
vtoce-part must be read, as the permanent information residing there cannot be
reconstructed from the ASTE. We cannot know whether or not the third part of
the file map will have to be written until step 2 is done. Thus, we make a
guess based upon the current length of the segment at the time that step 1 is
executed. If, upon getting the current length, it turns out that the segment
has shrunk between steps 1 and 2, then the read was unnecessary, and nothing is
lost. If, however, we do n21 read it, and the segment grows, we then read it
~ we have gotten the snapshot in step 2.

The entry point pc$get_file_map turns off the "file map changed" bit in the
ASTE, aste.fmchanged. The semantics of this bit are that the file map has been
changed since the last pc$get_file_map. When segment control receives that
ASTE, with this bit on, and its file map, it is obliged to update the VTOCE.
Should the system crash, however, before this is done, but after page control
has turned off the bit aste.fmchanged, the VTOCE update performed at emergency
shutdown time will DQ1 find the bit on, and thus not know to update the file map
in the VTOCE. Therefore, page control turns on the bit aste.fmchanged1 when it
turns off aste.fmchanged; update_vtoce turns this off once it has updated the
VTOCE. Should ESD find this bit QQ in any ASTE (see the procedure demount_pv),
ESD will take its presence as an indication that this has occurred, and
reinstate aste.fmchanged.

A file map, as reportable to a VTOCE, has changed only when addresses are
resurrected following successful writes (See "Address Management Policy") or
when pages have become zero. However, page control turns on fmchanged when
records are allocated to a segment (at new-page fault time) even though they may
n21 be reportable to the VTOCE. A VTOCE, when updated in this state, will have
vtoce.records reflecting the real number of records used by the segment
(including the new ones) but the file map will not have these new addresses.
Should the system crash fatally (no ESD) before such a segment is again updated,
or deactivated, the Physical Volume Salvager will notice that records-used is
inconsistent with the file map, implying that pages have been lost in this way.

DESCRIPTOR SEGMENT MANAGEMENT

Segment control provides the service of removing descriptors (SDWsj from
descriptor segments, in addition to that of creating and installing them
(segment fault handling). Often, this service is performed on behalf of segment
control itself, such as during the deactivation of a segment, when all SDWs must
be revoked. (See the earlier "Segment Fault Handling", including the
"Deactivation" discussion therein). Although segment control; via the segment
fault handling mechanism, is the only agency in the system that constructs SDWs
for hierarchy segments (other than deciduous SDWs and PDS/KST SDWs), several
other system functions require revocation or total removal of SDWs. All of
these tunctions are implemented in the procedure "setfaults". The basis of the
revocation and trailer mechanism has already been described in the "Overview and
Concepts" section (see "Trailers and Setfaults").

All procedures in directory control that change access attributes, such as
ACLs (access control lists) or access class must revoke all SDWs for the segment
whose attributes are being changed, if that segment is active. This is so that
the segment fault handler will find that date-time-entry-modified nas changed,
recompute the attributes, and give the process a new SDW. Changing maximum
length or entry bound causes this same behavior.

AN61

The entry setfaults$if_active is called with the UID of the segment to
perform such functions. Internal to this procedure, it locks the AST, hashes in
this UID to find if the segment is active, performs the setfaults if so, and
unlocks the AS!.

Another service of the setfaults routine is to remove the SDW for a segment
in a given process when that process terminates the segment. This is done
because the process no longer wishes the segment to be addressable; it ~ be
removed from the process' address space, because the segment number will be
reused (the KST entry has been freed). It is necessary to invoke segment
control to remove this SDW because deleting the SDW implies removing the trailer
entry in the system trailer segment describing it (which must, inCidentally, be
done under the protection of the AST lock, which protects the trailer segment).
Were this not done, a setfaults on the first segment would randomly destroy the
SDW for the next segment that that process had used with that segment number.
This entry to setfaults, setfaults$disconnect, supplied with a segment number,
also clears the associative memory of the running processor, to remove this SDW
from it should it be there. Of course, it is possible that the segment might
not be active at the time a process terminates it; in this case, there is no SDW
to revoke, but the access information kept there is cleared out. This service
is also invoked at the time a process detaches itself from a private logical
volume, to make initiated segments on it inaccessible. (See Section XIV.)

Segment control must also be invoked to destroy descriptor segments of
processes being destroyed. Each SDW in such a descriptor segment which is for a
segment still active at the time of this destruction, has a trailer entry for
the process being destroyed, which must be deleted from the trailer list for
that segment. The entry setfaults$deltrailer is called on each such SDW, by the
process-destruction primitive deactivate_segs (See "PDS and KST Management"
later on). Since this is done ~ ~ for all segments in the descriptor
segment of the process being destroyed, deactivate_segs locks the AST and calls
setfaults$deltrailer for each SDW with a non~ero "sdw.add" field. If a trailer
entry is not found at this time, the-message "setfaults: missing trailer"
appears and a system crash results.

A special kind of setfaults, setfaults$cache is used by the encacheability
control algorithm (see "Encacheability Control" in "Concepts and Overview") to
revoke all SDW encacheability control bits.

All versions of setfaults· other than setfaults$disconnect and
setfaults$deltrailer clear the associative memories of the system to force the
changed SDWs to be noticed by the system processors. All setfaults other than
system-wide setfaults (other than setfaults$cache, setfaults$deltrailer and
setfaults$disconnect) also reset the encacheability state of the segment, as no
SDWs then describe it. (This action is inhibited by aste.1nhibit_cache for 101
buffer segments and the like: see "Encacheability Control".)

BOUNDSFAULT HANDLING

A boundsfault is the occurrence of an attempted reference to an address
beyond the current length of a segment ~ defined Qy ~ SQK bounds field (~
the current number of records, etc.) If the maximum length of the segment is
equal to or smaller than the current page table size allocated for this segment,
then this situation is simply an error and is signalled at the point of the
faulting reference. If, however, the reference is within the maximum length of
the segment, but beyond the current page table size, then segment control must
allocate a new page table, and thus a new ASTE for this segment, being in a
larger pool. Therefore, a boundsfault (nonsignalled case) involves getting a
new ASTE and freeing an old one, and thus shares some of the flavor of both an
activation and a deactivation.

4-15 AN61

The boundsfault handler is the procedure "boundfault". Like the Segment
Fault Handler, it is invoked from the fault interceptor, fim, and causes a
machine condition restart or signal depending upon the status code returned to
fim. Boundsfaults are technically a sub-case of access violation, detected by
the 68/80 processor Appending Unit during the SDW appending cycle (see the
processor manual).

The basic steps of a boundsfault are these:

1. From the segment number in the machine conditions, find the branch for
the segment, locking its parent directory when so doing (a call to
sum$getbranch_root_my, just like in the segment fault handler).

2. Lock the AST, so that the old ASTE can be found. If the segment turns
out to have been deactivated by the time we lock the AST, it is just
as well, as restarting the machine conditions will reactivate it.

3. Find the old ASTE via the SDW in this process (get_ptrs_$given_segno).
See step 2 for the not found case. Get the maximum length from it
(aste.msl). If attempted reference is beyond this, unlock the AST and
the directory and cause the boundsfault handler to return an error,
causing "out_of_bounds" to be signalled.

4. Setfaults the old ASTE. Again, the AST is locked to us, as is
necessary to perform this class of setfaults. This inhibits all
processes from referencing the segment via the old ASTE.

5. Obtain a new ASTE from get_aste, via the AST replacement algorithm.
Temporarily entry-hold the parent ASTE (which is easy to find in this
base, as the son is already active (the boundsfaulted segment, and the
parent must thus be active) while so doing, so that the AST
replacement algorithm does not accidentally deactivate the parent (See
the explanation in the description of the segment fault handler for
more light on this problem). The new ASTE is guaranteed to be in a
different pool than the old ASTE, for that is why we are taking a
boundsfault, and thus cannot be accidentally deactivated in these
proceedings.

6. Call page control (pc$move_page_table) to move all ASTE information,
including the page table (but not the threads) from the old to the new
ASTE, and update all page control data bases necessary to move all of
the page table (see "Services of Page Control").

7. Rethread all inferior lists and parent pointers affected. If this is
a directory being boundsfaulted on, all of the father pointers of
inferior segments' ASTEs will have to be updated to point to the new
ASTE. This step is the entire reason for the existence of the
inferior list in the AST.

8. Hash out the old ASTE, hash in the new, as the segment is still
active, but in a different place in the AST.

9. Deposit (put_aste), or free, the old ASTE.

10. Unlock the AST and the parent directory, and return a zero status code
to fim.

Fine points:

The most difficult part of the boundsfault operation is that performed by
page control, described in Section IX. This is a consequence of the fact that I
page tables are permanently associated with AST entries.

9/78 4-16 AN61A

I

I

Very peculiar machine conditions are stored by the PTW2 prepage append
cycle used by EIS decimal instructions. This is a consequence of the design
that the computed address for the PTW2 page is developed by the Appending Unit
of the processor, and not stored as the Control Unit computed address in the
machine conditions. Therefore, both the boundsfault handler and the page fault
handler (see Section IX) must be aware of these peculiarities of the machine
conditions.

SETTING AND RRPORTTNG ON VTOC ATTRIBUTES

As defined in Section II, VTOC attributes are those properties of a segment
that are stored in its VTOCE and/or AST entry, as opposed to its directory
branch and associated data structures. Typical VTOC attributes are maximum
length, current number or records used, date-time-modified, quota used, quota,
time-page product. Typical branch attributes are bit count, author, ACL, names.

Directory control primitives, available both through the gate hcs_ and more
privileged gates available to the backup system, have need to obtain this
information about segments, and set it. The procedure vtoc_attributes performs
all of these functions, deciding when to go to the ASTE, when to go to the
VTOCE, and which vtoce-parts to deal with.

There are a multitude of entries to vtoc_attributes, which are all either
"set" or "get" entries. All of these entries specify a segment via PVID and
VTOC index, usually derived from a branch. These entries also receive a segment
UID; this allows the segment to be searched for in the AST, and allows a check
for connection failure (as in delete_vtoce and truncate_vtoce; see the
introduction to "Segment Control Services"). All of the entries are called with
the parent directory of the segment locked, and engage in the locking/nonlocking
protocol much as given under "Locking Conventions" in Section II.

The vtoc_attributes procedure is protected by the AST lock when modifying
attributes. This is a conservative action.

Some notes:

Whenever vtoc attributes changes a max-length, SDWs may have to be
recalculated. Thus, setfaults$setfaults, the most powerful type, is called to
fault all SDWs, causing all SDWs to acquire the new bounds field. Of course,
all processes using SDWs for this segment then take segment faults, which wait
for the unlocking of the parent directory by the caller of vtoc_attributes.

Whenever vtoc_attributes is asked to report date-time used and date-time
modified, it updates these quantities in the AST (in the active case).
Date-time-used is always updated (the storage system considers used to mean the
same as active, in terms of date-time used), (unless aste.gtus is on,
suppressing this), and if aste.fms is on (signifying that page control has
noticed modified pages), aste.dtm (the date-time modified in the AST) is updated
to the current clock value as well, and aste.fms turned off. This ritual is
also performed by pc$get_file_map, which reports date-time-used and
date-time-modified along with other activation information to the VTOC updater,
upda te_vtoce. (See "VTOC Upda ting" earlier).

9/78 4-17 AN61A

PDS AND KST MANAGEMENT

Each new Multics process 'j .e., other than the initializer) inherits the
entire hardcore address space from the initializer with a few exceptions. These
exceptions are the descr~tor segment, the Known Segment Iable (KST) and the
~rocess Qata Segment (PDS) of the process, and the segment PRDS (tRocessor Qata
Segment). This is to say that any reference in a hardcore program, via symbolic
link (e.g., "call setfaults$deltrailer" or "if active_hardcore_data$x = 1" etc.)
refers to the same segment, when the supervisor is running in any process for
all segments with these few exceptions. This is because all of the SDWs for a
given segment number in different processes (among the SDWs of the supervisor),
are copies of each other, never changed or revoked. However, the segments of
the supervisor that belong to a particular process must in fact be different
from each other. Thus, a reference to segment 60, resulting from a link to,
say, pds$processid, refers to different segments in different processes.

The descriptor segment is not created or destroyed by segment control; i·~
is created by the program "plm", which copies the initializer's descripto~
segment (the hardcore region) or deals with prelinked processes as appropriate.
It is not managed by segment control at all. The contents and meaning of thf~
descriptor segment are, however managed by segment control, as explained
previously under "Descriptor Segment Management" and "Segment Fault Handling",

The Processor Data Segment (PRDS), carried around from process to proces!!
by a processor as it switches processes, is similarly not dealt with at all b~'
segment control, as a segment, or as a data base. Its meaning, identity, and
purpose are explained in the Multics Reconfiguration E1H, Order No. AN71.

The PDS and KST of a process, however, are segments in the storage systen
hierarchy, in. fact, in the process directory of the process to which the~r
belong. The have VTOCEs, branches, and AST entries at times as any other
storage system segments. These segments are created by the hardcore prOCeS!i
creation program (act_proc), and deleted by the hardcore process destructioll
program, using the normal directory control segment creation/deletion
primitives, append and delentry. In this respect, these segments are peculiaI'
only insofar as that they are created at a validation level of zero, in th(~
ring-D supervisor. The process creation primitive fills in the new PDS with al:.
relevant and useful information about the new process, having appended it as c:
segment to the hierarchy, and initiated it as is usual.

Ho~ever, the use of a piece of the hierarchy as a piece of the supervisor'
requires special treatment. Note that all deciduous segments are both part of
the hierarchy and part of the supervisor (examples: hcs_, sys_infol
active_all_rings_data). They, too, are in directories j have valid pathnames,
and are described by SDWs constructed by other-than-segment-fault means. TheSE:
hardcore SDWs, however, which all processes inherit, were produced by
initialization, and are not subject to revocation or destruction in any livinr
process. They have no trailers. Now, since these segments are part of thE
supervisor, in all processes, they may not be deactivated, nor the SDWs revoked,
lest the supervisor take a segment fault while performing some operation, suct
as processing a page fault or a segment fault, which would make this cumbersome,
if not impossible. The segment-fault handling code, and all that it relies or
(virtually all of the supervisor, as may be inferred from the previous sections)
thus cannot be deactivated, nor have its SDWs revoked. There are no KST entrie~
or branches for such segments. They are supposed to handle segment faults, not
be subjected to them.

4-1& AN61

Thus, those segments that will be used as part of the supervisor in a new
process must acquire something of the nature of deciduous segments; having
nonrevocable SDWs that describe nondeactivatable AST entries. When a PDS and
KST have been readied by process creation for a new process, segment control is
invoked to transform these segments into reverse deciduous segments, segments
which were created in the hierarchy and become part of the hardcore address
space. The procedure activate_segs is responsible for this.

The task of activate_segs is making a PDS and KST nondeactivatable, and
returning SDWs for them, describing the ASTEs in which they were
nondeactivatably activated. The procedure grab_aste, described below, is used
to activate them nondeactivatably. When they have been semi-permanently
activated, activate=segs returns their SDWs, with the "encacheable" bit Qn, as
explained under "Encacheability Management". For the PDS, a special operation
known as "prewithdrawing" is performed. This means that record addresses are
assigned to all pages of the segment, to ensure that this PDS, when used as a
ring-O stack in the new process, never is unable to grow a page or itself
because there is no more room on the pack that it was on. The PDS cannot be
subject to segment moving, when in use by the new process, for it is the very
segment that the segment mover uses as a stack in that process. For the KST, we
are content to let the process terminate if this highly unusual event happens.
For the PDS, however, the system is not even able to invoke the
process-terminating software were the PDS unable to grow, and the system loops
and/or crashes.

The prewlthdrawing is accomplished as follows:

1. The segment has been fordibly activated, nondeactivatably.

2. The bit aste.dnzp is turned on, indicating that no addresses should
ever be reported by page control to update_vtoce, thus all addresses
ever assigned to this segment stay there (see nAddr~ss Management").
This bit is now updated to the VTOCE and reactivated to the ASTE
should this segment be deactivated.

3. The segment is released from being held active (grab_aste$release).

4. Each page is touched. This causes a device address to be assigned to
each page.

5. The segment is reforcibly activated. It may have been segment-moved
in step 4.

At process destruction time, simply releasing these segments from forced
activity (grab_aste$release) reverts them to their normal status.

SEMI-PERMANENT ACTIVATION (GRAB ASTE)

The procedure grab_aste is used by the PDS/KST forcible activator as
described above, and the IOM/FNP660 Communications Processor buffer facilities
as described below. It has a dual task; given a segment pointer (implying that
the segment is known in the calling process, and a length, it must activate the
segment into an ASTE capable of containing a segment of at least that length,
and while the AST is locked, turn on aste.ehs so that the segment becomes
nondeactivatable while the AST is unlocked, and unlock the AST and return the
AST entry pointer. Since it ensures that the segment is nondeactivatable, the
AST entry pointer is valid even after the AST is unlocked.

The steps for forcibly activating a segment into a given-sized ASTE are as
follows. The basic technique is to force the segment to be that size, and then
activate it.

AN61

1. Locate the branch of the segment, thereby locking the parent directory
to this process. This, as in the segment-fault and boundsfault
handlers, is done via a call to "sum".

2. Save the word of the segment at the given length. Store something
nonzero into it. This may cause a segment fault, and may cause a
boundsfault. This is valid, for we do not have the AST locked, but we
do have the parent directory locked. The segment fault and
boundsfault handlers are both prepared to deal with a "mylock" (this
lock is locked to my process, so neither will lock it or unlock it)
situation.

3. Invoke "activate", as described under "Segment Fault Handling". This
procedure returns with the AST locked, and the segment active, and
tells us where.

4. Using the ASTE pointer gotten in step 3, turn on aste.ehs (the entry
hold switch). This means that the ASTE pointer is still valid when
the AST is unlocked.

5. Unlock the AST. The ASTE pointer gotten in step 3 is still valid, for
in step 4, the segment became nondeactivatable.

6. Restore the contents of the word changed in step 2.
parent directory is still locked.

7. Unlock the parent directory.

8. Perform cache machinations
grab_aste$grab_aste_io.

as described

9. Return the AST entry pointe~ gotten in step 3.

below

Remember, the

if this is

The entry grab_aste$grab_aste_io semi-permanently activates 10M and FNP6600
buffer segments (the FNP bootloading segment, 101 buffer segments). As
described u9der "Encacheability Control", these segments must be made
irreversibly nonencacheable before subjected to such use, as the processor cache
management policy cannot be cognizant of main memory change"s produced by the
10M. Thus, when called at this entry, step 8 sets the cache state to
"Non-encacheable, multiple SDWs", and sets aste.inhibit_cache so that a set-acl
operation will not change this state. It then calls setfaults$cache to revoke
all SDW cache bits, so that this nonencacheability takes effect.

The releasing entries, grab_aste$release and grab_aste$release_io, simply
turn off the bit aste.ehs, and in the 110 case, aste.inhibit_cache.

101 AND FNP6600 BUFFER SEGMENT SPECIAL-CASING

As described immediately above, and under "Encacheability Control",
segments to be used as 110 buffer segments by the 110 interfaces or in
bootloading the FNP6600 Communications Processor, must receive special treatment
by segment control. When actually in use as buffers or bootload segments, AST
entry pointers to these segments are saved in 110 Interfaces data bases, and
page control performs unusual acts upon these segments which prohibit their
deactivation during such use. All of these restrictions boil down to the fact
that the segments must be semi-permanently activated, for 110 use, as explained
above under "Semi-Permanent Activation". Both MCS and the 110 interfacer deal
with grab_aste.

4-20 AN61

I

SEGMENT MOVING

Segment moving is the single most involved and esoteric action performed by
segment control. A segment move is what happens when an attempt is made to grow
a segment, there is no more room on the pack, and the segment is wholesale moved
to another physical volume in the logical volume where there is room to grow,
transparently. Segment moving may also be invoked on demand, via the highly
privileged gate hphcs_, in order- to move segments between packs to rebalance
them or compress a logical volume (remove a pack from it). These online utility
operations are coordinated by the online pack utility, sweep_pv.

The essence of segment moving is that it is basically a creation of one
segment and a deletion of an old one, as seen by segment control and page
control. However, all of the remainder of the system, particularly directory
control and the user ring, must see no change; the new segment must replace the
old segment, and its contents, in situ. In this regard, it shares some of the
flavor of a boundsfault, where one ASTE for a segment replaces another, wholly
and entirely in the AST hierarchy (see "AST Hierarchy" in Section II).

The creation of a new segment to replace an old one involves the creation
of a new VTOCE. All of the attributes, permanent and activation attributes,
other than the file map, of the new segment must be the same as the old. The
new segment must have the same contents and unique ID as the old; thus, it is
the same segment, once the segment move is over. The directory branch must be
changed to designate the new physical volume and the new VTOC ind~x.

Directories may be moved as well as segments. This complicates matters
only insofar as AST hierarchy threads must be reorganized in such cases.

Segment moves are provoked either by a call from the interface vacate_pv
(See "Special Services for sweep_pv" later on) or as a result of a condition
known as pack overflow (or "out of physical volume, 'OOPV'") detected in the
segment fault handler.

Page control, upon trying to grow a page for a segment, notices that there
are no more records available on its current volume of residence. This may only
happen in response to a page fault (see Section IX). The situation requires
actions that cannot be invoked by page control, which may deal only with wired
data bases in the environment in which it handles a page fault. Therefore, it
sets on the bit aste.pack_ovfl in the ASTE, sets a fault in the page-faulting
process' SDW for this segment, and restarts the machine conditions. This causes
the process to take a segment fault. The segment fault handler (See "Segment
Fault Handler", earlier) finds the ASTE, and notices this bit, and calls the
segment mover (segment_mover). Upon return from the segment mover, the segment
has either been moved (in which case a zero status code is the result) or not
(in which case an error code, probably error_table_$log_vol_full is returned),
and the resulting error code is returned to fim to signal or restart the fault.
When the segment fault is restarted, another segment fault occurs (the segment
mover will have revoked all SDWs for the segment, even though page control
revoked the one in this process), and the process reconnects to the nnew"
segment. When that segment fault is restarted, a page fault occurs and the
segment, now on a new volume, grows as intended.

The segment mover is invoked, and returns, with the AST and the parent
directory of the segment to be moved locked. It does not unlock this directory.
It locks and unlocks the AST many times during the course of the segment move.
It is passed the ASTE pointer (ensured valid by the lock) and the branch pOinter
(which it may not use until the AST is unlocked) by the segment fault handler,
describing the "old ASTE".

9/78 4-21 AN61A

The most basic outline of the segment-move operation is as follows.

1. Make the old ASTE inaccessible with a "setfaults".

2. Create an ASTE (the "new ASTE") for the new segment. (It cannot be
activated, for no-one except segment mover can distinguish it from the
~ ASTE, which is active.)

3. Call create_vtoce$createv_for_segmove (see "Segment Creation" earlier
in this section) to create a new segment, given the branch of the old,
on some other, suitable physical volume, to create a "new VTOCE".

4. Copy the contents of the segment as it now stands (~ segment 1s
unambiguous; it is designated by the segment number faulted upon in
this process, the VTOCE, ASTE, and branch it had before the segment
mover was invoked) into the VTOCE-less, branchless, anonymous, segment
described by (defined by) this "new ASTE". This segment is on the
"new" physical volume. Null pages are not copied, to avoid
wi thdrawing records. .

5. Copy all the activation attributes from the old ASTE to the new ASTE,
make the new ASTE describe the "new VTOCE" from step 2. Update that
VTOCE from the new ASTE. Both ASTEs and both VTOCEs now describe
identical segments with identical attributes.

6. Change the directory branch (remember, we have the directory locked)
to describe the ~ VTOCE (i.e., change entry.pvid and entry.vtocx).
The old VTOCE is now an impostor, the new one is real. Even a crash
at this point would affirm this.

7. Un thread and unhash from the AST the old ASTE, thread in (including
AST hierarchy threads) the new ASTE, and hash it in as the valid ASTE
for the segment under consideration.

8. At this point, the move is essentially complete. The old VTOCE and
the old ASTE describe a segment that is not designated by any branch
in the hierarchy: an active orphan, not threaded into any structure in
the AST. The new VTOCE, the new ASTE, and the branch are consistent.
Truncate the segment described by the old ASTE, releasing its disk,
bulk store, and main memory resources (it is inaccessible). Free the
old ASTE (call put_aste). Free the old VTOCE (call
vtoc_man$free_vtoce).

9. The segment move is complete. Return to the segment fault handler or
vacate_pv.

The segment mover uses a vast artillery of complex supervisor programming
techniques. It involves many of the mechanisms described already, such as
segment/VTOCE creation/updating/truncation/deletion, and VTOCE successful-write
awaiting. It protects both old and new physical volumes against demount (see
Section XIV) during critical regions. There is not much to be gained by a
detailed analYSis of this little-used and obscure program, when the listing can
be read. The outline above indeed explains the basic flow; a few more points
__ ~." 1...._ ~"' ___ ': __ .L._...J __ '-.J_'L. _~_

W..I...I.J.. ut:! J..J..J..UWJ..Uc1l..t:!U, WU..I.\.:U e1I"t:: critical .-l..V understanding _&'
VJ.

machination of this operation.

In a ,situation where a physical volume has experienced pack overflow, it is
likely that the logical volume is near full, and all packs or many in the
logical volume are near overflow. Thus, if the normal VTOCE creation primitive
were invoked on behalf of the segment mover, the volume it chose (See "Segment
Creation" earlier) might in fact overflow while step 4 above was being executed.
Then the segment mover would recurse. At any rate, the segment mover ~
prepar~d for a pack overflow on the new physical volume during step 4, by means
of a condition handler for segment_fault error (in this case, an invalid segment
number will be the cause of the segment-fault error, although aste.pack_ovfl
Hill be on in the new ASTE). However, even given this, the second choice of a
physical ~olume, should this target pack overflow occur,. cannot be influenced by

4-22 AN61

the fact that this first overflow occurred. Thus, segment_mover needs and has a
way of trying all physical volumes in the logical volume in sequence, walking
the logical volume PV chain (See "Segment Creation" earlier) as a coroutine with
create_vtoce. This is to say that create_vtoce is called in a lQQQ on each
segment move, at a special entry that walks down the chain finding ~
accepta~ physical volume each time, until segment_mover can perform step 4
without an overflow on the "new" physical volume. A variable (corout_pvtx)
passed between segment_mover and create_vtoce$createv_for_segmove keeps track of
how far down the chain create_vtoce has gone for this segment move. If step 4
fails on every physical volume though acceptable in the logical volume, or there
are none (one criterion on acceptability is at least as many records free as the
"old segment" had ~ ~ ~ record ~ started ~ all), the segment move
fails with error_table_$log_vol_full. Needless to say, more arcane machination
is performed when step 4 fails in order to relinquish the VTOCE gotten' in step
3, recoordinate all of the data bases and retry steps 3 and 4.

The page control entry pc_wired$write_wait is called at several points in
the segment mover. The purpose of doing this is to force all pages of zeros in
main memory to be noticed by page control, and "nulled" (see "Address Management
Policy," Section VII), to shrink the segment to its minimum possible size
(number of records). As a matter of fact, if this operation, performed upon the
original segment yields ten or more records, the pack is no longer considered to
be in an overflow state, and the segment move is abandoned and declared
successfully over. This cannot be the case for segments activated by vacate_pv.

The segment mover updates VTOCEs and deposits record addresses several
times; all necessary protocols about waiting for successful write completion
(calls to vtoc_man$await_vtoce) are,followed.

The updating of record quota used of a directory from old to new ASTE~ is
difficult, as active segments inferior to a directory being segment-moved may be
shrinking and growing.

The segment mover makes use of the segment number by which the segment
being moved was known in the running process to construct an abs-seg (see
Section VII) with which to reference the old segment; the original SDW was
removed by a setfaults call in step 1 above. The abs_seg "abs_seg" is used to
reference the segment represented by the "new ASTE". A recursive pack overflow
on this segment therefore causes an immediat€ se&-fault_error, as the segment
fault handler refuses to deal with hardcore segments. This causes a signal,
that is caught by step 4, and avoids getting into the segment mover recursively
although page control induced a pack overflow on the ASTE and revoked the SDW
for abs_seg in this case the same as a pack overflow not encountered during a
segment move.

SPECIAL SERVICES FOR sweep py

The online pack maintenance tool sweep-pv (see the Multics Operators' Handbook,
Order No. AH81) can be used to perform operations upon VTOCEs directly from a
highly privileged progess. Among these operations are:

1. Listing the VTOC of a pack, i.e., reporting the pathnames of the
segments owning all VTOCEs.

2. The location of all orphan VTOCEs, (see Section II), VTOCEs not
described by any branch in the hierarchy.

3. The deletion of such VTOCEs.

4~23' AN61

4. The rebalancing of packs via demand segment moving.

5. The vacating of packs (moving of all VTOCEs) via demand segment
moving.

The fundamental primitive used by sweep_pv is phcs_$get_vtoce. This entry,
supplied a PVT index and a VTOC index, calls vtoc_man$get_vtoce to retrieve this
VTOCE, and copies it into the caller's buffer. This entry is nQi, in its
current implementation, protected against volume demounting; it is the user
responsibility of the sweep_pv command not to demount volumes to which sweep_pv
is being applied.

This entry alone is enough for listing of VTOCs and orphan location. The
UID pathname in the third vtoce-part is used to locate a hierarchy branch
(develop a pathname). The on-line subroutine vpn_cv_uid_path_$ent performs this
UID path (with segment UID) to pathname conversion. This subroutine recursively
scans directories by picking them out from ring zero. If this subroutine
indicates that either the segment UID in the VTOCE or some UID in the UID path
is not the UID of a segment/directory in the directory it claims, an orphan is
indicated.

The highly privileged gate hphcs_$delete_vtoce is used to delete orphans.
It will delete any VTOCE, be it an orphan or not. The exact description of the
act of deleting a VTOCE of a nonorphan is that a (forward) connection failure is
caused. There are no tools to cause connection failures in this manner. This
gate calls the program priv_delete_vtoce to do the work. This program locks the
parent directory; the UID of the parent directory is determined from the VTOCE
to be deleted (which is checked, by the way, against a UID supplied by the
caller). Note that all that is needed to lock a directory is its UID, notably
not a pointer to that directory. The AST is locked and checked to make 'sure
that the segment is not active; if active, it is surely no orphan, and ordinary
means (such as the "delete" command (see the Multics Programmers' ManY£l
Commands £nQ Actiye Functions, Order No. AG92» may be used to delete it. The
operation is aborted in this case, with error_table_$illegal_deactivation as an
outcome. The AST is then unlocked; a dummy branch is then created for the
segment in the stack frame of priv_delete_vtoce. It has the field entry. owner
equal to "777777777776"b3, which will suppress quota movement by truncate_vtoce.
The normal program delete_vtoce (see "Segment Deletion" and "Segment Truncation"
earlier) is then called, being passed the dummy branch, which has been filled
with the physical volume ID and the VTOC index in that volume. The directory is
unlocked, and the error code of the delete_vtoce command returned.

The motivation for deleting orphans is not only that the VTOCE is unusable;
the VTOCE designates pages in its file map that are unusable. The physical
volume salvager does not know that such a VTOCE is an orphan, therefore, its
pages are not recovered until the VTOCE is deleted by this means.

The priv_delete_vtoce primitive has a deep dread of accidentally deleting
something that ~s active. It has no qualms about deleting some VTOCE whose
segment is not active, and causing a connection failure for that segment. If
the UID in the third vtoce-part is correct (not damaged in some unspecified way)
the locking of the parent directory and AST scan ensure that the segment cannot
be active, or it will be found if it is, and the operation aborted. But, should
the third vtoce-part be damaged, AHQ this primitive is invoked (maliciously) on
some segment which 1§ active (sweep_pv, of course, will nQi do this) chaos will
result when that segment is deactivated into a VTOCE which some other segment
owns (~~ ~ syndrome). The crash message "vtoc_man: UID = 0 in a free
VTOCE" at some later time will be one of the outcomes of such behavior.

AN61

I

The sweep_pv tool may also be used to force segment moves, either for the
purpose of vacating a pack or rebalancing a logical volume. Three primitives
are provided for this purpose.

1. The entry vacate_pv$vacate_pv, invoked via hphcs_$vacate_pv, which
makes a volume unacceptable for segment creation, whether on behalf of
the segment mover or normal creation (pvte.vacating is turned on,
which is respected by create_vtoce at both entries).

2. The entry vacate_pv$stop_vacate, invoked via hphcs_$stop_vacate_pv,
which reverts the state set above.

3. The entries vacate_pv$move_seg_file and vacate_pv$move_seg_set,
invoked via hphcs_$pv_move_file and hphcs_$pv_move_seg.

The vacate and vacate-stop entries are used in two ways: sweep_pv turns on
vacating (inhibits) volumes being vacated or moved from, and uses this feature
as a control to target segment moves in such operations. These features are
directly accessible to the privileged user 'via the tool inhibit_pv. (See the
Multics Operators' Handbook, Order No. AM81.)

The sweep_pv tool uses hphcs_$vacate_pv and hphcs_$stop_vacate_pv to
inhibit all volumes, in the physical volume chain of the logical volume on which
moves are taking place, between the beginning of the chain and the one where it
believes is best for the move to be targeted. As explained in "Segment Moving"
before, the mover finds the first acceptable volume to target a 'given segment
move. Thus, the "optimizer" internal procedure of sweep_pv uses these
"vacating" bits to manipulate and corner the segment mover, to obtain a balanced
distribution of segments and pages, particularly in the case where a volume is
being vacated. The sweep_pv optimizer is baroque; read the listing for any more
detail.

The demand segment move entries, vacate_pv$move_seg_seg and
vacate_pv$move_seg_file, are used to force segment moves on a given segment. As
explained above, sweep_pv targeted the move by manipulating "vacating" bits;
these entries specify no target volume, the source volume is wherever the
segment resides. Both these entries operate by locating the branch for the
segment, using either directory control or address space management primitives
as necessary, making the segment known (irrespective of the caller's access to
the segment), calling activate (see "Segment Fault Handler" for a discussion of
the significance of calling activate), and invoking the segment mover upon the
ASTE and the branch in hand. The entry to the mover is the same as the one used
by the segment fault handler: the only difference is that a referencing address
of -1 (corresponding to the address page-faulted upon which causes a segment
move) tells the mover that there is no referencing address. The segment is made
unknown and the directory unlocked upon completion (the segment mover unlocks
the AST).

SERVICES ON BEHALF OF THE HIERARCHY SALVAGER

The hierarchy salvager, when ope~ating in other than 'online-salvager'
mode, recursively walks the tree of the Multics hierarchy, walking downward to
find directory and segment branches, and returning upward to accumulate and
verify quota and quota used totals. The hierarchy salvager maintains its own
mechanisms for activating and deactivating directories to be scanned; this is
basically historical in origin, dating from the times the the hierarchy salvager
was a stand-alone subsystem. In order to perform these activations and
deactivations, the salvager must utilize the services of the VTOC manager in
order to access and update the VTOCEs of the directories being activated. When
running in "-check_vtoce" mode, the hierarchy salvager also reads, inspects,
checks and updates VTOCEs of all segments.

9/78 4-25 AN61A

The procedure "salv_check_map" in the hierarchy salvager is used by it to
read VTOCEs, calling the "get_vtoce" entry in the VTOC manager as appropriate.
This procedure maintains an array of VTOCE images, with one entry for each level
of directory (and the la5t level, possibly a segment at each instant) being
scanned. During the checking of the branch for each segment or directory,
performed in salvage_entry, the parameters in the VTOCE are cross-checked and
updated. This includes the primary name, UID pathname, and branch
relative-pointer in the "permanent information" in the third vtoce-part.
(Again, we reiterate that this checking is done for directories all the time,
and for segments only when the salvager is "checking VTOCEs", i.e., 1n
"che.ck_ vtoce tt mode) • When the salvager cotnes back lW. the hierarchy,
salvage_directory accumulates recursive information for inferior quota and used
figures for each directory being salvaged and includes this among the
information being checked by salvage_entry in the VTOCE for that directory. At
the end of processing each branch, the procedure "salv_truncate" is invoked.
This procedure serves principally to write out the (possibly modified) VTOCE by
calling the "put_vtoce" entry of the VTOC manager. If invoked at an appropriate
entry, salv_truncate also frees all records claimed by the file map of the
VTOCE, thus destroying the contents of the segment. When this is done,
salvage_entry, which requested this service, usually destroys the branch as
well, and sa1.v_truncate frees the VTOCE via a call to vtoc_man$free_vtoce. This
is the hierarchy salvager's mechanism for destroying segments, used in such
cases as connection failure, totally unrecoverable directories, etc.

As stated before, the hierarchy salvager has its own mechanism for
activating and deactivating directories; it must activate directories in order
to check their contents for whatever qualities it seeks. It never activates
segments.

Since the entire processing of directories is done as part of the branch
checking !Qr 1ha1 directory, (this is to say that salvage_entry, the branch
processor, calls salvage_directory, the recursive directory processor, during
other branch checks), the time during which each directory need be activated is
completely contqined in the time during which the VTOCE for that directory is in
the array described above (salv_data$vtoce), having been read there by
salv_check_map, and to be 'written out by salv_truncate. The procedure
salv_activator is used to maintain a set of sixteen ASTEs, associated with the
segment numbers for page-table abs-segs salv_abs_seg_OO to salv_abs_seg_15, into
which directories are activated and deactivated from the array salv_data$vtoce
as the hierarchy salvager goes up and down the hierarchy. This number
corresponds to hierarchy depth. The program salv_activator calls the page
control entries usually used by the storage system activation and VTOCE update
functions, pc$fill_page_table and pc$get_file_map, to fill and find information
about these ASTEs. The entry pc$cleanup is also used by salv_activator, as in
normal deactivation, to finalize the state of a segment (See "Deactivation"
under "Segment Fault Handling", earlier in this section.)

It is possible that a directory grows during salvaging; in this case; pages
are withdrawn in the usual manner; the directories being salvaged reside on
whatever volume they do, and are so marked in the ASTE set up by salv_activator,
via the field aste.pvtx. The growing of pages against directories is noticed at
the time salv_activator "deactivates" each directory, for in this case the bit
aste.fmchanged is on. The shrinking of directories by the hierarchy salvager,
which can also cause this bit to be turned on, is much more common.

4-26 AN61

DEMAND DEACTIVATION OF SEGMENTS

The ability to deactivate segments on explicit call is provided via the
gate phcs_$deactivate. This is available principally as a performance
optimization for the hierarchy dumper. The hierarchy dumper activates large
numbers of segments while dumping them. Since it knows that it will never use
them after dumping them, it can free its AST resources explicitly, making the
ASTEs used by these segments immediately available.

The ability to demand-deactivate segments, as this facility is called, is
provided by the procedure demand_deactivate. This procedure locks the AST,
checks if the segment specified via segment number is active (the validity of
the SDW implies that it is), and if so calls "deactivate" to deactivate it (or
fail if it is nondeactivatable; see "Deactivation" under "Segment Fault
Handling" earlier in this section). The AST is unlocked, and the error code of
"deactivate" returned.

The ability to demand-deactivate any segment is conditional upon the ASTE
bit, aste.demand_deact_ok. All processes that have connected to the segment
must have had a bit in their KSTEs for this segment stating that they wanted it
to be activated with this bit on. Thus, if at least one process is connected to
the segment that did nQi want it to be ~ctivated with the possibility of
demand-deactivate, it may not be deactivated on demand a • This is in order to
implement the policy of the demand-deactivation facility being solely a
performance optimization for single-process use of a segment when that process
fully knows its intended usage pattern for the segment.

One view of this policy is that all activators must agree. Since "normal"
use of a segment (via the linker or hcs_$initiate) does not permit demand
deactivation, most shared segments (library programs, for example) cannot be
demand-deactivated.

SERVICES AT DEMOUNT/SHUTDOWN TIME

The basic goals of demounting a physical volume are to make its contents
inaccessible and cause all of the pages and VTOCEs on that volume to contain the
latest, up-to-date information. The goals of shutdown, emergency and normal,
are the same, except that it applies to each physical volume mounted at the time
of shutdown. Therefore, shutdown is implemented as a call to demount each
physical volume present at the time of shutdown, with the exception that packs
are not unloaded.

Demounting is described more fully in Section XIV. The steps of demounting
are these, as seen by segment control:

1. Turn on pvte.beins-demounted for the volume being demounted, to cause
all activation attempts after this point to fail.

2. Deactivate all segments on the volume being demounted.

3. Turn on pvt.beins-demounted2 for the volume being demounted, causing
all future attempts to start VTOe I/O to fail.

4. Await the completion of all VTOe I/O for the volume; purge the VTOe
buffer segment of all vtoce-part buffers containing vtoce-parts of
this volume.

5. elean up the volume, write out the label, etc. (see Section XIV),

AN61

The first two steps stop all activations and deactivate all segments: 2~~
attempts to activate check the bit pvte.being_demounted under the AST lock, ~o
that any attempt to activate must either be before or after the AST locking cf
step 2, and thus either have its activation reverted by step 2 or fail by virtue
of finding this bit on as the case might be.

The bit pvte.being_demounted2 is checked by the VTOC manager each time the
VTOC buffer lock is locked or relocked; this is the signal of demounting that
causes VTOCE operations to unitarily succeed or fail (see "General Policies" in
Section III).

The steps outlined above are conducted by the procedure demount_pv,
described in Section XIV. Step 4 is conducted by vtoc_man$cleanup_pv, in the
VTOC manager, also discussed in Section III.

The deactivate loop in demount_pv, which implements step 2, generally calls
the procedure "deactivate" to perform these deactivations; however, in the case
of a system shutdown, the critical steps of deactivation, performed by
pc$cleanup (finalizing segment state) and update_vtoce (the updating of the
VTOCE from the ASTE) are performed by explicit calls to these procedures. This
is to avoid dealing with possibly bad AST threads in the case of an emergency
shutdown: deactivate generally frees the AST entry being deactivated by
rethreading it (via a call to put_aste) in its used list.

The program demount_pv tries to optimize by parallel-processing of many
volumes, in the case where many are being demounted. Thus, in its scan of the
AST for deactivation, it deactivates segments on any volume that is being
demounted. C~rrently, only shutdown makes use of this feature; normal
operator-invoked demounting operates fully one volume at a time.

4-28 AN61

SECTION V

PAGE CONTROL OVERVIEW AND CONCEPTS

Page control is that subsystem of the Multics supervisor that is
responsible for the multiplexing of main memory, the bulk store subsystem, and
disk storage. A large part of that responsibility is_~he transferring of pages
of segments between all of these media and the management of the page tables of
segments. Page control is also responsible for reporting the status and file
maps of segments to segment control (see Section IV, "VTOCE Updating"), and the
filling of page tables to make segments addressable by the Multics processor.

Page control has traditionally been regarded as extremely complex and
esoteric; this attitude derives in part from the fact that it is largely coded
in Multics Assembler Language CALM), and part from the fact that it is highly
asynchronous, maintaining the maximum possible degree of concurrency in all lID
operations. While these concurrency policies will be fully explained, it is
assumed that the reader has some familiarity with Multics Assembler Language in
order to follow the program listings. A basic familiarity with the appending
unit operations (segmentatioL and paging) of the Multics processor will also be
assumed. .

The discussion of page control is divided into seven sections in this
manual:

Section V.

Section VI.

Section VII.

Overview and Concepts, the current section, explaining basic
concepts and goals of page control.

Data bases, breaking down the fundamental data objects of
page control, the PTW, the CME, the PDME, the PDMAP header,
and the free store maps in the PVTE/FSDCT.,

The address management
accidental disclosure
and crashes.

policy used by Multics to avoid
of data by virtue of inconsistencies

Section VIII. The fundamental mechanisms and protocols used within page
control to support the services provided.

Section IX.

Section X.

Section XI.

The services provided by page control to Multics, explained
in terms of the mechanisms and data bases described in
Sections VI, VII, and VIII.

Peripheral services of page control.

Quota management.

The goal of Sections V through VIII is to lead up to the descriptions of
the page control services in Section IX. However, these cannot be explained in
reasonable te~ms without comprehension of the information in the preceding
sections.

5"'!'1 . AN61

BA~lC GUALS AND S£HVICES OF PAGE CONTROL

The most visible and crucial service of page control is to handle page
faults. A ~ fault is the fault taken by the 6~/80 processor when an attempt
is made to append through a page table word that indicates its page is not in
main memory. In terms of the Multics virtual memory, a page fault occurs when a
reference is made to a page of the virtual memory, a page of some segment, that
is not in main memory. It is the duty of page control to allocate a ~ frame
(1024-word block) of main memory, initiate the reading-in or creation of that
page of the segment into this page frame, cause the faulting process to wait for
the completion of that reading, and notify it so that it might retry the control
unit cycle (that sub-portion of an instruction that can be retried with no side
effect or regression) when that read has completed.

As part of the mechanism of allocating a main-memory page frame, it is
usually necessary to ~ some page of some (possibly different) segment from
main memory, in order to acqufre an unused page. Eviction of a page consists of
taking whatever action is required to make a process that might reference that
page take a page fault and start these proceedings over again for that page.
The choice of which page to evict, or replace, is a critical
performance-oriented algorithm of' the system. The subject of Page Reolacement
Algorithms (ERAs) is one covered extensively in the literature, and of great
interest to those interested in performance. The Multics page replacement
algorithm is described fully under "Main Memory Replacement Algorithm" in this
section.

The bulk store subsystem is an optional feature of Multics that allows
configurations having relatively small main memories to gain some of the
performance benefits of having a large main memory. Under Multics, the bulk
store is used as an intermediate-level page storage known as the paging device.
Since the average access time (time to access and transfer a page) from the bulk
store subsystem is on the order of half a millisecond, as opposed to the tens of
milliseconds for the average access time for a page on disk, it is advantageous
to the system to keep copies of heavily-used pages on the paging device instead
of on the disk. The same is true of main memory; it is advantageous to keep the
most heavily-used pages in main memory as opposed to anywhere else. The average
access time for pages, over the whole system, is the sum of the products of the
access time for each device multiplied by the relative probability of accessing
that device. Thus, it is to the system's advantage to keep copies of the most
heavily-used pages in main memory, the next-most-heavily-used on the paging
device, with all others being accessible only from secondary storage (the disk).
Hence, an arrangement known in the literature as a multilevel storage hierarchy
exists, where three different media of progressively increasing size, increasing
access time, and decreasing cost per bit transfer pages around dynamically in
order to optimize the system's average access time for a page. The strategies
for managing the paging device, i.e., the replacement decisions, are part of the
paging-device management strategy known as Page Multilevel (PML) in Multics,
described later in this section.

A less visible service of page control is the assignment and deassignment
of disk records. A disk record is a page-size block of secondary storage, which
does not cross a cylinder boundary, eXisting on a given physical volume (pack),
and described by its record address on that' pack, the zero-indexed integer
describing its position in the array of records on that pack. Record addresses
(i.e., disk records) are assigned to pages of segments the first time a page of
a segment is referenced. They are unassigned at the time that VTDC entries are
updated, which occurs most often when segments are deactivated (see Section VII,
and the glossary). Record addresses may be nulled or live at any time, while in
use in page control, describing whether the record on disk contains data from
the page of the segment, or the page of the segment is supposed to contain
zeros. The motivation behind these strategies, and their implementation, is a
very important part of page control, and is described fully in Section VII,
"Address Management Policy." This particular issue also ~nteracts strongly with
segment control; (see "VTDCE Updating" in Section IV).

5-2 . AN61

In addition to the transferring of pages between the levels of the storage
hierarchy (not to be confused with the storage system hierarchy), page control
is responsible for the maintenance of active segments. An active segment, as
fully described in Section II, is one which has a page-table in main memory.
Page control is responsible for maintaining the current length, record usage,
quota information, and most important, file maps, of all active segments. The
file map is the mapping between pages of a segment and disk records or pages of
zeros. Not only does this include dealing with segments activated and
maintained by segment control, but includes segments that have neither VTOCEs
nor branches, created by initialization, process creation, etc., and various
levels of abs-segs (page tables and ASTEs used for addressing secondary storage
explicitly) used allover the system. In the usual case, page control is
responsible for filling ASTEs and page tables at the time that a segment is
activated by segment control (see "VTOCE Updating," in Section IV).

Page control performs a large and complex set of auxiliary services on
behalf of the rest of the supervisor. In part, the need for many of these stems
from the fact that a process which takes a page fault may lose the processor
while waiting for it. Hence, any code that uses a per-processor resource, such
as the per-processor stack used at interrupt time, may not take page faults.
Furthermore, any code that is executed under the protection of a lock that has
been locked by looping until it becomes unlocked may not lose the processor on
which it is executing, lest another process try to lock that lock, and loop I
potentially forever on a one-processor system, or for an indefinite time
dependent on the vagaries of the scheduler in a multiprocessor system. Thus,
many diverse portions of the supervisor have a need to avoid taking page faults
while they run. Code and data bases that ~re not subject to partial removing
from main memory are said to be wired, and the act of making a set of pages
wired is known as wiring, the inverse of this is known as unwiring. All of page
control is wired, to avoid taking page faults while processing page faults.
There is one special case of a page fault being taken during a page-faultj the
so-called "recursive FSDCT page fault." This is explained fully in Section
VIII. Thus many subsystems of the supervisor call page control to wire their
procedures, stacks, linkage sections, and data bases to. perform this class of
manipulations. Such wiring is called temp wiring. More fully, temp-wiring is
the wiring of a segment or part of a segment by reading in its pages and making
them nonremovable by the page replacement algorithm, by covenant with page
control. For some segments, like wired deciduous segments (see the glossary,
e.g., pI1_operators_) this "temp" wiring is for the life of the bootload.
Temp-wiring is as opposed to "perm wiring," which is the act of creating an
unpaged segment, i.e., one that does not have a page table, is contiguous in
main memory, and whose main memory location and extent are directly described by
SDWs that describe the segment. Such segments are made only by system
initialization.

One of the implications of the fact that page control itself is mostly
wired (perm-wired, as a matter of fact), is that the descriptor segment of any
process that uses page control must itself be wired, as were this not the case,
page control would take a descriptor segment ~ fault on the descriptor
segment it attempted to run on, hanging up the 68/80 processor in a "trouble
fault" loop. Furthermore, the per-process data base in which page control
stores each process' page-fault machine conditions must be wired as well. This
data base is the PDS, or Process Data Segment, of the process. This versatile
data base not only contains page control variables, but all process definition
variables, a stack for unrestarted user-ring faults, a pathname associative
memory, and entire per-process ring-O stack. (See "PDS and KST Management" in
Section IV for details of segment-control special-casing of this segment.) In
order to minimize the amount of this segment which must be wired, therefore, as
wiring reduces the total main memory resource available to all users, page
control and traffic control, restrict themselves to using only variables and
data areas in the first ~ of the PDS of a process. Similarly, all of the
SDWs needed by these two subsystems, and the supervisor as a whole, in fact, are
in the first page of the descriptor segment. Thus, the first pages of the
descriptor segment and the PDS are called the two critical process ~ of each
process. Since no process can run unless its two critical pages are wired, a
number of pages equal to twice the number of processes that can run must be
wired at all times. Since this can be a large number of pages, performance

9/78 5-3 AN61A

constants require only a subset of all processes eligible to run at any time.
The traffic controller gives processes eligibility and ta~es it away depencing
on scneduling decisions; a process that is eligible cannot run until it is
load~d. This loading consists of wiring its two critical pages. Similarly,
wh~ligibility is taken away, a process is unloaded. The loading of processes
is initiated imoediately at the time the traffic controller makes them eligible.
T~e service of loading and unloading processes for the traffic controller is an
important auxiliary service of page control.

Page control also provides services to dynamic reconfigurationj when a
syst~m contT'cller is removed from the Multics configuration, all pages in page
~rames in that system controller must be evicted. This can even include wired
pages, which involves some machination. Single page frames can be deconfigured
via the operator "delmain" command (see the Multics Operators' Handbook, Order
NO. At-Ib 1 and the Bultics Reconfiguration PLM, Order No. AN71) . Page control
must evict their contents, and avoid future use of these frames. Similarly,
page control must make available main memory frames that become usable as
controllers or individual page frames are added back to the configuration.

The Input/Output Multiplexer (10M) has a feature whereby a limited form of
~rotection may be used, if the I/O requests for a given channel are constrained
~o a given region of main memory. The 10M, when performing data transfers and
control word transfers for that channel, will not only relocate all addresses
found therein with respect to a per-channel "Base Register," but check these
(relative) addresses against a per-channel "Limit Register." These 10M features
allow the Multics I/O Interfacer to allow users to construct 10M control word
lists, and perform data transfers directly to and from user segments. This
ability implies that these segments, or portions of them, must be placed
contiguously in main memory, not only being wired, but not movable for memory
reconfiguration. Such pages are called abs-wired. They may not be moved
because the 10M will have absolute addresses of regions in these pages in its
internal registers, which are not subject to manipulation by page control. The
service of abs-wiring parts of segments, also used by the FNP6600 Communications
Processor boot load software is another auxiliary service provided by page
control.

Another service of page control is the so-called "post-purging" feature
invoked by the traffic controller. When a process loses eligibility, this
function is invoked to bias the page replacement algorithm toward claiming pages
deemed "intrinsic" to that process.

Page control also manages record (or~) quota. Maintained in active
segments' ASTEs and nonactive segments' VTOCEs, quota must be checked, and
quota-used totals adjusted whenever pages are created or destroyed. This
mechanism is solely for storage system hierarchy segments; supervisor segments
have no quota checking.

BASIC ORGANIZATION OF PAGE CONTROL

Page control is said to consist of three major ~, or invoking
env~ronments, and a few lesser ones. All actions and mechanisms in all pa~ts of
page control must take into account the actions of all of the ilsides. iI This
organization is also somewhat conducive to the understanding of the organization
of the actual modules. The three major sides are:

1. The ~ ~ side: the software invoked in response to a page fault
in a Multics process, and all software invoked by it.

2. The call side: entries invoked by segment control. reconfiguration,
initializ~il6n, 110 management, ~tc. ,-to perform ali services required
by them of page control.

5-1; AN61

3. The interrupt side, or done side, named after a routine in the module
page_fault. This side is called by the storage system device routines
(the disk DIM, disk_control, and the bulk store DIM,
bulk_store_control) to notify page control of I/o--Qperations upon
pages that have completed. This side is peculiar in that it may be
invoked by the storage system DIMs while other parts of page control
have called these DIMs.

The minor sides of page control are those entries called by the traffic
controller; those which perform the loading, unloading and post-purging
services. These entries. are fundamentally different from the others in that
they run on behalf of the traffic controller as opposed to on behalf of the
process executing them; thus very special techniques for waiting on events,
which are not used elsewhere in page control, are used.

Page control may also be divided into the divisions "ALM page control" and
"PL/I page control." Rather than simply indicating the language in which the
particular modules are coded, this division emphasizes a fundamental division of
functional responsibility. ALM page control is the heart of the entire
mechanism. It consists of the entire path taken by a process that takes a page
fault, other than the disk DIM and those parts of the traffic controller that
are invoked. This includes not only the actual page fault handler, but the
fundamental internal primitives that organize the reading and writing and
eviction of pages, and the implementations of the page and paging device
replacement algorithms. It also includes the logic to allocate disk records.
The programs in ALM page control are: page, page_fault, pd_util, free_store,
device_control, post_purge, page_error, evict_page, and (by some standards)
bulk_store_control, which is the bulk store DIM. ALM page control is sometimes
called the page control kernel.

PL/I page control consists of all of the call-side functions: entries
invoked by segment control, including those for mass deposition (deallocation)
of disk records. It includes the entries called by reconfiguration,
initialization, 1/0 management, and traffic control (other than post-purging,
which is in ALM page control). All of the programs in PL/I page control rely
upon the fundamental primitives in ALM page control to do actual deeds; most of
the logic in PL/I page control consists of determining which things have to be
done, and invoking entries in ALM page control to do them. PL/I page control
accesses ALM page control exclusively through the transfer-vector "page," which
is there to localize this interface. The most important program in PL/I page
control is the program "pc", which, among other functions, contains the entry
points that implement all of the services provided to segment control. The I
other programs in PL/I page control are pc_wired, pc_abs, pc_contig, wired_plm,
and by some standards, disk_control which is the disk DIM. There is also
"quotaw", which handles quota cells of active segments.

Another important distinction between PL/I page control and ALM page
control is that ALM page control works on ~; the individual entries each
manipulate one page. The PL/I page control entries deal with entire segments or
regions thereof, calling ALM page control to perform operations on each page.
Other than the page-fault handler, ALM page control never gives up the
processor, or waits; PL/I page control decides on what to wait based upon a
series of calls to ALM page control, and if necessary waits. The protocols
involved in this waiting, the conventions used, and the manner of its
implementation are all described in Section VIII, "Mechanisms."

There are a set of peripheral services provided by an amorphous area of the
system, which could be considered part of page control. For instance, the
procedure wire_proc, which causes parts of procedures and their linkage sections
to be wired, simply by calling pc_wired, and free core , which so wires itself in
order to make main memory frames available for use as they are added to the
system, either during initialization or reconfiguration. These will be dealt
with in Section X.

9/78 5-5 AN61A

PAGE 1AbLt LOCK

There exists a lock in the SST (System Segment Table) segment, that
protects all of the actions of page control, other than the unloading of
processes and activation of segments. This lock is called the "Page Table
Lock," or the "Global Page Table Lock." A process that has succeeded in locking
this lock to itself is said to "hold. the page table lock," "have the page table
lock locked," or, often, loosely, "to have the page tables locked" (although the
implication that this is solely a lock on page tables is incorrect) or even more
loosely, "to have the page table locked." This lock lives in the variable
sst.ptl, in the SST segment. It is of the class of locks to which a process
that has it locked may not give up the processor until it has unlocked it. This
precludes taking page faults. Because certain interrupts try to lock the page
table lock, or locks which are locked while it is locked, neither maya process
take interrupts while it has the page tables locked. No page faults may be
taken with the page table lock locked, and segment faults are out of the
question. As a matter of fact, any fault other than a connect or timer runout
fault taken by a process while it holds the page table lock will cause the
system to crash. This is because page control is not coded so as to be
interruptable at any point and salvaged or restarted. Such a recoding is a
future possibility.

All sides of page control lock the global lock. Other than on the fault
Side, this is accomplished by looping on it until it becomes unlocked. The
fault side has a special protocol with the traffic controller so that a process
which, upon taking a page fault, finds the page table lock locked, can Hail via
the traffic controller wait/notify mechanism for the lock to become unlocked.
This mechanism is explained in Section VIII. A process looping on the page
table lock, as it is said to be doing when looping waiting for it to unlock,
must be masked so that it may not receive interrupts, or else, as soon as it had
it locked, it would potentially take an interrupt with the global lock locked.

It is not necessary to have the global lock locked when activat~ng a
segment; since the AST is locked, and before the AST was locked, the segment was
not active, no process other than the one performing the activation is aware
that the segment is active or being activated. Thus, no process can take page
faults or request that auxiliary services be performed upon that segment until
the activation is complete. Unloading similarly does not require locking the
lock, for as will.be described, it involves only the turning-off of two bits
that would not otherwise be turned off.

OUTLINE OF THE DATA BASES OF PAGE CONTROL

There are six basic data bases with which page control concerns itself.
One of these, the AST entry, is a data object, per active segment, in which
information about the segment is kept. A detailed breakdown of the AST entry is
given in Section II. Most of the fields in the AST entry are used by segment
control; many are used by page control. Those fields are so marked in the
description in Section II.

The ~. ~ of a segment is that hardware-recognized array, pointed to
by th~ SDW of a paged segment, which converts any reference to that segment to
either a reference to main memory, or a page fault. The page table of a segment
is physically and logically associated with the AST entry. The page table
consists of ~ ~~, or PTWs. Each PTW describes the status of one
1024-word page of the segment. If the "4,dl" bit is on, (ptw.df)t the upper
fourteen bits describe the upper fourteen bits of the main memory address where
a reference to that page is to be resolved, the low ten bits coming from the
computed address of the 68/60 Control Unit for that reference. If ptw.df is
off, the processor takes a fault when an atte~pt is made to use that PTW. There
are also two regions (zones) of the PTW (7000,dl and 700,dl) into which the
proc~~sor stores 1-bits when that PTW is used, or a reference is made via that

5-6 AN61

PTW which modifies the contents of the main memory frame it describes. These
bits (ptw.phu for used, ptw.phm for modified) are used to determine whether
evicting a given page will entail writing it out (if ptw.phm is zero, a good
copy exists elsewhere, and to control the page replacement algorithm. The
processor associative memory is used to help avoid storing these bits each time
such a reference is made, the copies of PTWs in the associative memory contain
copies of the ptw.phm bits, and the appearance of the PTW in the associative
memory is ~ ~ evidence that the "used" bit (ptw.phu) need not be updated.

Page control uses the other fields of the PTW, as well as the "address"
field at times when the "fault" bit (ptw.df) is Qff (signifying ~ a fault, nQ
access) to store control information. In particular, the bulk store or
secondary storage address of a page not in main memory is stored in the PTW in
this fashion; when in main memory, this information is transferred to other
places, namely, the CME (Core Map Entry).

The core map, so-called from the days before MOS. technology became
prevalent for main memory), is an array of four-word ~, or core map entries.
Each entry describes the status of one page frame of main memory, including all
page control information. There is a core map entry for each page frame in the
configuration from address zero to the highest address in the configuration,
whether or not a physical controller or memory exists that contains the implied
page frame, and whether or not this page frame is available for page control's
use (for instance, it may be in the middle of a'perm-wired segment). Thus, the
core map is an array indexed strictly by main memory address. The core map is
in the "SST" segment.

The core map entries are kept in a double-threaded circular list; the
(SST-relative) pointer sst.u~edp describes the "head" of the list. The list is
the basis of the implementation of the main memory page replacement algorithm,
which is described later in this section. Entries for main memory frames that
have I/O going on are threaded out of the list, as are entries that correspond
to main memory not used for paging. Entries that corres~ond to main memory that
does not exist, be it deconfigured or simply not present in the configuration,
are threaded out with a thread word of "777777777777"b3. ' The last word of a
core map entry is currently not used.

The paging device map resides in the SST as well, in configurations with a
paging device, directly after the core map. It consists of four word paging
deyi.qe m..a.ll entries, or~. It, too, is an array, indexed by record that
describes paging device record zero; if only some upper portion of the bulk
store is in use as a paging device, this pointer pOints ~ the start of the
paging device map, and possibly below the origin of the SST. This is to ensure
that this pointer always points to the virtual origin of the array. The entries
of the paging device 'map are similarly kept in a double-threaded circular list,
as befits the parallel problem of management of the paging device already
alluded to. Those which have been deconfigured, either by operator "delpage"
command, or the automatic deconfiguration performed by the interrupt side on
detection of bulk store error, are threaded out with a thread word of
"777777777777 ft b3.

The first few records of the bulk store are not used as part of the paging
device; rather, the paging device map is written out from main memory to as many
of these first few records as need be to contain it, ~secQnd. This is done
as a hedge against fatal (no ESD) crashing. Should the system crash
unrecoverably, the next bootload can read the contents of the first few records
of the bulk store, and obtain the old paging device map, accurate to within a
second. As physical volumes are accepted (see Section XII) by that next
bootload, pages of segments on that volume are repatriated from the old paging
device contents as their VTOCEs are processed by the physical volume salvager.
A Unique ID and page number are put in each paging device map entry to
facilitate repatriation; because of these two quantities, the second inaccuracy
of the paging device map need not be a cause for concern. Thus, the paging
device map has potentially a cross-bootload longevity_ To facilitate

AN61

interpretation of its contents, the PDMAP (as the paging device map is sometimes
called, not to be confused with sst.pdmap, which stands for Qaging gevice map
~rray Qointer) has a four-word header, the ~ header, describing the extents
and time of initialization (called the ~ time) of the paging device map.
This PDMAP time is marked in the volume labels of all physical volumes which
were part of the configuration during which that PDMAP was used; this is the key
to the mechanism (explained fully in Section VIII, under "Post-Crash PD Flush")
by which pages are repatriated as volumes are accepted. Because the first
record of the bulk store contains the first page of the PDMAP, the first PDME of
a PDMAP is not used, but contains the PDMAP header. All PDMEs that describe
records similarly used by the PDMAP image other than the first are not used at
all, and contain all zeros.

The FSDCT is a data base used by volume management (see Section XIII) to
record certain key global parameters of volume management. These all reside in
the FSDCT header. The remainder of the FSDCT is divided into regions, one for
each configured storage system drive. These regions contain the bit-map of free
disk records for the packs mounted on their respective drives. The parameters
governing the interpretation of that bit-map are in the physical volume table
entry for that drive. The physical volume table entry, or PVTE, is an entry in
a wired table, the PVT, which describes all parameters for a given drive and the
pack on it, used by the storage system. (The PVT and PVT entry are described
fully in Section XIII.) Among these parameters is a relative pointer into the
FSDCT of the bit-map for that drive, and it~ extent, number of records still
free, etc. Needless to say, many of these parameters, including the entire
contents of the bit map, change as packs are mounted and demounted on that
drive. The algorithms used to manage this map and allocate free storage are
described in Section VIII, "Mechanisms." Some critical points relating to the
assignment and deassignment of addresses are given in Section VII "Address
Management Policy."

The letters "FSDCT" stand for "File System Device Configuration Table." In
light of the current storage system, this term no longer has any valid
connotations relative to its meaning. If anything, the PVT deserves that title;
it is strictly historical, for in older versions of the storage system, the
single large bit-map describing the entire mounted storage system was kept here.
The format of the FSDCT bit-map regions and the relevant variables to free
storage allocation are given in the detailed data base breakdowns in Section VI.

The FSDCT is QQ1 a wired data base. In a system with many drives, it can
grow quite large, and would constitute a substantial drain upon the main memory
resources of the system were it all wired. Therefore, it is used subject to
vagaries of its own dynamic paging behavior. However, one of the critical
usages of this segment is the allocation of disk addresses, which is performed
during page-fault handling. Since the page-fault handler may not take page
faults, there is an intrinsic difficulty in accessing this segment at that time.
A very special and intricate mechanism exists to allow the page fault handler to
simulate "recursive" page faults on the FSDCT. This mechanism is explained in
Section VIII under the heading "FSDCT Paging." Other programs with a need to
reference the FSDCT, such as the activation-time check for unprotected addresses
(those illegally marked as "free" in the FSDCT) simply reference the FSDCT like
any other paged segment.

Other than the FSDCT and PVT, all of the data bases of page control reside
in th~ segment "sst", with the alternate name "sst_seg." This segment, also
known as "the SST", for System Segment Table, is an unpaged (perm-wired)
segment, in which all AST entries, with their page tables, the core map, and the
paging device map reside. All of the page control data objects describe each
other via relative, l8-bit pointers, called "reI-pointers," or "SST-relative
pointers." The only exceptions to this rule are main memory and paging d~vice
addresses, which are effectively indices into the core map and PDMAP arrays.

The
pointers.

SST also contains a large number of meters, list heads, and array
Much global page control data is stored there.

AN6l

ZERO PAGES

Multics defines all segments as containing a full segment's worth of binary
zeros when created. Rather than allocating a couple of hundred disk records and
zero them each time a segment is created, Multics defines a class of record
address called a null address which says that the page that has that address is
supposed to contain zeros. That is to say, if such a page is faulted on, page
control creates a page of zeros in main memory. Real disk addresses and paging
device addresses are assigned at various tlmes after that, as dictated by the
address management policy (see Section VII).

In order to keep this strategy consistent, Multics never stores pages of
zeros on disk or on the paging device. Whenever a page is to be written out of
main memory, a check is made to see if it contains all zeros. If so, the disk
address which the page has is nulled, creating a nulled or semikilled address in
the page control data bases. Like a null address, the next attempt to fault on
this page causes a page of zeros to be created in main memory. If the page is
modified to be nonzero, the address is resurrected, (made not nulled), which
causes a real read to happen when the page is faulted on.

The terms null and nulled are not to be confused, although both logically
represent pages of zeros, the null address relates to no disk record; the nulled
address represents a disk record, but the contents of the page are zero, not the
contents of the disk record. Nulled address appears only in page control, never
in VTOCs or other segment control data objects.

This checking for zero pages is suppressed for segments with the "dnzp"
(Don't Null Zero Pages) attribute settable via segment control, and always true
for supervisor segments. This is used, in general, to enforce the requirements
of the address management policies described in Section VII.

Nulled addresses which result from the discoveries of pages being zeros
ultimately get returned to the free storage pool for their volume; this is done
once it is ensured that the un-nulled address from which it -came is no longer in
any VTOCE. (See Section IV and Section VII.)

MAIN MEMORY REPLACEMENT ALGORITHM

Of fundamental importance to any algorithm that controls the movement of
pages, and of prime interest in the description of any paging system, is the
main memory replacement algorithm, known in the literature as the "Page
Replacement Algorithm," or PRA. The Multics PRA was one of the first to ever be
implemented; the version as it exists today is a direct descendant of Corbat6's
original algorithm (see the references at the end of the next section).

Pages are kept in a circular list, the ~ used list, implemented by the
double thread of CMEs. A logical pointer is kept to a selected point on the
list, this being implemented by the SST-relative pointer sst.usedp. A direction
called forward or ahead is arbitrarily defined as the direction on the list
followed by chasing the sst-relative pointers cme.fp.

9/78 5-9 AN61A

most recently used
(tail of used list)

'x~

sst.usedp ~---__ , , ... ------Ieast recently used
(head of used list)

Figure 5-1. The Clock Algorithm

The basis of the algorithm is that the pointer moves forward on demand for
page frames. It tries to approximate the "Least Recently Used," or LRU
algorithm, where the least rec~ntly used ~ (not page frame) is the one which
will be evicted to free its page frame. The page frame right ahead of the
pointer (the one pointed to) contains the supposedly least-recently-used page.
Going further and further down the list produces pages more and more recently
used, until the page right behind the pointer is the most recently used. Since
pages are referenced by every instruction that runs, it is impossible to thread
them to represent true recency of use. Therefore, we translate "recently used"
into "recently noticed as used." When we notice that a page has been used, we·
turn off the bit ptw.phu, in the PTW for that page, the bit via which the
hardware communicates the fact that a page has been used. Thus, this bit being
on in a given PTW indicates that the page has been used since this observation
was last made.

Therefore, when a demand is made for a frame (via a call to find_core, in
page_fault), the page at the head of the used list is inspected to see if it has
indeed been used since last inspection. If so, it is now: clearly; the page
most "recently noticed as used." Thus, the pointer moves forward, putting this
page at the tail of the used list by so doing, in keeping with its newfound
status as "most recently noticed as used." The "used" bit is turned off,
pending the next inspection, and the next page is considered, until one is found
whose used bit is off. Such a page is clearly the one which was seen most
recently as used the furthest time in the past. This page is evicted from its
main memory frame, and the latter is now free.

The algoritr.m just described is known in the literature as the
algorithwJ as the ~otion of the pOinter around the used list is similar
motion of a hand of 2 cleck about the faCe of the clocke

5-10

"clock"
to the

AN61

There are several complications to this algorithm. Most important, if a
page is found whose used bit is Qff (this would be evicted, according to the
above description) by the scan of the pointer, this eviction would require an
110 operation to perform, namely a write to disk or paging device. If the page
has been stored into (modified) since it was brought into that page frame, as
the information in its correct form exists only in main memory, and nowhere
else. Thus, a modified ~ whose ~ ~ is off, takes more work to evict
than one that is not modified. Specifically, the 110 may take an indefinite
time to complete, and the main memory request on hand must be satisfied
immediately. Therefore, the pointer skips over pages that are modified, even
though they are not used--they will be dealt with shortly. The pointer only
stops when a page that is neither modified nor used is found--only this kind can
be evicted with no 110. The page multilevel algorithm also complicates matters
some here,there are pages that are neither used nor modified which require I/O
to evict, if the page multilevel algorithm wishes to migrate them to the paging
device at this time; these pages are called "not-yet-on-paging-device,"
(ptw.nypd signifies this state). This will be dealt with in the next section.

Therefore, the pointer does not stop until it finds a page that is neither
used (since last turning-off of the used bit), modified (since last writing), or
not-yet-on-paging-device. Some pages are routinely skipped, such as those that
are wired or abs-wired. Pages on which 110 is going on are not even in the
list, and are thus not an issue. When such a page is found, it is evicted, and
the frame which it had occupied returned to the, caller of find_core.

In passing over modified and not-yet-on-paging-device pages, the pOinter
implicitly left work behind to be done. These pages should be evicted from main
memory, but this could not be done on the spot, as the process that needed a
page frame could be satisfied immediately with some other frame, not much worse,
and could not wait for the inleterminate completion of these writes. Therefore,
a procedure called claim_mod_core, in page_fault, exists to do the work which
the replacement algorithm decided not to do, in order to satisfy its real-time
constraint of producing a usable page-frame on the spot. It runs either at a
later time than find_core, or is called by find_core when the latter encounters
certain limit situations (~ee Section VIII). The procedure claim_mod_core
maintains a second pointer into the used list, which is sst.wusedp (for
"writing" used-pointer). Generally, it is pointing to the same place as the
regular -uusedpu clock-hand of the find_core command. However, when a demand is
made for a page-frame of main memory, find_core advances the "usedp" hand until
a freeable, evictable frame is found. Thus, the distance between the "wusedp"
hand and the "usedp" is the "cleanup" work that must be processed by
clai-m_mod_core. The procedure claim_mod_core is invoked during page-fault
processing at a time to overlap its operation, which may involve substantial
computation inside the disk DIM, with the reading-in of the page necessary to
satisfy the page fault. Note that this reading could not begin until a
page-frame into which to read the page had been found, by find_core.
Claim_mod_core processes all page-frames between wusedp and usedp; those that
are not used, but modified, have writes started for them, which removes their
CMEs from the used list. In order for claim_mod_core to be able to distinguish
the used-and-modified ones from the not-used-but-modified ones, find_core avoids
turning off the used bits, leaving this for claim_mod_core. Pages
"not-yet-on-paging-device" are migrated to the paging device, as appropriate,
until wusedp and usedp again coincide. Note that these writes are started while
no particular process is waiting for these writes to complete for any
reason--when these writes are complete, the interrupt side will place these page
frames at the ~ of the used list, making them excellent candidates for
eviction if ang ~ if they have not been used while or after being written.

The interaction of find_core, the replacer, and claim_mod_core, the
purifier, may be stated as this: the replacement algorithm claims only pure
(unmodified) pages. Those that are found impure, but would have been claimed,
are left for the purifier to purify. When the purification is complete, these
pages are again candidates for replacement.

AN61

There are a large number of call-side actions, such as deactivation and
truncation, and some ALM actions, such as the discovery of zeros by the
page-writing primitive (write_page in page_fault) that cause page-frames to
become explicitly free; these actions all aid the replacement algorithm and
simplify its task by putting these page frames at the head of the used list,
wherever it currently is, making these frames immediately claimable by
find_core.

The successful completion of any read operation places the CME for the
frame into which the reading was done at the ~ of the used list, as
presumedly, the reason that this read occurred is that someone wanted the page,
and thus, it is "most recently noticed as used" at the time of the completion of
the read.

PAGING DEVICE MANAGEMENT ALGO~ITHM (PAGE MULTILEVEL)

The management of the paging device, like the management of main memory,
involves both a strategy, and a replacement algorithm. In the case of ma~n
memory, other than the replacement policy, the strategy is straightforward.
Pages are brought in on demand in response to page faults and call-side reads,
evicting other pages at the discretion of the replacement algorithm, which also
chooses when to write out pages that have been modified.

The use of an intermediate level of storage device as a paging device,
however, involves many more complex decisions. The design and history of the
decisions, with respect to the Multics Page Multilevel Policy, are given in the
paper by Greenberg and Webber cited at the end of this section. The pol~cies
are given as they stand.

The paging device is what is technically called a "nonwrite through
buffer." This to say, there are copies of pages on it which are different from
the copies of the same pages on secondary storage .. As a matter of fact, there
can be copies of pages on the paging device which have nQ copy in secondary
storage (although there will always be a secondary storage address assigned to
such pages). This allows pages to be written from main memory to the paging
device without simultaneously writing a copy to secondary storage. (The option
to write these pages to secondary storage in this way exists, and is called
"double writing," and is controlled b~ the "DBLW" parameter on the PARM CONFIG
card.) If the paging device is operating in double-write mode, or were designed
as a "write-through buffer," there would be no damage caused by loss of the
paging device during a running system or a crash; pages on secondary storage
would always contain the same information, although at a higher cost to access.
The fact that modified pages exist (modified with respect to secondary storage,
that is), while avoiding the substantial expense of double-writing each page of
main memory, but causes a substantial problem of updating secondary storage,
both during normal operation and the page repatriation operation of a post-crash
bootload.

The paging device replacement algorithm is a critical part of the
management policy. It is designed to resemble the "clock" algorithm used in
ma~n memory management. However, a unique interaction with the main memory
algorithm presents itself; while the eviction of pages from the paging device
that are n21 modified with respect to main memory presents no special problems
(page control data bases, namely the PTW, are updated to indicate that the page
must be fetched from paging device instead of secondary storage), the eviction
of modified pages is difficult. In order to evict modified pages, they must be
written back to the disk. This is accomplished by finding a usable page-frame
of main memory, reading the page in from the paging device, and writing it out
to the disk.

5-12 AN61

This two-part sequence is called a Read-Write Sequence, or RWS. Were the paging
device operated double-writing all the time (write-::lrough buffer), there would
be no need for RwSs. However, the fact that the main memory replacement
algorithm demands pages of paging device, and the paging device replacement
algorithm demands pages of main memory, in order to perform RWSs, presents some
difficulty. The solution to this problem, which basically involves "punting"
paging device migration when recursion would be created, is explained in Section
VIII.

The paging device replacement algorithm maintains a circular used list, as
the main memory replacement algorithm does. It is of PDMAP entries (PDMEs), and
the head of the list (best candidate for replacement) is designated by the
sst-relative pointer sst.pdusedp in the SST. PDMEs that are undergoing RWS are
threaded out of the list. Before we discuss how pages are migrated ~ the
paging device, however, it is appropriate to discuss how pages are migrated ~
the paging device. This has no parallel in main memory management, as pages are
"migrated to main memory" as page faults are taken; there-is no choice.

Pages are migrated to the paging device as they are evicted from main
memory. "Migration" implies that the page does not already have a copy on the
paging device. The assumption and design is that the pages that are in main
memory, going into it, and going out of it, are the most recently used and thus
most likely to be used in the near future, of all of the pages in secondary
storage. Therefore, any page just evicted from main memory is more likely to be
referenced in the near future than some page less recently evicted from main
memory, and it should be allocated a record of paging device, and written to it.
Note that this implies writing of pages from main memory that are not different,
i.e., not modified, with respect to their copies on disk; these are the
so-called "nypd" (not-yet-on-paging-device) pages mentioned in the previous
section. The need to do this writing biases find_core against these pages,
leaving claim_mod_core to initiate the paging device update. The routine
allocate_pd in page_fault is charged with the responsibility of deciding when a
page should be migrated to the paging device or· have its "nypd" bit turned on to
postpone this action.

Some subset of the pages of the paging device are always (nearly always)
going to be in main memory. Pages are migrated at main memory eviction time
instead of reading time because there is no need to read them back, hence
"waste" paging device on them, until they are evicted. It is an assumption of
the algorithm that the paging device is substantially larger than main memory;
all of the below assumptions fail if- this is not true. A paging device smaller
than main memory can also cause the paging device replacement algorithm to hang,
as will be seen below.

The subset of the paging device, so to speak, which is in main memory, is
considered to be the "most recently used n subset. Since the paging device is
much larger than main memory, any page found in main memory by the paging device
replacement algorithm is promoted to a "recently used," i.e., favored status,
similar to that given to pages found with their used-bits on by find_core. No
page in main memory is ever evicted from the paging device by find_core,
although deactivation or truncation of the containing segment will indeed
perform this.

The paging device replacement algorithm is invoked at the beginning of page
fault proceSSing, every page fault. It tries to ensure that a small, fixed
number (10) of paging device records are always free or in the process of being
freed (RWS in progress). Since it does this at the beginning of a page fault,
when it is finished, probably some paging device records will have been freed,
some already free, some started RWSs, and some finished RWSs from some previous
time (made free by the interrupt side). Thus, it is probabilistically very
likely that some records will be free during the processing of that page fault
(during which claim_mod_core may attempt to migrate pages to the paging device).
The replacement algorithm moves down the PD used list, eVicting all pages not
requiring RWS, and starting RWSs for all pages modified wi~h respect to

5-13 AN61

secondary storage. PD records found to contain pages that are also in main
memory are rethreaded in the list so that they acquire the favored "recently
seen to be used" status. This action continues until ten records are free or in
RWS. There is no problem of obtaining "RWS buffer" pages here, a call being
made to find core as each such buffer is needed. Note that find_core will QQi
cause PD records to become allocated in so doing; find_core does not initiate
writes. Only claim_mod_core does that.

Thus, by the time claim_mod core runs, very probably a few records will be
available into which to migrate pages, on the paging device. Now it is possible
that the page-writing primitive will find that no free records of the paging
device are available for migration. Specifically, it looks at the head of the
list, checking for the availability of this record. If this record is not
available, which will only be the case if no records could be made free by the
last run of the replacement algorithm, or there were none when it ran, an action
called a PD desperation occurs. The paging device allocator (allocate_pd in
page_fault) calls the PD Desparator, (force_get_pd in pd_util) to run down the
PD used list up to twenty steps until a claimable PD record (evictable without
RWS) is found. If this strategy fails, which it rarely does, the attempt to
migrate a ~ to the paging device, which was an optimization of sorts to begin
with, is abandoned, and the system continues normal operation. An RWS cannot be
initiated at this time to free up paging device; it would take an indefinite
time to complete, and waiting for it in any way would cancel whatever
optimization could be gained by migrating the page.

Pages of active segments only (or nonstorage system segments, which are
always active) are kept on the paging device. This implies the need to start
RWSs at deactivation time, but metering has shown that the number of pages of
segments being deactivated which appear on the paging device, and require RWS
are few. This scheme avoids the need for repatriation of paging device pages
every time a segment is activated. This system was used in earlier versions of
Multics, involving the "PD Hash Table" now gone.

. One type of event of note in paging device management is the so-called "RWS
abort." This occurs when a process takes a page fault on a page that happens to
be undergoing RWS. To the process taking the page fault, this is just another
page faul t. Page - control, however, sets a bi t in the PDME (pdme. abort) ,
informing the interrupt side not to free the main memory frame and paging device
record, but rather to keep both around, and re-establish the residency of the
page in both main memory and on the paging device. (Until the occurrence of an
RWS abort, pages transiting through main memory in order to perform an RWS are
not considered by the rest of page control to be in main memory.)

Papers about the Multics Page Replacement Algorithm:

Corbat6, F. J.
"A Paging Experiment with the Multics System," in Ingard, In Honor
of P.M. Morse, M.I.T. Press, Cambridge, Mass., (1969), pp. 217-228

Greenberg, B. S.,
"An Experimental Analysis of Program Reference Patterns in the
Multics Virtual Memory," M.I.T. Project MAC Technical Report TR-127,
M.I.T. Dept. of Electrical Engineering, May, 1974

Greenberg, B.S., and Webber, S.H.,

9/78

"The Multics Multilevel Paging Hierarchy," in Proceedings of the
~ IEEE Intercon, Institute of Electrical and Electronic
Engineers, N. Y., 1975

5-14 AN61A

SECTION VI

PAGE CONTROL DATA BASES

In this section are discussed, bit by bit and field by field the
fundamental data objects manipulated by page control:

1 . The Page Table Word (PTW)
2. The Core Map Entry (CME)
3. The PDMAP Entry (PDME)
4. The PDMAP Header (PDMAP Header)
5. The FSDCT bit maps, and r€levant PVTE fields.

Also presented is a list of selected fields of the SST data base, with some
explanation of their relevancy to page control, and function.

The various data objects are interrelated via 18-bit pointers and radices
when in use by page control. Figures 6-1 to 6-5 at the end of the section
present the interrelationship graphically for the more important states of those
objects.

PAGE CONTROL DEVICE ADDRESS (devadd)

One quantity that crops up in PTWs, CMEs, and PDMEs is the general device
address. A device address designates a frame of main memory, a record of paging
device, or a record of disk. A device address, or devadd, has two subfields,
the address, or record address, - as befits which of the above cases is
appropriate, and the address ~. The bits of the address type are exclusive,
i.e., no combinations of more than one bit are valid, and the last bit is
reserved. Such devadds appearing in a PTW can designate main memory, a record
of paging device, or a record of disk. A devadd appearing in a PDMAP entry must
designate a record of disk. A devadd appearing in a core map entry can
designate either a record of disk or a record of paging device.

Format of a "main memory address" devadd, valid only in a PTW

o

MMMMMMMMMMMMMMMMMOOOO

top 18 bits of main memory address, "add type," in this case add_type. core.

The main memory address designates a page frame of main memory. It is the
upper fourteen bits (MMM .•. MM) of that address, the remaining ten bits being an
address within the page frame. The "1" in bit 18 signifies a main memory
address.

Format of a "paging device" devadd, valid in a PTW or CME:

6-1 - AN61

o
o
oooooooppppppppppp

PPP = paging device record number.

here add_type.pd

The paging device record number specifies a record of paging device. The
"1" in bit 20 signifies a paging device address.

Format of a "disk" or "secondary storage" devadd, valid in aCME, PTW, or
PDME:

o
1
DDDDDDDDDDDDDDDDD

DDD = Disk record number.

_type," here add_type.disk

The record number DDDDD is the record address of a disk record, on some
physical volume. That physical volume is identified by the PVT index in the AST
entry associated with the page table to which the PTW in which this devadd is
found belongs. If this devadd is found in a CME or PDME, the volume is
identified by the PVT index in the AST entry associated with the page table
designated by either of these objects. If this devadd appears in a PDMAP erttry
in a post-crash PDMAP entry matches the field label. last pvtx on some physical
volume whose field label.pd time matches the "PDMAP time"-of the PDMAP -in which
this PDMAP entry appears. To that volume this page will be repatriated. (This
will be explained in more detail in Section IX.)

The bit "N" above is of prime importance. In this disk "devadd" is the bit
"N" (for nulled) being on indicates that although this devadd is assigned to the
page in whose data bases this devadd appears, the logical contents of the page
are to be considered zeros. Either this page has never been written out or
R W Sed tot hat de vic e ad d res s, 0 r was -t run cat ed, and t his p age a w a its de po sit ion
by the VTOCE update function. An address with this bit on is called a nulled or
semikilled address; it may never be reported to segment control for a file map,
but may only be deposited or resurrected (see Section VII, "Address Management
Policy"). These nulled addresses are not to be confused with the null addresses
used by segment control in file maps, and below. A disk address that is not
nulled is said to be live, meaning it definitely contains the contents of the
page to which it is assigned. Nulled addresses appear only on page control.

6-2 . AN61

There exists one more type of devadd, the so-called "null" device address,
or "null" address, not to be confused with the "nulled address" explained above.
It represents a page of zeros, as does a nulled address, but designates no page
of disk. Its format is as follows:

Format of a ~ control null address; valid only in PTWs:

o 1 1 2
o 7 8 1

I OBBBBBBBBBBBBBBBBBBBB 10000 I

"add_type," here ~null"

BBB = debugging code.

The code BBB ... B is a code placed in this devadd by the program that
generated it, describing how it became null. These codes are described in
null_addresses.incl.p11 and null_addresses.incl.alm, which has some in their
"page control representation" as above, and some in their "segment control
representation," as below.

Null addresses enter page control from the activation of segments, as well
as by other means. Null addresses are also reported to file maps for the VTOCE
update function. When in file maps, coming into or out of page control via
pc$fill_page_table or pc$get_file_map, page control null addresses are converted
(from or to, respectively), the format in which they appear in file maps:

Format of a segment control, or file map null address, ~ valid in page
control, only valid in file maps in VTOCEs:

o 1
o 7

11BBBBBBBBBBBBBBBBBI

where BBB ... B is the debugging code of above.

Note that devadds in VTOCEs have llQ add_type: the add_type is strictly a
page control concept. Any address in a VTOCE that is not a null address as
above, i.e., has bit zero equal to zero, is a live secondary storage
address-with the contents of the associated page out on it for a fact. That is
the end result of the address management policy explained in Section VII. Such
addresses have the format:

Format of a segment control device address, appearing only in a VTOCE file
map:

o
o 7

!oDDDDDDDDDDDDDDDDDDDDI
I
I

where DDD ... D is a disk record address on the physical volume on which the VTOCE
in which this address appears is found. See Section II for more information
about addresses in VTOCEs.

9/78 6-3 AN61A

I

PAGING DATA OBJECTS

Having described the critical concept of a devadd, we now describe the
three paging data objects:

1. The PTW, representing a ~ of a segment, also being the hardware
descriptor for that page.

2. The core map entry (CME), representing a page-frame of main memory and
describing its association, if any, with any page of any segment.

3. The PDMAP entry, or PDME, describing a record of paging device, and
its association, if any, with any page of any segment.

All of these data objects reside in the SST. All of them contain devadds
as substructures. Many of these structures have fields that have different
uses, and names, depending upon other bits and their meaning. The multiple
names (e.g., cme.ptwp and cme.pdmep refer to the same storage) are used in the
ALM include file. However, since this is impossible to describe in PL/I, the
PL/I include files describe structures called "mpdme," "mptw," "mcme" to
re-describe the structures for the alternate field names. In the descriptions
below, we give the "alternate" PL/I names for the alternate fields, pointing it
out when we do so with the warning "(Alternate for eme.xxx)". We give octal
masks to help those interpreting dumps. .

PTW, OR PAGE TABLE WORD

del 1 ptw based (ptp) aligned,

(2 add bit (18),
2 add type bit (4),
2 first bit (1),
2 processed bit (1),
2 padl bit (1),
2 unusablel bit (1),
2 phu bit (1),
2 unusable2 bit (1),
2 nypd bit (1),
2 phm bit (1),
2 phul bit (1),
2 wired bit (1),
2 os bi t (1),
2 df hi t (1) t

2 df_no hit (2» unaligned;

del 1 mptw based (ptp) aligned,
2 devadd bit (22) unaligned,
2 pad bit (14) unaligned;

o 1 1 2 2 2
0 7 8 1 2 4

add add _type f
i
r
s e
t rOO

devadd

6-4

2 2 2 333 3 3 3
6 7 9 0 1 234 5

W
n i

p v p p r 0 d df no -h p h h e s f
u 0 d m u d

1

AN61

ptw.add
(777777,du)

When this PTW describes main memory, ptw.add is the upper 18 bits of
the 24-bit main memory address of the main-memory page frame it
designates. This can be the case whether or not ptw.df is onj only
in the latter case is this PTW a valid hardware descriptor for the
page; all other cases cause a process to take a page fault if it
attempts to use this PTW as a hardware descriptor.

ptw.add_type
(740000,d1)

Defines which type of devadd is containea ~n this PTW; when it is
add_type.core, 400000,dl, the field ptw.add is valid as above. Any
type of page control devadd can appear here.

mptw.devadd
(777777740000)

ptw.first
(200000,dl)

(Alternate for ptw.add and ptw.add_type). Describes, if this page
is in main memory, its main memory address, as a "main memory" type
devadd. If this page is llQ1 in main memory, but is on the paging
device, then this is a paging-device type devadd. If this page is
neither in main memory nor the paging device, but has a disk record
associated with it, this is a disk_type devadd as above, including a
"nulled" bit on or off with the meaning explained. Otherwise, this
is a true "null" page, and this is a null devadd as above. In all
cases, this devadd designates the storage device or lack thereof
from which the page will be read in or created if faulted on. A
null address or a nulled address causes the creation of a page of
zeros.

If the global switch sst.ptw_first is on, which it normally is ~ot,
pc$fill_page_table turns this bit on in all PTWs of segments being
activated. This bit is turned off whenever' this page is evicted

. from main memory. This bit being o~ tells the paging device
allocator llQi to allocate a paging device record for this page when
an attempt is made to evict it. Thus, if sst.ptw_first is ~J
paging device management is effectively changed so that pages get
one chance to be referenced, in any given activation, and evicted,
before being migrated to the paging device. This is desirable for
random-access applications, to avoid suboptimal use of the paging
device. An experimental feature, the flag sst.ptw_first may be set
on only by highly privileged patching.

ptw.er,
ptw.processed
(100000,dl)

Used for two purposes. The interrupt side, when posting (telling
the rest of page control about) the completion of a page read
operation that was unsuccessful due to a device error, sets this
bit, and notifies the faulting process. The restarted process takes
the page fault over again, as the PTW has n2i been made to describe
main memory (made valid as a hardware descriptor), notices this bit,
turns it off so that the next process can retry this operation, and
signals "page_fault_error" in that process. The post_purge service
of page control uses this bit to mark all PTWs found in the PDS
trace list (see Post Purge, in "Services of Page Control"). If any
attempt is made to mark any PTW that has this bit on already, the
implication is that the process has faulted on that page at least
twice during its last eligibility and this is considered to be
"thrashing"; the counter sst.thrashing is incremented. This bit is
also used by online SST analysis tools (e.g., check_sst) to perform
various marking operations on images of the SST.

AN61

I

ptw.phu
(001000,dl)

ptw.nypd
(000200,dl)

ptw.phm
(000100,dl)

ptw.phul
(000040,dl)

ptw.wired
(000020,dl)

ptw.os
(000010,dl)

9/78

This bit is set to "1"b when the processor appending unit fetches
this PTW, and places it into its associative memory. This page may
be used repeatedly, but this bit will not be set again until that
PTW leaves the processor's associative memory, either by
replacement, or the execution of a CAMP instruction (clear PTW
associative memory). The page replacement algorithm, in
claim_mod_core, when noticing this bit and turning it off, does not
clear the system's associative memories; it counts on the fact that
some page eviction in the near future will. Clearing the
associative memories of the system disturbs all processes and
processors; the page replacement algorithm's approximations are not
worth that much.

(Not yet on paging device.) This bit indicates that the page has
been paged in from secondary storage, and has not yet migrated to
the paging device. Thus, the main memory replacement algorithm is
wary of evicting such pages, because it takes work (paging device
writes) to do so. This bit is only meaningful when ptw.phm (see
below) is zero for when the page has been modified in main memory,
this alone is an indication to the main memory replacement algorithm
that the page takes work to evict. Note that this bit shares a zone
with ptw.phm; it does not matter that the appending unit modifies
this zone when setting ptw.phm, as ptw.phm being on makes ptw.nypd
meaningless.

Page-has-been-modified bit. Set by the appending unit to "l"b when
a reference is made to the page described by this PTW which stores
into that page, and no PTW with the ptw.phm bit corresponding to
th~s PTW appears in the associative memory. Therefore, when this
bit is turned off by page control, the associative memories of the
system processors must be cleared or future modifications may not be
seen (see "wr--i te_page" in the "mechanisms" chapter) . Such a store
also turns on the ptw.phm bit in the PTW associative memory of the
processor. Note that setting ptw.phm may affect ptw.nypd; this is a
feature (see ptw.nypd above).

"Used in
post-purge

quantum bit." This bit is used only as input to the
algorithm, which describes what to do with what pages,

for performance reasons alone, at the end of a process' eligibility.
This bit is turned on by the main memory replacement algorithm
(claim_mod_core) every time ptw.phu is turned off, and is turned off
by the post-purge algorithm under certain conditions. (See
"Post-Purge" in Section IX.)

Tells the main memory page replacement algorithm that this page may
not be evicted under any circumstances, as some procedure is using
it, or will use it, which may not take page faults. Such a page is
said to be wired. Nevertheless, this page may be moved around main
memory during reconfiguration operations, as long as it constantly
remains accessible. (See "Eviction" in Section VIII), which is not
true for an abs_wired page. All abs_wired pages are wired.

For "out of service." When on, an 1/0 operation is in progress on
this page. Does not in general, mean that the page is inaccessible,
or unusable in any way (pages are fully accessible during writes).
When this bi t is on, l"Ut !!devadd!! of the PT\r; must be a main-memory
type devadd, describing a main memory address.

6-6 AN61A

ptw.df
(000004,dl)

"directed fault" bit used by the hardware. When QIl, indicates that
this PTW is a valid hardware descriptor, mapping references to some
page of its segment into refer~nces to main memory. In this case,
the "devadd" in the PTW must be a main-memory address, as ptw.add
will be interpreted by the hardware as such. When off, a process
attempting to use this PTW via the hardware will take a page fault.
Note that processes will observe the fact that this bit has been
turned off only if any copies of this PTW in their associative
memories are cleared out; thus, all associative memories of the
system are cleared when a page is evicted.

ptw.df_no
(000003,dl)

The contents of this field tell the hardware what type of directed
fault to take when ptw.df indicates that it should take a fault. In
Multics, this field is always set to "Ol"b, and thus, a directed
fault 1 is interpreted as a Multics page fault. Note that zeros in
a PTW, or an attempt to use zeros as a page table will not cause the
page fault handler to be invoked, but rather the segment fault
handler, for directed fault zero is interpreted as a segment fault
(as uninitialized SDWs, which are in unused (zero) regions of
descriptor segments, contain all zeros, specifically in sdw.df and
sdw.df_no). This generally causes the segment fault handler to
repeatedly issue the message "seg-fault: illegal segfault on CPU A"
when it finds that the SDW contains no segment-fault condition at
all.

CORE MAP

The Core Map is an array of Core Map Entries (CMEs), one for each page
frame of configurable main memory. It is indexed by main memory address. The
pointer sst.cmp points to the array, i.e., the CME for the frame at location'O.
It is in the SST.

CORE MAP ENTRY (CME)

dcl 1 cme based (cmep) aligned,
2 fp bit (18) unaligned,
2 bp bit (18) unaligned,

2 devadd bit (22) unaligned,
2 padding bit (2) unaligned,
2 io bit (1) unaligned,
2 rws bit (1) unaligned,
2 er bit (1) unaligned,
2 removing bit (1) unaligned,
2 abs_w bit (1) unaligned,
2 abs_usable bit (1) unaligned,
2 notify_requested bit (i) unaligned,
2 spare bit (2) unaligned,
2 contr bit (3) unaligned,

2 ptwp bit (18) unaligned,
2 astep bit (18) unaligned,
2 dblw devadd bit (22) unaligned,
2 padding1 bit (14) unaligned;

dcl 1 mcme based (cmep) aligned,
2 pad bit (36) unaligned,

9/78

2 record_no bit (18) unaligned,
2 add_type bit (4) unaligned;

6-7 AN61A

I

0 1 1 3
0 1 8 5

Word 0 fp Dp

0 2 2 3 3 3
0 1 2 2 3 5

I
I

Word 1 devadd flags lctrlr

0 1 1 3
0 1 8 5

ptwp
Word 2 astep

pdmep

0 3
0 ~

Word 3 reserved

cme.fp
(777777000000,word 0)

Forward pointer along with cme.bp, defines the position of the CME
in the core map used list, used by the main-memory page replacement
algorithm to maintain pseudo-LRU order. The rel-pointer cme.fp is
the relative offset into the SST of that CME which describes the
page frame containing the page supposedly slightly more recently
seen as used. Its field cme.bp describes this CME. (See "Main
Memory Replacement Algorithm" in Section V.) When a page-frame is
undergoing either an 1/0 operation, reading or writing a page, or
an RWS (cme.rws on), both cme.fp and cme.bp are zero, and no other
CME, or either of the used-list pointers, sst.usedp and sst.wusedp,
designate this CME. The fields cme.fp and cme.bp are both
"777777"b3 in CMEs that designate pages that are not configured, or
are deconfigured. CMEs not part of the paging pool, but still
corresponding to real main memory, are all zeros.

cme.bp
(000000777777,word 0)

Back pointer. See cme.fp above.

cme.devadd
(777777740000,word 1)

A devadd as described in the beginnin~ of this section. Valid only
when cme.ptwp (QL mcme.pdmep) is nonzero. May only validly be a
paging device address, or nulled or live disk address. If cme.rws
is off, then this is that address to which the page whose PTW is
described by cme.ptwp will be written when eVicted; a paging device
devadd if this page has one, otherwise a disk address. If cme.rws
is Qil, i.e., an RWS is in progress in this main memory frame, the
contents of cme.devadd depend upon cme.io, which tells whether the
read or write half of the RWS is under way, and the paging device or
disk address resides here respectively.

cme.flags
(000000037770)

Various state flags 1 detailed below.

9/78 6-8 AN61A

eme.io
(004000,dl)

cme.rws
(002000,dl)

eme.er
(001000,dl)

Valid only if cme.ptwp (or mcme.pdmep) is nonzero. Tells the
direction of liD if any is g.oing on in this frame, off being read,
on being write. Valid as above, and at that, only if:

If cme.rws is ~, tells whether a Read or Write cycle of an RWS is
in progress here.

If cme.rws is Qf!, then the PTW designated by cme.ptwp must have
ptw.os Qn if cme.io is meaningful, in which case that page is being
read or written from this main memory frame, and erne.io tells which.
Basically tells the interrupt side what to do.

Valid Qllly when mcme.pdmep is nonzero (if cmeeptwp describes a PTW,
page control is in a severe error situation. This bit being on,
~ mcme.pdmep is nonzero, means that an RWS is going on in this
main memory frame. The flag cme.io tells which half of the RWS;
mcme.pdmep contains the relative offset into the SST of the PDMAP
entry for the paging device record undergoing RWS. It must have
pdme.rws on, and be out of the PDMAP used lit. This CME must be out
of the used list.

is NOT USED.

cme.removing
(000400,dl)

cme.abs_w
(000200,dl)

is turned on b:- pc_abs on the call side when the main memory page
frame described by this CME is being deconfigured. It makes
find_core skip over this page, ensuring that any eviction from this
page frame is permanent until the page frame is threaded out of the
used list, making it totally inaccessible. (See "Main Memory
1Deconfiguration Service" under "Services" in Section IX.)

Defines a page frame containing an nabs-wired" page, or a page frame
in the process of receiving such a page. Such a page will also be
marked as "wired" in its· PTW. Keeps find_core from trying to evict
the contents of this page, or handing it to any caller of find_core
during interim states (such as possible FSDCT pagings) during the
wiring of this page when the page frame might otherwise appear to be
free. Also informs the main memory configuration service that the
controller containing this page frame cannot be deleted. Also
informs the allocator of abs-wired main memory that this page frame
is already abs-wired, and its contents cannot be moved to make room
for abs-wired pages. (See "Abs Wiring Service" in Section IX.)

cme.abs_usable
(000100,dl)

Says that this page frame may, if not already used so, be used for
abs-wiring, if this page frame is usable (appears in the used list
or is actually in use) at all. All page frames with cme.abs_w on
must have cme.abs_usable on. This quality of being abs-usable is a
static function of a page frame throughout a bootload. See the
Multics Reconfiguration fLH, Order No. AN71.

cme.notify_requested
(000040,dl)

Valid only if cme.rws is ~, and cme.ptwp describes a CME with
ptw.os Qn (in which case this CHE is threaded out of the used list,
as a page lID is in progress). Tells the interrupt side th~t 30~e
process is waiting, via the traffic controller wait/notify mechanism
for 1/0 completion on this page. This bit is turned on when any

AN61

process goes to wait for paging I/O, either on the fault side (see
"Page Fault Handling" in "Services,") the call side, via the
call-side wait coordinator, device control$pwait (see "Wait
Protocols" tn "Mechanisms"), or the special wait mechanism of the
process-loading mechanism (see "Process Loading" in "Services"). It
tells the interrupt side to invoke the traffic controller to perform
a "notify" on the event associated with this page (see "Wait
Protocols" in Section VIII) when the I/O on this page is complete.
If not on, no traffic control notify is performed when this I/O
completes.

cme.pd upflag
(000020,dl)

cme.contr

(000007,dl)

Causes the interrupt side to rethread this CME to most recently used
position on the completion of a page write from--rhis frame, as
opposed to the least recently used position as it normally does.

Not currently used. (Controller) is the port tag of the system
controller that controls the main memory described by this CME.
(See the Multics Reconfiguration PLM, Order No. AN71.)

cme.ptwp
(777777000000,word 2)

PTW pointer. Only valid when cme.rws is off. When nonzero, states
that some page of some segment is associated with this page frame.
The field cme.ptwp is the relative offset into the SST of the PTW
for that page. The page mayor may not be undergoing 1/0 as ptw.os
of that PTW is on or off. The page is not, however, undergoing RWS.
It is guaranteed that the "devadd" file-or the PTW has a main-memory
type devadd describing the main memory page frame of this CME.

mcme.pdmep
(777777000000,word 2)

(Alternate for cme.ptwp). Only valid when cme.rws is ~, which is
when there is an RWS going on ~n this main memory frame. In this
case, mcme.pdmep is the relative offset into the SST of the PDMAP
entry of the PD record undergoing this RWS. In this .case, the field
mpdme.cmep of that PDME would be the relative offset into the SST of
this CME.

cme.astep
(000000777777,word 2)

Only valid under the conditions under which cme.ptwp is valid and
nonzero. The field cme.astep will then contain the relative address
into the SST of the AST entry for the segment to which the page in
this main memory frame belongs.

Word 3 of the core map entry is reserved for future expansion. It is no
longer used as "cme.dblw devadd."

I PAGING DEVICE MAP

The Paging device map is an array of Paging device map entries (PDMEs), one
for each configurable record in the Paging device. It contains PDMEs for all PD
records to be used by the current bootload, as specified by the PAGE CONFIG
card. The pointer sst.pdmap located the PDME for record a of the paging device.
It is in the SST.

9/78 6-10 AN61A

PAGING DEVICE MAP ENTRY (PDME)

del 1 pdme based (pdmep) aligned~
2 fp bit (18) unaligned,
2 bp bit (18) unaligned,

2 devadd bit (22) unaligned,
2 pad2 bit (2) unaligned,
2 modified bit (1) unaligned,
2 ineore bit ~ 1) unaligned,
2 rws bit (1) unaligned,
2 uSed b' +-~v

..... \
\. i) unaligned,

2 abort bit (1) unaligned,
2 pad3 bit (1) unaligned,
2 flushing bit (1) unaligned,
2 notify_requested bit (1) unaligned,
2 update_only bit (1) unaligned,
2 removing bit (1) unaligned,
2 double _writing bit (1) unaligned,
2 pad bit (1) unaligned,

2 ptwp bit (18) unaligned,
2 pageno fixed bin ((3) unal,
2 pvtx fixed bin (8) unal,

2 uid bit (36) aligned;

del 1 mpdme based (pdmep) aligned,
2 save - old _pvtx fixed bin (17) una2.if: ned,
2 emep bit (18) unaligned,
2 reeord no bit (18) unaligned,
2 add_type bit (4) unaligned;

9/78 6-10.1 AN61A

This page intentionally left blank.

0 1 1 3
0 1 8 5

fp bp
Word 0

save - old _pvtx cmep

0 2 2 3
0 1 2 5

Word devadd flags

0 1 1 2 2 3
0 1 8 6 1 5

Word 2 ptwp pageno pvtx

0 3
0 5

Word 3 uid

pdme.fp
(777777000000,word 0)

Forward pointer in the PD used list. Has the relative address into
the SST of the PDME used supposedly slightly more recently than this
one. PDMEs describing records that are undergoing RWS are threaded
out: pdme.fp is zero, and pdme.bp is reused as mpdme.cmep. PDMEs
that have been deconfigured have pdme.fp and pdme.bp both equal to
"777777"b3. Paging device map entries in PDMAPs representing
"unflushed" paging devices, on the next boot load after one in which
ESD failed, have all entries either threaded out or deconfigured.
This field shares storage with mpdme.save_old_pvtx.

mpdme.save_old_pvtx·
(377777,du,word 0)

9/78

(Alternate for pdme.fp.) During a post-crash PD flush, the value of
pdme.pvtx is saved here. This is so that should the system crash
during the post-crash PD flush, the next boot load can put that PVT
index ~ in pdme.pvtx to retry the flush: The field pdme.pvtx is
set, during the post-crash flush, to the PVT index of the drive
where the volume to which the pages are being repatriated in this
bootload. The old value is n~cessary to identify the pack, where it
was recorded in the label at the time the volume was accepted (see
"Post-Crash PD Flush" under "Services," and Section IX.)

6-11 AN61A

pdme.bp
(OOOC00777777,word 0)

Backward pointer in
the PDME, in the
shares storage with

the PD Used list. Has the relative offset of
SST, whose pd~e.fp describes this pdme. Also

mpdme.creep. Valid only when pdme.rws is ~ff.

mpdne.crnep
(000000777777,word 0)

(Alternate for pdme.bp.) Valid only when pdme.rws is Qll, in which
case pdme.fp should be zero and no other PDME or the PO used list
used pointer sst.pdusedp should describe this POME. In this case,
an RWS is being undergone by the PD record described by this POME,
and mpdme.cmep contains the relative address in the SST of the CME
that describes the page frame in which this RWS is taking place.
The field mcme.pdmep should point back to this PDME. Used by the
abort code in the interrupt side to locate the eME when the PDME has
been found from the PTW. See Figure 6-5.

pdme.devadd
(777777740000,word 1)

Is the disk address, as a standard page control devadd, which is
associated with the page contained on the PO record described by
this PDME (valid only when pdme.used is Qll). Must be a disk-type
devadd, can be nulled or live. Pages created in main memory,
written to the paging device, but never yet written to the disk
record which they were assigned will have a nulled devadd here (see
"Address Management," Section VII).

pdrne.flags
(037777,dl,word 1)

pdme.mod
(004000,dl)

pdme.incore
(002000,dl)

pdme.rws
(001000,dl)

pdme.used
(0 0 0 It 0 0 , d 1)

pdme . aboI't
(OUO":OO,dl)

Are the pdme control flags, detailed below.

Modified with respect to disk. Indicates that the page in the PD
record described by this PDME is different from the copy of the
page, if any, on disk, and an RWS will be necessary to free this
PDME.

Is OBSOLETE. PTWs are inspected directly by the paging device
replacement algorith~.

If Qil, the record of paging device described by this PDME is
undergoing RWS. The CME designated by mpme.cmep contains additional
information. See the description of that field above.

Indicates, when on, that this pdme is not free, i.e., that the PD
record it describes contains some page of some segment. All fields
other than the thread word of a PDME are zeros when it is freed,
unlike CHEs. The bit pdce.used being off in a nonzero PDME should
not validly occur.

Turned on by the fault side when this function discovers that an RWS
is in probress on the PD record that contains the page it is trying
to ['ead in. This tells the interrupt side, upon completion of the
RWS, to connect the PTW to the main memory frame in which the RWS
was perfor~ed, thus effectively paging the page in "by virtue of
R~S," and not to free either the page fra~e or the PD record. It
also C3uses the interrupt side to notify the RWS completion event
(st"'e "W.lit Frotocols" in Section VIII) to restart the faulting
pr0~ess.

6-' 2· AN61

pdrne.flushing
(000040,dl)

Is used by the post-crash software when repatriating a page at
volume-salvage time, after an unsuccessful shutdown. Turned on when
the RWS for this page is initiated. Function is to tell the
interrupt side that this is not an ordinary RWS, and the PDME should
not be freed upon completion, but left intact so that the post-crash
repatriator (pc$flush_se&-old_pd) can determine the relative success
of the RWS by inspecting the PDME. (See "Post-Crash PD Flush" in
Section IX.)

pdme.notify_requested
(000020,dl)

Parallel in function to cme.notify_requested. Turned on by the
call-side wait coordinator, device_control$pwait, when the call side
wants to wait for the completion of an RWS. Tells the interrupt
side to perform a traffic control "notify" on the RWS event for this
PDME. Note that this is always done for an RWS abort completion,
which is when the same thing happens on the fault side.

pdme.update_only
(000010,dl)

Is OBSOLETE.

pdme.removing
(000004,dl)

Is used during deconfiguration of the entire, or partial paging
device, by the operator 91delpage" command. Useful only during an
RWS, it tells the interrupt side, on completion of the RWS, not to
free the PDME, but to deconfigure (delete) it. Also used internally
by the interrupt-side automatic deconfiguration code which responds
to paging device p.rrors (see "Error Handling n in "Mechanisms").

pdme.double_writing
(000002,dl)

.Used when the paging device is being used in any of the double-write
(write-through) modes specifiable by the PARM DBLW parameter in the
CONFIG deck. This bit is turned on by the interrupt side upon the
completion of a paging device write if it is decided that a
double-write to disk will be performed. This decision is made based
upon the number following the word DBLW on the PARM card, and the
properties of the page just written. It is Qn while the
double-write (to disk) is going on. It tells the interrupt side,
upon completion of th~ write, that the page has been successfully
written to disk, and therefore, that the disk address in the PDME
(pdme.devadd) should be resurrected. (See "Address Management," in
Section VII.)

pdme.ptwp
(777777000000,word 2)

pdme.pageno
(377000,dl)

Is a pointer, relative to the SST, of the PTW for the page that
resides on the PD record described by this PDME. In the case where
the contents of the paging device are left over from a previous
bootload, which did not shut down successful~Yt pdme.ptwp is zero,
until the paging device is reinitialized when it is successfully
flushed. The fact that this field is always nonzero during normal
operation is a reflection of the policy that only pages of active
segments are allowed on the paging device.

Along with pdme.pvtx and pdme.uid, this field is there principally
for the post-crash PD flush done by the next boot load after a crash
in which ESD did not succeed. The field pdme.pageno is the page
number, relative to zero, within its segment, of the page on this
r~cord of paging device.

6-13 AN61

I

pdme.pvtx
(000377,dl)

The index in the physical volume table of the drive which contains
that pack, on which the page in the PD record described by this PDME
resides. This field is used by the interrupt side, at the mid-point
of an RWS, to identify the drive to which the RWS buffer must be
written for the write cycle of the RWS. (See "Post-Crash PD Flush,"
Section IX.)

pdme.uid
(whole word 3)

Is the unique segment ID
resides in the PD record
here by the PD allocator,
this PDME can be "found"
pack containing that page,
that time.

PDMAP HEADER

of the segment containing the page that
described by this PDME. This is placed
allocate_pd in page_fault, solely so that
during physical volume salvaging of the
so that this page might be repatriated at

The PDMAP header occupies that region of the paging device map which would
otherwise be the PDME for the first record used. Since this record is always
guaranteed to contain a copy of the first page of the PDMAP, the space is used
for the PDMAP header. (See "Post-Crash PD Flush" in Section IX for motivation
for the PDMAP header.) Other than pdmap_header.time_of_bootload, the PDMAP
header contains copies of similar~y-named information in the SST.

dcl 1 pdmap_header based (pdmhp) aligned,
2 pd_first fixed bin (17) unal,
2 pd_using fixed bin (17) unal,
2 nrecs_pdmap fixed bin (17) unal,
2 pdme_no fixed bin (17) unal,
2 time_of_bootload fixed bin (71);

pdmap_header.pd_first
Copy of sst.pd_first. The paging device record number or the first
record being used by this bootload; this first record is the one
containing the first record of the PDMAP.

pdmap_header.pd_using
Copy of sst.pd_using. The number of records of the paging device
usable as a paging device--includes all those in use or free. Does
not include those deconfigured or used to store the PDMAP.

pdmap_header.nrecs_pdmap
Copy of sst.nrecs_pdmap. The number of pages (1024-word lengths) in
the length of the PDMAP itself; the number of bulk store records
devoted to storing the map itself.

pdmap_header.pdme_no

9/78

Copy of sst.pdme_no. The number of elements in the PDMAP array,
including those corresponding to records in which the copy of the
PDMAP is stored on the bulk store.

6-14 AN61A

pdmap_header.time_of_bootload
The value of fsdct.time_of_bootload (always set to the clock during
collection 1 initialization) from that Multics bootload during which
this instance of the paging device map was initialized. This
quantity will not change during successive boot loads after a crash
in which ESD fails, until all pages on the paging device have been
repatriated, at which time the PD map will be reinitialized. This
quantity is written to the labels of all physical volumes
(label.pd_time) accepted during a boot load in which this PDMAP was
actively in use; this allows the post_crash PD flush to identify
those volumes to which pages need to be repatriated.

fITE IARIABLES FOR PAGE CONTROL

The PVT, or physical volume table, is basically a data base of volume
management. However, it contains in its PVTEs (PVT entries) all of the
per-drive and per-mount ed-pack data used by the system, specifically the
information used by the disk DIM to describe a drive, and the information used
by the disk record allocator/deallocator (free_store) of page control. All of
the following parameters are used by the disk record allocator/deallocator; the
other parameters in the PVTE are described in Section XIII. These parameters
describe the status of the bit-map of fr~e records for that volume.
Historically, these parameters had lived in the FSDCT, in a region directly
preceding the bit-map, and were known as ~ parameters. (See "Disk Record
Allocation/Deallocation" in "Mechanisms.")

pvte.fsmap_rel

pvte.curwd

pvt.wdinc

pvte.temp

pvte.baseadd

pvte.tablen

a relative pointer, relative to the base of the FSDCT, to the bit
map for this drive.

a rela ti ve pointer, rela.ti ve to the base of the bi t map for this
drive, of the next word to be inspected for free records.

a number by which pvte.cur-wd is to be incremented to "roll it
around" to the beginning when it passes the end of the bit-map.

is a temporary variable used as such by free_store. This highly
unlikely place for a work variable is historical in origin.

is the record address represented by the first bit of the bit-map
for this drive. Each word represents 32 addresses, starting at that
record address. The first bit of each word is not used, nor are the
last three bits. This is to facilitate assembler-language
manipulation of this table.

is the number of n.lJJ1 words, for the pack currently mounted on this
drive, of the bit-map.

pvte.tablen_allocation
. is the number of words in the FSDCT region allocated for this drive.

pvtw.nleft

This is a function of the drive, not the pack on it.

is the number of bits on at any time in the bit-map for this drive,
i.e., the number of records left unallocated. When zero, an "out of
physical volume" (OOPV) situation has occurred.

AN61

pvte.relct

pvte.totrec

is a counter of the number of deposits (freeings) performed since
last reset. When this number reaches 100, it is reset, and
pvte.curwd reset to the beginning of the free store map.

is the number of records described by the bit-map for this pack.

SYNOPSIS OF RELEVANT SST VARIABLES

The SST header, the first 512 words of the SST, contains a large number of
global variables of interest to the storage system in all its subsystems.
However, the large number of them which directly control every action of page
control make it mandatory to list these variables, and give their
interpretations.

sst.space
first eight words of SST. Set to "777777777777"b3 by init sst.
Used to watch for page control bugs which might accidentally use
zero rel-pointers, and thus store data intended for somewhere else
into the first few words of the SST.

sst.post_purge_time
a cumulative total of CPU time spent in the post-purge function.
Reported by post_purge_meters.

sst.post_in_core
a count of pages found in main memory by the post-purge function at
post-purge time. Indicative of working-set behavior.

sst. thrashing
a count of pages found twice in a per-process page-trace list by the
post-purge function. Indicates that a process could not even keep
its working set in main memory during its eligibility.

sst.npfs_misses

sst.salv

sst.ptl

sst.nused

sst.ptwbase

is OBSOLETE.

is OBSOLETE.

is the actual global page table lock.

is the number of page-frames of main memory in
they wired, out of service, free, or whatever.
not corresponding to real memory, or containing
segments are ~ counted. Critical for the
memory-sharing computations.

use by paging, be
Pages deconfigured,

parts of perm-wired
traffic controller's

is the absolute address of the base of the SST segment. Used to
convert SST-relative page-table pOinters into absolute addresses
suitable for use in SDWs, and vice-versa.

sst.bulk-pvtx

sst.astsize

is the PVT index of the bulk store. The bulk store has a PVT entry,
and is therefore, in some contexts, considered a rather peculiar
type of disk. Specifically, it is that "disk" on which the
"pdmap_seg," the segment that is used to access and update the PDMAP
image on the bulk store, resides.

is 12 decimal, the size of an AST entry.

6-16 AN61

sst.cmesize

sst.cmp

sst.usedp

sst.wtct

sst.startp

sst.removep

is 4, the size of aCME.

is an ITS pointer to the base of the core map array, which is always
the CME for address zero.

is a relative pointer to the CME which is the best candidate for
replacement. This field is the "clock-hand" of the main memory page
replacement algorithm.

is a count of all outstanding wrl~es initiated by page control.
When this number reaches a certain threshold (a "ceiling" is then
said to have occurred) the DIMs are interrogated for completions
until this number goes down. (This is called "running the devices,"
see "Mechanisms.")

is OBSOLETE.

is OBSOLETE.

sst.double_write
is the parameter that appears on the PARM DBLW CONFIG card field, if
there is one, otherwise zero. It tells the paging device interrupt
side when, if at all, to perform double-writes, based upon its
value:

o Never double write, the default.
1 Double write every time a PD write is done, but not process

directory pages.
2 Double write only directory pages.
3 Double write anything which has never been double-written, i.e.,

needs resurrection.

sst.temp_w_e~ent
is "200000000000"b, used by wire_proc to lock the "temp-wiring"
tables. (See Section X.)

sst.root_pvtx
is the PVT index of the RPV
the supervisor
initialization.

resides,
(Root Physical Volume), on which all of
and the whole system runs during

sst.ptw_first

sst.nolock

if patched on, modifies paging device behavior to give all pages a
chance to be used and evicted ~ before migrating them to the
paging device. (See the description of ptw.first, earlier.)

is OBSOLETE.

is OBSOLETE.

sst.pdir_page_faults
is a meter of page faults on per-process segments.
file_system_meters.

sst.level_'_page_faults

Reported by

is a member of page faults on directories and segments off of the
root. Reported by file_system_meters.

sst.dir_page_faults
is a meter of page faults on directories.
meters.

9/78 6-17

Reported by file system

AN61A

sst.ring_O_page_faults

sst.rqover

is a meter of page
file_system_meters.

faults taken in ring zero. Reported by

is the value of error_table_$rqover, the error code for record quota
overflow. Put here so that the page-fault handler can use it, as it
cannot reference error_table_, the latter not being wired.

sst.pc_io_waits

sst.steps

sst.needc

sst.ceiling

sst.ctwait

sst.wired

sst.laps

sst.skipw

sst.skipu

sst.skipm

sst.skipos

sst.skipspd

sst. reads

sst.writes

9/78

is OBSOLETE.

is the number of times the main memory page
(see the earlier description) passed a
file_system_meters.

replacement algorithm
CME. Reported by

is the number of times the main memory page replacement algorithm
was invoked, i.e., a page frame was needed. Reported by
file_system_meters.

is the number of times the page replacement algorithm had to "run
the devices" because of an excess of writes queued. (See "sst.wtct"
above.) Reported by file_system_meters.

is OBSOLETE.

is a count of the number of pages temp-wired or abs-wired.

is OBSOLETE. File_system_meters computes "laps" as "steps" divided
by "nused."

is the number of times
containing abs-wired
file_system_meters.

the main memory
or temp-wired

PRA skipped page frames
pages. Reported by

is the number of times that the main memory page replacement
algorithm passed over a page because it was recently used, and
turned off its "used" bit. Reported by file_system_meters.

is the number of times that the main memory page replacement
algorithm skipped a page because it was modified, and needed writing
out. Reported by file_system_meters.

is OBSOLETE.

is OBSOLETE.

is an array by device type, metering read requests dispatched by
device_control$dev_read for each type of device.

is an array, by device type, metering write requests dispatched by
device_control$dev_write, for each type of device.

6-18 AN61A

sst.short_pf_count
is a count of the number of times that a page fault had already been
satisfied (usually by some other process) by the time it
successfully locked the page tabie lock.

sst.loop_locks
is a count of attempts to lock the page table lock.

sst.loop_lock_time
is a cumulative total of CPU time spent looping on the page table
lock. It is reported by total_time_meters.

sst.pre_page_size
is OBSOLETE.

sst.post_list_size
is a count of all page trace entries processed by the post-purge
function (see Section IX). When divided by sst.post_purge_calls, it
is the average size of the post-purge list.

sst.post_purgings
is a count of all page writes started by the post-purge function,
which is an option currently not selected (see Section IX).

sst.post_purge_calls
is a count of ~nvocations of the post-purge function.

sst.pre_page_calls
sst.pre_page_list_size
sst.pre_page_misses
sst.pre_pagings

all are OBSOLETE.

sst.wire_proc_data
is used solely by the procedure wire_proc (see Section X,
"Peripheral Services of Page Control") to keep track of temp-wiring
requests.

sst.abs_wired_count
is a count of all page frames containing abs-wired pages.

sst.wired_copies

sst.recopies

is OBSOLETE.

is a count. of the number of times that evict_page had to recopy a
page because it was modified while being copied. (See "Demand
Eviction" in Section VIII.)

sst.first_core_block
is zero.

sst.last_core block
is the index in the core map of the highest-addressed page frame in
the configuration. Used by reconfiguration (see the Multics I
Reconfiguration PLM, Order No. AN71).

sst.tree_count
is an array of sixty-four cells, corresponding to the sixty-four
possible page-states which the post-purge function can see. It
counts how many times each was encountered. (See Section IX, "Post
Purging.")

sst.pp_meters
is OBSOLETE.

9/78 6-19 AN61A

sst.wusedp
is the "write" usedp, used by claim_mad_core to
migrations until it is equal to sst.usedp.
Replacement Algorithm" in Section V.)

do writes and PD
(See "Main Memory

sst.write_hunts
is the number of times that claim_mod_core was invoked to do work
postponed by find_core.

sst.claim_skip_cme
is the number of times that claim_mod_core attempted to process a
CME which was unprocessable, i.e., was abs-wired.

sst.claim_skip_free
is the number of times that claim_mad_core passed over a CME which
was tree. As the region of the list being processed by
claim_mod_core is directly behind usedp, this is not a good state of
affairs; that CMEs should be at the other end of the list.

sst.claim_notmod
is a meter on the number of times that claim_mod_core passed a page
that was not modified or "nypd," and thus not even interesting.

sst.claim_passed_used
is a count of times that claim_mad_core passed pages whose "used"
bits were on, turning them off on behalf of find_core.

sst.claim_skip_ptw
is a meter on the number of times that claim_mad_core passed a page
and skipped it because of the state of its PTW; usually, this means
that the page was wired.

sst.claim_writes
is a count of calls made by claim_mad_core to write out pages (if
full of zeros, the pages will not actually be written).

sst.claim_steps
is a count of core map entries processed by claim_mod_core.

sst.rws_reads_os
is a count of outstanding RWS "read" cycles (paging device read) in
progress. The RWS initiator of the paging device replacement
algorithm initiates all of the RWSs it is going to at once~ and
waits for sst.rws_reads_os to become zero via "running" the bulk
store DIM. While allowing the full queueing facility of the bulk
store to be used, this ensures that the page table is not unlocked
during RWS read cycles,.as page control is not prepared to handle
aborts during the read side.

sst.pd_updates
is a count of done-time PD writes started, part of the feature
described under sst.pd_writeahead.

sst.pre_seeks_failed
is a count of the number of times that find_core could not find an
acceptable (not used, not mOdified, not "nypd," not wired) CME in
fifteen steps, and called claim_mod_core as a result to cause more
processing, to cause completions to be noticed and zero pages to be
discovered.

sst.pd_desperation_steps
is a count of steps made by the PO desperator, which is invoked when
the PD allocator finds that the PDME at the head of the PO used list
is not claimable. The counter of failures of the PO desperator is
sst.pd_no_free.

sst.pd_desperations
is a meter of the number of times the
(report'?d by page_multilevel_meters).

6-20

desper-ator was invoked

AN61

sst.skips_nypd
is a meter of times
skipped a page frame
status.

that the main memory replacement algorithm
because of its "not-yet-on-paging-device"

sst.pd_writeahead
is a flag used to enable an unsuccessful experiment which caused the
paging device to be updated at disk-read completion time. This flag
causes the PD allocator to inform the interrupt side to start a PD
write, as opposed to turning on ptw.nypd, which is its normal action
in this circumstance.

sst.pd_desperations_not_mod
is a count of the number of times that the PD desoerator was invoked
on behalf of a ~ page, i.e., one which is an identical copy of a
page on disk. Reported as a percentage of desperations by
page_multilevel_meters.

sst. resurrections
is a count of the number of times that a disk devadd was
resurrected, i.e., made non-nulled and thus reportable to segment
control, by virtue of a disk write from main memory. (See Section
VII, "Address Management Policy.")

sst.fsdct_oocore
is a count of "recursive" simulated 'pagings of the FSDCT done by the
page fault handler to satisfy a need of allocating a disk record for
the page being faulted on. (See "FSDCT Paging," Section VIII.)

sst.oopv
(Out of Physical Volume) is the number of times that page control,
when invoked to allocate a disk record by the page fault handler,
could not, because there were no more available. The only
permissible circumstance is for a hierarchy segment, in which case,
the SDW for the segment is faulted, provoking a segment move (see
"Segment Moving" in Section IV).

sst.fsdct_ptp
is an ITS pointer to the page table of the FSDCT. This is needed by
the "recursive" page fault simulator used to access the FSDCT during
a page fault. (See "FSDCT Paging," Section VIII.)

sst.pd_resurrections
isoa count of the number 6f times that a disk devadd was resurrected
(see sst.resurrections above) by virtue of the successful completion
of an RWS.

sst.dblw_resurrection
is a count of the number of times that a disk devadd was resurrected
by virtue of the completion of a write-through from the paging
device. (See sst.double_write.)

sst.pdflush_replaces

sst.pd~ap

sst.pdhtp

is a count of the number of times that the post-crash PD flush
actually changed a disk address in a file map by virtue of this
repatriation.

is a pOinter to the virtual origin of the paging device map arraY7
null if there is no paging device. Note that this n2t the fir.st
record being used, but rather, record zeros PDME, even if the place
where that would be below the base of the SST.

is OBSOLETE.

AN61

sst.pdsize

sst.pdusedp

is the PVT index of the device (the bulk store) which is the paging
device. It is zero if there is no paging device (this is llQ1 the
case when there is an ~nflushed paging device). (See "Post-Crash PD
Flush," Section IX.)

is 4, the size of a PDME in words.

is the number of elements in the PDMAP, i.e., the number of records
in the region being used, including those being used to hold the
copy of the PDMAP itself.

is the "clock hand" of the PD replacement algorithm. Contains the
SST-relative address of the PDME at the "best candidate for
replacement" (head) end of the PD used list. If there are any free
PDMEs, they are right there.

is the PD record number of the first record in the region of the
paging device being used, the first number on the PAGE CON FIG card.
This record number will be the one used to hold the first record of
the PDMAP.

sst.pd_map_addr
is the absolute main memory address of the base of the PDMAP in the
SST segment. This is used by the function in
check_pd_free_and_update in pd_util which invokes the bulk store DIM
every second to write out the PDMAP to the first records of the bulk
store.

sst.nrecs_pdmap

sst.pd_using

is the number of records on bulk store occupied to hold the paging
device map image.

is the number of PD records either free or undergoing RWS; used by
the PD replacement algorithm to free more or start more RWSs when
this number sinks below 10.

is the number or PD recOrds either usable or being used to contain
pages, i.e., not those which are deconfigured or contain the PDMAP
image. When zero, this cell is an indication to all of page control
that the paging device is not enabled (may be all deconfigured, or
unflushed), and no PD migrations can or will be performed.

is the total number of RWSs outstanding. The paging device
replacement algorithm will not let this number get above thirty; if
this threshold is reached, it loops "running" the DIMs until pd_wtct
goes down. (See "DIM Interface," Section VIII.)

sst.pd_writes
a counter of the number of RWSs ever initiated. Reported by
page_multilevel_meters5

sst.pd_ceiling
the number of times sst.pd_wtct hit thirty, and the paging device
replacement algorithm had to loop.

sst.pd_skips_incore
total number of times that the paging device replacement algorithm
skipped over a PDME, rethreading it to "recently used" because it
contained a page that was also in main memory at the time. (See
"Paging Device Management Algorithm" earlier.)

AN61

sst.pd_skips_rws
is OBSOLETE.

sst.mod_during_write
is a counter of the number of times that a page
was found to have been used while being written.
replacement algorithm made a poor choice.

being written out
Indicates that the

sst.pd_write_aborts
is a count of RWS aborts performed, i.e., times when a page fault
occurred on a page that was undergoing RWS. (See "Paging Device
Management Algorithm" earlier.)

sst.pd_rws_active
is OBSOLETE.

sst.pd_no_free
is a count of times that
"sst.pd_desperations" above.)

the PD Desperator failed. (See

sst.pd_read_truncates
-is OBSOLETE.

sst.pd_write_truncates
is OBSOLETE.

sst.pd_htsize
is OBSOLETE.

sst.pd_hash_mask
is OBSOLETE.

sst.pdmap_astep
is an ITS pOinter to the AST entry of the hardcore segment
"pdmap_seg," which is used by the call side to perform explicit
readings and writings of the PDMAP image areas on the bulk store.

sst.zero_pages
is a count of the times that write_page, the page-writing primitive,
found a page all full of zeros, and thus nulled its disk address
instead of writing it out.

sst.pd_zero_pages
is a count of times that write_page performed the above service (see
sst.zero_pages), and a copy of the page existed on the paging
device, which caused the PD record to be freed.

sst.trace_sw.pc_trace
enabled via the hardcore trace facility, and switch 34 on the
processor, causes page control to print out a large amount of
debugging information as it proceeds, mostly obsolete.

sst.rws_time_temp
is a temporary used by the RWS initiator and the interrupt side to
meter CPU time overhead of page multilevel.

sst.rws_time_start
a cumulation of CPU time spent in the RWS initiator. Printed out by I
page_multilevel_meters.

sst.rws_time_done
a cumulation of CPU time spent in the interrupt side processing
RWSs. Printed out by page_multilevel_meters.

sst.pd_time_counts
is OBSOLETE.

sst.pd_time_values
is OBSOLETE.

9/78 6-23 AN61A

sst.pd_no_free_gtpd
is a meter of the number of times that the PD allocator did not
migrate a page to the paging device because it belonged to a segment
with the "Global Transparent Paging Device" attribute defined in
Section II. Note that the PD allocator is invoked both at read-done
time and at page-write time.

sst.pd_page_faults
is a count of page faults from the paging device.
percentage by page_multilevel_meters.

Reported as a

sst.pd_no_free_first
is a count of times that the PD allocator refused to migrate a page
to the paging device because ptw.first was on, 1.e., the feature
described under "sst.ptw_first" thought that the page should not be
so migr'ated.

sst.update_index
is used by the periodic PDMAP writer in pd_util to keep track of
which page of the PDMAP it is writing out.

sst.last_update
is the clock time at which the PDMAP was last written out. If the
current time, at the beginning of any page fault, is more than a
second past this time, it is written out again.

sst.count_pdmes
when set to 1 by patching, enables an experimental meter which
meters, into sst.buckets, the depth of PDMEs in the PDHE used list,
at the time that they are rethreaded to the head. For the use and
significance of this type of meter, see the paper by Greenberg cited
in Section V. This meter is referred to there as the "Experiment of
webber and Snyder." Enabling this meter engenders sUbstaritial
overhead in the page-fault path, and should not be done frivolously.

sst. bucket_overflow

sst.buckets

is a count of times that the meter described under
"sst.count_pdmes," above metered a rethreading so deep that it could
not be metered in sst. buckets.

(See sst.count_pdmes.)

6'":'24- AN61

I

mptw.devadd

aste.pvtx

page table

.'

PTW

ASTE 1
J

Figure 6-1. Page Control Data Bases
Page not in main memory or on paging device

6-25 AN61

Main Memory

ptw.add

"'---"page
table

1----.....

ASTE

cme.devadd

cme.ptwp

disk

cme.astep

Core
Used
List

Figure 6-2. Page Control Data Bases
Page in main memory~ not on paging device

6-26

aste.pvtx

AN61

core used
list

....... CME /;

~

Main
Memory

ptw.add

" ! /

I cme.devadd I pd m,.d.,.dd

" , I ,

'" '" ~ " cme.astep

PO used
list

, POME /)

l- I/ ,I

cme.ptwp /1
I I

pdme.pvtx
/

V

~$
page table pdme.ptwp

PD Record

aste.pvtx

I
- f- PTW r--

l

ASTE I

J

Figure 6-3. Page Control Data Bases
Page in main memory and on paging device

I
I

I

I

AN61

disk

pel me.devadd

pelme.ptwp

page

PD
Used
List

PD Record

t-___ -ttable

i

mptw.devadd

PTW

ASTE c:J~--------------------------~

Figure 6-4. Page Control Data Bases
Page on paging device, not in main memory

pdme.pvtx

aste.pvtx

AN61

Main
Memory

cme.ptwp

Figure 6-5.

mpdme.cmep

cme.astep

pdme.ptwp

page tal.Jle

PTW

ASTE

I
IdUdog ,,,d

I

I

aste.pl.'tx

pdme.pvtx

I I ""m •. d.,.dd

PO
Record

Page Control Data Bases: Read-Write Sequence

AN61

SECTION VII

ADDRESS MANAGEMENT POLICY

INTRODUCTION AND NULLED ADDRESS

The address management policy of Multics is that set of designs and their
implementations which manage when record addresses are assigned to pages, the
state of the relationship between the contents of each page and the contents of
any secondary storage record which may be assigned to it, and the deassignment
of secondary storage addresses from pages.

Some address management policy must exist, as this service is a necessary
one of page control, a service to its own internal workings. The goals of the
Hultics ~ddress management policies are these:

1. No record address shall ever appear in a VTOCE unless it is known with
certainty at the time it is put there that the data in the associated
disk record is tt= data from the page of the segment which has that
address as its record address.

2. No record address shall ever be made available, by placing it in the
free pool of reco~ds on its physical ,volume, until it is known with
certainty at the time it is so made available, that it has been purged
from the VTOCE on disk in which it resided.

3. The observance of points 1 and 2 can be shown to imply pOint 3, to
wit, no record address shall ever appear in more than one VTOCE of a
given physical volume at the same time, not even during any transitory
or inconsistent states. Such states shall not be allowed to exist.

4. No page of data will be allowed to be created unless a disk record is
available to be assigned to it at the time it is created (by being
faulted in).

5. The supervisor, when running in any process, shall never encounter a
condition where a supervisor data base, stack, or procedure, cannot be
grown because of lack of space on its physical volume.

6. The system must be capable of being bootloaded without any knowledge
of which addresses are available for assignment. These maps can only
be constructed by running software to construct them. This software
consists of paged segments, and the~e segments must reside somewhere.

7'. The sy~tem shall not deplete its available space on any volume simply
as a result of being bootloaded, i.e., shut down and brought up
repetitively, or just running an extended or arbitrary period of time.

7-1 ' AN61

The address management policy takes cognizance of the fact that the system
can crash at any time. A total power failure can cause this. When the system
has crashed in such a way that the contents of main memory are lost, or in
general, emergency shutdown does not succeed, the next boot load must make the
best of what is in the storage system hierarchy as it encounters it. Thus, it
is one of the highest goals of address management to make sure the the
instantaneous state of secondary storage, at any instant, is never such that the
next bootload will give away data by accident or place data in the wrong place.

To understand this more fully, an example must
management policy failure in the pre-4.0 storage system.
is impossible under the current storage system.

be given of address
The following scenario

1. Segment A contains a PL/I program. Its owner deletes it, freeing its
record addresses, but leaving the data in those pages. The directory
file map (predecessor of the VTOCE) is freed.

2. Segment B gets created. Someone types a sensitive letter into it. A
record of disk gets allocated for a page of this segment, and is
written out. It is a page that used to belong to segment A.

3. The directory page which had A's branch has not yet been written out,
as this directory is heavily used, and thus not evicted from main
memory.

4. The page of the personal letter gets written out.

5. The system crashes unrecoverably.

6. The next boot load finds segment A still there, as
directory containing the branch never got out to disk.
one pag~ of this PL/I program now contains a page
letter.

the page of the
What is worse,

of the personal

This situation is known as a reused address; due to asynchrony in the
updating of pages to disk, two segments claim the same record address. What is
worse, the data from the new one is in the page that is described by the file
map of the old one. It is the principal goal of the release 4.0 and later
address management policy to categorically avoid this and a whole class of
similar problems.

It can be seen that if points 1, 2, and 3 above are followed rigorously,
the scenario above can never happen. These rules serialize the deallocation and
reallocation of addresses so that any trace of any given record is completely
gone from one segment before it is freed, and thus made available for use in any
other segment.

Point 1 specifically, makes it necessary to make finer distinctions between
the states of "there is no disk address associated with a page" and "there is a
disk address associated with a Da~e". These finer distinctions did not exist in
pre-4.0 versions of the storag~ system. Consider the case of a page of a
segment that has never been written to disk. Now surely, one must allocate a
record and associate it logically with that page before writing it, so there
must be a finite time between those two operations. There is also the entire
time during which the request to write is in the disk DIM queues, when it has
not yet been written. Consider the case of a request to "Update the VTOCE" of
the segment during this time. Should the address be reported to the VTOCE or
not? If it is, and the system crashes before the page gets out, then an address
appears in a VTOCE which denotes a record of disk with the left-over residue of
some other segment, a security problem. If not, then some finer distinction
must be made about the nature of assignment to tell when to update addresses and
\ihen not.

9/78 7-2 AN61 A

This is precisely where the concept of the Ilulled, or semi~killed device
address enters. Point 4 above implies the association of record addresses with
pages at the time that null pages are faulted into main memory_ A nYll page is
one that is in no way associated with any record of disk, and whose contents are
logically zero. The association of this disk record with the page is now in
that state given in the precious paragraph, where it is kn2Hn that it does ~
contain data from that segment, and may ~ be reported to segment control. An
address in this state is called a nulled or semi-killed address. It is a ~
address. It is assigned to a page, but the contents of the page are zero, and
the contents of the disk record are residue from some other segment, the
nulledness of a nulled address is encoded intrinsically in its representation.

The opposite of a nulled address is a ~ address. A live address may be
reported to the VTOCE, via pc$get_file_map, at any time. Its state of being
live implies that that record of disk is kn2Hn to contained data from the page
of the segment which has this live disk address as its disk record address.

The act of converting a nulled address into a live address is called
resurrection. Since an address being live means that it is known that a given
page has been written there, resurrection happens at the successful completion
of any of various disk-writing operations, namely:

1. Any page write from main memory to disk.

2. A read-write sequence (RWS) from paging device to disk.

3.

4.

A double-write, when the paging device is being used in write-through
mode (see sst.double_write in Section VI).

A post-crash repatriation RWS.
Flush").

(See Section IX, "Post Crash PD

Live addresses can also be dynamically nulled, converting them into nulled
addresses. This happens in two cases:

1. When the page is destroyed, via truncate, which includes all cases of
segment deletion.

2. When the page is discovered" to contain zeros (See "Zero" Pages': in
Section V.)

When a live address is so nulled, again, zeros become logically associated with
the page, and the address is not reportable to a file map. In this case, the
page of disk contains a residue again, in specific, the residue of an older
version of that page of that segment.

The force of the above poliCies is that addresses in a VTOCE, as described
in the introductory sections of this manual, have only two possible meanings:

1. A HYll address: This page of this segment logically contains zeros.

2. A Record address: This page of the segment is contained in the disk
record designated.

1-3 AN61

Therefore, at the time that a VTOCE is updated, the many fine divisions of
state of the page and its address must be mapped into one of these two states
for the file map being updated, depending on what action is intended for the
next boot load should the system crash irrecoverably the next instant. Thus, all
states involving nulled addresses are reported to the VTOCE as in case 1 above,
via the reporting of a null address to the file map. Now the reporting of a
null address to a VTOCE where perhaps previously there had been a live address,
is the sole precondition, acceptable to point 2 at the beginning of this
section, for depositing (freeing) a record. Thus, at the time that a file map
is reported to segment control, a list called the deposit list is also reported:
it consists of all of the nulled addresses found in the segment, for pages which
were not in main memory or on the paging device (in these cases, it would
violate point 4 to deposit their addresses). Page control's association between
the page and the disk record is broken at this time by placing a null address in
the PTW devadd field and reporting it to the file map, the logical contents of
the page remain zero, but no page of disk is associated with the segment.

Segment control holds on to this deposit list. It updates the VTOCE,
causing the addresses being deposited to be replaced by the null address gotten
above. When and only when this VTOCE write has been determined to be
successfully completed, are these addresses (the deposit list) handed in to
pc$deposit_list to actually be marked as usable by some other segment. The
special entry in the VTOC manager, vtoc_man$await_vtoce, exists solely for the
purpose of waiting for successful completion of VTOCE 1/0 for this reason. The
same action is taken when freeing a VTOCE is used as a means of invalidating its
contents, when addresses are involved. This is also done by the segment mover.
See the descriptions of "VTOCE Updating" and "Segment Truncation" for the impact
of these policies on segment control.

IMPLICAtIONS OF FINITE PACKS

Each disk pack in the current technology has a finite capacity on the order
of tens of thousands of Multics records. Each device address used by page
control and segment control is relative to some particular pack: thus the size
of these various fields limits, and is limited by, the amount of storage
available on one pack.

Each segment reS1Qe~
0he interpretation of the
they are only meaningful
the ASTE of tr.e seg~ent
tr.at segments can and do

on one and only one pack: this fact is intrinsic tc
device addresses designating records on that pack, as
with resoect to a pack designated by the PVT index in

in wnase data bases they are found. (Note, however,
migrate automatically between packs: See Section II).

Since all pages of all segments are assumed to be zero until otherwise
known, record addresses are not actually assigned until pages are actually used.
In older versions of the storage system, address assignment happened when a page
was first evicted from main memory, and was found not to be zero. Since all
addresses were withdrawn from the same single large pool, this operation could
only fail if the entire system were out of disk, i.e., there was not one more
record available anywhere. However, since each pack now has its own pool of
free storage, the case of a segment not being able to be evicted because there
is no place to write it is a serlOUS one. Such a page would tend to become
"stuck" in main memory until some (presumedly complex) action would be taken to
recover. An arbitrary number of such pages would tie up an arbitrary amount of
main memory. What is more, if the system chose to take a brute-force approach
to evict the page, it would have to destroy the user's data, with no particular
reason or even good method of telling him or her.

9/78 7-4 AN61A

Thus, point 4 above is made. No page of data is allowed to be created
(implicitly always as zeros) in main memory, which is the only place pages get
created, unless a record is available £i ~ ~ for assignment. Since it
will probably have to be written out later, it is better to find out now if no
disk is available. The unsatisfied page fault can be used to make the entire
segment-moving mechanism handle the problem transparently if this is done. What
is more, the nulled address concept precisely expresses the relation between the
page of the segment and the record address so assigned at this time. This
unsatisfied page fault is also critical to the implementation of the mechanism
that allows page faults on the FSDCT to be simulated by the page fault handler.

It is, of course, always possible that the user process might only
reference that page, or never store anything into it but zeros. We cannot rely
on that. There is a potential here for interaction with access control to
ensure this~ but this is not exploited at the current time.

NON SEGMENT-MOVABILITY OF THE SUPERVISOR

The supervisor may not run out of physical volume space at any time. That
is to say, if it is necessary to create a page of the supervisor's stack, and
there is not a single record available on the volume on which it resides, the
system is in an unrecoverable situation. Any software which did any action at
all would have to run on that stack, and it cannot be used. Thus, all
supervisor data bases, in particular, the ring 0 stack (PDS) of each process,
must be assigned addresses at the time it is created as a normal segment, before
it is used as a ring-O stack. This implies a cooperation of page control and
segment control. (See "PDS and KST Management", in "Services of Segment
Control" in Section IV). Add~esses are assigned to the PDS of the process being
created by touching every page of it. This causes nulled addresses t6 be
assigned. However, since this segment is part of the storage system hierarchy,
the periodic VTOCE update of the AST Trickle (See "AST Trickle" in Section II)
would tend to deposit these addresses, as the above paragraphs have stated is
the fate of nulled addresses at VTOCE update time. In order to suppress this
depositing, the AST bit aste.dnzp, which normally suppresses nulling of the
addresses, of zero pages, or checking for them, is viewed in conjunction with
the bit aste.ehs, the "entry hold switch" making these ASTE's semi-permanently
activated, by pc$get_file_map, to suppress reporting and making-null of these
nulled addresses.

This action of pre-assigning addresses is called prewithdrawing. All of
the supervisor data bases, such as the stack used at shutdown time, the FSDCT,
the dirlockt_seg, the lock segment, etc., are all prewithdrawn at the time they
are created by Initialization so that the supervisor does not run out of disk in
an embarrassing place. There is another reason for prewithdrawing these
segments at the time that they are created: it is a consequence of points 6 and
7, which are now discussed.

GUARANTEED BOOTABILITY OF THE SUPERVISOR

The segments that compose the hardcore supervisor, including all data
bases; and all parts of all salvagers, must, if paged, have disk addresses
assigned. By virtue of the policies given above, these pages, as all other
pages managed by page control, must have addresses assigned at the time that
they are created.

7-5 AN61

If the system has crashed without a successful ESD, then the volume map of
any volume present during that bootload will not be valid. (~volume map is
the disk copy of the FSDCT bit map for that volume, copied into the FSDCT when
the volume is accepted and written out when demounted). The supervisor must
have some place to allocate its own pages during the next bootload. Since no
volume map may be believed, the supervisor must in effect be booted on a volume
not present during the last bootload.

Rather than inflict this difficult operational restriction, a "special
volume" called the hardcore partition is defined on the root physical volume
(RPV) of a given hierarchy. In effect, every time the system is booted, the
supervisor is booted "cold" into the pseudo-volume of the hardcore partition.
This is to say that the volume map of the hardcore partition is defined to be
entirely full of "free" markings for its pages. Therefore, the supervisor may
construct the FSDCT bit-map for the hardcore partition out of "ones" for the
length of the hard core partition. The supervisor may thus allocate pages
anywhere in the hardcore partition. (Since the bit-map is wholly fabricated,
there is in fact no volume map on disk for this region). The location and
extent of the hard core partition are stated in the volume label of the RPV, and
are not subject to change during running of Multics (See Section XIV).

It is a corollary of the definition of the hardcore partition as a region
totally free upon bootload that all of the contents of pages in that region, of
that bootload, will be undefined (as the records are being reused) during the
next bootload. Now only two classes of segments will have pages in the hardcore
partition: supervisor segments (without branches or VTOCEs) of that bootload,
and deciduous segments (essentially supervisor segments with branches and
VTOCEs). The non-deciduous supervisor segment will not be accessible during a
subsequent bootload; all information about them was contained in their ASTEs,
and is gone. The resources consumed by them in the hardcore partition are
reused by virtue of the above definition. The deciduous segments, on the other
hand, will have pages allover them being reused by new segments. Therefore,
deciduous segments can not be used from one bootload to the next; an attempt to
activate a deciduous segment of a previous bootload causes a connection failure.
when deciduous segments are deleted, by the next bootl~~d, their pages are not
deposited; the records in the hardcore partition are reused by the current
boot load by virtue of the definition of the hardcore partition.

All supervisor segments, deciduous and otherwise, are totally prewithdrawn
against the hardcore partition with very few exceptions- see below). This means
that a given hardcore partition must be capable of holding the supervisor in its
entirety, or the system will crash with an out-of-physical-volume condition
during initialization. Thus, deciduous segments' record addresses are totally
in the hardcore partition, and all of their pages become invalid during the next
bootload. This property has been likened to the perennial defloration of flora:
that is why deciduous 'segments are so called.

The bit-map of the hardcore partition is used as the only free storage map
for the root physical volume, onto which the system is booted, until the middle
of collection 2, when the program accept_fs_disk$rpv runs (See Section XIV). If
~hp. ~v~tem crashed in the Drior bootload. the ohvsical volume salvager will have
b~~n-l~vokedb~fore-this point in the bootload&to reconstruct the volume map of
the RPV, in addition to other functions. Thus, at this point in the bootload,
the real volume map of the RPV replaces the map constructed for the hardcore
partition. (No addresses in the hardcore partition should ever be deposited
after this point). Thus, all requests for new record addresses on the RPV, will
cause records to be withdrawn from the real volume map of the RPV.

7-6 AN61

The fact that the real volume map of the RPV replaces that of the hardcore
partition means that any page withdrawn against that map by the supervisor must
ultimately be deposited, or the system will run out of disk on the RPV by virtue
of continued operation, a situation explicitly disallowed by point 7 at the
beginning of this section. Thus, if supervisor data bases grow, i.e., acquire
disk records, after the point mentioned above in initialization (the "acceptance
of the RPV volume map", the supervisor must, in order to perform a successful
shutdown, truncate these data bases and deposit these addresses to keep pOint 7
true. Not only is this difficult because of the need to differentiate the
hardcore-partition addresses from the ones withdrawn against the real RPV volume
map, but this systematic self-destruction of the supervisor causes any problem
in shutdown to be hard to diagnose, as the supervisor has willfully partly
destroyed itself at that time. It is also difficult to organize a supervisor
shutdown which proceeds by destroying itself. (In fact 1 pre=4.0 versions of the
supervisor destroyed themself in just this way, and continually had problems in
locating every last record that had to be deposited, and doing it in the right
order). Thus, the entire supervisor, with the exceptions noted below, is
prewithdrawn against the hardcore partition at the time it is created, for this
second reason.

There exists a small set of segments, called "delete_at_shutdown" segments
that are managed in complete violation of points 5 and 7. These segments are
part of the supervisor. They are data segments that are:

1. Large, and may not even be used for their full length.

2. Non-critical were the supervisor to run out of disk on the RPV were
these segments to encounter an OOPV condition.

These segments are managed this way simply to avoid having to make the hardcore
partition large enough (an issue of a few hundred records) to contain them were
they prewithdrawn against it. Thus, these segments are truncated during a
successful shutdown, contain both hardcore-partition and real-RPV-volume map
addresses, and may encounter out-of-disk conditions.

The bit slte.delete_at_shutdown, set from the MST generator
"delete_at_shutdown" keyword makes a segment so. Such segments are kept in the
"hardcore" ASTE list, to facilitate the truncation at shutdown time.

RPY PARASITE SEGMENTS

There are some 'segments, such as the descriptor segments of all processes
except the initializer, and the PRDS of all processors other than ,the Bootload
Processor, which reside on the RPV, but do not have VTOCEs or branches. Thus,
page creations for these segments withdraw against the real RPV volume map. In
the case of a normal shutdown, orderly process destruction and deconfiguration
frees these pages, assuring that the system does not run out of disk by virtue
of continued operation (point 7). However, in the case of a crash, with or
without a successful emergency shutdown, these orderly destructions do not
occur; as all of the relevant processes may be in inconsistent states. Since
these "RPV parasite" segments have no VTOCEs, the deletion of process
directories performed by system answering service startup does not free their
pages. Thus, a volume salvage of the root physical volume (so-called "short
RPVS") is performed automatically after every crash. This salvage collects all
space not described by VTOCEs, making it available for reuse. This includes all
space used by RPV parasite segments.

AN61

abs-segs (EXPLICIT ADDRESS MANAGEMENT)

Many "segments" in the supervisor are not segments at all, but rather
segment numbers, and possible ASTE/page tables, used for addressing main memory,
bulk store, or disk. Such "segments" are known as abs_segs. There are two
"levels" of abs-seg, the SDW-Ievel abs-seg and the PTW-Ieyel abs-seg. An
SDW-Ievel abs-seg is used by placing an SDW describing a region of main memory
(as a segment) in a position in the descriptor segment, or an SDW describing a
page table (as the page table for a segment). The extent of main memory, or the
segment described by the page-table "become" the "segment" whose segment number
was that of the position in the descriptor segment into which the SDW was
placed.

For a PTW-Ievel abs-seg, the SDW always describes the same page table. The
PTWs of this page table are filled in with the disk addresses of a region of
disk or bulk store (the PVT index of that drive or the bulk store (see
sst.bulk_pvtx in Section VI) is placed in the field aste.pvtx), and all
references to that segment "become" references to that extent of disk or bulk
store, i.e., the segment number's segment "becomes" that region of disk or bulk
store.

If this reminds the astute reader of the method used to access every single
segment in the Multics storage system hierarchy, that is because indeed it is.
The difference is solely one in orientation. For an abs-seg, the segmentation
and paging mechanism, and the implicit services of page control, are being used
as a technique to read and/or write disk. For a hierarchy segment, segmentation
and paging and the implicit services of page control and segment control are
used to make a collection of disk records "behave" like a segment. There is no
physical difference to the two techniques.

7-8 . AN61

SECTION VIII

MECHANISMS

The mechanisms of page control are those policies, protocols, and programs
that compose the internal organization, and support the services thereof. This
section details those policies, protocols, and programs. Some policies, such as
the address management policy, and the main memory and paging device
replacement algorithms, are not manifestations of internal organization, but
rather artifacts of the services page control is called upon to perform. Such
policies have already been explained.

Those policies already described are the externally visible policies. Some
of them have become documented in the literature, and thus acquired some measure
of fame. Yet it is the policies and mechanisms explained in this section that
are little-known, but necessary to the debugging of problems, interpretation of
crash dumps, and contemplations of functional or organizational improvements to
the whole of page control

The section is divided i~to three parts:

1. Policies, protocols, and organizations.
2. Individual mechanisms.
3. Internal interfaces.

The first part describes strategies and principles in effect throughout
page control, and critical to its external interface. The second describes
particular mechanisms, that are ostensibly divorced from the explicit services,
such as the method of waiting for page faults, the "recursive" FSDCT paging,
etc. The third part describes interfaces that are in effect the services of
page control for page control, such as most of the entries to the
transfer-vector "page."

POLICIES, PROTOCOLS. AND ORGANIZATIONS

Global Page Lock

All manipulations of page control data bases, with the exceptions noted
below, must be performed under the protection of the global page table lock. No
process that has the global lock locked may give away or accidentally lose the
processor on which it runs. Thus, any process that has the global lock locked
must be ~asked to "sys_level" , and have its stack, linkages, and procedures
wired; not referencing any non-wired parameters, code, or data bases.

AN61

There is no general mechanism for multiprogram-waiting on the page-table
lock. Except for processes taking page faults, all attempts to lock the page
table lock are performed by looping on it. Internal to ALM page control, this
is performed by executing:

tsx7
or tsx7

<page_fault> I Llock_ptl]
<page_fault> I Llock_ptl_no_lpj

depending on whether or not the caller has set up a stack frame. This procedure
may be generally accessed as page$lock_ptl from PL/I code, yet this is rarely
done (only the loading function, wired_plm, does this), as all other PL/I
procedures that lock the global lock also wish to wire their stack frames and
mask to sys_level; this compound function, which includes calling
page$lock_ptl, is performed by the very common call:

The two parameters are used in the corresponding unlock call:

to identify the PTWs wired by the first call, and the old mask. This mask
variable has the old wired bits of the PTWs embedded in it, and is intended for
use only by pmut$unlock_ptl.

There exist calls to unlock the page table lock, these involve interaction
with the traffic controller in order to support the page table lock
multiprogramming feature described in the second part of this section. This
call is:

tsx7 <page_fault> I (unlock_ptl]

in ALM page control, with the transfer vector page$unlock_ptl and
pmut$unlock_ptl having the same relation as the corresponding lock entries
(pmut, however, does not· use page$unlock_ptl, but rather
page_fault~pmut_unlock_ptl, a side door to the unlock mechanism which avoids
pushing extra stack frames).

The page-fault handler, the fault side of page control, has a mechanism for
waiting, via the traffic controller, for the page table lock to unlock. The
lock_ptl routine in page_fault takes special action when invoked by the fault
side; this mechanism is explained in the second part of this section.

There are two large classes of page control manipulations that may be
performed without having the global lock locked:

l. The turning onloff of wired bits of the PTWs of supervisor or
semi-permanently activated segments.

2. The construction or destruction of the page tables of inaccessible
segments.

8~2 . AN61

In the first case, the bit ptw.wired, used by the main memory replacement
algorithm to avoid eviction of a page, may be turned on or off at any time by
any process that is keeping track of what it is doing. Page control, operating
under the page-table lock, never turns wired bits on or off except in two cases:

1. Loading of processes' critical pages.

2. Abs-wiring of liD buffers

Thus, processes may turn on "wired" bits of PTWs for segments such as the
ring-zero stack (pmut$lock_ptl does just this) without fear that page control
might be trying to turn them off. The restrictions on this type of activity is
that one must choose the segment with care: its AST entry must not be removable,
.lest these PTWs vanish while being dealt with, or before having their wired bits
turned off. Thus, only supervisor segments and semi-permanently activated
segments (including PDSs of other processes than the initializer) are eligible
for such treatment. Furthermore, this mechanism is not shareable; unless some
external means is used to organize such wiring requests (such as wire_proc, see
Section X, or the 1/0 Buffer Manager iobm, only segments known to be essentially
unshared may be so dealt with (limiting this almost exclusively to ring-zero
stacks (PDSs). Once wired bits are so turned on, simply touching the page whose
PTW was manipulated, bringing it into main memory, will "wire" it, since it now
may not be evicted.

Unwiring of pages so wired may be done by simply turning off the wired
bits; it was guaranteed by the preconditions of the last paragraph that the PTWs
cannot have disappeared, and no other process could have turned off the wired
bits, or worse yet, wanted them kept on. This is the method used to "unload"
processes, i.e., unwire their critical pages, without the protection of the page
'table lock. In fact, an extension of this mechanism is used by the liD buffer
manager to turn off the "abs_wired" bit (cme.abs_w) in the core map entry
without the protection of the lock, for the definition of abs-wiring is that, the
page, and hence, the core map entry it is associated with, may not be moved.

The other broad class of manipulations performable without the page table
lock- locked is that concerning itself with segments that are inaccessible. A
segment being activated by definition has no SDWs describing it, and has no
pages in main memory or on the paging device. Thus, any manipulations on its
PTWs or AST entry can have no effect on any of the data bases of page control,
since no CMEs or PDMEs describe ~hese PTWs or ASTE. A segment that has been
"finalized" by pc$cleanup (see "Services," Section IX) again has no pages in
main memory or on the paging device; since making the segment inaccessible is a
precondition for calling pc$cleanup, such a segment is in the same state, and
its PTWs may be dealt with as fitting.

There are two smaller classes of manipulations performable without the page
table lock being locked:

1. The validation of page control events by the traffic controller.

2. The depositing of addresses.

The traffic controller interacts in a close fashion with page control,to
perform Process Loading (see "Process Loading" in "Services"). Among the
quantities returned by page control to the traffic controller, when this service
is performed, is a wait event. The validity of this wait event is verified
under the traffic control lock by the traffic controller, under whose lock all
notifications must be performed. This validation is performed by checking
out-of-service bits, the particular location of which may be inferred from the
value of the "wait event" (see "Wait Protocols" below). If these bits are not
on, it is a certainty that the event in question has already happened; if it had
not, these bits would still be on, regardless of any lock anywhere, and the

8,,:,,3 . AN61

traffic controller effectively proceeds with the loading operation, which is, in
effect a conservative action for the traffic controller. (The worst possible
result of such a mistake would be to retry the loading an extra time.) On the
other hand, if the bits are Qll, the traffic controller assumes that the event
has not happened. This is not fully correct; it may have happened already, and
a new similar event started. If any such event is in progress, a "notify" will
be forthcoming if and only if the "notify requested" bit in an appropriate PDME
or CME is Qll. In the case of the legitimate event being waited for, it always
is. In this peculiar case above, it mayor may not be. The traffic controller
assumes, if the out-of-service (or RWS, as appropriate) bits are on, that a
notify will be forthcoming, and sets the process being loaded waiting on that
event. The worst possible outcome of a mistake (highly unlikely) in th~s
decision would be a gO-second "notify timeout," and retry.

The depositing of addresses, i.e., the marking of bits in FSDCT bit-maps as
~ is performed outside of the page table lock. Withdrawing is performed
under the protection of the page table lock. The latter is necessary, as were
there no lock protecting this withdrawing, two processes might "succeed" in
withdrawing the same address simultaneously, resulting in not only a "reused
address," but an inconsistent FSDCT and PVT. Thus, withdrawing is performed
under the lock. Depositing need not be, because no two processes can be trying
to deposit the same address at the same time, because there are no reused
addresses in the system. Each address appears at most in one place at one time.
Furthermore, no process is specifically trying to withdraw any given address.
Depositing consists of turning on a bit and incrementing the free-record count,
both of which operations can be done without the protection of a lock. If the
address being freed was already free ("unprotected address," a cause for crash)
it will be free whether or not the lock is locked. If it is not, no other
process is trying to free it. One implication of the fact that depositing is
not performed under the page table lock is that the depositing procedure
(free_store, called only by pc) takes ~ faults in the normal fashion on the
paged, non-wired FSDCT, while other processes are so doing.a.n.Q the "recurs'i ve"
page fault simulator is accomplishing "withdraws" on perhap~ the same pages.

The page table lock is lower in the locking hierarchy than the traffic
controller lock. It is lower t.han any of the locks used by the storage system
DIMs to control their data bases, and thus lower than any locks used by the 10M
manager.

It is higher than the lock used by the I/O buffer manager, and thus higher
than· any locks used by the I/O interfacer.

It is a "wired" (per-processor) lock, and thus higher than any non-wired
(per-process) lock, such as all directory locks and the AST lock.

Wait Eyents Used by Page Control

Page control llses two "waiting" type mechanisms:

1
I •

2.

Looping and retrying until some asynchronous event happens; used to
wait for the completion of bulk store I/O, the clearing of the page
table lock (by other than the fault side), or the dying-down of disk
queue traffic ("running the disk DIM").

The wait/notify mechanism of the traffic controller.

8~4 ' AN61

The first method is used where g1v1ng away the processor is impractical or
impossible, including several "worst-case" type situations. The wait/notify
mechanism of the traffic controller is used to wait for precisely three types of
events:

1. The completion of any disk paging I/O, i.e., disk read or writes of
pages to and from main memory for any other reason than a read/write
sequence (RWS).

2. The completion of read-write sequences (RWSs).

3. The unlocking of the global page table lock, awaited only by the fault
side.

There is also the temp-wiring table used by wire_proc, among the peripheral
services of page control, but it is far removed from the internal organization
of anything else in page control. (See Section X for more on this.)

Each event for which page control waits has a 36-bit "Event ID," as must be
true of all events waited for via the traffic controller. Part of the protocols
of using the traffic controller wait/notify mechanism is that event IDs need not
be unique over the system, and thus notifies can occur spuriously as event IDs
clash. However, event IDs generated by page control ~ unique within page
control. Page control, when looking at an event ID it generated can determine
with certainty what event is associated with that event ID, and whether or not
it has happened. There are three classes of event IDs corresponding to the
three types of events above:

1. A binary number in the right-hand half of a word, whose left haIr is
zeros, this number being bigger than the offset in the SST of the
first ASTE (the word offset of the pointer sst.astap), is the offset
of a fIK in the~. Such an event ID is associated with the event of
the completion of non-RWS disk I/O for that page.

2. A binary number in the right-hand half of a word, whose left half is
zeros, smaller than the offset in the SST of the first ASTE (the word
portion of the pointer sst.astap), is the offset of a paging device
map entry (PDME). Such an event ID is associated with the event of
the completion of an RWS for that PD record.

3. The octal constant "160164153152"b3, being the ASCII for "ptlk", is
associated with the event of the unlocking of the global page table
lock.

A "PTW event" (Case 1) may be tested for having completed by the being-on
of the bit ptw.os. A "RWS event" (Case 2) may be tested for completion by the
being-on of the bit pdme.rws in the PDME designated by the numerical value of
the event ID. These checks ~ be made under the page table lock, via an
organized methodology explained below ("Wait Protocols"). The "PTL event" (Case
3) may be tested for having completed by inspecting the contents of the page
table lock, sst.ptl.

PTW events are also used to express the event associated with the
completion of non-RWS bulk store I/O. However, these events never leave page
control and thus are never waited for via the traffic controller. Page control
"waits" for PTW events corresponding to bulk store lIDs by means of calling the
bulk store DIM "run" entry until the event has occurred.

8~5 . AN61

Wait Protocols of Page Control

Part 1 Waiting for a given single event - other than the PTL event
(Simplex Wait Protocol)

The methodology used in page control to wait for an event is strongly
dependent on which side of page control is doing the waiting. For a start, the
interrupt ~ never waits, or has to wait, for any event (unless loop-locking
the global lock is considered waiting for an event). Thus, the interrupt side
may not run the replacement algorithm, which would "wait" for disk 110 to die
down by looping.

One must consider the code of the process-loading function a separate
"side" of page control here; it is the only function that acts on behalf of some
given process, including causing that process to wait, but is ~ actually
called by that process.

The page control wait mechanism is not used so that page control may wait;
rather, it is used so that processes on behalf of whom page control is
performing serv~ces may be made to wait, when awaiting page control events is
necessary to the fulfilling of that service. This is to say, that when the main
memory or paging device replacement algorithms start a write or RWS
respectively, page control has no need, in general, to wait for its completion.
On the other hand, some process that is trying to drive all pages of a segment
out of main memory and paging device may well have to wait for the completion of
such a write or RWS, whether it had started it or it had already been in
progress. Similarly, a process taking a page fault must be made to wait for a
disk 110 completion if a disk read was involved in resolving that page fault.
Thus, the procedures that implement the services of page control may often have
to wait for 110 completions in order to carry out these services as specified;
the mechanisms of page control never wait.

The completion'of all page control events is detected and determined by
page control. No external agencies in the system wait upon or notify page
control events. What is more, the "notify" operation for all page control
events is performed under the page table lock, usually by the interrupt side of
page control. The occurrence of a PTW event consists of the turning off of the
PTW out-of-service (110 in progress) bit. The occurrence of an RWS event
consists of the turning off of the PDME RWS (pdme.rws) bit. These events I can
only happen under the page table lock. Page control does nQ1 perform a
traffic-control notify every time a PTW event or RWS event occurs. PTW events
are notified only if the bit cme.notify requested in the CME of the main memory
frame in which the 110 was taking place is QU. These notify operations take
place in the traffic controller, but ~ ~ ~ ~ ~. These
notify-requested bits are turned on when and only when page control has made the
decision that a process must wait for such an event, at such time, the
associated notify_requested bit will be turned on (all under the page table
lock).

The decision to make a process wait happens in three different ways,
depending on whether the decision is performed by the fault side, the call side
(other than the loading function), or the loading function. In the first two
cases, the process executing the code will be the one that waits; in the third
case it will not.

8-6 ANQ1

The fault side makes the decision to wait at the end of page fault
processing, all under the page table lock. The read in of the page faulted on,
if nonnull has already been initiated (see "Services" Secti~u IX, "Page Fault
Handling"). The PTW of the page faulted on is inspected. Tf the PTW indicates
that the page has already been read in (or created, in the case of zero pages),
the page fault machine conditions, and thus the faulting Control Unit cycle, and
thus the instruction, and the program that took the page fault, are restarted
(after unlocking the page table lock). If, on the other hand, the PTW indicates
that the page has not been (completely) read in, there is waiting to be done.
Since this process has the page table lock locked, and notices that the page is
not in, it does not matter whether or not the page has actually come in~ i.eo j

the disk data transfer has been performed. The interrupt side, which is the
only agency that can turn off that bit ptw.os or pdme.rws, (cause the PTW or RWS
event to occur), cannot be invoked until this process releases the page table
lock, or itself invokes the interrupt side under the page table lock. In the
case where there is waiting to be done, the subroutine read_page, invoked by the
page-fault handler, has returned the event ID of the event that must be waited
for. If the page being read in is undergoing an RWS, this is an RWS event.
Otherwise, it is a PTW event. If the page requires an allocation of a record,
and the appropriate page of the FSDCT is not in main memory, it may be an RWS
event or a PTW event for a page of the FSDCT (see "FSDCT paging" later on).

The fault side waits for the event so given to it by read_page in the
following way:

If this event is an RWS event, identify the PDME designated by the RWS
event, and turn on the abort bit. This causes an RWS abort and a notify of
that RWS event at the time the RWS completes. A branch is executed
(pxss$page_wait in the traffic controller) to wait for that event and
unlock the global lock.

If this event is- a PTW event, determine whether it is for a bulk store
transfer or a disk transfer. If the devadd in the CME for the page frame
denoted by the PTW is a "paging device devadd," it is a bulk store
transfer. Otherwise, it is a disk transfer unless the segment is the
"pdmap_seg,~ abs-seg, an abs-seg used to read the bulk store as .though it
were a disk. Then it is a bulk store transfer. If it is a disk transfer,
turn on cme.notify_requested in that CME, and go to pxss$page_wait to wait
for the PTW event. This bit will cause a notify of that PTW event when the
1/0 completes. If this is a bulk store transfer, call the "run" entry of
the bulk store DIM, and check whether or not the PTW out-of-service bit has
gone off and call the "run" entry of the bulk store DIM in a loop, until
this bit has gone off. The "run" entry of the bulk store DIM will
interrogate the hardware status of the bulk store, and call the interrupt
side of page control, potentially causing the PTW event to occur, as its
function. Then ~estart the machine conditions.

Bulk store transfers are not awaited via the traffic control mechanism
because the transfer time of the bulk store is comparable to the overhead time
spent going through the traffic controller.

Thus, a process taking a ~age fault either restarts the machine conditions
at the end of a page fault, or goes to the traffic controller to wait for either
an RWS event or a PTW event corresponding toa disk 1/0. In either case of
going to the traffic controller to wait, a bit will have been turned ,on
(pdme.abort or cme.notify_requested) which tells the interrupt side to notify
via the traffic controller. .

8-7 . AN61

When a process waits on behalf of the fault side of page control, (this
includes waiting for the lock, see "Traffic Controller Interface" below) no
other information is recorded about the state of that process other than the
machine conditions from the page fault that was taken, and the fact that it is
indeed waiting on behalf of the fault side of page control. When that event is
notified, the traffic controller branches to page_fault$wait_return, which does
not lock the page table lock, modify, or even inspect page control data bases in
any way, but only restarts the machine conditions of the fault. If indeed the
PTW was made to describe main memory as the interrupt side noticed an I/O
completion, and the page has not been evicted in the interim, the interrupted
machine cycle will be retried and completed. If not, another page fault will be
taken, which will again try to lock the page table lock, perhaps retry page
allocation because the FSDCT has now been paged in, or re-read the page if it
was evicted in the interim between the time the process received the notify and
the time it received the processor. The design is not to determine why the
process went to wait; the hardware (by not taking a page fault) or the changed
state of page control will do that on their own.

The call side (other than the process loading function) makes the decision
to wait when it notices some page with liD going on, or some PD record with an
RWS going on, in a way that interferes with the contract of the entry being
called. For instance, if the entry pc$cleanup is called to ensure that no pages
of a segment are on the paging device in main memory (the caller having made the
segment inaccessible), this surely cannot be true if there are pages being
transferred into or out of main memory or the paging device; waiting for this
liD to complete is intrinsic in the contract of this entry. Similarly, the
truncate function cannot destroy pages on which I/O is being performed, for the
interrupt side at the completion of the liD would have no way of telling what
had happened. Leaving some kind of mark to tell it amounts to waiting for the
I/O to complete.

The call side waits by calling page$pwait, with the page tables locked,
passing the event ID being waited for as a parameter. Ultimately, if page$pwait
so decides, this process will be made t~ wait. The entry page$pwait, also known
as the ~ ~ HSii coordinator, (its code is in the module device_control)
has the following contract:

Given a page control event ID, with the page tables locked, return when the
event has occurred, with the page tables locked.

The call side wait coordinator can always decode the event ID, and by
looking at a PTW or PDME, determine if the event has happened. This is the
first thing it does (sees if ptw.os or pdme.rws, as befits the event, is off),
and if the event has occurred, it simply returns with the page table locked,
having fulfilled its contract. (It is sometimes the case that page$pwait will
be called with the event ID of an event that has already happened; (see
"Multiplex Wait Protocol" below.)

If the event of interest has nQ1 occurred, page$pwait decides how to wait
for it in the same way as the fault side; if a -PTW event for either paging
device liD or pdmap_seg, the bulk store DIM "run" entry is-called in a loop
until the PTW "out-of-service" bit is turned off by the bulk-store DIM's calling
the interrupt side. If this is the case, the page table lock is unlocked, and
page$pwait returns with it locked, having fulfilled its contract. If the event
is an RWS event or a disk PTW event, the bits pdme.notify_requested or
cme.notify_requested are turned on as appropriate, and control is transferred to
px-ss$waitp in the traffic controller. This entry unlocks the page table lock
and waits for the event. When the event occurs, pxss$waitp branches to
device_control$pwait_return, which relocks the page table lock
«page_fault> I [lock_ptl_no_lp]), and returns to the caller of page$pwait.

/

8-8 AN6-1

It is part of the protocol of using page$pwait that upon its return, the
event might have happened, but the page is out of service ~, or that it
might have been fraudulently notified. All callers of page$pwait use it as part
of the multiplex wait strategy outlined below; implicit in this strategy is the
knowledge that these callers will retry all their operations again upon return
from page$pwait. Thus, fraudulent notifications are not a difficulty. This
situation is exactly parallel to that in which the restart of a page fault upon
return of the traffic controller when invoked by the fault side simply retries
the faulting machine cycle. No guarantee is made that it will succeed. It is
the responsibility of the page control service using page$pwait to ensure that
at most a finite number of retries will be necessary (see "Page State
Transitions" in this section.

It is necessary that the entries used by the traffic controller to wait for
page control events on behalf of the fault side and call side (other than
process loading) unlock the page table lock ~ the traffic controller has
locked its own lock. This is necessary to prevent a "lost notify" problem.
Were the page table lock unlocked before the traffic controller lock were
locked, the interrupt side could run in some other process, between this
unlocking and this locking in real time, and the event for which the original
process is going to wait will occur and be notified. Then the first process
will go to the traffic controller to wait for an event that has already
occurred. However, since it is necessary to have QQ1h the traffic controller
and page table locks locked to perform a notify of a page control event, there
is no time at which this notify might come through before the process is set
waiting and the traffic control lock unlocked.

The process loading func;ion, as stated before, causes some other process
to wait than the one in which it is running. The traffic controller has a
special mechanism for this, which will be explained under iiServices" in Section
IX. The upshot of it is as follows; traffic control will call page control ,to
load a process. Since the process loading function cannot wait, it will either
return an event ID, or, by returning zero, indicate that the process is
successfully loaded. If not successfully loaded, traffic control will set the
process being loaded "waiting" on the event ID returned by page control. When
this process is notified, it will not be LYn, since it is not loaded i but
rather, traffic control will call page control to load the process. Page
control will either return an event ID, or the fact that the process has been
successfully loaded, etc., until the process is loaded.

The process loading function calls page$pread (described in part 3 of this
section) to read in the process' two critical pages. This entry calls the bulk
store control "run" entry in a loop to wait out any bulk store 1/0 that it
starts. Otherwise, this entry returns a PTW event for disk 1/0 that it starts,
or an RWS event if one is in progress on the page. The process-loading program,
wired_plm, (which is in bound_tc_wired, unlike all else in page control) sets
the CME or PDME notify requested bits for each event so received from
page$pread, or any PTW among those for the process critical pages that were
already (or §1ill) being read in at this call. Such a wait event is returned to
the traffic controller with the assurance that a notify will be performed when
that happens (this is actually using a form of the multiplex wait strategy; see
that title below).

Since page control unlocks its global lock before traffic control relocks
its own lock, when the process-loading function returns to the traffic
controller, there is a window for a lost notify (see above). This is
particularly likely on three-or-more processor configurations, where a second
processor is likely to hold up the acquisition of the traffic controller lock
after a third has just acquired the page table lock. There are also some
lost-notify windows because the process-loading function is not in a position to
apply the multiplex wait protocol properly.

8-9 AN61

It is certain, however, that if page control indicates that a process has
successfully been loaded, then indeed it has. To rectify this, the traffic
controller itself "validates" the nonzero event returned by wired_plm, checking
the PTW out-of-service or PDME RWS bit indicated by the wait event, as requir€d.
If indeed, a notify was lost, the traffic controller puts that process in tne
state where yet another pass through wired_plm will be necessary to determine
whether or not the process is loaded, and if not, continue the loading.

Part 2 - Multiplex Wait Protocol

As stated before, the call side of page control does not deal with
individual pages at its external interface level. Calls are made to process
entire segments, or deconfigure extents of main memory or bulk store, etc. All
of the call-side page control entries (in PL/I page control) perform services
for the rest of the system on selected groups of pages, records, or main memory
page frames. Many of these functions, as noted in the above section, must
initiate and/or await the completion of I/O on these various entities. The call
side wait coordinator, page$pwait, is provided for this purpose.

All of these functions try to achieve a maximal degree of I/O parallelism
(simultaneous I/O operations in progress). This is accomplished by processing
all pages, records, or frames in the set being iterated over without performing
any waiting. During this iteration, alII/Os or RWSs which need be started are
started. As each page or record is processed, a check is made to see i.f an I/O
or RWS is in progress for that page, whether or not it was just started. If
this pass completes with no IIOs or RWSs found, then all of the pages or records
were processed, and there is no waiting to be done, so the particular function
being performed has successfully been completed. If, on the other hand, some
110 was found to be in progress, whether or not this loop had started it, the
call-side wait coordinator is called with the event ID of the last such
operation notified, and upon return, the entire loop retried, until successfully
repea ted with no .I/Os or RWSs found. This technique is summarized by the
following "typical" program excerpt (see any program in PL/I page control for
real examples):

1 rt: even t = 0;
2 do i = 0 to 255;
3 if ptw (i) meets-some-criterion then;
4 else do;
5 call page$typical (astep, i, tmp_event)
6 if tmp_event ~=O then event = tmp_event;
7 end;
b end;
9 if event ~=O then do;

10 call page$pwait (event);
11 go to rt;
12 end;

The variable which is here called "event" is most often called "ind." It
is often set to -1 to indicate that no code of the form of line 6 above has ever
set it. The calIon line 5 above performs some manipulation on a page such as
starting an I/O, or continuing an eviction, etc. Such entries, all in ALM page
control, perform ~ transitions upon pages, moving them closer and closer to
the particular criterion (such as the one on line 3) which the PL/I program is
trying to force to be true. Such criteria are: "No page on this PD record" (for
PD record deconfiguration) or "Page not in main memory or on paging device" (for
deactivation-time service) or "A good copy of the page exists on paging device
or disk" (directory-unlock-time flush service, or shutdown-time main memory
flush service). Such entries into ALM page control usually return the event ID
of any 1/0 they start and do not complete, (such as page$pread, which starts
page reads). A better set yet, such as page$evict and the "typical" entry
above, not only return an event ID for any I/O or RWS they start, but for any
they find in progress for that page at the time that they are invoked. Most do
not. Some (e.g., page$pwrite) never return an event ID.

8-10 AN61

We use the term "any I/O or RWS" very loosely. Rather than being a generic
class of events, any particular PL/I service (and the ALM entries it calls)
might be concerned about either one or both, depending completely upon the
semantics of what is intended to be accomplished.

The sort of ALM entries described above, which move pages closer to a given
condition, all need some kind of prerequisite condition to ensure that no
process or operation will be simultaneously trying to counteract the transitions
that the ALM entry is performing. For example, the function that abs-wires
portions of segments, pc_abs$wire_abs, calls page$wire_abs on each pair of
segment page and main memory frame being abs-wired together, until page$wire_abs
reports completion. Before ever calling page$wire_abs, however, pc_abs turns on
the bit cme.abs_w 7 (for abs_wired) for each main memory frame in the region.
The replacement algorithm will never evict a page from a frame with this bit on.
No process can deactivate the segment, for only supervisor or semi-permanently
activated segments are eligible for abs-wiring. Similarly, the
deactivation-time service, pc$cleanup, has as part of its contract that its
caller must have made the segment being processed inaccessible; thus the
transitions performed by page$pwrite, called by pc$cleanup, will not be
counteracted.

The PL/I loops using the "multiplex wait protocol" choose one event at
random, if any have to be waited for, usually t~e last one encountered, and to
retry the entire iteration, for at least the page associated with this event has
changed states noticeably, whether or not other pages have changed state (they
usually will have). Similarly, the PL/I function could not possibly be complete
until that single event has happened, so it is worth waiting for it. ThUS, the
choice of event for which to wait is completely arbitrary. If, in fact, an
earlier event were chosen, but some later call to ALM page control caused the
interrupt side to be invok(d and cause the occurrence of this event (Q.Q..§.1 the
event), the fact that this event is now invalid is of no issue, as the call 'side
wait coordinator would discover this and return immediately, causing the loop to
be redone. (No waste occurs in having the loop red.one, for indeed, some 110
which was passed as "in progress" will now be finished, by hypothesis).

As stated above, the process-loading function attempts to use the multiplex
wait strategy. However, instead of calling the call-side wait coordinator,
which it cannot, and branching to its head, it returns an event ID to the
traffic controller, expecting to be called at its entry pOint when that event
has happened. The fact that this arrangement is not an adequate substitute for
the complete service provided by the wait coordinator is obvious from the fact
that events so returned must be revalidated by the traffic controller.

The various states of pages wi~h respect to the ALM entries that cause
state transitions, are illustrated in the section "Page State Transitions,"
along with the names of the ALM entries or the process actions that cause these
transitions to occur.

DIM Interface and "Running"

Page control uses the services of two DIMs, or Device Interface Modules, to
manage the I/O operations upon the bulk store and the disks. These are
bulk_store_control, the bulk store DIM, and disk_control, the disk DIM.

Page control requires that these DIMs present a uniform functional
interface. The semantics of this interface are one of the fundamental internal
mechanisms of page control. These DIMs are known as the "Storage System DIMs,"
to differentiate them from printer or card punch DIMs, etc., or from the
user-ring disk DIM, rdisk_.

8~11· AN61

Page control requires the storage system DIMs to have three entries, ~~,
~, and run. The read and write entries are invoked to request the
initiation of read and write operations. The run entry is used to request the
DIM to interrogate its hardware status, and call the page control interrupt side
if any operations have been completed.

The read and write entries are given three parameters; a device record
address, a main memory address, and a word of two flags. The disk DIM read and
write entries are also given a PVT index to identify the drive to which the
device record address is relevant. The device address and main memory address
are those to engage in the data transfer. The word of flags contains two flags,
called the interrupt and priority flags. The interrupt flag tells the DIM that
it is to call the page control interrupt side when the operation is completed.
The priority flag may optionally be used by the DIM to sort the requests
received by page control into priorities.

The Disk DIM ignores the interrupt flag, always calling the page control
interrupt side. The bulk store DIM does not, however. This feature is used to
write out the paging device map to the bulk store every second; as this is not
really paging I/O (no PTWs or CMEs are involved), page control does DQ1 want the
interrupt side to be called upon its completion.

The DIM that receives a read or write request may perform that request in
any order it chooses with respect to other requests. A storage system DIM is
allowed to call the page control interrupt side while processing the call to
start a read or write. Specifically, it is allowed to post the completion of
the very request that it was called to perform, should this actually happen.
This implies that page control, on return from a call to a storage system DIM to
start an operation, must be prepared to find that an arbitrary number of actions
have been taken by the interrupt side during that call, including the completion
of ~ operation.

The bulk store DIM operates entirely under the page table lock. Except
when called by the Interrupt Interceptor (ii) on account of a bulk store
interrupt, it is always called with the page table locked. Bulk store
interrupts, however, happen only in the case of a bulk store error, in the
current DIM, and the DIM itself calls to lock the page tables in each case.

The disk DIM, however, is called-with the page table lock
times, such as when called at the entries defined above, but
when called by the 10M manager to process a disk interrrupt.
the call to the interrupt side of page control (via page$done)
the global lock itself.

locked at some
not at others, as
At these times,
locks and unlocks

Any storage system DIM may call the interrupt side of page control when the
DIM has been invoked. by an interrupt. When such an interrupt-time call is made,
the DIM must itself (or via page$done) lock the page table lock, and unlock it.

The interrupt side of page control is called by the storage system DIMs
with two parameters, a main memory address and a status code. The main memory
address is used by the interrupt side to locate a core map_ entry, from which all
other ~nformation (such as cme.rws, for example) may be derived. The status
code indicates the degree of success of the I/O operation. The low bits of the
status code indicate to page control the DIMs determination of whether the
problem causing the error is an error in the device, the data path to the
device, the record of the device, or the page frame of main memory involved in
the attempted transfer. Page control uses this for error recovery (see "Error
Strategy" below).

8-12 AN61

A DIM may retry an operation it has been asked to perform any number of
times; page control is only interested in the final outcome. What is more, a
storage system DIM can write some page to any number of different records or
devices, as it sees fit, and when asked to read it back, read it from any (or
all) of them. It is guaranteed by page control that all such copies will be
"good." If page control detects that the page was modified when an attempt at
eviction is next made, ~ of them are good; if not, they all are. What is
more, a storage system DIM can use the main memory frame into which it is being
asked to read for any intermediate buffering, diagnostic results, etc., as long
as it contains what was asked for when the operation is posted. Page control
makes no assumptions about the contents of page frames that are out of service
on reads.

If a storage system DIM given a request to perform, finds that it has no
queue space, it is allowed to loop internally awaiting the real-time completion
of I/O requests on its devices, possibly calling the interrupt side of page
control, if that is necessary to free queue space.

A DIM is allowed to perform services for other parts of the system, as the
disk DIM does for the VTOe manager, possibly calling the page control interrupt
side when so doing. In such cases, this call must be treated like one on behalf
of an actual interrupt.

A DIM must provide a "run" entry, called only by page control with the
page-table lock locked, which checks the devices being managed for operations
that have completed, and calls the interrupt side of page control for any that
have. Such an entry must have two properties:

1. It must physically interrogate the hardware status (perhaps stored) of
its device; it cannot depend upon actual interrupts having happened to
take cognizance of I/O completions.

2. If called in a loop, I/O operations will be posted one by one via
calling the interrupt side of page control, until the DIMs queues hold
no more uncompleted requests.

For one example of the use of a "run" entry, see the previous section,
where the page fault handler calls the run entry of the bulk store DIM until it
finds that the I/O on the faulting page has completed.

The RWS initiator (rws_ in pd_util) "runs" all of the DIMs (calls their
"run" entries, one by one, for all two of them) in a loop when more than thirty
RWSs are awaiting . completion. Thus, it is guaranteed that doing this
arbitrarily long will cause an arbitrary number to complete.

The paging device replacement algorithm runs the bulk store DIM to make
sure that all read cycles are finished before it is exited, and the page table
lock potentially unlocked.

The main memory replacement algorithm runs the DIMs in a loop if an excess
(currently 30) of uncompleted page-write I/O requests are outstanding. (The
tool file_system_meters reports occurrences of this event.)

The traffic controller "polls page control" every 15 seconds, which
consists of calling page$run, which locks the page table lock, runs all the
DIMS, and unlocks the lock. This, as all run calls and all other calls, may be
used by the DIMS to perform timing-out functions and housekeeping.

8~13 AN61

Other than calling the bulk store run entry as a substitute for traffic
control waits, no page control module other than the ALM program device_control
ever calls the storage system DIMs directly. Rather, the entries
device_control$dev_read, device_control$run and device_control$dev_write are
called. These entries, called only from the ALM page control environment (PL/I
page control never deals at this Iowa level), use variables in the ALM page
control environment to determine which DIM to call. This is the function, and
the origin of the name, of device control. The call-side wait coordinator also
resides here, as well as the page control code called as "page$run" which runs
the DIMs on behalf of the traffic controller polling code.

ALM Page Control Enyironment

All of the ALM programs in page control, including the bulk store DIM,
share a common environment of register usage, and all share the same stack frame
while in the same invocation of page control. That stack frame is laid out in
pxss_page_stack.incl. aIm. As can be inferred from the name, the traffic
controller shares the same stack layout, which is meant to optimize the case
where page control calls or transfers to the traffic controller; in this case,
the actual stack frame is shared.

Almost all subroutines in the ALM page control environment invoke each
other via the TSX7 instruction; there are a set of "small" subroutines that are
invoked with a TSX6 instruction. A subroutine is "small," if it calls no other
subroutines.

Any subroutine that calls any subroutine except a "small" TSX6 subroutine
must do a "savex"; this operation, performed by the "small" TSX6 subroutine of
that name saves index register seven in a stack of saved values in the stack
frame. This stack is initialized by the routine init_savex. A subroutine that
has not done a "savex" returns via TRA 0,7. One that has returns by branching
to the code "unsavex," which pops the stack and returns.

All code in ALM page control, other than the bulk store DIM, runs with
pointer register 3 set to point to the base of the SST. Any code that exits the
ALM page control environment must restore it.

All external entries to the ALM environment, such as the page fault
handler, and the entries called by PL/I code (through the transfer vector
"page") are responsible for setting up this environment, i.e., initializing the
index register save stack and pointer register 3.

Other than these general conventions, there are conventions of dealing with
specific data objects. When any ASTE, PDME, PTW, or CME is being dealt with in
any way, all routines expect the following index and pointer register
assignments to hold:

Object Register Symbolic Name

PTW Index 2 .ptw
and

Pointer Reg 2 ptw
CME Index 4 .cme
ASTE Index 3 .aste
PDME Index .pdme

8~14 AN61

The values in the index registers, are all offsets relative to the base of
the SST (pointed to by pointer register 3, symbolically "sst"). These symbolic
names are used by most code in the ALM environment to reference these registers.
Pointer register 3 also has the names "cme" and Hast" and "pdm" to allow
references of the following form to be made:

Ida astlaste.uid,.aste

These symbolic register names may be
page_info.incl.alm and page_regs.incl.alm.

found in the include files

The use of the stack variables in the ALM page control stack frame is not
systematized in any way. No person attempting to modify or maintain page
control should change any routine to use any variable that it had not previously
used unless they are familiar with every single use of that variable in ALM page
control. No attempt is made to document the usage conventions of these
variables. This can only be learned via extensive experience with ALM page
control. The only variables of any general interest are those named "devadd,"
"coreadd," "did," "errcode," and "inter." The variables "devadd," "coreadd,"
"did," and "inter," are the record address, PVT index, and Flag word,
respectively, passed to the storage system DIMs. Bulk store control, sharing
the same stack frame, uses them in place. The variables "coreadd" and "errcode"
are used by the interrupt side to receive the descriptions of completed
operations. Again, the bulk store DIM uses them in place. It is also worth
mentioning the array "arg," which is used by ~ page control and traffic
control to prepare argument lists and descriptors for any external (PL/I) call
that must be made from the ALM page control environment.

Error Strategy

By "error," we refer to any of the following three types of abnormal
circumstances:

1. Those resulting from user behavior (e.g., record quota overflow).
2. Those resulting from I/O device error.
3. Those resulting from internal software, or processor error.

The first class of error situation can hardly be considered an error
situation at all. The only "errors" in this class are physical volume overflow
and record quota overflow. Both of these errors are detected on the fault side;
supervisor segments are quota-inhibited (aste.nqsw is on) and prewithdrawn,
making these classes of problems impossible. Should they occur on a supervisor
or semi-permanently active segment, the system software is malfunctioning, and a
class 3 error results. Record ~uota is checked by the fault handler before any
quota cells are incremented; availability of physical records is similarly
checked by the record allocation function (free_store) before any data bases are
modified. Thus, recovery from either of these circumstances involves no
"backup." Record quota overflow is signalled by the fault side on the stack on
which the faulting process was running. This is done by moving the page fault
machine conditions to pds$signal_data, abandoning the masked/wired environment,
and transferring control to "signaller," the procedure responsible for effecting
such signalling.

AN61

This causes the stack history on that stack to be such that a return to the
signaller's frame causes the page fault to be retried. (This is the standard
fault-signalling, the only difference here from the common case being that a
masked, wired environment, with a stack frame on the PRDS (wired stack segment)
was abandoned.) Physical volume overflow is handled by the fault side by
marking the ASTE of the segment (aste.pack_ovfl) for which a record cannot be
allocated, setting a segment fault in the SDW for the segment implicated by the
page fault machine conditions, and restarting the fault. This causes a segment
fault to be taken. The segment fault handler locates the ASTE, sees the bit,
and invokes the segment mover, presumedly resolving the physical volume overflow
situation (see "Segment Moving" in Sections II and IV).

The class of errors produced by detected 1/0 device failure is that one in
which page control policy has the greatest effect upon system behavior. Errors
are reported by the storage system DIMs (see "DIM Interface," earlier) to the
interrupt side of page control. This severely limits the actions that can be
taken at that time. Specifically, no operation that involves waiting can be
performed. Furthermore, since the interrupt side can be activated by the call
side whenever a DIM is invoked, no action that involves allocating main memory
or paging device frames is permissible, since that would involve all of this
software recursively. This class of errors may be further subdivided into
errors in reading and errors in writing.

Errors in reading are simpler to handle, because there is always some
process waiting for the completion of that read. Taking whatever action is
necessary and notifying an appropriate event will cause that process to retry
that read, either via the fault side retry mechanism or the call side multiplex
wait protocol. The response to disk read errors is to turn on the bit ptw.er in
the relevant PTW, and return the PTW (otherwise) to its original state before
the read was started. Subsequent notification of the associated event causes
the fault side to retry, notice the bit, signal an error (condition
page_fault_error) (via the same fault-side signalling mechanism as is used for
record quota overflow), turning off this bit while so doing. The next retry of
that page fault causes another attempt to be made at the disk read.

Errors in reading the paging device (on other than RWS read cycles) are
much the same. However, the paging device record involved is dynamically
deleted by the interrupt side, because of the fact that an error was encountered
in reading it. A syserr message accompanies this action. The disk address
(possibly nulled) which was in the PDMAP entry (pdme.devadd) replaces the PD
record address (nptw.devadd) in the PTW, causing the next retry of this page
fault after the one that signals error to obtain the copy of the page on disk
(or zeros if the address in the PDME was nulled).

Errors in reading the paging device for the read cycle of an RWS are
somewhat like paging device errors above, although a different error message is
printed by syserr. The paging device record is dynamically deleted, and the
(possibly nulled) disk address in the PDME replaces that in the PTW. Since, by
implication, the RWS has been declared over on account of that error, and the
data on disk is thus considered implicitly "valid," the main memory frame of the
RWS is freed! and there is no write cycle. No resurrection of disk addresses is
performed in this case. Errors during RWS on behalf of the post-crash PD flush
are discussed in the consideration of that mechanism in Section IX.

Errors on writing are difficult to handle. While the optimal policy would
be to allocate a new disk or PD record, this requires manipulation of the paged
segment FSDCT, which is impossible at interrupt time. For the case of write
errors to the paging device, the solution is simple; the relevant paging device
record is deleted, and the (possibly nulled) disk address from the PDME replaces
the PD address in the associated core map entry (CME). This has the effect of
forcing the replacement algorithm, or the call side, on behalf of whatever
agency is trying ~v ~cc the completion of this writing, to retry writing,
accomplishing a write to disk instead. In effect, the page has been migrated
off the paging device.

8-16 AN61

Errors on writing to disk are problematic in the ways stated. The action
at this time is to replace the disk address associated with the page with a nYll
address (page_bad_null, see null_addresses.incl.alm), freeing the main memory
frame, causing the contents of the page to become zeros. Errors on writing disk
on behalf of the write cycle of an RWS are similar; the null address
page_bad_pd_null replaces the PD address in the PTW, and hence, ultimately in
the file map. No resurrection, clearly, is performed. Again, special action is
taken for the post-crash PD flush.

The third class of errors dealt with in page control is that class of
errors indicating software malfunction. In every case, it is dangerous or
impossible to continue system operation, since further damage and wrongly
disclosed data would probably result. Included among such errors are errors
found in locking, errors in expected states of data bases, errors in threading,
and so-called "re-used addresses" (records marked as free that are known to be
in use, or being freed). Such errors can result only from undetecte~ processor
or main memory malfunction, or undiscovered bugs. The effect is to crash the
system in every case. In PL/I page control, this is accomplished by calling
syserr explicitly. In the ALM environment, the routine page_error is
responsible for constructing and executing all syserr calls. There are some
entries to this routine (including those used by the bulk store DIM) that report
specific errors (such as the non-fatal read and write errors, and paging device
record deletions discussed earlier). These routines are knowledgeable about
stack variables in the ALM environment, and var~able information is printed out
in their messages. There are also some entries that crash the system with a
specific message, such as that which is invoked upon discovery of a reused
address. However, the most commonly used entry is that invoked from the routine
page_fault_error in the program page_fault. This routine is invoked from the
ALM page control environment via a TSX5 to page_fault_error. It crashes the
system with the error "fat?l page fault error at location xxxx" where xxxx is
the address (in bound_page_coLtrol) of the TSX5 instruction executed. In every
case, this type of crash is the result of software malfunction, possibly induced
by undetected hardware failure. (There is also one case of this type of crash
induced by detected hardware (processor) failure; that .in which no appending
unit cycle bits are on in the page fault machine conditions, ~ndicating
appending unit failure.)

There is also a "nonfatal page fault error" facility, which is very
sparsely used.

Calls to crash the system via the program page_error call the PL/I routine
syserr via a standard call, setting up their argument lists in the array "arg"
in the page control stack frame. Part of that PL/I call is the storing of all
of the index registers arid the AQ at location 40 (octal) in the stack frame of
the ALH environment; useful information about the data objects invoked in such a
crash can always be gleaned from this data.

The crash for a re-used address is peculiar insofar as the code that
invokes it turns on the bit pvte.vol_trouble before crashing. This action
causes the physical volume whose volume map was involved to be volume-salvaged
the next time it is accepted for storage system use.

Other than these errors, there are no possible errors in page control. No
call 'side entries, or entries to ALM page control return a status code of any
kind. No nonfatal failure is possible in the current design. However, in some
cases, such as RWS failure due to I/O error on behalf of the post-crash PD
flush, status information is conveyed back via the live/nulled/null status of
the address left in the PDME by the RWS interrupt side. (See the description of
this service in Section IX.)

AN61

Stack Management and Interface with the Traffic Controller

Page control uses
controller fairly heavily.
been discussed.

the wait/notify facility of the Multics traffic
The conventions for such waiting and notifying have

Page control does not notify any event unless some process is waiting for
it, in order to avoid the overhead of traffic control. The bits
pdme. notify_requested , cme.notify_requested, and pdme.abort fulfill the function
of specifying whether or not such notification is to be performed. All
notification is done by the interrupt side, in ALM page control (save for one
highly esoteric case during boundsfault processing; see Section IX). All
waiting is also performed by ALM page control; the primitive page$pwait serves
to perform such waiting on behalf of PL/I page control. The mechanism used by
process loading to wait has already been discussed.

The interface between page control and traffic control is streamlined to
facilitate these operations. Since the traffic controller and ALM page control
share the same stack frame layout, with variables in it allocated to each, the
interrupt side transfers directly to a special side-door entry to the traffic
controller (pxss$page_notify or pxss$rws_notify) to perform all such
notifications. The traffic controller returns to the side-door entries to the
procedure page_fault (page_fault$notify_return and page_fault$rws_notify_return)
after notifying. The event ID to be notified is passed by page control in the
cell pds$arg_1. The quantity seen in the listings as being passed in pds$arg_2
is an obsolete remnant of an old device-metering mechanism. The traffic
controller operates completely in page control's stack frame in these cases.

The wait interface is more involved. The interface used by' the
process-loading function is not discussed here; this has already been treated.
The traffic control interface for waiting is always invoked by ALM page control
via a direct TRA, from either code in the end of the page fault handler, for
(invoking pxss$page wait) causing a process to wait on behalf of the fault side,
or from page$pwait, the call-side wait coordinator (invoking pxss$waitp). There
is also. a third entry, pxss$ptl_wait, used explicitly by the fault-side
mechanism that allows multiprogramming to wait for the page table lock. Other
than this third mechanism, these entries are entered with the page table locked
in every case, being unlocked by the traffic controller after its own lock has
been unlocked (see "Wait Protocols" earlier, for the reason this is done).

The interface invoked by the fault side, pxss$page_wait, shares a stack
frame from the PRDS with the fault side, which invoked it. The fault-side stack
frame becomes a traffic controller stack frame, on the PRDS, and is managed by
the traffic controller from that point on as a traffic controller PRDS stack
frame, as it is passed around from process to process. Entry to the traffic
controller via pxss$page_wait implies that the entire state of the invoking
process is encoded in the page fault machine conditions in pds$page_fault_data
in that process; this is to say that there is nQ page control stack history of
any kind in that process. Thus, when a process waiting via this mechanism is
notified, and subsequently allowed to run, the traffic controller transfers to
page_fauit$wait_return, which does nothing more than restart those machine
conditions (including process/processor mask). Specifically, the page table
lock is not locked, nor are any page control data bases at all inspected or
modified in any way. This causes the faulting machine cycle to be restarted,
either completing successfully (if the page fault has been· resolved) or taking
another page fault.

AN61

When the traffic controller is invoked to wait on behalf of the call-side
wait coordinator, a transfer to the entry pxss$waitp is effected. Again,
pds$arg_1 contains the event on which it is desired to wait, and the page table
lock is locked, to be unlocked by the traffic controller. When a process waits
via this mechanism, PL/I page control has a stack history on the PDS of the
waiting process; the stack frame that was the current stack fra~e of that
process contains the return pOinter to the place in the PL/I program that called
page$pwait; that pOint must be returned to when the waiting has been finished.
There are no machine conditions; action upon return from the traffic controller
consists of transferring to that place in the PL/I program. Thus, the traffic
controller, upon completion of such waiting, transfers to the side-door into the
wait coordinator, device_control$pwait_return. Since the page table lock has
been unlocked, this entry relocks it via a call to the ALM page control locking
interface (page_fault$lock_ptl_no_lp)·~ and returns to the PL/I program at the

. instruction after the call to the wait coordinator. In order for this policy to
succeed, the stack frame pOinter register (Pointer Register 6) must be restarted
at the time device_control$pwait gains control, to its value at the time that
pxss$waitp gained control. Therefore, the traffic controller saves this value
in the cell pds$last_sp, which is often useful in debugging problems in this
area.

The traffic controller differentiates between the two cases above (fault
side wait, no stack history, and call side wait, PL/I PDS stack history) via the
variable pds$pc_call, zero for the first case and a positive nonzero number for
the second. The value of this variable tells it whether the state of a process
waiting for a page control event is embedded in the machine conditions in
pds$page_fault_data, or in its PDS stack history, as defined by the value of
pds$last_sp. This implicitly tells it whether it should transfer to
page_fault$wait_return or device_control$pwait_return.

The mechanism used to wait for the page table lock on the fault side 'uses
exactly the same mechanism as used by the fault side to wait for other events.
A special entry to the traffic controller is used in this case (pxss$ptl_wait),
which performs certain manipulations as described under "Page Table Lock
Waiting" later in this section. However, this special code soon transfers to
the code used by the fault-side to wait for all other events. Thus, it is to be
noted that the action performed upon notification of the page table lock event
is simply to retry the page fault, just like any other fault-side wait.

The vari~bles, pds$last_spand pds$pc_call, are used by the traffic
controller for other· mechanisms ~han page control waiting. Specifically,
pds$last_sp is used for all calls to the traffic controller for waiting (other
than those just described). The cell pds$pc_call is also used by the traffic
controller's preinitialization and shutdown wait mechanism (pi_wait) to
differentiate other wait calls than page control's from the two kinds of page
control wait already discussed; in this case, pds$pc_call is set to a negative
value.

See Figure 8~1 for a synopsis of this mechanism.

In all cases of invocation by ALM page control, the traffic controller is
aware that the process/processor are masked to "sys_level," and all relevant
parameters are in wired storage. Thus, the traffic controller never pushes its
"extra- PDS frame in these cases, because it is used only to store old masks.

8:-19 AN61

wait for
PTL

E3
pds or
outer
ring
stack

PTL

TC takes over
page _ fault's
prds frame
here

THE TRAFFIC
CONTROLLER

(pxss)

~
pds or
outer
ring
stack

page fault
(faultside)
wait for page

PTL is
locked

pxss$page _ wa it

page_faultSwait_return
RESTART MACHINE
COND ITIONS, UNMASK

I (empty) I
prds

PL/I cod, I~' al I (call side wait coord), .
(device _ control$pwa it)

~~'

wait for page

pxss$waitp

prds

I (empty) I
prds

return

LOCK PTL and RETURN
TO THIS FRAME

~
\

page ctl _ J

I (empty) I
prds

pds

Figure 8-1. Traffic Controller Interface Stack Management

8-20 AN61

The external entry to page control to lock the page table lock does not
need a stack frame; it does not push one (page$lock_ptl, using lock_ptl_no_lp in
page_fault). The external entry to unlock the page table lock, however, does,
because the traffic controller may be invoked to notify the page table lock
event. It pushes its frame, and does a full return (page$unlock_ptl, invoking
unlock_ptl, in page_fault). A special side-door is used by
privileged_mode_ut$unlock_ptl, however, to avoid pushing a frame. This
side-entry page_fault$pmut_lock_ptl, pushes a frame, and explicitly pops it in
line before transferring privileged_mode_ut$unwire_unmask to finish the job.

Note that all side doors to page control go directly to individual ALM
programs, and not through the transfer-vector "page."

Page States

One instructive perception of page control is that of a set of finite-state
automata; one for each page, one for each main memory frame, one for each paging
device record, and one for each secondary storage record. The basic operations
of page control, specifically the actions performed by ALM page control, consist
of performing state transitions upon these objects. PL/I page control, via
iteration and the multiplex wait protocol, effe~ts many state transitions at
once.

A series of diagrams (Figures 8-1 to 8-7) presenting the various states of
these automata is presented here. The entry points, code sequences, or actions
that affect each transition are identified. The flags and fields that define
each state are identified.

In almost all cases, state transition is performed under the global page
table lock. Almost all states of these pages and records are valid when the
page table lock is not locked. A notable exception is the read cycle of a
paging device read-write sequence (RWS) that is only seen under the protection
of the page table lock.

Refer to the discussions of the page table lock strategy and the multiplex
wait protocol for more illumination on the motivations for these sequences.

Special mention must be made of the illustrations, Figures 8-2 and 8-3
which show the state transitions of the page of a segment. To avoid
over-complication of the diagram, transitions involving paging device
deconfiguration (manual and automatic) have been omitted. Also omitted are the
data base bit states that denote these page-states as well as program names;
again, to avoid over-complication of the diagram. The state of all bits may be
inferred from the three previous diagrams. All of the transitions marked
"modification" in these diagrams represent not the action of any sequence of
code, but rather, that of the user of a given page, in modifying the contents of
that page. The transitions and states relating to the use of a page, only of
interest to the main memory replacement algorithm, have not been shown in
Figures 8-2 and 8-3.

Figure 8-2 is divided into two regions, states of a page that have no
associated paging device record, and those which do. The later region is
further divided into two regions, those in which the paging device page copy is
identical to the disk copy ("PD Notmod") and those in which it differs ("PD
Mod").

AN61

Two recurring patterns can be seen in each of these regions, the
"read-evict" cycle, in which a page is paged in from main memory, used without
modification, and evicted; and the "write-mod" cycle, in which a page in main
memory is modified by use, written out to "purify" it, and brought thus back to
the in-main-memory state of the "read-evict" cycle. When such cycles are
isolated, Figure b-3 is the result, showing the states of a page with respect to
main memory and the paging device in terms of these cycles. An entire set of
such cycles is shown in Figure 8-4, in91uding the "used" states of interest to
the main memory page replacement algorithm.

It should be noted that there are no states in any of these diagrams
corresponding to the sematics of the bits cme.abs_wired, ptw.wired,
pdme.removing, cme.removing, and pdme.flushing. These bits do not represent
states ~ ~, but rather instructions to all of the routines that perform the
various state transitions as to a desired "goal state." For instance, the flag
ptw.wired inhibits eviction, i.e., transition out of those page states where the
page is in main memory. The flag cme.abs_wired not only prevents eviction via
the replacement algorithm, but any subsequent assignment of the main memory
frame to any use (transitions out of the "free" state in Figure 8-5) by any code
except that of the abs-wiring function. Thus, the PTW "wired" bit is turned on
at any time (see earlier discussions of the page table lock), with the knowledge
that any subsequent read-in of the page will cause it move to the
"in-main-memory" state and stay there. For the case of wiring a page, the
transition to the in-main-memory state is easy to force simply by touching
(i.e., faulting upon) the page. In other cases, such as demand eviction on
behalf of memory deconfiguration, this is substantially more complicated. Thus,
primitives such as evict_page (in ALM page control) exist which, given the
appropriate data objects (in this case, a core map entry representing a main
memory frame), with such bits already turned QQ, perform whatever transitions
are necessary to achieve the desired state (in this case "free"). If the
transition is to or from a state where I/O is performed, a wait event ID is
returned, otherwise the complete transition is made, and no event ID is
returned. The greater part of call-side services such as the abs-wiring and
main memory d~configuration services is to turn on such bits, and call such
primitives on each subject page and/or main memory frame repeatedly,
multiplexing indicated waits via the multiplex wait protocol.

a~22· AN61

zeros done

PO- Paging Device

truncation
(pc$truncate)

~~====================~=-==-=-=--=-==~-------

Figure 8-2. States of Page

PD MOD
STATES

RWS

.---.:......--- ..

AN61

Figure 8-3. States of Page in Macro States

8-24 AN61

write-mod
cycle

PRA
leviction

I

'"" _____ modification, done

non-PRA write

forced
eviction

PRA

PRA=main memory page replacement algorithm

Figure 8-4. Read-Evict, Write-Mod Cycles

8~25

read-evict
cycie

AN61

RWS

RWS
initiation
(rws_in
pd_util)

complete
(page_fault$done)

cme. fp="77 77 77 "b3

read in
(read_page

eviction

cleanup page in
page_fault and
pc$cleanup

cme.rws="l"b
cme.fp="O"b
mcme.pcimep /\ ="O"b

in page_fault)

cme.rws="O"b
cme.ptwp;\ ="O"b
ptw.phm="O"b
cme.fp="O"b

cme.rws="O"b
crne.ptwp 1\ "'''O''b
ptw.phm="O"b
cme.fp="O"b

writing
(write_page iri.page_fault)

Figure 8-5. States of Main Memory Frames

8-26 AN61

CREATION
by

pdme.used="O" b
pdme.fp,pdme.bp
part of PD
used list

truncation
(pcStruncate) or
1/0 error
(page_faultSdonel

allocation
(allocate pd in
page_fa~t)

RWS read error
(page_ faultSdonel

PD replacement
(check pd free and update
in pd"=-util) - -

RWS completion
(page_fault$done)

I
deconfiguration I
(started by I
pcSde lete pd records
done by page _ fau!tSdone)

pdme.used=","b
pdme.rws="l "b
crne.io="'''b

Figure 8-6. States of Paging Device Record

8-.27· AN61

VTOCE
File
Map

Segment

deactivation and
VTOCE update

(pcSget file map) at
deactivation-time

segment control truncate
(truncate _ vtocc I

CME or PDME

devadd

002364121

free store$withdraw
read-::"page in page_fault

find ing zeros
(write_page in page_fault)

Figure 8-7. States of Disk Address

8-28

PTW

AN61

Tracing Mechanisms

There are two tracing mechanisms in page control, both of which have not
been maintained in recent years.

The "page control trace" mechanism is part of the hardcore system trace
facility. It is enabled by switch 34 on the Processor Maintenance Panel switch
register. This switch register is read and stored in sst.trace_sw on every page
fault. When enabled; this trace facility causes tracing messages to be printed
or written to tape, as selected by the system trace facility Various callside
routines (mainly to the program "pc") inspect this switch, and call ntrace,~ the
system trace routine, with arguments describing the action being performed, and
the location and contents of the AST entry upon which they are being called to
operate. Many actions in ALM page control are traced as well; they can be
located via the calls to "pc_trace" in ALM page control.

The program pc_trace is part of ALM page control. It is invoked at its
various entries, each of which traces one type of event, via a TSX7 instruction
f~om within bound_page_control. This program issues no messages; rather, it
sets up argument lists for the program pc_trace_pI1 which does. These argument
lists are functions of the individual entries. The actual arguments are
particular stack variables and index register values from the invoking ALM page
control environment. The program pc_trace_pI1 contains nothing but the PL/I
calls to the system trace facility, referencing the arguments passed by
pc_trace.

The second trace facility in page control is that referred to internally as
"disk_meters." This facilitj is the remains of an experiment described in the
MVT Project MAC Technical Report cited in Section V, which accumulated traces of
paging device allocations and evictions in order to achieve performance
predictions for extended paging ~evices and main memories. This facility is
enabled and disabled via the program "get_disk_meters," which wires and unwires
the tracking buffer, "disk_traffic_data." The trace entries are accumulated by
the program "meter_disk," invoked from ALM page control via a TSXO instruction.
All entries to this procedure start with an XEC instruction; when this facility
is not enabled, the target of this instruction is -a TRA 0,0, which returns at
minimal cost. This facility has not been functional since release 4.0;
furthermore, there are no installed tools to retrieve or interpret its output.

INDIVIDUAL MECHANISMS

Waiting for the Page Table Lock

The fault side of page control has the ability to utilize the
traffic-controller wait/notify mechanism to wait for the page table lock to be
unlocked. This ability depends upon the fact that the fault side has not
modified any data bases or changed the state of i~s process at the time that it
encounters the page table lock locked. Thus, if that process is made to wait
for the unlocking of the lock, via the traffic controller, the return from that
wait may simply restart the machine conditions of the page fault, probably
taking the page fault over again and retrying the operation. Thus, it may be
seen in Figure 8-1 "Traffic Controller Interface Stack Management" that the
entry to the traffic controller to await a page from the fault side
(pxss$page_wait) ultimately merges with that which awaits the page table lock's
unlocking (pxss$ptl_wait), both returning to page_fault$wait_return to restart
the fault.

8-29· AN61

Since processes may be waiting for the unlocking of the page table lock, it
is potentially necessary to notify the "PTL event" (the page table lock event
ID, "160164153152"b3) every time the page table lock is unlocked. Since there
is a sUbstantial overhead involved in calling the traffic controller notify
primitive to do this (it may involve looping on the traffic controller lock),
there is a means to avoid this notify call when in fact no process is waiting
for the unlocking of the page table lock. This means is implemented by the cell
sst.ptl_wait_ct. This cell is zeroed only by the notify code in the traffic
controller when it notifies the PTL event, protected by the traffic controller
lock. All code that unlocks the page table lock inspects this cell ~
unlocking it; if nonzero, it notifies the PTL event.

Any process that finds the page table lock locked on the fault side
transfers to pxss$ptl_wait. This entry, once it locks the traffic controller
lock, increments the cell sst.ptl_wait_ct. From this point on, any process that
unlocks the page table lock ~ call the traffic controller to notify the PTL
event. The page table lock is then inspected, under the protection of the
traffic controller lock, to see if it has been unlocked since the fault side
found it locked. If so, the process is made to wait for the PTL event, since it
is guaranteed that sst.ptl_wait_ct is nonzero (as it is only zeroed under
protection of the traffic controller lock, now held by this process), and thus,
that the PTL event will be notified, even if the page table lock has been
unlocked since the last check, for the process that unlocked it checks
afterwards the contents of sst.ptl_wait_ct. On the other hand, if the page
table lock is found to be unlocked at !this second check, the cell
sst.ptl_wait_ct is decremented by one, as this process will not wait, but ~.
Thus, in this case, the process returns out of the traffic controller as if the
PTL event had been notified, causing the page fault to be retried.

There are two code sequences in the system that unlock the page table lock.
One is the subroutine unlock_ptl in page fault, and the other is the code in'the
traffic controller page control wait entries that unlocks the page table lock
once the traffic' controller lock is locked. The unlock_ptl subroutine checks
sst.ptl_wait_ct and calls the traffic controller page-control event notification
routine, via the stack-sharing mechanism described earlier in this section.
Normally, this routine is only called from the interrupt side "done" code of
page control; this is the point to which the traffic controller returns. The
value of the event ID (the PTL event), which in this case can only be notified
from the unlock_ptl code, causes the interrupt side routine to return to the
unlock_ptl code. The return address, being the value of index register 7, is
saved in pds$arg_3 during this call.

The code sequence in the traffic controller that unlocks the page table
lock calls an internal traffic controller notification primitive ("n3") to
notify the PTL event if sst.ptl_wait_ct was not zero after the page-table lock
was unlocked.

FSDCT Paging

The segment FSDCT in ring zero contains all of the free-storage bit maps
for all mounted physical volumes. This can grow to be quite large, and thus,
this segment is a pageable segment, subject to demand paging behavior for its
entire extent. The information in the header of this segment is used by volume
management, where the pageability of this segment presents no problems.
Similarly, all deposition of addresses (freeing of disk records by turning on
bits in this segment) are done by segment control (the update_vtoce and
truncate_vtoce functions), and some of the peripheral services of page control
(e.g., pc$truncate_deposit_all). Again, pageability is no problem. The
withdrawing of addresses, however, is performed by the page-reading function in
ALM na2e control. invoked from the fault side and various functions on the call
side· (such as abs-wiring for 110 buffer usage).

8-30 AN61

The ALM page control kernel may not itself take page faults. However, a
mechanism exists to allow the page-reading function to achieve paging-in of the
FSDCT without taking a page fault. This mechanism relies on the multiplex wait
protocol and the fault-side retry mechanism. More precisely, either the fault
side or the call side, when made to wait for an event via the traffic
controller, will retry the operation that caused them to wait for that event.
In the case of the fault side, this means taking the original page fault over
again. In the case of the call side, this means re-evaluating PTW states, and
calling ALM entries to perform state transitions based upon these decisions.
The essence of the mechanism is to initiate the read-in of the needed FSDCT page
(when allocation is required) instead of the requested page, and causing the
faulting process or the call side to wait for the event associated with this
paging-in instead. When this read-in is finished (the event is notified), the
page-read function will probably find the needed FSDCT page in main memory, and
thus be able to proceed as though it were there to start with.

It is not ensured in any way that the FSDCT page paged in in such a manner
will still be in main memory when the page-read function inspects it again. In
this case, another read will be started for it, and the operation repeated.
This is as deterministic as an ordinary page fault; it is not necessary that
this operation complete in any given number of retries, but simply optimal to
the behavior of the affected process. Similarly, the disk-record allocation
function (free_store$withdraw) may progress through several pages of the FSDCT
to find the necessary allocation. This will cause these pages to be paged in
successively, with the faulting process or the call side being made to wait for
each one in succession. Between the time that these processes are made to wait
and the time that they retry the search through the actual FSDCT for a free
record, other processes can deposit pages (paging in the FSDCT via normal
paging) and withdraw record addresses (via the same mechanism). There is no
interlock against this, or any need for one. The state of a given bi-map is
recorded in the PVTE for that volume, and is not dependent upon any allocation
that might be in progress.

The necessity of the read-page function to have the necessary pages of the
FSDCT in main memory to complete its task is very much akin to the necessity of
having a set of pages in main memory to initiate execution of multi-operand EIS
instructions; nothing ensures that all the required pages will ever come into
main memory, although every retry attempt tries to bring them there. Once they
are all there, the operation proceeds. The process is effectively roadblocked
until all these pages can actually be found in main memory at once; how long
this is depends solely on system paging load.

The interface to the disk-record allocation function involves two error
exits; one for the out-of-physical volume condition (no more records to
allocate) and another for a needed page of FSDCT not being in main memory. In
the latter case, the AST entry pointer and PTW pointer for the needed page are
returned in the AQ register to the page-read function, which now redefines its
task to be the reading-in of ~ page, including the allocation of a main
memory frame and all other actions normally associated with the page-read
function (see "Page Reading" later in this section). The last step of this
function is to return a wait event to the caller. In this case, it will be that
wait event associated with the FSDCT page.

8~31. AN61

Per-Process Trace List

(page trace)

Page control maintains in the PDS of each process a circular trace buffer
of page readings, being mostly page-faults. The primary use of this trace is to
drive the post-purge function at eligibility loss time (see "Post Purge" under
"Services"). A secondary use is for the user commands "page_trace" and
"cumulative_page_trace, " which display and interpret this information. To the
latter end, various other mechanisms in the system make entries in this trace
list corresponding to such events as linkage faults, segment faults, and
schedulings. The trace region is at the symbol pds$trace, in the wired part of
the PDS. The format of this region is given in the include file
page_trace.incl.pl1, as well as the format of the trace entries.

This trace list is maintained by the subroutines "page_util_enter" and
"enter" in page_fault.

Disk Record Allocation/Deallocation

A bit map of unallocated records on every physical volume is kept in the
segment FSDCT. The parameters that describe each bit map, including the offset
of the bit map in the FSDCT itself and the state variables of the
allocation/deallocation mechanism for that volume, are kept in the PVT entry
for the volume concerned (see "Data Bases," Section VI).

The basic allocation strategy maintains a pointer into each map
(pvte.curwd), that points to the last word in the map in which free records were
found. Each word of map describes 32 records. When a request is made for a
record, that word is scanned for another one-bit. Successfully finding a
one-bit on causes the record def~ned by that bit to be returned (allocated), the
bit being then turned off. The result of the floating-point normalization is
checked by testing that the bit it claimed to be on is actually on; failure
produces a "unprotected or reused address" crash.

Before any word of the FSDCT is inspected, a check is made (by inspecting
the FSDCT's page table) that the necessary page of FSDCT is in main memory (see
"FSDCT paging" earlier). Before any allocation is attempted, a check is made to
see if there are any free records on the specific volume at all; if not, an
error return is taken causing the ultimate invocation of the segment mover.

As each word is depleted of free storage bits, the next word in the bit map
is moved to. The code that accomplishes this (in "withdraw" in free_store)
contains the remains of an algorithm which used to interlace assignment over
drives, prior to the advent of physical volumes. The effect of this in every
case is to move on word-by-word up the bit map, and come around again to the
beginning when the end has been reached. Thus, the pOinter pvte.curwd cycles
through the bit map for each drive.

Whenever one hundred deposits are made against a given drive, the deposit
code resets this counter (pvte.relct) and resets the "curwd" pointer to zero.
This has the effect of packing records tighter on each pack; whenever one
hundred records have been deposited, the scan for the next free address is thus
reset to the lowest address in the paging region of a pack.

8-32- AN61

The code for depositing (freeing) an address is trivial; the bit
corresponding to that address is turned on. If already on, a reused-address
error has occurred, indicating page control malfunction, and the system is
crashed.

Any reused address detected by the program free_store caused the
"vol_trouble" bit in the PVT entry for that volume to be turned on; this causes
a volume salvage the next time that volume is accepted, even if ESD succeeds.

INTERNAL INTERFACES

This section explains the structure and function of the basic page-state
manipulating subroutines of ALM page control. Some are externally accessible
from PL/I page control via the transfer vector "page." Many are not; it is the
functions provided by these interfaces in terms of which the Page Control
Services of Section IX will be described. Figure 8-8 shows the call flow of
most of these routines. Utility subroutines are described in the section
following this.

8~33 AN61

page_fault handle; -------------------------. ... heck pd free

and-update

read_page
(paging_in)

find core
(MM-alloc,
PRA)

'-----.-Iclaim _ mod _ core

run (writebehind
of PRA)

write page
(purification)

allocate pd
(PD allo~tion)

nypd
setting

zero
pages

wire abs
(abs wiring)

done
(I/O posting)

to traffic controller

(PD housekeeping

rws
(RWS
initiation)

double writes,
RWS writes

Figure 8-8. ALM Page Control Call Flow

b-34 AN61

Main Memory Frame Allocation

Perhaps the most fundamental interface of all is that which finds a free
main memory frame entry into which a page is read, including that performed on
behalf of a page fault. This is the routine find core, in the program
page_fault. This routine is invoked by ALM page control whenever a frame of
main memory is needed, ~ than some specific frame Cabs-wiring).

The basic mechanism of allocating a main memory frame is the running of the
main memory replacement algorithm, which runs exactly as described in Section V.
If there are free frames available, the program that freed them moved them to
the head of the "used list," and the pointer sst.usedp points to a free frame.
If none are free, the used list is searched for a frame that contains a page
that can be evicted without any 110, that has not been recently used. Frames
that do not meet these criteria are moved to behind the pOinter. Wired and
abs-wired frames are skipped too. If fifteen frames are .passed over because of
the fact that they would need 110 to evict their pages, claim_mod_core, the
purifier of pages, is invoked, which starts those lias, and the scan continues.
It may be so that claim_mod_core found some pages of zeros, or caused the DIMs
to call the interrupt side, in either case putting claimable pages ahead of the
used-list pOinter. If a tremendous number of frames are rejected, the system is
crashed with the message "out of core" (main memory).

When a frame is found which meets the criteria, an attempt is made to evict
it. This attempt consists 0f turning off the bit ptw.df, which allows the
hardware to use the page, clear~ng the associative memories of the system, and
testing to see if the page was modified any time in the interval between the
original decision that it was not modified (hence no 110 was necessary to evict
it) and this· clear of the associative memories. If it indeed was modified in
this window, the eviction has failed, the access bit (ptw.df) is restored, and
the search for an acceptable page continues. If it was not, the eviction is
successful, and cleanup_page (see "Eviction Cleanup," below) is invoked to
complete the eviction. The core map entry is left behind the used poi~ter (most
recently used frame), with the field cme.ptwp being zero, this indicating the
fact that it is free. The core map entry representing the frame made available
is designated by the value of index register 4, on the return from find_core.
Since find_core inspects many PTWs, and may call claim_mod_core, which may
involve many PDMEs and CMEs and ¥TWs, no index registers are preserved by
find_core.

The reader should note that pages that ~equire updating to the paging
device, even though they are not modif1ed, require 1/0 to be evicted, and are
thus not acceptable to find_core.

Replacement Algorithm Writebehind

8-35 AN61

The main memory frame allocation function avoids frames containing pages
that require I/O for their eviction so that it can return a usable page frame to
its caller in minimal real time, allowing the read operation that the caller is
sure to initiate to be started as soon as possible. This allows all writing on
behalf of the replacement algorithm to be initiated while the read is in
progress. This starting of writes is performed by the subroutine claim_mod_core
in page_fault. This subroutine is invoked at the end of every page fault. When
the main memory frame allocation function is invoked on behalf of some other
action than a page fault, it is not invoked. In this case, the next page fault
simply causes claim_mod_core to consider a larger set of pages than otherwise.
The subroutine claim_mod_core is also invoked by find_core when fifteen frames
have been skipped because of the need to perform I/O to accomplish their
evictions.

Three functions are performed by claim_mod_core; any page frame skipped by
find_core because of the need to do I/O to effect its eviction (whether actually
modified or simply not yet on the paging device (nypd)) has such I/O started
upon it. This is done via a call to write_page, the page writing/purifying
function. Pages with their used bits on have them turned off; this is normally
a function of the replacement algorithm, but the latter (find_core) must leave
these bits on so that claim_mod_core will not initiate writes on pages that
ought not to be evicted in the near future. A check is made to determine that
no more than thirty writes are outstanding (page control disk writes only, not
VTOCE writes), and the DIMs are "run" (see "DIM Interface and 'Running'"
earlier) until this is so. This third function ensures that find_core is not
processing vast numbers of frames because a very large number of writes have not
completed.

The routine claim_mod_core processes all frames from the point it last left
off (indicated by sst.wusedp) to the tail of the used list (where find_core is
now, indicated by sst.usedp). Since calls to claim_mod_core might call' the
page-write fqnction to start writes, and this might involve calling DIMs, which
might call the interrupt side, the state of the pointer sst.usedp and the
position of individual frames in the list maybe affected by invoking
claim_mod_core. Also, claim_mod_core preserves no index registers.

Page Writing/Purification

The contract of the page writing/purification function (the routine
write_page in page_fault) is to start only I/O necessary to ensure that there is
a good copy of a page ,outside of main memory (excepting the case where the page
becomes modified after invocation of this routine). If some function, such as
the deactivation-time service (pc$cleanup) wishes to purify the main memory page
unconditionally, it must take steps that no process can reference the page
(i.e., setfaulting all of the SDWs, as the deactivation function of segment
control does). Purification consists of making the copy in main memory "pure,"
i.e., not modified with respect to secondary storage or paging device (whichever
is appropriate).

The basic task of write-page is to initiate an I/O operation, writing the
page out. The peripheral tasks consist of making all of the state transitions
upon the PTW and CME of the page and page frame to set them 'out-of-service'
(meaning "I/O in progress," n21 unusable), checking for all zeros, and checking
whether allocation of a paging device record is in order.

8-36 AN61

The routine write_page is also used to cause the writing of unmodified
pages (pure pages) which are not on the paging device (ptw.nypd) to the paging
device. Thus, write_page performs precisely that function required by the
replacement algorithm to make a page evictable without any 1/0. It can also be
seen that write_page is invoked on pages that are both modified and unmodified
in main memory. The stack variable "mod_flag" tells what case is true (zero =
not mod).

~hen invoked on a modified page (ptw.phm is on), write_page checks for a
page of all zeros (unless the switch aste.gtpd is on to inhibit this). Such
pages are evicted at this time, by write_page, calling cleanup_page to finish
the eviction. As in find_core (see "Main Frame Allocation" above), a two-step
trial eviction is necessary. When it has been determined that a page is all
zeros, access is removed (ptw.df set off), the associative memories of the
system cleared, and the page checked for zeros. If found not to be zero at this
second check, it is treated as though it were not found as zero the first time.
Any PD record associated with such pages are freed by a call to
pd_util$pd_delete_. At this time, the disk record address of the page is nulled
(see Section VII, "Address Management"), holding it for either later
resurrection or deposition by segment control.

The routine write_page turns off the modified bit in the PTW, (ptw.phm)
using a lock-type instruction (ANSA). The PTW associative memories of all
processors are then cleared. If the page is modified before the clear of
associative memories, but after write_page noted that the page was modified, the
data bases will be modified to indicate that the page was modified (such as
pdme.mod), and the write will proceed in any case. If any processor modifies
the page after the clear of associative memories, the next attempt to evict the
page will find that it was modified, and thus the copy written by this
invocation of write_page w~s invalid. Note that access to a page remains Qn
during a write.

If invoked on a modified page, the routine writ~~page turns on "file
modified" switches (aste.fms) in the ASTE of this segment and all superior
directories, unless aste.gtms is on, inhibiting this. (See the description of
this flag in Section II.) The routine write_page also rethreads the PDME for a
page which it writes (via a call to pd_util$rethread) to the tail (most recently
used) position of the PD used list. This is to implement the part of the paging
device management algorithm (see Section V) that states that pages in main
memory are to be considered among the most recently used.

One very critical action of write_page is to check if the page being
written must be allocated a paging device record; this check is made by the
subroutine allocate_pd (described below) in all cases (other than a zero page).
Whether or not the page is modified, allocate_pd allocates a PD record if it
should, if it can, and one is not already allocated for this page.

The final action of write_page is to invoke device_control$write to
actually call the appropriate DIM to start a page write. Since it is part of
the DIM interface (see "DIM Interface" earlier in this section) that the request
being issued may even be completed during that call, this must be the last
action taken by write_page.

The routine write_page is invoked with index register 4 pointing to the CME
of the frame that is to be written. It expects index 2 and pointer register 2
to describe the PTW of this page, and index 3 the ASTE of its segment. All of
these registers will be preserved. No statement is made about the final state
of the page or frame, or whether or not it will be out of service upon return
from write_page.

8-37 AN61

The routine write_page is normally invoked from ALM page control, on behalf
of claim_mod_core, with the registers set as above. However, it may also be
invoked as page$pwrite from call-side PL/I code. In this case, the interface
routine page_fault$pwrite is invoked, which establishes the ALM page control
environment, and the necessary pointers and index registers, and calls the
routine pwrite.

Page Reading

The basic task of the reading function is to bring a page of a segment into
main memory; if null or nulled, a page of zeros will be created. Generally, a
read of disk or paging device will be required, and the page-reading function
will initiate this read. The page reading function indicates to its caller
whether or not waiting will be required by this caller.

It is part of the task of the page-reading function to check that both
adequate record quota and adequate disk storage space are available to
accommodate the page. Quota must be checked each time a page with a null or
nulled address must be paged in for it is at that time quota 1S charged.
Physical device allocation must be checked each time a page with a null address
is paged in. If either of these operations cannot be successfully performed,
i.e., adequate allocations do not exist, action can be taken before the page is
created in main memory. It is only legal for the fault side to encounter
out-of-quota or out-of-physical volume situations; all segments treated by the
call side should be quota-inhibited and prewithdrawn.

The page-reading function has two entries, read_page and read_page_abs, in
the module "page_fault." The usual entry is read_page, which, as part o~ its
task, locates a main memory frame into which to read the requested page, via a
call to the main memory frame allocation function find_core. The other entry,
used only by the abs_wiring function, is supplied the identity of a specific
main memory frame into which the paging-in is to be done. Either entry expects
to be called, via TSX7 instruction, with index register 2 set to the relative
address of the PTW of the page to be read in, and index 3 to the relative
address of its AS! entry in the SST. The routines return with not only these
registers set, but index 4 set to the relative address of the core map entry of
the main memory frame into which the paging-in was done. The routines return to
the location past the TSX7 instruction if they started I/O that has not been
completed, in which case the upper A register has the event ID to wait for.
Otherwise, if no incomplete 1/0 exists, or none was started at all, a return to
the location two locations beyond the TSX7 is executed.

If the page-reading function encounters a page on which a read-write
sequence (RWS) is in progress, the caller is returned the event ID of that RWS.
This will cause the call side to ultimately set a notify-requested bit in the
affected PDME. The fault side will initiate an RWS abort (turning on
pdme.abort) in this case.

Other actions of the page-reading function include maintaining the
current-length and records-used ASTE parameters of the segment in the case where
a page is created (zero page paged in), and performing the CME and PTW state
transitions associated with setting a page out of service in other cases. When
the page being paged in is on the paging device, the associated PDME is
rethreaded to the tail of the PD used list, in keeping with the policy that all
pages in main memory are among the most recently used on the paging device. As
is the case with the page-writing function, the actual call to device_control
(in this case device_control$read), the DIM dispatcher, must be the last action
taken, for the page may not even be out of service on return from this call.

8-38 AN61

A major consideration of the page-reading function is to loop, redefining
its arguments, when the call to the disk-record allocator (free_store$withdraw)
indicates that a page of the FSDCT must be paged in to perform the allocation.
As explained under "FSDCT Paging" earlier, the page reading function must
redirect itself to page in a page of the FSDCT instead of the page passed as an
argument, when paging in that page involves allocating a disk record, and that
allocation requires paging in the FSDCT. In this case, whatever wait event or
lack thereof results from such activity will be returned to the caller of
read_page (or read_page_abs) to wait on.

The page-reading function is normally invoked at the read_page entry point,
via the routine "readin" in the page-fault handler (see "Page Fault Handling" in
Section IX). However, it may also be invoked from page$pread from call-side
PLfI code, such as the process-loading function. In this case, the interface
routine page_fault$pread is invoked, which establishes the ALM page control
environment, and calls read_page. This interface routine conveys the wait-event
ID returned by read_page to its caller, returning zero if there was none.
However, in the case of bulk store liD, the interface routine page_fault$pread
"runs" the bulk store DIM in a loop to await the completion of the liD. This is
to obviate the need for a separate bulk store waiting mechanism for the
process-loading function. Thus, only disk I/O or RWS events are returned to the
caller of page$pread.

Paging Device Record Allocator

The paging device record allocator is invoked at two times; at the
completion of a disk read, and during the page-writing function. Its task is to
determine whether a page is or should be on the paging device. If the latter is
the case, either the bit ptw.nypd is set (if invoked on behalf of a disk-read
completion) or the page is actually migrated to the paging device (if invok~d
from the page-writing function).

Migrating a page to the paging device consists of finding a free paging
device record, and updating the CME and PTW associated with the page being
migrated, as well as the PDME for the free record found, to indicate that they
are all associated with the sam~ page. The routine allocate_pd performs an
alternate return depending on whether or not it migrated the page to the paging
device as a result of this invocation.

The decision as to whether a page should go on the paging device involves
the decisions as to whether it is already there, whether the segment to which it
belongs has the "global transparent to paging device (gtpd)" attribute,
explicitly inhibiting this action, whether or not there is actually an enabled
paging device in use, and the consideration of the ptw.first usage-optimizing
feature (see the description of this bit in the PTW breakdown in Section VI.

When invoked on behalf of the completion of a disk interrupt, the page is
not actually migrated to the paging device unless the "pd_writeahead" switch is
set in the SST (sst.pd_writehead; see the description of this field in the SST
breakdown in Section VI. This feature is not currently operative.) Rather, the
bit ptw.nypd in the PTW is turned on. This bit tells the main-memory
replacement algorithm that the page-writing function must be invoked to evict
this page, allowing it to skip that page in a search for the "most available"
page to evict. When the page-writing function is called for this page, on
account of this bit, it will cause the paging device record allocator to be
invoked once more at which time the page will actually be migrated to the paging
device.

8-39 AN61

When the paging device record allocator actually decides to migrate a p~ge
to the paging device, there should be free records available on the pag1ng
device. The paging device management algorithm attempts to keep a free pool by
ensuring the existence of a small fixed number free or being freed at the
beginning of the processing of each page fault. Thus, the free paging device
record at the head of the paging device used list is normally allocated to the
page on behalf of which the paging device record allocator is being invoked. If
the record at the head of the paging device used list is not free, an action
known as a "PD Desperation" is performed. This action, performed by the PD
Desperator, pd_util$force_get_pd, consists of walking down the PD used list no
more than fifteen steps to find a paging device record whose page is evictable
without a read-write sequence, or an eviction from main memory. A read-write
sequence (RWS) may not be performed at this time; the call history of the paging
device record allocator may well include the main memory frame allocation
function, which is necessary to initiate an RWS, and is llQ1 recursive.
Furthermore, the completion of the RWS could not be awaited at this time; ALM
page control does not wait, but indicates wait events to its caller.

If a PD desperation fails, the paging device record allocator fails (see
the SST breakdown in Section VI for the names and meanings of meters of this
event), and the page is not migrated to the paging device. This causes the
page-writing function to turn off any "nypd" PTW bit which may be on, causing
all attempts to migrate the page to the paging device for this activation to be
abandoned.

The paging device record allocator expects to be called via a TSX7 with
pointer register 2 and index register 2 describing the PTW of a page for which
paging device allocation must be checked and/or performed. Index register 3
must point to the AST entry of the segment containing the page. The page must
be in main memory, and not out of service or undergoing a read-write sequence
(RWS), and index register 4 must describe the core map entry (CME) for the main
memory frame it occupies. The stack variables "devadd" and "did" must contain
the record address (in the format described at the beginning of Section VI) and
the PVT index for the page.

The paging device record allocator returns to the location beyond the TSX7
if it did QQ1 allocate the page to the paging device as a result of this
invocation, and two locations beyond if it did. If it migrated the page to the
paging device, the stack variables "devadd" and "did" will be modified to
reflect the paging device record address of the page, as well as the core map
entry of the page.

RWS Initiator

The RWS initiator is supplied the identification of a paging device record
(as a relative pointer to its PDME) and is responsible for starting a read-write
sequence (RWS) on that PD record. It invokes the main-memory frame allocator
(find_core in page-fault) to allocate a frame for the RWS, and the DIM
dispatcher device_control$read to start the read cycle of the RWS. It threads
the CME of the main memory frame and the PDME of the paging device record out of
the main memory and paging device used lists, respectively, and performs the
necessary state transitions upon all of these objects to indicate that the read
cycle of an RWS is under way_ The RWS initiator neither awaits completion of
the read cycle nor initiates the write cycle; the former is done by either the
PD replacement function or the interface routine pd_util$pd_flush, the latter is
done by the interrupt side.

The RWS initiator never allows more than thirty RWSs to be outstanding;
when it has initiated the thirty-first RWS, it "runs" the DIMs until one of them

8-40 AN61

has competed (i.e., the count sst.pd_wtct has gone down).

As with the page-reading and page-writing functions, the call to
device control to actually start the reading I/O is the last action performed by
the RWS initiator, as the RWS it initiates could be over (especially on account
of error) by time the return from this call is complete.

The RWS initiator is called via a TSX7 instruction from ALM page control.
It expects index register 1 to point to the PDME for the PD record to undergo
RWS. It saves no registers, it has no alternate returns. It destroys the
contents of the stack variable "ptp_astep," used by the page-reading function,
among others.

The RWS initiator is used by the PD replacement function and a large number
of call-side functions, such as the deactivation-time service and the PD
reconfiguration function. In these latter cases it is called as page$pd_flush
from PL/I code, which invokes the interface routine pd_util$pd_flush. This
interface routine establishes the ALM page control environment, and invokes the
RWS initiator upon the PDME located by the PL/I pOinter argument to this
routine. The interface routine also awaits the completion of the read cycle of
the RWS initiated, by "running" the bulk store DIM. This maintains the
convention that no RWS read cycles may be in progress at the time the page table
lock is unlocked.

Paging Device Housekeeping and Replacement

This function serves to keep a small pool of free paging device records
available for the paging device record allocator at all times. The paging
device record allocator cannot free records on demand except in certain special
cases. The paging device housekeeping function also serves' to write out the
paging device map to the first few records of the bulk store every second. This
copy is maintained for the use of the post-crash PD flush (see description of
that in Section IX).

The paging device housekeeping function is invoked at the beginning of the
processing of every page fault, from the page-fault handler. It initiates the
writing of the paging device map if that has not been done within the last
second; this map writing is done with the "no_interrupt" flag to the DIM set
Qn. The interrupt side of page control does nQi want to be informed when this
1/0 has completed.

The PD housekeeping function implements the paging device replacement
algorithm outlined in Section V. The paging device used list is scanned from
least-recently-seen-used to most-recently-seen-used end until ten records are
free or in the process of undergoing RWS. An RWS is initiated for each PD
record passed which is modified with respect to disk; the RWS initiator just
described is used. Each record inspected that is not modified with respect to
disk is freed; its page contents are migrated off the paging device by
modifying the PTW of that page. This PTW currently describes this PD record.
It is made to describe the disk record currently described in the PDME. Pages
that are found, by inspection of the PTW designated by the PDME field pdme.ptwp,
to be in main memory, cause their PDMEs not to be claimed, but rather, made to
be "recently seen as used" by rethreading them to the tail of the PD used list.
This is in keeping with the policy that those PD records seen in main memory are
to be considered among the most recently used.

8-41 AN61

The final action of PD housekeeping is to check that no RWS read cycles are
in progress. RWS read cycles may not be in progress when the page table lock is
unlocked, and it is the responsibility of whichever agency invokes the RWS
initiator to see that they complete before it exists. The strategy of waiting
for the (bulk store) reads to complete all at once allows the RWS initiator to
start all of these reads in parallel. This overlap optimizes performance via
the queueing facility of the bulk store DIM. The PD housekeeping function
"runs" the DIMs in a loop until no more RWS read cycles (counted by
sst.rws_reads_os) are outstanding. During this looping, the bulk store DIM will
invoke the interrupt side to initiate the RWS write cycles.

The PD housekeeping function is invoked via a TSX7 instruction from ALM
page control. It preserves no registers, and has no alternate returns.

Eviction Cleanup

(cleanup_page in page fault, and code in pc$cleanup and pc$truncate)

The eviction cleanup function consists of modifying all page control data
bases necessary to indicate that a page has been evicted from main memory. This
function does not include the actual turning-off of the PTW access bit, ptw.df.
The latter involves associative-memory and cache clearing, and turning it back
on if the page was found to be modified after the clear had taken effect. It is
the responsibility of the eviction cleanup function to modify all other data
objects once access to a page has successfully been turned off. In ALM page
control, this function is performed by the subroutine cleanup_page in
page_fault. This routine is invoked by the main-memory replacement algorithm,
when it evicts a page, and by the demand-eviction and abs.wiring functions' (see
description later in this section) when evictions are performed.

The call side also evicts pages, in the routine pc$cleanup invoked on
behalf of the segment control deactivation function, and in the truncation
function. PL/I c~de in these routines performs work similar to that of
cleanup_page. This work is much simpler in the case of truncation.

Eviction cleanup consists of maintaining the AST entry of the segment and
freeing the main memory page from which the page was evicted. The number of
pages in main memory is updated. If the page evicted contained zeros (i.e.J its
address is now nulled, the "number of records used" of the segment must be
adjusted, as well as the record quota account against which the segment's pages
are charged. If no more pages of the segment are in main memory after this
eviction, the ASTE "init" bit (used by the AST replacement algorithm) must be
turned on. If the highest-addressed page of the segment which is nonnulled/null
or was in main memory was evicted, the current length of the segment is
adjusted. The disk or PD address from the core map entry of the frame from
which the eviction is being performed is placed back in the PTW for the page.
The PTW "first" bit (for the optimizing algorithm described under the
description of sst.ptw~first in Section VI is turned off, indicating that the
page has been evicted at least once from main memory since activation.

The routine cleanup_page is invoked via a TSX7 instruction from ALM page
control. It expects pointer register 2 and index register 2 to describe the PTW
of the page being evicted, and index 4 to describe the CME of the main memory
frame from which it is being evicted. It will preserve these registers, as well
as set index 3 to the ASTE. There are no alternate returns. .

8-42 AN61

Per-Page Cache Manggement

The general strategies for managing the Multics Processor caches are
described under "Encacheability Control" in Section II. These strategies cover
modification of main memory by several processors, and by all I/O devices except
I/O devices used for pag1ng. The per-page cache management strategy covers
these latter cases; when a page is read in from paging device or disk, the
contents of main memory locations which may be in processor caches will be
modified without changing the contents of these cache locations. The avoidance
of this situation is the goal of the per-page cache management strategy.

Paging I/O has the unique property that a main memory frame into which a
page of a segment is being read is guaranteed to contain no information that any
processor (or process) can access. Therefore, if it could be ensured that no
words of that page appeared in any processor's cache at the time the read was
begun, there would be no chance that the reading in of data by the 10M could
contradict any data in a processor cache. Thus, it would be adequate to clear
the caches of all processors at the time a page of a segment was evicted from
mai~ memory, i.e., made inaccessible to the processors of the system.

The Multics processor cache includes a feature known as "selective clear,"
a hardware mechanism for iterating through all the columns and blocks of the
cache, and invalidating the contents of any block that contains information from
a given page. This mechanism is available via the CAMP instruction, with the
"4,du" bit on in its effectivf (internal) address. The frame is identified by
the upper bits of this address. This instruction also clears all processor PTW
associative memories, which is desired at page eviction time. Thus, at 'page
eviction time, all system processors are forced to execute an instance of this
instruction to clear all words of the page being evicted out of their caches,
and all PTWs out of their PTW associative memories. The instance of this
instruction so constructed is stored in scs$cam_pair; the general CAM/connect
strategy is described in the Multics Reconfiguration ~, Order No. ANY',

The function available to ALM page control as the "cam cache" routine is
also available to PL/I code as page$cam_cache, which invokes the interface
routine cam_cache_ext in page_fault. However, most PL/I code calls page$cam
before unlocking the page table lock, which clears all system caches and
associative memories totally.

It is critical to this strategy that the abs_segs used by page control to
check page frames for·zeros not be encacheable.

Demand Eyiction

The demand page eviction function is one called by the main-memory
deconfiguration function (see Section IX), on behalf of the system
reconfiguration software, and on behalf of the I/O buffer abs-wiring function.
In the latter case, it ~s used to evict the previous resident bf a main-memory
frame into which a page of an I/O buffer segment is going to be abs-wired. It
is also the responsibility of the demand eviction function to inform its caller
of any RWS or page transfer I/O in progress in the main memory frame being
vacated (having a page evicted from it).

8-43 AN61

The demand page eviction function is called as page$evict_page from PL/I
code only. It is called with a PL/I pointer to the core map entry representing
the main memory frame from which it is to be vacated. It returns a wait event
IV; if that is zero, it has successfully vacated the frame, if not, the caller
must await that event (via the multiplex wait protocol and the call-side
wait-coordinator) and call evict_page again when the event has happened. The
demand page eviction function is an excellent example of those functions that
perform successive state transitions upon page control objects, which must be
constrained from retrogression via the setting of control bits. In this case,
the caller of the demand-eviction function must have set either of the CME bits
cme.removing or cme.abs_w, to ensure the success of the vacating (prevent the
main memory frame allocator from allocating the frame).

The demand page eviction function begins by checking that no RWS or
ordinary page-transfer (ptw.os on) I/O is in progress in the frame being
vacated; if so, the caller is returned the event ID corresponding to the
operation in progress. If, via the multiplex wait protocol, the caller chooses
to wait for this event via the call-side wait coordinator page$pwait, the latter
will turn on the appropriate notify-requested bits to cause the interrupt side
to notify the completion of these events. If there is no I/O going on in that
frame, the demand page eviction function will successfully complete in this
call, i.e., there will be no waiting.

If the page in the main memory frame is wired (but may not be abs_wired),
it must be moved to another main memory frame, in such a way that it is never
made inaccessible to the system processors. Since the page may be being
modified by the system processors there is no way to move the page while other
processors are accessing it. Furthermore, it is not desirable to change the
contents of the PTW, which will be necessary, while other processors are using
it. Thus, a mechanism is provided to halt all of the system processors except
the one executing this code, until this processor releases them. This service
is provided by the CAM/connect mechanism, which sets appropriate flags in the
SCS segment when this is the case. First, the main memory frame allocator
(find_core) is invoked to obtain a page frame into which to move the wired page.
The s ta te of the "modified" bi t (ptw. ph"m) of the page being moved is saved, and
it is turned off. This must be done in one unitary (key-line) operation, lest a
modification between the inspection and the turning-off be lost. All of the
system processors, except the one executing, are then stopped, and all PTW
associative memories cleared, via a call to cam_with_wait in page_fault. This
routine also causes all words of the old frame to be selectively cleared out of
all the caches of the system processors. The contents of the old frame are then
moved to the new frame via the use of-two non-encacheable abs-segs. If, after
so doing, the PTW "modified" bit (ptw.phm) has not come on (since it was turned
off) the contents of the old frame and new frame are the same. If not; the
contents are moved once again (this is metered by sst.recopies). The contents
cannot now possibly change, since all processors are halted. The possible
modification just noted is then "or'ed" into the PTW "modified" bit (ptw.phm),
and the PTW main memory address (ptw.add) is changed to describe the new frame.
The system processors are then released via zeroing the cell scs$cam_wait, on
which they all are looping. The CME for the old frame is made to be free
(although it has one of the bits cme.abs_w or cme.removing protecting against
its accidental claiming), and the CME for the new frame is made to describe the
page moved, which had been described by the CME for the old frame~

If the page in the frame being vacated is not wired, then the task is
vastly· simplified, as it is permissible to make the page inaccessible. This is
precisely what is done. The PTW access bit, ptw.df, is turned off, and the
system PTW associative memories are cleared, and the caches selectively cleared,
as for any eviction. If the modified bit is not on after this clear, (it could
not have been on before access was removed, or it would still be on), then a
successful eviction has just been performed. The eviction cleanup function
(page_fault$cleanup_page) is invoked to complete the details of the eviction,
and the frame has been successfully vacated. If, on the other hand, the page
was modified, either before access was turned off or after, we must move its
contents to another frame, which is cheaper and faster than starting an I/O and
causing the caller to wait for it. It is also deterministic; there is no

8-44· AN61

telling how many times the page could be modified while the caller waited for
it, while moving the page avoids the entire issue. Thus, the main memory frame
allocation function (find_core) is invoked to obtain a frame, and the page is
moved. System processors do not have to be halted, as opposed to the wired
case, as the page was just made inaccessible, and the associative-memory clear
mechanism ensures that no processors are left accessing it. The contents of the
PTW address field (ptw.add) is changed to describe the new frame. The CME for
the old frame is made free (although it is protected by cme.removing or
cme.abs_w) and the CME for the new frame is made to describe the page moved.
The access in the PTW is restored, i.e., ptw.phm is turned back on, and
processors continue to use the page in its new location (although, however, if
they attempt to access it before this, but after the time that access was
revoked, such processors caused their processes to take a page fault, and wait
for the page table lock~ now held by this process). Again s the eviction is·
complete with no waiting.

Page abs-wiring

The page abs-wiring function is used only by the segment abs-wiring service
(in pc_contig, described in Section IX. It is invoked from PL/I page control
only, given a page (as an ASTE pOinter and page number), and a free CME (usually
vacated via the demand-eviction function just described) into which to abs-wire
the page. It assumes that the caller has set the bit cme.abs_w in the CME for
the frame participating in the abs-wiring, to prevent any page other than the
one being processed from coming into that frame. If the "wired" bit of the PTW
for that page is not on, the ~bs-wiring function turns it on, indicating that
the page, wherever it might ~e now, or wherever it may come, may not be evicted.

The abs-wiring function is among that class of ALM page control functions
that either complete their task when called, or return a wait event on which the
caller must wait, and call that primitive back when the event has happened. The
abs-wiring function thus returns a zero wait event 10 if it has unsuccessfully
placed the page in the frame into which it is to be abs-wired, or an event ID on
which to wait.

The first check made by the abs-wiring function "is that the page is not
already involved in I/O (ptw.os on). If so, the caller is made to wait for the
completion of that 1/0. Since ptw.wired has been turned on, a page out of
service on a read will not be evicted once it comes in, and a page out of
service on a write will be selected for no further writes by the main memory
replacement algorithm.

If there is no I/O on the page in progress, -two different cases occur for
the cases of the page being in main memory already (may even be in the required
frame already, via previous calls), or not in main memory. If it is in main
memory, and in the required frame, the task is complete, and a zero event 10 is
returned to the caller. If not, the page must be moved from its current frame
to the new frame. The task is identically that of the code in the demand
page-eviction function which moves wired pages, as this page is now wired. This
code is used, the page is moved (including halting al~ processors, etc.), and
the abs-wiring is complete. If the page is not in main memory, the page-reading
function (read-page-abs) is invoked to read the page in. As described under the
description of page reading function (earlier) the caller of that function (and
thus, in this case, the caller of the abs-wiring function) is made to wait for
the completion of FSOCT paging 110, RWS completion, or page-reading, whatever
may be the ca2e, and retrying through repeated calls. Thus, this path through
the abs-wiring function uses the multiplex wait protocol of the caller to drive
the FSOCT paging mechanism and await RWS completion transparently to the
mechanism of the abs-wiring function.

8-45 AN61

Note that the version of the page-reading function used by the abs-wiring
function (read_page_abs) does not allocate a main memory frame, but uses the
specific main memory frame supplied by the caller, in this case,
evict_page$wire_abs.

I/O Posting

(the Interrupt Side) (page_fault$done_)

The function of posting (processing the completion) of paging I/O
operations is one of the most critical in page control. It includes performing
all of the state transitions out of I/O or RWS states of page control data
objects, all error processing, and the initiation of RWS write cycles and
double-writes, and calling the traffic controller notify primitive.

The I/O posting function is implemented in the routine done in the module
page-fault. It is invoked solely from the storage system DIMs when they notice
I/O completions. It is accessed directly via TSX7 from the bulk store DIM, and
via the interface page$done, which leads to the interface routine
page_fault$done, by the disk DIM. The routine done_ is invoked in the ALM page
control environment with the page table lock locked. Its parameters are the
stack variables "core_add" and "errcode," containing the main memory address and
status of the I/O operation which was completed.

One critical function of the interrupt side is to resurrect disk addresses
upon the successful completion of RWSs, double writes, or other disk writes. As
described in Section VII, this resurrection signifies just this successful disk
writing, indicating that the address may safely be reported by pc$get_file_map
to a VTOCE.

The interrupt side begins its task by looking at the core map entry
indicated by the main memory address passed to it. It must either indicate an
RWS in progress, or designate a PTW which has its out-of-service (ptw.os) bit
on. It may designate a free main memory frame. We consider first the case of
normal paging (non-RWS) I/O completion.

If a page read completes, a check is made to see if it completed
unsuccessfully (with an error). The error actions, here as elsewhere, are
described in "Error Strategy" earlier in this section. Assuming there was no
error, the CME for the page frame of main memory is threaded back into the used
list, as "most recently used." The out-of-service bit is turned off. The
paging device record allocator ~~ invoked to cause the
"not-yet-on-paging-device" bit to be set if necessary. If the notify-requested
flag was on in the CME, the special traffic controller interface
pxss$page_notify (see "Traffic Controller Interface" earlier in this section) is
invoked to notify the completion of the read.

In the case of a page write completion, with no error, the CME is threaded
back into the used list as "least recently used" (best candidate for eviction),
and the out-of-service bit in the PTW (ptw.os) turned off. If the write was for
a page not on the paging device, the disk address is resurrected (made live, not
nulled), and the bit aste.fmchanged turned on to trigger a VTOCE update. If it
was a write for a page on the paging device, the PDME is inspected
(pdme.double_writing) to see if it was a double-write (write to disk for a page
on the paging device). Otherwise, it was a write to the paging device. If it
was a write to the paging device, a check is made to see if a double-write
should be initiated, based upon the properties of the page, the segment, and the
double-writing control switch (sst.double_write) .u the SST. (Sse the
desciiption of that switch in Section VI for the various decisions and
interpretations.) if a double- write is to be started, the page is put back

8-46 AN61

out-of-service, the threading-in of the core map entry avoided, and a call made
to the DIM dispatcher device_control$write to start the 1/0. The bit
pdme.double_writing is put on before this call is made to indicate to the
interrupt side what action should be taken at the completion of ~ 1/0. If
double-writing is not to be started, the CME is threaded as stated, and the
traffic controller called to notify the write-completion if requir~d. If a
double_write's completion was noted, the double_writing PDME flag
(pdme.double_writing) is turned off, the disk address resurrected, and the PDME
marked as not modified with respect to disk. Again, an optional notify follows.
These actions, as the rest of the interrupt side posting logic (other than error
handling) are shown in Figures 8-9 and 8-10s

The actions taken for the completion of RWS 1/0 depend on whether it is a
read or write cycle that has completed. When a read cycle has completed (cme.io
tells which), the write cycle is started by setting the bit cme.io, and starting
the 1/0 for the write cycle. The CME and PDME involved remain out of their
respective lists, and no notifications are performed.

The completion of the write cycle is more complex, as it implies the
completion of the entire RWS. At the start, notification of the RWS event is
performed via the special traffic controller entry pxss$rws_notify if any of the
bits pdme. notify_requested , pdme.removing, or pdme.abort are se~; any of these
bits implies that some process is waiting for the RWS event. Assuming no error,
(see "Error Strategy" for discussion of the error path here), the disk address
in the PDME is resurrected, indicating successful transfer of the data to disk.
If no abort (page fault by a process while the RWS was in progress) was observed
(pdme.abort would have been set on by the fault side), the PTW for the page
which underwent RWS is located from the PDME, and changed to contain the disk
address from the PDME (it now contains a paging device address). The PDME is
zeroed, and marked as free, being put into the PD used list. The main memory
frame is similarly freed, being put into the main memory used list. If how~ver,
a post-crash PD flush was responsible for initiating the RWS (pdme.flushing on),
the PTW (none exists) is not adjusted, nor is th.e PDME cleared or freed.
Rather, the PDME flushing, RWS, and modified flags are turned off. This leaves
the PDME intact for the call side to inspect, so that an error during the RWS
can be determined to have happened or not by inspecting the nulledllive status
of the disk address (pdme.devadd) in the PDME.

If an RWS abort was noticed, the main memory frame in which the RWS
occurred is converted into a normal page-holding frame. The ASTE of the
relevant segment is adjusted to indicate the proper number of pages in main
memory, etc.; and the CME pointers are set to describe the PTW and ASTE. The
RWS flags in the CME and the PDME are turned off. The "modified" status of the
PDME, which has never been turned off, remains in effect. The PDME is put back
in the PD used list. The CME is put back in the main memory used list, in
most-recently-used position. The process which had turned on the abort bit,
causing the abort, has already been notified, and is now either "ready" or
waiting for the page table lock.

8-47- AN61

thread back read
CME, MRU

ptw.OS <=-"O"b

make PTW
describe
main memory

Figure 8-9.

(END

To Figure 8·10

)~

pdme.mod
¢"O"b

resurrect
disk

address

thread back
CME, LRU

ptw.OS
¢","b

Page Control Interrupt Side, normal posting

8-48 AN61

cme.io
-e=","b

cme.devadd
-e=pdme.devadd

read

turn off
PDME flags

first word
-e= -,

YES

free
CME

mptw.devadd
-e= pdme.devadd

zero
PDME

free
PDME

resurrect
disk address

pdme.abort
pdme.rws

c:="O"b

adjust
ASTE

make PTW
describe
main memory

adjust CME

thread in
PDME

thread in
CME,MRU

Figure 8-10. Page control Interrupt Side, RWS posting

Utility Subr9ut1nes

This discussion provides brief descriptions of the utility subroutines in
ALM page control. All of these subroutines are in the modules page_fault and
pd_util. A utility subroutine, by this definition, is a routine that does not
affect the state of page control objects; PTWs, CHEs, PDMEs, other than perhaps
rethreading them. Any routine that performs state transitions is among the
critical agents described under "Internal Interfaces" earlier in this section.
The name, function, and calling sequence· of ·each of these routines, with
whatever comments are appropriate, is given.

AN61

savex

unsavex

Called by TSX6, sets up page control index-seven save stack. Used
to establish the ALM page control environment.

Called by TSX6, saves index 7 in the index-seven save stack. Any
routine that saves index 7 via this routine transfers to "unsavex"
to return.

Invoked
start.

via TRA, returns from a routine which called "savex" at its
Pops the index-seven save stack.

thread_to_lru
Invoked via TSX7, with index 4 pOinting at a core map entry. Given
a CME in the used list, rethreads it to the head (least recently
used) position, adjusting whatever global page control pointers are
necessary.

Invoked via TSX7, with index 4 pointing at a core map entry in the
used list. Threads it out of the used list, zeroing its thread
word, and changing whatever global page control pointers are
necessary.

Invoked via TSX7, with index 4 pointing at a core map entry llQ1 in
the used list. Threads it into the used list, and the head
(least-recently used), updating global page control pointers.

thread_in_mru
Invoked via TSX7, identical to thread_in, but the CME is placed at
the ~ (most-recently-used) end of the main memory used list.

thread_lru_ext
Is a PL/I. callable interface to thread_to_lru.

set_up_abs_seg

clear_ core

Called via TSX6, with the main memory address of a page frame of
main memory in the stack variable "core_add." Places a
non-encacheable SDW for· that page frame in the SDW slot for the
segment "abs_seg1," and makes pointer register 0 (ap) point to it.
This is used for checking for zeros and zeroing main memory frames
on behalf of the page-writing and page-reading functions,
respectively.

called via TSX7, with the main memory address of a page frame of
main memory in the stack variable "core_add." Fills the frame with
zeros, on behalf of the page-reading function.

check_for_zero
Called via T5X7, with the main memory address of a page frame of
main memory in the stack variable "core_add." Sets the "zero"
indicator register to indicate whether or not that frame of main
memory contains all zeros, on behalf of the
page-writing/purification function (see "Page Writing Function"
earlier). '

Ca~led via TSX7, with the main memory address of a page frame of
ma~n memory in the stack variable "core_add." Clears the PTW
associative memories of all processors, and selectively clears the
words of that main memory Da~e out of their caches. Destroys index
registers 0 and 1. Availabie-to PL/I code as page$cam_cache~

8-50. AN61

cam

Called via
processors.

TSX7, clears the PTW associative memories
Destroys index registers 0 and 1.

of all

Called via TSX7, clears PTW and SDW associative memories and all
caches of all processors. Destroys index registers 0 and 1.
Available to PL/I code as page$cam.

cam with_wait
Called via TSX7 with the main memory address of a page frame of main
memory in the stack variable "core_add." Clears the PTW associative
memories of all processors, and selectively clears their caches of
all words of that main memory frame. Furthermore. all processors
except the executing processor are made to halt until the variable
scs$cam_wait is zeroed by the executing processor. Destroys index
registers 0 and 1.

reset_mode_reg
Called via TSX7 by the page fault handler, restarts the history
registers and re-enables the cache after a (page) fault.

Called via TSX7, with index register 3 pOinting to an ASTE.
Extracts the PVT index for that segment out of its ASTE, placing it
in the stack variable "did" and in the accumulator.

get_astep_given_pdmep
Called via TSX6, with index 1 pointing at a paging device map entry
(PDME). Determines the AST entry offset of the segment to which the
page in the PD record described by the PDME belongs. Places it in
index register 3, conventional register for ASTEs. May not be used
during post-crash PD flush.

Called via TSX7, with index 2 and pointer register 2 describing a
PTW, and index 3 its ASTE, by the page-reading function. Returns if
the page that is to be read in is not null and not nulled, or there
exists a record of quota to support its being read in. Otherwise,
transfers to "errquit" in the page fault handler to signal record
quota overflow.

Called via TSX7, with index 3 pointing at the ASTE of a segment for
which a page is being destroyed. Used by eviction cleanup to
decrement "records used" for the quota account of some segm~nt. The
entry quotaw$cu_for_pc performs the same function for PL/I code in
the program pc.

Called via TSX7 with index 3 pOinting at the ASTE of a segment
against which another page of record quota will be charged. Called
by the page-reading function once it has determined that sufficient
quota and disk space exist to create the page.

type_terminal_quota
Called via TSX6 from check_quota, bump_quota, and reset_quota;
determines whether directory or segment page quota is involved, and
whether the segment involved has quota checking suppressed
(aste.nqsw on).

Called via TSX7 when a page is found to be zero by the page-writing
function. Recomputes the current length of the segment in the ASTE
Caste.csl) by scanning the page table backwards.

8~51. AN61

Called via TSX7; with index 1 pointing at a PDME, in the used list.
The PDME is cleared and threaded to the head of the PD used list.
It is assumed that the caller has evicted whatever page was in that
record.

Called via TSX7, with index 1 pointing at a PDME. Creates a
standard-format (see beginning of Section VI) paging-device record
address for the PD record described by that PDME, returning it in
the accumulator and the stack variable "devadd."

Called via TSX7, with pointer register 2 describing a PTW. If this
PTW describes a page that has a paging device record associated with
it, returns two locations after the TSX7, with the relative offset
of the PDME for the associated PD record in index 1 (conventional
for PDMEs) and the upper half of the stack variable "pdmep." If
not, returns indirectly (TRA 0,7*) through the first location after
the TSX7, with index 1 and the upper half of the variable "pdmep"
containing a -1.

Called via TSX7, with index 1 pointing to a PDME in the PD used
list. Threads that PDME to the tail (most recently used) position
of the used list. If the switch sst.count_pdmes is on (see its
description in Section VI), an esoteric form of metering is
performed, recording in a histogram its distance down the list
before rethreading.

Called via TSX7, with index 1 pointing at a PDME nQi in the PD used
list. Threads it into the PD used list, at the tail (most recently
used) position.

8-52 AN61

SECTION IX

SERVICES OF PAGE CONTROL

This section describes the services that page control performs for the
system. Foremost among these is the handling of page faults. Other services
are performed for segment control, traffic control, and other supervisor
sUbsystems. Although all of these services have been briefly described in
Section V, the descriptions in this section explain the implementation of these
services in terms of the mechanisms explained in Section VIII.

other than the page fault handler, whose main path encompasses most of ALM
page control, and the post purge function used by traffic control, all of these
services are implemented in PL/I programs that operate on segments or portions
of segments, calling the interfaces described in the previous section on each
affected page, and multiplexing resultant wait events. The main memory and
paging device reconfiguration services operate on portions of main memory or
paging device instead of ~egments, again calling the ALM interfaces on each
affected frame or record, and multiplexing the wait events.

All of the services of page control to segment control are implemented in
the single PLII program ~pc", which, as noted in the previous section, has some
code duplicating or subsuming functions of ALM page control were convenient.

PAGE FAULT HANDLING

The single most important function of page control is the handling and
resolution of page faults. This code is implemented in the program page_fault,
at the label "fault", transferred to by the fault vector directly, after the
fault vector code has stored the SCU data for the page fault in
pds$page_fault_data. .

The essence of the page fault handler is to locate the page that must be
paged in, and invoke the page-reading function to allocate a main memory frame
and read it in. If successfully read in, the seu data (machine conditions) is
restarted; if 1/0 is started but not complete, the process must be made to wait
for a completion of the 1/0. If any of various error conditions prevail, the
process must be caused to signal an appropriate condition, or restart the page
fault to take a segment fault.

The most difficult task of the page fault handler is to locate the PTW for
the page faulted on. Between the time that the processor actually takes the
page fault and the page table lock is successfully locked to this process, it is
possible that a "setfaults" operation (destruction of SDWs) might be performed

- on the segment containing the page, or the page of the descriptor segment
containing the SDW for the segment might be paged out.

9-1 AN61

Although these events are highly unlikely, considering that the SDW must exist
and be in main memory for the processor to observe that the PTW was faulted
(modulo the associative memories), the page fault handler must be prepared to
deal with these cases. The page fault handler needs the SDW for the segment to
locate the page table for the segment and identify the particular PTW for the
page on which the fault was taken, as only a segment number and computed address
are supplied by the processor appending unit in the fault data.

The page fault handler depends upon non-local transfers by subroutines in
the page-reading function; specifically, record quota overflow and
out-of-physical-volume conditions in this function cause special action,
including transfers back to the main path of the page fault handler.

The basic actions involved in handling a page fault are these:

1. Save all the processor machine conditions other than the SCU data,
which was already saved. The page fault handler, unlike the segment
fault handler, is the actual fault interceptor for this type of fault.
Reset the processor mode register.

2. Mask to sys_level (it is not legal to accept interrupts during page
control functions), and establish a stack frame on the base of the
PROS (processor data segment, wired per-processor stack) for the ALM
page control environment (see "Stack Management," Section VIII).

3. Check for illegal conditions (page fault in ring 0 while the PRDS is
in use as a stack) indicating system problems, crash if so.

4. Establish the ALM page control environment (initialize save stack,
pointer register for the SST).

5. Try to lock the page table lock. Execute "Page Table Lock Waiting".
Code if unsuccessful. (See "Page Table Lock Waiting," Section VIII.)

6. Perform the paging device housekeeping and replacement function, which
-ensures a small number of free PD records and currency of the PDMAP
image on the bulk store (see Section VIII for details).

7. Determine whether this is a page fault taken on the descriptor segment
when the processor needed on SDW (DSPTW APU cycle), a page fault taken
pre-paging an EIS operand (PTW2 APU cycle), or a normal page fault on
a page of a segment (PTW APU cycle). If none of the above, the
processor is in error. In the first case, locate the page table for
the descriptor segment of this process, and the page on which the
fault was taken. The SDW for the descriptor segment is guaranteed to
be in main memory. Proceed to step 9 in this case.

~. For a normal PTW or PTW2 cycle, try to obtain the SDW for the segment
faulted on. If the descriptor segment is unpaged (as during
initialization), there is no problem. Otherwise, check the PTW for
the page of this process' descriptor segment containing the SDW for
the se~ment on which the fault was taken. If this page is in main
memory- now, it can be read without taking a page fault. Pick up this
SDW: a setfaults operation could have destroyed it at any time until
this very instruction. If so, restart this page fault, abandoning the
environment set up and unlocking the lock, causing the processor to
take a segment fault by accessing that SDW. Otherwise, locate the
page table and specific PTW for the page of the segment on which the
fault was taken. (1)

9. Having located the PTW for the page on which the fault was taken,
locate the AST entry for its segment.

(1) In the case of a PTW2 EIS prepage cycle, the computed address reported by
the control unit in the SCU data must be adjusted one page up.

9-2 AN61

10. Check for two window situations involving some other process handling
a page fault on that page before this process got the lock locked. In
the first case the page' is completely read in, and no page fault
exists. In this case, unlock the lock, abandon the environment, and
restart the machine conditions. The processor will then proceed to
use that page. In the second case, the page could be being read in
now, and is out-of-service on a read ("short page faultn). In this
case, develop the wait event for the PTW and proceed to step 18.

11. Check for an error bit (ptw.er) set on by the interrupt side at the
completion of a read from a previous page fault. If there was a read
error, it turned on this bit (See nError Strategyn, Section VIII) and
notified this process, so that it might take the fault over again and
perform this step. Turn off the error bit, abandon the environment,
unlock the lock, and transfer to the signaller (signaller$signaller)
to cause the faulting process to signal page_fault_error.

12. Invoke the page-reading function (read_page) to find a main memory
frame for the page and begin (and possibly complete) reading it in.
This operation might possibly perform non-local exits in the case of
record quota overflow (in which case that condition will be signalled
in a manner identical to the signalling of page_fault_error in the
previous step) or physical volume overflow (in which case the SDW will
be faulted, the environment abandoned, the lock unlocked, and the
machine conditions restarted to produce a segment fault). If the
page-reading function encounters an RWS in progress on the page
faulted on, set the abort bit ('pdme.abort) in the PDME for that page,
causing the interrupt side to resolve the page fault (See "I/O
Posting", Section VIII) with an nRWS abort", and proceed to step 18 to
wait for this occurrence.

13. Meter this page fault. Compute the main memory usage charge of this
process. Meter ring zero, directory, per-process, and level-one 'page
faults. Compute the page-fault interarrival time histogram (displayed
by print_paging_histogram) in the segment page_fault_histogram.

14. Execute the replacement algorithm write-behind function. This ·will
cause writes to be queued, while the page read started by step 12 is
in progress.

15. Now meter time spent processing this page fault.

16. If tne page faulted on is not out-of-service, i.e., was either
completely read in by step 12 or posted as complete by some actions
occurring during step 14, the page fault is complete, and satisfied.
Unlock the lock, abandon the environment, and restart the machine
conditions. The process and processor will proceed to use that page.

17. The process must be made to wait for that page. If the page is
involved in a bulk store transfer, nrun" the bulk store (see "DIM
Interface n , Section VIII) until the page is no longer out-of-service,
at which time go to step 16.

18. The process must be made to wait for a disk or RWS event. The
page-reading function (or step 10) has developed the wait event.
Transfer into the traffic controller environment as described in
"Stack Management and Traffic Controller Interface n in Section VIII,
~ausing the process to wait for this event, unlocking the lock, and
abandoning the environment.

19. When such an event has occurred, or at least probably occurred, the
traffic controller will transfer to page_fault$wait_return to restart
the machine conditions. There is no page control environment or stack
frame, and the page table lock is not locked. If indeed the interrupt
side has posted this page, the process will resume and use the page.
If indeed it has not (either the wakeup was spurious, as it is allowed
to be, or the 'page has again been paged out in the window, the
sequence of events starting at step 1 will be repeated.

9-3 AN61

SERVICES FOR SEGMENT CONTROL

Page control fills page tables and AST entries with information supplied by
segment control, reports that information back to segment control as it changes
dynamically, and performs operations upon those segments on behalf of segment
control. The latter operations include truncating active segments, and evicting
all of their pages from main memory and/or the paging device, so that segment
control can deactivate the segments.

All of these functions, among others, are implemented in the PL/I program
"pc". This program has available to it, via the transfer-vector "page", most of
the functions in ALM page control described in the last section. Other than the
activation-time service (fill_page_table), all of these operations are performed
under the protection of the global page table lock. The program pc, as well as
the other programs in call-side page control, use the entries pmut$lock_ptl and
pmut$unlock_ptl to wire the current stack (3 pages of PDS), mask to sys_level,
lock the page table lock, and undo all of these operations. In many cases, the
entry page$cam is called before any unlocking (including that performed by the
call-side wait coordinator) to make sure that any changes to PTWs are noticed by
all of the system processors.

Activation-Time Service

This is the only fundamental service of page control that does not involve
the page table lock. The entry pc$fill_page_table is called by segment control
and the hierarchy salvager (among other parts of the system) to transform a file
map in a VTOCE (see Section II) into a page table for use by -page control. The
routine is passed the AST entry pointer, the current length of the segment, and
the PVT index to which the addresses in the file map refer. This routine does
nothing more than translate the segment-control format addresses (see "Record
Addresses" at the beginning of Section VI) and convert them into page-control
format disk record addresses and null addresses, placing them in the PTW device
address fields (mptw.devadd), initializing the rest of the PTWs as it goes. The
PTW "first" bits, for the first-time PD performance optimization (See
description of sst.ptw_first in Section VI) is initialized from that SST
variable. A check is made, for each live address passed in, that it is indeed
marked as "used" in the FSDCT (via a call to page$check_devadd). It is for this
reason that the PVT index is passed as a parameter. This detects introduction
of re-used device addresses into page control.

This service may be performed without the page table lock being locked.
The caller guarantees that the segment whose page table is being filled is
inaccessible, that no SDWs point at its page table, or will be made to point to
it until after pc$fill_page_table returns. The check for reused addresses may
also be made without the global lock locked; if the address is not reused, it
will not be deposited in,any possible window. If it is reused. it will stay
that way whether or not the lock is locked.

9-4 AN61

File-map/Activation Attribute Beoorting

Segment control requires a reporting of the status of a segment and its
addresses both at the time the segment is deactivated and at the time of the AST
trickle. This information is used to update the VTOCE of the segment. The
state of the addresses reported by this service to segment control is critical:
it is a basic feature of the address management policy (see Section VII) that no
nulled address ever be reported to a VTOCE file map_ Thus a critical part of
the file-map reporting service is the determination of whether or not an address
should be reported to segment control at all. Part of the information returned
to segment control is a list of nulled addresses that are to be deposited
(returned to Lne free pool). The activation attributes of the segment are
reported to the caller by filling in a complete copy of the AST entry for the
segment, from a copy made under the protection of the page table lock. This
copy must be made under the page table lock, in order for the "records used",
"current length", and other fields to be consistent with themselves and with the
list of addresses and list of addresses to be deposited that are returned.

Another action performed by the activation attribute reporting service is
the maintenance of the "date-time-used" and "date-time-modified" fields in the
AST entry. These fields are updated conditionally, depending upon the
transparency attributes of the activations (see Section II), and the "file
modified switch" Caste.fms).

All live addresses are reported to the VTOCE file map buffer passed in.
Wholesale null addresses (representing no assignment of a record of disk) are
also reported to this file map. The action taken for a nulled address de~ends
upon several factors. A nulled address found in a PDME or CME (page on paging
device or in main memory) must remain there; as long as a page has a frame of
main memory or a PD record associated with it, it ~ have a disk record
associated with it. A special nYll address (get_file_map_vt_null_addr, see
"null_addresses.incl.p11") is reported to the VTOCE for that page. The VTOCE
will record no assignment for that page, as the nulledness of the address
implied that the record of disk does not contain the page. A nulled address
found in the PTW implies that the page has no main memory frame or paging device
record associated with it (only disk addresses can be nulled). Normally, the
action taken in this case is to report the address, not to the file map, but to
a list of such addresses returned to· the caller (the deposit list). The PTW is
changed to contain a nYll address (get_file_map_vt_null_addr, again), and the
caller is responsible for depositing all of the addresses in that list once it
is known that the VTOCE has been successfully updated with the record address
being deposited no longer in it. However, there is a class of circumstances in
which the file-map reporting function may be inhibited from "culling" nulled
addresses in this way. In these cases, nulled addresses in PTWs are left
~ntact, and n21 reported to the deposit list of the caller. The caller may
specify this behavior by passing the pointer to the deposit list as a null
pointer. This action is also taken for segments with the switches aste.ehs and
aste.dnzp both on. Such switches are set for hardcore segments in the normal
AST used lists (and thus subject to AST trickle) which are prewithdrawn (such as
~e PDS of most processes). This action makes sure that prewithdrawn addresses
stay withdrawn,- i.e., are not deposited. See "Speciai Casing of Per-Process
Hardcore Segments" in Section IV for motivation for this action.

The procedure pc$get_file_map is called with a pointer to the AST entry
about which information is sought, a pointer to an ASTE image into which the AST
information is to be copied, a pointer to a file map area in a VTOCE, into which
the file map is to be placed, and a pointer to an array into which to put the
deposit list. (As stated above, this pointer may be null). It returns, in
addition to filling up the ASTE image, file ~ap, and deposit list, a count of
addresses put in the deposit list.

9-5 AN61

The procedure pC$get_file_map is also responsible for converting the page
control format addresses into segment-control format (see Section VI), and
turning off the bits aste.fms and aste.fmchanged (see Section II), indicating
that any modification or file-map change for the segment has been noticed, and
any further modification must be noticed independently.

Deactivation Service

(pc$cleanup)

At the time a segment is deactivated, any pages it may have in main memory
or on the paging device must be evicted from these media. This must be done to
satisfy the definition of a non-active segment, and to stabilize the state of
the AST entry and file map.

The routine pc$cleanup is supplied a pointer to an AST entry for a segment
to be so processed. The caller has ensured that no agency can bring pages of
this segment in, either by having performed a "setfaults" operation on the
segment, or being the only agency that has ever had access to the segment.

This routine is a prime example of routines that use ALM primitives and the
multiplex wait protocol to process the pages of a segment in parallel, achieving
state transitions by deterministic step.

With the page table lock locked, the following actions are performed for
each page of the segment. The actions are repeated by reiterating over the
segment until all pages of the segment are off the paging device, not undergoing
RWS or paging 1/0, and out of main memory. All addresses at that time will be
in the PTWs.

1. Any page that is out-of-service (being read in or written out, perhaps
by an earlier loop) has its wait event remembered, for potential
waiting via the multiplex wait protocol.

2. Any page in main memory that is not out-of-service must be evicted;
if it is modified (ptw.phm)" the page-writing and purification function
of ALM page control is invoked to purify it. If this puts it
out-of-service, the PTW wait event is remembered for the multiplex
wait protocol.

3. Any pure page is evicted by turning off its access bit and clearing
the system caches and PTW associative memories via a call to
page$cam_cache. If the page was modified in this window, restore the
access and go back to step 2. The page then requires writing. If the
page was successfully evicted, perform eviction cleanup (See Section
VIII) not by a call to cleanup_page, but by inline PL/I code.

4. If the page still has a paging device record associated with it at
this point (one may have actually been assigned in step 2, but this is
rare), invoke the PD eviction subroutine (flush_one_pdrec) of pc to
start an RWS, evict the page, or remember an RWS wait event as
appropriate.

When all of the steps above have been performed for every page in the
segment, and no steps (1, 2, or 4) remembered a wait event, the cleanup is
complete.

9-6 AN61

Call-Side PD Eyiction Subroutine

This powerful subroutine is called by several services in the program pc,
notably the deactivation service, PD reconfiguration service, truncation,
post-crash-flush and shutdown services.

It is called with the variable "pdmep" pointing to a PDME describing a PD
record that is to be vacated. The entries "flush_one_pdrec" and
"delete_one_pdrec" differ only in the actions taken at the time the PD record is
taken out of use; in one case the PDME is returned to the free list, and in the
other case it is marked as deconfigured. Both of these entries evict the page
from the paging device. The entry "truncate_one_pdrec", on the other hand,
causes the destruction of the page, and the freeing of its PD record.

This subroutine, wh~n not "truncating", starts an RWS for a PD record (via
a call to· page$po_flush), which is modified with respect to disk, and not
already undergoing RWS. It sets the multiplex wait variable "ind" to wait for
any RWS, that it starts (and does not find finished), or for any page
out-of-service for paging lID. For pages on th~ paging device not modified with
respect to disk, it updates CMEs and PTWs, and frees or deconfigures the PDME.

One form of eviction from the paging device that is unique to this
subroutine is that performed f0r pages in main memory (although not undergoing
paging lID). The paging devi~e replacement algorithm does not evict pages from
the paging device which have ~opies in main memory, because this is considered
evidence of recent use. When eviction for such pages must be performed, ho~ever
(as is the case in all call-side entries that need it), it is very simple to
effect. The disk address from the PDME 'simply replaces the paging device
address in the CME. The PDME "modified" bit (pdme.mod) is "or'ed" into the PTW
"modified" bit (ptw.phm), using a key-line instruction. This causes the page to
be written out to disk when it is evicted from main memory, in the case where
the paging device contents were different from the copy of the page on disk, but
the same as those in main memory.

This subroutine must not free PDMEs for PD records that have undergone RWS
on behalf of the post-crash PD flush.-

This subroutine sets "notify requested" bits in CMEs and PDMEs when it
returns a wait event. This is superfluous, as the call-side wait coordinator
will do this if such wait event is actually passed to it.

Truncation Service

The truncation of segments is performed for both segment con~rol (from the
Segment Control Truncation function (See Section IV» and for supervisor
subsystems that deal with non-hierarchy segments, in order to free their disk
record resources.

9-7 AN61

Truncating a segment to length n Cn given in pages) involves truncating all
pages of page number equal to or greater than n. Truncating a page means
associating zeros with the contents of that page; in fact, the actions performed
to truncate a page in main memory are identical to those taken by the
page-writing function (see Section VIII) when a page of zeros is discovered.
Truncating a page which is neither on the paging device nor in main memory
consists of no more than nulling its disk address (and updating the necessary
ASTE quantities and quota cells). Recall that a nulled address is paged in by
the page-reading functions as a page of zeros. Truncating a page on the paging
device, whether or not it is in main memory, involves freeing the associated PD
record by placing the PDME for it in the PD used list.

Truncating a segment consists of little more than performing the above
actions, as is the case for each page. For pages that have paging I/O going on
(ptw.os is on), the completion of this I/O is awaited via the multiplex wait
protocol, For pages on the paging device, the call-side PD eviction subroutine
(see preceding) is invoked (at the entry "truncate_one_pdrec"). Among the
actions taken by this subroutine is the remembering of any RWS in progress on
that page, for later waiting via the multiplex wait protocol. When all pages in
the segment have been processed and no wait events remembered, the truncation is
complete.

A large part of the complexity of the segment truncation primitive is the
determination of whether or not a page being truncated was charged against
quota. Basically, any page in main memory is charged against quota. Any page
with a live disk address is charged against quota. Those pages with null
addresses, or with nulled addresses but not in main memory, are not ~harged
against quota.

At the end of the processing, the ASTE fields describing the number of
records used and the current-length of the segment are updated. If quota
checking is not inhibited for this segment (i.e., aste.nqsw is off), the quota
utility quotaw$cu_for_pc is called to adjust the quota account against which the
segment's record quota is charged. If any pages were actually truncated, the
file-map-changed bit (aste.fmchanged) is set, indicating that segment control
should update the VTOCE as soon as convenient, for addresses can be deposited,
and must be removed from the VTOCE. Segment control's VTOCE update function
will do both these things.

The page control trunca tion se"rvice does .ll.Q.1 require that no other agency
in the system be creating pages while it is trying to truncate them. That is
the problem of the subsystem or user code which invoked the storage system's
truncation facility, not of page control. The only issue here is that the
truncation service must be quite careful to multiply count pages it truncates
multiple times. It is impossible for malice or accident to force the truncation
service into a loop by so doing: only when the page table lock is unlocked while
pc$truncate waits can such pages be created. The user cannot force paging-ins
of nonzero pages in the truncated region, or their paging-out, or RWSs which are
the only activities that will cause pc$truncate to wait.

The arguments to pc$truncate are the AST entry pointer of the segment and
the length Cn) to which it is to be truncated.

9-b' AN61

Boundsfault Service

(pc$move-page_table)

The segment control processing of a boundsfault usually involves the
allocation of a new ASTE/page table pair for a segment, and the establishment of
that ASTE and page table as the sole ASTE/page table for that segment. From the
segment control side, the most critical operation here is the hashing of the old
one out of the AST hash table, and the hashing of the new one in.

However, when such an operation is performed, if there are pages of the
segment on which the boundsfault has taken place in main memory or on the paging
device, there are page control data bases that describe the original ASTE and
page table (PTWs) of the segment. Sometime during the processing of a
boundsfault, page control must be invoked to construct a valid page table for
the new ASTE, and modify all page control data bases that referenced the old
ASTE/page table to reference the new one. This service is provided by
pc$move_page_table, called with the two AST entry pOinters involved.

It is also critical that all of the page control maintained data items in
the ASTE be copied from old to new during the s~me locking of the page table
lock (only one such locking will be required, there is no liD involved) as that
which the page table is reconstructed. This must be so in order that the
interrupt side will reference the correct ASTE should any liD on this segment
complete, and so that any paging-out activity will do the same. The caller of
pc$move_page_table (the bou~dsfault handler of segment control) ensures that
neither ASTE is accessible, i,e., no process can access the segment on which the
boundsfault has taken place.

The task of the page control boundsfault service is simple: all pages in
main memory or on the paging device or on disk remain exactly as they are,
whether or not liD or RWSs are in progress on them. The essence of the task is
to walk the old page table and new page table in parallel, chasing down any CMEs
or PDMEs designated by the PTWs in the old page table, and changing the pOinters
in these CMEs and PDMEs to point to the new page table. The old PTW contents
are copied to the new PTWs. The ASTE relative-pointers in the CMEs are
similarly modified. The PTWs in the extent of the new page table beyond the
extent of the old are similarly modified. The page table lock remains locked
during the entire operation, ensuring that no process can use the data objects
or change their state while ,they are being modified. Before the lock is
unlocked, the entire ASTE contents (other than its threads and pool number) are
copied from the old to the new ASTE.

One subtlety of the boundsfault service requires some clarification. The
relative offset of PTWs into the SST segment is used as a wait event ID by
processes awaiting the completion of non-RWS paging 1/0 (See "Wait Events", in
Section VIII). When the page table has successfully been moved, the interrupt
side will post any 1/0 which completes after that point by notifying the ·event
ID associated with a ~ PTW. Thus, processes waiting for the page which began
this waiting before the page table was moved are no ·longer waiting for the
correct event, and will not be notified. Thus, the boundsfault service
explicitly notifies any PTW event for which the CME notify-requested bit is on.
This 'causes any process waiting for a PTW event asso~iated with the old page
table to run; when it successfully locks the page table lock, it will retry
whatever it was doing, either via taking a segment fault or a page fault, and
ultimately find the new PTW, and go to wait on that.

AN61

Modified-Switch Setting

(pc~updates)

Directories are normally activated with the transparent-modification
attribute (see Section II for more illumination). This means that changes to
the contents of the directory do not cause the file-modified switch of the
directory to be set. This, in turn, means that the date-time-modified of a
directory or its superiors is not advanced solely by modifying a directory.
Although this convention dates from times when date-time-used was stored in a
directory (it is now in the VTOCE for a segment) and change to this field had to
be made without updating the date-time-modified of the directorYt there is still
a small class of operations (segment moving and online-salvaging) which madify
directories in ways such that the directory date-time-modified should not be
advanced.

The date-time-modified of a directory is defined recursively as the latest
date-time-modified of any segment or directory under it, or such time that the
directory was explicitly modified by directory control. In the case where
segments are modified, the page control page-writing function notices the
"modified" bit in the PTW (See "page-writing function" in Section VIII), and
turns on the file-modified switch (aste.fms) in the ASTE of that segment and all
of its superior directories (this bit is reported by the file-map and
activation-attribute reporting service described earlier in this section). For
the case of explicit modification of directories by directory control, an
address-space management utility (sum$dirmod), to update certain fields of the
directory. One of the actions taken by this program is to obtain an AST entry
pointer for the modified directory via a call to "activate" (See "Significance
of Activate," Section IV) and pass it to pc$updates. This entry, with the page
table lock locked, does no more than chase up the ASTEs from that ASTE o~ up
setting ASTE "fms" (file modified switch) bits explicitly.

POST-CRASH PD FLUSH

The management of the paging device is such that it contains information
(copies of pages) that is not identical to copies of the same pages on disk.
Records containing such pages are called "modified" PD records. In order to
evict such pages from the paging device, a read-write sequence (RWS) must be
performed. Part of the task of shutdown, normal or emergency, is to flush the
paging device, i.e., evict all pages from it. This implies read-write sequences
for all "modified" PD records. However, should a successful shutdown not be
possible, the "modified" records of the paging device contain information
duplicated nowhere else. The next boot load of Multics must copy the contents of
these records back to the disk records to which they belong. This is known as
repatriation of these pages. Repatriation of pages that had nulled disk
addresses also involves resurrection of these addresses, implying modification
of VTOCEs. The post-crash PD flush is the page control service that performs
these tasks.

AN61

The paging device may be said to come in instances. An instance of a
paging device is the paging device, ~ts map, and all the pages which have ever
been on it from the time that map 1S initialized, to the earliest of a
successful shutdown, or flushing of the last record off of the paging device by
post-crash flush, or abandonment by the operator "force_pd_abandQn" ring-l
command (see the Multics Operators' Handbook, Order No. AM8l). An instance of
the paging device exists during only one boot load if that bootload shuts down
successfully. Otherwise, it may exist during two or more bootloads. An
instance of the paging device is uniquely identified by the "paging device
time," the field pdmap_header.time_of_bootload, set to the clock time at which
the paging device map was initialized. This field, along with the rest of the
paging device map; is written out to the first few records of the bulk store
every second by the PD housekeeping function in the page-fault handler. It is
also written out by explicit calls to pc$write_pdmap.

An instance of a paging device that was created during the current bootload
is said to be an active paging device; the system is said to have an active
paging device. The bit fsdct.pd_active in the FSDCT header indicates this. An
instance of a paging device that was created during some boot load other than the
current bootload, and not successfully flushed (i.e., successful shutdown was
not achieved) is called an unflushed paging device. When a hierarchy (or a
bootload) has a paging device in this state, the system is said to have an
unflushed paging device. The bit fsdct.pd_unflushed is on when this is the
case.

Whenever a physical volume is accepted by a system with an active paging
device, or an instance of a paging device is created (the paging device becomes
active) during a bootload, the physical volume is said to have been exposed to
that instance of the active ;aging device. Whenever a physical volume is
accepted, the paging device time of the instance of the active paging device, if
there is one, is written to the label of that volume before any segments on it
are allowed to be activated. Whenever a paging device is made active during a
bootload, a call is made (to the program fsout_vol, for each volume, see Section
XIV) to write the paging'device time to the labels of all volumes before that
paging device is actually made available to the PD record allocator. Thus, any
physical volume contains in its label the PD time of the last instance of the
paging device to which it was exposed.

The label of the root physical volume (RPV) contains a bit
(label.po_active) which says wheth~r it, and therefore the entire hierarchy
which it commands, was exposed to an active paging device, this bit being
cleared when the system is successfully shut down. If the system comes up after
a crash and this bit is on, then the system must have an unflushed paging
device, otherwise the system would have been successfully shut down and that bit
cleared. Thus, the paging device map is read from the bulk store, and the PD
time in the PDMAP header compared to that of the instance of the paging device
to which the RPV was last exposed. If these are not the same, the paging device
contents have been damaged (probably by the use of another hierarchy) since that
RPV was last used (and not shut down). The system will not come up in this
case; the operator must zero the paging device. If the system finds the paging
device time on the bulk store zero, when the RPV was indeed exposed to an active
paging device and not shutdown, it implies that the operator cleared it. A
message is typed, and a new instance of the paging device is created. If the
times indeed match, however, the system has an unflushed paging device, which
must be flushed. The bit fsdctopd_unflushed is turned on to this effect. All
of the records of the paging device that are not "modified" have their PDMEs
cleared (set to zero). Those marked as "deleted" by the PAGE CONFIG card (see
"PD Reconfiguration" later in this section) are deleted. The state of the
"modified" PDMEs left by these actions is regularized. There is no PD used list
on an unflushed paging device. The map is written out in its new state. The
records on the paging device will be repatriated as volumes are accepted. The
manipulations described above are all performed in the program "init_pvt".

9-11" AN61

Whenever a physical volume is accepted by the system, it can tell whether
or not it has been successfully demounted. Shutdown, it will be recalled,
demounts all volumes (See Section XIV). Whenever a physical volume that has not
been shut down is accepted, the physical volume salvager is invoked by volume
management to salvage it. This physical volume salvaging, among other things,
reconstructs the map of free addresses, and checks each VTOC entry (VTOCE) for
consistency.

Whenever a physical volume that has not been successfully demounted is
accepted by a system with an unflushed paging device, there exists the
possibility that that volume was exposed to that instance of the paging device.
If the volume was shut down successfully, it cannot have any records on any
instance of the paging device. Only volumes present at the time of the crash
can have records on this instance, the unflushed, current instance, of the
paging device. Those volumes are exactly the set of volumes not successfully
demounted which were exposed to this instance of the paging device. Whenever a
volume that was not successfully demounted is accepted by a system with an
unflushed paging device, comparing the PD time in the label of that volume to
the PD time of the current, unflushed, paging device tells whether or not this
is the case. Such a volume is said to have been exposed 1Q an un flushed PD.

Whenever a volume exposed to an unflushed PD is being salvaged, records on
that paging device will be repatriated to that volume. The task of identifying
these records is facilitated by the recording of the physical volume table index
of the volume containing the page in the PDMAP entry. This PVT index identifies
the drive on which the volume was mounted during the bootload that crashed,
which may not be the same as during the current bootload. However, the physical
volume table index, as well as the PD time, is recorded in the pack label at the
time the volume is accepted. Since the volume is guaranteed not to have been
successfully demounted, it is impossible that any other volume could have had
that PVT index after that during that bootload, and hence have pages on' the
unflushed paging device. Thus, by comparing the PVT index in the volume with
that of each disk record stored as the "devadd" in a PDMAP entry, it can be
determined precisely whether th~t PDME describes a record to be repatriated to
this pack, and if so, to what disk address.

Repatriating the pages is only half of the task. Many of the "modified"
pages on the paging device contain pages that were ~ written to disk; their
entries in the file map of their segments' VTOCEs contain null addresses. Thus,
simply writing back these pages to the disk is not enough, as a fault on that
page will produce zeros, as the address in the VTOCE is null. Thus, in effect,
such repatriations are resurrections; live addresses must be reported to the
VTOCE. It is for this purpose that segment unique ID and page number are stored
in the PDMAP entry. As each VTOCE (each segment) of a physical volume exposed
to an un flushed paging device is processed by the physical volume salvager, a
special service of 'page control (pc$flush=seg=old=pd) is called, passing the
address of the file-map region of the VTOCE image, the old and current PVT
indices of the physical volume, and the UID of the segment whose VTOCE is being
processed as input parameters.

The entry pc$flush_se&-old_pd scans the entry pnMAP looking for PD records
containing pages belonging to this segment; such entries have a matching UID,
placed there by the PD record allocator (see Section VIII). For each such
entry, an RWS is initiated by the use of the call-side PD eviction subroutine,
flush~one_pdrec (see earlier description in this section). All of these RWSs
are performed in parallel, and waited for in parallel via the multiplex wait
protocol. A special bit (pdme.flushing) is turned on before each RWS is
initiated, so that the interrupt side will neither clear nor free the PDME (see
"1/0 Posting", Section VIII). In order for the RWS mechanism to work, the PVT
index in the PDME must be the PVT index of the volume in the current bootload,
if the volume has moved. Thus, before invoking the call-side PD eviction
subroutine, pc$flush_seg_old_pd saves the old PVT index in mpdme.save_old_pvtx,
and places the new one in. This is done so that should the system crash during
the processing of this segment, the next bootload can detect this (pdme.flushing
will be on), and cleverly place the old PVT index back.

9-12 AN61

As the interrupt side completes each such RWS, it leaves the PDME intact.
In all cases except the case of RWS (read or write) error, the disk address in
the PDME will be a live disk address (RWS completion always causes a
resurrection, if the disk address was nulled). However, a null address will
have been left by the interrupt side if there was an error. In all cases except
the last (RWS error), the live address from the PDME is moved to the appropriate
slot in the VTOCE file map passed in as an argument (pdme.pageno says which
slot), and two output parameters, representing segment current length and
"records used", are adjusted if a resurrection took place. The PDME is then
zeroed, but not freed.

The post-crash PD flush repatriation
time required to do a physical volume
scanned for each VTOCE processed.

procedure substantially increases the
salvage, as the whole PD map must be

The placing of a UID in a PDME ensures that there are no windows between
the last time the map was written out and the last time data was written to that
PD record. Were this not the case, the wrong data might be flushed to some
segment.

After all VTOCEs have been processed by the physical volume salvager, a
special primitive (pc$cleanout_old_pd_pv) is called to clear PDMAP entries for
"parasite" segments (i.e., those with no VTOCEs), such as descriptor segments on
the RPV (see Section VII). This primitive also checks that no records exist on
the paging device which belonged to the volume being salvaged; they should all
have been repatriated. If there are any, very little can be said or done about
them, and nothing would be gained by crashing the system. An informative
message about the curiosity is typed out.

SHUTDOWN AND DEMOUNTING SERVICES

The aims of both shutdown and demounting are to ensure that the paging
device and main memory contain no pages of a - set of physical volumes; in the
case of demount, it is one physical volume. In the case of shutdown, it is all
of the volumes present. Demounting causes this to occur by deactivating all of
the segments on the volume. Shutdown, however, although it goes through the
demount procedures for all volumes present, does not attempt these
deactivations.

Shutdown flushes the paging device (evicts all pages on it) as early as
possible. This is so that the system should not have an unflushed paging
device, should shutdown fail. Obviously, only active paging devices can be
flushed. The entry pc$pd_flush_all exists for this purpose. It calls the
call-side PD eviction subroutine flush_one_pdrec (see earlier description in
this section) to flush each page off of the paging device (initiating RWSs if
modified), and uses the multiplex wait protocol to multiplex the wait events.
When this routine returns, the paging device may be declared inactive.

Shutdown also flushes all of main memory before doing its update vtoce
loop; this is so that any disk record addresses for pages in main memory (the
paging device has been flushed, as above, at this time) are resurrected prior to
the VTOCE updates. The routine pc$flush is called for this purpose. It calls
the page writing/purification function in ALM page control (See description in
Section VIII) to initiate writes on all pages that are modified with respect to
main memory. All IIOs are awaited (whether or not this action started them)
via the multiplex wait protocol. This action also causes all pages of zeros in
main memory to be evicted, nulling their addresses.

9/78 9-13 AN61A

Normal and emergency shutdown call the primitive pc$write_pdmap several
times to write out the PD map to the bulk store when significant changes to its
state are made. Writes performed by this primitive are done via usicg the
segment pdmap_seg as an abs-seg over the bulk store; such writes are done via
calls on the page-writing function ~n ALH page control, and are posted normally
via the interrupt side. This does not conflict with writes to the map performed
by the PD housekeeping function, which may even be going on simultaneously;
these writes do not involve PTWs or CHEs, and will not even be reported by the
bulk store DIM to the interrupt side upon completion. The function is also used
by PD Reconfiguration, see Section X.

Volume demounting does not require any special services from page control;
all of the flushing of pages out of main memory and off of the paging device are
performed by pc$cleanup, invoked by segment control when segments on that volume
are deactivated (see Section IV). However, a special entry in page control is
called by the volume demounting function after all segments have supposedly been
deactivated. This entry, pc$check_pd_demount, does no more than check that no
pages belonging to that volume are still on the paging device. This is solely
as a check for bugs; it should never be the case that there are such records.

RECORD ADDRESS DEPOSITING SERVICES

pc$deposit_list
pc$list_deposited_add
pc$truncate_deposit_all

Page control, as the maintainer of the FSDCT bit maps for mounted volumes,
is charged wi th the deposi ting of addresses on behalf of segment control' and
other agencies.

The entry pc$deposit_list. is called with a "deposit list", an array of
addresses to be deposited, and a PVT index identifying their volume. Such a
"deposit list" is produced by the file-map reporting service (pc$get_file_map),
and by the segment control segment truncation facility in the program
truncate_vtoce. The number of entries in this array is also a parameter.
Basically, this entry does nothing more than iterate over the array supplied and
call the withdraw/deposit mechanism in the program free store (See "Individual
Mechanisms" in Section VIII) with' each address and the PVT index. This
operation is performed without the protection of the page table lock: depositing
is a unitary operation that involves no races, as only one process can deposit a
given address at one time.

The entry pc$list_deposited=add is an entry that performs that function of
the file-map reporting service which is the reporting of nulled addresses and
their replacement in PTWs by null addresses. This entry places the addresses so
gathered into a "deposit list", such as that accepted by pc$list_deposit above.
This operation must be performed under the protection of the page table lock.
The criteria for reporting an address are the same as those in pc$get_file_mapl
i.e., the address must De nulled and in a PTW. Addresses so reported are
replaced in the PTW by the null address "llst_deposit_null_addr" (See
null_addresses.incl.pll). This entry is used by code dealing with non-hierarchy
segmerits. such as some initialization code, and by the segment mover (See
"Segment Moving" in Section IV).

The entry pc$truncate_deposit_all is a macro operation conSisting of
successive calls to pc$truncate (to zero length), pc$list_deposited_add, and
pc$deposit_list. It is used to destroy RPV parasite segments (e.g., PRDSs and
descriptor segments). It is supplied an AS! entry pointer as an argument.
There is no window between the truncation and the depositing: these segments
have no VTOCEs, and are not under consideration by any subsequent bootload.

9-14· AN61

PAGING DEVICE RECORD DELETION

The paging device reconfiguration service is
"Peripheral Services of Page Control", as it does
mainstream of page control, and in general only deals
device records. However, one part of the paging device
involves taking paging device records out of use. This
services of the kernel of page control.

described in Section X,
not interact with the
with deconfigured paging
reconfiguration software
involves the use of the

All paging device reconfiguration is managed by the program
delete_pd_recordS s which wires itself via the wire_proc mechanism (See Section
X) when invoked. In all cases except the use of the "delpage" operator command,
it deals with unflushed paging devices and deconfigured records. It does not
involve PTWs, CMEs, or pages of segments.

However, the "delpage" operator command may involve the eviction of pages
from in-use paging device records. In this case, delete_pd_records, which is at
that point running masked and wired with the page-table lock locked, invokes the
entry pc$delete_pd_records with the first index and number of paging device
records to be deleted. Using the call-side PD eviction subroutine,
flush_one_pdrec (called at the delete_one_pdrec entry) (See earlier description
of this subroutine), this routine evicts pages, .starting RWSs where necessary,
and waiting for all paging and RWS I/O via the multiplex wait protocol.

The eviction of pages from PD records performed for record deletion is
different from those evictions performed for deactivation, truncation, or the PD
replacement algorithm, etc., idsofar as the PDME for the PD record is not to be
threaded into the PD ttsed lis~, but left out, with a word of all ones set in its
thread word. This marks the "deconfigured" state of the paging device redord.
When a nonmodified page is evicted by delete_one_pdree, this subroutine performs
this deletion. Otherwise, the bit pdme.removing is set on before or during RWS,
so that the interrupt side (See "I/O posting" in Section VIII) will deconfigure
the record instead of threading the PDME into the used list.

Paging device records are also deleted automatically by the interrupt side
when paging device I/O errors have occurred; see "Error Strategy" in Section
VIII.

FORCED SEGMENT I/O AND WIRING

Several agenCies in the system have the need to ·wire" portions of segments
(make their pages nonremovable from main memory). In some cases, this is
accomplished by turning on "wired" bits in the PTWs for the affected pages· and
simply touching them. This technique is generally used to wire regions of
stacks. A less ad-hoc facility is available though, through the entries
pc_wired$wire, pc_wired$wire_wait, and pc_wired$unwire. ·Typical uses of this
facility are for wiring data bases to be used at interrupt time by facilities
that "are not always enabled (such as the ARPANET software), and by wire--proc,
the manager of procedure-wiring requests (described in Section X), which
temporarily wires procedures that must not take page faults.

9~15· AN61

The program pc_wired implements all of these functions, along with a few
others described below. In all cases, it is passed the AST entry pOinter for
some segment (it is the caller's responsibility to ensure that the segment is
either a supervisor segment or cannot be deactivated while pc_wired is operating
upon it), a first page number, and a number of pages to be
read/written/wired/unwired. In all cases, a number of pages of -1 indicates
that all pages from the "first page" specified to the end of the segment are to
be read/written/wired/unwired.

The service provided by pc_wired$wire_wait is the most often used. It
wires the pages of the segment specified, if they are not already wired, and
does not return until they are all in main memory. It operates by turning on
all of the "wired" bits in the affected PTWs that are not already on, and
initiates reads via calls to the page-reading function (See Section VIII) via
the transfer-vector page$pread. All liD operations on these pages, whether
noticed or started by this module or reported back by page$pread (which may
include FSDCT pagings, RWS events, etc.) are awaited via the multiplex wait
protocol, until all specified pages are in main memory, with no liD in progress
on them.

The service provided by pc_wired$wire is similar, but it does not retry
calls to ALM page control or wait for I/O completions. Thus, its effect is
little more than to turn on all of the wired bits involved and start some of the
liDs. This service is not particularly useful, and is not used.

The service provided by pc_wired$unwire is commonly
unwires the pages wired by either of the two above entries.
is nothing more than turning off the PTW "wired" bits.

used. It simply
In all cases, this

The module pc_wired also provides a set of services to perform paging liD
on demand upon segments. These are used by the physical volume salvager to
pre-page (i.e., start asynchronous paging-in) segments used to address VTOCs,
and by the segment mover to force zero pages to be noticed (and thus have their
addresses nulled) by the page-writing function (See Section VIII). A special
form of this service is available to the directory control directory unlocking
primitive, via pc_wired$write_wait_uid. This entry is used when a directory is
unlocked which directory control knows to have been modified; it causes all the
modified pages to be written from main memory (perhaps to the paging device) as
a hedge against crashing. It is different from the service provided by
pc_wired$write_wait in that the caller makes no guarantee that the AST entry
pointer provided will remain val'id during the operation of pc_wired; therefore,
a segment unique ID (UID) is supplied by the caller so that pc_wired can check
the AST entry each time the page table lock is relocked, to ensure that it still
designates the same segment.

The entry pc_wired$write_wait is the most generally used. Given that the
caller ensures that no process may be modifying the segment, it ensures that no
modified pages of the segment (in the range specified) exist in main memory when
it returns. The entry pc_wired$write performs similar actions, but does not
wait, and makes no statement about the state of the segment when it returns, and
thus is not used.

9-18 AN61

The entry pc_wired$read is used to start page-reads for all pages in the
range specified. It makes no guarantees about when these reads will be
complete; this is used solely as a performance optimization feature, for those
supervisor subsystems that can anticipate their page reference patterns. There
is no entry pc_wired$read_wait; if there were, it could not possibly guarantee
that pages which it had read would stay in main memory when it returned, for any
paging activity at all could evict them. The concept of reading pages in
nonevictably is the concept of wiring, treated above.

The entries pc_wired$read, pc_wired$write, and pc_wired$write_wait all
operate by calling the page-reading and page-writing functions in ALM page
control, and iterating in the "wait" cases via the multiplex wait protocol.

ABS-WIRING SERVICE

Peripheral device operation via the 10M (Input-Output Multiplexer) requires
contiguous regions of main memory for data buffers. The 10M provides a facility
whereby arbitrary user-supplied channel programs may be run in a given region of
main memory, preventing them from damaging other regions of main memory via a
per-channel limit register. The same facility also relocates addresses
appearing in such channel programs with respect to the base of the region, such
that the writer of such a channel program need not even know where in main
memory the channel program (and the data) will appear. The use of this facility
is managed by the I/O interfac~r.

A critical part of this facility is the ability to acquire successive page
- frames of main memory that can be made to form a contiguous region. When
storage system segments are to be used as buffers for the 10M, they must be
paged into such regions of pages, in address order, and not be evicted from
those page" frames for any reason, including deconfiguration of memory. Such
pages may not be moved around main memory, as is done by sOme of the functions
described in Section VIII. Such pages are said to be "abs-wired", as are the
segments to which they belong at the time that their pages are in this state.

- The use of abs-wired buffers, for the 10M (and the FNP6600 Communications
Processor bootload software, through the 10M) is managed by a program called the
I/O buffer manager (iobm). This program calls the page control segment
abs-wiring service to allocate regions of main memory and abs-wire segments into
them. It uses timers and request queues to schedule re-use and unwiring of
these buffers. The I/O buffer manager also performs the unwiring of these
buffers when that act is appropriate; it turns off CME abs-wired bits and PTW
wired bits, operations that need not be protected by the page-table lock.

The program pc_contig is responsible for abs-wiring portions of segments.
To abs-wire a portion of a segment, a number of usable main memory frames equal
to the number of pages of the segment to be abs-wired must be found. A main
memory frame is usable if it is in a non-deconfigurable system controller, is
not deconfigured already, is not already in use by an abs-wired segment, and is
in the first 256K of main memory. All frames found must be in the same system
controller. (The issue of the first 256K involves an 10M design issue known -as
"backup list service".

AN61

The entry pc_contig$wire is called with the AST entry pointer of the
segment whose pages are to be abs-wired, the number of the first such page, and
the number of such pages. It returns a core map entry pOinter to the first core
map entry of the region into which it allocated and paged in and abs-wired the
pages of the segment, from which the 1/0 buffer manager computes the main memory
address of the region. This pointer is returned as null if the requested
allocation could not be performed. A flag is also passed indicating whether or
not this entry has been called on the interrupt side; currently, it never is.

The entry pc_contig$wire locks the page table lock and scans the core map
for a sufficient number of usable main memory frames; if there are not enough,
it tries several times to call the 1/0 buffer manager to release any frames it
possibly can which it is holding. Only if this repeatedly fails is the caller
informed that the requested allocation cannot be performed.

Once a region of main memory is decided upon, all pages currently residing
there are evicted via the demand eviction function described in Section VIII.
All 1/0 and RWSs in these frames are waited out. The pages of the segment to be
abs-wired are read in via the page abs-wiring function described in Section
VIII. For each page, this reading does not commence until the previous contents
of the frame have been evicted, and IIOs already in progress there waited out.
All of these operations are paralleled and waited for in parallel via the
multiplex wait protocol.

Another interface to the abs-wiring service is maintained for historical
reasons in the program pc_abs, at the entries pc_abs$wire_abs and
pc_abs$unwire_abs. These entries are called wIth AST entry pointers, number of
pages to be wired or unwired, and the number of the first such page. In the
wiring case, this entry does nothing more than call pc_contig$wire. In the
unwire case, the CME nabs-wired" bits and the PTW "wired" bits are turned off,
again not requiring the protection of th~ page-table lock. This set of
interfaces is currently used only by the ARPANET software to create buffers for
the Interface Message Processor (IMP).

MAIN MEMORY DECONFIGURATION SERYICE

The Multics Dynamic Reconfiguration Software (See the Multics
Reconfiguration fLM, Order No. AN71) provides the ability to take single frames
of main memory out of use, and to take many out of use in order to take an
entire system controller out of use. The commands which perform these
activities are the "delmain" and "delmem" commands (see the Multics Operators'
Handbook, Order No. AM81). Taking frames out of use in this way is performed by
the page control main memory deconfiguration service provided by the entry
pc_abs$remove_core. The entire power of this program is derived from the demand
eviction function described in Section VIII and the multiplex wait protocol.

The program pc_abs, when invoked at this entry, with the first frame number
and number of frames to be deleted, starts off by making legitimacy checks; ~ne
system must be left with enough main memory to function, and no frame that
contains an abs-wired page may be deleted. The program wires itself via the
procedure temp-wiring service described in Section X, and locks the page table
lock, ·masking and wiring its stack via pmut$lock_ptl (see Section VIII, "Lock
Conventions").

AN61

The program iterates over the region to be deleted, assured of the
legitimacy of the request, turning on the "removing" bit (cme.removing) in the
core map entry for each main memory frame to be deleted. This ensures that the
main memory frame allocator (find_core) will never allow this frame to be
allocated to a page; ~ ensures the deterministic success of the eviction that
follows. The demand page eviction function is invoked on each frame that is not
already deleted, until all frames are deleted. The wait events returned by
page$evict are multiplexed by the multiplex wait protocol. Each frame from
which a page has been evicted, with no wait event, is threaded out of the main
memory used list, and given a thread word of -1.

The program returns, unlocking the page table lock, unwiring its stack, and
unwiring itself.

SERVICES FOR TRAFFIC CONTROL

Traffic control performs many services for page control, notably
implementing the wait/notify mechanism by which the waiting for of many page
control events occurs. Page control also performs three services for traffic
control: the loading and unloading of processes, and the post-purging of a
process.

Process Loading

The two critical pages of a process (the first page of the descriptor
segment and the process data segment (PDS» must be wired before a processor is
allowed to run in that proc~ss: A process in this state. is known as loaded.
The loading of a process is performed at the time it acquires eligibility. The
loading of processes is performed by the program wired_plm, which has as its
sole entry point the entry wired_plm$load.

The process-loading function is different from any other service in page
control insofar as it performs its task on behalf of some other process than the
one in which it is invoked. The process-loading function is invoked from the
traffic controller's "getwork" routine (with the traffic control lock unlocked)
at the time a process is being made eligible. Since loading a process may
involve waiting for the reading (or RWS completion) of the two critical pages,
waiting must be performed if this is the case. The process that is currently
running in the traffic controller cannot and should not be made to wait for
these events, involved in the loading of some arbitrary process. Thus, the
process that is being loaded is made to wait for the events involved in its own
loading itself. The traffic controller will not try to run any process that is
waiting for an event, whether or not that process is loaded. When an event is
notified, the traffic controller will usually try to run a process that had been
waiting for that event. However, if that proc~ss is not loaded, a call will be
made to the page control process-loading function to achieve or continue the
loading of that process. Only when the loading function returns the result that
the ltiading of the process is complete does the traffic controller mark it as
"loaded", begin to run it, and interpret notifications of wait events in the
normal way.

AN61

Thus, when a process is made eligible (it is never loaded at the time it is
made eligible) a call is made to the loading function to start as many
operations as can be started in parallel to accomplish its loading. If the
process-loading function returns the fact that the process is loaded upon return
from this function, then that is the case. Otherwise, the process-loading
function returns a wait event of some operation that it started which was not
completed. Since the traffic controller will cause the process being loaded to
wait for that event, and call the loading function back when that process is
notified, the effect is that of the process-loading function being called back
when that event has been notified. Thus, in effect, the process loading
function is called in a loop for each loading, returning either a wait event or
an indication of loading having been successfully achieved each time. It is
called again and again each time it returns a wait event, after that event has
occurred, until it returns an indication of complete loading. This is a
strategy very much parallel to the simple and multiplex wait protocols used
elsewhere in page control.

The loading function is invoked without the traffic controller lock locked.
It locks the page table lock, and unlocks it when done. Since the traffic
controller locks its lock, upon return from the process-loading function after
the latter has unlocked the page table lock, there is a window between these two
events during which the event handed back by the process-loading function might
occur. Thus, the traffic controller "validates" such events by actually
checking PTWs and PDMEs deSignated by such events for valid out-of-service or
RWS states (See Section VIII for further discussion of this anomaly). If such
an event is found to be "invalid", the process being loaded is set up so that
the process-loading function will be called again for it as soon as possible,
i.e., the ~rocess-loading function will be retried without any wait.

The code of the process-loading function itself is very simple: it
develops wait event IDs for either of the two critical pages it tinds
out-of-service or undergoing RWS, and invokes the page-reading function of AL~
page control (page$pread) to read in either of the two pages not in main memory,
remembering the event ID of any event detected by this primitive. It returns to
the traffic controller any of the wait events encountered in either of these
ways; if there are none (both pages are in main memory), it returns to the
traffic controller the fact that the process is loaded. This code also turns on
the "wired" bits in the PTWs of the two critical pages if they are not already
on; this is part of its contract, and ensures completion of the read operations
in a deterministic number of steps.

Process Unloading

Process unloading consists solely of turning off the "wired" bits in the
PTWs for a process' two critical pages. This operation, which need not be
performed under the page table lock, is done by the routine "unload_old_process"
in page fault, invoked solely by the traffic controller and returning to it.

Post-Purging

The post-purging service of page control is used as a performance
optimizing alg.orithm to bias the page replacement algorithm in favor: of
replacing pages of a process that loses eligibility. This service is invoked by
the traffic controller at the time that a process loses eligibility, for any
process whose work class indicates that post-purging is to be performed. Part
of the post-purging service also consists of estimating the "working set" of the
process, used by the traffic controller in the decision to grant eligibility.

AN61

The basic task of the post-purging function is to scan the per-process
trace list of pagings performed by a process (see Section VIII for the "per
process page trace list") (this function runs in the process it is processing),
and to classify the pages involved in the various paging-ins as part of the
process' working set or not, and bias the page replacement algorithm in favor of
their replacement in various ways.

The post-purge function is implemented in the ALM program post_purge,
called by the traffic controller with the traffic control lock not locked. It
locks the page table lock at the start of its processing, and unlocks it only at
the end of its processing, before returning to the traffic controller.

The post-purge function considers each page reading in the trace list,
between the last time the process was post-purged and the current time. It also
makes an entry in the trace list, a "scheduling" entry, for use by the
"page_trace" command. It considers six attributes of each page in the trace
list, and performs up to four potential actions for each" page based upon them.
These attributes are:

1. The page being in main memory at the time it is seen.

2. The page being on the paging device.

3. The page being part of a per-process (aste.per_process on. segment.

4. The page having its "used bit" (ptw.phu) on, indicating recent use.

5. The page having its
indicating use sin~e
are selected.

"used in quantum" bit (ptw.phu1) bit on,
the last post-purging if certain options below

6. The page having its "modified" bit on.

The four actions that can be taken for each page are:

1. Call the page_writing function to write the page out.

2. Move the main-memory page frame for the page in the used list to the
least-recently-used (most r.eplaceable) position.

3. Turn off the used and used-in-quantum (ptw.phm and ptw.phm1. bits.

4. Count the bit in the working set of the process.

The mapping from all sixty-four possible oombinations of these attributes
into any sub set of the four possible aotions is determined by the table
"code_tree" in this program. The aotions speoified by this table in release 5.0
are:

1. Call the page-writing funotion to write the page out. This is ~
seleoted.

2. Move the page to the least-reoently-used position of the main memory
used list. Done for any page meeting oriteria 1 and 3, i.e., in main
memory and part of a per-process segment.

3. Turn off the "used" and nused in quantum" bits.
selected.

This is ~

4. Count the page in the prooess' working set. Done for pages meeting
oriterion (4), i.e., the used bit is on.

AN61

There are no installed tools to change the contents of this table, or
interpret them.

The post-purge function marks the bit ptw.processed (also known as ptw.er
or ptw.pre_paged) in every PTW it processes; it turns off all bits it so turned
on before it finishes. Any page it finds with this bit on must already have
been processed by this pass; such occurrences are considered evidence of
"thrashing", and are counted in the meter sst.thrashing. They indicate the
occurrence of a process not being able to keep a page it was using in main
memory during one period of eligibility. This action might also turn off PTW
error flags by virtue of sharing of this bit, but the worst effect of this would
be to cause a process to take an extra page fault to retry and perhaps
rediscover a disk or paging device read error.

9-22 AN61

SECTION X

PERIPHERAL SERVICES OF PAGE CONTROL

This section covers three mechanisms used by the supervisor that can be
construed as being part of page control. These three mechanisms are:

1. The facility that temp-wires procedures and their linkage.

2. Paging device recon~iguration.

3. Main memory frame freeing.

These mechanisms do not directly deal with page control objects that are in
use. In the first case, no page control objects are dealt with at all; all
manipulation of pages is performed by calls upon the services described in
Section IX. In the second and third case, objects (CMEs and PDMEs) are threaded
into their respective used lists, under the protection of the page table lock.
Part of paging device reconfiguration is involved with taking PD records that
are in use out of use; this is performed by a page control service described in
the previous section ("Paging Device Record Deletion").

PROCEDUFfE WIRING

Many procedu:es in the Multics supervisor are wired, i.e., may not be
removed from ma~n memory. Often this is on account of the fact that they are
used during page or traffic control operations, or in processing interrupts.
Code invoked in such circumstances may not take page faults, for the taking of
page faults may involve page control or traffic recursively, or cause the
processor to be lost while a per-processor resource is in use.

Some procedures that may not take page faults are not invoked often; such
procedures include much of the code that implements the reconfiguration, and
much of the code of the ARPANET interface. Such procedures cause themselves to
become wired when they are invoked, and unwired when they return. This
procedure wiring/unwiring function is performed by the program wire_proc.

The program wire_proc does not deal with page control data bases at all;
it calls pc_wired$wire_wait and pc_wired$unwire (described under "Forced Segment
1/0 and Wiring," Section IX) to wire and unwire the segments and parts of
segments it deals with. The program wire_proc is not itself wired, and does not
deal with the page control environment. The basic task of this program is to
multiplex requests to wire the same segment; a table is kept of segments it has
wired, in the region "sst.wire_proc_data" in the SST. When a request is made to
wire a procedure, a check is made to see if that procedure has already been
wired by this mechanism, in which case an entry in this table exists for that
segment. If not, an entry is made for the segment, and a call to pc_wired is
made to wire the segment. In any case, a counter of processes that have called

10-1 AN61

to wire that segment, kept in the table entry, is incremented. When a process
,calls to unwire the segment, the counter in the table entry (which must exist)
is decremented. If and only if the counter reaches zero, a call is made to
pc_wired to unwire the segment. Thus, the segment remains wired from the time
the first process calls to wire it until the last process calls to unwire it.

Whenever wire_proc wires or unwires a segment, the region of the
appropriate supervisor linkage section that contains the linkage for that
segment (if it has any), is wired or unwired as well. The program wire_proc
checks that it does not try to wire portions of unpaged segments: this case may
occur during initialization, when procedures that call wire_proc, which later
become paged (See the Multics Initialization E1M, Order No. AN70) are' still
unpaged, and in cases of procedures with the "wired" attribute defined for their
linkage sections in the MST Header (See "generate_mst" in the System Tools PLM,
Order No. AZ03, and AN70).

The operations of the program wire_proc, and its table in the SST (which is
defined in wire_proc_data.incl.pll) are protected by a lock, the cell
wpd.temp_w_ lock in sst.wire_proc_data. Since wire_proc is used by system
initialization in collection 1, before the system locking facility is available,
wire_proc locks and unlocks this lock, and waits for its unlocking via explicit
calls to "stac" and "stacq", with calls to pxss$addevent, pxss$delevent, and
pxss$notify for synchronization. The value of the event ID for the unlocking of
this lock is "200000000000"b3, and is stored (by init_sst) in the cell
sst.temp_w_event in the SST.

The program wire_proc has two sets of entries, wire_proc/unwire_proc, and
wire me/unwire me. The first two are very rarely used; th~ir caller provides a
pOinter to the segment to be wired or unwired. The latter are the common pair;
the program (i.e. the segment) that calls these entries is assumed to be the
target of the wiring or unwiring, and is wired or unwired accordingly.

PAGING DEVICE RECONFIGURATION

(See also the discussion in the' Multics Reconfiguration PLM, Order No.
AN71 .)

The storage system provides the ability to remove records of the bulk store
paging device from use, and add them back. This facility is made available
through the operator "addpage" and "delpage" commands. It is implemented in the
procedure "delete_pd_records", a part of system reconfiguration that wires
itself (via the procedure-wiring service described earlier in this section) and
locks the page table lock (via pmut$lock_ptl, see Section VIII) when it actually
deals with in-use page control data bases. This procedure also has several
"''111'''1;,...~ ,.."~,,.I!'t.~ ",. +-k,... W"'JI-t ,._1 ,,7"\.,.."" ~""" ,.,. I".; ,...., ... ""'~ f~,..." " lA •• ,~..;,.. n. " ,..."' 1
I;;;U '"" .i.1;;;0;) Q..i..i.I;;;Y IJJ ,",UI;;;, .i.U~- I VYI;;;' CI. ,",v, I;;;U Y.i.' VUWI;;;U '"' \ 0.11;;;1;;; ,",UI;;; ~ ~ YUe' e Ity"g

Handbook, Order No. AM81) to deal with unflushed paging devices (See "Post Crash
PD Flush", Section IX). ~mong these are included entries that allow the number
of unflushed records to be determined, the.unflushed instance of the paging
device to be abandoned, and a new instance of the paging device to be created
and made active.

10-2' AN61

Except for the part of record deletion that involves evicting pages
occupying PD records to be deleted, none of these operations involve dealing
with PD records or their PDMEs that are actually in use. Even the operations
that free records simply make them available for use. The operation of evicting
pages from regions of the paging device being taken out of use is performed by
the entry pC$delete_pd_records, which utilizes the methods and routines of the
page control kernel to accomplish this. Thus, the procedure delete_pd_records
never concerns itself with PTWs, CMEs, or pages of segments.

The entries that add and delete PD records (add_pd_records,
delete_pd_records) are called with the first number and number of PD records to
be added/deleted. They wire themselves and lock the page table lock when
inspecting the paging device map. They both check the validity of their
arguments before so dOing. The entry to delete PD records does nothing more
(once wired, masked and locked) than call pc$delete_pd_records to delete the
records; the entry to add PD records does nothing more than thread entries in
the region to be added, clearing them and checking before so doing that they
were in fact deconfigured previously (first word = -1). Note that entries can
be deconfigured by initialization (the program init_pvt) as well as
delete_pd_records. Both procedures invoke a subroutine
(check_pd_free_and_using) to scan the changed PD map and compute from scratch
the parameters sst.pd_free and sst.pd_using, and update the PDMAP header (see
Section VI). They call pc$write_pdmap (see Section IX, "Services for
Shutdown/Demounting") to write out the changed map to the bulk store. These
routines also change the actual "PAGE" CONFIG card in the Multics configuration
deck image to indicate up to five pairs of deleted regions of the paging device.
If there are more than five deletions, the non-fatal syserr message
"delete_pd_records: page card cannot be generated" is issued, and only the
first five placed on the card. The PAGE card image, created by the subroutine
"build_page_card", is provided only for the use of the "print_config_deck" (pcd)
command. The entries add_pd_records may not be used if an unflushed paging
device exists. .

The four entries scrap_entire_pd, check_pd, scrap_pd_recs, and enable_pd
are for use of the ring-1 initializer operator environment for dealing with
unflushed paging devices. None of them deal with active paging devices, and
thus, they do not wire the procedure delete_pd_records, or lock the page table
lock or mask.

The entry delete_pd_records$scrap_entire_pd is invoked by the ring
"force_pd_abandon" command. It scans"the PD map of an unflushed paging device
for any records still in use, (i.e., unflushed, containing unrepatriated pages).
As long as such records exist, the system cannot be brought out of ring 1. This
entry marks these records as no longer in use, thereby acknowledging that their
repatriation has been deemed to be impossible. This operator command is used
when a physical volume has been destroyed, and repatriation of PD .records to it
has become impossible.

The entry delete_pd_records$scrap_pd_recs is similar to
delete_pd_records$scrap_entire_pd, but only the PD records pertaining to one
physical volume are "scrapped". This facility is not currently used.

The entry delete_pd_records$check_pd is used by the ring operator
environment to determine if there are unflushed (unrepatriated) paging device
records on an unflushed paging device. It returns the number of such records,
and the number of physical volumes on which they appear (the count of distinct
PVT indices in the PDMAP entries). Only if there are no such records may the
system be brought up. Such records may be taken out of this state by either
repatriation (via accepting the physical volumes from whence they came) or the
"force_pd_abandon" command, which scraps them.

10-3" AN61

The entry delete_pd_records$enable_pd is called by the ring-1 operator
environment to initialize a new instance of the paging device and its map. It
is called at the time the system leaves ring 1, which can only happen if there
are no unflushed records on an unflushed paging device. This facility is only
used in the case of an unflushed paging device; its first step is to check that
this is the case, and in fact that there are no unflushed records (via a scan of
the map). This entry scans the map, zeroing all PDMAP entries that are not
marked (by init_pvt) as deconfigured, and threads them into the PD used list (as
free entries). This action does llQ1 allow them to be used; only the variable
sst.pd_using being set to a nonzero value enables the PD allocator. Thus, this
threading need not even be performed under the page table lock. When all of
these entries have been threaded in, the clock is read which produces the unique
time value that identifies the instance of the paging device being created,
which will be used at post-crash PD flush time (see Section IX) should the
system crash non-recoverably with this instance of the paging device active.
The subroutine check_pd_free_and_using, described above under the description of
add_pd_records and delete_pd_records, is invoked to set the SST variables
sst.pd_free and sst.pd_using, and copy relevant parameters into the PDMAP
header. The setting of sst.pd_using actually puts the paging device into use,
and enables the P0 allocator. The labels of all mounted physical volumes are
written out, via calls to fsout_vol (see Section IV). This causes the fact that
they were exposed to the new instance of the paging device to be recorded in
their labels, for possible later use by the post-crash PD flush. As a final
action, the active map is written out to the bulk store (via pc$write_pdmap),
and a syserr message issued.

MAIN MEMORY FRAME FREEING

Initialization adds page frames of main memory to the paging pool (i.e.,
removes them from the deconfigured state in which init_sst creates them) as
initialization progresses. Similarly, system reconfiguration adds page frames
to the paging pool on behalf of the operator "addmem" and "addmain" commands.
This facility is provided by the program freecore, which wires itself (via the
procedure-wiring facility described earlier in this section) and masks and locks
the page table lock (via pmut$lock_ptl, see Section VIII) when invoked. This
procedure never deals with main memory frames that are actually in use; thus,
it never deals with PTWs, PDMEs, or pages of segments. It is called with the
main memory address (as a page frame index into main memory) of a page frame to
be freed; it checks, under the page table lock, that indeed, that page frame is
deconfigured before proceeding any further.

The program freecore checks the page frame that is to be added for parity
errors (via a call to pmut$check_parity_for_use) prior to adding it, typing a
syserr message if a parity error occurred. Otherwise, the main memory frame's
CME is threaded into the main memory used list, starting this list if it is the
first frame so added. Various CME flags and fields are cleared at this time,
and the pointers sst.usedp and sst.wusedp (See "Main Memory Replacement
Algorithm," Section V) are set to point to this page frame's CME. Counters and
meters in the SST and SCS are updated as well.

10-4 AN61

SECTION XI

QUOTA MANAGEMENT

Quota (page quota, record quota) is the mechanism by which the consumption
of segment storage space is administratively controlled. Each nonzero page of a
segment consumes a record or Ynii of quota. Each page of a segment that is in
main memory, whether or not it contains zeros, consumes a record of quota. The
consumption of quota is controlled by the existence of ~ accounts, possessed
by certain directories in the storage system. Every segment in the storage
system is said to be charged 1Q some quota account. A quota account consists of
two numbers, a quota limit (or "quota" proper) and a "used" (or "records used"),
being the sum of all of the quota consumptions of all segments charged to this
account.

As page control is responsible for the creation and destruction of pages,
page control bears the ultimate responsibility for quota management. When page
control creates or destroys a page, not only must the "records used" of the
concerned segment be adjusted, but the quota account of the directory against
which the segment's records are charged appropriately adjusted. Since page
creation happens in the page-reading primitive, and destruction on . the
page-writing and truncation functions, any quota cell against which any active
segment's records are charged must be in wired storage, so that it may be
referenced via these functions, which run as part of page 'control, with the page
table lock locked. Each AST entry has room for a quota cell, and thus, only the
quota cells in ASTEs of directories bearing quota accounts are actually used
(although the "records used" field of each directory which does not have a quota
account is maintained as though it did; this allows the "get_quota" (gq) command
to be used on such directories to report page record usage). The need to keep
these quota cells in wired storage requires that all superior directories of a
given segment be active. This is the current reason for this need. For each
page creation or destruction, page control chases the chain of ASTEs of superior
directories of a segment until an ASTE with a quota account (aste.tqsw on) is
found; by definition, this is the quota account to which the segment's records
are charged.

There are two classes of record quota, segment ~ and directory ~,
being for pages of non-directory and directory segments, respectively. Each
quota cell in the system (in ASTEs and VTOCEs) has space for both types of quota
accounts. A directory may have either or both or neither type of quota account.
Page control charges segments' pages against the correct type of quota account,
as appropriate. However, when creating a page of a directory, quota checking
(i.e., checking the appropriate account to see if the quota limit has been
passed) is suppressed (as are all page faults with an effective reference ring
of zero). This means that directory quota limiting is essentially not
implemented in release 5.0; this is due to the impropriety of signalling
record_quota_overflow as a means of conveying the exceeding of such limits to
directory control.

11-1· AN61

~ince the checking and adjustment of quota cells by page control is
performed under the page table lock, adjustment of quota cells via user command
or other storage system action must be protected by the page table lock
(although some higher lock could have been devised, one would still have to be
wired and masked to lock this lock). Thus, page control provides a procedure,
"quotaw" (the "w" is for ~), in bound_page_control, which locks the page
table lock and adjusts quota cells. It is given as a.· parameter the AST entry
pointer for either a directory whose quota cells are being adjusted, or in some
cases the AST entry pointer for a segment, the quota account against which it is
charged having to be located and adjusted. This means that all quota cell
adjustment must be performed on active directories only; directory
control/segment control ensure that this is the case by activating directories
to be involved in quota transactions, and passing pOinters to their ASTEs to
quotaw. The utility program "quota" in bound_file_system is the user visible
interface to quota cell manipulation; it identifies directories given their
pathnames, locks them and checks access to manipulate quota, handles "master
directory quota," activates directories to be involved in quota transactions
(using the "activate" primitive; see "Significance of 'activate''', Section IV),
and finally, with the AST locked, passes ASTE pOinters to quotaw. Segment
control, in the segment truncation primitive, similarly activates the parent
directory of a segment being truncated, in order to pass its ASTE pointer to
quotaw to adjust the relevant quota cell.

The program quotaw has three general entries, "cu", "sq", and "mq", to
change the records-used of a quota account, set the quota limit of a quota
account, and "move quota" between a quota account and an inferior quota account
(decrease limit of one by a certain amount, incrementing inferior's limit by
that much). In all cases, a number of records, a quota type (directory or
segment quota), and a pointer to the ASTE of a segment (which is charged against
the relative quota account, or the directory ASTE itself) is provided as input.
The "mq" entry (move quota) takes another ASTE pointer in addition, being the
"inferior" ASTE to which quota is to be moved. All of the entries lock the 'page
table lock (via pmut$lo.ck_ptl, see Section VIII) and loop up the AST parent
threads to find the correct quota account, and perform the necessary adjustment.
The "cu" entry, (change-used, which is generally used to adjust the records-used
number of an account) also supports the function of checking whether or not a
contemplated change in records-used is valid; an input switch specifies this.
All of the entries return a standard status code. .

The program quotaw also has a "side-door" (quotaw$cu_for_pc) which is used
by the segment-truncation function (in pc$truncate) and the deactivation-time
service (pc$cleanup) to adjust quota cells when these functions destroy (or find
zero) pages. This entry is similar to quotaw$cu, except that it is called with
the page table lock locked, and the process wired and masked, and returns with
these circumstances prevailing as well.

11-2 AN61

SECTION XII

RING ZERO VOLUME MANAGEMENT

INTRODUCTION AND OVERVIEW

Volume management concerns itself with the relation between physical
volumes and logical volumes, and between physical volumes and disk drives. It
is the responsibility of volume management to ensure the integrity of
information upon a given physical or logical volume, and to perform the
necessary binding and unbinding operations in the supervisor when volumes are
mounted and demounted.

Volume management, as described in these sections, does not concern itself
with the operator interface for mounting and demounting, nor the completeness or
registration of logical volumes.

There are four sections i1 this portion of the book:

Section XII
Section XIII
Section XIV
Section XV

Introduction and Overview
Data Bases of Ring 0 Volume Management
Operations of Ring 0 Volume Management
Interaction of the Physical Volume Salvager
with the Storage System

Many of the operations that may be considered part of volume management,
such as segment moving and physical volume assignment, are covered in Section
IV.

Unlike the other subsystems described in this document, no sections
describing functions or services of volume management are provided. The only
services provided are the mounting and demounting of physical and logical
volumes, and the determination of whether or not a given physical or logical
volume is in fact mounted. There are no lower-level mechanisms to speak of.
Thus, the functions and services of ring zero volume management are placed
together under the section "Operations of Ring Zero Volume Management."

CONCEPTS

A physical volume is a disk pack that is described by registration
information maintained by the volume registration package in ring 1. A physical
volume is divided into records of 1024 words each. These records may contain
pages of segments, or be part of the ~ (Volume table of contents) of the
physical volume, be part of partitions, or be part of the volume header. The
VTOC consists of entries (VTOCEs), five to a page, that describe the segments
whose pages are on this physical volume, one VTOCE per segment. The partitions
are conterminous regions of disk set aside for special use, such as FDUMP images
and the syserr log. The volume header, which is at a fixed location on the
disk, contains information describing the extent and location of the partitions

12-1· AN61

and VTOC, as well as a map (the volume ID2Q) of which records are in use by pages
of segments. All of the area not in use by the volume header, VTOC, or
partitions is called the paging region of the volume, and it is from here that
records are used by pages of segments. Every segment described by a VTOCE on
this pack has all of its pages on this pack; no segment has pages on several
packs. The most important data item in the volume header is the volume ~,
or~. This data item contains duplication of the registration information
kept for this volume, identifying it, and a history of the last use of this
volume by Multics. It is this latter information that allows volumes to be used
in a consistent fashion across crashes.

The RQQ1 Phvsical Volume, or BEY is the physical volume that contains the
root directory, ">", as one of its segments. It is special-cased by the system
in many ways. It is the only volume known to the system at the time it is
bootloaded. Another segment on the RPV is the ~~, a ring-1 data base
that describes the drives on which all packs were located during the last
bootload. From this data base, the ring 1 software can bring other volumes into
use at the time the system is brought up.

A logical volume is a user-visible collection of physical volumes,
designated as such by the volume registration data in ring 1. With the
exception of the RPV, no physical volume may be in use by Multics unless all
other physical volumes in the logical volume to which it belongs are also in
use. Thus, logical volumes are mounted and demounted as a unit. Each directory
in the storage system hierarchy has a unique logical volume on whose physical
volume all segments immediately contained in that directory reside. This
logical volume is called the ~ logical volume of that directory.

The ~ logical volume, or ELY, is that logical volume of which the RPV is
a member. The RLV is the only logical volume that may be partially in use. ' The
RLV is the only logical volume that contains directory segments. Although the
segments inferior to any given directory reside on the son's logical volume of
that directory, the directories reside on the root logical. volume.
Operationally, the root logical volume is the only one necessary to bring the
system up to ring 4 command level, through answering-service startup. The root
physical volume is the only physical volume necessary to bring-the system up to
ring-1 command level.

To IDQYll1 a physical volume is to physically place it on a drive and cycle
up that drive. This action is performed by the operator, not by software.

To accept a physical volume is to make the necessary calls to the
supervisor, for a drive on which a given physical volume has been mounted, to
establish in the supervisor the binding between that drive and the physical
volume on it. Critical ~n this binding is the placement of the 36-bit
Physical volume ID epVID) read from the label of that physical volume in a table
entry (the PYTEl associated with that drive. The descriptions of segments in
directory branches are in terms of these physical volume IDs, and VTOe indices.
Thus, placing this ID in this table entry indicates that the volume is indeed
online; and segments on it may be used (via the process of activation, see
Section II.

A logical volume is mounted (or "mounted to the system") when all of the
physical volumes in it are mounted and accepted, and calls have been made to the
supervisor to establ~sh the presence of this complete logical volume on line.
Unless a logical volume is mounted, the system will refuse to honor initiations
of segments, segment control calls, and segment faults for segments on physical
volumes of that logical volume, even though the physical volumes may have been
accepted. It is via this policy that the usage of "incomplete" logical volumes
is interdicted. One exception to this rule is the root logical volume.

12-2 AN61

It is mounted even if' it is incomplete; it is mounted as soon as the RPV is
accepted in system initialization. The system maintains a table of mounted
logical volumes, the LYI, or Logical ~olume Table. Each entry in it, or 1YlE,
describes one mounted logical volume, containing per-logical volume information,
as well as the start of a chain of PVTEs of accepted physical volumes in this
logical volume. Ring 1 will not make the call to mount a logical volume until
it has verified that all physical VOlumes known (from the volume registration
data) in it have been accepted.

The system maintains a table, the Physical Volume Table or PVT, containing
information about each accepted physical volume. It has one entry, or ~, per
each disk drive known to the system. This entry contains information about the
physical volume mounted on that drive, including its PVID and Logical Volume ID
(LVID) of the logical volume to which it belongs. Parameters about this volume,
read in from its volume header at the time it was accepted, that are used by
page control and segment control in dealing with segments upon this volume and
their pages, are kept in the PVTE. The PVTE also contains information used by
page control an9 the disk DIM describing the physical drive associated with the
PVTE, such as its device number and device type.

A logical volume may be mounted to a given process or not, if it is mounted
at all. A mounted logical volume is mounted to a given process if it is either
a public logical volume, or (a private logical volume) a call has been made by
RCP in ring 1 in that process to attach the private logical volume to the
process. RCP will allow a private logical volume to be attached to a process
pendant on whether or not that process has access to the logical volume, as
defined by the ACS (access control segment) for that volume, created by the ring
1 registration software. Unless a logical volume is mounted to a given process,
the process will act as though the logical volume were not mounted at all;
segment faults and initiations are not honored, and segment control calls may
not be made. Thus, only those processes selected by the ACS of a private
logical volume may use the segments on it, while all processes may use the
segments on a public logical volume, subject to the normal Multics access
control mechanism and AIM access control. The table of private logical volumes
attached (and therefore mounted) to a process is kept in a region of the KST
(Known Segment Table) of a process. This set of logical volumes attached to the
process is necessarily a subset of the logical volumes that are mounted (to the
system), as kept in the LVT. A logical volume that was attached by a given
process may be detached by that process, via a call through RCP in ring 1. When
this occurs, the logical volume is no longer mounted to the process and segments
on it may no longer be used by this process (a local setfaults operation (see
Section II) is performed).

A logical volume may be demounted by calling the supervisor to remove the
Logical Volume Table entry for it. This prevents further attachments to the
logical volume, but does not stop use of the segments in it until each physical
volume in the logical volume is demounted. These calls are made by ring 1
volume management in the initializer process.

A physical volume is demounted by making a call to the supervisor .(from
ring 1 of the initializer process) to stop all processes from using segments on
this volume, deactivate all of these segments, flush VTOC buffers of all
information relating to this volume, update the volume header of the volume, and
remove information from the PVTE for the drive containing that volume which
describes it. This unbinds the volume from the drive. At system shutdown time,
all volumes are demounted, the RPV being demounted last. At this time, however,
a modified form of deactivation is performed that does not involve freeing AST
entries or dealing with AST threads (see Section IV).

1?-3 AN61

PREACCEPTANCA

The RPV is accepted, like all other volumes, before segments on it are
available for use. For the RPV, this happens during collection 2 of system
initialization. However, the RPV is used prior to this, but not segments on it.
All of this activity occurs in the hardcore partition of the RPV, and consists
of the running of initialization from the running of the program init_pvt up
until the acceptance of the RPV. This may involve a volume salvage of the RPV
if it had not been shutdown properly during the last bootload. The hardcore
partition exists to satisfy the need for a fixed, usable area, for paging by the
supervisor, when the validity of the RPV volume map may not be trusted. (See
Section VII for more detail on this.) ,

The point in collection 1 initialization at which the use of the hard core
partition is established, and thus the first paging in initialization begins, is
called the preacceptance of the RPV. The RPV label is read, the- partition
extents on it determined, and the use of the hardcore partition set up. Global
system parameters in the FSDCT, relevant to the success of the last shutdown,
are determined from the RPV label, as well as the active/unflushed status of any
paging device that must exist.

Between the preacceptance and acceptance of the RPV, no VTOC I/O nor
segment faults occur on the RPV. No activations occur, nor is the paging region
nor VTOC used at all (except the former by the physical volume salvager). The
bit-map for the RPV during this time is not the bit-map from the volume-map of
the RPV, but rather a special one fabricated by the preacceptance code. It
defines the hardcore partition.

~

The preacceptance of the RPV is performed in the program init_pvt.

12-~ AN61

SECTION XIII

DATA BASES OF RING ZERO VOLUME MANAGEMENT

This section describes the detailed structure and functic
supervisor data bases that are used to manage the set of physical
volumes known to the supervisor. A large part of the visible i
volume management, however, is that presented by the ring 1 volurr
package, responsible for the operator interface and volume
functions. The data bases of these functions, in particular the Dis
Logical Volume Attach Table, and the Registration Files, are f;

herein.

Some of the critical data bases used by ring zero volume manage
seen in the Multics supervisor at all; they are resident on regions
and are explicitly read in and written out at the times that
inspected or modified. These data bases, in the volume header of
reside at fixed record addresses on each pack, given in the i
disk_pack.incl.p11. These data bases will be described first.

VOLUME LABEL

The volume label resides on the first Multics record of each st
physical volume. It is generated by the program init_disk_pack.
volumes except the RPV, in which case it is generated by
init_empty_root) in the ring 1 volume management environment. It is
the time a volume is accepted, and written out at the time it is de.
is also written out at the time it is ac6epted, to indicate that the
not. shut down, until it is written out at the time it is demounted
record is divided into five regions, on sector boundaries:

1. GCOS region, sectors 0 to 4 (label.gcos). This region is ~
entirely, as the Series 6000 GCOS system uses this part of
label area. Avoiding use of this region avoids accidental
of Multics data by labeling a pack under GCOS at a site r
operating systems, and allows some future compatability.

2. Permanent region, sector 5 (label.Multics to label.pad1).
is per-physical volume information that is never char.
written out identically from the copy read in every timE
label is written. Were it possible to write-protect sing
this sector would be so protected at the time the pack was
for Multics use. This is permanent identifying informatior.
some of it is subject to change by the disk rebuilder).

3. Dynamic information, Sector 6 (label. time_mounted to 1
This information relates to the use of this physical volum
last mounted, demounted, etc. This information allows t
system to ensure integrity of data on the physical volu
dynamic state.

13-1.

4. hoot information, Sector 7 (label.root to label.pad3). This
information is defined only on the root physical volume (RPV) of a
hierarchy. It is dynamic information about the entire storage system
hierarchy: how successfully if at all it was shut down, and
information relative to crash recovery, and bootstrapping the
initialization of the directory hierarchy at bootload time.

5. Partition map (sector 10 (octal) (label.parts). A map giving the
location and length of any partitions defined on this physical volume.
This information is set up at the time that a volume is initialized,
and never changed (except by the disk rebuilder).

The rest of the label record (sectors 11-15, octal) is reserved for
future expansion.

Detailed breakdown of the label:

dcl label based (labelp) aligned,

2 gcos (5*b4) fixed bin,

2 Multics char (32) init ("Multics Storage System Volume"),
2 version fixed bin,
2 mf&-serial char (32),
2 pv_name char (32),
2 lv_name char (32),
2 pvid bit (36),
2 lvid bit (36),
2 root_pvid bit (36),
2 time_registered fixed bin (71),
2 n_pv_in_lv fixed bin,
2 vol_size fixed bin,
2 vtoc_size fixed bin,
2 not_used bit (1) unal,
2 private bit (1) unal,
2 flagpad bit (34) unal,
2 max_access_class bit (72),
2 min_access_class bit (72),
2 password bit (72),
,2 pad 1 (16) fixed bin,
2 time_mounted fixed bin (71),
2 time_map_updated fixed bin (71),
2 time_unmounted fixed bin (71),
2 time_salvaged fixed bin (71),
2 time_of_boot fixed bin (71),
2 pd_time fixed bin (71),
2 last_pvtx fixed bin,
2 padla fixed bin,
2 n_bad_tracks fixed bin,
2 err_hist_size fixed bin,
2 time_last_dmp(3) fixed bin(?1);
2 dmpr_hd(2) fixed bin,
2 bk_dmpr_hd(2) fixed bin,
2 curn_dmpr_item(3) fixed bin,
2'pad2 (35) fixed bin,
2 root,

3 here bit (1),
3 root_vtocx fixed bin (35),
3 shutdown_state fixed bin,
3 pd_active bit (1) aligned,
3 disk_table_vtocx fixed bin,
3 disk_table_uid bit (36) aligned,
3 esd_state fixed bin,

13-2 AN61

2 pad3 (bO) fixed bin,
2 nparts fixed bin,
2 parts (47),

3 part char (4),
3 frec fixed bin,
3 nrec fixed bin,
3 pad5 fixed bin,

2 pad4 (5*64) fixed bin;

label.gcos
Reserved for compatability with the GCOS system. See above.

label.Multics
Contains the character string "Multics Storage System Volume" on
every pack. Used for gullibility checks against unlabeled packs,
and by resource control_ to a void accidental overwriting or
disclosure of information on storage system packs.

label. version
Currently must be 1.

label.mf&-serial
Intended to be the manufacturer's serial number for a pack, this is
currently set to be physical volume. name.

label.pv_name
The physical volume name of the pack .

... label.lv_name

label.pvid

label.lvid

Is the logical volume name of the logical volume to which this
physical volume belongs.

Is the 36-bit unique ID (PVID) of the physical volume. This same
number is contained ,in the directory branches of all segments
contained on this physical volume.

is the 36-bit unique ID (LVID) of the logical volume to which this
physical volume belongs. It is contained in all directories for
which that logical volume is the sons-Iogical-volume.

label.root_pvid
is the 36-bit PVID of the RPV of the hierarchy of which this volume
is part. This information defines which packs belong to a given
hierarchy.

label. time_registered .
is currently set to the 52-bit clock time that the ~yolume was
initialized for use by the storage system.

label.n_pv_in_lv
is currently not used.

label. vol_size
is the number of Multics records physically available on this
volume, regardless of how they are used.

label.vtoc_size
is the number of Multics records used by the Volume Table of
Contents (VTOC) ~ the volume header.

label.private
is "1"b if and only if the logical volume to which this physical
volume belongs is a private logical volume.

13-3· AN61

label.max_access_class
is the maximum AIM access class for segments on the logical volume
to which this physical volume belongs. No segments of higher access
class (in the AIM sense) can be allocated on that logical volume.

label.min_access class
is the minimum AIM access class for that logical volume.

label.password
is currently not used.

label. time_mounted
is the last time that this physical volume was accepted by the
supervisor.

label.time_map_updated
is the last time at which the
written. Please note that
extremely important quantity,
salvage (see Section
"label.time_label_written".

label of this physical volume was
this name is very misleading; this

which determines the need to volume
XIV) should be thought of as

label. time_unmounted
is the last time that this volume was demounted, including for
shutdown.

label. time_salvaged
is the time that the label was last written out at the completion of
processing of this volume by the physical volume salvager.

label. time_of boot
is the time recorded as "time of bootload" for the system (in the
FSDCT) for the last Multics bootload that accepted this volume ..

label.pd_time
is the time ("paging device time") identifying the last instance of
the paging device to which this physical volume was exposed. By
comparing this paging device time to that of an unflushed paging
device, repatriation of records may be accomplished. (See
"Post-Crash PD Flush" in Section IX). .

label.last_pvtx
is the physical volume table index (PVTX) of the drive on which this
volume resided at the last time it was accepted by the storage
system. By comparing this value with that in paging-device map
entries in the PDMAP of the instance of the paging device identified
by label.pd_time, repatriation of records may be accomplished. (See
"Post-Crash PD Flush" in Section IX.)

label.n_bad_tracks
not currently used.

label.err_hist_size
not currently used.

label.time_last_drop
reserved for the physical volume dumper.

label.dmpr_hd
reserved for the physical volume dumper.

label.bk_dmpr_hd
reserved for the physical volume dumper.

label.curn_dmpr_item
reserved for the physical volume dumper

label.root
substructure covering the "root information" in the label.

13-4 AN61

label.here
identifies this physical volume as the RPV of a hierarchy (although
other tests will suffice).

label.root_vtocx
is the index in the VTae of this pack of the directory">".

label. shutdown_state
is set to various values during the course of shutdown. It is
essentially obsolete.

label.pd_active
is "1"b if the system has an active .2I: unflushed paging device. If,
at bootload time, when the RPV is interrogated, this bit is on, the
system has an unflushed paging device.

label.disk_table_vtocx
is the index in the VTOe of this pack of the segment ">disk_table".
Reserved for future use.

label.disk_table_uid
is the unique segment ID of the segment ">disk_table". Reserved for
future use.

label.esd_state

label.nparts

label.parts

is set to zero by the stages of normal shutdown, and to nonzero
values by the stages of emergency shutdown. The nonzero value of
this variable at the time the RPV is first inspected during a
bootload implies that the previous bootload had a successful
emergency shutdown. This triggers RPV salvage to collect pages of
RPV parasite segments. (See Section VII.)

is the number of partitions on this volume.

is an array defining the partitions on this volume. The number of
valid entries i~ given by label.nparts. ~

label.parts.part
is the four-character ASCII name of a partition~

label.parts.frec
is the first record number on this pack of the partition.

label.parts.nrec
is the number of Multics records used by this partition.

VOLUME MAP

The volume map details which records of the paging region of a physical
volume are in use. Although this information may be derived from analysis of
every VTOCE on the pack, it is duplicated in the volume map so that record
allocations can be performed by page control without inspection of every VTOCE
on the pack. If a pack is not shut down properly, this information is
considered to be wholly invalid, and is reconstructed-by the physical volume
salvager via inspection of every VTOCE on the pack. When a volume is accepted,
the information in the volume map is copied into the free-store bit-map (see
"Disk Record Allocation" in Section VIII) for the drive on which the pack is
mounted. It is written back to the volume map on the disk at the time the
volume is successfully demounted. The information in the header of the volume
map is copied to and from the so-called "fsmap parameters" (see Section VI) in
the PVTE for that drive.

13-5- AN61

dcl 1 vol_map based (vol_mapp) aligned,

2 n_rec fixed bin(17),
2 base_add fixed bin(17),
2 n_free_rec fixed bin(17),
2 bit_map_n_words fixed bin(17),
2 pad (60) bit(36),
2 bit_map (3*1024 - 64) bit(36) ;

vol_map.n_rec
is the number of records in the paging region of the pack, and
hence, the number of records represented by the volume map.

vol_map. base_add
is the Multics record number of the first record of the paging
region of the pack, and thus the record number of the first bit in
the volume map.

vol_map.n_free_rec
is the number of records in the paging region of the pack which are
not allocated. It should be equal to the number of bits which are
"1"b in the volume map.

vol_map.bit_map_n_words
is the number of words in the volume map's bit map. If the number
of records in the paging region is not a multiple of 32, the last
bits of the last word (the "fsmap tail") will be "O"b, but are I!.Q.t.
considered part of the bit map.

vol_map. bit_map
is the array of words that constitute the bit map described by' the
parameters just described. Neither the first bit nor the last three
bits of each word are used, being "O"b in all cases. This leaves 32
bits per word, representing 32 Multics records in each word of the
bit map. The value "1"b indicates a free record, and "O"b indicates
a record in use.

The volume map is considered to be wholly invalid between the time that a
physical volume is accepted and the time that it is successfully shut down or
salvaged (see Section XIV).

YTae HEADER

The VTae header describes the extent, and global parameters, of the VTOe of
a pack. These parameters are copied into the PVTE for the drive on which the
pack ~s mounted at the time it is accepted, and update to the VTOe header from
there every time the label is written out. Like the volume header, it is
considered wholly invalid (at least the dynamic parameters therein) from the
time the volume is accepted to the time the volume is successfully demounted,
and must be reconstructed by the physical volume salvager if the volume is
accepted without having been shut down.

vtoc_header.version
currently must be 1.

vtoc_header.n_vtoce
is the number of VTOe entries (VTOeEs) in the VTOe of this pack,
used or free. This is constant, modulo the disk rebuilder.

13-6· AN61

vtoc_header.vtoc_last_recno
is the Multics record number of the last record occupied by the VTOC
of this pack. The first record is currently a constant VTOC_ORIGIN,
defined in disk_pack.incl.pI1.

vtoc_header.first_free_vtocx
is the VTOC index of the VTOCE on this pack which is the first in
the free chain. This index is maintained in the PVT by the VTOC
manager while the pack is in use.

The rest of the VTOC header record is reserved for the physical volume
dumper.

BAD TRACK LIST

This information is not currently maintained by Multics.

The letters "FSDCT" stand for "file system device configuration table."
This name is largely historical, for the segment that contains free-store bit
maps and per-hierarchy information, and has ceased to have any significance.

The FSDCT contains two distinct regions. The FSDCT header contains global
data about the state of ring zero volume management. Much of it is derived 'from
the RPV label at the time the RPV is preaccepted during collection 1. Much of
it is derived from CONFIG cards, and much of it is written out ·to the RPV label
at various stages of shutdown. It defines the state of shutdown, and the state
of ring zero with respect to volume management.

The region of the FSDCT beyond the header consists of the bit maps for disk
record allocation for each drive. One region is allocated for each drive, and
the volume map bit map from each physical volume is copied in at the time that
the volume is accepted. The relative offset of the bit map for each region is
defined by the field pvte.fsmap_rel in thefsmap parameters in the PVTE for that
drive. The FSDCT is a pageable data base; the withdrawal of disk records from
it at page fault time is accomplished via an esoteric maneuver described fully
in Section VIII.

The following include file and discussion describe the FSDCT header.

fsdct.shutdown_state
is zero while Multics is running, and set to various nonzero values
during normal and emergency shutdown. It is updated to the field
label.root.shutdown_state each time the label of the RPV is written
out.

fsdct.oos_dir
is obsolete.

fsdct.esd_state
is zero while Multics is running, and set to various nonzero values
during emergency shutdown. It is updated to the field
label.root.esd state in the label of the RPV each time the label of
the RPV is written out.

13-7· AN61

fsdct.prev_shutdown_state
is the value of the label.root.shutdown_state in the label of the
RPV at the time that the RPV is preaccepted during collection 1
initialization. Thus, it describes the shutdown state of the
previous bootload of this hierarchy.

fsdct.prev_esd_state
is the value of label.root.esd_state in the label of the RPV at the
time that the RPV is preaccepted during collection 1 initialization.
Thus, it tells whether or not this hierarchy last witnessed a
successful emergency shutdown.

fsdct.rpvs_requested
is set to "1"b if the operator issued a BOOT RPVS request to boot
the system, requesting an RPV salvage (RPVS).

fsdct.root_lvid
is the 36-bit Logical Volume ID (LVID) of the RLV of this hierarchy.

fsdct.root_pvid
is the 36-bit Physical Volume ID (PVID) of the RPV of this
hierarchy.

fsdct.root_pvtx
is the physical volume table index (PVTX) of the drive on which the
root physical volume (RPV) is mounted. This value is duplicated for
various functions in the SST, as sst.root_pvtx. It is derived from
the ROOT eONFIG card.

fsdct.root_vtocx
is the index in the VTOe of the RPV of the directory">", copied
from label.root.root_vtocx on the RPV label.

fsdct.rlv_needs salv
is "1"b if a volume of the RLV needed a salvage at the time it was
accepted, and was salvaged. This bit informs the operator interface
that a hierarchy salvage of selected directories must be performed
at system ~tartup time. (This is because all directories reside on
the RLV, and the fact that some volumes of it were not properly shut
down may indicate that some di~ectories were damaged.)

fsdct.n_volumes
is not used.

fsdct.dump_part_pvtx
is the physical volume table index (PVTX) of the drive on which the
volume with the system's DUMP (BOS FDUMP) partition exists. This
drive is selected by the PART DUMP card in the eONFIG deck. It is
zero if there is no DUMP partition.

fsdct.dump_part_frec
is the first record number of the DUMP partition, if one exists, on
the pack on the drive selected by fsdct.dump_part_pvtx.

fsdct.syserr_log_pvtx
is the physical volume table index (PVTX) of the drive on which the
volume with the system;s syser~ log partition exists. This drive is
selected by the PART, LOG card. It is zero if the system is not
using syserr logging.

fsdct.syserr_log_frec
is the first record number of the syserr log partition, if one
exists, on the pack on the drive selected by fsdct.syserr_log_pvtx.

fsdct.syserr_log_nrec
is the number of records in the syserr log partition, if one exists,
otherwise zero.

13-8 AN61

fsdct.free
is not used.

fsdct.hc_exists
is obsolete, and is always "1"b.

fsdct.hc_using
is set on during the preacceptance of the RPV in collection 1, and
turned off during the acceptance of the RPV in collection 2. It
indicates that the system is running totally in the hardcore
partition.

fsdct.hcp_frec
is the first record number on the RPV of the hardcore partition.
The RPV must have a hardcore partition defined on it. This number
is obtained from the RPV label during preacceptance of the RFV.

fsdct.disk_table vtocx
is the index in the VTOe of the RPV of the VTOCE describing the
segment ">disk_table". -It is read in from the root area of the RPV
label, but is not now used.

fsdct.disk_table uid
is the unique segment ID of the segment ">disk_table". Not now
used.

fsdct.pd_active
is "1"b if and only if the system has an active paging device. It
is set during RPV preacceptance in collection 1, and by shutdown,_
and is managed dynamically by the cross-bootload paging device
management policies. (See Section IX for a discussion of active and
unflushed paging devices.)

fsdct.rpv_needs_salv
is set to "1"b during RPV preacceptance if the RPV was not properly
shut down during the last bootload. This triggers an RPV salvage
later.

fsdct.pd_unflushed
is set to "1"b if and only if the system has an unflushed paging
device (see Section IX.)

fsdct.pd_time
is the paging device time· identifyin-g the instance of the paging
device to which this hierarchy was last exposed. If this boot load
never had an uriflu~hed paging device, this is the same as
fsdct.time_of_bootload. If the paging device is unflushed, this
variable has the value of the variable fsdct.time_of_bootload from
the bootload during which that instance of the paging device was
active. Otherwise, if the paging device was dynamically enabled
during this bootload, this is the time at which that was done. (See !

Section IX, "Post-Crash PD Flush.")

fsdct.old_root_pvtx

fsdct.maps

is the value of the cell label.last_pvtx in the label of the RPV.
It is used to repatriate RPV pages during acceptance of the RPV.
(See Section IX, "Post-Crash PD Flush.")

is (~, not contains) the first word of the bit-map region of the
FSDCT.

13-9- AN61

PHYSICAL VOLUME TABLE (PVT)

The physical volume table, or PVT, is the single most important data base
of ring-zero volume management. It contains an entry, or PVTE, for each disk
drive known to the system (including so-called "1/0 drives"). It also has an
entry for the bulk store subsystem (at the end) if one exists, as this is
required by page control. The information in the PVTE for each drive describes
information needed by the disk DIM to describe that drive with respect to the
former's data bases. This includes the device number and subsystem name, as
well as the device type. This information stays constant in each PVTE. The
PVTE, however, also is filled in with information about the volume mounted on
the corresponding drive at the time that such volume is accepted. This
information consists of the quantities from the volume's volume header,
specifically the VTDC header and volume map. This data is used by segment
control and page control to manage the VTOC and the free store bit-map of the
volume. Included in the PVTE is also data that describes a region of the FSDCT
which is used as the bit-map for each volume mounted on that drive. This
information is permanent. The specific parameters for whatever bit-map may be
there as a given volume is used is not permanent. The PVT is a paged, wired,
deciduous segment, which is used by page control, and thus must not be pageable.

dcl 1 pvt based (pvtp) aligned,

2 n_entries fixed bin (17),
2 max_n_entries fixed bin (17),
2 n_in_use fixed bin (17),
2 rwun_pvtx fixed bin,
2 pad (4) bit (36),

2 array (0 refer (pvt.n_entries» like pvte;

dcl 1 pvte based (pv~ep) aligned,

2 pvid bit (36),

2 1 vid bi t (3b),

2 dmpr_in_use (3) bit (1) unaligned,
2 pad3 bit (24) unaligned,
2 brother_pvtx fixed bin (8) unaligned,

2 devname char (4),

(2 device_type fixed bin (e),
2 logical_area_number fixed bin (8),
2 used bit (1),
2 storage_system bit (i),
2 permanent bit (1),
2 testing bit (1),
2 being_mounted bit (1),
2 being_demounted bit (1),
2 check_read_incomplete bit (1),
2 device_inoperative bit (1),
2 rpv bit (1),
2 paging_device bit (1),
2 salv_required bit (1),
2 being_demounted2 bit (1),
2 vol_trouble bit (1),
2 vacating bit (1),

AN61

2 pad bit (4),

2 first_free_vtocx fixed bin (17),
2 n_free_vtoce fixed bin (17),

2 vtoc_size fixed bin (17),
2 vtoc_segno fixed bin (17),

2 fsmap_rel bit (18),
2 bad_addrs_consecutive fixed bin (17),
2 dbmrp (2) bit (18» unaligned,

2 curwd bit (18),
2 wdinc bit (18),
2 temp fixed bin,
2 baseadd fixed bin,
2 tablen bit (18) unaligned,
2 tablen_allocation fixed bin (17) unaligned,
2 nleft fixed bin,
2 relct fixed bin,
2 totrec fixed bin,

2 dim_info bit (36),

2 curn_dmpr_vtocx (3) fixed bin unaligned,
2 n_vtoce fixed bin unaligned;

pvt.n_entries
is the number of entries, used or otherwise, in the PVT array.

pvt.max_n_entries
is the same as pvt.n~entries.

pvt.n_in_use
is number of entries corresponding to accepted volumes.

pvt.rwun_pvtx
is the PVT index of a drive (only one may be in this state at a
time) expecting an interrupt from the I/O interfacer for cycling
down the drive at demount time.

pvt.array

pvte.pvid

pvte.lvid

is the array of PVTEs.

is the 36-bit Physical Volume IO (PVIO) of the accepted volume
mounted on this drive, zero if none.

is the 36-bit logical volume IO (LVIO) of the logical volume to
which the accepted volume on this drive belongs, zerO if none. As
pvte.pvid, this parameter is read in from the volume label at
acceptance time.

pvte.dmpr_in_use
is reserved for the physical volume dumper.

13-11 AN61

pvte.brother_pvtx

pvte.devname

is the PVT index of the next volume in the chain of physical volumes
belonging to the same logical volume as the one to which the
accepted volume on this drive belongs.

is the four-character ASCII name of the disk subsystem to which this
drive belongs.

pvte.device_type
is the hardware device type, as defined in fs_dev_types.incl.pll, of
this disk drive.

pvte.logical_area_number

pvte.used

is the hardware drive number of this disk drive.

is "1"b if and only if there is an accepted volume on this drive.
It is Qff in the PVTE of the RPV until the RPV has been accepted.

pvte.storage_system
is "1"b for a drive that is not an "I/O drive" defined by a "UDSK"
CONFIG card.

pvte.permanent

pvte.testing

is "1"b for a drive designated by a'PART card, and is also "1"b for
the RPV. No pack except the one mounted there at bootload time may
ever be mounted on this drive during this bootload.

is set to "1"b by the program read_disk (see Section XIV) before a
special call is made to disk_control. This bit tells the disk_dim
interrupt side to set pvte.device_inoperative according to' the
relative success of a "request status" operation on this drive.
Disk control turns off this bit when the latter bit has been set.

pvte.being_mounted
is "1"b during the acceptance of a volume on this drive.
informational.

Primarily

pvte.being_demounted
is set to "1"b at the start of the demount procedure for a volume on
this drive. Prevents activations of segments on this volume. (See
Sections IV and XIV.)

pvte.being_demounted2
is set to '"1"b during the latter part of the demount procedure for a
volume on this drive. Prevents VTOC I/O from being initiated. (See
Sections IV and XIV.)

pvte.check_read_incomplete
causes page control to store special patterns into core frames into
which records of this volume will be read, and check for their
presence at the posting of the operation. There is no way to turn
this feature on other than patching this bit.

pvte.device_inoperative

pvte.rpv

is used by the program read_disk, along with the bit pvte.testing,
to determine if a drive is operative. (See pvte.testing, above, and
Section XIV.)

is "1"b in the PVTE of the RPV.

pvte.paging_device
is "1"b in the PVTE of the bulk store subsystem, required by page
control to perform abs-seg I/O on the PDMAP.

AN61

pvte.salv_required
is set to "l"b during the acceptance of a volume if it was not
properly shutdown during its previous use, and thus required and
received a volume salvage.

pvte.vol_trouble
is set by various recovery procedures (and ESD) if there is reason
to believe that an operation upon the VTOe of a volume is
interrupted in such a way that the volume is inconsistent, and will
require a volume salvage at some time. This bit being on causes the
voiume to be shut down in such a way (at the time it is demounted)
that it will appear that it was not properly shut down, the next
time it is accepted, and thus require and receive a volume salvage.

pvte.vacating
inhibits VTOC allocation (segment creation) upon this physical
volume. It is used by the on-line physical volume utility, sweep_pv
(see the Multics Operators' Handbook, Order No. AM81, and Section
IV, "Segment Control Services" for sweep_pyle

pvte.first_free_vtoc
is the index, in the VTOC of the physical volume accepted on this
drive, of the VTOCE that is the head of the free VTOCE chain for
this volume. It is maintained by the VTOC manager (see Section
III), and copied to and from vtoc_header.first_free_vtocx and
acceptance and demount time, respectively.

pvte.n_free_vtoce
is the number of free VTOCEs in the VTOC of the physical volume
accepted on this drive. It is maintained by the VTOC manager, and
copied to and from vtoc_header.n_free_vtoce at acceptance and
demount time, respectively.

pvte.vtoc_size
is the number of Multics records in the VTOC and volume header of
the physical volume accepted on this drive. Read in at acceptance
time from labelovtoc_size.

pvte.vtoc_segno
is a temporary used by the physical volume salvager.

pvte.fsmap_rel
an "fsmap parameter," is the relative offset into the FSDCT of the
region allocated for bit-maps for volumes on this drive.

pvte.bad_addrs_consecutive
is not used.

pvte.dbmrp
is reserved for the physical volume dumper.

pvte.tablen_allocation

pvte.curwd
pvte.wdinc
pvte.t-emp
pvte.baseadd
pvte.tablen
pvte.nleft
pvte.relct

an "fsmap parameter," is the length, in words, of the region in the
FSDCT allocated for bit-maps for volumes on this drive.

are the "fsmap parameters," copies of information in the volume map
of the physical volume mounted here, and information needed by and
maintained by the free-store allocation algorithm. These fields are
described in the PVTE writeup in Section VI.

13-13· AN61

pvte.dim_info
is information stored by disk DIM initialization for this drive,
which the disk DIM needs to perform address computations on this
drive, and identify its subsystem.

pvte.curn_dumper_vtocx
is reserved for the physical volume dumper.

pvte.n_vtoce
is the number of VTOCEs, free or used, in the VTOC of the physical
volume accepted on this drive.

LOGICAL VOLUME TABLE (LVT)

The logical volume table (LVT) is used to describe all mounted logical
volumes. It contains all per-logical-volume data for such logical volumes, and
contains threads of the PVTEs of accepted physical volumes that are members of
each logical volume. The logical volume ID, however, is duplicated in each PVTE
for physical volumes in that logical volume. This enables the segment creation
function to operate without a lock. (See Section IV for a description of this
activity.) The LVT is a pageable segment, used at segment creation and segment
moving time, as well as the time that logical volumes are mounted and demounted
(see Section XII).

The LVT contains an entry, a 1!1..E., for each mounted logical volume. The
LVTE for the RLV is set up during initialization (collection 2). The LVTEs for
other volumes are set up at the time that they are mounted. The LVT also
contains a hash table, hashing LVTEs by their LVIDs of the logical volumes that
they describe.

dcl 1 lvt aligned based (lvtp),
2 max_lvtex fixed bin (17),
2 high~water_lvtex fixed bin (17),
2 free_lvtep ptr,
2 pad1 (4) bit (36),
2 ht (0:63) ptr unal,
2 lvtes (1:1 refer (lvt.max_lvtex» like lvte;

dcl 1 lvte aligned based (lvtep),
2 lvtep ptr unaligned,
2 pvtex fixed bin (17),
2 lvid bit (36),
2 access_class aligned,

3 min bi t (72),
3 max bit (72),

2 flags unaligned t 3 public bit (1),
3 read_only bit (1),
3 pad bit (16),
3 cycle_pvtx fixed bin (17);

lvt.max_lvtex
is the index of the highest-indexed LVTE that can ever exist in this
LVT, as defined by the size of the LVT segment.

lvt.high_water_lvtex
is the highest LVT index that was ever used in this bootload. This
is a meter.

13-14 AN61

lvt.free_lvtep

lvte.ht

lvt.lvtes

lvte.lvtep

lvte.pvtex

is a pointer to the first in a list of free LVTEs. As they are
created as needed, this list is non-empty only if LVTEs have been
freed.

is a hash table, containing pointers to the first LVTEs in the hash
threads of each hash equivalence class.

is the array of LVTEs.

for an LVTE in use, is the pointer to the next LVTE in the same LVID
hash equivalence class as this one, null if this is the last one.
For a free LVTE, it is a pointer to the next LVTE in the chain of
free LVTEs, null if this is the last one.

is the PVT index of the first PVTE in the chain of PVTEs for drives
containing physical volumes belonging to this logical volume. This
chain is threaded through the PVTEs as pvte.brother_pvtx. Zero
marks the end of the chain.

lvte.cycle_pvtx

lvte.lvid

is used by the segment creation function of segment control (see
Section IV) to allocate VTOCEs in the logical volume. See that
description for its use.

is the logical volume ID (LVID) of this logical volume.

lvte.access_class
describes the AIM access class limits of the logical volume.

lvte.public'
is "1"b for a public logical volume, "O"b for a private one.

lvte.read_only
is reserved.

PVT HOLD TABLE

The PVT hold table resides in the static section of the program get_pvtx.
It is a table of process IDs of processes that start operations on a given
physical volume that requires more than one call to the VTOC manager, or a call
to the VTOC manager and an action upon the bit-map of the volume. The table
consists of an array of marks made by such processes, each mark consisting of
the catenation of part of the process' process ID and the PVr index of the
volume being modified. These marks are removed when the inconsistent operation
is finished.

The purpose of this table is to prevent the volume from being demounted
while such an operation is in progress. No process may make a mark in this
tablei'f a demount operation has started for a volume on which an operation was
about to begin (pvte.bein&-demounted prevents this). Similarly, the demounting
procedure demount_pv will wait for all marks in this table relative to a
particular physical volume to vanish before the demount procedure can continue.

13-15 AN61

If a process suffers a crawl out at such a time that it had made a mark in
this table, and thus left a volume in an inconsistent state, not only is its
mark or marks removed from the table, but that volume is scheduled for a salvage
via setting of the bit pvte.vol_trouble (see earlier description of this bit).
This is also the case if an ESD occurs after a system crash at which time
processes had marks in this table.

The segment mover marks two volumes at a time in this way.

The PVT hold table can be located, for crash analysis and debugging
purposes, from the sppointer sst.pvthtp.

13-16 AN61

SECTION XIV

OPERATIONS OF RING-O VOLUME MANAGEMENT

ACCEPTANCE OF PHYSICAL VOLUMES

The acceptance of physical volumes is the most fundamental and important
operation of ring zero volume management. This service is provided for ring 1
volume management, which controls the operator and cross-process interface, at
the time that the latter wishes to make a logical volume available for use. All
of the physical volumes in a logical volume are accepted by ring 1 volume
management before the logical volume is declared to be mounted (entered in the
LVT). The main procedure of volume acceptance is accept_fs_disk.

Physical volumes are accepted by calling initializer_gate_$accept_fs_disk,
with the PVT index of the drive on which the physical volume to be accepted is
mounted. The ring 1 volume management and registration package ensures that the
volume on the drive is the ccrrect one requested by the operator or requesting
processes. Ring zero volume management assumes that it is correct, and derives
all data from the label of that volume. The RPV is accepted in a spe'cial
fashion during collection 2 of bootloading; the operator, by issuing th~ BOOT
command, and by use of the ROOT CONFIG card, has assured that the drive
described by that card is the legitimate RPV,. Thus, this physical volume is
accepted automatically in ring zero without having been validated by ring 1.

The essence of physical volume acceptance is to initialize the PVTE for the
drive on which the volume being accepted is mounted with data from the label,
VTOC header, and volume map of that volume, and mark the PVTE as belonging to a
volume ~n use. This latter step is the last step. Thus, there are no race
conditions in determination of whether or not this volume is actually accepted.
Since segment creation is driven off the logical volume table, and initiation
checks there as well, it is only in the case of non-RPV volumes of the RLV that
there is even an issue, for only in this case is there a LVT entry before all
PVT entries are set up.

An auxiliary task of physical volume acceptance is to copy the volume map
into the region allocated in the FSDCT for bit maps of volumes mounted on that
drive. This function is performed in the procedure load_vol_map, which
constructs a PTW-level abs-seg to read the volume map from the disk .. This
procedure also takes responsibility for reading the VTaC header (via the same
aba-aeg) and initializing PVTE parameters derived from the latter from it. In
the case of the loading of the volume map of the RPV, page control activity is
halted, via wiring, masking, and locking the page table lock, while the volume
map is being copied. This is because the bit-map region of the FSDCT for the
RPV will contain the bit-map of the hardcore partition at this time, and w1l1
actually be in use at that time. Although all pages of the supervisor should be
withdrawn at that stage, and thus no activity on this bit map should take place
during the copy, this policy assures that none in fact will take place. This
policy dates from a time before all supervisor pages were prewithdrawn. The
program load_vol_map also takes responsibility for filling in these PVTE
parameters derived from the volume map.

14.-1· AN61

Lt is also the responsibility of physical volume acceptance to determine if
a physical volume needs salvaging, and call the physical volume salvager if so.
A physical volume needs salvaging if it was in use, not properly shut down, and
not salvaged since it was used. The volume map and VTOC may not be used validly
unless this salvage is performed. Each time that a physical volume is accepted,
the label is written out at the end of the acceptance procedure (via a call to
fsout_vol), which sets label.time_map_updated to the current time. Each time
that a physical volume is properly demounted (including shutdown), the label is
written out, but this time, setting both label.time_map_updated and
label. time_unmounted to the current time. Thus, if an attempt is made to accept
a physical volume for which the value of label.time_map_updated and the value of
label. time_unmounted are not equal, then this volume was not properly shut down.
If, however, the volume has been salvaged since it was last used, it need not be
salvaged again. The volume salvager writes out the label with
label.time_map_updated and label. time_salvaged equal to the current time. The
equality of these two label fields implies the completion of a volume salvage
since last use. The procedure accept_fs_disk makes these checks for all volumes
except the RPV; init_pvt, at RPV preacceptance time, makes these checks for the
RPV.

The automatic salvaging of volumes during acceptance includes the
repatriation of pages from that volume left on the paging device during the
previous (or earlier) bootload. This is done in the case where the system has
an unflushed paging device, and the physical volume salvager detects that the
volume was not previously shut down, and exposed to the system's instance of the
paging device. (see Sections IX and XV.)

PHYSICAL VOLUME DEMOUNTING

The demounting of physical volumes involves reversing all of the steps
taken at acceptance time, and physically cycling down the disk drive on which a
physical volume is mounted. Physical volume demounting is complicated by the
fact that at the time that a physical volume is demounted, any number of
processes may be using information on that physical volume, and may be depending
upon its mounted and accepted status. The problems of demounting are thus two,
the flushing of supervisor data bases of all information about the physical
volume, and the stopping of processes that are using information on it, in a
recoverable way.

The principal goal of demounting is the updating of all information on that
physical volume with the latest copies of information resident in the AST,
FSDCT, and in frames and records of main memory and paging device. This implies
writing back all pages in main memory and paging device to their assigned
addresses on that physical volume, and the updating of all VTOCEs for segments
on that volume from the AST. These two steps are accomplished by deactivating
all segments (see Sections II and IV) from that physical volume which are active
at demount time. The VTOC manager's VTOC buffer segment must be flushed of all
vtoce-parts from this volume, and all pendent lID on it awaited. This step,
clearly, is performed after the deactivation of all segments on the volume. The
volume ~g~, VTOe header, and label of the volume must be updated from the FSDCT
and PVTE for the volume.

The procedure that coordinates demounting is demount_pv, also known as the
demounter. The final stages of demounting, viz., updating the volume map, VTOe
header, and volume label, are performed by fsout_vol, called from demount_pv.
It is essential to realize that all volumes are demounted at shutdown time, both
emergency and regular. There are only two differences between normal demount
and shutdown demount.

1. At normal demount time, the drive containing the volume to be
demounted is cycled down via a series of calls to the 1/0 Interfacer.
At shutdown time, no drives are cycled down.

14-2 AN61

2. At normal demount time, segments are deactivated via a call to
"deactivate," the normal segment control deactivation procedure. At
shutdown time, explicit calls are made to pC$cleanup and update_vtoce
(the two procedures at the heart of deactivation) to avoid dealing
with possibly bad AST threads (and to allow deactivation of
directories with active inferiors. Directories are all on the RLV,
which cannot be demounted via normal demounting).

The demounter begins by turning on the bit pvte.being_demounted, and
waiting for all processes engaged in multistep operations on this volume to
finish. Turning on this bit, as explained below under "Demount Protection,"
prevents the inception of any new multistep operations on this volume after the
time it is turned on. The demounter then locks the AST and deactivates (or, in
the shutdown case, simulates deactivation of) all segments on this volume. This
deactivation is performed under the AS! lock; all processes seeking to activate
a segment check the bit pvte.being_demounted at such time as they acquire the
AST lock. Thus, sinc~ no process except that of the demounter holds the AST
lock at this deactivation time, any process except that of the demounter holds
the AST lock at this deactivation time, any process attempting to activate a
segment, that did not succeed in fully activating it before the demounter
acquired the AST lock, will acquire the AST lock after the demounter, and thus
find the bit pvte.being_demounted Qll, and fail to activate the segment.
Therefore, the deactivation of all segments on the volume is total and
irreversible; it deactivates all segments that were active when it acquired the
lock, and no segments (on that volume) will be activated after it releases it.
The deactivation purges all data relevant to the volume being demounted from the
AST and from page control, and makes the copies of all segments on the disk, and
all VTOeEs accurate. This is what is normally done by deactivation (see Section
IV); it is simply being performed here for all active segments on the volume.

The second phase of the demounter is the cessation of VIDe lID activity for
the volume. This begins by setting the bit pvte.being~demounted2, which
prevents the inception of any VTOe lID activity for the volume not already under
way. As the deactivation phase of demounting starts a great deal of VToe lID
activity for the volume, which does not complete in that phase, this phase must
follow the deactivation phase. A call is made to the VTae manager
(vtoc_man$cleanup_pv, see Section III) to await all 110 in progress for
vtoce-parts of this volume, and make a final attempt at flushing "hot"
vtoce-part buffers (those that have suffered write errors). Before this call
returns, all data relevant to the physical volume being demounted will have been
flushed by the VTOe manager from its data bases. This call involves the VTae
manager locking its VTae buffer lock. All other calls to the VTOe manager check
the bit pvte.beinS-.demounted2 under the protection of this lock, and return an
error code (error_table_$pvid_not_found) if the PVTE of a volume specified to it
has it on. Therefore, all VTOe lID operations underway at the time the
demounter acquires the VTOe buffer lock will be awaited to completion by the
demounter, and, since any potential operation not under way by then will acquire
the lock after the demounter and find pvte.beinS-.demounted2 on, no new operation
may be started after the demounter has released the lock. Therefore, the purge
of information about the volume is total and irreversible; all VTOe 1/0 activity
is complete for the volume, and no new activity may be started.

The th~rd phase of demounting is performed by fsout_voli which, in general;
updates labels on disks. In the case of a demount, all parameters in the volume
map (including the bit map itself), and the VTae header are updated as well.
The cells label. time_unmounted and label.time_map_updated are set to the same
value (the current time), which indicates to the next attempt to accept this
volume that it was successfully shut down. These policies are explained under
"Physical Volume Acceptance" in this section. Once the label has been written
out, the parameters in the PVTE for the volume's PVID to fail, and allowing
reuse of the drive for acceptance of a (probably different) physical volume.

14-3 AN61

lhe final phase of demounting, which is not performed at shutdown time, is
the cycling down of the drive on which the volume being demounted is mounted.
This is performed via a "hardcore" attachment to the 1/0 interfacer to issue an
"unload" command to the drive. An attachment is made, for the demounter
process, via direct calls to the 1/0 interfacer. The resource control program
(Rep) is not involved in any way. A workspace segment is set up by the 1/0
interfacer, and the procedure fs_unload_disk_interrupt is set up as the
interrupt handler for the attachment. A connect is issued to the drive, to
execute the "unload" command. The demounter sets a cell (pvt.rwun_pvtx) to the
PVT index of the drive to which the "unload" command was issued before issuing
the connect, and loops awaiting the zeroing of this cell. The interrupt-side
program (fs_unload_disk_interrupt), after making a few checks, zeros this cell
upon receipt of 10M status from the unload operation. The use of this single
shared cell prohibits the demounting of several volumes in parallel; this fact
is enforced by the restriction that only the initializer process can perform
demounting. A single shared cell is used because the 1/0 interfacer provides no
facility for its interrupt side to identify a device to a subsystem's interrupt
handler in terms known to that subsystem. Thus, as there is no simple way to
determine the PVT index of a drive to which an "unload" was issued at interrupt
time, a single cell is used.

Demount Protection

The demounter poses to segment control the problem of the validity of PVT
indices; a PVT index derived via search of the PVT for a given PVID is valid if
and only if pvte.being_demounted was not on (volume was not being demounted) at
the exact instant that the PVID was found in the PVT, and remains valid only as
long as this is so. By "valid," we mean that use of this PVT index, by page
control or VTOe management, will indeed result in a reference to the physical
volume whose PVID was sought to determine this PVT index. Thus, a PVT index
which was "validly" derived via PVT search can become invalid instantaneously as
another process executes the demounter. Thus, without further mechanism, PVT
indices would be useless, as they could be invalidated at any time. Mechanisms
therefore exist to implement demount protection, via which processes can either
ensure or determine the validity of PVT indices at any time.

The simplest of these mechanisms is the "unitary operation" facility
provided by the VTOe manager. This can be used by any function that involves
only a single interaction with the volume, and that interaction must be via the
VTOe manager. Such an operation is the reading of "VTOC attributes" (see
Section IV). A single call to the VTOC manager is adequate to supply such
information. Another is the allocation of VTOCEs (see "Segment Creation,"
Section IV), for which exactly one call to the VTOC manager allocates and writes
out a VTOCE. Such operations are said to be "unitary;" either the VTOC manager
will succeed in performing them totally, or report that the physical volume is
not mounted. These operations are made possible by supplying the PVID of a
volume on which an interaction is necessary along with a possibly-valid PVT
index for the drive on which that volume is (probably) mounted. This PVT index
can be obtained via a call to get_pvtx$get_pvtx, which will make a perfunctory
check for a being-demounted bit, and return the PVT index of the physical volume
(if any) with that PVID. It is no matter that the volume may be demounted
(pvte.being_demounted turned on, or fully demounted) after this search has been
performed; the VTOC manager will check the PVTE specified by the PVT index
supplied against the PVrD supplied under the protection of the VTOe buffer lock
before commencing any operation. If the PVID does not correspond, or the bit
pvte.being_demounted2 is on (the point at which VTOC I/O request inceptions will
no longer be honored), the request is refused. If the PVID corresponds, and the
bit pvte.being_demounted2 is not on, the demounter cannot proceed, or even turn
on this bit, until it acquires the VTOC buffer lock (see the preceding
discussion) and cannot complete until the operation that is being requested here
has finished (no vtoce-part buffer out_of_service bits are on).

14-4 AN61

If the operation being requested requires several vto~e-part I/Os, with
intervening unlocks of the VTOe buffer lock, the operation may fail in an
intermediate state. However, the design of the VTOe manager is such (see "VTOe
Manager, General Policies," Section III) that no irreversible action will have
been taken until all vtoce-parts are acquired in buffers under the protection of
the VTOe buffer lock.

Another form of protection against demounting is provided to those
procedures which operate under the protection of the AST lock. This
specifically includes segment deactivation. Since the demounter must lock the
AST in order to deactivate all segments, and, as shown above, no new segments
can be activated after it has finished this activity, any PVT index obtained
(under protection of the AST lock) from an ASTE is valid as long as the AST is
locked to the process that obtained it, in the same locking. Any process that
derives a PVT index by other means (PVI search, for example), while the AST is
locked, is ensured of the validity of that PVT index for as long as the AST is
locked, provided that pvte.bein&-demounted was not on at the time that it
derived it (shortly before, or after, so long as the check is made with AST
locked) .

A similar form of protection is provided to the VTOe manager; if an
operation is commenced under the protection of the VTOe buffer lock, and
pvte.being_demounted2 was determined not to be on shortly after this lock was
locked, the demounter cannot acquire the VTOC buffer lock as long as it is held
by the current process, and thus the validity of the PVT indices so validated is
ensured.

The most general form of demount protection is provided by the "demount
protection brackets" implemented by the entries get_pvtx$hold_pvtx and
get_pvtx$release_pvtx. Between a call to get_pvtx$hold_pvtx that does not fail
(return an indication of demounted or demounting volume) and a call to
get_pvtx$release_pvtx with the returned PVT index, by the same process, the

-volume specified by PVID to get_pvtx$hold_pvtx will not be demounted. The first
call places, and the second call removes, a "mark" in the PVT hold table,
specifying the process and the PVT index of the volume concerned. The demounter
waits for all such marks for a given volume being demounted to be cleared from
the PVT hold table as one of the first steps in demounting. To ensure that no

'new marks for a given physical volume are made once the demounter awaits the
removal of all marks for that volume, the bit pvte.being_demounted is turned on
before the demounter awaits the removal of these marks. The entry
get_pvtx$hold_pvtx will return a failure indication if this bit is on before it
makes its mark, and will remove its mark and return a failure indication if this
bit is found on after it makes its mark. The entry get_pvtx$drain_pvtx is used
by the demounter to await the removal of all marks relative toa given physical
volume.

The demount protection brackets are used to "bracket" multistep
interactions with a physical volume, protecting the entire interaction against
the demounter. When such an operation has commenced, the demounter may not
progress in such a way that would invalidate that operation until the operation
is over. If a demount is in progress, such an operation may not even begin.
Typical multistep volume interactions are truncation and deletion of segments.
Truncation involves calling the VTOC manager to write back a VTOCE without
certain addresses, followed by the depositing of these addresses (to the FSDCT).
Should the volume concerned be demounted between the VTOCE write and the
deposition, the deposition would address an invalid volume map in the FSDCT.
Similarly, deletion of a segment involves truncation and freeing of a VTOCE;
should the volume be demounted between the truncation and the freeing, a
zero-length segment would appear on the volume the next time that the volume is
accepted. Thus, these multistep operations must be bracketed by calls to
get_pvtx$hold_pvtx and get_pvtx$release_pvtx, protecting the volume against
demounting, and allowing the PVT index produced by the former to be used validly
(without the protect±on of the AST lock).

14-5- AN61

Should a process encounter an ansychronous interruption (such as a
"crawlout," process termination, or a crash followed by an emergency shutdown)
at the time that a volume is "held" by the demount protection bracket mechanism,
the procedure verify_lock (in the first two cases, or wired_shutdown in the
third) will clear the mark from the PVT hold table, and schedule the volume for
later salvage via the setting of the bit pvte.vol_trouble. This will cause
later demounting of that volume to write out the label in such a way that it is
volume-salvaged the next time that it is accepted.

The segment mover holds two volumes at a time, the two engaged in the
segment move.

RING ZERO LOGICAL VOLUME MANAGEMENT

The logical volume is an instrument of convenience used to compensate for
the inadequacy of a physical volume, in size, to hold an arbitrary number of
segments. As such, the mounting of logical volumes is little more than the
acceptance of several physical volumes, and the demounting of several physical
volumes. Thus, the mounting and demounting of logical volumes is little more
than the preparation and destruction of entries in the logical volume table
describing the logical volume. Ring zero logical volume management also
consists of the maintenance in the KST of each process of a small table of
logical volume IDs (LVID's of private logical volumes mounted to that process.

Other than the setting of per-process (KST) and per-system (LVT) table
entries, marking logical volumes as mounted or not mounted to the system or the
calling user process, logical volume management provides only two services to
the rest of the supervisor:

1. Answering the question of whether or not a given logical volume is
mounted to the calling process. For a public logical volume, this is
equivalent to whether or not it is mounted at all (to the system).
For a private logical volume, it must be mounted to the system and
attached to the invoking process. The procedure "mountedp" answers
this question in general, given the LVID of a given volume. This code
is duplicated in the segment fault handler for efficiency.

2. Providing the head of the PVT chain for a given logical volume, for
the segment (VTOCE) creation function, described in Section IV. This
service is provided by logical_volume_manager$lvtep, which returns a
pointer to the appropriate LVTE, or null if that volume is not mounted
to the system. This pointer may be invalidated at any time; the LVIDs
of physical volumes as stored in the PVT are cross-checked by the
segment creation function to account for this fact.

The logical volume table is manipulated without a lock; this is because
only the mount/demount process (the Initializer) may modify it. Processes that
search it are aware that the results of searching it may be instantaneously
invalidated. Only in the case of segment creation is this an issue; at other
times, subsequent calls to the VTOC manager will fail if physical volumes are
demounted after a subsequently invalidated logical volume presence is deduced
from the LVT. The LV! is managed by the program logical_volume_manager. The
entries to add and delete logical volumes from the logical volume table
(logical_volume_manager$add and logical_volume_manager$delete, respectively),
are called by the ring 1 volume management package in the initializer process,
which implements the operator interface, via the gate initializer_gate_o The
"add" entry builds the LVTE from information supplied, and threads together the
PVT chain of all existent PVTEs with an LVID equal to the LVID of the volume
being added to the LVT.

14-6 AN61

The "delete" entry destroys this thread, and frees the LVTE. An entry exists
(logical_volume_manager$add_pv) which adds a PVTE (and thus a physical volume)
to an alreadymounted logical volume. This is used by the ring 1 volume
management package when other physical volumes of the RLV than the RPV are
accepted, at which time the RLV is already mounted, and at the ti~e that new
physical volumes are created and accepted while a logical volume is mounted.

The table in the KST (kst.lv) of private logical volume LVIDs is used to
answer the question of whether or not a private logical volume is mounted to the
process owning the KST. A call to private_Iogical_volume$connect, from the ring
1 Resource Control Package (RCP), adds an LVID to this table. Before this call
is made, RCP validates the caller's access to the logical volume, and the fact
that it is mounted to the system (at least immediately before the call is made).
This call is made via the gate admin_gate_. The complementary call to
private_Iogical_volume~disconnect removes an LVID from this table. At the time
any segment on a private logical volume is initiated in a process, its index in
this table is stored in its KST entry (kste.infcount, multiplexed because all
directories, the only segments with nonzero inferior counts, are on the RLV, a
public volume). At the time that an LVID is removed from a process' KST, a
setfaults operation (setfaults$disconnect, see Section II) is performed on each
known segment in this process on that logical volume. This causes the immediate
revocation of access to that volume for the process, as the segment fault
handler ~hecks whether or not a logical volume is mounted to a process (defined)
before honoring a segment fault on that volume for that process.

The entry private_Iogical_volume$lvx exists to answer the question as to
whether a given LVID appears in the calling process' KST, i.e., is mounted to
that process ~ that it is mounted to the system (as determined by
logical_volume_manager$lvtep).

BOOTSTRAPPING OF LOGICAL VOLUME HIERARCHY (THE RPY>

The system must be booted to command level before the operator can issue
commands to cause the acceptance of physical volumes and the mounting of logical
volumes. However, the running of the operator software, and the loading of the
system library segments into the hierarchy, involves directories in which to put
them, and thus the existence of the root logical volume, before these commands
can be issued. Thus, it would at first seem that the RLV must be mounted before
the system comes up. Mounting of logical volumes automatically by ring zero is
undesirable, as it requires that ring zero be informed of the location of these
volumes via CONFIG cards, or various inflexible forms of contract based upon
configurations during the last bootload. The responsibility of validating
labels resets upon the ring 1 volume management package. Thus, the compromise
is made that only one'physical volume of the root logical volume must be present
at bootload time; this volume is the RPV, and the description of its drive via
the ROOT CONFIG card constitutes validation of the RPV pack as the RPV by
operator. All of the directories needed by bootloading, that already exist,
must be on this particular volume of the RLV. Furthermore, the 'segment used by
cross-bootload ring 1 volume management (>disk_table) to specify the location of
packs during the last bootload, must be available on this volume, as all volumes
are assumed, by covenant with the operator, to assume their positions during the
last bootload unless otherwise specified.

All of the directories so needed are either the root directory itself (»
or one of its immediate descendants (>dumps, >system_library_1, or
>process_dir_dir.) Thus, by placing the cross-bootload disk configuration
segment (>disk_table) ~n the root directory, the rule can be made that all
immediate descendants of the root directory (segments or directories) must be
allocated on the RPV. The segment creation function (see Section IV) carries
out this policy; any segment or directory created off the root directory can
only be created on the RPV. The segment mover will not move such segments off
the RPV.

14-1 AN61

An implication of this policy is that the RLV must be mounted to the system
(so that segment creations and segment faults may be honored upon it) while only
the RPV is accepted. System initialization causes this to be the case by
calling logical_volume_manager$add for the RLV at such a time during
initialization that the RPV has been accepted. Ring zero has no notion of the
completeness of volumes; any time that a call is made to
logical_volume_manager$add, that volume becomes usable, and consists of all of
the physical volumes in it accepted at that time. All segment creations will be
restricted to those volumes. Thus, all segments created by initialization
reside on the RPV.

RPV-only Directories

When the system arrives at ring command level, the RPV is the only
physical volume accepted, and the RLV the only logical volume mounted. In order
to register other logical volumes, and check their labels, the logical volume
registration data base must be present. thus, the logical volume registration
segments used by the ring 1 volume management and registration package must be
on the RPV. Rather than put these segments in the root directory, a directory
exists (>lv) which has the property, like the root directory, that all of its
inferior segments are restricted to allocation upon the RPV. The bit
dir.force_rpv in this directory's header (set by set_sons_lvid$set_rpv, see the
following discussion), has the same effect upon the segment creation function as
creation of an immediate descendant of the root directory.

One peculiarity in this policy exists. Segments created by bootloading in
>system_Iibrary_l are not bound to stay on the RPV, and may be subject to
segment moving. If the next bootload, which generally deletes all segments in
>system_Iibrary_l that appear on the new bootload tape, finds such a segment,
which has been segment-moved, it cannot delete it. Initialization renames it in
order to load the new one, with a message from make_branches$delete indicative
of this fact. Such segments may be deleted by the "ldelete" command by system
maintenance personnel, when the system is fully up (tne entire RLV accepted).

Cold Boot of the RPV

During a cold system boot, when there is no hierarchy at all, the system
must arrive at ring 1 command level before any volume registration commands can
be issued. The RPV must be fully initialized and registered before it can be
used, but before the system comes up. Therefore, the program init_pvt, when it
detects a cold boot Situation, "registers" the RPV by generating an LVID and
PVID for it based upon the clock value. The program init_empty_root is called
in this case, which writes a valid label for the RPV, including in it
information placed on the special-format PART cards used in such a circumstance
(see the Multics Operators' Handbook, Order No. AM81). The volume map, VTOC
header, and VTOC are initialized, using default parameters generated by
init_empty_root. The program that initialized the volume map, VTOC header, and
VTOC, init_vol_header_, is available in all rings (a deciduous segment, see
Section VII), and is used by the ring 1 volume management package to initialize
other volumes. It takes as an argument an entry variable, specifying a routine
that is used to write to the pack.

The ring 1 volume registration package (at mdx$reregister) constructs the
RPV's registration information (as well as the RLV's initial registration
information) based upon the information generated by initialization in ring 0
and written to the RPV label.

14-8- AN61

SONS-LVID SETTING

The directory field dir.sons_lvid is the logical volume ID (LVID) of that
logical volume on which all immediately inferior segments to that directory will
be allocated; this value is used by the segment creation function to obtain (via
logical_volume_manager$lvtep) the head of the PVT chain of that logical volume.
This value is also "inherited" as a sonfs-LVID by all directories created
inferior to this directory. In all cases except the case of the creation of a
master directory, this quantity is in fact inherited by the directory control
directory creation primitive. In the case of a master directory, this value is
specified by master directory control.

The sons-LVID of a directory may be changed dynamically, via the
set_sons_lvid command (see the Multics Administrators' Manual System
Administrator, Order No. AK50) if that directory has no immediately inferior
segments (but m.a..y have inferior directories). This primitive accesses the
program set_sons_lvid in ring zero via the gate hphcs_. This program simply
changes the sons-LVID field of the directory, and marks it as (implicitly) a
master directory, marking the ASIE as well as necessary. This feature is useful
to cause process directory segments to be allocated on logical volumes other
than the RPV; boot load re-creates >process_dir_dir each bootload, after renaming
·the old one. Thus, >process_dir_dir (and the initializer's process directory,
>pdd>!zzzzzzbBBBBBB) , have a son's logical volume of the RLV. Setting the
son's-LVID of >process_dir_dir to some other logical volume after the system is
up causes newly created process directories to inherit that son's-LVID, rather
than the RLV.

RPV-ONLY DIRECTORX SETTING

The program set_sons_lvid also includes. an entry, set_sons_lvid$set_rpv, to
set the RPV-only bit (dir.rpv_only) for some directory whose son's-LVID is
already the root logical volume -(RLV>. This facility, accessed through the gate
hphcs_, is used by the ring 1 volume management package, to force volume
registration files in the directory >lv to be on the RPV, so that they will be
available in the ring 1 operator environment at bootload time, whether or not
any other physical volumes of the RLV have been accepted.

DISK TABLE LOCATION SETTING

A facility exists to store the VIOC index (in the RPV VTOe) and unique ID
of the segment >disk_table in the label of the RPV. The ring-O primitive
set_disk_table_loc is called (via the gate initializer_gate_) at the time the
ring 1 volume management package is initialized to set this information. It
obtains it from the branch of that segment, and stores it via reading and
writing the RPV label. This information is placed there for the use of an
unimplemented facility whereby BOS SAVE would be able to determine the location
of physical volumes by reading the disk table, rather than receiving volume
location specifications on individual request lines.

EXPLICIT DISK READING. WRITING. AND TESTING (read_disk)

Volume management provides a utility program (read_disk), which, given a
(guaranteed valid) PVT index, record number, and data buffer, reads or writes
that record from/to that data buffer. This is accomplished via the use of a
PIW-level abs-seg (see Section VII), rdisk_seg. In the reading case
(read_disk), a live device address, the record address desired, is placed as a
"disk devadd" (see Section VI) in the single used PIW for this segment, and data
copied from rdisk_seg to the caller's buffer. In the write case, a nulled "disk

14-9' AN61

devadd" describing the record described is placed in the PTW, and the data
copied from the caller's buffer to rdisk_seg. The nulled address prevents the
old data from being read in in order to page the new data out. This is relevant
performance of this primitive in cases where it is used in a loop (such as
volume initialization). After either call, pc$cleanup is used to force the page
of rdisk_seg out of main memory (see Section IX, "Deactivation Service"), in the
write_disk case, causing the actual write, and guaranteeing its completion to
the caller. The PVT index supplied, in either case, is placed in the ASTE for
rdisk_seg before the reference to this abs-seg. This selects the drive to be
addressed.

The primitives read_disk and write_disk call a special entry in the disk
DIM (disk_control~test_drive) to determine if a drive is patently inoperable
before attempting to use it via abs-seg (paging) I/O, which would generate disk
DIM and page control error messages in that case. This special entry is used by
turning on the bit pvte.testing in the PVTE for the drive concerned, calling it,
and looping on the bit pvte.testing, waiting for it to be turned off by the disk
DIM interrupt side. The DIM issues a "RQS" (Request Status) operation on behalf
of this entry, and sets the bit pvte.device_inoperative to report the outcome of
this operation. The bit pvte.testing is turned off once pvte.device_inoperative
is set appropriately. If this test indicates an inoperative drive, read_disk
and write_disk return an appropriate error code, and do not attempt paging I/O
on the volume. This testing function is also available explicitly via the entry
read_disk$test_drive.

The read_disk and write_disk entry pOints are used by acceptance and
physical volume demounting to read and write labels, VTOe headers, and volume
maps (although load_vol_map uses its own abs-segs). These facilities are also
available to the ring 1 volume management package via
initializer_gate_$read_disk and initializer_gate_$write_disk, to verify labels,
and perform volume initializations. As there is only one ASTE for the abs-seg
rdisk_seg, all of these activities are confined to the initializer process, or
the process performing emergency shutdown.

14-10 AN61

SECTION XV

INTERACTION OF THE PHYSICAL VOLUME SALVAGER WITH THE STORAGE SYSTEM

This section describes the actions performed by the physical volume
salvager as they are relevant to the actions performed and assumptions made by
volume management, segment control, and pag~ control. It does not attempt to
explain the internal organization of the physical volume salvager, its interface
with the rest of the Multics salvager subsystems, or the interpretation of its
printed diagnostics. For these details, see the Multics Storage System Salvager
~, Order No. AN62, and the Hultics Operators' Handbook, Order No. AH81.

The physical volume salvager is invoked upon a single physical volume. It
may be invoked either by explicit operator command (the salvage_vol Initializer
command, see the HOH), or automatically by physical volume acceptance (see
Section XIV) if the latter determines that the volume being accepted was not
properly demounted during its last use. The physical volume salvager inspects
and modifies the label, volume map, VTOC header, and VTOC of a physical volume,
using abs-seg I/O. The tasks of the physical volume salvager are two:

1. To make valid a set of assumptions about the VTOC and volume map 9f a
physical 'volume, on which the proper operation of segment control,
page control, and volume management depende These assumptions are
detailed below.

2. To detect and correct random and unexplained damage, due to hardware
or software failure, to the VTOC and volume header of a volume .

. The first objective repairs "damage" to a physical volume that occurs any
time use of that volume is stopped (by a crash, or drive failure, for instance),
without proper demounting as detailed in Section XIV. For instance, any volume
whose use is stopped without proper demounting will contain an invalid volume
map, for no attempt is made to update the volume map until demount time. Such a
volume may contain an'invalid VTOCE free list, as VTOCEs are freed and disk
requests are executed in not necessarily the same order.

The second objective repairs damage that cannot come about simply by
improper shutdown; there is no way that the storage system will allow
inconsistent states to exist wherein reused addresses appear. If a reused
address appears in a VTOC, it is due to undetected hardware or software failure.
This is also the case if the static parameters of the volume map, for example,
become inconsistent with the volume label. No accounting can be made for such
damage, nor can the actual "correct" state ever be exactly determined. Such
damage, which is rare, must be "corrected" to satisfy the primary goal of the
physical volume salvager, the validation of storage system assumptions.

15-1 AN61

AS$UMPTlu~S MADh VALID BY ThE PhYSICAL VOLuME SALVAGER

The following are the assumptions about the state of a volume, which may
not be true if the volume is not properly shut down, which are made true by the
physical volume salvager:

1. The current-length (vtoce.csl) of each segment, in its VTOCE,
describes the 1-relative page number of the highest nonnull address in
the file map.

2. The records-used (vtoce.records) of each segment, in its VTOCE, is the
number of nonnull addresses in its file map. Like vtoce.csl, this
will not be true for active segments that suffered page creation or
deletion while active and received VTOCE updates before use of the
volume was interrupted.

3. The volume-map has a "O"b for every record address cited in a VTOCE on
this volume, and a "1"b for every other address in the paging region.

4. The volume map has the correct number of "O"b bits in the volume map,
when (3) is true.

5. Every free (vtoce.uid ~ "O"b) VTOCE is part of a consistent, nonlooped
chain, whose head is kept in vtoc_header.first_free_vtocx. The end of
the chain is -1.

6. The cell vtoc_header.n_free_vtoce describes the number of VTOCEs in
the chain as described by (5).

If these assumptions are not true for a volume that is accepted, segment
control, page control, and volume management will malfunction. These
assumptions are always true for a volume that has been demounted properly.
Thus, the acceptance of any volume that has not been properly demounted implies
a volume salvage to force these assumptions true.

The physical volume salvager reports any deviance from assumptions 1 and 2.
These reports may be taken as cues to the damaging of active segments by
improper shutdown.

FORMS OF DAMAGE CORRECTED BY THE PHYSICAL VOLUME SALVAGER

The following further forms of damage to physical volumes are corrected,
via various assumptions, by the physical volume salvager. Such damage cannot
result simply from improper or non-existent shutdown. Software or hardware
damage to the volume is a prerequisite.

1. An address appearing in more than one VTOCE. ~!" one page so affected
is a page of a directory and one is not, the directory is awarded the
page. Otherwise, zeros (via a null address) are assigned to both
pages.

2. Inconsistent maximum length (vtoce.msl less than vtoce.csl).
set to current-length.

It is

3. Addresses not on the legal boundaries of the paging region of the
volume. They are replaced in the VTOCE file map by null addresses.

4. Inconsistency of the global volume map parameters (there were software
problems creating these inconsistencies in release 4.0). They are
corrected on these assumption that these known software problems (in
the disk rebuilder) caused them.

15-2 AN61

OTH~R VULUM£ SALVAGER ACTIUNS

The running of the physical volume salvager is primarily a walk through the
VTOe of the physical volume being salvaged, recreating the volume map and
checking individual VTOC£s. In the case where a volume that has not been
properly shut down is being salvaged, and the system has an unflushed paging
device, the physical volume salvager makes a call to page control
(pc$flush_seg_old_pd) for each VTOCE processed, in order to repatriate pages of
the segment owning the VTuCE trapped (at crash time) on the paging device. This
service of page control, the post-crash PD flush, is fully described in Section
IX. This service of page control is passed the file map region of the VTOCE as
a parameter; page control may place -disk record addresses in it, in the case
where the post-crash flush resurrects addresses. The physical volume salvager's
checking of current length and records-used is postponed until such resurrection
has been performed.

The physical volume salvager terminates by setting the label variables
label.time_map_updated and label. time_salvaged to the same value, the current
time. This will cause subsequent acceptance of the volume to realize that the
volume is consistent, i.e., satisfies the conditions above, and need not be
salvaged again. See "Physical Volume Acceptance" in Section XIV.

THE DISK REBUTLDER

The disk rebuilder is a special version of the volume salvager that copies
one physical volume onto enother, reassigning address and reallocating
partitions. The disk rebuilder 1S invoked via the "rebuild_disk" operator
command, described in the Multics Operators' Handbook, Order No. AM81. The disk
rebuilder copies the contents of partitions, and copies VTOCEs from the source
physical volume to the target. Addresses on the target volume are allocated by
the rebuilder, and the contents of pages of segments copied from the target
volume to the addresse~ so allocated via the explicit disk reading and writing
mechanism described in Section XIV.

The disk rebuilder updates the VTOCEs of all active segments by searching
the AST for each segment, and performing the page-control deactivation service
(see Section IX) and a VTOCE update (See Section IV) for each segment found
active before it is copied. This updates the VTOCE and segment pages on the
disk.

The shutdown state and label times of the disk being copied are falsified
by the disk rebuilder in the case where an accepted physical volume is being
copied. Were this not the case, a volume being so copied would appear to have
crashed during the middle of a disk rebuild. -

ASSUMPTIONS NOT CHECKED BY THE VOLUME SALVAGER

The following assumptions about the storage system hierarchy must be true
in order to ensure correct operation of the system. They can become invalid by
interruption of operation or use of a physical volume. However, since all of
these assumptions take great expenditures of real time to be made true, the
system is prepared to operate without their being true. The adverse effect
which will result is detailed in each case.

15-3 AN61

1. All directories have valid threads and formats. This assumptions is
made valid by a full run of the hierarchy salvager. If a directory is
encountered with any of various invalid threads and formats during
normal operation, a crawlout will occur. The online salvager will
salvage that directory, and cause this assumption to be valid.

2. £very VTUC£ that is designated by a PVID-VTOC index pair in a segment
or directory branch in fact is in use, and indeed is the VTOCE for
that segment or directory (vtoce.uid must be the same as entry.uid).
A segment or directory for which this is not true is said to suffer a
connection failure (See Sections II and IV). Any primitive which
accesses a VTUCE, from a branch, is prepared for this occurrence, and
will return error_table_~vtoce_connection_fail. Such "segments" may
be deleted, but not activated. A full run of the hierarchy salvager
in "check_vtoce" mode (see the MOH) will detect and delete all such
branches.

3. For every VTOCE, there must be a branch which, via a PVID-VTOC index
pair, designates this VTOCE. A VTOCE for which this is not true is
said to suffer reverse connection failure. The effect of this problem
is wasted VTOChs, and wasted disk records (the records designated by
the file maps in such VTOCEs), as the "segments" they describe are not
in any way accessible. The tool sweep_pv (see the Multics Operators'
Handbook, Order No. AMb1), invoked for "garbage collection and
deletion", reports apd deletes such "orphan" VTOCEs (See "Special
Services for sweep_pv", Section IV).

4. The "quota used" cell of every directory must contain a number equal
to the sum of the "records-used" fields of all immediately inferior
segments, and of the "quota used" cells of all immediately inferior
directories that do not have their own quota accounts. This is the
definition of "quota used". When this is not so, users experience
negative used figures and other false used figures, being charged for
nonexistent pages or not being charged for existent page~. A full run
of the hierarchy salvager in "check_vtoce" mode remedies this
situation. Similarly for directory quota.

The assumptions 1, 2, and 4 are made valid by the hierarchy salvager for
all directories critical to the booting of the system, during bootload, if it
was determined that the system was not shut down properly (and hence the RPV,
and thus the RLV, on which all directories exists) during the previous bootload.
It is only in this case that these anomalies can occur. The system forces these
assumptions to be true for these critical directories by automatic invocation of
the hierarchy salvager during bootload and system startup.

15-4 AN61

SECTION XVI

SCENARIOS

This section gives tw~ scenarios of typical operations in the storage
system, showing who calls what and how, and what data is affected. The handling
of a typical segment fault and a typical page fault are detailed in this way.
These seQuence$ are intended to be typical, not canonical.

A SEGMENT FAULT

We will consider a segment fault on >udd>x>y>z. >udd>x>y is known with a
segment number of 2~3, and >udd>x>y>z with 244. The segment >udd>x>y>z is
described by VTOCE 2045 on physical volume pub01, which is mounted on the drive
whose PVT index is seven. The current length of this segment is lOOK. >, >udd,
and >udd>x are active, and >udd>x>y and >udd>x>y>z are not.

A reference to 244114 is ~ade by the processor. A directed fault 0 ocdurs.

The module "fim" is invoked, recognizes this directed fault as a segment
fault, and invokes the segment fault handler, seg_fault.

The segment fault handler determines that indeed· there is· no SDW for
segment 244, and it is not a process stack.

seg_fault calls sum$getbranch_root_my with the pointer 244:14, hoping to
obtain a pointer to its branch.

sum$getbranch_root_my inspects the KST entry for segment 244, determining
from kste.entryp that its branch resides (as seen by this process) at
24315730, in >udd>x>y. sum$getbranch_root_my calls lock$dir_Iock_read
to lock this directory to validate the branch.

lock$dir_lock_read tries to touch >udd>x>y, but takes a segment fault. A
directed fault ° occurs.

The module "fim" is invoked recursively, recognizes the segment fault, and
invokes the segment fault handler recursively.

The segment fault handler processes the segment fault on 243:10, performing
the actions now being recursively described.

The fim is returned to,
lock~dir_Iock_read.

and restarts the reference made by

lock$dir_Iock_read places an entry in the dirlock_table, locking >udd>x>y
to this process.

sum$getbranch_root_my calls validate_entryp to ensure that 24315730 is
still the branch for z.

sum$getbranch_root_my returns the pointer 243:5730 to se&-fault, with
>udd>x>y locked to this process.

16-1 AN61

I

9/78

seg_fault checks the time in that branch against the time in the KSTE to
ensure that the access calculated at initiate time is still valid.

seg_fault calls activate with the pointer to z's branch, 243:5730, to
receive an AST entry pointer with the AST locked.

activate copies critical information out of the branch at 243:5730 into its
stack, and locks the AST, in order to determine if >udd>x>y>z is
active.

activate calls search ast with the UID of z to
search_ast replies that z could not be found,
activate unlocks the AST.

search the AST for z.
and is thus not active.

activate calls get_pvtx with t~e physical volume
the branch at 243:5730), to get a PVT index.
This number can be invalidated at any time.

ID of volume pubOl (from
This program returns "7".

activate calls vtoc_man$get_vtoce with the PVT index 7, the PVID of pub01,
and the VTOC index of z's VTOCE, 2045, the latter two items culled from
the branch at 243:5730. The first vtoce-part is requested.

vtoc_man$get_vtoce locks the VTOC buffer lock, and calls GET_BUFFERS_READ
to see if PVT index 7, VTOCE 2045, first vtoce-part is present. It is
found by SEARCH in vtoce-part buffer 33. It is copied out to
activate's stack frame, and the VTOC buffer lock is unlocked.

activate sees that z is longer than 96K,
will be required to get the
vtoc_man$get_vtoce asking for PVT
vtoce-part.

and that the second vtoce-part
file map. Activate calls

index 7, VTOCE 2045, second

vtoc_man$get_vtoce locks the VTOC buffer lock, and calls GET BUFFERS READ
to find the second vtoce~part of PVT index 7, VTOCE 2045. It is not
found. A vtoce-part buffer (15) is pre-empted from PVT index 6, VTOCE
1011, third vtoce-part, and the disk DIM is called to read the second
vtoce-part of PVT index 7, VTOCE 2045 into it.

vtoc_man unlocks the VTOC buffer lock, having set buffer 15 out-of-service,
and calls pxss$wait to wait for the event 333000000015.

The d~sk DIM in:e~~llDt S70S cal:s vtoc_interrupt with the main rnemo~y

add t' e s s 0 f V T u c: b d' l' e j' 1 5 . The 0 ~lL - 0 f - s e r vic e bit is t urn e d 0 f f, and
pxss$notify is called to not~fy the event 333000000015.

pxss$wait returns to vtoc_man, which reloclcs the VTOC buffer lock, and
copies buffer 15 into activate's stack frame.

vtoc_man unlocks the VTOC buffer lock, and returns to activate.

activate locates the ASTE for segment 243 in this process, >udd>x>y. It is
at 17:20444.

activate calls get_aste to obtain a 256-word AST entry to hold the segment
z.

get_aste inspects the first ASTE on the 256K used list.
>udd>m>joe>bill.list, which has 12 pages in main memory.

It is for

get_aste inspects the second ASTE on the list. It is for >udd>m>cp>temp,
which has no pages in main memory, and has had none come in since
get_aste last saw this ASTE. It will be deactivated.

get_aste calls deactivate. Dassing it 17124644, the address of the AST
entry of >udd>m)cp>temp.

deactivate calls setfaults to destroy all SDWs for)udd>m)cp)temp.

16-2 AN61A

setfaults runs down the trailer list for)udd)m>cp)temp, locating all SDWs
and, accessing the descriptor segments of various processes via an
SDw-level abs-seg, removes these SDWs. Setfaults calls to clear the
system's associative memories.

deactivate calls pc$cleanup to get all pages out of main memory.

pc~cleanup locks the page tablelock, and finds that no pages are in main
memory for)udd)m)cp)temp. It unlocks the page table lock.

deactivate calls update_vtoce to update VTOCE 2311, PVT index 6 which, as
determined from aste.pvtx and aste.vtocx in the ASTE at 17124644, are
the PVT index and VTOC index of the VTOCE for)udd>m)cp)temp.

update_vtoce finds that >udd)m)cp>temp is 13hK long, and no vtoce-parts
will have to be read.

update_vtoce calls. pc~get_file_map, passing it the AST address 17:24644, to
get a copy of the AST, with definitive information.

pc$get_file_map locks the page table lock, constructs a valid copy of that
ASTE in its stack, unlocks the page table lock, and copies it out to
update_vtoce's stack frame. This includes the file map.

update_vtoce constructs an image of VTOCE 2311 on PVT index 6, first two
vtoce-parts, from the ~nformation returned by pc$get_file_map.

update_vtoce calls vtoc_man$put_vtoce with a zero as PVID, the PVT index 6,
the VTaC index 2311, the image of the first two vtoce-parts of this
VI0CE, and a request to write out these vtoce-parts.

vtoc_man$put_vtoce locks the VTOC buffer lock, and searches for buffers
containing these vtoce-parts. None do. GET_BUFFERS_WRITE causes two
other vtoce-parts to be preempted, and returns to vtoc_man$put_vtoce
thei~ indices, 23 and 16.

vtoc_man~put_vtoce copies the two vtoce-parts supplied by update_vtoce into
buffers 23 and 16 respectively, setting these buffers out-of-service.

vtoc_man$put_vtoce calls the disk DIM to start writing the two buffers 23
and 16, and unlocks the VTOC buffer lock.

vtoc_man$put_vtoce returns to update_vtoce with the liD still in progress.

update_vtoce determines that no nulled addresses were culled by
pc$get_file_map, and VTOCE liD completion will not-have to be awaited.

update_vtoce returns to deactivate, having updated VTOCE 2311 on FVT index
6.

deactivate calls put_aste to free the ASTE at 17124644. It is moved to the
head of the used list.

get_aste returns the ASTE at 17124644, now free, to activate.

activate connects the ASTE for >udd>x>y (17120444) with the ASTE to be used
for >udd)x>y>z at 17124644.

activate calls pc$fill_page_table to fill in the ASTE's page table with
information in the VTOCE (2045) on PVT index 7 which has been read in.

pc$fill_page_table converts the formats of the device addresses, and
initializes the PTWs in this ASTE. A check is made for reused
addresses.

The disk DIM interrupt side calls vtoc_interrupt, placing VTOC buffer 23 no
longer out-of-service.

16-3 AN61

activate fills in the activation attributes of >udd>x>y>z into the ASTE at
17124b44, along with other information.

activate returns to seg_fault with the AST locked, returning the ASTE
pointer 17124b44 for >udd>x>y>z.

seg_fault sets the encacheability state of >udd>x>y>z to "one process,
reading and writing, encacheable".

seg_fault constructs an SDw for >udd>x>y>z, and places it at slot no. 244
in this process' descriptor segment.

seg_fault constructs a trailer entry in str_seg for thi~ descriptor, glvlng
the number 244 and the ASTE offset of this process' descriptor segment.

seg_fault unlocks the AST.

The disk DIM interrupt side calls vtoc_interrupt, placing VTOe buffer 16 no
longer out-of-service.

seg_fault calls lock~dir_unlock to unlock >udd)x>y.

seg_fault returns to the fim.

The fim restarts the machine conditions for the segment fault.

The process proceeds, and the segment fault has been resolved.

A PAGE FAULT. IN PAGE MULTILEVEL

Having resolved a segment fault on)udd)x)y)z, our user process next
attempts to access location 14.

The appending unit finds PTW 0 for segment 244 (at 17: 14660) to have ptw.df
off. A directed fault 1 occurs.

The page fault handler, page_fault, is invoked. It saves all registers and
machine state at pds$page_fault_data. It sets up a stack frame on the
PRDS.

page_fault attempts to lock the page table lock, but finds it locked.

page_fault branches to pxss$ptl_wait to wait for the page table lock.

pxss~ptl_wait locks the traffic controller lock.
table lock is indeed still locked. The
incremented.

This process is made to wait for the "PTL Event".

It finds that the page
cell sst.ptl_wait_ct is

The process which had been holding the page table lock unlocks it, but
notices sst.ptl_wait_ct nonzero.

The orocess which had been holding the
~xss$page_notify to notifj the "PTL Event".

page table lock calls

Our process resumes. pxss$ptl_wait returns to page_fault$wait_return, and
the page fault is restarted.

The appending unit finds PTW 0 for segment 244 (at 17:24660) to have ptw.df
off, allover again. A directed fault 1 occurs.

The page fault handler, page_fault, is invoked. It saves all registers and
machine state at pds$page_fault_data. It sets up a stack frame on the
PRDS.

16-4 AN61

9/78

page_fault attempts to lock the page table lock, and succeeds.

page_fault calls pd_util$check_pd_free_and_update to see if the paging
device needs housekeeping.

pd_util$check_pd_free_and_update determines that the PDMAP has been written
out in the last second, and will not write it out.

pd_util$check_pd_free_and_update sees that only 8 PD records are free. 10
must be free or being freed.

pd_util$check_pd_free_and_update walks down the PD used list to find
entries to free. Eight PD records are skipped, and the one at 1716440
is found. It is found to describe a PTW at 17115262, which describes a
page in main memory. It is not a good candidate for replacement.

The next PD record on the used list, at 17/6224, similarly describes a page
in main memory, and is skipped.

The next PD record on the used list, at 1716030, describes a page not in
main memory. It is not "PD Mod" (pdme.mod = "onb).

pd_util$check_pd_free_and_update evicts this page from the paging device,
taking the disk device address at 1716031 and placing it in the PTW
(17117327) pointed at by pdme.ptwp at 1716032.

pd_util$check_pd_free_and_update calls pd_delete_ in the same program to
put the PDME at 17/6030 in the used list as free. The count of free
PDMEs is now 9.

pd_util$check_pd_free_and_update considers the next PDME in the list, the
one at 1716204. It describes a page whose PTW is at 17122137, and a
nulled disk address (401512) on PVT index 6.

pd_util$check_pd_free_and_update calls rws_ in the same program, to start
an RWS for the PD record whose PDME is at 1716204.

rws_ calls page_fault$find_core to find a main memory frame in which to
perform the RWS.

page_fault$find_core picks up sst.usedp, which has the value 1550.

The core map entry at 1711550 is inspected. It describes a page whose PTW
at 17121532 is modified with respect to paging device or disk (ptw.phm
= "1"b). This page is not acceptable for eviction.

The core map entry at 1711304 is pointed at by cme.fp of the one at
1711550. It describes a page whose PTW at 17116120 describes a pure
page which was recently used. This page is not acceptable for
eviction.

The core map entry at 1711340 is pointed at by cme.fp of the one at
1711304. It describes a page whose PTW at 17/17172 indicates that this
page is pure, and not "not-yet on paging device".

The access to the page whose PTW is at 17117172 is turned off, by turning
off the directed fault bit in that PTW, and clearing the system's
associative memories, and clear~ng the caches of that page's words.

find core calls page_fault$cleanup_page, which puts the PD address in the I
CME at 1711340 back in the PTW at 17117172, and adjusts the AST entry
for this segment at 17117154. The CME at 1711340 is freed.

find_core returns the CME at 1711340 to rws_o

rws threads out the PDME at 1716204 and the CME at 1711340, and
-cross-relates them to indicate the read cycle of an RWS.

16-5 AN61A

rws_ calls the bulk store DIM to read PD record 41 (whose PDME is at
17lu204) into location 700000 in main memory whose eKE is at 1711340.
The bulk store DIM starts this read.

rws_ returns to pd_util$check_pd_free_and_update, who now notes that there
are 10 PD records free or being freed.

pd_util$check_pd_free_and_update notes that there are incomplete RWS reads,
and calls the bulk store DIM in a loop until there are none.

At one of these times, the bulk store DIM notices status for the read into
location 700000, and calls page_fault$done_ with the address 700000,
and an error code of zero.

page_fault$done_ locates the CME at 1711340, and inspects it, noting that
an RWS read was in progress. The routine read_write_sequence in done_
is invoked.

page_fault$done_ acknowledges the RWS read completion, and indicates in the
CME at 1711340 that an RWS write is in progress. The disk DIM is
called (via device_control$dev_write) to write the address 001512 on
PVT index 6 from location 700000.

page_fault$done_ returns to the bulk store DIM.

The bulk store DIM returns ~o pd_util$check_pd_free_and_update.

pd_util$check_pd_free_and_update notices that there are no more RWS reads
outstanding, and returns to the page fault handler.

The page fault handler inspects the SCU data at pds$page_fault_data, and
determines that this is not a descriptor segment page fault.

The page fault handler locates the SDW for segment 244, implicated in the
machine conditions, and subsequently its page table at 17124660 and its
ASTE at 17124644.

The page fault handler inspects the PTW at 17124660, and determines that
indeed a page fault situation exists. .

The page fault handler calls read_page, passing it the PTW address 24660
(relative to the SST), requesting the allocation of a main memory frame
and subsequent readin of a page.

read_page checks that a nonnull address exists in the PTW at 17:24660. It
is address 002167 on PVT index 5, wh~ch is, by virtue of its format,
nonnull and nonnulled (live). Thus, no quota check or allocation will
be necessary.

read_page calls find_core to get a main memory frame into which to read
that address.

find_core inspects the first CME on the main memory used list. This CME,
at 1712200, was pointed to by cme.fp of the one at 1711340, which is
now threaded out as an RWS is in progress there.

The CME at 1712220 describes a page whose PTW (at 17114140) indicates
ptw.nypd; requiring allocation to the paging device. This page is not
suitable for eviction. Its cme.fp pointer designates the CME at
17:2214.

The CME at 171221~ designates a page that is neither modified nor "not yet
on the paging device". Its PTW is at 17: 15150, and it will be evicted.

The access to the page whose PTW is at 17:15150 is turned off, by turning
off the directed fault bit in that PTW, and clearing the system's
associative memories, and the caches of that page.

16-6 AN61

9/78

find_core calls page_fault$cleanup_page, which puts the PD address in the I
CME at 1712214 back in the PTW at 17/15150. The AST entry at 17115130
is adjusted appropriately, and the CME at 17/2214 is freed.

find_core returns the CME at 17/2214 to read_page.

read_page sets the CME at 17:2214 to indicate a page out-of-service on a
read. The disk address 002167 is copied from the PTW at 17/24660 to
this CME. It is threaded out of the core used list. The main memory
address, 230000 is placed in the PTW at 17:24660, but ptw.df is still
off,

The disk DIM is invoked, via device_control$dev_read, to read the record
002167 from the disk on PVT index 5 into location 230000 in main
memory, the location described by the CME at 17/2214. The read is
started.

read_page returns to the page_fault_handler, informing it that waiting will
be necessary.

The page fault handler calls claim_mod_core to start all I/Os that were
skipped by find_core during this page fault.

claim_mod_core inspects sst.wusedp, which describes the CME at 17i1550.
This page was skipped because it needed writing.

claim mod core calls write_page,
17"/1550.

passing it as an argument the CME at

write_page checks this page for zeros. It does not contain zeros.

write_page calls allocate-pd to see if this page requires allocation to the
paging device.

allocate_pd notices that this page is already on the paging device (at
record 101), and returns this fact to write_page.

write_page threads the CME at 17/1550 out of the used list, marks the PTW
(at 17/21532) out-of-service, and marks the CME out-of-service on a
write.

write_page calls the bulk store DIM to write the main memory frame at
location 264000 (described by the CME at 17/1550) to record 101 of the
bulk store.

write_page returns to claim_mod_core.

claim_mod_core inspects the next CME that was in the used list, at 17/1304.
This CME was skipped because its PTW at 17/16120 described a recently
used page. The bit indicating this (ptw.phu) in this PTW is turned
off, as demanded by the main memory replacement algorithm.

claim_mod_core inspects the next CME
17/2200 was skipped because it
migration to the paging device.

that was in the used list, the one at
designated a page which required

claim_mod_core calls write_page, passing the CME at 17/2200 as an argument.

write_page notices that this page is pure, and does not check for zeros.

write_page calls allocate_pd to see if this page needs allocation to the
paging device.

allocate_pd sees that the bit ptw.nypd is on in the PTWat 17/14140, and
determines that this page must be allocated a record of paging device.

allocate_pd inspects the first PDME on the PD used list. It is at 17/6044,
describing record 11 of the bulk store, and is free.

16-7 AN61A

allocate_pd moves the PDME at 17:6044 to the tail of the PD used list, and
fills it with information from the CME at 1712200. The CME at 17:2200
is changed to designate record 11 of the paging device as the home for
the page.

allocate_pd returns to write_page the fact that a PD record was allocated
during this call.

write_page sets the CME at 1712200 out-of-service, threading it out of the
used list, and marks the PTW at 11114140 out-of-service.

write_page calls the bulk store DIM to write the main memory frame at
2~0000 (described by the CME at 1712200) to record 11 of the bulk
store.

write_page returns to claim_mod core.

claim_mod_core notices that sst.usedp and sst.wusedp are equal, and all
operations skipped by find core have been processed.

claim_mod_core returns to the page fault handler.

The page fault handler determines that the PTW for the page faulted on
(page 0 of segment 244) is still marked out-of-service (at 17124660).
Since it is not a page on the paging device, the traffic controller
will be used for waitin$.

The page fault handler meters the page fault and the time spent 1n
processing it.

The page fault handler develops the event ID for the
024660, and stores it in pds$arg_1 for
cme.notify_requested 1s set in the CME at 1712214.

page faulted
pxss. The

on,
bit

The page fault handler branches to pxss$page_wait, with the page table
locked.

pxss~page_wait locks the traffic controller lock.

pxss$page_wait unlocks the page taBle lock.

pxss$page_wait sets ~he process to waiting on the event 024660, and uses
the PRDS fraGe ~o ~~!tch processes to another process.

Our process goes waiting.

The I/O operation in location 700000 completes, and the disk DIM interrupt
side calls page$done with this number as a parameter.

page$done locks the page table lock and calls page_fault$done_ with that
main memory address.

page_fault$done_ locates the core map entry at 1711340, and seeing that an
RWS was in progress there t calls the routine read_write_sequence in
done_. The PDME at 17:6204 1s located.

page_fault$done_ notices that a write cycle completed. The disk address
401512 (nulled) is resurrected to 001512, and taken from the PDME at
17:6204 and placed in the PTW at 17115263; which had contained the
paging device address 000041.

page_fault$done_ frees the PDME at 1716204, and frees the main memory at
location 700000, placing the CME at 11:1340 into the core used list.

page_fault$done_ returns to page$done, which unlocks the page table lock.

page$done returns to the disk DIM.

16-~ AN61

The 1/0 in location 230000 completes. The disk DIM interrupt side calls
page$done.

page$done locks the page table lock and calls page_fault$done_.

page_fault$done_ finds the CME at 17:2214, and sees that no RWS was going
on there.

page_fault$done_ marks the CME at 1712214 as no longer out-or-service,
threading it back into the used list.

page_fault$done_ locates the PTW at 17124660 from the CME at 1712214. The
directed-fault bit is turned on, allowing access to the page, and the
out-of-service bit turned off.

page_fault$done_ notices the bit cme.notify_requested in the CME at
1712214, and calls pxss$page_notify with the event 024660.

pxss$page_notify locks
process, which was
connect to CPU B.

the traffic
waiting on

controller lock, and notifies our
event 024660, and sends a pre-empt

pxss$notify unlocks the traffic controller lock, and returns to
page_fault$done_.

page_fault$done_ returns to,page_done, which unlocks the page table lock.

page$done returns to the disk DIM.

CPU B takes a pre-empt connect, and calls pxss$pre_empt.

pxss$pre_empt locks the t~affic controller lock, and performs a "getwork"
operation, abandoning the process that took the connect.

pxss (getwork) finds our process ready, and switches to it, setting it as
running.

pxss (getwork) returns to pxss$page_wait in our process.

pxss$page_wait unlocks the traffic controller lock, abandons its PRDS stack
frame, and transfers to page_fault$wait_return.

page_fault$wait_return
pds$page_fault_data)
fault.

restarts
indicating

the machine conditions (at
an Appending Unit address preparation

CPU Bfs Appending Unit successfully fetches and uses the PTW at 17124660,
and resolves the virtual address 244114 to absolute address 230014.

16-~ AN61

SECTION XVII

GLOSSARY

abort
See RWS abort.

abs-seg
Not a segment at all. A segment number used for addressing as a segment an
arbitrary main memory, disk, or paging device extent, the location of the
extent being a parameter at the time that it must be addressed. See
PTW-level abs-seg and SDW-level abs-seg.

abs-usable
A main memory frame, part of the paging pool, in a system controller that
cannot be deconfigured. Only abs-usable page frames can contain abs-wired
pages.

abs-wire
Of a page or segment a To make that page or segment abs-wired.

abs-wired
1. Of a page. A page in main memory, which not only is wired, but may

not be moved around main memory. Pages wired but not abs-wired may be
moved around by abs-wiring pages or deconfiguring memory* Used
principally for I/O buffers.

2. Of a segment. A segment having some or all of its pages abs-wired.

accept
Of a physical volume. To make those supervisor calls, which, by placing
label information in the PVTE for a given drive, establish the binding, or
association, between that drive and that volume.

access control segment (ACS)
A segment whose ACL effectively determines access to a resource. ACSs for
peripheral devices are in >sc1>rcp, ana are maintained and used by RCP.
ACSs for logical volumes are usually, but need not be, in >lv.

activate
To make a segment active. Done by getting'an ASTE, reading the VTOCE of
the segment, filling in the ASTE, and hashing it into the AST hash table.
See active. The parent directory of a segment must be locked in order to
activate it.

activation attributes
or activation information

Those attributes of a segment that are read from the VTOCE every time a
segment is activated, copied into the ASTE, changed while the segment ;is
active, and updated back to the VTOCE. Examples: current length, maximum
length, date-time modified. See permanent information.

17-1 AN61

active
1. Of a segment. Having a page table (and AST entry) in main memory; the

criterion for whether or not a segment is active is whether or not it
is hashed into the AST hash table.

2. (loosely) of a page. Belonging to an active segment.

3. Of the paging device, or an instance thereof. In use, having pages
being allocated, read and written from it. The bit fsdct.pd_active
tells whether or not the paging device is active. See unflushed.

add_type
A subfile of page control device addresses (devadds) that specifies whether
it is a record of disk, a record of PD, a main memory frame, or a null
address.

append
(verb) To combine an address (effective address) produced by the processor
control unit, with a segment number (the effective segment number)
maintained by the appending unit, and produce, by fetching and inspecting
PTWs and SDWs, either a main memory address or a page or segment fault.

appending unit (APU)
That portion of the 66/bO processor responsible for the implementation of
segmentation and paging. It performs appending, maintains all segment
numbers, performs control operations on its data, and coordinates the
taking of faults.

appending unit cycle
One of the operations of the appending unit that results in an address
being presented to the processor port logic. For an append that does not
result in a fault, the last such address (final address) is the address of
the data requested by the control unit. Other APU cycles are to obtain and
modify PTws or SDWs. Each CU cycle (see control unit cycle) may produce
many APU cycles.

associative memory

AST

ASTE

A content-addressable semiconductor memory in the processor appending unit.
There are two: the PTW associative memory, which maintains the last 16
PTWs fetched from main memory, and similarly the SDW associative memory.
The associative memories can be cleared via the CAMS and CAMP instructions.
Used for speed, to avoid continual PTW and SDW fetching from main memory.

For active segment table. The collection of ASTEs that describe all of the
active segments in the system. (See ASTE.) The AST is the uppermost part
of the SST.

For active segment table entry.

1. (ASTE proper). A collection of attributes, other than file map or
page tables, describing an active segment.

2. That collection of attributes, taken along with the page table and
file map of a segment.

AST hash table
A table, kept in active_sup_linkage, that holds the heads of hash threads,
so that the UID of any segment may be used to find its ASTE, if it is
active, or the fact that it is not active.

AST pool
There are four sizes of AST entries. those containing page tables of 4, 16,
64, and 256 PTWs. Those of each size form four ~, that are managed
separately.

17-2 AN61

AS! trickle
A mechanism implemented in the AS! replacement algorithm that periodically
updates, from the AST, the VTOCEs of segments whose VTOCEs would benefit by
so being updated. It is driven by AST traffic.

AST used lists
One of seven lists of AST entries, the four normal lists being "used lists"
of each size, and others being lists of ASTEs selected by some special
criteria. See used list.

atomic
See unitary.

attached
1. A private logical volume is attached to a process if an entry in that

process' KST so attests. Only private logical volumes that are
attached to a given process can be used by that process.

2. There are definitions of this term relative to user-ring lID and
resource control.

auxiliary service
A service provided by a subsystem that, although it is not one of the
fundamental ones for which the subsystem exists, involves much of the
central code of the subsystem. See peripheral service and basic service.

bad track list
A reserved area of the volume header of a physical volume, that will be
used to contain bad track information in future releases.

basic service
A service provided by a subsystem that is one of the fundamental ones for
which it exists. See auxiliary service and peripheral service.

bit map
A one-bit-per-record map of all of the disk records usable for paging on a
given physical volume. All bit maps (those for mounted physical volumes)
reside in the FSDCT.

bootload
1. (verb) To initiate the operation of the Multics system, when it is

down, i.e., to bring it up via issuing the BOS BOOT command.

·2. (noun) The act of bootloading.

3. The life-span
shutdown, or
performed.

of a Multics hierarchy from time of bootload to
next bootload, in the case where shutdown cannot be

branch
As used in this document, a data structure in a directory that describes a
segment or directory. A segment's branch contains a physical volume ID and
VTOC index for the VTOCE of a segment or directory. The ACL, names,
author, bit count, etc., of a segment may be found in or from its branch.

bulk store

oaohe

A core memory storage medium used as a paging device. The term is used
when it is not relevant that it is being used as a paging device as opposed
t~ any other storage medium.

A 2048-word semiconductor buffer memory in the prooessor port logic. An
attempt is made to maintain the last 2048 words fetohed from main memory in
the oache. The oache provides a substantially faster aooess time than that
of main memory. As each prooessor contains its own oaohe, strategies are
needed to prevent oonfusion about main memory oontents. See encaoheable.

17 3· AN61

call side
Those programs in page control that are ~xplicitly invoked by processes
that need services performed upon segments. See fault side and interrupt
side.

call-side wait coordinator

claim

The program (page$pwait) used by call-side page control to wait for a given
event, via an appropriate mechanism, and set whatever bits will be
necessary to cause the occurrence of the event to perform the necessary
notification.

When the PD or main memory replacement algorithm selects a page frame to
have its contents evicted, and thus be freed, the page frame is said to
have been claimed.

connected
Of a process and a segment. A segment is said to be connected to a
process, or vice versa, if the descriptor segment of that process contains
an SDW that describes that segment, and is not faulted. See trailer.

connection failure
or forward connection failure

A situation that exists when a directory branch describes a certain VTOCE,
but that VTOCE describes some other (or no) segment. This can be
determined by comparing UIDs. This situation can come about by accident or
by deliberate salvager action. See also reverse connection failure.

contract
The action performed by a program, the conditions that must be true when it
is invoked, and the circumstances describing the meaning and validity of
the result.

control unit (CU)
That portion of the 68/80 processor that is responsible for decoding
instructions, performing indirections, and routing data around the
processor. The control unit develops effective addresses of words in
segments; see appending unit. The control unit status can be stored via
the SCU instruction, when a control unit cycle is aborted due to a page or
segment fault.

control unit (CD) cycle

core

A control unit operation resulting in an effective address being presented
to the appending unit or port logic. Typical CU cycles are "instruction
pair fetch," "operand fetch," "indirect word fetch," etc. Any CU cycle can
result in a page or segment fault when appending is performed for that
cycle. Restart of that fault retries the aborted CU cycle.

An obsolete term used in many program listings and comments for main
memory.

core map
A page control data base in the SST that contains a four-word entry (CME)
for frame of main memory. It is protected by the page table lock. See
Section VI for its layout. See core.

core used list
or main memory used list

A used list of core map entries (CMEs) describing the order of recency ,of
use of main memory frames.

crawlout
A cross-ring signal that causes abandonment of a stack in the inner ring.
Crawlouts out of ring 0 require supervisor data bases to be cleaned up.
Crawlouts result from hardware problems or faulty software, or damaged
directories, and cause the software running at ths time to be interrupted
and not continued.

17-4· AN61

critical process pages
The first page of a process' descriptor segment and PDS. These two pages
must be wired (the process is then loaded) before the process can actually
run.

deactivate
Of a segment. To remove it from the state of being active. To deactivate
a segment. its pages are driven out of main memory and paging device. its
VTOCE updated from its AST entry, and the ASTE freed. See active.

deadlock
or deadly embrace

A situation wherein a process having a given resource is waiting for some
other process to free a second resource, but, unfortunately, the process
having the second resource is waiting on the first process to free that
first resource. See locking hierarchy.

deciduous
Of a segment. A segment read in as part of the bootload tape in collection
1 or 2 (i. e. , part of initialization t s, therefore the ini tia-lizer t s,
hardcore address space) and placed into the hierarchy by the program
init_branches. Deciduous segments reside entirely in the hardcore
partition. See also reverse-deciduous.

Examples: >sll>pll_operators_, >pdd>!zzzzzzbBBBBBBB>pds

defined
Of a logical volume. Either a mounted public logical volume, or a mounted
private logical volume attached to a given process. A process is said to
have a given logical volume either defined or not defined.

demount
1 • Of a phYSical volume. To dissociate a physical volume from the drive

on which it is mounted, stopping use of it by processes.

2. Of a logical volume. To remove the logical volume table entry for a
logical volume.

demounter
The procedure demount_pv, that coordinates the demounting of physical
volumes.

deposit
To deposit an address to the free pool of records of a given physical
volume (bit map) is to mark it as free, and available for subsequent
withdrawing. See withdraw and bit map.

descriptor segment (sometimes DSEG)
An array ot hardware contr61 words (SDWs) that specifies the mapping
between segment numbers and either segments or taking a segment fault.
Each process has its own descriptor segment; it is a segment, and may be
paged, in which case it is described by the descriptor segment page table.
The first page of the descriptor ~egment of a loaded process ~s wired.

desperation
Action taken by paging device allocator when there are no free PD records.
Desperation consists of evicting some nonmodified page from the PO, if it
can be found near the head of the PD used list.

devadd (device address)

DIH

A page control format for all main memory, paging device, and disk
addresses. The upper 18 bits are a record number or address. and the lower
four bits (add_type) speoify whether it is main memory, disk. paging
device. or nUll.

For device interface module. The
managing the physical operation
(viz., the disks or bulk store).

program that contains the code for
(as opposed to logioal use) of a device

17-5- AN61

double-write
A disk write performed as a reliability feature after a successful paging
device write. Double writing is controlled by a parameter on the DEBG
CON FIG card, and tends to keep paging device pages pure.

eligible
A process is made eligible by the traffic
latter describes that the former should be
resources (i. e. , take page faults) . Only
although they must be loaded first.

controller at the time that the
allowed to consume main memory
eligible processes can run,

emergency shutdown (ESD)
A set of procedures, invoked via the BaS ESD command, that attempt to
produce an orderly shutdown of the system after a crash has occurred. This
shutdown must be performed in order to update the disk records and VTOCEs
for segments that were active at the time of the crash.

encacheable

entry

evict

Said of a segment. A segment is encacheable if words of that segment are
allowed to be put (and hence subsequently found) in a processor's cache.
An SDW bit (sdw.cache) controls encacheability. This is used to control
sharing and prevent confusion about cache contents. Segments accessible to
the 10M or FNP are routinely nonencacheable.

(loosely) same as branch.

Of a page. To drive a page out of a given main memory frame, or PD record,
by writing it, moving it, or simply changing the state of its data bases as
appropriate. Note that the eviction of pages that are identical to copies
on disk or PD does not involve writing.

exposed

fatal

A physical volume is exposed to an instance of a paging device if that
instance is active while that volume is mounted.

Of a crash. A crash for which a successful emergency shutdown could not be
attained. Fatal crashes involve salvaging all physical volumes mounted at
the time of the crash.

fault sice
Tho2e programs in page control that are invoked in response to a page
fault. See call side and interrupt side.

fault vector

file

A pair of instructions at a fixed location in main memory associated with a
specific type of fault condition. When the processor recognizes such a
condition, it "takes" the fault by executing these instructions. In
Multics, they are always SCU (store control unit) and TRA (unconditional
transfer) .

map
A mapping between the pages of a segment and disk record addresses on
chvsical volume. Each cage is mapped into either one such address,
null address, indicating" zero contents. File maps appear in VTOCEs.
a segment is active, the file map is distributed between the various
control data bases.

some
or a
When
page

file-system time

frame

A 36-bit representation of real clock time used in directories
recording date-time used, date-time-rnodified, and other storage
times. It is the upper 36 bits of a 52-bit clock time.

or "main memory frame"
A 1024-word block (cn a 1 024-~·!ord boundary) of main memory. See

9/78 17-6

and in
system

AN61A

FSDCT

fsmap

For file system device configuration table. A paged data base containing
many global volume management parameters, and all bit maps.

Either the bit map of the volume map of a physical volume, or the bit map
in the FSDCT for that volume, when it is accepted.

fsmap tail
in the fsamp of a paging region that is not a multiple of 3210 pages, thel
bits of the last word of the fsmap that are not part of the valid portion
of the bit map. They must be zero.

function
A body of code that performs some particular action as part of the
operation of some subsystem. A function is used in this book to mean an
important internal interface. See service for comparison.

half lock
or-read lock

A data object that allows many processes
data object or data base, but does not
until no processes are performing any
second kind). A process performing the
process attempting to do the first
"multiple-reader one-writer" lock.

to perform certain actions upon a
let certain other actions begin
actions at all (either first or
second kind of action causes any

kind to wait. Also called

hardcore partition
A partition used for holding the pages of the supervisor. It is always on
the root physical volume (RPV).

hard core segment
A segment addressable in the hardcore address space of all processes. All
such segments are created via initialization.

hierarchy
A set of directories, segments, and volumes that describe each other
cornpletelY9 Normally each site maintains one hierarchy, although some
maintain others for development use. All unique IDs and PVT indices,
paging device information, etc., are valid only with respect to one
hierarchy.

higher
Of locks. See locking hierarchy.

"hot" buffer
A vtoce-part buffer, that although not out-of-service, is known to have
contents differing from disk. Hot vtoce-part buffers arise only as a
result of write errors, and must be flushed at demount time.

inhibit
Of a physical volume. To prevent segment (and VTOCE) creation upon that
volume, by the setting of a bit (pvte.vacating) in its PVTE. This can be
done via the inhibit_pv command, or the sweep_pv command.

initialization
The set of programs that run when Multics is bootloaded, until it is up to
command level. Initialization is re~ponsible for creating the supervisor
data bases, and building the hard core address space of all processes, among
other tasks.

instance

9118

Of the paging device. The paging device, and all of the pages that are and
have been on it, and its map, from the time its map is initialized to the
time it is shut down or the last record is flushed from it, whichever
happens first.

11-1 AN61A

interrupt side
Those programs in page
respond to the completion
only invoked on behalf
invoke it as well.

control that are called by storage system DIMs to
of an 1/0 operation. The interrupt side is not
of interrupts; "running" and other activity can

kernel
Of page control. The ALH programs in the main path of the page fault
handler.

known segment table (KST)

label

A per-process table describing the mapping between segment numbers in that
process and storage system segments. The segments are identified via
pointers to their branches (using other segment numbers in that process)
and unique IDs. The KST also contains a list of private logical volumes
attached to the process. The KST is a reverse-deciduous segment.

or volume label

live

The first Hultics record of a physical volume. It identifies the volume.
and gives parameters about its last use.

Said of a disk address.
disk and the data in it.

A disk address that represents a given
See nulled for comparison.

record of

loaded

lock

A process is loaded when its two critical process pages have been wired.
Processes are loaded by the traffic controller when they are made eligible.
Only loaded processes can actually run.

A data object used to serialize processes performing certain actions' and
using or modifying certain data bases. A process locks a lock before
performing these actions or using these data bases, and unlocks it when
done. Only one process may have a lock locked at one time. A process
trying to lock a lock that is locked by (or lQ) another process must wait
for that lock. Processes are also said to ~ locks when they have them
locked.

In Multics, locks are single words of storage that are zero when not locked
and contain the process ID of the process that has it locked when it is
locked. See protect.

locking hierarchy
A conceptual partial-ordering of a set of locks via the arbitrary relation
nhigher" (». If lock A >lock B f and lock B >lock C, then lock A >lock C.
There is no inverse, and two locks may be totally unrelated. The locking
hierarchy is used to prevent deadlock. The rule used by the Hultics
supervisor, states that no process may wait for the unlocking of a lock
unless that lock is higher than every lock it has locked (sometimes called
the "Bensoussan Algorithm").

logical volume
A set of physical volumes
the creation of segments.
volume lor a creation is
move automatically between

defined as a group, to which the user may direct
The choice of physical volumes with a logical
a dynamic choice of the system, and segments may
physical volumes of a logical volume.

logical volume table (LVT)

LVTE

A system data base (in the segment "lvt") that contains per-logical volume
parameters for each mounted logical volume, as needed by the hardcore.
Included in such information is access class, and the heads of a thread of
PVTEs of physical volumes belonging to that logical volume.

For logical volume table entry. See logical volume table (LVT).

17-8 AN61

machine conditions
A 40-word description of a processor state at the time of a fault or
interrupt. It contains the contents of all program-accessible registers,
the state of an aborted control unit cycle, and various other information.
To restart a set of machine conditions is to cause the processor to load
its registers from that machine state, and resume the interrupted program.

main memory
(formerly core)

The core or MOS memory device from which the processor normally fetches
instructions and data. All pages must be in main memory to be directly
used by the processor. See also core.

master directory
A directory whose quota is not derived from its parent, and cannot be
returned to it. Master directories are the only directories whose sons
logical volume can be different from that of the parent directory. The
setting of quota accounts on master directories, and the creation and
deletion of master directories, is controlled by master directory control
in ring 1.

migrate
To migrate a page to the paging device is to allocate a PD record for it,
and write it to that record. From then on, it will be read from that
record, until it is migrated off it.

mounted
1 • Of a physical volume. Being physically mounted, and having the PVT

entry for the drive on which it is mounted filled with parameters of
that pack (pvte.used will be on).

2. Of a logical volume. Having all of its physical volumes mounted (1),
and having an entry in the LVT.

multiplex wait protocol
The technique used by call-side page control to wait for a large number of
events in parallel; it involves the simplex wait protocol and waiting for
an arbitrary event.

multistep operation
An operation consisting of many unitary operations. See unitary operatione

nondeactivateable activation
. Same as semipermanent activation.

nondeciduous hardcore segment
A paged hardcore segment that is not deciduous. Such segments are not in
the storage system hierarchy, and thus have no pathnames.

Examples: bound_file_system, bound_system_faults.

not-yet-on-paging-device (nypd)

null

A pure page in main memory that has not yet been migrated to the paging
device. Such pages are important because their eviction requires migrating
them to the paging device.

An address that represents a record of any device, and a logical page
c¢ntent of zeros. A null address in a VTOCE is represented by having its
high-order bit on. In page control, it is represented by an "add_type" lof
zero. The low-order 17 bits of a null address contain a debugging code
that reflects the manner in which it was generated.

nulled
Of a disk address. One that represents a given record of disk, but a
logical content of zeros. Nulled addresses appear only in page control
data bases, never in VTOCEs. They may not be reported to VTOCE file maps.
See null and live.

17-9· AN61

oopv
For out of physical volume. A condition where no more free records exist
on a physical volume.

orphan
(Of a segment or its VTOCE.) A segment that has a VTOCE but no branch in
the storage system hierarchy. Orphans may result via certain actions of
the salvager or certain crashes. They can be located via the sweep_pv
command. See reverse connection failure.

out of service

pack

page

Undergoing I/O. Does nQ1 imply inaccessible.

A demountable unit of disk storage. Same as physical volume.

A 1024-word extent of data at a 1024-word boundary of some segment. Pages
belong to segments; they can' exist in main memory frames, or on disk
records or PD records or any combination of those.

page fault
An exception condition detected by the processor hardware (the appending
unit) when an attempt is made to use a PTW that specifies that some page of
some segment is not in main memory. This is indicated by the bit ptw.df
being off. This causes the unconditional execution of a specific fault
vector that effects a transfer to the page fault handler.

paging region
That extent of a physical volume described by the volume map, in which all
records described in VTOCEs reside.

page table
The array of PTWs that specifies the mapping between addresses in a segment
and either main memory frames or page faults. The page table of a segment
is part of the ASTE; only active segments have page tables. The SDW of a
segment (a paged segment) contains the absolute address of its page table.

paging device (PD)
An optional storage device from which pages are read
memory, on which copies of disk pages are maintained
Only a bulk store subsystem can currently be used as
bulk store.

and written from main
for faster access.

a paging device. See

paging device map
or PD map
or PDMAP

A page control data base in the SST
for each record of paging device.
See Section VI for its layout.

that contains a four-word entry (PDME)
It is protected by the page table lock.

parasite
A segment residing on a physical volume that has no VTOCE (e.g., descriptor
segments on the RPV). All such segments are currently on the RPV. Their
existence implies the need for a "short RPVS" in the case of a crash.

partition

PD

A region (extent) of a physicaL volume, other than the VTOe and label area,
used for some other purpose than pages of storage system segments.

See paging device.

PD flush
The software that runs in subsequent bootloads after a fatal crash which
repatriates pages on an unflushed paging device to their disk records.

17-10 AN61

PDS
For process data segment. A per-process (reverse-deciduous) hardcore
segment that contains all per-process information needed by a process other
than that describing its segment number to segment mapping. The first page
of the PDS of a loaded process is wired. See KST.

PD used list
A used list of paging device map entries (PDMEs), describing the order of
recency of use of paging device records.

peripheral service
A service of a subsystem highly removed from the main path and procedures,
that may only call very high-level interfaces of that subsystem. See basic
service and auxiliary service.

permanent attributes
or permanent information

Those attributes of a segment, stored in the third vtoce-part of its VTOCE,
that are rarely read or changed. Examples: UID pathname, date-time VTOCE
created. See activation information.

perm wired
1. Permanently (i.e., since bootload) wired. See wired.

2-0 Sometimes used to mean unpaged, since such segments, indeed, cannot be
removed from main memo~y in any way. See "temp wired."

physical volume
Same as pack. A (usually) detachable storage medium of disk storage,
containing entire segments, and a VTOe containing VTOCEs describing these
segments. Each segment resides wholly on one physical volume. Each
physical volume belongs to one and only one logical volume.

physical volume table (PVT)
A wired table of entries (PVTEs) describing almost all of the per-pack
parameters for mounted packs. Ther.e is information here for page. control,
segment _control, and volume management. The bit map for the pack"and
per-logical-volume information is not stored bere.

port logic

post

That portion of the 68/80 processor that selects system controllers,
transfers commands and addresses to them, and receives data and
notification from them. The port logic receives data from the processor,
-but addresses only from the appending unit. It contains the cache as well.

. To post an I/O operation that was initiated by page control is to perform
those actions taken by the interrupt side when told of the completion of
this action by - the appropriate DIM. Posting operations mayor may not
involve notification.

post-crash PD flush
See PD flush.

private
A logical volume is private if it was registered with this attribute. A
private logical volume must be explicitly attached- by any process that
wishes to use segments on it; this is done conditionally depending upon the
ACS of that volume.

preacceptance
The actions taken in initialization to use the partitions,
hardcore partition, on the RPV, before the RPV has
Preacceptance of the RPV is performed by init_pvt.

17-11

including the
been accepted.

AN61

prewithdraw
To assign a
segment is
first use.
make_sdw.

disk record address to a page of a segment at the time the
created, or at a given explicit time, as opposed to time of

All supervisor segments have their pages prewithdrawn by

preseek
An action taken by the main memory replacement algorithm to find a page
frame to claim. It "looks ahead" for a usable page, postponing writing
(see "writebehind") for later.

private
Of a logical volume. One to which access by users is restricted to those
specified by the ACL of the ACS for that volume. Users wishing to use
segments on private logical volumes must explicitly attach them. See
public.

protect
A lock protects a data base or data objects, and/or operations on it, if
such operations on that object or data base cannot be undertaken unless the
process attempting to do so has the lock locked. For instance, the AST
lock protects deactivations.

pseudoclock

PTW

A counter that is incremented every time an event occurs. Via appropriate
protocols, an old value of a pseudoclock may be saved, and compared with a
new value, an equal comparison implying that no occurrences of the event
have happened.

For page table word. A processor hardware control word, an element of a
page table, that specifies either a main memory frame address or that the
processor should take a page fault when attempting to use this PTW.

PTW-level abs-seg
An abs-seg implemented via a page table; the SDW for this segment number
describes that page table, and the PTW contents and PVT index in the ASTE
are varied to describe the extent of disk or bulk store being addressed.

public

pure

Of a logical volume. One on which access to segments is restricted solely
by the ACLs on the segments. See private.

or purify
A pure page is one that has a good (i.e., identical) copy on secondary
storage or the paging device. To purify a page is to write it out so that
this is so.

PV hold table
or PVT hold table

PVT

PVTE

quota

A table of half-locks, protecting nonunitary VTOC operations against the
physical volume demounter. Also used to schedule salvages if crawl outs
occurred with a volume "held" (half-locked).

See physical volume table.

For physical volume table entry. See physical volume table.

An administrative limit on disk record consumption. The quota of a
directory is the maximum number of nonzero or in-main-memory pages allowed
to be created for segments charged to the quota account of that directory.

17-12 AN61

quota account
A data structure associated with a directory (in the VTOCE and/or ASTE of
that directory) that allows segments inferior (not necessarily immediately
inferior) to that directory to have their record consumption charged
against a single pool. See quota.

quota cell
The information in an ASTE or VTOCE for a directory with a quota account
that describes the quota limits and records currently charged against that
quota account.

read-write sequence (RWS)
A sequence of operations by means of which the copy of a page on the paging
device is written back to a record of disk. This is only performed for
pages for which the paging device copy is different than the disk copy. An
RWS consists of allocation of a main memory frame, reading in the page from
bulk store, and writing it to disk, freeing the frame when done.

record
1 • (Disk record) A 1024-word, contiguous extent of disk that can hold a

copy of a page.

2. (PD record) A 1024-word, contiguous extent of paging device that can
hold a copy of a page.

repatriation
The act of locating the segment to which pages "trapped" on an unflushed
paging device belong, and writing these pages back to the appropriate disk
record. Performed by the post-crash PD flush.

residue
The data left over in a record of disk or bulk store or a frame of main
memory after a given pag6 no longer resides there. It is impossible' to
read residues.

resource control package (RCP)
Multics subsystem (running in ring 1) that controls and mediates access to
peripheral devices. Rep also controls the attachment (see attached) of
private logical volumes to user processesa

resurrection
The act of converting a nulled address into a live address, which allows it
to be reported to a VTOCE file map. See nulled .. Resurrection is performed

·upon the successful completion of a write, double write, or RWS.

reused address
A disk address simultaneously in use by two different pages. Such a
situation is theoretically impossible. See unprotected address.

reverse connection failure
A situation that exists when a VTOCE describes a segment, but no branch in
any directory in the storage system describes that VTOCE (or therefore that
segment). Such a segment is said to be an orphan. See connection failure.

reverse-deciduous

RLV

A segment in the storage system hierarchy that is placed into the hardcore
address space of some or all processes via semipermanent activation.
Examples are the PDS of any process except the initializer and
>online_salvager_output. See deciduous.

See root logical volume.

root logical volume (RLV)
The logical volume, which contains the RPV, on which all directories exist.
It is the only logical volume necessary for system,operation.

17-13' AN61

root physical volume (RPV)

RPV

The disk, residing on the drive pointed to by the root config card, on
which the root directory (» and the hardcore partition (in which the
supervisor resides) exist. It is a member of the root logical volume.

See root physical volume.

RPV-only directory

RPVS

run

RWS

A directory, whose sons logical volume is the RLV, whose inferior segments
and directories may only be placed on the RPV. The root is such a
directory, as is >lv.

BOS keyword for root physical volume salvage. A volume salvage of the root
physical volume (RPV), that is performed by the system during
initialization when necessary or requested. Most cases of RPVS also
involve some automatic directory salvaging. See short RPVS.

Said of disks, the bulk store, or their DIMs. To call the appropriate
hardware interface modules for a device, and see if operations have
completed, invoking the interrupt side of page control when this has
happened. One can "run" a device in a loop until an arbitrary number of
operations or an arbitrary operation has completed. Simulates an
interrupt, in effect.

See read-write sequence.

RWS abort

scrap

SDW

The action taken by the page fault handler when a page fault is taken on a
page from which an RWS is in progress. When the RWS is posted as complete,
the page fault will be resolved by the interrupt side of page control.

Of paging device records on an unflushed paging device. To cause the
system to ignore the contents of such records, forgetting the fact that
they are unflushed and in need of repatriation.

For segment descriptor word. A hardware control word, an element of the
descriptor segment, that gives the absolute address of an unpaged segment,
or the absolute address of the page table of a paged one. The SDW also
contains access mode and ring brackets, as well as other information. The
SDW can also specify taking a "segment fault."

SDW-level abs-seg
An abs-seg implemented as a variable SDW slot; various SDWs either
describing main memory or page tables are inserted in that slot to describe
the main memory extent or segment to be addressed.

secondary storage
Permanent storage as opposed to the paging device. Interchangeable, in
most contexts, with "disk."

segment fault ,
An exception condition detected by the processor (the appending unit), when
an attempt is made to use an SDW that describes a segment not yet connected
to the process in whose descriptor segment the SDW appears. This ds
indicated by the bit sdw.df being off. A segment fault causes a specific
fault vector to be unconditionally executed, ultimately invoking the
segment fault handler.

semipermanent activation
Activating a segment in such a way that it will remain active even after
the AS! is unlocked. This is performed by the program grab_aste j and is
done by turning on the bit aste.ehs, the "entry hold switch."

17-14- AN61

service
An action performed by a subsystem on behalf of some other subsystem, a
class of action so provided. The services performed by a subsystem are its
reason for existence. See function for comparison.

setfaults
An operation performed by the procedure of the same name, at the time a
segment is deactivated or its access attributes are changed. This
operation modifies or faults all of the SDWs for a given segment, located
via the trailer list. The associative memories of all processors are
always cleared as the last step of a setfault.

short RPVS
A root physical volume salvage (see RPVS) performed automatically upon
bootload after a successful emergency shutdown. It is called "short"
because no directory salvaging of any kind is performed in this case.

simplex wait protocol
The technique used by the page-fault handler and the multiplex wait
protocol to await the occurrence of a page control event. This technique
involves the assumption that the "occurrence" of the event may not have
happened when indicated, and the status of the operation being performed
having to be reevaluated.

sons logical volume

SST

Of a directory. The logica~ volume on which all segments created inferior
to this directory will reside. A directory inherits its sons logical
volume from its parent unless it is a master directory.

For system segment table. A supervisor segment (sst_seg) that contains
almost all page control data bases, all AST entries, and many meters. It
is contiguous in main memory (unpaged), as it contains page tables used' by
the hardware. See core map, PD map and AST.

temp wired
1. Temporarily wired., via calls to the wiring interfaces (pc_w.ired) .in

page control.

2.

trailer

Sometimes used to mean paged and wired, as opposed to unpaged $

perm wired.
See

·An entry in the system trailer segment (str_seg) attesting to the fact that
a process has an SDW for a given active segment. Each active segment
possesses a trailer liAiof such processes. The trailer identifies the
process via the AST offset of its descriptor segment's ASTE, and contains
the segment number of the segment in that process. See setfaults.

trickle
See AST trickle.

unflushed
Said of the paging device, or an instance thereof. Containing pages from a
previous bootload, that are in need of repatriation. See active for
comparison. No new pages are migrated to an unflushed paging device, and
the system will not come up if it has one.

unique' ID (UlD)
A 36-b1t number assigned to a segment at the time it is created. It .is
different from any other UlD for any other segment in that hierarchy. It
is stored in the VTOCE, ASTE, (STE, and branch for a segment, and must
match for all of these objects. UlDs are also stored on the paging device
to facilitate repatriation.

17-15- AN61

unitary
or atomic operation

An operation performed upon a data base or data object by a process, in
such a way that no other process attempting to perform or succeeding in
performing the same or other operations upon that data base can affect the
operation being performed in any way.

unprotected address
A disk address in use by some page of some segment that is not marked as in
use in the bit map for that volume. Such a situation is theoretically
impossible.

used list
See PD used list, AST used list, and core used list.

"Used lists" in Multics are circular, double-threaded lists of similar
objects, containing both free and in-use objects. All of the free objects
are maintained at the head of the list.

Used lists generally implement replacement algorithms, with the entries at
the head of the list that are not free the most likely candidates for
replacement.

vacate
1 . Of a physical volume. To drive all of the segments on a physical

volume onto some other physical volUme in that logical volume. Done
by the sweep_pv command.

2. Of a main memory frame or PD record. To evict any page from that
frame or record, such that the frame or record becomes free.

volume header
The first eight records of a physical volume, containing the label~ the
volume map, the VTOC header, and the bad track list.

volume map

VTOC

VTOCE

A data base in the volume header of a physical volume that describes the
paging region of that volume, and includes a bit map telling which records
are in use.

For volume table of contents. An array of entries (VTOCEs) describing each
segment on a physical volume. The VTOC occupies a fixed, contiguous extent
at the beginning of a physical volume.

For VTOe entry. A disk-resident data object that describes one segment on
the physical volume on which it appears; this description includes record
addresses and other attributes.

VTOC header
A data base in the volume header of a physical volume, that tells the
extent of the VTOC, and contains the head of the free VTOCEthread.

vtoce-parts

wire

wired

One of the three physical 64-word parts of a VTOCE. The first vtoce-part
contains the activation information, the third the permanent information.
The file map is in all three.

Of a page or segment. To make that page or segment wired.

1 •

2.

Of a page@ A page that may not be removed from main memory. The bit
ptw.wired tells page control not to replace this page.

Of a segment. A segment having some or all
also aba-wired.

17-16

wired. See

AN61

withdraw
To withdraw an address from the free pool of records of a given physical
volume (bit map) is to request an unused record and mark it as used,
obtaining the address of that record. (Also said "address withdrawn
against a given bit map.") See bit map and deposit.

writebehind
A feature of the main memory page replacement algorithm whereby the basic
path of the algorithm skips (see preseek) writing, and this writing is done
later (at the end of page fault processing).

17-t7- AN61

APPENDIX A

CHANGES FOR MR 6.0

This appendix describes storage system implementation details that are
markedly different in Multics Software Release 6.0 from descriptions found
elsewhere in this manual. Areas affected, and described in this appendix, are:

1. prewithdrawing policy
2. per-process hard core segment policy
3. volume dumper support
4. page posting queue
5. page control traffic control interface
6. page control consistency strategy
7. page control error strategy
8. large volume map space
9. damaged segments

10. quota validator
11. support of hierarchy salvager
12. limited update backlog
13. partial shutdown

PREWITHDRAWING POLICY

The algorithm given in Section IV under "PDS and KST Management" for
prewithdrawing segments is incorrect. Step 4, if it causes a segment move,
causes all the prewithdrawn addresses to be deposited during the segment move.
Instead of the conjunction of bits aste.dnzp and aste.ehs indicating "don't
deposit nulled pages" (5.0 policy), a new bit, aste.ddnp, indicates precisely
this. This bit inhibits reporting of nulled addresses for de~osition in
pc$get_file_map and pc$list_deposited_add. Thus, segments with this bit on in
the ASTE do not get nulled addresses reported to segment control, even after
truncation. What is more, the segment mover copies this bit into the new ASTE
of a segment move before copying the data. Since nulled pages have disk
addresses at the time the segment mover attempts to copy the data, it copies,
and thus prewithdraws, nulled pages against the new segment, exactly as desired.

The bit aste.ddnp is seen by the AST replacement algorithm as an entry-hold
switch; it is metered against steps-ehs. Thus, no segment with this bit on can
be deactivated. However, it can be segment moved, and its ddnp-quality
preserved. Thus ddnp implies that the segment ought not to be deactivated
because of the prewithdrawn quality of its addresses, as opposed to someone
sequestering the page table address, which is the normal reason for setting an
entry-hold switch.

When ddnp segments are released from the entry-hold state, the ddnp switch
is turned off so that addresses of the segments may be reported and deposited
after truncation.

Notice that ddnp ooes not imply dnzp or vice versa; segments with
prewithdrawn addresses can benefit perfectly well from not having zero pages
written out/read in, but just created in place.

9/78 A-1 AN61A

The entries grab_aste$prewithdraw and grab_aste$release_prewithdraw are
used to prewithdraw segments (turning on ddnp) and turn off ddnp. In fact, the
existence of ddnp simplifies grab_aste radically. This routine now uses this bit
(turning it on only to turn it off later, if not the $prewithdraw entry) to
force a segment into a sufficiently large ASTE. The algorithm given in
Section IV under "Semi-Permanent Activation" is no longer necessary. By turning
on aste.ddnp, and touching the needed page, without storing into it, grab_aste
can be sure that the segment cannot be deactivated as long as aste.ddnp is on.
When a boundsfault occurs, boundfault moves the page's PTW as well as the bit
aste.ddnp, causing the page not to go away until the bit is turned off.

PER-PROCESS HARDCORE SEGMENT POLICY

The descriptor segment of a process is now a reverse-deciduous segment. So
are all PRDSs, except the bootload-time PRDS, which is deciduous. This has the
effect of eliminating parasitic segments (see Section VII, "RPV Parasite
Segments") for all cases except scratch segments used by the volume salvager and
disk rebuilder. Thus, in release 6.0, descriptor segments appear in the
hierarchy, in the process directory. They are prewithdrawn as are PDSs, as
described in "PDS and KST Management" in Section IV.

The motivation for dOing this
RPVS" performed automatically after a
RPVS (see Section VII) was engendered
but neither deposited nor reported to
shutdown time.

was to eliminate the need for the "short
successful ESD. The need for the short

by addresses withdrawn from a volume map
a VTOCE (for deletion by normal means) at

Thus, the pages occupied by descriptor segments at the time of a successful
emergency shutdown are deposited when the old PDD is deleted by delete_old_pdds.
This places descriptor segments on any packs where process directories go, as
opposed to constraining them to the RPV. Although this has the effect of
diluting the 1/0 load of the RPV, this subjects segment ,control (setfaults in
particular) to the vagaries of many disks.

In release 6.0, therefore, there is no "short rpvs". The volume salvager
and the disk rebuilder use the PV hold table (See Section XIV) to cause full
volume salvaging of the RPV if the system should crash while their parasitic
temporal~y segments are in use.

PRDSs for all configured CPUs are created and entry-held (and prewithdrawn)
for all configured processors at bootload time, by tc_init.

The program "plm", which was used to create parasitic segments,
exists. Descriptor segment initialization logic was moved into
creator of processes.

VULUME DUMPER SUPPORT

no longer
act_proc,

Unlike hierarchy backup, the new volume backup facility is an integral part
of the supervisor. Volume backup accesses segments directly via their VTOCEs,
avoiding the overhead of scanning directories to seek out and initiate these
segments. There are several important facilities of the volume dumper in
segment control, and several important ramifications of its existence.

The volume dumper maintains in the label area of each pack (see
Section XIII in the "VTOC HEADER" records, #4 and 5), a bit map of segments that
have been modified since dumped. When a volume is accepted, load_vol_map causes

9/78 A-2 AN61 A

(via the program dbm_man) a region
segment dbm_seg to contain this map.
the PVTE for the volume. When the
the "dumper bit map".

to be allocated in the global hardcore
It is read in, and a pointer to it left in

label of the volume is written back, so is

When the volume is in use, all primitives that modify or detect
modification to a segment or a VTOCE (notab~y pc$get_file_map, truncate_vtoce,
create_vtoce, and delete_vtoce) call an entry in dbm_man to set the bit
cOI~responding to that VTaC index (the dumper bit map is indexed by VTaC index).

Like record address depositing, setting dumper bit map bits is an operation
that must be protected from volume demounting in the window after segment
modification has been noted. Thus, the demount protection brackets (described
in Section XIV under "Demount Protection") protect dumper bit map setting as
we~.l. Since this is now done in create_vtoce, this program now uses the demount
protection-bracket mechanism where it did not before, and thus the unitary
quality of vtoc_man$alloc_and_put_vtoce is no longer necessary.

The incremental volume dumper scans the dumper bit map to locate segments
to be dumped, turning off the bit once they have been dumped. The volume dumper
dumps segments and directories in the same way: it dumps binary images. (The
vo~ume dumper does, however, lock directories by UID--anonymously, i.e., no
po:~nter--when dumping them, in order to get a consistent copy of the binary
object, i.e., no one should be modifying it.)

The volume dumper (incremental, consolidated, or complete) accesses
segments via a special entry to "activate", which activates a segment given its
PV:D and VTOe index, without its branch. This "parentless activation" is
pel~formed only for the volume dumper. When the volume dumper wishes to activate
a segment for dumping, activate first hashes it into the AST (as for any
activation) to see if it is already active, and returns the AST entry pOinter if
it is active. When activate so does, it turns on the "dumper in use switch"
(aste.dius) to prevent any other ~rocess from deactivating the segment (get_aste
knows to skip such segments). If the segment is not active, activate activates
it again setting aste.dius. Any other attempt to activate this segment finds
th~.s ASTE, as it is hashed in normally. The bit aste.dius is not turned off
until the dumper is finished. When parentless activation is accomplished for
the volume dumper, quota checking is suppressed (aste.nqsw turned on) so that
page control does not chase up a nonexistent parent pointer.

When the dumper finishes dumping a segment, it must deactivate it if it
acti va ted· it, and the segment has not yet acquired a parent pOinter.

The dumper uses the hardcore segment number of "backup_abs_seg" to
construct abs-segs to reference the segments it activates by the above means.
It puts itself on the trailer of the segment (see "Trailers and Setfaults" in
Section II), such that if the segment is deleted while the dumper is dumping it,
the dumper takes a fault, and cleans up. The various entries in trailer
management are cognizant of the possibility of a trailer with a hardcore segment
number for this purpose.

The volume retriever operates by using the standard VTaCE/segment creation
primitive (create_vtoce) to create new segments, creating the VTOCE and segment
for an extant branch if there is one (forward connection failure). If a VTOCE
(and thus segment) already exists for a segment being retrieved, it simply
copies the new data into it. Directory contents are merged (see the program
retv_copy) in ring zero. When the volume retriever is called upon to retrieve a
segment whose branch does not exist, a special entry in directory control's
"append" primitive is called upon to create a branch from saved binary
information, as opposed to user-supplied symbolic data, without regard to access
checks. In this case, the VTOCE/segment being retrieved is connected to this
branch.

9/78 A-3 AN61 A

The volume reloader is not part of the supervisor; it constructs complete
physical volumes from volume backup tapes, placing VTOCEs and segment contents
on it as appropriate. It uses user-ring disk I/O, and works on volumes not now
in use by the storage system.

The segment adopter, and the -adopt option to sweep_pv construct a
directory branch for a segment whose VTOCE is extant, but has no branch. As
such, it is not part of segment control. The primitive u~ed by both is the same
entry to directory control's append primitive used by the volume reloader to
construct a branch for an item whose VTOCE (and actual data) it is retrieving.

PAGE POSTING QUEUE

Page control posting strategy (see "I/O Posting" in Section VIII) has been
modified to make it no longer necessary for the disk DIM interrupt side to
loop-lock the global page table lock. On multi-cpu systems, where the disk DIM
interrupt side (on a real interrupt, as opposed to a run) can find the page
table lock locked, this loop locking consumed a substantial share of system
resources prior to release 6.0.

The solution to this problem was to construct a queue of coreadd/errcode
(the parameters to page control supplied by the disk DIM in a posting caLl)
pairs that the disk DIM wanted to report to page control, but rather would n()t,
because the page table lock was locked at the time. Any program at all that
unlocks the page table lock is responsible for checking out this queue, and
calling page$done_ (see Section VIII) with each coreadd/errcode pair in it.

This queue is called the "disk posting delay queue", or the "coreadd
queue", due to its content, and resi4es in the segment "disk_post_queue_seg".
The locking policies involved make sure that everything that is put in the deLay
queue is processed as soon as possible, and that no requests are lost are qUlte
involved, and are further described below. The maintenance of the delay queue
is all per-formed in the program core_queue_man, in bound_page_control.

The locking policy of the coreadd queue may be expressed as follows: The
coreadd queue has a lock on it (in disk_post_queue_seg), which must be
loop-locked. This lock is higher than the page table lock (see "Locking
Hierarchj~ in ~he glossary). Absolutely no lock-looping is performed with ~he
ccreadd queue locked (i.e., no lock is higher than the coreadd queue lock). '[he
only cude in the entire system (during normal operation, i.e., not ESD) wh.lch
unlocks the page table lock is in core_queue_man, and does so only while ·~he
coreadd queue is locked. Thus, before actually unlocking the page table lock, a
potential unlocker of the page table lock is in a position to inspect ~he
coreadd queue. If the queue is empty, the page table lock can be unlocked and
then the coreadd queue lock can be unlocked. If there are posting requests in
the coreadd queue, the first one must be taken out, the coreadd queue unloc{ed
(the page table lock is still locked), and call page$done_ while the page table
lock is still locked, to perform the posting. It is then necessary to try again
to unlock the page table lock, starting by locking the coreadd queue lo(~k.

Among the unlockers of the page table lock are page$done, called by the disk)IM
interrupt side, in the case where it did not initially find the page table l()ck
locked (i.e.: could lock it), and has called page$done_. An attempt must be
made to lock the page table lock before the coreadd queue is unlocked whe'1 a
process has locked it to queue a request for posting there; otherwise, the
request might stay forever in the coreadd queue if the page table lock ind~ed
became unlocked between the time the interrupt side found it locked and the time
the interrupt side locked the coreadd queue lock (once the coreadd queue lock is
locked, the page table lock cannot be unlocked except by the process which has
it locked). If the attempt to lock the page table lock is successful, all
postings must be done by this process. If not, the process can rest assured
that whoever has it locked is going to have to unlock itj and can't possibly
unlock it until the current process unlocks the coreadd queue lock, which it has

9/7d A-4 AN61A

locked, and thus, that other process will find the request just queued as soon
as it unlocks the page table lock.

The coreadd queue must be processed at "run" time, and flushed at ESD time
as well.

See core_queue_man.alm for more information.

9/78 A-5 AN61A

LEGEND:
There arB two entry poinU, DIM POST and UNLOCK PTL
Locking notation is el follows:

T~~~:H"
succeeded

Unlock a lock

A SYMBOLS USED ARE:
POST PARMS P ,C PTL end COL both locked

p,IIC z PTL locked, COL not locked
IIp,C PTL not locked, COL locked
lip ,IIC neither PTL nor COL locked
PTL page table lock
COL coreedd queue lock
OE coreBdd queue entry
DONE (A) = real oostil;l9 routine
A Set of posting parameters koreadd, errcode)
COL is locked in the region outlined by _ , __

DONE (A)

P,"c

" ", , , , , , , ,
41'

----..

"p,e

..... ,
" , , , ,

(queue overflows) I
I

I
I ,

~- "p"e ~. I '
, I 1',

1'-"1 h' I i I ~.

ii' ~p,e I
i 0" I I? P, e succeed I
: Ii

i(~ ,p,e'/
II 1 "
\: p,e /b~QL ,-'
II p,e " IIp,lIe

, , ,
I I ~ ~

(pre·MR6.0
page tabie ioop iock',

p." C succeed

I I \~~ ~E ,,/" ~
I I '-- --' \CALLERJ I, .. ------- '---../
I

Figure A-I. Coreadd Queue Locking

91'70 A-6 AN61A

PAGE CONTROL TRAFFIC CONTROL INTERFACE

The implementation of the disk posting queue involved cleanup in page table
locking and unlocking. The unlocking of the page table lock under protection of
the traffic controller lock (Section VIII under "Stack Management and Interface
with the Traffic Controller") is no longer done. In release 6.0, page control
unlocks the page table lock before the traffic controller lock is locked, when
going to wait. Taking advantage of some features of the new lockless scheduler,
page control does a standard "addevent" when it is going to branch to the
traffic controller, storing a wait event (which it knows has not yet been
notified, this decision made under the protection of the page table lock, under
which all page control notifies are done) in the APT entry of the waiting
process. If the traffic controller finds, under the traffic control lock, that
this event has been notified (become zero), the traffic controller returns to
page control to restart the fault or call side opera~ion.

These changes allowed a new mechanism for waiting for the page table lock
from the call side to be implemented. When the call side of page control
attempts to lock the page table lock (in device_control.alm), a branch is taken
to the traffic controller for page-table lock waiting if it cannot be locked.
By the identity of the entry point called, as encoded in the value of
pds$pc_call (as for waiting for paging events), the traffic controller returns
to device_control$dvctl_retry_ptlwait to reattempt to lock the page table lock
when it has become unlocked.

Thus, the only times that the page table lock is looped on are at
process-loading time, and if the coreadd queue is full.

Page control no longer uses regular traffic-control waiting for the page
table lock; a special traffic controller state is used exclusively for this type
of waiting. Also, traffic control returns to a point in the page fault handler
instead of restarting a page fault when ptlocking-waiting is complete, in order
to avoid the fault overhead. This relies on the fact that the page fault data
stored in the PDS cannot have possibly changed since the page fault was taken.

Traffic control no longer needs to validate page control events under the
traffic control lock (described in Section VIII under "Global Page Lock"). The
above interface wherein page control stores wait events directly in the APT
entry of a waiting process (even during the process loading function) obviates
the need for this validation. If an event becomes invalid, a notify clears it
out of all APT entries.

PAGE CONTROL CONSISTENCY

Until release 6.0, emergency shutdown (ESD) has been a fairly risky
proposition, because of the unknown state of page control data bases at the time
the system crashed. Whether or not the system crashed in page control j or
because of some problem detected in page control, there was not (and is not now)
anything to prevent the system from crashi~g when some CPU was in page control
or the disk or bulk store DIM. This is critical because ESD relies on the
correct functioning of page control, not only to write out pages of segments,
but to support the virtual memory in which much of ESD runs. The assumption
that page control could be used reliably after a crash was therefore not always
valid: inconsistently threaded data objects could often cause faults to be
taken, and I/O requests in the process of being queued or posted often get lost,
causing the system to hang indefinitely awaiting their completion. At worst,
these inconsistencies led to misrouting of data, and most often to failure of
emergency shutdown in one way or ~nother, with all concomitant grief.

9/78 A-7 AN61A

Thus, all data and state manipulation in page control was redesigned c,nd
reimplemented to make the following statements true at every point (at all
times):

1. If page control is interrupted at this point, a procedure running at
ESD time can compute distinctly, fully deterministically, a valid
state of the entire data base of page control, reflecting its state
either before or after a database change that was interrupted
completed or would have completed.

2. If page control (or the disk or bulk store DIM) is interrupted at this
point by a system crash, a procedure running at ESD time can
regenerate any 1/0 that was queued, in progress, or in the process of
being queued, posted, or performed, without fear of the original ::/0
ever being posted.

The "procedure running at ESD time" is pc_recover_sst in
bound_page_control, also well worth time reading. This procedure places the
entire page control data base (the SST) in a consistent state before any paging
or page control operations are attempted by ESD.

The fundamental truth that allows this technique to operate is that very
little of page control is actually changing the data base, or therefore, the
state of page control. Most of page control is making decisions, and call:Lng
subroutines. It is only at the very lowest level, almost entirely in ALM page
control that the data base is changed. Most of PL/I page control is simply
making decisions and mapping the actions of ALM page control over segments.
Thus, in order to recompute the consistent state of interrupted page control, we
need not know what decisions were being made, or what segment-wide operations
were being performed. All low-level page control operations involve only one
page of one segment; when one page replaces another in memory, this is rea:_Iy
two operations: an eviction and a paging-in. Between the two operations, the
main memory frame is distinctly free. During the eviction, or during the pag:.ng
in, the page under consideration is either in main memory or not: there is no
inconsistency involving two pages. Other page control operations are comparably
defined. .

Typical of the operations under consideration that may be interrupted and
must have their state recomputed are:

1. Binding a page of a segment to main memory (paging-in),
2. Unbinding them (evicti~n),
3. Binding a frame of PD .. 0 a page of a sf~ment (PD Migration),
4. RWS initiation,
5. RWS completion, and
6. Unbinding a page from a PD record, either at RWS completion time or

during PD Housekeeping.

Each of these operations involves the establishment or revocation of
bindings between at most one page of one segment, one main memory frame, and one
PD record. As a matter of fact, each such operation consists of ~he
establishment or revocation of at most one (usually bilateral) binding. Each
such bilateral binding is usually two values that designate each other. For
instance, the binding between a page of a segment and a page of main memory is
expressed by the fact that a PTW has a main-memory type address in it,
designating a CME that has the address of the PTW in it. The binding between a
page of a segment and a record of paging device (PD) is expressed by the page of
the segment (PTW pointer) being in the PD map entry, and the PD address being in
either the PTW or CME, depending on whether or not the page is in main memo;~y.
During a Read-Write Sequence (RWS), a similar bilateral binding between a PD
record and a main memory frame exists in crossing pointers in the CME and PJME
involved. Therefore, the establishment or revocation of any binding involv'~s,
in essence, the setup of two (perhaps conceptual) pOinters. Bindings of objects
are never changed (except in one case in evict_page, which is quite special)

9/78 A-8 AN61A

from "bound to this" to "bound to that", but only fr6m "free" to "bound to this"
or vice versa. Thus, every page control object can be viewed as "bound to
something" or free at any instant, by looking at some critical pointer or field
in it. For instance, if a CME has a nonzero cme.ptwp (or mcme.pdmep), it may be
considered to be bound to that page of a segment (or PDMAP entry during an RWS),
or else none. If a PTW has a main-memory type devadd in it, then that page is
bound to that frame of main memory, or else none. The presence of a PD-type
devadd in a PTW or CME (which itself is bound to some page (PTW») says that that
page is bound to that PD record, or else none. The presence of pdme.used in a
PDMAP entry says that that PD record is bound to the page whose PTW is
designated by pdme.ptwp, or else none.

Thus, certain critical fields determine distinctly, at any real time
instant, whether or not a given object is bound to some other kind of object
(and if so, which one). Before an object is marked a bound to some other
object, all other fields except the critical field are filled in to their final
values. If page control is interrupted before the critical field is filled in,
pc_recover_sst finds the critical field not filled in (usually zero, see last
par'agraph), and the noncritical fields are essentially garbage; the binding is
considered not to have started at all. If the critical field is found filled
in, all other fields must be valid, and the binding was entirely complete.

The problem is therefore reduced to consistency between halves of a
bilateral binding. This is accomplished by simply stating an order in which
halves of bilateral binding are accomplished, the unbinding being accomplished
in the opposite order. Thus, if pc_recover_sst finds two valid bindings, which
are halves of a bilateral binding, the entire bilateral binding must be
complete. If it finds one half of such a binding complete (after determining
cOffipleteness by the rules of the last paragraph), it can either complete the
binding or complete the unbinding, without regard to whether a binding or
unbinding was in progress at the time page control was interrupted.

9/78

The following rules govern the establishment of bilateral bindings:

Pages to main memory frames, and vice versa:
when binding (reading-in), first bind the CME to the PTW, then change
the PTW to designate main memory. When evicting, do the opposite.

Pages to PD records, and vice versa:
When binding (PD migrating--always happens when page in main memory),
first bind the PDME to the PTW, and then change the CME to the PDME.
When performing PD eViction, either at the completion of an RWS or a
pure eviction during PD housekeep, do the opposite (i.e., first change
the PTW or CME, then free the PDME). At all of these times
(migration, RWS complete, pure eviction, and in-core PD eviction in
pc.pI1) the copy of the page on disk or in main memory is, or is the
same as, the most recent.

PD records to main memory frames, and vice versa (during RWS):
First bind the PDME to the CME, and then the CME to the PDME. At RWS
complete time, do the opposite.

A-9 AN61A

The handling of 1/0 in progress at the time of the crash is made trivial by
the action of page$esd_reset, which calls entries in the disk DIM and the Bulk
store DIM to throwaway the entire contents of their queues, and reinitialize
their data bases. Thus, any page that is seen as out-of-service by
pc_recover_sst may be simply evicted if it was a read in progress, knowing that
the read is not actually in progress (the system crashed), and is not posted
(the queues are flushed). If a write was going on, the modified bit is turned
back on when this is done, because the action of initiating the write caused the
modified bit to be turned off by write_page (the latter knowing that the page
would be written). The modified bit is not turned back on, however, a page that
is being updated as pure ("nypd write") to the paging device. The bit
cme.pd_upflag, reclaimed for this purpose, indicates during a write that this is
the case.

The routine pc_recover_sst can tell if the above rules have been violated,
due either to bug, processor or memory malfunction, or damage to the page
control data base by other parts of the operating system. Even in this case, it
attempts to make the page control data bases consistent so that ESD can succeed.
When such unexplained damage (i.e., inconsistency that cannot happen by virtue
of the above rules) is detected, segments are marked as damaged and involved
pages zeroed where appropriate.

The flushing of DIM queues at ESD time substantially simplifies the ESD
strategy of the VTOC manager (see Section III, "ESD Strategy"). The VTOC
manager can now decide distinctly that no IIOs queued before the crash are ever
going to be posted. The bit b.ioq is now superfluous.

PAGE CONTROL ERROR POLICY

Release 6.0 makes radical changes to the handling of disk errors as
detected by page control. First of all, errors are not reported to the operator
console or the syserr log unless a"page is actually damaged. The disk DIM has
already reported all device error information for any 1/0 operation involved. A
differentiation is made between device errors that affect a particular record
gone bad, and those that are an indication of a device problem. In the latter
case, it is almost always true that the operator can re-ready the device, or it
will re-ready itself, or some nonautomatic remedial action can be taken. Thus,
in any of these cases, it is unwise to perform irreversible action such as
damaging a segment, or even wasting syser~ log space with messages. The 1isk
vIti differentiates between the device error case and other cases in the value of
the error code at posting time. Errors readirlg pither therefore replace the
disk address in the PTW with a nUll address or not (as the disk error was a
per-record error or a device error) before setting ptw.er. When such a page
fault is restarted, a successful page fault either pages in zeros or t~e correct
page, respectively.

Write errors determined to be due to an inoperative device cause the
posting to cause the modified bit of the page to be turned back on (disk writes
only--bulk store cannot be inoperative by this standard), and the core frame to
be threaded back in as MRU. This means that the replacement algorithm will
reissue the write again when it comes around. If the call side started the
write, it calls in again to write it again, as it comes back to see that the
page is still modified (or yet modified) when it is notified. Similarly,
device-inoperative errors on the write cycle of an RWS cause the PD record not
to be freed, but placed back in the PD used list (its modified bit was never
turned off), and the free-or-being-freed count (sst.pd_free) decremented. The
PD replacement algorithm retries that record at a later time.

The system no longer signals page_fault_error on a read if the cause of the
read error is an inoperative device (as opposed to a bad page). This is to
avoid signalling errors that might we~l terminate an absentee process or the
initializer in cases where the operator!s readying of a disk could allow all

9/78 A-10 ANS1A

so~tware to proceed without error if the supervisor cooperated. Other
problematic cases of signalling page_fault_error, such as on a descriptor
segment which goes offline during a setfaults operation, are avoided in this way
as well.

Instead of signalling page_fault_error, processes that seek to read pages
on inoperative devices are made to wait upon a global event, in ring zero,
"144163153176"b3, being "dskw" in ASCII, until any disk coming back online
notifies this event. The disk DIM performs this notification, and now maintains
the bit pvte.device_inoperative, previously used only for drive-test operations,
as a copy of its "broken" bit for a given device, notifying this event whenever
such a bit is turned off. Any time such a bit is turned on the disk DIM has
beeped a "Device requires attention" message to the operator.

The maintenance of pvte.device_inoperative has several implications: when
a disk goes off line, the VTOC manager can see that at once, and reject a
requested write forthwith, without wasting hot VTOC buffers where not necessary.
The create_vtoce primitive can avoid creating segments on inoperative devices.
More critically, update_vtoce must be prepared to handle error codes from
vtoc_man for inoperative disks, realizing that the vtoce-parts requested were
not even put in hot buffers. For this reason, update_vtoce$deact now has an
error-code argument.

The implementation of this "disk-offline waiting" feature is facilitated by
the fact that all callers of page-reading primitives must obtain the event to be
waited on from the primitive in question, because volume-map paging issues
preclude any other routine from deducing the wait event. Thus, page reading
primitives can now return this global disk offline event, and cause any number
of mechanisms to wait and retry on this event. There are exactly three
interfaces that call read_page: the page_fault handler, the PL/I-side interface
page$pread, and evict_page$abs_wire. These primitives all now check for the
presence of ptw.er from a previous read before calling read_page. ThUS, if a
page read error is posted by the "done" side, an immediate notify causes one of
those three interfaces to be reinvoked (via repeated page fault or call-side
retry protocol), notice ptw.er, and take special action.

This special action consists of calling page_fault$disk_offlinep to
determine if the reason for this error is the disk being offline or some other
reason. This is determined by inspecting the PVTE bit set by the disk DIM
(there is a window here--it might have been inoperative at one time, but
operative now--this is acceptable). If the answer is that the disk is offline,
the process page-faulting, call-side (or process-loading-side) reading, or
abs-wiring is made to wait on the global disk-offline event. The bit ptw.er is
turned OFF at this time, before the process is set waiting, so that when the
disk comes back online, a retry of the page faultlreading is made as though no
error happened, instead of the detection of the previously set error bit (which
this time would be guaranteed to find the disk not inoperative, and thus signal,
which is precisely what we are trying to avoid).

If page_fault$disk_offlinep determines that the disk is not offline, an
alternate return is made. The page fault handler Signals in the way it always
used to in this case, and the other two entries just retry desperately and
hopelessly as they used to do. (This is the case of a descriptor segment page
going bad or similar--an unsolved problem as of this time.).

The call-side wait coordinator, and the notify-requested bit setter in
wired_plm (process loading) have been made cognizant about global paging events.

9/78 A-11 AN61A

LARGE VOLUME MAP SPACE

In releases 4.0 and 5.0, the single paged unwired segment fsdct held al:
volume maps. This was an unreasonable space limitation. Volume maps are now in
segments fsmap_segO to fsmap_seg15, created dynamically by init_pvt at boot load
time, as many as are necessary to contain the volume maps for all configured
drives. The segment fsdct now contains only what used to be the fsdct header;
it is small, unpaged, and wired now.

The code in free store that returns a PTW pOinter and an ASTE pOinter to
read_page now deduces these quantities from the SDWs of the fsmap_seg, rather
than from a fixed pointer in the SST.

Therefore, all references to "FSDCT Paging" in this document should now be
read as "Volume map paging".

DAMAGED SEGMENTS

A new VTaC attribute (see Section II, "VTOC Attributes"), thus an ASTE and
VTOCE bit, called the "damaged switch", has been introduced (aste.damaged and
vtoce.damaged). Although settable and reset table by user-invoked file system
calls, the intended function of this bit is to inform the user that page control
or the physical volume salvager has either perpetrated or detected damage to
this segment. The segment fault handler observes this bit when connecting a
process to an ASTE (i.e., constructing an SDW for a segment in a process), and
causes "seg_fault_error" with the error code of error_table_$seg_busted to be
signalled if it is on. As with other VTOC attributes, the bit is activated and
deactivated with the segment., The segment fault handler does not make this
check for directories, or in the initializer process (so that the system might
always be bootable).

The physical volume salvager and page control construct a standard format
binary syserr message (see segdamage_msg.incl.pll) whenever damage to a segment
is created, and log a message with it. This message identifies the segment
involved via physical volume ID, LVID, UID, and UID pathname, with other
infcrrnatjon (e.g., page number) when appropriate.

The physical volume salvager C0nstructs this information from a VTOCE being
processed, the UID pathname beinf copied from the third vtoce-part. Page
contrul deduces it from AST entries, chasing up the AST parent pointers to
develop the UID path (this logic is in ~he module page_error). The physical
volume salvager "damages" segments whenever any VTOCE inconsistency is
discovered: the case where segment control deliberately introduces an
inconsistency during VTOCE update before a fatal crash is particularly important
here. Page control damages a segment when a disk error on reading or writing
occurs that is due to a bad record as opposed to a bad device.

The counter sst$damaged_ct is incremented whenever such a binary message is
logged. The answering service!s accounLing-update metering program (as_meter_)
inspects this variable at each accounting update. If it has increased (since
the last update, or boot load time, initially), the syserr log is scanned for
such messages. They are read out, the UID pathnames in them converted to ASCII
pathnames, and the interpreted messages logged in the answering service log.

9/78 A-12 AN61A

QUOTA VALIDATOR

Reimplementation of what had been the salvager in release 5.0 and earlier,
for this release removed the function of computing quota-used from it.
Quota-used computation was the only part of the salvager that could not be done
by a top-down hierarchy scan; one cannot compute correct quota-used for a
directory until correct quota-used totals have been computed for inferior
dir~ctories; this severely limits the implementation flexibility of salvaging
fun~tions. What is more, the algorithms up to now for correcting quota-used
reqJired the entire hierarchy to be quiescent: thus crashes for which ESD has
failed (almost guaranteed to create quota-used inconsistencies see below),
required a «long salvage" while no one was logged in (the only way the salvager
could be run).

The discovery of an algorithm to compute correct quota-used totals in a
nonquiescent hierarchy has obsoleted all of this, and is now the only way that
quota-used is corrected. The hierarchy salvager is now nothing more than a
program that reformats a single directory, optionally cross-checking VTOCEs.
Conventional ring-4 programs are used to map the salvager over subhierarchies.
Quota and quota-used are now out of its domain.

In order to understand the on-line correction algorithm, it is necessary to
understand how quota-used inconsistency arises. A subhierarchy is said to have
inconsistent quota-used if any directory in it has inconsistent quota-used. A
directory is said to have inconsistent quota-used if its quota-used figures (for
seg~ents or directories) are anything but what they should be. The (directory
or segment) quota-used figure of a directory should be the sum of the (directory
or segment) quota-used figures of all immediately inferior directories that do
not have terminal (directory or segment) quota accounts, plus the sums of the
records-used of all immediately inferior directories or segments. This is
dependent upon all subhierarchies being quota-used consistent.

A directory becomes quota-used inconsistent in the following way: a
segment is deleted. or some pages are created. Several directories have their
quota-used figures adjusted by page control (in the ASTE) at the time this
happens. At some later time, the VTOCE for one of the directories is updated;
perhaps the lower one is deactivated, or the AST trickle updates one of them.
The VTOCEs now reflect an inconsistent quota-used situation, for the VTOCE of
one directory claims records charged to it, but the other does not. If the
system shuts down successfully there is not problem, as all VTOCEs are updated.
Before the system shuts down, anyone . who wants to know the quota-used figures
goes to VTOCE or ASTE as appropriate, and the inconsistency of the VTOCEs is not
a problem. However should the system crash and not shut down, the next bootload
relies solely on VTOCE information, and a quota-used inconsistency results.

It may be seen that quota-used inconsistency is not the result of a
supervisor malfunction, but rather a misfeature of fatal (no ESD) crashes. They
are a consequence of not stopping the entire system to update disk-resident data
every time a page is created or destroyed. Quota-used inconsistencies do not
develop while the system is running.

Ine on~1ne correction algorithm is based upon the fact that quota used for
a given directory is either right or wrong at any time. If it is right to start
with, it cannot go wrong while the system runs. If it was wrong to start with,
the amount by which it is wrong is a constant from the time the system was
boot loaded to the time it is fixed. It cannot get more or less wrong by its own
volition.

The task of the quota valida tor is thus to determine exactly how much (if
at all) a given quota-used figure is wrong and fix it. It can fix it at any
time after it determines by how much it is wrong--a certain number is to be
added or subtracted. The quota-used figure is not just replaced.

9/78 A-13 AN61A

9/78

--...,.----------------------------
04-- Segments in 0 cannot be activated or truncated

"tl
:P
C)
m
-I
:P

--r-- - --- - -----

--+--r-'- - -~ - +----- - --- - ----+- ---------TO
2
:lj
m
(")
-I o
:lj

-<
)2

en
r o
(")
A
m
o

:P
fJ)
-I
C;;
r o
(")
A
m
o

m No pages can
r be created
o
(")
A
m
o

c
o
-I
:P
OJ
r
m
m
X
rJ)

-I
rJ)

Figure A-2. Quota Validator

A-14

No segments can
be deactivated

Read vtoces of
segments not in table
(not active at TO)

TIME

AN61 A

To understand this more fully, hypothesize that there were a tool available
that corrected quota used, say set quota used <dirname>. A system administrator
might want to figure out the correct number, and set it. However, this would be
inordinately difficult to use, because even the wrong number is constantly
changing. Thus, the only kind of tool that would be of value is one that added
or subtracted its argument from the quota-used figure, regardless of what it
was--a tool that added or deleted phantom segments.

The quota validator operates precisely in this way. The entry
vtoc attributes$correct qused performs precisely the function of adding a signed
difference to a quota-used total for a directory, either in a VTOCE or in an
ASTE, once the correct difference has been determined. The determination of the
value of this difference is a very intricate operation, involving several
locking games. We can approach this algorithm by successive refinement.

Given our choice, we would quiesce the entire subhierarchy of the directory
(which we will call D) whose quota-used is being computed. We would lock the
page-table lock and the AST lock, read all the VTOCEs and AST entries for
immediately inferior segments and directories, adding their page totals and
quota-used figures (for directories), from the AST for active segments and from
the VTOCEs for nonactive segments. Comparing that total to the current
quota-used gives us the difference we seek. However, we cannot randomly go
locking locks like that, or quiesce the subhierarchy in this way. We therefore
choose one moment in time for which we will strive to compute D's correct
quota-used total. For any given instant, we can quiesce all of page control
activity (creating and deleting pages of active segments in particular) by
locking the page table lock. Call that instant TO. We choose such an instant,
and lock the page table lock before it. At that instant, with the page table
lock locked, we compute the sum of the records-used totals of segments
immediately inferior to D, that subset of them that is active at TO, plus the
surn of the quota-used figures of immediately inferior (nonterminal) directories,
that subset of them that was active at TO. This figure is an approximation to
the correct sum of records-used plus inferior quota-used for this directory at
TO. It is inaccurate by precisely-the sum of the records-used plus nonterminal
quota used of exactly that set of immediately inferior segments and directories
that were not active at TO. Thus, once the page table lock is unlocked, we need
on~y add up the figures for these segments. However, we do not wish to read all
the VTOCEs, or scan D with the page table locked. If we unlock the page table
lock, other segments may be activated or deactivated, and we would have no way
or determining which segments were active at TO and which were not.

Pages are created only by touching them, and since only pages of active
segments can be touched, no pages can be created for inactive segments if we
prevent them from being activated. Similarly, pages can be destroyed by two
means: manipulations on active segments (truncations, page zeroings), and
file-system calls (truncate, delete) on inactive segments. Thus, if we prevent
new segments in D from being activated between TO and the time quota-used of D
is corrected, and prevent file system operations on segments in D in this
interval at well, we can be sure that the quota-used subtotal for segments
inactive at TO will not change between TO and the time quota-used of D is
corrected. It turns out that locking D prior to the start of this whole
operation accomplishes precisely this.

With this in mind, we know that no segments that were not active at TO can
be activated after the page table lock is unlocked. What is more, they cannot
be otherwise affected (e.g., truncated). So at this stage of development, our
algorithm is to unlock the page table, scan D, and check each segment in it for
aC'~ivity at time TO (it couldn't be active now if it wasn't active then) and add
its quota-used or records-used to the total from time TO. This does not work
because segments can get deactivated between the time the page table lock was
unlocked and the time we check the AST to see if it was counted in the total at
time TO. Segments can be prevented from being deactivated by having locked the
AST after first locking D, but before locking the page table lock. Thus, when

9/78 A-15 AN61A

we scan D, the AST will still be locked, and the set of active inferiors of this
directory will not have changed since time TO.

The deficiency here is that one may not touch a directory with the AST
locked (see the general considerations of the locking algorithm in "Locking
Conventions", Section II). To determine which segments were active at time TO
we lock the AST lock before locking the page table lock, and unlock the AST lock
after unlocking the page table lock. But before unlocking the AST lock (at a
time when the set of active segments cannot have changed since TO), we build a
little table of the UIDs of all active inferiors of this directory in automatic
storage. It is with this table that we check while scanning the directory
adding up quota and records figures from VTOCEs.

Having added the active and
value of the quota-used figure of
the finite and invariant error.
quota-usecd figure of D.

inactive figures, they are compared with the
this directory read at time TO to determine

It is this error that is deducted from the

This
quotaw$rvq
table lock.

algorithm is
performs the

implemented in the
manipulations and

program correct_qused. The entry
quota cell readings under the page

The bottom-up walking features of do_subtree (or walk_subtree) are used to
drive the tool fix_quota_used (the ring 4 interface to the quota validator)
bottom-up.

SUPPORT OF HIERARCHY SALVAGER

The mechanism used by the hierarchy salvager to activate, deactivate, and
access segments, dating from the time that the salvager had its own tape, is
entirely gone in release 6.0. The entire activation/file map mechanism
described in "Services on Behalf on the Hierarchy Salvager" in Section IV has
been removed. The hierarchy salvager is now a directory-control program that
operates on one directory at a time, given its pathname. It initiates
directories and takes segment faults upon them, as any other directory control
program in Multics. It has no more involvement with segment control. Tts
removed interaction with segment control had been a major source of bugs.

Ine central control program ul the hierarchy salvager, salv_directory, is
usually driven by ring-4 subtree walk. It does not recurse.

The hierarchy salvager no longer uses abs-segs or any abs-seg mechanism; it
no longer checks, validates, or corrects quota or quota-used.

The hierarchy salvager retains a "VTOCE-checking" feature, used to check
for (forward) connection failure, optionally delete branches suffering this, and
correct part III (permanent attributes) information. These functions are
provided in the program salv_check_vtoce, which is not even called if VTOCE
checking was not specified to the hierarchy salvager. The prog~am
salv_check_vtoce calls vtoc_man$get_vtoce to obtain a VTOCE image! to check JID
match and part III information. If information need be corrected in the VTOCE,
the entry "salv_update" in vtoc_attributes is called to correct and write back
information to be updated. As usual, vtoc_attributes is cognizant of all rules
regarding directory and AST locks for such operations (see Section II). Thus!
the hierarchy salvager no longer directly writes VTOCEs in any case.

9/78 A-16 AN61A

To delete branches suffering forward connection failures, salv check vtoce
calls a special entry in directory control's "delentry" primitive: that-which
deletes branches.

The hierarchy salvager makes use of the
described above and in Section IV to cause
scratch and directory-copy segments.

LIMITED UPDATE BACKLOG

grab_aste/prewithdraw mechanism
semi-permanent activation of its

The 6.0 storage system tries to enforce an upper bound on the time the AST
trickle takes to circumnavigate each AST used list (see Section II). By placing
an upper bound on this time, file map changes cannot stay in the AST (not be
reported to the VTOCE) for longer than this maximum time. This is done solely
as a hedge against fatal crashes under light load. In these cases, it has often
been reported that a segment modified hours before the crash appears empty (all
zeros) at the next bootload. This was because of failure to update its VTOCE
within a reasonable period of time. in release 6.0, the initializer calls into
get_aste$flush_ast_pool with a pool index every accounting update if it has been
determined that fewer steps in that pool than the number of entries in it were
taken since the last such update (the accounting update routinely inspects
meters in the SST). The entry get_aste$flush_ast_pool circumnavigates the
specified AST list one entire time, calling update_vtoce on each ASTE whose file
map has changed (aste.fmchanged). This fairly expensive action is invoked if
and only if load is so light that there was not a reasonable number of AST steps
in the last accounting interval.

A similar attempt is made to set an upper bound on the amount of time a
page may stay in main memory and not be written out. This, again a hedge
against fatal crashes, is to guard against the phenomenon where a
heavily-modified page remains in memory under light load, and does not get
written out, and appears zero or nonexistent at the next boatload. A page is
written out if load is light, i.e., the circulation speed of sst.usedp is slow,
and continual use and modification biases the replacement algorithm against
writing this page out.

The new entry pc$flush_core, and the new CME bit cme.phm_hedge implement
this facility. The entry pc$flush_core is called five minutes before every
accounting update (by the initializer) to call page$pwrite on all pages not
written out since the last such call. The five-minute interval is to make sure
that the accounting update that follows, calls get_aste$flush_ast_pool, is able
to report new page creations to VTOCES, i.e., to ensure that writes started
complete successfully before VTOCE updating is attempted (see "Address
Management Policy" in Section VII for why the VTOCE can't be updated until
successful completion of writes is acknowledged). The entry pc$flush_core scans
the core map for all in-core pages that need to be written out, and calls
page$pwrite, multiplexing activity in the normal page control manner (see
Sections VIII and IX). These pages are identified by the presence of the flag
cme.phm_hedge. This bit is turned on by pc$flush_core for every in-core page
having ptw.phm OD. that it is not calling page$pwrite to write out. Page
control (page$pread and the "write" side of the interrupt side, page$done_) turn
this bit off any time a page is read into this frame, or a successful write is
completed from it. Thus, if pc$flush_core finds (the next time it is called)
that this bit is still on, it can deduce that this frame had a modified page in
it one accounting interval ago, and has not been evicted or written out since.
This is precisely the condition for issuing a write for the page in that frame.

9/78 A-17 AN61A

PARTIAL SHUTDOWN

Page and segment control primitives called at shutdown time (Emergency O~
Regular) have been changed to check the PVTE bit pvte.device_inoperative before
attempting to update a VTOCE (including calling pc$cleanup), flush a main memory
page or initiate an RWS. All drives are tested at the time shutdown is started
(earlier still in ESD), in the procedure disk_emergency (in
bound_disk_util_wired). By calling the standard drive-testing primitive
(read_disk$test_drive, see "Explicit Disk Reading, Writing, and Testing" in
Section XIV) the operative/inoperative status of all drives is determined. What
is more, the interrupt sides of page control and of the VTOC manager call an
entry in disk_emergency which evaluates whether or not to set
pvte.device_inoperative whenever they receive a "device-inoperative"-type error
from the disk DIM. The program disk_emergency sets the bit only during
shutdown; otherwise, the disk DIM maintains it. At shutdown time,
disk_emergency also notifies the Operator about disks which went offline during
(or before the start of) shutdown.

Thus, during shutdown, all drives not inoperative are completely shut down.
The complete shutdown of the RPV is not indicated unless all other drives were
shut down; this is to force a hardcore directory salvage and. paging device flush
on the next bootload. All packs not shut down will be salvaged the next time
they are accepted, as is usual.

The code and variables of Emergency Shutdown have been so reorganized that
ESD may be attempted any number of times after a partial shutdown, if drives can
be brought back up. If the drives have indeed become operative (all drives are
tested afresh each time), a completely successful ESD will be attained.
~nflushable contents of the paging device and main memory will be kept around
until this is the case.

The avoidance of complete shutdown of the RPV causes the next bootload to
take cognizance of the unflushed paging device, which is necessary.

OTHER CONSIDERATIONS

In Section VI, cme.devadd now points to the PDME during the entire RWS.

The variable "did" in pxss_page_stack (the ALM page
stack frame) has justly and finally been renamed "pvtx",
meant since release 4.0.

control environment
which is what it had

A fairly baroque error-message generating facility has been built into
page_error.alm, taking advantage of the new macro processor in the ALM
assembler. Incorporated in this facility is the logging of binary syserr
messages indicating segment damage. The page_error program includes a system of
macros for declaring variables and generating PL/I-like calls automatically, and
is worth investigation by those interested in ALM or assembler technology.

In Section VIII, the "second trace facility", or "disk_meters" has been
totally removed.

9/78 A-1S AN61A

The subroutine cleanup_page is now the only agency in the system (outside
of pc_recover_sst, that is a highly special case) that evicts pages. The
routines in pc.p11 have been changed to call it, as page$pcleanup. Consistency
required by pc_recover_sst motivated this change.

In Section X, some reorganization of utility subroutines, particularly in
pd_util, was performed.

A (privileged) user-callable facility to entry-hold a segment and wire its
pages via calls to pc_wired has been provided.

The updating of time-page product to a directory's parent at the time of
its deletion was found to be lacking in Releases 4.0 and 5.0. This function was
added in delete_vtoce, which, in the case of a directory with terminal quota
being deleted, performs several VTOCE manipulations under the AST lock to update
this VT~CE-resident quantity from the directory being deleted up.

Reused and unprotected disk addresses, as well as bad VTaC threads, no
longer cause the system to crash. Volumes suffering these symptoms are placed in
a state (pvte.nleft = 0) where no new allocations can take place on these
volumes, and scheduled for salvage (pvte.vol_trouble = "1"b). These new
policies are due to a belief in the current stability of the supervisor: that
such symptoms can not occur as a result of a software malfunction in the current
boatload, but are more likely symptoms of disk malfunction or bad data from a
previous bootload.

The "PD Writeahead" experimental feature has been removed.

The disk record allocator has been recoded to be more straightforward: the
remnants of older schemes have been replaced by code which has the same effect,
but by explicit design.

The disk-reading primitive (read_disk, Section XIV) is now used by volume
backup in many processes, and thus can no longer use the unshareable supervisor
ASTE (PTW-level abs-seg) read_disk_seg in all processes. It continues to use
this ASTE if running in the initializer process, initialization, or shutdown.
in any other process, an ASTE is gotten via normal means (get_aste) to use a an
abs_seg.

The VTaC attribute array for record quoia (aste.quota, vtoce.quota) is
redefined as seg_vtoce.usage_count and seg_aste.usage_count, a count of page
faults on a segment maintained by page control, for nondirectory segments. A
file system call through mhcs_ is available to obtain this VTaC attribute. It
is not in hcs_ because the observing of this datum constitutes an AIM write-down
path, and discretionary access control to this meter may be desired at some AIM
sites.

9/78 A-19 AN61A

LU
Z
....J
e,:)
Z
o
....J
<t
I
:::l
U

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

SERIES 60 (LEVEL 68)
TITLE MULTICS STORAGE SYSTEM

PROGRAM LOGIC MANUAL
ADDENDUM A

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required_ Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here_ D

FROM: NAME ------------------------------------
TITLE _____________________________ __

COMPANY --------
ADDRESS _____________________________ __

GRGER NO·IAN61A, REV. a

DATED I SEPTEMBER 19781

DATE ____________ __

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honey",ell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I.

I
I
I

I
I
I
I
I
I
I
I
I

-c.
I
I
I
I
I
I
I

Honeywell
Honeywell Information Systems

In the U.S.A.: 200 Smith Street. MS 486. WaHham. Massachusetts 02154
In Canada: 2025 S!'leppard Avenue East. Willowdale. Ontario M2J 1 W5

In Mexico: Avenida Nuevo Leon 250. Mexico 11. D.F.

18684, 7.5C877, Printed in U.S.A. . AN61, Rev. 0

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10.0
	06-10.1
	06-10.2
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	08-41
	08-42
	08-43
	08-44
	08-45
	08-46
	08-47
	08-48
	08-49
	08-50
	08-51
	08-52
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	10-01
	10-02
	10-03
	10-04
	11-01
	11-02
	12-01
	12-02
	12-03
	12-04
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	15-01
	15-02
	15-03
	15-04
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	replyA
	replyB
	xBack

