
HONEYWELL

LEVEL 68
MULTICS BASIC

. MANUAL

SOFTWARE

SUBJECT

LEVEL 68

MULTICS BASIC MANUAL

Gen~ral Description, Capabilities, Rules and Definitions, User Interfaces.
Statements, and Input/Output of the BASIC Language on the Multics Systt.>m

SOFTWARE SUPPORTED

Multics Software Release 9.0

ORDER NUMBER

AM82-01 February 1981

Honeywell

PREFACE

This reference manual completely describes the BASIC language
on the Multics system. It does not describe the BASIC compiler.
For information on the BASIC compiler, the reader is referred to
the basic command description in the MULTICS PROGRAMMERS' MANUAL,
COMMANDS AND ACTIVE FUNCTIONS. Also, this manual does not attempt
to provi~the reader with extensive knowledge of the Multics
system. The reader is referred to the Multics Programmers'
Manual Introduction for an introduction to Multics use and to the
other volumes of the Multics Programmers' Manual (MPM) for a
thorough discussion of the Muitics system. The complete MPM
consists of seven manuals although only four are referenced in
this manual. They are as follows:

Document

Introduction
(Order No. AG90)

Reference Guide
(Order No. AG91)

Command and Active Functions
(Order NO:-AG92)

Subroutines
(Order No. AG93)

Referred to in Text As

MPM Introduction

MPM Reference Guide

MPM Commands

MPH Subroutines

The MPM Reference Guide contains general information about
the Multics command and programming environments.

The MPM Commands gives the syntax and a complete description
of selected standard Multics system commands and active
functions.

The information and apeeificationa in this document are
subject to change without notice. This document eontaiD8
information about Honeywell products or eemcee that may
not be available outaide the United States. CoD8Ult your
Honeywell Marketing Repreeentative.

(c) Honeywell Information Systems Inc., 1981 File No.: lL13

AM82-01

The MPM Subroutines contain descriptions of the standard
Multics subroutines, including the declare statement, the calling
sequence, and usage of each and a description of the 1/0 modules.
In addition to the MPM, the reader is referred to the Multics
FAST Subsystem Reference Guide (Order No. AU25-01) describing the
time-sharing facility supporting BASIC and FORTRAN program
development.

This is the first revision of the BASIC manual. Features new
to the manual are:

extended precision
let keyword is now optional .
multiple statements ·per line

iii

Section 1

Section 2

Section 3

CONTENTS

Introduction
Format of Statements . .

Line Numbers . • . .
Keywords
Character Processing

Order of Execution .
Remarks

Remark Statement
Apostrophes •

BASIC Program Structure
Allocation of Storage
Writing and Compiling a BASIC

Program •
Basic Search Mechanism
Sample Program . . .

Types of Data
Numeric Arguments
String Values
Scalar Variables . •

Numeric Scalars .
String Scalars . . •

Array Variables
Array Declarations . . . • . .
Array Bounds
Array Element References . . .
Numeric Arrays
String Arrays • . . • • .

Relationship of Names
References
Lists

Expressions . .
Numeric Expressions
String Expressions .
Functions . . . • .

BASIC Functions •
User Functions . . .

iv

Page

1-1
1-1
1-1
1-2
1-2
1-2
1-2
1-3
1-3
1-3
1-4

1-4
1-5
1-5

2-1
2-1
2-2
2-2
2-2
2-3
2-3
2-3
2-4
2-5
2-5
2-5
2-5
2-6
2-6

3-1
3-1
3-2
3-3
3-3
3-6

AM82-01

Section 4

Section 5

CONTENTS (cont)

Files
Terminal Format Files
Random Access Files

Random Numeric Files
Random String Files .. " .. .

File Names
File Numbers . ". . . • .
File Expressions
Temporary Files
File Attributes

File Type " ..
File Length . .
File Margin . . . • .
File Pointer

Functions

Statements
Call Statement . .

Arguments .
Array Arguments
Function Arguments .
File Arguments . .

Interlanguage Calls . .
Call Statement Examples • .

Change Statement . . .'
Change Bit Statement ...
Data Statement
Def Statement • .

Single Line Functions
Multiple Line Function

Dim Statement
End Statement . . . • . • .
File Statement . .
Fnend Statement
For Statement
Gosub Statement
Goto Statement . .
If Statement
If-End Statement
If-More Statement
Input Statement
Input-File Statement
Let Statement
Linput Statement . . .
Linput-File Statement
Margin Statement . . .
Margin-File Statement

v

Page

4-1
4-1
4-2
4-2
4-2
4-2
4-3
4-4
4-4
4-4
4-4
4-4
4-5
4-6
4-6

5-1
5-1
5-2
5-3
5-3
5-3
5-4
5-4
5-4
5-5
5-6
5-6
5-6
5-7
5-8
5-10
5-10
5-10
5-11
5-12
!:: 1')
J-IL

5-13
5-14
5-14
5-15
5-16
5-17
5-17
5-18
5-18
5-19

AM82-01

· CONTENTS (cont)

Next Statement
On-Go sub Statement . .
On-Goto Statement
Print Statement

Numeric Expressions
Integer Format .
Fractional Format
Scientific Format

String Expressions
Comma Separator ...
Semicolon Separator .
Tab Request . . • .
Space Request . . . • . .
List Termination . . • .
Print Statement Examples

Print-File Statement . • • • .
Print-Using Statement .•.

Format Fields . . .
Format Processing
Numeric Fields . • . . • . . .
String Fields
Printing Special Characters .
Print-Using Statement Examples

Print-File-Using Statement .
Randomize Statement
Read Statement • . •
Read-File Statement
Rem Statement
Reset Statement
Reset-File Statement .
Return Statement • •
Scratch Statement . . .
Setdigits Statement ...••••
Stop Statement . • .
Sub Statement . • • •

Parameters
Scalar Parameters
Array Parameters • . • .
Function Parameters
File Parameters . . • •

Sub Statement Examples
Sub end Statement . • .
Time Statement . .
Write Statement

vi

Page

5-20
5-21
r:" "'11 :>-.:::: I

5-21
5-22
5-23
5-23
5-23
5-24-
5-24
5-24
5-24
5-25
5-25
5-25
5-25
5-26
5-26
5-28
5-28
5-30
5-31
5-32
5-32
5-33
5-33
5-34
5-34
5-34
5-35
5-35
5-36
5-36
5-37
5-37
5-38
5-38
5-38
5-39
5-39
5 39
5-40
5-40
5-40

AM82-01

Section 6

S~ction 7

Appendix A

Appendix B

CONTENTS (cont)

Array Statements
Array Redimensioning .
Array Initialization
Array Initialization With

Redimensioning
Array Assignment . .
Array Addi tion
Array Subtraction
Array Multiplication ..

Scalar Multiplication.
Inner Product .
Outer Product . .

Transpose Function . .
Inverse Function . .
Mat Input Statement
Mat Input File Statement . • . . .
Mat Linput Statement . . .
Mat Linput File Statement
Mat Print Statement
Mat Print File Statement .
Mat Print Using Statement
Mat Print Using File Statement .
Mat Read Statement . . .
Mat Read File Statement
Mat Write File Statement . . .•.

Sample Programs . .
Example 1 • • • • •
Example 2
Example 3 eo.

Example 4 . . 0 • • • • • •

Example 5 • .
Example 6
Example 7
Example 8
Example 9
Example iO •••••
Example 11
Example 12 •.•..

Ascii Character Set .

Compatibility with Non-Basic Programs ..
Calls Between Basic and PLII . . .
Calls Between Basic and Fortran

vii

Page

6-1
6-1
6-2

6-3
6-4
6-4
6-5
6-5
6-5
6-6
6-6
6-7
6-8
6-9
6-10
6-11
6= 11
6-12
6-13
6-13
6-14
6-14
6-15
6-16

7-1
7-1
7-2
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-14
7-15
7-18

A-1

8-1
B-1
8-2

AM82-01

Appendix C

Appendix D

Index

CONTENTS (cont)

Basic File Attachments
Files in the Storage
Files on Tape
Terminal Input/Output
Synonym Attachments

System

Extended Precision
convert numeric file .

viii

Page

C-1
C-1
C-1
C-2
C-2

D-1
D-2

i-1

AM82-01

SECTION 1

INTRODUCTION

FORMAT OF STATEMENTS

A BASIC program is a sequence of numbered statements most of
which are identified by a keyword. The source program text consists
of a Multics segment containing ASCII characters divided into
1 ines by "newl ine" characters (the ASCII character whose octal
code is 12). Each line of the source program contains one or I
more BASIC statements. Blank lines are allowed. Multiple statements
can appear on one line but must be separated by a backslash (\'
character. A statement that spans several lines is not allowed.

The following statements constitute a complete BASIC program,
it computes and prints the sum and difference of two numbers
specified by the user when the program is eXecuted.

100 input x,Y
200 print x+y, x-y
300 end
or:
100 input x,y\print x+y, x-y
200 end

Line Numbers

The line or statement number is an unsigned decimal integer
g I" eat e 1" 1. han 0 r e qua 1 toO and 1 e sst han 0 r e qua 1 to 9 9 999 t hat
is used to label the statement. iDe .llne number must begin in
the first position of the source line; the line number field is
terminated by the first nondigit in the line.

Each line in the source program must have a line number that
is greater than the number of the preceding line. Other commands
(such as fast) that make use of the BASIC compiler can use line
n umbers to control edi ting of the source program; if so, the
maximum value of a line number may be restricted to a lower value
than that imposed by BASIC.

1 -1 AM82-01

Keywords

The statement keyword is an English word that immediately
follows the line number or backslash and serves to identify the
type of statement. The interpretation of the characters that
follow the keyword depends on the type of statement. Some examples
of BASIC keywords are:

let
print
if
rem

Character Processing

The BASIC compiler ignores blanks and tab characters and converts
uppercase characters to lowercase ones except where they occur
wi thin quoted strings. Thus the following statements are all
equivalent:

100 GOT0485
100 goto 485
100 go TO 4 8 5

The length of the line after blanks and tab characters have
been removed is limited to 256 characters.

ORDER OF EXECUTION

The statement in a program with the lowest line number is the
first statement to be executed. Unless one of the control statements
is executed, statements are executed sequentially according to
line number. Execution of the program ceases if an end statement
or a stop statement is executed.

REMARKS

The BASIC compiler normally looks at all the characters in a
statement. BASIC provides two means by which the user can indicate
that a sequence of characters is to be ignored by the compiler:
the remark statement and apostrophes. .

1-2 AM82-01

Remark Statement

The remark statement consists of the keyword "rem" followed
by an arbitrary sequence of characters that can contain any ASCII
characters except newline or backslash characters. The compiler I
ignores the rem statement; it has no effect when encountered during
execution. An example of a rem statement is:

,73 rem Test for Convergence

A statement consisting of only a line number is treated as if
it were a rem statement .

. ~_postrophes

When the BASIC compiler finds an apostrophe or an acute accent
(the ASCII character whose octal code is 47) outside of a string
constant, it ignores the apostrophe and all characters between it
and either the newline character that terminates the line or the I
backslash character that terminates the statement, whichever comes
first. This allows comments to be written on the same line as a .
BASIC statement. If the apostrophe immediately follows the lin~
number, the line is treated as a rem statement. The followi ng
lines show how the apostrophe can be used.

800 gote 200 ' repeat for next value
829 ' find total cost-

BASIC PROGRAM STRUCTURE

A BASIC source file may consist of a main program, one or I
more subroutines, or a main program followed by one ot' more
subroutines, each having its own independent set of variables.
If the first executable statement of a program does not begin ~
with tho? keyword sub, it is the main program whose body is terminated I
by the end statement~ The name of a main program is the same as I
the primary name of the source program; for example, the main
program corresponding to the source file named alpha.basic would
be alpha.

A main program can be directly invoked by the BASIC complIer I
~~ f~~tM~[ti;: ~~:~!~~-;;:;:~s~~;~ ~fM~~~~~~i~~~e~~ ~:~m~~ti~~~;~~ I'.
for the program; or it can be called as a subroutine by a separately
~ompiled BASIC, PL/I, FORTRAN, or ALM program.

1-3 AM82-01

• Ii subroutine immediately fOllows the optional main program.
It has its own set of variables. The name of a subroutine and
the arguments it takes are specified by a sub statement. The
name of a subroutine is given as an ASCII character string of 32
characters or less. The body of the subroutine is delimited by a
sub statement at the start of the subroutine and a subend statement
at the end. It is not possible to nest subroutine definitions.

I A subroutine is normally called by means of a call statement.

I
As wi th main programs, a subroutine can be called from a BASIC,
PL/I, FORTRAN, or ALM program. A subroutine that has no arguments
can be called by the Multics command processor.

I In the rest of the manual, the word program is used to mean
either main program or subroutine, whether or not they are compiled
together.

Allocation of Storage

Storage is allocated for all the variables in a program when
control enters the program and is freed when control leaves the
program. The variables of a program" are accessible only when the
program is active; the values of all variables are lost when the
program returns.

If a program is called recursively (called while a previous
call is still active), the storage allocated for the variables of
the previous use of the program is "pushed down" at each entrance
to the program and "popped up" at each return. The variables
associated wi th a previous invocation are not accessible to a
subsequent activation of a program. There is no means, other
than the use of files, by which the value of a variable can be
preserved between invocations ofa program.

Writing and Compiling ~ BASIC Program

A program can b~ written online using anyone of the Multics
editors such as qedx for hard-copy terminals or emacs for video
terminals. For detailed information on the qedx editor, see the
Qedx Text Editor User's Guide, Order No. CG40, or for emacs, see
the Emacs Text EdTtO'"r User's Guide, Order No. CH27. The source
program may consist of the source for one or more subroutines, a
single main program, or a main program followed by one or more
subroutines.

Once the program is input and edited, it is compiled by the
BASIC compiler which translates the program and then either executes
a temporary object segment or produces a standard Multics object
segment. The compiler is invoked by the basic command discussed
in detail in the MPM Commands.

1-4 AM82-01

BASIC SEARCH MECHANISM ._--------- --- -----
When a BASIC call statement is executed, BASIC first searches

the caller's object segment for a subroutine with the specified
name. If none is found, BASIC looks for the program in the storage
.=~ystem. In this case, the format of the name determines the
search methods.

The subroutine name used in a BASIC call statement can be a
segment name, e. g., alpha; a segment name and entry name pair,
e. g., alpha$beta; or ei ther of these preceded by an arbi trary
pathname, e.g., >udd>Person id)Project id>alpha. When a pathname
is not present, BASIC uses the normal Multics search algorithm to
10eate the specified segment. If a pathname is given, BASIC attempts
to initiate the specified segment using the specified segment
name. If no other segment is known by this name, the name/number
association is established and the segment that was found is used
for the call statement. If the specified segment is not found or
if some other segment is already known by the specified name, the
call statement is in error and execution of the BASIC program is
t.erminated.

SAtilPLE PROGRAM
", .. - .-~ .. -.-.--- -----

The following BASIC program consists of one main program and
one subroutine. The main program reads input from the terminal;
~al1s the subroutine, which computes the integral of the defined
functi_ons; and then prints the difference between the resul ts
r- eturnej by the subroutine.

100 input l,u
1iO def fna(x) = 1 + x*x
120 def fnb(x) = 1 - x*x
130 call "integrate":fna,1,u,z1
'140 call "integrate": fnb, 1, u, z2
150 print z1-z2
160 end
210 sub "integrate":fnc,l,u,z
220

(body of program omitted)

270 sub end

1-5 AM82-01

I

SECTION 2

TYPES OF DATA

Two types of data are supported by BASIC: numeric and string.
BASIC allows constants and variables of both types.

NUMERIC ARGUMENTS

A numeric value' is a floating-point number that is singJe I
precision by default. The mantissa of a numeric value can represent
approximately eight decimal digits of precision; the exponent can
be between -39 and +38. Integers whose magnitude is less th?!l
134,217,728 are represented exactly.

If the program is compiled in extended precIsIon mode (see I
A P pen d i x D), all n urn e ric val u e s are do ubI e pre cis ion flo a tin g
point numbers. In this case, the mantissa can represent I
approximately 19 decimal digits of precision. The exponent car:
be between -39 and 38. Integers whose magnitude is less than
2**63(9223372036854775807) are represented exactly.

A numeric constant is written as a signed decimal number that
can contain a decimal point followed by an exponent. The exponent
field, which is optional, is written as the letter "e" (or the
letter "E" since BASIC converts uppercase characters to lowercase
characters) followed by an optionally signed integer constant.
If the decimal point is omitted, it is assumed to be immediately
t.o the right of the rightmost digit. If'the sign of either the
decimal number or the exponent is omitted, a plus is assumed.

2-1 AM82-01

Examples:

a
14
1 .5
-7.0e3
a+5.12 e - 5
-.333E-10
5 e 5

STRING VALUES

A string value is a string of from 0 to 4095 ASCII characters,
inclusive.

A string constant is written as a set of 0 or more contiguous
ASCII characters enclosed in quotation marks. A quotation mark
can be included in the string by immediately preceding it by
another quotation mark. A string constant can contain any ASCII
character except a newline character; a string constant must fit
entirely in one BASIC statement.

Examples:

"""" (Result: ")
"This is a character string constant"

(Result: This is a character string constant)
"She said, ""I love you!"""

(Result: She said, "I love you!")

SCALAR VARIABLES

A scalar variable is implicitly declared through its appearance
in the source program. The type of a scalar variable is completely
determined by the spelling of the variable name.

Numeric Scalars

The name of a scalar numeric variable is either a letter or a
letter followed by a digit. Numeric variables are initialized to
o at the start of the program in which they are defined.

2-2 AM82-01

Examples:

[a
C3

~tring Scalars

The name of a scalar string variable is either a single letter
followed by a dollar sign or a single letter followed by a digit
followed by a dollar sign. String variables are initialized to
the zero-length string at the start of the program in which the
variable is defined. The length of a string variable is automatically
set to the length of the string being assigned to it.

Examples:

a$
F3$

ARRAY VARIABLES

An array is an ordered set of values, all of which have the
same type. The elements of an array are stored in contiguous
storage in row-major order (rightmost subscript varies most rapidly).
An array can have either one dimension, in which case it is called
a vector, or two dimensions, in which case it is called a matrix.
The first subscript of a matrix selects a row of the matrix; the
second subscript selects a column.

Array Declarations

An array can be explictly declared in a dim statement or can
be implicitly declared by its use in the source program. If the
first use of the array name is in a dim statement, the number of
dimensions and the number of elements are given in the dim statement.

2-3 AM82-01

If the first use of an array name is in an executable statement,
the number of dimensions in the array is determined by the context
in which the array name is found. The following contexts declare
the array as a vector:

• use with one subscript
• use in a call statement where a vector is required
• use in a change statement
• use in an array input/output statement without

redimensioning

The following contexts declare the array as a matrix:

• use with two subscripts
• use in a call statement where a matrix is required

Use of an array in a mat-assign statement can cause the array
to get declared either as a vector or as a matrix, depending on
the other arrays used in the statement.

The lower bound of an array dimension is always O. The upper
bound depends on the manner in which the array was declared. If
an array was explicitly declared, the number of elements in each
dimension is given in the dim statement. If an array is implicitly
declared, BASIC uses an upper bound of 10 for each dimension;
thus 11 elements are reserved for a vector and 121 elements are
reserved for a matrix.

Array Bounds

An array really has two sets of bound3: the original bounds
and the current bounds.

The original bounds of an array are established by the dim
statement in which the array is declared or by the implici t dimension
rules previously specified. The original bounds of an array specify
the total amount of storage allocated for the array and do not
change during execution of the BASIC program.

The current bounds of an array are initially the same as the
original bounds. The current bounds indicate the total amount of
storage currently being used for array elements; the current bounds
(but not the number of dimensions) can be changed by the process
known as redimensioning described in Section 6. The amount of
storage specified by the current bounds must always be less than
or equal to the amount of storage specified by the original bounds.

2-4 AM82-01

~rray Element References

A reference to an array element consists of the array name
followed by a parenthesized list of subscripts.

Syntax:

b (s 1) or b(s1,s2)

where b is the array name and s1 and s2 are numeric expressions.
The value of a subscript expression is truncated to an integer
value before it is used to locate the speci fied . array element.
The truncated value of the subscript expression must be wi thin
the range of the corresponding array dimension. The number of
subscripts in an array element reference must be the same as the
number of array bounds.

Examples:

a(5)
b(i+j,3*k-2)
c(a{j)+4)

Numeric Arrays

The name of a numeric array is a single letter. All the
elements of the array are initialized to 0 at the start of the
program in which the array is defined.

§_~ ~ i n gAr ray s

The name of a string array is a single letter followed by a
dollar sign. The elements of a string array can all have different
lengths. All the elements of the array are initialized to the
zero-length string at the start of the program in which the array
~LR defined.

Examples:

I
I
L

a$(5)
b$(i+j,3*k-2)
c$(a(j)/4)

2-5 AM82-01

RELATIONSHIP OF NAMES

The same name can be used for as many as four different variables
in a BASIC program; the context in which the name is used identifies
the scalar or array intended. Thus, in a single program, a user
can have a scalar numeric variable b, a scalar string variable
b$, a numeric array b, and a string array b$, all of which are
distinct variables.

The following expression illustrates all four uses of the
name b:

str$(b(val(b$))) & b$(b)

REFERENCES

Throughout this document, the word "reference" means a reference
to a scalar variable or a reference to a subscripted array element.
Whenever a particular type of reference is required, the terms
"numeric reference" and "string reference" are used. An "array
reference" is a reference to an array used without subscripts.

LISTS

Throughout this document, the word "list" means a sequence of
one or more items separated by commas or some other speci fied
separator. A list cannot contain two consecutive elements or two
consecutive separators. The following are examples of lists of
integers:

1 ,2
1 ,2,3

2-6 AM82-01

SECTION 3

EXPRESSIONS

BASIC expressions are constructed from operators and operands.
An operand can consist of a constant, a scalar variable or subscripted
a rr ay element, a funct ion reference, or the r esu 1 t 0 f another
operatore Operators that require two operands are called binary
operators, and operators that require one operand are called unary
operators.

BASIC defines two types of expressions: numeric and string.
Numeric operands must not be used with the string operator; string
operands must not be used with the numeric operator. There is no
implicit conversion between numeric and string values; explicit
conversion functions must "be used to convert from one data type
to the other.

Throughout this document, tne word "expression" means an
arbitrarily complicated expression that can range from a single
constant to a complicated construct containing many operators and
par e nth e s e s . Wh en a par tic u 1 art y p e 0 f ex pre s s ion i sin ten d ed,
the terms "numeric expression" and "string expression" are used.

NUMERIC EXPRESSIONS
----~--

BASIC defines seven operators that operate on numeric operands
to produce a numeric value:

.Q_per ator rieaning ~xample

+ plus + a
minus - a

+ addition a + b
subtraction ~ h

GI LJ

* multiplication a * b
/ division a / b

exponentiation a
,..

b

3-1 AM82-01

The operators have their normal arithmetic meaning. The
operations are performed using the floating-point instruction set
of the Mul tics machine. Addi tion, subtract ion, mul t ipl icat ion,
and exponentiation of integer values are exact, provided the
magnitudes of the operands and result are less than 2"27 (134,217,728)
for single precision or 2"63 for extended precision.

-The order in which these operators are evaluated is determined
by special rules of precedence. The precedence of the numeric
operators is:

Precedence

4 (highest)
3
2
1 (lowest)

Operator

unary -, unary +

* /
+ -

Operators wi th higher precedence are evaluated first. Operators
of equal precedence are evaluated from left to right, except for
the exponentiation and unary + and - operators, which are evaluated
from right to left. For example, the expression

a + b + c * d * e " f " g

is interpreted as

(a + b) + «c * d) * .(e " (f " g»)

Parentheses can also be used to control the order of expression
evaluation.

Examples:

'a + b/c
(a + b)/c
(a - b7 * 3.1415)/(c1 + d"2)
a(i,j) + b(j-1,i+5)
-a * b

STRING EXPRESSIONS

String expressions in BASIC are constructed using the
concatenation operator &. This operator combines two string values
to produce a string whose value is the characters in the first
string immediately followed by the characters in the second string.

3-2 AM82-01

Examples:

"hello " & "there"
"upper" & "case"
a$ & b$ & c$
a$ (i) & a$ (i+ 1)

FUNCTIONS

(Result: "hello there")
(Result: "uppercase")

A function reference consists of a BASIC function name or a
user-defined function name optionally followed by a parenthesized
argument list containing one or more arguments. The arguments
used in a function invocation must match the number and type of
arguments expected by the function. No conversion is done to
match the argument provided with the argument expected. Function
references are evaluated at the point where their value is required
and do not affect the order of operator evaluation. All function
arguments are evaluated before the function is evaluated.

BASIC Functions

BASIC provides a variety of functions for computing commonly
used functions and for interrogating the operating environment of
the program. Numeric function names consist of three letters;
string function names consist of three letters followed by a dollar
sIgn. Except where explicitly stated otherwise, a numeric argument
~f a function can be any arbitrarily complicated numeric expression,
and a string argument of a function can be any arbitrarily complicated
string expression.

The following list gives the numeric and string functions
provided by BASIC; functions related to files are listed in Section
4. In all of the descriptions that follow, x indicates an arbi trary
numeric expression, i and j indicate arbitrary numeric expressions
that are truncated to yield an integer value, and a$ and b$ indicate
arbitrary string expressions.

3-3 AM82-01

I

I

Function

abs(x)

asc(c)

arg$(n)

atn(x)

chr$(x)

clg(x)

clk$

cnt

cos(x)

cot(x)

dat$

det

exp(x)

int(x)

len(a$)

log(x)

Description

The absolute value of x.

The decimal number corresponding to the single
ASCII character or two- or three-letter
character abbreviation c. Any single ASCII
character can appear except quote, newline,
apostrophe, space, and tab; character
abbreviations are listed in Appendix A.

The value of the nth command argument supplied
by the Multics command processor. This function
can be used when a BASIC main program has
been called as a Multics command.

The arctangent of x in radians (i. e., the angle
whose tangent is x), where the angle is in
the range -pi/2 to +pi/2.

The one-character string that consists of the
ASCII character with numeric code
mod(int(x),128). (See Appendix A.)

The logarithm of x to the base 10.

An eight-character string that gives the time
of day in the form HH:MM:SS.

The number of arguments supplied by the Multics
command processor. This function can be used
when a BASIC main program has been called as
a Multics command.

The cosine of x, where x is in radians.

The cotangent of x, where x is in radians.

An eight-character string that gives the current
date in the form MM/DD/YY.

The determinant of the last matrix that was
inverted in this program using the matrix
function inv. (See Section 6.)

The exponential of x (i. e., the· value of e
raised to the power x).

The largest integer not greater than x.

The number of characters in the string a$.

The logarithm of x to the base e.

3-4 A~' 8 2- 01

Function Description

max(x1, ... ,xn) The maximum of n numeric values. This function
allows an arbitrary number of arguments.

min(x1, ... ,xn) The minimum of n numeric values. This function
allows an arbitrary number of arguments.

mod(x,y)

num

pos(a$,b$,i)

rnd

seg$(a$,i,j)

sgn(x)

sin(x)

sqr(x)

sst$(a$,i,j)

str$(x)

The modulus function x - y * int(x/y); the
value x is returned if y is O.

The number of data items transmitted into the
1 ast array by a mat-input statement. (See
Section 6.) .

The location in string a$ of the first occurrence
of string b$, starting at or after position i
in a$. A 0 is returned if string b$ does not
occur in the specified substring of a$ or if
i <1 or i> len(a$).

The next pseudorandom number in a sequence of
uniformly distributed pseudorandom numbers
greater than or equal to 0 and less than 1.
The period of the sequence is 2 A 35 - 1.

The substring of a$ that consists of the
characters between posi tions i ' and j I

inclusive, where i' = max(i,1) and j' =
min(j,len(a$). A zero-length string is
returned if j' < if; otherwise, the length is
j'-i'+1.

Th e s i g n urn 0 f x: - 1 if x < 0, 0 i f x = 0,
and +1 if x > o.

The sine of x, where x is in radians.

The positive square root of x.

The substring of a$ that consists of j'
characters starting at the character in position
i ' , where i ' = max (i , 1) and j , =
max(min(j,len(a$)-i'+1),O).

The string that is the decimal representation
of the numeric value of x. The conversion
follows the rul es for pr inted output. (See
Section 5.)

3-5 AM82-01

Function

tan(x)

tim

tst(a$)

usr$

val(a$)

User Functions

Description

The tangent of x, where x is in radians.

The elapsed running time of the program in
seconds. This value is determined from the
microsecond clock used by the Multics system.

This function returns a value of if the
string a$ can successfully be converted to a
numeric value according to the rules for numeric
input; 0 is returned if the string a$ does
not represent a valid numeric constant.

A string giving the name of the user (e.g.,
Jones).

The value of the number whose decimal
representation is a$.

In addition to the standard functions that it provides, BASIC
allows the user to define his own functions. These function
definitions are local to the program in which they appear. Two
forms of function definition are permitted: single line functions
and multiple line functions.

A single line function returns the v;:;:·lue of a numeric or
string expression that can depend on the parameters, if any, of
the function. A multiple line function can perform more complicated
computations before it returns its result.

The name of a user-defined numeric function consists of the
letters "fn" followed by a single letter. The name of a user-defined
string function consists of the letters "fn" followed by a single
letter followed by a dollar sign. The same letter can be used
for both a string function and a numeric function in the same
program.

Examples:

fna
fna$

3-6 AM82-01

A reference to a user-defined function consists of the name
of the function optionally followed by a parenthesized argument
list containing one or more arguments. The arguments supplied in
a reference to a user-defined function must agree in number and
~ype with the parameters expected by the function; no conversion
is done to match the argument provided with the parameter expected.
Arguments are passed to a user-defined function "by value"; this
allows the function to assign a value to a parameter wi thout
changing the corresponding argument.

Multiple line functions can be defined with local variables.
A variable used in a function body that is not a parameter or a
I 0 c a I va ria b leo f the fun c t ion iss aid to be a g lob a I vat' i a b Ie.
A global variable is defined in the program that contains the
function definition.

A multiple line function can call itself recursively, i.e.,
the function can be invoked while one or more previous invocations
are still active. The recursive invocation can be direct, as the
result of a use of the function from within its own definition,
or indirect, as the result of a call from some other function.

3-7 AM82-01

SECTION 4

FILES

A BASIC file is a set of data external to the BASIC program.
A file either is associated with an input/output device, or it
resides in the Multics storage system as one or more segments.
The data in a Multics BASIC file are organized into sequential
records. The contents of a file are made available to the BASIC
program by the execution of input/output statements that transmit
data between the file and the program.

BASIC permi ts two classes of files:
and random access files.

TERMINAL FORMAT FILES

terminal format files

A terminal format file is a string of ASCII characters organized
into lines ending with newline characters. A line in a terminal
format file consists of the contiguous string of characters between
a newline character and the next newline character in the file.
The length of a line of a terminal format file can be from 0 to
4095 characters, inclusive.

A terminal format file is read and written through a Multics
1/0 switch that is attached to the user's terminal, or to a file
that reSides in the Multics storage system, or to a specific
input/output device. Terminal format files are accessed in a
sequential manner; it is not possible to access an arbitrary line
ina terminal format file. An I/O swi tch serves as a channel
through which input/output is performed.

4-1 AM82-01

RANDOM ACCESS FILES

A random access file is a collection of data that can be
accessed in a nonsequential manner. Input/output operations on
random files normally process the file sequentially, but operations
are available that permit the user to access any arbitrary datum.
Random access files are not read or written through a Multics I/O
switch. Each random access file resides in a single segment within
the Multics storage system.

A random access file is called a random numeric file or a
random string file according to the type of data it contains. A
random access file can contain only a single type of data; numeric
data cannot be stored in a string file, and string data cannot be
stored in a numeric file.

I
Numeric files used by programs compiled in extended preC1Slon

mode must have double precision values. Likewise, numeric files
used by single precision programs must have single precision values.
(See Appendix D for information about converting files.)

Random Numeric Files

A random numeric file can be thought of as a vector of numeric
values. Each record in a random numeric file consists of a single
numeric datum.

Random String Files

A random string file can be thought of as a vector of strings
of some previously specified maximum length; the default value of
this maximum length is 10 characters, the maximum length can be
as large as 4095 characters. Each record in a random string file
consists of a single string datum.

When a string value shorter than the maximum length is written
into a string file, it is not extended to the maximum length.
The current· length of the string value is stored in the file
along with the characters that comprise the string value. Writing
a string into a string file and then reading it back results in a
string of identical contents and length.

FILE NAMES

The name of a BASIC file is a string of ASCII characters.
This string is used by the BASIC runtime system to locate the
file. Whenever a file name is required by the BASIC program, the
user can write an arbitrary string expression. There are two
kinds of file names: those that have a colon as the first character
and those that do not.

4-2 AM82-01

When a colon is the first character of a file name, the file
name specifies a Multics I/O switch name. An I/O switch serves
as a channel through which input/output is performed. By specifying
a switch, rather than a specific device or file, a BASIC program
becomes device or file independent. The switch can be attached
to a different device or file each time the program is executed.
A file name of the form:

:name

~onnects the BASIC file to the I/O switch name, which must already
he properly attached. A file name of the form:

:name attach-description

C0nnects the BASIC file to the 1/0 switch name; attach-description
sper;ifies the manner in which the switch should be attached if
not already attached. The types of attachments that can be made
are described in Appendix c.

If BASIC attaches the switch, it also opens, positions, closes,
and detaches the switch at the termination of the BASIC pro~ram.
I f the swi tch is already attached, BASIC opens, posi tions, and
closes it but does not detach it. Finally, if the file name
specifies an 1/0 swi tch that is both attached and open, BASIC
does not position, close, or detach the switch.

File names that begin ~ith a colon cannot be used for random
access files. Examples of file names that have a colon as the
first character are:

I
:error output
:xxx vfile xxx file
:input record stream -target ntape_ 123abc,9track -raw

~--------------------------------=---=-~~----------------------~
A file name that does not begin with a colon is interpreted

a saM u 1 tic spa t h n arne t hat s p e c i fie s a s e g me n tin t. he r'1 u 1 tic s
storag~ system. The pathname can be either absolute or relative.
(Refer to the New Users' Introduction to Mul tics Part I, Order I~

11 0 • C H 2 4 for a des c rip t ion 0 f a b sol ute and r e 1 at j v epa t h n arne s .) ~.
This kind of file name must satisfy all constraints on pathnames
(refer to the MPM Reference Guide) that are enforced by the Multics
operating system. Examples of this type of file name are:

error output
data
)udd>projectid)personid)filea
<input

4-3 AM82-01

FILE NUMBERS

A BASIC program refers to its files by means of a file number.
A BASIC file number is an integer from a to 16, inclusive. File
number 0 always refers to the user's terminal, which is treated
as a terminal format file.

The correspondence between a file number and a file name is
established by the file statement. A file is called "open" if it
is cur ren t 1 Y a S5 igned a fi Ie number and is c aIled It closed" 0 therwi se .

A file statement results in an attempt to locate the specified
file, either as an 1/0 attachment or as a Mul tics segment. If
the file is located, the BASIC runtime system determines the type
and attaches the file appropriately. Errors that can be detected
include: an invalid file number, an invalid file name, no read
access, a type not used by BASIC programs, and a numeric file
that has a precision different from the program. If the file is
not lo~ated, it will be created when first used. If an 1/0 attachment
is specified, there must be a valid attach description if the
file is not already attached, and if the file is already open, it
must be for stream input or stream output.

A file remains open until it is closed. A file can be ~losed
in one of two ways:

1. When control returns from a BASIC program, either normally
or abnormally, all files opened by the program are
automatically closed.

2. A file is closed if its file number is used in a subsequent
I file statement in the same program.

FILE EXPRESSIONS

Whenever a file number is required in a BASIC program, the
user can write an arbitrary numeric expression whose value is
truncated to an integer before it is used. Throughout this document
the term "file expression" signifies a numeric expression that
results in an integer value from 0 to 16, inclusive.

TEHPORARY FILES

The file name ,,*" refers to a temporary file that is created
by the file statement that opens it. A temporary file is deleted
at the termination of the program that created it. Each use of
the file name it*" in a file statement results in the creation of
a new file that is distinct from any other temporary files previously
created.

AM82-01

FILE ATTRIBUTES

Each BASIC file has associated with it a type; a length, a
margin, and a pointer.

A BASIC file has one of three types: terminal format, random
numeric, or random string. The type of a nonempty BASIC file is
uniquely determined by its contents. The type of an empty file
is set by the first output to the file: a print statement causes
the file to become terminal format; a write statement causes the
file to become random numeric or random string depending on the
type of the first datum written. The type of a BASIC file can be
changed if and only if the file is empty.

File Length

The length of a-terminal format file is the number of lines
in the file. The length of a random file is the number of data
elements in the file. The length of an empty file is O. The
length of a file can be changed by print, scratch, or write statements.

The margin of a terminal format file is the maximum number of
characters that can be placed in aline of output before the
BASIC runtime system automatically generates a newline character
and starts a new I ine of output. Each character pI aced in the
line is treated as if it advanced the terminal print head by one
position; nonprinting characters such as tab or backspace are not
treated specially. A margin of a for a terminal format file
means that the output line is to be treated as if it were infinitely
long; in this case, the line overflow check is suppressed. The
default margin setting for a terminal format file is 75 characters.

4-5 AM82-01

The margin of a random string file is the length of the largest
string that can be written into the file without being truncated;
the default margin value is 10 characters. The margin of a random
numeric file has no effect on the contents of the file but must,
by convention, be 1.

The margin of any BASIC file must be from 0 to 4095, inclusive.
The margin of a file can be changed by the margin statement.

File Pointer

The file pointer specifies the next location in a file that
is affected by an input/output· operation on the file. When a
file is first opened, the file pointer points to the beginning of
the file.

The first print operation on a terminal format file causes
the file pointer to be set to the end of the file before any
characters are transmitted to the file. The file pointer of a
terminal format file is changed by the input, linput, and print
statements. The reset statement can be used to position the file
pointer to the beginning of the file.

The file pointer of a random file that contains N values can
range from 0 to N-1. The file pointer of a random file is changed
by the read and write statements. The file pointer can be changed
to point to any value in the file by means of the reset statement.

FUNCTIONS

The following functions are provided for obtaining information
related to the status of BASIC files; n stands for a file expression,
while a$ indicates an arbitrary string expression.

Function

hps(lIn)

10c(lIn)

10f(lIn)

Description

The current value of the horizontal print
position (number of characters in partial line)
of the terminal format file assigned file number
n.

The current value of the file pointer for the
random access file assigned file number n; 0
is returned if the file is empty.

The current length (number of data items) of
the random access file assigned file number
n; 0 is returned if the file is empty.

4-6 AM82-01

Functioo.

mar(l/n)

per(lIn,a$)

typCfln,a$)

NOTES

Description

The current margin of the file assigned file
number n.

The value +1 if the operation specified by a$
is permitted for file number n, 0 if the
operation is not permitted, and -1 if a$ does
not specify one of the operations input, I input,
print, read, reset, scratch, or write. An I
operation is not permitted if the type of the
file is incorrect or if there is no write
access in th~ case of output operations.

The value +1 if file number n is of type a$,
o if file number n is not of type a$, and -1
if a$ does not specify one of the types numeric,
string, terminal, tty, or any. Any open file
has type any. An empty file has any type
except tty.

I
In Multics the II is a special character and in order for it I

not to perform its delete function it must be preceded by a backsl ash
(\). See the MPM Communications 110, Order No. CC92, for further
information on special charabters.

4-7 AM82-01

SECTION 5

STATEMENTS

This section discusses all BASIC statements except the array
manipulation statements described in Section 6. When used in a
program, each statement must have a line number. For the sake of
simplicity, line numbers are omitted here.

CALL STATEMENT

Syntax:

call s$
or

call s$: list

where s$ is a string expression, and list is a list of argument
specifications. An argument specification can be an expression,
an array argument, a function argument, or a file argument.

Semantics:

The call statement transfers control to the program whose
name is given by the value of the string expression s$. The
program can be compiled wi th the program in which the call statement
is located or it can be separately compiled, in which case the
called program can be written in some other language. When the
called program returns (in the case of a BASIC program by executing
a stop, sub end , or end statement) execution continues wi th the
statement following the call statement.

5-1 AM82-01

The program name can be a simple segment name, a combined segment
and entry name in the form segment$entry, or either of these
prefixed by an arbitrary pathname. If the specified program is
not found in the current program, the Multics search rules in
effect at the time of the call are used to find it or, if a path
is specified, the indicated segment is initiated. Some examples
of program names are:

"integrate"
"solve$initialize"
"solve"
">udd>projectid>personid>l±brary>ROUTINE"
a$ & b$

Arguments

The number and type of arguments passed to a BASIC subroutine
must agree in number and type with the parameters expected by the
subroutine. Four types of arguments can be passed: expressions,
arrays, functions, and files.

EXPRESSION ARGUMENTS

Expression arguments are passed to the called subroutine by
location. If an argument "in the call statemf~nt is a scalar variable
or a reference to an array element, the corresponding parameter
in the subroutine is identified with the location of the argument
so that any change to the program parameter immediately results
in a change to the argument. If the argument is an expression or
constant rather than a reference, the value of the argument is
saved in a temporary location and this location is passed to the
subroutine.

If the value of a function that takes no parameters is to be
passed, the function name must be enclosed in parentheses.

x
a3 + rnd
y * 5in(z)
(clk$)

5-2 AM82-01

ARRAY ARGUMENTS

An array argument is written as

b ()

for a vector and

b (,)

for a matrix, where b is the name of the array_ The location of
the array is passed to the subroutine along with the current and
original array bounds. Any change to an element of the parameter
array from within the subroutine-immediately results in a change
to the corresponding element in the argument array. The subroutine
can change the current bounds of the array_

Examples:

a (,)
b$ ()

FUNCTION ARGUMENTS

I
A function argument consists of the name of a BASIC or

user-defined function. A use of the function from within the
called subroutine must provide the correct number and type ~f
arguments. Any names in the body of a user-defined function that
are not function parameters or local variables of the function
refer to the corresponding objects in the program in which the
function is defined.

Examples:

sin
fnz$

FILE ARGUMENTS

A file argument is written as:

;1 n

5-3

I

AM82-01

where n is a file expression. The file parameter in the called
subroutine refers to the same file as the calling program; the
file type, length, margin, pointer, and contents at entry to the
subroutine remain as they were after the last operation affecting
the file in the calling program. Any change to the file from
within the called subroutine is retained after the subroutine
returns.

Examples:

Interlanguage Calls

Calls between BASIC programs and programs written in other
languages are subject to restrictions on the types of arguments
that can be passed; functions, files, and arrays of strings cannot
be passed. See Appendix B for further details.

Call Statement Examples

The following are examples of the call statement:

100 call "init"
200 call a$ & "routine": a()
300 call "write": Uk, a$(,)
400 call "integrate": fna, 1, 10, 1e-5
500 call "calculate": a, be), sin(x-y/z)

CHANGE STATEMENT

Syntax:

change n to s$
or

change e$ to n

where n is a numeric vector, s$ is a string reference, and e$ is
a string expression.

5-,4 AM82-01

Semantics:

The change statement converts a string, considered a list of
characters, to and from a numeric vector, considered a 1 ist 0 f
integers. The first form of the change statement sets the string
variable to a string. value whose length is given by the number
found in the zero element of the numeric vector; the kth character
of the string value is the character whose ASCII code is given by
the kth element of the numeric vector. The second form of the
change statement sets the values in the numeric vector so that
the zeroth element of the vector is the length of the string
expression and the kth element of the vector contains the numeric
equivalent for the kth character in the string (see Appendix A).

100 change a to b3$
125 change seg$(a$,i+1,j-2) to b

Change Bit Statement

Syntax:

change n to s$ bit m
or

change e$ to n bit m

where n is a numeric vector', s$ is a string reference, e$ is a
string expression, and m is a numeric expression. m represents a
hit width; it is truncated to an intsger value m', which must ~e
from 1 to 27, inclusive.

Semantics:

The change-bi t statement converts a string, considered a sequence
of bits separated into pseudocharacters of length m', to and from
a numeric vector, consjdered a list of integers. The first form
of the change-bit statement packs the elements of the numeric
list into a string value with each element occupying m' bits; the
length of the string is the number of 9-hit characters required
to hold the number of pseudocharacters specified by the zeroth
element of the numeric array. The second form of the change-bit
statement sets the kth element of the numeric vector to the integer
value corresponding to the kth pseudocharacter in the string value;
the zeroth element in the numeric vector is set to the number of
pseudocharacters in the string expression.

5-5 AM82-01

When changing from a string to a vector, the last few bits of
the string are ignored if the string is not composed of an integral
number of pseudocharacters. When changing from a vector to a
string, enough a bits are appended to the string of pseudocharacters
to make an integral number of ASCII characterse When mt = 9, the
change-bit statement is equivalent to the change statement.

110 change a to c$(a+j) bit 2*n+1
20 CHANGE a$ & b$ to x BIT 4

DATA STATEMENT

Syntax:

data list
or

data list

where list is a list of BASIC numeric or string constants separated
by commas. A trailing comma is ignored.

Semantics:

The data statement is a nonexecutable statement that creates
a block of data to be read by a read statement; any number of
data statements can appear at any place in the program. Data
from all of the data statements in the p!"ogram, taken in the
order in which the data statements occurred, are combined to create
two blocks of data: a numeric block and a string block. Numeric
and string constants can be freely intermixed in a data statement;
each value is entered in the appropriate data pool.

In certain cases the quotation marks around a string constant
appearing in a data statement can be removed. If a string constant
does not contain any blanks, tab characters, uppercase characters,
backslash characters, or nonprinting ASCII characters, and does
not begin with a digit, a plus sign, or a minus sign, the quotation
marks can be omitted. It is never incorrect to place quotation
marks around string data.

100 data 1,2
200 data 3.1415,2.7~3,0,
300 DATA these,are,unquoted,strings
400 data "This is a quoted string",1,2, "George"

5-6 AMS2-01

DEF STATEMENT

Single Line Functions

Syntax:

def f = e
or

def f(list) = e

where f is the name of the function to be defined, e is an expression,
and list is a list of parameters separated by commas.

Semantics:

The single line def statement defines a function whose value
is the value of an expression that can refer to the optional
function parameters. The type of the expression must be the same
as the type of the function being defined. A given function
cannot be defined by more than one def statement in a program.

A parameter is a scalar variable that is local to the function
body and has no relationship to any variable of the same name
used elsewhere in the program. The value of a function parameter
is initialized to the the value of the corresponding function
argument when the function is called. A use inside the function
body of a variable that is-not a parameter refers to the variable
of the same name defined outside the function definition.

A def statement can appear anywhere in the program, ei ther
before or after the first use of the function. A def statement
has r.o effect when encountered during program execution.

100 def fnp = 3.14159
110 def fna(x) = sqr(1 - a * x * fnp)
120 def fnb(a$,b$) = abs(len(a$) - len(b$»
130 def fna$(a$,b$) = sst$(a$,1,pos(a$,b$,1)-1)

Multiple Line Function

Syntax:

def f
or

def f v
or

def f(list)
or

def f(list)v

5-7 AM82-01

where f is the name of the function to be defined, list is a list
of parameters separated by commas, and v is a list of local variables
separated by commas.

Semantics:

This form of def statement is the first statement in a multiple
line function definition that is terminated by a subsequent fnend
statement. The body of the function can contain any number of
statements; a def statement 7 sub statement j or subend statement
cannot be used in a function body.

Within the body of the function, the name of the function can
be used as a scalar variable .of the same type as the function;
its value is always the value to be returned by the function.
The value of the function is initialized to 0 or the null string
when the function is entered; a let statement (or any other statement
that can cause a variable to change its value) can be used to
assign a new value for the function. Some examples of this special
use of the function name are:

100 let fnf = 2 * fnf
120 input fnx$

A parameter is a scalar variable that is local to the function
body. The value of a function parameter is initialized to the
value of the corresponding function argument when the function is
called. A change in the value of a function parameter does not
cause a change in the value of the corresponding function argument.

A local variable (as specified in the def statement) is
initialized to 0 or the null string; the values of the local
variables are lost when the function returns. Any variable used
in the function that is not a parameter or a local variable refers
tot he va ria b 1 e 0 f the sam e n am e d e fin e d 0 u ts ide the fun c t ion
definition.

A function definition can occur anywhere in the program, either
before or after the first use of the function. When a def statement
is encountered during program execution, execution continues with
the statement following the matching fnend statement. It is not
possible to jump into or out of the function body; the function
can only be invoked by a function call.

100 def fng(x,y)
130 def fnx$(a,b$),x,y$,z
150 def fnh

5-8 AM82-01

DIM STATEMENT

Syntax:

dim list

where list is a list of array declarators separated by commas.
Each array declarator has the form:

c (b 1)

for vectors and:

c(b1,b2)

for matrices; c is the name of an array; b1 and b2 are unsigned
integer constants that specify the upper bound of the corresponding
array dimension.

Semantics:

The dim statement explicitly declares array names and establishes
the number of dimensions and number of elements in each dimension
of the arrays specified. The lower bound of each array dimension
is always O. The b1 + 1 locations are reserved for a vector; (b1
+ 1) * (b2 + 1) locations are reserved for a matrix.

Any number of dim statements can appear anywhere in the program;
a dim statement has no effect when executed. A dim statement can
appear either before or after the first use of an array; if the
dim statement appears afterwards, the number of dimensions given
in the dim statement must agree wi th the number of dimensions
determined from the context of the first usage. An array name
can be explicitly declared only once in a program.

100 dim a(12),b(100,100),c$(23),e(3)

5-9 AM82-01

END STATEMENT

Syntax:

end

Semantics:

The end statement indicates the end of a main program. If
there are no subroutines in the same segment, the end statement
must be the last statement in the source. If subroutines are
present, they must follow the end statement.

Executing an end statement causes the main program to finish
normally. All files opened by the main program are closed and
control returns to the program that invoked the main program.

999 end

FILE STATEMENT

Syntax:

file II n : s$

where n is a file expression and s$ is a string expression.

Semantics:

The file statement opens the file with name s$ and assigns it
file number n. Any file previously assigned file number n is
closed. File number 0, which refers to the user's terminal, cannot
be used in a file statement. .

100 file 11: "alpha"
200 FILE Hm: a$(i+2)

FNEND STATEMENT

Syntax:

fnend

5-10 AM82-01

Semantics:

The fnend statement marks the end of a multiple line function
definition. See the description of the def statement.

175 fnend

FOR STATEMENT

Syntax:

for v = e1 to e2
or

for v = e1 to e2 step e3

where v is a reference to a scalar numeric variable, and e1, e2,
and e3 are numeric expressions.

Semantics:

The for statement marks the beginning of a for-next loop; it
is always used in conjunction with a subsequent next statement
that specifies the same scalar numeric variable. When the optional
step expression e3 is omitted, the value +1 is used.

The group of statements between the for statement and the
matching next statement, called the body of the loop, is executed
repeatedly according to the following steps:

1. The expressions e1 , e2, and e3 are evaluated and the resul ting
values are saved. Let e1', e2', and e3' represent the
saved values, which are inaccessible to the user's program.

2. The control variable v is set to the valUe of expression
e 1 ' •

3. If e3' >= 0 and v > e2' or if e3' < 0 and v < e2', the
loop is terminated and execution continues wi th the statement
after the matching next statement; otherwise, execution
continues with step 4.

4. The body of the for-next loop is executed.

5. When the next statement that marks the end of the for-next
loop is executed, the control variable v is set to v +
e3' and step 3 is repeated.

5-11 AM82-01

The value of the control variable can be modified by statements
within the body of the loop, and its value is available at the
end of the loop. The body of the loop can contain statements
that jump out of the loop, but undefined results can occur if a
statement outside the for-next loop attempts to jump into the
body of the loop.

For-next loops can be nested to a depth of eight. For-next
loops cannot be interleaved. A for-next loop cannot use the same
control variable as a for-next loop that contains it.

100 for i = 1 to 10 .
200 for a1 = -y to y+10 step .1
300 for x = n to -3 step -1

GOSUB STATEMENT

Syntax:

gosub In

where In is a line number.

Semantics:

A gosub statement saves the line number of the statement following
it and transfers control to the statement whose line number is
specified in the gosub statement. When a return statement is
subsequently executed, control returns to the statement whose line
number was saved.

There can be any number of gosub statements executed before a
return statement; the BASIC runtime system ma-intains a last-in
first-out stack of pending returns. Any pending gosub returns
that originated in a program or user-defined function are discarded
when control leaves the program or function.

113 gosub 1000

GOTO STATEMENT

Syntax:

goto In

where In is a line number.

5-12 AM82-01

Semantics:

The goto statement causes execution to cont inue wi th the
statement whose line number is In.

100 goto 75
200 go to 400

IF STATEMENT

Syntax:

if e1 reI e2 then In
or

if e1 reI e2 go to In

where e1 and e2are either both numeric expressions or both string
expressions, In is a line number, and reI is one of the-following
relational operators:

Operator

<
>
<=
=<
>=
=>
=
<>
><

Semantics:

Meaning

less than
greater than
less than or equal
less than or equal
greater than or equal
greater than or equal
equal
not equal
not equal

If e1 and e2 satisfy the relationship specified by reI, control
is transferred to the statement with line number In; otherwise,
execution continues with the statement following the if statement.

I 100 if a$ = "yes" then 125
200 IF ABS(X-Y) < E THEN 75
307 if x <> 0 goto 999

I 500 if a$ <= b$ then 200

5-13 AM82-01

IF-END STATEMENT

Syntax:

if end # n then In
or

if end # n goto In

where n is a file expression and In is a line number.

Semantics:

Control is transferred to the statement with line number In
if there are no more data i terns to be input from the terminal
format file with file number n; otherwise, execution continues
with the statement following the if statement.

125 if end # 1 then 200

IF-MORE STATEMENT

Syntax:

if more # n then In
or

if more # n goto In

where n is a file expression and In is a line number.

Semantics:

Control is transferred to the statement with line number In
if there are more data items available for input from the terminal
format file wi th file number n; otherwi se, execution continues
with the statement following the if statement.

-2175 if more In goto 200

5-14 AM82-01

.!NPUT STATEMENT

Syntax:

input list
or

input list

where list is a list of references separated by commas.

Semantics:

The input statement causes data values to be read from the
user's terminal and assigned, in order, to the references in the
input list. The subscript expressions in an array reference in
the input list are not evaluated until all references that precede
it in the input list have been assigned values.

When the input statement is executed, the BASIC runtime system
prints the prompt"? "on the user's terminal without a newline
as an indication that input is required. The user must enter a
set of numeric or string constants separated by commas. If too
few data values are provided, the BASIC runtime system prints a
message and requests more data. If too many data i terns are provided,
the BASIC runtime system prints a message and ignores the excess
values.

The data items provided by the user must match the type of
the corresponding reference in the input list. If the data types
do not match or there is any other error, a message is pr inted
and the incorrect data value and all values following it must be
retyped.

When a numeric value is expected, the BASIC runtime system
gathers all characters up to the next comma or newline; blanks
and tabs are ignored. If the resulting string of characters is
the word stop, execution of the program containing the input statement
is terminated; otherwise, the string must be a legal BASIC numeric
constant.

Ei ther a quoted or an unquoted string can be used when a
string value is expected. Quotes are necessary only if the string
value is to begin with blanks or contain a comma or quote. Unlike
unquoted string constants written explicitly in the BASIC program,
uppercase characters are not converted to lowercase.

I f the input statement ends wi th a comma, any data values
that r'emain after the input list has been satisfied are not discarded,
but are saved for the next statement that requests input from the
terminal. When the next input statement is executed, no prompt
is printed until all of the saved data values have been processed.
The saved data values are discarded if a print statement is executed
before this or some other statement that requests input from the
userts terminal is executed.

5-15 AM82-01

100 input a,b,a$
200 input n,a(n)
300 input c$,x1,
325 input c(i,j)

INPUT-FILE STATEMENT

Syntax:

input II n
or

input II n

list

list

where n is a file expression and list is a list of references
separated by commas.

Semantics:

This variation of the input statement requests input from the
terminal format file wi th file number n. If the file number is
0, this form of the input statement is the same as the simpler
form in which the file number is omitted.

If the file number is nonzero, as many lines as are necessary
to satisfy the input list are read from the specified file starting
at the current value of the file pointer. No prompting messages
are printed. Any erroneous input or an attempt to read past the
end of the file causes a message to be printed after which execution
of the program containing the input-file statement is terminated.

After each data value in the file has been processed, the
file pointer is advanced to the character after the comma or
newline that delimited the data value.

Like the input statement, if the input-file statement ends
with a comma, any data values that remain after the input list
has been satisfied are not discarded, but are saved for the next
statement that requests input from the terminal. When the next
input-file statement is executed, no prompt is printed until all
of the saved data values have been processed. The saved data
values are discarded if a print-file statement is executed before
this or some other statement that requests input from the user's
terminal is executed.

5-16 AM82-01

100 input #1: a,b,c
223 INPUT n k+2: n,a(n-1),
317 input #O:i,j$

LET STATEMENT

Syntax:

let v = e
or

let v1 = v2 =
or

v = e
or

= vn = e

v1 = v2 = ••• = vn = e

where v, v1, v2, ..• , vn are either all numeric references or all
string references and e is an expression of the same type as the
reference(s).

Semantics:

The let statement assigns the value of an expression to one
or more scalar variables or subscripted array elements of the
same type. All subscript expressions in the list of references
are calculated before the expression is evaluated and before any
assignments are done.

100 let x(5) = sqr(q + y A 3)
217 let i = i + 1
345 a$ = b$ & seg$(c$,i,j)
400 i = a(i) = 5

LINPUT STATEMENT

Syntax:

linput list

where list is a list of string references separated by commas.

5-17 AM82-01

Semantics:

The linput statement causes each string reference in the list
to be assigned a string value consisting of all the characters in
a line of input (except the newline character at the end). This
permits the user to enter strings containing characters that might
otherwise have special significance to BASIC.

Each time a string value is required, a prompt is printed and
an entire 1 ine is read and used for the str ing value. If the
last input- or mat-input statement ended in a comma and there is
a partial line left, the initial prompt is omitted and the partial
line is used as the first string value.

300 linput a1$, b$(i+3)

LINPUT-FILE STATEMENT

Syntax:

linput n n : list

where n is a file expression and list is a listof string references
separated by commas.

Semantics:

This variation of the linput statement requests lines of input
from the terminal format file wi th file number n. If the file
number is 0, this form of the linput statement is the same as the
simpler form in which the file number is omitted.

If the file number is nonzero, as many lines as are necessary
to satisfy the list of references are read from the specified·
file starting at the current value of the file "pointer. No prompting
messages are printed. If a previous input- or mat-input statement
referencing the same file ended in"a comma and there is any partial
input line left, the value of the first string reference is set
to the partial line. The file pointer is left pointing at the
character after the newline of the last line read from the file.

123 linput #12 a4$

5-18 AM82-01

MARGIN STATEMENT

Syntax:

margin e

where e is a numeric expression.

Semantics:

The margin statement sets the maximum number of characters
that can be printed on the user's terminal. The value of the
expression is truncated to yield an integer value for the new
margin. The new margin takes effect immediately, even if there
is a partially constructed output line. The margin value lasts
for the lifetime of the process or run uni t, or until another
margin statement in any BASIC program is executed. The defaul t
margin is 15.

I 20 margin 120

MARGIN-FILE STATEMENT

Syntax:

margin II n : e

where n is a file expression and e is a number expression.

5-19 AM82-01

Semantics:

This variation of the margin statement sets the margin of the
specified file to the truncated value of the numeric expression.
In the case of a terminal format file, the new margin takes effect
immediately; the margin of a random access file can be changed
only if the file is empty. If the file number is 0, this form of
the margin statement is the same as the simpler form in which the
file number is omitted.

I 40 margin 06: m

NEXT STATEMENT

Syntax:

next v

where v is a reference to a scalar numeric variable.

Semantics:

The next statement marks the end of a for-next loop; it is
always used in conjunction wi th a preceding for statement ·that
specifies the same scalar" numeric variable.

710 next x

5-20 AM82-01

ON-GOSUB STATEMENT

Syntax:

on x gosub 11 f 12, ... , In

where x is a numeric expression and 11, 12 f
numbers.

Semantics!

... , In are line

The on-gosub statement uses the value of the numeric expression
to select one of the line numbers as the target of a gosub operation.
The value of the expression is truncated to yield an integer x'
that must be greater than 0 and less than or equal to the number
of line numbers. The line number of the statement following the
on-gosub statement is saved on the gosub return stack. If x' is
1 f execution continues wi th line 11; if x' is 2, execution continues
with line 12; and so forth.

220 on i gosub 1000,2000,3000,4000

ON-GOTO STATEMENT

Syntax:

on x goto 1 1 , 12, ... , In
or

on x then 1 1 , 12, ... , In

where x is a numeric expression and 1 1 , 12, ... , In are line
numbers.

Semantics:

The on-goto statement uses the value of the numeric expression
to select one of the line numbers as the target of a goto operation.
The value of the expression is truncated to yield an integer x'
that must be greater than 0 and less than or equal to the number
of line numbers specified. If x' is 1, execution continues with
1 ine 11; if x' is 2, execution continues wi th 1 ine 12; and so
forth.

100 on sgn(x-y)+2 goto 110,120,130 I
5-21 AM82-01

PRINT STATEMENT

Syntax:

print
or

print list

where list is a list of optional print elements separated by
commas or semicolons. A print element can be an expression, a
tab request, or a space request. Any number of consecutive commas
or semicolons can be present in the list.

Semantics:

The print statement generates lines of output to be printed
on the user's terminal. A single print statement can generate
one line, several lines, or only part· of a line of output. ·The
characters generated by a print statement are sent to the terminal
at the end of the statement, even if this means that the terminal
print head is left sitting in the middle of a line.

The format of the line image is determined by the elements in
the print list. Each element in the print list is evaluated to
yield a string of characters to be placed in the output line. If
the resulting string fits on the current line, the characters are
appended to the partial line.

If the string of characters corresponding to the print element
would cause the length of the current output line to exceed the
margin, a newline is placed at the end of the line; the remainder
of the line is transmitted to the termi.nal; and a new line is
begun. If the string of characters derived from the print element
is longer than the margin, the string is split across as many
complete lines as are required to hold it.

Numeric Expressions

A numeric expression appearing in a print list is evaluated
and converted to a character string representation. One of three
formats is used for the string representation, depending on the
characteristics of the numeric value. In all cases, the string
begins with a sign character and ends with a blank; the sign is a
blank if the value is positive and a minus sign if the value is
negative.

5-22 AM82-01

INTEGER FORMAT

Numbers printed in integer format consist of a string of from
one to n decimal digits without a decimal point where n is nine
for single precision and nineteen for double precision. Integer
format is used for integers whose absolute value is less than
2~27 (134,217,728) for single precision and less than 2~63
(9223372036854775808) for double precision. Some examples of
numbers in integer format are:

12
-20765
o

FRACTIONAL FORMAT

Numbers printed in fractional format consist of from one to
six decimal digi ts wi th a decimal point. Trailing 0' s in the
fractional part are omitted; a number less than 1 is represented
with a zero to the left of the decimal point. Numbers printed in
fractional format are rounded to six digi ts. Fractional format
is used for nonintegers whose absolute values are in the range
o . 0999995 to 999999 . 5 0 r who s e. a b sol ute val u e s are I e sst han O. 0999995
and can be exactly represented wi th six digi ts. In double precision
mode, the number of digi ts may be specified by the setdigi ts
statement. Some examples of numbers in fractional format are:

12.34
-0.00276
0.0037
7.13486

SCIENTIFIC FORMAT

A number printed in scientific format appears as:

x E+y or x E-y

5-23 AM82-01

where x is a number whose absolute value is greater than or equal
to 1 and less than 10 printed in fractional notation and y is a
power of 10 such that the numeric value being converted is x * 10 ,.. y.
Numbers printed in scientific format are rounded to six digits.
In double precision mode, the number of digits may be specified
by the setdigits statement. Scientific format is used whenever
integer or fractional format cannot be used. Some examples of
numbers printed in scientific format are:

-7.31567 E+13
1.27 E-21
-1. E-32

String Expressions

A string expression in the print list is evaluated and the
resulting string of characters is placed in the output line. The
BASIC runtime system does not look at the contents of the character
string; unpredictable results can occur if the string contains
characters that do not advance the print head by precisely one
position.

Comma Separator

The output line is normally considered to be divided into
zones of 15 characters each. The first z~ne starts in column 0,
the second zone starts in column 15, and so forth. The zone
after the last zone on a line is the first zone on the next line.
The number of zones available is determined by the current value
of the margin; the default margin value of 75 permits five zones.

A comma in a print list causes the print head to advance to
the beginning of the next available zone; this can cause the
current line to be printed and a new line to be started. If a
comma is the last element in the print list-, the partial line, if
any, is printed and the print head remains positioned at the
start of the new zone.

Semicolon Separator

A semicolon in a print list is used only to separate print
elements and does not affect the- position of the print head.
This permits the elements on either side of the semicoloh to be
printed without any extra spaces between them. If a semicolon is
the last element in the print list, the partial line, if any, is
printed and the print head remains positioned at the character
after the last character printed.

5-24 AM82-01

Tab Request

The tab print element requests that the print head be moved
to a specific column. A tab request is written as:

tab(e)

where e is a numeric expression. The truncated value of the
expressi.on is taken modulo the current margin value to yield a
value e' for the desired column. If the print head is already
past column e', nothing happens; otherwise, the print head is
positioned at column e'. Since a comma in the print list advances
the print head, a tab request should normally be followed by a
semicolon.

An example of a tab request in a print list is:

[X: tab(40); y

Space ,!{equest

The space print element requests that the print head be advanced
by a specific number of columns. A space request is written as:

spc(e)

where e is a numeric expression. The value of the expression is
truncated to yield an integer e t that gives the number of spaces
desired. If the specified number of spaces would take the print
head past the margin, the space request is ignored; otherwi se,
the print head is advanced.

List Termination

If the print list does not end in a comma or a semicolon, a
newline character is appended to the line and the line is transmitted
to the terminal. A completely empty print list causes the previous
line to be finished or a blank line to be printed.

Pri~~ Statement Examples

The following examples show the optional print elements and
separators described in the previous paragraphs:

5-25 AM82-01

10 print
20 print
30 print
40 print
50 print
60 print

x,sin(z 2 - y 2)
"Value is U;x_y
",a$ & seg$(b$,i,j)
x;
x,y,

PRINT-FILE STATEMENT

Syntax:

print 11 n
or

print n n : list

where n is a file expression and list is a list of optional print
elements separated by commas or semicolons. A print element can
be an expression, a tab request, or a space request. Any number
of consecutive commas or semicolons can be present in the list.

Semantics:

This variation of -the print statement directs output to the
terminal format file with. file number n. If the file number is
0, this form of the print statement is the same as the simpler
form in which the file number is omitted.

If the file number is nonzero, lines are written into the
file starting at the current position of the file pointer. Each
time a partial line is written into the file, the file pointer is
updated to point to the character after the last character written.

I 100 print '3: x,fna(x)

PRINT-USING STATEMENT

- Syntax:

print using f$
or

print using f$
or

print using f$, list
or

print using f$, list

5-26 AM82-01

where f$ is a string expression and list is a list of expressions
separated by commas.

Semantics:

The print-using statement generates lines of output to be
printed on the user's terminal. A single print-using statement
can generate one line, several lines, or only part of a line of
output. The characters generated by a print-using statement are
sent to the terminal at the end of the statement, even if this
means that the terminal print head is left sitting in the middle
of a line.

Format Fields

The string specified by f$ contains a description of the editing
to be applied to the values in the print list. The format string
f$ is divided into a series of fields, each of which controls the
formatting of a single value in the print list. Two types. of
fields are .possible: numeric fields and string fields. A numeric
field can only be used with a numeric value and a string field
can only be used with a string value.

There are eight special characters used for defining fields
in the format string. These characters and their effects are
given in the following tabl~:

Character Effect

+

$

/ ,

>

Start a numeric field; print a floating minus
sign for negative numbers and reserve a
place for a digit for positive numbers.

Start a numeric field, print a floating
plus sign for positive numbers and a
floating point minus sign for negative numbers.

Mark the position where a decimal point is to be
printed.

Start a numeric field; print a floating dollar sign.

Specify the exponent part of a numeric field.

Start a string

Start a string field; print string right justified.

Reserve a place in either a numeric of a string field.

5-27 AM82-01

A format field consists of all of the characters from the
character that starts the field until the end of the format string
or the character before the character that starts the next field,
whichever comes first.

A character that is not one of the eight special format characters
is called a literal character. Literal characters occurring in a
field are normally placed in the line image unchanged; they can
be replaced by blanks as described below under "Numeric Fields".

1. A "+If or a "-" can be immediately preceded by a "$".

2. If a "$" -is not immediately followed by a "+" or "_If, "_"
is assumed.

3 · The exponent field must be written as " "

4. A "I" cannot start a field.

5. A "." is a literal character when it occurs outside of a
numeric field.

The following are examples of format strings:

"x is -110 and f(x) is +011.111, "
"RECEIPTS $-"~lnl.OO"
"<oolno >IOOOnOOI"

In the first example, the string "x is " precedes the first field
which consists of the string "-Oil and f(x) is "; the second field
consists of the string "+00.##"' ".

Format Processing

The pr in t - us i n g s tat eme n tis pro c e sse din t he follow i n g man ne r :

1 . The optional string of 1 i teral characters that precedes
the first field in th€ format stri-ng is placed in the
line image with normal margin checking.

2. Each expression in the print list is evaluated, in turn,
and its value is used to evaluate the corresponding field
in the format string. The string of characters resulting
from the evaluation of the format field is placed in the
line image.

3. If there are more format fields than expressions in the
print list, the extra fields are ignored and proceSSing
ceases.

4. If the end of the format string is reached before the
last expression has been evaluated, a newline is added to
the current output line, .the line is transmitted to the

5-28 AM82-01

terminal, and the entire format string is used again,
starting with the first field.

5. If the print list does not end in a semicolon, a newline
is added to the line image. The line is transmitted to
the terminal.

6. If the string of characters resulting from a field evaluation
would cause the margin to be exceeded, characters are
placed in the line until the margin is exactly reached, a
newline is appended, the characters are sent to the terminal J

and the remaining characters are placed in the following
line. As many lines as ~re necessary to hold the field
value are used.

Numeric Fields

A numeric field that does not contain an exponent part is
evaluated as follows:

1. Each "I" in the field reserves a place for a digit in the
converted numeric value. A "_tI reserves a place for a
digit if the numeric value is positive. Let P be the
number of digit places reserved.

2. If the field does not contain a ".", the numeric value is
converted with rounding to a decimal integer of P digits.
If the field contains a "." followed by Q digit places,
the numeric value is converted to a decimal number
digits and is rounded to Q fractional digits.
the string of digits obtained.

Let D be

3. If P = 0, or Q) 38, or any high-order digits are lost in
the conversion performed by step 2, the value of the field
is the string of characters in the field with each "+",
"_tt, "$", and "II" replaced by a "*".

4. Leading 0' s in the integer part of D are replaced by
blanks, except a blank is never placed in the units position.
If more than n digits remain after leading D's have been
removed, all digits after the nth digit are replaced by a
"7". n is nine for single precision but may be specified
by the setdlgits statement for double precision.

5. A copy is made of the characters in the field with each
character in the field that reserved a d igi t posi tion
being replaced by the corresponding character of D. Let
C be the string thus obtained.

6. All characters :n C to the left of the first digit that
is not a 0 are replaced by blanks.

5-29 AM82-01

7. If the field contains a "+", the sign of the numeric
value replaces the blank immediately preceding the leftmost
digit of C. If the field contains a "-" and the numberic
value is positive, no action is taken. If the field contains
a n_" and the numeric value is negative, a "_n replaces
the blank just preceding the leftmost digit, or, if there
is no blank, a leading a in the units position.

8. If the field begins with a "$", a "$" replaces the blank
just preceding the sign or leftmost digit of C.

9. The value of the field is the string obtained in step 8.

A numeric field that contains an exponent part is evaluated
as follows:

1 • Each "II" in the field reserves a digi t posi tion. Let P
be the number of digit positions.

2. If the field does not contain a ".", let Q be 0; otherwise,
let Q be the number of digit positions to the right of
the ".". The numeric value is evaluated and converted
wi th rounding to a decimal value D of P digi ts wi th Q
fractional digi ts and exponent E such that the original
value is D * 10 A E. If the value of the expression is
not 0, the leftmost digit of D is not o.

3. A copy 1s made of the characters in the field with each
character that reserved a digit position being replaced
by the corresponding digi t of D. Let C be the copy obtained.

4. A "+" in C is replaced by the sign of the numeric value;
a "-" in C is replaced by a space if the numeric value is
positive.

5. The first "A" in the exponent field is replaced by a
blank; the second "A" is replaced by an "E"; the third
" A " is rep lac e d by the s i g n 0 f the e x po n e n t E; and the
last two "A"S are replaced by the decimal exponent digits.
If the exponent can be represented by a single digit, the
last character of the exponent field is replaced by a
blank.

6. The value of the field is the string obtained in Step 5.

5-30 AM82-01

Some examples of numeric field evaluation are presented here
(~ represents a single blank):

Field Internal Value External Form

-II II 2 ~}s2
-1111 -23 -23
-1111 476 476
- tIll -476 ***
+1111 23 +23
+1111 -23 -23
+1111 476 ***
+1111 0 kS+O
-1111 • fill 17.479 kS17.48
- fill • fill 1 . 7479 kS}s 1 . 7
-/III • 1111 • 17479 kS}s0.17
-1111. nn -. 172 kS-0.17
-.011 0.23 0.23
-.1111 -0.23 -.23

7 7
-7 *

$-U, 111111.00 18.43 iHS}skS$18.00
$-11,11011.00 -1234 $-1,234.00
-IIII.OU"''''''''''' 123.4 kS12.34 E+1iS
_1111.011"''''''''''''' -1.234e14 -12.34 E+13
-11I1.fll'''''''''''''' 0 kSOO.OO E+OkS

String Fields

A string field is evaluated as follows:

1 • Each "II" in the field reserves a character position as
does the "<,, or ">,, with which the field begins. Let P
be the number of places reserved.

2. The character str ing expression is evaluated. Let S be
the string resul ting from the evaluation, and let N be
the number of characters in S.

3. If the field starts wi th "<", the field is copied from
left to right. The ,,<It is replaced by the leftmost character
of S; each "II" is replaced by the next character of S in
sequence from left to right. If N > P, the excess N - P
characters are dropped from the right end of S. If N <
P, the last P - N character positions in the field are
replaced by blanks.. Any 1 i teral character in the field
is copied without change.

5-31 AM82-01

4. If the field starts wi th ">", the field is copied from
right to left. The rightmost "#" in the field is replaced
by the rightmost character of S; each "#" and the ">,, are
replaced by the next character of S in sequence from right
to left. If N > P, the excess N - P characters are
dropped from the left en~ of S. If N < P, the first P -
N character posi tions are replaced by blanks. Li teral
characters in the field are copied without change.

5. The value of the field is the string resulting from Step
3 or Step 4.

The following are some examples of string field evaluation (~
indicates a single blank):

Field

<n',"'1111
>11""#'11
>"'111#1111
<11#
> fill
< 111211311411

Internal Value

alpha
beta
betatS
alpha
alpha
alpha

Printing Special Characters

External Form

alphatStS!StS
ts}StS!S!Sbeta
tHS!S!S bet a tS
alp
pha
a1l2p3h4a

If the user wishes to print a literal copy of one of the
eight characters with special meaning in format fields, he must
use a string field and pass the character as part of the print
list. For example, the following statement prints a period at
the end of the sentence:

100 print using "x is -111111(", x, " "
If the statement had been written:

1ao print using "x is -###.", x

the " " would be treated as part of the numeric field.

5-32 AM82-01

yrint-Using Statement Examples

The following examples illustrate the use of the print-using
statement:

100 print using f$, a, b, c
200 print using "-11.11", sqr(x);
300 print using "<hits = -111111", "II", h

PRINT-FILE-USING STATEMENT

Syntax:

print lin: using f$
or

print lin: using f$
or

print lin: using f$, list
or

print lin: using f$ t list

where n is a file expression, f$ is a string expression, and list
is a list of expressions separated by commas.

Semantics:

This variation of the print-using statement directs output to
the terminal format file with file number n. If the file number
is 0, this form of the print-using statement is the same as the
simpler form in which the file number is omitted.

If the file number is nonzero, lines are written into the
file starting at the current position of the file pointer. Each
time a partial line is written into the file, the file pointer is
updated to point to the character after the last character written.

,.
. .., ~ 1 0 a print 113 : using "x is < 111111", a $

5-33 AM82-01

RANDOMIZE STATEMENT

Syntax:

randomize

Semantics:

The randomize statement initializes the pseudorandom number
generator (of the program containing the randomize statement) with
a value derived from the Multics clock reading at the time the
randomize statement is executed. If a program does not contain a
randomize statement, the same sequence of pseudorandom numbers is
generated each time the program is executed. The randomize statement
affects only the program in which it occurs.

100 randomize

READ STATEMENT

Syntax:

read list

where list is a list of references separated by commas.

Semantics:

The read statement causes values from the data pools, starting
at the next available values, to be assigned, in order, to the
references in the list. NUmeric references are assigned values
from the numeric data pool, and string references are a.ssigned
values from the string data pool. The subscript expressions in
an array reference in the read list are not evaluated until all
references that precede it in the read list have been assigned
values.

I 100 read x,f(x)
120 read a$, b$, x(3)

5-34 AM82-01

READ-FILE STATEMENT

Syntax:

read II n : list

where n is a file expression and list is either a list of numeric
references separated by commas or a list of string references
separated by commas.

Semantics:

This variation of the read s·tatement reads from the random
file with file number n. The type of file n must be the same as
the type of the references in the list. The file number cannot
be O.

The read-file statement reads values from the random file
starting with the data item pointed at by the file pointer. The
file pointer is incremented by 1 after each data value is read.

100 read #3: v$(i),a$
110 read #4: a,b,c

REM STATEMENT

Syntax:

rem S

where S is any sequence of ASCII characters that does not include
the newline character.

Semantics:

. The string of characters following "rem" is ignored by the
BASIC compiler. The rem statement has no effect when encountered
du·ring execution.

RESET STATEMENT

Syntax:

reset

5-35 AM82-01

Semantics:

The reset statement reinitializes the data pools so that the
next read statement executed reads the first data i tern in the
appropriate pool. The reset statement resets both the numeric
pool and the string pool. Only the program that contains the
reset statement is affected.

900 reset

RESET-FILE STATEMENT

Syntax:

reset In
or

reset fin: m

where n is a file expression and m is a numeric expression.

Semantics:

This variation of the.reset statement resets the file pointer
of the file with file number n. The file number cannot be O.

I f the expression m is omi tted, file number n must be a terminal
format file; in this case, the file pointer is reset to the beginning
of the file. If the expression m is present, file number n must
be a random file; in this case, the file pointer is set to point
at the data value whose position in the file is given by the
integer part of m.

I 100 reset 111
120 reset Ik: j-2

RETURN STATEMENT

Syntax:

return

Semantics:

5-36 AM82-01

The return statement causes control to return to the statement
following the most recently executed gosub statement executed by
the program that contains the return statement.

[199 return

SCRATCH STATEMENT

Syntax:

scratch lIn

where n is a file expression.

The scratch statement erases the current contents, if any, of
the file with file number n and positions the file pointer at the
beginning of the file. The file can be of any kind; the file
number must not be O.

100 scratch Ilk

SETDIGITS STATEMENT

Syntax:

setdigits n

where n is a numeric expression.

The setdigits statement specifies the number of digits to be
pI'inted by a 11 future pr int statements unti 1 another setd ig i ts
statement is executed, or until the end of program execution.
The value of n can be 1 through 19. This statement applies only
to nonintegers. The tab spacing is adjusted to accomodate the
current number length. However, the spacing is never less than
the defaulte

• I

I
I
I

The setdigits statement takes effect only in double precision I
mode. •

1 ____________ 111 ~ 10 setdigits k .

5-31 AM82-0 f'

STOP STATEMENT

Syntax:

stop

Semantics:

The stop statement causes the program in which it occurs to
return to its caller; any files opened by the program are closed.
Executing a stop statement in a main program is equivalent to
executing the end statement. Executing a stop statement in a
subroutine program is equivalent to executing the sub end statement.

999 stop

SUB STATEMENT

Syntax:

sub s$
or

sub s$ list-

where s$ is a string constant and list is a list of parameter
specifications. A parameter specification can be a scalar parameter,
an array parameter, a function parameter, (Jr a file parameter.

Semantics:

The sub statement is the first statement in a subroutine program.
The constant s$ gives the name_ of the subroutine being defined;
it must consist of 32 or fewer characters.

A subroutine can contain any BASIC statement except the end
statement. Subroutines cannot be nested; each sub statement must
be paired with a subsequent subend statement. Any name or file
number used in a subroutine that is -not a parameter of the subroutine
is local to the subroutine and has no connection wi th the same
name or file number used in some other program or in a previous
use of the same subroutine. Each program has its own pair of
data pools and its own pseudorandom number generator, all of which
are reset when the program is entered.

The line numbers used in a program have no relationship to
line numbers used in other programs. The line number of a sub
statement can be less than- the line number of the preceding end
statement or subend statement.

5-38 AM82-01

A subroutine can be entered only by means of a call statement
that references the sub statement; a subroutine can be left only
by means of a stop statement or the subend statement that terminates
the subroutine body. It is not possible to jump into or out of a
subroutine. If certain errors are detected during the execution
of a subroutine, execution of the subroutine is terminated and
control returns to the caller of the subroutine.

Parameters

When a subrout ine is called, the items in the opt ional parame ter
list are associated with the items in the argument list in the
call statement. Any reference to a parameter results in a reference
to the corresponding argument. The number and type of the arguments
provided must match the number-and type of the parameters expected.

Four types of parameters can be received:
functions, and files.

SCALAR PARAMETERS

scalars, arrays,

A scalar parameter is a reference to a scalar variable. The
value of the parameter at entry to the subroutine is the value of
the corresponding argument. Any change to the parameter immediately
causes a change to the corr~sponding argument.

An array parameter is written as

be)

for a vector and

b (,)

for a matrix, where b is the name of the array. The number of
dimensions of the parameter array must be the same as the number
of dimensions of tte argument array. The parameter array cannot
be dimensioned in the subroutine wi th a d ira statement; the parameter
array uses the original and current bounds of the argument array.
Any redimensioni~g of the parameter array immediately affects the
argument array; any change to an element of the parameter array
immediately affects the cor-responding element of the argument array.
(See Section 6 for the definition of redimensioning.)

5-39 AM82-01

FUNCTION PARAMETERS

A function parameter consists of the name of a user-defined
function. The type (numeric or string) implied by the name of
the function parameter must agree with the type of the function
argument. The number and type of arguments provided in a use of
the function from inside the subroutine must agree with the number
and type of parameters expected by the function. The function
name cannot appear in a def statement inside the subroutine. If
the function that was passed to the subroutine contains references
to names that are not parameters or local variables of the funct ion,
these names refer to names in the program in which the function
is defined.

FILE PARAMETERS

A file parameter is written as

IIc

where c is an integer constant. File number c in the subroutine
is associated with the file passed as the argument in such a way
that any change to the file from within the subroutine is preserved
when control leaves the subroutine. All the characterist ics of
the file parameter_ are identical to the characteristics of the
file argument.

Sub Statement Examples

The following examples of the sub statement match the examples
of the call statement given earlier:

100 sub "init"
110 sub "x routine": be)
120 sub "write": 112, c$(,)
130 sub "integrate": fnz, 1 , u, e
140 sub "calculate": a,b(),c

5-40 AM82-01

SUB END STATEMENT

Syntax:

subend

Semantics:

The subend statement is the last statement in a subroutine
program. When the subend statement is executed, the storage
allocated for variables of the subroutine is released, all files
opened by the subroutine are closed, and control returns to the
caller of the subroutine.

I 9000 sub end I
TIME STATEMENT

Syntax:

time c

where c is a positive numeric constant.

Semantics:

The time statement establishes a time limit of c seconds of
Multics virtual processor time for the execution of the program
in which it occurs; execution of the program is terminated if the
1 imi t is exceeded. Any number of time statements can appear anywhere
in the program; the limit used is the smallest limit specified.
A time statement has no effect when executed.

I 10 time 3

WRITE STATEMENT

Syntax:

write lin: list

where n is a Ilie expression and list is either a list of numeric
expressions separated by commas or a list of string expressions
separated by commas.

5-41 AM82-01

Semantics:

The write statement writes into the random file with file
number n. The type of the file must be the same as the type of
references in the list. The file number cannot be O.

The write statement writes the values of the expressions in
the list, in order, into the random file starting with the current
position of the file pointer. The file pointer is incremented by
1 after each value is written.

200 write 93: x, a*b - c
220 write 94: a$

5-42 AM82-01

SECTION 6

ARRAY STATEMENTS

The BASIC statements discussed in Section 5 permit the elements
of an array to be manipulated on an element by element basis.
The mat statement described in this section allows arrays to be
manipulated as single entities.

All of the array statements deal wi th both vectors and matrices.
When a matrix is used in an array input/output statement, elements
are transmi tted row by row. Normally the zeroth element of a
vector and the zeroth row and zeroth column of a matrix are ignored
by the array statements; however, in some cases (noted below) the
values of these elements can be destroyed.

ARRAY REDIMENSIONING ---
The original and current bounds of an array are determined by

a dim statement or by the defaul t bounds values. The current
bounds can be changed by the process known as redimensioning.

Whenever an array receives as its value the contents of another
array wi th different current bounds, the current bounds of the
target array are automatically changed to be the same as the
current bounds of the source array_ When the current bounds of
an array change, any elements 0 f the array wi th one or more subsc ripts
equal to a are destroyed.

The total amount of storage implied by the current bounds
must be less than or equal to the total amount of storage reserved
by the original bounds. For example, a matrix originally dimensioned
10 x 10 could be redimensioned 5 x 5, 4 x 20, or 30 x 2, but not
5 x 25.

6-1 AM82-01

In some forms of the mat statement the new value for the
current bounds of an array can be explicitly stated by a bounds
1 ist of the form

(b 1)

for a vector and

(b1,b2)

for a matrix. Both b1 and b2 are numeric expressions whose values
are truncated to yield integer values for the new bounds. The
bounds list is written immediately after the name of an array or
array constant.

The following are all examples of valid bounds lists:

(n)
(n,n)
(m, n)
(m+2,m-2)

ARRAY INITIALIZATION

Syntax:

mat a = con
or

mat b = idn
or

mat a = zer
or

mat a$ = nul$

where a is a numeric array, b is a square numeric matrix, and a$
is a string array.

Semantics:

These array initialization statements set the array appearing
to the left of the equal sign to a constant array having the same
bounds. The names appearing to the right of the equal sign are
called array constants.

6-2 AM82-01

The constant con is the array wi th all elements having the
value 1. The constant idn is the square identity matrix I defined
by

I(i,j) = 1 if i = j

I(i,j) = 0 if i <> j

The constant zer is the array with all elements having the value
o. The constant nul$ is the string array in which all elements
are the zero-length string.

Note that while the other array constants can be used wi th
either vectors or matrices, the array constant idn can only be
used with a matrix having an equal number of rows and columns.

ARRAY INITIALIZATION WITH REDIMENSIONING

Syntax:

mat a = con bounds
~~
VI

mat b = idn bounds
or

mat a = zer bounds
or

mat a$ = nul$ bounds

where a l.s a numeric array, b is a square numeric matrix, a$ is a
string array, and bounds is a bounds list.

Semantics:

These array initialization statements set the array appearing
to the left of the equal sign to a constant array having the
bounds specified by the bounds list. When the idn constant is
used in this manner, the two bounds expressions must be equal.

6-3 AM82-01

100 mat a = con(4)
120 mat a$ = nul$(n,m)
140 mat b = idn(p,p)
160 mat c = zer(m-1,n+1)
180 mat d = con(5,5)

ARRAY ASSIGNMENT

Syntax:

mat a = b

where a and bare ei ther both vectors of the same type or both
matrices of the same type.

Semantics:

The array assignment statement sets the array appear ing to
the left of the equal sign to the value of the array appearing to
the right of the equal sign. Both arrays must be of the same
type and must have the same number of dimensions. The current
bounds of the target array are changed to the current bounds of
the source array.

I 100 mat x = y
- ~ ___ 1_2_0_·_m_a_t __ x_$ __ = __ Y_$ __ ~

ARRAY ADDITION

Syntax:

mat a = b + c

where a, b, and c are either all numeric vectors or all numeric
matrices.

Semantics:

The array addition statement sets the elements of the array
appearing to the left of the equal sign to the sum of the corresponding
elements of the two arrays appearing to the right of the e-qual
sign. All of the arrays must have the same number of dimensions;
the two input arrays must have the same current bounds. The
current bounds of the target array are changed to the current
bounds of the source arrays.

6-4 AM82-01

I . 100 mat x = y + y

ARRAY SUBTRACTION

Syntax:

mat a = b - c

where a, b, and c are either all.numeric vectors or all numeric
matrices.

Semantics:

The array subtraction statement sets the elements of the array
appearing to the left of the equal sign to the difference of the
corresponding elements of the two arrays appearing to the right
of the equal sign. All of the arrays must have the same number
of dimensions; the two input arrays must have the same current
bounds. The current bounds of the target array are changed to
the current bounds of the source arrays.

140 mat x = y - z

ARRAY MULTIPLICATION

There are three kinds of array multiplication as follows:

Scalar Multiplication

Syntax:

mat a = (e) * b

where a and b are either both numeric vectors or both numeric
matrices and e is a numeric expression.

6-5 AM82-01

Semantics:

This form of the array multiplication statement sets the elements
of the array appearing to the left of the equal sign to the value
of the corresponding elements of the array appearing to the right
of the equal sign with each element multiplied by the value of
the numeric expression. The two arrays must have the same number
of dimensions; the current bounds of the target array are changed
to the current bounds of the source array.

I 300 mat a = (5) * b
320 mat b = (sqr(1-x/y»*b

Inner Product

Syntax:

. mat v = a * b

where v is a numeric scalar reference and a and b are numeric
vectors.

Semantics:

This form of the array multiplication statement assigns the
inner or dot product of two vectors to a scalar reference. The
two vectors being multiplied must have the same number of elements.

I 100 mat x(i+j) = a * b
100 mat a = b * c

Outer Product

Syntax:

mat a = b * x
or

mat a :: X * b
or

mat x = y * z

I

where a and b are numeric vectors and x ~ y, and z are numeric
matrices.

6-6 AM82-01

Semantics:

This form of the array multiplication statement sets the array
appearing to the left of the equal sign to the outer product of
the arrays appearing to the right of the equal sign. The arrays
must satisfy the normal rules for matrix multiplication: when
two arrays are mul tiplied, the number of columns in the first
array must equal the number of rows in the second array; the
r' e suI tis a n a r ray wit h the sam e n u m be r 0 fro w s as the fir s t
array and the same number of columns as the second array.

When a vector containing N elements is multiplied by a matrix
dimensioned N x P, the vector is treated as a row vector and the
result is a vector with P elements. When a matrix dimensioned M
x N is multiplied by a vector containing N elements, the vector
is treated as a column vector and the result is a vector with M
elements. When a matrix dimensioned M x N is mul t ipl ied by a
matrix dimensioned N x P, the result is a matrix dimensioned M x
P •

The number of dimensions of the target array must be the same
as the number of dimensions of the array resulting from the
mul tipl ication. The current bounds of the target array are changed
to those of the result array_

r 100 mat a = b * c
700 mat a = a * b
820 mat c = c * c

I

TRANSPOSE FUNCTION

Syntax:

mat a = trn(b)

where a and bare ei ther both numer ic vectors or both numer ic
matrices.

Semantics:

The array transpose statement sets the array appearing to the
left of the equal sign to the transpose of the array appearing to
the right of the equal sign. The rows (columns) of the target
array are the columns (rows) of the source array. The target
array must have the same number of dimensions as the source array.
The current bounds of the target array are changed; if the source
array is dimensioned M x N, the current bounds of the target
array are changed to N x M. The transpose of a vector is the
vector itself.

6-7 AM82-01

900 mat a = trn(b)
920 mat c = trn(c)

INVERSE FUNCTION

Syntax:

mat a = inv(b)

I

where a is a numeric matrix and.b is a square numeric matrix.

Semantics:

The matrix inverse statement sets the matrix appearing to the
left of the equal sign to the inverse of the square matrix appearing
to the right of the equal sign. The current bounds of the target
matrix are changed to the current bounds of the source matrix.

The numeric function det (see Section 3) returns the determinant
of the matrix inverted by the last matrix inverse statement to be
executed in the same program. The user must determine for himself
if the determinant is large enough for the inverse to be meaningful.

If the matrix being inverted is singular, the determinant is
set to a and execution continues without any error message being
printed. In this case, the value of the target matrix is undefined.

I 100 mat a = inv(b)
200 mat c = inv(c)

6-8 AM82-01

MAT INPUT STATEMENT

Syntax:

mat input list
or

mat input list

\<lhere list is a list of array names separated by commas. Each
array name can be optionally followed by a bounds list.

Semantics:

The mat-input statement causes data values to be read from
the user's terminal and assigned, in order, to the elements of
the arrays in the input list. The type of data provided must
match the type of array being filled. The format of permissible
data values, the error conditions, and the prompts used are the
same as in the input statement.

In general, enough data values are read from the terminal to
completely fill an array according to the current bounds of the
array. If an array name in the input list is followed by a
bounds list, the array is redimensioned with the specified bounds
before any input values are read. If more input values are provided
than are required to fill an array, the excess values are stored
in the next array in the list or are ignored if there are no more
arrays in the input list •. If the input list ends with a comma,
any data values that remain after all arrays have been filled are
saved for the next input request from the terminal.

The data items provided by the user must match the type of
the corresponding array element. If the data types do not match
or there is any other error, a message is printed and the incorrect
data value and all values following it must be retyped.

If the last array in the input list is a vector that is not
followed by a bounds list, an arbitrary number of data values,
from no elements to the maximum number of elements that can be

. held by the vector, can be provided by the user. In this case,
the vector is automatically redimensioned to the number of data
values provided.

If all of the data values to be input do not fit on a single
line, the user can end the input line with an ampersand (&), in
which case BASIC requests another line of input. Any number of
lines can be continued in this manner; the ampersand can be preceded
by a comma. If an arbitrary number of values is being read as
described above, input is terminated by the first line that does
not end in an ampersand. If a string value is to end in an
ampersand, it must be enclosed in quotes.

6-9 AM82-01

The numeric function num (see Section 3) gives the number of
data values placed in the last array by the last mat-input statement
executed.

100 mat input a
200 mat input b(n,m),c(3,4)
300 mat input a$
400 mat input a$(k)

MAT INPUT FILE STATEMENT

Syntax:

mat input n n list
or

mat input n n list

where n is a file expression and list is a list of array names
separated by commas. Each array name can be optionally followed
by a bounds list.

Semantics:

This variation of the mat-input statement requests input from
the terminal format file with file number n. If the file number
is 0, this form of the mat-input statement is the same as the
simpler form in which the file number is offiitted.

If the file number is nonzero, as many lines as are necessary
to satisfy the input list are read from the specified file starting
at the current value of the file pointer. No prompting messages
are printed. Any erroneous input or an attempt to read past the
end of the file causes a message to be printed, after which execution
of the program containing the mat-input statement is terminated.

After each data value in the file has been processed, the
file pointer is advanced to the - character after the comma or
newlirte that delimited the data value.

100 mat input 13: a,b(n)
200 mat input 1m: b$(j,k)

6-10 AM82-01

MAT LINPUT STATEMENT

Syntax:

mat linput list

where list is a list of string array names separated by commas.
Each array name can be optionally followed by a bounds list.

Semantics:

The mat-linput statement causes successive lines of input from
the terminal to become the values of the elements of the string
arrays in the linput list. Each element gets set to a string
value consisting of all the characters in a line of inpu~ except
for the newline character that terminates the line.

Each time a string value is required, a prompt is printed and
an entire line is read and used for the string value. If the
last input- or mat-input statement ended in a comma and there is
a partial line left, the initial prompt is omitted and the partial
line is used as the first string value.

Enough lines are read to completely fill an array according
to the current bounds of the array. If an array name in the
linput lis,t is followed by a bounds list, the array is redimensioned
with the specified bounds before any lines are read. It is not
possible to input an arbitrary number of lines.

175 mat linput a$,b$

MAT LINPUT FILE STATEMENT

Syntax:

mat linput Un: list

where n is a file expression and list is a list of string array
names separated by commas. Each array name can be optionally
followed by a bounds list.

Semantics:

This variation of the mat-linput statement requests lines of
input from the terminal format file wi th file number n. If the
file number is zero, this form of the linput statement is the
same as the simpler form in which the file number is omitted.

6-11 AM82-01

If the file number is nonzero, as many lines as are necessary
to satisfy the linput list are read from the specified file starting
at the current value of the file pointer. If a previous input­
or mat-input statement referencing the same file ended in a comma
and there is any partial input line left, the value of the first
array element is set to the partial line. The file pointer is
left pointing at the character after the newline of the last line
read from the file.

300 mat linput #4: a$(n)

MAT PRINT STATEMENT

Syntax:

mat print list
or

mat print list ,
or

mat print list

where 1 ist is a list of array names separated by commas or semicolons.

Semantics:

The mat-print statement causes all the elements of an array
wi th subscripts that are not a to be printed row by row. If a
vector is not followed by a comma or a semicolon (i.e., it is the
last array in the print list), it is printed as a column vector
with one element per line; otherwise, it is printed as a row
vector.

If an array name is followed by a semicolon, elements are
printed without intervening spaces; otherwise, elements are printed
in the normal 15-column zones. Each row of the array begins on a
new line of output and extends over as many lines as are necessary.
A blank line is printed between each array.

The rules used for formatting individual array elements and
for terminating partial output lines are the same as for the
print statement.

I
100 mat print a,b;
110 mat print d$,

6-12 AM82-01

MAT PRINT FILE STATEMENT

Syntax:

mat pr int II n
or

mat pr int II n
or

mat pr int II n

list

list

list

where n is a file expression and list is a list of array names
separated by commas or semicolons.

Semantics:

This variation of the mat-print statement directs output to
the terminal format file with file number n. If the file number
is 0, this form of the mat-print statement is the same as the
simpler form in which the file number is omitted.

If the file number is nonzero, lines are written into the
file starting at the current position of the file pointer. Each
time a line is written into the file, the file pointer is updated
to point to the character after the last character written.

, 100 mat print 116: a,b; .

MAT PRINT USING STATEMENT

Syntax:

mat print using f$, list

where f$ is a string expression and list is a list of array names
separated by commas.

Semantics:

The mat-print-using statement causes all the elements of an
array wi th subscripts that are not 0 to be printed row by row
according to the specified format string. The allowable format
strings and the rules for their interpretation are the same as
for the print-using statement.

The format string is scanned from the beginning for each row
of the array. Each row of the array starts a new line of output.
If the format string is exhausted before a row is complete, it is
rescanned from the beginning. All vectors are printed as row
vectors.

6-13 AM82-01

100 mat print using "-I -# -I", a
200 mat print using f$, a$,b

MAT PRINT USING FILE -STATEMENT

S 4- y 11 !.IdA.

mat print 1 n : using f$, list

where n is a file expression, f$ is a string expression, and list
is a list of array names separated by commas.

Semantics:

This variation of the mat-print-using statement directs output
to the terminal format file wi th file number n. If the file
number is zero, this form of the mat-print-using statement is the
same as the simpler form in which the file number is omitted ..

If the file number is nonzero, lines are written into the
file starting at the current position of the file pointer. Each
time a line is written into the file, the file pointer is updated
to point to the character after the last character written.

I 100 mat print #2: using g$, a,b

MAT READ STATEMENT

Syntax:

mat read list

where I ist is a I ist of array names separated by commas. Each
array name can be optionally followed by a bounds list.

Semantics:

The mat-read statement causes values from the data pools,
starting at the next available values, to be assigned, in order,
to the elements of the arrays in the read list. _ Numeric arrays
are assigned values from the numeric data pool and string arrays
are assigned values from the string data pool.

6-14 AME2-01

Enough data values are read from the appropriate data pool to
completely fill an array according to the current bounds of the
array. If an array name in the read list is followed by a bounds
list, the array is redimensioned with the specified bounds before
any data values are read.

[100 mat read a$,b
200 mat read cen,ro)

MAT READ FILE STATEMENT

Syntax:

mat read # n : list

where n is a file expression and list is either a list of numeric
array names separated by commas or a list of string array names
separated by commas. Each array name can be optionally followed
by a bounds list.

6-15 AM82-01

Semantics:

This variation of the mat-read statement reads from the random
file with file number n. The type of file n must be the same as
the type of the arrays in the list. The file number cannot be O.

The mat-read-file statement reads values from the random file
starting with the data item pointed at by the file pointer. The
file pointer is incremented by 1 after each data value is read.

100 mat read 13: a$,b$(n)
200 mat read 1m: a,b,c(k,k)

MAT WRITE FILE STATEMENT

Syntax:

mat write 1 n : list

where n is a file expression and list is either a list of numeric
array names separated by commas or a list of string array names
separated by commas.

Semantics:

The mat-write-file statement causes all of the elements of an
array with subscripts that are not 0 to be ~ritten into the random
file with file number n~ The type of file n must be the same as
the type of the arrays in the list. The file number cannot be O.

The mat-write-file statement writes values into the random
file starting with the current position of the file pointer. The
file pointer is incremented by 1 after each data value is written.

100 mat write 13: a,b
200 mat write 14: c$

6-16 AM82-01

SECTION 7

SAMPLE PROGRAMS

This section discusses a number
illustrate various features of BASIC.
been executed on Multics.

of sample programs that
All of these programs have

EXAMPLE 1

This program prints a report gIvIng the gasoline mileage for
a series of trips. It illustrates how data can be contained in
the program body, how simple computations can be performed, and
how the standard print formats are useda

Line 110 prints a heading for the report.
are separated by commas, they
of 15 columns.

printed in
Since the strings

the standard zones

Line 120 reads the starting odometer value. The data values
are provided in data statements located in the program body. The
first numeric value read comes from line 260. Since the dates in
lines 270 to 330 start with a number, quotes are required. All
of the data statements are skipped after line 250 is executed.

The main part of the program is contained in lines 140 to
240. An odometer value is read; if it is 0 the loop is terminated.
If the odometer value is not 0, a date string and the amount of
gasoline used are read. Note that the order of string data values
is independent of the numeric data values. The first time line
190 is executed, variable m1 has its initial value of O. Line
210 prints the statistics for a single trip.

Line 250 prints the total mileage, gasoline used, and average
miles per gallon. Two consecutive commas cause a zone to be
skipped.

7-1 AM82-01

Here is the program for example 1:

100 rem Total Miles Per Gallon
110 print "Date", "Odometer", "Trip", "Gallons", " MPG"
120 read k
130 let k1 = k
140 read n
150 if n _ n then 2~n - v oJ"'"

160 read d$
170 read g
180 let m = n - k
190 let m1 = ml + m
200 let a = mIg
210 print d$,n,m,g,a
220 let k = n
230 let gl = gl + g
240 goto 140
250 print "TOTAL""ml,gl,(k-kl)/gl
260 data 3332
270 data "1/10/73", 3553, 14.8
280 data "1/17/73", 3801, 17.4
290 data "1/20/73", 3926, 7.2
300 data "1/27/73", 4091, 11 .3
310 data "2/3/73", 4275, 10.9
320 data "2/9/73", 4460, 9.8
330 data "2/15/73", 4664, 12.3
340 data 0
350 end

Here is the output for example 1 :

Date Odometer Trip Gallons MPG
1/10113 3553 221 14.8 14.9324
111173 3801 248 17.4 14.2529
1/20/13 3926 125 7.2 11.3611
1/27/13 4091 165 11 .3 14.6018
2/3/73 4275 184 10.9 16.8801
2/9/73 4460 185 9.8 18.8776
2/15/73 4664 204 12.3 16.5854
TOTAL 1332 83.7 15.914

EXAMPLE 2

This is the program of example 1 modified so that data is
read from a file instead of from data statements in the program
body. This change permi ts the program to be more conveniently
used by a number of people; each user only has to prepare an
input file.

7-2 AM82-01

Line 110 associates the file name "gas data" with file number
1. Line 150 checks to see if the end of the input file has been
reached; execution continues with line 160 if there are more data
in the filec The order of the references read in line 160 must
correspond to the types of data in the "input file. Quotes are
not required around the dates in the input file because the BASIC
runtime system knows that strings are required.

The output format has been improved in example 2. The default
format used in example 1 printed the gasoline mileage with four
fractional places. The function defined in line 250 returns the
value of its input parameter rounded to one decimal place; this
function is used to control the output format in lines 140 and
240. Note that the function body is ignored when line 250 is
encountered after line 240.

Here is the program for example 2:

100 rem Total Miles Per Gallon
110 file Ul: "gas data"
120 input n1: k -
130 let kl : k
140 print "Date", "Odometer", "Trip", "Gallons"," MPG"
150 if end U1 then 240
160 input n1: d$,n,g
170 let m : n - k
180 let m1 : ml + m
190 let a = mIg
200 print d$,n,m,g,fnr(a)
210 let k = n
220 let g1 = g1 + g
230 goto 150
240 print "TOTAL""m1,g1,fnr«k-kl)/gl)
250 def fnr(x) = int(x*10 + .5)/10
260 end

Here is the input data file for example 2:

3332
1/10/73, 3553, 14.8
1/17/73, 3801, 17.4
1/20/73, 3926, 7.2
1/27/73,4091, 11.3
...,. i",\ J ~ .." /I ...,.~ r- ., ro r.
t::./JI{J, 'tt::.{:> , 'u.::1
2/9/73, 4460, 9.8
2/15/73, 4664, 12 .. 3

7-3 AM82-01

Here is the output for example 2:

Date Odometer Trip Gallons MPG
1/10/73 3553 221 14.8 14.9
1/17113 3801 248 11.4 14.3
1/20113 3926 125 7.2 17.4
1/27113 4091 165 11 .3 14.6
2/3/13 4215 184 10.9 16.9
2/9113 4460 185 9.8 18.9
2/15/13 4664 204 12.3 16.6
TOTAL 1332 83.1 15.9

EXAMPLE 1
This is the program of example 2 modified to use the

print-using statement. Lines 200 and 240 contain "pictures" of
the desired output format. The print-using statement permits the
fields to be printed closer together and allows decimal points to
be lined up.

Here is the program for example 3:

100 rem Total Miles Per Gallon
110 file 11: "gas data"
120 input 11: k -
130 let kl = k
140 fl$="<""11 -"'II -III -11.1
150 f2$="TOTAL -nnl -un.n
160 print "Date Odometer Trip Gallons
110 if end 11 then 240
180 input 11: d$,n,g
190 let m = n - k
200 let ml = m1 + m
210 let a = mIg
220 print using f1$
230 let k = n
240 let gl = gl + g
250 goto 150
260 print using f2$
270 end

1-4

-".I",d$,n,m,g,a
-I'.I",ml,gl,(k-kl)/gl
Miles / Gallon"

AM82-01

Here is the output from example 3 using the input file from
example 2:

Date
1/10/73
1/17/73
1/20/73
1/27/73
2/3173
2/9/73
2/15/73
TOTAL

EXAMPLE 4

Odometer
3553
3801
3926
4091
4275
4460
4664

Trip
221
248
125
165
184
185
204

1332

Gallons
14.8
17.4
7.2

11 . 3
10.9
9.8

12.3
83.7

Miles 1 Gallon
14.9
14.3
17.4
14.6
16.9
18.9
16.6
15.9

This program shows how the go sub- and return statements can
be used to execute a block of statements from several points in
the program. Lines 120 to 170 evaluate the greatest common divisor
of three integers by using the relationship

gcd(x,y,z) = gcd(gcd(x,y),z)

Lines 230 to 300 evaluate the greatest common divisor of two
integers using the Euclidian algorithm. Note that it is possible
to transfer control to a rem statement and that the same statement
can be the target of both goto- and gosub statements. The first
time line 300 is executed, control returns to line 150; the second
time line 300 is executed, control returns to line 180. The
message

Out of data in 110

is printed and program execution is terminated when all the data
values have been read.

7-5 AM82-01

Here is the program for example 4:

100 print "A", "B", nCR, "GCD"
110 read a,b,c
120 let x = a
130 let y = b
140 gosub 230
150 let x = g
160 let y = c
170 gosub 230
180 print a,b,c,g
190 goto 110
200 data 6,9,12
210 data 38456, 64872, 98765
220 data 32, 384, 72
230 rem
240 let r = mod(x,y)
250 if r = 0 then 290
260 let x = y
270 let y = r
280 goto 230
290 let g = y
300 return
310 end

Here is the output from example 4:

A
6
38456
32

Out of data in

EXAMPLE 5

B
9
64872
384

110

C
12
98765
72

GCD
3
1
8

This is the program of example 4 modified to compute the
greatest common divisor of two integers by means of a multiple
line function. The function is defined in lines 150 to 220.
Variable r is local to the function body. The assignments to x
and y in lines 180 and 190 do not alter the values of the function
arguments.

7-6 AM82-01

Here is the program for example 5:

100 print "A", "B", "C", "GCDu
110 read a,b,c
120 print a,b,c,fng(fng(a,b),c)
130 goto 110
140 rem
150 def fng(x,y)r
160 let r = mod(x,y)
170 if r = 0 then 210
180 let x = y
190 let y = r
200 goto 160
210 let fng = y
220 fnend
230 data 6,9,12
240 data 38456, 64872, 98765
250 data 32, 384, 72
260 end

Here is the output of example 5:

A
6
38456
32

Out of data in

EXAMPLE 6

B
9
64872
384

110

GCD
3
1
8

This program illustrates the use of a recursive function.
The relations

f(O) = 1 f(n) = n * f(n-1)

are used to define the factorial function. The use of fnf to the
left of the equal sign in line 180 is a reference to the function
value; the use of fnf to the right of the equal sign in line 180
is an invocation of the function.

Line 100 prints the message "n = " without a newline character
so that the message, the input prompt, and the reply can all
appear on the same line of output. Line i 20 prints the three
values with no extra intervening spaces. (One space is automatically
put at the end of the value.) The program repeatedly requests a
value of n from the user. A message is printed and execution is
terminated when the user responds "stop" to the input prompts

7-7 AM82-01

Here is the program for example 6:

100 print "n = ";
110 input n
120 print n;" =";fnf(n)
130 goto 100
140 def fnf(x}
150 if x <> 0 then 180
160 let fnf = 1
170 goto 190
180 let fnf = x • fnf(x-1}
190 fnend
200 end

Here is the output for example 6:

n = ? 4
4 = 24

n = ? 5
5 = 120

n = ? 10
10 = 3628800

n = ? 15
15 =1.30767 E+12

n = ? stop
Program halted in 110

EXAMPLE I

This program uses the array processing capabilities of BASIC
to compute the total dollar value of three products sold by five
salesmen. Vector element p(m) is the price of the mth product.
Matrix element p(m,n) is the total number of the mth product sold
by the nth salesman.

Line 110 reads three values into the p vector; line 120 reads
15 values into the s matrix. Since nei ther array was redimensioned,
the current bounds are the same as the original bounds. Lines
130 to 190 compute and print the total sales for each salesman.
The dollar sign in the numeric field in line 180 floats up against
the leftmost digit printed in the field.

1-8 AM82-01

Here is the program for example 7:

100 dim s(3,5),p(3)
110 mat read p
120 mat read s
130 for n = 1 to 5
140 let s = 0
150 for m = 1 to 3
160 let s = s + p(m) * s(m,n)
170 next m
180 print using "Total sales' for salesman-II $-111111.1111", n , s
190 next n
200 data 1.25, 4.30, 2.50
210 data 40, 20, 2, 29, 42
220 data 10, 16, 3, 21, 8
230 data 35, 41, 29, 16, 33
240 end

Here is the output from example 7:

Total sales for salesman $180.50
Total sales for salesman 2 $211.30
Total sales for 'salesman 3 $87.90
Total sales for salesman 4 $166.55
Total sales for salesman 5 $169.40

EXAMPLE 8

This is the program of example 7 modified to handle an arbi trary
number of products and an arbi trary number of salesmen. Input
now comes from a file whose name is requested in line 110. The
first two values in the file are the number of products and the
number of salesmen, which are read in line 140. The product
vector and sales matrix are redimensioned wi th the appropr iate
bounds in the input-statment in line 150. The total sales vector
t is generated by a matrix multiplication operation in line 160.

7-9 AM82-01

Here is the program for example 8:

100 dim s(20,50), p(20), t(50)
110 print "Data file name";
120 input f$
130 file 111: f$
140 input 111: p,s
150 mat input n1~ pep), s(p,s)
160 mat t = p • s
170 for n = 1 to s •
180 print using "Total sales for salesman-' $-"'."",n,t(n)
190 next n
200 end

Here is the data file (named sales data) for example 8:

3, 5
1.25, 4.30, 2.50
40, 20, 2, 29, 42
10, 16, 3, 21, 8
35, 47, 29, 16, 33

Here is the output for example 8:

Data file name? sales data
Total sales for salesman 1
Total sales for salesman 2
Total sales for salesman 3
Total sales for salesman 4
Total sales for salesman 5

EXAMPLE 2.

$180.50
$211.30

$87.90
$166.55
$169.40

This program generates random sentences. It is given a list
of word keys, a set of sentence patterns that use these keys to
encode a sentence, and sets of words of given word types.· It
picks a sentence pattern at random and picks a word at random
from each word class to make ~p the sentence.

Line 100 causes a different sequence of pseudorandom numbers
to be generated each time the program is run.

1-10 AM82-01

Lines 170 to 240 read in the file "parts list". Each line of
the parts list file consists of a single character key and the
name of a file containing words of that type. Line 190 reads the
character key into the next element of the p$ vector and gets the
file name associated with it. The entire file of words of the
specified type is then read into the columns of the next row of
the w$ matrix. Note that the same file number is used for each
words file; each time line 200 is executed, the file previously
assigned to the file number is closed.

Lines 300 to 330 read the sentence patterns from the
"sentence list" file. Line 380 picks a pattern at random from
the vector of saved patterns. The pattern is printed by line
390. Line 450 initializes the sentence to the null string.

Lines 460 to 520 inspect each character of the chosen pattern.
If the next character from the pattern matches one of the keys,
control goes to line 580. The pattern is incorrect if the character
matches none of the keys.

Lines 580 to 610 pick a word at random from the class of
words corresponding to the key. Up to five tries are made to
avoid putting the same word in the sentence more than once. Line
650 appends the new word to the sentence and follows it by a
blank. The sentence gets printed by line 670.

7-11 AM82-01

Here is the program for example 9:

100 randomize
110 '
120 ' read in parts list, format of each line is
130 ' k,file
140 ' where k is a 1 character key and file is the
150 ' name of a file of words corresponding to the keYe
i60
170 file '1: "parts list"
180 let p = p + 1 -
190 input #1: p$(p), a$
200 file 112: a$.
210 linput 12: w$(p,w(p»
220 let w(p) = w(p) + 1
230 if more 12 then 210
240 if more 11 then 180
250 '
260 ' at this point, the keys are in the p$ array and
270 ' all the words of type i are in w$(i,1) ... w$(i,w(i»
280 ' now read in list of sentence patterns
290 '
300 file 11: "sentence list"
310 linput 11: s$(s)
320 let s = s + 1
330 if more #1 then 310
340 '
350 ' this main loop, pick sentence pattern at random
360 ' and print pattern at start of line
370 '
380 let s$ = s$(int(s*rnd»
390 print s$;":";tab(10);
400 '
410 ' initialize sentence string; replace each key
420 ' character in the pattern by a word chosen at
430 ' random from list of words of given type
440 '
450 let x$ = ""
460 for i = 1 to len(s$)
470 let a$ = seg$(s$,i,i)
480 for j = 1 to p
490 if a$ = p$(j) then 580
500 next j
510 print "Illegal sentence pattern."
520 goto 380
530 '
540 t this is word type j, pick word from class j
550 ' at random try (up to 5 times) to avoid putting sa.e
560 ' word In sentence more than once
570 '
580 for t = 1 to 5 .1
590 let b$ = w$(j,w(j)*rnd)

7-12 AM82-01

600
610
620 '
630 '
640 '
650
660
670
680
690
700

if pos(x$,b$,1) = 0 then 650
next t

add word to sentence

let x$ = x$ & b$ & " "
next i

print x$
goto 380
dim w$(20,100),w(20),s$(40),p(20)
end

Here is the parts_list file· for example 9:

n,noun list
d,adjective list
v,transitive verb list
r,article list -
b,adverb list
p,pronoun list
x,aux list
t,preposition list
w,intransitive verb list
i,interjection=list-

Here is the first part of the sentence list file:

rnixd
rnixrn
rnixrdn
bpvrn
brnvrn
pbvrn
pbvrn
pbwtrn
pvb
pvrn
pwb
pwtrn

7-·13 AM82-01

Here are some of the sentences that were generated:

pwb:
pvrn:
pwtrn:
pvrn:
pbvrn:
rnixd:
pwtrn:
pxtrn:
pvrn:
pbvrn:
pbvrn:
rdnwb:
rdnvrn:
bpvrn:
pwtrn:
pwb:
pwtrn:
pwb:
pbvrn:
pxd:
pxd:
pvrn:
pvrn:
pxtrn:
pvrn:

EXAMPLE 10

he swims.swiftly
it finds a paper
it goes near the boy
it produces the computer
he quickly obtains the policeman
the refrigerator , as I said before, is white
she walks far from the home
it was far from the fireman
he gets the fork
she busily eats the tomato
she busily loses a bottle
the short fish swims slowly
a dumb fireman avoids the secretary
happily he gets the' manager
he runs around the fish
he walks happily
he goes to a manager
she walks happily
he busily writes a woman
he was full
he will be sad
she writes a boy
he avoids the fork
she is far from the tree
he obtains the book

This program shows how a BASIC program can be called by the
Multics command processor. The program converts a terminal format
file into a random string file where each line of the input file
becomes an entry in the output file.

Line 100 obtains the number of command arguments of the program.
A message is printed and execution stops if less than two arguments
are provided.

Lines 140 to 170 set the value that is used for the random
file margin. If only two arguments are given, a default margin
of 32 is used. If three (or more) arguments are present, the
third argument is obtained and converted to a numeric value by
line 170.

Lines 180 ana 190 get the names of the input and output files.
An error message is printed if the names are the same.

The real work of the program is done in lines 230 to 300.
Line 250 erases any previous contents of the output file. Line
260 sets the margin on the output file. Line 280 reads an entire
, ; noCl l'rnm ~ho "n........... .,:-.;,.... ,.; 'lnn •• _.; ~ ~".. _~_.: __ .: _._ .LL._
-_, ... V"w .., " " .lo ~.'I;;;, .~11'1;;; c.:JV "' .L"'CO;;) vllC 0;;)"'1 J.1'es J.11l"V "'lIt::

output file.

7-14 AM82-01

Here is the program for example 10:

100 let n = cnt
110 if n >= 2 then 140
120 print "Not enough arguments supplied."
130 stop
140 if n >= 3 then 170
150 let m = 32
160 goto 180
170 let m = val(arg$(3»
180 let a$ = arg$(l)
190 let b$ = arg$(2)
200 if a$ <> b$ then 230
210 print "Cannot use same name as infile & outfile"
220 stop
230 file 111: a$
240 file 112: b$
250 scratch 112
260 margin 112: m
270 if end #1 then 310
280 linput #1: c$
290 write #2: c$
300 go to 270
310 end

EXAMPLE 11

This is the sentence generator of example 9 modified to pick
words at random from a set of random access files. The program
of example 10 is used to convert the terminal format word files
used by example 9 into the random string files used by this example.

Lines 140 to 180 read in the sentence keys and the associated
random file names. Instead of storing the keys in a vector, this
program forms a string consisting of all the character keys
concatenated together. Lines 220 to 250 read in the sentence
list.

7-15 AM82-01

Line 290 generates a random sentence pattern that is processed
by lines 340 to 540. Line 350 checks if the next character in
the pattern is one of the keys that are recognized. Control goes
to line 420 if the character is valid.

Line 420 opens the file whose name is associated wi th the
current word key. Line 440 generates an integer k that ranges
from 0 to N-1 where N is the lengih of the file. Line 450 positions
the file pointer so that line 460 reads the selected wo·rd. As in
example 9, five tries are made to pick a word that does not
already occur in the sentence.

This program can deal with a much larger vocabulary than the
program of example 9 because it.has to store only the word it is
using rather than all the words it can ever use. However, for
small word files, the program of example 9 runs faster.

7-16 AM82-01

Here is the program for example 11:

100
110 '

randomize

120 ' read in parts list
130 '
140
150
160
170
180
190 '

file 111: "parts file"
let p :: p + 1 -
input #1: x$, f$(p)
let p$ = p$ & x$
if more #1 then 150

200 ' read in sentence patterns
210 '
220
230
240
250
260 '

file 111: "sentence list"
linput 111: s$(s)
let s = s + 1
if more #1 then 230

270 ' pick random pattern
280 '
290
300
310 '

let s$ = s$(int(s*rnd))
let x$ = ""

320 ' process each word type in pattern
330 '
340
350
360
370
380
390 '

for i = 1 to len(s$)
let j = pos(p$,seg$(s$,i,i),1)
if j <> 0 then 420
print "Illegal sentence pattern ";s$
goto 290

400 ' pick word at random from file j
410 '
420
430
440
450
460
470
480
490 f

file 111: f$ (j)
for t = 1 to 5

let k = int(lof(#1) * rnd)
reset 111: k
read 111: b$
if pos(x$,b$,1) = 0 then 520
next t

500 ' add word to sentence
510 '
520 let x$ = x$ & b$ & tt "

530 next i
540 print x$
550 goto 290
560 dim 5$(50)
570 end

7-17 AM82-01

Here are some sentences that were generated:

she was tall
a sad tall toy travels dumbly
the dog happily shakes the waiter
the crowded small car runs slowly
the secretary is near the desk
he writes a letter

EXAMPLE 12

This program isa "desk c.alculator" that evaluates simple
expressions consisting of constants, BASIC operators, and BASIC
functions. It does this by turning the expression into a small
BASIC program to print the value of the expression; the BASIC
compiler is then called to compile and execute the small program.

Line 1 00 defines the name of the intermediate BASIC source
file. Line 110 requests that an expression be provided; a response
of "stop" causes the calculator to stop. Line 140 calls subprogram
"write" to write the expression into the file; this organization
takes advantage of the fact that a file opened by a subprogram is
closed when the subprogram returns. Line 150 calls the BASIC
compiler, located in 8 separate segment, to compile and execute
the program in the temporary file.

Here is the "calculato~"

100 let b$ = "TEMP.basic"
110 print "Input expression";
120 linput a$
130 if a$ = "stop" then 110
140 call "write": a$, b$
150 call "basic": b$
160 goto 110
110 end
180 sub "write": f$, g$
190 file 11: g$
200 scratch 01
210 print 11: "100 print ";f$
220 print ,,: "200 end"
230 subend

1-18 AM82-01

Here are some expressions it evaluated:

Input expression? sin(.47)A2 + cosC.47)A2
1

Input expression? 1-sin(.33)*sqr(.731e12)
-277051
Input expression? 1+2+3+4+5+6+7+8+9jsqr(25)jO

45 5 0
Input expression? stop

1-19 AM82-01

APPENDIX A

ASCII CHARACTER SET

ASC
Octal Decimal Function

Graphic Value Value Abbrev Comments

0 0 nul Null
1 1 soh Start of heading
2 2 stx Start of text
3 3 etx End of text
4 4 eot End of transmission
5 5 enq Enquiry
6 6 ack Acknowledge
7 7 bel Bell

10 8 bs Backspace
1 1 9 ht Horizontal tab
12 10 If,nl Line feed, Multics newline
13 11 vt Vertical tab
14 12 ff Form feed
15 13 cr Carriage return
16 14 so Shift out
17 15 si Shift in
20 16 dIe Data link escape
21 17 dc1 Device control 1
22 18 dc2 Device control 2
23 19 dc3 Device control 3
24 20 dc4 Device control 4
25 21 nak Negative acknowledge
26 22 syn Synchronous idle
27 23 etb End of transmission block
30 24 can Cancel
31 25 em End of medium
32 26 sub Substitute
33 27 esc Escape
-""'.h 28 fs File separator j'i

35 29 gs Group separator
36 30 rs Record separator
37 31 us Ur!i t separator
40 32 sp Space
41 33 ! Exclamation point

A-1 AM82-01

ASC
Octal Decimal Function

Graphic Value Value Abbrev Comments

" 42 34 qt,quo Quotation mark
11 43 35 /I Number sign
$ 44 36 $ Dollar sign
% 45 31 $ Percent sign
& 46 38 & Ampersand

41 39 apo Acute accent, apostrophe
(50 40 (Left parenthesis
) 51 41) Right parenthesis
If 52 42 * Asterisk
+ 53 43 + Plus

54 44 Comma
55 45 Minus
56 46 Period

/ 51 47 / Slash
0 60 48 0 Zero
1 61 49 1 One
2 62 50 2 Two
3 63 51 3 Three
4 64 52 4 Four
5 65 53 5 Five
6 66 54 6 Six
7 61 55 7 Seven
8 10 56 8 Eight
9 11 57 9 Nine

12 58 Colon . 73 59 . Semicolon , ,
< 74 60 < Less than
= 15 61 = Equals
> 76 62 > Greater than
? 77 63 ? Question mark
@ 100 64 @ Commercial at
A 101 65 uca Uppercase A
B 102 66 ucb Uppercase B
C 103 67 ucc Uppercase C
D 104 68 ucd Uppercase D
E 105 69 uce Uppercase E
F 106 10 ucf Uppercase F
G 107 71 ucg Uppercase G
H 110 72 uch Uppercase H
I 111 73 uci Uppercase I
J 112 14 ucj Uppercase J
K 113 15 uck Uppercase K
L 114 16 ucl Uppercase L
M 115 17 ucm Uppercase .M
N 116 78 ucn Uppercase N
0 111 19 uco Uppercase 0
p 120 80 ucp Uppercase P

A-2 AM82-01

ASC
Octal Decimal Function

Graphic Value Value Abbrev Comments

Q 121 81 ucq Uppercase Q
R 122 82 ucr Uppercase R
S 123 83 ucs Uppercase S
T 124 84 uct Uppercase T
U 125 85 ucu Uppercase U
V 126 86 ucv Uppercase V
W 127 87 ucw Uppercase W
X 130 88 ucx Uppercase X
y 131 89 u~y Uppercase Y
Z 132 90 ucz Uppercase Z
[133 91 [Left bracket
\ 134 92 \ Reverse slash
] 135 93] Right bracket ,..

136 94
,..

Circumflex, up arrow
137 95 ,und,bkr Underscore, back arrow

~ 140 96 ~ Grave accent
a 141 97 a,lca Lowercase a
b 142 98 b,lcb Lowercase b
c 143 99 c,lcc Lowercase c
d 144 100 d,lcd Lowercase d
e 145 101 e,lce Lowercase e
f 146 102 f,lcf Lowercase f
g 147 103 g,lcg Lowercase g
h 150 104 h,lch Lowercase h
i 151 105 i,lci Lowercase i
j 152 106 j,lcj LOHercase J
k 153 101 k,lck Lowercase k
1 154 108 l,lcl Lowercase 1
m 155 109 rn,lcm Lowercase m
n 156 110 n,lcn Lowercase n
0 157 111 o,lco Lowercase 0

p 160 112 p,lcp Lowercase p
q 161 113 q,lcq Lowercase q
r 162 114 r,lcr Lowercase r
s 163 115 s,lcs Lowercase s
t 164 116 t, lct Lowercase t
u 165 111 u,lcu Lowercase u
v 166 118 v,lcv Lowercase v
w 167 119 w,lcw Lowercase w
x 170 120 x,lcx Lowercase x
y 171 121 y, Icy Lowercase y
z 172 122 z,lcz Lowercase z
{ 173 123 {,lbr Left brace
I 174 124 : ,vln Vertical line i
} 175 125 l,rbr Right brace

176 126,til Tilde
177 127 del Delete

A-3 AM82-01

APPENDIX B

COMPATIBILITY WITH NON-BASIC PROGRAMS

A BASIC program can call programs written in FORTRAN or PL/I
and can be called by programs written in these languages. The
only allowable argument types for a call involving a non-BASIC
program are numeric scalars, numeric arrays, and string scalars.
String arrays, functions, and files cannot be passed as arguments
or received as parameters by BASIC programs when a program written
in another language is involved.

CALLS BETWEEN BASIC AND PL/I

The following table gives the correspondence between the data
types of BASIC and the equivalent data types of PL/I.

BASIC

numeric scalar
numeric vector M
numeric matrix M x N
string scalar

PL/I

float bin(27)
float bin(27) dim(O:M)
float bin(27) dim(O:M,O:N)
char(*)

All arguments are passed by reference, except when a PL/I
character string is passed to a BASIC program; then the value of
the PL/I string expression is copied by BASIC at entry and is
written back at exit. When a BASIC character string is passed to
a PL/I program, the current length is used. Thus, if the PL/I
program is to return a value, the BASIC program must first initialize
the s tr ing to a val ue wi th an appropr i ate 1 ength. Wh en a PLI I
array, which must be connected, is passed to a BASIC program, the
lower bound of each dimension is adjusted to equal 0; thus an
array dimensioned P:Q in the PL/I program is seen as O:Q-P by the
BASIC program.

B-1 AM82-01

CALLS BETWEEN BASIC AND FORTRAN

The following table gives the correspondence between the data
types of BASIC and the equivalent data types of FORTRAN.

BASIC

numeric scalar
numeric vector N
string scalar

FORTRAN

real
real, dimension N1
character*K where K is length
of BASIC string

Passing arrays between BASIC and FORTRAN programs is complicated
by the fact that BASIC stores arrays in row-major order wi th a
lower bound of 0 for each dimerision while FORTRAN stores arrays
in column-major order with a lower bound of 1 for each dimension.
For these reasons, two-dimensional arrays cannot be passed between
BASIC and FORTRAN programs and the bounds and subscripts of
one-dimensional arrays must be adjusted; when a vector is passed,
the bounds and subscripts used by the FORTRAN program must be 1
greater than the bounds and subscripts used by the BASIC program.

B-2 AM82-01

APPENDIX C

BASIC FILE ATTACHMENTS

This appendix lists the lID swi tch attachments that can be
specified in a BASIC file name.

FILES IN THE STORAGE SYSTEM

The attach description must be of the form

vfile

where f is an absolute or relative pathname that identifies a
file.

FILES ON TAPE

The attach description must be of the form

record stream -target ntape_ r -raw -write

where r is a string identifying the reel to be read or written.
The string r should end with the sequence ",7track" or ",9track"
to indicate the type of tape to be read or written. If neither
of these endings are present, ",9track" is assumed.

The -write control argument causes the reel to be mounted
with a write-permit ring. This control argument is required if
the program contains print-statements or scratch-statements that
access the file.

The -raw control argument is required; it means that each
line in the file corresponds to a single physical tape record.

C-1 AM82-01

TERMINAL INPUT/OUTPUT

The attach ~escription must be of the form

tty_ d

where d is the string, obtainable from the print attach table
(pat) command or user active function, that identifies the terminal
device assigned to the I/O swi tch name user i/o in the user's
process.

SYNONYM ATTACHMENTS

The attach description must be of the form

syn_ n

where n is the name of an I/O switch through which all operations
on this switch are to be directed. Such a switch must exist at
the time the switch is opened, although it need not exist when
the switch is attached. The I/O switch whose name is n can itself
be attached as a synonym for another I/O switch. The I/O switch
that is the final destination of the synonym attachment must be
attached to a file or device and must specify an I/O module.

For more information on the Multics Input/Output System, refer
to the MPM Reference Guide under "Input and Output Facilities."

C-2 AM82-01

APPENDIX D

EXTENDED PRECISION

BASIC is available in extended as well as single precIsIon,
which is the default. Programs compiled in extended precision
mode do all numeric processing in double precision. These programs
should not call or be called by single precision programs because
numeric arguments, including numeric files, are not compatible.

To compile in extended precision mode, type the Multics command
use ep basic with no arguments. All BASIC programs compiled after
that Will use double precision arithmetic. This effect lasts
only for the life of the process or run unit or until use sp basic
is typed, which returns the compiler to single precision-mode.
Note that these commands affect only the compiler; programs of
either precision can be run at any time.

To convert numeric files from single to double precIslon or
vice versa, use the convert numeric file command described below.

D-1 AM82-01

convert numeric file convert numeric file

CONVERT NUMERIC FILE

The conv~rt numeric file command converts numeric files used
by BASIC programs from s"ingle to double precision and vice versa
using PL/I conversion rules.

SYNTAX AS A COMMAND

convert numeric file OLD pATH NEW PATH -CONTROL ARGS

ARGUMENTS

OLD PATH
is the pathname of the file to be converted.

NEW PATH
is the pathname of the converted file.

CONTROL ARGUMENTS

-double precision,
-dp -

converts from single to double piecision; this is the
default.

-single_precision,
-sp

converts from double to single precision.

0-2 AM82-·0 1

INDEX

A

absolute value 3-4, 5-23,
5-24

active function C-2

argument list 3-3, 3-7, 5-38

arguments
array 5-3

arithmetic 3-2, D-1

array 2-3, 2-4, 2-5, 2-6, 3-1,
3-5, 5-1, 5-2, 5-3, 5-4,
5-5, 5-8, 5-9, 5-15, 5-17,
5-33, 5-37, 5~38, 6~1,
6-2, 6-3, 6-4, 6-5, 6~6,
6-7, 6-9, 6-10, 6-11,
6-12, 6-13, 6-14, 6-15,
6-16, 7-8, 7-12, B-1, B-2

addition 6-4
argument 5-3
bound 2-5, 5-3
bounds 2-4, 2-5, 5-3, 6-1
constant 6-2, 6-3
current 2-4, 2-5, 5-3, 5-38,

6-1, 6-2, 6-3, 6-4, 6-5,
6-6, 6-7, 6-8, 6-9,
6-10, 6-11, 6-14, 6-15,
7-8, 7-9, B-2

dimension 2-4, 2-5, 5-8,
5-9

element 2-5, 2-6, 3-1, 5-17,
6-12

i-1

array (cont)
initialization 6-2, 6-3
input/output 2-4, 6-1
multiplication 6-5, 6-6
name 2-3, 2-4, 2-5, 5-9,

6-9, 6-10, 6-11, 6-12,
6-13, 6-14, 6-15, 6-16

numeric 2-5, 5-5, 6-2, 6-3,
6-15, 6-16

parameter 5-37, 5-38
reference 5-15, 5-33
statement 6-1
string 2-5, 6-3, 6-11, 6-14,

6-15, 6-16
subtraction 6-5
transpose 6-7

array addition 6-4

array bound 2-5, 5-3

array bounds 2-4, 2-5, 5-3,
5-38, 6-1, 6-2, 6-3, 6-4,
6-5, 6-6, 6-7, 6-8, 6-9,
6-10, 6-11, 6-14, 6-15,
7-8, 7-9, B-2

array constant 6-2, 6-3

array dimension 2-4, 2-5, 5-8,
5-9

array element 2-5, 2-6, 3-1,
5-17, 6-12

array initialization 6-2, 6~3

AM82-01

array input/output 2-4, 6-1

array multiplication 6-5, 6-6

array name 2-3, 2-4, 2-5, 5-9,
6-9, 6-10, 6-11, 6-12,
6-13, 6-14, 6-15, 6-16

array parameter 5-37, 5-38

array reference 5-15, 5-33

array statement 6-1

array subtraction 6-5

array transpose 6-7

arrays
changing dimensions of 2-3,

5-9, 5-38, 6-7

binary operator 3-1

body loop 5-11, 5-12

C

change statement 2-4, 5-5

change-bit statement 5-5, 5-6

changing dimensions of arrays
2-3, 5-9, 5-38, 6-7

character abbreviation 3-4

characters
list of 5-5
newline 1-3, 4-1, 4-5, 5-18,

5-25, 6-11, 7-7

ASCII 1-1, 1-3, 1-4, 2-2, 3-4, closing files 4-3
4-1, 4-2, 5-5, 5-6, 5-34

assignment 5-17, 6-4, 7-6

attach-description 4-3

B

BASIC
compiler 1-1, 1-2, 1-3, 1-4,

5-34, 7-18
functions 3-3, 7-18
program 1-1, 1-5, 2-4, 4-1,

4-2, 4-3, 4-4, 5-4,
5-15, 5-19, 7-14, 7-18,
B-1, B-2, 0-1

BASIC compiler 1-1, 1-2, 1-3,
1-4, 5-34, 7-18

BASIC function 3-3, 7-18

BASIC program 1-1, 1-5, 2-4,
4-1, 4-2, 4-3, 4-4, 5-4,
5-15, 5--19, 7 -14, 7 -18,
B-1 , B-2, 0-1

i-2

colon character 4-2, 4-3

column 2-3, 5-24, 5-25, 6-1,
6-3,6-7,6-12,7-1,7-11

column vector 6-7, 6-12

comma 2-6, 5-6, 5-7, 5-8,
5-15, 5-16, 5-17, 5-18,
5-22, 5-24, 5-25, 5-26,
5-32, 5-33, 5-3 4, 5-40,
6-9, 6-10, 6-11, 6-12,
6-13, 6-14, 6-15, 6-16,
7-1

consecutive 5-22, 5-26, 7-1

commands 1-1, 1-3, 1-4, 3-4,
7-14, C-2, 0-1, D-2

comments 1-3

concatenation 3-2

constant 1-3, 2-1, 2-2, 3-1,
3-6, 5-2, 5~6, 5-8, 5-15,
5-37, 5-39, 5-40, 6-2,
6-3, 7-18

array 6-2, 6-3

-AM82-0i

eon stant (cont)
integer 5-39
numeric 2-1, 3-6, 5~15,

5-40
string 1-3, 2-2, 5-6, 5-15,

5-37

constant array 6-2, 6-3

control 1-1, 1-2, 1-4, 3-2,
4-4, 5-1, 5-10, 5-11,
5-12, 5-13, 5-35, 5-38,
5-39, 5-40, 7-3, 1-5,
1-1 1, A-1, C-1

control variable 5-11, 5-12

control variables 5-11, 5-12

conversions 3-1, 3-3, 3-5,
3-7, 5-28, D-2

copy 5-29, 5-31

cross product 6-6, 7-8, 1-9

data values 5-15, 5-16, 5-34,
5-35, 6-9, 6-10, 6-15,
6-16, 1-1, 1-5

excess 5-15, 5-16, 6-9,
6-15, 1-1, 7-5

incorrect 5-15, 5-16, 6-9,
6-15, 1-1, 7-5

date values
saved 5-15, 5-16, 6-9, 6-15,

7-1, 7-5

decimal point 2-1, 5-23, 5-27,
7-4

def statement 5-7, 5-8, 5-11,
5-39

determinant 3-4, 6-8

digit 2-1, 2-2, 2-3, 5-6,
5-23, 5-24, 5-27, 5-28,
5-29, 5-36, 7-8

digit position 5-29

current bounds 2-4, 5-3, 5-38, dim statement 2-3, 2-4, 5-9,
6-1, 6-2, 6-4, 6-5, 6-6, 6-1
6-7, 6-8, 6-9, 6-15, 1-8

D

data 2-1,3-1,3-5,4-1,4-2,
4-4, 4-6, 5-6, 5-14, 5-15,
5-16~ 5-33 1 5-34, 5-35,
5-37, 6-9, 6-10, 6-14,
6-15, 6-16, 1-1, 1-2, 1-3,
7-5, 1-6, 7-7, 1-9, 1-10,
B-1, B-2

data pool 5-6, 5-33, 5-35,
5-37, 6-14, 6-15

data statement 5-6

data type 3-1 , 5-15, 6-9, B-1,
B-2

E

editing 1-1, 5-26

elements
number of 2-3, 2-4, 5-9,

6-6, 6-9
print 5-22, 5-24, 5-25,

5-26

empty files 4-4, 4-7

entry names 1-4

error condition 6-9

excess data values 6-9

exponent 2-1, 5-21, 5-28,
5-29

i-3 AM82-01

exponentiation 3-2

expression 2-5, 2-6, 3-1, 3-2,
3-3, 3-6, 4-4, 4-6, 5-1,
5-2, 5-4, 5-5, 5-7, 5-10,
5-11, 5-13, 5-i4, 5-15,
5-16, 5-17, 5-18, 5-19,
5-20, 5-21, 5-22, 5-24,
5-25, 5-26, 5-28, 5-29,
5-30, 5-32, 5-33, 5-34,
5-35, 5-36, 5-40, 5-41,
6-2, 6-3, 6-5, 6-6, 6-10,
6-11, 6-13, 6-14, 6-15,
6-16, 7-18, 7-19, B-1

file 4-6, 5-4, 5-10, 5-14,
5-16, 5-18, 5-19, 5-26,
5-32, 5-34, 5-35, 5-36,
5-40, 6-10, 6-11, 6-13,
6-1LJ, 6-15, 6-16

numeric 2-5, 3-3, 4-4, 5-5,
5-11, 5-13, 5-18, 5-20,
5-21, 5-22, 5-25, 5-35,
5-36, 5-40, 6-2, 6-5,
6-6

step 5-11

F

field
format 5-27, 5-28, 5-31
numeric 5-27, 5-28, 5-29,

5-30, 5-31, 7-8
string 5-27, 5-30, 5-31

file argument 5-1, 5-3, 5-39

file expression
5-10, 5-14,
5-19, 5-26,
5-35, 5-36,
6-11, 6-13,
-6-16

file margin 7-14

4-6, 5-4,
5-16, 5-18,
5-32, 5-34,
5-40, 6-10,
6-14, 6-15,

file name 4-2, 4-3, 4-4, 7-3,
7 -11, C-1

i-4

file number 4-3, 4-4, 4-6,
4-7, 5-10, 5-14, 5-16,
5-18, 5-20, 5-26, 5-32,
5-34, 5-35, 5-36, 5-37,
5-41, 6-10, 6-11, 6-12,
6-13, 6-14, 6-16, 7-3,
7-11

file parameter 5-4, 5-37,
5-39

file pointer 4-6, 5-16, 5-18,
5-26, 5-32, 5-34, 5-35,
5-36, 5-41, 6-10, 6-12,
6-13, 6-14, 6-16, 7-16

file statement 4-3, 4-4, 5-10

file types 5-4

files 1-3, 1-4, 3-3, 4-1, 4-2,
4-3,- 4-4, 4-5, 4-6, 4-7,
5-1, 5-2, 5-3, 5-4, 5-10,
5-14, 5-16, 5-18, 5-19,
5-20, 5-26, 5-32, 5-34,
5-35, 5-36, 5-37~ 5-39,
5-40, 5-41, 6-10, 6-11,
6-12, 6-13, 6-14, 6-15,
6-16, 7-2, 7-3, 7-5, 7-9,
7-10, 7-11, 7-12, 7-13,
7-14, 7-15, 7-16, 7-17,
7 -18, 8-1, C-1, C-2, D-1,
D-2

argument 5-1, 5-3, 5-39
closing 4-3
empty 4-4, 4-7
expression 4-6, 5-4, 5-10,

5-14, 5-16, 5-18, 5-19,
5-26, 5-32, 5-34, 5-35,
5-36, 5-40, 6-10, 6-11,
6-13, 6-14, 6-15, 6-16

margin 7-14
name 4-2, 4-3, 4-4, 7-3,

7 -11, C-1
number 4-3, 4-4, 4-6, 4-7,

5-10, 5-14, 5-16, 5-18,
5-20, 5-26, 5-32, 5-34,
5-35, 5-36., 5-37, 5-41,
6-10, 6-11, 6-12, 6-13,
6-14, 6-16, 7-3, 7-11

parameter 5-4, 5-37, 5-39

AM82-01

files (cont)
pointer 4-6, 5-16, 5-18,

5-26, 5-32, 5-34, 5-35,
5-36, 5-41, 6-10, 6-12,
6-13, 6-14, 6-16, 1-16

random access 4-2, 4-3, 4-6,
7-15

random numeric 4-2, 4-6
random string 4-2, 4-6
temporary 4-4, 7-18
terminal format 4-1, 4-3,

4-4, 4-5, 4-6, 5-14,
5-18, 6-11, 7-14

types 5-4

first use 2-3, 2-4, 5-7, 5-8,
5-9

floating dollar sign 5-27

floating-point 2-1, 3-2

fnend statement 5-7, 5-8,
5-11

for statement 5-11, 5=20

for-next loops 5-11, 5-12

format field 5-27, 5-28, 5-31

format string 5-26, 5-21,
5-28, 6-13

FORTRAN 1-3, 1-4, B-1, B-2

fractional digit 5-28

fractional format 5-23, 5-24

function argument 5-1, 5-3,
5-7, 5-8, 5-39

function body 3-7, 5-7, 5-8,
7-3, 7-6

function definition 3-6, 3-7,

function name 3-3, 5-2, 5-8,
5-39

function parameter 5-3, 5-7,
5-8, 5-39

function reference 3-3

functions
argument 3-3, 5-1, 5-3, 5-7,

5-8, 5-39
BASIC 3-3, 7-18
definition 3-6, 3-7, 5-7,

5-8, 5-11
multiple line 3-6, 3-7, 5-7,

5-11, 7-6
numeric 3-6, 6-8, 6-9
single line 3-6
string 3-3, 3-6
user-defined 3-7, 5-3, 5-12,

5-39

G

global variable 3-7

gosub statement 5-12, 5-35

goto statement 5-12

I

I/O switch 4-1 , 4-2, 4-3, C-1 ,
C-2

identity matrix 6-3

incorrect data value 5-15,
6-9

initialization 6-2, 6-3

input list 5-15 7 5-16, 6-9,
6-10

input prompt 7-7

input statement 5-15, 5-16,
6-9

input-file statement 5-16

i-5 AM82-01

input/output 2-4, 4-1, 4-2,
4-6, 6-1

integer constant 5-39

integer format 5-23

integer value 2-5, 3-2, 4-4,
5-5, 5-19, 6-2

integers
list of 5-5

K

keyword 1-1,1-2,1-3

L

leading 0 5-29

letters 2-1, 2-2, 2-3, 2-5,
3-3, 3-6, 7-18

line image 5-22, 5-27, 5-28

1 in e n urn b e r 1 - 1, 1 - 2 , 1 - 3 ,
5-1, 5-12, 5-13, 5-14,
5-21, 5-37

linput statement 5-18, 6-11

list of integers 5-5

literal character 5-27, 5-28,
5-30

local variable 3-7, 5-3, 5-7,
5-8,-5-39

loop bodies 5-11, 5-12

loops 5-11, 5-12, 7-1, 7-12

lower bound 2-4, 5-9, B-1,
B-2

i-6

M

main program 1-3, 1-4, 1-5,
3-4, 5-10, 5-31

mantissa 2-1

margin 4-4, 4-5, 4-6, 4-1,
5-4, 5-18, 5=19, 5-20,
5-22, 5-24, 5-25, 5-28,
1-14, 1-15

margin statement 4-6, 5-19,
5-20

mat statement 6-1, 6-2

mat-assign statement 2-4

mat-input statement 3-5, 5-18,
6-9, 6-10, 6-12

mat-linput statement 6-11

mat-print-using statement
6-13, 6-14

mat-read-file statement 6-16

mat-write-file statement 6-16

matrices 2-3, 2-4, 3-4, 5-3,
5-9, 5-38, 6-1, 6-2, 6-3,
6-4, 6-5, 6-6, 6-7, 6-8,
7 - 8, 1 ~ 9, 7 - 1 1, B-1

matrix 2-3, 2-4, 3-4, 5-3,
5-9, 5-38, 6-1, 6-2, 6-3,
6-4, 6-5, 6-6, 6-1, 6-8,
1-8, 7-9, 7-11, B-1

minus sign 5-6, 5-22, 5-21

Multics 1-1, 1-3, 1-4, 1-5,
3-2, 3-4, 3-6, 4-1, 4-2,
4-3, 4-1, 5-2, 5-33, 5-40,
1-1, 1-14, .A-1, C-2, D-1

Multics clock 3-6, 5-33

AM82-01

multiple line function 3-6,
3-7, 5-7, 5-11, 7-6

multiplication 3-2, 6-5, 6-6,
6-7, 7-9

N

names
array 2-3, 2-4, 2-5, 5-9,

6-9, 6-10, 6-11, 6-12,
6-13, 6-14, 6-15, 6-16

entry 1-4
file 4-2, 4-3, 4-4, 7-3,

7 -11, C-l
function 3-3, 5-2, 5-8,

5-39
segment 1-4, 1-5, 5-2
string function 3-3
subroutine 1-4 .
variable 2-2

negative 5-22, 5-27, 5-29

newline character 1-3, 4-1,
4-5, 5-18, 5-25, 6-11.,
7-7

noninteger 5-23, 5-36

nonprinting character 4-5

number of dimensions 2-3, 5-9,
5-38, 6-7

numeric argument 3-3, D-1

numeric array 2-5, 5-5, 6-2,
6-3, 6-15, 6-16

numeric constant 2-1, 3-6,
5-15, 5-40

numeric data 4-2, 5-33, 6-14,
7-1

numeric data pool 5-33, 5-35,
6-14

i-7

numeric expression 2-5, 3-3,
4-4, 5-5, 5-11, 5-13,
5-18, 5-20, 5-21, 5-22,
5-25, 5-35, 5-36, 5-40,
6-2, 6-5, 6-6

numeric field 5-27, 5-28,
5-29, 5-30, 5-31, 7-8

numeric function 3-6, 6-8,
6-9

numeric operand 3-1

numeric operands 3-1

numeric operator 3-1 , 3-2

numeric variable 2-2, 5-11,
5-20

numeric vector 5-4, 5-5, 6-4,
6-5, 6-6, 6-7, B-1, B-2

o

on-gosub statement 5-21

on-goto statement 5-21

original bound 2-4, 6-1, 7-8

p

parameters
list of 5-7, 5-38

print elements 5-22, 5-24,
5-25, 5-26

pseudorandom generator 3-5,
5-33, 5-37, 7-10

AM82-01

R

random access files 4-2, 4-3,
4-6, 1-15

random numeric files 4-2, 4-6

random string files 4~2, 4~6

references
list of 5-15, 5-16, 5-11,

5-18, 5-33

row vector 6-1, 6-12, 6-13

s

saved data value 5-15, 5-16

scalar numeric variable 2-2,
5-11, 5-20

statements (cont)
mat-read-file 6-16
mat-write-file 6-16
on-go sub 5-21
on-goto 5-21
write 4-4, 5-41

step expression 5-11

string array 2-5, 6-3, 6-11,
6-14, 6-15, 6-16

string constant 1-3, 2-2, 5-6,
5-15, 5-31

string data pool 5-33, 6-14

string field 5-21, 5-30, 5-31

string function 3-3, 3-6

string function name 3-3

subroutine name 1-4

scalar variable 2-2, 3-1, 5-2, subscripts
5-1, 5-8, 5-38 list of 2-5

scientific format 5-23, 5-24

segment name 1-4, 1-5, 5-2

single line function 3-6

statements
data 5-6
def 5-1, 5-8, 5-11, 5-39
dim 2-3, 2-4, 5-9, 6-1
file 4-3, 4-4, 5-10
fnend 5-1, 5-8, 5-11
for 5-11, 5-20
gosub 5--12
goto 5-12
input 5-15, 5-16, 6-9
linput 5-18, 6-11
margin 4-6, 5-19, 5-20
mat 6-1, 6-2
mat-assign 2-4
mat-input 3-5, 5-18, 6-9,

6-10, 6-12
mat-linput 6-11
mat-print-using 6-13, 6-14

i-8

T

temporary files 4-4, 1-18

terminal format file 4-1, 4-3,
4-4, 4-5, 4-6, 5-14~ 5-18,
6-11, 1-14

u

unary operator 3-1

unquoted string 5-15_

upper bound 2-4, 5-8

uppercase character 5-6~ 5-15

user's terminal 4-1, 4-3, 5-10,
5-15, 5-16, 5-19, 6-9

AM82-01

user-defined function 3-7,
5-3, 5-12, 5-39

v

variable 1-4, 2~1, 2-2, 2-3,
2-5, 2-6, 3-7, 5-3, 5-7,
5-8, 5-17, 5-39, 5-40

control 5-11, 5-12
global 3-7
local 3-7, 5-3, 5-7, 5-8,

5-39
name 2-2
scalar 2-2, 3-1, 5-2, 5-7,

5-8, 5-38

variable name 2-2

vector 2-3, 2-4, 4-2, 5-3,
5-4, 5-5, 5-6, 5-8, 5-38,
6-1, 6-2, 6-3, 6-4, 6-5,
6-6, 6-7, 6-9, 6-12, 6-13,
7-9, 7-11, 7-15, B-1, B-2

numeric 5-4, 5-5, 6-4, 6-5,
6=6, 6-7, B-1, B-2

row 6-7, 6-12, 6-13

w

write statement 4-4, 5-41

z

zero 5-5, 5-23, 6-11, 6-14

zero-length 2-3, 2-5, 3-5,
6-3

i-9 AM82-01

w
Z
.-1

r.:J
Z
o
.-1
':::(

I­
:.)
L)

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE I LEVEL 68
MUL TICS BASIC MANUAL

I
ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be 0
acknowledged; however, if you require a detailed reply, check here.

FROM: NAME --
TITLE ________________________ __

COMPANY -----------
ADDRESS __ _

ORDER No·1 AM82"() I

DATED I FEBRUARY 1981 I

DATE

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service wi" not deliver stapled forms

IIIII1

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATlONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

J

I
I

(!
..u
Z
:J
~
z
o
-I
<{

r­
::>
u

I
I
I
I
I
I ~
I -I

I C)

I 6
~~
I 0

I 0
I lL-

I
I
I
I
I
I
I

c:

w
Z
-I

C)
Z

~a.

I ~
10
10
I lL-

I
I
I
I
~
I
I
I
I
I
I
~.

'L

Honeywell
HCnS7ftNGU Infoimatioii Systems

In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5

In the U.K.: Great West Road, Brentford, Middlesex TW8 9DH
In Australia: 124 Walker Street, North Sydney, N.S.w. 2060

!n Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

30642, 5C281 , Printed in U.S.A. AMB2-01

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	A-1
	A-2
	A-3
	B-1
	B-2
	C-1
	C-2
	D-1
	D-2
	i-1
	i-2
	i-3
	i-4
	i-5
	i-6
	i-7
	i-8
	i-9
	replyA
	replyB
	xBack

