
Honeywell
HONEYWELL INFORMATION SYSTEMS

Multics
Processor
Manual

SUBJECT.

Description and Use of the "uttlc'S Processor.

SOFT'WARE SUPPORTED.

All Multlcs Software Releases

DATE.

October, 1975

ORDER NU"BERI

Al39, Rev. 0

PREfACE

This document describes the Processor used in the Kultlcs system. It _s
assumed that the reader is familiar with the overall modular or9~nlzatlon of the
Hultlcs system and with the philosophy of asynchronous operation. In additlo~.
this manual presents a thorough discussion of virtual memory addressing conc.pt~
including segll.entation and paging. ' .

The manual Is Intended for use by system programme~s responsible for
writing software to interface with the special virtual memo~y hardware an~ "lth
the fault and lnterruJ)t portions of the hardware. It should also prove "a"ua~l.
to programmers w~o must use machine instructions (particularly language
iranslator i.plementors) and to those persons responsible for analyzing cra~h
conditions in System Dumps.

c 197~ Honeywell Information Svstems9 Inc.

REVIEW DRAfT
SUBJECT TO CHANGE
October. 1975 il AL39

Section I

Sedtlon II

CONTENTS

Introduction To Processor ••••••••••••••••
features of the Hultics Processor ••••••••••

Seg.entat 1 on and Pag Ing. • • • • • • • • •. •• • •
Address Modification and Aadress Appending ••••
Faults and Interrupts •••••••••
Summary of Processor Features. • • ••

Processor Hodes of Operation •••••••
Instruction Hodes. • ••••••

Normal Hode • • • • • • • • • • • •
Privileged Hode • • ••••••

Addressing Modes •••••••••••
Absolute Hode • • • • • • • ••
Append Hode • • ••••
Bar ~ode. • • • • • • • • • • • • •

Processor Unit Functions. • • ••••
Appending Unit ••••••••••••
Associative Hemory Assemblies •••••
Control Unit • • • • • • • ••••
Operation UnIt ••••••••••••
Decimal Unit • • • • • • • • • • • ••

·
• • • • • • · ·
• • • • • •
• •••••
• •••••
• • • • • • · ·
• ••••• · · ·
• •••••
• •••••

Machine Instructions. • • • • • • • • • • • • •••
Instruction Repertoire ••••••••••••••••

Bas lc Operat1ions • .'. • • • • • • • • • • • • • •
Extended Instruction Set (EIS) Operations •••••

EIS Single-Word Operations •••••••••••
EIS Hulti-Word Operations •••••••••••

Format of Instruction DescriptIon ••••••••••
Definitions of Notation and Symbols •••••••••

Hain Store Addresses •••••••••••••••
Index Values •••••••••••••••••••
Abbreviations and Symbols •••••••••••••
Register POSitions and Contents ••••••••••
Other Symbols •••••••••••••••••••

Arrangement of Instructions •••••••••••••
Common Attributes of Instructions ••••••••••

Illegal ModificatIon •••••••••••••••
Parity Indicator •••••••••••••••••

Instruction Word Formats. • • • • • • • • • •••
BaSic and EIS Single-Word Instructions ••••••
Indirect Words ••••••••••••••••••

•

EIS "ulti-Word Instructions ••••••••••
EIS "oalfication Fielas (HF) •••••••••••
EIS Operand Descriptors ana Indirect ~ointers •••

Operand Descriptor Indirect Pointe- For.at •••
AJphanumeric Operand Descriptor Fo-mat •••••
Numeric Operand Descriptor Format • • • ••
Bit String Operand Descriptor Format ••••••

Fixed' Point Arithmetic Instructions •••••••••
Data Hovement Load Instructions. • ••••••
Data Movement Store Instructions •••••••••

REVIEW DRAFT
SU8JECT TO CHANGE
October, 1975 Iii

Page

1-1
1-1
1-1
1-2
1-2
1-2
1-3
1-3
1-3
1-1t
I-It
I-It
I-It
1-1t
1-5
1-5
1-5
1-6
1-6
1-6

2-1
2-1
2-1
2-1
2-1
2-2
2-2
2-1t
2-1t
2-1t
2-1t
2-5
2-6
2-6
2-6
2-6
2-6
2-7
2-7
2-8

2-9
2-9
2-11
2-11
2-12
2-11t
2-15
2-16
2-16
2-25

AL39

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1975

CON TENTS (Conti

Data Mo~e.ent Shift Instructions ••••••
Addition Inst~uctions •••••••••••••
Subtraction Instructions •••••••••••••
Multiplication Instructions ••••••••••••
Division Inst~uctions •••••••••
Negate Instructions ••••••••••
ComparIson Instructions ••••••••
Miscellaneous Instructions ••••••

Boolean Operation InstructIons ••••••
AND Instructions. • • • • • • ••
OR.Instructions ••••••••••••

· •
• · •
•
•

•
•
•
•
• · •

! • • •
• · • •
• · • • · • • • · · • •
• · • •
• · · • Exclusive OR Instructions •••••••••••••

Comparative AND Instructions •••••••••
COMparative NOT Instructions •••••••••

Floating Point A~ithmetic Instructions ••••••••
Data Hovement load Instructions ••••••••••
Data Hovement Store Instructions •••••••
AdditIon Instructions. • • • • ••••••••
Subtraction Instructions ••••••••••
MultIplication Instructions ••••••••••••
Division Instructions ••••••••••••••
Negate Instructions. • • ••••••••••
NormalIze InstructIons. • ••••••••••
Round Instructions. • • • • • • • • • • •••
Compare Instructions •••••••••••••••
HI scellaneous Instruct ions ••••••••••••

Transfer Instructions •••••••
Pointer RegIster InstructIons •••

Data Movement load Instructions.
Data Movement Store Instructions
Address Arith~etic Instructions.
Miscellaneous Instructions •••

Miscellaneous Instructions ••••.•
Calendar Clock Instruction. ••

• ••••••••
• • • • •••••
• •••••••• · ·
• •• · . . ·

Derail Instruction. • • • • • •••••
Execute Instructions •••••••••••••••
Master Hode Entry Instructions ••••••••••
No Operation Instructions. • • • • • • • ••
Repeat Instructions ••••••••••••••••
RIng Alarm Register Instruction ••••••••••
Store Base Address Register InstructIon ••••••
Translation Instructions •••••••••••••

Privileged Instructions. • • • • ••••••••
Register Load Instructions •••••••••
Register Store Instructions ••••••••••••
Clear Associative Memory Instructions •••••••
Configuration and Status Instructions •••••••
System Control InstructIons ••••••••••••
Hiscellaneous Instructions ••••••••••••

•

Extended Ins~ructlon Set (EIS) ••••••••••••
Address Register Loae Instructions ••••••••
Address ~egister Store Instructions ••••••••
Address Register Special Arithmetic InstructIons.
Alphanumeric Compare Instructions •••••••••
Alphanumeric Hove Instructions ••••••••••
Numeric Compare Instruction ••••••••••••
Numeric Hove Instructions •••••••••••••
Bit String Combine Instructions ••••••••••
Bit String Compare Instructions ••••••••••

iv

Page

2-3"
2-40
2-48
2-55
2-57
2-60
2·61
2-66
2-61
2-67
2-70
2-73
2-76
2-78
2-80
2-80
2-81
2-84
2-87
2-90
2-93
2-97
2-98
2-99
2-101
2-103
2-105
2-117
2-117
2-121-
2-12"
2-125
2-126
2-126
2-127
2-128
2-130
2-133
2-115
2-14"
2-1"5
2-146
2-14'
2-148
2-155
2-162
2-164
2-167
2-111

2-172
2-172
2-175
2-178
2-186
2-197
2-205
2-208
2-213
2-217

AL39

/

Sect ion III

Section tv

REVIEW DRAft
SUBJECT TO CHANGE
October, 1915

CONTENTS (Cont)

Bit String Set Indicators Instructions ••••••
Data Conversion Instructions •••••••••••
Decimal Addition Instructions •••••••••••
Decimal Subtraction Instructions •••••••••
Decimal Multiplication Instructions. • • •••
Decimal Division Instructions •••••••••••

Micro Operations for Edit Instructions ••••••••
Micro Operation SeQuence •••••••••••
Edit Insertion Table •••••••••••••••
EdIt Flags ••••••••••••••••••••
Terminating Micro Operations •••••••••••
"VNE and HVE Differences •••••••••••••

Numeric Edit ••••••••••••••••••
Alphanumeric EdIt •••••••••••••

Micro Operators. • • • ••••••••••••
Micro Operation Code Assignment Map ••••••••

Data Representation •••••••••••••••••••
Information OrganIzation. • • ••••••
POSitIon Nu_bering ••••••••••••••••••
Number Syslem •
Information Formats •••••••••••••••••
Data Parity •••••••••••••••••••••
Representation of Data. • ••••••••••••

Numeric Data • • • • • • • • • • • • • • • • • • •
Fixed Point Binary Data ••••••••••••

Fixed Point BInary Integers. • • • •••••
FiKed Point Binary Fractions •••••••••

Floating Point Binary Data. • • •••••
Over length Registers ••••••••••••
Normallzed Numbers •••••••••••••

Decimal Data. • • • • • • • • • • • • •••••
Decimal Data Values •••••••••••••
Decimal Zero • • • • • • • • •••••

Alphanumeric Data •••••••••••••••••
Character String Data •••••••••••••
Bit String Data ••••••••••••••••

Program Accessible R.egisters • • • • • • • • · • • · · • Accumulator Reglster (A). • • • • • · • · • • • • · · Quotient Register (Q) • • • • • • • · • • • • • • Accumulator-Quotient Register (AQ) • · · • • • • · • • EKponent Register (E) • • • · • · • · • • • • • • • • Exponent-Accumu I ator-Quot ient Register (EAQ). • • • • IndeK Registers (Xn). · · • · • • • · • • • • • • · • Indicator Register (IR) • • · • • · · • • • • · • • • Base Address Register (BAR) • • • · • • • • • • • • •

Timer Register (TR) • • • • • • • • • •• • ••••
Ring Alarm Register (RALR) ••••••••••••••
POinter Registers (P~n) •••••••••••••••
Procedure Pointer Register (PPR) •••••••••••
Temporary POinter R.egister (TPR). • • ••••••
Desiriptor Segment Base Register (DSBR.DBR) •••••
Segment Descriptor Word ASSOCiative Hemo~y (SDMAH) ••
Page Table Word Associative Hemory (PTWA~). • ••
Fault Register. • • • • • • • • • • • •• • ••••
Hode Register 'HR). • • ••••••••••••

v

Page

2-219
2-221
2-225
2-231
2-23"
2-237
2-2"0
2-2"0
2-2 .. 1
2-2"1
2-2 .. 2
2-2lt2
2-242
2-242
2-21t3
2-250

3-1
3-1
3-1
3-1
3-2
3-1t
3-5
3-5
3-5
3-5
3-&
3-8
3-9
3-9
3-11
3-13
3-14
3-11t
3-1"
3-15

4-1
"-2
1t-2
"-3
.. -It
It

"-5
It-S
1t-9

·"-9
1t-10
1t-11
1t-13
"-15
1t-16
1t-18
1t-21
1t-23
1t-25

AL39

Section V

Section VI

Section VII

REVIEW DRIFT
SUB~ECT TO CHANGE
October, 1915

CONTENTS (Cont)

Cache Hode Register (CHR) • • • • • • • • • • ••
Control Unit (CU) Hlstory Registers. • • • ••
Operations Unit (OU) History Registers ••••••••
Decimal Unit (OU) History Registers •••••••••
Appending Unit (AU) History RegIsters ••••••••
Configuration Switch Data ••••••••••••••
Contro I Uni t Data ••••••••••••••••
Decimal Unit Data ••••••••••••••••••

AddressiQg -- Segmentation and Pag Ing. • · · • • • • • • Address ing Hodes. · • · · · • • • · · · • • Absolute Hode. · · • · • • · • · · • · • Append Mode. · · · · • · • · • • · • • · · • • • • Segment at Ion. . · · • · · · · · · • • • • · • · .- • • Paging. · • • · • · · · · · · • • • Changing Addressing Hodes · • · · · • • · · • • • • · Address Apl?endi ng ., · • · · · • · · · · · · • · Address Appendlng Sequences. • • · · • • • ... • • Appending Unl t Data Word Forllats. · · · • · • • Segllent Descriptor Word (SOW) Format · • • • • • • Page Ta,b' e Word (PTW) Format · · • · · · · • · • •

Effective Address Formation •••••••••••••••
Definition of Effective Address •••••••••••
Types of Effective Address Formation. • •••••
Effective Address Formation Description •••••••
Effective Address Formation Involving Offset Only ••

The Address Modifier (TAG) Field •••••••••
General Tvpes of Offset Modification. • • ••
Effective Address Formation Flowcharts ••••••
Register (R) Modi f icat ion •••••••••••••
Register Then Indirect CRr) Modification •••
Indirect Then Register (IR) Modification •••••
Indirect Then Tally (IT) Modification •••••••

Effective Address Formation Involving Both
Segment Number and Offset •••••••••••••
The Use of Bit 29 of the Instruction Word •••••
Special MOdifiers •••••••••••••••••

Indirect to Pointer Citp) Modification •••••
Indirect to Segment (Its) Modification •••••

Effective Segment Number Generation ••••••••
Effective Address Formation for Extended

Instruction Set ••••••••••••••••••
Character- and Bit-String Addressing. • ••
Character- and Bit-String Address Arithmetic

Algorithms •••••••••••••••••••
9-Bit Character String Address Arithmetic •••

•

6-81t Character String Address Arlthlletic •••
4-Blt Character String Address Arithmetic •••
Bit String Address Arithmetic •••••••••

Faults and Interrupts. · · • · · · · · · • · · · • · Faul t Cycle Sequence. · · · · · · · · · · · · • · · • Faul t Priority. · · · · · • · · · · · • · · · · F au' t Recogni t1 on · • · · · • · · · · · · · •
Faul t Oescr ip ti ons. · · · · · · · · • · · · • · •

vi

1t-28
1t-29
1t~32

1t-31t
1t-37
1t-39
1t-40
it-itS

5-1
S-1
5-1
5-2
5-2
5-3
5-6
5-7
5-7
5-10
5-io
5-11

6-1
6-1
6-1
6-2
6-2
6-2
6-2
6-4
6-,.
6-6
6-8
6-9

6-15
6-16
6-16
6-17
6-18
6-19

6-21
6-23

6-23
6-24

7-1
7-1
7-2
1-3
7-4

AL3CJ

,

CONTENTS (Cont)

Group 1 Faults ••••• • · • · • •
Group 2 Faults. • • • • • •• • • • · • · Group 3 Fau.ts • • • • •••• · • · · · .' Group 4 Faults •••••••••• • • • · • •
Group 5 Faults •••••••••• • • • •
Group 6 Faults •••••••••• • • • • • •
Group 7 Faults. • • • •••• • • · · • •

PrograM Interrupts and External Faults •• · • • • • · Execute Interrupt Sampling. • • • • • • •
Execute Interrupt Cycle SeQuence ••• • · • · • •

Sec t ion VIII . Hard~are Ring Implementation. • • • •••••
Ring Protection Philosophy ••••••••••••••
Ring Protection in Multics. • • • • • • •••••
Ring Protection In the Mu.tics ProceSsor •••••••
Appending Unit Operation with Ring Hechanlsm •••••

Section IX Cache Store Operation. • • • • • • • ••••••••

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1975

Philosophy of Cache Store ••••••••••••••
Cache Store Organization. • • ••••••••

Cache Store/Hain Store Happing ••••••••••
Cache Store Addressing ••••••••••••••

Cache Store Control •••••••••••••••••
Enabling and DisablIng Cache Store ••••••••
Cache Store Control in Segment Descrlptor Words ••
Loading the Cache Store. • ••••••••••

General C I ear • • • • • • • • • • • • • • • • •
Selective Clear. • • • ••••••

Dumping the Cache Store ••••••••••••••

vii

Page

7-It
7-It
7-5
7-5
7-6
7-7
1-7
7-8
7-8
7-CJ

8-1
1-1
8-1
1-2
8-1t

9-1
9-1
9-1
9-2
9-1t
C)-It
g-It
9-5
9-6
9-6
9-7
9-7

Al3CJ

Appendix A

Appendix e

Appendix C

Figure 2-1
F~gure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-1
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11
Figure 2-12

Figure 2-13

Fig"re 2-14

Figure 2-15
Figure 2-16

Figure 2-17

Figure 2-18

Figure 2-19

Figure 2-20
FIgure 2-21
Figure 2-22

Figure 2-23

Flgure 2-2"

Figure 2-25

Figure 2-26

Figure 2-27

Figure 2-28

Figure 2-29
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-"

CONTENTS' (Cont)

Operation Code Hap •••••• · · . .
Alphabetic Operation Code List · . · . • • • • • • · . .
Address Modifiers. ·

ILLUSTRATIONS

Basic and EIS Sin11e-Hord Instruction For-mat · · • • · • Indirect Word Format · · · · • · · • · • · • • • • • • •
EIS Hulti-Hord Ins truct I on Format. • · • • · • • · • • •
EIS Modification Field (MF) Format • · • · • · • · Operand DescrIptor IndIrect Pointer Format • • · • •
Alphanumeric Operand DescrIptor Format · · • • • • · · • Numeric Operand Descriptor Format. • · • • • · • • • · · Bit String Operand Descriptor Format · · · • · · · · · • Repeat Double (RPD) Instruction Word Format. · · • • · • Repeat LInk (RPL) Instruct ion Word Format. • • • · · • · Repeat (RPT) Instruction Hord Format • • · • • · • · • •
EIS Addre.ss Register Special ArithmetiC Instruction

Format. · · · · • · · • · · · · · • · · · • • · · • •
Compare Alphanumeric Strings (CHPC) EIS Multi-Word

Instruction Format. • · · • · · · · • · · • · • •
Scan Characters Double (SCD) EIS Multi-Word Ins truct ion

Format. · • · · • • · • • · · • • · · • • · · • • · • Scan with MaSk (SCM) EIS Multi-Woro Instruction Format •
Test Character and Translate (TCn EIS Multi-Word

Ins truc t 1 on Format. · · • · · • · • • • · • • • • • •
Move Alphanumeric Left to Right CHLR) EIS MJ.tl-Word

Ins truc t 1 on Format. · • • · · · • • • · • · • •
Move Alphanumeric Ed Hed (MVE) EIS Multi-Word

I nstruc t ion Format. · · · · · · · · · • • · · • · Move Alphanumeric with Translation (MVT) EIS Mu I t i-Word
Instruction Format. · · · · · • • · • • · • • • • • •

Compare Numeric (C MPN) EIS Multi-Word InstrJctlon For.at
Hove Numeric (HVN) EIS Mu I ti-Woro Instruction Format · • Move Numeric Edi te d (HVNE) EIS Hulti-Hord I~struction

Format. · · · · · · · • · · • · · • • · • • • • •
Combine Bit Strings left (CSL) EIS Hult i-Word

Instruction Format. • · · • · · • · • • · • · • •
Compare Bit Strings (CHPB) EIS Multi-Word I~struction

Format. · · · · · • • · · · · • · · · · • · · • · · · Binary to Decimal Con"ert rBTo) EIS Hut t i-W!)rd
Instruction Format. · · • · • · · · • · • • • • • • •

Oeci mal to Binary Convert (OrB) EIS Hulti-Word

•

Instruction' Forllat ••••••••••••••••••
Add Using 2 Decimal Operands (A020) EIS Hulti-Word

Instruction Format ••••••••••••••••••
Add Using 3 Decimal Operands (A03D) EIS Hulti-Word

Instruction Format ••••••••••••••••••
Micro Operation (~OP) Character Format •••••••••
Unstructured Machine Word Format ••••••••••••
Unstructured Word Pair Format. • • • • • •••••
unstructured ~-bit Character Format •••••••••••
Unstructured E)-bit Characte'r Format •••••••••••

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1975 viiI

Page

A-l

B-1

C-l

2-1
2-8
2-9
2-10
2-12
2-12
2-1"
2-15
2-13'1
2-138
2-1"1

2-118

2-186

2-188
2-191

2-19"

2-197

2-200

2-202
2-205
2-208

2-211

2-213

2-217

2-221

2-223

2-225

2-228
2-240
3-2
3-3
3-3
3-3

AL39

Figure 3-5
Figure 3-6
Figure 3-1

Figure 3-8

Figure 3-9
Figure 3-10
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure "-9
F 19ure 4-10
Figure 4-11
Figure 4-12
Figure 4-13
Figure 4-14
Figure 4-15

Figure 4-16
Fig",re 4-11
Figure 4-18
Figure 4-19
FIgure 4-20
Figure 4-21
Figure "-22
Figure 4-23
FIgure 4-24
Figure 4-25
Figure 5-1
FIgure 5-2
Figure 5-3
FIgure 5-1t
Figure 5-5
Figure 5-6
Figure 6-1
Flgur-e 6-2
Figur-e 6-3
Figure 6-1t
Figure 6-5
Figure &-6
Figure 6-7
F 19ure 6-8
Figure 6-9

Figure 6-10
Figure 6-11
Figure 8-1
Figure 9-1

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1915

CON TENTS CCont»

Unstructured 9-bit Character- Format. • • • • • • · • · • unstructured 18-bl t Half Wor-d Format · • • · • · • · • • Upper l8-bit Half Word Floating Point Binary Operand
Format. · · · · · · · · • • · · · · · · • • • · • • · lower 18-bit Half Word F I oat ing PoInt Binary Operand
For-mat. · · · • · • · · · · · • · • • • • • • · · • • Single Pr-ecision Ftoating Foint Binar-v Operand Format. • Doub Ie Pr-ecislon Floating POit"!t 8inar-y Operand Format. • Accu mu I at or Register- CA) For-mat. · • · · · • · • • Quotient Register (Q) Format · · · • · · • · · • • · • • Accumulator-Quotient Register (AQ) Forl'llat •.• · • Exponent RegIster (El For-mat · · · · • • · · · · · · · • Exponent-Accumulator--Quotlent Register- (EAQ) Format. • • Index Register (Xn) Format · · · • • · · · · · · • Indicator Regis ter- (IR) Format · • · · · • · • Base Addr-ess Register (BAR) Forllat · · · • • • · • Timer Register (TR) Format · · · • · • · • · · · • · • · Ring Alarm Register (RAlR) Format. • · · · • · · · · • · Pointer Regi ster (PRn) Format. · · · · · · · · · · • Procedur-e Pointer Register (PPR) For-mat. • · · · • • • • Temporarv POinter Register (TPR) Format. · · · • • • • • Descriptor Segment Base Register (OSBR,DBR) Forllat · · • Segment Descriptor Wor-d Associative Mellory (SDWAH)
For-mat. · • · · · · · · · · · · · • · • · · · · · · • Page Table Word Associative Memory (PTWAH) Format. • · • Fault Register Format. • · · · · · • · • · · • · • • Hode Register (HR) For-ma,t. · • • · · · • • · • · • · • • Cache Hode Register- (CHR) Forlllat • • • · · · · • · · · • Control Unit leU) Histor-y Register- Forllat. • • · · · · • Oper-ations Unit (OU) History Regis ter Format • · · · · · Appending Unit (AU) History Register Format. · • · • • • Configur-ation Switch Data Formats. · · • • · · · • • Cont ro' Unit Data format · · · · • · · · • • · • · • Deci ma 1 Unit Data Format · · · · · • • · • · · · · · · • FInal Address Gener-ation for- an Unpaged Segaent. • · · • EKamples of Page Number FormatIon. '. · · · • · • · · • • Final Address Generation for an Paged Segment. · • • · • Appending Un! t Operation Flowchar-t · · · · • • · • · · • Segment Descriptor Word (SOH) Format · • · · · • · · · • Page Table Word (PTW) Format · · • • · • · · · • • · · • Address Hodif ier (TAG) Field Format. · • · • • • • · · • Common Effective Address Formation Flowchar-t · • • • · • Register Modification Flowchart. · · · · • • • • • • • · Register- Then Ind! rect Modification Flowchart. • • · Indirect Then Register- Modification Flowchart. · • • · • Indirect Then TaJ Iy Hodification Flowchart • • · • • · • Format of Instruction Word ADDRESS When Bit 29 = 1 • • • ITP Pointer Pair For-Illat. · · · • · · · · • · · • · · ITS Pointer- Pair For-mat. · · • • · • • • · · • · • •

•

Effective Segment Number Generation Flowchart •••
EIS Effective Addr-ess Formation Flowchart •••••
Complete Appending Unit Operation Flowchart.

· .. · . . · .. Cache Store/Hain Store Mapping •••••••••• · . .

ix

Page

3-1t
3-4

3-8

3-8
3-9
3-9
1t-2
1t-2
"-3
It-It
It-It
4-5
1t-5
4-9
4-9
1t-10
4-11
4-13
It-IS
4-16

1t-18
"-21
4-23
4-25
1t-28
"-29
4-32
1t-31
4-39
1t-.. 1
ft-46
5-3
5-1t
5-6
5-9
5-10
5-11
6-2
6-4
6-6
6-1
6-9
6-15
6-16
~1a
6-19

6-20
6-22
a-It
9-3

Al39

Table
Table
Table
Table
Table
Table

Table

Table
Taule
'Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Tabl.
Table

2-1
2-2
2-3
2-4
2-5
2-6

2-7

2-8
2-9
3-1
3-2
3-3
3-4
3-5
3-6
"-1
It-2
5-1
6-1
6-2
6-3
6-1t
7-1

CONTENTS CCont.

TABLES

R-type Hodifie~s fo~ REG Fields •••••••••••••
Alphanumeric Character Number (CN) Codes ••••••••
Alphanumeric Data Type (TA) Code~ ••••••••••••
Sign and Decimal Type (S) Codes •••••••••••••
Relation Between Data Bits and Indlcato~s ••••••••
Control Relations for store Character Instructions

(Nine Bit) •••••••••••••••••••••
Control Relations for Store Character Instr~etlons

. .
(Six BIt) • • • • • • • • • • • • • • • • •••••

Default Edit Inse~tIon Table Characters •••••••••
Micro Operation Code ASSignment Map •••••••••••
Fixed Point Binarv Integer Values ••••••••••••
Fixed Point BInary Fraction Values •••••••••••
Floating Point Binary Operand Values ••••••••••
Decimal Sign C~aracter Interpretation ••••••••••
Decimal Data Values •••••••••••••••••••
Character String Data length Lim1ts •••••••••••
Processor RegIsters •••••••••••••••••••
System Controller Illegal Action Codes •••••••••
Appending Unit Cycle Definitions ••••••••••••
General Offset Modification Types.. • ••••••••
Register ModificatIon Decode ••••••••••••••
Variations of Indirect Then Tally ModIfication •••••
Special Append Hode Address Modifiers. • • • • •••••
list of Faults •••••••••••••••••••••

REVIEW DRAfT
SUBJECT TO CHANGE
October, 1975

Page

2-10
2-13
2-13
2-1,.
2-21

2-28

2-30
2-2lt1
2-251
3-6
3-7
3-10
3-12
3-13
3-1"
1t-1
1t-25
5-8
6-3
6-5
6-10
6-17
7-3

AL39

SECTION I

INTROOUCTION TO PROCESSOR

The -Processor~ described iri this reference manual Is a hardware module
designed for use with the HUL!iplexed Information and komputing ~ervlce
(Multics). The many distinctive features and functions of H~ltics are enhanced
by the powerful hardware features of the Processor. The add-essing features. In
particular, are designed to permit the Hultics software to compute relative and
absolute addresses, locate data and programs in different devices. and retrieve
such data and program as necessarv.

The Multics Processor contains the following general featuresl

~1. Storage protectIon to place access restrictions on speclfied seg.ents.

2. Capability to interrupt a process In execution In response to an
external Signal (e.g., tlO terminatIon) at the end of any evenlodd
Instruction pair (mid-instruction interrupts are permitted for 50.e
instructions), to save Processor status, and to restore the status at
a .ater time without loss of continuity of the process.

3. CapabilIty to fetch instruction pairs and to buffer two instructions
(up to four instructions, depending on certai~ main store overlap
conditions) including the one currently in execution.

4. Overlapping -lnstructlon-execution~. address preparation, and
instruction fetch. While an instruction is being executed, address
preparation for the next operand (or even the operand following it) or
the next instruction pair is taking place. The operations unit can be
executing instruction N; instruction N+l can be buffered in the
operations unit (with its operand buffered in a maIn store port); and
the control unit can be executing instructlons N+2 or N+3 (if such
execution does not involve the main store port or registers of
lnstructions N or N+1), or preparing the address to fetch instructions
N+4 and N+5.

5. Capabilltv to detect ma1n store instructions that alter the contents
of buffered instructions. Ability to delay preprocessing of an
address using register modification if the instruction currently In
.execution changes the register to be used In that .odification.

&. Interlacing capability to direct maIn store accesses to the proper
system controller module.

7. Intermediate storage of address and control information In high-speed
registers addressable by content (Associative Hemo~y).

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975 1-1 AL3CJ

8. Intermediate storage of base address and control Information In
pOinter registers which are loaded by the executing prograa.

9. Absolute address computation at execution time.

SPECIAL-'AfAaILll1E~

The Processor also includes several unique capabllties, such as hardMare
implemented segmeniation and paging, address modfication, address appending, and
detection of faults and external Interrupts. These features are sum.arlzed In
this section and described in detail respectively in Sections V, VI, and VII.

-Segmentatlon-an~lD~~

A segment Is a collection of data or instructions that Is assigned a
symbolic name and addressed symbolically by the user. Paging is at the
discretion of the software; the user need not be aware of the existence of
pages. User visible address preparation is concerned with the calculation of a
segment effective address relative to the origin of the segment; the Processor
hardware completes address preparation by translatIng the final seg_ent
effective address into an absol~te main store address. The ~ser may view each
of his segments as residing in an independent maIn store unit. Each segment has
its own origin which can be addressed as location %er~. The size of each
segment varies without affec~lng the addressing of the other segments. Each
segment can be addressed like a conventional maIn sto~e image startIng at
Joca$ion zero. Maximum -segment-size~ is 262,1~4 words.

When viewed from the Processor, main store consists of blocks or pages,
each of which is defined as "page-size" words in length. eThe page size used by
Muftlcs Is 1024 words.) Each page begins at an absolute address Mhlch is zero
modulo the page size. Any page of a segment can be placed i~ any available .ain
store block. These pages may be addressed as jf they we~e contiguous even
though they are in widely scattered absolute locations. Only currently
referenced pages need be in main store. If a segment is not paged, the coaplete
segment Is located In contiguous blocks of main store. In the current Hultics
Implementation, all user segments are paged.

Address HodlficatioD ~!gdre$s Appending

Prior to each main store access, two major phases of address preparation
take placel

1. -Address-modification~ by Register or Indirect Word content, If

specified by the Instruction Word or Indirect Word.

-Address-appending@, in which a segment effectIve
translated Into an absolute address-to access main store.

Although the above two types of modification are combined in _ost
operations, they are described separately in sections V and VI. The address
modification procedure can go on indefinitely, with one type of modification
leading to repetitions of the same type or to other types of modification prior

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1915 1-2 AL39

to a main store access for an operand. However, to simplify the descriptions In
this manual, each type of address modificatIon Is described as if it were the
first (and usuallY the only) modification prior to a maIn st~re access.

fay1J$ and lntecrypts

The Processor detects certain il legal procedures; fault, COMmunication with
the ma 1 n store; programmed f aul ts; cert ai n external events; and ari thllet ic
faults. Many of the Processor fault conditions are deliberately or
inadvertently caused by the software and do not necessa~llv invo've error.
condl t Ions.

Similarlv, the Processor co~~unicates with the other system modules by
setting and answering external interrupts. When a fault or interrupt Is
recognized, a trap results. This causes the forced execution of a pair of
l~s~ructions in a main store location, unique to the fault o~ Interrupt, known
as the fault or interrupt vector. The first of the forced instructions ~ay
;cause safe storage of the Processor status. The second inst~uction in a fault
vector shoul d be a transfer, or the f au' t lng program wIll be resumed "1 thout the
fault having been processed. -Faults-and-lnterruptsa are described in Section
VII.

Interrupts and certain low priority faults are recognized only at specific
times during the execution of an instruction pair. If, at these tll1es. the
Processor detects the presence of bit 28 In the Inst~uction Word, the trap Is
inhibited and program executIon continues. The interrupt or fault signa' 15
save~ for future recognition and Is reset only "hen the trap occurs.

PROCESSQR HODES Qf OPERATION

There are three -modes of maIn store addresslnga 'Abs~lute Hode, ApDend
Hode, and BAR Hode), and two lIodes of instruction execution (Normal Hode and
Privileged "Dd~). These modes of operatIon and the functions performed .~e
su •• ar!zed in table 1-1.

Iostryctign Hodes

NORHAL HODE

•

Host instructions can be executed In the -Normal-Hodea of operation.
Certain Instructions,c~as~_t!~ as prIvileged. cannot be execu1ed in Normal. Hode.
These are Identified in-The "Indlvidual instruction descriptions. An attempt to
execute prIvileged instructions while in the Normal Hode results in an Illegal
Procedure Fault. In· the Normal Hode. various restrictIons are indicated In
Segment Descriptor Words and Page Table Wores, which are explained in Section V.
Address Preparat jon- usest he appending phaSe. The Processor· executes in Normal
Mode when the access bits of the Seg~ent Descriptor Word specIfy a nonprlvlteged
procedure.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975 1-3 ALJ9

PRIVILEGED HOOE

In Privileged Hode, all Instructions can be executed. Address Preparation
uses the appending phase. The Processor executes in -Privileged-Hode~ when· the
access bits of the Segment Descriptor Hord specif, a privilegeo procedure and
the execution ring is eQual to zero. Refer to· Sections V and VIII for .ore
detailed information.

A~resslQg U~

ABSOLUTE MODE

All instructions can be executed In the -Absolute-Ho~e; and unrestrIcted
acc~ss is permitted to privileged hardware features. Address Preparation for
instructIon fetches does ~ use the appending phase. Ourlng instruction
fetches, ~he Procedure Pointer Register is ignored.

The Processor enters Absolute Hode immediately after a fau.t or Interrupt
and remains in Abs~lute Hode until it executes a transfer instruction whose
operand Is obtained via explicit use of the appending mechanism, that Is, via
explicit reference to one of the Pointer Register bV the ~se of bit 29 of the
Instruction Word (See.Append Mode beJo~).

APPEND HOOE

The -Append-Hode" Is the most common I y used lIaln store address 1ng 110 de.
In this mode the final effective segment address Is either added to the
Procedure Pointer Register, or it Is added to one of the eight Pointer
Registers. If bit 29 of the Instruction Word contains a 0, then the Proeedure
Pointer Register is selected; otherwise, the Pointer Register given by bits 0-2
of the instruction word is selected.

BAR "ODE

In -SAR-(Base-Address-Reglster»-Hodea, the l8-blt BAR is used. The 8AR
contains a·O modulo 512 address bound In bit posItions 9-17 and a 0 modulo 512
base address in bit positions 0-8. All addresses are rel3cated by adding the
effectIve segment address to the base address in bits 0-8. The relocated
addr.ss then becomes the fInal segment efre~tIve address as In Append "od~ and
Is added to the Procedure Pointer Register. A process 15 kept within certain
maIn store lImIts bv subtracting the unrelocated effective address fro. the

•

address bcund in bits 9-17. If the result Is zero or negative, the relocat.'d
address would be out of range, and a store Fault oceurs.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975 AL39

fUNCTIONS

Execute privileged
instructions.

Main store address for
instruction fetch.

Haln store addrass for
for operand fetch.

Restriction of access
to other seg.ents.

PROCESSOR UNIT fUNCTIONS

Table 1-1. "odes of Operation

NORMAL £RIYILEGEp A8S0LUTE

No Yes

Append Append

Append· Append

So .. e

Yes

Absolute

Append 1f bit
29 = 1, else
Absolute.

None

No

Procedure Pointer
Reg ister p I us BAR
base address.

Procedure Pointer
Register plus BAR
base address.

Total

~"aJor functions of each principal logic ele.ent are listed below and are,
described In subsequent sections of this aanual.

Controls data input/output to main store.

'erfor.s main store selectIon and interlace.

Does address appending.

Controls fault recognitIon.

This assemblv conSists of sixteen 72-blt Page Table Word Associative Hellory
-CPTWAH)-regi~ters~ and sixteen 108-bit Segment Oescripto~ Word Associative
Memorv -(SDWAH)-"eglsterscil These registers are used to hold pointers to lIost

•

recently used segments (SOWs) and pages CPTWs.. This unit oDviates the need for
possiblel'uttlple main store accesses before obtaining an absolute aaln store
address of ari operand.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975 1-5 AL39

Performs all Processor control functions.

Perfcrms address modification.

Controls mode of operation (Privileged, Normal, etc •••

Per f arms interrupt recagnl t ion.

Decodes Instruction Words and Indirect Words.

Performs Timer Register loading and decrementing.

Does fixed and floating blnarv arithmetic.

Does shifting and Boolean operations.

Does decimal arithmetic.

Does character- and bIt-string operations.

RlVIEW URlfT
SUBJECT TO CHANGE
October, 1915 1-6 AL39

SECTION II

HACHINE INSTRUCTtONS

This section describes the cOllprehensive set Of -macnine-instructionsil for the
Hultics Processor. The presentation assumes that the reader is familiar with
the general structure of the Processor, the representation of informatIon. the
data formats, and the method of address preparation. Additional information on
these subjects appear$ near the beginning of this section and in Sections III
through VI.

INSTRUCTION REeER1D1&~

The Processor interprets a 10 bit field of tl;\e Instru:tlon ; Word as the
Operation Code. ThiS fieJd size vields an instruction universe of) 1021t of ...,ICh
547 are implemented. The instruction population Is divided ~nto 1t56 Basic
Operations and 91 Extended Instruction Set lEIS) Operations.

Arrangment of IostructiQDS

Instructions In thls section are presented alphabeticaJly bv their mneaonlc
codes within fUnctional categories. However, an overal' alpnabetic listing of
Instruction codes aod their names appears in Appendix 3 to aid the use~ in
locatIng specific Instructions via that code.

aasic ODera~

The 1t56 -basic-operatlonsil in the Processor al. reQui~e exactlv one 36-blt
machine word and are further subdivided Into the following tiPesl

181
85
31t
36

Fixed Point Binary Arithmetic
800lean Opera~ions
floating Point Binary Arithmetic
Transfer of Control

75 Pointer Register
17 Hi see II an'eOJS
28 Privileged

The 91 -Extended-Instruction-Set-(EIS)-Operatjonsil are. futher subdivided
into 62 EIS Single-Word Instructions and 29 EIS Multi-Word I~structlons.

REVIEW DRAfT
SUBJECT TO CHANGE
OctOber, 1975 2-1 AL39

EIS SINGLE-WORD OPERATIONS

The &2 -EIS-Single-Word-Instructlons~ load, store, and perform specIal
arithmetic on the Address Registers (ARn) used to access bit- and
character-string operands, and safe-store Decimal Unit (DU) control informatIon
required to service a Processor fault. Like the Basic Operations, EIS
Single-Word Instructions require exactlv one J& bit Machine Word.

EIS MULTI-WORD OPERATIONS

The 29 -EIS-MuJti-Word-Instructions~ perform DecImal A~ithmetlc and blt
and character-string operations. Thev require 3 or ~ 3&-blt Machine Words
depending on individual Operand Descriptor requirements.

Each Instruction in the repertoire is described in the followIng pa9BS of
this sectlon. The descriptions are presented in the format shown below_

MNEMONIC INSTRUCTION NAME OP CODE (OCTAL)

~FORHATI Figure or Figure reference

SUMMARYI Text and/or bit transfer equ~tlons

MODIFICATIONS: Text

INDICATORSI Text and/or logic statements

NOTESI Text

Line 11 ~~C. INSTRU~!InN-~ OP COPE (OCTAL)

This line has three parts that contain the followingl

1. Mnemonic -- The -mnemonic-codew for the Operation field of the

assembler statement. The HuStics assembler, ALH, recognizes this
value and maps it into t~e appropriate binary pattern when generating
the actual object code.

2. Instruction Name -- The name of the machine instruction from which the
Mnemonic was deri~ed.

3. Op Code (Octal) -- The octal value of the operation code for the
instruction. A zero or a one in parentheses fo.lowing an octal code
indicates whether bit 27 COP Code extensIon bit) ~f the instruction

REVIEW OR~fT
SUBJECT TO CHANGE
OctOber, 1915 2-2 AL39

word is OfF or ON.

Line za filB.11A.I

The layout and definition of the subflelds of the instr~ctlon· word or words
is given here either as a Figure or as a reference to a Flgu-e.

Line 31 SWit1A.lU

The change in t~e state of the processor affected by tHe execution of the
instruction is described in a short and general IV symbolic fo~m. If reference
is made to "the state of an indicator in the SUMHARY, it is the state of the
indicator before the instruction is executed.

Those modifiers that cannot be used with the inst~uction are listed
exp I ici t I y as except ions ei the,.. because they are not perm! tted or because th·e lr
effect cannot be predicted from the general address modification procedure.
(See -Effective Address Formation- in Section VI.)

~

Line 5 I l.tiD.l.kA.IQRS.

Only those indicators a,..e listed whose state can be chan~ed by the
execution of the instruction. In most cases, a condition fo,.. setting ON· as well
as one for setting OFF is stated. If only one of the two is stated, then the
indicator remains unchanged if the condition is not Bet. Unless stated
otherwise, the conditions refer to the contents of regl~ters existing after
instruction execution. Refer also t~ ·Common Attributes of InstructionsH

, tater
in this section.

Line &1 lWIES

This part of the description exists only In those cases where the SUMMARY
is not sufficient for in depth understanding of the operatio~.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1915 2-.3 AL39

Y

V-pair

Y-blockn

Y-bl t11

= the 18 low order bits of the final 24 bit main store
address of the instruction operand after all addresS
preparat i on ~ s comp Ie tee

= a symbol denoting that Y designates a pair of maIn store
locations with successive addresses, the smaller address
be Ing even. When t he mal n store address is even, It
designates the pair Y(even), Y+l; and when it is odd.
the pair Y-1, Y(odd). The main store location with the

. smalJer (even) address contains the most significant
part of a double-word operand or the first of a pair of
instructions.

= a symbol denoting that Y designates a block of main
store locations of ~-, 8-, or 16-word extent. Fer a
block of a-word extent, the Processor assumes that
Y-blockO is a 0 modulo 0 address and performs address
incrementing through the block ac:ording'y, stopolng
when the ajdress next reaches a vaJ~e 0 modulo n. Note
the difference between V-block addressing and V-pair
addressjn~ that forces the address to be 0 modu'o Z.

= a symbol denoting that Y designates a character or
string of characters in main store of character size D
bits as described by the ~th Operand Descriptor. n is
specIfied by the data type field of Operand Descriptor h
and may have values ~, 5, or 9. See Section VI,
Effective Address Formation, for details of Operand
Descriptors.

= a symbol denoting that Y deSignates a bit or string of
bits in main store as described by the ~th Operand
Descriptor. See Section VI. Effective Address
Formation. for details of Operand Descriptors.

When reference Is made to the elements 01 a string of characters or bits in
main store, the notation shown In Register POSition and Contents belo ... Is used.
The index used to sho ... traversing a string of extent n may take any of the
values in the interval (1,0) unless noted otherwise. The elements of a main
store block are traversed explicitly by USing the index as an addend to the
given block address, e.g, Y-block8+m and Y-block~+Zm.l.

A
ARn

AQ
BAR

REVIEW DRAFT
SUBJECT TO CHANGE
Oc t ober, 1 CJ 75

Accumulator Register
Address Register n (n = 0, 1, 2 •••• , 7)
(consists ofl PRn.WORONOJ:PRn.CHARIIPRn.BITNO)
Combinec Accumulator-Quotient Register
Base Address Register

2-4 AL39

CO
CA
OSSR
DSSR.AODR
DSBR.8NO
OSBR.STACK
DSBR.U
E
EA
EAQ
ERN
ESN
IC
IR
PPR
PPR.PRR
PPR.PSR
PPR.IC
PPR.P
PRn
PRn.RNR
PRn.SNR
PRn.WORDNO
PRn.CHAR
PRn.BITNO
Q

PTWAtt
SOMAM
RAlR
TPR
TPR.CA
TPR.TRR
TPR. TSR
TPR.TBR
TR
Xn
Z

"Contents 0'"
Computed Address
Descriptor Segment Base Register
Descriptor Segment Base Address Register of DS8R
Descriptor Segment Bound Reister of DSSR
Stack Base Register of DSBR
Unpaged Flag of DSBR
Exponent Register
Combined Exponent and Accumulator Registers
Combined Exponent-Accumulator-Quotlent Register
Effective Ring Number
Effective Segment Number
Instruction Counter
Indicator Register
Procedure Pointer Register
Procedure Ring Register or PPR
Procedure Segment Register of PPR
Instruction Counter Register of PPR
Privilege Flag of PPR
POinter Register n en = 0, 1, 2, •••• 7)
Ring Number Register of PRn
Segment Number Register of PRn
Word Address Register 0' PRn
Character Address Register of PRn
Bit Offset Register of PRn
Quotient Register
Page Table Word Associative Memory
Segment Desriptor Word Associative "emort
Ring Alarm ~egister
Temporarv Pointer Register
Computed Address Register of 'PR
Temporary Ring Register of TPR
Temporarv Segment Register of TPR
Temporary Bit Register of TPR
T lmer Register
Index Register n (n = 0, 1, 2 •••• , 7)
Temporary pseudo-result of a nonstore cowparative operation

ReqisterPQ$ltlo~Lk.stD.1m1s

(-R- standing for any of the registers listed above as well as for Main
store .. ords. Nord-pal rs, word-b' ocks, and character str lngs.

Ri

RU)

CrR)

CeR)!

xx ••• x

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

the ith bit pOSition of R

the Ith register of a set of n registers, R

the bit pOSitions 1 through J of R

the contents of the full regIster R

•

the contents of the ith bit or character of R

the contents of the bits or characters i through J of R

a string of binary blts (O·s or l·s) of any necessary length

2-5 AL39

When the description of an instruction specifies a chan~e for a part of a
register or main store location, it is understood that the 3art of the register
or maln store location not _enttoned remains unchanged.

-other-Symbolsii}

->

I a

•

x

I

II

1 ••• 1

replaces

compare w lth

the Boolean connective AND

the Boolean connective OR

the Boolean connective NON-EQUIVALENCE (or EXCLUSIVE OR)

the Boolean unary NOT operator

not equal

indicates exponentiation Cn and m are Integers);
example, the fifth power of 2 is represented as 2 •• 5.

for

multiplication; for example, elY) times :(Q) is represented
as CCY) x C(Q).

dl~ision; for example, CCY) divided by C(A) is represented
as Cry) I C(A).

concatenatIon; for example, strlng1 JJ stringZ.

the absolute value of the value between vertical bars (no
algebraic sign). For example the absolute value of CIA) Dlus
elY) is represented as. JCIA) + C(Y)'.

COHMON ATTRIBUTES Of IHSTRUCTIONS

Illegal HodificaLl2n

If an -illegal-modifieriil is used wIth any instruction, an Illegal Procedure
fault with a subcode class of Illegal Hodifier occurs.

ear 1 t y ~ilUI:.

The Parity Indicator is turned ON at the end of a mai~ store access which
has incorrect parity.

RE.VIEW DRAFT
SUBJECT TO CHANGE
Oct ober. 1975 2-6 AL39

The -Baslc-I~struct,ons; and -EIS-Single-Word-In$t~uctions; require e~actly
one 36 bit Machine Word and are interpreted according to the format shoMn In
figure 2-1 below.

o
Q

1 1
--L8

J

222 3 3
l 1 ~ D ~

I I I I
ADDRESS I OPCODE IIIAI TAG I

I -1.;..1 I I
18 10 1 1 6

Figure 2-1 Ba~lc and EIS Single-Word Instruction Format

ADDRESS

OPCOOE

I

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

The given address of the Operand or In~lrect Word.
address may bel

This

An 18 bIt maIn store address If l = 0 (Absolute Hode
only)

An 18 bit offset to the Base Address Register If A = 0
CBAR Hode only)

An 18 bit offset relative to the base of the current
procedure segment If A = 0 (Appendl,g Hode onlv)

A 3 bit PoInter Register number (0) and a 15 bIt offset
to C(PRQ.WORONO) if A = 1 CAbsolute and Appending Hodes
onl y)

A 3 bit Address Register number (0) and a 15 bit offset
~o CCARo) if A = 1 CAli modes dependIng on instruction
type)

An 18 bit literal signed or unsigned constant (All
modes depending on instruction type and Hodifier)

An 8 bit Shift Operation count CAli modes)

An 18 offset t~ the current value of the Instruction
Counter CIPRR.IC) CAli modes.

Instruction operation code.

Program Interrupt inhibIt bit. When this bit is set9 the
Processor M,II ignore all e~ternal Program Interrupt
signals. See Section VII, Faults and Interrupts, for
detaIls.

2-7 Al39

A

TAG

Indirect Words

Indirect via pointer registe~ flag. See Section VI.
F.ffective Address Formation. for detaIls on the use of
POinter Registers.

Instruction address modifier. See Section VI. Effective
Address Formation, for details on Address Modification.

Certain of the Basic and EIS Single-Word Instructions permit Indirection to
be specified as part of Address Modification. When such indirectior. Is
specified, C(~) is iriterpreted as an -Indirect-Word~ according to the fo~rat
shown in Figure 2-2 below.

0 1 1 Z 3 3
g Z ~ - 3 g 5

I I I I
I ADDRESS I TALLY I TAG I

ADDRESS

TALLY

TAG

REVIEW DRAFT
SUBJECT TO CHANGE
Octobec. 1975

I ------- I I
18 12 6

Figure 2-2 Indirect Word format

The given address of the Operand or next Indirect Word.
This address mav bel

An 18 bit main store address If A = 0 In the
Instruction Word (Absolute Hode cnlt)

An 18 bit offset relative to the Base Address Register
(BAR) if A = 0 In the Instruction Word (BAR Hode onlv)

An 18 bit offset relative to the base of the current
procedure segment if A = 0 (Appending Hode on.~)

An 18 bit offset relative to the origin of the seg_ent
described bv PRO if A = 1 in the Instructlon Word and
PRn is selected bV the Instr~ction Word (Absolute and
Appending Modes onlv)

A count field for use by those Address Modifiers that
involve tallying.

Next address modifler.

2-8 AL39

The -lIS-Hulti-Word-Instructlons~ require 3 or ~ Machine Words depending on
the Operand Descriptor requirements of the individual instructions.· The ~ords
are interpreted according to the format shown in figure 2-3 3elow.

0 1 1 222 3
D l Ii 7_1 9 ~

I I I I
VARIABLE a OPCODE III HF1 I

I I_i I
18 10 1 71

Operand Descriptor or Indirect Pointer for Operand 1 I
I
I

Operand Descriptor or Indirect Pointer for Operand 2 I
I
I

Operand Descriptor or Indirec t PoInter for Operand 3 I
I

J&

Figure 2-3 EIS Mu It i-Word Instruction for.at

"VARIABLE This fie'd is interpreted variously according to the
requirements of the individual EIS Instructions. Its
interpretation is given under FORHlT for each EIS
Ins truct ion. The Modification Fields HF2 and HF3 are
contained In this fleld if they are required.

OPCODE Instruction operation code as(for BaSic and EIS
Single-Word Instructions.

I Program Interrupt inhibit bit as for BaSic and EIS
SIngle-Word Instructions.

ttFl Modification Fjeld 'or Operand Descriptor 1. See EIS
Modification Fields (HFl beloM for details.

(IS ModificA~-Elalds 'HF)

Each of the Operand Descriptors follo~in9 an EIS Hulti-Word Instruct.on
Word has a -Hodificatlon-fleld~ In the Instruction Word. The Hodification Fif·ld

contro I s the i nterpretat Ion of .the Operand Descriptor. The Hodi f leat Ion FIe I d
is interpreted according to the format shown in Figure 2-4.

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1975 2-9 ALJ9

U:L
a AR

b RL

c to

REG

Octal
~

00
01
02
03 .

04
05
06
07

10
11
12
13

14
15
16
17

REVIEW DRAFT

a 0 0 0 0
-LLa 3 Z
J I J • I
JalbJcJ REG I
LLl.--1-__ --1

1 1 1 4

Figure 2-4 EIS Modification Field eMF) For~at

Address Register flag. This flag conf~ols interpretation
of the ADDRESS field of the Operand Descriptor Just as the
"AM flag controls lhterpretation of the ADDRESS field of
the BaSic and EIS Single-Word Instructions.

Register length control. If RL = 0, t~en the Length (N)
field of the Operand Descriptor contai~s the length of the
operand. If RL = 1, then the length (N) field of the
Operand Descriptor contains a se~ector value specifving a
register holding the operand length.

Indirect descriptor control. If 10 = 1 for HF~, then the
hth word foltowing the Instruction Word Is an Indirect
Pointer to the Operand Descrptor for the hth operand;
otherwise, that word is the Operand Descriptor.

The register numbe'" for R-type modification Uf an·v) of
ADDRESS of the Operand Descriptor. These modIfications
are similar to R-tvpe modifications fo~ Basic Instructions
and are summarized in Table 2-1 below. II legal mOdifiers
have the entry MIPR" and cause an Illegal Procedure Fault.

Table 2-1 R-type Modifiers for REG Fields

Meaning ~ y~ in

Indirect Operand CeOperand
B-:t~cc Hf...REIi llc~cci C:tS:U: eR1n!.tt ~CC'QlgCI~ZI~i

N N N IPR
AU AU AU AU
QU QU QU l QU
OU IP.RCa) IPR IPR

IC IC(bt IC(b) IPR
Al A (c) AL A(c)
QL Q'c) QL Q(c)
OL IPR IPR IPR

XO XO XO XO
Xl Xl Xl Xl
X2 X2 X2 X2
X3 X3 X3 X3

X4 X4 X4 X4
X5 X5 X5 X5
X6 X6 X6 X&
X7 f.7 X7 X7

SUBJECT TO CHANGE
October, 1975 2-10 AL39

Ca) The DU modifier is permitted only in the second Operand Descriptor of
the SCD. SCDR. SCH. and SCHR instructions to s3ecify that the test
character(s) reside(s) in bits 0-18 of the Operand Descriptor.

The IC modifier Is permitted only In the REG field of Indirect
Pointers and in HF3.REG for the SCD. SCDR. SCH. SCHR, HVT. TCT. and
TCTR instructions, that is. the instructions that store sum.ary
results of a scan operation. CeIC) Is always i~terpreted as a ~~
offset.

(c) The limit of addressing extent of the processo~ ls 2--18 - 1 words;
that Is,. given any main store address, Y, a modife~ may be employed to
access a main store word anywhere in the range (Y - 2··18 + 1,
V + 2··18 - 1), provided other ·address range contraints are not
violated. Since it is desirable to address this same extent as words,
cha~acters, and bits It is necessary to provide a registe~ with range
greater than the 12 bits of N or the 18 bits of no~mal R-type
modifiers. This is done by extending the range of the A and Q
modifiers as fol lows •••

~ ~ A.a bits

9-blt 20 1&,35
6-blt 21 15.35
4-blt 21 15,35
bit 24 12,35

The unused high order bits are ignored.

EIS Operand Pessr1ptors and Indirest poInters

The words fol'owin~ an EIS Hulti-Word Instruction Word are either
descriptions of tne operands or -lndirect-Polnters~ to the operand descriptions.
The interpretation of the words is performed acco~ding to the settings of the
control bits in the associated Hodification Field 'HF). Thehth Word following
the InstructIon Word is interpreted according to the contents of HF~. See EIS
Modifications FieldS eMF) above for meaning of the various control bits.

See Section III, Data RepresentatIon, and Section VI, Effective Address
Formation, for further details.

If HF6.ID = 1, then the hth word following an EIS ~ulti-word Instruction
Word Is not an Operand Descriptor, but is an Indirect Pointer to an Operand
Descriptor and 15 interpreted as shdwn in Figure 2-5.

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1975 2-11

•

AL39

o
o

1 1
--L8

I

2 2 J
1 3 D

J I

3 J J
1 ;) 2

I I
ADDRESS 10 a o a a 0 o a a 0 OJAla 01 REG I

Figure

ADDRESS

A

---1 _I i I I
18 11 1 2 &

2-5 Operand Descriptor Indirect Pointer Forlllat

The given address of the Operand Descriptor. This address
may bel

An 18 bit maIn store address if A = 0 (Absolute "ode
o"ly)

An 18 bit offset relative to the ease Address Re~lster
(BAR) if A = 0 (BAR Hode only)

An 18 bit offset retative to the base of the current
procedure segment if A = 0 (Appending Hode onlv)

A 3 bIt Pointer Register number Cn) and a 15 bit offset
relative to C(PRn.WORDNO) if A = 1 (AI' modes)

Indirect via Pointer Register flag. This flag controls
interpretation of the ADDRESS field of the Indirect
Pointer Just as the ··AM flag controls interpretation of
the ADDRESS field of the BaSic a~d EIS Single-WOrd
Instruct ions.

Address modifier for ADDRESS. All Register Hodflers
except DU and DL may be used. If IC is used. then AODRE$S
is an 18 bit offset to value of the Instruction Counter
LQL ~~ I~~~. C(REG) Is always interpreted as
a ~~ offset to ADDRESS.

-ALPHANUMERIC-OPERA~D-DESCRIPTOR-FORHATa

For any operand of an EIS Multi-word Instruction that requires Alphanumeric
Data. the Operand Descriptor is interpreted as shown 1n Figu·e 2-& below.

0 1 1 2 2 2 2 2 3
D --LII II 1 Z a !t 5

I J I I I I
I ADDRESS : eN ITA lOa N • I J J 1-1--___ I

18 3 Z 1 12

Figure 2-& Alphanumeric Operand Descriptor Forlllat

ADDRESS

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

The given address of the operand.
(for the ~th operand):

This address may be

An 18 Dit
Mode onlv)

maIn store address 1f HF~.AR= 0 (Absolute

2-12 AlJ9

CN

An 18 bIt offset to the Base Address Register If "F~.AR = 0 (BAR Hode onlya

An 18 bit offset relative to the base of the current
procedure segment if HF~.AR = 0 (Ap~ending Hode only)

A 3 bit Address Register num~er (D) and a 15 bit U~
offset to C(ARn.) if HFl1.AR = 1 (All modes)

Character Number. This field gives the character position
within the word at ADDRESS of the first operand character.
Its interpretation depends on the Data Tvpe (see TA bel OM)
of the operand. Table 2-2 beloM shows the interpretation
of· the field. A digit in the table indicates the
corresponding character position (See Section III. Data
Representat ion. for data formats) and an ")t" indicates an
invalid code for the Data Type. I~va'id codes cause
Illegal Procedure Faults.

Table 2-2 Alphanumeric Character Number (CN) Codes

fA

N

REVIEW DRAfT
SUBJECT TO CHANGE
October. 1975

.D.iltA lm.
kl.kW.. !t::Ju..1 6:Jtil 3._Rll

ODD 0 0 0
001 1 1 x
010 2 2 1
011 3 3 x
100 It It 2
101 5 S x
110 6 x 3
l1i 7 x x

Type Alphanumeric. This is the Data Type code for the
operand. The interpretation of the field is shown 1n
lable 2-3 below. The code shown as Invalid causes an
Illegal Procedure Fault.

Table 2-3 Alphanumeric Data Tvpe (TA) Codes

00
D1
10
11

9-b1t
6-blt
4-bit

Inval1d

bperand lengt"'. If HFi1.RL = 0. this field contains the
string length of the operand. If HF~.RL = 1. thiS field
contains the code for a register holding the operand
string length. See Table 2-1 and EIS Modification Fields
(HF) above fora discussion of register codes.

2-13 AL39

For any operand of an EIS Multi-word Instruction that requires Numeric
Data, the Operand Descriptor is interpreted as ShOMn in FIgure 2-7 bel OM.

o
Q

ADDRESS

CN

a TN

s

1 1 2 2 222 2 3 3
---L8 a 1 Z J !t _ 9 a 5

I J I I I I
ADDRESS I CN I aJ S J SF a N I

---1. I I I I I
18 3 1 2 £» 6

FIgure 2-7 Numeric Operand Descriptor Format

hu
The given address of the operand.
(for the ~th operand) I

This address may be

An 18 bIt main store address if HF~.AR= 0 (Absolute
Hode onl y)

An 18 bit· offset to the Base Address RegIster it "F~.AR = 0 (BAR Hode only)

An 18 bit offset relatlve to the base of the current
procedure segment if HFls.AR = 0 (Appending Hode onl~)

A 3 bit Address Register number (~) and a 15 bit ~
offset to C(ARQ.) if "F~.AR = 1 (AI' modes)

Character Number. This field gives the character position
within the word at ADDRESS of the first operand character.
Its interpretatIon depends on the Data Type (see TA beloM)
of the operand. Table 2-2 above ShOMS the interpretation
oft he fl e I d.

Type NumerIc. This Is the Data type COd,:e for the operand.
The codes are •••

o
1

9-01t
It-bit

Sign and decimal type of data. The interpretation of the
field is shown i~ Table 2-1t bel OM.

•

Tab.e 2-4 Sign and Decimal Type (S) Codes

octal ~g~ ~n ~ Qec 1mat Ixaa

OD Floating point, leading Sign
01 Scaled fixed point, leading SIgn
10 Scaled fixed pOint, trailing Sign
11 Seated fixed point, unsig~ed

REVIEW DR~FT
SUBJECT TO CHANGE
Oct ober, 1915 2-14 Al39

SF

N

Scaling factor. This field contains t~e two·s complement
value of the base 10 ~cal Ing factor; that is, the value of
m for numbers represented a D x 10··m. The decimal ~oint
is assumed to the right of the least Significant digit of
O •. Negative values move the decimal point to the .Ieft;
positive values, to the right. The range of m is
(-32,31).

Operand length. If HFts..RL= 0, this fietd contains the
operand length In digits. If HF~.RL = 1, it contains the
REG code for the register holding the operand length and
C(REG) is treated as a 0 modulo &4 num~er.

For any operand of an EIS Hulti-word Instruction that -eQuires BIt-string
Data, the Operand Descriptor Is interpreted as shown In FIgure 2-8 below.

o
o

1 1
--L8

a

1 2
3 g

I

2 2 3
3 !t 5

a I
ADDRESS I C J B ; I N I

~ I I- I
18 2 4 12

Figure 2-8 Bit String Operand Descrptor Format

ADDRESS

c

B

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1915

The given address of the operand.
(for the ~th operand).

This address may be

An 18 bit main store address if HFh.AR= 0 (Absolute
Hode onl v)

An 18 bIt offset to the Base Address Register if HF~.AR
= 0 (BAR Hode onlv)

An 18 bit offset relative to the base of the current
procedure segment if HFh.AR = 0 (Ap~endln9 Hode only)

A 3 bit Address Register number (Q) and a 15 bit ~
offset to C(ARa.) If HFh.AR = 1 (All modes)

The character number of the 9-bit character within ADDRESS
containing the first bit of the operan~.

The bit number within the 9-bit character, C, of the first
bit of the operand.

2-15 ALJ9

fIXED POINT DATA HOVEHENT LOAO

EAA

FORHATa

SUMHARY'

MODIFICATIONSI

INDICATORSI

Zero

Ne~at ive

NOTESI
•

EAQ

FORHATa

SUHHARYI

MODIFICATIONSI

INDICATORSI

Zero

Negative

NOTES'

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1975

Effective Address to A 635 r 0)

8asic Instruction Format (See Figure 2-1).

Y -> .CrA)O,l7

00 ••• 0 -> CCA)18.35

All except OU. OL

(Indicato~s not listed are not affected)

If C(A) = O. then ON; otherwise OFf

If CIA) bit 0 = 1. then ON; otherwise JFF

The EAA instruction. and the instructions EAQ and EAXn,
facIlitate interregister data movements; the data source
is specified by the address modification, and the data
destination by the operation code of tne instruction.

Attempted repetition with RPL causes an Illegal Procedure
Fault.

Effective Address to Q 636 CO)

Basic Instruction Format (See Figure 2-1).

Y -> CIQ)O.17

All except DU. Ol

(Indicators not listed are not affectej)

If C(Q) = ~, then ON; otherwise OFf

It C(Q)O = 1, then ON; otherwise OFF

Attempted repetition with RPL causes a, II legal Procedure
Fault.

2-16 AL39

EAXn

FORHATI

SUHMARY'

MODIFICATIONSI

INDICATORSI

Zero

Negative

NOTES'

LCA

FORHATa

SUMMARY'

MODIFICATIONSI

INDICATORSI

Zero

Negative

Overf I o lit

NOTESI

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

FIKEO POINT DATA MOVEHENT LOAD

Effective Address to Xn &2n (0)

Basic Instruction Format (See Figure 2-1).

For n = 0, 1, ••• , or 7 as determined ~, operation code

Y -> C(Xn)

AI. except OU, OL

(IncHcators not listed are not affected)

If C(Xn) = 0, then ON; otherlltise OFF

If C(Xn)O = 1, then ON; otherlltise OFF

Attempted repetition lItith RPL causes an II legal Procedure
Fault.

Load Co_pi ellent A 335 (0)

Basic Instruction Format (See Figure 2-1).

If C(Y) ~ 0, then -C(Y) -> C(A)

otherwise, 00 ••• 0 -> C(A)

All

(Indicators not listed are not affected)

If CIA) = 0, then ON; otherwise OFF

If CCA)O = 1, then ON; otherwise OFF

If range of A is exceeded, then ON; otherwise OFF

The LCA instruction changes the n~mber to its negative (If
_ 0) while moving It from Y to A. The operation is

executed by for.lng the 'wo·s coaplement of the string of
3& bi ts.

2-17 Al39

FIXED POINT DATA MOVEMENT LOAD

LCAQ

FORMAT'

SUH"ARYI

MODIFICATIONSI

INDICATORS'

Zero

Negative

Overflow

NOTES.

LCQ

FOR"AT.

SU""ARYI

"OOIFICATIONSI

INDICATORS'

Zero

Negative

Overflow

NOTES.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

337 (0)

Basic Instruction Format (See Figure 2-1).

If CCY-pair) ~ O. then -CCY-pair) -> CCAQ)

otherwise, 00 ••• 0 -> C(AQ)

All except DU, DL, CI, SC, SCR

(Indicators not listed are not affected)

If CIAQ) = 0, then ON; otherwise OFF

If CCAQ)a = 1, then ON; otherwise OFF

If range of AQ is exceeded, then ON; other,dse OFF

The LCAQ "instruction changes the numbe- to its negative
(if ~ 0) while moving it from Y-pair t3 AQ. The operation
is executed by forming the two·s compleaent of the string 0' 72 bits.

Load Complement Q 336 COJ

Basic Instruction Format (See Figure 2-1).

If CIY) _ D, then -elY). -> ceQ)

otherwise, 00 ••• 0 -> CeQ)

All

CIndicators not listed are not affected)

If CIQ) = 0, then ON; otherwise OFF

If CCQ)O = 1, then ON; otherwise OFF

If range of Q Is exceeded, then O~; otherwise OFF

The lCQ instruction changes the number to Its negative Clf
~ 0) while moving it from Y to Q. The operation IS
executed by forming the tNO·S complement of the string of
36 bi ts.

2-18 AL39

LCXn

FORHAT.

SUMMARY.

MODIFICATIONS'

I ~O.lCATORS2

Zero

Negative

Overf I ow

NOTES'

LOA

FORHATI

SUMMARY'

"ODIFICATIONS'

INDICATORSI

Zero

Negative

REVH.W DRAFT
SUBJECT TO CHANGE
Oct 0 b er. 1 9 7 5

FIXED POINT DATA "OVEMENT LOAO

Load Complement Xn 32n (D)

Basic Instruction Format (See Figure 2-1).

For n = 0, 1 •••• , or 1 as determined by operation code

If C(YlO,11 _ 0, then -C(YIO.17 -> :IXn)

otherwise, 00 ••• 0 -> CCXn)

Alt except CI, se, SCR

(Indicators not listed are not affected)

If eeXn) ~ 0, then ON; otherwise DFf

If C(XnlO = 1, then ON; otherwise OfF

If range ~f Xn is exceeded, then ON; otherwise OfF

The LeXn instructlon changes the number to its negative
elf ~ 0) while moving It from YO,11 to Xn. The operation
is executed by forming the two·s compleMent of the string
of 18 bi ts.

Attempted repetition Mith RPL and with the same register
given as target and modifier causes an Illegal Pr.ocedure
fault.

Load A 235 CDI

Basic Instruc ti~ Format (See figure 2-1).

~~~dkH 
elY) -~ CIA) 

All 

elndicators not listed are not affecte~) 

If eeA) = 0, then ON; otherMlse OFF 

If CIAIO = 1, then ON; otherwise OFF 

2-19 AL39 



FIXED POINT DATA HOVEHENT LOAD 

LDAC 

FORMAT. 

SUMMARYI 

MODIFICA TIONS' 

INDICATORS' 

Zero 

Negative 

NOTES' 

LDAQ 

-FORHATa 

SUMMARYI 

MODIFICATIONS' 

I NDICATORS I 

Zero 

Negative 

lDI 

FORHAT' 

SUMMARY' 

MODIFICATIONS: 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

Load A and Clear 031t (Ot 

Basic Instruction Format (See Figure 2-1t. 

ctY) -> CIA) 

00 ••• 0 ->C(Y) 

All except DU, Dl, CI, SC, SCR 

(Indicators not listed are not affected) 

If CIA) = 0, then ON; otherwise OFF 

If C(A)O = 1, then ON; otherwise OFF 

The lOAC instruction causes a special .a1n store reference 
that performs the load and clear in one cvcle. Thus, this 
instruction can be used In locking data. 

load AQ 237 (0) 

Basic Instruction ForMat (See Figure 2-1). 

C(Y-pair) -> C(AQ) 

All except DU, Dl, CI, se, SCR 

(Indicators not Ii s ted are not affecte~) 

If C (AQ) = 0, then ON; other.is. OfF 

If C(AQ)O -= 1, then ON; otherwise OFf 

load Indicator Register 63 .. (0) 

BaSic .Instructjon Format (See Figure 2-1). 

e(Y.18,31 -> C(IRa 

AI. except CI, SC, SCR 

2-20 Al39 



INDICATORS' 

Parity 
Hask 

Not BAR 
Hode 

FIXED POtNT DATA MOVEMENT LOAO 

(IndIcators not listed are not affected) 

If C(Y)27 = 1, and the Process~r is in Absolute or 
PrivIleged Hode, then ON; otherwise OF~. This indicator 
is not affected in the Normal or BAR .,des. 

Carinot b~ changed by the LOt instruction 

Hultiword If C(Y)30 = 1. and the Processor is 
Instruction Privileged mode. then ON; otherwise OFF. 

In Absolute or 
This lndicator 

fault is not affected in Normal or BAR modes. 

Absolute Cannot be changed by the LDI instruct10n 
Hode. 

Atl Other If corresponding bit 1n C(Y) is 1. then ON; otherwise. OFF 
Indicators 

NOTES' The relation between CCY)18,31 and the indicators is given 
in Tab'e 2-5 below. 

The Tally Runout indicator reflects :(Y)25 regardless of 
what add~ess modification Is performed' on the LOI 
instruction fo~ tally operations. 

Attempted repetition with RPT. RPO, or RPL causes an 
Illegal Procedure Fault. 

Table 2-5. Relation Between Data 81ts and Indicators 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

Indicator 

Zero 
NegatIve 
Carr V 
Overt I ow 
Exponent Overflo" 
Exponent Undeflo" 
Over f low Hask 
Ta II If Runout 
Par 1 ty Error 
Parity "ask 
Not BAR Hode 
Truncation 
H~ltiword Instruction Fault (MIF) 
Absolute Hode 



FIXED POINT DATA HOVE~ENT LOAD 

LDQ 

FORHATI 

SUMMARY' 

MODIFICATIONSI 

INDICATORS. 

Zero 

Negative 

lOQC 

FORHATa 

SUHHARya 

HODIFICA TIONS' 

INDICATORS. 

Zero 

Negative 

NOTES. 

lOXn 

FORtUT' 

SUHHARYI 

"OOIFICATIONS-

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

Load Q 

Basic Instruction Format (See Figure 2-1). 

CIY) -> CIQ) 

All 

(Indicators not listed are not affected' 

If CeQ) = 0, then ON; othewise OFF 

If CeQJO = 1, then ON; otherwise OFf 

Load Q ~nd Clear 

Basic Instruction For.at (See Figure 2-1). 

cey) -> CeQ) 

00 ••• 0 -> cry) 

AI. except DU.Ol. CIt Set SCR 

(Indicators not listed are not affected) 

If cry) : 0. then ON; otherwise OFF 

If ceYJO = 1, then ON. otherwise OFF 

236 IOJ 

034 rOJ 

The LOQC instruction causes ~ special main store reference 
that performs the load and clear 1n one cycle. Thus, this 
instruction can be used in locking data. 

Load Index Register Xn 32n rOJ 

Basic Instruction Format '~ee FIgure 2-1J. 

For n = 0. i ••••• or 7 as determined DY operation code 

C(Y)O,17 -> C(Xn) 

All except CI, SC, SCR 

2-22 AL3CJ 



INDICATORSI 

Zero 

Negative 

NOTEsa 

LREG 

FOR""TI 

SUMMARya 

MODIFICATIONS' 

INDICATORSI 

NOTES' 

LXLn 

FORHATa 

SUMMARYI 

MODIFICATIONS. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

FIXED POINT DATA MOVEMENT LOAD 

(Indicators not listed are not affecte~) 

If CIXn) = 0, then ON; other~ise OFF 

If C(Xn)O = 1, then ON; other~ise OFF 

Attempted repetition ~ith RPL and Mith the saMe register 
given as target and modifier causes an Illegal Procedure 
Fault. 

Load Registers 

Basic Instruction Format ISee Figure 2-1). 

Cly)~,17 -> C(XO) 

C(Y+1)O,17 -> C(XZ) 

CIY+Z)O,t7 -> C(X~) 

C(Y+3)O,17 -> C(X6) 

C(Y+,.) -> CeA) 

C(Y)18,35 -> C(X1) 

C(Y+1)18.35 -> C(X3) 

C(Y+3)18,35 -. C(X7) 

C(Y+5) -> ~(Q) 

073 (OJ 

~h~re Y must be 0 modu10 8; other~ise, the next smaller 
such address is used. 

All except OU, DL, CI, se, SCR 

None af fected 

Attempted repetition ~ith RPT. RPD, or RPL causes an 
I.legal Procedure Fault. 

Load Xn from LOMer 72n (0) 

Basic Instruction Format (See Figure 2-1). 

For n = at 1, ••• , or 7 as determined ~y operation code 

C(Y)18,35 -> C(Xn) 

AI. except CI, se, SCR 

2-23 AL39 



FIXED POINT DATA MOVEMENT LOAD 

INllICATORSI 

Zero 

Negative 

NOTESI 

REVIEW DRAfT 
SUBJECT TO CHANGE 
October, 1975 

(Indicators not listed are not affected) 

~ 

If C(Xn) = 0, then ON; otherwise OFF 

If C(Xn)O = 1, then ON; otherwise OfF 

Attempted repetition with RPl and with the 58me register 
given a5 target and modifier causes an Illegal Procedure 
fault. 

2-2" AL39 



SOAR 

FORMAT. 

SUMMARY. 

MODIFICATIONS' 

INDICATOR'S' 

NOTES' 

SREG 

FORMATa 

.SU"HAR~I 

"'ODIFICATIONS' 

I NDICA TORS: 

NOTES. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October. 1975 

FIXED POINT DATA MOVEMENT STORE 

store Base Address Register 350 (01 

Basic Instruction Format (See Figure 2-11. 

C(BARJ -> eCYJO.l1 

All except DU. Dl. CI. SC. SCR 

None affected 

Attempted repetition .,lth RPT. RPD. or RPl causes an 
Illegal Procedure Fault. 

Store Registers 753 (01 

Basic Instruction format CSee figure 2-1). 

CCXD) -> CeVlD.17 CeXl) -> CeY)18.3S 

C(X21 -> CIY+l)O.17· CeX3) -> CeY+l)la.35 

CIXIt) -> C IY+2) 0.17 CeXS) -> CeY+2)la.35 

CIK6) -> CeY+3)0,17 e1K7) -> CeY+3)18.35 

CIA) -> CIY+It) CeQ) -> CIY+S) 

CIE) -> C(Y+6)O.7 00 ••• 0 -> ::(Y+6)8,35 

CITR) -> CIY+7)O.26 00 ••• 0 -> ::eY+7)27,32 

CIRAlR) -> CeY+7)33.35 

.,here Y must be a 0 modulo 8 address; other.,lse the next 
lower such address Is used. 

All eKeept OU. Ol. CI. SC. SCR 

None affected 

Attempted repetItion with .RPT, RPD. or RPL causes an 
Illegal Procedure Fault. 

2-25 Al39 



FIXED POINT DATA MOVEMENT STORE 

STA 

FORHATa 

SUMMARYI 

MODIFICATIONSI 

INDICATORSa· 

NOTEsa 

STAC 

FORMATa 

SUMMARYI 

HODIFICATIONS' 

INDICATORS: 

Zero 

NOTESI 

STACQ 

FORMATa 

SUMMARYI 

MODIFICATIONS: 

INDICATORS: 

Zero 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1915 

Store A 755 (OJ 

Basic Instruction Format (See Figure 2-1). 

C(A) -> cry) 

AI. except DU, DL 

None af f ec ted 

Attempted repetition "ith RPL causes an II legal Prodedure 
Fault. 

Store A CondItional C(Y,) = 0 354 (0) 

Basic Instruction Format (See Figure 2-11. 

If Cry) = 0, then CeA) -> Cry) 

A.I except OU, Dl, CI, se. SCR 

(Indicators not lIsted are not affected) 

If inItial CIY) = 0, then ON; otherwise OFF 

If the inItial C(Y) is nonzero, then Cry) Is not changed 
by the STAC instruction. 

Attempted repetition "lth RPl causes an Illegal Procedure 
Fault. 

Store A Conditional Cry) = CeQ) 654 «0) 

Basic Instruction Format (See Figure 2-1). 

If C(Y) = C(Q), then C(A) -> cey) 

All except DU, Dl, CI, se, SCR 

(Indicators not listed are not affected) 

If initial C(Y) = ClQ), then ON; other~ise OFF 

2-2& Al3CJ 



NOTEsa 

STAQ 

FORHAT. 

SUHHARYI 

HOOIFICATIONS' 

INDICATORS. 

NOTEsa 

STBA 

FORHATa 

SUHHARY. 

"ODIFICATIONS' 

INDICATORS' 

NOTES' 

________ REVIEW DRAfT 
SUBJECT TO CHANGE 
October. 1975 

FIXED POINT DATA HOVEHENT STORE 

If the in1tial C(Y) 1s ~ C(Q), then C(Y) Is not changed bV 
the STACQ instruction. 

Attempted repetl~lon with RPL causes an II'egal Procedure 
Fault. 

Store AQ 757 (0)> 

Basic Instruction Format (See Figure 2-1). 

CCAQ) -> C(Y-pair) 

All except OU. OL. CIt SC, SCR 

None af 'ected 

Attempted repetItion with RPL causes a'\ Illegal Procedure 
Fault. 

Store Character of A (Nine Bit) 551 (0) 

BaSic Instruction Format (See Figure 2-1). 

Characters of CIA) -> Corresponding Characters of CIVI, 
the character pOSitions affected being specified in the 
tag tield. 

Mone 

N.one at fected 

Binary ones in the tag field of this instruction' specif, 
the character posit ions of A and V that are affected~ The 
control relations are shown in Table 2-6. 

Attempted repetition with RPT. RPO. or RPL causes an 
Illegal Procedure Fault. 

• 

2-27 AL39 



FIXED POINT DATA HOVEHENT STORE 

Table 2-6. Control Relations for Store Character Instructions eNine 81t) 

Bit POSitIon Bit of structure 
liilhiD-I..ag Fie I d Intlt:.udlJul QLA-a~ 

STBQ 

FORMATa 

SUMMARya 

MODIFICATIONS. 

INDICATORSI 

NOTES. 

STC1 

FORMATI 

SUMMARya 

MODIFICATIONSI 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

0 30 Char 0 
(bl ts 0-81 

1 31 Char 1 
(bi ts ~-17) 

2 32 Char 2 
lbits 18-26) 

3 33 Char 3 
(bi ts 27-35) 

Store Character of Q (Nine BIt) 552 COt 

BaSic In~tructlon For_at eSee Figure 2-1). 

Characters of C(Q) -> Corresponding Cnaracters of e(y), 
the character positions affected being specified In the 
tag field. 

None 

None affected 

Binary ones in the tag field of this instruction sPecify 
the character posItions of Q and Y that are affe~ted. The 
control relations are shown In Table 2-'6 above. 

Attempted repetition with RPT, RPD, or RPl causes an 
Illega' Procedure Fault. 

Store Instruction Counter Plus 1 55 .. (at 

BasIc Instruction Format (See Figure 2-1). 

C(PPR.IC) + 1 -> C(Y)O,17 

CCIR) -> CIY)lB,31 

00 ••• 0 -> C(Y)32,35 

All except OU, DL, CIt SC, SCR 

2-28 Al39 



INDICATORS. 

NOTES' 

STC2 

fORHAT' 

MODIFICATIONSI 

INDICATORSI 

• NOTES' 

STCA 

FOR"ATI 

SU"HARVI 

HOOIF~CATIONS. 

INDICATORS' 

NOTES' 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October. 1975 

FtXED POINT OATA MOVE"ENTSTORE 

None af f ec ted 

The contents of the Instruction Counte~ and the Indicator 
Register after address preparation are stored 1ne(Y)O,17 
and C(Y)18,31, respectivelv. C(Y)2S reflects the state of 
the Tatlv Ronout indicator prior to lIodi ficat ion.; The 
relationship betMeen the CCYJ18,31 and the indicators are 
given in Table 2-5. 

Attempted repetition Mlth RPT, RPD, or RPl causes an 
Illegal Procedure Fault. 

Store Instruction Counter Plus 2 750 CD) 

Basic Instruction Format (See Figure 2-1). 

C(PPR.IC) + 2 -> CCYJO,17" 

All except OU, Dl, CI, se, SCR 

None af fected 

Attempted repetition Klth RPT, RPD. or RPL causes aft 
Illegal Procedure Fault. 

Store Character of A (Six BIt) 751 (OJ 

Basic Instruction Format (S •• Figure 2-1). 

Characters of CeA) -> Corresponding Cnaracters of CIYI, 
the character positions affected being specified in the 
tag fie I d. 

'None 

None af fected 

Binary ones In the tag field of this Instruction spec I fy 

character posi tions of A and y that are affected. The 
contrpl relations are shoMn in Table 2-7. 

Attempted repetition Kith RPT. RPD. or RPL causes an 
Illegal Procedure Fault. 

2-29 AL39 



FIXED POINT DATA MOVEMENT STORE 

Table 2-7. Control Relations for Store Character Instructions (She Bit) 

Bit Position Bit of Structure 
Klthin Tag fIeld los trye t ion ~LLaQLl 

STCQ 

~FORHATI 

SUMHARY' 

MODIFICATIONS' 

INDICATORSt 

NOTESI 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

0 30 Char 0 
(bl ts 0-5. 

1 31 Char 1 
lbi ts &-11) 

2 32 Char. 2 
(blts 12-17) 

3 33 Char 3 
(bits 18-23) 

ft 31t Char It 
(bi ts 21t-2 en 

5 35 Char 5 
(bi ts 30-35) 

Store Character of Q (SlK Bit) 752 (DJ 

Basic Instruction format ISee figure 2-1). 

Characters of C(Q) -> Correspondlng Cnaracters of CrY), 
the character positions affected being specified by the 
tag f Ie I d. 

None 

None affected 

Binary ones in the tag field of this instruction specify 
the character positions of Q and Y that are affected. The 
control relations are sho"n in Ta)le 2-7 above. 

Attempted repetition with RPT, RPD. or RPL causes an 
Illegal Procedure fault. 

2-30 Al39 



SlCD 

FORHAl' 

SUMMARY. 

MODIFICATIONS' 

INDICATORSI 

NOfESI 

srI 

FORHAT. 

SU""ARY. 

MODIFICATIONS' 

INDICATORS' 

NOTES' 

REVIEW DRAfT 
SUBJECT TO CHANGE 
October, 1975 

FIXED POINT DATA MOVEMENT STORE 

Store Control Double 

8asic Instruction Format (See Figure 2-1). 

00 ••• 0 -. eCY-pair'O,Z 

CCPPR.PSRl -. CCY-pair)3,1? 

CCPPR.PRR) -> C(Y-pair)18,20 

00 ••• 0 -> CCY-palr)21,Z9 

~3 Coctal) -> CCY-palr30,35 

00 ••• 0 -> C(y-pair)5~,71 

All except OU, Ot, CI, SC, SCR 

None af fected 

The" hardware assumes Y17 = 0; no check is made. 

357 (0) 

Attempted repetition with RPT, RPD, or RPL causes an 
Illegal Procedure Fault. 

Store Indicator Register 75~ CO) 

Basic Instruction Format (See Figure 2-1). 

C(IR) -> C(Y'18,31 

do ••• o -> CCY)3Z,35 

All except OU, Dl, CI, se, SCR 

None af fee ted 

The contents of the Indicator Register after address 
preparation are stored In CCY)18,31. C(Y)2S reflects the 

state of the Tallv Runout indIcator prior to 
preparation. The relation between eCY)18,31 
Indicators is given in Table Z-5. 

• 

address 
and the 

Attempted repetition with RPT, RPD, or RPl causes an 
Illegal Procedure Fault. 

2-31 



FIXED POINT DATA MOVEMENT STORE 

STQ 

FORMATI 

SUMHARYI 

MODIFICATIONS. 

INDICATORsa 

NOTESI 

STT 

FORHATa 

SUMMARY' 

MODIFICATIONSI 

INDICATORSI 

NOTES' 

STXn 

FORHATI 

SUMMARY' 

HOOIFICATIONSJ 

INDICATORS I 

NOTES; 

REVIEW DRAFT 
SUBJECT TO CHANGE 
Octobery 1975 

Store Q 756 (OJ 

Basic Inst~uctlon Format (See Figure 2-1). 

C(Q) -> C(Y) 

All except OU, Ol 

None af fected 

Attempted repetItion with RPl causes a, II legal Procedure 
Fau It. 

Store Time~ Register 454 (0) 

Basic Instruction Format (See Figure 2-1). 

CITR) -> C(Y)O,26 

00 ••• 0 -> C(Y)27,35 

All except OU, Ol, CI, SC y SCR 

None affected 

Attempted repetition with RPT, RPO, or RPl causes an 
Illegal Procedure Fault. 

Store Xn in Upper 74n (0) 

BaSic Inst~uctlon Format (See Figure 2-1). 

For n = 0, 1 •••• , or 7 as determined ~v operation code 

CeXn) -> C(Y)0,17 

All except OU, Ol, CI, SC, SCR 

None af fected 

Attempted repetItion with RPl causes a, II legal Procedure 
Fau It. 

2-32 AL39 



STZ 

FORMAT' 

SUMMARY. 

HOOIFICATtONSI 

INDICATORSI 

NOTESI 

SXLn 

FORHAT' 

SUMMARYI 

MODIFICATIONSI 

INDICATORS' 

NOTES. 

REV lEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

FIXED POINT DATA MOVEHENT STORE 

Store Zero 450 (0) 

Basic Instruction Format (See Figure 2-1). 

00 ••• 0 -> ceY) 

AI) except OU, OL 

None affected 

Attempted repetition with RPL causes a~ IIIe9al Procedure 
Fault. 

Store Xn in Lower 44n CO) 

BasIc Instruction Format (See Figure 2-1). 

For n = 0, 1, ••• , or 7 as determined DV operation code 

e(Xn) -> C(Y)18,35 

All except DU, DL, CI, se, SCR 

None affected 

Attempted repetition with RPL causes a~ Illegal Procedure 
Fault. 

2-33 Al39 



FIXED POINT DATA MOVEMENT SHIFT 

AlR 

FORMATa 

SUMHARY. 

HODIFICATIONSz 

INDICATORSI 

Zero 

Negative 

NOTES. 

AlS 

FORHATa 

SUMMARY' 

HODIFICATIONS' 

INDICA TORS: 

Zero 

Negative 

Carry 

NOTESI 

REVIEW DR'FT 
SUBJECT TO CHANGE 
October, 1975 

A left Rotate 175 (0' 

Basic Instruction Format (See Figure 2-1'. 

Shift CU) Jeft the number of positions specified Yi1,17; 
enter each bit leaving AO into A35. 

All except DU, Ol, CIt SC, SCR 

(Indicators not listed are not affected) 

If C(A) = Ot then ON; otherwise OFF 

If C(A)O : 1, then ON; otherwise OFF 

Attempted repetition with RPL causes an Illegal Procedure 
Fault. 

A Lelt ShIft 735 CO) 

Basic Instruction Format (See Figure 2-1).' 

Shift C(A) left tne number of pOSitions specified by 
Y11,17; fil I vacated pOSitions with zeros. 

All eKcept OU, Ol, CI, SC, SCR 

(Indicators not listed are not affecte~1 

If CIA) = 0, then ON; otherwise OFF 

If C(A)O = 1, then ON; otherwise OrF 

If C(A)O changes during the shIft, the~ ON; otherwise OFF 

Attempted repetltion wIth RPL causes an Illegal Proc~dure 

Fault. 

Al39 



ARL 

FORHATa 

SUMHARya 

MODIFICATIONSI 

INDICATORSI 

Zero 

Negative 

NOTESa 

ARS 

FORHATa 

SUHMARY. 

MODIFICATIONSa 

INDICATORSI 

Zero 

Negative 

NOTESI 

LLR 

FORHATa 

SU"MARya 

REVIEW DRAfT 
SUBJECT TO CHANGE 
October, 1975 

FIXED POINT DATA MOVEMENT SHIFT 

A Right Logic 771 (OJ 

Bas~c Instruction Format (See Figure 2-1). 

Shift CeA) right the number of positions specified by Y 
11,17; fill vacated pos1tions with zeros. 

All except DU, OL, CI, SC, SCR 

(Indicators not listed are not affecte~) 

If CIA) = 0, then ON; otherwise OFf 

If CeA)O = 1, then ON; otherwise Off 

Attempted repetition with RPL causes an Illegal Procedure 
Fault. 

A RIght Shift 731 rO) 

Basic Instruct~on format (See Figure 2-1). 

Shift CIA) right the number of positions specified bV 
Y11,17; f111 vacated positions with CeA)O. 

All except DU, OL, CI. SC, SCR 

(Indicators not listed are not affected) 

If CeA) = 0, then ON; otherwise OFF 

If C(A)O = 1, then ON; otherwise OFF 

Attempted repetition with RPL causes an Illega' Procedure 
Fault. 

Long Left Rotate 777 (0) 

Basic Instruction Format (See Figure 2-U. 

Shift CIAQ) left by the number of pOSitions specifIed bV 
Y1t,17; enter each bit leaving AQO Into AQ71. 

2-35 Al39 



FIXED POINT DATA MOVEMENT SHIFT 

MODIFICATIONSI 

INDICA TORSI 

Zero 

Negative 

NOTES. 

LlS 

FORHATI 

SUMHARYI 

MODIFICATIONS: 

INDICA TORSI 

Zero 

Negative 

Carry 

NOTESI 

LRl 

FORHATa 

SUMHARY: 

MODIFICATIONS I 

REV lEW DRAFT 
SUBJECT TO CHANGE 
October. 1975 

All except OU, Dl, CI, SC, SCR 

(Indicators not listed are not affecte~) 

If C(AQ) = 0. then ON; otherwise OFF 

If C(AQJO = 1, then ON; otherwise OFF 

Attempted repetition with RPl causes a~ II legal Procedure 
Fault. 

long Left Shift 737 (0) 

Basic Instruction Format (See Figure 2-1). 

Shift C(AQ) 'eft the number 0' positions specifIed by 
Yll,17; fil' vacated positions with zeros. 

All except OUt Ol, CIt SC, SCR 

(Indicators not listed are not affecte~) 

If C(AQ). = 0. then ON; otherwise OFF 

If C(AQ)O = 1, then ON; otherwise OFF 

If C(AQ)O changes during the s~ift, then ON; otherwise OFF 

Attempted repetition with RPL causes a~ II legal Procedure 
Fault. 

Long Right Loglc 773 (0) 

Basic InstructIon Format (See FIgure 2-1). 

Shift CCAQ) right the number of positions specified by 
Yll,17; fitl vacated positions with zeros. 

All except DU, Dl, CI, SC, SCR 

2-36 Al39 



INDICA TORSI 

Zero 

Negative 

NOTESI 

lRS 

FORHATa 

SUMMARY. 

"OOIFICATIONSI 

INDICATORS' 

Zero 

Negative 

NOTES. 

QLR 

FORMATa 

SUM"ARYI 

MODIFICATIONSI 

INDICATORS' 

Zero 

Negative 

NOTESI 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

FIX[D POINT DATA MOVEMENT SHIFT 

(Indicators not listed are not aff.cte~) 

If .CCAQ) = 0, then ON; other~dse OFF 

If C(AQ)O = 1, then ON; otherwise OFF 

Attempted repetition wIth RPL causes a~ II legal Procedure 
Fault. 

Long RIght Shift 733 (D) 

Basic InstructIon Format (See Figure 2-1). 

Shift 'CCAQ) right the number of positions specified by 
Yl1,17; fIll vacated positions wIth C(AIO. 

All except DU, OL, CI, SC, SCR 

(Indicators not listed are not affected) 

If C(AQ) = 0, then ON; otherwise OFF 

If CCAQ)O = 1, then ON; otherwise OFF 

Attempted repetItIon with RPL causes a~ Illegal Procedure 
Fault. 

Q Left Rotate 776 (0) 

Basic Instruction Format (See Figure 2-1). 

Shift C(Q) the number of positions specified by' Yll,17; 
enter each bit leaving QO Into Q35. 

All except DU, OL, CI, SC, SCR 

(Indicators not listed are ~ot affecte~) 

If C(Q) = D, then ON; otherwise OFF 

If C(Q)O = 1, then ON; otherwise OFF 

Attempted repetition with RPL causes a~ II legal Procedure 
Fault. 

2-37 AL39 



FIXED POINT DATA MOVEMENT SHIFT 

QlS 

FORMATI 

SUHHARYI 

HOOIFICATIONSI 

INDICA TORS' 

Zer"O 

Negative 

Carry 

NOTESI 

QRL 

4t FORHATa 

SUHMARVI 

HODIfICATIONS. 

INDICATORSI 

Zero 

Negative 

NOTES' 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

Q Left Shift 736 «oa 

Basic Instruction Format (See Figure 2-1). 

Shift CeQ) left. the number of positions specified by 
Vll,17; fl' I vacated positions with ze~os. 

All except DU, Dl. CI, SC, SCR 

(Indicators not listed are not affected) 

If CeQ) = D, then ON; otherwise OFF 

If CCQ)D = 1, then ON; otherwise OFF 

If CCQ)O changes during the shift, the~ ON; otherwise OFF 

Attempted repetitIon with RPl causes an Illegal Prodecure 
Fault. 

Q Right Logie 772 CO) 

Basic Instruction Format ISee Figure 2-1). 

Shift CeQ) right the nUMber of positions specified by 
Yll,17; fIll vacated positions with ze-os. 

All except OU, Dl, CI, SC, SCR 

(Indicators not listed are not affected) 

If CeQ) = 0, then ON; otherwise OFf 

If C(Q)O = 1, then ON; otherwise OFF 

Attempted repetition with RPL causes an Illegal Procedure 
Fault. 

2-38 AL39 



QRS 

FORHATa 

SUMHARya 

MODIFICATIONSI 

INDICATORS' 

Negative 

NOTESI 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

FIXED POINT DATA MOVEMENT SHIFT 

Q Right Shi It 732 eO) 

Basic Instruction Format (See Figure 2-1). 

Shift CeQ) right the number of positions specified by 
Yi1,17; fIll vacated positions with celIO. 

All except OU, Ol, CI, SC, SCR 

(Indicators not listed are not affecte~) 

If C(Q) = 0, then ON; otherwise OFF 

If CCQ)O = 1, then ON; otherwise OFF 

Attempted repetition with RPl causes an Illegal Procedure 
Fault. 

2-3<) AL39 



FIXED POINT ADDITION 

ADA 

FORHATa 

SUHHARYa 

HOOIfICATIONSI 

INDICATORSa 

Zero 

Negatlve 

Ove ... f I ow 

Carry 

ADAQ 

• FORHATa 

SUHMARYa 

HODIFICATIONSI 

INDICATORSI 

Zero 

Negative 

Overflow 

Car ... y 

AOL 

FORHATa 

SUMHARYI 

REV lEW OR lifT 
SUBJECT TO CHANGE 
Octobe ..... 1975 

AOO to A 075 (0) 

Basic Instruction Format (See Figure 2-1). 

C(A) + C(Y) -> CeA) 

A I J 

(Indicators not listed are not affecte~) 

If CIA) = 0., then ON; othe ... wise OFF 

If C(A)O = 1 .. then ON; otherwise OfF 

If range of A is exceeded., then ON; otherwise OFF 

If a carry out of AO 1s generated., then ON; otherMise OFF 

Add to AQ 077 (0) 

Basic Instruction Format (See Figure 2-1). 

CIAQ) + elY-pair) -> C(AQ) 

All except OU, OL, CI, SC, SCR 

(IndIcators not listed are not affected) 

If CeAQ) = 0, then ON; otherwise OFF 

If C(AQ)O = 1, then ON; otherwise OFF 

If range of AQ is exceeded., then ON; otherMise OFF 

If a carry out of AQO is generated .. than ON; otherwIse OFf 

Add LOM to AQ 033 (0) 

Basic Instruction Format (See Figu ... e 2-1). 

C(AQ) + elY) sign extended -~ C(AQ) 

2-40 AL39 



MODIFICATIONS' 

INDICATORS. 

Zero 

..... egative 

Overflo .. 

Carry 

NOTES. 

ADlA 

FORMAT' 

MODIFICATIONS. 

INDICA TORSI 

Zero 

Negative 

Carry 

NOTESI 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

FIXED POINT ADDITION 

All except CI, SC, SCR 

(Indicators not listed are not affected) 

If C(AQ) = 0, then ON; other"ise O~F 

If C(AQ)O = 1, then ON; other .. ise OFF 

If range of AQ is exceeded, then ON; otherMise OFF 

If a carry out of AQO Is generated, then ON; other .. ise OFF 

A 72-bl t number is formed from C(Y) In the follo .. ing 
mannerl 

The 10Mer 36 bits (36,71) is identic~1 to CIYl. Each of 
the upper 36 bits (0,35) is identical to C(Y)D. 

This 72-~lt number Is added to the contents of the 
combined AQ-register. 

Add logIcal to A 035 (Q) 

Basic InstructIon For.at (See Figure 2-1). 

CIA) +C(Yl -> CIA) 

All 

(Indicators not Ilsted are not affecte~) 

If C(A) = 0, then ON; otherMise OFF 

If CIA)O ~ 1, then ON; otherMise DFF 

If a carry out of AD 1s generated. the~ ON; other .. ise OFF 

The ADlA instruction is identical to the ADA instruction 
.. lth the exception that the Overflow indicator is not 
affected by the AOlA instruction, nor does an Overflo .. 
Fault occur. Operands and results are treated as 
unsigned, positive binary integers. 

2-"1 Al39 



FIXED POINT ADDITION 

AOlAQ 

FORMAT I 

SUMMARYI 

MOOIFICATIONSS 

INOICATO~SI 

Zer.o 

Negative 

Carry 

NOTES' 

ADlS 

FORHAT. 

SUHHARYS 

MODIfICATIONSI 

INDICA TORSI 

Zero 

·Negative 

Carry 

NOTESI 

REV lEW OR 'FT 
SUBJECT TO CHANGE 
October, 1975 

Add logical to AQ 037 CO) 

Basic Instruction Format (See Figure Z-l). 

C(AQ) + C(Y-pair) -> C(AQ) 

All except OU, OL. ct, SC, SCR 

(Indicators not listed are not affected) 

If CCAQ) = 0, then ON; otherwise OFF 

If C(AQ)O = 1, then ON; otherwise OFF 

If a carry out 0' AQO Is genera"ted, then ON; otherwise OFF 

The AOLAQ instruction is identical to the ADAQ instruction 
with the exception that the Overflow indicator. is not 
affected by the AOlAQ instruction. nor does an OverfloM 
Fault occur. Operands and results are treated as 
unsigned, positive binary integers. 

Add Logica. to Q 036 (0) 

Basic Instruction Format (See Figure Z-l). 

C(Q) + C(Y) -> CeQ) 

A II 

(Indicators not listed are not affected) 

If C(Q) = 0, then ON; otherwise OFF 

If C(Q)O = 1, then ON; otherwise OFf 

If a carry out of QO is generated, the~ ON; otherwise OfF 

The AOLQ instruction 1s identical to tne ADQ instruction 

with the exceptIon that the Overflow indicator is not 
affected oy the AOLQ instruction, nor does an Overflo. 
Fault occur. Operands and results are treated as 
unsigned, positive binary integers. 

AL39 



ADLXn 

FORHATa 

SUMHARya 

MODIFlCATIONsa 

INDICATORSa 

Zero 

NegatIve 

Carrv 

NOTES' 

ADQ 

FORMATa 

SUMMARY a 

MODlFICATIONSI 

INDICATORS: 

Zero 

Negative 

Overflolll 

Carry 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

. FIXED POINT ADDITION 

Add logical to Xn 02n (0) 

BaSic Instruction Format (See Figure 2-1). 

For n = 0, 1 •••• , or 7 as determined !)v operation code 

C(Xn) + C(Y)O,17 -> C(Xn) 

All except CI, SC, SCR 

(Indicators not listed are not affecte~) 

If CeXn) = 0, then ON;.otherlillse OFF 

If CeXn)O = 1, then ON; otherlilise OFF 

If a carrv out of XnO Is generated, then ON; otherwise OFF 

The ADlXn instruction 1s identical to the ADXn instruction 
with the exception that the Overflow lndicator Is not 
affected by the AOlXn instruction. nor does an OverfloM 
Fault occur. Operands and results are treated as 
unsigned. positive binarv integers. 

Add to Q 01& CO) 

Basic Instruction ForMat (See Figure 2-1). 

ceQ) + CCY) -> ceQ) 

AI. 

eIndicators not listed are not affected) 

If C(Q) = 0. then ON; otherwise OFF 

If C(Q)O = 1, then ON; otherwise OFF 

If range of Q is exceeded. then ON; ~therMise OFF 

If a carry out of QO Is generated. then ON; otherlilise OFF 

Z-ltJ Al39 



fIXED POINT ADDITION 

AOXn 

FORMATa 

SUMMARYI 

MODIFICATIONSI 

INDICATORS' 

Zero 

Negative 

OVerflo", 

Carrv 

AOS 

.. FORHATI 

SUMMARY I 

MODIFICATIONS' 

INDICATORSI 

Zero 

Negative 

Overflow 

Carry 

NOTES. 

REVIEW DRAfT 
SUBJECT TO CHANGE 
October, 1975 

Add to Xn O&n (0) 

Basic Instruction Format (See Figure 2-1). 

For n = 0, 1, ••• , or 7 as determined bV operation code 

C(Xn) + C(Y)0,17 -> C(Xn) 

AI' except CI, SC, SCR 

(Indicators not listed are not affected) 

If CeXn) = 0, then ON; other",lse OFF 

If C(Xn)O = 1, then ON; otherwise Off 

If range of Xn Is exceeded, then ON; otherwise OFf 

If a carry out of XnO Is generated, then ON; otherwise OFF 

Add One to Storage 05,. CO) 

Basic Instruction for~at (See Figure 2-1' • 

cry) + 1 -> elY) 

All except OU, Dl, CI, SC, SCR 

(Indicators not listed are not affected) 

If C(Y) = 0, then ON; otherwise OFF 

If C(Y)O = 1, then ON; otherwise OfF 

If range of Y is exceeded, then ON; otherwise OFf 

If a carrv out of YO is generated, then ON; otherwise OfF 

Attempted repetition with RPl causes a~ II legal Procedure 
Fau It. 



ASA 

FORHAT. 

SUMMARYI 

MODIFICATIONS. 

INDICATORS. 

Zero 

Negative 

Overt low 

Carry 

NOTES. 

ASQ 

FORHATa 

SUMHARY' 

MODIFICATIONS. 

IHDICATORSI 

Zero 

NegatIve 

Overflow 

Carr~ 

NOTEsa 

REVIEW DR.FT 
SUBJECT TO CHANGE 
October, 1975 

FIXED POINT ADDITION 

Add Stored to A 055 CO) 

Basfc Instruction For~at (See Figure 2-1). 

CeA) + CIY) -:. ceY) 

All except OU, OL, CI, SC, SCR 

(IndIcators not listed are not affecte~) 

If elY) = 0, then ON; otherwise OFF 

If C(Y)O = 1, then ON; otherwIse OFF 

If range of Y Is exceeded, then ON; otherwise OFF 

If a carry out of YO is generated, then ON; otherwise OFF 

Attempted repetition with RPL causes an Illegal Procedure 
fault. 

Add Stored to Q 056 (0) 

BaSic InstructIon Format (See Figure 2-1). 

CIQ) + CU) -> CU) 

All except OU, Ol, CI, SC, SCR 

(Indicators not listed are not affected) 

If CIY) = 0, then ON; otherwIse OFf 

IF CIY)O = 1, then ON; otherwIse OFF 

If range of Y Is exceeded, then ON; otnerwise OFF 

If a carry out of YO is generated, then ON; otherwise OFF 

Attempted repetition with RPl causes a~ II legal Procedure 
Fault. 

2-'+5 Al39 



FIXED POINT ADDITION 

ASXn 

FORHATa 

SUHMARV' 

MODIFICATIONS: 

INDICATORS: 

Zero 

Negative 

Overflow 

Carry 

NOTES' 

AWCA 

FORHATI 

SUHHARY' 

HODIFICATIONS' 

I NDICA TORS: 

Zero 

Negative 

Overf low 

Carry 

NOTESI 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October. 1975 

Add Stored to Xn Ottn (D) 

Basic Instruction Format eSee Figure 2-1). 

For n = 0, 1 ••••• or 7 as determined DY operation code 

C(Xn) + CIV)0.17 -> C(Y)0,17 

AI. except OUt Dl. CIt SC, SCR 

(Indicators not 'isted are not affecte~) 

If C(Y)0,17 = 0, then ON; otherwIse OFF 

If CeYIO = 1. then ON; otherwise OFF 

If range of YO.17 is exceeded, then ON; otherwise OFF 

If a carry out of YO is generated, then ON; otherwise OFF 

Attempted repetition with RPl causes a~ II legal Procedure 
Fault. 

Add with Carry to A 071 (0) 

BaSic Instruction Format (See Figure 2-1). 

If Carry indicator OFF, then CIA) + C(Y) -> CIA) 

If Carry indicator ON, then CeA) + cey) + 1 -> CeA) 

All 

(Indicators not listed are not affecte~) 

If CeA) = 0, then ON; otherwise OFF 

If CeA)O = 1. then ON; otherwise OFF 

If range of A Is exceeded, then ON; ot~erwlse OFF 

If a carry out of AD is generated, then ON; otherwise OFF 

The AWCA instruction is identical to the ADA instruction 
with the exception that when the Carrv indicator is ON at 
the beginning of the instruction, 1 is added to the sum of 
C(A) and C(Y). 

2-4& Al39 



AWCQ 

FORHATa 

SUMMARY. 

HOOIFICATIONS' 

INOICATORSZ 

Zero 

Negative 

Overflo. 

Carry 

NOTES. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October. 1975 

FIXED POINT ADDITION 

Add wlth Carry to Q 072 CO) 

Basic Instruction Format (See Fig~re 2-1). 

If Carry indicator OFF. then CeQ) + cet) -> ceQ) 

If Carry indicator ON, then CeQ) + cty) + 1 -> ceQ) 

All 

(Indicators not lIsted are not affecte~) 

If C(Q) = D. then ON; otherwise OFF 

If CeQ)O = 1. then ON; otherwise OFF 

If range of Q is exceeded, then ON; otAerwise OFF 

I f a carry' out of QO Is generated, then ON; other"wise OFF 

The AWCQ instruction is identical to t~e AOQ instruction 
.ith the exception that when the Carr, indicator is ON at 
the beginning of the instruct lon, 1 is added to the s_ of 
C(Q) and CCY). . 

• 

2-47 Al39 



FIXED POINT SUBTRACTION 

SBA 

FORHAT. 

SUMMARY' 

MODIFICATIONS' 

INDICATORS: 

Zero 

Negat 1 ve 

Overflo .. 

Carry 

SBAQ 

FORHATI 

SUMMARYI 

MODIFICATIONSI 

INDICATORS: 

Zero 

NegatIve 

Overflow 

Carry 

SBlA 

FORHATa 

SUHHARya 

R[VIEW DRAFT 
SU8JECT TO CHANGE 
October, 1975 

Subtract from A 175 (0) 

Basic Instruction Format (See Figure 2-1a. 

C(A) - elY) -> C(A) 

All 

(Indicators not listed are not affected) 

If CIA) = 0, then ON; otherwise OFF 

If CCA)O = 1, then ON; otherwise OFF 

If range of A is exceeded, then ON; otherwise OFF 

If a carry out of AD is generated, then ON; otherwise OFF 

Subtract froll AQ 177 I D) 

BaSic Instruction Format (See Figure 2-1). 

c(AQ) - e(Y-palr) -> CCAQ) 

All except DU, DL, CI, SC, SCR 

(Indicators not listed are not affecte~) 

If C(AQ) = 0, then ON; otherwise OFF 

If CIAQ)O = 1, then ON; otherwise OFF 

If range of AQ is exceeded, then ON; otherwise OFF 

If a carry out of AQO is generated, then ON; otherwise OfF 

Subtract logical from A 135 (0) 

Basic Instruction Format (See Figure 2-1). 

CeA) - CIY) -> CIA) 

2-48 Al39 



MODIFICATIONS: 

INDICA TORSI 

zero 

Negative 

Carry 

NOTES. 

SBLAQ 

FORMATa 

SUMMARY a 

.. MODIFICATIONS: 

I NDICATORSI 

Zero 

Negative 

Carry 

NOTESI 

SBLa 

FORHATa 

SUH"ARYI 

MODIFICATIONSI 

R£VIEW DRAFT 
SUBJECT TO CHANGE 
October. 1975 

FIXED POINT SUBTRACTION 

All 

(Indicators not listed are not affected) 

If C(A) = 0, then ON; otherwise OFF 

If C(A)O = 1, then ON; otherwise OFF 

If a carry out of AO is generated, the~ ON; otherwise OFF 

The SBlA instruction is identical to the SBA instructlon 
~ith the exception that the Overflow indicator is not 
affected by the SBLA instruction, nor does an Overflow 
Fault occur. OperandS and results are treated as 
unsigned. positive binary integers. 

Subtract Logical from AQ 137 (0) 

Basic Instruction Format (See Figure 2-1). 

C(AQ) - C(Y-pair) -> C(AQ) 

All except DU, OL, CIt SC, SCR 

(Indicators not listed are not affected) 

If C(AQ) = O. then ON; otherwise OFF 

If CIAQ}O = i. then ON; other.lse OFF 

If a carry out of AQO is generated. then ON; otherwise OFF 

The SBLAQ instruction is identical to the SBAQ instruction 
with the exception that the Overflow indicator is not 
affected by the SB~AQ instruction. ~or does an Overflow 
Fault occur. Operands and results are treated as 
unsigned. positive binary integers. 

Subtract Logical from Q 136 (0) 

Basic Instruction Format (See Figure 2-1). 

e(Q) - elY) -> c(a) 

A II 

AL39 



fIXED POINT SUBTRACTION 

I NDICA TORS I 

Zero 

Negative 

Carry 

NOTESI 

SSLXn 

FORHATa 

SUMMARY I 

MODIFICATIONSI 

IHDICATORS. 

Zero 

Negative 

Carry 

NOTES 

SSQ 

FORMATa 

SUMMARYI 

MODIfICATIONS' 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

(Indicators not lIsted are not affected) 

If C(Q) = D, then ON; otherwise OFf 

If C(Q)O = 1, then ON; otherwise Off 

If a carry out of QD Is generated, the~ ON; otherwise Off 

The SBLQ instruction is identical to tne SaQ instruction 
with the exception that the Overflow indicator is not 
affected by the SBLQ instruction. nor does an Overflow 
fault occur. Oper~nds and results are treated as 
unsigned, pOSitive binary integers. 

Subtract Logical froll Xn 12n CO) 

Basic Instruction Format (See figure 2-1). 

for n = O. 1, •••• or 7 as determined bY operation code 

CeXn) - C(Y)O,17 -> CeXn) 

All except CI, SC, SCR 

(Indicators nof listed are not affected) 

If C(Xn) = 0, then ON; otherwise OFF 

If CeXn)O = 1, then ON; otherwise OFf 

If a carry out of XnO Is generated, then ON; otherwise OFf 

The SBLXn instruction is identical to the SeXn instruction 
witn the exception that the Overflow indicator Is not 
affected by the SBLXn instruction, nor does an Overflow 
Fault occur. Operands and results are treated as 
unSigned, positive binary integers. 

Subtract from Q 176 CO) 

• 

Basic Instruction format (See Figure 2-1). 

C(Q) - en) -> ceQ) 

Ait 

2-50 AL39 



INDICATORS' 

Zero 

Negative 

Overflow 

Carry 

S8Xn 

fORHAT: 

SUMMARY' 

MODIFICATIONS' 

INDICATORSI 

Zero 

Negative 

Overflow 

Carry 

SSA 

fORMATI 

SUHMARYI 

HODIFICATIONSI 

INDICATORSI 

Zero 

Negative 

Overflow 

Carry 

REVIEW OR'fT 
SUBJECT TO CHANGE 
October, 1975 

FIX~D POINT SUBTRACTION 

(Indicators not listed are not affecte~) 

If C(Q) = 0, then ON; otherwise OFf 

If C(Q)O = 1, then ON; otherwise OFF 

If range of Q is exceeded, then ON; otherwise OFF 

If a carry out of QO is generated, the~ O~; otherwise OFF 

Sub trac t f r 011 ltn 10n (0) 

Basic Instruction Format (See Figure 2-1). 

For n = 0, 1, ••• , or 7 as determined Oy operation code 

C(Xn) - C(Y)O,17 -> C(Xn) 

All except CI, SC, SCR 

(Indicators not listed are not affecte~) 

If C(Xn) = 0, then ON; otherwise OFF 

If C(Xn)O = 1, then ON; otherwise OfF 

If range of Xn is exceeded, then ON; otherwIse OFf 

If a carry out of XnO is generated, then ON; .otherwlse Off 

Subtract Stored fro. A 155 (0) 

Basic Instruction Format tSee Figure 2-1). 

C(A) - C(Y) -> elY) 

All except DU, Ol, CI, SC, SCR 

(Indicators not listed are not affecte~) 

If C(Y) = 0, then ON; otherwise OFF 

If C(Y)O = 1, then ON; otherwise Off 

If range of Y is exceeded, then ON; ot~erwise OFF 

If a carry out of YO Is g.nerated, the~ ON; otherwise OFF 

2-51 AL39 



FIXED POINT SUBTRACTION 

NOTES' 

SSQ 

FORHATa 

SUMMARya 

MODIFICATIONSI 

INDICATORSI 

Zero 

Negative 

Overfl ow 

Carry 

NOTESI 

SSXn 

FORHAT. 

SUMMARYI 

MODIFICATIONSI 

INDICATORS: 

Zero 

Negative 

Overflow 

Carry 

NOTESI 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

Attempted repetition with RPL causes a~ Illegal Procedure 
Fault. 

Subtract Stored froll Q 156 (0) 

BaSic Instruction Format (See Figure 2-1). 

C(Q) - cry) -> C(Y) 

All except DU, Dl, CI, SC, SCR 

(Indicators not listed are not affecte~) 

If cty) = 0, then ON; otherwise OFF 

If C(Y)O = 1. then ON; otherwise OFF 

If range of Y is exceeded, then ON; ot~erwise OFF 

If a carry out of YO is generated, then ON; otherwise OFF 

Altempted repetition with RPl causes an Illegal Procedure 
Fault. 

Subtract Stored from Xn 1~n (0) 

BaSic Instruction Format (See Figure 2-1). 

For n = 0. 1, •••• or 7 as deterMined by operation code 

C(Xn) - C(Y)0.17 -> C(Y)O,11 

All except OUt Dl, CI, SC, SCR 

(Indicators not listed are not affecte~) 

If C(Y)O,17 = 0, then ON; other.lse OFF 

If C(Y)O = 1, then ON; otherwise OFF 

If range of YO,1T exceeded, then ON; otherwise OFF 

If a carry out of YO is generated, the~ ON; otherwise OFF 

Attempted repetition with RPl causes an Illegal Procedure 
Fault. 

2-52 Al39 



SWCA 

FORMAT! 

SUMMARYI 

HODIFICATIONSI 

INDICATORSI 

Zero 

NegatIve 

Overflow 

Carry 

NOTES! 

SWCQ 

FORHAT! 

SUMMARYI 

MODIFICATIONS. 

INDICATORSI 

Zero 

Negative 

Overf low 

Carry 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

FIX~O POINT SUBTRACTION 

Subtract with Carry from A 171 (0) 

BaSic Instruction Format (See Figure 2-1). 

If Carry indicator ON, then CIA) - cry) -> CIA) 

If Carry indicator OFF, then C(A) - Cry) - 1 -> CIA) 

AU 

(Indicators not listed are not affected) 

If CeA) = 0, then ON; otherwise OFF 

If C(A)O = 1, then ON; otherwise Off 

If range of A Is exceeded, then ON; otherwIse OFF 

If a carry out of AD Is generated, then ON; otherwise OFF 

The SHCA instruction is identical to tne SBA instruction 
with the exception that when the Carry indicator is OFF at 
the beginning of the instruction. +1 is subtracted from 
the difference of CIA) minus C(Y). The SWCA instruction 
treats the Carry indicator as the complement of a borrow 
indicator; due to the implementation of negative numbers 
in two·s complement torm. 

Subtract with Carry from Q 172 (b) 

BaSic Instruct ion Format (See Figure 2-1). 

If Carry indicator ON, then C(Q) - ClY) -> CeQ, 

If Carry indicator OFF. then C(Q) - CIY) - 1 -> CIQ) 

All 

(Indicators not listed are not affected) 

• 

If CIQ) = D. then ON; otherwIse OFF 

If CIQ)O = 1, then ON; otherwise OFF 

If range of Q is exceeded. then ON; otherwise OfF 

If a carry out of QO is generated. then ON; otherwise OFf 

2-53 AL3() 



FIXED POINT SUBTRACTION 

NOTES. 

REVIEW OR_FT 
SUBJECT TO CHANGE 
October. lq75 

The SWCQ instruction is identical to the SBQ instruction 
with the exception that when the Carrv indicator is OFF at 
the beginning of the instruction, +1 is subtracted from 
the'difference of CCQ) minus Cry). The SWCQ instruction 
tredts the Carrv indicator as the cO~plement of a borrow 
indicator; due to the implementation of negative numbers 
in two·s complement form. 

2-54 AL39 



HPF 

HPY 

FIXED POINT HULTIPLICATION 

Hultiplv Fraction ltOl to» 

FORMATa Basic Instruction Format (See Figure 2-1 •• 

SUMMARY' CIA) x C(Y) -> CCAQ), left adJusted 

MODIFICATIONS' All except CI, se, SCR 

INDICATORS: lIn~icators not listed are not affectej) 

Zero If C(AQ) = 0, then ON; otherwise OFF 

Negative If CCAQ)D ~ 1, then ON; otherwise OFF 

Overflow If range of AQ is exceeded, then ~N; otherwise OFF 

NOTESI Two 3&-bit f,.actional factors (including sign) are 
multiplied to form a 71-bit fractional product (including 
sign), which is stored left-adjusted in the AQ-register. 

FORMATI 

SUMMARYI 

AQ71 contains a zero. Overflow can oc:ur only in the case 
of A and Y containing all ones and the result exceeding 
the combined AQ-register. 

n 0 3 o 0 3 
_ 0 1 5 -1-1---________________ 5 __ 

I I. I L I I 
IsJ<-----factor--------->1 x Isl<-~---factor--------->l 
J I J I I 1 

A Register Hain Store location Y 

vielding 

o 0 7 7 
~_1 ______________ ~ ____________________________ ~Q~l_ 

I I I I 
lsi <----------------product--------------------------> 101 
L1- Ll 

Combined AQ Register 

Hultiply Integer .. 02 (0) 

Basic Instruction Format (See Figure 2-U. 

C(Q) x CIY) -> ClAQ), right adjusted 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 2-55 Al39 



FIxED POINT MULTIPLICATION 

HODIFICATIONS: 

INDICATORS: 

Zero 

Negative 

NOTES: 

REVIEW DRlIFT 
SUBJECT TO CHANGE 
October, 1915 

AI. except CI, se, SCR 

(Indicators not listed are not affectej) 

If C(AQ) = 0, then ON; otherwise OFF 

If C(AQ)O = 1. then ON; otherwise OFF 

Two 3&-bit integer factors (including sign) are multiplied 
to form a 11-bit integer product (including sign). which 
is stored in AQ, right-adJusted. AlD is filled with an 
Uextended sign bit-. 

o 0 3 
_0 1 5_ 
I I I 
Isl<-----factor--------->. x 
I t J 

Q Register 

vieldlng 

000 
01 2 

J I I 

o 0 3 
_1-1--- 5 
I . J. 1 
Isl<----~factor--------->1 
LL--_ J 

Hain store Location Y 

7 
1 

Islsl<----------product-------------------------------->I 
I I I _ I 

Coabined AQ Register 

In the case of (-2··35) x (-Z·.35) = +2 •• 70. AQ1 Is used 
to represent the product rather ,than the sIgn. No 
overflow can occur. 

2-5& AL39 



DIV 

FORMATI 

SUMMARYI 

MODIFICATIONS. 

INDICATORS: 

Zero 

Negative 

-NOTESt 

REVIEW DRAFT 
SU9JECT TO CHANGE 
October, 1975 

FIXED POINT OIVlS10~ 

Oi v I'de Integer 506 (0) 

Basic Inst~uction Format (See Figure 2-1). 

C(Q) I C(Y) intege~ Quotient -> CeQ) 

integer remainde~ -> CeA) 

All 

(Indicato~s not listed are not affected) 

If diylSioD-1a~placel 

If ceQ) = 0, then ON; 
other"ise OFF 

If C(Q)O = 1, then ON; 
other"ise OFF 

If DO di~ision takes plac •• 

If divis~r = 0, then ON; 
other"isl! OFF 

If dividend < 0, then ON; 
other"ise OFF 

A 3&-blt integer dividend (including sign) Is divided by a 
l6-blt integer divisor (including sign) to form a 36-blt 
integer quotient (including Sign) ~nd a 36-blt integer 
remainder (including sign). The remainder sign is eQual 
to the dividend Sign unless the remain~er is zero. 

o 0 
o 1 

I I 
lsi <-----dlvldend------->I 
l-L-- J 

Q Register 

vlelding 

003 
D 1 5 

: 1 1 
151 <----remainder-------> I 
L I I 

A-Register 

o 0 3 
-1~ _______________ ~5~ 
I I I 

, Isl<-----divisor-------->1 
LL--_ , 

Main Sto~e Location Y 

o 0 3 
-'l-L-_ 5 
I I I 
Isl<----quotient-------->1 
L1--_ I 

l-Register 

If the dividend = -2.·35 and the divis~~ = -1 or If the 
divisor = 0, then division does not take place. Instead, 
a Divide Check fault occu~s, C(Q) contains the dividend 
magnitude, and the Negative indi=ator reflects the 
d i vi den d sIgn. 

2-51 AL39 



FIXED POINT DIVISION 

DVF 

FORHATI 

SUMHARY. 

HODIFICATIONSI 

INDICATORS: 

Zero 

Negative 

NOTES. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October. 1975 

01 \I ide Fract i on 507 (0. 

Basic Instruction Format (See Figure 2-1). 

C(AQ) I Cry) f~actional Quotient -> CIA. 

f~actlona' remainde~ -> C(Q) 

All 

(Indlcato~s not listed are not affected) 

If diViSion takes glace: If no diViSion takes place, 

If C(A) = 0, then ON; 
otherwise-OFF 

If diviso~ = 0, then ON; 
otherwise OFF 

If CeA)O = 1, then ON; 
otherwise OFF 

If dYvide~d < 0, then ON; 
otherwise OFF 

A 71-blt fractional dl\lldend CinclucUng Sign) is divided 
bv a 36-bit fractional divisor yielding a 36-blt 
f~actional Quotient UnclucHng Sign) and a 36-bit 
fractional remainder (Including sign). C(AQ)71 is 
19nored; bi t pbsi t Ion 35 of the rellainder corresponds to 
bit position· 70 of the cUvldend. Tne rellainder sign Is 
eQua I to the 01 vidend sIgn un I ess the ~ellla Inder· is zero. 

o 0 7 7 
_.ILl Q 1 
I I : I 
lsi <--------------------dl\lldend---------------------> I xl 
.L..l.- L.1 

Comb Ined AQ-Register 

003 
-KO~l ___________________ ~ 

I I I 
I lsI <------divisor------->I 

J I 1 

Hain store Location Y 

yielding 

o 0 
_.ILl 
I I 

3 
5 

Is' <------Quotient------>I 
1 I I 

A-Re ~i ster 

2-58 

003 
-i~ _______________ ~5~ 
I I J 
lsI <----remainder-------> I 
Ll.-- I 

Q-Register 

AL39 



REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

FIXED POINT DIVISION 

If Idlvidendl >= Idlvisorl or If the divisor = O. dIviSion 
does not take place. Instead,a Divide Check Fault 
occurs, CCAQ) contains the dividend ",a~n1tude in absolute, 
and the Negative indicator reflects the divide~d sign. 

Al39 



FIXED POINT NEGATE 

NEG 

. FORHATa 

SUMMARY' 

MODIFICATIONS: 

IN OICA TORSI 

Zero 

Negative 

Overflow 

NOTES: 

NEGL 

FORMATa 

SUMMARYI 

MODIFICATIONS. 

INDICATORS' 

Zero 

NegatIve 

Overflow 

NOTES-

REVIEW DRlIFT 
SUBJECT TO CHANGE 
Oc tober, 1 CJ75 

Negate A 531 fO) 

Basic Instruction Format (See Figure 2-1). 

-CtA) -> CIA) if C(A) ~ 0 

All. but none affect instruction execution. 

(Indicators not listed are not affecte~) 

If CfA) = O. then ON; otherwise OFF 

If CfAIO = 1. then ON; otherwise OFF 

If range of A is exceeded. then ON; ot~erwise OFF 

The NEG instruction changes the number in A to its 
negative (if _ 0). The operation is performed bV for~Ing 

the two·s complement of the string of 3& bits. 

Attempted repetition with RPL causes a~ Illegal Procedure 
Fault. 

Negate long 533 (0) 

Basic Instruction Format (See Figure 2-1). 

-C(AQ) -> C(AQ) if CCAQ) _ 0 

All. but none affect 1nstruction execution. 

CIndicators not listed are not affecte~) 

If CCAQ) = Of then ON; otherwise OFF 

If CCAQaO = 1, then ON; otherwise OfF 

If range of AQ is exceeded, then ON; otherwise OFF 

The NEGL instruction changes the num3er 1n AQ to its 
negative (11 _ 0). The operation 1s ~erformed bV for~ing 

the two·s complement of the string of 72 bits. 

Attempted repetition with RPL causes a~ II legal Procedure 
FauJt. 

2-&0 Al39 



CHG 

FORHATS 

SUMMARY: 

MODIFICATIONSI 

INDICATORSI 

Zero 

Negative 

CHI( 

FORHATa 

SUHMARYS 
• 

HODIFICATIONS. 

INDICATORS' 

Zero 

Negative 

NOTESI 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

FI(EO POINT COMPARISON 

Comp~re Magnitude 405 , Q) 

Basic Instruction Format (See Figure 2-1). 

IC(A) I sa tC(v) I 

All 

(Indicators not listed are not affecte~) 

If IClA)1 = IC(Y)I, then ON; otherwise OFF 

If IC(A)' < tCey)., then ON; otherwise OFF 

Compare Masked 211 (0) 

Basic Instruction Format eSee Figure 2-1). 

For 1 = 0, 1, ••• t 35 

CeZ)i = -C(Q)l , (CeA)i • CIY)i) 

All 

(Indicators not listed are not affecte~) 

If CeZ) = 0, then ON; otherwise OFF 

If C(Z)O = 1, then ON; otherwise OFF 

The CHK instruction compares the contents of bit positions 
of A and Y for Identitv that are not lasked bv a 1 in the 
corresponding bit oosition of Q. 

The Zero indicator Is set ON if the comparison Is 
successful for all bit positIons; i.e., if for all 1=0, 
1, ••• ,35 there Is e.itherlCCAH = C(Y)i lthe identical 
case) or C(Q)i = 1 (the ~asked case); otherwise, Zero 

indicator Is ~et OFF. 

The Negative Indica~or is set ON if the comparison Is 
unsuccessful for bit position 0; i.e., if C(AlO • C(Y)O 
(they are nonidentical) as well as CCQ)O = 0 (they are 
unmasked); otherwise, Negative indicator is set OFF. 

2-&1 AL39 



FIXED POINT COMPARISON 

CMPA 

FORHATS 

SUMMARYI 

MODIFICATIONSI 

INDICATORSI 

CHPAQ 

FO~HATI 

SUMMARYI 

MODIFICATIONSI 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, lY75 

Compare "11th A 115 (0) 

Basic Instruction Format (See Figure 2-1). 

CIA) II CtY) 

All 

(Indicator~ not listed are not affected) 

The Zero CZ), Negative IN), and Carr, Ce) indicators 3re 
set as follows. 

AlgebraIc CQmQ~aD-lSlqned BInary Operands) 

z u ~ RJtU1.jjm llsm 

0 0 0 CU) > C( Y) CIA)O : a, C( V) 0 = 1 

0 0 1 CU) > Cly) 

1 0 1. e CA) .:: C IV) CCA)a = C(Y)O 

0 1 0 CIA) < C (y) 

0 1 1 Cf4 ) < C (V) C(A)a = 1, CIV)O = 0 

~~cal ComQac~ (Un$igoed PO$ltiye alnary Operands) 

Z k 

a 0 CeA) < C(Y) 

1 1 CIA) = CIY) 

o 1 C(A) > cry) 

Compare "'th AQ 117 (0) 

BasiC Instruction Format (See Figure 2-1). 

CCAQ) u· elY-pair) 

All except OU, Ol, CI, SC t SCR 

2-&2 AL39 



INDICA TORSI 

CKPQ 

FORHATI 

SUMMARYI 

MODIFICATIONS: 

INDICATORSI 

REVIEW DRAFT 
SUB~ECT TO CHANGE 
October, 1975 

Ft(EO POINT COHPARISON 

(Indicators not listed are not affected' 

The Zero (Z), Negative (N), and CarrV (C) indicators are 
set as follows. 

1.. ri k &!til1.llD USIO 

0 0 0 C (A 0) > C(Y-palr) C(AQ)O = 0, C(Y-cair)O = 1 

0 0 1 C (A Q) > ClY-pair) 

1 0 1 C fA 0) = C(Y-palr) CIAQ)O = C(Y-pair)O 

0 1 0 C (AQ) < Cn-palr) 

0 1 1 e (AQ) < eeY-palr) C(AQ)O = 1, e(Y-cair)Q :: 0 

l.~aJ Comparison (Unsigned PQsitlyp- aioary Operands) 

DOC lAQ) < C (V-palr) 

1 1 C(AQ) = C(Y-pair) 

o 1 C(AQ) > eeY-pair) 

Compare with Q 116 (0) 

Basic InstructIon Format (See Figure 2-1). 

C(Q) 1* C(Y) 

A t I 

(Indicators not listed are not alfecte~) 

The Zero (Z), Negatlve (N), and Carri (el indicators are 
set as follows. 

2-&3 Al39 



FIXED POINT COMPARISON 

CHPXn 

• FORHATI 

SU"HARVI 

MODIFICATIONS: 

INDICATORS: 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October. 1975 

A..LlUc..a..ls;~.2l'D..Q a.r:l.s. Q 0 (Sigoed £1.i...O.at:.L.QQ e.r:..3Ili1.sl 

Z Ii Co RUiitiJm Sign 

0 0 D ceQ) » C( V) C(Q)O = 0, C(V)O = 1 

D 0 1 ceQ) » C tV) 

1 0 1 ceQ) = eeY) C (Q)O = C C Y) 0 

D 1 0 C(Q) < C co 

0 1 1 ceQ) < C(V) C (Q) 0 = 1, C (Y) 0 = 0 

o 0 ceQ) < CIV) 

1 1 ceQ) = CO') 

o 1 ctQ) > ClY) 

Compare with Xn 10n (0) 

Basic Instruction 'orm~t (See Figure l-I) • 

For n = O. 1, ••• , or 7 as determined oy operation code 

C(Xn) :: C(Y)D,17 

All except CI. SC, SCR 

(IndicatorS not listed are not affected) 

The Zero (Z), Negative (N), and Carry (C) indicators are 
set as f 0 I I ow s. 

Z ti t. 

000 C IXn) » C(V)O,17 C(XnlO : 0, C(V)O = 1 

a 0 1 COCn) » C(Y)O,17 

o 1 0 CeXn) = ClV)O,17 C(Xn)O : C(Y)O 

1 0 1 C(Xn) < C(Y)Q,17 

011 C(Xn) < C(V)O,17 C(XntO = 1, ClYtO = 0 

Al39 



CWL 

FORHAT: 

SUMMARYI 

MODIFICATIONS. 

I NDICATORSI 

Zero 

NOTES' 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October. 1975 

FI(ED POINT COMPARISON 

o 0 ClXn) < C(Y)O.17 

1 1 ClXn) = CeY)O.17 

o 1 C(Xn) > C(Y)O,17 

Compare with Limits 111 (0) 

Basic Instruction Format (See Figure 2-1). 

C(Y) II closed interval tC(A);CCQ») 

ecY) II CCQ) 

All 

(Indicators not listed are no t a f f ected J 

If CeA) <= elY) <= C CQ) or ce A) >= CIY) >= C IQI. then ON; 
otherwIse OFF. 

The Negat lve (N) and Carry IC) Indicators are set as 
10110Ns. 

N C. JaUtiJm ~ 

0 0 C(Q) :> C(Y) C(Q)O = O. eeY)o = 1 

0 1 CeQ) :>= C IY) elQ)O = ceY)o 

1 0 ceQ) < C(Y) C(Q)O = CIY)O 

1 1 ceQ) < elY) CIQ)O = 1. ceY)o = 0 

The CWL instructIon tes's the value of ClY) to deteralne 
If it is within the range of values set bv CeA) and CeQ). 
The comparison of elY) wIth ceQ) locates eey) with resoect 
to the interval if C(Y) is not contained within the 
interval. 

2-65 AL39 



FIXED POINT MISCELLANEOUS 

SZN 

FORMATa 

SUMMARY' 

MODIFICATIONSI 

INDICATORSI 

Zero 

Negative 

SZNC 

FORHAT. 

MODIFICATIONSI 

INDICATORSI 

Zero 

Negative 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

Set Zero and Negative Indicators 

Basic Instruction Format (See Figure 2-1). 

Set indicators according to C(Y) 

A II 

(Indicators not listed are not affecte~) 

If C(Y) = D. then ON; otherNlse OFF 

If C(Y)O = 1, then ON; otherNlse OFF 

Set Zero and Negative Indicators and Clear 

Basic Instruction Format (See Figure 2-1). 

Set indicators according to elY) 

00 ••• 0 => elY) 

All except DU, Dl, CI, SC, SCR 

(Indicators not listed are not affected) 

If C(Y) = 0. then ON, otherNlse OFF 

If C(Y)O = 1, then ON; otherNise OFF 

2-&& 

23~ (0) 

21"(0) 

AL39 



ANA 

ANAQ 

ANQ 

BOOLEAN AND 

AND to A 375 (D) 

FORMATa Basic Instruction Format (See Figure 2-1). 

SUMMARY. ceAli t C(Y)i -> C(A)1 for 1 = (0. 1 ••••• 35) 

MODIFICATIONSI A II 

INDICATORSI (Indicators not listed are not affecte~) 

Zero If CeA) : O. then ON; otherMise OFF 

t-4egative If CeA)O = 1. then ON; otherwIse OFF 

AND to AQ 377 (0) . 

-FORHATa Basic Instruction Format (See Figure 2-1). 

SUMMARYI C(AQ)i & CrY-pair)! -> C(AQ)i for 1 = CD. 1 ••••• 71) 

MODIFICATIONS' All except OUt DL. CI. SC. SCR 

INDICATORS. (Indicators not listed are not affecte~) 

Zero If C(AQ) = O. then ON; otherwise OFF 

Negative If CeAQ)O = 1. then ON; otherwise OfF 

AND to Q 

FORMAT: Basic Instruction Format (See Figure 2-1). 

SUMMARY' CeQ)i & CeYH -> CeQ)i for i = (0. 1 ••••• 35) 

MODIFICATIONSI AI. 

REVIEW D~AFT 
SUBJECT TO CHANGE 
October, 1975 2-&7 

37& (0) 

AL39 



BOOLEAN AND 

ANSA 

ANSQ 

INDICATORSI 

Zero 

NegatIve 

FORHATa 

SUMMARY' 

MODIfICATIONS' 

INDICATORS' 

Zero 

Negative 

... NOTESI 

FORHATa 

SUMMARY' 

MODIFICATIONS: 

INOICATORSI 

Zero 

Negative 

NOTESI 

(Indicators not listed are not affectel) 

If CeO) : 0, then ON; otherwise OFF 

If C(O)O : 1, then ON; otherwise OFF 

AND to Storage A 355 (0) 

aasic Instruction Format (See Figure 2-1). 

C(A)1 "C(YH -> Cry)! for j : (0, 1, ••• , 35) 

All except OU, ol, CI, SC, SCR 

(Indicators not listed are not affected) 

If Cry) : 0, then ON; otherwise OFF 

If CCY)O : 1, then ON; otherwise OFF 

Attempted repetitlon with RPl causes a~ II legal Procedure 
Fault. 

AND to Storage Q 356 (0) 

Basic Instruction Format (See Figure 2-1). 

C(Q)l i. CCY)! -> CCY)l for 1 : CO, 1, ••• ., 35) 

All except OU, oL., CI, SC, SCR 

(Indicators not listed are not affectej) 

If Cry) : 0, then ON; otherwise OFF 

If CCY)O = 1, then ON; otherwise aFF 

Attempted repetition with RPl causes a~ Illegal Procedure 
Fault. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 2-&8 AL39 



ANSXn 

ANXn 

FORHATI 

SUMHARYI 

MODIFICATIONSI 

IN OICA TORS I 

Zero 

Negative 

NOTESI 

FORHATI 

SUMMARY. 

MODIFICATIONSI 

INDICATORS: 

Zero 

Negatlve 

BOOLEAN AND 

AND to Storage Xn 3ltn (0) 

Basic Instruction Format (See Figure 2-1). 

For n = O. 1 ••••• or 7 as determined by operation code 

C IXn)! l C (Y) 1 -> Cry) i for i = CO. 1 ••••• 11) 

All except OUt DL. CI. SC. SCR 

(Indicators not listed are not affecte~) 

If C(Y)O,17 = D. then ON; otherwise OFF 

If CIYIO = 1. then ON; otherwise OFF 

Attempted repetition with RPL causes a~ Illegal Procedure 
Fault. 

AND to Xn 36n (0) 

Basic Instruction Format (See Figure 2-1). 

For n = D. 1 ••••• or 7 as deter.ined by operation code 

C(Xn)l l C(Y)l -> C(Xn)l for i = (0. 1 ••••• 17) 

All except CI, SC. SCR 

(Indicators not listed are not affecte~) 

If C(Xn1 = O. then ON; otherwise OFF 

If CCXn)O = 1, then ON; otherwIse OFF 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 AL39 



BOOLEAN OR 

ORA OR to A 275 (0) 

FORHATa Basic Instruction Format (See Figure 2-1). 

SUMMARY' C(A)1 I C(Y)i -> CrAll for 1 = (D, 1, ••• , 35) 

MODIFICATIONS! A II 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(A) = D, t~en ON; otherwise OFF 

Negative If C(A)O = 1, then ON; otherwise OFF 

ORAQ OR to AQ 277 (0) 

ORQ 

FORHAT! Basic Instruction Format (See Figure 2-1). 

• SUMMARY' CCAQ)i f C(Y-pair)i -> C(AQ)l for 1 = (0, 1, ••• , 71) 

MODIFICATIONS' All except DU, Ol, CI, se, SCR 

1 NDICATORS I (Indicators not listed are not affected) 

Zero If C(AQ) = 0, then ON; otherwise OFF 

Negative If C(AQ)O = 1, then ON; otherwise OFF 

OR to Q 

FORHATI Basic Instruction Format (See Figure 2-1). 

SUMHARY' C (Q) 1 t C (Y) I - > C ( Q) i for 1 = (0, 1, ••• , 35) 

HODIFICATIONS! All 

INDICATORS: (IndIcators not listed are not affected) 

Zero If CeQ) = D, then ON; otherwise OFF 

REVIEW CRAFT 
SUBJECT TO CHANGE 
October, 1975 2-70 

276 (Q) 

Al39 



Negative 

ORSA 

FORHATI 

SUMMARY I 

MODIFICATIONSI 

INDICATORSI 

Zero 

Negative 

NOTES' 

BOOLEAN OR 

If C(QID = 1. then ON; otherwise OrF 

OR to Storage A 2t.i5 (0) 

Basic Instruction Format (See Figure 2-1). 

C(A)i I CCYII -> CCY)1 for i = CD. 1 ••••• 35) 

AI. except OUt OL. CIt SC, SCR 

CIndicators not listed are not affecte~1 

If elY) = O. then ON; otherMise OFF 

If CCY)! = 1. then ON; otherwise OFF 

Attemoted repetition with RPL causes aA Illegal Procedure 
Fault. 

ORSQ400 OR to Storage Q ·25& CD) 

FORHATa Basic Instruction Format CSee Figure 2-1). 

SUMMARYI C(Q)! I CCY)1 -> CCY) for I = CO. 1. • ••• 35) 

MODIFICATIONSI All except DU, DL. CIt SC, SCR 

INDICATORSI CIndicators not listed are not affecte~) 

Zero If CCY) = 0, then ON; otherwise OFF 

Negat i ve If CeYIO = 1, then ON; otherwise OFf 

NOTESI Attempted repetition with RPl causes 3n Illegal Procedu~e 
Fau It. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
Cctober. 1975 2-71 AL39 



BOOLEAN OR 

ORSXn OR to storage Xn 2ltn (0) 

ORXn 

FORHAT' 

SUMMARY 1 

MODIfICATIONS. 

INDICATORS: 

Zero 

Negati.ve 

NOTESI 

..FORMAT I 

SUMMARYI 

MODIfICATIONS: 

INDICATORS: 

Zero 

Negative 

Basic Instruction Format (See Figure 2-1). 

For n = 0, 1, ••• , or 7 a~ determined ~V operatIon code 

C(Xn)l a C(Y)1 -> C(Y), for 1 = (0, 1, •••• 17) 

All except DU, OL, CI, SC, SCR 

(Indieators not listed are not affectej) 

If C(Y)O,17 = D, then ON; otherwise OFF 

If C(Y)O = 1, then ON; otherwise OFF 

Attempted repetitIon wi.th RPL causes a~ Illegal Procedure 
fault. 

OR to Xn 26n (D) 

Basic Instruction Format (See Figure 2-1) • 

For n = 0, 1, ••• , or 7 as determined DV operatIon code 

C{Xn)i I e(Y)l -> C(Xn)l fo,. i. = (0,1, ••• , 17. 

AI I except CI, SC, SCR 

(Indicators not listed are not affectej) 

If C(Xn) = 0, then ON; otherwise OFF 

If C(Xn)O = 1. then ON;' otherwise. OFF 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1q75 2-72 AL39 



ERA 

ERAQ 

ERQ 

300LEAN EXCLUSIVE OR 

EXCLUSIVE OR to A 675 (01 

FORHATa Basic Instruction Format (See Figure 2-11. 

SUMMARY' CCA)l • C(V)i -> CIA)! for 1 = CO, 1, •••• 351 

MODIFICATIONS. All 

INDICATORS' (Indicators not listed are not affectedl 

Zero If CeA) = D, then ON; otherwise OFF 

Negative If C(A)O = 1, then ON; otherwise OFf 

EXCLUSIVE OR to AQ 677 (0) 

FORHATa BasIc Instruction Format (See Fig~re 2-1). 

SUMMARYl - CCAQli • elY-pairli -> CeAQ)i for 1 = ee, 1 ••••• 71) 

HOOIFICATIONSI All except OU, DL, eI, se, SCR 

INDICATORSl (Indicators not listed are not affecte~) 

Zero If C(AQ) = 0, then ON; otherwise OFF 

Negative If C(AQ)O = 1, then ON; otherwise OFF 

EXCLUSIVE OR to Q 

FORHAT' Basic Instruction Format eSee Figure 2-1). 

SUMMARva C(Q)i • C(VII -> CeQ)! for i = (0, 1, •••• 3S1 

MODIFICATIONS I All 

INDICATORSI (IndIcators not listed are not affecte~) 

Zero If C(Q) = 0, then ON; otherwise OFF 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 2-73 

676 (0) 

AL39 



BOOLEAN EXCLUSIVE OR 

ERSA 

ERSQ 

NegatIve 

FORHATI 

SUMMARYI 

MODIFICATIONSI 

INDICATORS: 

Zero 

Negative 

NOTESI 

FORHATS 

SUMMARYI 

MODIFICATIONSI 

IN DICA TORSI 

Zero 

NegatIve 

NOTESI 

If C(Q)O = 1. then ON; otherwise OFF 

EXCLUSIVE OR to Storage A 655 (0) 

9aslc Instruction Format (See Figur~ 2-1). 

C(A)i • C(Y)l -> C(Y)i for i = (0. 1, •••• 35) 

AI I except OUt Ol, CI, SC, SCR 

(Indicators not listed are not affectej) 

If C(Y) = 0, then ON; otherwise OFF 

If C(Y)O = 1, then ON; otherwise OFF 

Attempted repetitIon with RPl causes a~ II legal Procedure 
Fault. 

EXCLUSIVE OR to Storage Q 656 (0' 

Basic Instruction Format (See Figure 2-1). 

C(Qll • C(Y)1 -> e(Y)I for i = (0, 1 ••••• 35) 

All except OU, OLe CI, SC, SCR 

(Indicators not listed are not affected) 

If C(Y) = 0, then ON; otherwise OFF 

If C(Y)O = 1, then ON; otherwise OFF 

Attempted repetltion with RPl causes a~ II legal Procedure 
Fault. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
Cctober. 1975 2-7" AL39 



ERSXn 

FORMATa 

SUMMARYS 

MODIfICATIONS: 

IN DrCATORS: 

Zero 

NOTES, 

ERXn 

300LEAN EXCLUSIVE OR 

EXCLUSIVE OR to Storage Xn 6ftn (0) 

Basic Instruction Format (See Figure 2-1). 

For n = D. 1, •••• or 7 as determined ~y operation cOde 

C(Xn)i • CIY)! -> C(Y)l for i = (0. 1 ••••• 17) 

Ala except OU, OL, CI, SC, SCR 

(Indicators not listed are not affectej) 

If C(Y)O,17 = 0, then ON; otherwise OF~ 

, 
Attempted repetition with RPL causes an Illegal Procedure 
Fault. 

EXCLUSIVE OR to Xn 66n (0) 

... FORHATa Basic Instruction Format (See Figure 2-1) • 

SUHHARYI For n = 0, 1, •••• or 7 as determined Dy operation code 

C(Xn)i • C(Y)i -> C(Xn)i tor i = (0. 1, •••• 11) 

MODIFICATIONsa All except CIt SC, SCR 

INDICATORSI (Indicators not listed are not affected) 

Zero If CeXn) = 0, then ON; otherwise OFF 

Negative If C(XnlO = 1, then ON; otherwise OFF 

REVIEW DRAFT 
SUBJECT TO CHANGE. 
Oct obert 1975 2-75 AL39 



CANA Comparative AND with A 

FORHATI Basic Instruction Format (See Figure 2-1). 

SUHH-ARY' C (Z) i = C ( A ) i , C ( Y ) i f or i = ( 0, 1. • •• , 35 ) 

MODIFICATIONS. A II 

INDICATORS: (Injicators not listed are not affecte~) 

ZERO If CeZ) = 0, then ON; otherwise OFF 

Negative If C(Z)O = 1, then ON; otherwIse OFF 

CANAQ ComparatIve AND with AQ 

FORHAT. Basic Instruction Format (See Figure 2-1). 

"'SUMMARYt C(l)i = C(AQ)l , C(Y-palr)! for j = (0, 1, ••• , 71) 

CANQ 

HODIFICATIONSI All except OU, Ol, CI, SC, SCR 

INDICATORSJ (Indicators not listed are not affecte~) 

Zero If Cel) = 0, then ON; otherwise OFF 

Negative If C(Z)O = 1, then ON; other"lse OFF 

ComparatIve AND with Q 

FORHATa BaSic Instruction Format (See Figure 2-1). 

SUMMARya Cel)i = C(Q)l & C(Y)l for i = (0, 1, ••• , 35) 

MOUIFICATIONS' AI1 

INDICATORSI (Indicators not listed are not affected) 

ZERO If C(Z) = 0, then ON; other"lse OFF 

REVIEW DRAFT 
SUBJECT to CHANGE 
October, 1975 2-7& 

315 (0) 

317 (0) 

31 & (0) 

AL39 



CANXn 

BOOLEAn COMPARATIVE AND 

Negative If C(Z)O = 1, than ON; otherwise OFF 

Comparative AND with Xn 30n (0) 

FORHATa Basic Instruction Format (See Figure 2-1). 

SUMMARYI For n = 0, 1, ••• , or 7 as determined =»v operation code 

C(Z)i = C(Xn)l ~ e(Y)l for 1 = (0, 1, ••• , 17) 

MODIFICATIONS: All except CI, SC, SCR 

INDICATORS: (Indicators not listed are not affectej) 

Zero If C(Z) = 0, then ON; otherwise OFF 

Negative If CeZ)O = 1, then ON; otherwise OFF 

REVIE~ DRAFT 
SUBJECT TO CHANGE 
October, 1975 2-77 AL39 



BOOLEAN COMPARATIVE NOT 

CNAA 

CNAAQ 

CNAQ 

FORHATS 

SUMMARYI 

MODIFICATIONSI 

INDICATORS: 

Zero 

Negative 

FORMATa 

SUMMARY' 

MODIFICATIONSI 

INDICATORSI 

Zero 

Negative 

FORHAT: 

SUMMARYI 

MODIFICATIO'NSI 

INDICATORS: 

Zero 

Negative 

Comparative NOT with A 

Basic Instruction Format (See Figure 2-i). 

C(Z)! = C(A)! , -elY), 'or I = (0, 1, ••• , 35) 

A I. 

(Indicators not listed are not affected) 

If C(Z) = 0, then ON; otherwise OFF 

If C(Z)O = 1t then ON; otherwIse OFF 

ComparatIve NOT with AQ 

Basic Instruction Format (See Figure 2-1). 

CrZ)l = C(AQ)l ~ -elY-pair)! for 1 = (O~ 1. ~., 71) 

All except DU, Ol, CI, SC. SCR 

(Indicators not listed are not affected) 

If C(Z) = 0, then ON; otherwise OFF 

If C(Z)O = 1, then ON; otherwise OFF" 

Comparative NOT with Q 

BaSic Instruction Format (See Figure 2-1). 

C ( Z )! = C ( Q) i , -c ( Y) i for = (0, 1, ••• , 35) 

All 

(Indicators not listed are not affectej) 

If CIZ) = 0, then ON; otherwise OFF 

If C(Z)O = 1, then ON; otherwise OFF 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 2-78 

215 (0) 

217 (0) 

21& (0) 

AL39 



CNAXn 

BOOLEAN COHPARATIVE ~OT 

Comparative NOT with Xn 20n (0) 

FORHAT I Basic Instruction Format (See Figure 2-1 •• 

SUMHARYI For n = O. 1 •••• , or 7 as determined oy operation code 

ceZli = C(Xn)l ~ -C(Y)i for i = (0. 1, ••• , 17) 

"ODIFICATIONS' All except CI, SC, SCR 

INDICATORS' (IndIcators not listed are not affecte:J) 

Zero If C(Z) = 0, then ON; otherwise OFF 

Negative If C(Z)O = 1, then ON; otherwise ~FF 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October. 1975 AL39 



FLOATING POINT DATA MOVEMENT lOAD 

DFlD 

FORHATa 

SUMHARYa 

MODIFICATIONS' 

INDICATORsa 

Zero 

Negative 

FLO 

FORHATI 

SUHHARY: 

HODIFICATIONSI 

INDICATORS: 

Zero 

Negative 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

Oouble Precision Floating load 

Basic Instruction Format (See Figure 2-1). 

C(Y-pair)O,7 -> ClE) 

C(Y-pairt8,71 -> C(AQ)O,G3 

00 ••• 0 -> C(AQ)Gft,71 

All except DU, Ol, CI, SC 9 SCR 

(Indicators not lIsted are not affecte~) 

If C(AQ) = 0, then ON; otherwise OFF 

If C(AQ)O = 19 then ON; otherwise OFF 

Floating load 

Basic Instruction Format (See Figure 2-1). 

C(Y)097 -> C(E) 

C(Y)8,3S -> C(AQ)O,27 

00 ••• 0 -> C(AQ)30~71 

All except CI, SC9 SCR 

(Indicators not listed are not affecte::U 

It C(AQ) .: 0, then ON; otherwise OFF 

IF C(AQ)O .: 1, then ON; otherwise OFF 

2-80 

ft33 (0) 

431 (0) 

Al3CJ 



DFST 

FORHATJ 

SUMMARY' 

MODIFICATIONSI 

INDICATORSI 

NOTES: 

DFSTR 

FORMATa 

SUMMARY a 

MODIFICATIONS. 

INDICATORS: 

Zero 

Negative 

Exponent 
Over f low 

Exponent 
Under' low 

NOTES. 

REVIEW CRAFT 
SUBJECT TO CHANGE 
October9 1915 

FLOATING POINT DATA MOVEMENT STORE 

uouble Precision Floating Store 457 CO) 

Basic Instruction Format (See Figure 2-1). 

All except OU. DL. CIt SC. SCR 

None affected 

Attempted repetition with RPL causes a~ Illegal Procedu~e 

Fault. 

Double Precision Floating Store Rounde~ 472 (D) 

BaSic Instruction Format (See Figure 2-1). 

C(EAQ) rounded -> ClY-palr) 

All except CU. OL, CI, se, SCR 

(Indicators not listed are not affecte~) 

If elY-pair) = floating point 0, then IN; otherwise OFF 

If CCY-pair)8 = 1, then ON; otherMise lFF 

If exponent is greater than +121, then ON; otherwise OFF 

If exponent is less than -128, then ON; otherwise OFF 

The DFSTR instruction performs a dOU31e precision true 
round and nor~alization on C(EAQ) as it is sto~ed. 

The definition of true round 1s located under the 
description of the Floati"g Round (FRO) instruction. 

The definition 
description of 

of normalization is located under the 
the Floating Normaliz~ (FNO) instruction. 

Except for tne precision of the stored result. the DFSTR 
instruction is identical to the FSTR l~struction. 

2-61 IlL39 



FLOATING POINT DATA MOVEMENT STORE 

FST 

FSTR 

FORMATa 

SUHMARY I 

HODIFICATIONSI 

INDICATORS' 

NOTESI 

"FORHATa 

SUMMARYI 

MODIFICATIONSI 

INOICATORsa 

Zero 

Negative 

t::KPonent 
Overflo\llf 

Exponent 
Under flo .. 

NOTESa 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

Attempted repetItion with RPL causes an Illegal Procedure 
Fault. 

Flo a tin g S t or e 455 (0) 

Basic Instruction Format (See FIgure 2-1). 

C(E) -> CIY)O,1 

C(A)O,2? -> C(Y)8,35 

All except OU, OL, CI, SC, SCR 

None af feeted 

At~empted repetition with RPL causes a~ Illegal Procedure 
Fault. 

Flo a tin g S t or e R 0 un d e d 41 0 ( 0 ) 

gas i c Instr uc t ion F or mat (See Figure 2-1). 

CIEAQ) rounded -> CIY) 

All except OU, Ol, CI, SC, SCR 

(Indicators not listed are not affecte:U 

If ClY) = floating point 0, then ON; otherwise OFF 

If C(Y)8 = 1, then ON; otherwise OFf 

If exponent is greater than +127, then ON; otherwise OFF 

If eKPonent is less than -128, then ON; otherwise OFF 

The fSTR instruction performs a true round and 
normalization on C(EAQ) as it is storej. 

The definition of true round is located under the 
description of the Floating Round (FRO) instruction. 

The definition 
description of 

of normal ization is located under the 
the Flo a t 1 n 9 Nor :II a Ii z e ( F NO) ins t r uc ti 0 n • 

2-82 



REVIEW ORJ!FT 
SUBJECT TO CHANGE 
October, 1975 

FLOATING POINT DATA MOVEMENT STORE 

Steps 1n the execution may be thought of as foiloNs, 

Execute FNO 

Execute FST 

Restore C(EAQ) to original values. 

Attempted repetition with RPL causes a~ Illegal Procedure 
Fault. 

2-83 Al39 



.' 

FLOATING POINT AODITIO~ 

DFAD 

DUFA 

FORHATa 

SUMMARY' 

MODIFICATIONSI 

INDICATORS: 

Zero 

Negative 

Exponent 
Overflow 

Exponent 
Underf 10M 

Carrv 

NOTES. 

FORMAT: 

SUMMARY: 

HODIFICATIONS: 

RE:.VIEW OR~FT 
SUB~ECT TO CHANGE 
Oc t ober, 1 Y75 

DOUDle Precision Floating Add 417 (0) 

Oasic Instruction For~at (See Figure 2-1). 

(C(EAQ) + C(Y-p~ir)) normalIzed -> CCEAQJ 

Al. except ou, Ol, CI, SC, SCR 

(Indicators not listed are not affected) 

If C(AQ) ; 0, then ON; otherwIse OFF 

If C(AQ)O = 1, then ON; otherwise OFF 

If exponent is greater than +121, then ON; otherwise OFF 

If exponent is less than -128, then ON; otherwise OFF 

If a carry out of AQO Is generated, then ON; otherwise OFF 

The OFAD instruction may be thought of as a Doub.e 
Precision Unnormalizard Floating Add (OUFA) instruction 
follo"ed by a Floating Normalize (FNO) instruction. 

The definition 
description of 

of normalization Is located under the 
the Floating Normalize (FNO) instruction. 

Double Precision unnormalized Floating Add "37 (0) 

Basic Instruction Format (See Figure 2-1). 

C(EAQ) + ClY-pair) -> C(EAQ) 

All except OU, OL, Ct. SC, SCR 

2-84 AL3!) 



FAD 

INDICATORS. 

Zero 

Negative 

E.xponent 
Overflow 

Exponent 
Under f low 

Carry 

NOTES. 

FORHATI 

SUHMARY. 

HODIFICATIONS. 

INDICATORS' 

Zero 

Negative 

Exponent 
Overflow 

Exponent 
Under' 1 o lit 

Carry 

NOTES. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
Oct ober, 1975 

FLOATING POINT ADDITION 

(Indicators not listed are not affecte~. 

If C(AQ) = 0, then ON; otherlltlse DFF 

If CCAQ)O = 1, then ON; otherlltlse OFF 

If exponent is greater than +127, then ON; otherwise OFF 

If exponent is less than -128, then ON; otherwise OFF 

If a carry out of AQO Is generated. then ON; otherllt1se OFF 

Except for the precision of the mantissa of the operand 
from maIn store. the DUFA instruction is Identical to the 
urA instruction. 

Floating Add 475 (01 

Basic Instruction Format (See Figure 2-1). 

(C(EAQ) + C(Y» normalized -> CCEAQ) 

All except CI, se, SCR 

(Indicators not listed are not affected) 

If CIAQ) = Ot then ON; otherlltlse OFF 

If CCAQIO = 1, then ON; otherlltise OFF 

If exponent Is greater than +127, then ON; otherlltise OFF 

If exponent is less than -128, then ON; otherlltise OFF 

If a carry out of AQD Is generated, then ON; otherwise OFF 

The FAD instruction may be thought of a an 
Floating Add (UrA) instructIon followed 
Normalize (FNO) instruction. 

iJnnor ma 11 zed 
by a Floating 

The definition of normalization is located under the 
description of the Floating Normalize (FNO) instruction. 

2-85 AL39 



FLOATING POINT ADDITION 

UFA 

FORHATa 

SUMMARY. 

MODIFICATIONS. 

INDICATORS' 

Zero 

Negative 

Exponent 
Overflo~ 

Exponent 
Underflow 

Carry 

NOTES. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

Unnormaltzed FloatIng Add ~35 (O) 

3asic Instruction Format (See Flg~re 2-1). 

CCEAQ) • C(Y) -> CCEAQ) 

AI. except CI, SC, SCR 

(Indicators not listed are not affectej) 

If C(AQ) = 0, then ON; otherwise OFF 

If CCAQ)O = 1, then ON; otherwise OFF 

If exponent is greater than .127, then ON; otherwise OFF 

If exponent is less than -128, then ON; otherwise OFF 

If a carry out of AQO is generated, then ON; otherwise OFF 

The UFA instruction is executed as follows. 

The mantissas are aligned by shifting the mantissa of 
the operand having the a'gebralcal Iy smaller exponent 
to the right the number of pl3ces equal to the 
absolute value of the difference in the two 
exponents. Bits shifted beyond the bIt pOSItion 
equivalent to AQ71 are lost. 

The algebraically larger exponent replaces ClE). 

The sum of the mantissas replaces CCAQ). 

If an overflOW occurs during addltion, then; 

CCAQ) are shifted one place to the right. 

C(AQ)O Is inverted to restore the sIgn. 

CCE) is increased by one. 

2-6& AL39 



DFSB 

OUFS 

FORMATa 

SUMMARY: 

MODIFICATIONS: 

INDICATORS: 

Zero 

Negative 

Exponent 
Overflow 

Exponent 
Under f low 

Carry 

NOTESI 

FORHAT: 

SUMMARYI 

MODIFICATIONS: 

INDICATORS: 

Zero 

Negative 

£)cponent 
Overflow 

I:)(Ponent 
Under f low 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, lC~75 

FlOATI~G POINT SUBTRACTION 

Double Precision Floating Subt~act 577 (D) 

Basic Instruction Format (See Figure 2-1). 

(CCEAQ) - CIY-pair» normallzed -> C(E_Q) 

All except OU, Dl, CI, SC. SCR 

(Indicators not listed are not affectej) 

If C(AQ) : 0. then ON; otherwise OFF 

If C(AQ)O = 1, then ON; otherwIse OFF 

If exponent Is greater than +127, then ~N; otherwise OFF 

If exponent Is less than -128, then ON; otherwise OFF 

If a carr, out of AQO is generated, then ON; otherwise OFF 

The OFSB instruction Is identical to the Double Precision 
Floating Add (OFAD) instruction wlt~ the exception that 
the 2·s complement of the mantissa of the operand fro. 
main store Is used. 

DOUble Precision unnormalized Floating Subtract 537 (D) 

3asic Instruction Format (See Figure 2-1). 

CCEAQ) - C(Y-pair) -> C(EAQ) 

All except OU, Olt CI. SC, SCR 

(Indicators not listed are not affected) 

If CCAQ) = 0, then ON; otherwise OFF 

If C(AQ)O = 1, then ON; otherwise OFt 

If exponent Is greater than +127, then ON; otherwise OFF 

If exponent is less than -128, then ON; otherwise OFF 

2-87 Al39 



FLOATING POINT SUBTRACTION 

FSB 

UFS 

Carry 

NO TESI 

FORMATa 

SUMMARY' 

MODIFICATIONSI 

INDICATORSI 

Zero 

Negative 

Exponent 
Overflow 

EJCponent 
Under f low 

Carry 

NOTES: 

FORMAT: 

SUMMARYI 

MODIFICATIONS I 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

If a carry out of AQO is generated, th!n ON; otherwIse OFF 

Except for the precision of the mantisia of the operand 
from main store, the DUFS instr~ction is indentical with 
the UFS instruction. 

Floating Subtract 

Basic Instruction Format (See Figure 2-1). 

(C(EAQ) - Cry)~ normal ized -> ClEAQ) 

All except CI, SC, SCR 

(Indicato~s not listed are not affecte~) 

If ~(AQ) 7 0, then ON; otherwise OFF 

If C(AQ)O = 1, then ON; otherwise OFF 

575 (0) 

11 exponent Is greater than +127, then ON; otherwIse OFF 

If exponent is less than -128, then ON; otherwise OFF 

If a carry out of AQO is generated, then ON; otherwise OFF 

The FSB instruction may be thought of as an Unnormalzled 
Floating Subtract (UFS) instruction followed by a Floating 
NormalIze (FNO) instruction. 

The definition of normalization is located under the 
description of the Floating Normalize (FNO) instruction. 

Unnormalized Floating Subtract 535 (0) 

BaSic Instruction Format (See Figure 2-1). 

C(EAQ) - C(Y) -> C(EAQ) 

AIS except CI, SC, SCR 

2-88 AL39 



INDICATORS' 

Zero 

Negative 

Exponent 
OverfloM 

Exponent 
Underflow 

Carry 

NOTES. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

FLOATI~G POINT SUBTRACTION 

(Indicators not listed are not affected) 

If CCAQ) = 0, then ON; otherwise OFF 

If CCAQ)O = 1, then ON; otherwise OFF 

If exponent Is greater than +127, then ON; otherwise OFF 

If exponent is less than -128, then ON; otherwIse OFF 

If a.carry out of AQO Is generated, then ON; otherMise OFF 

The UFS Instruction is identical to the Unnor.allzed 
Floating Add CUFA) instruction with the exception that the 
2·s complement of the mantissa of t~e operand ',..om maIn 
store is used. 

2-89 Al39 



flOATING POINT MULTIPLICATION 

DFHP 

40 

FORHATI 

SUHHARYI 

MODIFICATIONSI 

INDICATORSI 

Zero 

Negative 

Exponent 
Overfl 0 .. 

Exponent 
Underf 10 .. 

NOTESI 

FORHATI 

SUMHARY I 

HODIFICATIONSI 

INDICATORSI 

Zero 

Negative 

Exponent 
Overf I 0 .. 

Exponent 
Underflow 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

Double Precislon Floatlng Hultlply '+&3 CO) 

Basic Instruction Format (See Figure 2-1). 

(C(EAQ) x CeY-pair» normalized -> CCEAQ) 

All except DU, Dl, CI, SC, SCR 

(Indicators not listed are not affecte~)· 

If C(AQ) = n, then ON; otherwise OFf 

If CCAQ)O : 1, then ON; otherwise OFF 

If exponent Is greater than +127, then ON; otherwise OFF 

If exponent Is less than -128, then ON; otherwise OFF 

The OFMP instruction may 
Precision Unnormallzed 
instruction followed bv 
instruction. 

be thought 
Floating 

a Floating 

of as a 
Multiplv 
Normal i ze 

Double 
( DUf") 

(FNO) 

The definition of normalIzation Is 
description of the Floating Norma1ize 

located under the 
(FNO) instruction. 

Double Precision Unnormalized Floating Hultiply 423 (0) 

Basic Instruction Format (See Figure 2-1). 

ClEAQ) x e(Y-palr) -> CCEAQ) 

All except DU, Dl, Cl, SC, SCR 

(Indicators not listed are not affected' 

11 CCAQ) = 0, then ON; otherwise OfF 

If C(AQ)O = 1, then ON; otherwise OFF 

If exponent is greater than +127, then ON; other.ise OFF 

If exponent is tess than -128, then ON; otherwise OFF 

2-90 Al39 



FHP 

UFM 

NOTESI 

FORHATa 

SUMMARYI 

MODIFICATIONSI 

INDICATORSI 

Zero 

NegatIve 

Exponent 
Overflow 

Exponent 
Underf .ow 

NOTESI 

FORMATa 

SUMMARY. 

MODIFICATIONSI 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

FLOATING POINT MULTIPLICATION 

Except tor the precIsion of the mantIssa of the operand 
from main sto~e, the DUFM instruction I~ identical to the 
Unnormalized Floating Hultiply (UFM) i~struction. 

Floating Multiply ..61 (0) 

Basic Instruction Format (See Figure Z-1). 

(C(EAQ) x C(Y» normalIzed -> C(EAQ) 

All except CIt SC, SCR 

(Indicators not listed are not affected) 

If C(AQ) = 0, then ON; otherwise OFF 

If C(AQ)D = 1, then ON; otherwise Off 

If exponent is greater than +lZ7. then ON; otherwise OFF 

If exponent Is less than -128, then ON; otherwise OFF 

The FMP instruction may be thought of as an Unnormalized 
Floating Multiply CUFM) instruction fol lowed bv a Floating 
Normalize (FNO) instruction. 

The definition of norlllallzatlon is located under the 
descrlpt ion 0 f the F. oating Normalize (FNO) instructi on. 

unnormallzed Floating Huitiply .. 21 (0) 

BasIc Instruction Format (See Figure 2-1). 

C(EAQ) x C(Y) -> C(EAQ) 

All except CI, se, SCR 

AL39 



FLOATING POINT MULTIPLICATION 

INDICATORS. 

Zero 

Negative 

Exponent 
Overflollt 

Exponent 
Under'low 

NOTES' 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

(Indicato~s not listed are not affected) 

If ClAQ) = 0, then ON; otherwise OFF 

If CCAQ)O = 1, then ON; otherwise OFF 

If exponent is greate~ than +127, then ON; othe~wise OFF 

If exponent is less than -128, then ON; othe~"lse OFF 
• 

The UF" instruction is executed as foilowsl 

ClE) + C(YlO,7 -> C(E) 

(C(AQ) x ClY)8,35)O,71 -> ClAQ) 

A normalization is performed onlv in the case of both 
factor mantissas being 100 ••• 0 which Is the 2·s comple~ent 
approxImation to the decimal value -1.0. 

The definitIon 
descrlptl'on of 

of normalization Is located under the 
the Floating Nor.alize (FNO) instruction. 

2-92 Al39 



FLOlTING POINT OIVISION 

-E'oatiDg-P~iD.LDiv'sioDQ) 

OFOI 

OFDV 

FORMAT. 

SUMMARY' 

"OOIFICATIONSI 

INDICATORSI 

Zero 

NegatIve 

Exponent 
Overflo .. 

Exponent 
Underf 10M 

NOTESI 

FORHAT. 

SUHHARYS 

MODIFICATIONS-

REVIEW DRAFT 
SUB~ECT TO CHANGE 
October, 1975 

OouDle Precision Floating Divide Inverted 521 (0) 

BaSic Instruction Format (See Figure 2-1). 

ClY-palr) I ClEAQ) -> C(EAQ) 

All except OU, Ol, CI, SC, SCR 

(Indicators not listed are not affected) 

Ii-division takes pJa~ 

If CCAQ) = 0, then ON; 
otherwise OFF 

If C(AQ)O = 1, then ON; 
otherwise OFF 

II no diVision takti pi gel 

If divisor mantissa = 0, 
then ON; otherMise OFF 

If dividend < 0, then ON; 
otherwise OFF 

If exponent Is greater than +127, then ON; otherMise OFF 

If exponent Is less than -128, then ON; otherMIse OfF 

Except for the lnterchange of the roles of the operands, 
the execution of the DFOI instuction Is identical to the 
execution of the Double Precision Floating DivIde (OFOV) 
ins true tiO". 

If the divisor mantIssa C(AQ) is zer~. the divisIon does 
not take place. Instead, a Divide Check Fault occurs and 
all regIsters remain unchanged.· 

Double Preeislon Floating Divide 567 CO) 

Basic Instruction Format (See Figure 2-11. 

C(EAQ) I eCY-pair) -> C(EAQ) 

All except OUt OL, CI, SC, SCR 

2-93 Al39 



FLOATING POINT DIVISION 

FOI 

INDICATORS' 

Zero 

Negative 

Exponent 
O"erfloM 

Exponent 
Under' 10M 

NOTES' 

FORHATa 

SUHHARYI 

HODIFICATIONsa 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1Y75 

(Indicators not 'isted are not affecte~) 

l~visioD ta~~a~ 

If CCAQ) = 0, then ON; 
otherwise OFF 

If CCAQ)O = 1, then ON; 
otherwise OFF 

If divisor mantissa = 0, 
then ON; otherwise OFF 

If divlden~ < 0, then ON; 
otherwise )FF 

If exponent Is greater than +121, then ON; otherwise OFF 

If exponent Is less than -128, then ON; otherwise OFF 

The OFOV instruction is executed as fol'ows. 

The dividend mantissa C(AQ) is snifted right and the 
dividend exponent eeE) increased accordingly until 
IC(AQ)O,631 < JC(Y-pair)8,711. 

CeE) - C(Y-pair)O,7 -> eeE) 

CIAQ) I CIY-pair)8,71 -> CCAQ)O,63 

00 ••• 0 -> CCQ)64,71 

If the dIvisor mantIssa ClY-pair)S,71 is zero, the 
division does not take place. Instead, a Divide Check 
fault occurs, C(AQ) contains the dividend magnitude, and 
the Negative indicator reflects the dividend sign. 

Floating Divide Inverted 525 CO) 

Basic Instruction Format (See Figure 2-1). 

C(Y) I C(EAQ) -> C(EA) 

00 ••• 0 -> CeQ) 

All except CI, SC, SCR 

2-94 AL39 



FDV 

INDICATORsa 

NOTESZ 

Zero 

Negative 

Exponent 
Overflollt 

Exponent 
Underf I Ollt 

FORHATI 

SUMMARY 

MODIFICATtONSI 

INDICATDRSJ 

Np.gatlve 

Exponent 
Overflow 

Exponent 
Underf low 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

FLOATING POINT DIVISION 

(Indicators not listed are not affected) 

If CeA) = 0, then ON; 
otherwise OFF 

If CeA)O = 0, then ON; 
otherwise OFF 

If divisor mantissa = 0, then 
ON; otherwise OFF 

If dividenj < 0. then ON; 
otherwise lFf 

If exponent is greater than +127, then ON; otherwise OFF 

If exponent is Jess than -128, then ON; otherwise OFf 

Except for the interchange of roles of the operands, the 
execution of the FOI instruction is identical to the 
execution·of the Floating Divide (FOV) instruction. 

If the divisor mantIssa CCAQ) is zero. the division does 
not take place. Instead, a Divide-Check fault occurs and 
all the registers remain unchanged. 

Floating Divide 5&5 CO) 

Basic Instruction Format (See Figure 2-1). 

C(EAQl I ClY) -> CeEA) 

00 ••• 0 -> C(Q) 

All except CI, SC, SCR 

(Indicators not listed are not affecte~' 

If diviSion takes placel 

If CeA) = a, then ON; 
otherwise OFF 

If CeAlO = 1, then ON; 

otherwise OFF 

If no d~ision takes place! 

If diviso~ mantissa = 0, then 
ON; otherwise OFF 

If divide~d < 0, then ON; 

otherwise OFF 

If exponent is greater than +127, then ON; otherwise OFF 

If exponent is less than -128, then ON; otherwise OFF 

2-95 AL39 



FLOATING POINT DIVISION 

NOTES' 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October. 1975 

The FOV instruction Is executed as follows. 

The dividend mantissa C(AQ) is shifted right and the 
dividend exponent eeE) increased accordingly until 
IC(AQ)O,271 < IC(Y)8,351. 

CeE) - CeY)O,7 -> CeE) 

CeAQ) I C(Y)8,35 -> CeA) 

00 ••• 0 -> C(Q' 

If the divisor mantissa CCY)8,35 Is zero. the division 
does not take place. Instead, a Divide Check fault 
occurs, CCAQ) contains the dividend ~agnitude, and the 
Negative indicator reflects the dividend sign. 

2-9& AL39 



FNEG 

FORHATa 

SUMMARY' 

MODIFICATIONS' 

INDICATORS: 

Zero 

Negative 

Exponent 
OverfloM 

Exponent 
Under' 10M 

NOTES. 

REVIEW DRAFT 
SUSJECT TO CHANGE 
October, 1975 

FLOATING POINT NEGATE 

f loa t Ing Negate 51J (0) 

Basic Instruction Format (See Figure 2-1). 

-C(AQ) normalized -> C(AQ) 

All, but none affect instruction execution. 

(IndIcators not lIsted are not affected) 

If C(AQ) = O. then ON; otherwise OFF 

If CCAQ)O = 1, then ON; otherwise OfF 

If exponent Is greater than +127. then ON; otherwise OFF 

If exponent Is less than -128, then ON; otherwise OFF 

This instruct 10n changes the number in C(EAQ) to 1 ts 
normalized negative (If CCAQ) ~ 0). The operation is 
executed by first forming the tMO·S co.ptement of C(AQ). 
and then normalizing C(EAQ). 

Even If originally C(EAQ) Mere normalized, an exponent 
overflow can stIlI occur. namely when CeE) = +127 and 
CCAQ) = 100 ••• 0 which is the 2·s complement approximation 
for the decimal value -1.0. 

The definit10n of normalization may be found under the 
description of the Floating NormalIze (FNO) Instruction. 

Attempted repetition w1th RPL causes an II legal Procedure 
Fault. 

2-97 ALJ9 



FLOATING POINT NORMALIZE 

FNO 

FORMAT' 

SUMMARY. 

MODIFICATIONS' 

INDICATORS a 

Zero 

Negative 

Exponent 
Overflo" 

Exponent 
Underflow 

Overflo" 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October. 1975 

Floating Normalize 573 CO) 

Basic Instruction Format (See Figure 2-1). 

C(EAQ) normal ized -> C(EAQ) 

All. but none affect instruction execution. 

(Indicators not listed are not affecte~) 

If CCEAQ) = floating point D. then ON; otherwise OFF 

If CCAQ)O = 1. then ON; otherwise OFF 

If exponent is greater than +127. then ON; otherwise OFF 

If exponent is less than -128, then ON otherwise OFF 

Set OFF 

The FNO instruction normalizes the nuwber in C(EAQ) if 
CCAQ) _ 0 and the Overflow indicator is OFF. 

A normalized floating number is d~fined as one whose 
mantissa lies in the interval (0.5.1.0) such that 

0.5 <= ICCAQ)' < 1.0 

which. 1n turn, reQuires that CCAQ)O _ C(AQ)l. 

If the Overflow indicator is ON, then C(AQ) is shIfted one 
place to the right, ClAQ)O is inverted to reconstitute the 
actual s1gn, and the Overflow indicato· is set OFF. 

Normalization is performed by shifting C(AQ)1,71 one place 
to the left and reducing CIE) by 1. repeatedly, until the 
conditions for C(AQ)O and C(AQ)l are met. Bits shifted 
out of AQ1 are lost. 

If CCAQ) = O. then ClE) is set to -128 and the Zero 
indlcator is set ON. 

The FHO i~struction can be used to correct overflows that 
occur with fixed point numbers. 

Attempted repetItion with RPl causes a~ Illegal Procedure 
Fault. 

2-96 AL39 



DFRD 

• 

FRO 

FORMATa 

SUMMARY' 

"OOIFICATIONSI 

INDICATORSJ 

Ze ... o 

NegatI"e 

Exponent 
Ovel""Io ... 

Exponent 
Underf low 

NOTESI 

FORHATa 

SUMMARY' 

HODIF~CATIONSI 

INDICATORSI 

Zero 

Negative 

[)CPonent 
Ove ... flow 

E)Cponent 
Under' 10 .. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
Oct ober, 1975 

FLOATING POINT ROUND 

Double Precision Floating Round ,+73 CO) 

Basic Instruction format (See Figu ... e 2-1). 

C(EAQ) ... ounded to 6'+ bits -> CtEA~. 

All, but none affect instructIon executIon. 

(Indicators not listed are not affected) 

If C(EAQ) = floating point 0, then ON; othe"''''ise OFF 

If CCAQ)O = 1, then ON; otherwise OFF 

If ex~onent is greate ... than +127, then ON; othe ..... lse OFF 

If e)CPonent is less than -128, then ON; other ... ise OFF 

The OFRO instruction is identical to the Floating Round 
(FRO) instruction except that the rounding constant used 
is (11 ••• 1)&5,71 instead of (11 ••• 1)29,71. 

Attem~ted repetition ... ith RPL causes an Illegal Procedure 
Fault. 

Floating Round 471 (0) 

Basic Inst ... uction For.at (See Figure 2-1). 

C(EAQ) rounded to 28 bits -> C(EAQ) 

All, but none affect instruction executIon. 

(Indicators not listed are not affected) 

If C(EAQ) = floating ~oint 0, then ON; otherwise OFF 

If C(AQ)O = 1 then ON; other ... ise OFF 

If exponent is greater than +127, then ON; other.ise OFF 

If exponent is less than -128, then ON; otherwise OFF 

2-99 AL39 



FLOATING POINT ROUND 

NOTES. 

REVIEW DR'FT 
SUBJECT TO CHANGE 
October, 1975 

If C(AQ) ~ 0, the FRO instruction performs a true round to 
a precision of 28 bits and a norllaliz"ation on C(EAQ). 

A true round Is a rounding operation such that the sum of 
the'result of applying the operation to two nu~bers of 
eQual magnitude but oPPosite sign is eKactly zero. 

The FRO instruction is executed as follows. 

C ( A Q) + (11 ••• 1 ) 29, 71 - > C ( A Q) 

If C(AQ)O = 0, then a carry Is added at AQ71 

If overflow occurs, C(AQ) is shifted one place to the 
right and C(E) is increased by 1. 

If overflow does not occur, C(EAQ) is normalized. 

If C(AQ) = 0, erE) Is set to -128 and the Zero indicator 
is set ON. 

Attempted repetition with RPL causes an II legal Procedure 
Fault. 

2-100 AL39 



FLlATING POINT COMPARE 

-floatIng-PoInt ComDacaa 

DfCMG 

FORHATa 

SUMMARY' 

MODIfICATIONS' 

INDICATORSI 

Zero 

Negative 

NOTESa 

OFCHP 

FORHAT' 

SUMMARY: 

MODIFICATIONSI 

INDICATORS: 

Zero 

Negative 

NOTES' 

REVIEW DRAfT 
SUBJECT TO CHANGE 
October, 1975 

Double Precision Floating Compare Magnitude· ,.27 (0) 

BasIc Instruction format (See Figure 2-1). 

IC(E,AQO,63)1 I' IC(Y-pair)1 

All except OU, OL, CX, SC, SCR 

(Indicators not listed are not affected) 

If ICCE,AQD,63)1 = 1C(Y-palr)', then O~; otherwise OFF 

If IC(E,AQD,63) 1< JClY-paIr)I, then aN; otherwise OFf 

The DfCHG instruction is identical to the Double Precision 
Floating Co_pare (DFCHP) jnstructlo, except that the 
magnitudes 01 the mantissas are compared instead of the 
algebraic values. 

Double Precision Floating Compare 517 «Q) 

Basic Instruction Format (See Figure 2-1). 

C(E,AQO,63) II C(Y-pair) 

All except DU, DL, CI, SC, SCR 

(Indicators not listed are not affected) 

If CCE,AQO,&J) = CCY-pair), then ON; otherw1se OFF 

If C(E,AQO,63) < C(Y-pair), then ON; otherwise OFF 

The DFCHP instruction is identical to the Floating Co.~are 
(FCHP) instruction except for the preeision of the 
mantissas actually compared. 

2-101 AL39 



FLOATING POINT COMPARE 

FC"' 

FORMAT' 

SUMMARY' 

MODIFICATIONS. 

INDICATORS' 

Zero 

Megat i ve 

NOTES. 

FCHP 

FORMAT. 

MODIfICATIONSI 

INDICATORSI 

Zero 

NegatIve 

NOTESI 

RE.VIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

Floating Compare Magnitude 1t25 (0) 

Basic InstructIon Format (See Figure 2-11. 

IC(E,AQO,27)1 II IC(Y)' 

All except ct, SC, SCR 

(Indicators not listed are not affectej) 

If ICCE,A~O,2n S = IC (Y) I, then ON; otherwIse OFF 

If JC(E,AQO,27)1 < IC(Y)I, then ON; otherwise OFF 

The FCHG instruction 1s identical to the Floating Compare 
(FCMP) instruction except that the magnitudes of the 
mantissas are co_pared instead of the algebraic values. 

Floating Compare 

Basic Instruction Format (See Figure 2-1). 

C(E,AQO,27) II Cry) 

All except CI, SC, SCR 

(Indicators not listed are not affected) 

If CCE,AQO,27) = Cry), then ON; otherwise OFF 

If C(E,AQO,27) < Cey), then ON; otherwise OFF 

The fCHP instruction is executed as foiloMSI 

515 (0) 

The mantissas are aligned by shifting the mantissa of 
the operand with the algebralcallf smaller exponent 
to the right the number of places equal to the 
difference In the tMO exponents. 

The alIgned mantissas are compared and the indicators 
~et accor~ing'v. 

2-102 AL39 



ADE 

FORMATI 

SUHMARYI 

MODIFICATIONSI 

INDICATORSI 

Zero 

Negative 

Exponent 
Overflow 

Exponent 
Underf low 

FSZN· 

FORMATt 

HODIFICATIONSI 

INDICATORSI 

Zero 

NegatIve 

LOE 

FORHATa 

SUMHARYI 

HODIFICATIONSI 

RE.VIEW DRAFT 
SUBJECT TO CHANGE 
Oct ober, 1'375 

FLOATING POINT MISCELLANEOUS 

Add to Exponent 415 (0) 

Basic Instruction Format (See Figure 2-1). 

CIE) + C(Y)O,7 -> CIE) 

All except CI, SC, SCR 

(Indicators not listed are not affecte~) 

Set OFF 

Set OFF 

If exponent Is greater than +127, then ON; otherwise OFF 

If exponent Is less than -128, then ON; otherwise OFF 

Floating Set Zero and Negative Indicators .. 30 (0) 

Basic Instruction Format (See Figure 2-1). 

Set indicators according to C(Y) 

All except CI, SC, SCR 

(Indicators not listed are not affected) 

If C(Y)8,35 = 0, then ON; otherwise OFF 

If C(Y)8 = 1, then ON; otherwise OFF 

Load Exponent .. 11 (0) 

Basic Instruction Format (See Figure 2-1). 

C(Y)O,7 -> C(E) 

All except CI, SC, SCR 

2-103 AL39 



3 
3 
3 

FLOATING POINT MISCELLANEOUS 

INDICATORS. 

Zero 

Negative 

STE 

FORHATa 

SUMMARY •. 

HODIFICATIONSI 

INDICATORS' 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October. 1975 

(Indicators nof listed are not affected) 

Set'OFF 

Set OFF 

Store Exponent 

BasIc InstructIon Format (See Figure 2-1). 

C(E) -> C(Y)O,7 

00 ••• 0 -> C(Y)S,17 

All except DU. DL. CI, SC, SCR 

None affected 

2-104 

45& (0) 

AL39 



TRANSFER 

-IRANSFER~ INSTRUCTIONS 

CALL6 

FORHATa 

SUMMARY' 

• 
"ODlflCATIONSI 

INDICATORS' 

NOTESI 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October. 1975 

Ca II C Using PR& and PR1) 

BaSic Instruction Format (See Figure 2-1». 

If CCTPR.TRR) < C(PPR.PRR) then 
CeOSaR.STACK) II CCTPR.TRR) -> C(PR7.SNR) 

If C(TPR.TRR) = CCPPR.PRR) then 
C(PR6.SNR) -> C(PR1.SNR) 

CCTPR.TRR) -> CCPR7.RNR) 

If CCTPR.TRR) = 0 then 
C(SDW.P) -> C(PPR.P); 
otherwise 0 -> C(PPR.P) 

00 ••• 0 ->"CCPR1.WORONO) 

00 ••• 0 -> C(PR1.BIINO) 

c'rpR.TR~) -> C(PPR.PRR) 

C(rp~.TSR) -> C(PPR.PSR) 

C(TPR.CA) -> C(PPR.IC) 

All except OU, OL, CI, SC, SCR 

None affected 

113 ((I) 

If CCTPR.TRR) > C(PPR.PRR), an Access Violation fault, 
Outward Call, occurs and the CALLD Instruction Is not 
executed. 

If the CALLE) 1nstruct1on Is executed with the Processor In 
Absojute "ode with bit 29 of the instr,Jction word eQual to 
o 'and .,ithout 1ndirection through an ITP or ITS pair, 
then ••• 

the Appending Hode 1s entered for the address 
preparation of the CALLE) operand address and is 
retained if the instruction executes successfully, 
and ••• 

the Effective Segment Number generated for the SOW 

• 

fetch and subseQuent loaclng Into CCTPR.TSR) Is eQua' 
to C(PPR.PSRJ and mav be undefined 1n Absolute Mode. 
and ••• 

the Effective Ring Number loaded into CCTPR.1RR) 
prior to the SOW fetch 1s eaual to C(PPR.PR~) (which· 
Is 0 In Absolute Hode) implvln; that the Access 
Violation checks tor Outward Cal' and Ba~ OutMard 
Call are Ineffective and that an Access Violation, 
out of Call Brackets will occur if C(SDW.R1) _ O. 

2-105 AL39 



TRANSFER 

RET 

FORHATI 

SUHHARYI 

MODIFICATIONS' 

INDICATORS' 

Parity 
"ask 

Not BAR 
Hode 

Attempted repetitIon with RPT, RPD, or RPl causes an 
I.legal Procedure Fault. 

Return 630 (0) 

Basic Instruction Format (See Figure 2-1). 

C(Y)O,17 -> C(PPR.IC) 

C(Y)18,31 -> C(IR) 

All except DU, Dl, CI, SC, SCR 

(Indicators not listed are not affectej) 

If C(Y)Z7 = 1, and the Processor is in Absolute or 
Privileged Hode, then ON; other~lse JFF. This indic~tor 
is not affected in the Normal or BAR modes. 

Cannot be changed by the ~ET instruction 

Hultiword If C(Y)30 = 1, and the Processor is in Absolute or 
Instruction Privileged mode, then ON; otherwise JFF. This lndicator 
Fault is not affected in Nor.al or BAR modes. 

Absolute Cannot be changed by the RET Instruction 
Hode 

A'I I other If cprresp~nding bi t In elY) Is 1, then ON; otherwise, OFF 
Indicators 

NOTESI The relation between C(Y)18,31 and the indIcators is given 
in Table 2-5. 

The TalJy Runout indicator reflects C(1)25 regardless of 
what address modification is performed on the RET 
instruction for ta'Iy operations. 

The RET instruction may be thought of as a load Indicators 
(lOI) instruction followed by a transfer to location 
CeY)O,17. 

Attempted repetition with RPT, RPO. or RPl causes an 
Illegal Procedure Fault. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 2-106 Al39 



· RTCD 

fORHATI 

SUMMARYI 

MODIfICATIONSI 

INDICATORSI 

NOTES. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

TRANSfER 

Return Control Double &10 (0) 

Baste Instruction Format (See Figure 2-1). 

C(Y-pairJ3,17 -> C(PPR.PSR) 

ttaKi.um of 
C(Y-palr)18,20; C(TPR.TRR); C(SDW.Rl) -> C(PPR.PRR) 

C(Y-pair)3&,53 -> C(PPR.IC) 

If C(PPR.PRR) : 0 then C(SOH.PJ -> CCPPR.P); 
otherwise D -> C(PPR.P) 

C(PPR.PRR) -> C(PRn.RNR) for n : (0, 1, •••• 7) 

All except OU, DL, CI, se, SCR 

None af f ected 

The hardware assumes that C(Y)17 = 0; ~o check is made. 

If an access violation occurs when fet:hlng the SOW for 
location V, the C(PPR.PSR) and C(PPR.P~R) are Aot altered. 

If the RTCO instruction Is executed with the Processor in 
Absolute Mode with bit 29 of the instr~ction Mord equal to 
o and withQut indirection through an ITP or ITS pair, 
then ••• 

the Appending Hode 15 entered for the address 
preparation of the RTCD operand address and is 
retained if the instruction executes successfully, 
and ••• 

the Effective Segment Number generated for the SOW 
fetch and subsequent loading into CCTPR.TSR) is eQual 
to C(PPR.PSR) and may be undefined in Absolute Hode, 
and ••• 

the Effective Ring Number loaded Into C(TPR.TRR) 
prIor to the SOW fetch is eQual to C(PPR.PRR) (Mhich 
Is a in Absolute Hode) implying that control Is 
always transferred into Ring o. 

Attempted repetition with RPT, RPO, or RPL causes an 
1.legal Procedure Fault. 

2-107 AL39 



TRANSFER 

TEO 

TEU • 

FORMATI 

SUMMARYI 

MOOIFICAT-IONSI 

INDICATORS' 

Exponent 
Overf I ow 

NOTESI 

FORHATI 

SUHHARYI 

MODIFICATIONSI 

INDICATORSI 

Exponent 
Underf low 

NOTES' 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

Transfer On Exponent Overflow 

Basic InstructIon Format (See Figu~e 2-1). 

If Exponent Overflow indicator ON then 

C(TPR.CA) -~ C(PPR.IC) 

C(TPR.TSR) ~> C(PPR.PSR) 

otherwIse. no change to CCPPR) 

All except OUt Ol, CI, se, SCR 

(Indicators not listed are not affected) 

Set OFF 

614 . CO) 

Attempted repetitIon with RPT, RPO. or RPl causes an 
Illegal Procedure Fault. 

Transfer on Exponent Underflow 

Basic Instruction Format (See Figure 2-1). 

If Exponent Underflow indicator ON then 

CCTPR.CA) -> C(PPR.IC) 

CCTPR.TSR) -> e(PPR.PSRJ 

otherwIse, no change to eCPPR) 

All except OU, Ol, CI, se, SCR 

(IndIcators not 'isted are not affected) 

Set OFF 

61S CO) 

Attempted repetitIon wIth RPT, RPO, or RPl causes an 
II'ega' Procedure Fau.t. 

2-108 Al39 . 



THI 

FORHATa 

SUMMARY. 

MODIFICATIONS. 

INDICATORSI 

NOTES. 

THOZ 

FORHAT. 

SUHMARY. 

MODIFICATIONS' 

INDICATORSI 

NOTES. 

TNC 

FORHATI 

SUHMARYI 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

TRANSFER 

Transfer on Minus EDft COl 

BaSic Instruction Format (See Figure 2-1). 

If Negatl~e indicator OM then 

CCTPR.CA) -> C(PPR.IC) 

CCTPR.TSR) -> CCPPR.PSR) 

otherwise, no change to C(PPR) 

All except DU. Dl, CIt SC, SCR 

None affected 

Attempted repetition with RPT. RPD, or RPl causes an 
Illegal Procedure Fault. 

Transfer On Minus or Zero 60ft (1) 

Basic Instruction Format ISee Figure 2-1). 

If Negatl~e or Zero in41cator ON then 

CCTPR.CA) -> CCPPR.ICI 

CCTPR.TSR) -> C(PPR.PSR) 

otherwise, no change to C(PPR) 

All except DU, Dl. CI, SC, SCR 

None af 'ected 

Attempted repetition "lth RPT. RPD, or RPl causes an 
Illegal Procedure Fault. 

Transfer on No Carry 602 (0) 

Basic Instruct jon Format ISee Figure 2-1). 

If Carry Indicator OFF then 

C(TPR.CA) ~> CCPPR.IC) 

2-109 AL39 



TRANSFER 

MODIFICATIONS' 

INDICATORSI 

NOTES' 

THZ 

FORMAT' 

SUMMARYI 

MODIFICATIONS. 

INDICATORS. 

NOTES' 

TOV 

FORHAT' 

SUMMARY' 

MODIFICAT IONS. 

INDICATORSI 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

C(TPR.TSR) -> C(PPR.PSRa 

otherwise, no change to C(PPR) 

All except OU, OL, CI, SC, SCR 

None affected 

Attempted repetition with RPT, RPO, or RPL causes an 
Illegal Procedure Fault. 

Transfer On Not Zero 601 (0) 

Basic Instruction Format (See Figure 2-1). 

If Zero indicator OFF then 

CCTPR.CA) -> C(PPR.IC) 

CCTPR.TSR) -> C(PPR.PSR) 

otherwise, no change to CCPPR) 

AI. except, OU, OL, CI, SC, SCR 

None affected 

Attempted repetition with RPT, RPD, or RPL causes an 
Illegal Procedure Fault. 

Transfer On Overflow 617 (0) 

Basic Instruction Format (See Figure 2-1). 

If Overflow indicator ON then 

CCTPR.CA) C(PPR.IC) 

C(TPR.TSR) -> CCPPR.PSR) 

otherwIse, no change to CCPPR) 

All except OU, OL, CIt SC, SCR 

(Indicators not listed are not affectej) 

2-110 AL39 



OverfloM 

NOTES' 

TPL 

FORHATa 

SUMMARya 

MODIFICATIONSl 

INDICATORSI 

NOTESI .. 

TPNZ 

FORHATl 

MODIFICATIONS. 

INDICATORS' 

NOTES. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October. 1975 

TRANSfER 

Set OFF 

Attempted repetition with RPT, RPO, or RPL causes an 
Illegal Procedure Fault. 

Transfer on Plus 605 CO) 

Basic Instruction ForMat (See Figure 2-1). 

If Negative indicator OFF, then 

C(PTR.TSR) -> C(PPR.PSR) 

otherwise, no change to CCPPR) 

All except OUt OL, CI, se, SCR 

None af 'ected 

Attempted repetition wIth RPT, RPO, or RPL causes an 
I.legal Procedure Fault. 

Transfer on Plus and Nonzero 605 (1) 

Basic Instruction Format (See Figure 2-1). 

If Negative and Zero indicators are OFF then 

CCTPR.CA) -> CCPPR.IC) 

eCTPR.TSR) -> C(PPR.PSR) 

otherwise, no change to CCPPR) 

All except OU, OL, CIt se, SCR 

None affected 

Attempted repetition with RPT. RPO. or RPL causes an 
Illegal Procedure Fault. 

2-111 Al39 



TRANSFER 

TRA 

FORMATa 

SUMMARY' 

MODIFICATIONS' 

INDICATORsa 

NOTESI 

TRC 

FORMATa 

SUMMARY' 

HODIFICATIONsa 

INDICATORS. 

NOTES' 

TRTF 

FORHATa 

SUHHARY. 

Rl:.VIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

Transfer Unconditionally 710 (0) 

Basic Instruction Format (See Figure 2-1). 

CCTPR.CA) --> C(PPR.IC) 

C(TPR.TSR) --> C(PPR.PSR' 

All except DU, Ol, CI, SC, SCR 

None af f ected 

Attempted repetition wIth RPT, RPO, or RPL causes an 
I.legal Procedure Fault. 

Transfer on Carry 603 (0) 

Basic Instruction Format (See Figure 2-1). 

If Carry indicator ON then 

C(TPR.CA) CCPPR.IC) 

C(TPR.TSR) -> C(PPR.PSR) 

otherwise, no change to e(PPR) 

All except OUt OL. CI, se, SCR 

None af rected 

Attempted repetition "ith RPT, RPD, or RPl causes an 
Illega' Procedure Fault. 

Transfer on TruncatIon Indicator OFF 601 (1) 

Basic Instruction Format (See Figure Z-1). 

If Truncation Indicator OFF then 

C(TPR.CA) -> C(PPR.IC) 

C(TPR.TSR) -> C(PPR.PSR) 

otherwise, no change to C(PPR) 

2-112 AL39 



HODIfICATIONSI 

INDICATORSI 

NOTES' 

TRTN 

FORHATa 

SUHHARya 

HODIFICATIONSa 

INDICATORS' 

TRANSFER 

All except OU, Ol, ct. SC. SCR 

None affected 

Attempted repetition with RPT, RPD, or RPl causes an 
Illegal Procedure Fault. 

T~ansfer on Truncation Indicator ON 600 C11 

Basic Instruction Format (See Figure 2-1). 

If Truncation Indicator ON then 

C(TPR.CA) -> C(PPR.ICI 

C(TPR.TSR) -> C(PPR.PSR) 

otherwise, no change to C(PPRl 

All except DU. Dl, CI, SC, SCR 

(Indicators not listed are not affected) 

T~uncatlon set OFF 

TSPO 
TSP1 
TSP2 
TSP3 
TSPlt 
TSP5 
TSPo 
TSP7 

NOTESI 

FORMATa 

SUMMARYI 

RE V lEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

Attempted repetition with RPT, RPO, or RPl causes an 
Illegal Procedure fault. 

Transfer and Set PRO 270 (0) 
Transfer and Set Plt1 271 (0) 
Transfer and Set PR2 272 (0) 
Transfer and Set PR3 273 (0) 
Transfer and Set PRlt 670 (0) 
Transfer and Set PitS ·671 (0) 
Transfer and Set PRo 672 CO) 
Transfer and Set PR7 613 (0) 

Basic Instruction format (See Figure 2-1). 

For n = 0, 1 •••• , or 7 as determIned by operation code 

C(PPR.PRR) -> CCPRn.RNR) 

C(PPR.PSR) -> CCPRn.SNR) 

C(PPR.IC) +1 -> C(PRn.HORDNO) 

00 ••• 0 -> CCPRn.aITNO) 

2-113 Al39 



TRANSFER 

HODIFICATIONS' 

INDICATORS' 

NOTES' 

TSS 

FORHAT' 

SUHMARY' 

HODIFICATIONS' 

.INDICATORSI 

NOTES. 

TSXn 

FORHATa 

SUHMARYI 

REVIEW DRAFT 
SUBJECT TO CHANGE 
Oc tober, 1975 

C(TPR.CA) -> C(PPR.IC) 

C(TPR.TSRJ -> C(PPR.PSR) 

All e~cept DU, Dl, CI, SC, SCR 

None affected 

Attempted repetition Mlth RPT, RPD, or RPl causes an 
Illegal Procedure Fault. 

Transfer and Set Slave 715 (0) 

Basic Instruction Format (See Figure 2-1). 

C(TPR.CA) -> C(PPR.IC) 

C(TPR.TSR) -> C(PPR.PSR) 

All e~cept DU, Dl, CI, SC, SCR 

None affected (except as noted beloM) 

If the TSS instructIon is executed Mlt~ the Processor nAt 
in BAR mode, the Absolute indicator is set OFF, and the 
Not BAR Hode indicator is set OF: to signal that 
subseQuent addressing is to be done i~ the BA~ Hode. The 
Base Address Register (BAR) is used in the address 
preparation of the transfer, and the BAR will be used in 
address preparation for al I SubseQuent instructions until 
a fault or interrupt occurs. 

If the TSS instruct Ion is e~ecuted wi th the Not BAR Ho(;e 
Indicator alreadv OFF, it functions as a Transfer (TR~) 
instruction and no indicators are chan~ed. 

Attempted repetition Mith RPT, RPD, or RPL causes an 
Illegal Procedure Fau1t. 

Transfer and Set Inde~ Register Xn 70n (I) 

BaSic Instruction Format (See Figure 2-1). 

For n = 0, 1, ••• , or 7 as determined bV operation code 

C(PPR.IC) + 1 -> C(Xn) 

C(TPR.CA) -> C(PPR.IC) 

2-11" AL39 



HODIFICATIONSI 

I NDICA TORSI 

NOTES' 

TTF 

FORHAT. 

SUMMARY. 

MODIFICATIONS: 

INDICATORS' 

NOTES: 

TTti 

FORMAta 

SUMMARY' 

HODIFIC ATIONS Z 

INDICATORS. 

NOTES' 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

TRANSfER 

CtTPR.TSR) -> CCPPR.PSR) 

All except DU, DL, CI. SC, SCR 

None af fectect 

Attempted repetition with RPT, RPD, or RPL causes an 
Illegal Procedure Fault. 

Transfer on Tally Runout Indicator OFf 601 (0) 

BaSic Instruction Format (See Figure 2-1). 

If Tally Runout Indicator OFF then 

C(TPR.CA) -> C6PPR.IC) 

C(TPR.TSR) -> C(PPR.PSR) 

otherwise, no change to C(PPR) 

AI' except DU, DL, CIt SC, SCR 

None affected 

Attempted repetition with RPT. RPD, or RPL causes an 
Illegal Procedure Fault. 

Transfer on Tally Runout Indicator ON 606 (1) 

Basic Instruction Format (See Figure 2-1). 

If Tally Runout Indicator ON then 

ClTPR.CA) -> C(PPR.IC) 

ClTPR.TSRt -> C(PPR.PSR) 

otherwise, no change to C(PPR) 

• 

All except DU, OL, CI, SC, SCR 

None affected 

Attempted repetition with RPT, RPD, or RPL causes an 
Ilregal Procedure Fault. 

2-115 . Al39 



TRANSFER 

TZE 

FORHATa 

SUMMARY: 

HOD IFIC AllONS: 

INDICATORS: 

NO TESI 

REVIEW DR,.FT 
SUBJECT TO CHANGE 
October, 1915 

Transfer On Zero &00 (0) 

Basl~ Instruction Format (See Figure 2-1). 

If Zero indicator ON then 

CCTPR.CA) -> C(PPR.IC) 

C(TPR.TSR) -> C(PPR.PSR) 

otherwise, no change to CCPPR) 

All except OU, Ol, CI, se, SCR 

None af fected 

Attempted repetition with RPT, RPD, or RPL causes an 
IJlegal Procedure Fault. 

2-11& ALJ9 



EASPO 
EASPl 
EASPZ 
EASP3 
EASP" 
EASP5 
EASP& 
EASP7 

FORHATI 

SUMHARY' 

HODIFICATIONS' 

INDICATORSI 

~NOTESI 

EAWPO 
EAWP1 
EAWP2 
EAWP3 
EAWP" 
EAWP5 
EAWP& 
EAWP7 

FORHATI 

SUHHARYI 

MODIFICATIONS! 

REVIEW DRAfT 
SUBJECT TO CHANGE 
October, 1975 

POINTER REGISTE~ DATA MOVEMENT LOAD 

E f fee t i ve Address to Seglllent Number of PRD 
E f fee t i ve Address to Segment Number of PR1 
E t fee t i ve A ddr~ss to Segment Number of PR2 
Effective Address to Segment Number of PiU 
£1 fee t i ve Address to Segment Number of PRit 
Ef fee t i lie Address to Segment Number of PR5 
E1 fee tllle Address to Segment Number of PRo 
E f fee t 1 ve Address to Segment Numb er of PR7 

Basic lnstruc t i on Format (See Figure 2-U. 

For n = 0, 1, ... , or 7 as determIned bv operation 

CCTPR.CA) -> C(PRn.SNR) 

All except OU, OL, CI, SC, SCR 

None af fected 

Attempted execution In BAR Mode causes 
Procedure Fault. 

an 

311 (OJ 
310 (1' 
313 (01 
312 (0 
331 (0' 
330 (U 
333 COJ 
332 (1) 

code 

II lega I 

Attempted repetItion with R?T, RPD. or RPL causes an 
Illegal Procedure Fault. 

Eff ec t 1 ve Address to Word/Sl t Number of PRO 310 (0) 
E1 f ec tllle Address to Word/Bit Number of PRl 311 (1) 

Ef feet lve Address to Word/Sit Number of PR2 312 (0) 
Effective Address to Word/Sl t Number of PR3 313 (1) 
E t f ec t 1 ve Address to WordlBlt Number of PRIt 330 (0) 
Effective Address to Word/Bit Number of PR5 331 (1) 
Effective Address to Word/Blt Numl3er of PRo 332 CO) 
E f fee t I lie Address to Word/BIt Number of PR7 333 (1) 

Basic Instruc t Ion Format (See Figure 2-1'. 

For n = o. 1. ... , or 7 as determIned ov operation code 

C(TPR.CA) -> C(PRn.WORDNO) 

C(TPR.TBR) I 9 -> C(Prn.CHAR) 

C(TPR.TBR) modulo 9 -> C(PRn.8ITNO) 

All except OU, DL, CI, SC, SCR 

2-117 AL39 



POINTER REGISTER DATA MOVEMENT LOAD 

EPBPO 
EPBP1 
EPBP2 
EPBP3 
EPBPCt 
EPBP5 
EPBPE) 
EPBP7 

EPPO 
EPPl 

EPP2 
EPP3 
EPPCt 
EPP5 
EPPE) 
EPP7 

INDICATORSI 

NOTES' 

FORMATI 

SUMMARY. 

HOOIFICA lIONSI 

INDICATORS: 

NOTES. 

FORHATa 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

None af fected 

Attempted execution in BAR Mode causes 
Procedure Fault. 

an Illegal 

Attempted repetition with RPT. RPD. or RPL causes an 
Illegal Procedure Fault. 

Effective Pol nter at Base to PRO 350 (1) 
Effective Pol nter at Base to PRl 351 (D) 

Effective Pointer at Base to PR2 352 (1) 
Effective Poi nt er at Base to PR3 353 (0 ) 
Effec'tive Poi nt er at Base to PRCt 370 (1) 
Effective Pointer at Base to PR5 :!71 (0) 

E f fec tl ve Poi nt er at ease to PRE) 372 (U 
E f fee t i ve Poi nt er at Base to PR7 373 CO) 

Basic Instruction For~at (See Figure 2-1). 

For n = 0, 1 ••••• or 7 as determined ,y operation code 

C(TPR.TRR) -> C(PRn.RN~) 

CCTPR.TSR) -> C(PRn.SNR) 

00 ••• 0 -> C(Prn.WORONO) 

00 ~> C(Prn.CHAR) 

0000 -> C(PRn.BtTNO) 

All except OU, OL. CI, SC. SCR 

None affected 

Attempted execution in BAR Mode causes 
Procedure Fault. 

an Illegal 

Attempted repetition with R?T, RPO, or RPL causes an 
Illegal Procedure Fault. 

Effective Pointer to PRO 
Effective Pointer to PR1 

E f f ec t i ve Pol nter to PR2 
Effective P'ol nter to PR3 
Effective Pointer to PRIt 
Effective P 01 nter to PR5 
Effective Pointer to PRE) 
Effective Pointer to PR7 

Oasic Instruction Format 

2-118 

(See Figure 2-0. 

350 (0) 
351 (U 

352 (0) 
353 (1) 

370 ( 0 ) 
371 (1) 

372 ( II ) 
373 (1) 

AL39 



SUHHARY. 

MODIFICATIONSI 

INDICATORS: 

NOTES. 

LPRI 

.. FORHAT. 

SUMMARY. 

HODIFICATIONS' 

INDICATORS: 

NOTES' 

REVIEW DR ~FT 
SUBJECT TO CHANGE 
October, 1975 

POINTER REGISTE~ DATA MOVEMENT LOAD 

For n = 0, 1 •••• , or 7 as determined by operation code 

C(TPR.TRR) -> C(PRn.RNR) 

C(TPR.TSRa -> C(PRn.SNR) 

C(TPR.CA) -> C(PRn.WORONO) 

C(TPR.TBR) I 9 -> C(PRn.CHAR) 

C(TPR.TBR) modulo 9 -> C(PRn.BITNO) 

All except OU, OL, CI, SC, SCR 

None af fected 

Attempted eKecut!on in BAR Hade causes 
Procedure Fault. 

an I I • ega I 

Attempted repetition with RPT. RPO, or RPl causes an 
Illegal Procedure Fault. 

load Pointer RegIsters from ITS Pairs 173 CO) 

BaSic Instruction Format (See Figure 2-1) • 

For n = 0, 1, ••• , 7 

Hax i mum of 
C(Y+Zn-pair)18,ZO; CISCH.RI); C{TPR.TRR) -> C(PRn.RN~) 

C(Y+Zn-palr)3,17 -> C(PRn.SNR) 

C(Y+Zn-palr)3&,53 -> C(PRn.WORJNO) 

C(Y+2n-palr)57,&Z I q -> C(Prn.CHAR) 

C(Y+Zn-pair)57,&2 modulo 9 -> C(PRn.BITNO) 

All except CU, Ol, CI, SC, SCR 

None Af fected 

Starting at location Y, the. contents of eight word pairs 
(in ITS pair format) replace the contents of Pointer 
Registers 0 through 1 as shown. The h3rd~are assymes that 
Y14,11 = 0000 and addressing is Incre~ented accordlngly; 
no check is made. 

Since C(TPR.TRR) and C(SDW.Rl) are b~th eQual to zero In 
Absolute mode, C(Y+Zn-pair)18,ZO are I~aded into PRn.~N~ 
in Absolute mode. 

2-119 AL39 



POINTER RE~ISTER DATA MOVEMENT LOAD 

LPRPn 

FORHAT' 

SUMHARY. 

MODIFICATIONSI 

INDICATORS' 

NOTESI 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October. 1q75 

Attempted execution 
Procedure Fault. 

in BAR Hode causes an Illegal 

Attempted repetition with RPT, RPO. or RPL causes an 
Illegal Procedure Fault. 

Load PRn Packed 7&n (OJ 

Basic Inst~uctlon Format (See Figure 2-1). 

For n = Q. 1 ••••• or 7 as determlned 3Y operation code 

C(TPR.TRR) -> C(PRn.RNR) 

If C(Y)O.2 ~ 11, then 
C(Y)O.S I 9 -> C(PRn.CHAR) 
C(Y)Q,S modulo 9 -> C(PRn.BITNO); 

otherwise, generate Command Fault 

If C(Y)&.17 = 11 ••• 1, then 111 -> C(PRn.SNR)O,2 
otherwise, 000 -> C(PRn.SNR)O.2 

C(Y)G.17 -> C(PRn.SNR)3,1~ 

C(Y)18,35 -> C(PRn.HORDNO) 

AI~ except OUt OL. CI, SC, SCR 

None af 'ected 

Binary -1-s in C(Y)O,2 correspond to an il legal BITNO, 
that is, a bit posltion beyond t~e extent of C(Y). 
Detection of these bits causes a Comma~d Fault. 

Attempted execution in BAR Hode causes 
Procedure Fault. 

an II legal 

Attempted repetition Kith RPT, RPO, or RPl causes an 
Illegal Procedure Fault. 

2-120 



SPBPO 
spap1 
SPBPZ 
spap3 
spap,. 
SPBP5 
spap& 
spap7 

FORMATa 

SUMMARYI 

"'MODIFICATIONS I 

INDICATORSI 

NOTES' 

SPRI 

FORHATI 

SUHMARya 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October. 1975 

POINTER REGISTER DATA MOVEMENT STORE 

Store Segment Base Po inter 0' PRO 250 (1) 
Stor'e Segment Base Pointer of PR1 251 ( 0) 
Store Se,)ment ~ase Pointer 0' PR2 252 (1) 
Store Segment Base Pointer of PR3 253 (0 ) 
Store Segment Base Pointer of PR4 &50 (1) 
store Segment Base Poi.nter of PR5 651 (0) 
Store Segment Base Pointer of PR6 652 (1) 
Store Segment Base Pointer of PR7 653 (0 ) 

BasIc Instruction Format (See Figure 2-1). 

For n = O. 1 ••••• or 7 as determined oy operation code 

C(PRn.SNR) -> ClY-palr)3.17 

C(PRn.RNR) -> C(V-pair)18.20 

000 -> CCY-palr)O.2 

00 ••• 0 -> CCY-pair)21.29 

43 (octal) -> C(Y-palr)30,3S 

00 ••• 0 -> C(Y-pair)36,71 

All except DU. Ol, CIt se. SCR 

None affected 

The hardware assumes Y bit 17 = 0; no check is made. 

Attempted execution In BAR Mode causes 
Procedure Fault. 

an I lie gal 

Attempted repetition with RPT. RPD. or RPl causes an 
Illegal Procedure Fault. 

Store Pointer Registers as ITS Pairs 25,. (at 

Basic Instruction Format (See figure 2-1). 

For n = O. 1 ••••• 1 

000 -> C(Y+2n-pair)O.2 

C(PRn.SNRl -> C(Y+2n-pair13.17 

C(PRn.RNR) -> C(Y+2n-pair)18.20 

00 ••• 0 -> C(Y+2n-pairlZ1.29 

2-121 AL39 



POINTER REGISTER DATA MOVEMENT STORE 

SPRID 
SPRI1 
SPRI2 
SPRI3 
SPRI4 
SPRIS 
SPRIG 
SPRI7 

MODIFICATIONSI 

INDICATORS. 

NOTES. 

FORHATa 

SUHMARY I 

REVIEH DRAFT 
SUBJECT TO CHANGE 
October, 1975 

43 (octat) -> CCY+2n-palr)30,35 

C(PRn.HORONO) -> CIY+2n-pair)3&,53 

000 -> C(Y+2n-palr)54,5& 

9 • CCPRn.CHAR) + CCPRn.BITNO) -> CCY+2n-pair)57,&2 

00 ••• 0 -> CtV+2n-pair)63,7l 

All except DU. Dli CI, SC. SCR 

None. af f ec ted 

Starting at location Y, the contents of Pointer Registers 
o through 7 replace the contents of eight word pairs (in 
ITS pair format). The hardware assumes V bits 14 to 17 = 
0000 and addressing is incremented accordInglv; no check 
is made. 

Attemped execution In BAR Hode causes 3n Illegal Procedure 
Fault. 

Attempted repetition with RPT, RPD, or RPL causes an 
Illegal Procedure Fault. 

Store PRO as ITS Pair 250 
Store PR1 as ITS Pair 251 
Store PR2 as ITS PaIr 252 
Store PR3 as ITS Pair 253 
Store PRlt as ITS Pair 650 
Store PR5 as ITS Pair 651 
Store PRo as ITS Pair 652 
Store PR7 as ITS Pair 653 

Basic Instruction Format (See Figure 2-1). 

For n = 0, 1, ••• , or 7 as determined DY operation code 

000 -> CCY-pair)O,2 

CCPRn.SNR) -> CIY-pair)3,l7 

CCPRn.RNR) -> CCY-pair)18,20 

00 ••• 0 -> C(Y-pair)21,Z9 

43 (octal) -> CCY-pair)30,35 

C(PRn.HORONO) -> C(Y-pair)36,53 

000 -> CtV-pairl54,56 

9 • CCPRn.CHAR) + C(PRn.BITNO) -> C(Y-Dair)57,&2 

2-122 

(0) 
(1) 
(() 

(1) 
(0) 

(1) 
to) 
(1) 



HODlfICATIONSZ 

INDICATORSI 

NOTESI 

SPRPn 

fORHATa 

SUMMARYI 

MODIFICATIONS' 

INDICATORS: 

NOTESI 

REVIEW DRAfT 
SUBJECT TO CHANGE 
October. 1975 

POINTER REGISTER DATA HOVEMENT STORE 

All except DU. Olt CIt SC t SCR 

None affected 

The hardware assumes Y bit 17 = 0; no ::heck is made. 

Attempted execution in BAR Hode causes an II Ie 9a I 
Procedure Fau It. 

Attempted repetition with RPT, RPD. or RPl causes an 
Illegal Procedure Fault. 

Store PRn Packed 54n (0)> 

Basic Instruction Format (See FIgure 2-1). 

For n = O. 1 ••••• or 7 as determined oy operation code 

9 • C(PRn.CHAR) + C(PRn.BITN~) -> C(Y)O.5 

C(PRn.SNR)3.14 -> C(Y)6.17 

C(PRn.WORONO) -> CIY)18.3S 

All except DU. Ol, CI, SC, SCR 

None at fected 

If C(PRn.SNR)O,2 are nonzero, and C(PRn.SNR) _ 11 ••• 1. 
then a Store Fault. Illegal Pointer. Mill occur and C(Y) 
will not be changed. 

Attempted execution in BAR Mode causes 
Procedure Fault. 

an Illegal 

Attempted repetItion with RPT. RPO, or RPl causes an 
Illegal Procedure Fault. 

2-123 Al39 



POINTER REGISTER ADDRESS ARITHMETIC 

ADWPO 
AOHPl 
AOWP2 
ADWP3 
AOWPIt 
AOWP5 
AOHP6 
ADHP7 

FORHATI 

SUHHAKYI 

MODIFICATIONS' 

INDICATORSI 

HOTESI 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

Add to Word Register of PRO 050 CO) 
Add to Word Register of PR1 051 (0) 
Add to Word Register of PR2 052 (0) 
Add to Word Register of PR3 D53 (0) 

Add to Word Register of PRft 150 (0) 
Add to Hord Register of PR5 151 (0) 
Add to Word Register of PR6 152 (0) 
Add to Word Register of PR7 153 (0 ) 

Basic Instruction Format (See Figure 2-1). 

-For n : 0, 1, •••• or 7 as determined ~v operation code 

CeY)O,17 + C(PRn.WORONO) -> C(PRn.WJRDNOa 

00 -> C(PRn.CHAR) 

0000 -> C(PRn.BITNO) 

All except OL, CIt SC, SCR 

None af fee ted 

Attempted execution In BAR Hode causes 
Procedure Fault. 

an I I Ie ga' 

Attempted repetition with RPT, RPO, or RPL causes an 
Illegat Procedure Fault. 

2-12" AL39 



POINTER RE;ISTER HISCEllANEOUS 

-P Q i 0 t ec.:B.cgl..S.J:j:C-!1.U"1..L.m~i 

EPAQ 

FORHATI 

SUMHARYI 

MODIFICATIONS' 

INDICATORS. 

Zero 

NOTES' 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

Effective Pointer to AQ Register 

BaSic Instruction Format CSee Figure 2-1). 

00 ••• 0 -> CCAQ)O.Z 

CCTPR.TSR) -> CCAQ)3.17 

00 ••• 0 -> CCAQ)18,32 

C(TPR.TRR) -> CCAQ)33,35 

CCTPR.CA) -> CCAQ)3o.53 

00 ••• 0 -> CCAQ)54.o5 

C(TPR.TBR) -> CCAQ)&o,71 

All eKcept OUt Ol, CIt SC, SCR 

(tndlcators not listed are not affecte~) 

If CCAQ) = 0. then ON; otherwise OFF 

Attempted eKecution In BAR Mode causes 
Procedure Fault. 

213 CO) 

an I I Ie 9a' 

Attempted repetItion with RPT. RPO. or RPL causes an 
Illegal Procedure Fault. 

2-125 AL39 



CALENDAR CLOCK 

RCCL 

FORMATI 

MODIFICATIONS' 

INDICATORS' 

NOTES' 

REVIEW DRAFT 
SUOJECT TO CHANGE 
October. 1975 

Read Calendar CJock 633 (0) 

Basic Instruction Format (See Flgure 2-1). 

00 ••• 0 -> CCAQ)0.19 

CCCal.endar Clock) -> CCAQ)20.71 

All except OUt Ol. CIt se. SCR 

None af f ected 

CCTPR.CAJO,2 specify which Processor port CI.e.. which 
System Controller) is to be used. The contents of the 
clock in the designated System Cont~oller replace the 
contents of the AQ-register as Shown. 

Attempted ~xecutlon 

Procedure Fault. 
In BAR Hode causes an II legal 

Attempted repetItion with PRJ, RPD, or RPl causes an 
Illegal Procedure Fault. 

2-126 AL39 



DRL 

fORHATa 

SUMMARY: 

MODIFICATIONS: 

INDICATORsa 

NOTESI 

REVIEW DRAFT 
SUBJECT TO CHANGE 
Octo er, 1f~75 

DE~AIl 

D·era! I OD 2 10» 

Basic Instruction Format (See Figure 2-1). 

Causes a fault which fetches and executes, In Abso'~te 
Mode, the instruction pair at m3in store location 
C+1~(octal). The value of C is obtained from the F4UlT 
VECTOR switches on the Processor Configuration Panel. 

All, bu~ none affect in~truction execution 

None af lee ted 

Except for the different constant used for fetching the 
instruction pair from main store. the DRL Instruction Is 
identical to the Haster Mode Entrv (MH~) instruction. 

Attempted repetition with RPT, RPD, or RPL causes an 
Illegal ProcedUre fault. 

2-127 Al39 



EXECUTE 

XEC 

FORHAT' 

SUMHARY I 

MODIFICATIONS' 

INDICATORS' 

NOTESI 

REVIEW OR~FT 

SUBJECT TO CHANGE 
October. 1915 

Execute 716 (0) 

Basic Instruction Format (See Figure 2-1». 

Fetch and e~ectue the Instruction in C(Y) 

All except DU. OL, CI. SC. SCR 

None af fected 

The XEC instruction itself does not affect any indicator. 
However. the execution of/the instruction from Cey) may 
affect indicators. 

If the execution of the instruction from CeYt modifies 
C(PPR.tC). then a transfer of control occurs; otherwise. 
the next instruction to be executej is fetched from 
C(PPR.IC)+l. 

To execute a Repeat Double (RPD) instruction, the XEC 
instruction must be in an odd location. The instruction 
pair repeated Is that instruction oair at C(PRR.IC)+l, 
that Is, the instruction pair Immediately following the 
XEC instruction. C(PPR.IC) Is adJusted during the 
execution of the repeated instruction pair so that the 
next Instruction fetched for execution is from the first 
word following the repeated Instructio~ pair. 

EIS Hultiword instructions may be executed but the 
reQuired Data Descriptors must be located immediately 
after the XEC instruction, that Is, starting at CCPRR.IC) 
+ 1. C(PRR.ICt is adjusted during execution of the EIS 
Hultiword instruction so that the next instruction fetched 
for execution Is from the first word following the EIS 
Data Descriptors. 

Attempted repetition wIth RPT. RPD, or RPL causes an 
Illegal Procedure Fault. 

2-128 AL39 



XED 

FORHATa 

SUMMARY' 

MODIFICATIONS I 

INDICATORSI 

NOTES. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

EXECUTE 

Execute DGuble 717 (D) 

Basic Instruction Format (See Figure 2-1). 

Fetch and exec~te the instruction pair at CIY-paIr) 

All except OU, oL, CI, se, SCR 

None affected 

The XED instruction itsel f does nGt affect any 
However, the execution of the instruction 
C(Y-pair) may affect Indicators. 

indicator. 
pair fro. 

The even instruction 
C(Y-pairJ36,71, and 

from CCY-pair) must not after 
must not be another XED Instruction. 

If ,the execution of the instruction P3ir from CCY-pair) 
alters C(PPR.IC), then a transfer of control occurs; 
otherwise, the next instruction to be executed Is fetChed 
from ClPPR.IC)+1. If the even instruction from ClY-pair) 
alters C(PPR.IC), then the transfer of control Is 
effective immediately and the odd instruction is not 
executed. 

To execute an InstructIon pair havln~ a Repeat Do~ble 
(RPo) instruction as the odd instruction, the XED must be 
located at an odd address. The Instruction pair repeated 
is that instruction pair at ClPRR.I:) + 1. that Is, the 
instruction pair immediately folloMing the XED 
instruction. C(PPR.IC) is adJusted ~uring the execution 
of the repeated instruction pair so the the next 
instruction fetched for execution is from the first Mord 
follo"lng the repeated instruction pai~. 

An attempt to execute an EIS Hultiword instruction "111 
cause an Illegal Procedure fault. 

Attempted repetition with RPT, RPo, or RPL causes an 
illeal Procedure Fault. 

2-129 AL39 



HASTER HOOE ENTRY 

"HE 

FORHATa 

SUHHARYI 

HODIFICATIONS; 

INDICATORS: 

NOTES' 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

Haster Hode Entry 001 (0) 

Basic Instruction Format (See Figure 2-1). 

Causes a fault that fetches and executes, In Absolute 
Hode, the instruction pair at main store location 
C+4(octal). The value of C is obtained 'rom the FAULT 
VECTOR switches on the Processor Configuration Panel. 

All, but none affect instruction execution 

None affected 

Execution of the HHE instruction implies the follow1ng 
conditIonsl 

Ourl~g the execution of the HHE instruction and the 
two instructions fetched, tne Processor is 
temporarily in Absolute Hode inde~endent of the value 
of the Absolute Hode indicator. The Processor stays 
in Absolute Hode If the Absolute Hode indicator is ON 
afte~ the execution of the instructions. 

The instruction at C+4 must not alter the contents of 
main store location C+5, and ~ust not be an XED 
instructIon. 

If the contents of the instruction counter (PPR.IC) 
are changed during execution of the Instruction paIr 
at C+~, the next instruction is fetched from the 
modified C(PRR.IC); otherwise, t~e next instruction 
Is fetched from C(PPR.IC)+l. 

If the instruction at C+~ alters ~(PPR.IC), then this 
transfer of control is effective immediately, and the 
inst~uctlon at C+5 is not execute~. 

Attempted repetition with RPT, R~D, or RPL causes an 
II legal Proced~e Fault. 

2-130 



HME2 

fORHATa 

SU"HARYI 

HODIfICATIONS: 

INDICATORS: 

NOTESI 

"ME3 

FORHATI 

SUHHARYI 

MODIFICATIONS: 

INDICA TORS: 

NOTESI 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1'375 

HASTER HODE ENTRY 

Haster Hode Entry 2 004 (0) 

Basic Instruction Format (See Figure 2-1t. 

Causes a faul t that fetches and executes, In Absol ute 
Mode, the instructIon pai~ at main sto~e location 
C+52(octal). The value of C is obtained from the fAULT 
VECTOR switches on the Processor Configuration Panel. 

All, but none affect Instruction executlon 

None af fected 

Attempted execution in BAR mode causes 
Procedure, Illegal Opcode Fault. 

an I I Ie ga I 

Except for the dIfferent constant used for fetchlng the 
instruction pair from main store, the ~ME2 instructIon is 
identical to the Haster Mode Entry (MM~) instruction. 

Attempted repetItion with RPT, RPD, or RPL causes an 
Illegal procedure Fault. 

Haster Hode Entry 3 005 (0) 

BasIc Instruction Format (See Figure 2-1). 

Causes a fault that fetches and eKecutes, in Absolute 
Mode, the Instruction pair at main store location 
C+54(octal). The value of C is obtained from the fAULT 
VECTOR switches on the Processor Configuration Panel. 

All, but none affect instruction eKecutlon 

None af fect~1 

Attempted eKecutlon in BAR mode causes 
Procedure, 11 legal Opcode Fault. 

an Illegal 

Except for the dlfferent constant used for fetching the 
instruction pair from main store, the ~ME3 instruction is 
identical to the Haster Hode Entry (MHE) instruction. 

Attempted repetition with RPT, RPO, or RPL causes an 
Illegal Procedure Fault. 

2-131 AL39 



HASTER HODE ENTRY 

HHElt 

FORHAT. 

SUHMARYI 

MODIFICATIONSI 

INDICATORS: 

NOTES' 

REVIEW DRAFT 
SUBJECT TO CHANGE 
Oct 0 b er , 1975 

Haster Hode Entry It 007 (0) 

Basic Instruction Format (See Figure 2-1). 

Causes a fault that fetches and executes, in Absolute 
Hode, the instruction pair at main store location 
C+5&(octal). Tne value of C is obtained from the F4UlT 
VECTOR switches on the Processor Configuration Panel. 

All, but none affect instruction execution 

None af fected 

Attempted. execution in BAR mode causes 
Procedure, II legal Opcode Fault. 

an III egal 

Except for the different constant used for fetching tne 
instruction pair from main store, the MME4 instruction is 
Identcal to the Haster Hode Entry (MHE) instruction. 

Attempted repetition with RPT, RPO, or RPL causes an 
Illegal Procedure Fault. 

2-132 AL39 



Nap 

FaRHAT' 

SUMMARY' 

MODIfICATIONS I 

INDICATORSZ 

NOTES' 

PULSl 

FORHATa 

SUMMARY' 

MODIFICATIONSI 

INDICATORSZ 

NOTESz 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

NO OP ER.A lION 

No Operation 011 (0) 

Basic Instruction Format (See Figure 2-1). 

No operation takes place 

All 

None affected (except as noted beloM) 

No operation takes place but address preparation is 
performed according to the specifled modifier, if any. If 
modification other than OU or Dl is used, tne effective 
addresses generated may cause Store Fa~lts. 

The use of Indlrect and Tallv modifiers causes chanses In 
the address and tally fields of the referenced Indirect 
Words and the lally Runout indicator may be set ON as a 
result. 

Attempted repetition Mith RPT, RPD, or RPL causes an 
Illegal Procedure Fault. 

Pulse One 012 (0) 

Basic Instruction Format (See Figure 2-1). 

No operation takes place 

All 

None affected (except as noted bel OM' 

The PUlSl instruction is identIcal to the No Operation 
(NOP) instruction except that it C3uses certain uniQue 
synchronizing signals to appear in tne Processor logic 
circuitry. 

Attempted repetItion Mlth RPT,. RPO. or RPL causes an 
Illegal Procedure Fault. 

2-133 Al39 



NO OPERATION 

PULS2 

FORMATS 

SUMMARYI 

MODIFICATIONSI 

INDICATORS. 

NOTES. 

REVIEW DR~FT 
SUBJECT TO CHANGE 
October, 1975 

Pulse Two 013 (0) 

Basic Instruction Format (See Figure 2-1). 

No operation takes place 

All 

None affected (except as ~oted below) 

The PULS2 Instruction is identical to the No Operation 
(NOP) Instruction except that it Cluses certain unique 
synchronIzing signals to appear In t~e Processor logic 
cIrcuitry. 

Attempted repetition with RPT, RPO, or RPL causes an 
Illega' ~rocedure Fault. 

2-134 



RPD 

a 
-D. 
I 
I 
I 

REPEAT 

Repeat Double 5&0 (0) 

FORHATa 

0 o 0 1 1 1 1 22223 3 
-LJ-.3.J_l ---1--a. -LLa.-LO 2 

a I I I t I I I I I 
TALLY tAa31Cl Term. Cond. 1 (5&0)8 1011101 DEL TA I 

I I I I I --L.1 I I I 
8 1 1 1 1 7 911 1 & 

Figure 2-9 Repeat Double (RPD) Instruction Word Format 

SUMMARYI Execute the pair of instructions at C(PPR.IC)+l either a 
specified number of times or until a s~ecified terminatIon 
condition Is met. 

MODIFICATIONSI None 

INDICATORS' (Indicators not listed are not affected) 

Tally 
Runout 

If CeXO)O,7 = 0 at terminatIon. then ON; otherwise. OFF 

All other None affected. However. the execution of the repeated 
Indicators instructions may affect indicators. 

NOTEsa The RPD instruction must be stored in ~n odd 
location except when accessed vIa the 
instructions, in which case the XEC or XED 
must itself be in an odd main store location. 

main store 
XEC or XED 
instructIon 

Both repeated instructions must use R or RI modifiers and 
only Xl. X2, •••• X7 are permittej. For the purposes of 
this description, the even repeated i~struction shall use 
X-even and the odd repeated Instr~ctio~ shall use. X-odd. 
X-even and X-odd may be the same register. 

If C = 1, then C(RPO instruction word)O.11 -> C(XO); 
otherwise, C(XO) unchanged prior to executIon. 

The termination condltion and tallt fIelds of C(XO) 
control the repetit Ion of the instruction paIr. An 
initial tally of zero is interpreted ai 25&. 

The repetition cycle consists of the fol lowing stepsl 

a. Execute the pair of repeated inst~uctlons 

b. C(XO)O.7 - 1 -> C(XO)O.7 
Modify C(X-even) and C(X-odd) as jescrlbed below. 

c. If C(XO)O,7 = 0. then set Tally Runout indicator ON 
and terminate. 

R[VIEW DRAFT 
SUBJECT TO CHANGE 
October. 1915 2-135 AL39 



REPEAT 

REVIEW DRAfT 
SUBJECT TO CHANGE 
October. 1975 

d. If a terminate condition has been met. then set Tallv 
Runout indicator OfF and terminate. 

e. Go to step a. 

If a Processor Fault occurs during the exection of the 
instruction pair. the repetition 'oop is terminated and 
control passes to the Fault Trap accoroing to the 
conditions for the Processor Fault. C(XO), C(X-even), and 
C(X-odd) are not updated for the repetition cvcle in ~hich 
the fault occurs. Note· in partic~lar that certain 
Processor Faults occurring during e~ecution of the even 
instruction preclude the e~ecutlon of the odd instruction 
for the faulting repetition cyc'e. . 

EIS Multi~ord instructions cannot be ~epeated. All other 
~nstructions ~av be repeated except as noted for 
individual instructions or those that ••• 

Explicitly alter C(XO) 

The effective address, Y. of the operand (in the case of R 
modification) or indirect ~ord (i~ the case of RI 
modification) is determined as fol10~sl 

for the first execution of the repeate~ instruction pair ... 
C(C(PPR.IC)+1)O.17 + C(X-even) -> Y; V-even -> 
C(X-evenJ 
C(CIPPR.IC)+Z)O.17 + C(X-odd) -. V-odd; V-odd -> 
CIX-odd) 

For all successive executions of the -epeated instruction 
pair ••• 

if CeXO)8 = 1. then CIX-even) + Delta -> V-even, 
V-even -> C(X-even); other~ise, CIX-even) -> V-even 

if CIXO)9 = 1, then C(X-odd) + Delta -> V-odd, V-odd 
-> C(X-Odd); otherwise, C(X-odd) -> V-odd 

C(XO)8.9 correspond to Control BIts A and B. respectively, 
of the RPD instruction. 

In the case of RI modification. only one indirect 
reference is made per repeated execution. The tag field 
of the indirect word is not interpreted. The indirect 
word is treated as though it had R modification with R = 
N. 

The bit configuration in C(XO)11.17 defines the conditions 

for which ~he repetition loop is t~rminated. The 
terminate conditions are examined at the completion of 
e~ecutlon of the odd instruction. If more than one 
condition is specified. the repeat terlinates if any of 
the specified conditlons are met. 

Slt 17 = 0 Ignore all overflo~s. Do not set Overflo~ 

Indicator; inhibit Overflo~ Fault. 

Z-13& AL39 



REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

Bit 17 = 1 

Bit 16 = 1 

Bit 15 = 1 

Bit 14 = 1 

Bi t 13 = 1 

81t 12 = 1 

Bit 11 = 1 

REPEAT 

If Overflow Hask indicat~r is ON. then set 
Over flo M indicator and terllina te; 
otherwise. cause an Overflow Fault. 

Terminate if Carry indicator OFF. 

Terminate if Carry indicator ON. 

Terminate if Negative indicator OFF. 

Terminate if Negative in~icator O~. 

Terminate if Zero indicator OFF. 

Terminate If Zero indicator ON. 

At the tlme of terminationS 

ceXO)O.7 contaIn the 
number of repeats 
would have occurred. 

Tally Resilue; 
remaini ng un t 11 

that Is. the 
a lallv Runout 

If the RPO instruction is interrupted eby anv fault) 
before ter.inatlon, the Tally Runout indicator is 
OFF. 

CeX-even) and CeX-odd) contain the effective 
addresses of the next operands or indirect words that 
would have been used had the repetition loop not 
terminated. 

Attempted repetition with RPl, RPO. or RPL causes an 
Illegal Procedure Fault. 

2-137 AL39 



REPEAT 

RPl Repeat link 

FORHATa 

0 0 0 0 1 1 
II Z a 3..Jl_l 

I I I I 
J TALLY 10 OICI Term. 
I I L.L 

8 Z 1 1 

1 1 
----L8 

I 
Cond. I 

--1. 
7 

(500)8 

500 (0) 

Z Z 2 Z 3 3 
~~~9-LO __ • ______ 45_ 

I I I I I
10111010 0 0 0 0 O.

_____________ --1-1~1~; __________ ~1
9 111 6

Figure 2-10 Repeat link (RPl) Instruction Word Format

SUMMARY'

MODIFICATIONSI

INDICATORS:

Tallv
Runout

Execute the instruction at C(p~R.Ie)+l either a specified
number of times or until a specified termination condition
is lIet.

None

(Indicators not listed are not affecte~)

If CeXO)O,l = 0 or link address eeY) = 0 at termination,
then ON; otherwise OFF

All other None affecte~. HONever, the executIon of the repeated
Indicators instruction may affect indicators.

NOTESI

REVIEW DRltFT
SUBJECT TO CHANGE
October, 1975

The repeated instruction must use an R modifier and only
Xl, XZ, ••• , X7 are permitted. For the purposes of thiS
description, the repeated instruction shal I use Xn.

If C = 1, then ClRPL instruction Nord)O,17 -> C(XO);
otherwise, C(XD) unchan~ed prior to execution.

The termination concition and tall, fields of C(XO)
control the repetition of the instruction. An inItIal
tally of zero is interpreted as 256.

The repetItion cycle consists of the following stepsi

a. Execute the repeated instruction

b. C(XO)O,7 - 1 -> C(XOIO,7
Hodify CeXn) as descrlbed bel OM.

c. If C(XO)O,7 = 0 or e(Y)O,ll = 0, then set Tally
Runout indicator ON and terminate.

d. If a ter~inate condition has been met, then set Tally
Runout indicator OFF and terminate.

e. Go to step a.

2-138 AL39

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

REPEAT

If a Processor Fault occurs dur-i"g the exection of the
instruction, the repetition 10~~ is te~mlnated and control
passes to the Faul t Trap a::;clt,"ding to' the condi t ions for
the Processor fault. ceXO) and C(Xn) are not updated for
the repetition cyc'~ in .hlch the fault occurs.

EIS Hultiword instructions cannot be repeated.
instructions may be repeated ex:ept as
Inaividual instr~ctlons or those that •••

A II other
noted for

Explicitlv alter C(XO)

ExplicItlv alter the 1ink address, C(YlO,17

The effective address, Y, of the opera~d is determined as
f 01 1 OlliS :

For the first execution of the repeated instruction ...
CeC(PPR.IC)+1)O,17 + C(Xn) -> Y; Y -> C(Xn)

for all successive executions of the ~epeated instructIon

C eXn) -> Y
if CeYtO,17 # 0, then C(Y)O,17 -> C(Xn); otherwise,
no Change to CeXn)

C(Y)O,17 Is known as the link address and is the effective
address of the next entry in a threaded list of operands
to be referenced by the repeated instr~ction.

The operand data is formed as

where p is 35 for single precision ope~ands and 71 for
double precision operands.

The bit configuration in C(XO)11,17 a~d the link address,
C(YlO,17, define the conditions for which the repetition
loop is terminated. The terminate conditions are examined
at the completion of execution of the Inst~uction. If
more than one condition is specified, the repeat
terminates if any of the specified conditions are·met.

C(Y)O,17 = ° Set Tally Runout indicator ON and terminate.

Bit 17 = 0

B1 t 17 = 1

Bit 1& = 1

Bit 15 = 1

Bit 14 = 1

Ignore all overftows. 00 not set Overflow
Indicator; inhibit Overflo. fault.

If Overflow Mask indicat~r is ON, then set

Overf low indicator and terllinate;
otherMise, cause an Overflow fault.

Terminate if Carrv indicator OfF.

Terminate 1 f Carry indicator ON.

Terminate if Negat i ve injlcator Off.

2-13'9 AL39

REPEAT

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

Bit 13 :: 1

Bit 12 :: 1

Terminate if Negative ln~lcator ON.

Terminate if Zero indIcator OFF.

8i t 11 :: 1 Terminate if Zero indicator ON.

At the time of terminationl

C(XO)O,7 contain the
number of repeats
"ould have occurred.

Tallv Residue;
remaining u~til

that i 5, the
a Tal IV Runout

If the RPL instruction is interrupted (bv any fault)
before termination, the Tallv Runout indicator Is
OFF.

C(Xn) contain the last link address, that is, the
effective address of the list word containing the
last operand data and the Da¥l li~k address.

Attempted repetition with RPT, RPO, or RPl causes an
Illegal Procedure Fault.

2-1lt 0

REPEAT

RPT Repeat 520 (0)>

FORHATa

0 o 0 o 1 1 1 1 2 2 2 Z l 3
-L-___ -LA.-3_lL.1 _____ --L8 _LLa.-L1J. ~
J I I I I J I J I ,
I TALLY 10 OICI Term. Cond. I (520)8 a011101 DELTA I
I I I I ----L I I _LJ I

8 211 7 9 1 1 1 6

Figure 2-11 Repeat (RPT) Instruction Word Fo~mat

SUMMARY"

MODIFICATIONS I

INDICATORsa

Tally
Runout

AI. other
Indicators

NOTES'

REVIEW DRlIFT
SUBJECT TO CHANGE
October. 1q75

Execute the instruction at C(PPR.ICt+l either a specified
number of times or until a specified termination condition
1 s me t.

None

(Indicators not _,sted are not affectej)

If C(XO)O,7 = D at termination, then O~; otherwIse, OFF

Non. affected. However, the execution of
Instruction may affect indicators.

the repeated

The repeated instruction must use an R or RI modifier and
only Xl, X2, ••• , X7 are permitted. For the purposes of
thiS description, the repeated instruction shall use Xn.

If C = 1. then C(RPT instructIon word)O,17 -> C(XO);
otherwise. C(XO) unchanged prior to execution.

The termination condition and tallt fields of C(XO)
control the repetition of the instruction pair. An
Initial tally of zero is interpreted a~ 256.

The repetition cycle consists of the following stepsa

a. Exec~te the repeated instruction

b. C(XO)O,7 - 1 -> CeXO)O,7
Modify C(Xn) as described below

c. If C~XO)O,7 = 0, then set Tally R~nout indicator ON
and term inate

d. If a terminate condition has been met, then set Tally
Runout indicator OFF and terminate

e. Go to step a

2-1" 1 AL39

R[PEAT

REVIEW DRAFT
SUBJECT to CHANGE
October, 1975

If a Processor Fault occurs during the exection of the
instruction, the repetition loop is te~minated and control
passes to the Fault Trap according to the conditions for
the. Processor Fau It. C (XO) and C(Xn) are not updated for
the repetition cycle In which the fault occurs.

EIS Hultiword inst~uctions cannot be repeated. All other
instructions may be repeated ex:ept as noted for
individual instructions or those that •••

Explicitly alter C(XO)

Explicitlv alter C(PPR.IC)+2

The effectIve address, Y, of the opera~d (in the case of R
modification) or indirect word Un the case of RI
modification) is determined as foilowsl

For the first execution of the repeatej instruction ...
C(C(PPR.IC)+I)O,17 + C(Xn) -> V; Y -> C(Xn)

For all successive executions of the ~epeated instruction ...
if C(XOl8 : 1, then C(Xn) + Delta -> V, Y -> C(Xn);
otherwise, C(Xn) -> V

C(XO)8 corresponds
instruction.

to Control Bit A of the RPO

In the case of RI modificatIon. only one indirect
reference Is made per repeated execution. The tag fIeld
of the indirect word is not interpreted. The indIrect
word is treated as though it had R modification with R ~
N.

The bit confl~uratlon in C(XO)II.11 defines the conditions
for which the repetItion loop is terminated. The
terminate conditions are examine~ at the completion of
execution of the instruction. If more than one condition
Is specified, the repeat terminates if any of the
specified conditions are met.

Bit 17 = 0

81t 11 : 1

Bit 16 = 1

Bit 15 = 1

Blt 14 = 1

Bit 13 : 1

Bit 12 = 1

Blt 11 = 1

Ignore all overflows. Do not set Overflow
Indicator; inhibit Overflow Fault.

If Overflow Hask indicat~r is ON, then set
OverfJoM indicator and terminate;
otherwise, cause an Overflow Fault.

Terminate if Carry indicator OFF.

Terminate if Carry indicator ON.

Termi.nate if Negat ive in:iicator OFF.

Terlllinate if Negat ive indicator ON.

Terminate if Zero indicator OFF.

Terminate if Zero indicator ON.

2-1"2 AL39

RE.VIEW DRAFT
SUBJECT TO CHANGE
October, 1975

At the time of termination'

C(XO)O,7 contain the
number of repeat~

would have occurred.

Tallv Resl::tue;
remaining unt i I

REPEAT

that is, the
a T a I I y Run 0 u t

If the RPT instruction Is interru3ted (by any fault)
before termination, the Tallv Runout indicator is
OFF.

C(Xn) contain the effective address of the next
operand or indirect wo~d that would have been used
had the repetition loop not terminated.

Attempted repetition with RPT, RPO, or RPl causes an
Illegal Procedure Fault.

2-143 AL39

RING ALARM REGISTER

SRA

FORMATa

SUMMARY'

MODIFICATIONSI

INDICATORS'

NOTES:

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

Stor-e Ring Alar-II

Basic Instruction Format (See Figure 2-1).

00 ••• 0 -> CCY)O.32

C(RALR) -> CCY)33,35

All except OU, DL, CIt se, SCR

None a11ected

Attempted execution In BAR Mode causes
Procedure Fault.

75 .. (1)

an Illegal

Attempted repetition wIth RPT, RPO, or RPL causes an
Illegal Procedure Fault.

AL39

SBAR

SUMMARY'

MODIFICATIONS'

INDICATORSI

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1975

STORE 8.SE ADDRESS REGISTER

Store Base Add~ess Register SSD CD)

Basic Instruction For.at (588 Figure 2-1 ••

CIBAR) -> CCY)O.17

All exc.~t DU. OL. CI, SC, and SCR

None affected

2-1"5 Al3<}

FORHATI

SUHMARYI

MODIFICATIONSI

INDICATORS.

Zero

Negative

NOTES.

REVIEW DRAFT
SUBJECT TO CHANGE
Oc:tober, 1975

"11C(~~ I ,(. C(,~,~ -> It-b,i t Quotient plus rellainder
)i.~~. bt,~, "',,'':. ":. ""J,': l(;,r::J.:)';(E. ! 5 fe,

Shift C(Q) left six positions

remainder -> CeA)

AIJ except CI, SC, SCR

(Indicators not listed are not affected)

If C(A) : 0, then ON

If C(A)O = 1 before execution, then ON; otherwise OFF

The BCD instruction carries out one step in an ~a,gorjthll
for the conversion of a binary n~mber to a string of
Binary-Coded-Decimal (SOC) dIgIts. The algorithm reQuires
the repeated short division of the bin3ry number or last
remainder by a set of constants Cli) = 8··j x 10··(n-l)
for 1 : 1, 2 •••• , n with n being defined byl

The values in the table that follows are the conversion
constants to be used with the Be) instructIon. Each
vertical column represents the set of constants to be used
depending on the initial value of the 31nary number to be
converted. The instruction is executed once per digIt
~hile traversing the appropriate C31umn from top to
bottom.

An alternate use of the table for conversion involves the
use of the constants in the row corresponding to
conversion step 1. If, after each exe:ution, the contents
of the accumulator are shifted ri~ht 3 positions, the
constants In the first row, starting at the appropriate

column, may be used while traversing the row from left to
right.

Because there is a limit on range, a ful I 3& bit word
cannot be converted. The largest bi~ary number that may
be converted correctly is 2·.33 -1 yi21ding ten decimal
digits.

Attempted repetition with RPL ca~ses 3n Illegal Proce1ure
Fault.

2-146 AL39

TRANSL ATION

, For 10··'n-1) <= I C (AR) I <= 10··n - 1 a'\d n = ... , , 1Jl ~ A 1 fl • 2- !t ~ L 1
1= ,

1 8000000000 800000000 80000000 6000000 800000 80000 8000 600 80 8
2 &'+00000000 &'+0000000 &'+000000 &'+OOO()O &40000 6'+000 6'+00 6'+0 64
3 5120000000 512000000 51200000 5120000 512000 51Z00 5120 512 .. 409&000000 409£>00000 409&0000 409&000 '+ 096 0 0 40~6Q 40436
5 327£>800000 327£>80000 327&8000 327&800 327&80 327&8
6 2&214'+0000 2&2144000 2&21'+'+00 2&21440 2&21'+4
7 2097152000 209715200 20971520 2097152
8 1&77721&00 i&77721&0 1&77721&
9 1342177280 134217728

10 1073741824

GTa Grav to Binary 774 (0)

FORMATI Basic Instruction Format (See Figure 2-1).

SUMMARYJ CeA) converted from Gray Code to a 36 bIt binary number

MODIFICATIONSI None

INDICATORS. (Indicators not listed are not affecte~)

Zero If CeA) = O. then ON; otherwise OFF

Negative If C(A)O = 1. then ON; otherwise OFF

NOTESI This converSion is defined br the foll~wing atgorith.:

ClA)O -> C(A)O

CIA)(l) e CeA) Ci-1) -> CeA) ei) fo~ i = 1. 2 ••••• 3S

Attempted repetition with RPL causes a'\ 11 legal Procedure Fault.

REVIEW ORAf T
SUBJECT TO CHANGE
October. 1975 2-147 AL343

PRIVILEGED - REGISTER LOAD

LSAR

FORHATa

SUHHARYa

MODIFICATIONS

INDICATORS'

NOTES:

lCPR

FORHAT.

f10DIfiCATIONS'

INDICATORS:

NOTES'

RE.VIEH DRAFT
SUBJECT TO CHANGE
October, 1975

load Base Address Register 230 (0)

Basic Instruction Format ISee Figure 2-1).

C(V)O,lT -> CISAR)

All except CI, SC, SCR

None af lected

Attempted repetition with RPT, RPD, or RPl causes an
Illegal Procedure Fault.

Attemp~ed execution in BAR Hode causes a Illegal Procedure
Fault.

load Central Processor Register 67 .. CO)

BaSic Instruction Format (See Figure 2-1).

Load selected register as noted

None. The ins truct j on TAG f lei d is used for reg is ter
sel ec tion as follows.

~l Jla!.a-iLOSl Reg 1 s t m:.1U

02 CCy) -> C(Cache Hode Registe"')O,35

0 .. CIY) -> C(Hode Reglster)O,J5

03 00 ••• 0 -> CICU, OU, DU, and APU History
Reg ister) 0.71

07 11 ••• 1 -> C(CU, OU, OU, and APU History
Reglster)O,71

None af fee ted

See Section IV, Program Accessible Registers,
descriptions and use of the various re~lsters.

for

For TAG values 03 and 07, the Histort Register loaded Is
selected Dy the current value of a Cyclic Counter for each
Uni t. A II four eve I.i. c Counters are advancej by one count

2-1" S AL39

LDBR

FORMATa

SUMMARY.

MODIFICATIONS:

INDICATORS:

NOTES.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

PRIVILEGED - REGISTER LOAD

for each executIon of the instruction.

Use of TAG values other than those defined above causes an
Illegal Procedure Fault.

Attempted execution In Normal or BAR M)de causes a Illegal
Procedure Fault.

Attempted repetItIon with RPT, RPO, or RPL causes an
IIJegal Procedure Fault.

Load,Descriptor Segment Base Register

Basic InstructIon Format (See Figure 2-1 ••

If SOWAH is enabled, then

o -> CtSOWAH(i).FULL) for i = O. 1, ••• , 15

ei) -> C(SOWAHCi).USE) for 1 = 0, 1, •••• 15

If PTWAH °is enabled, then

Q -> C(PTWAH(i).FULl) for 1 = n. 1, •••• 15

(i» -> C (PTWAHCl). USE) for i = O. 1, ••• , 15

CCY-palr)O.23 -> C(DSBR.ADDR)

CCY-palr)37,50 -> CeOSBR.BOUND)

C(Y-pair,,5 -> C(OSBR.U)

eIY-pair)bO.71 -> CeOSBR.STACK)

All except OUt DL. CI, SC, and SCR

None af fected

The hardware assumes Y17 = 0; no check is made.

232 (0)

The Associative Hemorles are cleared (FULL indicators
reset) if they are enabled.

See Section IV, Program Accessible Registers, and Section
V. AddreSSing -- Segmentation and Pagi~g, for description

and use. respectively. of the SDNAH, PfWAH, and OSBR.

Attempted execution In Normal or 3AR Hode causes an
Illegal Procedure Fault.

Attempted repetition wi th RPT, RPO. or RPL causes an
Illegal Procedure Fault.

2-1'+9 AL39

PRIVILEGED - REGISTER LOAD

LOT

FORHATa

SUMHARYI

MODIFICATIONS&

INDICATORSa

NOTEsa

LPTP

FORMATI .
SUHHARYI

MOOIFICATIONSI

INDICATORS.

NOTES.

REVIEW DRlIFT
SUBJECT TO CHANGE
October', 1975

load Timer' Register &37 (0)

Basic Instr'uction FOr'mat (See Flgur'e 2-1).

C{Y)O.26 -> CCTR)

All except CIt SC, SCR

None Affected

Attempted execution in NOr'~al or BAR Hode causes a Illegal
Pr'oc e dUr'e F au It.

Attempted repetition with RPT, RPD. or RPL causes an
Illegal Procedure Fault.

Load Page Table Pointers

Basic Instr'uction Format (See Figure 2-1).

For 1 = D. i •••• , 1S

m = CCPTWAH(i).USE)

C(Y+m)O.1~ -> CCPTWAM(m).POINTER)

C(Y+m)i5.26 -> CCPTWAH(m).PAGE)

C(Y+m)Z7 -> C(PTWAHCm).F)

All except OUt Ol. CI, se. SCR

None affected

257 (1)

The har'dware assumes Y14.17 = 0000; no check is made.

The Associative Hemor'V is ignored (for:ed to -no match")
during Addr'ess Prepar'ation.

See Section IV, Program Accessible Registers, and Section
V, Addressing -- Segmentation and Paging, for descr'lption
and use, respective IV. of the PTWAH.

Attempted execution In Normal Or' 3AR Hude causes an
I)legal Pr'ocedure Fault.

Attempted repetltion with RPT, RPO, Or' RPL causes an
II legal Pr'oce1ure Fault.

2-150 AL3·q

lPTR

FORMATa

SUHMARYI

HODIFICATIONSI

INDICATORS:

NOTES.

LRA

FORMATa

SUMMARY a

HODIFICATIONS1

INDICATORSI

NOTESI

REVIEW DRAFT
SUBJ[CT TO CHANGE
October, 1975

PRIVIl~GEO - REGISTER lOAD

loa~ Page TaDle Registers 173 (1)

Basic Instruction Format (See Figure 2-1).

For i :: 0, 1, ••• , 15

m :: C(PTWAH(il.USE)

C(Y+m)D,17 -> C(PTWAH(m).AOOR)

C(Y+m)29 -> C(PTWA~(m).M)

All except OU, Ol, CI, SC, SCR

None affected

The hard~are assumes Y14,17 :: OOOD; no check is made.

The Associative Memorv is ignored (forced to "no match")
during Add~ess Preoaration.

See Section IV, Program Accessible Registers, and Section
V, AddreSSing -- Segmentation and Paging, for descriptIon
and use, respective Iv, of the PTWAH.

Attempted execution In Normal or BlR Hode causes an
Illegal Procedure Fault.

Attemoted repetition with RPT. RPD, or RPL causes an
Illegal Procedure Fault.

Load Ring AJar~ Register 774 (1)

BaSic Instruction Format (See Figure 2-11.

C(Y)33,35 -> CCRAlR)

AI) except OU, Ol, CI, SC, SCR

None affected

Attempted execution in Normal o~ BAR Hode causes an
Illegal Procedure Fault.

Attempted repetition with RPT. RPO, or RPl causes an
Illegal Procedure Fault.

2-151 IlL39

PRIVILEGED - REGISTER LOAD

lSDP

FORHATa

SUHKARY I

MODIFICATIONSI

INDICATORSI

NOTESI

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

Load Segment Descriptor Polnte~s 257 (0)

Basic Instruction Format (See Figure 2-1).

For 1 = 0, 1, •••• 15

• = CCSOWAH(i).USE)

CCY+m)O,14 -> C(SDWAHCm).POINTER)

CCY+m)17 -> C(SDWAK(m).P)

All except OU, DL, CI, SC, SCR

None affected

The hard~are assumes Y14,17 = 0000; no check is made.

The Associative Hemory is ignored ,for:ed to -no match")
during Address PreparatIon.

See SectIon IV, Program Accessible Re~lsters. and Section
V. Addressing -- Segmentation and Paging, for description
and use, respectively, of the SOWA".

Attempted executIon In Nor.al or ~AR "ode causes an
Illegal Procedure Fault.

Attempted repetition wIth RPT, RPO, or RPL causes an
Illegal Procedure Fault.

2-152 AL3CJ

LSDR

FORHAT.

SUMMARY.

MODIFICATIONSI

INDICATORS.

.. NOTES.

Reu

FORHATa

SUMHARYI

MODIFICATIONSI

INDICAtORSI

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

PRIVILEGED - REGISTER LOAD

Load Segment DescriPtor Registers

BaSic Instruction Format (See Figure 2-1).

For i = 0, 1, ••• , 15

m = C(SDWAH(l).USE)

C~Y+2m)O,23 -> C(SDWAMlm).AORI

C(Y+2m)2~,32 -> C(SDWAM(m).R1, R2, ~3)

C(Y+2m)37,50 -> CCSDWAHCm).BOUND)

~(Y+2m)52,57 -> CCSDWAHCm).R, E, W, P, U, G, CI

CCY+2mJ58,71 -> CCSDWAM(m).CL)

All except DU, OL, CI, se, SCR

None Affected

232 (1)

The hard~are assumes Y1~,17 = 0000; no check Is .ade.

The Associative Memory is ignored (f~rced to -no-match-)
during Address Preparation.

See Section IV, Program Accessible Registers, and Section
V, AddreSSing -- Segmentation and Paging for descriptIon
and use, respectively, of the SOWAH.

Attempted executIon in Normal or BAR "ode causes an
Illega' Procedure Fault.

Attempted repetition ~ith RPT, RPO, or RPL causes an
Illegal Procedure Fault.

Restore Control UnIt 613 (OJ

BaSic Instruction Format (See Figure 2-1).

•

C(Y-block8) words 0 to 7 -> CCControl Jnit Data'

All except DU, DL, CI, SC, SCR

None affected

2-153 AL39

PRIVILEGED - REGISTER LOAD

NOTES,

REVIEW DR~T
SUBJECT TO CHANGE
October. 1975

See Section IV, Pro~ram Accesible Registers, for
description and use of Control Unit Data.

The hardware assumes ViS,17 = 000 and addressing is
incremented accordingly; no check is m3de.

Attempted execution in Normal or BAR Hode causes an
Illegal Procedure Fault

Attempted repetition ~ith RPT. RPD, or RPL causes an
Illegal Procedure Fault.

2-15~ AL39

SCPR

FORMATI

SUMMARYI

MODIFICATIONSI

INDICATORSI

NOTESI

REVIEW DRAfT
SUBJECT TO CHANGE
October, 1975

PRIV[LE~EO - REGISTER STORE

Sto~e Central Processor Register 452 (0)

Basic Instruction Format CSee Figure 2-1).

Store selected register as noted

None. The instruction TAG field Is used for register
selection as follows.

00

01

06

ClAPU Historv Register) -> CCY-pair)

CCFauit Register) -> C(Y-pai~)O,35
00 ••• 0 -> C(Y-pair)3&,71

CC"ode Register) -> CCY-palr.O,35
C(Cache Hode Regiser' -> CIY-palr)36 t 71

20 C(CU History Reglst~r) -> CIY-pair)

40 C(OU History Register) -> Cet-pair)

60 C(OU History Register) -> Ctt-pair)

None affected

See Section IV, Program Accessible Registers,
description and use of the various registers.

for

For TAG values 00, 20. 40, and 60, the Historv Register
stored is selected by the current ~alue of a Cyclic
Counter for each Unit. The individual CycliC Counters are
advanced b, one count for each execution of the
instruction.

The use of TAG values other than t,ose defined above
causes an Illegal Procedure Fault.

Attempted execution in Normal or BAR Mode causes an
Illegal Procedure Fault.

Attempted repetition with RPT. RPD, or RPl causes an
Illegal Procedure Fault.

2-155 AL39

PRIVILEGED - REGISTER STORE

scu

FORHAT.

SUMMARY'

MODIFICATIONS'

INDICATORS:

NOTEsa

RE. V lEW DRAF T
SUBJECT TO CHANGE
October, 1975

Store Control unit 651 (0)

Basic Instruction Format (See FIgure 2-1).

C(Control Unit Data) -> ClY-blockS) "o~ds 0 to 7

All except DU, OL, CI, SC. SCR

None af f ec ted

See Section IV, Program Accessible RegIsters,
description and use of Control unit Data.

for

The SCU· instruction safe-sto~es ::ontrol information
reQuired to service a Processor fault. The Control Unit
Data is not, in general, valid at any tIme except when
safe-stored by the first instruction of a fault/interrupt
vector.

The hardware assumes Y15,17 = 000 and addressing is
Incremented accordingly; no check is made.

Attempted executIon In Normal or 84R Hode causes an
Illegal Procedure Fault.

Attempted repetition with RPT, RPD. or RPL causes an
Illegal Procedure Fault.

2-15&

SOBR

FORHATI

SUMMARYI

MODIfICATIONSI

INDICATORSI

NOTEsa

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

PRIVILE~EO - REGISTER STORE

Store Descriptor Segment Base Register 15,. (0)

Basic Instruction Format (See Figure 2-1).

CCoSBR.AOoR) -> CIY-pairJO,23

00 ••• 0 -> CeY-palr)2,.,J&

ceosaR.BOUNo) -> CIY-pair)37.50

0000 -> CeY-pair)51,54

C(OSaR.U) -> C(Y-pair)55

000 -> CeY-pair)S&,59

ceos8R.STACK. -> C(Y-pair)&O,71

All except OU, ol, CI, SC, SCR

None af fected

The hardware assumes Y 17 = 0; no chec~ Is made.

C (OSBR) is unchanged.

See Section IV, Program Accessib1e Registers, and Section
V, AddressIng -- Segmentation and Paging for description
and use, respectIvely, of the OBR.

Attempted execution In Normal or BlR Hode causes an
Illegal Procedure Fault.

Attempted repetition .ith RPT, RPO, or RPL causes an
Illegal Procedure Fault.

2-157 AL3CJ

PRIVILEGED - REGISTER STORE

SPTP

FORHATa

SUMMARYI

MODIFICATIONS.

INDICATORS:

NOTES'

REVIEW DRAFT
SUUJECT TO CHANGE
October, 1975

Store Page Table Pointers

Basic Instruction Format (See Figure 2-1).

For i = 0, 1, ••• , 15

C(PTWAH(i).POINTER) -> C(Y+i)O,l~

C(PTWAH(it.PAGE) -> C(Y+i)15,Z&

C'PTWAM(i).F~ -> C(Y+i)Z7

0000 -> C(Y+i)ZB,31

C(PTWAHCi).USE) -> C(Y+l)32,35

All except DU, Dl. CI, SC, SCR

None affected

557 (1)

The hardware assumes that Yl~,17 = 0000, and addressing Is
incremented according IV; no check is m~de.

The contents of PTWAH(m) remain unchan~ed.

The Associative Memorv is ignored (forced to a Mno match-)
during Address Preparation.

See Section IV, Program Accessible Registers, and Section
V, Addressing -- Segmentation and Pa~ing for description
and use, respectively, of the PTWAH.

Attempted execution in Normal or BAR Hode causes an
Illegal Procedure Fault.

Attempted repetition "ith RPT, RPO, or RPL causes an
Illegal Procedure Fault.

2-158 AL39

SPTR

SUMMARY.

MODIFICATIONSI

INDICATORS:

NOTES.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

PRIVIlE;EO - REGISTER STORE

Store Page Table Registers 15~ (1)

Basic Instruction Format (See Figure 2-1).

For 1 = 0. 1, ••• , 15

C(PTWAM(l).AOOR) -> C(Y+l)O,17

o~ ••• o -> C(Y+l)18,28

00 ••• 0 -> C(Y+l)30,35

AI. except OU, Ol, CI, SC, SCR

None affected

The hardware assumes that Y14.17 = 0000, and addressing
will be Incremented accordingly; no check is made.

The contents of PTWAMCm) are unchanged.

The Associative Memory Is ignored (forced to a -no .atch-}
during Address Preparation.

See Section IV, Program Accessible Registers, and Section
V, Addressing -- Segmentation and Pagl~g for description
and use, respectively, of the PTWAH.

Attempted execution in Normal or aAR Mode causes an
Illegal Procedure Fault.

Attempted repetition with RPT, RPD, or RPL causes an
Illegal Procedure Fault.

2-159 AL39

•

PRIVILEGED - REGISTER 3TORE

SSDP

FORMATI

SUMMARY.

MODIFICATIONSI

INDIC~TORSI

NOTES.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

Store Segment Descriptor Pointers 557 (0)

Basic Instruction Format (See Figure 2-1).

For i = 0, 1, ••• , 15

C(SDHAH(i).POINTER) -> C(Y+i)O.l~

00 ••• 0 -> C(Y+i)15.2&

C(SDHAH(i).F) -> C(Y+l)27

0000 -> C(Y+iJ28,31

C(SDHAH(l).USE) -> C(Y+l)32.35

All except OU, OL, CI, SC, SCR

~one affected

The hardNare assumes Y14.11 = DODO, and addressing Is
lncre.ented accordingly; no check is made.

The contents of SDHAM(l) are unchanged.

The Associatlve Memory is ignored (forced to a "no match-)
durlng Address Preparation.

See Section IV. Program Accessible Re~isters, and Section
V, Addressing -- Segmentation and Pagi~g for description
and use, respectively, of the SOWAH.

Attempted execution In Normal or 9AR Mode causes an
Illegal Procedure Fault.

Attempted repetition with RPT, RPO, or RPL causes an
Illegal Procedure Fault.

2-1&0 AL39

I
SSOR

FORHATa

SUMMARya

MODIFICATIONsa

INDICATORSI

.
NOTES.

REVIEH DRAFT
SU8JECT TO CHANGE
October, 1975

PRtVIlE;EO - REGISTER STORE

Store Segment Oescriptor Registers 254 (1)

Basic Instruction Format (See Figure 2-1).

For i = 0, 1, ••• , 15

C(SOWAH(l).AOOR) -> C(Y+2i-pair)O,23

C(SOWAHtl).R1. R2, R3) -> C(Y+2i-pair)24,32

DODO -> C(Y+21-palr)33,3&

C(SO~AH(i).BOUNO) -> CtY+21-palr)37.S0

C(SOWAHCl).R, E, P, U, G, C) ->.CtY+21-pair)51,51

CtSDWAHCi).Cl) -> C(Y+21-pair)58,71

All except OU, Ol, CIt SC. SCR

None affected

The hardware assumes Y13.17 = 00000, and addressing Is
incremented according Iv; no check is tade.

The contents of SDHAH(I) are unchanged.

The Associative Memory Is ignored Cforced to a -no Match-)
during Address Preparation.

See Section IV, Program Accessible Re~isters, and Section
V. AddreSSing -- Segmentation and Pagi~g for description
and use, respective IV. of the SOMAH.

Attempted execution In Normal or BAR Hode causes an
Illegal Procedure Fault.

Attempted repetition with RPT, RPO, or RPl causes an
Illegal Procedure Fault.

2-1&1 Al39

PRIVILEGED - CLEAR ASSOCIATIVE MEMORY

CAMP

FORMATa

SUMMARY'

MODIFICATIONS:

INDICATORS'

NOTEsa

REVIEW OR'FT
SUBJECT TO CHANGE
October, 1975

Clear Associative Memory Paged 532 (1)

Basic Instruction Format (See Figure 2-1).

For 1 = 0, 1, ••• , 15

o -> C(PTWAMCi).Ft

(I) -> C(PTWAHCl).USE)

All except OU, OL, CI, SC, SCR

None affected

The Full/Empty bit of each PTHAH Register is set to 0, and
the usage counters (PTWAH.USE) are set to t~eir

pre-assigned values of 0 through 15. The remainder of of
C(PTWAH(l») is unchanged.

The execution of this instruction ena)'es the PTWAH If it
is dlsab'ed and CCTPR.CA)16,11 = 01.

The execution of thiS instruction dlsa~les the PTWAH if
CtTPR.CA)16,17 = 10.

If C(TPR.CA)15 = 1, a selective :Iear of cache is
executed. Any cache block for which t,e upper 1~ bits of
the directory entry equal C(T~R.CA)O,13 wil I have its
Full/Empty bit set to Empty.

See Section IV, Program Accessible Registers and Section
V, AddressIng -- Segmentation and Paging for description
and use, respectively, of the PTWAH.

Attempted execution in Normal or B4~ Hode causes an
Illegal Procedure Fault.

Attempted repetition with RPT. RPO, or RPL causes an
Illegal Procedure fault.

2-162 AL39

CAHS

FORHATa

SUMHARya

HODIFICATIONS'

INDICATORS:

NOTES'

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1975

PR!VllEGED - ClEA~ ASSOCIATIVE MEMORY

Cle~r Associative Memory Segments 532 (0)

BaSic instruction Format tSee Figure 2-1).

For i = 0, 1, ••• , 15

o -~ CCSDWAHti).FJ

(i) -> CCSOWAH(l).USE)

All except OU, Ol, CI, SC, SCR

None affecte~

The Full/Empty bit of each SOWAH Register is set to zero,
and the usage counters (SDWAH.USE) are initialize~ to
their pre-assigned values of 0 through 15. The remainder
of C(SOWAH(i») are unchan~ed.

The execution of this instruction ena~les the SOWAM if 1t
is previously disabled and if CtTPR.CA)10,17 = 01.

The execution 0' this instruction disaDles the SDNA" 1f
C(TPR.CA)lot17 = 10.

The executIon of this instruction sets the full/Empty bits
of all cache blocks to Empty if CCTPR.:A)15 = 1.

See Section IV, Program Accessible Re~lsters, and Section
V. Addressing -- Segmentation and Pagi~g for description
and use, respectively, of the SOWAH.

Attempted execution in Normal or aAR Hode causes an
Illegal Procedure Fault.

Attempted repetition ~lth RPT, RPD, or RPl causes an
Illegal Procedure Fault.

2-1&3 AL39

PRIVILEGED - CONFIGURATION AND STATUS

RHCH

FORHATI

SUHHARVI

MODIFICATIONSI

INDICATORS.

Zero

Negative

NOTES'

RlVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

Read Memorv Controller Mask Register 233 (0)

Basic Instruction Format (See Figure 2-1).

For the selected System Controller'

If the Processor has a Hask Registe~ asssigned, then

C(HR10,15 -> C(AQ'O,15

00 ••• 0 -> C(AQ)16,31

CCHR)32,35 -> C(AQ)32,3S

C(MR)36,51 -> CCAQ)36,S1

00 ••• 0 -> C(AQ)52,67

C(HR)68,71 -> C(AQ)68,71

otherwise, 00 ••• 0 -> C(AQ)

All except DU, Ol. CI, se, SCR

(Indicators not listed are not affecte~)

If C(AQ) = D, then ON; otherwise OFF

If C(AQ)O = 1, then ON; otherwise OFF

The contents of the Mask Register remain unchanged.

C(TPR.CA)O,2 specify which Processo~ Port (i.e., which
System Controller) Is used.

Attempted execution 1n Normal or B~R Mode causes an
Illegal Procedure Fault.

2-16~

RSCR

FORHAT.

SUMMARY.

MODIFICATIONS.

INDICATORSI

NOTES'

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1975

PRIVILEGED - CONFIGURATION AND STATUS

Read System Controller Register .. 12 (0)

Basic Instruction Format (See Figure 2-1).

The effective address, Y, is used tl select a sy~te.
controller (SCU) and t~e function to be performed as
folio MSI

Effective
AJUiC£.U

yOODDx

yOOOlx

y0002x

yOD12x

y0022x

y0032x

y0042x

y0052x

y0062x

y0072x

y0003x

y0004x
or

y0005x

yOD06x
or

y0007x

C(SCU Mode Register) -> C(AQ)
i

C(SCU Configuration Switches) -> C(AQ)

CCInterrupt Mask Port 0) -> C(AQ)

C(lnterrupt Mask Port 1) -> C(AQ)

CClnterrupt Hask Port 2) -> C(AQ)

C(Interrupt Mask Port 3) -> C(AQ)

C(Interrupt Mask Port 4) -> C(AQ)

C(Interrupt Hask Port 5) -> C(AQ)

C(Interrupt Mask Port 6) -> CCAQ)

C(Interrupt Hask Port 7) -> CCAQ)

C(Interrupt Cells) -> C(Al)

C(System Clock) -> C(AQ)

C(Store Unit Hode Registe·) -> C(AQ)

wherel y = octal value of YO,2 as used to select SCU

x = any octal digit

All except DU, Ol, CI, SC, SCR

None af f ected

See Section IV, Program Accessible Registers,
description and use of the various registers.

for

For effective addresses y0006x and y0007x. Store Unit
selection is done by the normal addres; decoding function
of the System Controller.

2-165 AL39

PRIVIL~Gf.O - CONFIGURATION AND STATUS

RSW

FORMAT I

SUMMARYI

MODIFICATIONS.

INDICATORS'

Zero

Negative

NOTES'

REVIEW DRAfT
SUBJECT TO CHANGE
Oct 0 b er , 197 5

Attempted e~ecut!on in Normal or BAR Hode causes an
Illega' Prodecure Fault.

Attempted repetition with RPl causes a~ 11 legal Proce1ure
Fault.

Read Sw itches 231 CO)

BaSic Instruction Format (See Figure 2-1).

The effective address. Y, is used to select certain
Processor switches whose settings are read into C(Al.

The switches selected are as rollows'

Effective
Address ~tlgQ

xxxxxO

xxxxxi

xxxxx2

xxxxx3

xxxxx~

CIOata Switches) -> CfA)

C(Config. Switches, ports A. B, C, 0) -> C(A)

00 ••• 0 -> C(AlO,5
C(Fault Base Switches) -> C(A)&,12
00 ••• 0 -> CfA)13,2&
CfProcessor 10) -> CCA)27,33
C(Processor Number Switches) -> C(A)3~,35

C(Config. Switches, ports E, F, G, H) -> CIA)

00 ••• 0 -> CCA)0.12
C(Port Interlace and Size Switches) -> CCA)13,28
00 ••• 0 -> C(A)29,35

All, but none affect instruction execution

(Indicators not listed are not affecte~)

If CIA) = 0, then ON; otherwise OFF

If C(A)O = 1. then ON; otherwise OFF

See Section IV, Program Accessible
description and use of the switch data.

Registers for

Attempted e~ecution in Normal or BAR Hode causes an
Illegal Procedure Fault.

Attempted repetition with RPT, RPO. or RPL causes an
Illegal Procedure Fault.

2-1&& AL39

CIOC

FORHATa

SUMMARY I

MODIFICATIONSI

INDICATORSI

NOTES'

SHeM

FORHATa

SUMMARYI

HODIFICATIONS.

INDICATORS'

NOTEsa

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

PRIVILE;EO - SYSTEM CONTROL

connect 1/0 Channel 015 (0)

Basic Instruction Format (See Flgure 2-1).

The System Controller addressed by Y (i.e., contains the
word at Y) sends a connect pulse to the port specified by
C (Y) 33,35.

All except OU, OL, CI, SC, SCR

None affected

Attempted e~ecutlon in Normal or BAR Hode caus~s an
Illegal Procedure Fault.

Attempted repetition with RPT, RPD, or RPL causes an
Illegal Procedure Fault.

Set Hemory Controller Mask Register 553 (0)

Basic Instruction Format (See Figure 2-1).

For the selected System Contro'lerl

If the Processor has a Mask Registe- assigned, then

CtAQ)32,35 -> CIHR)3Z,35

C(AQ)36,51 -> C(HR)36,51

CCAQ)68,71 -> C'HR)68,71

otherwise, a Store Fault, Not Con'r~l, occurs.

All except DU, Dl, CI, SC, SCR

None af 'ected

C(AQ) are unchanged.

C(TPR.CA)O,2 specify which Processor Port (I.e., which
System Controller) is used.

Attempted e~ecution In Nor.al or 3AR Hode causes an
Illegal Procedure Fault.

2-167 Al39

PRIVILEGED - SYSTEH CONTROL

SHIC

FORHATa

SUMMARya

MODIFICATIONSI

INDICATORSI

NOTES.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

Attempted repetition with RPL causes an Illegal Procedure
Fault.

Set Memory Controller Interrupt Cells 451 (D)

Bas!c Instruction Format (See Figure 2-1).

For i = 0, 1 ••••• 15 and C(A)35 = 0'

i~ C(A'! = 1. then set Interrupt Cell i ON

For i = D. 1 ••••• 15 and C(A)35 = 11

if C(A)! = 1, then set Interrupt Cell 16+1 0,.

Alt except DU. OL, CI, SC, SCR

None affected

CfTPR.CA)O.2 specify which Processor Port (i.e., which
System Controller) is used.

Attempted eKecution in Normal or BAR Hode causes an
Illegal Procedure Fault.

2-1&8 AL39

SSCR

FORHATI

SUMMARYI

MODIFICATIONS a

INDICATORSI

NOTES.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

PRIVILE~ED - SYSTEM CONTROL

Set Syste~ Controller Register D57 (D)

Basic Instruction Format (See Figure 2-1).

The effective address, V. is used t) select a System
Controller (SCU) and the functIon to be performed as
follo"SI

Ef f eC,t lve
Address Ewlc.ll.sln

yOOOOx e(AQ) -> C(SCU Hode Register)

yOOO1x Reserved

yOD02x C(AQ) -> CCInterrupt Mask Port Q)

yOO12x C(AQ) -> CClnterrupt Mask Port 1)

yOD22x C (AQ' -> CCInterrupt Hask Port 2)

y003Zx C (AQ) -> CClnterrupt Hask Port 3)

yOD42x C(AQ) -> C CInterrupt Hask Port It)

yOO52x C CAQ) -> CClnterrupt "ask Port 5)

vOO6Zx C(AQ) -> C (Interrupt Mask Port 6)

yOO7Zx C (AQ) -> C (Interrupt Hask Port 7)

yOOO 3x C(AQ'O,15 -> C(Interrupt Cells)(0.15)
C(AQ)36.51 -> CClnterrupt Cel's'(16,31)

yOOO6x
or C (AQ) -> C(Store Unit Hode Register)

vOOD7x

"here' y = octal va Iue of YD.2 as used to select SCU

x = any octal digit

All except OU, OL, CIt SC, SCR

None af fected

If the Processor does not have a Mask ~eglster assigned in
the selected System Controller, a Store Fault, Not
Control, Mill occur.

For effective addresses yOOOOX and yOOD7x, Store Unit
selection is done bv the normal addreSi decoding function
of the System Controller.

2-1&9

PRIVILEGED - SYSTEM CONTROL

REV lEW DR liFT
SUBJECT TO CHANGE
October, 1975

See Section IV, Progralll Accessi31e Registers, for
description and use of the various registers.

Attempted execution on Normal or B4R Mode causes an
Illegal Procedure Fault.

2-17D AL39

ABSA

FORHATa

SUHMARY Z

HODIFICA"TIONSI

INDICATORS:

Zero

Negative

NOTES:

DIS

FORMAT:

SUMMARY:

MODIFICATIONSI

INDICATORS:

NOTES:

REVIEW DRAFT
SUSJECT TO CHANGE
October. 1975

PRIVILEGED - MISCELLANEOUS

Absolute Address to Accumulator 212 COl

Basic Instruction Format (See Figure 2-1).

Final Hain Store Address -> CIA)O,23

00 ••• 0 -> C(A)Z4,35

All except OU, DL, CI, SC, SCR

(Indicators not listed are not affectej)

If CtA) = 0, then ON; otherwise ~FF

If C(AIO = 1, then ON; otherwise OFF

If the ABSA instruction Is executed in Absolute mode, CIA)
will be undefined.

Attempted execution in Noraal or BAR modes causes an
Illegal Procedure Fault.

Attempted repetition with RPT, RPD. or RPL causes an
Illegal Procedure Fault.

Delay Until Interrupt Signal &1& (01

Basic Instruction Format (See Figure 2-1).

No operation takes place,
continue with the next
program interrupt signal.

and the Processor does not
instructi~n; 1t waits for a

All, but none affect Instruction execution

None affected

Attempted execution in Normal or BAR Hode causes an
Illegal Procedure Fault.

Attempted repetition with RPT, RPD, or RPL causes an
Illegal Procedure Fault~

2-171 AL39

EIS - ADDRESS REGISTER LOAD

AARn

FORMAT.

SUMMARY'

"OOIFICATIONS'

INDICATORS'

NOTES'

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

Alphanumeric Descriptor to ARn 56n (1)

EIS Single-Word Instruction (See Figure 2-1).

For n = O. 1 ••••• or 7 as determined oy operation code

CeY)O.lT -> CCPRn.WORDNOl

If C(Yl21,22 = 00 (TA code = 0). then

CCY)18.19 -> C(PRn.CHAR)

0000 -> C(PRn.BITNOl

If ClYlZl,22 = 01 (TA code = 1), then

(6 • C(Y)18.20) I 9 -> C(PRn.CHAR)

(6 • C(Y)18.20) modulo 9 -> C(~Rn.BITNOl

If C(YlZl.22 = 10 (TA code = Z). then

ClY)18.20 I 2 -> C(PRn.CHAR)

4 • (C(Y)18.20) modulo 2) + 1 -> C(PRn.BITNO)

All except OUt Ol. CI. SC. SCR

None af fected.

An alphanumeric descriptor is fetched from Y and C(Y)21,Z2
(TA field) is examined to determine the data type
descr lbed.

If TA = a (C)-bit data), C(Y)18,19 goes to C(PRn.CHAR) and
zeros fi11 C(PRn.BITNO).

If TA = 1 (6-bit data) or fA = 2 l4-bit data), ClY)18,ZO
is appropriately translated into an equivalent character
and bit pOSition that goes to C(PRn.CHAR) and
CCPRn.BIfNO).

If C(Y)Zl.Z2 = 11 (TA code = 3) an Illegal Procedure Fault
occurs.

If CCY)ZJ = 1 an Illegal Procedure Fault occurs.

If CCY)21,22 = 00 CTA code = 0) and CCY)20 = 1 an IllEgal
Procedure Fault occurs.

If CCY)21,22 = 01 CTA code = 1) and C(Y)16,20 = 110 or 111
an I. legal Procedure Fau. t occurs.

2-172 AlJ9

LARn

FORMATa

SUMMARYI

MODIFICATIONSI

INDICATORS.

NOTES.

LAREG

.. FORHAT'

SUMMARY'

MODIFICATIONS.

INDICATORS.

NOTES.

LPL

FORHATa

SUMMARYI

MODIFICATIONSI

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1975

EIS - ADDRESS REGISTER LOAD

Attempted repetition with RPT. RPD. or RPL causes an
Illegal Procedure Fault.

Load Address Register n 7&n (1)

EIS Single-Word Instruction (See Figure 2-1).

For n = D. 1 ••••• or 7 as deteralned by operatIon code

C(Y)O,23 -> CCARn)

All except DU. Ol. CI. SC, SCR

None affected

Attempted repetition with RPT. RPD. or RPL causes an
Illegal Procedure Fault.

Load Address Registers 4&3 (1)

EIS Single-Word Instruction (See Figure Z-l) •

For n = O. I ••••• 7

C(Y+n)O.Z3 -> C(ARn)

All except OU, Ole CIt SC, SCR

None a1 'ected

The hardware assumes Y15.17 = 000 and addressing is
increaented accordingly; no check is made.

Attempted repetition with RPT. RPD. or RPl causes an
Illegal Procedure Fault.

load Pointers and Lengths 4&7 (1)

EIS Single-Word Instruction (See Figure 2-1).

e(Y-biockS) -> CeOecimal Unit Control lata)

All except OU, DL. CI, se, SCR

2-173 AL39

EIS - ADDR[SS REGIST[R LOAD

INDICATORSa

NOTES.

NARn

FORHATZ

SUHHARYI

HODIFICATIONSI

INDICATORSI

NOTES.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

None affected

See. Section IV. Program Accessibl! Registers,
description and use of Decimal Unit Control Data.

for

The hardware aSSumes Y15,17 = 000 and addressing is
incremented accordingly; no check is made.

Attempted repetition with RPT, RPO, or RPL causes an
Illegal Procedure Fault.

Numeric Descriptor to ARn 66n Cl)

EIS Single-Word Instruction (See Figure 2-1).

For n = 0, 1, ••• , or 7 as determined oy operation code

C(Y)O,17 -> C(PRn.WORONO)

If C(Y)Z1 = 0 (TN code = D), then

C(Y)18,20 -> C(PRn.CHAR)

0000 -> C(PRn.BITNO)

If C(Y)21 = 1 (TN code = 1), then

(C(Y)18,ZO) I Z -> C(PRn.CHARl

~ • CC(Y)18,20 modulo 2) + 1 -> :(PRn.BITNO)

All except OU, Ol, CI, SC, SCR

None affected

A numeric descriptor Is fetched from Y ~nd C(Y)Zl (TN bit)
is examined. .

If TN = 0 (9-blt data), then C(Y)18,19 go to C(PRn.CHAR)
and zeros fil I C(PRn.BITNO).

If TN = 1 (~-bit data), C(Y)18,2D is appropriatelv
translated to an eQuivalent character and bit position
that goes to C(PRn.CHAR) and C(PRn.BITNO).

If C(Y)21 = 0 (TN code = 0) and C(Y)2D = 1 an Illegal
Procedure Fault occurs.

Attempted repetition with RPT, RPO, or RPL causes an
Illegal Procedure Fault.

2-17~ AL39

ARAn

FOR"ATa

SUMMARya

HODIFICATIONSI

INDICATORS.

NOTESI

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

EIS - ADDRESS REGISTER STORE

ARn to Alphanumeric Descriptor

EIS Single-Word Instruction (See FIgure Z-l).

For n = 0, 1, ••• , or 7 as determined ~y operation code

C(PRn.HORDNO) -> C(Y)O,17

l~ C(Y)Zl.ZZ = 00 (TA code = 0), then

C(PRn.CHAR) -> C(Y)18,19

o -> C(Y)ZO

If CIY)Zl,ZZ = 01 'TA code = 1), then

(9 • crPRn.CHAR) + C(PRn.BITNO) , & -> CCY)18,ZO

If C(Y)Zl,ZZ = 10 'TA code = Z), then

19 • C(PRn.CHAR) + C(PRn.BITNO) - 1) I 4 -> C(Y)18,20

All except OU •. OL, CI, SC, SCR

None af f ected

This instruction is the inverse of AAR~.

The alphanumeric descriptor Is fetched from Y and
C(Y)Zl,22 ITA fie'd) Is examined to determine the data
type described.

If fA = a (9-bit data), CIPRn.CHAR) goes to C(Y)18,19.

If fA = 1 (&-blt data) or TA = 2 C4-bif data). C(PRn.CHAR)
and C(PRn.BITNO) are tran~lated ~o an e~uivalent charatter
position that goes to CIY)18.20.

If C(Y)Zl,ZZ = 11 (TA code = 3) or C(Y)23 = 1 (unused
bit), an Illegal Procedure Fault occurs.

Attempted repetition with RPf, RPO. or RPl cause~ an
Illegal Procedure Fault.

2-175 AL39

EIS - ADDRESS REGISTER STORE

ARNn

FORHAT'

SUMHARYI

MODIFICATIONS'

INDICATORS'

NOTES.

..

SARn

FORHAll

SUHMARYI

MODIFICATIONS:

INDICATORS:

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1975

ARn to Numeric Descriptor

(IS Single-Word Instruction (See Figure 2-1).

For n = O. 1, •••• or 7 as determined ~V operation code

C(PRn.WORONO) -> C(Y)O.17

If C(Y)21 = 0 'TN code = 0), tnen

C(PRn.CHAR) -> C(Y)18.19

o -> C(Y)2D

If C(Y)Zl : 1 (TN code = 1). then

(9 • C(P~n.CHAR) + C(PRn.BITNO) - 1) I 4 -> C(Y)18.2D

All except DU. Dl. ct. SC, SCR

None af fected

This instruction is the inverse of NAR,.

The numeric descriptor 1s fetched from Y and C(Y)21 (TN
bit) is examined •

If TN = 0 (9-blt data). then CCPRn.CHAR) goes to
CCY)18.19.

If TN = 1 (4-blt data), then C(PRn.CHAR) and C(PRn.BITNO)
are translated to an equivalent cha·acter position that
goes to C(Y)18.20.

Attempted repetition with RPT, RPD. or RPl causes an
Illegal Procedure Fault.

Store Address Register n 7ltn (1)

EIS Single-Word Instruction (See Figure 2-1).

For n = 0, 1 ••••• or 7 as determined oy operation code

C(PRn.AR) -> C(Y)O,23

00 ••• 0 -> C(Y)24.35

All except OUt DL. CIt SC, SCR

None affected

2-17& AL39

NOTEsa

SAREG

FORHATI

SUH"ARYI

HODIFICATIONS'

INDICATORS.

NOTEI

SPL

FORHATa

SUHHARYI

HODIFICA TIONS:

INDICATORS:

NOTES:

RlVIEW DRAFT
SUBJECT TO CHANGE
October, 1915

[IS - AO~RESS REGISTER STORE

Attempted repetition with RPT, RPO, or RPl causes an
Illegal Procedure Fault.

Store Address Registers It43 (1)

EIS SIngle-Word Instruction (See Figure 2-1).

For n = 0, 1, ••• , 7

C(ARn) -> C(Y+n)O,23

00 ••• 0 -> C(Y+n)Z4,35

All except OU, Ol, CI, SCt SCR

None affected

The hardware assu~es Y1S,17 = ODD and addressIng Is
incremented accordingly; no check is m3de.

Att~mpted repetition with RPT, RPD, or RPl causes an
Illegal Procedure Fault.

Store Pointers and lengths It,. 7 (1)

EIS Sinlle-Word Instruction (See FIgure 2-1).

C(Declaal Unit Control Data) -> C(Y-bl~ck8)

All except OU, Ol. CI. se, SCR

None af fee ted

The hardware assumes ·Y15,17 = 000 and addressIng Is
incremented accordingly; no check is .ade.

See Section IV, Program Accessl~le Registers, for
description and use of Decimal Unit Control Data.

•

Attempted repetition with RPT, RPD. or RPl causes an
Illegal Procedure Fault.

Z-177 Al3c)

EIS - ADOklSS REGISTER SPECIAL ARITHMETIC

AltBD Add It-Bit Displacement to Address Register

FORHATI

o 0 0
Q 2 J

I I
a ARn I
1 2

3

ADDRESS

1 1
_---LA.

J
J
I

18

2 2 Z J
--La. 9 0

: I I
OPCOOE UIAIO

--1-LL
10 1 1

5D 2 (1)

J 3 3
1-Z 2

I
01 REG J

J I
Z ,.

Figure 2-12 EIS Address Register Special Arithmetic Instruction Format

ARn Number of Address Register selected

ADDRESS Literal word displacement value

OPCOOE Instrucfion operation code

I Program Interrupt inhibit bit

A Use Address Register contents flag

REG Any Register Modifier except DU, Ol, a~~ IC

SU""ARYI If A = 0, then

ADDRESS. C(REG) I ,. -> C(PRn.WORDNJ)

C(REG) modulo It -> C(PRn.CHAR)

It • (C(REG) modulo 2) + 1 -> C(PRn.3ITNO)

If A = 1, then

C(PRn.WOROND) + ADDRESS + (9 • C(PR~.CHAR) + ,. • C(REG)
+ C(PRn.BITNO» I 36 -> C(PRn.WORJNO)

MODIFICATIONS:

INDICATORS:

NOTESI

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

«9 • C(PRn.CHAR) + ,. • CCREG) +
C(PRn.8ITNO) mOdulo 36) I 9 -> C(PRn.CHAR)

,. • (C(PRn.CHAR) + 2 • CCREG) +
C(PRn.BITNO» I 4) modulo 2 + 1 -> C(PRn.BITNO)

None except AU, QU, AL, QL, or Xn

None af fee ted

The steps described in SJMMARY define special 4-bit
addition arithmetic for ADDRESS, C(~EG), C(PRn.WORONO),
C(PRn.CHAR), and C(PRn.dITNO).

2-178 4L39

A&8D

FORMATa

SUMI1ARYI

MODIfICATIONSI

INDICATORSI

NOTES'

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1915

EIS - ADDRESS REGISTE~ SPECIAL ARITHMETIC

The use of an Address Register Is inhe~ent; the value of
bit 29 affects Address Preparation but not instruction
decod Ing.

Attempted repetition with RPT. RPD. or RPL causes an
Illegal procedure Fault.

Add &-81t Displacement to Address Register

EIS Address Register Special Arithmetic Instruction
(See Figure 2-121.

I f A = 0, then

ADDRESS. C(REG) I 0 -> C(PRn.WORDNl)

(Co • CCREG» modulo 3&) I 9 -> C(P~n.CHAR)

(0 • C(REG) modulo 9 -> C(PRn.8ITNl)

I f A = 1, then

501 (11

C(PRn.WORDNO) • ADDRESS + (9 • C(PRn.CHAR) + 0 • C(~EG)
+ C(PRn.BITNO» I 3& -> C(PRn.WORlNO)

«(9 • C(PRn.CHAR) + 0 • CeREG) +
C(PRn.BITNO» modulo 3&) I 9 -> C(PRn.CHAR)

(9 • C(PRn.CHAR) + 6 • C(REG) +
C(PRn.8ITNOll modulo 9 -> CePRn.BITNO)

None except AU. QU. Al, QL. and Xn

None Affected

The steps described in SUMMARY define special 6-bit
addition arithmetic for ADDRESS, C(~EG). C(PRn.WORDNO),
C(PRn.CHAR), and C(PRn.BITNOI.

The use of an Address Register is inhe·ent; the value of
bit 29 affects Address Preparation but not instruction
decoding.

Atempted repetition with RPT, RPD, or RPl causes an
Illegal Procedure Fau.t.

2-119 Al39

EIS - ADDRESS REGIST~~_SPECIAL ARITHMETIC

A9BD

FORMATI

SUMMARYI

MODIFICATIONSI

INDICA TORS.

NOTES_

ABO

FORHAT_

SUMMARY I

REVIEH DRAFT
SUBJECT TO CHANGE
October, 1975

Add C)-Bit OlsP'acement to Address RegIster

EIS Address Register Special Arithmetic Instruction
(See Figure 2-12).

I f A = Q, then

ADDRESS + C(REG) I 4 -> C(PRn.WORONO)

CCREG) modulo 4 -> CCPRn.CHAR)

I f A = 1, then

C(PRn.WORONO) + ADDRESS +
(C(REG) + C(PRn.CHAR»/~ -> C(PRn.HORONO)

(C(PRn.CHAR) + C(REG» mOdulo 4 -> :CPRn.CHAR)

0000 -> CCPRn.DITNO)

None except AU, QU, AL, Ql, and Xn

None affected

500 (1)

The steps described in
addition arithmetic for
and C(PRn.CHAR).

SUMMARY define special C)-bit
ADDRESS, CC~EG), CCPRn.HORONO),

The use of an Address Register is inhe~ent; the value of
bit 29 affects Address Preparation but not instruc~ion
decoding.

Attempted repetition with R~T, RPO, or RPL causes an
Illegal Procedure Fault.

Add 81t Displacement to Address Register

EIS Address Register Special Arithmetic Instruction
CSee Figure 2-12).

I f A = 0, the n

ADDRESS + C(REG) I 3& -> C(PRn.WORD~O)

(CCREG) modulo 3&) I 9 -> C(PRn.CHA~)

CCREG) modulo 9 -> CCPRn.BITNO)

I f A = 1, then

503 C 1)

C(PRn.WORONO) + ADDRESS + (9 • C(PR~.CHAR) + 36 • C(REG)
+ C(PRn.BITNO» I 36 -> C(PRn.HORJNO)

2-180 AL39

HODIFICATIONSI

INDICATORS'

NOTES.

AND

SUHHARYI

MODIFICATIONS'

INDICATORSI

NOTES'

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1915

EIS - ADDRESS REGISTE~ SPECIAL ARITHMETIC

(9 • C(PRn.CHAR) + 36 • CCREG) +
C(PRn.etTNO» modulo 36) I 9 -> C(PRn.CHAR)

(q • C(PRn.CHAR) + 36 • CCREG) +
C(PRn.BITNO» modulo q -> C(PRn.BITNO)

None except AU, QU, Al, Ql, or X~

None affected

The ~teps described in SUMMARY define special bit addition
arithmetic for ADDRESS, CCREG), CCPRn.WORO~O),
C(PRn.CHAR), and C(PRn.dITNO).

The use of an Address Register is inhe-ent; the value of
bit Zq affects Address Preparation but not instructIon
decoding.

Attempted "repetition with RPT, RPD. or RPl causes an
Illegal Proced~re Fault.

Add Word Displacement to Address Register

EIS Address Register Special ArithmetIc InstructIon
(See Figure 2-12).

If A = 0, then

ADDRESS + C(REG) -> CtPRn.WORDNO)

If A = 1, then

C(PRn.HORONO) + ADDRESS + C(REG) ->:(PRn.WORONO)

00 -> C(PRn.CHAR)

0000 -> C(PRn.8ITNO)

None except AU, QU. Al, Ql, and Xn

None affected

507 (1)

The use of an Address Register Is lnne-ent; the value of

bit 29 affects Address PreparatIon but not instruction
decod ing.

Attempted repetition with RPT, RPD, or RPl causes an
Illegal Procedure Fault.

2-181 Al39

[IS - ADOR~SS REGISTER SPECIAL ARITHMETIC

SltBO

FORMATa

SUMMARYI

Subtract 4-bit DIsplacement from Address Reglste~ 522 (1)

EIS Address Register Special A~ithmetic Instruction
(See Figure 2-12).

If A = 0, then

~ (ADDRESS + CCREG) I 4) -> C(PRn.HlRDHO)

- CCREG) ~odulo '+ -> C(PRn.CHAR)

- '+ • (CCREG) modulo 2) + 1 -> CCPR~.BITNO)

If A = 1, then

C(PRn.HORDNO) - ADDRESS + (9 • C(PRn.CHAR) - 4 • C(REG)
+ C(PRn.8ITNO» / 30 -> CCPRn.HORlNO)

«9 • C(PRn.CHAR) - .. • CCREG) +
C(PRn.BITNO)J modulo 36) I 9 -> C(PRn.CHAR)

.. • CC(PRn.CHAR) - 2 • CCREG) +
C(PRn.BITNO) I '+)modulo 2 + 1 -> CCPRn.BITNO)

MODIFICATIONSI . None except AU, QU, AL, QL, or Xn

.. INDICATORS:

NOTESI

5680

FORHAT I

SUMMARY I

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

None affected

The steps described in SUMMARY defIne specia1 it-bIt
subtraction arithmetic for ADDRESS, Ce~EG), CCPRn.WORDNO),
C(PRn.CHAR), and C(PRn.BITNO).

The use of an Address Register is in~erent; the value of
bit 29 affects Add~ess Preparation b~t not instruction
decoding.

Attempted repetition with RPT, RPD, or R?L causes an
Illegal procedure Fault.

Subtract 6-Blt Displacement from Address Register

EIS Address Register Special Arithmetic Instruction
CSee Figure 2-12).

I f A = 0, then

- (ADDRESS + CCREG) I 6) -> C(PRn.WQRDNO)

- C C & • C C REG» m 0 cu I 0 3 I) I 9 - > C (P Rn • C H A R.)

- (e& • CCREG) modulo q -> CePRn.BITNO)

2-182

521 (1)

AL39

MODIFICATIONS.

INDICATORS:

NOTESa

S980

FORHATa

MODIFICATIONSI

INDICATORSZ

NOTES:

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

EIS - ADDRESS REGISTE~ SPECIAL ARITHHETIC

If A = 1, then

,C(PRn.WORONO) - ADDRESS. (9 • C(PR~.CHAR) - & • C(REG)
+ C(PRn.BITNO» I 36 -> C(PRn.WORJNO)

(C9 • C(PRn.CHAR) - 6 • CCREG) +
C(PRn.BITNO» modulo 3&) I 9 -> C(PRn.CHAR)

(9 • C(PRn.CHAR) - 6 • C(REG) +
C(PRn.BITNO» modulo 9 -> CCPRn.BITNO)

None except AU, QU, AL, QL, and Xn

None Affected

The· steps described in SUMMARY define special 6-blt
subtraction arithmetic for ADDRESS, C(~EG), C(PRn.WORONO),
C(PRn.CHAR), and C(PRn.BITNO).

The use of an Address Register ls In~erent; the value of
bit 29 affects Address Preparation b~t not instruction
decoding.

Atempted repetition with RPT, RPD, or RPL causes an
Illegal Procedure Fault.

Subtract 9-Bit Dlsplacement from AddresS Register 520 (1)

EIS Address Register Special Arithmetic Instruction
(See figure 2-12).

If A = 0, then

- (ADD~ESS + C(REG) I ~) -> C(PRn.WORDNO)

- CCREG) modulo 4 -> C(PRn.CHAR)

If A = 1, then

C(PRn.WORDNO) - ADDRESS +
(CCPRn.CHAR) - CCREG» I ~ -> CCP~.CHAR)

(CCPRn.CHAR) - C(REG» modulo ~ -> :CPRn.CHAR)

0000 -> CCPRn.BITNO)

None except AU, QU, AL, QU, or Xn

None affected

The steps described in SUMMARY define so~ci~1 9-bit
subtraction arithmetic for ADDRESS. C(REG). C(~~n.WORDN~),

and C(PRn.CHAiU.

2-183 AL39

EIS - ADDRESS REGISTER SPECIAL ARITHMETIC

SBO

FORHAT'

SUHHARY'

MODIFICATIONSI

INDICATORS:

NOTES:

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1915

The use of an Address Register is in~erentl the value of
bit 29 affects Address Preparation bJt not instruction
decoding.

Attempted repetition with RPT. RPO. or RPL causes an
Illegal Procedure Fault.

Sybtract Bit Displacement from Address Register

EIS Address Register Special Arithmetic Instruction
(See 'Figur-e 2-12).

I f A = O. then

- (ADDRESS + C(REG) / 36) -> C(PRn.~ORDNO)

- CCCREG) modulo 3&) / 9 -> CCPRn.C~AR)

- CCREG) modulo 9 -> - C(PRn.BITNO)

If A = 1,' then

523 (1)

C(PRn.WORDNO) - ADDRESS + (9 • C(PR~.CHAR) - 3& • C(REG)
+ C(PRn.BITNO» / 36 -> C(PRn.WOR)NO)

«9 • C(PRn.CHAR) - 36 • C(REG) +
C(PRn.BITNO» modulo 36) I 9 -> CCPRn.CHAR)

(9 • C(PRn.CHAR) - 36 • CCREG) •
C(PRn.BITNO» modulo 9 -> C(PRn.BITNO)

None except AU, QU. AL, QL. or Xn

None a1 'ected

The steps described in SUMMARY define special bIt
subtraction arithmetic for ADDRESS. C(~EG), C(PRn.WORDNO),
C(PRn.CHAR). and C(PRn.BITNO).

The use of an Address Register Is in~erent; the value of
bit 29 affects Address Preparation bJt not instruction
decoding.

Attempted repetItion with RPT, RPD, or RPL causes an
Illegal Procedure Fault.

2-18" AL39

SMD

FORMATs

SUMMARYI

MODIFICATIONSI

INDICATORSa

NOTES.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

EIS - ADDRESS REGISTE~ SPECIAL ARITHMETIC

Subtract Word Displacement fro. Address Register

[IS Address Register Special Arithmetic Instruction
(See Figure 2-12).

If A = 0, then

- (ADDRESS + C(REG» -> C(PRn.WORDNl)

If A = 1, then

527 (1)

C(PRn.WORDNO) - (ADDRESS + CCREG» -> C(PRn.WORDNO)

00 -> C(PRn.CHARJ

0000 -> CCPRn.BITNO)

None except AU, QU, Al, Ql, or Xn

None Affected

The use of an Address Register is lnhe-ent; the value of
bit 29 affects Address PreDaratlon but not instruction
decoding.

Attempted repetItion with RPT, RPD, or RPl causes an
Illegal Procedure Fault.

2-185 Al39

lIS - ALPHANUMERIC COMPARE

CHPC Compare Alphanumeric Character Strings 106 (1)

FORHATS

0 0 0 1 1 1 1 Z Z Z Z Z 2 2 2 3
Il ___ ---i-Lll.-1 --L.i Q 1 Z l_L---La-3 2

I S I J I J J
I FILL J 0 0: I1F2 : 106 (1) III HFl I
1- I I --1 1_1 I
J q Z 71 I I I 10 1 71

Y-charnl I CN1 ITAUOS Nl J
L- a I I I I
I I I I 1
I Y-charo2 I CN2 I 0 0 01 NZ I
I I I I I

18 3 2 1 12

Figure 2-13 Compare Alphanumeric Strings (CMPC) EIS Hultl-W~rd Instruction Format

FIll Fill character for string extension

HFl Modification Field for Operand Descriptor 1

·HF2 Modification Field for Operand Descriptor 2

I Program Interrupt inhibit bIt

Y-charn1 Address of "Ieft-hand- string

CN1 First character position of "1eft-hand- string

TAl Data type of "left-hand" string

Nl Length of "left-hand" string

Y-charQ2 Address of ··r i ght-hand" s tr ing

CNZ First Character position of "right-hand" string

N2 Length of "right-hand- string

ALH Coding Format:

(MFl),(HFZ)[,fill(octalexpression») cmpc
desc,Oc Y-charnl[(CN1»),Nl D = 4, 6, or 9 (TAl = 2, 1, or 0)

descna

SUMMARYS

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

Y-charnZ(CNZ)],NZ n = 4, 6, or 9 (TAZ is ignored)

For i = 1, 2, ••• , minimum (Nl,N2J

C(Y-charol)i-l II C(Y-charoZ)i-l

Z-186 AL39

MODIFICATIONS.

INDICATORS'

Zero

Carry

NOTES'

REVIEW DRAFT
SUBJECT TO CHANGE
October, lY75

EIS - ALPHANUMERIC COMPARE

If N1 < HZ, then for i = N1+1. Nl+Z •••• , NZ

CCFILL) II C1Y-charQ2)i-l

If N~ < HZ, then for 1 = NZ+l. NZ+Z •••• , N1

CCY-charnl)i-l II C(FILL)

None except AU. QU. AL. QL. or Xn for HF1 and "F2

(Indicators not listed are not affected)

If C(Y-charn1)! = C(Y-charn2li for all i. then ON;
otherwise. OfF

IfC(Y-charnl)i < CCY-charnZ)i for any 1, th~n OFF;
otherwise ON

Both strings are treated as the data ttpe given for the
"left-hand" string. TAl. The data type given 'or the
"right-hand" string. TAZ, is ignored.

Comparis!on is made on full 9-bit fields. If the given
data type is not ~-bit (TAl _ 0). then characters fro.
ClY-charD1) and C(Y-charnZ) are high-order zero filled.
All 9 bits of C(FILL) are used.

Instruction execution proceeds until an inequality Is
found or the larger string length count is exhausted.

If HFk.RL = 1. then Nk does not contain the operand
length; instead. it contains a re~ister code for a
register holding the operand length.

If HFk.ID = 1. then the ~th word following the InstructIon
Word does not contain an Operand Descriptor; instead. it
contains an Indirect Pointer to the Operand Descriptor.

Attempted executlon with XED causes an Illegal Procedure
Fault.

Attempted repetitIon with RPT. RPD. or RPL ca~ses an
Illegal Procedure Fault.

Z-187 AL39

EIS - ALPHANUHERIC COMPARE

SCD Scan Characters Double 120 (1)

FORHATa

0 I 1 1 1 2 Z 222 222 3 3 3 3
a ---11-1 -----1-8 D 1-LJ_L __ La q Q 1 L ~

I I J J I J
J 0 0 000 0 o 0 0 o 01 MF2 J 120 (1) S I : HFl I
I I I ---1-L I
J 11 71 I . I I 10 1 71
I Y-charnl I CN1 ITAlIOI Nl I
1...-- ---1 J I I I
J I J 2 1 12.
I Y-char o2 I CN2 : 0 o 0 0 0 0 0 0 0 0 0 0 a 0 o t
I I I I
I 1 3 1 1 I 151
I Y3 10 0 o 0 0 0 0 0 0 0 o IA 20 o I REG I L-___

I I I I a
18 11 1 2 ,.

FIgure 2-14 Scan Characters Double (SCD) [IS Multi-Word InstructIon Format

HF1 Modification Field for Operand Descriptor 1

"F2 Modification Field for Operand Descriptor 2

-I Program Interrupt inhibIt bit

Y-charD1 Address of string

CNI First character posItion of string

TAl Data type of string

Nt length of string

Y-charn2 Address of test character paIr

CN2 FIrst character posItion of test character pair

YJ Address of compare count word

A IndIrect via Pointer Register flag for Y3

REG Register modifier for Y3

Al" Coding Formatl

scd
descna
descna
arg

(t1 F 1) , "'iF 2)
Y-charnl[(CN1)].N1
Y-charn2 [(CN2) J
Y3[,tagJ

n : 4, 0, or 9 (TA! : 2, 1, or 0)
n : 4, 0, or 9 (TA2 is ignored)

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975 2-188 AL39

SCDR

SUMMARYI

MODIFICATIONS'

INDICATORS.

Ta Ily
Runout

NOTES.

FORMAT a

SUMMARY:

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1975

EIS - ALPHANUMERIC COMPARE

For 1 = 1. 2 ••••• N1-1

C (Y-charnU 1-1. i II C C Y-cha"'o2) 0,1" .
On instruction completion

00 ••• 0 -> C(Y3'O.11

i -> C(Y3'12.35

None except AU. QU, AL. QL, or Xn 10r MF1 and REG
None except DU, AU, QU, AL. QL, or Xn for MF2

(Indicators not listed are not affecte~)

If the string length count Is exhausted without a match.
or if N1 = 1, then ON; otherwise OFF

Botn the string and the test character pair are treated as
the data type given for the string, TAl. The data type
given for the test character pai,... TA2, is ignored.

Instruction execution proceeds until a character pair
match is found or the string length co~nt is exhausted.

If HFh.RL = 1. then Nh does not contain the operand
length; instead. It contains a re~lster code for a
register holding the operand length.

If HFh.ID = 1, then the hth word follo~ing the Instruction
Word does not contain an Operand Descriptor; instead. It
contains an Indirect PoInter to the Operand DescrIptor.

If HF2.IO = 0 and HF2.REG = DU. then the second word
following the Instruction Word does not contain an Operand
Descriptor for the test character pair; instead, It
contains the test character paIr as a Direct Upper operand
1 n bits D ,17.

Attempted execution with XED causes an Illegal Procedure
Fault.

Attempted repetition with RPT, RPD, or RPl causes an
Illegal Procedure Fault.

Scan Characters Double in Reverse 121 (1)

Same as Scan Characters Double (SCD) (See Figure 2-14).

For I = 1, 2, •••• N1-1

CCY-charn1)Nl-!-1.Nl-i II C(Y-charoZ'O,l

2-189 AL39

EIS - ALPHANUMERIC COMPARE

HODIFICATIONSI

INDICATORSI

Tally
Runout

NOTES'

REVIEW DRAFT
SU8JECT TO CHANGE
October, 1975

On instruction completion

00 ••• 0 -> C(YJ)O,11

1 -> C(Y3)12,35

None except AU, QU, AL, QL. or Xn for HF1 and REG
None except DU. AU, QU, AL, QL, or Xn for HF2

(Indicators not lIsted are not affecte~)

If the string length count Is eXhausted ~ithout a match,
or if N1 = 1. then aNi other~ise OFF

Both the string and the test character pair are treate1 as
the data type given for the string, TAl. The data type
given for the test character pair. TA2, Is ignored.

Instruction execution proceeds until a character paIr
match is found or the string length co~nt is exhausted.

If HF~.RL = 1, then Nh does not contain the operand
length; instead, it contains a re1ister code for a
register holding the operand length.

If HF~.ID = 1, then the ~th ~ord fo'Jo~ing the Instruction
Word does not contain an Operand Descriptor; instead, it
contains an Indirect Pointer to the Operand Descriptor.

If HF2.tD = 0 and HF2.REG = OU, then the second ~ord
fol'o~ing the Instruction Word does not contain an Operand
Descriptor for the fest character pair; instead, It
contains the test character pair as a Direct Upper operand
in bits 0.17.

Attempted execution with XED causes an Illegal Procedure
Fau't.

Attempted repetition ~ith RPT, RPD, or RPL causes an
Illegal Procedure Fault.

2-190 Al39

EIS - ALPHANUHERIC COMPARE

SCH Scan with Hask 121t (It

FORHATI

0 o 011 1 1 l 2 2 l 2 222 3 3 3 3
D --'O'~l ----La II 1 Z 3 !L.---L! 9 g 1 Z 5

I I I I . I I •
I HASK 10 01 HFl 1 124 (1) UI HFI I
L- a I ---1 ~-L I

C) 2 71 I a I 10 1 71
Y-cha r o1 I CNl I TAli 0 I Nl I

I a ,~ I
I J Z 1 121

Y-charn2 1 CN2 10 0 0 0 0 0 0 0 0 0 o a 0 o 01
--1 a J

I 3 I I I 151
Y3 10 000 0 0 0 0 0 0 o I A I 0 01 REG J

I _1 I I I
18 11 1 2 It

Figure 2-15 Scan with Hask (SCH) EIS Hulti-Hord Instr.Jction Format

HASK Comparison bit _ask

HFl Modification Field for Operand Descriptor 1

-HF2 Modification FIeld for Operand Descriptor l

I Program Interrupt inhibit bit

Y-charQ! Address of string

CN1 First cha~acter position of string

TAl Data type of string

Nl Length of string

Y-charnl Address of test character

CNZ First cha~acter position of test character

Y3 Address of compare count word

A Indirect via Fointer Register flag for Y3

REG Register modifier for Y3

ALH Coding Format.

(MF1),tMFZ){,mask(octalexpressiontJ scm
descna
descna
arg

Y-charo1[(CN1)),Nl D = It, 6. or 9 (TAL = Z. 1, or 0)

REVIEH DRAFT
SUBJECT TO CHANGE
October, 1975

Y-charnZ(CNZ») D = It, 0, or 9 (TAZ is ignoredt
Y3[,tag)

2-191 AL39

EIS - ALPHANUHERIC COHPARE

SUMMARYI

HODIFICATIONS:

INDICATORSI

Tal'v
Runout

NOTES'

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1975

For characters i :: 1, 2, ••• , Nt

For bits J :: 0, 1 ••••• 8

C(Z)) = -C(MAS)OI I.
(C(Y-char ol)i-1)J • (C(Y-char u2)1)1)

If CeZ)o.,s = 00 ••• 0, then

OO ••• D -> C(Y3)O,11

1 -> C(Y3)12,35

other~lse. continue scan of CCY-charol)

None except AU, QU, AL, QL, or Xn for HFl and REG
None except OU, AU, QU, AL, Ql. or Xn for MFZ

(IndIcators not lis~ed are not affectedt

If the string
other~lse, OFF

length count exhausts, then ON;

Both the string and the test character are treated as the
data type given for the string, TAl. The data type given
for the test character, TAl. is ignored.

Instruction execution proceeds until a masked character
match Is found or the string length co~nt is exhausted.

MaSKing and comparision is done on ful I 9-bit fields. If
the given data type is not 9-blt (TA1 'I- 0), then
characters from CCY-charnl) and C(Y-ch3rn2) are high-order
zero filled. AI. 9 bits of C(HASK) are used.

If MF1.RL = 1. then N1 does not contain the operand
length; instead, It contains a re~ister code for a
register holding t~e operand length.

If HFh.ID :: 1, then the hth word follo~ing the Instruction
Word does not contain an Operand Desc-iptor; instead, it
contains an Indirect Pointer to the Operand Descriptor.

If HFZ.tD = 0 and MF2.REG :: DU, the~ the second word
folJo~ing the Instruction Word does not contain an Operand
Descriptor for the test character; instead. it contains
the test character as a Direct Upper ooer~nd in bits 0,8.

Attempted execution with XED causes an Illegal Procedure

Fault.

Attempted repetition with RPT, RPD, or RPl causes an
Illegal Procedure Fault.

2-192 AL39

FORHAT'

SUHMARY'

MODIFICATIONS'

INDICATORS'

Tally
Runout

NOTES.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

EIS - ALPHANUHERIC COMPARE

Scan ~ith Mask in ~everse

Same as Scan with Mask (SCM) (See Flgu~e 2-15).

For characters i = 1, 2, ••• , Nl

For bits = 0, 1, •••• 8

C(Z») = -C(HASK)J ,
«C(Y-charnl)Nl-i)] • (CCY-cha-n2)1»))'

If CIZIO,8 = 00 ••• 0, then

00 ••• 0 -> C(Y3)O,11

i -> C(Y3)12.35

other~lse, continue scan of CCY-cha~n1)

None except AU, QU, AL, QL, or Xn for ~F1 and REG
None except OU, AU, QU, AL, QL, or Xn for MF2

(Indicators not listed are not affected)

If the string
other~ise. OFF

length count exhausts,

125 (1)

then ON;

80th the string and the test character are treated as the
data type given for the string, TAl. The data type given
for the test character, TAZ. IS ignorej.

Instruction execution proceeds until a masked character
match Is found or the string length co~nt is exhausted.

Masking and comparision is done on full 9-blt fields. If
the given data type is not 9-bit (TAl _ 0), then
characters from CCY-charD1) and CCY-ch3rnZ) are high-order
zero filled. All 9 bits of CCHASK) are used.

If HF1.RL = 1, then Nt does not contain the' operand
length; instead, it contains a re;ister code for a
register holding the operand length.

If HF~.ID = 1, then the ht~ ~ord folloMing the Instruction
Word does not contain an Operand Desc-iptor; instead, it
contains an Indirect Pointer to the Operand Descriptor.

If MFZ.ID = 0 and HFZ.REG = OU, the~ the second word
follofting the Instruction Word does not contain an Operand
Descriptor for the test cha~acter; instead, it cont~lns
the test character as a Direct Upper oierand in bits 0,8.

Attempted execution ~ith XED causes an II legal Procedure
Fault.

Attempted repetltion with RPT, RPO, or RPL c~uses an
IllegaJ Procedure Fault.

Z-193 AL39

EIS - ALPHANUMERIC COMPARE

TCT Test Character and Translate 161t (U

FORHAT.

o 11 22222 222333 3
o ---L8 a 1 2 LL_--L6.-L1LL2 5

J I I I
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 J 1 () It (1) J I : HF 1 .1

I ~_L 1
I I I I to 1 1

Y-chara1 I CN1 JTAlIOI Nl
I I J I
I 3 2 1 1 I 15

Y-char9Z 1000 000 0000 DIAIO 0: REG
________ ---L -1_~ ______ ~

S I I I
Y3 10 0 0 0 0 0 0 0 0 0 OIAJO 0: REG

I -1-LI __ ~; ______ -L

18 11 1 2 It

Figure 2-1& Test Character and Translate (TCT) EIS Multi-Wo~d Instruction Format

Hfl Modification Field for Operand Descriptor 1

I Program Interrupt inhibit bit

.Y-charnl Address of string

CN1 first character posItion of string

TAl Data type of string

Nl Length of strIng

Y-char92 Address of character translation table

Y3 Address of result Mord

A Indirect via Pointer Register flag for YZ and Y3

REG Register modIfier for Y2 and Y3

ALI1 Coding Fermat I

tct
descna
arg
arg

(MF1)
Y-charol[(CN1)1,Nl
Y-char9Z(,tag]
Y3[,tagl

a = It, 0, or 9 (TAl = 2, 1, or 0)

SUMHARYI

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1915

For 1 = 1, 2, ••• , N1

m = C(Y-charol)i-l

If C(Y-charQ2)m-1 ~ 00 ••• 0, then

C(Y-charQ2)m-l -> C(Y3)O,8

2-194 AL39

TCTR

MODIFICATIONS.

INDICATORSI

Tallv
Runout

NOTES:

FORMATI

SUMHARYI

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

EIS - ALPHANUMERIC COMPARE

000 -> C(Y3)9,11

i -> C(Y3)ll,35

otherwise, continue scan of C(v-cha~Q1)

None except AU, QU, AL, QL, or Xn for HF1 and REG

(Indicators not listed are not affected)

If the
otherwise,

string
OFF

length count exhausts, then ON;

If the data type of the string to be s:anned Is not 9-bit
(TAl ~ 0), then characters frow C(Y-charQl)! are
high-order zero filled in forming the table index, m.

Instruction execution proceeds until a non-zero table
entry is found or the string length co~nt is exhausted.

If HF1.RL = 1, then Nl does not contain the operand
length; instead, it containS a re~ister code for a
register holding the operand length.

If HF1.ID = 1, then the first word following the
Instruction Word does not contaln an Jperand Descriptor;
instead, it contains an Indirect Pointer to the Operand
Descriptor.

Attempted execution with XED causes an IIJegal Procedure
Fault.

Attempted repetition with RPT, RPD, or RPL causes an
Illegal Procedure Fault.

Test Character and Translate In Reverse

Same as Test Character and Translate (TeT)
(See Figure 2-16).

For i = 1, 2, ••• , Nl

m = C(Y-charnl)Nl-i

If C(Y-char92)m-1 ~ 00 ••• 0, then

C(Y-char92)m-l -> C(Y3)O,8

000 -> C(Y3)9,11

i -> C(Y3)12,35

otherwise, continue scan of C(y-cha-nl)

2-195

165 (1)

EIS - ALPHANUMERIC COKPARE

HOOIFICATIONSI

INDICA TORSI

fa Ilv
kunout

NOTESI

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

None except AU, QU, AL, Ql, or Xn for 1Ft and REG

(IncHcators not listed are not affecte::U

If the strin9
otherwise, OFF

length count exhaus ts, then ON;

If the data type of the string to be scanned is not 9-bit
(TAl ~ 0), then characters fro~ C(Y-charnl)i are
high-order zero filled in forming the table index, m.

Ihstruction execution proceeds until a non-zero table
entry is found or the string length COJnt is exhausted.

If HF1.RL = 1, then Nl doeS not contain the operand
length; instead, it contains a re~lster code for a
register holding the operand length.

If MF1.IO = 1, then the first word following the
Instruction Word does not contain an Operand Descriptor;
instead, it contains an Indirect Pointer to the Operand
Descriptor.

Attempted execution with XEO causes an II legal Procedure
Fault.

Attempted repetitIon with RPT, RPO, or RPL causes an
Illegal Procedure Fault.

2-19& AL39

EIS - ALPHANUHERIC "OVE

HlR

0
D

Hove Alphanumeric Left to Right

FORHATI

0 011 1 1 2 2 2 Z 2 2 Z Z
a-3 II 1 --1-a._L.1-LLL_--L§. <}

J J I J 1 I
FILL IT 101 r1F2 I 100 (1) 211 HF1 ______ LI I I --1._L

911 71 I I) 10 1
Y-charol 1 CN1 ITAliO) Nt

--1 ~ 1-1
I 1 1 I

Y-charn2 J CNZ aTAZI01 tiZ
---1 I I I

18 3 2 1

Figure 2-17 Move Alphanumeric left to Right (MlR) EIS Hulti-Word
Instruction Format

FIll FIll character for string extension

T Truncation Fault enable bit

"F1

"F2

Y-chrnl

CN1

TAl

N1

Y-charo.2

CN2

TA2

NZ

Hodification Field for Operand Descriptor 1

Hodification Field for Operand Descriptor 2

Address of sendIng string

First character position of sendIng st-Ing

Data type of sending string

Length of sending string

Address of receiving string

First character pOSition of receiving strIng

Data type of receiving string

Length of receiving string

ALH Codlng Format:

(MF1) t (HF2) (, fill (o·etal expression)][,e"\abl efaul t 1

100 (1)

3
~

I
I
I

71
I
I
I
1
1

12

mlr
descna
descna

Y-charol(CN1)],Nl n = ~, 0, or 9 (TAl: 2,1, or 0)

SUMMARY I

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

Y-cnarnZ(CNZ)],N2 D = 4, D, or 9 (TA2 = 2, 1, or 0)

For i = 1, 2, ••• , minimum (N1,N2)

CCY-charn1)l-1 -> C(Y-charn2)i-1

Z-197 Al39

EIS - ALPHANUMERIC MOVE

If Nt < NZ, then for i = Nl+l, Nt+Z, ... , N2

C(FILl) -> C(Y-charoZ)1-1

MODIFICATIONS. None eKcept AU, QU, AL, Ql, or Xn for ~Ft and MF2

INDICATORSI (Indicators not listed are not affected)

Truncation If N1 > NZ then ON; otherwise OFF

NOTESI

REVIEW OR~FT
SUBJECT TO CHANGE
October, lC375

If data types are dissimilar (TAt ~ TA2), each character
Is high-order truncated or zero filled, as aopropriate, as
it is moved. No character conversion takes place.

If N1 > NZ, then (Nt-HZ) trail lng Characters of
C(Y-charol) are not moved and the Trun:ation indicator is
set ON.

If Nt < N2 and TAZ = Z '~-bit data) or 1 (6-bit data),
then FIll ch~racters are high-order truncated as they are
moved to C(Y-charoZ). No characte- conversion takes
place.

If N1 < NZ, C(FILl)D = 1, TAl = 1, a,d TA2 = Z, then
C(Y-charol)Nl is eKamined for a GBCD overpunch sign. If a
negative overpunch sign is found, then the minus sign
character is placed in C(Y-charQ2)NZ; otherwise, a plus
Sign character is placed in C(Y-charoZ)NZ.

If HF~.Rl = 1, then N~ does not contain the operand
length; instead, it contains a re~ister code for a
register holding the operand length.

If MFt1.IO = 1t then the 11th word following the Instruction
Hord does not contain an Operand Desc~iptor; instead, it
contains an Indirect Pointer to the Operand Descriptor.

ClY-charoi) and C(Y-charoZ) may
check is made. ThiS feature is
substrings within a larger
exercised in the construction

be overlapping strings; no
useful for replication of

string, but care must be
of the Jperand Descriptors
(C(Y-cha"'nU) data is not so that sendin~ string

inadvertently destroyed.

The user of string replication or overlaying is warned
that the Decimal Unit addresses the main store in
unaligned (not on 0 modulo 8 boundary) units of Y-blockS
words an1 that the overlaved string (C(Y-charnZ) is not
returned to m3in store until the unit of Y-block8 words is

filled or the instruction completes.

If T = 1 and the Truncation indicator is set ON by
execution of the instruction, then a Truncatio~ (OverfloM)
F au I t occurs.

Attempted execution with XED causes an Illegal Procedure
Fault.

2-198 Al39

HRl

FORHATJ

SUMMARYJ

EIS - ALPHANUMERIC HOVr

Attempted repetition with RPT. RPD. or RPL causes an
Illegal Proce1ure Fault.

Hove Alphanumeric Right to Left

Same as Hove Alphanumeric Left to Right (HLR)
(See Figur~ z-11 ••

For i = 1. 2 ••••• minimum (N1.HZ)

C(Y-charnl)Nl-i -> C(Y-charoZ)NZ-i

If Nl < NZ. then for i : Nl+l. HZ+1, •••• NZ

CCFILl) -> C(Y-charnZ)NZ-i

101 (1)

MODIFICATIONS. None except AU. QU. AL. QL, or Xn for ~Fl and HF2

INDICATORSI (Indicators not listed are not affected)

Truncation If Nl > NZ then ON; otherwise OFF

-NOTES. If data types are dissimilar (TAl ~ TAZ), each character
is high-order truncated or zero filled. as appropriate. as
it is moved. No character conversion takes place.

If N1 > NZ. then (Nt-NZ) leading characters of C(Y-charnl)
are not moved and the Truncation indicator is set ON.

If Nl < NZ and TAZ = Z (4-bit data) or 1 (o-bit data),
then FILL characters are high-order tr~ncated as they are
moved to CCY-charoZ). No characte~ conversion takes
place.

If HFh.RL = 1, then Nh does not contain the operand
length; instead. it contains a register code for a
register holding the operand length.

If HFh.IO = 1, then the hth word following the Instruction
Word does not contain an Operand Descriptor; instead. it
contains an Indirect Pointer to the Operand Descriptor.

ClY-charo1) and C(Y-charnZ) may be ove~lapping strings; no
check is made. ThiS feature is useful for replication of
substrings within a larger string, but care must be

exercised in the construction of the Operand Descriptors
so that sending string (CeY-charol» data is not
inadvertently destroyed.

The user of string replication or overlaying is warned
that the Decimal Unit addresses tne main store in
unaligned (not on 0 modulo 8 boundary) units of Y-blockS
words and that the overlayed string (C(Y-charnZ) is not
returned to maln store until the unit of Y-bloc~8 words is
filled or the instruction completes.

REVIEW DRAfT
SUBJECT TO CHANGE
October. 1975 2-199 AL39

EIS - ALPHANUMERIC HOVE

MVE

FORHATI

000
012

J I
10 0 I
J I
I 2
I

HF3

0

If T = 1 and the Truncation indicator is set ON by
execution of the instruction, then a T~uncation (Overflow)
Fault occurs.

Attempted execution with XED causes an II legal Procedure
Fault.

Attempted repetition with RPT, RPD, or RPL causes an
Illegal Procedure Fault.

Hove Alphanumeric Edited 020 (1)

0 1 1 1 1 2 2 2 2 2 2 2 2
~-1-D. 1 ---L-8 II 1 Z LL 7 ~ 9

]

5
I I I I I
ID 01 KF2 I 020 (1) lit HFl
I a ---1 ---1~

7 2 71 1 I J 10 1 7
Y-charDl I CNl HAlIOI Nt 1---________________________ __

--1 t 1 1
a
I
J

Y-char92

Y-charn3

J
I

---1
J
I
I

181

CN2

CN]

3

I J
10 o 01 N2
I t
S a I
ITA31DJ N3
t I I

2 1 I I 12

Figure 2-18 Move Alphanumeric Edited (MVE) EIS Hulti-Word Instruction Fermat

"Fl Modification Field for Operand Descriptor 1

HF2 ModIfication Field for Operand DescrIptor 2

HF3 Modification Field for Operand Descriptor 3

I Program Interrupt inhibit bit

Y-charn1 Address of sending string

CNl First Character position of sending st~ing

TAl Oata type of sending string

Nl Length of sending string

Y-char92 Address of MOP control string

CN2 First character position of HOP control string

N2 Length of HOP control string

Y-charo3 Address of receiving string

REVIEW DRAFT
SUB~ECT TO CHANGE
October, 1975 2-200 AL39

EIS - ALPHANUMERIC HOVE

CNl First character position of receiving string

TA3 Data type of receiving string

N3 length of receiving string

ALH Coding Formatl

mve
descOa'
desc9a
descoa

SUMMARYI

HODIFICATIONSI

INDICATORS:

NOTESI

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

(HFl), 01Fl) ,OtF3)
Y4 charol[(CN1)],Ni
Y-char92[(CN2)~,N2
Y-charn3[(CNl)],N3

o = 4, 0, or 9 (TAl = 2, 1, or 0)

n = 4, 0, or 9 (TA3 = 2, 1, or 0)

C(Y-charol) -> C(Y-charol) under C(Y_cnar9l) HOP control

See -Micro Operations for Edit Instructions· later in thi~
section for details of editing under M)P control.

None except AU, QU, AL, QL, or Xn for 1F1, HFl, and HF3

None af fected

If data types are dissimilar (TAt ~ TA3), each character
of e(Y-charOl) is high-order truncated or zero filled, as
appropriate, as it is moved. No c~aracter converSion
takes place.

If the data type of the receiving strl,g is not 9-blt (TAl
~ 0), then Insertlon Characters are nigh-orcer truncated
as they are Inserted.

The maximum string leng~h is 63. The :ount fields Nl, N2,
and N3 are treated as modulo 64 numberi.

The instruction completes normally onlv if N3 = minimuN
(Nl,N2,N3), that is, if the receiving string is the first
to e~haust; otherwise, an Illegal Procedure Fault occurs.

If HFh.RL = 1, then Nh does not contain the operand
length; instead, it contains a register code for a
register holding the operand length.

If HF~.IO = 1, then the hth word follo~ing the Instruction
Word does not contain an Operand Desc~iptor; instead. jt
contains an Indirect Pointer to the Operand Descriptor.

C(Y-charol) and elY-charoJ) may be ove~lapping strings; no
check is made. This feature is useful for replication of

substrings within a larger string, but care must be
exercised in the construction of the)perand Descriptors
so that sending . str Ing (e (Y-cha~oU J data Is not
inadvertently destroyed.

The user of st~in~ replication or overlaving Is warned
that the Decimal Unit addresses the main store in
unaligned (not on 0 modulo 8 boundary) units of Y-block8
words and that the overlayed st~ing (C(Y-chcrn3)) Is not
returned to m3in store untit the unit of Y-bloc~~ wores is

2-201 AL39

FORHATa

0 D 0 1 1 1 1 2 2 Z 2 2 Z 2 Z :3 3 3 3
II ----G.~ 0 1 l a Q 1 Z 3 L----L_a. 9 a 1 z. :l

I J : J . J •
FIll IT I 0: HF2 I 1&0 (U I I: HFl

_LI a ----1 J-L
911 7: I • I 10 1 7

Y-char-01 J CN1 ITAll01 Nl
--1. I I

J , I J
Y-cha r o2 I CNZ ITAZIO: NZ

t , . ; ,
181 3 Z 1 I I 1Z

Y-char93 10 0 0 0 o 0 0 0 0 0 D 1 AS 0 0: REG
--1. _I I I

1.8 11 1 2

Figure 2-19 Hove AJphanumer-ic with Tr-anslation (MVT) ~IS Multi-Word
Instruction Format

FIll Fill character- for str-1ng extension

T Truncation Fault enable bit

HF1 Modification Field for Operand Descr-iptor- 1

Hf2 Modification Field for Operand Descriptor Z

Y-charo1 Addr-ess 01 sending str-lng

eN1 First char-acter- position of sending st-lng

TAl Oata type of sending string

Nl len~th of sending string

Y-charo2 Address of r-eceiving string

CN2 First char-acter- position of receiving string

TA2 Oata type of r-eceiving string

NZ Length of r-eceiving str-lng

Y-char93 Address of character translation table

R~vtEW DRAFT
SUBJECT TO CHANGE
October, 1975 z-ZOZ

..

AL39

EIS - ALPHANUMERIC ~OVE

A Indirect via Pointer Register flag for Y-char93

REG Register modifier lor Y-char~3

ALM Coding format.

IDvt
descna
descQa
a,..g

SUMMARY'

'HF1),(HFZ){,fill(octa.exp,..ession)](,e~ablefault)
Y-charnl[(CN1»),N1 n = 4, 6, or 9 (TAl = 2, 1, or 0)
Y-charn2[(CNZ));N2 n = 4, 6, or 9 (TAZ = Z. 1, or 0)
Y-cha,..93t, tag]

Fo,.. i = 1, 2, •••• minimum (N1.HZ)

m = C(Y-charn1)i-1

C(Y-char93)m-i -> C(Y-charnZ)i-1

If Nl < NZ. then for i = Nl+1. N1+2 ••••• NZ

11 = C(F-ILL)

C(Y-char93)m-l -> C(Y-cha"'n2Ji-1

MODIFICATIONS. None except AU, QU, AL. QL, and Xn for HFI, "F2. and REG

INDICATORS' (Indicators not listed are not affecte~)

Truncation If N1 > H2 then ON; otherwise OFF

HOTES. If the data type of the receiving fleld is not 9-Dit (TA2
~ 0), then characters from C(Y-ch3r93) are high-order
truncated, as appropriate. as they areemoved.

REVIEW DRAfT
SUBJECT TO CHANGE
October, 1975

If the data type of the sending field is not 9-bit (TAl _
0). then characters from C(Y-charn1) are high-order zero
filled when forming the table index.

If N1 > HZ, then (Nl-N2J leading cha,..acters of C(Y-char-nl)
are ",ot moved and" the Truncat ion indicator is set ON.

II HFh.RL = 1, then Nh does not c~nt~ln the operand
length; instead, it contains a re~lster code for a
r~gister holding the operand length.

If HFt:s..IO = 1. then the 11th wo,..d 101l0llling the Instruction
Word does not contain an Operand Descriptor; instead, it
contains an Indirect Pointer to the Ope,..and Descriptor.

C(Y-charnl) and C(Y-charnZ) may be ove-lapping strings; no
Check is made. This feature is useful for repl.ication of
substrings within a larger string. 'but care must be
exercised in the construction of the Operand Descriptors
so that sending string (CIY-charal)) data Is not
inadvertently destroved.

The user of string replication or ~verJa~ing is wa~nea
that the Decimal Unit aadresses t'le main store in

2-203 AL39

EIS - ALPHANUHERIC HOVE

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

una.igned (not on 0 modulo 8 boundary) units of Y-blockS
words and that the overlayed string (C(Y-charn2) Is not
returned to ~aln store until the ~nlt of Y-blockS words Is
filled or the instruction completes.

If T = 1 and the Truncation indicator is set ON bv
execution of the instruction, then a T~uncation (Overflow)
Fault occurs.

Attempted execution with XED causes an It legal Procedure
Fault.

Attempted repetition with RPT. RPD. or RPL causes an
Illegal Procedure Fault.

2-204 AL39

EIS - NUMERIC COMPARE

CHPN Compare Numeric 303

FORHATa

0 1 1 1 1 2 2 2 2 2 222 3 3
Q --1--1. --Lll D l-Z..L4 La. 9 Q ~

J I I I
0 o 0 0 0 o 0 0 0 o 01 I'tF2 I 303 (1) J I J t1Fl --L: ____ ---1 1_1

11 71 I I 10 L I 7
Y-charol I CNI la: 51: SF1 I Nl

I I I I I
I I I J

Y-cha r o2 I CN2 I b: 52. 5F2 I N2
I I I I I

18 3 1 2 {) {)

Figure 2-20 Compare Numeric (CMPNt EIS Multi-Word Inst-uction Format

ItF1

.. HF2

I

Y-charnl

CNl

a TN1

S1

SFI

N1

V-char-1l2

CH2

b TH2

S2

SF2

N2

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

Hodification Field for Operand Descriptor 1

Modification Field for Operand Descriptor 2

Program Interrupt inhibit bit

Address of "'eft-hand" number

First character posItion of -'eft-hand- number

Data type of "Ieft-hand- nUMber

Sign and decimal type of "Ieft-hand- n~mber

Scallng factor of "Ieft-hand- number

Length of "Jeft-hand- number

FIrst character positIon of -right-hand" number

Data type of -rl~ht-hand" number

Sign and decimal type of "right-hand- number

Scaling factor of "right-hand- number

Length of "right-hand" string

2-205

(1)

Al39

EIS - NUMERIC COMPARE

AlM Coding Formata

cmpn
descntfl,ls,ns,ts)
descnlfl,ls,ns,ts]

eMF1), eMFZ)
'(-charnU (CNU] ,N1,SFl
Y-cnaroZ { (C NZ»], NZ, SFZ

o = It or 9
o = '+ or 9

SUMMARYI

MODIFICATIONSI

INDICATORS'

Zero

NegatIve

Carry

NOTESI

REV lEW OR ~FT
SUBJECT TO CHANGE
October. 1975

CCY-charn1) II C(Y-charnZ) as numeric ~alue$

None excDt AU, QU, Al, QI, or Xn for HF1 and HFZ

Clndicato~s not listed are not affecte~)

If C(Y-charn1) = C(Y-charn2), then ON; other~ise OFF

If C(Y-charn1) > C(Y-charnZ), then ON; other~ise OFF

If JC(Y-charn1) I > IC(Y-charo2):, then OFF, otherwise ON

Comparison is made on It-bit numeric v31ues contained in
eacn character of C'Y-char~). If either given data type
is 9-blt (TNh = D), characters from C(Y-char9~) are
high-order truncated to '+ bits before comparison.

Sign characters are located according to information in
CNh, S~, and N~ and interpreted as It-bit fields; 9-bit
sign characters are high-order truncated before
interpretation. The sign character 15 (octall is
interpreted as a minus sign; all other legal sign
characters are interpreted as plus sig~s.

The positIon of the decimal point In CCY-charD~) is
determined from information In CN~, S~, SF~, and Nh.

Comparision begins at the decimal position corrsponding to
the first digit of the operand with the larger number of
integer digits and ends ~ith the last jigit of the operand
with the larger number of fraction dIgits.

FOUr-bit numeric zeros are used to rep~esent digits to the
left of the first given digit of the operand with the
smaller number of integer digits.

Four-bit numeric zeros are used to rep~esent digits to the
right of the I ast given digit of the operand with the
sma'ler number of fraction digits.

Instruction execution proceeds until an ineQuality is
found or the larger string length count is exhausted.

If HFh.Rl = 1, then Nh does not contain the operand
length; instead, it contains a register code for a
register holding the operand length.

If HFh.ID = 1, then the hth word followIng the Instruction
Word does not contain an Operand Desc-iptor; instead, it
contains an Indirect Pointer to the Ope~and Descriptor.

2-20& AL39

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

EIS - NUHE~IC COMPARE

Detection of a character outside the r:tnge (0.11) (octa"
in a digit position or a character outside the range
t12,171 (octal) in a s1gn position" causes an Illegal
Procedure Fault.

Attempted execution with XED causes an Illegal Procedure
Fault.

Attempted repetition with RPT, ~PD, or RPL causes an
Illegal Procedure Fault.

2-207 AL39

EIS - NUMERIC HOVE

"VN Hove Numeric

FORHATa

o 0 a 011 1 1 Z Z 2 Z Z 2 2 2 J
~ __________ ~8~~ _______ ~a D 1 Z J L-_La.-LIl

I I J I , t J
PIa 0 0 0 0 a a OITJRI MFZ I 300 (1) UI MF1

I LJ I J 1_1
1 1 1 71 J J 1 10 1

V-charD! : eN1 'a 1 SlI SF1 Nt ________________________ ---1
I I -1-

• J I I
Y-charQ2 I CN2 Ibl S21 SF2 NZ

J I I J I
18 3 1 Z 6

Figure Z-21 Hove Numeric (HVN) EIS MultI-Word Instruction Format

Jsn
p

T

•
R

HF1

HF2

1

Y-charn1

CN1

a TN1

Sl

SF1

N1

Y-charnZ

CNZ

b TNZ

S2

SF2

NZ

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1975

4-blt data sign character control

Truncation Fault enable bit

Rounding flag

Modification Field for Operand Descriptor 1

Modification Field for Operand Descriptor Z

Program Interrupt Inhibit bit

Address of sending number

First character position of sending nUBber

Data type of sending number

Sign and decimal type of sending numbe~

Scaling factor of sendIng number

Length of sending number

Address of receivIng number

First character posItion of receiving number

Data type of receiving number

Sign and deCimal type of receiving num~er

Scaling factor of receiving number

Length of receiving string

Z-208

300 (1)

3 .

L ,
I
J

7.
I
J
I
I
I

6

Al39

EIS - NUMERIC HOVE

ALH Coding ForMat.

mvn
descn(fl,ls,ns,ts)
desco(fl,ls,ns,ts)

(HF 1) , (MF Z) (,enab I e f au It) (,r:) und]
Y-charnU (eNt)] ,,Nl,SFl n = It or 9
Y-charn2((CNZ)],NZ,SFZ 0 = ~ or 9

SUHMARY

MODIFICATIONSI

INDICATORS.

Zero

Negative

C(Y-charo1) converted and/or rescaled -> C{Y-charo2)

None except AU, QU, AL. QLt or Xn for HFl and HF2

IIndicators not listed are not affectej)

If ClY-charoZ) : decimal 0, then ON; otherwise OFF

If a minus sign character is moved to ClY-charaZ), then
ON; otherwise OFF

Truncation If low-order digit truncation occurs without rounding,
then ON; otherwise OFF

Overf I 0111

Exponent
Overflow

Exponent
Under' low

NOTES'

REV lEW DRAFT
SUBJECT TO CHANGE
October, 1975

If fixed point integer overflow occurs, then ON; other"i~e
unchanged. (See NOTES)

If exponent of floating point result exceeds +127, then
ON; otherwise unchanged.

If exponent of floating point result l~ less than -128,
then ON; otherwise unchanged.

If data types are dissimilar (TN1 ~ TN2)t each character
is high-order truncated or filled, as appropriate, as it
is moved. The fill data used is "00011··b for digit
characters and "Oa01D N b for sign characters.

If TNZ and 5Z specify a 4-bit signed n~mber and 52 specify
a ~-bit signed number and P = 1, then a legal plus sign
character in C(Y-charol) is converted to 13 (octal) as it
is moved.

If N2 is not large enough to hold the integer part of
CIY-charD1) as rescaled by 5F2, an overflow condition
exists; the Overflo~ indicator is set ON and an Overflow
Fault occurs. This implies that an unsigned fixed point
receiving fIeld has a minimum lengt, of 1 character; a
signed fixed point field, 2 characters; and a floating
point field, J characters.

If NZ is not large enough to hold atl the given digits of

CIY-charaU as rescaled by 5F2 and R = Dt then a
truncation condItion exists; data movement stops when
C(Y-charn2) is filled and the Truncation indicator is set
ON. If R = 1, then the last di~it moved is rounded
according to the absolute value of the remaining digits of
C(Y-charol) and the instruction completes normally.

If HF~.RL = 1, then Nh does not contain the operand
length; instead, it contains a register code for a
register holding the operand length.

2-209

EIS - NUHERIC HOVE

REVIEW DRAfT
SUBJECT TO CHANGE
October. 1975

If HFh.IO = 1. then the 11th word following the Instruction
Word does not contain an Operand Descriptor; Instead. it
contains an Indirect Pointer to the Operand Descriptor.

CrY-charol) and C(Y-charo2) may be overlapping strings; no
check is made. ThiS feature Is useful for rep' ication of
substrings within a larger string. but care must be
exercised in the construction of the Operand Descriptors
so that sending string (C(Y-charol») data is not
inadvertently destroyed. Difficul ties may be encountered
because of seal in~ factors and the special treatment of
Sign characters and floating point exponents.

The user of string replication or over laving is warned
that the Decima' Unit aodresses t,e main store In
unaligned (not on a modulo 8 boundary) units of Y-block8
words and that the overlayed string (C(Y-charOZ» is not
returned to main store until the unit of Y-block8 words Is
filled or the instruction completes.

If T : 1 and the Truncation Indicator is set ON by
execution of the instruction. then a T~uncation (Overflow)
F au I t occurs.

Detection of a character outSide the range to,tll (octal)
in a di~it position or a character outSide the range
{ll.17] (octal) in a sign posItion causes an Illegal
Procedure Fault.

Attempted execution with XED causes an Illegal Procedure
Fault.

Attempted repetition with RPT. RPD, or RPl causes an
I11egal Procedure Fault.

2-210 AL39

EIS - NUMERIC HOVE

HVNE Hove Numeric Edited 024 (U

FORHATa

o 0 0 0 0 1 1 1 1 2 Z 2 2 2 2 2 2 3
--L1 Z 8~-11-1 -L~ D 1 Z 3 L---La. 9 !2
I I I I J J . I •
J 0 01 HF3 10 01 HF2 I 024 (1) HI 11Ft 1
I ; I I -1. ---1_L J
J 2 7 Z 71 I I 10 1 I 71
2 Y-charn1 I CN1 : al SUD 0 0 0 0 OJ Nt 1
1.- ---1._--LL-l. I I
a I 11 2 01 I
I Y-char9Z I CN2 I 0 o 0 0 0 0 0 0 01 N2 I
I I I I
J t I 1 J 91 J
J Y-charn3 I CN1 ITA1IDIO 0 0 0 D 01 Nl I
L- ---1. J I . I I .

18 3 2 1 £> £>

Figure 2-22 Hove Numeric Edited (I1VNE) EIS Multi-Word InstructIon Format

Hfl Modification Field for Operand Descriptor 1

HFZ Modification Field for Operand Descriptor 2

-Hf3 Modification Field for Operand Descriptor 3

I Program Interrupt inhIbIt bit

Y-charD1 Address of sending string

CN1 First cha~acter positIon of sending st~ing

TN1 Data type of sending string

S1 S1gn and deciaa' type of sending strin~

N1 Length of senoing string

Y-char92 Address of MOP control string

CN2 First characte~ position of MOP control string

H2 Length of HOP control strIng

Y-charo3 Address 01 receiving strlng

CN3 First character position of receiving string

TA3 Data type of receiving string

NJ Length of receiving string

REVIEW DRAfT
SUBJECT TO CHANGE
October, 1975 2-211 AL39

EIS - NUMERIC MOVE

AlH Coding Formata

mvne
desco(fl,ls,ns,ts)
desc9a

(MF1),(MFZ) ,(I1FJ)
Y-charnl((CN1) 1 ,Nl
Y-char92[(CNZ) I,NZ
Y-c harn3[(CN31),N3

Q = It or 9

descOa

SUMMARY I

MOOIFICATIONSa

INOICATORSi

NOTESI

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1975

Q = It, 6, or 9

eeY-charn1) -> C(Y-charo3) under C(Y_cnarQ2) MOP control

See -Micro Operations for Edit Instructions· later in this
section for details of editing under H)P control.

None .except AU, QU, AL, QL, or Xn for "'Fl, HFZ, and MF3

None af 'ected

If data types are dissimilar (TAl _ TA3), each character
of C e Y-charoU is hi gh-order truncate d or zero f iI J ed, as
appropriaie, as it is moved. No chara~ter conversion
takes place.

If the data tvpe of the receiving stri~9 is not 9-bit (TA3
~ 0), then Insertion Characters are high-order truncated
as they are Inserted.

The maximum string length is 63. The :ount fields Nl, N2,
and N3 are treated as modulo 61t numbers.

The instruction completes normally onl~ if N3 = minimum
(Nl,NZ,N3), that is, if the receiving string is the first
to exhaust; otherMise, an Illegal Procedure Fault occurs.

If HF~.Rl 1, then N~ does not contain the operand
length; instead, it contains a re;ister code for a
register holding the operand length.

If MF~.IO = 1, then the hth Mord follo~ing the Instruction
Word does not contain an Operand Desc~lptor; instead, it
contains an Indirect Pointer to the Operand Descriptor.

C(Y-charni) and e(Y-charo3) may be ove~lapping strings; no
check is made. This feature 1s useful for reDlication of
substrings within a larger st~in9, but care must be
exercised in the construction of the)perand Descriptors
so that sending string (C'Y-cha~ni» data is not
inadvertentlv destroyed.

The user of string replication or overlaving is warned
that the Decimal Unit addresses the main store in

unaligned (not on 0 modulo 8 boundarv) units of Y-block8
words and that the overlayed string (e(Y-char-03}) is not
returned to main store untit the unit ~f Y-block8 words is
filled or the instruction comptetes.

Attempted execution with XED causes an II legal Procedure
Fault.

Attempted repetItion with RPT, RPD, or RPL causes an
Illegal Procedure Fault.

Z-212 Al39

EIS - BIT STRING COMBINE

CSl Combine Bit Strings left 0&0' (1)

FORHATI

o 0 o 0 0 0 1 1 111 2 2 2 Z Z 2 3
II 1 !LL_--A~_!l.-1 -LL2 g ~ !! Lll 9 ~

I a I I I I a I J
IFIO 0 0 01 BOlR I TID I HF2 : 0&0 (1) II' HF1
I I _--L-__ LLI I -11
11 1 1 71 I J 10 1 7
I Y-bit1 I Cll B1 I N1
I --1 I I
I J 1 I
I Y-bit2 I C2 I B2 J NZ
I I I

18 2 .. 12

Figure 2-23 Combine Bit Strings left (CSL) EIS Multi-Word Instruction Format

F FIll bit for string extension

BOlR Boolean result control fIeld

_T Truncation Faul t er)ab Ie bi t

"F1 Modification Field for Operand Descriptor 1

"F2 Modiflcation Field for Operand Descriptor 2

I Program Interrupt inhibit bit

Y-bit1 Address of ·sending" string

Cl First character position of "sending" string

81 First bit position of "sending- string

Nl length of "sending- string

V-bitl Address of "receiving" string

C2 First character position of "receiving- string

82 First bit position of "receiving- strl~9

N2 Length of "recelving" string

AlH Coding Format:

csl
descO
descb

(MF 1) , (HF 2) (• enab I e f au It] {, boo I (oct a I expres s ion)) (, f i I I (011))
Y-oit1[COITN01) l,NI

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1'375

V-bit2[(BITN02)),N2

2-213 AL39

EIS-, BIT STRING COMBINE

SU"MARya Fo~ 1 = bits 1, Z, ••• , minimum (N1,NZ.

m : C(Y-bit1)1-1 '1 C(Y-blt2)i-1

C(BOLR)m -> C(Y-bit2)i-1

If N1 < NZ, then fo~ i = N1+1, Nl+Z, ••• , NZ

m = C(F) ,: C(Y-bltZ)i-1

CCBOLR)m -> C(Y-bitZ)i-l

MODIFICATIONSI None except AU, QU, AL, QL, or Xn fo~ ~Fl and ~FZ

INDICATORSI (Indicators not listed are not affectej)

Zero If CCY-blt2) = 00 ••• 0, then ON; otherwise OFF

Truncation If Nl > NZ, then ON; otherwise OFF

NOTEsa

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

If N1 > NZ, the low order (Nl-NZ) bits of e(Y-bitl) a~e

not processed and the Truncation indicator is set ON.

The bit pattern in C(BOlR) defines the Boolean operation
to be performed. Any of the sixteen possible Boolean
operations may be used. Some common Boolean operations
and their BOlR fields are shown below.

Qwu:a.1.lJul C..Le.tlLBl

MOVE 0011

AND 0001

OR 0111

NAND 1110

Exclusive OR 0110

Clea~ 0000

Inve~t 1100

If MF~.RL = 1, then N~ does not c)ntain the operand
length; instead, it contains a re~ister code for a
reglste~ holding the operand length.

If HF~.IO = 1, then the ~th word following the Instruction
Hord does not contain an Operand Descriptor; instead, it
contains an Indirect Pointer to the Operand Descriptor.

C(Y-bitl) and e(Y-bitZ) may be overlapping strings; no
check is made. This feature is useful for replication of
substrings ~lthin a larger string, but care must be
exercised in the construction of the Jperand Descriptors
so that sending, string (e(Y-bitl) data is not

2-Z11+ AL39

CSR

FORHAT:

SUMMARYI

(IS - BIT STRING COMBINE

Inadvertently destroyed.

The user of string replication or ov!r'aying is warned
that the Decimal Unit addresses the main store in
unaligned (not on 0 modulo 6 boundary) units of Y-blockS
words and that the overlaved strin1 (e(Y-bitZ) is not
returned to main store until the unit of Y-block8 words is
filled or the instruction completes.

If T = 1 and the Truncation indicator is set ON by
execution of the instruction, then a T-uncatlon (Overflow)
Fault occurs.

Attempted execution with XED causes an Illegal Procedure
Fault.

Attempted repetition with RPT. RPD, or RPL causes an
Illegal Procedure Fault.

Combine Bit Strings RIght 061 (1)

Same as Combine Strings Left (CSL) (See Figure 2-Z3).

For i = bits 1. Z, •••• minimum (N1.NZ)

m = C(Y-bltl)Nl-i 1. C(Y-bitZ)NZ-l

C(BOLR)m -> C(Y-bitZ)NZ-l

If N1 < N2, then for i = N1.1. Nl.Z •••• , NZ

m = C(F) I: C(Y-bltZ)NZ-i

C(BOLR)m -> C(Y-bitZ)NZ-i

MODIFICATIONSI None except AU.QU, AL, QL, or ~n for H~1 and HFZ

INDICATORSI (Indicators not listed are not affecte~)

Zero If CIY-bitZ) = 00 ••• 0, then ON; otherwise OFF

Truncation If N1 > NZ, then ON; otherwise OFF

NOTESI If N1 > N2. the high order (N1-NZ) biti of C(Y-bit1) are
not processed and the Truncation indicator is set ON.

The bit pattern in C(BOLR) defines t~e Boolean operation
to be performed. Any of the sixteen possible Boolean
operations may be used~ See NOTES u~der Combine Strings
Left (CSL) instruction for examples of BOLR.

If HF~.RL = 1, then N~ does not contain the operand
length; instead, It contains a re~ister code for a
register holding the operand length.

REVIEW OR'FT
SUBJECT TO CHANGE
October. 1975 2-Z15 AL39

EIS - BIT ~TRING COM8INE

R~VIEW DRAFT
SUBJECT TO CHANGE
October, 1915

If HFh.ID = 1, then the ~th word folJo~lng the Instruction
Word does not contain an Operand Descriptor; instead, it
contains dn Indirect Pointer to the Op~rand Descriptor.

C(Y-bit1) and C(Y-bit2) may be ove-Iapping strings; no
check is made. This feature is useful for replication of
substrings within a larger string, but care· must be
exercised in the construction of the)perand Descriptors
so that sending string (ClY-bit1» data is not
inadvertently destroyed.

The user of string replication or overlaying is warned
that the Decimal Unit addresses the main store In
unaligned (not on 0 modulo 8 boundary) units of Y-block8
words anj that the overlayed strin1 (C(Y-bitZ) is not
returned to main store until the ~njt Jf Y-block8 words is
filled or the instruction completes.

If T = 1 and the Truncation indicator is set ON by
execution of the instruction, then a T~uncation (Overflow)
Fault occurs.

Attempted execution with XED causes an Illegal Procedure
Fault.

Attempted repetition with RPT, RPD, or RPL causes an
Illegal Procedure Fault.

Z-21& AL39

EIS - BIT STRING CO~PARE

CMPB

FORHATa

o 0
Q 1

I I

Compare BIt Strings

001 1 1 1 1 2
----A-i~_1 ________ __1_8 9 0

I I I I

006 (1)

2 2 2 Z 2 3
3 ~ _ ___1_~~9 __________ ~5_

I I
I FlO
.LL
11

000 0 0 0 OaTIOI HF2 I 066 (1) II J HF1

I
I

____ ~I_1-l 1 __________ __
8 1 1 71 J

V-bitl I Cll Bl

--1_L
10 1

Nl
I -1--, ____ _

J I I
V-bit2 I C21 82 S N2

7

_________ ----1_-..a.I _____ -.l. ____________L

18 2 ,. 12

Figure 2-24 Compare Bit StrIngs (CHPB) EIS Multi-Word Instruction Format

f Fill bit for string extension

T Truncation Fault enable bit

~"fl Modification FIeld for Operand Descriptor 1

"fZ Hodification Field for Operand Descriptor Z

I Program Interrupt inhibit bit

Y-bitl Address of -left hand" string

Cl First character positIon of "left hand- string

B1 First bit position of "left hand" stri~g

Nl Length of -left hand" string

Y-blt2 Address of "right handu string

C2 First character position of "right han~- string

82 First bit position of "right hand u strlng

HZ Length of "right hand" string

ALH Coding Formata

cmpb
descb
descb

SUMMARV.

REVIEW DRAFT
SUBJECT TO CHANGE
Oct 0 b er , 1975

(MF1).(MF2)[.enablefault)[,flIICDll)]
V-bitl[(BITN01»).N1
V-blt2[(BITN02»),N2

For 1 = 1, 2, ••• , minimum (Nl,N2)

2-217

EIS - BIT STRING COMPARE

HODIFICA TIONS:

INDICATORS:

Zero

Carrv

NOTES:

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1975

C(Y-bltlJi-l :: C(Y-bltZ)i-l

If N1 < NZ. then for 1 = N1+1. Nl+Z • •••• HZ

C(FILU :: C(Y-bitZH-l

If NZ < NZ. then for 1 = NZ+1. N2+2, •••• N1

C(Y-bitl)l-l :: C(fILl)

None except AU. QU. Al, Ql. or Xn for ~F1 and HF2

(Indicators not listed are not affected)

If CtY-bit1)' = C(Y-bltZ)i for all i. then ON;
otherwise. OFF

If e(Y-bit1)l < C(Y-bitZ)! for anr i. then OFf;
otherwise ON

Instruction execution proceeds untit an ineQual i ty is
found or tne larger string length count is exhausted.

If HF~.RL = 1. then N~ does not contain the operand
length; instead. It contains a register code for a
register holding the operand length.

If HF~.ID = 1. then the ~th word follo.lng the Instruction
Word does not contain an Operand Desc~iptor; Instead. it
contains an Indirect Pointer to the Operand Descriptor.

Attempted e~ecution with XEO causes an Illegal Procedure
Fault.

Attempted repetItion with RPT. RPD, or RPl causes an
Illegal Procedure Fault.

2-216 Al39

EIS - aIT SfRIHG SET INDICATORS

-£IS - .au.:~1c.ln!L-S!U.-I.~~~
SZTL Set Zero and T~uncatlon Indicators 06 .. (1)

with Bit Strings Left

FORMAT. Same as Combine Strings left ICSl) (Sea Figure 2-23).

SUMMARYI For i = bits 1. 2 ••••• minimu~ (Nl.NZ)

m = C(Y-bit1)i-l I: CCY-bitZ)i-l

If CCBOLR)m ~ 0, then terminate

If Nt < HZ, then for i = Nt+1, N1+l • ••• , HZ

m = C(F) II CCY-bitl)l-l

If CCBOLR)m. ~ 0, then terminate

MODIFICATIONS' None except AU. QU, AL. QL, or Xn for ~Fl and HFl

INDICATORS. (Indicators not listed are not affected)

Zero If CCBOLR)m = 0 for alJ i. then ON; otherwise OFF

Truncation If N1 > NZ. then ON; otherwise OFF

NOTES.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

If Nt > HZ, the low order (N1-NZ) bits of CIY-bitt) are
not processed and the Truncation indicator is set ON.

The execution of thiS instruction is identical to Combine
Strings Left (CSL) except that C(BOLRJ~ is not placed into
C(Y-bi t2)1-1.

The bit pattern in C(BOLR) defines the Boolean operation
to be performed. Anv of the sixteen possible Boolean
operations may be used. See NOTES under Combine Strings
Left (CSl) instruction for examples of aOLR.

If HFt.Rl = 1. then N~ does not contain the. operand
length; instead, it contains a register code for a
register holding the operand length.

If MFh.ID = 1. then the hth "o~d following the Instruction
Word does not contain an Operand Desc~iptor; instead, it
contains an Indirect Pointer to the Operand Descriptor.

If T = 1 and the Truncation Indicator is set ON bV

execution of the instruction, then a T~uncation (Overflow)
Fau I t occurs.

Attempted execution wIth xto causes an I I legal Procedur-e
Fault.

Attempted repetition with RPT, RPO. or RPL causes an
Illegal Procedure Fault.

Z-219

EIS - BIT STRING SET INDICATORS

SZTR

FORMATa

SUMMARY'

Set Zero and T~uncation Indlcato~s
with Bit Strings Right

065 (t)

Same as Combine Strings Left (CSL) (See Figure 2-23).

Fo~ 1 = bits 1, 2, •••• minimum CN1.N2)

m = C(Y-bit1)N1-i II C(Y-bitZ)N2-i

If ClBOLR)m ~ 0, then terminate

If Nt' < N2, then for i = N1+1, N1+2, ••• , NZ

m = C(F) J J elY-hi t2)N2-i

If C(BOLR)m ~ 0, then terminate

MODIFICATIONS' None exce~t AU, QU, AL, QL, or Xn for HF1 and HF2

INDICATORS' (Indicators not listed are not affectej)

Zero If C(BOLR)m = Q for all i, then OH; otherwise OFF

Truncation If Nt > N2. then ON; otherwise OFF

NOTES' If Nt > N2, the low order (N1-HZ) bits of CrY-bitt) are
not processed and the Truncation indicator is set ON.

The execution of this instruction 15 identical to Combine
Strings Right (CSR) except that C(80L~)m is not placed
into C(Y-bitZ)N2-i.

The bit pattern in C(BOLR) defines t~e Boolean operation
to be performed. Any of the sixteen possIble Boolean
operations may be used. See NOTES under CombIne Strings
Left (CSL) instruction for examples of BOLR.

If MF~.Rl = 1, then N~ does not contain the operand
length; instead. It contains a re~ister code for a
register holding the operand length.

If HFh.ID = 1, then the 11th wo~d follo",lng the Instruction
Hord does not contain an Operand Descriptor; instead, it
contains an Indirect Pointer to the Ope~and Desc~lptor.

If T = 1 and the Truncation indicator is set ON by
execution of the instruction, then a T~uncation (Overf low)

Fault occurs.

Attempted execution with XED causes an II legal Procedure
Fault.

Attempted repetition with RPT, RPO, or RPL causes an
Illegal Procedure Fault.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1915 2-220 Al39

,

EIS - DATA CONVERSION

8TO Binary to Decimal Convert ~Ol (1)

FORMATa

'0 0
o 1

I I
IPao
I I
11
I
I

1 1
o 1

I
o 0 0 0 0 0 0 0 01

I
10

Y-char11

Y-charn2

HF2

1 1
-La

I
a

---1
71 ,

I
J
I
J

18

Z Z Z 2 2 2 Z 233
Q 1 Z __ ~~~~3_~---Z-~~9_D~ ______ ~5_

301

CN1 : 0 0

. J .
CN2 J a J

I 1
3 1

J I
(1) HI HF1

----1-L-__________ ~
8 10 1 J

o 0 0 0 0 0 01
I

I 91
5210 0 0 0 0 0 I

7
N1

NZ
I __ ~J __________ __

Z 6 6

Figure 2-25 Binary to Decima' Convert (BTD) EIS Hulti-Word Instruction For~at

P

... ttF1

HF2

I

Y-charCJ1

CNt

Ni

Y-charnZ

CN2

a TNZ

S2

NZ

4-blt data sign character control

Modification Field for Operand Descriptor t

Modification Field for Operand Descriptor 2

Program Interrupt inhibit bit

Address of binary number

first character position of binary numDer

Length of binary number In characters

Address of decimal number

First character position of decimal nuwber

Data type of decimal number

Sign and decimal type of decimal numbe~

Length of decimal number

ALH Coding Formatl

btd
desc9ns
desco(ls,ns,tsl

(I1FU,U1F2)
Y-char91(CN1»),N1
Y-charnZ(CNZ»),NZ D. = 4 or «)

SUMMARYI C(Y-char,)1) converted to deciMal -> C(Y-CharnZ)

REVIEW OR~T
SUBJECT TO CHANGE
October, 1975 Z-ZZl AL3CJ

EIS - DATA CONVERSION

MODIFICATIONS I

INDICATORS:

Zero

Negative

Overflow

NOTESa

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

None except AU, QU, Al, Ql, or Xn for ~Fl ad HF2

(Indicators not listed are not affectej)

If C(Y-charn2) = decimal D, then ONI otherwise OFF

If a minus sign character is moved to C(Y-chara2), then
ON; otherwise OFF

If fixed point integer overflow occurs, then ON; other~lse
unchanged (See NOTES)

C(Y-char91) contains a two·s complement binary integer
aligned on 9-blt character boundaries with length 0 < Nl
<= 8.

If TN2 and S2 specify a 4-bit signed nJmber and P = 1,
then if C(Y-char9i) is posltive (bit 0 of C(Y-char91)D =
0), then the 13 (octal) plus sign character is moved to
C(Y-charnZ) as appropriate.

The scaling factor of CCY-charQ2), SF2, must be O.

If N2 is not large enough to h3'd the digits of
C(Y-char91) an overflow condition exists; the pver"ow
indicator is set ON and an Overflow Fault occurs. This
implies that an unsigned fixed point receiving field has a
minimum length 0' 1 character and a Signed fixed point
field, 2 characters.

If HF~.RL = 1, then Nh does not contain the operand
length; instead, 1t contains a re~ister code for a
register holding the operand length.

If MFh.IO = 1, then the ~th word follo~lng the InstructIon
Word does not contain an Operand Oesc~iptor; instead, it
contains an Indirect Pointer to the Operand Descriptor.

C(Y-char91) and C(Y-charn2) may be overlapping strings; no
check is made.

Attempted conversion to a floating poi~t number (S2 = 0)
or attempted use of a scaling factor (SF2 ~ D) causes an
Illegal Procedure Fault.

If Nl = 0 or N1 > 6 an IJ JegaJ Procedure FauJt occurs.

Attempted execution with XED causes an II legal Procedure
F au It.

Attempted repetition with RPT, RPD, or RPL causes an
Illegal Procedure Fault.

2-222 Al39

EIS - OATA CONVERSIO~

DTB Decimal to Binary Convert 305 (1)

FORHATa

0 1 1 1 1 2 2 2 Z Z 2 Z 2 3 3
D _11-1 -LL-D 1 Z LL-_L' 3 D ~

I J J I 1 t
I 0 0 0 0 0 0 o 0 0 0 01 HFZ I 305 (1) III MFt I
J I I ---1_1 I
I 11 71 J I 1 10 1 I 7J
I Y-cha~nl I CN1 J a 1 SUO 0 0 0 0 01 N1 I
L- ---L I J J J J
I : J 1 2 61 I
J Y-cha~9Z CN2 I 0 0 0 0 0 0 0 0 01 N2 I
I ----1. J I ,

8 3 9 &

Figure 2-l& Decimal to Binary Convert (OTB) EIS Hultl-Word Instruction Format

Jsu

•

a

HFl Modification Field for Operand Descriptor 1

HFl Modification Field for Operand Descriptor Z

I Program Interrupt inhibit bit

V-charIll Address of decimal number

CNt First cha~acter position of decimal nu~ber

TNl Data type of decimal number

S1 Sign and decimal type of decimal numbe~

N1 length of decimal number

Y-charlll Address of binary number

CN2 First cha~acte~ position of bina~y num~er

H2 length of binary number in cha~acters

ALH Coding Formatl

dtb
descn[ls,ns,tsl
desc9ns

(HF 1) , U1F 2)
Y-charn1[(CN1)l,Nl
Y-char92((CNZ)],NZ

Q -= it or 9

SUMMARY I C(Y-charn1) converted to binary -> C(Y-char9Z)

MODIFICATIONSI None except AU, QU, AL, Ql, or Xn for ~Fl ad HF2

INDICATORS: (Indicato~s not listed are not affected)

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975 2-223 AL39

EIS - DATA CONVERSION

Zero

Negative

Overflow

NOTES.

REVIEW DRAfT
SUBJECT TO CHANGE
October, 1975

If C(Y-char9Z) = 0, then ON: otherwise OFF

If a minus sign character is found in C(Y-charn1), then
ON; otherwise OFF

If fixed point integer overflow occurs, then ON; other",ise
unchanged (See NOTES)

C(Y-char9Z) "'ill contain a two·s complement binary integer
aliJned on 9-bit character boundaries with length 0 < HZ
<= 8.

The scaling factor of e(Y-charD1), SF1, must be O.

If N2 is not large enou~h to hold the converted value of
e(Y-charD1) an overflow conoition eKists; the Overflow
indicator is set ON and an Overflow Fa~lt occurs.

If HF~.aL = 1, then N~ does not contain the operand
length; instead. It contains a register code for a
register holding the operand length.

If HFh.IO = 1, then the hth word following the Instruction
Word does not contain an Operand Oescri ptor; Inst"!ad, It
contains an Indirect Pointer to the Operand Descriptor.

C(Y-charn1) and C(Y-char9Z) may be overlapping strings; no
check is made.

Attempted conversIon of a floating point number (S1 = 0)
or attempted use of a scaling factor (SF1 _ 0) causes an
Illegal Procedure Fault.

If N2 = 0 or NZ ~ 8 an Illegal Procedure Fault occurs.

Attempted execution with XED causes 3n II legal Procedure
Fault.

Attempted repetItion with RPT. RPO, or RPL causes an
Illegal Procedure Fault.

2-22" AL39

EIS - DECIHAL ADDITION

-us - Oec4ma..L.A~Wlil

ADZD Add Using 2 Decimal Operands 20l (1)

FORHATa

0 0 0 011 1 1 2 2 2 2 2 2 Z l 3 l
-LJ. § 2 Il 1 Z a. D 1 Z 3 L..---L8 4) D 2

J • J I J 1 I I
PID o 0 0 0 o 0 OJTJRJ t1Fl J 20l (U tIl HF1 I

I LL-L- I _---1 I I
1 1 1 11 I I I 10 1 I 71

Y-cha r n1 a CN1 2 a I S11 SFI I Nl I , I I I I I
I I J 1 I I

Y-charnl I CN2 J b I S21 SFZ I N2 I
I I I J I I

18 3 1 2 £» £»

Figure 2-l1 Add Using 2 Decimal Operands (AOlO) EIS t1ulti-Word
Instruction Format

~
P

-T

R

HFl

HFZ

I

Y-charn1

CN1

a TN1

S1

SF1

N1

V-charol

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

4-bit data sign character control

Truncation Fault enable bit

Rounding flag

Modification Field for Operand Descriptor 1

Hodification Field for Operand Descriptor l

Program Interrupt inhibit bit

Address of augend (ADlD),
(HPlD), or divisor (OVlD)

minuend (SB20), multiplicand

First character position of augend (AOZD), minuend (5820),
mu'tipicand (HPlO), or divisor (DVlO)

Data type of augend (A02D), minuend (SB20), multiplicand
_ (HP20), or dl vi sor (OVlO)

Sign and decimal type of augend (AOlO), minuend (SB20),
multiplicand (HPZO), or divisor (OVlO)

Scal ing factor of augend (ADlO), minuend (S8l0) ,

multiplicand (HPlO)9 or divisor (OVlO)

Length of augend (ADlD), minuend (S820), multiplicand
(MPlOI, or divisor (OVlO)

Address of addend and sum (AOlO), subtrahend and
difference (S820)9 multiplter and product (HPlO), or
dividend and Quotient (OV20)

Z-225 ALl9

EIS - DECIHAL ADDITION

b

CH2

TH2

S2

SF2

H2

First character position of addend and sum IADlO),
subtrahend and difference (S8l0), multiplier and prOduct
(HP2D), or divIdend and Quotient (OVlD)

Data type of addend and sum
difference (SB20), multiplier
dividend and QuotIent (OV20)

(A020), subtrahend
and product (HP2D),

and
or

Sign and decimal type of addend and su~ (AD20), subtrahend
and difference (Sa20). multiplIer and product (HP20), or
dividend and quotient (OV20)

Scaling factor of addend and sum
dIfference (SB20), multiplier
dividend and Quotient (OVlO)

(AD2D), subtrahend
and product (HP20).

and
or

Length of addend and sum (ADlO), subtrahend and dIfference
(SB20), multiplier and product (HP20), or dividend and
quotIent (OVlO)

AlH Coding Format.

ad2d
descn(fl.ls,ns,tsl
descn(f •• ls,ns,ts)

CHF1),(MFl)[,enabJefault]{,rDundJ
'Y-charnl[(CN1)},N1,SFl n = 4 or 9

Y-cha r oZ[CCNl)],Nl,SF2 n = 4 or 9

SUMMARY. CtY-charnl) + CCY-charnl) -> CCY-charn2)

MODIFICATIONS. None except AU, QU, AL, QL, or Xn for ~F1 and "F2

INDICATORS' (Indicators not listed are not affected)

Zero If CCY-charn2) = decimal 0, then ON; otherwise OFF

Negative If CCY-charnZ) is negative, then ON; otherwise OFF

Truncation If the truncation condition exists without rounding, then
ON; otherwise OFF (See NOTES)

Overflow

Exponent
Overflow

Exponent

Underflow

NOTESI

If the overflow condition exists, then ON; otherwise
unChanged (See NOTES)

If exponent of floating point res~lt exceeds 127 then
ON; otherwise unchanged.

If exponent of floating point result is less than -128

then ON; otherwise unchanged

If TN2 and S2 specify a 4-bit Signed n~mber and
then the 13 (octal) pluS Sign c,aracter
appropriately if the result of the ope~ationis

P = 1,
is placed
positive.

If N2 is not large enough to hold the integer part of the
result as scaled by SF2, an overflow condition exi5ts;
the Overflow inulcator is set ON a~d an Overflow fault

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975 2-22& AL39

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1915

EIS - DECIMAL ADDITION

occurs. This implies that an unsigned fixed point
receiving field has a minim~m lengt~ of 1 character; a
signed flKed point field, 2 characters; and a floating
point field, 3 characters.

If N2 is not large enough to hold all the digits of the
result as scaled by SF2 and R = 0, then a truncation
condition exists; data movement stops when C(Y-charnZ) is
filled and the Truncation indicator Is set ON. If R = 1,
then the last digit moved is rounded according to the
aDsolute value of the remaining digits of the result and
the instruction completes normally.

If HF~.RL = 1, then Nh does not contain the operand
len1th; instead, it contains a register code for a
register holding the operand length.

If HFh.ID = 1, then the hth word following the Instruction
Word does not contain an Operand Descriptor; instead, it
contains an Indirect Pointer to the Oparand Descriptor.

C(Y-charnl) and C(Y-charn2) may be ove~lapping strings; no
check is made.

If T = 1 and the Truncation indicator is set ON by
executio~ of the instruction, then a Truncation (Overflow)
Fault occurs.

Detection of a cnaracter outSide the ~ange [0,111 (octal)
in a digit posItion or a character outside the range
[12,17) (octal) in a Sign position causes an II legal
Procedure Fault.

Attempted execution w1th XED causes an II legal Procedure
Fault.

Attempted repetition with RPT, RPO, or RPl causes an
Illegal Procedure Fault.

2-227 AL39

EIS - DECIMAL ADDITION

A030 Add Using 3 Decimal Operands 222 (1)

FORHAT.

0 0 0 0 D 1 1 1 1 2 2 2 2 2 2 2 2 3 3
-'L1_Z- fI ~ a 1. ----Lfl D l....L.LL-_LLL.Il ~
I I I J I I I 1 1
I P 10 I HF3 IT I RI HF2 J 222 (1) tIl MFl
I I I • I I I ---1_1 I

11 1 1 1 71 I 10 1 7
I V-charo1 I CNI la 511 SF1 N1
L- a I
I I I
I V-charo2 : CN2 :b 521 SF2 N2
2 I I I
I I I J
I V-charo3 I CN3 :c 531 SF3 I N3
I I I I I

18 3 1 2 6 6

Figure 2-28 Add Using 3 Decimal Operands CAD30) [IS Hulti-Word
Instruction Forqat

Js..u
P

.T

R

I1F1

J1F2

I1F3

I

V-chara1

CN1

a TN1

51

SF1

N1

Y-charo2

REVIEW DRAfT
SUOJECT TO CHANGE
October, 1975

4-bit data sign character control

Truncation Fault enable bit

Rounding flag

Modification Field for Operand Descriptor 1

Modification Field for Operand Descriptor 2

Hodification Field for Operand Descriptor 3

Progra_ Interrupt inhibit bit

Address of au~end (AD30), minuend (SB30), multiplicand
(MP3D», or dl~isor (OV3D)

First character position of augend (AD30), minuend (5830),
multiplicand (MPlD), or divisor COV30)

Data type of augend (A030), minuend (S930), multiplicand
(MP30), or divisor (OVlO)

Sign and decimal type of augend (AD30), minuend (5830),
multiplicand (HPlO), or divisor (OV30)

Scaling factor of augend (A030),
multlplicand (HP30), or divisor (OV30)

minuend (5830),

Length of augend (ADlO), minuend (SB30), multiplicand
(HPJO), or divisor (OV30)

Address of addend CAD30), Subtrahend (5930), multiplier
(HP30), or dividend (OV30)

2-228 AL39

b

a

CN2

TN2

S2

SFZ

N2

Eli - DECIMAL ADDITION

First character position of addend (AOlO), subtrahend
(5830), multiplier (HP30), or divIdend (OV30)

Data type of addend (AOlO), suDtrahend (S9l0), ~ultiplier
(HPJO), or dividend (OV30)

Sign and decl_al type of addend (A030), subtrahend (SB~O),
multiplier (HP30), or dividend (OVlO)

Scaling factor of addend (A030), subtrahend
multiplier (HPlO), or dividend (DV30)

(S830) ,

Le~gth of addend (ADlO), subtrahend (S830), multiplIer
(HP30" or dividend (OVlO)

Y-charDl Address of sum (AD30), difference (S8l), product (HP30),
or Quotient (OV30)

CNl

TNl

S3

SFl

'"Nl

First character position of sum (ADlO), difference (S830),
product (HPlO), or Quotient (OV3D)

Data type- of sum CA03D), dlfferen::e (S8l0), product
(HP30), or Quot ient (OVlD)

Sign and decimal type of sum (A030), difference (5830),
product (HPlD), or quotient (OVlO)

Scaling factor of sum (AOlO), differen:e (S830), product
U1P30), or Quot ient (DVlO)

Length of su. (AD30), difference (S830), product (HP3D),
or Quotient (OVlO)

ALH Coding Format.

ad3d
oescn[fl,ls,ns,tsl
descn[fl,ls,ns,ts]
descQ[fl,ls,ns,ts]

(HF11,U1FZ) ,HtF3)(,enablefault](,roundl
Y-charnl((CN1)l,N1,SF1
Y-enarnZr (CNZ)],N2,SF2
Y-charn3[(CN3)],Nl,SFl

a. = It or 9
o = It or C)
o = It or C)

SUHHARYI C(Y-charn1) + C(Y-charo2) -> C(Y-charn3)

HODIFICATIONSI None except AU, QU, AL, QL, or Xn for ~F1 and HF2

INDICATORSI (Indicators not list~d are not affected)

Zero If e(Y-charn3) = decimal 0, then ON; otherwIse OFF

Negative If C(Y-charo3) is negative, then ON; otherwise OFF

Truncation If the truncation condition exIsts wlt,out rounding, then
ON; otherwise OFF (See NOTES)

Overflow

Exponent
Overflow

If the overflow condition exists, then ON; otherwise
unchanged (See NOTES)

If exponent of floating point resJlt exceeds 127 then
ON; other~ise unchang~d.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975 2-229 ALlCJ

EIS - DECIMAL ADDITION

Exponent
Underflow

NOTES.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1q75

If exponent of floating point result is less than -128
then ON; otherMise unchanged

If TN3 and S3 specify a ~-bit signed n~mber and
then the 13 (octal) plus sign character
appropriately if the result of the ope~ation is

P = 1,
is placed
positive.

If S3 specifies fixed point and N3 is not large enough to
hold the integer part of the result as scaled by SF3, an
overflow condition exists; tne Overflow indicator is set
ON and an Overflo~ Fault occurs. ThiS implies that an
unsigne~ fixed poInt receiving fIeld has a minimum length
of 1 character; a Signed fixed point field, Z characters;
and a floating point field, 3 characte~s.

If N3 is not large enough to hold all the digits of the
result as scaled by SF3 and R = D, then a truncation
condition exists; data movement stops ~hen C(Y-charn3) is
filled and the Truncation indicator is set ON. It R = 1.
then the last digit moved is rounded according to the
absolute ·value of the remaining digits of the result and
the instruction completes normally.

If HF~.RL = 1, then Nh does not contain the operand
length; instead, it contains a re~ister code for a
register holding the operand length.

If HFh.ID = 1, then the hth Mord fo"o~ing the Instruction
Word does not contain an Operand Descriptor; instead, It
contains an Indirect POinter to the Operand Descriptor.

CCY-charnlt, C(Y-charnZ), and C(Y-charn3)
overlapping strings; no check is ~ade.

may be

If T = 1 and the Truncation indicator is set ON by
execution of the instruction, then a Truncation (Overflow)
Fault occurs.

Detection of a character outside the -ange (0,111 (octal)
in a digit position or a character outside the range
(12,17] (octal) in a sign positio~ causes an II 'e9al
Procedure Fault.

Atte~pted execution with XED causes an Illegal Procedure
Fault.

Attempted repetition with RPT, RPO, or RPL causes an
Illegal Procedure Fault.

2-230 AL39

S820

FORHAT.

SUMMARYI

HODIFICATIONS.

I ~ DICA TORS:

Zero

Negative

EIS - DECIHAl SU9TRACTION

Subtract Using 2 Decimal Operand~

Same as Add Using 2 Decimal Operands (A020)
(See Figure 2-27).

CCY-charn1J - C(Y-charnZ) -> CCY-charnZ)

None except AU, QU, At, Ql, or Xn for HFl and HFZ

(Indicators not listed are not affected)

If C(Y-charaZ) = decimaJ 0, then ON; otherwise OFF

If CCY-charnZJ is negative, then ON; otherwise OFF

203 (1)

Truncation If the truncation condition exists witnout rounding, then
ON; otherwise OFF (See NOTES)

Overflow

Exponent
Overflow

Exponent
Underf I ow

NOTES.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

If the overflow condition exists, then ON; otherwise
unchanged (See NOTES)

If exponent of floatIng point res~'t exceeds lZ7 then
ON; otherwise unchanged.

If exponent of floatIng point result is less than -128
then ON; otherwise unchanged

If TNZ and S2 specify a 4-bit Signed n~mber and P = 1,
then the 13 (octal) plus Sign c~aracter is placed
appropriately if the result of the operation is pOSitive.

If N2 Is not large enough to hold the integer part of the
result as scaled by SF2, an overflow condition exists;
the Overflow indicator is set ON and an Overflow Fault
occurs. This implies that an unsigned fixed point
receiving field has a minimum lengt~ of 1 character; a
signed fixed point field, 2 characteri; and a float1ng
pOint fIeld, 3 characters.

If NZ 1s not large enough to hold all the digits of the
result as scaled by SFZ and R = O. then a truncation
condition exists; data movement stops when CCY-charnZ) is
filled and the Truncation indicator is set ON. If R = 1.
then the last digit moved is rounded according to the

absolute value of the remaining dlgits of the ~esult and
the instruction completes normally.

If HFh.RL = 1, then N~ does not contain the operand
length; instead, it contains a register code for a
register holding the operand length.

If MFis,.IO = 1, then the 11th wo~d following the Instruction
Word does not contain an Operand Oesc~iptor; instead. it
contains an Indirect Pointer to the Operand Descriptor.

2-Z31 Al39

EIS - DECIMAL SUBTRACTION

S830

FORHAT'

SUMMARY'

"'MODIFICATIONS.

INDICATORS:

Zero

NegatIve

C(Y-charnl) and C(Y-cnarn2) may be ove~lapping strings; no
check is made.

If T = 1 and the Truncation indicator i~ set ON bv
execution of the instruction, then a Truncation (Overflow)
F au I t occurs.

Detection of a character outside the -ange (0,11] (octal)
in a dIgit p~sition or
(12,17] (octa') in a
Procedure Fault.

a character outside the range
sign posltiort causes an II legal

Attempted execution with XED causes an Illegal Procedure
Fault.

Attempted repetition with RPT, RPO, or RPL causes an
Illegal Procedure Fault.

Subtract Using 3 Decimal Operands

Same as Add Using 3 Decima' Operands (lD30)
(See Figure 2-28).

C(Y~charQl) - CIY-charn2) -> C(Y-charn3)

None except AU, QU, Al, Ql, or Xn for HF1 and HF2

(Indicators not listed are not affected)

If C(Y-charn3) = decimal 0, then ON; otherwise OFF

If C(Y·charn3) is negative, then ON; otherwise OFF

223 (1)

Truncation If the truncation concition exists without rounding, then
ON; otherwise OFF (See NOTES)

Overflow

Exponent
Overflow

Exponent
Underflow

NOTES.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

If the overflow condition exists, then ON; otherwise
unchanged (See NOTES)

If exponent of floating point result exceeds 127 then
ON; otherwise unchanged.

If exponent of floating point result is less than -128
then ON; otherwise unchanged

If TN3 and 53 specify a ~-bit Signed n~mber and P = 1,
then the 13 (octal) plus Sign character is placed
appropriately if the result of the operation is positive.

If S3 specifies fixed poInt and N3 is not large enough to
hold the integer part of the result as scaled bv SF3, an
overflow condition exists; the Overflow indicator is set
ON and an Overflow Fault occurs. Thii implies that an
unsigned fixed point receiving field has a minimum le~gth

of 1 character; a signed fixed point field, 2 characters;

2-232

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

EIS - DECIMAL SUBTRACTION

and a floating point field, 3 cha~acte-s.

If N3 is not large enouJh to hold al' the digits of the
result as scaled by SF3 and R = 0, then a truncation
condition exists; data movement stops ~hen C(Y-charn3) is
filled and the Truncation indicator is set ON. If R = 1,
then the last digit moved is rounded according to the
absolute value of the remaining digits of the result and
the instruction completes normal Iv.

If HF~.Rl = 1, then N~ does not contain
length; instead. it contains a re~ister
register holding the operand length.

the operand
code for a

If Hfh.IO = 1, then the ~th word fol'o~ing the Instruction
Word does not contain an Operand Descriptor; instead, It
contains an Indirect Pointer to the Op~~and Descriptor.

C(Y-charn1), C(Y-cha~D2), and C(Y-charn3t may be
ove~lapping st~ings; no check is made.

If T = 1 and the Truncation indicator is set ON by
execution of the instruction, then a T~uncation (Overflow)
Fault occurs.

Detection of a character outside the ~ange [0,11] (octal)
in a digit position or a character outside the range
(12,171 (octal) in a sign position causes an II'legal
Procedure Fault.

Attempted execution Mith XED causes an Illegal Procedure
Fault.

Attempted repetitIon with RPT, RPD, or RPL causes an
Illegal Procedure Fault.

2-233 AL39

EIS - DECIMAL MULTIPLICATION

HP2D

FORHAT.

SUHMARYI

MODIFICATIONSI

INDICATORS:

Zero

NegatIve

Hultiplv Using 2 Decimal Operands

Same as Add Using 2 Decimal O~erands (~OZD)
(See Figure 2-27).

C(Y-charn1) x C(Y-charn2) -> ClY-charQ2)

None except AU, QU, AL, QL, or Xn for ~Fl and HF2

(Indicators not listed are not affected)

If C(Y-charn2) = decimal 0, then ON; otherwise OFF

If ClY-charn2) is negative, then ON; otherwise OFF

ZO& (1)

Truncation If the truncation condItion exists wltnout rounding, then
ON; otherwise OFF (See HOTES)

Overflow

Exponent
Overflow

Exponent
Underf I OM

NOTES:

REVIEW OR~FT

SUBJECT TO CHANGE
Oct ober, 1975

If the overflow condition exIsts, then ON; otherwise
unch~nged (See NOTES)

If exponent of floating point res~lt exceeds 1Z7 then
ON; other~ise unchanged.

If exponent of floating point result is less than -128
then ON; otherwise unchanged

If TNZ and S2 specify a 4-blt signed number and P = 1,
then the 13 (octal) plus si~n character is placed
appropriately if the result 01 the ope~ation is positive.

If N2 is not large enough to hold the integer part of the
result as scaled by SF2, an overflow condition exists;
the Overflow indicator is set ON a,d an Overflow Fault
occurs. This implIes that an unsigned fixed point
receiving field has a minimum lengt, of 1 character; a
Signed fIxed point field, 2 characters; and a floating
poInt field, 3 characters.

If NZ Is not large enough to hold all the digits of the
result as scaled bv SF2 and R = 0, then a truncation
condItion exists; data movement stops when C(Y-charnZ) is
filled and the Truncation indicator is set ON. If R = 1,
then the last digit moved is rounded acco~din9 to the

absolute value of the remaining digits of the result and
the instruction completes normativ.

If MFh. RL = 1, then N,h does not con t at n the operand
length; instead, it contains a register code for a
register holding the operand length.

If MFh.ID = 1, then the 11th wor-d tollollling the Instr-uction
Word does not contain dn Operand Oesc~iptor; instead, it
contain~ an Indirect Pointer to the Ope~and Oescr-iptor.

Z-234 AL39

MP3D

FORHAT:

SUMMARY:

MODIFICATIONS:

INDICATORS:

Zero

Negative

EIS - DE~IHAL MULTIPLICATION

C(Y-charnl) and C(Y-charoZ) may be ove~lapplng strings; no
check is made.

If T = 1 and the Truncation indicator is set ON bV
execution of the instruction. then a T~~ncation (Overflow)
Fault occurs.

Detection of a character outside the ~ange [0,111 (octal)
in a digit position or a character outside the range
[12,17l (octal) in a sign positio"\ causes an Illegal
Procedure Fault.

Attempted execution with XED causes an Illegal Procedure
Fault.

Attempted repetition ~ith RPT, RPO, or RPL causes an
Illegal Procedure Fault.

Multiply Using 3 Decimal Operands

Same as Add USing 3. Decimal Operands (A030)
(See Figure 2-28).

eIY-charnl) x ClY-charoZ) -> eIY-charn3)

None except AU, QU, AL. QL, or Xn for NFl and HF2

(Indicators not listed are not affecte~)

If C(Y-charn3) = decimal 0, then ON; otherwise OFF

If C(Y-charn3) is negative, then ~N; otherwise OFF

2Z& (1)

Truncation If the truncation condition exists wit~out roundlng, then
ON; otherwise OFF (See NOTES)

Overflow

.Exponent
Overflow

Exponent
Under f low

NOTESI

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1975

If the overflow condition exists, then ON; otherwise
unchanged (See NOTES)

If exponent of floating point res~lt exceeds 127 then
ON; otherwise unchanged.

If exponent of floating point result is less than -1Z8
then ON; otherwise unchanged

If TN3 and S3 specify a ~-bit Signed number and P = 1,
then the 13 (octal) plus Sign cnaracter is placed
appropriatelv If the result of the operation Is positive.

If S3 specifies fixed point and N3 is not 1arge enough to
nold the integer part of the result as scaled bv SF3, an
overflow condition exists; the Overflow indicator Is set
ON and~n Overflow Fault occurs. ThiS implies that an
unsigned fixed point receiving field "\as a mInimum length
of 1 character; a Signed fixed point field, 2 characters;

2-235 AL39

EIS - DECIMAL MULTIPLICATION

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

and a floating point field, 3 characte~s.

If N3 is not large enou:,Ih to hold all- the digits of the
resuJt as scaled by SF3 and R = 0, then a truncation
condition exists; data move~ent stops ~hen C(Y-charn3) is
filled and the Truncation indicator is set ON. If R = 1,
then the last digit moved is rounded according to the
dbsolute value of the remaining digits of the result and
the instruction completes normally.

If "F~.RL = 1, then Nh does not contain the operand
length; instead, it contains a register code for a
register holding the operand length.

If HF~.ID = 1, then the hth word 'olto~ing the Instruction
Word does not contain ~n Operand Descriptor; instead, It
contains an Indirect Pointer to the Operand Descriptor.

C(Y-charn1), C(Y-charnZ), and C(Y-charo3)
overlapping strings; no check Is made.

may be

If T = 1 and the Truncation Indicator is set ON by
execution of the instructIon, then a Truncation (Overflow)
F au I t occurs.

Detection of a character outsIde the range [0,11] (octal)
in a digit position or a character outSide the range
l1Z,171 (octal J in a sign positio'\ causes an It legal
Procedure Fault.

Attempted execution with XED causes an Illegal Procedure
Fault.

Attempted repetition with RPT, RPD, or RPL causes an
Illegal Procedure Fault.

2-Z3& AL39

DVZO

FORHAT.

SUMMARY.

HODIFICATIONS:
?)

INDICA TORS:

Zero

NegatIve

EI5 - DECIHAL DIVISION

Divide Using Z Decimal Operands

Same as Add Using 2 Decimal Operands (AD20)
(See Flgu~e 2-27).

C(Y-charn2) I e(Y-charn1) -> C(Y-charn2)

None except AU. QU. AL, QL, or Xn for ~F1 and HF2

(Indicators not listed are not affected)

If C(Y-charnZ) = decimal 0, then ON; otherwise OFF

If C(Y-charnZ' is negative. then ON; otherwise OFF

227 (1)

Truncation If the truncation condition exIsts wit"out rounding. then
ON; othe~wise OFF (See NOTES)

Overflow

Exponent
Overflow

Exponent
Under f' ow

NOTES,

REVIEW DRAFT
SUBJECT TO CHANGE
Oct ober. 1975

If the overflow condition eKists. then ON; otherwise
unchanged (See NOTES)

If exponent of floating point res~lt exceeds tZ7 then
ON; otherwise unchanged.

If exponent of floating point result is less than -128
then ON; otherwise unchanged

This instruction performs contInued long diviSion on the
operands until it has produced enough output digIts to
satisfy the requirements of the ~uotient field. The
number of required Quotient digits. NQ, is determined
before divISion begins as follows •••

1) F I oat I ng point QUO Hent

NQ = N2. but if the divisor is greater than the
dividend after operand alignme~t9 the leading zero
digit produced is counted and the effective precision
of the result is reduced by one.

2) Fixed point Quotient

NQ = (N2-LZ2+1) - (Nt-LZl) + (E2-E1-SF2)

wherel NO
LZn
En
SF2

3) Roundin~

=
=
=
=

3iven operand field length
leading zero count for operand D
exponent of opera"d 0
scaling factor of Quotient

If rounding is specified (R = 1), then one extra
Quotient digit is produced.

2-237 AL39

EIS - DECIHAL DIVISION

DV3D

FORHATa

SUHHARYI

REVIEW OR"rr
SUBJECT TO CHANGE
Oc tober, 1975

If C(Y-charo1) = decimal 0 or NQ > 63, then division does
not take place, C(Y-charoZ) are unchan~ed, and a Divide
Check Fault occurs.

If 'TNZ ~nd

then the. 13
appropriately

S2 specify a ~-bit signed number and P = 1.
(octal) plus sign character is placed
if the result of the operation is positive.

If NZ is not large enough to hold the inteJer part of the
result as scaled bv SF2, an overflow condition exists;
the Overflow indicator is set ON and an Overflow Fault
occurs. This implies that an unsigned fixed point
receiving field has a minimum length of 1 character; a
Signed fixed poInt field, 2 Characters; and a floating
point field, 3 characters.

If N2 Is not large enough to hold all the digits 01 th~
result as scaled by SFZ and R = 0, then a truncatIon
condition exists; data movement stops ~hen C(Y-charo2) Is
filled and the Truncation indicator is set ON. If R = 1,
then the last digit moved is rounded according to the
absolute value of the extra Quotient digit and the
instruction completes normallv.

If HF~.RL = 1, then Nh does not contain
length; instead, it contains a re~ister
register holding the operand length.

the operand
code for a

If HFt1.ID = 1, then the hth word follolflng the Instruction
Word does not contain an Operand Descriptor; instead, it
contains an Indirect Pointer to the Operand Descriptor.

CCY-charn1) and C(Y-charnZ) /lay be overlapping strings; no
check I s made.

If T = 1 and the Truncation indicator is set ON by
execution of the instruction, then a Truncation (Overf 10M)

Fault occurs.

Detection of a character outside the r3nge [0.,11) (octal)
in a digit position or a character outside the range
[12,171 (octal) in a Sign pOSition causes an Illegal
Procedure Fault.

Attempted execution with XED causes an Illegal Procedure
Fault.

Attempted reDetltion with RPT, RPD, or RPL causes an
Illegal Procedure Fault.

Divide Using 3 Decimal Operands

Same as Add Using 3 Decimal Operands (AD3D)
(See Flgure 2-28 ••

C(Y-charn2) I e(Y-charn1) -> C(Y-charo3)

2-238

227 (1)

AL39

EIS - DECIMAL DIVISION

MODIFICATIONSI None except AU, QU, AL. QL. or Xn for HF1 and HF2

INDICATORSI (Indicators not listed are not affected)

Zero If C(Y-charn3) = decimal 0, then ~N; otherwise OFF

Negative If C(Y-charn3) is negative, then ON; otherwise OFF

Truncation If the truncation condItion exists witnout rounding, then
ON; otherwise OFF (See NOTES)

Overflow

Exponent
Overflo.

Exponent
Underflow

NOTESI

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

If the overflow condition exists, then ON; otherwise
unchanged (See NOTES)

If exponent of floating point res~lt exceeds 127 then
ON; otherwise unchanged.

If exponent of floating point result is Jess than -128
then ON; otherwise unchanged

ThIs instruction performs continued lo~g division on the
operands until it has produced eno~gh output digits to
satisfy the requirements of the Quotient field. The
number of reQuired Quotient digits, NQ, is determined
before diviSion begins as follows •••

1) Floating point quotient

NQ = N3, but if the divIsor Is greater than the
dividend after operand a'ignme~tt the leading zero
digit produced is counted and the effective precision
of the result Is reduced by one.

2) Fixed point quotient

NQ = (N2-LZ2+1) - (N1-LZ1) + (E2-El-5F3)

wherel

3) Rounding

NQ
LZn
EO
SF3

= given operand field lengfh
= leading zero count for operand 0
= exponent of opera~d n
= scaling factor of quotient

If rounding is specified (R = 1), then one extra
quotient digit is produced.

If C(Y-charn1) = decimal 0 or NQ > 03, then division does
not take place, C(Y-charn3) are unchanged, and a Divide
Check Fault occurs.

If TN3 and
then the 13
appropriatelv

53 specify a 4-bit Signed number and P = 1,
(octal) plus sign character is placed
if the result of the operation is positi~e.

If 53 specifies fixed point and N3 Is ~ot large enough to
hold the integer part of the result as scaled bV SF3, an
overflow condition exists; the O~erfJlw indicator Is set
ON and an Overflow Fault occurs. This implies that an
unsigned fixed point receiving field has a minimum length

2-239 AL39

EIS - DECIHAL DIVISION

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

of 1 character; a signed fixed point field, 2 characters;
and a floating point field, 3 characte-s.

It N3 Is not large enough to ho1d aJ I the digits of the
result as scaled by SF3 and R = 0, then a truncation
condition exists; data movement stops when C(Y-charn3) is
filled and the Truncation indicator is set ON. If R = 1,
then the last digit moved is rounded according to the
absolute value of the extra Quotient digit and the
instruction completes normally.

If HFh.RL = 1, then Nh does not contain the operand
length; instead, it contains a re~ister code for a
regl~ter holding the operand length.

If HF~.ID = 1, then the ~th word follo~ing the Instruction
Word does not contain an Operand Desc-lptor; instead, it
contains an Indirect Pointer to the Operand Descriptor.

CCY-charo1), CCY-charo2), and C(Y-charn3) may be
overtapping strings; no check Is made.

If T = 1 and the Truncation indicator is set ON by
execution of the instruction, then a T~uncation (Overflow)
Fault occurs.

Detection of a character outside the r3nge (0.111 (octal)
in a digit positIon or a charact_~ outside the range
t12,17l (octal) in a Sign position causes an II legal
Procedure Fault.

Attempted eKecution with XEO causes 3n Illegal Procedure
FauJt.

Attempted repetItion with RPT, RPD, or RPL causes an
Illegal Procedure Fault.

2-2~a AL39

The Hove Alphanumeric Edited (HVE) and Hove Numeric Edited (HVNE)
instructions require micro operations to perform the eaitlnl functions in an
efficient manner. The sequence of micro operation steJS to be executed is
contained in storage and is referenced by the second operand descriptor of the
HVE or HVNE instructions. Some of the micro operations require special
characters for insertion into the string of characters being edited. These
special characters are shown in the "Edit Insertion Table" discussion below.

H~ro Opeca~~Segyenca

The micro operation string operand descriptor points to a string of 9-bit
characters that specify the micro operations to be performed during an edited
move. Each of the 9-blt characters defines a micro o~eration and has the
followIng formata

0 0 0 0
_L- !i ~ ~
I I I
I HOP I IF 2
I ; I

5 4

figure 2-29 Hicro Operation (HOP) Character Format

HOP

IF

E~it Insertion T~

5 bit code specifying Micro Operation to be perfomed.

Information Field containing one of the following •••

1. A sending string character count. A value of 0 is
Interpreted as 16.

2. The index of an entry in the edit insertion table to
be used. PermIsslble values are 1 through 8.

3. An int erpretat ion of the ieb I ank-w,en-zero· operat ion

~hlle executing an edIt instruction, the Processor provides a register of
eight 9-bit characters to hold insertion information. This ~egister. called the
-Edit Insertion Table~, is not maintained after execution of an edit

instruction. At the start of' each edit instructIon, the Processor hardware
initializes the table to the values given in Table 2-8, where each symbol refers
to the corresponding standard ASCII character.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975 2-241 AL39

Table 2-8 Default Edit Insertlon Tab.e Characters

TaDle Entrv
--1:Uulltu:c. __ ~c:.ilUe.C

1 bl ank
2 •
3 •
it
5 S
£» •
7
8 0 (zero)

One or all of the table entries can be changed bv the Load Table Entrv or
the Change Table micro operations to provIde different insertion characters.

The hardware provides the following four -edIt flags~ for use by the micro
operations.

ES

SN

Z

8Z

End Suppression Flag; initiallv OFF and set ON by a micro
operation when zero suppressIon ends.

Sign Flag; initially set OFF If the sending string Is
aJphanumericor unSigned numeric. If the sending string
is signed numaric, the sending string sign character is
tested and SN is set OFF If positive, and ON if negative.

Zero Flag; initially set ON. It Is set OFF whenever a
sending string character that is not decimal zero is moved
into the receiving strIng.

Blank-When-Zero Flag; initially set OF~ and is set ON by
either the ENF or SES micro operation. If, at the
completion of a move, both the Z anj BZ are ON, the
receiving string is filled with cha-acter 1 of the Edit
Insertion Table.

The micro operations are terminated normally when the receive string length
becomes exhausted. The micro operations are terminated abOrmally (with an
Illega' Procedure Fault) if a move from an exhausted sendi"lg string or the use

of an exhausted HOP string Is attempted.

REVIEW DRAFT
SUBJECT TO CHANGE
Dc to ber, 1<375 Z-2ltZ AL39

The hardware executes HVNE in a slightly different manner than it executes
"VEe This is due to the inherent differences In which nume-ic and alphanumeric
data is handled. The following are brief descriptioni of the hardware
operations for HVNE and HVE.

-NUMERIC EOITi}

1. Load the entIre sending string number (maximum length 63 characters)
Into the Decimal Unit Input Buffer as It-bit digits (high-order
truncating 9-bit data). Strip the sign and exponent cha~acters (if
any), put them aside into special holding registers and decrease the
Input Buffer count accordinglv.

2. Test sIgn and, If reQuIred, set the SN f'ag.

3. Execute micro operatl~n strIng, starting with first fft-bit) digit.

4. If an Edit Insertion Table entry or HOP insertion character is to be
stored, MANDed", or ·ORed" into a receiving string of 4- or 6-bit
characters, high-order truncate the character acco~dlngly.

5. If the receIving string is 9-bit characters, high-order fill the
(4-bit) digits from the Input Buffer with bits 0-4 of character 8 of
the Edit InsertIon Table. If the receiving string Is 6-blt
characters, high-order fill the dIgits with "DO-b.

-ALPHANUMERIC EOIT~

1. Load Cecimal Unit Input Buffer with sending string characters. Oata
is read from main store in unaligned units (not 0 modulo 8 boundary)
of V-blockS words. The number of characters read is the minimum of
the remaining sending string count, the remaining receiving string
count. and 64.

2. Execute micro operatIon string, starting with tne first receiving
string character.

3. If an Edit Insertion Table entry or HOP insertion character is to be
stored, "ANDed-, or MORed" into a receive string of 4- or 6-blt
characters, hlgh-oroer truncate the character acco~dinglv.

t11cro Operators

A description of the 17 micro operations (HOPs) follo~s. The mnemonic,
name, octal value, and the function performed is given for each HOP in a format
similar to that for Processor Instructions. These micro ope-at Ions are included
in the alphabeItc list of instructions in Appendix C. identified bv the code
HOP.

Checks for termInation are made during and after each micro operation. All
HOPs that make a zero test of a sending string characte- test onlv the four
least significant bits of the character.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975 2-2'+3 AL39

The fol lowing addltional abbreviations and symbols are used in the
descriptions of the HOPs.

EIT

pin

pmop

pout

CHT

SUMMARY I

FLAGS'

NOTES'

ENF

FLAGS'

REVIEW DRAFT
SUBJECT TO CHANGE
0<; tober, 14375

Edit Insertion Table

current position in the sending string

current posItion in the micro operation string

current posItion in the receiving string

Change Table 21

For 1 = 1, 2, ••• , 8

CCY-char92)pmop+i -> CeEIT)i

None affected

CCIF) is not interpreted for this operation.

End Floating Suppression 02

If C(IF)O = 0, then

If ES is OFF, then

If SN if OFF, then C(EIT)3 -> C(Y-charn3)pout+l

If SN in ON, then C(EITI~ -> C(Y-charn3)pout+l

pout = pout + 1

ES set ON

If ES is ON, then no action

If ClIF)O = 1, then

If ES is.OFF, then

C(EIT)5 -> C(V-charn3)pout+l

pout = pout + 1

ES set ON

11 ES is ON, then no action

If ClIF'1 = 1, then BZ set ON; otherwiie no action

(Flags not listed are not affected)

2-244 AL39

IGN

INSA

INS8

ES

8Z

SUHMARYI

FLAGSI

SUMMAR'll

FLAGS'

NOTES'

SUMMARYI

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1915

If OFF, then set ON

If CeIF)1 :: 1, then set ON; otheMlse no change

Ignore Source Character 14

CeIF) + pin ->,pin

None af fee ted

Insert Asterisk on Suppression 11

If ES is OFF, then

CeEIT)2 -> CCY-charn3)pout+1

If CCIF) :: 0, then pmop :: pmop + 1

If ES Is ON, then

If CCIF) ~ 0, then

11 :: CUF)

C(EIT)m -> CCY-charD3)pout+l

If CCIF) :: 0, then

C(Y-char92)pmop+l ->C(Y-charn3)pout+1

plllOP :: pmop • 1

None aff ected

If C(IF) > 8 an itlegal procedure Fault occurs.

Insert Blank on Suppression 10

If ES is OFf, then

C(EIT)1 -> C(Y-charn3)pout+1

If CeIF) = 0, then pmop :: pmop + 1

If ES is ON, then

If C(IF) ~ 0, then

In = C (IF)

C(EIT)m -> C(Y-charn3)pout+1

2-2'+5 AL39

FLAGS'

NOTES'

INS"

SUMMARY'

FLAGS.

INSN

SUMMARY'

FLAGSI

NOTESI

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

If CCIF) = 0, then

C(Y-char9Z)pmop+l ->CCY-charn3)p~ut+1

pmop :: pmop + 1

None affecte::J

If CCIF) > 8 an Illegal Procedure Fault occurs.

Insert Table Entrv 1 Multiple 01

For i = 1, 2, ••• , CCIF)

C(EIT)l -> C(Y-charn3Jpout+i

None affected

Insert on Negative 12

If SN is OFF, then

C(EIT)1 -> CCY-charn3)pout+l

If C(IF) = a, then pmop = pmop + 1

If SN is ON, then

If CIIF) _ 0. then

m = C (IF)

C(EIT)m -> C(Y-charn3)pout+1

If C(IF) = 0. then

C(Y-char9Z)pmoP+1 ->C(Y-charn3)p~ut+l

pmop = pmop + 1

None af fected

If C(IF) > 8 an Illegal procedure Fault occurs.

2-2«'& AL39

INSP

SUMMARY'

FLAGSI

NOTES:

LTE

SUMMARY I

FLAGSI

NOTES'

"FLC

SUMMARY-

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

Insert on Positive

If SN is ON. then

C(EIT)1 -> CCY-charnJ)pout+1

If C(IF) = O. then pmop = pmop + 1

If SN Is OFF, then

If C(IF) _ 0, then

m = C (IF)

C(EIT)m -> C(Y-charnJ'pout+l

If C(IF) = 0, then

C(Y-char92)pmop+1 ->CCY-charnJ)pout+l

pmop = pmop + 1

None affected

If C(IF) > 6 an Illegal Procedure Fault occurs.

Load Table EntrY'

m :.I: C(IF)

ClY-char92)pmop+l -> C(EIT).

pmop = pmop + 1

None al rected

13

20

If C(IF) = 0 or ClIF) > 8 an IIIeg31 Procedure Fault
occurs.

Hove with Float Currency Symbol Insertion 07

For i = 1, 2, •••• C(IF)

If ES is ON. then C(Y-charnl)pin+i -> C(Y-char~J)pout+l

If ES is OFF and CCY-ch~rDl)pin+! = decimal 0, then

C(EIT)1 -> C(Y-charn3)pout+l

If ES Is OFF and ClY-charol)pin+! _ decimaJ 0, then

ClEIT)5 -> C(Y-charnJ)pout+l

2-2"7 AL39

FLAGS:

ES

NOTES:

HFLS

FLAGS:

NOTES:

REVIEW OR~FT
SUBJECT TO CHANGE
October. 1975

CCY-charol)pin+! -> CCY-cha~n3)p~ut+i+1

pout = pout + 1

ES set ON

CFlags not listed are not affected)

If OFF and any of C(Y-charnl)pin+i ~ decimal 0, then ON;
otherwise unchanged

If N1 or NZ exhausts before N3. an Illegal Procedure Fault
occurs.

The numbe~ of cha~acters moved to the ~eceiving string Is
data dependent. If the enti~e C(Y-cha-ol) is decimal O·s,
C(IF) cha~acte~s are moved to C(Y-cha-a3). However, if
the receiving string contains a non-zero character. then
C(IF)+1 characters are moved to C(Y-charn3); the insertion
character plus ClY-charal). The user is advised that a
possible II legal Procedure Fault due to this condition may
be avoided by assuring that the Z and BZ flags are ON.

Hove wIth Float SIgn Insertion 0&

For 1 = 1. 2 ••••• CeIFJ

If ES is ON, then CCY-cha~nl)pin+l -> C(Y-charn3)pout+l

It ES is OFF and C(Y-charo1Jpin+i = decima' 0. then

C(EIT)l -> CCY-charn3)pout+i

If ES Is OFF and CCY-charnl)pln+l ~ decimal 0. then

If SN is OFF, then eeEIT)3 -> CCY-c~arD3)pout+i

If SN is ON, then CCEIT)4 -> CCY-charo3)pout+i

CCY-charnl)p!n+i -> CeY-charQ3)p~ut+i+l

pout = pout + 1

ES set On

(Flags not Ilsted are not affected)

If OFF and any of CCY-charol)pin+l _ decimal 0, then ON;
otherwise unchanged

If N1 or NZ exhausts before N3. an Illegal Procedure Fault
occurs.

The number of characters moved to the ~eceivlng string is
data dependent. If the entire C(Y-c~a-Ql) is decimal O·s,

2-248

HORS

SUMMARYI

FLAGSI

HSES

SUHHARY1

FLAGS_

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

CeIF) cha~acters are moved to C(Y-cha-n3). However, if
the receiving string contains a non-zero character, then
C(IF)+l characters are moved to C(Y-charo3); the insertIon
character oJus C(Y-charnl). The ~ser is advised that a
possible Illegal Procedure Fault due t3 this condition may
be avoided bv assuring that the land 3l flags are dN.

Hove and OR Sign

For I = 1, 2, ••• , CIIF)

If SN is OFF, then

C(Y-charo1)pin+i I CCEIT)3 -> C(Y-charn3)pout+i

If SN if ON, then

CeY-charo1)pin+i I CeEIT)~ -> C(Y-char n3)pout+i

None affected

Hove and Set Sign

For 1 = 1, 2, ••• , CeIF)

C(Y-charnl)pin+l -> CCY-charo3)pout+l

For 1 = 1, 2, ••• , C(IF)

C(Y-charol)pln+i -> CCY-charo3)pout+l

C(l) = CCY-charnl)pln+i , CCEIT)3

If Cel) ~ 0, then for J = 1+1, 1+2, ••• , CeIF)

C(Y-charn1)pln+J -> CeY-charol)pout+)

If Cel) = 0, then

C(Z) = CCY-charo1)pin+i , C(EIT)~

If eel) ~ 0, then

SN set ON

For J = 1+1,·1+2 •••• , CeIF)

C(Y-charnl)pin+) -> C(Y-charn3)pout+J

(Flags not JIsted are not affected)

2-2"9

17

16

AL39

SN

HVC

SUMHARY'

FLAGS'

"VZA

SUMMARYI

FLAGS.

ES

NOTESI

"VZB

SUHHARYI

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1975

If C(EIT)~ ~ound in C(Y-chara1), then ON; otherwise no.
change

Hove Source Character 15

For 1 = 1, 2 ••••• C(IF)

C(Y-charn1)pin+l -> C(Y-charQ3)pout+l

None af fected

Hove with Zero Suppression and Asteris~ Replacement 05

For i = 1, 2, ••• , C(IF)

If ES Is ON, then C(Y-charnl)pin+l -> C(Y-charo3)pout+i

If ES Is OFF and C(Y-charo1)pln+i = decimal 0, then

C(EIT)2 -> C(Y-charn3)pout.l

if ES is OFF and C(Y-charnl)pln+l _ decimal 0, then

C(Y-charal)pin+l -> CCY-charn3)p~ut+l

ES set On

(Flags not lIsted are not affected)

If OFF and any of CCY-charnl)pin+l ~ decimal 0, then ON;
otherwise unchanged

If N1 or N2 exhausts before N3, an Illegal Procedure Fault
occurs.

Hove with Zero Suppression and Blank Replacement 04

For 1 = 1, 2, ••• , C(IF)

If ES Is ON, then CCY-charn1)pln+i -> C(Y-charo3)pout+l

If ES Is OFF and C(Y-charni)pln+l = decimal 0, then

C(EIT)1 -> CCY-charo3)pout+i

If ES 1s OFF and CCY-charol)pin+i # decimal 0, then

CCY-charol)pin+i -> C(Y-charn3)p~ut+l

ES set ON

2-250 AL39

FLAGS'

ES

NOTESa

SES

SUMHARya

FLAGsa

ES

Bl

(Flags not listed are not affected)

If OFF and any of CCY-charnl)pin+l ~ ~ecimal 0, then ON;
otherMise uncahnged

If N1 or N2 exhausts before N3. an Illegal Procedure Fault
occurs.

Set End Suppression 03

If CCIF)O = 0, then ES set OFf

If CCIF)O = 1, then ES set ON

If CCIF)l = 1. then BZ set ON; otherwise no action

(Flags not listed are not affected)

Set by th~S micro operation

If CCIF)l = 1, then ON; otherwIse no c~ange

tticr& QAACa1LRn-Code Assignment HaR

Operation code assignments for the micro operations are shOMn in Table 2-9
below. (---). indicates an unassigned code. All unassigned codes cause an
I II e ga I Procedure Fau It.

Ta~le 2-9 -Micro Operation Code ASSignment ~ap~

DO
10
20
3D

REVIEW DRAfT
SUOJECT TO CHANGE
October, 1975

_--'1-
J --- J
J insb:
J .te J
L--- I

1 2 ;1
ins",) enf ses
,,,sal insnJ inspJ
cht I --- I I --- 1-:=--.1.

2-251

!t 2 i
mvzbl mvzal mf lsI
ign 1 mvc I msesl

1 --- I 1
--=-L::.- I

Z
mfleS
morsJ

I
;

Al39

SECTION Itl

DATA REPRESENTATION

INfORMATION QRGANI1ATtaH

The P~Qcessort like the rest of the Hultics $vste~t is organized to deal with inforsatlon
in basic units of 3&-blt "words".
Other units of 4-, &-, 9-bit ··chardcters" or "bytes", 1S-bit ··half .. o~ds-, and 72-bit "word pairs·
can be man{pulated within the Processor by use 0' the instruction set.
These bit groupings are used by the
hardware and software to represent a var-iety of forms of coded data.
Certain Processor functions appear to manipulate larger units of 144, 288, 576, and 1152 ~lts, but

'unctions are performed by means 0' repeated ~se 01 12-blt ~ord pairs.
A t I In format ion 1s
respresented as strings of binary bits.

The numbering Of bit positions,char-acte'" positions, and wordS ,,,creases in the direction
of conventlona' reading and writingl fro~ the most-significant to the feast-sign1flcant
digit of a nu_ber, and from teft to right In conv~ntional ~'phanu.eric teMf.

Graphic presentations in this manual sholf reg1$ters and da'. wit" pos!tlon
numbers IncreaslnO

g froll left to right.

The arithmetic f~nctions of the Proeesso· a~e I_plem.ftted 1n the tM~·S
comp Ie ment f bl nary number $y ste",_ One 0 f the prl mary proper ti es oft". s
number system 1s that a field (or register) hav'n~ Width Q bits Mav:be
Inprep~eted in t"O dIfferent wavs; the -logical- ~ase and the Marith •• tic·
or 0'· a I gebra lc·· ease.

In the logical case. the number Is unsig"ed. positive. and I'es In the
r.n~e (D,2·.n - 1). The results of arithmetic ooerations OR nuntbers
for thiS case are inter~reted as 0 modulo n n~mbers.
Overflo" is not defined tor this case since t,e range of the fIeld or
~egister cannot b.ex~.eded.
The numbers "OUand "2 •• Q - 1" are conSecutive (not separated) in the
set of numberS defined for the field or register.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975 3-1 Al39

In the arithmetic case, the number Is si~ned and lies in the ran~e
(-2··'0-1),2 •• (n-1) - 1). Overflow is defined for this case since si,ce the
range can be exceeded in either direction (poiitive o~ negative ••
The lett-hand-most bit of the field or register (bit 0) serves as the sign bit and
does not contribute to the value of the numbe~.

The main advantage of this '"pleaentation is that the hardware ar-lthlftetlc
a'gorithms for the two cases are identical; the onlv distinction
lying in the interpretation of the results by the user.
Instruction set 'eatu"'.~ are provided . .
for performing binary .-Ithmetic .. lth overftojlj disabled
ethe so-called loglcat lnstruc.'ons)
and for co.parlng numbers In either sense.

Subtraction Is performed by adding the 'wo·s compl •• ent of the
subtrahend to the Minuend.
(Not. that when the subtr.hend Is zero the al~orlthm tor for.lng the two·s co.pt •• ent
Is stl't carried out, but. Since the two·s compteaent of zero is zer~t
the result 1s correct.) ,

Another Important feature of the two·s complellent
number System (with respect to comparison of numeric values) is that
the MhO borrow" condition In true subtraction is identlca. to the
··carry·· condition in true addition and vice Vlrsa.

A statement on 'the assumed "ocatlon of the binary pOint has significance" only
tor Multiplicatlon and division. These two 03eratlons are i~le.ente~ for the arltheetic case
1n both integer and fraction modes.
"Int~~er" means that the position 0' the bjna~v ooint Is
3ssulled to the right of the least-significant bit position (that is, to the
right of the r~ght-hand-.ost,blt of the field ~r ~eglster)
and "fraction- lIeans that the position of the binary point Is assulled
to the left of the Most-significant bit pOSition (that iSt bet"een bit D and
bit· 1 of the field or register; reca" that bit 0 is the sign bit).

~.titJW1Al.liULf 0 BttAI S

The Figures beto. ShON the unstruet~red for.~ts (templates) f~r the vari~us infor.atlon units
defined for the Processor.
Data transfer between the ProceSsor and main store is word oriented; a 3&-bit aachlne word Is,
transfer~ed for single-precision ope~ands and sub-fields of machine w~rdSt and a 72-blt word pair
Is transferred for "a II other cases (liul t i-word operands, lnstruct Ion fetches, bl t- a,,~ character-str;

The information unit to be used and the data transfer .ode is deterlli~ed Dy the Proc~ssor
according to ,the function to be perforMed.

the 36-blt unstructured machine word Shown In Figure 3-1 below Ii the IIlnl,.ulII addressable
information unit in main store. Its .ocation is uniQuely dete~~lned ~y Its .~in store address, Y.
All other information units are defined relative to the 36-blt Machine Nord.

REVIEW DRAFT
SUBJ£CT TO CHANGE
October, 1915 At.39

o 3
Q 5

I I
I J
I I

36

figure 3-1 Unstructured Machine Word format

Two consecutive machines words as shown in Figure 3-2 below. the first
having an even main store address. form a 72-bit word pair. In 72-bit word pair
data transfer mode. the word pair is uniQuely located by the main store address
of either of its constituent 36-bit machine words. Thus, if Y is even, the word
pair at (Y,Y+1) is selected. If Y is odd, the word p3ir at (Y-l,Y) is
selected. The term ·Y-pair" Is used for such a word pair address.

o 3 3 -a
Q
______________________________ --2-2 ________________ _

I I
I I
J I

36
Even Word Odd Word

figure 3-2 Unstructured Word Pair Format

7
1

36

4-bit characters are mapped onto 36-bit machines words as shown in Figure
3-3 below. The ·0" bits at bit positions 0, 9, 18, and 27 a~e forced to be 0 by
the Processor on data transfers to main store and a~e ignored on data transfers
from main store.

0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 3 3 3
II 1 !t 2 a ~ II 3 !t --L8 ~ Z ~ fa Z _a 1 Z 2

I I 1 I I I a I a I 1 I 1
101 J a 0 I J 101 S J 0 I 1 I
LL __L- I I I I J I I I - I I

1 4 .. 1 1 1 .. 4

Figure 3-3 Unstructured 4-bi t Character Format

6-bit characters are mapped onto 36-bit machines words as shown in Figure

3-4 below.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975 3-3 AL39

...

0 0 0 1 1 1 1 2 2 2 l 3
-1-__ ---2-6 l-L-___ ---L8 3_L--___ -LO 5
I I J I I I I
I I I I , I I

----1 I I I I I
6 6 & 6 6 6

Figure 3-4 Unstructured 6-blt Character Format

9-bit characters a~e mapped onto 3&-blt machine wo~ds as shown In Figu~e

3-5 below.

0 0 0 1 1 Z Z 3
II ~-2 -La. -Ll 5

I I 1 J I
I • I I J
I I --1 --L- I

9 9 9 9

Figure 3-5 Uns,truc tu~ed 9-blt Character Format

lS-bit half Nords are mapped onto 3S-blt machine Nords as shown in Figu~e
3-6 be' ow.

o
Q

IlATA PARITY

1 1
--1-~8 ___________ ,

I
I __________________________ ---1 ______________ __

18
Uppe~ Half Lower HaJf

Flgu~e 3-6 unstructured is-bit Half Word Format

3
5

18

Odd parity on each 3D-bit machine word transferred to main store is
generated as it leaves the Processor, is verified at seve~al points along the
transmission path, and is held in main store as an "extra" bit. If an incorrect
parity is detected at any of the various parity Mcneck poInts", the main store

returns an Illegal Action signal and a code approp~late to the check point.

On data transfe~s from main
transmitted with the data bits.
Illegal Action signa' led for errors.
as the data enters the Processor.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1~15

store, the parity bit is retrieved and
The same verification checks are made and
The Processor makes a final parity check

AL 39

Any detected parity error causes the Processor Parity indicator to set ON
and (if enabled) a Parity Fault.

REPRESENTATI01LQf PATA

Data is defined bV Imposing an operand structure on the information units
described above. Oata is represented in two forms: nume-ic or alphanumeric.
The form Is determined by the Processor according to function to be performed.

Numeric data is represented in three modeSI fixed point binary, floating
point binary, and decimal. The mode is determined by the Processor according to
the function being performed and any Address ModificatIon invoked for the
instruction being executed.

FIXED POINT BINARY DATA

Fixed PoInt Binary Integers

Fixed point binary integer data is defined by imposing either of the bit
position value structures sho~n below on an information unit of 0 bits.

Logical valuel

atO)x2··0 + a(1)xZ··CO-l) + ••• + a(0-1)
T

Arithmetic valuel

["-ALa(O)] (aUllalO)xZ.·(a-1)+(a(Z)la(D»xZ·.(c.-Z)+ ••• +(a(o-Ula(O» ,
where.

all) is the value of the bit in the Lth bit position

• indicates the Boolean Exclusive OR function

"T" indicates the position of the binary point

("-"La(O)] selects the proper sign according the v31ue of a(O)

The following fixed point binary integer data items are definedl

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1<375 3-5 AL3<3

n

&
9
18
36
72

&-blt Byte Ope~and
9-bit Byte Operand
Half Word Ope~and
Single Precision Operand
Double Precision Operand

Note that ~-bit Byte Operands a~e n~ defined. This data item 1s defined
only for Oecimal Data. (See Decimal Oata below.}

The proper operand and its position within a 3&-bit machine word is
determined by the Processor during prepa~ation of the main store address for the
operand. If the data width of the operand selected is smaller than the register
involved, the operand is high-order and/or low-order zero filled as necessary.

Table 3-1 FiKed PoInt Binary Integer Values

Operand

logical range

6-bi t
Byte

Minimum' 0
Haxlmuml (2··0)-1
Resolutions 1

. ~

Arithmetic range
Minimum' 0
"axillal

Neg. -(2··5)
POSe (2··5)-1

Resolutionl 1

9-blt
Byte

o

- (2··8)
(2··8)-1

1

Fixed Point Binary Fractions

18-blt 36-bit 72-blt
Half Word Single Precisio~ Double Precision

o

- (2··17)
(2··17)-1

1

o

-(2··35)
(2··35)-1

1

o

--(2··71)
(2··71'-1

1

Fixed point binary fraction data Is defined by imposing the bit position
value structure below on an information unit of D bits.

Arithmetic valuel

data.

("-"'a(O'] (aC1)ea(O)'x2··-1+(a(2)'a(O»K2·"-2+ ••• +(a(n-l)'aCO»)K2··-(0-1)
T

Note that logical values are not defined for fiKed poi~t binary fraction

The following fiKed point binary fraction data items are definedl

REVIEW DRAFT
SU9JECT TO CHANGE
October, 1975 3-& AL39

.D

6
9
18
36

ti~.!IUt

6-bit Byte Ope~and
9-bit Byte Ope~and
Half Word Operand
Single Precision Ope~and

Note that ~-bit Byte Operands and 72-blt Double Precision Operands are n21
defined. ~-bit Byte Operands a~e defIned only fo~ Decimal Data. (See Decimal
Oata belo __ .) If the instruction being eKecuted is Divide F!'-actlon (DVF), the
contents of the combined Accumulato~ and Quotient Registers are treated as a
72-bit fixed point binary fraction value but are not address3ble as an operand.

The proper operand and its position within a l6-bit machine word Is
determined by the Processor during preparation of the maIn store address for the
operand. If the data width of the operand selected is smaller than the register
involved, the operand is high-orde~ or low-o~der zero filled as necessary.

Table 3-2 Fixed Point Binarv Fraction Values

Operand

ArithmetIc range
Hiniaunt:

.. Maximal

6-bit
Bvte

o

Neg.
POSe

Resolution.

--- (1)
«(24 .5)-1) x 2.·-35

Operand

ArithlDetic range
ttlni ttutU
Haxin:al

Neg_
POSe

Resolutionl

2"'4-35

Upper 18-bit
Half Word

o

-1.0
1.0 - 2··-17

2·"-11

9-blt
Byte

o

«(2·.8)-1) x 24 "'-35
2··-35

36-bit
Single PreciSion

o

-1.0
1.0 - 2·"-35

Z··-35

lowe~ 18-bit
Ha If Wor d

o

«2.4 17)-1) x 2··-35
2 44 _35

(1) No Negative maximum 1s shown for 6-bit Byte, 9-blt Bvte, and Lower 18-bit
Half Word operands since the high-order zero fiJI Quring ope~and

alignment forces the sIgn bit to zero.

All operands are legal for the Divide Fraction (OVF) Instruction but only
the 18-bit Half Word and 36-bit Single PreciSion operanls are legal for the

Multiply Fraction (MPF) instruction.

Fixed point binary fraction operands are
instructions.

REVIEW DRAFT
SUBJECT TO CHANGE
OctOber, 1975 3-7

i I'egal for a I I other

AL39

FLOATING POINT BINARY DATA

A floating point binary number is expressed as

Z = " x Z •• E

... here-

" is an arithmetic fixed point binary fraction; the ~antissa

E is an arithmetic fixed point integer; the expone~t

A floating point binary number is defined by imposing the bit position
value structure below on an information unit of 0 bits.

Exponent val uel

{"-"la(Ol] (a(lJ'a(O)xZ··o + (aCZ.'a(O»xZ·.5 + ••• + (3(7)la(0))
T

Hant issa val ueS

[88--la (8)] (a19)Ia (8)) xZ"·-l+ (a (10) la (8)) xZ"·-Z+ ••• + (alo-l) ea C 8 UxZ·· 17-n)
T

where the symbols and notation are the same as for fixed point binary data
above.

The 101 lowIng f'oatlng poInt data items are defined.

18
3&
7Z

tiUl."

Half Word Operand
Sing'e Precision Operand
Double Precision Operand

For clarity. the formats of these operandS are shown in Figures 3-7 through
3-10 be I 0 ...

o 0
o 1

I 1
lSI

I I
1

E

o 0 0 1 1 3
~-i ____________ --L-d _______________________________ 5 __

: J I
IS: " 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

__ ~J~I ______________ ---1 ____________________________________ ~1
7 1 10 18

Figure 3-7 Upper lS-bit Half Word Floating Point Binary Operand Format

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975 3-8 AL39

o 0 000 1 1 3
g 1 --L8.-3. -La ~

a t I I I I
101 0 o 0 o 0 o 01010 o 0 o 0 0 0 o 01 " J
J I -Lt ---1. I

1 7 1 10 18

Figure 3-8 LaMer 18-bit Half Word Floating Point Binary Operand Format

0 0 0 0 0 3
a 1 Z D 51 ~

I 1 I I I
lSI E lSI H I
I I ---1- • I I

1 7 1 27

Figure 3-9 Single Precision Floating Point Binary Operand Format

0 0 o 0 0 7
a 1 Z 8~ Z

I a I I 1
lSI E lSI H I
I I I , I
1 7 1 63

Figure 3-10 Double PreciSion Floating Point Binary Operand Format

The proper operand is selected by the Processor during preparation of the
main store address for the operand. If the data width of the operand is smaller
than the register involved. the operand is high-order or low-order zero fIt led
as necessary.

Overlength Registers

The combined AQ register is used to hold the mantissa of a.1 floating point
binary numbers. The AJ register is said to be overlength with respect to the
operands since it has more bits than are provided by the operands. Operands are
low-order zero filled when loaded and low-order truncated (or rounded, depending
on the in~truction) when stored~ Thus, the result of all floating point
instructions has more bits of precision In the AQ than may be stored.

Users are cautioned that algorithms involving floating point operands may

suffer from propagation of truncation errors unless the algorithms are designed
to hold mantissas in the AQ register as long as possible. It is possible to
retain full AQ preCision of results If they are saved with the Store AQ (STAQ)
and Store lxponent (5TE) instructions but such saved data are not usable as a
floating point operand.

Normalized Numbers

REVIEW DRAFT
SUOJECT TO CHANGE
October, 1975 3-9 Al39

A floating point number is said to be nor~alized if the rela~ion

(0.5 ~ IHI < 1.0)

is satified. The presence of unnormalized numbers in any finIte mantissa
arithmetic can only degrade the accuracy of results. Flr example, in an
arithmetic allowing only two digits in the mantissa. the number 0.005 x 10.·2
has the value zero instead the value one half.

Normalization is a process of shifting the mantissa and adjusting the
exponent until the relation above is satisfied. Normalization may be used to
recover some or all of the extra bits of the overlength AQ register after a
floating point operation.

There are cases where the limits of the registers force t~e use of
unnormallzed numbers. For example. in an arithmetic allo~ing three digits 0'
mantissa and one digit of exponent. the calculation 0.3 x 10·.-10 0.1 x
10··-11 (the normalized case) may not be made. but 0.03 x 10··-9 - 0.001 x
10··-9 = 0.029 x 10··-9 (the unnormallzed case) is a valid result.

Some examples of normalized and unnormalized numbers are'

unnormalized positive binary

Same number normalized

Unnormalized negative binary

'Same number normalized

The minimum normalIzed non-zero floating point binary n~mber Is 2··-128 in
all cases.

Table 3-3 Floating Point Binary Operand Val~es

Operand

Unnormalized range

Lower 18-bit
Half Word

Hinimuml 0(1)
Maximum.

Neg. ---(2)
POSe (2·.9 - 1) x 2··-155

Resolution' 2··-155

Operand

Unnormalized range
Minimuma
Maximuma

72-bit
DoubJe PrecIsion

o

-1.0 x 2··127

Upper 18-bit
Half Hord

o

-1.0 x 2··127
(1 - 2··-9) x 2··127

119(3)

Neg.
POSe

Resolutionl
(1 - 2··-63) x 2··127

11&3

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975 3-10

36-bit
SIngle Precision

o

-1.0 x 2··127
(1 - 2.·-27) x 2··127

1127

Al39

(1) There is no unique representation for the value zero in floating point
binary numbers; any number with mantissa zero has the v3lue zero. However,
the Processor treats a zero mantissa as a special case in order to preserve
precision in later calculations with a zero intermediate resu1t. Whenever
the Processor detects a zero mantissa as the result of a floatin1 bin~ry
operatio~, the AQ register is cleared to zeros and the ~ register is set to
-128. This representation Is known as a floatIng n~rmaJizej zero. The
unnormal ized zero (any zero mantissa) will be ha1dled correctly if
encountered in an operand but precision may be lost. For example, A x
10··-1~ + 0 x 10··S5 will not produce deSired results since all the
precision of A will be lost when it is aligned to match the 10··85 exponent
of the o.

(Z) No Negative maximum is shown for Lower lS-bit Half Word operands Since the
high-order zero fill during operand alignment forces the Sign bit to zero.

(3) A value cannot be given for Resolution in these cases Since such a value
dependS on the value of the exponent, E. The notation used (l:m) indicates
resoJution to 1 bit in a field of m. Thus, the followl~g general state~ent
on resolution may be madel

The resolution of a floating point binary operand with mantissa length m
and exponent value E is 2··(E-.).

DECIHAl DATA

Dect_a' numbers are expressed in one 0' the following formSI

Fixed point, no Sign HHMHMH.

Fixed poInt, leading Sign ±..HHI1 MMH.

Fixed point, trailing slgn

Floating point

The form is specified by control information In the Operand Descriptor for
the operand as used by the Extended InstructIon Set (EI5). (See Section II,
Machine Instructions.)

A decimal number is defined by impOSing any of the character position value
structures belo~ on a 4-blt Character or 9-bit Character l~formatlon unit of
length n characters.

Fixed point. no signa

T

Fixed point, leading signa

(sign=c(O)] c(1)xl0··(n-2) + c(2)x10··(n-3) + ••• + c(Q-1)

REVIEW D~AFT

SUBJECT TO CHANGE
October, 1975 3-11

T

AL39

•

fixed point, trailing signl

cCQ)xl0··(O-2) • c(1)xl0··CO-3) + •••• cCo-l) (slgn=cCQ)]
T

floating polntl

(sign=c(O)] c(1)xl0··(o-3).c(2)xl0··(n-~) •••• +c(n-2) (exponent=8 bits)
T

.. herel

c(~) is the decimal value of the character In the Lth character
position.

"T" indicates the position of the decimal pOint •

(sign=c(L») indicates that c(L) is interpreted as a Sign character.

[exponent=8 bits] indicates that the exponent value is taken from the
.ast 8 bits of the character string. If the data is in 9-bit
Characters, the exponent is bits 1-8 of cCo). If tne data is in ~-bit
Characters, the exponent is the concatenated value of c(n-1) and c(nJ.

The decimal number as described above is the only decimal data item
defined. It may begin on any legal character boundary (without regard to word
boundaries) and has a maximum extent of &3 characters.

The Processor handles decimal data as ~-blt bytes internally. Thus, 9-bit
characters are high-order truncated as they are transferred from main store and
high-order filled as they are transferred to main store. The fill pattern is
MOOll0"b for digit characters and ·00100-b for sign characters. The floating
point exponent is a special case and is tre3ted as a two·s complement binary
integer.

The Processor performs validity checking on decimal dat~. Only the byte
values (0,11) octal are legal in digit positions and only the byte values
(12,17) octal are legal in Sign positions. Detection of an illegal byte value
causes an Illegal Procedure fault. The interpretation of decimal sign
characters is shown In Tabel 3-~ below.

Table 3-~ Decimal Sign Character Interpretation

9-bit It-blt
~C~C kha~ac IoterpretatlQn

52
53(1)

5lt
55(1)
5&
57

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1~75

12 +
13(2) +
14(1) +
15(t)
1& +
17 •

3-12 AL39

(1) This character is used as the default sign
results. The presence of other characters
according to the lnterpreta~ion.

character for storage of
will yield c~rrect results

(2) An optioral control bIt in the Eis Decimal Arithmetic instructions (See
Section II, Machine Instructions) allowS the selection of (13) octal for
the plus sign character for storage of results in ~-bit data mode.

Decimal Data Values

The Operand Descriptors for decimal data operands h~ve a 6-blt two·s
complement binary field for invocation of a Scaling Factor (SF). This Scal ing
Factor has the same effect as the value of E in floating point decimal operands;
a negative value moves the assu~ed decimal point to the left; a positive value,
to the right. The use of the Scaling Factor e~tended the ~ange and resolution
of decimal data operands. The range of the Scaling Factor Ii (-32,31).

Table 3-5 Decimal Data Values

Operand

Arithmetic range
Hinimum.
Haximumi
R~solutlonl

Operand

Arithmetic range
H1nimuma
Maximuml
ResolutIonl

Fixed Point
No Sign

O(1)
'10··6~ - 1) x 10··31

1ISF(2)

9-bit Floating Point

o
~(10··62 - 1) x 10··158

1ISF+E

(1) See Decimal Zero below_

Fi~ej Point
Leading or Trailing Sign

o
~(lO··63 - 1) x 10··31

1ast

4-bjt Floating PoInt

o
~'10··61 - 1) x 10··158

1ISF+E

(2) A value cannot be given for Resolution in these cases since SUCh a value
dependS on the va.ue of the Scaling Factor, SF, and/or the exponent. E.
The notation used (lISF+E) indicates resolution to 1 part In 10·.'SF+E).
Thus, the followIng general statement on resolution may be madel

The resolution of a fixed point decimal operand with Scaling Factor SF
is 10··SF and the resolution of a floatIng point de:lmaJ operand with
Scaling Factor SF and exponent E is 10··(SF+E).

REVIEW DRAFT
SU8JECT TO CHANGE
October, 1975 3-13 AL39

Decimal Zero

As In floating point binary arithmetic. there Is no uniQue representation
of the value zero except in the case of fixed point, no si~n data. Therefore,
the Processor detects a zero result and forces a value of +0. for flxed point,
leading or trailing sign and +0. x 10··127 for floating point data. Again, as
in ftoating binary arithmetic. other representations of the ~alue zero will be
handled correctly except for possible loss of precision during operand
a I ignment.

Alphanymeric Qata

Alphanumeric data is represented in two ~odes; character string and bit
string. The mode is deter.ined by the Processor ac~ordlng tl the function being
performed.

CHARACTER STRING DATA

Character string data is defined by imposing the character pOSition
structure below on a ~-bit. &-bit, or 9-bit Character infor~ation unit of length
D characters.

~'O) II cll) U ••• II ceO-i)

where'

eel) is the character in the ~th character positio~.

II indicates the concatenation operation.

The character string described above is the only character string data item
defIned. It may begin on any legal character boundary (without regard to word
boundaries) and has a maximum extent as shown in Table 3-& below.

Table 3-& Character String Data Length LImits

Character S 11..e len 9th liLUl

C)-bit 104857&

o-bit 15728&4

4-bit 2097152

No interpretation of the characters is made except as specified for the
instruction being executed. 'See Section II, Machine Instru:tions.)

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975 3-14 AL39

BIT STRING DATA

Blt string data Is defined by imposing the bit position structure belo" on
a machine word information unit of length n bIts.

b « 0) Jib (1) 'I I • • • I I b (0-1)

wherel

bll) is the value of the bit in the lth position.

II indicates the. concatenation operation.

The bit string described above is the only bit string data item defined.
It may begin at any bIt position (without regard to character or word
boundaries) and has a maximum extent of q~3718~OOO bits.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1<)75 3-15 AL39

SECTION IV

PROGRAH ACCESSIBLE REGISTERS

A Processor register is a harware assembly that holdS l~forma'ion for use
in some specified way. An accessible register is a registe~ whose contents are
available to the user for his purposes. Some accessible registers are
explicitly referenced by particular instructions, some are i~plicltly referenced
during the course of execytion of instructions, and so~e are used in both wayS.
The accessible registers are listed in the table bel3w. See Section II, Hachine
Instructions, for a discussion of each instruction to determine the way in which
the registers are used.

Table ~-1 Processor Registers

12oemonj,c a1..LLitl.gib

36 Accumulator Register
Quotlent Register
Accumulator-Quotient Register(1)
EKPonent Register
Exponent-Accumulator-Quotient Register(l)
Index Registers
Indicator Register
Base Address Register
Timer RegIster
Ring Alarm Register
Pointer Registers
Procedure Pointer Register
Temporary Pointer Register
Descriptor Segment Base Register
Segment Descriptor Word Associative Memory
Pa1e Table Word Associative Memory
Fault Register
Mode Register
Cache Hode Register
Control Unit (CU) History Register
Operations Unit (OU) Historv Register
Decimal Unit (OU) History Register
Appending Unit (AU) History Re9ister
Configuration Switch Data

Control Unit Data
Decimal unit data

A
Q
AQ
E
EAQ
Xn
lR
BAR
TR
RALR
PRn
PPR
TPR
DSBR,(OBR)
SOWAI'1
PTWAI'1

HR
CHR

36
72

8
80
18
1~

18
27

3
,.2
37
,.2
51
85
51
35
33
28
72
72
72
72
3&

57&
288

Qyant Ux

1
1
1
1
1
8
1
1
1
1
8
1
1
1

16
16

1
1
1

16
16
16
16

5

1
1

(1) These registers are not separate physical assemblIes but are logical
combinations of their constituent registers.

in the descriptions that folJow, the dIagrams given for re1ister formats do
not imply that a physical assembly posseSSing the pictured bit pattern exists.

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1975 4-1 AL39

The diagrdm is a graphic representation of the form of the register data as It
appears 1n main store when the register contents are sto-ed or how data bits
must be a~sembled for loading into the register.

E.m:m..all - 36 bi ts

1 1 o
-D..
s

__________________ --1-~
I

S A-Upper A-lowe'"
I

18

Figure 4-1 Accumulator Register CA) Format

Descriptioo:

A 3& bit physical register located in the Operations Unit.

In fixed point bInary operations, holds operands and results.

3
5

18

In floating point binary operations, holds the most significant part of the
mant issa.

In shifting operations, holds original data and shifted results.

In aCdress preparation, may hold two logica11y indepenjent word offsets,
A-Upper and A-lower, or an extended range bit or character 01fset.

~ma1! - 36 bits

o
-1l.

REV lEW OR ~FT
SUBJECT TO CHANGE
October, 1975

Q-Upper

1 1
1 8

_________ ---1 __________ __
18

Q-lowe"

Figure 4-2 Quotient Register (Q) Format

4-2

16

Al39

Q~$cr,iDt.1onl

A 36 bit physical re~lster located in the Operations Unit.

fJ.LQctlQn'

In fixed point binary operations, holds operands and results.

In floating point binary operations, holds the least significant part of
the mant lssa.

In Shifting operatIons, holds original data and shifted results.

In acaress preparation, may hold t~o logicallv indepen~ent word offsets,
Q-Upper and Q-lower, or an extended range bit or character offset.

format' - 72 bits

o
Q

I .
I

Q e$C;r Ip t lonl

Even Word

3 3
5 6

I
a Odd Word _____________________ ---1 ____________________ _

36

Figure ~-3 Accumulator-Quotient Register (AQ) rormat

7
Z

36

A logical combination of the Accumulator (A) and Q~otient (Q) registers.

Eunc;t1 oD.1

In fixed point binary operations, holds dOUble precision operands and
results.

In floating pOint binary operations, holds the mantissa.

In shifting operations. holds orIgInal data and shifted results.

REVIEW DRI!FT
SUBJECT TO CHANGE
October, 1':175 ~-3 AL39

[m:m.all - 8 bits

o a 0

p ----~---------
3
5

I a
a exponent Ix
L-_____ -L

8

J
x x:

-----)
28

Figure ~-4 Exponent Register (E) Fromat

Cl1tScriotion!.

An 8 bit phvsical register located in the OperatIons Unit. Bits pictured
as "x" are "donat care" bits, that is, are irrelevant to the register or
its use.

fUDction'

In floating point binary operations, holds the exponent.

El~ENT-ACCUHUlATQR-QUQTIENT R~~IER (EAQ)

~1i - 80 bits

000 -l ____________ ~1~8 ____________________________________ ___

I I
I exponent I man t Issa
I I

8

Figure 4-5 Exponent-Accumulator-QuotIent Register (EAQ) Format

OficriDtion!

7
2

6~

A logical combinatIon of the Exponent (E), Accumulator (A), and Quotient
(Q) reglstersa Although the register has a total of 60 bits, only 72 are

Involved In transfers to and from maIn store. The low order 8 bits are
truncated on store and zero filted on 'oad.

Eimction,

In float Ing pOint binary operatIons, holds operands and results.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975 Al39

lHUEK REGISltRS-lXDl

E~na11 - 18 bits each

o
Q

1
_____________ --1-

18

I
I
J

Figure ~-& Index Register (Xn) Format

Qescription:

Eight 18 bit phvsical registers in the Operations Unit numbered 0 throUgh
7. Index Register data may OCCUpy the pOSition of either an Upper or lo~er
18-bit Half Hord operand In a main store machine word.

functIonl

In fixed point binary operations. hold half word operanjs and results.

In acdress preparation. hold word offsets or extended range bit or
.character offsets.

f~1 - 1~ bits

011 1 Z 2 2 2 2 2 2 2 Z 2 3 333
-&0 ______________________________ ~Z_a8_49~O~1 __ 2_~~~2~~ 9 Q 1 Z 5

J :::I::IJIIIIIII I
Ix x x x x x x x x x x x x x x x x x:alb:cld:elflglh:itll~:'lmlnIO 0 0 OJ
, _____________________ ---1 ; I ; I 1 1-1-1-1-l_~J~I~J~;~ ______ ~:

18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4

Figure 4-7 Indicator Register (IR) Format

~~ription!

A logical assemblage of 14 indicator flags from ~arious units of the
Processor. T~e data occupies the pOSition of a Lower 1S-bit Half Word
operand. Bits pictured as -x" are "don·t care- bits a~d are irrelevant to
the register or its use. Bits pictured as "0· are reserved and must have
value O. When interpreted as data, a bit value of 1 corresponds to the ON
state of the indicator, a bit value of 0 corresponds to the OFF state.

REVIEW DRAfT
SUBJECT TO CHANGE
October, 1975 ~-5 AL39

[unctionl

The functions of the individual indicator bits are gjve~ below. An ··x· in
the column headed •• 1.... indicates that the state of the .indicator is 1l~1
affected by instructions that load the IR.

a Zero

b Negat ive

c Carry

d Overflow

e Exponent Overflow

Exponent Underflow

R1:.VIEWORAfT
SUBJECT TO CHANGE
October9 1975

This indicator is set ON Mhenever the output
of the main binary adder conSists entirely of
zero bits for binary or shifting operations
or the output of the deci~al adder consists
o f z e rod i g its f or dec 1 m a I' 0 per a t 1 on s ;
otherwise, it is set OFF.

This indicator is set ON ~henever
of bit 0 of the main bina~y adder
for b.inary or shifting operations
character of the. result of
operation is the ne9ati~e sign
otherwise, it is set OFF.

the output
has value 1
or the sign

a dec lila I
character;

This indicator is set
following conditions;
OFF.

O~ for any of the
otherwise, it is set

(1) If a bit propagates leftward out of bit
o of the main bi~ary adder for any
binary or shifting o)eration.

(Z) If Ivaluell =< Ivalue21 for a decillal
numeric compar-islon)per-atlon.

(3) If chart =< charZ for a decimal
alphanumeric compare operation.

This indicator is set ON if the arithmetiC
range of a register is exceeded In a fixed
point binary operation or if the target
string of a decimal nume~ic operation is too
small to hold the integer part of the result.
It remains ON until reset by the Transfer on
Overflow (TOV) instruction or Is reset by
some other instruction that loads the IR.
The event that sets t~is indicator ON may
also cause an OverfloMi Fa ... t. (See OverfioM
Mask indicator beloM.)

ThiS indicator is set ON if the eKPonent of
the result of a floating point binary or
decimal numeric operatio~ is greater than
+127. It remains ON Jntil reset by the

Transfer on Exponent Overflow (TEO)
instruction or is reset by some other
instruction that loads t~e IR. The event
that sets this injicator)N may also cause an
Overflow Fault. (See Ove""low Mask indicator
beloMi.)

This indicator is set ON if the exponent of
the result of a floating point binary or
decimal numeric operation is less than -128.

It-I) AL3CJ

9 Overflow Mask

h Ta II 'I Runout

i Parity Error

Parity "ask

REV lEW DRAFT
SUBJECT TO CHANGE
October, 1<H5

It remains ON untIl reset by the Transfer on
Exponent Underflow (TEU) instruction or is
reset by some other initructlo~ that loads
the IR. The event that sets this indicator
ON may also cause an lverflow Fault. (See
Overflow MaSK indicator below.)

This indicator is set ON or OFF only by the
instructions that load t~e IR. When set ON.
it inhibits the generation of the fault for
those events that normally cause an Overflo.
Fault. If the Overflo~ Mask indicator Is set
OFF after ocurrence of an Overflo" event, an
Overflow Fault "ill not occur even though the
indicator for that eve~t is still set ON.
The state of the Overflow MaSk indicator does
not affect the setting, testing, or storing
of any other indicator.

This indicator is set OFF at initial ization
of any tallying operation, that Is, any
repeat instruction or any Indirect Then Tally
Address Modification. It is then set ON for
any of the follo~ing conditions:

(1) If a repeat inst~uction t er IIi na tes

(2)

because of tallv exh~ust.

If a Repeat Link
terminates because
address.

(RPl) instruction
of a zero lInk

(3) If a tally exhaust is detected for an
Indirect Then Tally modifier. The
instructIon will be executed whether or
not tally exhaust occurs.

This indicator is set ON whenever the ~ain

store signals Illegal ~ctor with a parity
error code or the Processor detects an
internal parity error condition. The
indicator is set OFF only by instructIons
that load the IR.

This indicator is set ON or OFF only by the
instructions that load the IR. When it is
set ON, it inhibits the generation of the
Parity Fault for all events that set the
Parity Error indicator. If the Parity Mask
indicator is set OFF afte~ the ocurrence of a
Parity Error event. a Parity Fault wi" not
occur even though the Parity Error indicator

may stIli be set ON. The state of the Parity
Mask indicator does not affect the loading,
testing, or storing of anf other indicator.
generated fro~ previouslv set parity error
indicators. The status of the parity mask
indicator does not affect the setting,
testing, or storin~ of the parity error
indicator.

4-7 Al39

k x Not BAR Hode

lit

Truncat ion

Hid Instruction
Interrupt Fault

n x Absolute Hode

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1915

This indicator is set OFF only by executIon
of the Transfer and Set Slave (TSS)
instruction that places t~e Processor in BAR
Mode. It is set ON (takl~g the Processor out
of BAR Hode) by the execution of any transfer
class instruction ~~C ~ ~~ during a
Fa u I t or Int errupt Trap. Howe ver, if the
Fault or Interrupt Trap occurs while in BAR
Hode, and the transfer class instruction Is
Return (RET), Return Control Double (RTCo),
or Restore Control Unit (~CU) ~ bit 28 of
the saved IR data is 0, the Processor witl
remain in BAR Hode.

This indicator is set ON ~henever the target
string of a decimal numeric operation is too
small to hold all the fraction digits of the
result or the target string of an
alphanumeric operation is too small to hold
all the bl ts or characters to be stored.
Also see the Overflow indicator condition for
decimal numeric o~eration~. The event that
sets thiS indicator ON may also cause an
Overflow Fault. (See Overflo~ Mask indicator
above.)

This indicator is set ON ~henever the current
instruction is interrupted Dy an external
event. The indicator has meaning only when
determining the proper restart resquence for
the interrupted instruction. The indicator
is set OFF at normal te~mination of every
instruction. The eve~ts that set this
indicator areS

(1) An Access Violation =ault during Address
Preparation tor any ~perand.

(2) Oet ec t ion 0 f the arr i va I 0 f a Program
Interrupt signa' during execution of
those EIS instructio~s that allow very
long operand strings.

This indicator is set ON only by execution an
absolute (non-appended) transfer class
instruction during a Fault or Interrupt Trap
and is set OFF by an~ execution of an
appended transfer class instruction.
Howe~er, if the Processo~ is not in Absolute
Hode when the Fault or Interrupt occurs and
the transfer class instruction is Return
(RET), Return Control)ouble (RTCO), or

Restore Control Unit (RCU) ~ the
appropriate mode bit 1s p~operly set in the
IR data, the Processor will remain in its
current mode.

AL39

E~ll - 18 bits

o 0 0 1 1 3 -LO __________ ~~ ____________ __Z_~8 ________________________________ 5'_

I I I J
I BASE J BOUND Jx x x x x x x x x x x x x x x x x xl
I 041 _______ --1. J

<j 9 18

Figu~e ~-8 Base Address Register (BAR) For~at

Oficriptioo!

An 18 bit physical registe~ in the Control Unit. The data is pictured 1n
its normal operand position as stored bv the Store Base Add~ess Register
(SBAR) instruction. Bits pictured as ·x" are "don·t ca~e" bits and are
irrelevant to the ~egister or its use.

fynction'

The Base Address Register ~rovides automatic hard.ar! address relocation
and address range Ilmitation .hen the Processor is in B~R Hode.

BAR. BASE

BAR.SOUND

TIMER REGISIER IIR)

E~I - 27 bits

I

o
D

J
.1.-

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1915

Contains the high-order nine bits of an 18-bit add~ess
relocation constant. The low orde~ bIts a~e generated
as zeros.

Contains the un~elocated address limit stated as a
number of 512 word blOCKS. An attempt to access main
store beyond this 'i~lt causes a Store Fault. Out of
Bounds.

2 2 ! -2-l ______________ ~,~
J I

T 1 mer Va I ue Ix x x x x x x x xl _____________ --1--_ r

27 9

Figure ~-9 Timer Register (TR) For.at

4-9 AL39

A 27 bit setable, free running clock in the Cont~ol Unit. The value
decre~ents at a rate of 512 kHz. Its range is 1.q531~5 microseconds to
approxlmately ".37 minutes. Bits pictured as "acll are "don·t care" bits and
are lrre'e~ant to the register and its use.

EUOd.i.Jlol

The TR may be loaded with any convenient value with the privileged Load
Timer (LOT) lnstruction. Wnen the value next passes th-ough zero, a Timer
Runout Fault ~lll be signalled. If the Processor is i~ Normal or BAR Hode
"ith Program Interrupts not inhibited, the Fault will occur immediately.
If the' Processor is in Absolute or Privileged Mode or has Program
Interrupts inhibited. the FauSt "ill be delayed until t~e Processor returns
to uninhibited Normal or BAR Hode.

format. - 3 bits

1

o
Q

3
Z

I

3 3
J ~

I
I~ x
I

x X Ie X X x x2 RAlRt
I

33 3

Figure 4-1D Ring Alarm RegIster (RALRl Format

D.escrlDtlonl

A 3 bit phYSical register in the Appending Unit. The bits pictured as "x"
are "don-t care·· bits and are irrelevant to the register or its use. The
bIts may have meaning "lth regard to other data structu~es.

function.!

If the Effective Ring Number (See TPR.TRR below) is greatel'" than the
contents of RAlR an Access Violation, Ring Alarm, Fa~Jt will occur. The
Muftles supervisor uses this mechanism to assure the proper handl ing of
User Ring events (such as QUITs) tnat occur while executing in the
supervisor.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975 4-1D AL39

f~mall - 42 bits each

Even Word of ITS Pointer Pair

0 o 0 1 1 3
II Z ;} --Ll 5

I I I 1
I RNR I SNR : 0 0 0 0 o 0 o 0 0 o 0 0 x x x x x xl
I I I I

3 15 18

Odd Word of ITS Pointer Pal~

I

o
Q

11122 2222 3 __________ ----1-L3. 0 1 3 L-..fL.L_. ______ .itt.5_

10 D O:nTS.BITNO)J I
I WORDNO :-----------------:0 BOx x x x x xl 1---, ____________________ . _________ ---L_a ; SITND ,~~_ I

18 (3) (6) 9
2 It 3

Figure 4-11 Pointe~ Register (PRn) Fo~.at

Q~cnJ P t i Qn~

Eight logical combinations of physical ~egisters f~om the Appending Unit
and Control Unit numbered Q through 1. PRn.RNR and PRn.SNR are located in
the Appending Unit and PRn.WORONO, PRn.CHAR, and PRn.BITNO are located in
the Oecimal Unit. Sits pictu~ed as "x Ol are "don-t care" bits and a~e
l~~elevant to the re~ister and Its use. Bits pictured as "0" are reserved
and must have value O. The format above ShOMS the data frOM the regIster
"hen sto~ed in'ITS POinter Pair format. The MX

M bits g~ have meaning In
the ITS Pointe~ Pair format. Certain of the register data may also be
storea in Packed Pointer format.

The reader·s attention Is directed to the double definition of bits 21-26
of the Odd Word and to the Note under the discussion of PRn.CHAR.

[ynction l

The Pointer Registers hold Info~matlon relative to the location in main
store of "external" data items, that Is, data items external to the seg'1lent

containIng the procedure being executed. The functions of the individual
constituent registers arel

PRn.RNR

RE.V!EW DRAFT
SUBJECT TO CHANGE
October" 1q75

The Ring ~umber Register contains t~e maximJm privilege
level (smdllest ring number) that "nav be assigned to a
process attempting to access the data item described by
the Pointer ~e1Ister. For example, if PRn.~NR is

4-11 AL39

PRn.SNR

PRn.WORDNO

a PRn.CHAR

greate" (less privileged) than the current val idation
level of the process (as contained in PPR.PR~ described
below) then the Effective Ring Numb~r for the access is
PRn.RN~. The value of PRn.RNR is determined from
directory entry information for the segment when the
pointer data is constructed.

The Segment NumDer Register contains the segment number
of the segment containing the data item described by
the Pointer Register. The segment ~umber is determined
when the Segment Descriptor Word (SOW) is constru:ted
from directory entry information fo~ the segment.

T~e Word Number register contains t,e offset In machine
wordS from the base or origin of t,e segment to the
data item. Tne value is determi~ed when the pointer
data is constructed from the data item description In
the procedur-e.

The Character register contains the number of the 9-blt
character within the machine word at PRn.WORONO
containin~ the data item. The value is determined when
the pointer data is constructed fr-om the data item
description in the procedure. Wlrd boundary aligned
data items wi" aJways have the value O. Unaligned
data items may have any value.

NOTE: The reader·s attention is directed to the double
definition of bits 18-2& of the Odj Word in the format
above. Because the MuJtics Process)r was impelemented
as an enhancement to an exisi~g designy certain
apparent anomolies appear. One of these is the
difference in the hand.ing of una.igned data items by
the Appending unit and Decimal Unit. The preexlsting
Decimal Unit hand'es al' unaligned data items with a
~-blt character number plus bit offset with conversion
from the description given i~ the EIS Operand
Descriptor done automatically by the hardware. The
Appending Unit maintains compatibility with the earlier
generation HuJtics Processor oy ha~dling all unaligned
data items with a bit offset frlm the prior word
boundary; again with any necess3ry conversion done
automatically by the hardware. Thusy a POinter
Register may be loaded from an ITS POinter Pair having
a pure bit offset and modified bv one of the EIS
Address Register instructions CA~BJ, S9SD, etc.) USing
character displacement counts. When the results of
such a modification are stored as an ITS Pointer Pair
~ith SPRIO (or as a Packed Pointer with SPRPO), the
BITNO fie1d as indicated in the upper line of the
format (bits 21-26) will contain 3 pure bit count.
When the results are stored as an Address Register with,

SARa the CHAR and BITNO fields as indicated in the
lo)\er line of the fomat (bits 18-23) will contain the
character number plus bit offset.

WARNINGS The Decimal Unit has builtin h3rdware checks for
illegal Dit offset values but the Appendin3 Unit does
not except fo~ a single case for pa:ked pointers. See
NOTES for load Packed Pointers (l;>RPO) in Section II y
Machine Instuctions.

REVIEW DRAFT
SUBJECT to CHANGE
Octobery 1975 '+-12 Al39

PRn.SITNO The Bit Number register contains th~ number of the bit
within PRn.CHAR of the word at P~n.WO~ONO containing
the data item. The value is determined when the
pointer data is constructed f~om the data item
description in the procedure. ~ord and character
boundary aligned data items Mill always have the value
O. Unaligned data items may have any value in the
range (0.10) octal. See NOTE under PRn.CHAR above.

f.R.Q.k.EllU&LfQ I NIE R REG 1.S.1E.&-ifeRl

E~l1 - 37 bits

Word 0 of Control Unit Data

0 o 0 1 1 1 3
II g Q 7 8 ~ 2

J J J J J
I PRR I PSR ZP he x x x x)(x)()(K X X X X X X x I
I J I • I ---L--L-

3 15 1 17

Word ~ of Control Unit Data

o 1 1 3
-'L- 18 2
a J I
I IC Ix x x x x x)(x x x)(x x x x x x xl AI ________________________________ ---1 I

18 18

Figure ~-12 Procedure Pointer Register (PPR) Format

1l..sc;riDtlon!

A logical combination of physical registers from the Appending Unit and the
Control Unit. PPR.PRR. PPR.PSR, and PPR.P are located In the Appending
Unit and PRR.IC Is located in the Control Unit. The data is pictured as it
appeers in main store in Words 0 and ~ of Control Unit Jata. Bits pictured
as "x" are "don-t care" bits and are irrelevant to the ~egister or its use.
The bits ~ have meaning wIth regard to Control Unit Data. (See Control
Unit Data beloM.)

(unction.!

The Procedur~ Pointer Register holds information relative to the location
in mdin store of the procedure segment in e~ecution and the location of the
current instruction within that segment. The functions of the indivi1ua'
constituent registers are:

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975 4-13 AL39

PPR.PRR

PPR.PSR

PPR.P

PPR.IC

RE.VIEW OR~FT
SUBJECT TO CHANGE
October, 1975

The erocedure ~ing RegIster contains the number of the
ring (validation level. in ~hlch tne process is
executing. It is set to the Effective ~inq Number of
the procedure segment when contr31 is transferred to
the procedure.

The erocedure Segment Register contains the segment
number of the procedure being executed. Its value
changes every time control is tra~sferred to a new
procedure.

The frivlleged bit register is a flag controlling
execution of privIleged instructions. Its value is
"l"b (permitting privileged instructions) Is PPR.PR~ is
o 3nd the privileged bit in the Seg~ent Descriptor ~ord

(SOW.P) for the procedure is "1"b. Its value is "ONb
if SOW.P is 0 or PPR.PRR is greate- than o. Its v~lu~
is set every time a new procedure is entered.

The Instruction kounter register contains the ~o~d

offset from the origin of the procedure segment to the
current instruction.

AL39

Eormata - 42 bits

Word 2 of Control Unit Data

0 o 0 1 1 3
D D 0 -Ll S

I I & I
1 TRR I TSR Ix x x x x x x x x X IC X X X X X X x I
I I I I

3 15 18

Word 3 of Control Unit Oata

o 2 3 3
Q _~9~Q~ ________ 5,-

J I I
Ix X IC xl TBR I
I 41 ____________ ~1

30 &

Word 5 of Control Unit Oat a

0' 1 1 3
~Q _________________________________ --Z-~8 ___________________________________ 5,-

I I I
1
I

CA Ix x x x x x x x x x x x x x x x x xl ______ --a.
t
_______ ;

18 18

Figure 4-13 Temporary Pointer Reglster (TPR) ~ormat

A logical combination of phYSical re3isters from the Ap)ending Unit and the
Control Unit. TPR.TRR. TPR.TSR, and TPR.TBR are locatej in the Appending
Unit and TPR.CA is located in the Control Unit. The data is pictured as it
appears in main store in Words 2, 3, and 5 of Cont~oJ unit Data. Bits
pictured as "x'· are "don·t care" bits and are irrelevant to the register or
its use. The bits ~~ have meaning with regard to Contr)1 Unit Data. (See
Control Unit Data below.)

The Temporary POinter Register holds information relative to the location
in main store of indirect words and pointers (during address preparation)
and operands (during instruction execution). At the completion of address
preparation, the contents of the TPR is presented to the Appending Unit
Associative Memory Assemblies for translation into tne final 2~-bit main
store address. The functions of the individual constit~ent registers ~re:

REVIEW DRAFT
SUBJECT TO CHANGE
October t 1975 ~L39

fPR.TRR

TPR.TSR

TPR.TBR

TPR.CA

The temporary &ing Register contains the Effective ~ing
Number for the data access. If the access is to the
procedure segment, TPR.TRR is set to PPR.PRK; if the
access invokes a Pointer Registe~, TPR.TRR is set to
the larger of PRn.RNR and PPR.PRR.

The Ie~pora~y Segment &egiste~ contains the segment
number of the segment to be accesse~.

The lemDora~y ait Register holds t~e bit offset for
indirect wo~ds or pointers (during ~ddress preparation)
or operands (during instruction execution). Its value
is calculdted during add~ess preparation from the
contents of PRn.CHAR and PR~.3ITNO and other
informatlon provided by the Address Modification
specified for the instruction. See PRn.CHAR and
PRn.BIrNO above for further detail.

The ~omputed Address register contains the word offset
01 indirect words or pointers (during adddress
preparation) or operands (dJring instruction
execution).

QESCRIPTOR ~~HI-aASE REGISTER 1US3R.DBR)

formata - 51 blts

Even Word of V-pair

0 2 2 3
II ;5 !t.- ~

I I
I ADDR 10 0 0 o 0 0 0 000 0 01
I

L-___
I

24 12

Odd Word of V-pair

0 0 1 1 1 1 2 2 2 3
-lL1 ft-2. ___ L~--1_L-. ~
1. I : I 1 I 1
101 BND : 0 0 0 OlUl0 0 0 01 STACK I
I I I

, I I -------- I

1 1ft 4 1 4 12

Figure 4-14 Descriptor Segment Base Register (OSBR,J8R) Format

A lo~ical combination of various Appending Unit registers. The data is
pictured in the format expected by the load Oescriotor3ase Register (l08~)

and Store Descriptor Base Register (SOOR) instructions. Bits pictured as

REVIEW DRAFT
SUOJECT TO CHANGE
October, 1975 4-1& AL39

·0· are reserved and must have the value O.

[ynctloo.1

The Descriptor Segment Base Re]ister contains information concerning the
Descriptor Segment for a process. The Descriptor Segment holds the Seg~ent
Descriptor Hords (SOWs) for all segments accesslbl e bv the process. The
functions of its individual constituent registers arel

OSBR.BND

OSBR.U

OSBR.STACK

REVIEW DRAfT
SUB~ECT TO CHANGE
October. 1975

The interpretation of the AllllRress "egister dependS on
the value of OSBR.U.

E~~ DSBR.ADOR coo~

u=o The 2~-bit main store address of the Page Table
for the Descriptor Segment.

U=l The 2~-bit main store address of the Descriptor
Segment.

The aou~ register contains 14 most significant bits of
~he highest 10 word block of the Descriptor Seg~ent
that can be addressed wIthout causing an Access
Violation.

The U register Is a flag specifying whether the
descriptor segment is unpaged (U = 1) or paged (U = 0).

The SI~ register contains the upper 12 bits of the
15-bit stack base segment numbe~. It is used on1v
during the eKecution of the CALL6 instruction. (The
Segment Number of the Stack Se~ment for a running
process is given bv 8 • OSBR.STACK • PPR.PRR.)

1t-17

Ettm.a.1.!. - 85 bi ts each

Even Word of V-pairs as stored by Store Segment Descriptor Registers (SSD~)

o 222223333 _1 ____________________ ,________ __ _______ 3_~_2_l __ _3_~Z_3 5

J I J I I I
J ADD R I R 1 I ~ 2 I R3 10 0 0 I
~J __ ~I ___ __1_____1_ ; I

2~ 3 3 3 3

Odd Word of Y-palrs as stored by Store Segment Descriptor Registers (SSDR)

3 3 555 555 555
6 7 __________ ~_'-1-~_L5~6_7~8~ ________ _

7
1

11 1111:111
JO~ BOUND JRJEIW:PJUIG1CI Cl
~1~J~ ____________________________ ~I~l : I I I ; I

1 14 1 1 1 1 1 1 1 11+

Da~a as stored by Store Segment Descriptor POinters (SSOP)

It 1 1 222 3 3 3
D !t ~ ~4 1 Z ~

I J 1 I I I
t POINTER ao 0 o 0 0 0 0 o 0 0 a OIFIO 0 0 01 USE I
; J J . I I ,

15 12 1 4 ,.

Figure 4-15 Segment DescrIptor Word Associative Memory (SOWAM) Format

IlncriDtlop=

Sixteen logIcal combinations of registers and flags from the Appending unit
comprising the Segment Descriptor Word Associative Mem~ry Assembly. The
registers are numbered from 0 through 15 but are not directlv addressable
by number. 81ts pictured as "D· are reserved and must ~ave the value D.

Hard~are segmentation in the Hultics Processor is implemented by the
Appending Unit (See Section V, Address -- Segmentation and Paging for
details). In order to per~lt addreSSing by Segment Num~er and offset as
prepared in the Temporarv Pointer Register (described above), a table
containiny the location and status of each accessible segment must be kept.
This table is the Descriptor Segment and is uni~ue to the pr,cess. The
Descriptor Segment for a running process is located by information held in
the Descriptor Segment Base ~egister (OSBR) described a~ove.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975 4-16 Al39

Every time an Effective Segment Number (TPR.TSR) is preoared, it is used as
an indeK into the Descriptor Segment to retrieve the Segment Descriptor
Word (SmO for the tdrjet segment. To reduce the 'lumber of main store
references reQuired for segment addressing, the SOWAH provides a content
addressable store to hold the sixteen most recently referenced SOWs.

Whenever a reference to the SOW for a segment is reQJired, the EffectIve
Segment Number (TPR.TSR) is matched associatively against all 16
SOWAH.POINTER registers (described below). If the SOWAH match logiC
circuitry indicates a Mh!t·, all usage counts (SDWAH.US~) greater than the
usage count of the "hit· register are decremented bV one, the usage count
of the "hit" register is set to 15, and the contents of the "hit· register
are read out into the address preparation circuitry as necesary. If the
SOWAH match logic does not indicate a "hit", the SOW is fetched from .aln
store and loaded int~ the SDWAM register with usage cou~t 0 (the "oldest"),
all usage counts are decremented by one with the n!~ly loaded register
rolling over from 0 to 15t and the newly loaded registe~ is read out into
the address preparat Ion c ircu! try as necessary. Faul ted SOWs are loaded
into the SOWAH.

The functions of the constituent registers and flags of each SOWAH register
area

SDWAf1.AODR

SOWAH.R1

SOWAH.R2

SDWAH.RJ

SOWAH.BOUND

SOWAH.R

SOWA H.E

SDWAH.W

SDWAH.P

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

The Interpretation of the ~&ress ~egister depends on
the value of SDWAH.U.

u=o The 24-bit maIn store address ~f the Page Table
for the target segment.

U=1 The 24-bit ~ain store address of the target
segment.

Upper limit of read/write Ring Bra=ket. (See Section
VIII. Hardware Ring Implementatlon)

Upper limit of read/execute Ring Bracket. (See Section
VIII, Hardware Ring Implementation)

Upper limit of call Ring Bracket. (See Section VIII,
Hardware Ring Implementation)

The upper limit of segment addresses stated as a nu~ber
of 16 word blocks. A seg~ent add~ess (TPR.CA) wlth a
block address larger than this, value will cause an
Access Violation, Out of Segment Bo~nds, Fault.

&ead permiss ion bi t. If this bi t is set ON, read
access reQuests may be honored.

Execute permission bit. If this bit is set ON, the SOW
may be loaded into the Procedure POinter Re~ister (PPR)
and control transfered to the segment for exectulon.

~rite permission bit. If this bit Is set ON, write
access reQuests may be honored.

erivileged flag bit. If this bit is set ON, privileged
instructions from the segment m3Y be e~ec~ted if
PPR.Pi~~ is O.

4LJ9

SOWAM.U

SOWAH. G

SOWAH.C

SOWAH.CL

SOWAM.POINTER

SOWAtt.F

SOWAM.USE

REVIEW DRAFT
SUBJECT TO CHANGE
October. lq75

[.un~liJln

~npaged flag bit. If this bit is set ON, the segment
is unpaged and SOWAH.AODR is t~e 2~-blt main store
address of the base of the segment. If thIs bit is set
OFF, the segment is paged and ~OWAM.AOaR is the 2~-bit

address the array of Page TabJe Words (pnofs) for the
segment.

~ate control bit. If this bit is set ON, calls into
the segment must be to an offset no greater than the
value of SOWAH.CL as described beloN.

~ache control bit. If this bit is set ON, data from
the segment may be p'aced in the cache store.

~all ~imiter value. If the segment is gated (SaWAH.G
set ON), transfers of control into the segment must be
to segment addresses no greater tha~ this value.

The Effective Segment Number used to fetch this SOW
from main store.

full/empty bit. If this bit is set ON, the SOW in the
register is valid. If this oit is set OFF, a ""hit- is
not possible. All SOWAH.F bits are set OFF by the
instructiorys that clear the SO WAH.

USagE count for the register. The SOWAH.USE fIeld is
used to maintain a strict FIFO Queue order among the
SOWs. When an SOW is matched its USE value is set to
15 ("newest") and the Queue is relrdered. SOWs newly
fetched from main store replace the SOW with USE value
o (-oldest") and the Queue is reordered. SOWAH.USE is
set the internal (and invisible) SO~AH register nu~ber

by instructions that clear the SOWA~.

It-2 a AL39

f.m::ull - 51 bi ts each

Data as stored by Store Page Table Registers (SPTR)

0 1 1 Z Z 3 3
.J1 ---La 1 3 Q 2
I I I J I
I AOOR 10 0 o 0 o 0 0 0 o 0 D:HIO 000 0 01
L- ---1. -----, I I

18 11 1 6

Data as stored bv Store Page Table Pointers (SPTP)

0 1 1 2 2 ~ 3 3 3
.J1 !t 2 -LL1 1 Z 2

J I t I
I POINTER I PAGENO tFIO o 0 OJ USE 1
1 I --L1_ I J

15 12 1 ,. It

Figure 4-16 Page Table Word AssociatIve Memory (PT~AH) Format

Ilescriotlonl

Sixteen logical combinations of registers and flags from the AppendIng Unit
comprising the Page Table Word Associative Memory Asse~bly. The registers
are "umbered from 0 throu1h 15 but are not directly add~essable by number.
Bits pictured a~ "0" are reserved and must have the val~e o.

EUDctlQn'

Hard~are paging In the Mu'tics Processor Is implemented by the AppendIng
Unit (See Section V. Address -- Segmentation and Paging for details). In
order to permit segment addressing Dy Page Number and page offset as
derived from the Effective Address prepared in the Temporary' Pointer
Register (TPR.CA described above). a table contaIning the loc~tlon and
status of each page of an accessible segment must be ke~t. This table is
the Page Table Word Array (PTWA) for the segment that is located in the
System Segment table (SST) (a supervisory ring 0 data b~se) and is sharable
by all processes. The PTWA for an accessible paged seg~ent is located by
information heJd in the Segment Descriptor Word (SOW) for the segment.

Everv time an Effective Address (TPR.CA) for a paged segment is prepared,
it is separated into a Page Number and a page offset. The Page Number is
used as an index into the Page Table Word Array to retrieve the Page Table
Word (PTW) for the target oage. To reduce the num3er of main store
references reQuired for paging, the PTWAM provides a content addressable
store to hoi d the sixteen most recently referenced PTWs.

Whenever a reference to the PTW for a page of a paged segment is reQuired,
the Page Number (as derived from TPR.CA) is matched associatively against
all 10 PTWA:1.PAC;E~J\) registers (described below) a1d, simultaneovsly,

REVIEW OR~FT
SUBJECT TO CHANGE
OctOber, 1975 it-Zl AL39

TPR.TSR is matched against PTWAH.POINTER (described below). If the PTWAH
match logic circuitry indicates a "hit", al I usage counts (PTWAH.USE)
greater than the usage count of the "hit· register are decremented by one,
the usage count of the "hit" register is set to 15, and tne contents of the
"hit" register are read out into the address prepar~tion circuitry as
necesary. If the PTWAM match logic does not indicate a "hit", the PTW is
fetched from main store and loaded into the PTWAH ~egister with usage count
o (the ·oldest"), all usage counts are decremented by one with the newly
loaded register rolling over from 0 to 15, and the newly loaded register is
read out into the address preparation circuitry as neceisary. Faulted FTWs
are not loaded into the PTWAM.

The functions of the constituent registers and flags of each PTWAH register
are.

~51i..S.1.e1:

PTWAH.AOOR

PTMAH."

PTWAM.POINTER

PTWAH.PAGENO

PTWAM. F

PTWAH.USE

REVIEW OR~FT

SUBJECT TO CHANGE
October, 1975

The AUl&ess register holds the 18 m~st significant bits
of the 24-blt main store address of the page. The
hardware ignores low order bits of the page address
accord~ng to page size based on the fol lowing •••

Page Size
In words

6ft
128
25&
512

102't
2048
ft09&

ADOR 31ts
ignored

none
17

16-17
15-17
14-17
13-17
12-17

Page Hodlfied flag bit. This bit is set ON whenever
the PTW is used for a store type initruction. When the
bit changes value from 0 to 1, a special extra cycle is
generated to write it back into the PTW in the PTWA.

The Effective Segment Number used to fetch thiS PTN
from mai n st ore.

The 12 mos t significant bi ts
Address (TPR.CA) used to
store. low order bits are
hardware and not used as
according to page size

Page Size
in words

64
128
256
512

102'+

2048
'+096

based

of the 18-bit £1 feet i ve
fetch this PTW from main

forced to zero by the
oart of the

on the following

PAGENJ bits
for=ed

nO/"le

11
10-11
09-11
08-11

07-11
06-11

PTWA in oex

[ull/empty bit. If this bit is set ON, the PTW In the
register is valid. If this bit is set OFF, a "tlit" Is
not possiole. All PTWAM.F otts are set OFF by the
instructions that clear the PTWAH.

u.s.ag£ count for the reJister. The :lTWAM.USE field Is
used to ~aintain a strict FIFO QJeue oraer among the

't-22 Al39

PTWs. Hhe~ an PTW is matched its UiE value Is set to
15 '''newest··t and the Queue is ,.eordered. PTws ne"d y
fetched f,.om main store replace the PT~ wit~ UiE value
o ("oldest"t and the Queue is ,.eorjered. PTWAM.USE is
set the internal (and invisible) PT"AH reg ister numbe"
by inst,.uctions that clear the PTWA~.

EQrmat: - 35 bits

Data as stored by Store Central Processor Register (SCPR), TAG = 01,
instruction

0 0 o 0 0 0 o 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 333
-1LJ.--Z.J_L2-~-.a.-3. Q 1 Z ;5 !t 2 2 3 D ;5 L-_L.!l 1 Z ;5 !t ~
a I I I I I I I I I I I 1 1 1 J J I I I I I I I I
lalblcldlelflglhlilJ Ikl11mlnlol01 IAA lAB I lAC I lAO Iplolrlsl
LLLL1--L.l I I I I I J I I • J I I . I I I • I • -.1._ I

1 111 1 1 111 1 .1 1 1 111 It It It It 1 111

Figure 1t-17 Fault Register Format

Q.escrlpt ionl

A logical coabination of flags and registers all located in the Control
Unit. The registe,. is stored A~~ k'eared by the SC~R (tag 01) com~and.
Note that the data is stored into the l121:J1 lL.a.lt:. at locat ion Y and that the
contents of Y+l are cleare2. The Fault Register cannot be loaded.

fynctlQnl

The Fault Register contains the conditions in the Processor for several of
the hardware faults. Oata is s~robed into the Fault Register during a
fault sequence. Once a bit or field in the fault Register has been set, it
remains set until the register is cleared. The data wil' not be
overwritten during subsequent fault events.

The reader·s attention is directed to another aDPare~t anomoly in the
deSign of the MuJtics Processor as an enhancement to an existing design.
It will be noted that the Fault Register recorgs events from only ports A
through O. These four ports are the limit of c~nnectability of the

existing deSign and, since all eight ports are reported in Control Unit
Data (described below), no change "as made in the FaJlt Register for the
added ports. Data reported for ports A through 0 are valid in both
I ocat ions.

The functions of the constituent flags and registers arel

REVIEW DRAfT
SUBJECT TO CHANGE
October. 1975 4-23 AL39

g~ ~glster

a ILL OP

b ILL HO~

c ILL SUI

dILL PROC

e HE'"

f OOB

g WRT INH

h PROC PARU

i PROC PARL

SCaN A

k SCON B

SCON C

m SCON 0

n OA ERR1

o OA ERRZ

IAA

lAB

lAC

lAO

p CPAR DIR

q CPAR STR

r CPAR IA

s CPAR BlK

REVIEW DRAFT
SUBJECT TO CHANGE
Oc tober. 1975

An Illegal operation code has been ~etected.

An illegal Address Modifier has bee~ detected.

An illegal BAR Mode procedure has been encountered.

An illegal procedure other than 3AR Hode has been
encountered.

A nonexistant main store address has been requested.

A BAR Mode ooundary violation has occured.

An illega' decimal digit has bee, detected by the
Decimal Unit. (Flag name 1s obsolete)

A parity error has been detected In the upper 3& bits
of data.

A parity error has dtected in the lower 36 bits of
data.

A SCONNECT Signal has been received through ~ort A.

A SCONNECT signal has been received through port B.

A SCONNECT signal has been received through port C.

A SCONNECT signa' has been received through port O.

CPU/SCU interface sequence error 1 has been detected.
(SDATA-AVAIL received with no prIor SINTERRUPT sent.)

CPU/SCU interface sequence error 2 ~as been detected.
(Multiple SDATA-AVAIL received or 'DATA-AVAIL received
out of order.)

Coded Illegal Action, Port A. (See Table ~-2 below)

Coded Illegal Action, Port B. (See Table ~-2 below)

Coded Illegal ActIon, Port C. (See Table 4-2 below)

Coded Illegal Action, Port O. (See Table ~-2 below)

A parity error has been detected In the cache store
directory.

A data parity error has been detected in the cache
store.

An Illegal Action has been received from an SCU du~in9

a store operation.

A cache parity error has occured du~ing a cache store
data block load.

~L39

Tabl e 4-2 System Controller Illegal Act ion C~des

Processor
CJuk P[:lgI:11~ Ullll. &u:i.QO

00 No i I I ega I action
01 CHO Unassigned
02 5 STR None~istent address
03 1 CHO Stop on condition

04 CHO Unassigned
05 12 PAR Oata parity, store to S:U
06 11 PAR Oata parity in store
07 10 PAR Oata parity in store and store to SCU

10 4 CH!) Not control
11 13 CHD Port not enaoled
12 3 CMO tHega I command
13 7 STR Store not ready

14 2 PA~ ZAC parlty. CPU to SCU
15 6 PAR Data pari tv, CPU to SCU
16 8 PAR ZAC pari t y, SCU to store
17 9 PAR Data parity. SCU to store

MODE REGISIU

Eo[:matl - 33 bits

Even word of V-pair as stored by Store Central Processor ~egister (SCPR), TAG
= 06. instruction

011 1 1 1 122 2 2 2 2 222 2 333 333
Q 4 5 £p 7 8 9 Q 1 2 3 U-LLa 9 Q 1 2 3 It 5

J 1 J I : a P co a E : It: I 2 1 1
I FFV JOlalb:-------------------:iJJlkll:mIO Oint
£1 ____________________ • ___________ 1-1 ; Scld;e"; 9 1 h ~_1-1-l-.;-4J __ ~t~;

15 1 1 1 10 1 1 1 1 1 2 1
1 111 2 2 2

Figure 4-18 Hode Register (HR) Format

Ofikriotion!

A 109 I ca I asse mb I age of flags and reg i sters from the Contro 1 Uni t. The

Hode RegIster and the Cache Hode Register are both stored into the V-oair
bv the SCPR, TAG = 06, instruction. The Mode Re~iste~ is loaded with the
Load Central Processor Register (Lcpro, Tag = 04 instruction. Bits
pictured as "0" are reserved and must have the value o.

The function~ of the constituent flags and registers are:

REVIEW DRAFT
SUBJECT TO CHANGE
Oc t ober. 1975 4-25

FFV

a OC TRAP

b AOR TRAP

OPCODE

REVIEW DRAFT
SUaJECT TO CHANGE
October, 1975

A -floatIng fault vector- address. The 15 most
significant bits of the Y-blockS ~ddress of four word
pairs constituting a "floating fault vector". Traps to
these floating faults are senerated by othe~ condItions
setable by the mode registe~.

Trap on OPCODE match. If this bit is set ON ang OPCOOE
matches the operation code of the instruction for which
an address is being prepared (including indi~ect

cycles), generate the secor)d floating fault (XED
FFV+Z). (See NOTE below)

Trap on ADDRESS match. If this bit is set ON ang the
Computed Address (TPR.CA) matche~ the setting of the
Address Switches on the Processor Haintenence pane',
generate the fourth floating fault (XED FFV+6). (See
NOTE below)

The operation code on which to trap If OC TRAP (bit 16,
key a) is set ON or for which to strobe all CU cycles
into the CU History ~egisters if O.C,t (bit 29, key))
is set ON

Processor conditions codes as follows if OC TRAP (bit
16, key a) and O.cst (bit 29, key J) are set OFF and t
VOLTAGE (bit 32, key m) is set ON.

ts.n ConditUD
c Set Control Unit Overlap Inhibit if set ON. The

Control Unit shall wait for the operations Unit to
complete execution of the ever) instruction of the
current instruction pair before it begins address
preparation for the associated odd instructIon.
The Contro I Uni t shal J al s:) wai t for the
Operations Unit to complete execution of the odd
instruction before it fetches the next instruction
pair.

d Set Store Overlap Inhibit if S!t ON. The Control
Unit shaJ I \IOIait for completion of a current main
store fetch (re3d cvcles only) before reQuesting a
m~in store access for another fetch.

e Set Store Incorrect Data Parltf if set ON. The
Control Unit shall cause inco~rect data pari tv to
be sent to the SCU for the next data store
instruction and then Sh~JJ reset bit ZD.

Set Store Incorrect lAC Parltv if Set ON. The

Control Unit shall cause
Zone-Address-Command (ZAC) parity to
tne SCU for eacn main store cy:le of
store instruction anj shall reset
end of the instruction.

incorrect
be sent to

the next data
bit 21 at the

9 Set Timing Margins if set ON. If t VOLT (bit 32,
key m) is set ON and the Hargin Control switch on
the Processor Maintenance panel is in PROG
position, set Processor timing margins as follows.

AL39

1

... J o.cst

k STROBE t

FAULT RESET

m t VOLT

n HR ENABLE

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

mar:g.iQ
normal

slow
normal

t ast

h Set +5 Voltage MargIns if set IN. If t VOll (bit
32, key m) is set ON and the H3rgin Control switch
on the Processor Maintenance ~anel is in the PROG
pOSition, set +5 voltage ~argi~s as follows.

Uc.9.i1l
norma I

low
high

norma I

Trap on Contro. unit History Register count overflow if
set ON. If this bit and STROBE ¢ (3it 30, key k) are
set ON and the Control Unit Hist~ry Register counter
overflows, generate the third floating fault (XED
FFV+It). Further, if FAULT RESET (bit 31, key I) is
set, reset STROBE t (bit 30, kef k), lOCKing the
history registers. An LCPR, TA; : Olt, instruction
setting bit 28 ON will reset the Control Unit History
Register counter to zero. (See NOTE below)

Strobe Control Unit History Registers on OPCODE match •
If this bit and STROBE t (bit 30, key k) are set ON and
the operation code of the current instruction matches
OPCOOE, strbbe the Control Unit History Registers on
all Control Unit cycles (including indirect cycles).

Enable history registers. If this Dit is set ON, all
history registers are strobp.d at 8DPropriate points in
the various Processor cycles. It t~is bit is set OFF
or MR ENABLE (bit 35, key n) is set OFF, all history
registers are locked. This bit is set OFF with an
LePR. TAG = Olt, instruction providing a ·zero" bit, by
an Op Not Complete Fault, and, ~ondltional Iy, by other
faults (See FAULT RESET (bit 31, key I) below). Once
set OFF, this bit must be set ON with an LCPR, TAG =
Olt, instruction providing a "one" bit before the
history registers again become active.

Historv register lock control. 11 this bit is set ON,
set STROBE t (bit 30, key k) OFF, locking the higtory
registers, for all faults inclujlng the floating
faults. (See NOTE belo")

Test mode indicator. ThIs bit is set ON whenever the
Test/Normal switch on the Processor Maintenance panel
is in Test pOSition and is set OFF otherwise. It serves
to enable the program control of \loltage and Timing
Margins.

Enable mode register. When this bIt
other bits and controls of the
active. When this bit is set OFF,
controls are disabled.

It-27

Is set ON, all
mode register are

the mode register

AL39

NOTEI The traps described above (Address match, OPCOOE match. Control Unit
History Register counter overflow) occur after c~~pletion·of the next
~g~ lo~u~ii~n follow1n1 their detection. They a-e handled as Group
VII faults in regard to servicing and inhibition. T~e complete Group
VII priority seQuence is •••

1 - con
2 - tro
3 - sdf
.. - OPCOOE trap
5 - Control Unit History Register counte- overflow
o - Address match trap
7 - External interrupts

[ormat: - 28 bits

Odd word of V-pair as stored by Store Central Processor Register (SCPR), TAG
= Do, instruction

355 555 5 5 5 5 5 0 6 06& 677
6 U-1_~4 5 Q ~~l-1_~~ _________ 49~O-a1_

, 11"11111111 I J I
I CACHE OIR ADDRESS lalbJOlcldle:fIOJglh:il) :0 0 0 0 0 0: k I
~1 ____________________ . ____________ ~J __ l-1-l I I : 1-1-1-1-1---1 'J

1 15 1 1 1 1 1 1 1 1 1 1 1 2 6 2 -
Figure 4-1q Cache Hode Register (CHR) Format

Description:

A logical assemblage of flags and registers from the control
Hode Register and Cache Mode Register are Doth stored i~to the
the SCPR, TAG = 00, instruction.

unit.
Y-pair

The
by

The Cache Hode Register data stored is address depenjent. The algorithm
used to map main store into the cache store (See Sectio~ XX, Cache Store)
is effective for the SCPR instruction. In general, t~e user may read out
data from the directory entry for any cache block by p~oper selection of
certain subfields of the final 24-bit main store address. In particular,
the user may read out the directory entry for the cache block involved in a
suspected cache error Dy assuring that the reQuired 24-bit final add~ess

suDfields are the same as those for the access which produced the suspected
error.

WARNING: The user is warned that the fauJt handling proc~dure(s) should be
unencacnable (SOW.C = 0) and that the History Registers and c~che
should be disabled as Quickly as Possible in order that vital
infomation concerning the suspected error not be Ilst.

The Cache Mode Register is loaded with the Load Central Procesor ~e9ister
(LCPR), TAG = 02, instruction. Those items with an "x" in the column
headed L are Il2.1 loaded with the LCPR instruction. Bits pictured as '·0·'
are reserved and must have the value O.

REV lEW DRAF T
SUBJECT TO CHANGE
October, 1975 "-26 AL39

The functions of the constituent flags and registers are.

~}!, L Rit9ll1tt

x CACHE DIR
ADDRESS

a x PAR BIT

b x LEV rUL

c CSH1 ON

d CSH2 ON

e OPND ON

f INST ON

• 9 CSH REG

h x STR ASO

i x COL rUL

x RRO A,B

k LUF HSB,LSB

15 most si~nificant bits of the Dlock address from
the cache directory

Cache direct orv par 1 tv error on this ,..ead out

The selected column and level is loaded wIt h ac t 1 ve data

Enable the upper 1024 "ords of the cache

Enable the lo"er 1024 "ords of the cache

Enable the cache for operands

Enable the cache for i.ns truc t ions

Enable cache-to-register (dump) mode
When this bit is set ON, double precision Operations Unit
operands- (e.g., LOAQ operands) are ,..ead from the cache
according to the mapping algorithm and without regard to
matching of the full final address. All other operands
address main store as though the ca:he were disabled.
This bit Is reset automatically by the hardware for anv
Fault or Program Interrupt.

Enable store asIde
When this bit is set ON, the Processo~ does not wait fo,..
maln store cycle completion after a store operation but
proceeds after the cache cycle is com~lete.

Selected cache column is ful I

Cache round robin counter

Lockup time,.. setting
The Lockup Timer may set to four different values
according to the setting of this flel~.

LUF Lockup
.It.a..J.l.lA l~

0 2 ms.
1 4 ms.
2 8 ms.
3 16 ms.

The Lockup Time,.. is set to 1& ms. w~en the ProceSSor is
initialIzed.

C Q N I RO L UN I IJt.llLtil.S.I.Q!ll...R~lER.S.

E.l2..r:.ull - 72 bIt s each

Even word as stored by Store Cent~aJ Processor Re~ister (SCPR), Tag = 20,
instruction

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975 4-29 AL39

a 0 000 0 0 aDD 1 1 1 1 1 1 111 223 3
Q 1 ? 3 It 5 .LL.a.--9._JL-LZ.J_!t-2_LLa _________ l~ _ ___ S_

1111111111,.,1:11,. :1: I
I a I b I c I dIe J f : g I h J .i I J 1 k I I I m J n I 0 1 p I Q 1 r' a P co DE I r • t-ll TAG •
J ; ; I 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 _____ l_L_~I __________ ~1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 1 1 6

Odd word as stored by Stcu-e Central Processor register (SCPR), TAG = 20,
instruction

0 1 1 2 Z Z Z 3 3 3
D -LB Z L---LI __ ;1 !t 2

I , I J I I 1 I I I J I
I ADDRESS CHD J SEL Islt lulvJwlxlylzl"Z
I
..L..-.- ---1 -Ll_I_LLl ; J I I

18 5 It 1 1 1 1 1 1 1 1 1

Figure 4-20 Control Unit (CU) History Register Format

Il~eriptlonl

Sixteen logical combinations of flags and registers from the Control Unit.
The sixteen registers are handled as a rotating Que~e controlled by the
Control Unit History Register counter. The counter 1s always set to the
number of the oldest entry and advances by one for each history register
reference (data entry or SCPR). True multicycie instructions (such as
~Iprl. Ireg, rcu, etc.) will have an entry for each of t~eir cycles.

fyne! 10nl

A Control Unit History Register entry shows the conditions at the end of
the Control Unit cycle to which it applies. Tne sixteen registers will
hold the conditions for the last sixteen Control Unit cycles. Entries are
made according to controls set in the Mode Register. (See Mode Register
above)

The meanings of the constituent flags and registers arel

a PIA

b PQA

c RIW

d SIW

e POT

PON

g RAW

h SAW

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

prepare instruction address

prepdre operand address

reQuest indirect word

restor indirect word

prepare operand tally (indirect tally chain)

prepare operand notally (as for POT except no chain)

reQuest read-alter-reririte word

restore read-alter-rewrite word

1t-30 Al39

ls.sl~ Elil!L.tiaU

I TRGO

XDE

k XOO

IC

• RPTS

n WI

0 AR FIE

p XIP

Q FLT

r BASE

OPCODE

1

p

TAG

...

ADDRESS

ettO

SEL
selected)

s XEC-INT

t INS-FETCH

u CU-STORE

v OU-STORE

" CU"'LOAD

x QU-LOAD

y DIRECT

z PC-BUSY

.. BUSY

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1975

transfer GO (conditions met)

execute XED from even IC

execute XED from odd IC

execute odd instruction of the current pair

execute a repeat operation

wait for Instruction fetch

1 = Computed Address (TPR.CA) has valid data

NOT prepare Progra~ Interrupt address

NOT prepare Faul t address

NOT BAR mo de

current operation code

Program Int.errupt lnhibl t bit

PoInter register flag bit

Currrent address modifier
This modifier Is replaced bv the contents of the TAG
fields of indirect words as they are fetched durlng
indIrect chains •

Current Computed Address (TPR.CA)

SCU C01'llilan d

Port select bits. (Valid only If Port A through D is

A Program Interrupt Is present

Perform an instruction fetch

Control Unit store cycle

Operatons Unit store cycle

Control UnIt 'oad cycle

OperatIons Unit 10ad cvcle

direct cycle

Port control logic not buSY

Port interface busy

"-31 AL39

(ormat a - 72 bi ts each

Even word as stored by Store cent~al Processor Regsiter (SCPRt,TAG = 40,
instruct Ion

o 00111111111 ZZ J
o ~-9. 0 1 2 3 It 5 fLLJL8 _______ -LL_ 5

I RP REG : I J I J J : I I I 1 I
.---------------------------------101 RS REG JelflglhJiljlkJllml
1 Or COPE I a: b Ic.uuEAC,' I --L.1_LL.L.L1 I I I

91 . 311 21 9111111111

Odd word as stored by Store Centra' Processor RegIster (SCPR), TAG = 40,
instruction

o 0 0 0 a 0 0 0 0 0 1 1 1 1-1 1 1 1
D 1 2 3 It 5 A-l-A-3-i-1-a2-¥3~4_5'_ __ ~Z_8~ __________ ___

I I I 1 I :_1_1_1_1_'_1_'_1_'_' I
InlolplqlrIAIQJOJlI2J3J415.&J710 0 OJ ICT TRAC<ER
I I I ; 1-1-1-1-1-1-1-1_41-4J_·LI-LI __ . __ ~IL-________________ __

1 1 111 1 1 1 111 1 111 3

Figure 4-21 Operations Unit (OU) Historv Register Format

Desc;rl pt' gn.

3
5

18

I
J
I

Sixteen logical combinations of flags and registers f~om the Ooerations
unit and Control Unit. The sixteen registe~s a~e h~ndled as a rotating
queue controlled by the Operations Unit Histo~y Register counter. The
counter is always set to the number of the oldest entry and advances by one
for each history register ~eference (data entry or SCPRJ.

functionl

An Operations Unit History Register entry shows the c~ndltions at the end
of the Operations Unit cyc'e to which it applies. The sixteen registers
w11 I hold the conditions for the last sixteen Ope-ations Unit cycles.
Entries are made accorclng to controls set In the Mode ~eglster. (See Hode
Register above)

The meanings of the constituent flags and reg~sters area

.h.e.x f I 89 Name

RP REG

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

Heaning

Primary Operations Unit operation register
RP REG receives the instruction operation code and
other data fro~ the Contro' Unit during the Control
Unit instruction cycle whi'e the Operation~ Unit may be
be busy with a prior operation. RP REG is further
sub-structured as •••

"-32 AlJ9

Js..e~ Elil9-t!.aU

OP CODE

a 9 CHAR

b TAGl,2,3

c CR FLG

d Ok FLG

EAC

RS REG

e RBl FULL

f RP FULL

g RS FULL

h GIN

.l GOS

GOl

k G02

GOE

II GOA

n GOM

o GOM

p GOF

q STR OP

t DA-AV

A A-REG

Q Q-REG

0 XD-RG

1 Xl-RG

2 X2-RG

REVIEW DRAfT
SUBJECT TO CHANGE
October, 1975

The 9 most significant bits of the operation code for
the instruction. Note that basic (non E1S) operations
do not involve bit 27 hence the 9 bit field is
sufficient to define the operation co~e.

Character size for Indirect Then Tally modIfiers
o = 6-bi t
1 = 9-bi t

The 3 least significant bits of the modifier of the
instruction. This field ma~ contain a character
position tor an Indirect Then Tally character modifier.

Character operation flag

Direct operation flag

Effective address counter for LREG/5REG instructions

Secondary Operations Unit operation register
OP CODE is moved from RP REG to RS REG during the
operand fetch and is held until completion of the
ins truct Ion.

OP CODE buffer full

RP REG full

RS REG full

First cycle for all Operations Un~t operations

Second cvcle for Operations Unit multi-ops

First divide cvcle

Second divide cvcle

Exponent compare cvcle

Mantissa alignment cycle

General Operations Unit cycle

Norma I ize eye I e

Final Operations Unit cvcle

Operations Unit store data avaIlable

Oata not available

A register not in use

Q register not Is use

XO not in use

Xl not in use

Xl not In use

4-33 AL39

MytiiUL!islU t1un.Ln9.

3 X3-RG X3 not In use

it Xlt-RG lrlt not in use

5 X5-RG X5 not In use

6 X6-RG X& not In use

1 X1-RG X7 not in use

ICT TRACKER The current value of the Instructlor'\ Counter (PPR. IC» •
Since the Cont ro I Unit and O~erations Unit run
asynchronouSly and overlar:- Is usua' I y en3b I ed, the
\lalue 01 ICT TRACKER may Q..S).1 be the address of the
Operations Unit instruction currently being ex ecut ed.

DECIHAL-UHI1-1aU1-H~IQRY REGISTERS

f.gcull - 12 bi ts each

Deciral Unit History RegIster data is stored wjt~

Processor Register (SCPR), TAG ~ &0, instructIon. No
given because the data is"defined as individual bits.

Qese;r!iptlonl.

the Store Central
Format diagram Is

Sixteen logical combInations of flags from the Decimal Unit. The sixteen
registers are handled as a rotatIng queue controlled by the Decimal Unit
Historv Register counter. The counter is aJ~avs set to the number of the
oldest entry and advances by one for each history register reference (data
entr, or SCPRI.

The Decimal Unit and the Control Unit run synchronously. There is a
Control Unit History Register entry for every Decimal U~it History Register
entry and vice versa. If the Processor is not eKecutlng a Decimal
operatIon, the Decimal Unit Hlstorv Register entry ~i.1 show an idle
condit Ion.

E une; t 1 oD.!

A Decimal UnIt History Register entry shows the condItions in the Decimal
Uni t at the end of the Contro' Uni t cycle to which i. t appJ ies. The sixteen
registers will hold the conditions for the last sixteen Control unit
cycles. Entries are made according"to controls set in the Mode Register.

CSee Hode Register above)

A minus (-) sIgn preceedlng the flag name Indicates that the complement of
the flag is shown. Unused bits are set ON.

The meanings of the const1tuent flags area

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1915 Al39

b.il [l~am~

0 -fPOl

1 -fPOP

2 -NEEO-OESC

3 -SEL-AOR

It -OLEN=OIRECT

5 -OFRST

& -fEXR

7 -DLAST-FRST

8 -DDU-lDEA

9 -DOU-STAE

10 -DREDO

11 -OLVl<WD-Sl

12 -E)(H

13 DEND-SEQ

lit -OENO

15 -OU=RD+WRT

16 -PTRAOO

17 -PTRAOl

18 FA/ll

19 FA/I2

20 FA/I3

21 -WRD

22 -NINE

23 -SIX

21t -FOUR

25 -BIT

2&

27

28

29

30 FSAt1PL

REVIEW OR AFT
SUBJECT TO CHANGE
October, lq75

l1iUln.J...Dg

Prepare operand • ength

Prepare operand pointer

Need descriptor

Select address register

Length equals direct

Descriotor processed for first tille

Extended register modifIcation

Last cycle of DFRST

Dec 1 mal Unit load

Decl mal Unit store

R.edo operation ~ithout pol nter and length uDdate

Load with count less than word size

Exhaust

End of sequence

End of instruction

Decillal Unit wr1 te-back

PR address bit 0

PR address bit 1

Descriptor 1 active

Descriptor 2 act lve

Descriptor 3 act 1 ve

Word operation

9-bl t character operation

6- bl t char ac ter operation

It-bit charac fer operation

Bit operation

Unused

Unused

Unused

Unused

Sample for mid-instruction Interrupt

'+-35 AL39

tU..t Ela.gJiam.~

31 -DFRST-CT

32 -AOJ-LENGTH

33 -INTRPTD

31t -INHIB

35

36 DUD

37 -GOLDA

38 -GOLOB

39 -GDLDC

itO NLD1

.. 1 GLDPl

'+Z NLD2

.. 3 GLOPZ

It It ANLDl

.. 5 ANLDZ

'+6 LOWRT1

47 LOWRT2

1t8 -DATA-AVLOU

Itc) WRT1

50 GSTR

51 ANSTR

52 FSTR-OP-AV

53 -FEND-SEQ

Sit -FLEN<128

55 FGCH

5& FANPK

57 F[XHOP

58 FBLNK

59

60 DGBD

61 OGOS

REV lEW DR lIF T
SUBJECT TO CHANGE
October, 1975

SpecIfied first count of a seQuence

AdJust length

HId-instruction interrupt

Inhibit STel (force "STCa")

Unused

Decimal Unit idle

Descriptor 'oad gate A

Descriptor load gate B

Descriptor load gate C

Prepare alignment count for fl~st nJmerlc operand load

Numeric operand one load gate

Prepare alignment count for second ~umeric operand load

Numeric operand two load gate

Alphanumeric operand one load gate

Alphanumeric operand '"0 'oad gate

Load rewrite register one gate

load rewrite register two gate

Decima) Unit data ~v3i'able

RewrIte register one loaded

Numeric store gate

Alphanumeric store gate

Operand available to be stored

End seQuence flag

Length less than 128

Character ooeration gate

Alphanumeric packing cvcle gate

Execute HOP gate

Blanking gate

Unused

Binary to decimal execution gate

Decimal to binary execution gate

Al39

b.ll £laLH.am~

62 DeSp Shift procedure gate

63 FFlTG Floating result flag

61t fRNO Rounding f I a9

65 DADO-GATE Add/substract execute gate

60 OMP+DV-GATE Multiply/divide execution gate

67 DXPN-GATE Exponent network execution gate

68 Unused

69 Unused

70 . Unused

71 Unused

Eormat: - 72 bl ts each

Even word as stored by Store Centra' Processor Register (SCPR), TAG = DO,
instruction

011 1 1 1 1 2 Z 2 2 222 Z 3 J 3 3
~Q ______ • __________________ ~4~5_~~-3_1-1_Z-~_~~~_1&-__ ~4~5_
J 111tl::'11 11 IJ
I ESN a SblcldJe:flg:i"dll) J SDWIlr1~lkJ PTWAHRJI t
; J J;:;;;: J-1-1----___ ~;~I __________ ~J-41

15 2 1 1 1 1 1 1 1 1 1 4 1 4 1

Odd word as stored by Store Central Processor Regist!r (SCPR). TAG = DO,
instruction

o -i __ _
I
I

llescriptioo!

2 2 2 2 233 333 ___________________________________ ~~~ __ _3__Q~1 __ ~3~~

I I I; I
ADO TRR :0 0 OlmlO 0 01n:0:

________ ~J _--1--___ 1-1-- I: I

24 3 3 1 3 1 1

Figure 4-22 Appending Unit (AU) History Register Format

Sixteen logical combinations of 11~gs and registers from the Appenjing
Unit. The sixteen registers are handlej as a rotating oueue controlled by
th~ Appending unit History Register counter. The counter is always set to
the number of the oldest e~try and advances by one for each history

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1975 4-37 AL39

register reference (data entry or SCPR).

An Appending Unit Historv Register entry shows the conditions In the
Appending Unit at the end of an address preparatio~ cycle in Appen~ing
Hode. The sixteen registers ~ill hold the conditions f)r the last sixteen
sueh address prepartion cycles. Entries are made accorjing to controls set
in the Mode Regi ster. (See Mode Regi ster above)

The meanings of the constItuent flags and registers arel

. b..il ElaLNan

ESN

a BSY

b FDSTPW

c HDSPTW

d FSDWP

e FPTN

f FPTW2

9 "PTN

h FANP

i FAP

SOWAHH

SDWAHR

k PTWAHH

PTWAI1R

FlT

ADO

TRR

m CA

n FHLD

RE-VIEW DRAFT
SUBJECT TO CHANGE
Oct ober. 1975

Effective segment number (TPR.TSR)

Data source for ESN

OD = from PPR.PSR
01 = from PRn.SNR
10 = from TPR.TSR
11 = not used

Descriptor segment PTW ,eten

Descriptor segment PTW ~odlfication

SOW fetch from paged descriptor seg~ent

PTW fetch

PTW+l fetch

PTW modification

Final address fetch from non-paged segment

Final address fetch from paged segment

SOWAH match ocurred

SOHAH register number for SOWAHH=l

PTWAH match ocurred

PTHAH register number for PTWAI1H=1

ACV or OFTn fault on this cycle

Z~ bit final address from thiS cycle

Ring number from this cycle (TPR.TR~)

Segment is encacheable

An ACV or OrTO Is waiting

4-38 AL39

E.w:u1.! - 3& bi ts each

Data read by Read Switches (RSW), Y : xxxxxO, instruction

o -'1. __ _
I
I
1

Maintenance Panel Data Switches

3
5

36

Data read by Read Switches (RSW), Y = xxxxx2. instruction

0 o 0 1 1
D --2-6 Z ~ .

I J I
10 0 0 0 0 01 FLT BASE J 0 0

1 I
6 7

0 0 o 0 0 a a o 0 a

2 2 ~
_~a

I I
a ala:l
-Ll
14 1

0 1

3 3 333
123ft5

J I I I
Olb:UCPUI

; J J I
It 1 1 2

Data read by Read SwItches (RSW), Y ~ xxxxxl/3, instruction

..
o 00 11 22 3
Q 8 9 ---La. -LL_ 5

I PORT AlE I PORT B/F I PORT C/G 1 PORT OIH 1
1-----------------1-----------------1-----------------1-----------------1
I AOR Jcl~_HEH_1_AOR JcldleJ tl~H-1-ADR Icldlel HE~AJ& Ic;dJeJ~H-1

3111 3 3111 3 3111 3 3111 3

Data read by Read Switches (RSwt, Y = xxxxx4, instruction

o 1 1 1 1 111 122 2 2 2 2 222 2 3
-11- ___ --Z-LLL~_LJL9 D 1 Z ~_~-LL8._9",,-__ 5

• :AIBICIDIE1FIGIH: I
ID D 0 0 0 0 000 D 0 o 01---1---1---1---1---1---1---1---10 0 0 0 0 0 01
1 _______ ~J~f~g~9;fJ9Iflqlflgl1~~41 ______________ ~1

13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7

Figure 4-23 Configuration Switch Data Formats

The kead Switchas (RSW) instruction provides the abi lity to interrogate
various sWLtches and options on the Processor Maintenan:e and Configuration
panels. The least slqnific3nt Oi11t (bits 15-17) of th~ address field is
used to select the switches to be read. High order address bits are
ignored. Data is placed in the A-~egister. Bits pictured as "0" are
unimplemented or repre5ent options tnat are stand3rd on the Hultics
Processor. Bits pictured as "1" represent options that are standard on the
Multlcs Processor.

REV lEW ORDFT
SUBJECT TO CHANGE
October, 1975 AL39

Read Switches (RSW), Y = xxxxxl reads data for Ports A, B, C, and O. Read
Switches (RSW). Y = xxxxx3 reads data for Ports E, f. G, and H.

The meanings of the constituent fields arel

ts..u fi~.uLN~

FLT BASE

a

b

CPU

PORT AlE. etc.

AOR

c

d

e

HEM

A, B. etc.

f

g

Seven most significant bits of the 12 bit Fault Base
Address

Cache option
o = enabled
1 = dis ab led

Main store speed option
o = s.ow
1 = fast

Processor number

Port data fields further substructu"ed as •••

Address Assignment Switch setting for port

Port enabled flag

System Initialize enabled flag

Interlace enabled flag

Coded memory size •••

noD 321<
001 &41<
010 9&1< ~ l&OK
all 128K
100 512K
101 10241<
110 2048K
111 25&K

Port data fields further substructu-ed as •••

Interlace mode
o = 4 word if interlace enabled for port
1 = 2 word if interlace enabled for port

Ha in store size
0= full, all of HEM is configured

1 = half, half of MEH is configu-ed

[~~ - ~88 bits, 8 machine words

REVIEW DRAFT
SUBJECT TO :HANGE
October. 1<375

Data as stored b~ Store Control Unlt (SCU) instruction

000
-i---,~J ________ --__________ __
I a

1 1 1 2 2 2 2 2 222 2 2 333 3 3
~ 9 D 1 '-~-2....LI--d-LJl_LLL-L
1111111112111111 I

Jl. J PRR 1
L ,

PSR SalblcJdleUlglhUlt Utillmlnlo' Fcr I
J I J ; J 1 -LL.L1_LLL.Ll I 1

1

Z.

3..

!t.

2-

fl

l

3 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3

00000 0 0 0 0 0 1 111 1 1 1 1 112 2 2 2 2 Z 3 3 3
D t 2 L!L.5 § l 8 9 D-l..-l-LLLLl 8 9 0 L!t.--L7a.-__ 9L-.Ji10~ ___ ...;;4L-..o5=-
1111111111111111.::11 I I J II
lalblcld:elflglhliIJlklllm:nlolpIQlr'slt: lA IIACHN.:NCHNI F/I ADORlul
I I I 1-1-1 I I 1 , I I ; , I :-Ll LI~I~I~ ____ ~J ____ -L. ____ ~I ____ . ____ ~I~I
111 1 111 1 111 1 1 1 1 111 1 1 433 5 1

0 o 0
'0 2--L-
I I
J TRR I
I I

3

0 --'1 ___
I
I 0 000 0 000
I

-. 0

TSR

0000000 0 0

1 1 2 Z 2 3 3
L 8 ____ _ ___ l. .:or..8 _9L-JjOL..--____c5:-

I I 1 I
10
I

o 0 0 0 0 0 0 0 OICPUI DELTA I
_I J I

15 10 Z & '

1 1 2 2 Z 222 223 3
1_8 0 1 2 !±_~_...;8_901._.l0'---______ ,2-

I TSNA I TSNB I TSNC I I
01-------1-------1-------1 TEMP BIT I

__________________ -LI_~aL_~I~b~I _ _A__lnl__~lbl I
18 3 1 3 1 3 1 &

1 1 1 2 2 2 2 2 222 2 233 3
D -£ ________ -----------------------7~8~9~Q~1~2-¥3-%4,~l 8 9 0 t 2

3
5

1
o 0 0 I

J

I
I IC
I

0
Q

I
I COMPUTED ADDRESS

1IIIIIIItlllill
talblcldlelflglhl12J Iklllm'nlO
1IIItl:JIIJ'!IJ

13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ,.
1 1 1 2 2 2 2 2 222 223 3
Z 8 , Q 1 Z 3 ~ 5 § r 8 , Q 5
12:111111111, I
lalblcldle:tlglhHJ] IkJ n CT HOLD I

I A-_________________________________ ~I_J~I~I~J~I~J 1-1-1_' I I I

18 1 1 1 1 1 1 1 1 1 1 1 1 1 &

0 1 1 2 2 2 3 3
Q Z 8 ___ l.~ 9 g 5

1 J 1 I I a
I ADDRESS I OPCOOE IIIP) TAG I
J I - I I I I

18 10 1 1 &

0 1 1 2 2 2 3 3 --'1 ___
7 8 l. 8 ~ g S

t I I I
ADDRESS OPCODE II I P I TAG I

I - I I I J
18 10 1 1 &

FiSjure 4-24 Contro I UnIt Data Forllat

REV lEW DRAFT
SUBJECT TO CHANGE
October, 1975 Al39

A logical collection of fla~s and ~egi~ters from the Appending unit and the
Control Unit. In gene~al. the ~ata has valid meaning only when sto~ed with
the sto~e Control unit (SCU) inst~uction as the 1i"'st instruction of a
Fault Trap pair. B~ts pictu~ed as "0" a~e ~ese~~ed and must have 'he value
o.

Eynctlon'

The Control Unit Data allows the P~ocesso~ to ~estart an instruction at the
point of interruption when it is inter~upted by an Access Violation Fault.
a Directed Fault. or (for certain EIS instructions) a P~o9ram Inte~rupt.
Directed Faults are intentional. and most Access Villation Faults and
Program Inte~rupts are ~ecoverable. If the interruption is not
recove~able, the Control Unit Data provides enough info-mation to dete~l1Iine

the exact nature of the e~ror.

Instruction execution resta~ts immedIately upon execution of a Restore
Control Unit (RCU) inst~uction refe~encing the Y-block8 area into which the
Cont~ol Unit Data was stored.

FIelds having an "x" in the colulln headed L are Cl~t restored by the Restore
Control Unit (RCU) inst~uctlon.

~c.Q ne.:t ~ f:ll.uL.tiama

0 PPR.PRR

0 PPR.PSR

0 a PPR.P

0 b XSF

0 c)(SDWAH.SOWAHH

0 d)(SO-ON

0 e)(PTHAH.PTWAHH

0)(PT-ON

0 g x PI-AP

0 h x DSPTW

0 i. x SOHNP

0 x SOHP

0 k x PTW

0 x PTW2

o m x FAP

o o x FANP

D o x FABS

o Fcr

REVIEW ORlFT
SUBJECT TO CHANGE
October, 1975

!1u.IUD.Sl

Procedure ring register

Procedure segmen t registe-

Privileged bit

External segment flag

Hatch on SDWAr1

SDWAH enab' ed

Hatch on PTWAH

PTWAH enab led

Instruct ion fetch append cycle

Fetch Descriptor Segmeot F'TW

Fetch SOW - noopaged

Fetch SO~ - paged

Fetch PTH

Fetch prepage PT..,

Fetch final address - paged

Fetch fInal address - non~aged

Fetch final address - abs31ute

Fault counter - counts in~tructlon retries

AL39

lUlu hilX 1- field N4ti

1 a x IRO
x ISH

1 b x OEB
x IOC

1 c x E-OFF
x IA+ltt

1 d x ORB
x ISP

1 e x R-OFF
x IPR

1 x OWB
x NEA

1 9 x W-OFF
x 008

1 h x NO GA

1 x OCB

1 x OCAlL

1 k x BOC

1 x INRET

1 II x CRT

1 n x RAlR

1 0 x AH-ER

1 p x 0058

1 Q x PARU

1 ~ x PARL

1 s x ONC1

1 t x ONeZ

1 x IA

1 x IACHN

1 x CNCHN

1 x FII AOOR

1 u x F/I

Z TPR. TRrt

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

Hun..i.n.g

Fo~ ACV i I legal I"'ing o~de~
Fo~ STR - 11 lega I segment number

Fo~ ACV - out of execute b~ acke t
Fo~ IPR - i I lega I op code

Fo~ ACV - execute bit Is:>I'.
Fo~ IPR - i I I ega I address or modIfier

Fo~ ACV - out of read bra:ket
For IPR - il I ega I s I ave pI"'ocedure

Fo~ ACV - read bit is of f
Fo~ IPR - i I legal EIS digit

Fo~ ACV - out of write bracket
For STR - nonexistent add,..ess

For ACV - w~ite bit is off
For STR - out of bounds

For ACV - not a gate

For ACV out of call b~a:ket

For ACV - ouhtard call

For ACV - bad out~ard call

For ACV - inward return

For ACV - cross rIng trans fer

For ACV ring alaI"'''

Fo~ ACV - associ ative memory error

For ACV - out of segment :>ounds

For PAR - processor parity upper

Fo~ PAR - p~ocessor pa~itf lower

For ONC - CPU.lS:U seQuence error '1

For ONC - CPU.lSCU seQuence e~ror .Z

SCU illegal act Ion lInes (See Table 4-2)

Illegal action CPU port.

For CON - connect eClOe) ::PU port

ttodu 10 2 fau It lin te~~upt lIector address

Fault/interrupt bit flag :>It
a = inte~rupt
1 = f au I t

Tempo~ary ring ~eglster

AL39

2 TPR.TSR

2 CPU

2 DEL TA

3 TSNA

3 a PRNO

3 b

3 TSNB

3 TSNC

3 TEMP BIT

It PPR.IC

a ZERO

It b NEG

It c CARY

'+ d OVFl

'+ e EOVF

f EUFl

.. 9 OFl"

h TRO

i PAR

PAR"

It k 8"

TRU

It m HIF

,. n ASS

5 x TPR.CA

5 a RF

5 b RPT

5 c RD

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

Temporary segment registe~

CPU number

Address increment for repeats

Pointer Register number f~r non-EIS operands
or for EIS operand '1 f~rther substructured
as •••

Pointer register number

1 = PRNO is valid

Pointer Register numoer f~r EIS operand .2
further substructurej as for TSNA above

Pointer Re]ister number f~r EIS operand '3
further suostructured as for TSNA above

8ITNO field of Temporary Pointer Register
(TPR.TBR)

Instruction counter

Zero indicator

Negative indicator

Carry indicator

OverfJo~ indicator

Exponent overf low 1 ndicat:)r

Exponent underflow indicator

Overflow mask indicator

Tallv runout indicator

Parity error indicator

Parity mask indicator

Not 8AR Hode indicator

EIS truncation indicator

Mid-instruction interrupt

Absolute mode

Current Effective Address

First cycle of a repeat oJeration

Execut 1ng a repeat

Executing a repeat double

AL39

5 d

5 e

5 f

5 g

5 h

5 1

5

5 k

5

5

&

1

RL

POT

paN

XDE

XOO

ITP

RST

ITS

FIF

CT HOLD

Executing a repeat link

Prepare operand tally
This flag is up until tne indirect word of an
IT indirect cycle is successfully fetched.

Prepare operand notally
This flag is up until the in1irect ~ord of a
"return" type instruction is successfully
fetched. It indicates that there is no
indirect chain even thoug, an indirect fetch
is being done.

Execute double from even Ie

Execute double from odd Ie

ITP cycle

Restart this instruction

ExecutIng ITS indirect cycle

Fault occured during inst~uction fetch

Contents of the -remember modifier" register

Word & is the contenti of the "working
instruction register" and reflects conditions
at the exact poInt of address preparation
when the fault/interrult occured. The
ADDRESS and TAG fields are replaced with data
from pointer registers, indirect pointers,
and/or indirect words du~ing each indi~ect

cy'e. Each instruction of the current pair
is moved to this regiiter before actual
address preparation begins.

Word 7 is the contents of the -instruction
holding register". It contains the odd lJIord
of the last instruction pair fetched fro~
main store. Note that, orimarllv because of
store overlap. thiS initructio~ is not
necessarily paired with the instruction in
Hord o.

E~~i1 - 288 bits, 8 machine words

REVlfH OR~fT

SUBJECT TO CHANGE
October, 1975 AL39

Oata as stored bV store Pointers and Lengths (SPL) inst-uetion ~~C~

o 0 0 111
-L-_______ a-3_.tLl_2 __ _
t J : I J

3
5

n 10 a 0 0 0 0 0 0 OtZ:0Z0: CH TALLY
1 LLLL-

911 1

o 3
J L
1 I

1 10 0 000 0 00 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01
I

Z.

J.

!1

2

fl

3&

0 2 2 2 2 2 2 3 3 3 3 3
Q l-L2_LI __ -Lll.....LL3 2

I I J 1 • . I , I I I .
I 01 PTR 10' T A 10 I) 01I1FIA:0 0 01

I J I . I I I I I

24 1 2 3 1 1 1 3

0 o 111 3
0 ~-L1.-L- 2

: I I
LEVEL :0 OJ 01 RES J ______ 1---.~J ________ . ____________________________________ ~,

10 2 2,.

0 22222 2 3 3 3 333
D -& ______ . _________________________ . _____________ ~3~~ 9 Q 1 2 3 It ;

J
I 02 PTR

I: I 1111111
10lTA 10 0 OJRIF:A101010:

~ _________________________________ . _______________ ~I~J~~;__ ;; I I 1 ; J

24 1 2 3 1 1 1 1 1 1

0 1 1 3
a 1 Z 2

I 1 I
10 0 o 0 0 0 0 0 0 0 0 01 02 RES J
I I

12 21t

0 2 2 2 2 2 2 3 3 3 3 3
g J !t 2 fz Z _~....LL3 2

1 I I 1 . I I I

J 03 PTR 10lTA 10 D OIRIFJAI JHP I
J I --1 I I I • • I I I

24 1 2 3 1 1 1 3

0 1 1 3
D 1 Z 2

I 1

I 10 0 0 0 0 a ODD 0 a OJ 03 RES
L !

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1975

12

Figure 1t-25 Decimal Unit Data Format

24

AL39

llescrip.1Jjm!.

A logical collection of ftags and registers from the Decimal Unit.
pictured as "0·· are reserved and must have the value O.

~its

Eu.octlool

The Decimal Unit Data allows
the point of Interruption
Fault, a Directed fault, or
Interrupt. Directed faults
faults and Program Interrupts

the Proce~sor to restart a~ EIS instruction at
when it is interrupted by an Access Violation
(for certain EIS Instr.Jctions) a Program
are intentional, and mls~ Access Violation

are recoverabl e.

The data are restored wIth the Load Pointers and Lengthi (LPL) instruction.
fields having an "x'· in the column headed L are o~l restored. When
starting execution of an EIS instruction, thp. decimal unit re3isters and

,flags are not initialized from the Operand Descriptors if the
Hid-instruction Interrupt Fault (HIF) indicator is set IN.

The meanings of the constituent fla3s and registers arel

~e,g .L E1li.tLJ:til.m~

0 z

0 IJ

0 CHTALLY

2 01 PTR

2,4,6 TA

2 x I

2,4,6 f

2,1t,6 A

3 LEVEL

3 01 RES

It 02 PTR

4,6 x R

5 02 RES

6 03 PTR

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

He aning

All bIt string instruction results are zero

Negative overpunch found in 6-4 expanded move

The number of characters examined bV the SCAN, TCT, or
TCTR Instruction (up to the interru~t or match)

Address of last double word accessed by Operand
Descriptor 1; bits 17-23 (bit add-ess) valid o~ly for
initial access

Alphanumeric type of Operand Oescriotor 1,2,3

Decl mal Uni t interrupted flag; a copy of the
Hid-Instruction Interrupt Fault indicator

FIrst time; data in Operand Descriptor 1,2.3 is valid

Operand Descriptor 1.2,3 is active

Difference in the count of cha~acte-s loaded into the
CPU and cha~acters stored back to main store

Count of characters remaining in Operand Descriptor 1

Address of last double word ac:essed by Operand

Descriptor 2; bl ts 17-23 (bit add~ess) valid only for
inlti31 access

Last cvcle performed must be repeated

Count of characters remlining in Operand Descriptor 2

Address of the last double word accesssed by Operand
Descriptor 3; bi to; 17-23 (bit add"ess) valId only for
initial access

AL39

() JHP

7 03 RES

REVIEW DRAFT
SUBJECT TO CHANGE
October. 1975

Descriptor count; number of words to skip to find the
next instruction following this multi"ord instruction

Count of characters remaining in Operand Descriptor 3

4-48 AL39

SECTION V

ADDRESSING -- SEGMENTATION ANOPAGtNG

The Mu.tics Processor is able to access the maIn store in ~lther of two
modes; Absolute Hode or Append Mode.

The Processor prepares an Effective Address for each maIn store reference
for instructions or operands. An Effective Address consi$ts of a 12-bit segment
number and an lS-bit offset withIn that segment. An UUlllis d~fined as the
number of machine words from the ~:Itm1 ~ or orIgin to the referent. The
Processor uses the Effective Address to generate a 24"'bit Una1. ait!.t~. The
t Ina I addres's is used either as a d lrecf operand or as an address 1:O,r amal.t\
store access. The variOUS means of Effective Address for'raation ar'e itXpi\a,lned 1n
Section VI. Effective Address Formation. The gener.tionof t'heflna~' ~a(jde$$ 1s
different In the two Addressing Hodes • ..

Ab$olut. Hode

tn Absolute Hode, the segment number is null, that is., undefined'. and the
segment base Is the origIn of lIain store~ The final add~ess 1s g'enerated by
high-order zero f!lUng the offset with six binary O·s •. Absolute Kode
addressIng Is limIted to the first 2&2.14~ Nords of main sto~ ••

In Absolute Hode, al. instruction fetches are made from Absolute addresses.
Instruction opera~ds may be Jocated anywhere in main store and may be accessed
by specifying ITS Address Modification tor the instructIon or by loading a
PoInter Register with an appropriate value and specifying ITP Address
Modification or using bit 29 of the instruction word. T~e use of ITS or ITP
Address MOdifIcation in an Indirect Word MIlt have the same effect.

WARNINGI The use any of the above constructs in Absolute Hode places the
Processor in Append Mode for one or more Addr~ss Pre~a~atlon c'cJes~
All necessary r~glsters must be properly loaded and all Fault

conditions must be conside~ed (See Appen~ Hode beI3W).

If a transfer of control is made with any of the abo~e constructs, the
processor remains in Append Hode after the transfer and sUbse~uerit instruction
fetches are _ade in Append Hode.

REVIEW DRAFT
SUBJECT TO CHANGE
OctOber, 1975 5-1 AL39

AI though no segment is defined for Absolute Hode, Is .ay be helpful to
understanding to visualize a virutal,unpaged segaent ~verlaying t~e first
Z6Z.1~~ words of main store.

ADPend ~

In Append mode. the appending mechanism is employed for atl maIn store
references. The appending mechanism is described in ·SegmentatIon" and "Paging"
folloMlng in this section.

SEGHENTATIOH

A HuUlcs sunnl is defined as an array
limIted) size containing arbitrary data.
ProcesSor by a s~l Dymh£C (~). unique
that Is asslgnei by the operating system Nhen
t he process.

of machine words of arbitrary (but
A segment is l~entlfied within the
to the segment for the process,
the segment is first reference~ by

To simpify this discussion, the operation of the hardwa~e ring mechanism is
no't described al though 1 t is an integral part of Address Preparat ion. See
Section VIII, Hardware Ring Impl.mentation. for a discussion of the ring
mechanism hardWare.

- An Effective Address in the Processor consists of a pair of integers
(~. ~A1). The range of ~ is (0,2··12-1), the range of offset Is
(O,2··18-U •. The description of the segllent identified by ~:'5Ul2 value n is I<ept
In the nth word-pair (~~t= 2 • n) in a table known as the descrIptor seam,nt
(AU.g) • The descrt ptor segment a 1 ways has ~ val us! 0 and contains
descriptions of all segments accessible by the proces~ including Its own
description in V-pair O. The location of the descriptor segment for a runnIng
process is held by the Processor in the Descriptor Segllent Base Register (DSeR).
(See Section IV, Program Accessible Registers) Eacn word-oair of a descriptor
segment Is known as a Segment Descriptor Word (SOW) and is 12 bits long. (See
Figure S-5. Segment Descriptor Word (SDW) Format, later in t~is section.)

A bit in the SOW for a segment (SOW.U) specifies "hether the segment is
~~ or y~~. The following is a simplified description of the appendIng
process for unpaged segments. (Refer to Figures 4-14 and 5-»

1. If 2· ~gn~ >= 1& • (OSBR.BND + 1), then
Violation. Out of Segment Bounds Fault.

2. fetch the SOW from OSBR.AOOR + 2 • ~.

generate an Access

3. If SOW.F = ·0", then generate Directed Fault D where n is given In
SOW.Fe. The value of Dused here is the value assigned to defIne a
missing segment fault or ~~~n1 ~.

~. If ~~ >= 1& • (SOW.BOUNO + 1), then generate a~ Access Violation,
Out of Segment Bounds Fault.

5. If the access bits (SOW.R, SOW.E, etc.)
incompatible with the reference, generate
Violation fault.

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975 5-2

of the segment are
the appropriate Access

AL39

6. Generate final address SOW.ADR + 211s~.

Figure 5-1 depi,cts the relationships d~scribed above •.

pAGING

T
J

Q.ll~t
I

T
a
I

dseg
1 :<--

1
J

2 • ~~ I

~e9ment

J
I
J

I J 1
_1-- .1--1

I I
<-------1 SOW J

I

os BR.AOJR

-L_L, __ ~
J
J
;
I
I
a

data

L __ __

J<-- OS8R.BND

<-- SOW. BOUND

Figure 5-1 Final Address Generation for an Unpaged Segment

A ~ Is defined as a block of Z··o machine words. The "ultics Processor
Is designed In such a way that 0 is adJustable in the range (&,12). Experience
has shown that the optimum value for 0 is 10 vielding a ~~ ~~ of 1024 words.

With the value of Q established, the Processor divides a ~-bit offset or
~~n2 value Into two Pdrts; the high order (~-D) bits formin~ a page number, ~,
and the low order D. bi ts forming a word number, ~. At gori thm lea II v, this may
stated asl

~ = ~~ modulo (~ ~~a)

The svmbols X and ~ will be used in this context throug~out this section.
Examples of page number formation are shown in Figure 5-Z below.

REVIEW DRAfT
SUS~ECT TO CHANGE
October, 1915 5-3 Al39

n = 10 n = 6

0 1 0 1
~ Z !l --L
I t I I
a ~1ll~1 s I alls.d I
L J I 1

18 18

0 0 0 1 0 1 1 1
--l __ 2_L- L D -LZ. ___ .2._
I s I I I t
I ~ I X J J ~ J X- I
L ___ L- I --1---1

8 10 12 &

102ft word page &4 word page

Figure 5-2 Examples of Page Number Formation

A bit in the SOW for a ~egment (sgW.U) specifies whether the segment js
~~ or YOQ~. A paged segment may be defined as an array of pa~es of
arbitrary (but limited) size with each page an array of 1024 machine words.
Thus9 a reference to a word or ~ords of a paged segment may be treated as a
reference to word ~ of page X of the segment.

Hultics subdivides the Virtual Memory into ~g~ ~Lt~ bl~cks of 1024 wOrds
each. In the main store, the blocks are known as .m.a.l.ntl2.C....t n.a.9.~; on the
pa9i~g device and the secondary storage~ the blocks are know~ as ~~. Such
a subdIvision of space allows a segment page to handled as a physical bloek
Independently from the other pages of the segment and from other segments. When
a reference to a word in a paged segment is reQuired (and the word is not
already in main store), a main store page is allocated and t,e re~ord containing
the segment Pdge is read in. Unneeded segment pa~es need not occupy space in
main store.

The location and status of page ~ of a paged segment is
word of a table known as the ~~~ 1~ for the segment.
table are known as eag~ lanl~ H2~ (ellis). (See Figure 5-6,
(pnO Format, Idter in this section.)

kept in the ~th

The words in thiS
Page Table Word

Any segment may be paged as appropriate and convenient. SDW.ADR for a
paged segment pOints to the page table for the segment instead of the base of
the segment. If ~ for a process is paged, DSBR.AOOR points to the page table
for J1U.g.

The full algorithm used bv the processor to access
segment ~gQ.2 (including .s1.s!:3. paging) is as follows.

5-5, and 5-&)

word ~1 of paged
(Refer to Fi1ures ~-1~,

1. If 2 • ~~9U~ >= 16 • OSB~.BND, the generate a~ Access Violation, Out
of Segment Bounds Fault.

2 • For m the Q u an tit i e s S

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

~~ = (2 • ~~gn~) modulo 1024
~1 (2 ~ ~~gn~ - ~1) I 1024

s-~ AL39

o Avoid using co~mon keywords as names. When names such as

qoto declare dcl i f then

and so on ar~ used as names, a superficial but irritatjng confusion is
introquced. On the other hand, QQ use uncommon keYkords as names
where that is convenient. There is certainly no har~ in using 'dft·
to nam~ a variable for th~ "debit final total" (or sOlT'eth;ng of the
sort) even t~ough 'dft' is a keyword.

o ~here possible, avoid u.sing troublesome letters in idertifiers. For
exa~ple, the diQits ~frQ and gD~ are trcublesome because SOme output
devices do not clearly distinguish between zero and the letter '0' . or
between one ~nd the letter "'.

There is a literal constant lexeme for each type of arithmetic and string
val up. The f u l l s y n t a x a· n 1 i n t err ret a t ion 0 f the s e l e l(em e s are q i ve n l ate r , ; n
the section on "Expressions". The following is a representative set of examples
of ;Hithm'~tic lit~r~l CO!'lstants:

3n 4
3.04
3.04e-5
3.04e-5;

011r.C01b
0·1 , • ("0 C 1 b
f'11.r.Or1e-2b
011.0nOle-2bi

fixed decO)
fi xed dec(3,2)
float dec(3)
complex float dec(3)

fi xed(])
fi xed(?,4)
float(?)
complex n·oat(7)

Cbserve that an arit~metic constant dees not begin ~ith a sign. When a negative
constant ;5 required, it is written as two lexemes, a sign followed by an
arith~etic constant.

The following is a representative set
constants:

St!iQ!l_!:QQ~12Q!

of e xa m pl e s of s t r ; n9

"abed"
(3)"abcd"

...... H~llo," .. he said."

char(4)
char(12)
chdr<O)
char(1])

Il'eans "abcdabcdabcd"
me~ns th~ null string
"" counts as " in value

0' 11.l01"b .. __ ., •• ___ _., __ ._ .bj.t<'5.L,,,. _ .. _
(L.)"Ol U b b;t(tl) me~ns "C101010l"b
.... b bitCO> means th~ null string

Uteral

Any ASCII character can be usee in cl 'character' string constant, including such
non-printin1 characters as tab, newline, and so on. A strin~· constant is a
sin~l~ lexc~e, and ;s not consider~d to contain smaller lexemes.

Draft - Subject to Chanqe H 0 n e y w e·ll Proprietary

Draft - Subject to Chan~e 5-5 Honeywell proprietar~

EUQttuatQCS

There are six gUQklu~lgt_!f!f~fS; each is given, together with its purpose,
in t~e following table:

,

(pedon) inrlicates the
separates names

decimal or binary point;
in a Quallfied r.eference

also,

(corrma) separates items in a list of arguments, pararr,eters,
subscripts, declarations; options, and so on

~colon) ter~inate5 a condit ion prefix
also; seoarates the hounds of

.(s em; colon) t e r min ate 5 a 5 tat e men t

or a label
an array

prefix;

(lpft indicates the beginnin~ cf a list, an expression, an
parenthesis) iter~tion factor, and so on

(right i~dicates the end of a list, an expre$sion, an
parenthesis) iteraticn factor, and 5C on

These lexemes are used in most of the feat~res of PL/I.

Qcecatcu:s

There are five kir)ds of $2'r~r21Q!_J.~!~n::f~; they are defined as follows:

arithmeHc + •
r~laticnal =

loqical

string II

->

!Vost .of
exception

the operators are dpfined
is the Qualifier opereltor,

"Expressions".

Draft - Subject to Change

Draft - Subject to Chanq~

**

i n the
which

5-6

section on "Operators". The only
i·s defined in the section on

Honey~ell Proprietary

Honey~ell proprietary

ADQRESS APP~HDlN~

At the completion of the formation of the Effective Addre.ss (See Section
VI, Effective Address Formation) an Effective Segment Numb:!r (~~ngJ is in the
Segment Number Register of the Temporary Pointer Registe- (TPR.SNR) and a
Computed Address (~L1~1) is in the Co~puted Address register of the Temporary
Pointe ... Register (fPR.CA) (See Section IV, Program Accessible Registerlit for a
discussion of the Temporarv Pointer Register).

Once ~~gn~ and ~L1~~ are formad in TPR.SNR and TP~.CA, respectively, the
process of g~neratin1 the final address can invol~e a num~er of different and
distinct Appending Unit cycles.

The operation of the Appending Unit Is shown the flowchart in Figure 5-~.
This flowchart assumes that Directed Faults Store Faults, or Parity Faults do
not occur.

A segment boundary check is made in every cvcle except PSOW. If a boundary
violation is detected. an Acce~s Violation, Out of Segment B~~ndS Fault will be
generated and the exec~tion of the instruction aborted. The occurence of any
Fault will abort the sequence at the point of occurence. The operatln~ system
will safe store the Control Unit Data for possible retry and will attempt to
resolve the Fault codition •

..
The value of the AssOCiative ~emories may be seen In the flowchart by

observing the number of cycles bypassed if an SOW 0 ... PTW is found 1n the
Associative Hemorv.

There are nine different Appending Unit cycles that i~vo've accesses to
maIn store. Two of these (FANP, ~AP) generate the final address and initiate a
~ain store ac.cess for the operand or instruction paIr; five (NSOW, PSDW, PTW.
PTW2 and OSPTW) generate a main store access to fetch an SOW or PTW; and two
CHOSPTW and HPTW) generate a m~'n store access to uDd~te paga status bits (PTW.U
and PTw.H) In a PTW. The cvcl,~ are def1ne~ in T~ble5·1'belo ...

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975 5-7 lL39

Cycle·
!ia1!!.L

FANP

Table 5-1 Appending Unit Cvcle Definitioni

fi na I Address lioneaged

Generates the -final address and initiates an ~ain store access to
an unpaged segment for operands or instructions.

FAP final Address eaged

NSOW

PSOW

Generates the final address and initiates a main store access to
a paged segment for operands or instructions.

Nonpaged ~j Fetch

Fetches an SDW from an unpaged ~.

faged SJllf Fetch

Fetches an SOW from a paged descriptor segment.

PTW £lH Fetch

PTWZ

OSPTW

HOSPTW

HPTW

Fetches a PTW from a page table other than a ct~ page table.

'Second e.lii Fetch (Same as PTW above)

Fetches the nekt PTW frOID a page '-able oth-er than a ~g page
table during hardware prepaging for certain Jninterruptable EIS
instructions. This cycle d.oes ~1 load t~e next PTW into the
Appending Unit. It merely assures that the PTW is not faulted
(PTW.F = "1") and that the target page wltl be in ~ain store when
and if needed by the inst~uctidn.

DescrIptor Segment eI~ Fetch

Fetches a PTW from a ~ page table.

11 0 d I f y u..s.e.Ilt

Sets the page
~ page table.
eye' e.

Hodi fy e.ll

accessed bit (PTW.U) in the PTW for a page in a
This cycle alwavs immediately follows a OSPTW

Sets the page modified bit (PTW.H) in the PTW for a page in other
than a «~~ page table.

REVIEW DRAFT
SUBJECT TO CHANGE
Dc tober, 1975 5-8 AL39

S.I.A&I
A.e.eE.Wl

I __ L-, \
____ .J.IN""Q_/is SD~ In\.-lti _________ _

1
t

1 \

\ SOW A"? 1
\ 1

1 is ~ _~ ____________ __

\ paged? 1
\ 1

I Yes
t

J
OSPTH I

T J
t

I \
lIs se 9 \-1'UL-____ _
\ paged? 1

\ _I

I Yes
---*---

1 \

t
J
I FANP
l ____ -.L

lis PTW In\.J:UL___ •
&.-___ ,--L \ PTHAH? 1 J EHa APPEND

t
1 \

I DSPTW.U _~NQ __ _

\ set ON? 1
\ I

a Yes
a
J

I

---*--
I I
I HOSPTW.
L I

1<-----------+
t

PSDW

t

NSDW

\ I __ ~t ____ _

Yes t PTW;Loaal
: PTWAH I 1 ______ ...

1<-------------+ . -
I \

I Prepage \-I.tt:i ___ _
\ Mode? 1 I

\ 1 _~t~ __ _

I No
J
I

I
I PTW2
1 ____ ...

+------------------------>. I <-------------t
t I

•
I \ Load

SDNA" I STR-OP &\-IJlL __
\ PTW.H=O 1

I \ 1

+---------t I
I No

•
I \

___ ~I PTW from\
I \ store & I

____ ~t_ \PTW.U:QI

HPTW;Setl
PIW,U--1

I
I
I
I

t
t I
1 HPTW;SetJ
1 PTW.H & I
J PTW.U :
1_ J

+------------->1<-------------+
t

FAP

Notel A STR-OP Is any Processor function
that ~rites data to main store.

I
t

E1:lD. APPEND

REVIEW DRAFT
SUBJECT TO CHANGE
October, 1975

Figure 5-~ Appending Unit Operation Flowchart

5-9 AL39

The Segment Oe~criptor Word (SOW) pair contains infcrmation necessary to
control the access to a segment bV a process. The SOW for a segment is
constructed from data in the directory entry for the segment and i~ the System
Segment Table (SST) when the segment Is initiaTed by the p·ocess. The SOW for
segment D (unique within the process) is placed at offset aD in the Descriptor
Segment (~~9) of the process.

o
--'L
I
I
I

ADOR

o 0 111 1 1 1 2 2 2
~~~1 ____ . __________ . __________ ~4~5_~-Z-1-9 D 1 2 
II l11J1111 
101 BOUND :RIEIWIPIUIGICI 
~1~1 ________________ . ____________ ~;~I-1-1 J J J I 

1 14 1 1 1 1 1 1 1 

2 2 
3 !t 

I 
I 
I 

21t 

2 2 2 
g Z - 3 

I a 
Rl • ~2 I . 

J 
3 3 

Figure S-S Segment Descriptor Word (SOW) Fo~mat 

lltig:lDtioo 

3 3 3 3 
a z ;5 !t . . . • 

R3 1Ft 
I I . 

3 1 

3 
~ 

I 
Fel 

2 

3 
5 

1,. 

J 

I 
J 
f 

AOOR 24 bit base address of segment (U=l) or segment page tab'e 
(U= 0). 

Rl highest effective read/write ring. 

R2. highest effective read/execute ring. 

R3 highest effective call ring. 

F 

Fe 

BOUND 

R 

REVIEW DR"FT 
SUBJECT TO CHANGE 
October, 1975 

directed fault indicator. 
1 = the necessary unpaged segment or segme,t page table is in 

memory. 

o = eKecute the directed fault specified in FC. 

the number of the directed fault (OFO-OF]) to be executed if 
F=D. 

largest 16-word oJock number that may be accessed without 
causin9 an Access Violation, Out of Segment BoundS Fault. 

read permission bit. 

S-10 AL39 



w 

p 

u 

G 

C 

Cl 

Qug:iot iOQ 

eXECute permission bit. (XEC , XED exclude~) 

"rite permission bit. 

privileged mode bit. 
o = privileged instructions cannot be executed. 
1 = privileged instructions may De executed if in ring O. 

paged/unpaged bit. 
o = segment is paged and AODR is the address of the page 

table. 
1 = segment is unpaged and AOOR is the base address of the 

segment. 

gate indicator bit. 
o = any call from an external segment must be to an offset 

less th3n the value of el. 
1 = any legal segment offset may be called. 

cache control bIt. 
o = words (operands or instructions) from this segment may not 

be placed in the cache. 
1 = words from this segment may be placed in the cache. 

call limiter. 
Any external call to thiS segment must ~e to an offset less 
than Cl If G=O. 

fag' Ia~Hord 'PI")-E~ 

The Page Table Word (PIW) contains location and status information for a 
page of a paged se~ment. The PTHs for a paged segment are copied from the 
directory entry file map for the segment into the Page Table Word Array (PINA) 
of a free area in the Active Segment Table (AST) area of the SST "hen the 
seg.ent Is first initiated by a process~ Subsequent initiations by other 
proceSses reference the exjstin~ PIWA. 

o 
Q 

Fie I d t:!.ajlU~ 

AODR 

REVIEW DRAFT 
SUBJECT TO CHANGE 
Oct 0 b er, 1975 

1 1 2 Z Z 2 2 222 2 333 333 
_______ ._47_8~_._....1_'2_;I_L2_LL8. CJ Q 1 2 :5 4 5 

AOOR 
I I_I I a 1 I I I I : I. t 
I DID swaPIO OIUIO DIMIQ1WISIFI FCI 

_________________ ---1 ________ '~I __ J ___ 1_1___1_J I J I I I 

18 4 1 1 Z 1 2 1 1 1 1 1 Z 

Figure 5-6 Pa~e Table Word (PTW) Format 

18 bit modulo 64 page address if page is i~ store, 
su: 
18 bit record nu~ber of page if page is not in store. 

The hardware ignores low oroer blts ~f the in-store page 
address according to page size based on the folloRing ••• 

5-11 AL:5c) 



DID 

W 

p 

U 

" 
Q 

W 

S 

F 

Fe 

REVIEW DRAFT 
SUBJECT TO CHANGE 
Oct 0 b er, 1975 

D.~cclQtlSlD 

device id 

1 = page 

temporary 

1 = page 

1 = page 

1 = page 

1 = page 

1 = page 

1 = page 
0 = page 

directed 

Page Size 
.lIL~~ 

&'+ 
126 
Z5& 
512 

102ft 
201,8 
409& 

ADDR Bits 
.i.9Cl~~g 

none 
11 

16-11 
15-11 
1'+-11 
13-17 
12-17 

for device containing the page. 

has not ye t been wr i tten out. 

bit used in post_processing. 

has been used. (t-ouched). 

has been modi' .led. 

has been used during the ~uantuli. 

is w~red. 

Is out of service (1/0 1n p,..ogress). 

is in store. 
not in store. Execute directed f a.J I t 

fault number for page fault. 

5-12 

Fe. 

Al39 



SECTION VI 

EFFECTIVE ADDRESS FORMATION 

The Effective Address in the Mu'tics Processor Is the user·s specification 
of the location of a data item in the Multics Virtual Hemorv. Each reference to 
the Virtual Memorv for operands. indirect words. indirect pointers, Operand 
Descriptors, or instructions must proviae an Effective Address. The hard~a~e 

and the operating system translate the Effective Address into the true location 
of the data item and assure that the data item is in main store for the 
reference. 

The Effective Address consists of two parts. a segment number and an 
offset. The value of each part is the result of the evalJation of a hardware 
algorltha (expression) of one or more terms. The selection ~f the algorIthm is 
made, bV the use of control bits in the Instruction Word; namelv, bit 29 for 
segment number modification and the Address Modification (or TAG) field for 
offset modification. If the TAG field of the Instruction Wo-d specifies certain 
"indirect- modifications, the TAG field of the In~irect Worj Is also treated as 
an Address Hodifier. thus establiShing a continuing Mindirect chain". Bit 29 of 
an Indirect Word has no meaning in the context of Address Hojification. 

The results of evaluatIon of the Address Modification algorithm are stored 
in temporary registers used as working registers bV the Pro:essor. The segment 
numDer is stored in the Temporarv Segment Register lTPR.TS~). The of fset is 
stored in the Computed Address Register (TPR.CA). When each Effective Address 
computation has been completed, the C(TPR.TSR) and the C(TPR.CA) are presented 
to the Appending Unit for trans'ati~n to a Z~-bit flnal Add-ess (See Section V, 
Addressing --Segmentation and Paging). 

There are two types of Effective Address formation. The first type does not 
make expl lcit use of segment numbers. The algorithm selecte~ produces a value 
for C(TPR.CA) only. The segment number In C(TPR.TSR) does not changp. and is the 

segment rumber used to fetch the instruction. In this case, al I references are 
said to be "local" to the procedure segment as held In C(PPR.PSR). 

The second type makes use of a seyment number stored either in an IndIrect 
Word-pair in main store or in a Pointer Register (PR.n). The algorithm selected 
produces values for Doth C(TPR.TS~) and C(TPR.CA). The segment number In 
C(Tf'R.TSR) m..a~ change and, if it changes,references are s~ld to be '"external
to the proceaure segment as held in C(PPR.PSR). 

REVIEW ORJlFT 
SUBJECT TO CHANGE 
October. 1975 6-1 AL39 



The t~o tvpes of Effective Address formation can be intermixed. In cases 
where Effective Address calculations are chained toget,er thro~gh Pointer 

'Registers or Indirect Words, each Effective Address is translated to a 24-bit 
final address to fetch the next item in the chain. 

This description of Effective Address 'ormation is divided Into t~o parts 
corresponding to the two types. The first part describes the type that involves 
onlv the offset value CCTPR.CA). The segm.nt number C(T~R~TSR) Is assumed 
constant and equal to C(PPR.PSR). 

The second part describes the type that involves both the segment nu~ber 
CCTPR.TSR) and the offset C(TPR.CAa. 

The Address ModifIcations described here produce values for CCTPR.CA) only. 
The segment number C(TP~.TSR) is assumed constant and eQual to C(PPR.PSR). 

Bits 30-35 of an Instruction Hord or Indirect Word constitute the Address 
Modifier or ~AG field. The format of the TAG field isl 

333 3 --Ll-J
2 
_____ 

5
_ 

I J I 
J Tml Td J 
J I I 

Figure 0-1 Address Modifier (TAG) Field For~at 

Tm 

Td 

[ynction 

The "modifier- field; specifies one of four general types of 
offset modification. 

The "designator- field; specifies a register nu~ber or an 
Indirect Then Tal Iv variation. 

i~eral Tvpe~~~-HQdifica~D 

There are four general types of offset modification: Register, Register 
Then Indirect, Indirect Then Register, and Indirect Then T311y. The general 
types are described In Table &-1 belo~. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 &-2 AL39 



Each Effective Address for~ation for an operand begins ~ith a preliminary 
step of loading TPR.CA with the ADDRESS field of the Instruction Word. This 
preliminary step takes place durin~ instruction decode. The va1ue loaded into 
TPR.CA is symbolzied by NyU in the descriptions fol lowIng. -

Table 6-1 General Offset Modification TYD!S 

Til 
1l..illu.J. 

o 

1 

2 

J 

H~rtiller t"pe 

Register (R) 

Register Then 
Ind irect eRU 

Indirect Then 
Ta I I y (IT) 

Indirect Then 
Register (IR) 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

The contents of the designated 
added to the current Computed 
modified Computed Address. 
comple~entt modulo 2··18 anj 
possible. 

register, Td, are 
Adjress to form the 
Addition is two·s 

overflOM is not 

The contents of the designated register, Td, are 
added to the current Computed Address to form the 
mOdified Computed Address as for Register 
modification. The word at C(TPR.CA) is then 
fetched and interpreted as an Indirect Hord. The 
TAG field of the Indirect Horj specifies the next 
step in Effective Address formation. The use of 
du or dl as the designator In this lIIodi f icat ion 
type will cause an Illegal Procedure, Illegal 
Hodif i er Faul t. 

The Indirect Word at C(TPR.CA) is fetched and the 
modification performed according to the variation 
specified in Td amd the contents of the Indirect 
Word. This modification ty~e allows automatic 
incrementing and decrementing of addresses and 
t a I I y c ou n tin g. 

Tne register designator, Td, is safe-stored in a 
special holdin) register (CT-iOLO). The word at 
the current CITPR.CA) is fetched and interpreted 
as an Indirect Word. The TAG field of the Indirect 
Word specifIes the next step in Effective Address 
formation as follows: 

If Indirect 
lAL.U.L thiul!. 

R or 
IT 

Perform Register modificatIon using Td 
from CT-HOLO. 

RI Perform the .Register Then Indirect 
modific~tion immediately and fetch the 
next Indirect Word f~om the result of 
that modification. 

IR Replace the safe-stored Td value In 
C T- P.OLD with the Td va I ue of the 
Indirect Word TAG fIeld and fetch the 
next Indirect Word from the ADDRESS 
given in the Indirect Hord. 

6-3 ALJ9 



The algorithmic flowc~arts depicting the Effective Address formation 
process are scattered throuqhout this section and are link!d together with -Go 
to" labels. The flowchart starts ~ith Figure 6-2 below. 

I 
I Tm:R 

• Go to 
SIARI 
& mm 

(Figure 6-3) 

J 

iI.AfU EA 
J 

---*.--
I \ 

, Interpret \ 
\ Tm I 
\_----, 

J 
t 

I Tm:RI 

• 
I Tm=IT 

• Go. to Go to 
llAJil 
Rl !.1211 

(Flgure6-ItJ 

SlAfll 
1.I H.Q.Il 

(F igure 6-5) 

I 
I Tm=IR 
t 

Go to 
s.I!fU 
1& 1tilD. 

(Figu-e &-&) 

Figure 0-2 Co~mon Effective Address Formation Flowchart 

RegiSter (R~ificat'Qn 

) 

In Register modIfication (T~ = 0) the value of Td deSignates a register 
whose contents are to be added to C(TPR.CA) to form a modified C(TPR.CA). This 
modfied C(TPR.CA) becomes the Effective Address of the opera~d. See Table 6-2 
and Figure 6-3 below for details. 

EXAMPLESI 

La..b.JU 

1. a 

2. a 

3. a 

4. a 

5. a 

6. a 

7. a 

8. a 

REV lEW ORAF T 
SUBJECT TO CHANGE 
October, 1975 

lotlI:.u.~.tiJm 

• dd 'I 

sta '1,n 

'daQ '1,au 

tra 3.ic 

I dQ v,du 

.x14 v,dt 

mpv '1,1 

stx4 '1,7 

E 11 s:~! ,&l.:s: A..Q~5.~ 

'I 

'I 

'I + CIA)O,17 

a + 3 

'I ; operand has the form 

zero 'I,D 

'I; operand has the form 
zero 0,'1 

V + C(X1) 

y + C(X7) 

AL39 



Table 

(NOTE a AU examples 

Td Register 
.ll.alw: s.H."-.te.d. 

0 none 

1 AO,17 

2 QO.17 

3 none 

tt PPR.IC 

S A18,35 

& Q18,35 

7 none 

10 XO 

11 Xl 

12 X2 

13 X3 

lit X4 

15 X5 

1& X& 

17 X7 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

6-2 Register Modification Decode 

start w Uh the preliminarv step, V -> C(TPR.CA» 

Coding Effective 
t1D~mgal" A.~~ 

n or null ., 
au V + CfA)O,17 

QU V + C(Q)O,17 

du y; V becomes the uppe- 18 bi ts of 
the 3&-bit zero filled operand 

lc V + C(PPR.IC) 

at V + C(A)18,35 

QI V + C(Q)18,35 

dl v; y becomes the 10Me- 18 bi ts. of 
the 3&-bit zero filled operand 

0 or xO V + C(XD) 

1 or xl V + C(Xl) 

Z or x2 V + C(Xl) 

3 or x3 ., + C(X3) 

4 or x4 V + C(X4) 

S or xS V + C(XS) 

6 or xo y + C(X6) 

7 or x7 ., + C(X7) 

&-5 Al39 



ilA.&l 
& rulD. 

I 
t 

I \ __ lJ:.s._, T d = 0 ? \ 
I \ I 
I \ I 
I 
I No 
J __ ~t __ _ 
I I \ 
I 'Td=3 \_l.e.s.-_______ _ 
I \ or 71 I 
I \ I 
I I 
S J No 
I --1-______ __ 
I S 
1 I c:.=Td 
I I Eff. Addr. = 
a I C(TPR.CA) + CCr:J 
J 1 
I 

I _______ t. 

Set Direct Operanj Flag 
Forll Operand 

+----------->1<---------------------------+ • EtiD. EA 

Figure &-3 Register "odification Flowchart 

Register Tb~~1-i&ll Modif i Ca1i2Q 

In Register Then Indirect modification (Tm = 1) the vatue of Td designates 
a register whose contents are to be added to C(TPR.CA) to form a modfled 
CCTPR.CA). This modified C(TPR.CA) Is used an as Effective Address to fetch an 
Indirect Word. The ADDRESS field of the Indirect Word is loa~ed into TPR.CA and 
tbe TAG field field of the Indirect Word is interpreted in t~e next step of an 
indirect chain. The TALLY field of the Indirect Word is ignored. 

The indirect chain continues until an Indirect Word TAG field specifies a 
modificatIon without indirection, namely, a RegIster modifIcation. 

The coding mnemonic for Register Then Indirect modification Is c· where c:. 
is any of the coding mnemonics for Register modification as given in Table 6-2 
above except du and dl. The du and dl register codes a~e illegal and will cause 
an Illegal Procedure, Illegal Modifier fault. See flowchart in Figure &-4 
below. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 6-& AL39 



EXAMPLES' 

J..aCUll 

1. 8 
b 

2. a 
b+C(X11 

3. • .... 
C 

It. a 
b.C(XO) 
c+CCX1) 

lns..ll:J.t,.lJ.JlD 

Ida b.· 
erg y 

I dQ b.l· .,..g v,au 

tra Ittlc· 
arg Ct· 
8rg V 

Ix'lt btO. 
arg c.l· 
erg v.dl 

I \ 

y 

v + C(A)O,17 

v; operand has the for. 
zero OtV 

I Td=l \-.:£1.1-. ____ _ 

\ or 71 I \._--' 
I 
1 No • , \ 

I 

• AB.QU 
II legal Procedure. 

Illegal Hodifier Fault 

I Td=O? \-HQ~ __________ __ 
\ , 

\ , I 
t 

I I 
I Yes C=Td I 
J E f f. A ddr. = 1 
I CCTPR.CA) + CCc.) I 
I I 
J a 

J<-------------------+ t 
J I 
I Indirect Word I 
I Fetch I 
I APPEND CYCLE I 
I (Figure 5-". I 
! 1 

1 

• Go to 

~lAJU EA. 
CF igure 6-2) 

• 

Figure 6-" Register Then Indirect Modification Flowchart 

REVIEW DRAfT 
SUBJECT TO CHANGE 
October. 1975 6-7 ALl9 



Indirec1-lh~~~c-1lRl Modifica~ 

In Indirect Then Register modification (Tm = 3» the value of Td deSignates 
a register whose contents are to be added to C(TPR.CA) to fo~m the final modfied 
CCTPR.CA) durin1 the last step in the indirect chain. The value of Td is 
safe-stored in a special holding register, CT-HOLD. The inital CCTPR.CA) is 
used an as Effective Address to fetch an Indirect Wo~d. The ADDRESS field of 
the Indirect Hora Is loaded Into TPR.CA and the TAG field field of the Indi~ect 
Word is interpreted in the next step of an indirect chain. The TALLY field of 
the Indirect Word is Ignored. 

If the Indirect Word TAG field specifies a Register Then Indi~ect 
modification, that modifIcation is performed and the indirect chain continues. 

If the Indirect Word TAG fIeld specifies Indire:t The~ Register 
modification, the Td value from that TAG field replaces the safe-stored Td value 
in CT-HOLD and the indirect chain continues. 

If the Indirect Word TAG specfies Register or I~direct Then Tal IV 
modification, that modification is replaced with a Register modification using 
the Td value safe-stored in CT-HOLD and the indirect chain e~ds. 

The coding mnemonic for Indirect Then Register modification is·C ~here C 
is anv of the coding mnemonics for Register modification as given in Table 6-2 
above except DYll. 

EXAMPLESI 

L.ab.JU 

a 
b 

a 
b 

3. a 
b 
c 
d 

4. a 
b+C exu 
c 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 

l~~tl.J...o.n 

Ida b,·n 
arg "1,2 

I x 12 b,·dl 
sta y,au 

Ida b,·1 
arg c,n· 
arg dt·" 
arg y,ql 

IdxQ b,l· 
arg c,·lc 
arg 5, d I 

Effecti~A~~~~~ 

(CT-HOLD = n) 
V 

eCT-HOLD = dU 
y; operand has the f:>rm 

zero 0, y 

(eT-HOLD = xU 

eCT-HOLD = x4. 
y + CeX,.) 

eCT-HOLD = Ie) 
a + 5 

6-8 AL39 



lliRl 
LR t1Wl 

I 
t -

I a 
J Td -> CT-HOlO I 
L- 1 

I 

+----------------------------->J 

I 
1 TII=RI 
t 

______ ~t~_______ 
I I 
I Indirect Word I 
1 Fetch 1 
I APPEND CYCLE I 
J (Figure 5-4) I 
.1- 1 

I 
t 

I \ 
I Interpret \ 
\ Indirect TAG I 

\ --' 
t 
1 
I Tm=IR 

• I 1 Go to 
I C=Td J 
t Eff. Addr. = I 
I C(TPR.CA) + C(C) J J 1-_____________ --1 

1 J 

t------------t 

SliBl. 
1& tum 

Tm=R or IT 
t 

r:.=CT-HOlD 
Eff. Addr. = 
C(TP~.CA) + c(c) 

t 

• . EtiIl .fA 

Figure 6-5 Indirect Then Register Hodification Flowchart 

Indirect Th~11L.1.I..lLt1~~SlO 

In Indirect Then Tally modification (Tm = 2) the value of Td specifies a 
variat 100. The lnital ClTPR.CA) is used an as Effective Address to f etch an 
Indirect Word. The Indirect Word is interpreted and possibly altered as the 
modification is performed. 

The TALLY field of the Indirect Word is used to cOJnt ~eferences made to 
the Indirect Word. It has a maximum range of ~D9o. If the TALLY field haS the 
value 0 after a reference to the Indirect Word. the Tally Ru~out indicator wi'l 
be set ON. otherwise the Tally Runout indicator will be set OFF. The value of 

the TALLY fIeld and the state of the Tally Runout indIcator have no effect on 
Effective Address formation. 

WARNINGI If there Is ~ore than one Indirect Hord in an indi-ect chain t~at is 
refer.nced by a tally counting modification. o~ly the state of the 
TALLY field of the last Such word will be refle=ted in the Tally 
Ruoout indicator. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
Oct 0 b er 9 1975 6-9 Al39 



The variations of the Indirect Then Tally modification are given In Table 
6-3 below and explained in cetait in the paragraphs fo'loMin~. See floMchart In 
figure 6-6. Those ent r i es given as ··Undef i ned·· cause a" II I ega I Procedure t 
Illegal Modifier Fault. (See "Effective Address Form~"on Involving Both 
Segment Number and O'fset~ later in this section for certain special cases.) 

Table 6-3 \lar1at10ns of Indirect Then Tally Hodification 

Td Coding 
~ H.o~k. ~su::.i.at..i...suLtin.e 

0 fl Fau.t Tag 1 

1 Undef lned 

2 Undefined 

3 Undefined 

It sd Subtract Delta 

5 scr Sequence Character Reverse 

6 fZ Fault Tag 2 

7 f3 Fault Tag 3 

.. 10 ci Character Indirect 

11 i Indirect 

12 sc Sequence Character 

13 ad Add Delta 

1,. di Decrement Address, Increment Tally 

15 dic Decrement Address 9 Increment Tally, and Continue 

16 id Increment Address, Decrement Ta II y 

17 idc Increment Address 9 Decrement Tally, and Contin~e 

Fault Tag 1 (Td = 0) 

Effective Address formation is terminated immediately and a Fault Tag 
1 Fault is generated. A Fault Tag 1 Fault e~ecutes the Fault Trap 
pair at C + & where the value of C is obtained from the FAULT BASE 

sMitches on the Processor Configuration panel. 

This variation may be used in Indirect Word ~r program control 
transfer vectors or tr-ee structures to signal inval id entries or 
entries that require special handling. CCTPR.CA) at the time of the 
fault contains the Effective Address of the word =ontaining the Fault 
Tag 1 modif ication. Thus, the ADDRESS and TALLY fieldS of that word 
may contain information relative to recovery from the fault. 

REV lEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 &-10 AL39 



Subtract Delta (Td = ft) 

Sequence 

The TAG field of the Indirect Word Is Interpreted as a 6-blt. 
unslQned, positive address increment value, a~. For each reference 
to the Indirect Word, the ADDRESS field is reduced Dy ~~la and the 
TALLY fieid is increased bv 1 ~~ the Effective Address is for~ed. 
ADDRESS arithmetic is modulo 2··18. TALLY arithmetic is modulo ~09&. 
If the TALLY field overflows to Ot the Tallv Runout indicator is set 
ON, otherwise it is set OFF. The Effective Address is the value of 
the modified ADDRESS field. 

EXAMPLE: 

Reference Effective Ta' I y 
LiibJU 1~1I:J.ltl.1sm CJwo.1 A.g~r::e~~ ~ 

a Ida b,ad 1 c-d t+1 
b vfd 18/c.12/t,&/d 2 c-2d t+2 

3 c-3d t+3 

0 c-nd t+O 

Character Reverse CTd = 5) 

Bit 30 of the TA~ field of the Indirect Word is interpreted as a 
character size flagt tn, with the value 0 indlcatl~g &-bit characters 
and the value 1 indicating 9-bit characters. Bits 33-35 of the TAG 
field are interpreted as a 3-bit character position counter, kl. Bits 
31-32 of the TAG field must be zero. 

For each reference to the Indirect Word. the character counter, kit is 
reduced by 1 and the TALLY field is increased bv 1 k~ the 
Effective Address is formed. Character count arithmetic is modulo 6 
for 6-bit characters and modulo ~ for 9-bit characters. If the 
character count. ki, underflows to -1, it is -eset to 5 for &-bit 
characters or to 3 for 9-~lt characters and ADORESS is reduced by 1. 
ADDRESS arithmetic is modulo 2··18. TALLY arithmetic is modulo ~09&. 
If the TALLY field overflows to O. the Tally Runout indicator is set 
ON, otherwise it is set OFF. The Effective Add-ess is the modified 
value of the ADDRESS field. 

A 36-blt operand is formed bv high-order zero filling the value of 
character ~l of ADO~ESS with an appropriate number of bits. 

EXAMPLES. 

Reference Effective Ta It Y 
LabJU lo.U~~ ~~ d "s1r:..tn Ul.w: {lQi:CilDs:2 

a Ida b,scr 1 2 c+1 t+1 00 ••• 0"1-
b vfd 18/c+l,12/t,1/D,5/2 2 1 c+l t+2 OO ••• O··H" 
c bcl "ABCDEFGHIJKL- 3 0 c+l t+3 OD ••• O-G-

It 5 c t+~ OO ••• O"F" 

5 It c t+5 OO ••• O"E" ... 
a Ida b,scr 1 2 c+1 t+1 OO ••• U··g" 
b vfd 1~/c+l,12/t,1/1.5/2 2 1 c+1 t+2 OO ••• O·f" 
c ac i ··abcdefgh" J 0 c+l t+J OO ••• O"e" 

~ 3 c t+4 OO ••• O"d-
5 2 c t+5 OO ••• O"c" ... 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 &-11 AL39 



Fault Tag Z CTd = &) 

The action for this va~iation is identical to that for Fault Tag 1 
except that the Trap Pair at C + 60 (octal) is executed. 

WARNINGI Fault Tag Z Is reserved to the Multics operating system for use in the 
Dynamic Linking feature. Its attempted use for ot~er purposes could 
cause serious system inconsistencies and/or system crashes. 

Fault Tag 3 'Td = 7) 

The action for this variation is identical to that for Fault Tag 1 
except that the Trap Pair at C + &2 (octal) Is executed. 

Character Indirect (Td = 10) 

Bit 30 of the TAG field of the Indirect ~ord is interpreted as a 
character size flag, 1n, with the value 0 indicating &-bit characters 
and the value 1 indicating 9-bit characters. Bits 33-35 of the TAG 
field are Interpreted as a 3-bit character position value, ~1. Bits 
31-32 of the TAG fIeld must be zero. 

If the character pOSition value is greater than 5 for &-bit characters 
or greater than 3 for" 9-01t characters, an Illegal Procedure, Illegal 
ModifIer Fault will occur. The TALLY field is Ignored. The EffectIve 
Address is the value of the ADDRESS field. 

A 3G-blt operand is formed by high-order zero filling the value of 
character ~ of ADDRESS with an appropriate number of bits. 

EXAMPLES. 

LaJull lnllCl.l.c...t..UD QAttaOA 

a Ida b,ci 
b vfd 16/c+l,lZ/O,1/0,5/Z 00 ••• 0"1" 
c bci ··ABCDEFGHIJKL -

Ida d,ci 
d vfd 18/c,12/0,1/0,5/1 OO ••• O"B" 

Ida e,cl 
e vfd 18/f,12/0,l/1,5/3 00 ••• O"d" 
f acl .oabcdefgh-

Ida gtci 
9 vfd 18/f+1,12/0,1/1,5/0 OO ••• O"e-

Indirect (Td = 11) 

The Effective Address Is the value of the ADDRESS fIeld. The TALLY 

and TAG fieldS are ignored. 

SeQuence Character (Td = 12) 

Bit 30 of the TAG field of the Indirect Word is interpreted as a 
character size flag. 1Q, with the value 0 indicating &-bit characters 
and the value 1 indicating ~-bit characters. Bits 33-35 of the TAG 
field are Interpreted as a 3-blt character position counter, ~1. Bits 
31-32 of the TAG field must oe zero. 

REV lEW DRAFT 
SU~JECT TO CHANGE 
October, 1975 &-12 AL39 



For each reference to the Indirect Word, the character counter, ki. Is 
increased by 1 and the TALLY field is reduced by 1 ~11~ the Effective 
Address is formed. Character count arithmetic ii modulo & for ~-bit 
characters and modulo ~ 'or 9-bit characters. If the character count, 
,,1, overf lows to b for &-bi t characters or to ,. fo'" 9-bi t char'acters. 
it Is reset to 0 and ADD~ESS is increased bv 1. ADDRESS arithmetic is 
modulo 2 •• 18. TALLY arithmetic is modulo ,.Oq&. If the TALLY field is 
reduced to 0, the Tally RUDout indicator is set ON, otherwise it 15 
set OFF. The Effective Address is the original unmodified value of 
the ADDRESS field. 

A 3&-blt operand 15 formed by high-order zero f111ing the value of 
character kl of ADDRESS with an appropriate n~mber of bits. 

EXAMPLES' 

Reference Effective Talty 
Lilb..li InUryctiQn ~ k1 ~~ ~ Qperand 

a Ida b,sc 1 It c t-l OD ••• O"E" 
b vfd 18/c,lZ/t,1/O,S',. 2 5 c t-z 00 ••• 0 ··F-
c bcl "ABCDEFGHI~KL - 3 0 c+l t-3 OO ••• O··G-

4 1 c+1 t-4 OO ••• O"H-
5 2 c+l t-5 00 ••• 0"1-... 

a Ida b,sc 1 2 c t-1 00 ••• 0 "c" 
b vfd 18/c,lZ/t,1/1,5/2 2 3 c t-2 OO ••• O··d" 
c acl "abcdef gh- 3 0 c+l t-3 OO ••• O-e" 

4 1 c+l t-4 OO ••• O"f-
5 2 9+1 t-5 OO ••• O"g" ... 

Add Delta (Td = 13) 

The TAG flelj of the Indirect Word is interpreted as a 6-blt, 
unsigned, positive address increment value. ~~. For each reference 
to the Indirect Word, the ADDRESS field is increased by ~la and the 
TALLY field Is reduced by 1 a1~ the Effective Address is formed. 
ADDi(ESS arithmetiC is modulo 2··18. TALLY arithmetic is modulo ItOQ6. 
If the TALLY field is reduced to 0, the Tally Runo.Jt indicator- is set 
ON, otherwise it 15 set OFF. The Effective Add·ess is the value of 
the original unmodified ADDRESS field. 

f.XAHPLEI 

a 
b 

I~tryctlQn 

Ida b,ad 
vfd 18/c,1/t,6/d 

Decrement Address, Increment Tallv (Td : 14) 

Reference 
~iUm.1 

1 
2 
3 

D 

Effecti.ve 
~ddress 

c 
c-d 
c-2d 

c- (0-1) d 

Ta I I V 
~ 

t-1 
t-2 
t-3 

t-o 

For each reference to the Indirect Word, the ADDRESS field is reduced 
Dy 1 and the TALLY field is increased Dy 1 ~~~ the Effective 
Address !S formed. AOD~ESS arithmetic is mOjulo 2··18. TALLY 
arithmetic is modulo ,.09&. If the TALLY field overflows to 0, the 
Tallv Runout indicator is set ON, otherwise it is set OFF. The TAG 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1915 6-13 AL39 



field of the Indirect Word is gnored. The Effective Address is the 
value of the modified ADDRESS field. 

EXAMPLE' 

Reference Effective Tally 
Lab..tl I.~truc tion ~Wll a11.ar:~~ ~1wt 

a Ida b,di 1 c-l t+1 
b vfd 18/c,12/t 2 c-2 t+2 

3 c-3 t+3 

Q C-n t+.o 

Decrement Address, Increment Tally, and Continue (Td: 15) 

The action for ~hls variation is identical to that for the Decrement 
Address, Increment Tally variation except that the TAG field of the 
Indirect Word uinterpreted and continuation of the indirect chain Is 
possible. If the TAG of the Indirect Hord invokes a register, that 
is, specifies R, Rt, or IR modIfication, the effective Td value for 
the reglste~ is force~ to Mnull" before the next Effective Address is 
formed. 

Increment Address, Decrement Tally (Td : 16) 

for each reference to the Indirect Word, th! ADDRESS field is 
increased by 1 and the TALLY f·leld is reduced by 1 il.U..tt the Effective 
Address is formed. ADDRESS arithmetiC Is mojulo 2·.18. TALLY 
arithmetic is modulo 409&. If the TALLY field is reduced to 0, the 
Tally Runout indicator is set ON, otherwise it is set OFf. The TAG 
field of the Indirect Word is ignored. The Effective Address Is the 
value of the original unmodified ADDRESS field. 

EXAMPLE' 

Reference Effective Tall V 
LatLU Instryction CJwnl lddtes$ ~ 

a , da b,id 1 c t-1 
b vfd 18/c,1/t 2 c-1 t-2 

3 c-Z t-3 

II c-(.o-1) t-.o 

Increment Address, Decrement Tally, and Continue (Td : 17) 

The action for this variation is identical to that for the Incre~ent 
Aodress, Decrement -Tallv variation except that the TAG field of the 
Indirect Word ~ interpreted and continuatIon of the indirect chaIn Is 
possIble. If the TAG of the Indirect WorG invokes a register, that 

is, specifies R, RI, or IR modIfication, the effective Td value for 
the register is forced to "nul I" before the next Effective Address is 
formed. 

RlVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 AL39 



SlUl 
11 Mil 

1 
Illegal Procedure, 

Illegal Hodlfier Fault 
!.Wl&l 

__ L--, \ 
I I nter-pret , 
\ Td ~ 

f au·' t Tag 1, 2. 
or 3 Fau' t 
~l 

r T 
I T d=unde f 

+--------->1 (1,2,3) 
,-----, 

I 
I Td=fl,fZ,f3 
1(0,6,7) 

J t _-1. 
a I I 
I Td=ci,sc,scr 
I (10,12.5) 

I Td=i,ad,sd,di,ld I td=dlc.ldc 
a (11,13''',14,1&) I (15.17) 

t t ____ .---.t ___ _ 

.. I 
Indirect Word J 

1 F etch I 
I APPEND CYCLE I 
J (Figure 5-4) 1 
~~ I 

Indirect Word 
Fetch 
APPEND CYCLE 
(Figure 5-'+) 

Indl"'ect Word 1 
I fetc,", I 
I APPEND CYCLE I 
I (FigJre 5-4) I 
1.___ 1 

I I 
__ ~.__ I 

" I 
1-JiQ._' Legal d' 1 

'value? , I 
,_, I 

1 I 
1 Yes I 
I I 

1<--------------------. 

I 

I 
t 

I TALLY and 
I for-m Eff. 
I Address L-___ -.... 

t , , 
t , lnt erpre t , 

\ Indirect TAG' 
TALLY and " 
form Eff. 1 Addr. as ___________________ • ________ --1 
required I 

I TII=R 
I 

1 <-------------t • .EWl EA 

TII=RI 
• 

1 
Indirect Word I 
Fetch 1 
A PPEND CYCLE I 
(figure 5-'+) 1 

~ ______ -1. 

TII=IR or IT 

+------------> 
t 

;0 to 
ll!UEA 

(Fig.Jr-e 6-2) 

Figure &-& Indirect Then Tally Modification F'o~chart 

E.EE.E..C.IlllLAIlllB..E.S.LE.O.&t1A.I.U N I NV 0 L V I N LaQI.tLSE (j HE NT N W:1aEJLA..tiP Of f SE I 

The second type of Address Formation allows formation of a modified Seg~ent 
Number and a modified Offset simulta~eously. See Figure &-1D. Effective Se9~ent 
Number Generation Flo~chart, for- details. 

RlVIEW DRAFT 
SUBJECT TO CHANGE 
October. 1975 6-15 Al39 



In the foregoing discussion 0' EffectIve Address Formation Involving Offset 
Onlv it "as noted that a preliminary step of loading the ~ODRESS field (y) of 
the Instruction Word into C(TPR.CA) was performed bef~re the specifIed 
modification was carried out. C(TPR.CA) was then used as o~e data inp~t to the 
_odification process. 

If bit 29 of the Instruction Word is set to "1", so-called Pointer Register 
modification is invoked and the preliminary step Is executed as follows. 

1. The ADDRESS fIeld of the Instruction Word is interpretej as show" in Figure 
&-7 below. 

2. C(PRn.SNR) -> C(TPR.TSR) 

3. maximum (C(PRn.RNR), C(TPR.TRR), C(PPR.PRR» -> C(TPR.TRR) 

~. C(PRQ.WORDNO) + OFFSET -> C(TPR.CA) 

o 0 
2 3 

o 
--'L
J J 

PRO I 
I 

J 
1 

3 

1 _____________---1-
OFFSET 

15 

I 
I 
I 

Figure 6-7 Format of Instruction Word ADDRESS When Bit 29 = 1 

After this preliminary step is performed. Effective Address Formation 
proceeds as discussed above or as discussed for the Special ~odifiers below. 

Special Modifiers 

Whenever the Processor Is forming an Append Hode Effective Address two 
special Address Hodifiersmay be specified and are effective under certain 
restrictive conditions. The special Address Modifiers are s~own in Tab'. 6-~ 
beJo" and discussed in the paragraphs follo"ing. 

The conditions for which the speCial Address Modifiers are effective are as 
followSI 

1. The Processor must be forming an Append Mode Effective Address, that is, it 
must be in Append Hode or In Absolute Hode "itn bit 29 set in the 
Instruction Word. 

2. The Instruction Word (or previous Indirect Hord) must s3ecify Indirect Then 
Register or Register Then Indirect modification. 

3. The Effective Address for the Indirect Word must be eve~. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 &-1& AL39 



If any of these conditions is violated. the $pecial Add-ess Modifier ~111 

be interpreted as a normal Address Modifier and wII I cause a~ II legal Procedure, 
Illegal Modifier Fault. 

Table 0-4 Special Append Hode Address ~odifiers 

Coding 
H~ik ~Qdlficati~am~ 

itp Indirect to Pointer 

its Indirect to Segment 

INDIRECT TO POtNTER (ITP) MODIFICATION 

If the condItions above are satisfied, the Processor examines the TAG field 
of the Indirect Word for the value ~1 (octal). If that value is found, the 
Indi.rect Word-paIr is interpreted as an ITP Pointer Pai~ (See Figure &-8 belo" 
for format) and the folJowing actions take placel 

For n = CfITP.PRNUH11 

C(PRn.SNR) -> CfTPR.TSR) 

.axi.um (C(PRD.RNR), C(SOH.Rl), CITPR.TRR») -> C(T~R.TRR) 

CCITP.BITNOl -> C(TPR.TBR) 

C(PRQ.HORDNO) + C(ITP.WORONO) + C(e) -> C(TPR.CA) 

wherel 

z. 

c = C(eT-HOLO) if the 
preceding Indirect 
modification, or 

TAG field of the I~struction 
Ho~d specified Indi~ect Then 

c = C(ITP.MOO.Td) if the TAG field of the I~struction 
preceding Indirect Wo~d specified Register Then 
modification ~ ITP.HOO specifies eithe~ Register or 
Then Indirect modification. 

Word or 
Register 

Word or 
Indirect 
Register 

3. SDW.R1 is the upper limit of the read/write Ring Bracket for the 
Ring segment C(PRa.SNR). (See Section VIII, Hardwa~e 

Implementation.) 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 &-17 AL39 



Even Nord 

o 0 0 2 3 3 
-.Jl Z 3 . _-.!Li ___ --L 
I 1 I J 
: PRNUtU 0 o 0 0 0 0 0 0 0 0 0 0 0 DODO ODD 0 0 0 0 0 0 0: (lt1)8 I 
I I 

Odd 

0 
D 

I 
I 

3 

Word 

Field 
liiUD.Jl 

1 1 2 Z Z Z 
-----1-L-L1 -LZ __ 

I I J 
MORONO 10 0 01 BITNO SO 0 

I I --1 
18 3 6 

Figure 6-8 ITP Pointer Pair format 

I I 
27 & 

Z 3 3 
2 II ~ 

I J 
01 HOD ~ 

J I 
3 6 

PRNUH The number of the Pointer Register through which to make the 
segment refe~ence. 

NORDNO A word offset ualue to be added to C(PRn.MOROHO). 

8ITNO A bit offset ualue for the data itea. 

Any normal Address Hoditier I~ itp or its). 

INDIRECT TO SEGMENT (ITS) "ODIfICATION 

If the conditions above are satisfied, the Processor examines the TAG fIeld of 
the Indirect Word for the value 1t3 (octal). If that value is found, the 
Indirect Word-pair is ihterpreted as an ITS Pointer Pai~ ISee Figure &-9 beloM 
for format) and the folloMing actions take placel 

CIITS.SEGNO) -> CITPR.TSR) 

maximum (C(ITS.RN), CISOW.Rl), CCTPR.TRR» -> CCTPR.TRRJ 

ceITS.SITNO) -> CCTPR.TBR) 

CIITS.NORONO) + elc) -> CCTPR.CA) 

.. herel 

1. C = C(CT-HOLO) If the TAG field of the I~structlon Word or 
preceding Indirect Wo~d specified Indirect Then Register 
modification, or 

2. c = C(ITP.HOD.Tdl if the TAG field of the I~structlon 
preceding Indirect Word specifIed Register Then 
modification ang ITP.HOD specifies either Register or 
Then Indi~ect modification. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1915 &-18 

Word or 
Indi~ect 
Register 

Al39 



3. SOW. Rl is the upper I i ml t 01 the readh .... l te 
segment C(ITS.SEGNO) • (See Section 
Implementation.) 

Even Word 

0 0 0 1 1 2 2 
_L_LL -L4 D 1 
J a t 
10 0 01 SEGNO J RN 1O o 0 0 0 0 0 
.1 I I I 

3 15 .) 

Odd Word 

0 1 1 2 2 2 2 
D Z a a 1 6 Z 

I I I I 
I WORD NO 10 0 01 BITNO J a 
I I I I 

18 3 () 

FIgure 6-9 ITS Pointer Pair Format 

Field 
lUlu HeaDIng 

Ring Bracket for 
VIII. Hardware 

2 3 3 
_9 a ~ 

I I 
0 01 (43)8 I 

- I I 
<1 6 

2 3 :5 
-La. 2 

I I 
0 OJ HOD 1 

I I 
3 6 

SEGNO The number of the segment to be referenced. 

the 
~lng 

.. ORONO Word of fset to be used in the effective address formation • 

BITNO The bit offset for the data ite •• 

HOD Any valid normal Address Hodlfier. 

The detaIls of Effective Segment Number generation are shoMn in the 
flowchart in Figure 6-10 below. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 6-19 Al39 



~IA!u (S.H 
I __ -.i ___ _ 

I WclS IdSt , 

-I~~I cycle dn , 
I 'Indirect Word I 
I 'J.~1c..!l.1. ___ 1 
I I 
I I No 

I * I I Was it a , 
I I seQuential '_1Q. ___ _ 
I , instruction I J 
I \_L~l~l ____ 1 __ 1---
I a " I I Yes I Is Dit ,_~ ______ _ 
I : \ 29 ON? I I 
I I \ ___ 1 _____ 1 ___ _ 
I I I I 
J I I No I O=C(TPR.CA10.2 
I 1<----------------. I C(PRO.S~R) -> 
I -1_ I C(TPR.TiR) 

I 1---___________ ~ 
C(PPR.PSR) -> I I 

a cnPR.TSR) I I 
L _____ -1 I 

I 

+----------->1 <------------------------------------t 
J 

----*-----
I 

EA CYCLE J 
(F Igure &-2) J 

J __ -i __ 
I \ 

I Indirect \-1~ ______ _ 
, Hord fetch? I 

' _____ 1 

: 
: No 
I 
I 
I 
I 

I 

* I \ 
I RI or IR &. ,_In-____ _ 
, TPR.CA even?1 I 

, I I 

No 
J<------------------+ 

I 
I 
I 

I 

• Go to 
"A .. 

( Fig ur e 0 -lOa» 

I 
t 

~o to 
-e-

(F ig~,.e &-10 a) 

Figure &-10 Effective Segment Number Generation ='oMchart 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October. 1975 &-20 Al39 



"8-
I 

--*-, , 
____ ~Q._I TAG = '..:l~~ 
I 'ITS? , 

-L-_ , __ , 
I '\ 

I TAG = '-Ie~ ________ _ 

J 
t 

C(Y) 3,17 -> 
C(TPR.TSR) 

\ ITP? , 

'--' I 

I ___ L __ _ I C(Y+1)D.17 -> 
~~&a.A&..) __ ..... 

I No 

<-------------~---------t • I , 
, Normal '\ yes 
\ Indirect? , 

n = C(Y)O,2 1 
C(PRn.SNR) -> I 
C (TPR. TS'U I 
C (PRO. WORDNO) +1 
C(Y+1)O,17 -> I 
C(TPR.CA) J 

I 

I 

• I 
J 
I 
J 

'\ , J<-------------------------+<-------------------+ • No Go to 
• SIMI ES.!i 

, \ (Figure 6-10) 
I RTCO '\-1~ ____________ __ 
\ Operand? , 

\ -' 
I 

I 
t 

C(y)3,17 -> 
C (PPR.PRR) I No 

t I C(Y+1)D,17 -> , '\ 1-k1E~~.~I_C~) ____ ~ 
I CAll6 or 
\ Transfer 

\ Operand? 
I 
J No 
t 

I 

\ yes 
I 

J 
J 

________ ~t_____ 2 

I C(TPR.TSR) -> J 
I C(PPR.PSR) I 
I C (lPR, CA) -> I I 

I \ 1. C (ePE, IC1 ____ l J 
I APU data \_u.NQ____ I J 
\ lIIovellent?' I I J 

\-----------, • <----------------------+<---------------------+ 
I 
I Yes 

• Go to 
Execute 

Cyc'e 

• 
ftftl E.S..H 

Figure 6-1Da Effective Segment Number Generation F'ow:hart (Con't.) 

EfEECTI~E_A~~~HAIlQN fOR EllE~INSTRUCIION SEI 

A flowchart of the steps involved in Operand DescriptJr Effective Address 
formation is shown in Figure 6-11 below. The flowchart depicts the Effective 
Address formation for operand ~ as described bv its Modification field, MFh. 
This Effective Address Formation is performed for each opera~d as its Operand 
Descriptor is decoded. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 6-21 Al39 



NOTE 11 

NOTE 21 

I 
t 

SlAlU 
.lIS. fA 

: 
--L-

I , 
_riLl MFJ1.10\-1._t_s ___ _ 
I \ = 1? / 
f \ __ , 

I 
I 
J 
I 
I 
I 
I 
t 
J 
I 
I 

I 

----*----
I 
I ESN CYCLE 
:CFigure ;-10)1 
I J 

I 

----*----I Operand 
1 Descriptor I 
: APPEND CYCLEI 
l.-1E~_.i::.!tll 

J 

1<----------------------+ 
--*-/ , 

______ ~I MFJ1.A~\_~Y&e~$ ______ _ 
\ = 11 , I 

\ _____ , ______ At _____ _ 

I J 
I O=nul. O=C(Y)O.2 I 
1-- ' (NOTE 11--1 

• I 

t--------------+--------------+ -L_ 
/ \ 

___ -X.u.-/HF1s.. RE G\_11 ... o ___ _ 

I \ = 01 I 
t \ __ / _____ ... t ____ _ 

I 
J t:=nul' c.=HFiS.. REG L-____ .A-

I I 

+--------------+--------------+ t 
Form E f f e c ti v t : 
Word/Char/Bit 1 
Address f rom I 
Y, CN. C. B. I 
C(PRQ). C (I:,) I 
(NOTL1..s.2) I 

I 
t 

EtUl 
E.I.S. U 

J 

Figure 6-11 EIS Effective Adress Formation Flo~chart 

The symbol uy" stands for the contents of the AOD~ESS fitld of th~ 

Operand Descriptor. The svmbols "eN" and "C" st3nd for the contents 
of the Character Number fie 'd. The symbol "B" sta,ds for the contents 
of the Bit Number field. 

The algorithms used in the formation of the Effective Hord/Char/Bit 
Address are described in "Character- and 81t~String Addressing" 
fot IOil'lin9. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October. 1975 6-22 AL39 



The Processor represents the Effective Address 0"' a character-· 0,. 
bit-string operand In three different forms as follows& 

1. Pointer Regist.r Form 

NOTE' 

This form consists of a word value (PRn.WOR)NO) and a bit value 
(PRn.BITNO). The word value is the wo,.d offset of the word containing 
the first character 0,. bit of tne operand and the ~it value is the bit 
position of that character or bit within the wo,.d. This form is seen 
when C(PRn) are stored as an ITS Pointer Pair 0,. as a Packed Pointer 
(See "Indirect to Segment (its) Hodification" earlier In this 
Sect ion). 

2. Address Register For. 

This form consists of a word value CARn.WORDHO). a character number 
CARn.CHAR), and a bit value (ARC.BITNO). The word value is the word 
offset of the word" containing the fIrst cha~acter or bit of the 
operand. The character number is the number of tne 9-bit character 
containing the first character or bIt. The bit ~alue is the bit bit 
position within ARO.CHAR of the first character or bit. This for", is 
seen when ClARO) are stored with the Store Address Register Q (SARa) 
instruction. 

3. Operand Descriptor For. 

This fora 1s valid for character-strIng operands only. It consists of 
a word value (ADDRESS) and a character number (CN). The word value is 
the word offset of the word containing the first characte,. of the 
operand and the characte,. numbe,. is the number of that character 
within the wo,.d. This fo,.m Is seen when C(ARa) is stored with the ARC 
to Alphanumeric Descriptor (ARAO) or ARQ to N~meric Descriptor (ARNa) 
instructions. (The Operand Descriptor form for bit-string operands is 
identical to the Address Register form.J 

The terms ·Pointer Regist.r" and "Address Register- both apply to the 
same physical hardware register. The distinction arises fro. the 
manner In which the registe,. is invoked and used and in the 
interpretation of the ,.egister contents. "Pointer Register" refers to 
the regIster as used bv the Appending Unit anj "Address ~eglster
refers to the register as used bV the Deci_al unit. 

The three forms are compatible and may be freelv intermixed. For example, 
PRQ may be loaded in Pointe,. Register form with the Effective Pointer to PRn 
(EPPo) inst,.uction, then modified in Pointer Register form ~ith the Effective 
Address to WordlBit Number of PRO (EAWPn), then further modified in Address 
Register form (assumln~ character size~) with the Add h-Bit DIsplacement to 

Address Register 'A~BD) instruction, and finallv invoKed i~ Operand Jescriptor 
form by the use of HF.AR in an EIS Hultiword instruction. 

Cbaracter- and B~clng A~~~Llibmetic Algorlthm~ 

The arithmetic algorithms 
addresses are presented below. 

REVIEW ORN'T 
SUB~ECT TO CHANGE 
October. 1975 

for calculatIng cha~acte-- and bit-string 
The svmbols "ADDRESS" anj "eN" represent the 

6-23 AL39 



ADDRESS and CN fields of the Operand Descriptor being decodej. "1:,-- and --a .. are 
set according to the flowchart in Figure 6-11 above. If either has the value 
"null". the contents of all fields shown is Identically zero. 

9-BIT CHARACTER STRING ADDRESS ARITHMETIC 

Effective BITNO = 0000 

Effective CHAR = (CN + CeARO.CHAR) + CeC» modulo ~ 

Effective NORDNO = ADDRESS + CCARO.WORDNO) + 
(CN + C(A~n.CHAR) + Cee» I ~ 

6-BIT CHARACTER STRING ADDRESS ARITHMETIC 

EffectIve SITNO 

Effective CHAR 

EffectIve WORONO 

= (<j·C ( ARn. CH AR)' .. 6"C (C) + C (A RD. BITHOn lIIodu 10 9 

= ((9"C(A~.CHAR) + f)-C(C) + C(ARO.BITNO» modulo 3&) I 9 

= ADDRESS + CtARo.WORONO) + 
(9"C(ARn.CHA~) .. o·CCC) + C(ARQ.BIT~O» I 3& 

~-BIT CHARACTER STRING ADDRESS ARITHMETIC 

Effective BITNO 

Effective CHAR 

EffectIve NORONO 

= 4 • (C(ARn.CHAR) + Z-C(C) + C(ARO.8ITNJ)/~) mo~ulo Z + 1 

= 'C9·C(ARn.CHAR) + ~·C(C) + C(ARa.SITNO» modulO 36) I 9 

= ADDRESS + C(ARa.WORDHO) + 
(9"CCARo.CHAR) .. 4"C(e) + C(ARQ.BIT~O» I 3& 

BIT STRING ADDRESS ARITHMETIC 

Effective SITNO 

Effective CHAR 

EffectIve WORONO 

REVIEW DRAfT 
SUBJECT TO CHANGE 
October, 1975 

= (9·C(ARn.CHAR) + 3o·C(e) + CIARO.SITNO») modulo 9 

= «9·C(ARQ.CHAR) + 3o·C(C) + CeARo.8ITN)) modulo 36) I 9 

= ADDRESS + C(ARn.WOR~NO) + 
(9·C(ARo.CHAR) + 30·CCc) + CeARa.8ITNO» I 36 

6-24 AL39 



SECTION VII 

FAULTS AND INTERRUPTS 

Faults and Interrupts both result in an interruption of normal seQuential 
processing, but tnere is a difference in how they originate. Generallv, Faults 
are caused by events or conditions that are internal to the Processor and 
Interrupts are caused by events or conditions that a~e external to the 
ProceSSor. Faults and Interrupts enable the Processor to respond promptly ~hen 

conditions occur that reQuire svstem attention. A uniQue wo~d-pair is dedicated 
for the instructions to service each Fault and Interrupt condition. The 
instruction pair associated with a Fault Is called the Fault Vector. The 
instruction pair associated Mith an Interrupt is called the Interrupt Vector. 

following the detec1ion of a Fault condItion, the Control Unit determines 
the proper time to initiate the Fault SeQuence according to the Fault Group. At 
that time, the Control Unit interrupts normal seQuential lrocessing with an 
Abort Cycle. The Abort Cvcle brings all overlapped and as,nchronous functions 
Mithln the Processor to an orderly halt. At the end of the Abort Cycte, the 
Control Unit initiates a Fault Cycle. 

In the Fault Cycle, the Processor safe-stores the Control Unit Data (See 
Section IV, Program Accessible Registers) into prograD-invisible holding 
registers in preparation for a Store Control Unit (SCU) inst~uction, then enters 
Temporary Absolute Hode and generates an Effective Address f~r the Fau.t Vector 
by concatenating the setting of the FAULT CONTROL switc,es on the Processor 
Maintenance panel with twice the Fault Number (See Table 7-1). This Effective 
Address and the Operation Code for tne Execute Double ((EO) Instr~ction are 
forced into the Instruction Register and executed as an inst-uction. Note that 
the execution of the instruction is not done in a normal Execute Cycle but In 
the Fault Cycle Mith the Processor in Temporarv Absolute Hode. 

If the attempt to fetch and execute the instruction ~air at the Fault 
Vector results in another Fault, the current Fault Cycle is aborted and a new 
Fault Cycle for the Trouble Fault (Fault Number 31) is initiated. In the Fault 
Cycle for a Trouble Fault, the Processor does ~ safe-st~re the Control Unit 

Data. Therefore, it may be possible to recover the condltio~s for the original 
Fault by use of the Store Control Unit (SCU) instructlo~. 

If either of the two instructions in the Fault Vector results in a transfer 
of control to an Effective Address generated in Absotute Hode, the Absolute Hode 
indicator is set ON for the transfer and remains ON thereafter until changed by 
program action. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 7-1 AL39 



If either of the t~o instructions in the Fault vector resut ts in a transfer 
of control to an Effective Address generated in Append Hode (through the use of 
bit 29 of the instruction ~ord or by use of the ltp or itp modifiers), the 
transfer is made In the Normal Hode and and the Processor re.ains in Normal ~ode 

thereaf ter. 

If no transfer of control takes place. the Processor returns to the mode in 
effect at the time of the Fault and resumes normal sequential execution ~ith the 
instruction fol'0"1ng the Faulting instruction (CIPPR.IC) + 1). 

Hany of the Fault conditions are delIberately or inadvertently caused by 
the software and do not necessari Iy involve error conditions. The operating 
supervisor determines the proper actIon for each Fault condition by analyzIng 
the machine conditions at the time of the Fault. Thereflre, it is necessary 
that the first instruction in each of the Fault Vectors be the Store Control 
Unit (SCU) instruction and the second be a transfer to a rOJtine to analyze the 
machine conditions. If a Fault condition is to be intentio~ally ignored, the 
Fault Vector for that condition should contain an SCU/RCU pair referencing a 
unique V-blockS. By use of this pair, the machine conditions for the ignored 
Fault condition may be recovered if the ignored Fault causes a Trouble Fault. 

The Hultics Processor has provision for 32 Faults of which 27 are 
implemented. The Faults are classified into seven Fault Priority Groups that 
roughly correspond to the severity of the Faults. Fault Priority Groups are 
defifted so that Fault recognItion precedence may be estab'is~ed when two or More 
Faults exist concurrently. Overlap and asynchronous functions In the Processor 
allow the Simultaneous occurrence of Faults. Group 1 has the highest priority 
and Group 7 has the lowest. In Groups 1 through 6, only o"e Fau.t within each 
Group is allowed to be active at anyone time. The first FaJlt "ithin a Group 
occuring through the normal program sequence Is the one serviced. 

In Group 7 Faults are saved bv the hardware for eventual recognition. In 
the case of Simultaneous Faults witnin group 1, Shutdown has the highest 
priority, Timer Runout is next, and Connect has the lo~est priority. 

There Is a Single exception to the handling of Faults In Priority Group 
order. If an operand fetch generates a Parity Fault and the use of the operand 
in "closing out" instruction execution generates an Overflow Fault or a" Divide 
Check Fault, these Faults are considered Simultaneous but the Parity Fault takes 
precedence. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 7-2 AL39 



Table 7-1. List of Faults 

OCTAL DECIHAL 
WU1ll£B tiWU1ER l1riE!UUU~ HAr1E fB.I.Q&llX: amJ.~ 

0 0 sdl Shutdown 27 7 
1 1 str Store 10 It 
2 2 mile Haster Hode Entrv 1 11 5 
3 3 f1 Fault Tag 1 17 5 
It It tro TImer R,unout 2& 1 
5 5 cmd Command I) ,. 
& 6 d,. • DeraIl 15 5 
7 7 luf lockup 5 ,. 

10 8 con Connect 25 7 
11 9 par Par ltv 8 It 
12 10 ipr Illegal Procedure 1& 5 
13 11 onc Op Not Complete It 2 
14 12 suI Startup 1 1 
15 13 of. Overf'o" 7 3 
1& lit div Divide Check & 3 
11 15 exf Execute 2 1 
20 16 dfD Directed Fault 0 20 & 
21 11 dfl OI'rected Fault 1 21 & 
22 18 df2 Directed Fault 2 22 & 
23 19 df3 Directed Fau' t 3 23 & 
2ft 20 acv Access Violation 24 & 
25 21 mme2 HasteI' Hode Entry 2 12 5 
26 22 mme3 Haster Hode Entry 3 13 5 
27 23 mile" Haster Hode Entrv ,. lit 5 
3D Zft 12 Fault Tag 2 18 5 
31 25 13 Fault Tag 3 19 5 
32 "- Z& Unass igned 
33 27 Unassigned 
3,. Z8 Unassigned 
35 29 UnassIgned 
3Et 30 Unass igned 
37 31 trb T~ouDle 3 2 

FAULT RECOGHlllQH 

For the discussion following, the term ·function" is defined as a malor 
Processor functional cycle. Examples area APPEND CYCLE. E4 CYCLE, Instruction 
Fetch Cycle. Operand Store Cycle, Divide Execution Cvcle. 

Faults In Groups 1 and 2 cause the Processor to aoort all functions 
Immediately by initializing itself and enter a Fault Cycle. 

Faults in Group 3 cause the Processor to "close out" current functions 
without taking anv irrevocable action (such as setting PTW.J in an APPEND CYCLE 

or modifying an Indirect Word in an EA CYCLE), then to discard any ~endlng 
functions (such as an APPEND CYCLE needed during an EA CY:LE), and to enter a 
Fault Cvcle. 

Faults in Group 4 cause the 
complete current and pending 
enter a Fault Cycle. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
october, 1975 

Processor to suspend overlapped ooeration, 
functions for the c~rrent i~structlon, and then 

7-3 AL39 



Faults In groups 5 or 6 are normally detected during ~ddress Preparation 
and Instruction Decode. These Faults cause the Processor to suspend overlapped 
operation, complete the current and pending ~~1c~~l~Q~, an1 to enter a Fault 
Cvcle. If a Fault in a higher Priority Group is generated by the execution of 
the current or pending instructions, that higher prioritf Fault will take 
precedence and the ~roup 5 or & Fault will be lost. If a G-ouP 5 or G Fault is 
detected during execution of the current instruction, (for example, an Access 
Violation. Out of Segment Bounds Fault during certain interruptable EIS 
instructions). the instruction is considered "complete" upon detectIon of the 
Fau It. 

Faults in Group 1 are held and processed (with Program Interrupts) at the 
completion of the current instruction pair. Group 7 Faults are inibjtable by 
use of bit 28 of the Instruction Word. 

Faults in Groups 3 through 6 must walt for the System Controller to 
acknowledge the last access reQuest before enterIng the Fault Cycle. 

Startup 

Execute 

DC POWER has been turned on. When the POWER ON ~utton is depressed. 
the Processor is first initla1lzed and then the Startup Fault Is 
recognized. 

1. The EXECUTE puSh~utton on the Processor maintenance panel has 
been pressed. 

2. An e»eternal 
pushbutton. 

gate Signal has been 
for EXECUTE pushbutton. 

substItuted the EXECUTE 

The selectIon between the above condItions is _ade by settings of 
verious switches on the Processor Maintenance panel. 

Group 2 Fay~ 

Op Not COl[pl ete 

Any of the following wIll cause an Op Not Complete Faulta 

1. The Processor has addressed a System Controller to which it is 
not attached. 

z. The addressed System Controller failed to acknowledge 
Processor. 

the 

3. The Processor has not generated a main store ~ccess reQuest or a 
dlrect operand within 1 to 2 mil liseconds a~d is not in the DIS 

REVIEW DRAfT 
SUBJECT TO CHANGE 
October, 1975 AL3<) 



Trouble 

state. 

~. A Processor port received a data strobe without a preceding 
acknowledgement from the System Controller that It has received 
the access request. 

5. A Processor port received a data strobe before the 
previouslv sent to it was unloaded. 

data 

The Trouble Fault is defined as the occurrence of a Fault during the 
fetch or execution of a Fault Vector or Interrupt ~ector. Such Fa~'ts 
may be hardware generated ,(for example, Op Not Com31ete or Parity). or 
operating svstem·generated (for example, the page contaIning the 
effective address of an instruction Is missing). 

,royp 3 Faylts 

Overflo. 

An arithmetic overtlo", exponent overflow, or eK~onent underflow has 
been generated. The -generation of this Fault is inhibited with the 
Overflow Hask indIcator set ON. Subsequent resetting of the Overt low 
Mask indicator to OFF does not generate this Fault from previously set 
Overflo~ indicators. The Overflo~ Fault Mask state does not affect 
the setting, testing or storIng of indicators. The dete~minatior of 
the specifIc overflow condition is by indicator testing by the control 
progra •• 

Divide Check 

A Divide Check Fault occurs when the actual division cannot be carried 
out tor one of the reasons specified with indIvidual divIde 
instructions. 

,roup 4 Faylts 

Store 

CONmand 

The Processor attempted to select a disabled po-t, an out-ot-bounds 
address was generated In the BAR Hode or Absolute ~ode, or an attempt 
was made to access a store unit that was not ready. 

1. The Processor attempted 
Register in a System 
Interrupt Mask assigned. 

to load or read the Interrupt Mask 
Controller in whlc~ it dId not have an 

z. The Processor issued an XEC command to a System Controller In 
which it did not have an Interrupt Mask assig~ed. 

3. The Processor issued a Connect to a System Controller port that 
1s masked OFF. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 7-5 Al39 



Lockup 

Parity 

~. The selected Svste~ Controller is in TEST mode and a condition 
determined bV certain System Controller Haintenace panel switches 
has been tr~pped. 

5. An attempt was made to loae a Pointer Register with Packed 
Pointer data in which the BITNO field value was greater than 60 
octal.-

The program is in a code sequence which has inhibited sampling for an 
eKternal interrupt (whether present or not) ~r Group 7 Fault for 
longer than the prescribed time. In Absolute Hode or Privileged Mode 
the lockup time is 32 milliseconds. In No~mal Mode or BAR Hode th~ 
lockup time is specified bv the setting of the Lockup Timer In the 
Cache Mode Register. The Lock Timer is program settable to Z, ~, 8, 
or 16 milliseconds. 

While in Absolute Hode or Privileged Hode the Lockup Fault is 
signal ted at the end of the time limit set in the Lockup Timer but Is 
not recognized until the JZ millisecond limit. If the Processor 
returns to Normal Hode or BAR Mode after the Fault has been Signalled 
but before the 32 millisecond limit, the Fault Is recognized before 
any instruction in the new mode is executed. 

1. The selected System Controller has returned an Illegal Action 
signal with an Illegal Action Code for one of the various main 
store parity error conditions. 

2. A Cache data parity error has occurred either for read, write, or 
block load. Cache status bits for the condition have been set in 
the Cache Hode Register. 

3. The Processor has detected a parity error in the System 
Controller interface port while either generating outgoing parity 
or verIfVlng IncomIng parity. 

Master Mode Entries 1-4 

The corresponding Master Hode Entrv instruction has been decoded. 

Fault Tags 1-3 

The corresponding Indirect Then Tatlv variation deSignator has been 

detected during Address Preparation. 

Derail 

The Derail instruction has been decoded. 

Illegal Procedure 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 AL39 



1. An illegal operation code has been decoded or an 
instruction seQuence has been encountered. 

Illegal 

2. An illegal modifier or modifier seQuence ha~ been encountered 
during Address Preparation. 

3. An illegal address has been given in an Instruction that the' 
ADDRESS field for register selection. 

~. An attempt was made to execute a prIvIleged i~struction In Noraal 
Mode or BAR Hode •• 

5. An illegal digit was encountered in a Deel_a' Numeric operand. 

The condItIons for the Fault wil' be set in the Fa~lt Register. Word 1 
of the Control Unit Data, or in both. 

1i,rguo & FauUS 

Directed Faults 0-3 

A faulted Segment Descriptor Word (SOW) or Page Table Word (PTW' ~lth 
the correspondIng Directed Fault number has been fetched by the 
Appending Uni t. 

Access Violation 

The Appending Unit has detected one of the several access violations 
below. Word 1 of the Contro' Unit Data contains status bits for the 
condition. 

1. Not in read bracket tAC~3=ORB) 
2. Not In write bracket (ACV5=OHB) 
3. Not In execute bracket (ACV1=OES) 
4. No read permission (ACV~=R-OFF) 
5. No write permission (ACV&=W-OFF) 
~. No execute permiSSion (ACV2=E-OFF) 
7. Invalid rlng crossing (ACV12=CRT) 
8. Call limiter fault (ACV7=NO GA) 
9. Outward call (ACV~=OCALL) 

10. Bad outward call (ACVI0=BOC) 
11. Inward return (ACVll=lNRET) 
12. Ring alarm (ACV13=~ALR) 
13. Associative Hemorv error 
1~. Out 01 segment bounds 
15. Illegal ring order (ACVO=IRO) 
16. Out of cal. brackets (AC~8=OCB) 

,couP Z E.iwlU 

Shutdo.-n 

An external power shutdown condition has been detected. DC POWER 
shutdown wlll occur in approximately one mililseco,d. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1q75 7-7 AL3q 



Timer Runout 

Connect 

The Timer Register has decremented to or through t~e value zero. If 
the Processor is in Privileged Hode or Aosolute 1ode, recognition of 
thIs Fault is delayed until a return to NorMa' Hode or BAR Hode. 
Counting in the Timer Register continues. 

A connect signal (SCON strobe) has been received froll a Systell 
Controller. This event is to be distinguished fro~ a CIOC (connect) 
instruction encountered in the program seQuence. 

eRQ~&AH-1HIERRUPTS AN~EXIERNAL fAULts 

Each System Controller contains 32 Execute Interruot Cells that are used 
for communication among the active system modules (Proc2ssors., 1/0 Multiplexers, 
etc.). The Execute Interrupt Cells are organized in a numbered priority chain. 
Any active system module connected to a System Controller po~t may reQuest the 
setting of an Execute Interrupt Cell with the SXC command. 

When one or more Execute I.nterrupt Cel1s in a System Controller is set, the 
System Controller activates the Execute Interrupt Prese~t (XIP) line to all 
System Controller ports having an Execute Interrupt Mask assigned In which one 
or more of the Execute Interrupt Cells that are set is unmasked. Execute 
Interrupt Masks are assigned only to Processors. Each ExecJte Interrupt Cell 
has a uniQue Interrupt vector located at an Ab~olute Address eQual to twIce the 
cell-number. 

Execyte Interrupt Sampling 

The Processor always fetches instructions in pairs. At an appropriate 
point (as early as possible) in the execution of a pair of instructions, the 
next seQuential instruction pair is fetched and held in a special instruction 
buffer register. The exact point depends on instruction seQuence and other 
condi t ions. 

If the Interrupt Inhibit Bit (blt 28) is not set in the current instruction 
word at the point of next seQuential instruction address preparation, the 
Processor samples the Group 7 Faults. If any of the Grou) 7 Faults Is found, 
the next seQuential instruction pair is ~ fetched and an i,ternal flag is set 
reflecting the presence of the Fault. The Processor next samples the Execute 
Interrupt Present lines from all eight Processor ports and I)ads a register with 
bits coresponding to the states of the lines. If any bit in the register is set 
ON, the next seQuential instruction pair is ~ fetched and an internal flag is 

set reflecting the presence of the bites) in the register. 

NOTE z If the instruction pair address is being prepared as the result of a 
transfer of control condition or if the current initruction is Execute 
(XEC), Execute Doub1e (XED), Repeat (RPT), Repeat Double (RPO), or 
Repeat Link (RPL), the Group 7 Faults and Execute Interrupt Present 
lines are n~ sampled. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 7-8 AL39 



At the completion of the current instruction QA1C (if no transfer of 
control has occurred. and the Processor is ready for the next instruction pair 
and the Group 7 Fault flag is set, the Processor will enter a Fault Cycle for 
the highest priority Group 7 Fault present. 

At the completion of the current instruction QAlc (if no transfer of 
control has occurred) and the Processor is ready for the next instruction pair 
and the Execute Interrupt Present flag is set, the Processor wil' enter an 
Execute Interrupt Cycle. 

Execyte Iol~~t Cycle~~~a 

In the Execute Interrupt Cycle, the Processor safe-stores the Control Unit 
Data (See Section IV, Program Accessible Registers) into program-invisible 
holding registers in preparation for a Store Control Unit (SCU) instruction, 
then enters Temporary Absolute Mode. It then issJes a~ X£C command to the 
System Controller on the highest priority port for which there is a bit set in 
the Execute Interupt Present register. 

The selected System Controller responds by clearing its highest priority 
Execute Interrupt Cell and returning the Interrupt Vector address for that cell 
to the Processor. 

NOTEI If there is no Execute Interrupt Cell set in the selected System 
Controller (implying that all have beencJeared in response to XEC 
commands from other Processors), the System Control IeI' will return the 
address value 1 which is not a valid Interrupt Vector address. The 
Processor senses this value, aborts the Execute Interrupt Cycle, and 
returns to normal seQuential instruction processing. 

The Interrupt Vector address returned and the Operation Cod~ for the Execute 
Double (XEO) instruction are forced into the Instruction Register and exec~ted 
as an instruction. Note that the execution of the instruction is not done in a 
normal Execute Cycle but in the Execute Interrupt Cycle with the Processor in 
Temporarv Absolute Hode. 

If the attempt to fetch and execute the instruction pair at the Interrupt 
Vector results in a Fault, the Execute Inerrupt Cycle is aborted and a fault 
Cycle for the Trouble Fau.t (fault Number 31) is initiated. In the Fau.t Cycle 
for a Tro~ble Fault, the Processor does n~ safe-store the Control Unit Data. 
Therefore, 1t may be possible to recover the condltion~ for the Execute 
Interrupt by use of the Store Control Unit (SCU) instruction. 

If either of the two instructions in the interrupt Vector results in a 
transfer of control to an Effective Address generated in Absolute Hode, the 
Absolute Hode indicator is set ON for the transfer and remains ON thereafter 
until changed by program action. 

If either of the two instructions in thp. Interrupt Ve:tor results in a 
transfer of control to an Effect ive Address generated in Append Hode (through 
the use of bit 29 of the instruct ion word or bv use of the ltp or itp 
modifiers), the transfer is made in the Normal Mode a'ld and the Processor 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 7-9 AL39 



remaIns in Normal Mode thereafter. 

If no transfer of control takes place, the Processor returns to the mode in 
effect at the time of the Fault and resumes norma. seQuential execution with the 
instructlon following the interrupted instruction (C(PPR.IC) + 1). 

NOTEI Due the time reQuired for many of the EIS data movement instructions. 
addltioral Group 7 Fault and Execute Interrupt present sampling is 
done during these instructions. After the initial load of the Decimal 
Unit input data buffer, Group 7 Faults and Execute Interrupt Present 
are sampl ing for each input operand address preparation. The 
instruction in execution Is interrupted before the operand Is fetched 
and flags are set into Control Unit Data to Signal the restart of the 
instruction. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 7-10 AL39 



SECTION VIII 

HARDWARE RING IHPLEttENT.ATION 

The basic concept in the ring protection philosOphy is the eXistence of a 
set of hierarchical levels of protection. A graphic representation of the 
concept may be given by a set of N consecutive circles, numbered 0,1,2, ••• , N-1 
from the inside out. The space included in circle 0 is called ring 0, the space 
included between circie 1-1 and i is called ring i. Any seg~ent in the syste~ 
is placed in one and only one ring. The closer a segment to the center, the 
greater its protection and access privileges. 

When a process is executing a procedure segment placed in ring R, the 
process is said to be in ring R or also it is said that the current ring of the 
process Is ring R. A process in ring R potentially has access to any segment 
located in ring R and In outer rings. The word "potentiallyM is used because 
the ' .. Ina 1 deciSion is Subject to what access rights (read,wrlte,execute) the 
user has for the given segment. On the other hand, this same process in ring R 
has no access to any segment located in inner rings, except to special 
procedures called -gates.- Gates are procedures residing In a given ring and 
intended to provide control led access to this ring. A process that is in ring R 
can enter an inner ring r only by cal ling one of the gate pr3cedures associated 
with this inner ring r. Gates must be carefully coded and must not trust any 
data that has been manufactured or modified by the caller in a less privileged 
ring. In particular, they must validate all arguments passed to them by the 
caller so as not to compromise the p~otection of any segment residing 1n the 
inner ring. 

Cal Is from an outer ring to an inner ring are referred to as -inward 
cal Is." They are associated with an increase in the access capability of the 
process and are controlled oy gates. On the other hand, ca"s from an lnner 
ring to an outer ring, referred to as ·outward calls" are associated with a 
decrease in tne access capaoility of the process and do not need to be 
controlled. 

The ring protection deSigned for the Muftics System uses the philosophy 
described above, but a few points have been aJtered in order to obtain more 
flexibility and better efficiency. 

REVIEW DRN="T 
SUBJECT TO CHANGE 
October. 1975 8-1 AL39 



First, the assignment of a segment to one and only one 'rin~, although 
sufficient to i_plement the solution of the protection 3roblem, may be very 
inconvenient for a class of procedure segments, such as the library routines. 
Such procedures operate correctly in whatever ring the pr~cess is at the time 
they are called; they need no more access than the caller, and they might not 
perform correctlv with less access than the caller. One solution could have 
been to have one copy of the librarv in each ring. Instead, the solution 
adopted by Hultics was to relax the condition that a segment can be assigned to 
only one ring and al.o~ a procedure segment to be aSSigned to a set of 
consecutive rings defined by tHO integers (rl. rZ), with rl <= r2. Such a 
procedure now, resides in rings rl to r2. If it is called from ring R such that 
r1 <= R <= rZ, then it behaves as if it were in ring R, and executes without 
changing the current ring of the process. If it Is called from ring R Such that 
R > r2, then it behaves likes a gate associated with ring r2, accepting the call 
as an Inward Call and decreaSing the current ring of the p~ocess from R to rZ. 
Upon return to the caller, the current ring is restored to R, of course. Note 
that by allowing the multiple ring resi1ency for a procedure segment, the 
current ring of a process is no longer defined by the proced~re in execution; a 
new variable must be introduced to keep track of the value " the current ring. 

Second, it was found desirable to be able to specify the maximum rlng 
number from which a given gate was allowed to be called. And a third integer r3 
was added to the pair of integers already assocIated ~ith a segment. Any 
procedure segment, now, is associated with three ring num3ers (rl, r2, r3) 
called its -ring brackets", such that rl <= r2 <= r3. By conventIon, If 
r3 > rZ, the procedure is a gate for ring rZ, accessible fro. rings no higher 
than r3; if r2 = r3, tne procedure is not a gate. 

Third, it "as found useful to relax, also for data seg.ents, the condition 
that_they be assigned to onlv one ring. One would like to ba able to specify 
that a segment resides In ring rl for ·write- purposes b~t resides in a less 
privileged ring r2 for -read- purposes. 

Fourth, several difficulties ~ere encountered in 
outward calls and their associated returns. Because 
found essential for implementing the Multics system. they 
illegal, and as a result, a procedure with ring brackets 
called from a ring R such that R < rl. 

the Implementation of 
outward calls were not 
we-e sImply declared 
(rl. r2, r3) cannot be 

In summary, the operations that are potentIally permitted to a process In 
ring R on a segment whose ring brackets are (r1, r2, rJ) are as foilowsl 

Write 
Read 
Execute 
Inward call 

I 
I 
I 
I 

if 0 <= R <= rl 
If 0 <= R <= rZ 
if rl <= R <= rZ (Execution in ring R) 
if rZ < R <= rJ (Execution in ring r2) 

The attempted operatIons are permitted if, in addition, the user has the 
appropriate access rights (read, write. execute) on that segment. 

The Multics Processor offers hardware support for the implementation of the 
Multics ring protection. A .particular effort was made to minimize the overhead 
associated with all authoriZed ring crossings, which the processor performs 
without operating system intervention, and to mInimize the overhead associated 
with the validation of arguments, for ~hich the processor provides a valuable 

REVIEW DR~FT 
SUBJECT TO CHANGE 
October, 1975 8-2 AL39 



assistance. 

The rumber of rings available In the processor is eight, numbered from 0 to 
7. The current ring R 01 a process is recorded in a hardware register 
lPPR.PRR) • 

The ring brackets (rt, r2, r3) of a Segment are rec~rded in the Segment 
Descriptor Word (SDW) used by the hardware to access the seg~ent. In addition, 
the SOW contains the number of gates (SOW.eL) existing in the segment. The 
hardware assumes that aJ. gates are loc~ted from ~ord 0 to ~lrd (CL-1) and does 
not accept an in~ard call to this segment if the word num~er specified In the 
call Is greater than (CL-1). The reason for this control is to prevent a 
malicious user from generating a call that would transfer control to any machIne 
instruction of the gate procedure. (Such a call would defeat the purpose of the 
gate.) The sow also contains the access rights (read, write, execute) that the 
user has on that segment. If the same segment is used by several processes, 
there is an SOW describing the segment!n the Oescriltor Segment of each 
process. In all SOWs pOinting ~o the Same segment, the values of r1, r2, r3 and 
CL are identical since they are user independent. The value of the access 
rights (read, write, execute) are not necessarily the same because they are user 
dependent. 

In order to provide assistance in argument validation, any pointer, being 
stored into an ITS Pointer Pair or loaded into a Pointer Register, also contains 
a ring number. Although the hardware does not prevent a process from writing 
any ring number in an ITS Pointer Pair, it ensures that, if (r1,r2, r3) are the 
ring brackets of the seg_ent in which the ITS Pointer Pair is located, the ring 
number field of this ITS Pointer Pair can be set or modIfied only from ring R 
such' that R <= r1. As for the ring number recorded in a Pointer Register. the 
hardware ensures that a process in ring R can set it to a ~alue equal to or 
greater than R, but never sa.ller. 

During the execution of a machine instruction, the hardware may examine 
several SOWs. ITS Pointer Pairs and POinter Registers. For any given such 
examination, the hardware records the maximum of the current ring, the r1 value 
found In an SOW. the ring number found in an ITS Pointer Pair, or the ring 
number found in an Pointer Register. This maximum, called the Temporary Ring 
Number, is kept In a hardware register (TPR.TRR) that is updated each Such 
exaalnatlon. 

The reason for having this Temporary Ring Number available at any point of 
a machine instruction Is because it represents the highest ring (teast 
prIvileged) that might have created or modified any information that led the 
hardware to the targe t segment it is abou t to re ference. Al t hough the current 
ring 1s R, the hardware uses the most peSSimistIc approach and pretends the 
current ring is CCTPR.TRR), which is always eQual to or greater than R. Thus 
the hard~are uses ClTPR.TRR) instead of R in all comparisions with the ring 
brackets involved in the enforcement of the ring protection rules given In the 
previous paragra~h. 

The use of ClTPR.TRR) by the hardware allows the gate procedures to rely on 
the hardware to perform the validation of all addresses passed to the gate by 
the less privileged ring. The general rule enforced here by the hardware 
regarding ar<Jument validation can be stated as follows: whenever an inner ring 
performs an operation on a given segment and references that segment through 
pointers manufactured by an outer ring, the operation is considered vatid only 
if 1t could have been performed while in the outer ~lng. 

REVIEW DRAfT 
SUBJECT TO CHANGE 
October, 1975 8-3 AL39 



The complete flowchart for Effective Segment Number generation. Inclujlng 
the hardware ring mechanism, is shown in Figure 8-1 below. See the description 
of the Access Violation Fault in Section VII of this document for the meanings 
of the coded faults. The cur~ent instruction is in the Instruction Working 
Suffer UWS). 

SIAill 
A£ff.NQ 

I 
t 

I Was last , 
____ ~N~I cvcle an '-I~ ____________ __ 

I 
t 

I Was ita , 
I sequential '-H~ 
, instruction I a 
'-htcb? I _-*--

I ,. 

, Indirect Word I 
'-1.1:.tch? I 

Yes I Is bit ,~s ______ _ 
, 29 ON? I : 

" t 

No 

<-----------+ 
2 
I n=C(IWBtO;2 1--______ ..... 

1 
t 

I , 
____ -uN~p_1 C(PRo.RNR) " ~Ye __ $ ____ _ 

t 

a 

--_---*.,----
I 
I C(PPR.PRRl -> 
I C ( TPR. TRR) 
1--

, C(PPR.PRR)? I 
, I 

I 
t 

Go To ··A-
(Figure 8-1a) 

Figure 8-1 Complete Appending Unit Operation FI~"chart 

REVIEW DRAfT 
SUBJECT TO CHANGE 
October, 1975 8-4 AL39 



... " 
I 
t 

I , 
'Is SOW 'or ,-llA. ___ .... ______ ~ 
\CCTPR.TSR) I I 
\1n-1WtWI * 

I I , 
I Yes -IA_' ~SaR.U ,~v.~S~ __ _ 
I ,. 01 , 
1\' 

I 

• I 

I 

• 
I 

DSPTW I ____ 1 

I 
t 

I \ 
V'S , OSPTW.' '_"I&lQI&-_ 

.. 

I 
t , \ 

\ set ON? I 
\ I 

, DSPTW.U '_"_Q_~_ 
, set ON? , I 

\ , t 

I 
I Yes 
I 
I 

a 
MOSPT.U ____ 1 

I,C-----.,---.. + 
__ ~t~.__ ~t~~ 

• PSDW I 
I 
I NSDW 
I 

I c,..-.. ---~---t t _ , , 
I 

___ v.'_$1 sow. F ,_tl~Q __ 

t 
I 

Load SDWA"I .r..-_____ .l 

+-------->1 • 
I I 
leISON.RU->1 
IClRSDWH.Rl)1 
I • 

I 

• Go to 
-a-

(Figure 8-ib) 

\ set ON! I , , I 

• In1tlat. a 
Dirac: tad Fau' t 

I 

• In1t1ate a 
Directed Fault 

Figure 8-1. Compl.te Appending Unit Operation Flowchart Ccon-t.) 

RE.VIEW DRAfT 
SUBJECT TO CHANGE 
Dc tober. lCJ15 8-5 AL39 



I \ 
__ -u.N2-1 C(SDW.R1l =< \ 

I 

1 
t 

t Set F au It 
I ACVD=IRO L ____ -L 

\ CCSDW.RZ)=< I 
\ C1.S.IHL..lUll._' 

I 
t Yes 
I 
I 

I I 

+-------------->1 __ -L-__ 
I Was last \ 

____ ~N¥o_1 cvcle an \~ 

J 
t 

\ RTCO operandi I 
\_Lel~ __ 1 t 

I \ Go to 
_-.\JNLlo(.o_1 Is OPCOOE \-1~ "C" 

\ CALL&? I I (F 19urc 8-1el 
t \ I • 

I \ Go to 
ITransfer or\ yes "E-
\instruct"ionl • (Figure 8-1d) 

\ -1.Jt:tkht-1 • 
. I Go to 

I No "F" 
t· (Figure 8-1e) 

I \ 
___ fuLl Is ita '_y._es .... __ _ 
I 
t 

I \ 

\ STR-OP? I 
\ I 

IC(TPR.TRR»\-I_e~$ ____ _ 
\ C(SDW.RZ)?I 
,_ I 

J 

I 
t 

t 
I \ 

IC (TPR. TRfU >\_Y~e .... s __ _ 
\ C (SOW. RZ)?I 

, I 
a 
t 

I 
I No Set Fault No S~t Fault J 
I ACV3=ORB '1 A C V 5 = ) W B I 
I L ___ ----1 
I a t 1 

1<-------------+ r <-------------+ 
t t 

I , I , 
--.bs.J so W. R \_~ __ _ I SO W. W \_:.r.N ... o __ _ 
I , ON? I I 

t 
, ON? I I 

t I , ___ ,1 ' ____ 1 

J 
I 
J 
I 
J 
I 
I 

I \ I 
__ ----H~/C(PPR.PSR)='~_ Yes Set FaJJt I 
I \CCTPR.TSR)?I I I ACV6=W-OFFI __ -L__' I I 1--____ 1 

I J I I 
I Set Fault: J<--+<------------t 
I ACV4=R-OFFJ 1 

1-____ .-...1.. 

+-------->+----------------------~->I • Go to 
-G" 

(Figure 8-10 

Figure 8-1b Complete Appending Unit Operation Flo~chart (con·'.) 

REVIEW DRAFT 
SUBJECT TO CHANGE 
october 9 1975 8-& AL39 



REVIEW DRAFT 
SUBJECT TO CHANGE 
Oetobe,.. 1975 

:0:: 
, J 

J 

2 
a 
I 
J 
I 
a 
I 
I 
I 
I 
I 
I 
I 
t 
t 
I 
I 
J 
a 
I 
I 

t 
1 , 

__ --.t1sL1 C (TPR. TRRJ < ,~ 
: , C (SC W. RU 1 1 I 
t , , I 

,\ I 
, ClTPR.TRR» '_yes 1 
\ ClSDW.RZJ? I I 

\ _, t ____ _ 
I 

No I Set Fault 
I ACV1=OEB l _____ ...a. 

I 

1<---------------------------. 
--L, \ 

1 SDW.E '_N~o ____ _ 
\set ON11 

\ ___ 1 

J 
I Yes 
I 
I 

I 
t 

I 
Set Faul t 1 
ACV2=E-OFFJ ______ 1 

I I 

1<-------------+ 
t , , 

, C(TPR.TRR»='_~~Q ______ __ 
\ ClPPR.PRfU? , 

\ -' 
• 1 Yes 
a 
I 
I 

t 
t 

I Set Fault I 
1 ACV11=INRET: 
J 1 

+-------->1<----------------+ 
--L, , 

1 RALR '~N~Q ____ _ 
, = 01 , 

'---' . I I , 
1 Yes I C(PPR.PRR) \_H_o __ __ 
2 , < RALR?' I 
2 , 1 _-,tL-.... __ _ 
1 I I 
I J Yes Set Fault I 
+------------>1 I A:V13=RALRI 

I L-_ 1 
: I 

+---------------->1 
I 

t 
Go to 

(Fj~u,.e a-1f) 

8-7 AL39 



"E" 
a 

__ L-
I- , 

I SOW.E \ uN~o ____ _ 
, ON? I 

' ___ I 
I 
I Yes 
J 
I 
1 

I ___ 1--__ 

I 
Set F au 1 t I 
ACV2=E-OFFI ___________ 1 

1<-----------+ 
_--L-

I , 
_-""Y .... e_s _I SOH. G \ 
I 'ON? I 
* ' ___ I 

1 'I 
__ ---.titLl C(PPR.PSR)= \ -I No 
I \ C(TPR.TSR)? 1 I 
t ,___ 1- I 

I \ I 
I C CTPR.CA) £t, 17 '-liQ. __ t '1es I 
\ >= SOW. CL? I. I <----------f. 

\ I I 
J I 
, Yes I 
t I 

I I 
Set fault I I 
ACV7=NO GA'- , 

~1_-_______ ---1 & t 
I I I \ 

1<--------------+ I C(TPR.TRR) >\_X~ews~_ 
t , C(PPR.PRR» I 

I \ , I 
I 
t 

I \ I C(TPR.TRR)\ yes 
\ > SOW.R3? I No 1 C(PPR.PRR)' __ ye_$ ____ _ 

, I t 
I , 
I No I Set Fault 

, < SOH.RZ? I 
, 1 

a 
t 

J t ACV8=OC8 
I 1 

No Set Fau 1 t 
ACV10=SOC 

I I 

1<-------------+ 
* I , 

I CCTPR.TRR)\~No ______________ ~1 
\ < SOH.R1? I T 

, I 
I 
I Yes 
t 

Set Fault I 
ACV9=OCALLI 

t 

I 
I 
I 
1 

l<-----------~----------+ 

1<------------1<-------------+ 
t 

I , 
I C ( TPR. TRR) \_1itL. __ 
\ > SD~.R2? I I 

\ I _---L __ 

No 
I 

I SOH.RZ -> I 
I C(TPR.TRR)1 

1-__ ----1 
1 

: <-----"----_ ..... _+ 
Go to 
"0" 

(Figure 6-1c) 

Figure 8-1d Complete Appending Unit Operation Flowchart (conet.) 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 8-8 AL?9 



··f-
I 

• 
1 \ 

___ tijLl C (TPR. TRR) < '_In.. 
2. 
t 

\ C(SCW.Rl)? 1 J 
, 1 I 

1 \ I 
1 C(TPR.TRR» \-I~$~ ________________ ~t 

, C (S 0 W. RZ ) ? 1 J 
, 1 

No 

• 
I 

Set fault I 
ACV1=OEB I 

1 

J<---------------------------t 
-*--1 \ 

1 SO W. E ',~N.>&o __ 
'set ON?I t 

' _____ I __ ~t~ __ __ 
I I 
aYe sSe t F au I t I 
I J ACVZ=E-OtFI 
I 1- I 
I I 

.------------->1 • , , 
__ ~NCLI C( PPR.PRR)= \ 
I , CCTPR.TRRJ? ~ 
t \ 1 

Set Fault Yes 
ACV1Z=CRT 

+-------------->1 • Go to 
'·0" 

lfl gure 8-1c) 

FIgure 8-1e Complete AppendIng Unit Operat1on Flowchart (con-t.) 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1915 8-9 AL39 



"G" 

• t 
1 , 

1 C(T?~.CA)0913 ,~~ __ __ 
, > SOW. BOUND? 1 

, 1 --.... *----I 
I No ~et Fault 1 
I I ~CV15=00S61 

ILL 
1 I 

1<---------------+ • 1 , 
_---ti~_1 Any ACV '_Xf!.L-__ 
I \ Faults? I 1 

____ ~*_ " • 
1 \ Initiate an Access 

____________ ~~_I is segment'-1~~s ____ _ Violation Fault 

1 
J 
1 
I 

I 

• 

Go to 
"H

(Figure 8-1g) 

, C(TPR.TSR)I 
'_~.aLI 

I 

, 
t , 

~~/is PTW for' 
I 'C(TPR.CA) 1 
I 'in PTHAH?I 

No 

- i 
a 
I 
I 
S 
I 
1 
J 
t 
I 
J 
I 
I 
I 
I 

, I 
PTW 1 

1 
: 
t 

I , 

_tll-I Is PTW.F'-H.~ 
: , set ON? I 1 

____ ~t_ , 1 • 

I Initiate a 
load I Directed Fault 
PTWAtt I 
~ __ --1 

I<~-------------+ 
--*---

I , 
I Prepage , 115 , Hode? 1 ' ____ ' 

J 
I No 
I ,. 
I 
I 
i- llS 
J 

• 

Go to 
"I·· 

(Figure 8-1g) 

1 , 

J 
I 

a 
PTWZ I 

_1 
I 
t: 

1 , 
Is PTW.F'_ti:t_ 
set ON? 
,----, 

1 I 

• 

I'\itiate a 
Directed Fault 

Figure 8-1f Complete Appending Unit Operation Flowchart (con-t.) 

REVIEW DRAfT 
SUBJECT TO CHANGE 
October, 1975 8-10 AL39 



-H-
I 
I 
I 
I 
I 

-I-
I 
t 

I , 
__ -uNLI STR-O? &\-1-..e .... s ___ _ 
1 

-~ 
1 , 

, PTW.I1=O 1 
' ____ 1 

1 PTW from'~ye~s~ __ _ 
, sfore l I J 
'eIiL.JJ.~1 t_ 

I • I 
S No 2 HPTW;Set: 
I 1 pTW.U 1 
1 J 

I 

---*----
J 1 

HPTW;Setl 
PTW.H i. 1 
PTW.U J 

L-_____ l 

+------------>1 <--------------t 
I 

~--
I I I 

FANP I I FAP I _____ ~ L---~ 

J t 

+------------------------>1 • / Was this , 
1 an Indirect 'J:i¥.o __ 
, Word fetch? / , / 

I Yes 

• Go to 
-.,J-

a 
t 

1 Was it 
/ RTCO 
, operand 

, fetcb? 

• 

an , 
'JiL_ 
I a 

I .--JtL-.._ 
/ , 

(Figure 8-1h) I Yes 
t 

1 Is OPCOOE ',~N~o __ __ 

Go to 

(F i gure 8-11) 

'CALL&? / 
, I --* __ 

I 
I 'fes 
• Go to 

I , 
/Transfer or'-H4---
'Instructionl I 
'~hI-_1 __ ~tL-__ 

I I , 
1 Yes 1 ~PU data '~N~o __ _ 
• , movement? I 

Go to, I 

(Figure 8-11) I Yes 
t 

J Load/Stor-el 
I tlPU data 1 
L_ 1 

I 
I 
I 
1 
a 
1 
I 
I 
t 
I 

J <----------+ 
t 

E..Wl 

APPENQ 

Fgiure 8-1g Complete Appending Unit Operation Flo~chart (con·t.) 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 8-11 Al39 



•• J" 

I 
t 

I \ 
I RIoI' IR & '_~.~e~s __ __ 
\ TPR. CA even?1 , ______ ' 

I 
No 

I ___ L-_ 
I \ 

I C(Y)30,35 = \-HKo ____ _ 
, I TS Mod? 1 

\ I 

: Yes 

• Go to 

(Figure 8-1k) 

I __ ...... t _____ _ 

1 \ 
, C(Y)30,35 = \-1i.sL-_ 
, ITP Hod? 1 I 

\ _, 1 
I 

J Yes I 
• I 

Go to a 
··P" : 

(Figure 8-11) I 

+------------------------------------------·>1 ____ t ____ _ 

1 \ 
______ ~y~1 C(Y)30,35 = , 
t 

C(Y)O .. 11-> 
C(IHB)O,17 
C (Y) 30,35-> 

I C(tHB)30,35 
LQ->C(IWBI29 

I 

\ 0 ther , 
\.-io;lirect? I 

I 
1 No 
I 
I 
I 
I 

+---------------->1 
t 

.Elifl 
A.eeEWl 

Figure 8-1h Complete AppendIng Unit Operation Flowchart (con-t.) 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October. 1975 8-12 Al39 



:t1:! -K- =~ 
a I 

___ -*-__ __L---
I C(Y)3,17-> I " 
I C(TPR.TSR) a I Is OPCOOE '_y~e~s~ __ _ 
I C(Y+l)l,17->1 ~ TSPQ? I I 

.l_klle.R...&AL-l. " ---*.---
J I I 

_--L-_ No I C(PPR.PRru -> C(PRn.RNR) I 
" I C(PPR.PSR) -> C(PRa.RSR) I 

I C(TPR.TRR»=\-Yes t C(PPR.IC) -> C(PR~.HORONO)I 
, C(PPR.PRR)1 ,: J 000000 -> C(PRO.BITNO) I 

, ______ , tIl 

I I 

I No C(TPR.TRRJ->' <---------------------t 
I C(PR1.RNR) I 
J I for i=O,7 I 
I L- -1 
I 
.--------------->1 

t 

• C (TPR. TRR) -> I 
C ( PPR.PRR) I 

-1 

+--------> 
t 

I CCTPR.TSR)->I 
: C (PPR. PSR) I 
I C (TPR. CA) -> I 
LC.(PPR.IC) I 

I 

+----------------------------------->. t 
I , 

__ .... yUle~s'_.1 C ( TP R.T RR) ,-tiL __ _ 
I \ = 01 I I 
• , I -*--__ 

I I 
C(SDH.P)->I O->C(PPR.~) J 
C(PPR.P) I __ ---1 

L I I 
I 

+----------------------------->. t 
I Is thIs an' 

I RTCO ,~ 
\ operand I I 
'_~1~ __ 1 • 

J Go to 
I No "0· 
• (Figure 8-1k) 

flW. 
A.eeE.tiIl 

Flgute 8-11 Complete Appending Unit Operation Flowcha~t (con-t.) 

REVIEH DRAFT 
SUBJECT TO CHANGE 
October, 1975 8-13 AL39 



:rt: 
I __ t __ _ , \ 

~ ____ 1~_' CCTPR.TRR)= \_[,~Q __________ __ 

I \ C(PPR.PR~)? , 
______ ~t_ \ _, 

a 
CCPR&.SNR)->I 

I CCPR7.SNR) I 
.1-_ I 

I ______ -L-_______ _ 

J 
C(OSBR.STACK) II C(TPR.TRR) I 

-> C(?R7.S~R) I _____ --1. 

+---------------------------------------->1 
t 

J 
C(TPR.TRR) -> C(PR7.RNR)1 
00 ••• 0 -> C(PR7.HORDNO) I 
000000 -> C(PR7.BITNO) 1 
C(TPR.TRR) -> C(PPR.PRR): 
C(TPR.TSR) -> C(PPR.PSR)I 
C(TPR.CA ) -> CCPPR.IC) I 

J 
t 

Go to 

___ -1 

CFigur-e 8-1i) 

Flgu~e 8-1} Complete Appending Unit Ope~atlon Flo~cha~t (conete) 

REV lEW ORAF T 
SUBJECT TO CHANGE 
October, 1975 6-14 Al39 



"0" 
J . 
t 

1 \ 
__ ti~1 C (TPR. TRR) >=\--1as. __ _ 
J \ RSOWH.R1? 1 I 

______ t____ \ _I __ ~t ____ _ 
I \ 1 \ 

______ ~_I C(Y)18,20 >=\_y&e_s _________ -H~_I C(TPR.TRR»=\ 
I \ RSOWH.R1? 1 J . \ C{y)18,20? 1 

___ .... t___ \ _I • \ 1 
J 

RSOHH.Rl->1 
C(TPR.TRR)1 

J 

I 
IC(Y)18,20->1 
J CCTPR.TRRJJ 
; I 

Yes 

+------------------------------>+-------------->1 
t 

EWl 
APPEND 

Figure 8-1k Complete Appending Unit Operation FlowChart (con-t.) 

:e.: 
I 
t 

1 \ 
___ ~N~I C(TPR.TRR»=\~ ____ _ 
a \ RSDWH.Rl? 1 J 
t \ I t 

I \ I \ 
______ ~N~I C(PRn.RNR»=\-1&e_s ____________ ~N~1 C(TPR.TRR»=\ 

t 
I 

RSDWH.Rl->1 
C(TPR.TRR11 

I 

\ RSDWH.Rl)? 1 , C(PRO.RNR)? I 
\ I t ,___ 1 

C (PRO_ RNfU -> 1 
,C (T P R. T RR ) : . 

L 

Yes 

+------------------------------->+--------------->1 • E.NU 
A2.e.£tl.D. 

FIgure 8-1k Complete Appending Unit Opl~(Oation rolow.::hH"t (conet.) 

R[VIEW OR~FT 
SU~JECT TO CHANGE 
October, 1975 8-15 



SECTION IX 

CACHE STORE OPERATION 

The Hultics processor may be fttted ~ith an optional eache Store. The operatio~ of this Cache Store Is 
described in this section. 

The Cache Store 15 a hlgh speed buffer store 
located within the Processor that is intended to hold operanjs and/or instructions 
in expectation of their immediate use. 
This concept is different 'rom that 0' holding a single operand (such as the Divisor 'or a Divide 
instruct ion) in the Processor during execut ion of a singte l!lstruct ion. 
A Cache Store depends on the localitv of Reference Princlpte.· 
Local!"tv of Reference involves the calcul at ion of the probabll ity. 
for any value of £1. that the ~ instruction or operan·d ref,erence after a reference 
to the instruction or operand at location A 15 to location A.a. 

The calculation of probabilities 'or a set of values~' U reQuires the statistical analysis 
of large masses of real and Simulated instruction se~uences ~nd data organizations. . 
It it can be sho~n that the aVerage p-xpected data/instructlo~ acces~ tim. reduction (over the rang_ 1 to ~) 
is statisticallv significant in co.pari~lon to the "~ed Hain Store acceSs time, the, the 
Implementation of a Cache Store with block site ~ Hilt contribute a ~lgniflcant ,.prowe_ent. 
In perfo,.lIIance. 

The results of such studies for the Hultlcs Processor Mlth a Cache Store a~ described be.o~ 
s~ow a hit probablltty ranging bet~een SOX and ~5X tdepending On Insfructlon ~lx and data 
organization) and a peformance improvement ~anglng up t~ 30X. 

The Cache Store Is implemented as lOftS J&-blt Hords of high speed register storage MUh 
associated control and content dlrectorv clrcultrv within 
the Processor. It 15 fully integrated ~lth the norlilal data oath cirCUitry and is vi-tually invisible 

to' all programming sequences. 
Paritv Is generated, stored, and checked Just as in Hain Sto-e. 
The total storage is divided into 512 blocks of 4 word~ each and the blocks ar. orga,lzed lnto 
128 "Colu~ns-. of four ~levels" each. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 19.75 9-1 



Cache Storell1aln Stote Happing 

Hain Store Is mapped into the Cache store as desc~lbed 3elow and shown in Figure 9-1. 

• Hain Store Is divided Into ii blocks of 4 wordS each ar·ranged 1n ascendIng order and 
numbered with the value of Finat Address bits 15 t~rough 21 of the first word Of. the bloc 

• All Haln Store blocks with numbers n modulo 128 are grouped associatively !llfh Cache Store 
Column n. 

• Each Cache Store Column .at hold any four biocks 01 the ~ssoclated set of ~~ln Store blocks. 
. . 

• Each Cach~ Stor~ column has associated with it a four entry directory (one entry for each Lev 
and a fwo bit "round ro~in~ counter. 
ParIty is generat~d, stored, and checked on each directory entry. 

• A Cache Ol~ectory entry consisfs of a fift~en ~lt AodRESS register, a pre-~ett two bit 
T~G or L~vel Number register and a level full flag bit. 

• When a Main Store block is roaded into a Cache Sto~e block at some level I" the 
a;socia~ed Column, the Directory ADDRESS regIster for that Column and 
Level is loaded with the Final ADdress bits 0 thro~9h 14~ 
(~evel selection is discussed in Cache Store c6ntroi folloHing.) 

REVIEW DRAfT 
SUBJECT TO CHANGE 
October. 1975 AL39 



I I I 1 
I Block Black I Block I Block I Block 
f 0 1 I 2 I 12& I 121 
I Words Words J Words ... • Words I Words 
I 0.3 ... 1 I 8.11 I 504.507 I 508.511 
I I J - I 
I I I I 
I Block Block I Bt ock I Block J Block 
I 128 129 J 130 I 254 I 255 
I Words Words ( Words ••• I Words I Words 
I 512, S15 51&',519 I 520.523 1101&.101911020,10231 

Main 1 I _1 1-_' __ I I 
Store I I • I • I 

I I I I I t ... ••• • •• . .. . .. 
I I J I 
1 I I I 1 
I I a I I 
I Block I Block Block I alock I Bloek I 
I li-127 I ti"'12 & ti-125 I tt-l I fi I 
I Words 1 Words 1 Words I ... I Words J Words I 
1-512,-509,-506,-5051-504,-5011 J -8 .... 5 J - ... ~i • 1 I I I _._1-___ J --'-

S • 1 I I 
I I I I I 
I I I t , 

__ --1 -t --t ~ * -I I I I I 1 
I Column 'I Coiumn 1 Column J Column t Co lunm t 
I 0 1 1 I 2 I 12& I 127 I 
t Level I level I level i Level 1 Level I 
1 0 I 0 I 0 , 0 1 0 I .l ___ --1 ____ -L I - I J. 
J I I I I t 
J Column I CoJumr't I Column I Columr\ I Column I 
a 0 1 1 J 2 I 12& I 127 1 
I Level J Level I Level I Level a level I 
I 1 J .1 I 1 I 1 I 1 . 1 

Cache 1 ___ ---1. I L-.. __ 1-___ 
I I 

Store I I I • I I I 
I Coiumn I Column a Column I I Column I Co1umn I 
I 0 I 1 I 2 • I 12& 1 121 1 
I Level I Level I Level I I Level 1 Leve' I 
I l I 2 I 2 1 I 2 I 2 , 
J. I J J I - 1 I 
I I I I I I J 
I Column I Column I Column I I . Co luiln I Column 1 
I 0 I 1 I 2 I • 126 I 121 f 
I Level I Level I level I ... I LeveS I Level I 
I 3 J 3 I 3 I I 3 I 3 J 1. ___ -----1. ___ 

J L- a I I 

Figure 9-1 Hain Store/Cache Store Happin~ 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1975 AL39 



For a read operation, the 2~ bit Final Address ~repared by th~ Ap~e~dln9 Unit 1s presented 
simultaneouslv to the Cache Control and to the Hain store po~t selection circuitry. 
While port selection is being accomplished, the Ca~he Stor. 1s accessed as 'olloMs. 

• Final Address bits 1~ throUgh 21 a~e used to select a Cache Store ColUMn. 

• Final Address bits 0 through l4 are matched assoclatlveiv against the tour Directory ADDRESS 
reglsters for the seJected COlumn. 

• It a match occurs fo~ a Level Whose Full fiag Is O~, a htt is signal ted, t~e Haln Store reference 
cvcle Is cancelled, and the TAG register Is read o~t. 

• The TAG vdlue and Final Address bit~ Zl and 23 are used to Select the Level and Word in the selected 
ColuMn and. the Cache Store data Is read out into t~e data clrcuitry. 

• 1r no hit is Signalled, the Hdin Sfore reference ctc.e proceeds and a Cache Store blOCk load 
cycle t~ Initiated (See Cache Store Control beloN). 

For a MrUe operation, the 24 bit final Address prepared by the Appending Unit is presented 
simultaneously to the Cache Control and to the Hain Store p.o'"t selection cH"cultry. 
While port selection is being accomplished, the Cache Store I~ accessed as to'to~s. 

• Final Address bits 15 through Zl a~e u~ed to select a Cache Stor~ Cot own. 

• final Addres~ bits 0 through l~ are Matched assoc1at~vetv against the four 01rectorv ADDRESS 
registers Jor the selected Column. 

• It a match occurs for a Level Mhose FuJI flag is O~, a hit is signalled anj the TAG register is read out. 

• The TAG value and Final Addre~s bits 22 and 23 are used to select the Leve' and Word In the selected 
Column, a Cache Store wri'. cvcle l~ .nabled, and the data is ~~ltten 
to the Hain store and the Cache Store slmuitaneously. 

• It no hit Is signalled, the Haln Store ~ererence ctcle proc.eds Mith no rurther Cache store action. 

The Cache Store Is controlled by the state of several bits in the Cache 
Mode Register (See Section IV. Program Accessible Registers, for a diSCUSSion of the CaChe Hode Register). 
The Cache Hode Register may be loaded Mlth the load Central ~rocessor Register (LCPR) instruction. . 
The Cache Store control bits are as follollSI 

b.11 

18 

REVIEW DRAfT 
SUB~ECT TO CHANGE 
Octr ber, 1975 

The lower half of the Cache Store CLeye's 0 and 1) Is disabled and is 
totally inactive. 
The lower half of the Cache Store Is active and enabled as per 
the state of bits 20 an~ 21. 



NOTE' 

20 

21 

23 

o 

1 

o 
1 

o 
1 

D 

1 

the upper half of the Cache Store CLewets Z a~d 3) Is dlsab_ed and Is 
totally In~ctlve. 
the upper halt of the Cache Store 1s active and enabled as D.r 
.the state 0' bits 20 and 21. 

The Cache Store (If active) ~ ~ ~sed for Operands and Indirect Words. 
The Cache Store U f active) is used for Operands and IndIrect Words. 

The Ca·che store (l f active) is. rutl ",sed for tnstri,Actlons. 
The Cache Store Ci' active) is. used for Instructions. 

The Cache-to-Register mode 11 lUll. ,,, et .ect (See "OuIIPlng t"te Cache Store" 
foil~~ing 1n th!s Section). 
The Cache-to-Register mode is. in effect. 

The Cache Store option furniShes a switch paneillaintenance aid that attac"es 
to the free edge of the Cache Store Control LogIc Board. 
The switch panel provides six switches lor manual control of the Cache Stj)-e. 
four of the sMitcheS inhibit the control functions 0' bits 18 through 21 0' the Cache Hode Re~1ster 
and have the effect of forcing the correspondlng '.lnction to be disabled. 
The fifth switch inhibits the "store-aside- featur~ wherein the Processor Is perllitted to 
proceed i~mediately after the Cache Store write cycle ~n write operations ~ithout waItIng 
for a data acknowledgellent frOM Hain Store. 
(There is no so.tware control corresPOhding this s.lteh). 
The sixth switch forces the "~nabled" condition on all Cache Store con~rol$wlthout reg~rd 
to the corr5ponding Cache Hode Re91~ter ~ontrol bit. 
There &s no Switch corrspondjng to the CaChe-to-Re~lster control bit. 

Whl(e·the~e switches ar~ intended primarily for Malnt~riance seSSions, they have been 
'ound useful in testing thf C~che Store durin~ nor~a' operatlon ahd lnperlttting 
oDe~atlon of the Processor with the Cach. Stor. In d~~raded or Dartially dlsabied 1I0de. 

CertaIn data have characteristics suCh that they should never be loaded into the Cache Store. 
Primary exaMples of such data are hardM~re mallboxes tor the 1/0 MultipleXer, aulk. Store Controller. etc., 

-status return wordS, and varlou~ dynallic system data base se~ments such as the Systel Seg_ent fable and 
shared Directorv SeQments. . 
In general, any data that Is purposely lIodlfied by an agency external to the Process~r 

, with the intent to convey lnformation to the Processor should never be loaded Into Cache store. 

Bit 51 of ttle Seg:lent De~crlptor Word is used to reflect this prol)erty ot .0enca::habllHY" tor each segment 
(See Section V. Addressing -- Se~mentatlon and Paging. for a disctission ot the Se9me~t Descriptor Wordl. 
If the bit 1s set ON, data 'roni the segllient lIay be loaded Into the Cache Store; If the bit 1$ OFF, they lI.av not. 

The enc3chabl11tv property may be treated asper.anent (e.go, for hardware lIall~oxes) or dynallic 
(e.g •• certain shared data baSe~) by the operating system. The op~~ating system sets bit 57 ON or OFF as 
approl)riate 'or the function to be performed on the segMent. 

The Cache Store 15 loaded Hith data impllclt.y whenever a Cache Store Block Loa1 is sIgnal led 
(See t~e discussion ot read operations in "Cache Store Addres~ing~ above In this section). 
There is no explicit method or instruction to load data Into the Cache Store. 

REVIEW DRAFT 
SUBJECT TO CHANGE 
October, 1915 



When a Cache Store Block load is signalled. the Level Is Selected frOM the valut of the 
Round Robin Counter for the selected Column, and the C~che Store Write function Is e~abled. 
(The Round Robin Counter contains the number of the least recently load~d Leve'.) 
When the data arrives frOM Haln Store, It Is written into th. Cache stor~ and 
e~tered into the data circuitrv_ The Processor proceeds with the e~~cutlon of the 
instruction requiring the operand 1f appropriate. 

When the Cache Store Write Is complete. further Address Preparation Is InhIbltej, bit ZZ of the 
Final Address Is Inverted, and a seeond Hain Store access '01" the other hal f 0' the bloc~ is lIIade. When the 
second half data arrives from Hain Store, It is wrItten Into the Cache Store, 
Final Address bits O,through 14 are 'oaded into the ~'r~ctor~AOO~ESS RegiSter. 
the Level F'ul' flag is set ON, the Round Robin Counter is ad.,anced bV 1, and 
Address Preparation is permitted to proceed. 

If all four Leve,' Full IIags for a Column are set IlN, a ColUMn Full flag 1s also set ON and 
remains ON until one or aore Levels In the Column are ctea~ej. 

Cache Sto~e can be tlea~ed In two ways; General Clear a~d Selective Ciesr. 
The clearing action is the salle in both cases, na,.ely, the F" .. flags 0' the 
selected Column(sJand/or Level(s) a~e ~et OFF~ 

GENERAL CLEAR 

The enUre Cache Store is cleared bv settln;a All Colulln and Level Full flags to OFF In the foiloMin9 
s 1 tuat 'onsl 

• Upper or lower CaChe Stor~ or both beco .. ing enabled by appronrlate bits In the operand 0' a Load Centra' Proce5~·)r Register (LCPR) Instru:tlOn. or by action of tha LOIJie Board 'ree edge swltche1 

• E.lCecutlon of a Clear Associative Hemory Seg.ents (::A"S) Instruction wUh. bit 15 of the address field 0 

SELECTIVE CLEAR 

The Cache Store Is cleared selectively as followSI 

• If a Read-and-Clear operation (LOAC. SINC. etc.) results in a hit on the Cac~e Store, the 
Cache Stor~ block hit 1s cleared. 

• Ex~cutlon of a Clear Associative Memo~v PageS (CAH~) with address bit 15 set ON causes 
final Address bits Ii through lit to be .. atched against ..au. Cache Directory ADDRESS Registers. 
All Cache Store blocks hit are cleared. 

When the Cache-to-Register mode 11ag (bit 2~ of the Cacna Hode Register) Is set ON. the Processo~ 
Is forced to fetch the operands of all Dou~le Precision Operations Unit Load operations 'ro .. 

REVIEW O~AFT 
SUBJECT TO CHANGE 
October. 1915 AL39 



the Cache Store. 
Final Address bits 0 throUgh 14 are ignored. Fina. Add~e~~ bIts 15 throu~~ 21 
select a ColUMn, and Final ·address b't~ 22 and 2~ sele~t a levet~ 
All other operations (e.g., InstructIon Fetches. Sln91e Precision Operands, etc.) are 
treated norMally. 

~ARNlttyl Note that the phrase ·treated normally· as used he~. includeS the ca~e _he-. 
the Cache St~re In enabled. It the Cache ·Store. 1s enabled, the Wother" op*ratlons wi'l 
cause ~ormal Block Loads ahd Cacho Store Writes th~s destr~ylng the orginai contents 
of the Cache' Store. 

An Indexed pr09~a~ loop inVOlving the LOAQ a~d STAQ Instructions wIth the Cache~to-Reglster aode bIt set ON 
will serve to du~p any or al' of the CaChe Store. 

Note I If a Faul tor PrOgraM Interrupt shou1 d occur during the C!ixecut ion 
of a Cache Store dUlI\pi~1 loop, the Caehe-t~-~egiSter .ode bit would seriously Inferfere.lth nor.a) addres 

in the servicing of Such Fault or Inter~upt. Hence, the Cache-to-~egiste ... lIode bit Is reset 
automaticallV by any Fault or Program Interrupt. 

APPENIlIX A 

OPERATION CODE HAP lBlT 2' = d) 

-..JlQ D 0 01 -.D..Ut_1l.Jl.L--1lDJt __ .D...ll.L-1.Il~I_--1l1L-u..1L-..IllZ."':---lI.J..L. __ .ll.1L_Il.1.L_-JQiLoj1""'&~1 -'0 ...... 110.&7_;-
000 I IHHE JORL I IMMEl IMME3 I IHHE4 I INOP 'PULSllPUlS21 ICIOC I • 
020 JADLXOJADLX1IADlX21AOLX3IAOLX~IAdlX5IAOLXoIAOLX71 I ilDQC tAOL IlOAC IA)tA IAO~Q IAOlACI 
o~o IAS)(O IASXl IASX2 IASXJ lASX4 IASX5 IASX£) USX7 lAowPOt4)WP1lAOHPZIAOWPJfAOS tHA IASQ ISSCR. 
o £) 0 J..A.Q~ADll_lAJl~Z.-1A1lU-1AD.l!t..J.AlllL1All.XLlAUll_L __ 1Ad.C A I A HCQJL.Rf.!i.-L __ LA:lA-1C1.lA oouQ ............. lAwD.&J;A:u.QL-A,' 

REVIEW DRAFT 
SUBJECT TO CHANGE 
Oc'ob~rt 11375 9-7 Al39 



100 :CMPXOrCMPXIJCHPX2ICHPX3ICMPX4JCHPX5ICHPX&ICHPX7' ICWL I. IC~PA ICHPQ CHPAQI 
120 lSBlXO:SBLXllSBLX2ISBLX3ISBLX4ISBlX5:SBLX&ISBLX7J t I I I IS3LA ISBLQ SBLAQI 
140 ISSXO :SSXl ISSX2 ISSX3 ISSX4 ISSXS ISSX6 ISSX7 JAOWP41ADHP5tADH~6IAOWP71S0BR aSiA ISSQ I 
160 J.S6XQ Js.aXl ISBR.-1SJlX3 JSB~a.xLisBX6 ISBXl I lS-tCA I SHC.Q-1.I..PRI t JS1A.--1SlHl SBAe J 
200 ICNAXOICNAX11CNAX21CNAX31CNAX41CNAXS1CNAxedCNAX71 .IC!oIK IABSA JEPAQ SSZNC JC~AA JCNAQ CHAAQI 
220 JLDXO ILOXl ILOX2 'LOX3 :lOX4 ILOX5 IlOX6 :lOX7 ILSAR IR5W SLOBR tRHCH ISZN ILJA ILDQ LOAQ J 
240 IORSXOIORSX110RSX210RSX3ioRSX410RSXSIORSX&IORSX7ISPBPOIS~RllISPBP2ISPRt3:SPRI tO~SA SORSQ LSDP I 
260 .LQ.RXJL1Q.&XLl.QR!Z.-11l&U--lJlBK.!t-12RX2-1Q.1U6 ; ORX7 11SeJL1IiPl I ISPLI ISP3 .1 IQig.A-"JII..IQ","R~.>jQ~...L.lC.JQR~AI:a.lQIiL-.LI 
300 :CANXO:CANX1JCANX2ICANX3ICA~X4JCANX5ICANX&ICANX7IEAHPOJEASPOIEAWP2:EASP2J IClNA JCANQ CANAQ: 
320 lLCXO ILCXl ILCX2 IlC)(3 JLCX4 ILC)(S tLCX£) IlCX7 afAHP41EASP41EAWP61EASP61 ILeA ILCQ LeAQ I 
340 :ANSXOIANSX11A.NSX2IANSX3:ANSX4iANSX5IANSX6:ANSX71EPe.~ IEPB?lJEPP2 tEPBP31SrAC IAiSA JANSQ SICP I 
3&0 J.ANXQ I Ali.U-l..AHXL1ANX3 I AN~Ll.AtiXLIAN X6 I ANX7 1Ee.e.L1E.e.eps I EPP£) I EPae? I A~la~N~Q ___ JI.::A;u.N:r..I:A:LliQ ........ l 
400 I JHPF IHPY J I JCHG. I ," - IUjE I IRSCR I lAOE I I I 

- 420 J IUFH I 10UFH I IFCHG I 10FCHGIESlN IFLO I IOFLO t SUFA J IOUFA I 
440 ISXLO ISXL1 ISXl2 ISXL3 ISXl4 :SXL5 I-5XL6 ISXL7 ISTZ ISPlIC tSCPR 1 ISTT IFSl ISlE JOFST· t 
460 J. tE.tfL..' IOFM? I ... J J IfSJR lEla _DESTR_PFR.O; IE!Q J JDEA •. 
500 IRPL I I I I Jaco 10IV IOVF I I , IFNEG I IFCKP f 10Fe l 
520 IRPl I J I IFOI·. 10tOl I IN::G tCAKS INEGL t IUFS 1 IOUFS I 
540 ISPRPOISPRPIJSPRP2JSPRP31SPRP41SPRPSISPRP61SPRP71SBAR ISTBA :STBQ 'SHCH ISTC1 J I ISSDP I 
560 .LR POI J 1 F 0 V I IllEtlLL J --'---- I F N Q f lES,13.--1 __ ......... 1 D.uF .... SuB"--Lo1 
600 :TlE IINZ ITNC ITRC 11tH IIPL t ITIF aR1CO I I IRCU IIEO n::u lOIS tTOV I 
620 IEAXO :EAXl lEAX2 IEAX3 IEAX4 IEAX5 lEAX6 lEAX7 .RET I I IRCCL lLOI IEAA IEAQ ILor I 
640 IERS)(OIERSX1:ERSX2JERSX3IER5~4JERSXSIERSX&:ERSX7ISPRI4ISPBP5ISPRI61SPBP71STACQ:E~SA lERSQ ISCU J 
660 LERXO lERXl-1ERX2 1(R!3 IERX~~lERX6 IERXt-llS~I~P5 ITSP2-IJSPl JLte&-lE~A--l&E~RQ~-uIE~R~A~Q~1 
70n lrsxo lrSXl ITSX2 IlSX3 IISX~ ~TSX5 ITSX6 J1SX7 ITRA I ICALL61 :I5S IXEC 'XED I 
720 ILXLO ILXll ILXL2 ILXL3 fLXL4 lLXL5 JLXL6 ILXL7 I IA~S IQRS ILRS I lALS IQLS ILLS I 
740 ISIXO ISIX1 ISI)(2 ISIX3 15IX4 JSIXS lSIX6 ISTX7 ISlC2 ISTCA lSTCQ .SREG (SrI ISlA ISIQ fSTAQ I 
760 J LPRPQ I L.f.8f.11 LPRP 21 LPg? 31 LP&P41 1..e.ru!llLPRP& ILPRP II J AiL. I aRL JL&L IGTB IA~W.B J LLR I 

REVIEW DRAFI 
SUBJECT TO CHANGE 
October, 1975 9-8 

Al39 



OPERATION CODE HAP (BIT 27 = 0) 

_&.:OQII,.:IO'---_.a..D.1..---D.AZ_-1U DO!t QQ5 006 DOl 0111-1111 012 013 '014 111L_..ll6-'-.lIQulI.1.1_ 
000 I I" ,: , I. t J I 
020 HiVE J I JJ1VNE I t J I I I 

f
40 I J t . • I t I J t I I I I 
60 lCSL ICSR I: ISZIL1~z.ILICHeB I 1---L _1_· _____ -..a..1 __ ... 1 _____ Ja..-_--4I __ --'-J· 

00 I HlR J HRl t I J I CHPC I I I I I 1 J I I 
120 ISCO ,seOR I :SCH lS.Ct1R I. I a I I 1 I I I t 
140 . J I J I I J I i I I I SPTR I I I 
160 JHVT I 1 ITer J IUlLl I I 1 J LPJR I 1--. t I 
200 I I IA02D SBZO f I "MP2D IOV20 I t I J I , 
220 I ~A03D SB30 1 I I~P30 IOV3D I I tSDR I I J I 
2!t0 I J I I I J I t JSPBPOIS~Rll SPBP2 SPRI3JSSOR I J ILPTP 
260 I I L---L....----1----L _I __ .... 1 __ L_-L t I I ---1 __ ...L.' __ ...L. 

300 lttVN JBTD I ICHPN • 10TB I I IEASpifEAWPi EASP31EAHP31 I J I 
·320 I J I I I I J IEASPS,EAWP, EASP71EAWP71 ttl 

34D I I I 1 J I I IEPBPOIEPPl EPBP21EPP3 • 11 J 
360 I I I. If.fBf..UEf!P5 EpaPg J fPPl . I II I· 
!tOO I . J I I I I I I a I 
420 I I I I a I I I I J I 
440 I ISAREGI 1SPL I J • I I I I 
460 I J IkARfGI ILeL -1----1-_ I J I I 
SOD A9BO IA60D lA,.BD IABO I IAWO I I I I I I 
520 S960 'S6BD ;S!teD IsaD I ISWD I I ICAMP I t J 
540 ARAO lARA1 lARA~ JARA31ARA4 JARAS IARA6 IARA7 I I I I I I SPTP 
560 ..LAAR Q I a A &1 IAARZ..J.AA.ll-lAAR!t...J.AA.~lAA B6 1 AARl.-L-_L_ .~I __ ........ __ ..4t __ ..... Ji.-__ ~1 _____ -"'" 
600 ITRTN ITRTF J I aTHOl ITP~l ITTN I a I I I f I 
620 I J J I I I I J I I I I 1 I 
640 IARNO IARNl IARNZ JARN3 lARN'+ JARN5 JARN6 rARN7 ISPBP,.IS'RI5ISPBP&ISPRI71 ) I 
660 I NARO I tiA&1 I NARZ I NQR3 J NARLlN!82-1 HARE? J HARl t I ~I __ • .Io1 __ ---...I __ ..... I ____ Ia.-_--I. __ ...... 
700 I J I I J I f I I J I I J I I 
720 I I I I I I I I I tIl J J I 
7'+0 ISARO JSARl ISAR2 ISAR3 ISAR4 tSARS ISAR6 tSAR7 I I I I JSRA J J 
760 lLARO 'L.AR.LJJ...ARZ....1LAR~ ILARLlL..!R.L1LAR6 lLARl I ---L_ I I1.RA I J 

REVIEW DRAFT 
~U8~ECT TO CHANGE 
October 1975 9-9 AL39 



APP£NOIX B 

ALPHABETIC OPERATtON CODE lIST 

This appendIx presents a list of al' Processor instruction operation codes sorted on mnemonic and 
giving the octal operation code value, the Instructron name, and the functional cate~ory. 

The function category codes are as followSI 

A4BD 
AGBD 
A9BD 
AARO 
ABO 

ABSA 
AD2D 
AD3D 
ADA 
AOAQ 

AOE 
AOL 
AOLA 
AOLAQ 

-AOLQ 

AOlXn 
AOQ 
AOWPO 
ADWP1 
AOWP2 

ADl-iP3 
ADHP4 
ADWP5 
ADWP5 
AOHP7 

FXO 
BOOL 
fLTG 
PREG 
PRIV 
MISe 
EIS 
TXFR 

502 (1) 
501 (1) 
500(1) 
SOQ (1) 
50-3 (1) 

212 (0) 
202(1) 
222(1) 
075(0) 
077 (0) 

415(0) 
033(0) 
035(0) 
03·7« D) 
036 (0) 

020 (0) 
075 (0) 

050 (0) 

OSl(O} 
052(0) 

053(0) 
150 (0 ) 
151(0) 
152(0) 
lbJ ( 0) 

REVIEW DRAFT 
~UBJECT TO CHANGE 
bctober, lC375 

Fixed ,?olnt 
Boolean Operations 
FloatIng Point 
Pointer Register 
Privileged 
Hisce.laneous 
Extended 1nstruction Set 
Transfer of Control 

EIS 
EIS 
EIS 
EtS 
EIS 

PRIV 
EtS 
EIS 
FXO 
FXD 

FLTG 
FXD 
FXO 
FXO 
FXO 

FXD 
FXO 
PREG_ 
PREG 
PREG 

PREG 
PR.EG 
PREG 
PREG 
PREG 

A~d 4-bit Character Disp'acement to AR 
Add 6-blt Character Displacement to AR 
Add 9-bit Character Displacement to AR 
Alphanumeric Descriptor to ARo 
Add Bit Displacement to AR 

Absolute Address to A-Register 
Add Using 2 Decimal Operands 
Add Using 3 Decimal Operands 
Add to A-R~glster 
Add to AQ-~eglster 

Add to E-Register 
Add Low to AQ-Reglster 
Add Logica' to A-Register 
Add L~gical to AQ-Register 
A~d Logical to Q-Reglster 

Add Logical to Index Q 
Add to Q-Register 
Add to Word Number Field 01 PRO 
Add to Word Number FIeld of PRl 
Add to Word Number Field of PR2 

Add to Word Number Field of PR3 
Add to Word Number Field of PR:4 
Add to Word Number Field 01 PR5 
Add to Word Number Field of PR6 
Add to Word Number Field of PRl 

AL39 



AOXti. 
AlR 
AlS 
ANA 
ANAQ 

ANQ 
ANSA 
ANSa 
ANSlCQ 
ANXn 

AOS 
ARA!). 
ARl 
ARNa 
A~S 

ASA 
ASQ 
ASXO 
AweA 
AWCQ 

AWD 
BCD 
8TD 
CALL& 
CAMP 

CAHS 
CAHA 
CANAQ 
CANQ 
CAHXn 

CIOC 
eHG 
CHK 
CHPA 
CHPAQ 

CHPB 
CHPC 
CMPN 
CHPQ 
CHPX.o 

CNAA 
CNAAQ 
CNAQ 
CNAXo 
CSl 

CSR 
C.Wl 
OFAD 

OFCHG 
DFCHP 

OFOt 
OfDV 
OFlD 
DfHP 
OFRD 

96tH 0) 
17S(Ot 
735 (OJ 
375' Ot 
311(0) 

37£)( Q) 

35510) 
3S6( 0) 
3ltn (D) 

36nCO) 

05"(0) 
54n( 1) 
711 t 0 J 
64n(1) 
131 (0) 

055 (0) 
05& (0) 
altulO) 
071 (0) 
072(0) 

S0711) 
505(0) 
301' 1) 
713 CO) 
532 C 1) 

532 (0) 
315 (U) 
311 CO) 
316 (0) 
30n( 0) 

01S UI' 
40$ C OJ 
211 (0) 
liSt in 
111 (0) 

066(1) 
101) (1) 
303(1) 
11& (0) 
10n( 0) 

215« 0) 
217 (0 J 
216' 0) 
2DntO) 
060 (1) 

DI)Ut1) 
111(0) 
'+17(0) 

421(0)> 
511eO) 

521' 0) 
5&7 (0) 
433 CO) 
4&3(U 
'+73(0) 

REVIEW ORAfT 
SUBJECT TO CHANGE 
October t 1975 

FXD 
FXO 
fXO 
BOOL 
BOOl 

aOOL 
BOOL 
800l 
BOOL 
BaaL 

FXD 
EIS 
F'XD 
EIS 
FXD 

FXO 
FXO 
FltO 
fXD 
FXD 

EIS 
MISC 
EIS 
TXFR 
PRIV 

PRJ: V 
BOOl 

·BOOL 
BOOL 
BOOL 

PRlv 
FXD 
FXO 
FXD 
FXO 

EIS 
EIS 
EIS 
FXO 
F'XO 

BOOl 
BOOl 
BOOL 
800l 
EIS 

EIS 
F)(O 
FLTG 

FlTG 
FlTG 

FLTG 
FLTG 
FlTG 
FLTG 
FLTG 

AJ11 to !ndelC H 
J-~fo)ister left Rotate 
A-ReJ~ster Lelt Shllt 
AND to A-R~gister 
ANO to AQ-Reglste~ 

AND to Q-Reglste~ 
AND to Sto~age from A-Register 
ANO to Sfo~age fro~ Q-R~gl~te~ 
AND to Sto~age fro. Index Q 
AND to Index Q 

Add One to storage 
ARo to AI~h3numeric Oescrlptor 
A~ReglsterRi~ht Ldgtca' ShIft 
ARn to Numeric Descriptor 
A-Register Right Shift 

Add Stored to A-Register 
Add Stored to Q·Reglster 
Add Stored to lri~eK n 
Add With Carr, to A-Register 
Add W l th Carry to Q-Re.gls fer 

Add Word DisplaceMent to At 
Binarv-to-BCD 
Binarv-to-Oecl •• ' . 
Call 
Clear Assoclatlve Hemory Pages 

C'e~ Associ.ttve Memory Se,lIents 
Co.paratl~e AND ~lth A-Register 
COMparative AND III1,th ~~R.glster 
Co.paratlv. AND wI th Q"'R.~ist.r 
CO·ilParatlve AND Mlth t",de. D 

connec;t 
COMpare "agnlt~d. 
COllpare !'tasked 
Co",t)8r~ 'If ith A-Register 
Compare "lth AQ-~.91st~r 

Compar~ Bit Strings 
Compare Alphano •• rlc Character Strings 
Compare NUlleric 
Compare w:i ttl Q-Reglster 
Compare with Index n 

ComparatIve NOt III1th A~Re91$ter 
Comparatlve Not wIth AQ-Register 
Comparative NOr wIth Q-Reglste,. 
Comparative NOT .lth Ind.~ n 
Combine Sit Strings left 

Combin& Blt Strln~$ Right 
Co~pare With Limits 
OoubltPrec:lsion f:loatlng Add 

Double P~e.els!on Floating Compare 
Double PrecIsion floating Compare 

Double Precision Floating Divide 
DOUble Precision Floating Divide 
Double Precision F"loatlng Load 

1'1 a g." 1 tude 

In\le,..ted 

Double precision FloatIng Mu It ipl y 
Ooub'e PrecIsion Floating ~ound 

Ai.,39 



DFSB 
OFST 
OFSTR 
DIS 
DIV 

ORL 
DT8 
OUFA 
OUFM 
DUFS 

DV20 
DV30 
OVF 
EAA 
EAQ 

EASPD 
EASP1 
EASP2 
EASPJ 
EASP4 

577( 0) 
457(0) 
'+72(0) 
61& (0) 
50&(0) 

002' D) 
305 (1) 
437(0) 
ItZJ «0) 
537(0) 

l07( U 
227(1) 
507(0) 
E3S (0) 

63&« 0) 

311 ( 0) 
310(t) 
313 (0) 

~12« 1) 

3."51' 0) 

EASP5 J30( U 
EASP6 3.33(0) 

FLTG 
FLTG 
FLTG 
PRIV 
FlTG 

rousc 
EIS 
FlTG 
FlTG 
FLTG 

EIS 
EIS 
FXO 
FXO 
FXO 

PREG 
PREG 
PREG 
PREG 
PREG 

PREG 
PREG 

Double PrecIsion Floating Subtract 
DoubJe Precision Floating Store 
Double Precision Floating Store Rounded 
Delav Until Interrupt Signal 
Divide Integer 

Dera 11 
Declmal-to-BInary Convert 
Double Precision Unnormalized Floating Add 
Double Precision unnormalized Floating Multiply 
Double Precision Unn~rmal ized Floating Subtract 

Divide Using 2 Decimal Operands 
DIvide Using 3 Decimal operands 
DivIde Fraction 
Effective Address to A-Register 
Effective Address to Q-Register 

Effective Address to Segment Numbe~ Field of PRO 
Effective Address to Segment Numbe~ Field of pR1 
Effective Address to Segment Numbe~ Field of PR2 
Effective Address to Segment Numbe~ Field of PR3 
Effective Address to Segment Numbe~ Field of PR4 

Effective Address to Segment Numbe~ Field of PR5 
E1fectLve 4jdress to Segment Numbe- Fie' 

B-3 



The Other Computer Company: 

Hone)'"'ell 

HONEYWELL INFORMATION SYSTEMS 


	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	2-123
	2-124
	2-125
	2-126
	2-127
	2-128
	2-129
	2-130
	2-131
	2-132
	2-133
	2-134
	2-135
	2-136
	2-137
	2-138
	2-139
	2-140
	2-141
	2-142
	2-143
	2-144
	2-145
	2-146
	2-147
	2-148
	2-149
	2-150
	2-151
	2-152
	2-153
	2-154
	2-155
	2-156
	2-157
	2-158
	2-159
	2-160
	2-161
	2-162
	2-163
	2-164
	2-165
	2-166
	2-167
	2-168
	2-169
	2-170
	2-171
	2-172
	2-173
	2-174
	2-175
	2-176
	2-177
	2-178
	2-179
	2-180
	2-181
	2-182
	2-183
	2-184
	2-185
	2-186
	2-187
	2-188
	2-189
	2-190
	2-191
	2-192
	2-193
	2-194
	2-195
	2-196
	2-197
	2-198
	2-199
	2-200
	2-201
	2-202
	2-203
	2-204
	2-205
	2-206
	2-207
	2-208
	2-209
	2-210
	2-211
	2-212
	2-213
	2-214
	2-215
	2-216
	2-217
	2-218
	2-219
	2-220
	2-221
	2-222
	2-223
	2-224
	2-225
	2-226
	2-227
	2-228
	2-229
	2-230
	2-231
	2-232
	2-233
	2-234
	2-235
	2-236
	2-237
	2-238
	2-239
	2-240
	2-241
	2-242
	2-243
	2-244
	2-245
	2-246
	2-247
	2-248
	2-249
	2-250
	2-251
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	B-01
	B-02
	B-03
	xBack

