HONEYWELL

DPS/LEVEL 68 &

DPS sM

MULTICS

PROCESSOR

MANUAL

HARDWARE

DPS/LEVEL 68)
& DPS 8M

MULTICS PROCESSOR MANUAL

SUBJECT

Description of the Multics Processor

SPECIAL INSTRUCTIONS

This manual supersedes AL39, Revision 0, dated April 1976 and AL39A,
Revision 0, dated September 1976. The manual has been extensively revised.
Change bars in the margin indicate technical additions and changes; asterisks
denote deletions.

ORDER NUMBER
AL39, Rev. 1 April 1979

Honeywell

PREFACE

This manual describes the processors used in the Multics system. These are
the DPS/L68, which refers to the DPS, L68 or older model processors (excluding
the GE-645) and DPS 8M, which refers to the DPS 8 family of Multies processors,
i.e. DPS 8/70M, DPS 8/62M and DPS 8/52M. The reader should be familiar with
the overall modular organization of the Multics system and with the philosophy
of asynchronous operation. In addition, this manual presents a discussion of
virtual memory addressing concepts including segmentation and paging.

The manual is intended for use by systems programmers responsible for writing
software to interface with the virtual memory hardware and with the fault and
interrupt portions of the hardware. It should also prove valuable to programmers
who must use machine instructions (particularly language translator implementors)
and to those persons responsible for analyzing crash conditions in system dumps.

This manual includes the processor capabilities, modes of operation, functions,
and detailed descriptions of machine instructions. Data representation,
program-addressable registers, addressing by means of segmentation and paging,
faults and interrupts, hardware ring implementation, and cache operation are
also covered.

Changes and Additions

Section 3 has been revised to include register information pertaining to
the DPS 8M processor.

The infi jon and specifications in this d are

ject to change without notice. This document contains
information about Honeywell products or services that may
not be available outside the United States. Consult your
Honeywell Marketing Representative.

G? Honeywell Information Systems Inc., 1982 File No.: 1LO3
AL39B

CONTENTS

Section 1 : Introduction . . « & ¢ ¢ ¢ ¢ ¢ ¢ o o ¢ o o o o 1-1
Multics Processor Features . . « . « « ¢« +» . 1-1
Segmentation and Paging ¢ . + . 1=2
Address Modification and Address
Appending ¢
Faults and Interrupts . . .
Processor Modes of Operation .
Instruction Execution Modes
Normal Mode
Privileged Mode .
Addressing Modes . .
Absolute Mode . .

[R
. D
[I T R I |

[}

Append Mode .
Bar Mode
Processor Unit Functions

Appending Unit . . .
Associative Memory Ass
Control Unit
Operation Unit . . .
Decimal Unit

e & & s s e s e s s 8 v s s @
* o s ¢ s & % v e e e b v s
® o & ® e s s e 0 s 8 e & s 8 a
e o o v s o
* s s s e s
- b e e d ek b b ed b b b h b b -3
LI I I |]
VNSO o Twwwwiow NN

e s e e e s e e e

mbl

R A R)
o * 0

© ¢ s 5 8 e 8 0 2 e e s s e »
]

Section 2 Data Representation ¢ ¢« ¢« ¢« ¢ ¢ & « o 2-1
Information Organization 2-1
Position Numbering . . « . . ¢« « ¢ ¢ . o o+ . 2=1
Number System . « ¢« ¢« &« ¢ ¢« ¢ ¢ ¢ o o o o o« 2=1
Information Formats . . « ¢ ¢« ¢ o o« & o o« « 2=2
Data Parity "« v ¢ ¢ o o ¢ o o o o o o o o« o 2-4
Representation of Data . . «. « ¢ ¢ &« &« &« « « 2-4

Numeric Data . « &+ o « & o & o o o o« o« o 2=U
Fixed-point Binary Data 2-4
Fixed-Point Binary Integers 2-4
Fixed-point Binary Fractions . . . 2-5
Floating-point Binary Data 2-6
Overlength Registers 2-8
Normalized Numbers . . . « « « . . 2-8
Decimal Data « « « ¢« ¢« ¢« ¢ & o o =« « . 2-9
Decimal Data Values . . . +« « « « . 2-11
Alphanumeric Data . .« . . ¢« ¢« ¢« &+ & &« o o+ 2-12
Character String Data 2-12
Bit String Data + . ¢ 2=-12

Section 3 Program Accessible Registers « . « . 3=-1
Accumulator Register (A) « . . . 3=2
Quotient Register (Q) « « + « &« « . 3-3
Accumulator-Quotient Register (AQ) 3-3
Exponent Register (E) . . +. « ¢« ¢« ¢ & « «» . 3=U4
Exponent-Accumulator-Quotient Register (EAQ) 3-4
Index Registers (Xn) « 3-5
Indicator Register (IR) « . . . 3-5
Base Address Register (BAR) « . . . 3-9
Timer Register (TR) . . ¢« ¢ &+ ¢ ¢« ¢ =« « « - 3=10
Ring Alarm Register (RALR)« . . . 3-10
Pointer Registers (PRn) 3-11
Address Registers (ARn) 3-12
Procedure Pointer Register (PPR) 3-14
Temporary Pointer Register (TPR) 3-15
Descriptor Segment Base Register (DSBR) . . 3-16

2/82 iii AL39B

Section 4

2/82

Machine Instructions

CONTENTS (cont)

Segment Descriptor Word Associative Memory
(SDWAM) - DPS/L68 and DPS 8M . . .
Page Table Word Associative Memory (

PTWAM) -
DPS/L68 and DPS 8M ., . . e v . .
Fault Register (FR) - DPS/L68 . . .
Fault Register (FR) - DPS 8M
Mode Register (MR) - DPS and L68
Mode Register (MR) - DPS 8M e e

. s e
e o o

Cache Mode Register (CMR) - DPS and L68
Cache Mode Register (CMR) - DPS 8M . .
Control Unit (CU) History Registers - DPS
and L68
Control Unit (CU) Hlstory Reglsters - DPS 8M
Operations Unit (0OU) History Registers . . .
Decimal Unit (DU) History Registers - DPS
and L68 e e e e .
Dec1mal/0perat10ns Unlt (DU/OU) Hlstorv
Registers - DPS M« . . .
Appending Unit (APU) History Registers
and L68 ¢ 4 4 s 4 4 e e e .
Agpendlng Unit (APU) Hlstory Reglsters

DPS

DPS

Configuration Switch Data - DPS and L68
Configuration Switch Data - DPS 8M . . .
Control Unit Data . . . « « + « ¢ « «
Decimal Unit Data . . « « ¢« &« ¢« « o &

e o o s
¢« 8 s e e

Instruction Repertoire
Arrangement of Instructions .

« o e o

Basic Operations
Extended Instruction Set (els) Operation
EIS Single-Word Operations . . .

EIS Multiword Operations
Format of Instruction Description . .
Definitions of Notation and Symbols .
Main Memory Addresses
Index Values . . .« « o «o o o o o .
Abbreviations and Symbols
Register Positions and Contents . .
Other Symbols « . ¢ ¢ o ¢ ¢ « o o«
Common Attributes of Instructions .
Illegal Modification
Parity Indicator « .« .«
Instruction Word Formats . . .
Basic and EIS Single-Word Instruct'o s
Indirect Words . « ¢« ¢ ¢ ¢ o o &
EIS Multiword Instruections . . .
EIS Modification Fields (MF) . .

MF Coding Examples « « « « o o &
EIS Operand Descriptors and Indirect
Pointers « « o « o o o o o o o o o o o
Operand Descriptor Indirect Pointer

Format . . « & ¢« ¢ ¢« ¢ o o ¢ o« o o« &
Alphanumeric Operand Descriptor Format
Numeric Operand Descriptor Format . .
Bit-string Operand Descriptor Format
Fixed-point Arithmetic Instructions . .
Fixed-Point Data Movement Load
Fixed-Point Data Movement Store
Fixed-Point Data Movement Shift
Fixed-Point Addition
Fixed-Point Subtraction . .
Fixed~Point Multiplication
Fixed-Point Division . . .

® o 5 e e e & 2 s * o e s s s N e o o o

r
1

t
n

e & ¢ o o o o
® o o e o o o

e 0 s e o s »
e o o+ o o e o @
e o o s e s o 0 »

iv

Page

3-18

3-20
3-23
3-25
3-27
3-30

3-46
3-49
3-51

3-54
3-56

(USRS
|

[¢,3%}
w x©

]
S~ OVONOAONOTAAARARNINEETETETNNON - - s

—

| I S R B |
—_
-

.

-

111
EWN =20

F R g N - &= o R - N . i
|
NDAUTONONNTW N =

|
Ui
o

4-57

2/82

CONTENTS (cont)

Fixed-Point Negate
Fixed-Point Comparison . .
Fixed-Point Miscellaneous .

Boolean Operation Instructions

Boolean AND &
Boolean Or . « « o o « « &
Boolean Exclusive Or . . .
Boolean Comparative And . .
Boolean Comparative Not . .

o s 0 s e

Floating-Point Arithmetic Instructions

Floating-Point Data Movement Load
Floating-Point Data Movement Store

Floating-Point Addition . .
Floating~Point Subtraction
Floating-Point Multiplicatio
Floating-Point Division . .
Floating-Point Negate . . .
Floating-Point Normalize .
Floating-Point Round . . .
Floating-Point Compare . .
Floating-Point Miscellaneous

Transfer Instructions
Pointer Register Instructions

n

-

.
.
-
.
.
-

.
.
.
.
.
.
S
.

" s e o s s e s

Pointer Register Data Movement Load
Pointer Register Data Movement Store
Pointer Register Address Arithmetic

Pointer Register Miscellaneous
Miscellaneous Instructions . .

Calendar Clock
Derail
Execute
Master Mode Entry
No Operation . .

Repeat . .

Ring Alarm Register
Store Base Address R

Translation .

Register Load

Privileged Instructions . .

gi

n
o o (T s o o o s o o
o

R = P S S R S)

s ¢ Mo s o s o 0

e o e

e o 8 ML e e 8 s s 0 e

Privileged - Register Load
Privileged - Register Store

Privileged - Clear Associative Memor
Privileged - Configuration and Stat
t

Privileged - System Control
Privileged - Miscellaneous

Extended Instruction Set (EIS)

EIS - Address Register Load
EIS - Address Register Store

EIS - Address Register Special Arith

EIS - Alphanumeric Compare
EIS - Alphanumeric Move . .
EIS - Numeric Compare . . .
EIS - Numeric Move
EIS - Bit String Combine .
EIS - Bit String Compare .
EIS - Bit String Set Indicat
EIS - Data Conversion . . .
EIS - Decimal Addition . .
EIS - Decimal Subtraction .
EIS - Decimal Multiplication
EIS - Decimal Division . .

Micro Operation Sequence .
Edit Insertion Table . . .
Edit Flags . « « « « « + &

o

Micro Operations For Edit Instruc

.
.
.
.
.
.
.
.
.
.
-

.
.
.

s o o (T o o o s D e s o

i

e o 2 & o 6 o s o s o+ o+ o

* e ¢ O s o 5 e o 2 0 0 s 0+ 0

ns

S 6 e o s 4 &2 s 0 e 8 & 0 b 0 s v 2 % e v >

u

¢ o o s o s s s s s o e s s o s e s s e 2 NI e s e 2 8 e 8 e e+ s e e s s

Page

. . U-g2
. h-64
4-69
4-70
4-70
y-74
5-78
4-82
4-84
4-86
4-86
4_87
4-90
4-93
4.96
4-99
4-102
4-101
4-105
4-107
. 4-109
. 4-111
. 4-124
. u-124
4-130
4-134
4-135
4-136
4-136
4-137
4-138
4-1140
4143
4-145
4-153
4-154
4-155
4-157
4-157.1
§-157.1
4-163
4-168
4-170
4-173
4-176
4177
4177
4-180
4-183
4-191
4-202
4-210
4-213
4218
4222
4-224
4-226
4-230
4-236
k-239
y-242
4246
4-246
4-246
§-247

.
® o e s e & 8 s a4 e s s e e e s s .

® 8 8 8 8 8 ® 6 0 8 e 6 8 s e+ s s s @

i

® s s & e e » e e 2 ¥ 8 & 9 s+ b CT e & & 2 8 S B 6 % 2 0 e & 5 8 0 % B ¥ S s 4 B s 6 6+ " 2 e s e v e 2 s

® e 5 4 s 8 2 2 e v 0 8 0 s s ()

AL39B

Section 5

Section 6

Section 7

2/82

Addressing -- Segmentation And Paging

Virtual Address Formation &

Faults And Interrupts .

CONTENTS (cont)

Terminating Micro Operations .
MVNE and MVE Differences . . .
Numerie Edit
Alphanumeric Edit
Micro Operations « . .
Micro Operation Code Assignment

4N TR T B)
Y
o
.

Addressing Modes . . .
Absolute Mode .
Append Mode . .

Segmentation . . .

Paging -

Changing Addre551ng Modes

Address Appending
Address Appending Sequences

Appending Unit Data Word Formats
Page Table Word (ptw) Format

e o e o o
- - o e
. e o .
. e o o
. « .

Definition of Virtual Address . .
Types of Virtual Address Formation
Symbology (alm) . . . ¢« « « « o« &
Symbolic Fields « . « « « « « &
Alm Pseudo-Instructions
Computed Address Formation
The Address Modifier (TAG) Field
General Types of Computed Address
Modification « . . . « ¢ ¢ o o ¢ o o

" s s o s s o @

Computed Address Formation Flowcharts

Register (r) Modification
Examples: « ¢ ¢ ¢ ¢ o ¢ o o o o o o

Register Then Indirect (ri) Modlflcatl

Examples: « .« ¢ ¢« o ¢ ¢ o o o

Indirect Then Register (ir) Modificati

Examples: . . .

Indirect Then Tally (1t) Modlflcatlon

Special Address Modifiers
Indirect to Pointer (ITP)
Modification o .
Indirect to Segment (ITS)
Modification « + &« « ¢« « ¢ .+ &
Effective Segment Number Generation .
Virtual Address Formation for Extended
Instruction Set . « ¢« ¢ ¢ ¢ ¢ o & ¢ o .
Character- and Bit-String Addressing
Character- and Bit-String Address
Arithmetic Algorithms R

oovooooooo

9-bit Byte String Address Arithmetlc

6-bit Character String Address
Arithmetic . . ¢ ¢« ¢ &« o« ¢ o o &

4_-bit Byte String Address Arithmetlc

Bit String Address Arithmetic . .

Fault Cycle Sequence
Fault Priority . .
Fault Recognition
Fault Descriptions
Group 1 Faults
Group 2 Faults

e o 9 o o e & o s e o
e ¢ o o & o * s s o o
¢ o e 8 o o e o o o
® 9 » o e o e & * e &
e o & o 8 8 o o s o o
" o o s & & o s 8 o o
e o o 2 e o o o o o o
e o o o s o * o * e o
® 8 8 @ o * o s 8 s o
® o o 8 ° 8 o & s 0 o

Group 3 Faults
Group 4 Faults
Group 5 Faults
Group 6 Faults
vi

® o o o o e o & o e o

n

e o v 3 e 3 s e e s

om....

e o & o o o o s o s e

Page

4247
4.248
4248
4-248
4-2u8
4-257

I !
= O AN TIW NN = =

o

[

[}
—_ e 2O DOV WWNHNON

WN-=00

N [=aX= R Neo Yo Yo, Ne We, e, e) 0\0\0\?\0\0\\7\0\ (SR, RE, R0, RV, RO, RV, RGBS, NV, R ;]

|
N
Qo

(o))
1

N

-

6-22

6-24
6-26

6-26
6-27

NN

CE o 1
INECEN
<=

PPN IIN I
NNV & S EW -

AL39B

CONTENTS (cont)

Page
Group 7 Faults .« ¢« « ¢« o o o s o o« « « o T7-8
Interrupts and External Faults 7-8
Interrupt Sampling 7T-8
Interrupt Cycle Sequence T-9
Section 8 Hardware Ring Implementation « « « . 8-1
Ring Protection in Multies « « . « . 8-1
Ring Protection in the Processor e« o« o . 822
Appending Unit Operation with Rlng Mechanism 8-3
Section 9 Cache Memory Operation . . .« .« ¢« « o &« « « . .« 9-1
Philosophy of Cache Memory « . 9-1
Cache Memory Organization « « + o « 9-1
Cache Memory/Main Memory Mapping 9-1
Cache Memory Addressing « « « « =« « « o« . 9-4
Cache Memory Control« . e+« .« 9-5
Enabling and Disabling Cache Memoryy . ¢« « 9-5
Cache Memory Control in Segment
Descriptor Words . « « ¢« « o &+ « « « « o« 96
Loading the Cache Memory 09-6
Clearing the Cache Memory « . « . 9=6
General Clear . . +« ¢ « « « = « « « . 9-6
Selective Clear . . . « ¢ ¢ o « « = « 9-7
Dumping the Cache Memory 0-7
Appendix A Operation Code Map . + « ¢ ¢ o s o o o o o« o o A-1
Appendix B Alphabetic Operation Code List B-1
Appendix C Address Modifiers . . o« ¢« ¢ ¢ o ¢ a « o o« &« « « C-1
Nonstandard Modifiers C-1
Index c e e e o e s e o o s o a2 e e o o e s e o & o o i=1
ILLUSTRATIONS
Figure 2-1. Unstructured Machine Word Format 2=2
Figure 2-2. Unstructured Word Pair Format 2-3
Figure 2-3. Unstructured 4-bit Byte Format 2-3
Figure 2-4, Unstructured 6-bit Character Format 2-=3
Figure 2-5. Unstructured 9-bit Byte Format 2-3
Figure 2-6. Unstructured 18-bit Half Word Format 2-4
Figure 2-7. Eighteen-bit Half Word Floating-Point Binary
Operand Format « « « ¢ ¢« ¢« o« o o o o o « o o o« 2=-T
Figure 2-8. Single-Precision Floating-Point Binary Operand
Format e e o o« s e o o o s o o o o 2=7
Figure 2-9. Double-Precision Floatlng—P01nt Binary Operand
Format e e e e e e e . 2=T
Figure 3-1. Accumulator Reglster (A) Format T 4
Figure 3-2. Quotient Register (Q) Format e « « 3=3
Figure 3-3. Accumulator-Quotient Register (AQ) Format e o o 3=3
Figure 3-4. Exponent Register (E) Format+ 3-4
Figure 3-5. Exponent-Accumulator-Quotient Register (EAO)
FOrmat « o« o« o « o o o o o« o o o o« o o o o « o« 3-U4
Figure 3-6. Index Register (Xn) Format . . . « + « « « « « 3-5
Figure 3-7. Indicator Register (IR) Format 3-5
Figure 3-8. Base Address Register (BAR) Format 3-9
Figure 3-9. Timer Register (TR) Format . . e s e « s« o « 3-10
Figure 3-10. Ring Alarm Register (RALR) pormat B 2 o)
Figure 3-11. Pointer Register (PRn) Format . . « « « « « « o 3-11
Figure 3-12. Address Register (ARn) Format 3-12
Figure 3-13. Procedure Pointer Register (PPR) Format 3-14

2/82 vii AL39B

Figure
Figure
Figure

Figure
Figure

Figure
Figure

Figure 2
Figure =

Figure
Figure

Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

2/82

1
OO ETWN =

PN . L
i

— -
N = O
)

B-13.
y-1y,
4-1s5.
4-16.
4-17.
4.18.
4-19.
4-20.
y-21.
§-22.
y§-23.
y-24,

CONTENTS (cont)

Temporary Pointer Register (TPR) Format
Descriptor Segment Base Register (DSBR) Format
Segment Descriptor Word Associative Memory
(SDWAM) Format DPS/L68 and DPS 8M . . .
Page Table Word Associative Memory (PTWAM)
Format DPS/L68 and DPS 8M
Fault Register (FR) Format - DPS and L68
Fault Register (FR) Format - DPS 8M . . .
Mode Register (MR) Format - DPS and L68 .
Mode Register (MR) Format - DPS 8M . . .
Cache Mode Register (CMR) Format - DPS and L68
Cache Mode Register (CMR) Format - DPS 8M . .
Control Unit (CU) History Register Format - DPS
and L68 « ¢« ¢ & o o o + o s s e s o o o o o o
Control Unit (CU) History Register Format - DPS
M v ¢« e o o o o o o s o o o s s o o s o o o
Operations Unit (OU) History Register Format .
Decimal/Operations (DU/OU) History Register
Format - DPS 8M o .
Appending Unit (APU) Hlstory Register Format -
DPS and L68 e s e e . . .
Appending Unit (APU) Hlstory Reglster Format -
DPS 8M
Configuration Sw1tch Data Formats - DPS and L68
Configuration Switch Data Formats - DPS 8M .
Control Unit Data Format =« « « o ¢ ¢ o o o &
Decimal Unit Data Format . ¢ o ¢ ¢ ¢« o o o &
Basic and EIS Single-Word Instruction Format
Indirect Word Format . . . ¢ « o ¢ ¢ o o &
EIS Multiword Instruction Format
EIS Modification Field (MF) Format
Operand Descriptor Indirect Pointer Format
Alphanumeric Operand Descriptor Format . .
Numeric Operand Descriptor Format
Bit String Operand Descriptor Format . . .
Repeat Double (rpd) Instruction Word Format
Repeat Link (rpl) Instruction Word Format .
Repeat (rpt) Instruction Word Format . . .
EIS Address Register Special Arithmetic
Instruction Format .« . ¢« ¢ ¢ ¢ o & ¢ ¢ o o o o«
Compare Alphanumeric Character Strings (cmpe)
EIS Multiword Instruction Format
Scan Characters Double (scd) EIS Multiword

.
.
.
.
.

e e * s e s o e e o

Instruction Format « « « « ¢ e o o ¢ ¢ o o .
Scan with Mask (scm) EIS Multiword Instruction
Format . . . e o o
Test Character and Translate (tct) EIS
Multiword Instruction Format « o .
Move Alphanumeric Left to Right (mlr) EIS
Multiword Instruction Format
Move Alphanumeric Edited (mve) EIS Multiword
Instruction Format

Move Alphanumeric with Translation (mvt) EIS
Multiword Instruction Format . « « « « « o . &
Compare Numeric (cmpn) EIS Multiword
Instruction Format . . o o . . .
Move Numeric (mvn) EIS Multiword Instruct1on
Fo r‘mat . - Ll . L] . L] . L] . . . L] - Ll L] L] . . .
Move Numeric Edited (mvne) EIS Multiword
Instruction Format ¢ ¢ ¢ & ¢ ¢ o o o &
Combine Bit Strings Left (e¢sl) EIS Multiword
Instruction Format . . « ¢ &« ¢ o ¢ ¢ ¢ « « « &
Compare Bit Strings (cmpb) EIS Multiword
Instruction Format . .« « « ¢ o o ¢ o o o o o o

viii

CONTENTS (cont)

Page
Figure H4-25. Binary to Decimal Convert (BTD) EIS Multiword
Instruction Format . « « . . « ¢ « ¢« « « & . U-226
Figure 4-26. Decimal to Binary Convert (dtb) EIS Multlword
Instruction Format « « . Hh_228
Figure 4-27. Add Using Two Decimal Operands (ad26) EIS
Multiword Instruction Format o« U4.230
Figure 4-28. Add Using Three Decimal Operands (ad3d) EIS
: Multiword Instruction Format 4-233
Figure 4-29. Micro Operation (MOP) Character Format U4-246
Figure 5-1. Main Memory Address Generation for Unpaged
Segments « ¢ ¢ ¢ ¢ ¢ o 4 o 6 e o o o o o s o o 5-3
Figure 5-2. Page Number Formation e e e o s & o« B=3
Figure 5-3. Main Memory Address Generatlon for Paged
Segments « « « .« ¢ ¢ 4 4 . . . e o o o« « « « B-5
Figure 5-4. Appending Unit Operation Flowchart e + ¢« s o o 5-8
Figure 5-5. Segment Descriptor Word (SDW) Format 5-0
Figure 5-6. Page Table Word (PTW) Format 5-10
Figure 6-1. Address Modifier (TAG) Field Format 6-=3
Figure 6-2. Common Computed Address Formation Flowchart . . 6-6
Figure 6-3. Register Modification Flowchart 6-7
Figure 6-4. Register Then Indirect Modification Flowchart . 6-9
Figure 6-5. Indirect Then Register Modification Flowchart . 6-11
Figure 6-6. Indirect Then Tally Modification Flowchart . . 6-18
Figure 6-7. Format of Instruction Word ADDRESS When Bit 29 P
e -19
Figure 6-8. ITP Pointer Pair Format . . « « &« ¢« « o« o o « o 6-21
Figure 6-9. ITS Pointer Pair Format . .« « o« ¢« « ¢ o « « » . 6222
Figure 6-10. Effective Segment Generation Flowchart 6-23
Figure 6-11. EIS Virtual Address Formation Flowchart 6-25
Figure 8-1. Complete Appending Unit Operation Flowchart . . 8-4
Figure 9-1. Main Memory/Cache Memory Mapping 0-3
Figure A-1. Processor Operation Code Map « « . . A=2
Figure A-2. EIS MF CodeS « « « 2 s « o o o s s o o o o« &« o A=l
TABLES
Table 2-1. Fixed-Point Binary Integer Values 2-5
Table 2-2. Fixed-Point Binary Fraction Values 2-6
Table 2-3. Floating-Point Binary Operand Values 2-9
Table 2-4. Decimal Sign Character Interpretation 2-10
Table 2-5. Decimal Data Values . . « o« ¢ o o o o o o o o o 2=11
Table 2-6. Character String Data Length Limits . . « . . . 2-12
Table 3-1. Processor Registers « . . & e o o o « 3-1
Table 3-2. System Controller Illegal Action Codes e « o« » 3=25
Table 4-1. R-type Modifiers for REG Fields U-10
Table 4-2. Alphanumeric Character Number (CN) Codes . . . 4-13
Table 4-3. Alphanumeric Data Type (TA) Codes U4-13
Table 4-4. Sign and Decimal Type (S) Codes .« . « H4-14
Table 4-5, Relation BRetween Data Bits and Indicators . . . 4-22
Table 4-6. Control Relations for Store Byte Instructions
(9-Bit) c 4 s s e o e & & o o & . k428
Table U4-7. Control Relations for Store Character
Instructions (6-Bit) « +« ¢« ¢ o & o« ¢ o« o o« .« . 4-31
Table 4-8. Default Edit Insertion Table Characters U-247
Table 4-9, Micro Operation Code Assignment Map #4-257
Table 5-1. Appending Unit Cycle Definitions 5=7
Table 6-1. General Computed Address Modification Types . . 6-5
Table 6-2. Register Modification Decode e o« . . b6-8
Table 6-3. Variations of Indirect Then Tally Modlflcatlo 6-13
Table 6-4. Special Address Modifiers + « « « . . 6-20
Table 7-1. List of Faults .« « « & & o o o o o o o o« o« o« « 7T-3

2/82 ix AL39B

SECTION 1

INTRODUCTION

The processor described in this reference manual is a hardware module
designed for use with Multics. The many distinctive features and functions of
Multiecs are enhanced by the powerful hardware features of the procéessor. The
addressing features, in particular, are designed to permit the Multics software
to compute relative and absolute addresses, locate data and programs in the
Multics. virtual memory, and retrieve such data and programs as necessary.

MULTICS PROCESSOR FEATURES

The Multiecs processor contains the following general features:

1.
2.

Storage protection to place access restrictions on specified segments.

Capability to interrupt program execution in response to an external
signal (e.g., I/0 termination) at the end of any even/odd instruction
pair (midinstruction interrupts are permitted for some instructions),
to save processor status, and to restore the status at a later time
without loss of continuity of the program.

Capability to fetch instruction pairs and to buffer two instructions
(up to four instructions, depending on certain main memory overlap
conditions) including the one currently in execution.

Overlapping instruction - execution, address preparation, and
instruction fetch. While an instruction is being executed, address
preparation for the next operand (or even the operand following it) or
the next instruction pair is taking place. The operations unit can be
executing instruction N, instruction N+1 can be buffered in the
operations unit (with its operand buffered in a main memory port), and
the control unit can be executing instructions N+2 or N+3 (if such
execution does not involve the main memory .port or registers of
instructions N or N+1) or preparing the address to fetch instructions
N+4 and N+5. This includes the capability to detect store
instructions that alter the contents of buffered instructions and the

- ability to delay preprocessing of an address using register

modification if the instruction currently in execution changes the
register to be used in that modification.

Interlaclng capablllty to direct main memory accesses to interlaced
system controller modules. -

Intermediate storage of address and control information in high-speed
registers addressable by content (associative memory)

Intermediate storage of base address and control information in
pointer registers that are loaded by the executing program.

. Absolute address computation at execution time.

1-1 ‘ AL39

:9. “Ability to hold' recently referenced -operands and instructions in a
high-speed look-aside memory (cache option).

Segmentation and Paging

. A segment is a collection of data or instructions that is assigned a
symbolic name and addressed symbolically by the user. Paging is controlled by
the system software; the user need not be aware of the existence of pages.
User-visible address preparation is concerned with the calculation of a virtual
memory address; the processor hardware completes address preparation by
translating the final virtual memory address into an absolute main memory
address. The user may view each of his segments as residing in an independent
main memory unit. Each segment has its own origin that can be addressed as
location zero. The size of each segment varies without affecting the addressing
of the other segments. Each segment can be addressed like a conventional main
memory image starting at location zero. Maximum segment size is 262, 144 words.

When viewed from the processor, main memory consists of blocks or page
frames, each of which has a length of "page-size" words. The page size used by
Multics is 1024 words. Each frame begins at an absolute address which is zero
modulo the page size. Any page of a segment can be placed in any available main
memory frame. These pages may be addressed as if they were contiguous, even
though they may be in widely scattered absolute locations. Only currently
referenced pages need be in main memory. A segment need not be paged, in which
case the complete segment is located in contiguous words of main memory. In
Multics, all user segments are paged. See Section 5 for additicnal discussion.

Address Modification and Address Appending

Before each main memory access, two major phases of address preparation
take place: '

1. Address modification by register or indirect word content, if
specified by the instruction word or indirect word. '

2. -Address appending, in which a virtual memory address is translated
into an absolute address to access main memory.

Although the above two types of modification are combined in most
operations, they are described separately in Sections 5 and 6. The address
modification procedure can go on indefinitely, with one type of modification
leading to repetitions of the same type or to other types of modification prior
to a main memory access for an operand.

Faults and Interrupts

The processdr detects certain illegal instruction usages, faulty
communication with the main memory, programmed faults, certain external events,
and arithmetic faults. Many of the processor fault conditions are deliberately
or inadvertently caused by the software and do .not necessarily involve error
conditions. The processor communicates with the other system modules (I/0
multiplexers, bulk store controllers, and other processors) by setting and
answering external interrupts. When a fault or interrupt is recognized, a
"trap" results. The trap causes the forced execution of a pair of instructions
in a main memory location, unique to the fault or interrupt, known as the fault
or interrupt vector. The first of the forced instructions may cause safe
storage of the processor status. The second instruction in a fault vector

12 AL39

should be some form of'transfer, or ' the faulting program will be resumed at'the
point of interruption. Faults and interrupts are described in Section 7.

Interrupts and certain low-priority faults are recognized only at specific
times during the execution of an instruction pair. If, at these times, bit 28
in the instruction word is set ON, the trap is inhibited and program execution
continues. The interrupt or fault signal is saved for future recognitlon and is
reset only when the trap occurs.

" PROCESSOR_MODES OF OPERATION

There are three modes of main memory addressing (absolute mode, append
mode, and BAR mode), and two modes of instruction execution (normal mode and
privileged mode).

Instruction Execution Modes

NORMAL MODE

Most instructions can be executed in the normal mode. Certain
instructions, classed as privileged, cannot be executed in normal mode. These
are identified in the individual instruction descriptions. An attempt to
execute privileged instructions while in the normal mode results in an illegal
procedure fault. The processor executes instructions in normal mode only if it
is forming addresses in append mode and the segment descriptor word (SDW) for
the executing segment specifies a nonpr1v11eged procedure.

PRIVILEGED MODE

In privileged mode, all instructions can be executed. ' The processor
executes instructions in privileged mode when forming addresses in absolute mode
or when forming addresses in append mode and the segment descriptor word (SDW)-
for the segment in execution specifies a privileged procedure and the execution
ring is equal to zero. See Sections 5 and 7 for additional discussion.

Addressing Modes

ABSOLUTE MODE

In absolute mode, the final computed address-is treated as the absolute
main memory address unless the appending hardware mechanism is invoked for a
particular main memory reference. During instruction fetches, the procedure
pointer register is ignored. The processor enters absolute mode when it is
initialized or immediately after a fault or interrupt. It remains in absolute
mode until it executes a transfer instruction whose operand is obtained via
explicit use of the appending hardware mechanism.

The appending hardware mechanism may be invoked for an instruction by
setting bit 29 of the instruction word ON to cause a reference to a properly
loaded pointer register or by the use of indirect-to-segment (its) or
indirect-to-pointer (itp) modification in an indirect word.

-3 AL39

APPEND MODE

The append mode is the most commonly used main memory addressing mode. 1In
append mode the final computed address is either combined with the procedure
pointer register, or it is combined with one of the eight pointer registers. If
" bit 29 of the instruction word contains a 0, then the procedure pointer register
is selected; otherwise, the pointer register given by . bits 0-2 of the
instruction word is selected. . .

BAR MODE

In BAR mode, the base address register (BAR) is used. The BAR contains an
address bound and a base address. All computed addresses are relocated by
adding the base address. The relocated address is combined with the procedure
pointer register to form the virtual memory address. A program is kept within
certain limits by subtracting the unrelocated computed address from the address
bound. If the result is zero or negative, the relocated address is out of
range, and a store fault occurs.

PROCESSOR UNIT FUNCTIONS

Major functions of each principal logic element are listed below and are
described in subsequent sections of this manual.

Appending Unit

Controls data input/output to main memory'
Performs main memory selection and interlace
Does address appending

Controls fault recognition

Interfaces with cache

Associative Memory Assembly

This assembly consists of sixteen 51-bit page table word associative memory
(PTWAM) registers and sixteen 108-bit segment descriptor word associative memory
(SDWAM) registers. These registers are used to hold pointers to most recently
used segments (SDWs) and pages (PTWs). This unit reduces the need ,for possible
multiple main memory accesses before obtaining an absolute main memory address
of an operand or instruction.

Control Unit

Performs address modification
Controls mode of operation (privileged, normal, etc.)

Per forms interrupt recognition

1-4 AL39

Decodes instruction words and indirect words

Performs timer register loading and decrementing

Operation Unit

Does fixed- and floating-binary arithmetic

Does shifting and Boolean operations

Decimal Unit

Does decimal arithmetic

Does character-string and bit-string operations

2/82 1-5

AL39B

SECTION 2

DATA REPRESENTATION

INFORMATION ORGANIZATION

The processor, like the rest of the Multiecs system, is organized to deal
with information in basic units of 36-bit words. Other units of #4-, 6-, 9-bit
characters or bytes, 18-bit half words, and T2-bit word pairs can be manipulated
within the processor by use of the instruction set. These bit groupings are
used by the hardware and software to represent a variety of forms of coded data.
Certain processor functions appear to manipulate larger units of 144, 288, 576,
and 1152 bits, but these functions are performed by means of repeated use of
72-bit word pairs. All information is transmitted, stored, and processed as
strings of binary bits. The data values are derived when the bit strings are
interpreted according to the various formats discussed in this section.

POSITION NUMBERING

The numbering of bit positions, character and byte positions, and words
increases from 0 in the direction of conventional reading and writing: from the
most significant to the least significant digit of a number, and from left to
right in conventional alphanumeric text. :

Graphic presentations in this manual show registers and data with position
numbers increasing from left to right.

NUMBER SYSTEM

The binary arithmetic functions of the processor are implemented in the
twos complement, binary number system. One of the primary properties of this
number system is that a field (or register) having width n bits may be
interpreted in two different ways; the logical case and the arithmetic or
algebraic case.

(

In the logical case, the number is unsigned, positive, and lies in the
range [0,2B-1] where n is the size of the register or the length of the field.
The results of arithmetic operations on numbers for this case are interpreted as
modulo 2B numbers. Overflow is not defined for this case since the range of the
field or register cannot be exceeded. The numbers O and 2B-1 are consecutive
(not separated) in the set of numbers defined for the field or register.

Iq % rithmetic case, the number is signed and 1lies in the range
[-2(2'); '1 -1]. Overflow is defined for this case since the range can be
exceeded in either direction (positive or negative). The left-hand-most bit of
the field or register (bit 0) serves as the sign bit and does not contribute to
the magnitude of the number. .

2=1 AL39

The main advantage of this implementation is that the hardware arithmetic
algorithms for the two cases are identical; the only distinction lying in the
interpretation of the results by the user. Instruction set features are
prov1ded for performing binary arithmetic with overflow disabled (the so-called
logical instructions) and for comparing numbers in either sense. .

Subtraction is performed by adding the twos complement of the subtrahend to
the minuend. <(Note that when the subtrahend is zero the algorithm for forming
the twos complement is still carried out, but, since the twos complement of zero
is zero, the result is correct.)

-

Another important feature of the twos complement number system (with
respect to comparison of numeric values) is that the no borrow condition in true
subtraction is identical to the carry condition in true addition and vice versa.

A statement on the assumed location of the binary point has significance
only for multiplication and division. These two operations are implemented for
the arithmetic case in both integer and fraction modes. 1Integer means that the
position of the binary point is assumed to the right of the least significant
bit position, that is, to the right of the right-hand-most bit of the field or
register, and fraction means that the position of the binary point is assumed to
the left of the most significant bit position, that is, between bit 0 and bit 1
of the field or register (recall that bit 0 is the sign bit).

INFORMATION FORMATS

The figures that follow show the unstructured formats (templates) for the
various information units defined for the processor. Data transfer between the
processor and main memory is word oriented; a 36-bit machine word is transferred
for single-precision operands and subfields of machine words, and a 72-bit word
pair is transferred for all other cases (multiword operands, instruction
fetches, bit- and character-string operands, etc.). The information unit to be
used and the data transfer mode are determined by the processor according to the
function to be performed.

The 36-bit unstructured machine word shown in Figure 2-1 is the minimum
addressable information wunit in main memory. Its 1location is uniquely
determined.- by its main memory address, Y. All other information units are
defined relative to the 36-bit machine word.

36

Figure 2-1. Unstructured Machine Word Format

Two consecutive machine words as shown in Figure 2-2, the first having an
even main memory address, form a 72-bit word pair. In 72-bit word pair data
transfer mode, the word pair is uniquely located by the main memory address of
either of its constituent 36-bit machine words. Thus, if Y is even, the word
pair at (Y,Y+1) is selected. If Y is odd, the word pair at (Y-1,Y) is selected.
The term Y-palr is used when referring to such a word palr.

22 AL39

0 33 7
0 56 1
36 £13

Even word 0dd word

Figure 2-2. Unstructured Word Pair Format

" Four-bit bytes are mapped onto 36-bit machine words as shown in Figure 2-3.
The O bits at bit positions 0, 9, 18, and 27 are forced to be 0 by the processor

on data transfers to main memory and are ignored on data transfers from main
memory.

00 00 00 1 11 111 2 2 222 33 3
0_1 45 890 3 4 7.8 9 2 3 678 1.2 5
0 0 0 0

7 m T 1 n 1 m T3 T &

Figure 2-3. Unstructured U4-bit Byte Format

Six-bit characters are mapped onto 36-bit machine words as shown in Figure

2-4.
0 00 11 11 22 - 23 3
56 1.2 7.8 34 9.0 5
L 3 3 5 3 3

Figure 2-4. Unstructured 6-bit Character Format

Nine-bit bytes are mapped onto 36-bit machine words as shown in Figure 2-5.

0 00 11 2 2 3
0 8.9 1.8 6 7 5
9 9 9 9

Figure 2-5. Unstructured 9-bit Byte Format

Eighteen-bit half words are mapped onto 36-bit machine words as shown in
Figure 2-6.

2-3 AL39

1 3
0 7.8 5
18) 18

Upper half ' A Lower half

Figure 2-6. Unstructured 18-bit Half Word Format

DATA PARITY

0dd parity on each 36-bit machine word transferred to main memory is
generated as it leaves the processor, is verified at several points along the
transmission path, and is held in main memory either as an extra bit in the case
of magnetic core memory or as part of the error detecting and correcting (EDAC)
code in the case of magnetic oxide semiconductor (MOS) memory. If an incorrect
parity is detected at any of the various parity check points, the main memory
returns an illegal action signal and a code appropriate to the check point.

On data transfers from main memory, the parity information is retrieved and
transmitted with the data information. The same verification checks are made
and illegal action signalled for errors. The processor makes a final parity
check as the data enters the processor.

Any detected parity error causes the processor parity indicator to be set
ON and (if enabled) a parity fault occurs.

REPRESENTATION OF DATA

Data is defined by imposing an operand structure on the information units
just described. Data is represented in two forms: numeric or alphanumeric. The
form is determined by the processor according to function to be performed.

In the definitions below, ay is .the value of the bit in the ith pig
position, either 0 or 1.

Numeric Data

Numeric data is represented 1in three modes: fixed-point binary,
floating-point binary, and decimal. The mode is determined by the processor
according to the function being performed.

FIXED-POINT BINARY DATA
Fixed-Point Binary Integers

Fixed-point binary integer data is defined by imposing either of the bit
position value expressions shown below on an information unit of n bits.

2-4 AL39

Logical value:

(n-i-1)
aox2(5-1) + a1x2(n-2) + ..+ ajx2'D1 + 4es + 2

Arithmetic value:

-aox2(ﬂf1) + a1x2(972) + oeee 4 aix2(271'1) + ... + a

The following fixed-point binary integer data
Table 2-1 for values):

items are defined (also see

Operand

size(bits) Operand name
6 6-bit character operand
9 9-bit byte operand
18 Half word operand
36 Single-precision operand
72 Double-precision operand

Note that a 4-bit operand is not defined.

This data item is defined only
for decimal data.

(See discussion of decimal data later in this section).

The proper operand and its position with respect to a 36-bit machine word
are determined by the processor during preparation of the main memory address
for the operand. If the data width of the operand selected is smaller than the
register involved, the operand is high- or low-order zero filled as necessary.

The values in Table 2-1 are given in terms of the operand sizes. The value
an operand contributes to a larger field or register depends on the alignment of
the operand with respect to the field or register.

Table 2-1. Fixed-Point Binary Integer Values

36-bit T2-bit
Operand 6-bit 9-bit 18-bit single double
character byte half word precision precision
Logical
minimum 0 0
maximum 26_4 291 218, 238, 273,
resolution 1 1 1 1 1
Arithmetic
minimum 0 0 0 0
maxima
negative 25 §28 '317 -§35 _?71
positive 25_1 281 217_4 23521 2114
resolution 1 1 1 1 1

Fixed-point Binary Fractions

I'ixed-point binary fraction data is defined by imposing the bit position
value expression below on an information unit of n bits.

2/82

2-5

AL39B

Arithmetic value:

—ag + ax2”1 4 ayx272 4 L. ow agx27iill aE_1x2‘(E‘1)

Note that logical values are not defined for fixed-point binary fraction
data.

The following fixed-point binary fraction data items are defined (also see
Table 2-2 for values): '

Operand

size(bits) Operand name
6 P 6-bit character operand
9 ' 9-bit byte operand
18, . Half word operand
36. Single-precision operand
T2 Double-precision operand

Note that a U4-bit operand is not defined. This data item is defined only
for decimal data. (See discussion of decimal data- later in this section.)
Fixed-point binary fraction operands are used by the Divide Fraction (dvf) and
Multiply Fraction (mpf) instructions only.

The proper operand and its position with respect to a 36-bit machine word
are determined by the processor during preparation of the main memory address
for the operand. If the data width of the operand selected is smaller than the
register involved, the operand is high- or low-order zero filled as necessary.

The values in Table 2-2 are given in terms of the operand sizes. The value
an operand contributes to a larger field or register depends on the alignment of
the operand with respect to the field or register.

Table 2-2. Fixed-Point Binary Fraction Values
36-bit 72-bit
Operand 6-bit g-bit 18-bit single double
character byte half word precision precision
Arithmetic
minimum 0 0 0 0 0
maxima
negative -1.0 -1.0 -1.0 -1.0 1.0
positive 1.0-5'5 1.0-5‘8 1.o-§"7 1.0-2-35 1.0-;‘71
resolution 2 2" 2-17 . 2- > 2-T

FLOATING-POINT BINARY DATA

A floating-point binary number is expressed as:

z =Mx 2E

AL39

where:
M is a fixed-point binary fraction; the mantissa
E is a fixed-point binary integer; the exponent
A floating-point binary number is defined by partitioning an information

unit of n bits into two pieces; an 8-bit fixed-point binary integer exponent and
an (n-8)-bit fixed-point binary fraction mantissa.

The following floating-point data items are defined.

Operand

size(bits) Operand name
18 Half word operand
36 Single-precision operand
72 Double-precision operand

For clarity, the formats of these operands are shown in Figure 2-7 through
Figure 2-9. 1In the figures, the fields labeled S hold sign bits associated with
the exponent, E, and the mantissa, M.

The floating-point binary operands are used only by the floating-point
binary arithmetic instructions (see Section 4). The 18-bit half word operand
has meaning only when used in conjunction with the direct upper (du) address
modification (see Section 6 for a discussion of address modification).

00 000 1
0 1 7.89 yi
S E S M

7 71 9

Figure 2-7. Eighteen-bit Half Word Floating-Point Binary Operand Format

00 000 3
0 1 7.8.9 2
S E S M

1 T 1 27

Figure 2-8. Single-Precision Floating-Point Binary Operand Format

00 000 7
0 1 7.89 1
S E S M

1 7 1 63

Figure 2-9. Double-Precision Floating-Point Binary Operand Format

2=7 AL39

The proper operand is selected by the processor during preparation of the
main memory address for the operand.

Overlength Registers

The AQ-register is used to hold the mantissa of all floating-point binary
numbers. The AQ-register is said to be overlength with respect to the operands
since it has more bits than are provided by the operands. Operands are low-order
zero filled when loaded and low-order truncated (or rounded, depending on the
instruction) when stored. Thus, the result of all floating-point instructions
has more bits of precision in the AQ-register than may be stored.

Users are cautioned that calculations involving floating-point operands may
suffer from propagation of truncation errors even if the computation algorithms
are designed to hold mantissas in the AQ-register as long as possible. It is
possible to retain full AQ-register precision of intermediate results if they
are saved with the Store AQ (staq) and Store Exponent (ste) instructions but
such saved data are not usable as a floating-point operand.

Normalized Numbers

A floating-point binary number is said to be normalized if the relation
-0.5 > M > -1 or 0.5 < M <1 or [M=0 and E=-128]

is satisfied. This is a result of using a 2's complement mantissa. Bits 8 and
9 are different unless the number is zero. The presence of unnormalized numbers
in any finite mantissa arithmetic can only degrade the accuracy of results. For
example,_in an arithmetic allowing only two digits in the mantissa, the number
0.005x10° has the value zero instead of the value one-half

Normalization is a process of shifting the mantissa and adjusting the exponent
until the relation above is satisfied. Normalization may be used to recover
some or all of the extra bits of the overlength AQ-register after a floating-point
operation.

There are cases where the limits of the registers force the use of unnormalized
numbers. For example, in an arithmetic allowingothree digi§§ of mantissa and
one digit of exponent, the calculstion 0.3x10° 0.1x10~ (the normalized
case) may not be made, but 0.03x107°7 -~ 0.001x10"9 = 0.029x10’9 (the unnormalized
case) is a valid result.

Some examples of normalized and unnormalized floating-point binary numbers
are:
Unnormalized positive binary 0.00011010 x 27
Same number normalized 0.11010000 x 2%
Unnormalized negative binary 1.11010111 x 2"l
Same number normalized 1.01011100 x 2‘6

The minimum normalized nonzero floating-point binary number is 2'128 in all
cases. Table 2-3 gives the values for the floating-point binary operands.

2/82 2-8 AL39B

(a)

(b)

Table 2-3. Floating-Point Binary Operand Values
' 36-bit T2-bit
Operand 18-bit single double
‘ half word precision precision
Unnormalized)
minimum o(a) 0(a) o(a)
maxima '
negative 8x2127 8?2127 8§2127
positive |(1-2- %’27 (1-2° 5127 (1-2" 2é§‘27
resolution 1:27 1:63

There is no unique representation for the value zero in floating-point
binary numbers; any number with mantissa zero has the value zero. However,
the processor treats a zero mantissa as a special case in order to preserve
precision in later calculations with a zero intermediate result. Whenever
the processor detects a zero mantissa as the result of a floating-point
binary operation, the AQ-register is cleared to zeros and the E register is
set to -128. This representation is known as a floating-point normalized
zero. The unnormalized zero (any zero mantissa) will be handled correctly
if eanuntered in an operand but precision may be lost. For example,
Ax10™ + 0x1085 will not produce desired results iiyce all the precision
of A will be lost when it is aligned to mateh the 10 exponent of the 0.

A value cannot be given for resolution in these cases since such a value
depends on the value of the exponent, E. The notation used, 1:m, indicates
resolution to 1 bit in a field of m. Thus, the following general statement
on resolution may be made: S :

The resolution of a floating-potgt binary operand with mantissa
length m and exponent value E is 2

DECIMAL DATA

Decimal numbers are expressed in the following forms:

Fixed-point, no sign MMMMMM .
Fixed-point, leading sign +MMMMMM .
Fixed-point, trailing sign MMMMMM. +
Floating-point. 1MMMMMM.x1OE

The form is specified by control information in the operand descrlptor for

the operand as used by the Extended Instruction Set (EIS) instructions (see.
Section 4 for a discussion of the EIS instructions).

A decimal number is defined by imposing any of the byte position value

expressions below on a 4- or 9-bit byte information unit of length n bytes.

Fixed-point, no sign:

cox10(" -0 ¢y x10(n- 2) + et + Cna)

2-9 . AL39

Fixed=-point, leading sign:

[sign=cgy] c1x10(2‘2) + c2x10(£'3) + oo+ Cnl1)

Fixed-point, trailing sign:

0(n=2) 0(n-3)

cog1 + c¢qx] + ... + c(n 2) [sign= °(n—1)]

Floating-point: »
[sign=cj] c1x10(2‘3) + c2x1ofﬂ'") *+ ees *C(no3) [exponent=8 bits}

°

where:
ey is the decimal value of the byte in the ith byte position.
[sign=c,] indicates that ¢, is interpreted as a sign byte.
i i

[exponent=8 bits] indicates that the exponent value is taken from the
last 8 bits of the string. If the data is in 9-bit bytes, the
exponent is bits 1-8 of ¢ . If the data is in 4-bit bytes, the
exponent 1is the binary Jgiue of the concatenation of C(n-2) and

6(2_1).

The decimal number as described above is the only decimal data item
defined. It may begin on any legal byte boundary (without regard to word
boundaries) and has a maximum extent of 63 bytes.

The processor handles decimal data as U4-bit bytes internally. Thus, 9-bit
bytes are high-order truncated as they are transferred from main memory and
high-order filled as they are transferred to main memory. The fill pattern is
"00011"b for digit bytes and "00010" for .sign bytes. The floating-point
exponent is a special case and is treated as a fixed-point binary integer.

The processor performs validity checking on decimal data. Only the byte
values [0,11], are legal in digit positions and only the byte values [12, 17]
are legal in "sign positions. Detection of an illegal byte value causes an
illegal frocedure fault. The interpretation of decimal sign bytes is shown in
Table 2-4. .

Table 2-4., Decimal Sign Character In;erpretation

9-bit 4-bit

bytes bytes Interpretation
528 128 +
538(3) 138(b) .
Sua ») 1“8(3) - +
558(3) 158(3) -
568 168 + .
578 178 +

2-10 : ' : AL39

(a) This value is used as the default sign byte for storage of results. The
presence of other values will yield correct results according to the
interpretation. '

(b) An optional control bit in the EIS decimal arithmetiec instructions (see
Section U4) allows the selection of 133 for the plus sign byte for storage
of results in U4-bit data mode.

Decimal Data Values

The operand descriptors for decimal data operands have a 6-bit fixed-point
binary integer field for specification of a scaling factor (SF). This scaling
factor has the same effect as the value of E in floating-point decimal operands;
a negative value moves the assumed decimal point to the left; a positive value,
to the right. The use of the scaling factor extends the range and resolution of
decimal data operands. The range of the scaling factor is [-32,31];45. See
Table 2-5 for decimal data operand values.

Table 2-5. Decimal Data Values

Fixed-point Fixed-point Floating-point] Floating-point
Operand unsigned signed 9-bit 4obit
Arithmetic
minimum 0 o(a) o(a) ola)
maximum (1083-1)x1037 J+(1062-1)x1037 J+(1061-1)x10'58]4(1060-1)x10158
resolution 1:sr(P) 1:sF(b) 1:5F+E(C) 1:5F+g(C)

(a) As in floating-point binary arithmetic, there is no unique representation
of the value zero except in the case of fixed-point, unsigned data. Therefore,
the processor detects %Z?ero result and forces a value of +0. for fixed-point,
signed data and +0.x10 for floating-point data. Again, as in floating-point
binary arithmetic, other representations of the value zero will be handled
correctly except for possible loss of precision during operand alignment.

(b) A value cannot be given for resolution in these cases since such a value
depends on the value of the scaling fa&&g;, SF. The notation used, 1:SF,
indicates resolution to 1 part in 10 . Thus, the following general
statement on resolution may be made:

The resolgbion of a fixed-point decimal operand with scaling factor
SF is 105F,

(c) A value cannot be given for resolution in these cases since such a value
depends on the values of the scaling factor, SF, and the exp?ggnéy E. The
notation used, 1:SF+E, indicates resolution to 1 part in 10 *5J. Thus, .
the following general statement on resolution may be made:

The resolution of a flo%ﬁ;qg—point decimal operand with scaling factor
SF and exponent E is 10°F*E,

2/82 2-11 AL39B

Alphanumeric Data

Alphanumeric data 1is represented in two modes; character-string and
bit-string. The mode is determined by the processor according to the function
being performed.

CHARACTER STRING DATA

Character string data is defined by imposing the character position
structure below on a #-bit, 6-bit, or 9-bit information unit of length n bytes
or characters. :

o ll €1 " “ ¢(n-1)

where:

¢y is the character in the ith character position.

“ indicates the concatenation operation.

The character string described above is the only character string data item
defined. It may begin on any legal character boundary (without regard to word
boundaries) and has a maximum extent as shown in Table 2-6.

Table 2-6. . Character String Data Length Limits

Character size Length limit
9-bit 1048576
6-bit 1572864
4-bit 2097152

No interpretation of the characters is made except as specified for the
instruction being executed (see Section U4).

BIT STRING DATA

Bit string data is defined by imposing the bit position structure below on
a bit information unit of length n bits.

vo lfoi ll - ll oo

where:
b; is the value of the bit in the i®" position.

" indicates the concatenation operation.

2-12 - AL39

" The bit string described above is the only bit string data item defined.
It may begin at any bit position (without regard to character or word
boundaries) and has a maximum extent of 9437184 bits. .

2-13 ' . AL39

SECTION 3

PROGRAM ACCESSIBLE REGISTERS

A processor register is a hardware assembly that holds information for use
in some specified way. An accessible register is a register whose contents are
available to the user for his purposes. Some accessible registers are explicitly
addressed by particular instructions, some are implicitly referenced during the
course of execution of instructions, and some are used in both ways. The accessible
registers are 1listed in Table 3-1. See Section 4 for a discussion of each
instruction to determine the way in which the registers are used.

Table 3-1. Processor Registers

Length
Register name Mnemonic (bits) Quantity
Accumulator Register A 36 1
Quotient Register Q 36 1
Accumulator-Quotient Register(a) AQ 72 1
Exponent Register E 8 1
Exponent-Accumulator-Quotient Register(2) EAQ 80 1
Index Registers Xn 18 8
Indicator Register IR 14 1
Base Address Register BAR 18 1
Timer Register TR 27 1
Ring Alarm Register RALR 3 1
Pointer Registers PRn 42 8
Address Registers ARn 24 8
Procedure Pointer Register(b) PPR 37 1
Temporary Pointer Register(b) TPR 42 1
Descriptor Segment Base Register DSBR 51 1
Segment Descriptor Word Associative Memory SDWAM 88 16
Page Table Word Associative Memory PTWAM 51 16
Fault Register FR 35 . 1
Mode Register MR 33 1
Cache Mode Register CMR 28 1
Control Unit (CU) History Register T2 16
Operations Unit (OU) History Register T2 16
Decimal Unit (DU) History Register 72 16
Appending Unit (APU) History Register T2 16
Configuration Switch Data 36 5
Control Unit Data 288 1
Decimal Unit Data 288 1

(a) This register is not a separate physical assembly but is a combination of
its constituent registers.

2/82 3-1 AL39B

(b) This register is not explicitly addressable, but is included because of its.
vital role nd DPS 8M"/ p p 980,982P 976,986P in instruction and operand
address preparation. : ’

In the descriptions that follow, the diagrams given for register formats do
not imply that a physical assembly possessing the pictured bit pattern exists.
The diagram is a graphic representation of the form of the register data as it
appears in main memory when the register contents are stored or how data bits
must be assembled for loading into the register.

If the diagrams contain the characters "x" or "O0", the values of the bits
in the positions shown are irrelevant to the register. Bits pictured as "x" are
not changed when the register is stored. Bits pictured as "O" are set to 0 when
the register is stored. Neither "x" bits or "0" bits are loaded into the register.

ACCUMULATOR REGISTER (A)

Format: - 36 bits

-
o o QY
b w

0
0

A-Upper » A-Lower
18 1

Figure 3-1. Accumulator Register (A) Format

Description:

A 36-bit physical register located in the operations unit.

Function:

In fixed-point binary instructions, holds operands and results.

In floating-point binary instructions, holds the most significant part of
the mantissa.

In shifting instructions, holds original data and shifted results.

In address preparation, may hold two logically independent word offsets,
A-upper and A-lower, or an extended range bit- or character-string length.

2/82 3-2 AL39B

QUOTIENT REGISTEk Q)

Format: - 36 bits

RN
0 —
SRV

0
Q

Q-Upper Q-Lower
18 18

Figure 3-2. Quotient Register (Q) Format

Description:

A 36-bit physical register located in the operations unit.

Function:

In fixed-point binary instructions, holds operands and results.

In floating-point binary instructions, holds the least significant part of
the mantissa.

In shifting instructions, holds original data and shifted results.

In address preparation, may hold two logically independent word offsets,
Q-upper and Q-lower, or an extended range bit- or character-string length.

ACCUMULATOR-QUOTIENT REGISTER (AQ)

Format: - 72 bits
0 33 7
Q 5. 6 1
Even Word 0dd Word
36 36

Figure 3-3. Accumulator-Quotient Register (AQ) Format

Description:

A combination of the accumulator (A) and quotient (Q) registers.

2/82

)
]
w

AL39B

Function:
In fixed-point binary instructions, holds double-precision operands
results.
In floating-point binary instructions, holds the mantissa.

In shifting instructions, holds original data and shifted results.

EXPONENT REGISTER (E)

Format: - 8 bits
0 00 3
0 7 8 5

exponent 00000000000000O0O0DOOOOOODODOODOOODO

8 28

Figure 3-U4. Exponent Register (E) Format

Description:

An 8-bit physical register located in the operations unit.

Function:

In floating-point binary instructions, holds the exponent.

EXPONENT-ACCUMULATOR-QUOTIENT REGISTER (EAQ)

Format: - 80 bits
0 00 T
0 7 8 1
exponent mantissa
8 6U

Figure 3-5. Exponent-Accumulator-Quotient Register (EAQ) Format

Description:

and

A combination of the exponent (E), accumulator (A), and quotient (Q) registers.
Although the combined register has a total of 80 bits, only 72 are involved

2/82 . 3-4 AL39B

in transfers to and from main memory. The 8 low-order bits are discarded
on store and zero-filled on load.

Function:

In floating-point binary instructions, holds operands and results.

INDEX REGISTERS (Xn)

Format: - 18 bits each

Figure 3-6. Index Register (Xn) Format

Description:

Eight 18-bit physical registers in the operations unit numbered 0 through
7. Index register data may occupy the position of either an upper or lower
18-bit half-word operand (see Section 2).

Function:
In fixed-point binary instructions, hold half-word operands and results.

In address preparation, hold word offsets or extended range bit- or
character-string lengths.

INDICATOR REGISTER (IR)

Format: - 14 bits
0 1112222222222333 3
0] 7. 890123 456789012 5
X X X X X X X X XX X XXx X x x x xjajbjcldleiflglhlijilk}jiiminio]O 0 O

M1T11T1T1T1111 111111 4

Figure 3-7. 1Indicator Register (IR) Format

2/82 3-5 AL398

Description:

An assemblage of 15 indicator flags from various units of the processor.
The data occupies the position of a lower 18-bit half word operand (see
Section 2). When interpreted as data, a bit value of 1 corresponds to the
ON state of the indicator, a bit value of O corresponds to the OFF state.

Function:

The functions of the individual indicator bits are given below. A&n "x" in
the column headed "L" indicates that the state of the indicator is not
affected by instructions that load the IR.

key L Indicator name Action
a Zero This indicator is set ON whenever the output

of the main binary adder consists entirely of
zero bits for binary or shifting instructions
or the output of the decimal adder consists
entirely of zero digits for decimal
instructions; otherwise, it is set OFF.

b Negative This indicator is set ON whenever the output
of bit 0 of the main binary adder has value 1
for binary or shifting instructions or the
sign character of the result of a decimal
instruction is the negative sign character;
otherwise, it is set OFF.

c Carry This indicator is set ON for any of the following
conditions; otherwise, it is set OFF.

(1) If a bit propagates leftward out of bit
‘0 of the main binary adder for any binary
or shifting instruction.

(2) 1If lvalue1| =< lvalue2| for a decimal
numeric comparison instruction.

(3) If charl! =< char2 for a decimal
alphanumeric compare instruction.

d Overflow This indicator 1is set ON if the arithmetic
range of a register is exceeded in a fixed-point
binary instruction or if the target string of
a decimal numeric instruction is too small to
hold the integer part of the result. It remains
ON until reset by the Transfer On Overflow
(tov) instruction or is reset by some other
instruction that loads the IR. The event that
sets this indicator ON may also cause an overflow
fault. (See overflow mask indicator below.)

e Exponent overflow This indicator is set ON if the exponent of
the result of a floating-point binary or decimal
numeric instruction is greater than +127. 1t
remains ON until reset by the Transfer On
Exponent Overflow (teo) instruction or is reset
by some other instruction that loads the IR.
The event that sets this indicator ON may also
cause an overflow fault. (See overflow mask
indicator below.)

2/82 3-6 AL39B

2/82

key L Indicator name

f

g

h

i

A

k

Exponent underflow

Overflow mask

Tally runout

Parity error

Parity mask

x Not BAR mode

Action

This indicator is set ON if the exponent of
the result of a floating-point binary or decimal
numeric instruction is 1less than -128. Tt
remains ON until reset by the Transfer On
Exponent Underflow (teu) instruction or is reset
by some other instruction that loads the IR.
The event that sets this indicator ON may also
cause an overflow fault. (See overflow mask
indicator below.)

This indicator is set ON or OFF only by the
instructions that load the IR. When set ON,
the IR inhibits the generation of the fault
for those events that normally cause an overflow
fault. If the overflow mask indicator is set
OFF after occurrence of an overflow event, an
overflow fault does not occur even though the
indicator for that event is still set ON.
The state of the overflow mask indicator does
not affect the setting, testing, or storing
of any other indicator.

This indicator is set OFF at initialization
of any tallying operation, that is, any repeat
instruction or any indirect then tally address
modification. It is then set ON for any of
the following conditions:

(1) If any repeat instruction terminates
because of tally exhaust.

(2) If a Repeat Link (rpl) instruction
terminates because of a zero link address.

(3) 1If a tally exhaust is detected for an
indirect then tally modifier. The
instruction is executed whether or not
tally exhaust occurs.

(4) If an EIS string scanning instruction
reaches the end of the string without
finding a match condition.

This indicator is set ON whenever a system
controller signals illegal action with a parity
error code or the processor detects an internal
parity error condition. The indicator is set
OFF only by instructions that load the IR.

This indicator is set ON or OFF only by the
instructions that load the IR and is changed
only when the processor is in privileged or
absolute mode. When it is set ON, the IR
inhibits the generation of the parity fault
for all events that set the parity error
indicator. If the parity mask indicator is
set OFF after the occurrence of a parity error
event, a parity fault does not occur even though
the parity error indicator may still be set
ON. The state of the parity mask indicator
does not affect the loading, testing, or storing
of any other indicator.

This indicator is set OFF (placing the processor
in BAR mode) only by execution of the Transfer

3-7 AL39B

2/82

key L Indicator name

1

m

n

o

Truncation

Mid instruction
interrupt fault

x Absolute mode

Hex mode

Action

and Set Slave (tss) instruction or by the operand
data of the Restore Control Unit (rcu)
instruction and is changed only when the
processor is in privileged or absolute mode.
It is set ON (taking the processor out of BAR
mode) by the execution of any transfer
instruction other than tss during a fault or
interrupt trap. (See Section 7.) If a fault
or interrupt trap occurs while in BAR mode
and the IR is stored before any transfer occurs,
then a Return (ret) or Restore Control Unit
(recu) instruction that reloads the stored data
will return the processor to BAR mode.

This indicator is set ON whenever the target
string of a decimal numeric instruction is
too small to hold all the digits of the result
or the target string of an alphanumeric
instruction is too small to hold all the bits
or characters to be stored. (Also see the
overflow indicator for decimal numeric
instructions.) The event that sets this
indicator ON may also cause an overflow fault.
(See overflow mask indicator above.)

This indicator is set OFF at the start of
execution of each instruction and 1is set ON
by the events described below. The indicator
has meaning only when determining the proper
restart sequence for the interrupted
instruction. This indicator can be set on:

(1) By any fault during execution of an EIS
instruction; however, the state 'is
safe-stored in the Control Unit Data only
for access violation and directed faults.

(2) By an interrupt signal during execution
of those EIS instructions that allow very
long operand strings.

(3) If the processor 1is 1in absolute or
privileged mode, by the execution of a
Load Indicator Register (1di), Return
(ret), or Restore Control Unit (rcu)
instruction with bit 30 set to 1 in the
IR data.

This indicator is set ON (placing the processor
in absolute mode) when the processor is
initialized and by execution of an nonappended
transfer instruction during a fault or interrupt
trap and is set OFF (placing the processor in
append mode) by any execution of an appended
transfer instruction. If the processor is not
in absolute mode when the fault or interrupt
occurs and the transfer instruction is Return
(ret) or Restore Control Unit (rcu) and the
appropriate mode bit is properly set in the
IR data, the processor remains in its current
mode.

When the hexadecimal permission indicator (bit

33 of the Mode Register) is set on and this
indicator is also on, then the exponent of a

3-8 AL398B

floating point number has a power of 16 rather
than a power of two (binary floating point).
The state of the hex mode indicator can be
changed by executing a Load Indicator Register
(1di), Return (ret), or Restore Control Unit
(rcu), instruction with the desired state (1
or 0) set in bit 32 of the IR data. Hexadecimal
mode is only available on DPS 8M processors.
Indicator Register bit 32 is set to a zero
value on DPS/L68 processors

BASE ADDRESS REGISTER (BAR)

Format: - 18 bits
0 00 11 3
0 8 9 7 8 5
BASE BOUND X X X X X X X X X XX XX X X X X X
9 9 18

Figure 3-8. Base Address Register (BAR) Format

Description:

An 18-bit physical register in the control unit.

Function:

The Base Address Register provides automatic hardware Address relocation
and Address range limitation when the processor is in BAR mode.

BAR.BASE Contains the 9 high-order bits of an 18-bit address
relocation constant. The low-order bits are generated
as zeros.

BAR.BOUND Contains the 9 high-order bits of the unrelocated address

limit. The low-order bits are generated as zeros. An
attempt to access main memory beyond this limit causes
a store fault, out of bounds. A value of 0 is truly O,
indicating a null memory range.

2/82 3-9 AL39B

TIMER REGISTER (TR)

Format: - 27 bits
0 2 2 3
0 g 7 5
Timer value 0000O0O0OO0CO
27 9

Figure 3-9. Timer Register (TR) Format

Description:

A 27-bit settable, free-running clock in the control unit. The value decrements
at a rate of 512 kHz. 1Its range is 1.953125 microseconds to approximately
4.37 minutes.

Function:

The TR may be loaded with any convenient value with the privileged Load
Timer (1dt) instruction. When the value next passes through zero, a timer
runout fault is signalled. If the processor is in normal or BAR mode with
interrupts not inhibited or is stopped at an uninhibited Delay Until Interrupt
Signal (dis) instruction, the fault occurs immediately. If the processor
is in absolute or privileged mode or has interrupts inhibited, the fault is
delayed until the processor returns to uninhibited normal or BAR mode or
stops at an uninhibited Delay Until Interrupt Signal (dis) instruction.

RING ALARM REGISTER (RALR)

Format: - 3 bits
0 33 3
Q 2.3 5

000000000000 00O00O0O0DO0OO0COOOO0OO0O0O0OOOOOOO OO O} RALR

33 3

Figure 3-10. Ring Alarm Register (RALR) Format

Description:

2/82

A 3-bit physical register in the appending unit.

3-10 AL39B

Function:

If the RALR contains a value other than zero and the effective ring number
(see TPR.TRR below) is greater than or equal to the contents of the RALR
and the instrucuction for which an absolute main memory address is being
prepared is a transfer instruction, an access violation, ring alarm, fault
occurs. Operating system software may use this register to detect crossings
from inner rings to outer rings.

POINTER REGISTERS (PRn)

Format: - U42 bits each

Even word of ITS pointer pair

0 00 11 2 2 2 3 3
0 2.3 7.8 0 1 0 5
000 SNR RNR JO O OO 0O O0O0O0O (u3)8
3 15 3 9 6
0dd word of ITS pointer pair
3 55 55 6 6 6 6 T
[3. U 6.7 2 3 5 6 1
WORDNO 000 BITNO 000 (TAG)
18 3 6 3 6
Data as stored by Store Pointer Register n Packed (sprpn)
0 00 11 3
0 5 6 1.8 Y

BITNO SNR WORDNO

Figure 3-11. Pointer Register (PRn) Format

Description:

Eight combinations of physical registers from the appending unit and decimal
unit numbered 0 through 7. PRn.RNR, PRn.SNR, and PRn.BITNO are located in
the appending unit and PRn.WORDNO is 1located in the decimal unit. The
WORDNO registers also form part of the address registers discussed later in
this section.

2/82 : 3-11 AL39B

Function:

The pointer registers hold information relative to the 1location in main
memory of data items that may be external to the segment containing the
procedure being executed. The functions of the individual constituent
registers are:

Register Function
PRn.SNR The segment number of the segment containing the data

item described by the pointer register.

PRn.RNR The final effective ring number value calculated during
execution of the instruction that last loaded the PR.

(43)g This field is not part of the PR but is generated each
time the PR is stored as an ITS pair.

PRn.WORDNO The offset in words from the base or origin of the
segment to the data item.

PRn.BITNO The number of the bit within PRn.WORDNO that 1is the
first bit of the data item. Data items aligned on word
boundaries always have the value 0. Unaligned data items
may have any value in the range [1,35].

(TAG) This field is not part of the PR but, in an ITS pointer
pair, holds an address modifier for use in address
preparation.

ADDRESS REGISTERS (ARn)

Format: - 24 bits each

Data as stored by Store Address Register n (sarn)

1112 22 3
1.8 0 34 2
WORDNO a BITNO JOO OO OO0OO0O0O0OO0GO

Figure 3-12. Address Register (ARn) Format

Description:

Eight combinations of physical registers from the decimal unit numbered 0
through 7. The WORDNO registers also form part of the pointer registers
discussed earlier in this section.

Function:

2782

Th: address registers hold information relative to the 1location in main
memcry of the next bit, character, or byte of an EIS operand to be processed

3-12 AL39B

by an EIS instruction. The functions of the individual constituent registers

key Register Function
ARn.WORDNO The offset in words relative to the current addressing

base referent (segment origin, BAR.BASE, or absolute 0
depending on addressing mode) to the word containing
the next data item element.

ARn.CHAR The number of the 9-bit byte within ARn.WORDNO containing
the first bit of the next data item element.

ARn.BITNO The number of the bit within ARn.CHAR that is the first
bit of the next data item element.

NOTE: The reader's attention is directed to the presence of two bit number

registers, PRn.BITNO and ARn.BITNO. Because the Multics processor was
implemented as an enhancement to an existing design, certain apparent
anomalies appear. One of these is the difference in the handling of
unaligned data items by the appending unit and decimal unit. The
decimal unit handles all unaligned data items with a 9-bit byte number
and bit offset within the byte. Conversion from the description given
in the EIS operand descriptor is done automatically by the hardware.
The appending unit maintains compatibility with the earlier generation
Multies processor by handling all unaligned data items with a bit
offset from the prior word boundary; again with any necessary conversion
done automatically by the hardware. Thus, a pointer register, PRi,
may be loaded from an ITS pointer pair having a pure bit offset and
modified by one of the EIS address register instructions (albd, s9bd,
etc.) using character displacement counts. The automatic conversion
performed ensures that the pointer register, PRi, and its matching
address register, ARi, both describe the same physical bit in main
memory.

SPECIAL NOTICE: The decimal unit has built-in hardware checks for illegal bit

2/82

offset values but the appending unit does not except for a single
case for packed pointers. See NOTES for Load Packed Pointers
(1prpn) in Section 4.

3-13 AL39B

PROCEDURE POINTER REGISTER (PPR)

Format: - 37 bits

Shown as part of word 0 of control unit data

0 00 11
4] 0. 0 7
PRR PSR P}<----0Other control unit data---->
3 15 1

Shown as part of word 4 of control unit data

IC L Other control unit data----- >

18

Figure 3-13. Procedure Pointer Register (PPR) Format

Description:

A combination of physical registers from the appending unit and the control
unit. PPR.PRR, PPR.P3SR, and PPR.P are located in the appending unit and
PRR.IC is located in the control unit. The PPR is not explicitly addressable
but its data is extracted and stored as part of the data stored with the
Store Control Unit (scu) and Store Control Double (stcd) instructions. It
is loaded from the control unit data with the Restore Control Unit (rcu)
instruction.

Function:

z2/82

The Procedure Pointer Register holds information relative to the location
in main memory of the procedure segment in execution and the location of
the current instruction within that segment. The functions of the individual
constituent registers are:

Register Function
PPR.PRR The number of the ring in which the process is executing.

It is set to the effective ring number of the procedure
segment when control is transferred to the procedure.

PPR.PSR The segment number of the procedure being executed.

PPR.P A flag controlling execution of privileged instructions.
Its value is 1 (permitting execution of privileged
instructions) if PPR.PRR is 0 and the privileged bit in
the segment descriptor word (SDW.P) for the procedure
is 1; otherwise, its value is 1.

3-14 AL39B

PPR.IC The word offset from the origin of the procedure segment .
to the current instruction.

TEMPORARY POINTER REGISTER (TPR)

Format: - 42 bits

Shown as part of word 2 of control unit data

0 00 1
0 2 3 i

TRR TSR L Other control unit data----- >
3 15

Shown as part of word 3 of control unit data

3 3
0 5
L Other control unit data---——=ccccmmmeon > TBR
6
Shown as part of word 5 of control unit data
0 1
(0] T
CA ememm Other control unit data----- >
18

Figure 3-14. Temporary Pointer Register (TPR) Format

Description:

A combination of physical registers from the appending unit and the control
unit. TPR.TRR, TPR.TSR, and TPR.TBR are located in the appending unit and
TPR.CA is located in the control unit. The TPR is not explicitly addressable
but its data is extracted and stored as part of the data stored with the
Store Control Unit (scu) instruction. It is loaded from the control unit
data with the Restore Control Unit (rcu) instruction.

Function:

The temporary pointer register holds the current virtual address used by
the processor in performing address preparation for operands, indirect words,
and instructions. At the completion of address preparation, the contents
of the TPR is presented to the appending unit associative memories for

2/82 : 3-15 AL398B

translation into the 24-bit absolute main memory address. The functions of
the individual constituent registers are:

Register Function

TPR.TRR The current effective ring number (see Section 8).
TPR.TSR The current effective segment number (see Section 8).
TPR.TBR The current bit offset as calculated from ITS and TTP

pointer pairs. (See Section 8.)
TPR.CA The current computed address relative to the origin of

the segment whose segment number is in TPR.TSR. (See
Section 8.) .

DESCRIPTOR SEGMENT BASE REGISTER (DSBR)

Format: - 51 bits

Even word of Y-pair as stored by Store Descriptor Base Register (sdbr)

0 2 2 3

Q 3.4 9

ADDR 00000000O0O0O00O

24 12

0dd word of Y-pair as stored by Store Descriptor Base Register (sdbr)

33 55 555 5 6 7

6 7 0 1 456 9 0 1
0 BND 00 0O0OjJuUj0 00O STACK

1 14 4 4 12

Figure 3-15. Descriptor Segment Base Register (DSBR) Format

Description:

A physical register in the appending unit.

2782 ‘3-16 AL39B

Function:

2/82

The Descriptor Segment Base Register contains information concerning the
descriptor segment being used by the processor. The descriptor segnment
holds the segment descriptor words (SDWs) for all segments accessible by
the processor, that 1is, the currently defined virtual address space. The
functions of its individual constituent registers are:

Register Function
DSBR.ADDR If DSBR.U = 1, the 24-bit absolute main memory address

of the origin of the current descriptor segment; otherwise,
the 24-bit absolute main memory address of the page
table for the current descriptor segment.

DSBR.BND The 14 most significant bits of the highest Y-block16
address of the descriptor segment that can be addressed
without causing an access violation, out of segment bounds,
fault.

DSBR.U A flag specifying whether the descriptor segment is unpaged
(U = 1) or paged (U = 0).

DSBR.STACK The upper 12 bits of the 15-bit stack base segment number.
It is used only during the execution of the callb
instruction. (See Section 8 for a discussion of generation
of the stack segment number.)

3-17 AL39B

' SEGMENT DESCRIPTOR WORD ASSOCIATIVE MEMORY (SDWAM) - DPS/L68 and DPS 8M

Format: - 88 bits each

Even word of Y-pairs as stored by Store Segment Descriptor Registers (ssdr)

0 2 2 22 2 3 33 3
Q 3 4 6 7 9 0 2 3)
ADDR R1 R2 R3 j0 0 O

24 3 3 3 3

0dd word of Y-pairs as stored by Store Segment Descriptor Registers (ssdr)

33 555555555 7
6 1 0. 1223 5 7. 8
0 BOUND RJEJWJPJUIGYC CL
1 1111111 1
Data as stored by Store Segment Descriptor Pointers (ssdp)
0 11 2222333 3
Q 4 5 6. 7890 2 5
0 OJUSE L68
POINTER 000OCOO0OO0OOOOQ}JFJOO
USE DPS 8M
15 : 12 1 2 2 }

Figure 3-16. Segment Descriptor Word Associative Memory (SDWAM) Format
DPS/L68 and DPS 8M

Description:

A combination of 16 registers and flags from the appending unit constitute
the Segment Descriptor Word Associative Memory (SDWAM). The registers are
numbered consecutively from O through 15 but are not explicitly addressable
by number.

For the DPS 8M processors, the SDW associative memory will hold the 16 most
recently used (MRU, SDWs and have a full associative organization with
least recently used (LRU) replacement.

For the DPS 8M processor, the SDW associative memory will hold the 64 MRU
SDWs and have a 4-way set associative organization with LRU replacement.

Function:

Hardware segmentation in the Multics processor is implemented by the appending
unit (see Section 5 for details). 1In order to permit addressing by segment
number and offset as prepared in the temporary pointer register (described

2,32 3-18 AL39B

earlier), a table containing the location and status of each accessible
segment must be kept. This table is the descriptor segment. The descriptor
segment is located by information held in the descriptor segment base register
(DSBR) described earlier.

Every time an effective segment number (TPR.TSR) is prepared, it is used as
an index into the descriptor segment to retrieve the segment descriptor
word (SDW) for the target segment. To reduce the number of main memory
references required for segment addressing, the SDWAM provides a content
addressable memory to hold the sixteen most recently referenced SDWs.

Whenever a reference to the SDW for a segment is required, the effective
segment number (TPR.TSR) is matched associatively against all 16 SDWAM.POINTER
registers (described below). If the SDWAM match logic circuitry indicates
a hit, all usage counts (SDWAM.USE) greater than the usage count of the
register hit are decremented by one, the usage count of the register hit is
set to 15, and the contents of the register hit are read out into the
address preparation circuitry. If the SDWAM match logic does not indicate
a hit, the SDW is fetched from the descriptor segment in main memory and
loaded into the SDWAM register with usage count 0 (the oldest), all usage
counts are decremented by one with the newly loaded register rolling over
from 0 to 15, and the newly loaded register is read out into the address
preparation circuitry. Faulted SDWs are not loaded into the SDWAM.

The functions of the constituent registers and flags of each SDWAM register
areas follows:

Register Function
SDWAM.ADDR The 24-bit absolute main memory address of the page

table for the target segment if SDWAM.U = 0; otherwise,
the 24-bit absolute main memory address of the origin
of the target segment.

SDWAM.R1 Upper limit of read/write ring bracket (see Section 8).

SDWAM.R2 Upper 1limit of read/execute ring bracket (see Section
8).

SDWAM.R3 Upper limit of call ring bracket (see Section 8).

SDWAM.BOUND The 14 high-order bits of the last Y-block16 address

within the segment that can be referenced without an
access violation, out of segment bound, fault.

SDWAM.R Read permission bit. If this bit is set ON, read access
requests are allowed.

SDWAM.E Execute permission bit. If this bit is set ON, the SDW

may be loaded into the procedure pointer register (PPR)
and instructions fetched from the segment for execution.

SDWAM.W Write permission bit. If this bit is set ON, write
access requests are allowed.

SDWAM.P Privileged flag bit. If this bit is set ON, privileged
instructions from the segment may be executed if PPR.PRR
is 0.

SDWAM.U Unpaged flag bit. If this bit is set ON, the segment

is unpaged and SDWAM.ADDR is the 24-bit absolute main
memory address of the origin of the segment. If this
bit is set OFF, the segment is paged and SDWAM.ADDR is
the 24-bit absolute main memory address of the page
table for the segment.

3-19 AL39B

Register

SDWAM.G

SDWAM.C

SDWAM.CL

SDWAM.POINTER

SDWAM.F

SDWAM.USE

Function

Gate control bit. If this bit is set OFF, calls and
transfers into the segment must he to an offset no greater
than the value of SDWAM.CL as described below.

Cache control bit. If this bit is set ON, data and/or
instructions from the segment may be placed in the cache
memory.

Call limiter (entry bound) value. 1If SDWAM.G is set
OFF, transfers of control into the segment must be to
segment addresses no greater than this value.

The effective segment number used to fetch this SDW
from main memory.

Full/empty bit. TIf this bit is set ON, the SDW in the
register is valid. If this bit is set OFF, a hit is
not possible. A1l SDWAM.F bits are set OFF by the
instructions that clear the SDWAM.

Usage count for the register. The SDWAM.USE field is
used to maintain a strict FIFO queue order among the
SDWs. When an SDW is matched, its USE value is set to
15 (newest) on the DPS/L68 and to 63 on the DPS 8M, and
the queue is reordered. SDWs newly fetched from main
memory replace the SDW with USE value 0 (oldest) and
the queue is reordered.

l PAGE TABLE WORD ASSOCIATIVE MEMORY (PTWAM) - DPS/L68 and DPS 8M

Format:

- 51 bits each

Data as stored by Store Page Table Registers (sptr)

11 2273 3

7.8 890 5

ADDR 000000O0COOOGOIMJ[JOOOOOO

18 111 6

Data as stored by Store Page Table Pointers (sptp)

11 2222333 3
4 5 6789012 5

0 OJUSE L68

POINTER PAGENO Flo 0

USE DPS 8M

15 12 1 2 2 l

Figure 3-17. Page Table Word Associative Memory (PTWAM) Format

DPS/L68 and DPS 8M

3-20 AL39B

Description:

A combination of 16 registers and flags from the appending unit constitute
the Page Table Word Associative Memory (PTWAM). The registers are numbered
consecutively from O through 15 but are not explicitly addressable by number.

For the DPS 8M processors, the PTW associative memory will hold the 16 most
recently used (MRU) PTWs and have a full associative organization with
least recently used (LRU) replacement.

For the DPS 8M processors, the PTW associative memory will hold the 64 MRU
PTWs and have a Y-way set associative organization with LRU replacement.

Function:

2/82

Hardware paging in the Multics processor is implemented by the appending
unit (see Section 5 for details). In order to permit segment addressing by
page number and page offset as derived from the computed address prepared
in the temporary pointer register (TPR.CA described above), a table containing
the location and status of each page of an accessible segment must be kept.
This table is the page table for the segment. The page table for an accessible
paged segment is located by information held in the segment descriptor word
(SDW) for the segment.

Every time a computed address (TPR.CA) for a paged segment is prepared, it
is separated into a page number and a page offset. The page number is used
as an index into the page table to retrieve the page table word (PTW) for
the target page. To reduce the number of main memory references required
for paging, tne PTWAM provides a content addressable memory to hold the 16
most recently referenced PTWs.

Whenever a reference to the PTW for a page of a paged segment is required,
the page number (as derived from TPR.CA) is matched associatively against
all 16 PTWAM.PAGENO registers (described below) and, simultaneously, TPR.TSR
is matched against PTWAM.POINTER (described below). If the PTWAM match
logic circuitry indicates a hit, all usage counts (PTWAM.USE) greater than
the usage count of the register hit are decremented by one, the usage count
of the register hit is set to 15, and the contents of the register hit are
read out into the address preparation circuitry. If the PTWAM match logic
does not indicate a hit, the PTW is fetched from main memory and loaded
into the PTWAM register with usage count 0 (the oldest), all usage counts
are decremented by one with the newly loaded register rolling over from O
to 15, and the newly loaded register is read out into the address preparation
circuitry. Faulted PTWs are not loaded into the PTWAM.

3-21 AL39B

The functions of the constituent registers and flags of each PTWAM register
(See Section 8 for additional details.)

are:

2/82

Register
PTWAM.ADDR

\

PTWAM.M

PTWAM.POINTER

PTWAM.PAGENO

PTWAM.F

PTWAM.USE

Function

The 18 high-order bits of the 24-bit absolute main memory
address of the page. The hardware ignores low-order
bits of this page address according to page size based
on the following:

Page size ADDR bits
in words ignored
Y] none
128 17
256 16-17
512 15-17
1024 14-17
2048 13-17
4096 12-17

Page modified flag bit. This bit is set ON whenever
the PTW is used for a store type instruction. When the
bit changes value from 0 to 1, a special extra cycle is
generated to write it back into the PTW in the page
table in main memory.

The effective segment number used to fetch this PTW
from main memory.

The 12 high-order bits of the 18-bit computed address
(TPR.CA) wused to fetch this PTW from main memory.
Low-order bits are forced to zero by the hardware and
not used as part of the page table index according to
page size based on the following:

Page size PAGENO bits
in words forced
Y] none
128 11
256 10-11
512 09-11
1024 08-11
2048 07-11
4096 06-11

Full/empty bit. If this bit is set ON, the PTW in the
register is valid. If this bit is set OFF, a hit is
not possible. A1l PTWAM.F bits are set OFF by the
instructions that clear the PTWAM.

Usage count for the register. The PTWAM.USE field is
used to maintain a striet FIFO queue order among the
PTWs. When an PTW is matched its USE value is set to
15 {(newest) on the DPS/L68 and to 63 on the DPS 8M, and
the queue is reordered. PTWs newly fetched from main
memory replace the PTW with USE value 0 (oldest) and
the queue is reordered.

3-22 AL39B

FAULT REGISTER (FR) - DPS/L68

Format: - 72 bits

Even word of Y-pair as stored by Store Central Processor Register (scpr),

TAG = 01
0oo0000O0OOOGBGOOTTTIT 1111 12 22 2 2 33333
0 123456 7890.1273405F06 9.0 .4 7.8 1.2.3 .45
ajblcidlelf]egth]{i}iik]lim|n}ojo IAA IAB IAC IAD " [plqlrys

T1T1T11Trrr 111111 h] y 41 1 11

0dd word of Y-pair as stored by Store Central Processor Register (scpr),

TAG = 01
3 7
6 1

0000000ODO0O0OO0OOOOOOOOOOOOOOOOOOOOOGCOOOOOOGC

36

Figure 3-18. Fault Register (FR) Format - DPS and L68

Description:

A combination of flags and registers all located in the control unit. The
register is stored and cleared by the Store Central Processor Register
(sepr), TAG = 01, instruction. Note that the data is stored into the word
pair at location Y. The Fault Register cannot be loaded.

Func

2/82

tion:
The Fault Register contains the conditions in the processor for several of
the hardware faults. Data is strobed into the Fault Register during a
fault sequence. Once a bit or field in the Fault register is set, it
remains set until the register is stored and cleared. The data is not
overwritten during subsequent fault events.
The functions of the constituent flags and registers are:
Flag or
key register Function
a ILL OP An illegal operation code has been detected.
b ILL MOD An illegal address modifier has been detected.
¢ ILL SLV An illegal BAR mode procedure has been encountered.
d ILL PROC An illegal procedure other than the three above has
been encountered.
3-23 AL39B

Flag or
key register

e NEM
f O0O0B
g ILL DIG

h PROC PARU
i PROC PARL
J $CoN

k $CON

A
B
1 $CON C
m $CON D
R

n DA ERR1

o DA ERR2

IAA

IAB

IAC

IAD
p CPAR DIR
q CPAR STR
r CPAR IA
s CPAR BLK

2/82

Function

A nonexistent main memory address has been requested.
A BAR mode boundary violation has occurred.

An illegal decimal digit or sign has been detected by
the decimal unit.

A parity error has been detected in the upper 36 bits
of data.

A parity error has been detected in the lower 36 bits
of data.

A $CONNECT signal has been received through port A.

A $CONNECT signal has been received through port B.

A $CONNECT signal has been received through port C.

A $CONNECT signal has been received through port D.
Operation not complete. Processor/system controller
interface sequence error 1 has been detected.
($DATA-AVAIL received with no prior $INTERRUPT sent.)
Operation not complete. Processor/system controller
interface sequence error 2 has been detected. (Multiple
$DATA-AVAIL received or $DATA-AVAIL received out of
order.)

Coded illegal action, port A. (see Table 3-2)

Coded illegal action, port B. (See Table 3-2)

Coded illegal action, port C. (See Table 3-2)

Coded illegal action, port D. (See Table 3-2)

A parity error has been detected in the cache memory
directory.

A data parity error has been detected in the cache memory.
An illegal action has been received from a system
controller during a store operation with cache memory
enabled. This implies that the data are correct in
cache memory and incorrect in main memory.

A cache memory parity error has occurred during a cache
memory data block load.

3-24 AL398B

Table 3-2. System Controller Illegal Action Codes

Code Priority Fault Reason

00 - No illegal action

01 - Command Unassigned

02 05 Store Nonexistent address

0z 01 Command Stop on condition

o4 -— Command Unassigned

05 12 Parity Data parity, store unit to system controller
06 11 Parity Data parity in store unit :

o7 10 Parity Data parity in store unit and

store un%t to system controller

10 o4 Command | Not control(d)

11 13 Command Port not enabled

12 03 Command Illegal command

13 07 Store Store unit not ready

14 02 Parity Zone-address-command parity,

processor to system controller
15 06 Parity Data parity, processor to system controller
16 08 Parity Zone-address-command parity,
system controller to store unit
17 09 Parity Data parity, system controller to store unit

(a) This illegal action code not relevant to later model system controllers.

FAULT REGISTER (FR) - DPS 8M

Format: - 72 bits

Even word of Y-pair as stored by Store Control Processor Register (scpr),
TAG = Ot

6c00000O0CO0OO0OO0OTITIT T 11 12 2 2 2 2 33333
0.1 213 465678290 2.3.45 6 9.0 3.4 7.8 1 2349
afbjcldlejflgihlijilkjlim]n]jo]oO IAA IAB IAC IAD plajrls

t1Tt1T1T1111 11111111 4]] U

0dd word of Y-pair is stored by Store Control Processor Register (scpr),
TAG = 01

o &=
- &=
n &
o &=
[os] = =
Q-
o pE

=R FS
m oo &

Q

00000000O0OO0OO0COOOOOODOOOOOODO

o
e
<
13
»

<
N
ke

25

Figure 3-19. Fault Register (FR) Format - DPS 8M

2/82 3-25 AL39B

Function:

2/82

The Fault Register contains the conditions in the processor for several of
the hardware faults on the DPS 8M CPU and cache directory buffer overflows.
Data is strobed into the Fault Register during a fault or buffer overflow
fault sequence. Once a bit or field in the Fault Register is set, it
remains set until the register is stored and cleared. The data is not
overwritten during subsequent fault events.

The functions of the constituent flags and registers are:

Flag or
key register Fault Function
a ILL OP IPR An illegal operation code has been detected.
b ILL MOD IPR An illegal address modifier has been detected.
¢ ILL SLV IPR An illegal BAR mode procedure has been encountered.

d ILL PROC 1IPR An 1illegal procedure other than the three above has
been encountered.

e NEM ONC A nonexistent main memory address has been requested.
f 00B STR A BAR mode boundary violation has occurred.

b ILL DIG IPR An illegal decimal digit or sign has been detected by
the decimal unit.

h PROC PARU PAR A parity error has been detected in the upper 36 bits
of data.

i PROC PARL PAR A parity error has been detected in the lower 36 bits
of data.

j $CON CON A $CONNECT signal has been received through port A.

k $CON CON A $CONNECT signal has been received through port B.

m $CON CON A 3CONNECT signal has been received through port D.

A
B
1 $CON C CON A $CONNECT signal has been received through port C.
D
R1 ONC Operation not complete. Processor/system controller
interface sequence error 1 has been detected.
($DATA-AVAIL received with no prior $INTERRUPT sent.)

o DA ERR2 ONC Operation not completed. Processor/system controller
interface sequence error 2 has been detected. (Multiple
$DATA-AVAIL received or $DATA-AVAIL received out of

order.)
IAA Coded illegal action, port A. (See Table 3-2)
IAB Coded illegal action, port B. (See Table 3-2)
IAC Coded illegal action, port C. (See Table 3-2)
IAD Coded illegal action, port D. (see Table 3-2)

p CPAR DIR None A parity error has been detected in the cache memory
directory.

q CPAR STR PAR A data parity error has been detected in the cache
memory.

3-26 AL39B

Flag or
key register Fault

Function

r CPAR IA PAR

s CPAR BLK PAR

t None
u None
v None
W None
b d None
y None
None
z None
A None
B None
C None
D
E None
F None

An illegal action has been received from a system
controller during a store operation with cache memory
enabled. This implies that the data are correct in
cache memory and incorrect in main memory.

A cache memory parity error has occurred during a cache
memory data block load.

Cache Duplicate Directory WNO Buffer Overflow
Port A :
Port B
Port C
Port D

Cache Primary Directory WNO Buffer Overflow
Write Notify (WNO) Parity Error on Port A, B, C, or D.
Cache Duplicate Directory Parity Error
Level O
Level 1
Level 2
Level 3
Cache Duplicate Directory Multiple Match
A parity error has been detected in the SDWAM.

A parity error has been detected in the PTWAM.

MODE REGISTER (MR) - DPS and L68
Format: - 33 bits

Even word of Y-pair as stored by Store Central Processor Register (scpr),

TAG = 06
0 11111122 22222222333333
(4] 4o 6 7890123 4656780012 3 b &
OPCODE |
PRV il 1
FEY OabC[d elfrgrhlool:}k;moon
171 2 2

Figure 3-20.

Description:

2/82

15 11 1 171 211t 111 21

Mode Register (MR) Format - DPS and L68

An assemblage of flags and registers from the control unit. The Mode Register
and the Cache Mode Register are both stored into the Y-pair by the Store
Central Processor Register {scpr), TAG = 06. The Mode Register 3is loaded
with the Load Central Processor Register (lecpr), TAG = OY, instruction.

3-27 AL398

Function:

2/82

The Mode Register controls the operation of those features of the processor
that are capable of being enabled and disabled.

The functions of the constituent flags and registers are:

Flag or
key register
FFV
a OC TRAP
b ADR TRAP

OPCODE

Function

A floating-fault vector address. The 15 high-order bits
of the Y-block8 address of four word pairs constituting
a floating-fault vector. Traps to these floating faults
are generated by other conditions the mode register sets.

Trap on OPCODE match. If this bit is set ON and OPCODE
matches the operation code of the instruction for which
an address is being prepared (including indirect cycles),
generate the second floating fault (xed FFV+2). See
NOTE below.

Trap on ADDRESS matech. If this bit is set ON and the
computed address (TPR.CA) matches the setting of the
address switches on the processor maintenance panel,
generate the fourth floating fault (xed FFV+6). See
NOTE below.

The operation code on which to trap if OC TRAP (bit 16,
key a) is set ON or for which to strobe all control
unit cycles into the control unit history registers if
0.C$¢ (bit 29, key j) 1is set ON.

or
Processor conditions codes as follows if OC TRAP (bit
16, key a) and 0.C$¢ (bit 29, key j) are set OFF and
¢ VOLT (bit 32, key m) is set ON.

Key Condition

c Set control unit overlap inhibit if set ON. The
control unit waits for the operations unit to complete
execution of the even instruction of the current
instruction pair before it begins address preparation
for the associated odd instruction. The control
unit also waits for the operations unit to complete
execution of the odd instruction before it fetches
the next instruction pair.

d Set store overlap inhibit if set ON. The control
unit waits for completion of a current main memory
fetch (read cycles only) before requesting a main
memory access for another fetch.

e Set store incorrect data parity if set ON. The
control unit causes incorrect data parity to be
sent to the system controller for the next store
instruction and then resets bit 20.

f Set store incorrect =zone-address-command (ZAC)
parity if set ON. The control unit causes incorrect
zone-address-command (ZAC) parity to be sent to
the system controller for each main memory cycle
of the next store instruction and resets bit 21 at
the end of the instruction.

3-28 ' . AL39B

2/82

Flag or

key register

A

k

1

m

0.C$¢

STROBE ¢

FAULT RESET

¢ VOLT

Function

Key Condition

g Set timing margins if set ON. If ¢ VOLT (bit 32,
key m) is set ON and the margin control switch on
the processor maintenance panel is in PROG position,
set processor timing margins as follows:

22,23 Margin
0,0 normal
0,1 slow
1,0 normal
1,1 fast

h Set +5 voltage margins if set ON. If ¢ VOLT (bit
32, key m) is set ON and the margin control switch
on the processor maintenance panel is in the PROG
position, set +5 voltage margins as follows:

24,25 Margin
0,0 normal
0,1 low
1,0 high
1,1 normal

Trap on control unit history register count overflow if
set ON. If this bit and STROBE ¢ (bit 30, key k) are
set ON and the control unit history register counter
overflows, generate the third floating fault
(xed FFV+4). Further, if FAULT RESET (bit 31, key 1)
is set, reset STROBE ¢ (bit 30, key k), locking the
history registers. A Load Central Processor Register
(lepr), TAG = 04, instruction setting bit 28 ON resets
the control unit history register counter to zero. (See
NOTE below.)

Strobe control unit history registers on OPCODE match.
If this bit and STROBE ¢ (bit 30, key k) are set ON and
the operation code of the current instruction matches
OPCODE, strobe the control unit history registers on
all control unit cycles (including indirect cycles).

Enable history registers. If this bit is set ON, all
history registers are strobed at appropriate points in
the various processor cycles. If this bit is set OFF
or MR ENABLE (bit 35, key n) is set OFF, all history
registers are locked. This bit is set OFF with a Load
Central Processor Register (lepr), TAG = O4, instruction
providing a 0 bit, by an operation not complete fault,
and, conditionally, by other faults (see FAULT RESET
(bit 31, key 1) below). Once set OFF, this bit must be
be set ON with a Load Central Processor Register (lecpr),
TAG = 04, instruction providing a 1 bit to re-enable
the history registers.

History register lock control. If this bit is set ON,
set STROBE ¢ (bit 30, key k) OFF, locking the history
registers for all faults including the floating fauvlts.
See NOTE below.

Test mode indicator. This bit is set ON whenever the

TEST/NORMAL switch on the processor maintenance panel
is in TEST position; otherwise, it is set OFF. It serves

3-29 AL39B

NOTE:

MODE

Flag or
key register Function

to enable the program control of voltage and timing
margins.

n MR ENABLE Enable mode register. When this bit is set ON, all
other bits and controls of the mode register are active.
When this bit is set OFF, the mode register controls
are disabled.

The traps described above (address match, OPCODE match, control unit
history register counter overflow) occur after completion of the next
odd instruction following their detection. They are handled as Group
7 faults in regard to servicing and inhibition. (See Section 7 for
descriptions of these faults.) The complete Group 7 priority sequence
(in increasing order) is:

- Connect

- Time runout

- Shutdown

OPCODE trap

- Control unit history register counter overflow
- Address match trap

- External interrupts

NV EW N -
]

REGISTER (MR) - DPS 8M

Forma

t: - 36 bits

Even word of Y-pair as stored by Store Central Processor Register (scpr),
TAG = 06
0 1112222222222333333
0 78901234656 7890.12 4 5
000000000O0OOOO0ODOO0O Ofalbjcld] e f 10 Ofjg]lhli]iik}j1}0im

18 11 11 2 2 211111111

Figure 3-21. Mode Register (MR) Format - DPS 8M

Description:

An assemblage of flags and registers from the control unit. The Mode Register
and the Cache Mode Register are both stored into the Y-pair by the Store
Central Processor Register (scpr), TAG = 06. The Mode Register 1is loaded
with the Load Central Processor Register (lepr), TAG = 04, instruction.

ion:

Funct

2/82

The mode register controls the operation of those features of the processor
that are capable of being enabled and disabled.

3-30 AL39B

The functions of the constituent flags and registers are:

Flag or

key register

a cuolin

b solin
C sdpap
d separ
e tm

f wvm

g hrhlt
h hrxfr
i ihr

2/82

Function

Set 'CU overlap inhibit. The CU waits for the 0U to
complete execution of the even instruction before it
begins address preparation for the associated odd
instruction. The CU also waits for the OU to complete
execution of the odd instruction before it fetches the
next instruction pair.

Set store overlap inhibit. The CU waits for completion
of a current memory fetch (read cycles only) before
requesting a memory access for another fetch.

Set store incorrect data parity. The CU causes incorrect
data parity to be sent to the SC for the next data
store instruction and then resets bit 20.

Set store incorrect ZAC parity. The CU causes incorrect
zone-address-command (ZAC) parity to be sent to the SC
for each memory cycle of the next data store instruction
and resets bit 21 at the end of the instruction.

Set timing margins. If bit 32 key (K) is set and the
margin control switch on the CPU maintenance panel is
in program position, set CPU timing margins as follows:

22,23 margin

0,0 normal
0,1 slow
1,0 normal
1,1 fast

Set +5 voltage margins. If bit 32 (key K) is set and
the margin control switch on the CPU maintenance panel
is in the program position, set +5 voltage margins as
follows:

24,25 margin

0,0 normal
0,1 low
1,0 high
1,1 normal

Stop HR Strobe on HR Counter Overflow. (Setting bit 28
shall cause the HR counter to be reset to zero.)

Strobe the HR on Transfer Made. If bits 29,30, and 35
are = 1, the HR will be strobed on all Transfers Made.
Bits 36-53 of the OU/DU register will indicate the "From"
location and bits 36-59 of the CU register will contain
the real address of the final "To" location.

Enable History Registers. If bit 30 = 1, the HRs may
be strobed. If bit 30 = 0 or bit 35 = 0, they will be
locked out. This bit will be reset by either an LCPR
with the bit corresponding to 30 = 0 or by an Op Not
Complete fault. It may be reset by other faults (see
bit 31). After being reset, it must be enabled by another
LCPR instruction before the History Registers may be
strobed again.

3-31 AL39B

Flag or
key register Funection

j ihrrs Additional resetting of bit 30. If bit 31t = 1, the
following faults also reset bit 30:

- Lock Up

- Parity

- Command

- Store

-~ Tllegal Procedure
- Shutdown

k mrgetl Margin Control. Bit 32 informs the software when it
can control margins. A one indicates that software has
control. When the LOCAL/REMOTE switch on the power supply
is in REMOTE and bit 35 = 1, bit 32 is set to 1 by
occurrence of the following conditions: the NORMAL/TEST
switch is in the TEST position, the Memory and CU Overlap
Inhibit switches are OFF, the Timing Margins for the
OoU, CU, DU and VU are NORMAL, and the Forced Data and
ZAC Parity are OFF.

1 hexfp Hexadecimal Exponent Floating Point Arithmetic Mode can
be set. When this bit is set, the Hex mode becomes
effective when the Indicator Register bit 32 is set to
1.

m emr Enable Mode Register. Unless bit 35 = 1, all other bits
in the Mode Register are ignored and the History Register
is ignored and locked.

' CACHE MODE REGISTER (CMR) - DPS and L68

Format: -~ 28 bits

0dd word of Y-pair as stored by Store Central Processor Register (scpr),

TAG = 06
5555555555666 6 6 677
0 1234567890 123L4 9 0 1
CACHE DIR ADDRESS alblolclalelrlolelnli]l 3 Jo 0 0 0 0 o} k
111111117111 2 s 2

Figure 3-22. Cache Mode Register (CMR) Format - DPS and L68

Description:

An assemblage of flags and registers from the control unit. The Mode Register
and Cache Mode Register are both stored into the Y-pair by the Store Central
Processor Register (scpr), TAG = 06, instruction. The Cache Mode Register
is loaded with the Load Central Processor Register (lepr), TAG = 02,
instruction.

3-32 AL39B

The data stored from the cache mode register is address-dependent. The
algorithm used to map main memory into the cache memory (see Section 9) is
effective for the Store Central Processor Register (scpr) instruction. 1In
general, the user may read out data from the directory entry for any cache
memory block by proper selection of certain subfields in the 24-bit absolute
main memory address. In particular, the user may read out the directory
entry for the cache memory block involved in a suspected cache memory error
by ensuring that the required 24-bit absolute main memory address subfields
are the same as those for the access which produced the suspected error.

The fault handling procedure(s) should be unencacheable (SDW.C = 0) and the
history registers and cache memory should be disabled as quickly as possible
in order ;hat vital information concerning the suspected error not be lost.

Function:

2/82

The Cache Mode register provides configuration information and software
control over the operation of the cache memory. Those items with an "x" in
the column headed L are not loaded by the Load Central Processor Register
(lepr), TAG = 02, instruction.

The functions of the constituent flags and registers are:

key L Register Function
x CACHE DIR 15 high-order bits of the cache memory block address
ADDRESS from the cache directory.

a x PAR BIT Cache memory directory parity bit.

b x LEV FUL The selected column and level is loaded with active
data.

(] CSH1 ON Enable the upper 1024 words of the cache memory (see
Section 9). .

d CSH2 ON Enable the lower 1024 words of the cache memory (see
Section 9).

e OPND ON Enable the cache memory for operands (see Section 9).

f INST ON Enable the cache memory for instructions (see Section
9).

g CSH REG Enable cache-to-register (dump) mode. When this bit is
set ON, double-precision operations unit read operands
(e.g., Load AQ (1ldaq) operands) are read from the cache
memory according to the mapping algorithm and without
regard to matching of the full 24-bit absolute main
memory address. All other operands address main memory
as though the cache memory were disabled. This bit is
reset automatically by the hardware for any fault or
interrupt.

h x STR ASD Enable store aside. When this bit is set ON, the processor
does not wait for main memory cycle completion after a
store operation but proceeds after the cache memory cycle
is complete.

i x COL FUL Selected cache memory column is full.

J x RRO A,B Cache round robin counter (see Section 9).

k LUF MSB,LSB Lockup timer setting. The lockup timer may set to four
different values according to the value of this field.

3-33 AL39B

key L Register Function

LUF Lockup

value time
0 2ms
1 Yms
2 8ms
3 16ms

The lockup timer is set to 16ms when the processor is
initialized.

CACHE MODE REGISTER (CMR) - DPS 8M

Format: - 36 bits

0dd word of Y-pair as stored by Store Central Processor Register (scpr),
TAG = 06.

3 5555555555666 6 6 6 6 6717
6 0 1234656780901 234 7 8 9 0 1
CACHE DIR ADDRESS alvjojclajolelofelelnl i Jo o o o]jjo] «

5 11111111111 2 T 11 2

Figure 3-23. Cache Mode Register (CMR) Format - DPS 8M

Description:

An assemblage of flags and registers from the control unit. The Mode Register
and Cache Mode Register are both stored into the Y-pair by the Store Central
Processor Register (scpr), TAG = 06, instruction. The Cache Mode Register
is loaded with the Load Central Processor Register (lepr), TAG = 02,
instruction.

The data stored from the Cache Mode register is address-dependent. The
algorithm used to map main memory into the cache memory (see Section 9) is
effective for the Store central Processor Register (scpr) instruction. In
general, the user may read out data from the directory entry for any cache
memory block by proper selection of certain subfields in the 24-bit absolute
main memory address. In particular, the user may read out the directory
entry for the cache nemory block involved in a suspected cache memory error
by ensuring that the required 24-bit absolute main memory address subfields
are the same as those for the access which produced the suspected error.

The fault handling procedure(s) should be unencacheable (SDW.D = 0) and the

history registers and cache memory should be disabled as quickly as possible
in order that vital information concerning the suspected error not be lost.

2/82 3-34 AL39B

Function:

2/82

The Cache Mode Register provides configuration information and software
control over the operation of the cache memory. Those items with an "x" in
the column headed L are not loaded by the Load Central Processor Register
(lepr), TAG = 02, instruction.

The functions of the constituent flags and registers are:

key L Register Function
x CACHE DIR 15 high-order bits of the cache memory block address
ADDRESS from the cache directory.
a x PAR BIT Cache memory directory parity bit.
b x LEV FUL The selected column and level 1is loaded with active
data.
c CSH1 ON Enable the upper 4096 words of the cache memory (see
Section 9).
d CSH2 ON Enable the lower 4096 words of the cache memory (see
Section 9).
e INST ON Enable the cache memory for instructions (see Section
9).
f CSH REG Enable cache-to-register (dump) mode. When this bit is

set ON, double-precision operations unit read operands
(e.g., Load AQ (1ldaq) operands) are read from the cache
memory according to the mapping algorithm and without
regard to matching of the full 24-bit absolute main
memory address. All other operands address main memory
as though the cache memory were disabled. This bit is
reset automatically by the hardware for any fault or
interrupt. .

g€ x STR ASD Enable store aside. When this bit is set ON, the processor
does not wait for main memory cycle completion after a
store operation but proceeds after the cache memory cycle
is complete.

h x COL FUL Selected cache memory column is full.
i x RRO A,B Cache round-robin counter (see Section 9).
h] Bypass cache bit. Enables the bypass option of SDW.C
when set OFF. See Notes below for further information.
k LUF MSB,LSB Lockup timer setting. The lockup timer may set to four
different values according to the value of this field.
LUF Lockup
value time
0 2ms
1 4ms
2 8ms
3 16ms

The lockup timer is set to 16ms when the processor is
initialized.

3-35 AL39B

Notes

2/82

The COL FUL, RRO A, RRO B, and CACHE DIR ADDRESS fields reflect different
locations in cache depending on the final (absolute) address of the
scepr instruction storing this data.

If either cache enable bit ¢ or d changes from disable state to enable
state, the entire cache is cleared.

The DPS 8M processors contain an 8k hardware-controlled cache memory.
When running a mixed configuration of DPS 8M and DPS/L68 processors,
bit 68 of the cmr (reference j) allows the DPS 8M processor to utilize
software compatible with the older 2k software controlled by the DPS/L68
and DPS processors. The following summarizes the operation of the DPS
8M hardware-controlled cache.

a. The cache bypass option in the segment descriptor word is retained.
An overriding bypass enable, bit 68 of the Cache Mode Register,
is added. The cache mode is set as follows:

SDW.C CMR68 RESULTANT

CACHE MODE

Use Cache X Use Cache
Bypass Cache Bypass Cache Bypass Cache

Bypass Cache Use Cache Use Cache

b. A1l close gate instructions, LDAC, LDQC, STAC, STACQ, and SZNC
automatically bypass cache. Two features are added to ensure
integrity of gated shared data; one 1is added during the close
gate operation and the other during the open gate operation. The
instruction following the close gate instruction bypasses cache
if the instruction is a Read or a Read-alter-rewrite. The open
gate operation must be performed with either a STC2 or STACQ,
which includes the synchronizing function. The synchronizing
function forces the processor to delay the open gate operation
until it is notified by the SCU that write completes have occurred
and write notifications requesting cache block clears have been
sent to the other processors for all write instructions that the
processor previously issued.

c. Read-alter-rewrite instructions no longer automatically bypass
cache. Cache behavior for these instructions is determined fully
by SDW.C. If the bypass cache mode is set, these instructions
bypass cache and issue read-lock-write-unlock commands to memory.
If a cache directory match occurs, the location is cleared.

d. All accesses to memory by SDW and PTW associative memory hardware
continue to bypass cache. Operations are Reads for SDWs,
Read-alter-rewrites with lock for PTWs and setting the page Used
bit, and Writes for setting the page Modified and Used bits. For
Writes, the hardware also disables the key line so that the SCU
lock is honored. This is consistent with dynamic PTW modification
by software, which also bypasses cache and uses Read-alter-rewrite
instructions.

e. The instructions that cleared the associative memories and also
cleared cache or selective portions of cache are changed to eliminate
the cache clear function. Bit C (TPR.CA)1 , is ignored. These
instructions also include disable/enable éapabilities for each
half of the associative memories.

3-36 AL39B

f. Cache mode register bit 56, which had previously controlled cache
bypass for operands, is disregarded. A11 other cache control
bits are continued. However, maintenance panel cache control
function is restricted to cache half enable/disable functions.

CONTROL UNIT (CU) HISTORY REGISTERS - DPS and L68

The L68 and DPS processors have four sets of 16 history requests. There is
one set for each major unit: the Control Unit, CU; the Operations Unit, OU; the
Decimal Unit, DU; and the Appending Unit, APU. The DPS 8M Processor has four
sets of 64 history registers. There is one set for the CU, two sets for the
APU, and one set that combines the history of the 0U and DU.

Because the history registers for the L68 and DPS and the DPS 8M are different
in number and content, they are described separately. The following section

describes the L68 and DPS history registers first, followed by a description of
the DPS 8M history registers.

Format: - 72 bits each

Even word of Y-pair as stored by Store Central Processor Register (scpr),

TAG = 20
00000O0O0COCGOO0CTTTITITIT 111 223 3
0.1 234567890123 U452678 8 9 0 2
ajbjcldleifigihfililk]jliminjolprlalr OPCODE IgP TAG

T1T1T11111r1 111111111 10 1 1 6

0dd word of Y-pair as stored by Store Central Processor Register (scpr),
TAG = 20

3 55 55 6 6 677
6 3 4 8 9 2 3 0 1
ADDRESS CMD SEL sftjufviwlxlylzl*

18 5 4111111111

Figure 3-24. Control Unit (CU) History Register Format - DPS and L68

Description:

A combination of 16 flags and registers from the control unit. The 16
registers are handled as a rotating queue controlled by the Control Unit
History Register counter. The counter is always set to the number of the
oldest entry and advances by one for each history register reference (data
entry or Store Central Processor Register (scpr) instruction). Multicycle
instructions (such as Load Pointer Registers from ITS Pairs (lpri), Load
Registers (lreg), Restore Control Unit (rcu), etc.) have an entry for each
of their cycles.

2/82 3-37 AL398B

Function:

A control unit history register entry shows the conditions at the end of

the control unit cycle to which it applies. The
conditions for the last 16 control unit cycles.
to controls set in the Mode Register.

section.)

16 registers hold the
Entries are made according
(See Mode Register earlier in this

The meanings of the constituent flags and registers are:

key Flag Name

a

b

2/82

PIA
POA
RIW
SIW
POT
PON
RAW
SAW

TRGO

ADDRESS
CMD
SEL
XEC-INT

INS-FETCH

Meaning

Prepare instruction address

Prepare operand address

Request indirect word

Restore indirect word

Prepare operand tally (indirect tally chain)

Prepare operand no tally (as for POT except no chain)
Request read-alter-rewrite word

Restore read-alter-rewrite word

Transfer GO (conditions met)

Execute even instruction from Execute Double (xed) pair
Execute odd instruction from Execute Double (xed) pair
Execute odd instruction of the current pair

Execute a repeat instruction

Wait for instruction fetch

1 = ADDRESS has valid data

NOT prepare interrupt address

NOT prepare fault address

NOT BAR mode

Operation code from current instruction word

Interrupt inhibit bit from current instruction word
Pointer register flag bit from current instruction word
Current address modifier. This modifier is replaced
by the contents of the TAG fields of indirect words

as they are fetched during indirect chains.

Current computed address (TPR.CA)

System controller command

Port select bits. (Valid only if port A-D is selected)
An interrupt is present

Perform an instruction fetch

3-38 AL39B

CONTR

key Flag Name Meaning

u CU~-STORE Control unit store cycle

v OU-STORE Operations unit store cycle
w CU-~-LOAD Control unit load cycle

x OU-LOAD Operations unit load cycle
y DIRECT Direct cycle

z PC-BUSY Port control logic not busy
¥ BUSY Port interface busy

OL UNIT (CU) HISTORY REGISTERS - DPS 8M

Format: - 72 bits each

Even word of Y-pair as stored by Store Central Processor Register (scpr),

TAG = 20 .
00000O0COOOCOTTITITT®TI1TI1T 1A 22 3 3

0 123465678901 23452¢678 8 9 0 5
alblcldfetfigihfitjilkiliminjolpfalr OPCODE IjP TAG
1111111111111 11 111 10 1 1 6

0dd word of Y-pair as stored by Store Central Processor Register (scpr),

TAG = 20
0 22 22333333
0 3.4 89012231405
ADDRESS CMD sjtjulvjwjx{o
24 51111111

Figure 3-25. Control Unit (CU) History Register Format - DPS 8M

Description:

2/82

A combination of 64 flags and registers from the control unit. The 64
registers are handled as a rotating queue, controlled by the control unit
history register counter, in which only the 16 most recently used are stored
(except in the event of a system crash in which case all 64 will be saved).
The counter is always set to the number of the oldest entry and advances by
one for each history register reference (data entry or Store Central Processor
Register (scpr) instruction). Multicycle instructions (such as Load Pointer
Registers from ITS Pairs (1lpri), Load Registers (lreg), Restore Control
Unit (rcu), etc.) have an entry for each of their cycles.

3-39 AL398B

Function:

A control unit history register entry shows the conditions at the end of
the control unit cyele to which it applies. The 16 registers hold the
conditions for the last 16 control unit cycles. Entries are made according
to controls set in the Mode Register. (See Mode Register earlier in this
section.)

The meanings of the constituent flags and registers are:

key Flag Name Meaning
a PIA Prepare instruction address
b POA Prepare operand address
¢ RIW Request indirect word
d SIW Restore indirect word
e POT Prepare operand tally
f PON Prepare operand no tally
g RAW Request read-alter-rewrite word
h SAW Restore read-alter-rewrite word
i RTRGO Remember transfer GO (condition met)
j XDE XED from even location
k XDO XED from odd location
1 IC Even/odd instruction pair
m RPTS Repeat operation -
n PORTF Memory cycle to port on previous cycle
o INTERNAL Memory cycle to cache or direct on previous cycle
p PAI Prepare interrupt address
q PFA Prepare fault address
r PRIV In privileged mode
OPCODE Opcode of instruction
I Inhibit interrupt bit
P AR reg mod flag
TAG Tag field of instruction
ADDRESS Absolute mean address of instruction
CMD Processor command register
s XINT Execute instruction
t IFT Instruction fetch
u CRD Cache read, this CU cycle
v MRD Memory read, this CU cycle

2/82 3-40 AL39B

key Flag Name Meaning

w MSTO Memdry store, this CU cycle

x PIB Memory port interface busy

OPERATIONS UNIT (OU) HISTORY REGISTERS

Format: - 72 bits each

Even word of Y-pair as stored by Store Central Processor Register (scpr),

TAG = 40
0 00111111111 2222333333
0 89012345678 67890712345
RP_REG
0 G i3
OP CODE___ |a] b Jeld]EAC RS RE MEEEEENRE
91 311 21 g1 T T 1111711

0dd word of Y-pair as stored by Store Central Processor Register (scpr),

TAG = 40
33334444844 Y4Y4YY55 55 7
6 7890 12345678901 4]
nlolpelalrlAlQl0 712|356 70 0 © ICT TRACKER

1111111111111 11 3 - 1

Figure 3-26. Operations Unit (OU) History Register Format

Description:

A combination of 16 flags and registers from the operation unit and control
unit. The 16 registers are handled as a rotating queue controlled by the
operations unit history register counter. The counter is always set to the
number of the oldest entry and advances by one for each history register
reference (data entry or Store Central Processor Register (scpr) instruction).

Function:

2/82

An Operations Unit History Register entry shows the conditions at the end
of the operations unit cycle to which it applies. The 16 registers hold
the conditions for the last 16 operations unit cycles. As the operations
unit performs various cycles in the execution of an instruction, it does
not advance the counter for each such cycle. The counter is advanced only
at successful completion of the instruction or if the instruction is aborted
for a fault condition. Entries are made according to controls set in the
Mode Register. (See Mode Register earlier in this section.)

3-U41 AL39B

2/82

The meanings of the constituent flags and registers are:

key Flag Name

[~] - ®

[y

B «Q

)

RP REG

OP CODE

9 CHAR

TAG1,2,3

CR FLG
DR FLG
EAC

RS REG

RB1 FULL
RP FULL
RS FULL
GIN
GOS
GD1
GD2
GOE
GOA
GOM
GON
GOF

Meaning

Primary operations unit operation register. RP REG
receives the operation code and other data for the next
instruction from the control unit during the control
unit instruction fetch cycle while the operations unit
may be busy with a prior instruction. RP REG is further
substructured as:

The 9 high-order bits of the 10-bit operation code from
the instruction word. Note that basic (non EIS)
instructions do not involve bit 27 hence 'the 9-bit field
is sufficient to determine the instruction.

Character size for indirect then tally address modifiers

0
1

6-bit
9-bit

The 3 low-order bits of the address modifier from the
instruction word. This field may contain a character
position for an indirect then tally address modifier.
Character operation flag

Direct operation flag

Address counter for lreg/sreg instructions

Secondary operations unit operation register. OP CODE
is moved from RP REG to RS REG during the operand fetch
cycle and is held until completion of the instruction.
OP CODE buffer is loaded

RP REG is loaded

RS REG is loaded

First cycle for all OU instructions

Second cycle for multicycle OU instructions

First divide cycle

Second divide cycle

Exponent compare cycle

Mantissa alignment cycle

General operations unit cycle

Normalize cycle

Final operations unit cycle

Store (output) data available

Data not available
A register not in use

Q register not is use

3-42 AL39B

key Flag Name Meaning

0 XO-RG X0 not in use
7 X1-RG X1 not in use
2 X2-RG X2 not in use
3 X3-RG X3 pot in use
T XUCRG X4 not in use

X5 not in use

o v
Lol]

6
] [
= o
Q @

X6 not in use

=
Lo
e
|
=
(2]

X7 not in use

ICT TRACKER The current value of the instruction counter (PPR.IC).
Since the Control Unit and Operations Unit run
asynchronously and overlap is usually enabled, the value
of ICT TRACKER may not be the address of the operations
unit instruction currently being executed.

DECIMAL UNIT (DU) HISTORY REGISTERS - DPS and L68

Format: - 72 bits each

Decimal Unit History Register data is stored with the Store Central Processor
Register (scpr), TAG = 10, instruction. There is no format diagram because
the data is defined as individual bits.

Description:

A combination of 16 flags from the decimal unit. The 16 registers are
handled as a rotating queue controlled by the decimal unit history register
counter. The counter is always set to the number of the oldest entry and
advances by one for each history register reference (data entry or Store
Central Processor Register (scpr) instruction).

The decimal unit and the control unit run synchronously. There is a control
unit history register entry for every decimal unit history register entry
and vice versa (except for instruction fetch and EIS descriptor fetch cycles).
If the processor is not executing a decimal instruction, the decimal unit
history register entry shows an idle condition.

Function:

2/82

A decimal unit history register entry shows the conditions in the decimal
unit at the end of the control unit cycle to which it applies. The 16
registers hold the conditions for the last 16 control unit cycles. Entries
are made according to controls set in the Mode Register. (See Mode Register
earlier in this section.)

3-43 AL39B

A minus (-) sign preceding the flag name indicates that the complement of
the flag is shown.

21
22
23
24
25
26
27
28
29

2/82

Unused bits are set ON.

meanings of the constituent flags are:

Flag Name
-FPOL

-FPOP
-NEED-DESC
-SEL-ADR
-DLEN=DIRECT
-DFRST
~-FEXR
-DLAST-FRST
-DDU-LDEA
-DDU-STAE
-DREDO
-DLVL<WD-SZ
-EXH
DEND-SEQ
-DEND
~DU=RD+WRT
~PTRACGO
-PTRAO1
FA/IN
FA/I2
FA/I3
-WRD
~NINE
-SIX
~-FOUR

-BIT

Meaning

Prepare operand length

Prepare operand pointer

Need descriptor

Select address register

Length equals direct

Descriptor processed for first time
Extended register modification

Last cycle of DFRST

Decimal unitAload

Decimal unit store

Redo operation without pointer and length update
Load with count less than word size
Exhaust

End of sequence

End of instruction

Decimal unit write-back

PR address bit 0

PR address bit 1

Descriptor 1 active

Descriptor 2 active

Descriptor 3 active

Word operation

9-bit character operation

6-bit character operation

4-bit character operation

Bit operation

Unused

Unused

Unused

Unused

3-44 .

AL39B

2/82

30

3t

32
33
34
35
36
37
38
39
40
Iy
42
43
uy
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

FSAMPL

~DFRST-CT

-ADJ-LENGTH -

-INTRPTD

~-INHIB

DUD
-dDLDA
-GDLDB
~-GDLDC

NLD1

GLDP1

NLD2

GLDP2

ANLD1

ANLD2

LDWRT1

LDWRT2
~DATA-AVLDU

WRT1

GSTR

ANSTR

FSTR-OP-AV
-FEND-SEQ
~-FLEN<128

FGCH

FANPK

FEXMOP

FBLNK

DGBD
DGDB
DGSP
FFLTG

Sample for mid-instruction interrupt

- Specified first count of a sequence

‘Ad just length

Mid-instruction interrupt
Inhibit STC1 (force "STCO")
Unused

Decimal unit idle
Descriptor load gate A
Descriptor load gate B

Descriptor load gate C

Prepare alignment count for first numeric operand load

Numeric operand one load gate

Prepare alignment count for second numeric operand load

Numeric operand two load gate
Alphanumeric operand one load gate
Alphanumeric operand two load gate
Load rewrite register one gate
Load rewrite register two gate
Decimal unit data available
Rewrite register one loaded
Numeric store gate

Alphanumeric store gate

Operand available to be stored

End sequence flag

Length less than 128

Character operatioh gate
Alphanumeric packing cycle gate
Execute MOP gate

Blanking gate

Unused

Binary to decimal execution gate
Decimal to binary execution gate
Shift procedure gate

Floating result flag

3-45

AL39B

64 FRND Rounding flag
65 DADD-GATE Add/subtract execute gate

66 DMP+DV-GATE Multiply/divide execution gate

67 DXPN-GATE Exponent network execution gate
68 Unused
69 Unused
70 ' Unused
71 Unused

DECIMAL/OPERATIONS UNIT (DU/OU) HISTORY REGISTERS - DPS 8M

Format: - 72 bits each

Even word of Y-pair as stored by Store Central Processor Register (scpr),
TAG = 40

o O
w

=
o MW

0dd word of Y-pair as stored by Store Central Processor Register (scpr),
TAG = 40 :

w
Lo Ut
=N

(\V o))
= ON
— =3

o oo
-~

- Mo
= o O
=2 ke
O fjoon
v oo
[») o =3

=}

ICT RS REG

18 9111111111

Figure 3-27. Decimal/Operations (DU/OU) History Register Format - DPS 8M

Description:

2/82

A combination of 16 flags and registers from the operation unit and decimal
unit. The 16 registers are handled as a rotating queue controlled by the
operations unit history register counter. The counter is always set to the
number of the oldest entry and advances by one for each history register
reference (data entry or Store Central Processor Register (scpr) instruction).

The decimal unit and the control unit run synchronously. There is a control
unit history register entry for every decimal unit history register entry
and vice versa (except for instruction fetch and EIS descriptor fetch cycles).
If the processor is not executing a decimal instruction, the decimal unit
history register entry shows an idle condition.

3-46 AL39B

Function:

2/82

An operations unit history register entry shows the conditions at the end
of the operations unit cycle to which it applies. The 16 registers hold
the conditions for the last 16 operations unit eycles. As the operations
unit performs various cycles in the execution of an instruction, it does
not advance the counter for each such cycle. The counter is advanced only
at successful completion of the instruction or if the instruction is aborted
for a fault condition. &Entries are made according to controls set in the
Mode Register. (See Mode Register earlier in this section.)

The meanings of the constituent flags and registers are:

key Flag Name Meaning
a FANLD? Alpha-num load desc 1 (complemented)
b FANLD2 Alpha-num load desc 2 (complemented)
¢ FANSTR Alpha-num store (complemented)
d FLDWRTI1 Load re-write reg 1 (complemented)
e FLDWRT2 Load re-write reg 2 (complemented)
f FNLD1 Numeric load desc 1 (complemented)
g FNLD2 Numeric load desc 2 (complemented)
NOSEQF End sequence flag
i FDUD Decimal unit idle (complemented)
j FGSTR General store flag (complemented)
k NOSEQ End of sequence (qomplemented)
1 NINE 9-bit character operation
m SIX 6-bit character operation
n FOUR 4-bit character operation
o DUBIT Bit operation
p DUWORD Word operation
qg PTR1 Select ptr 1
r PTR2 Select ptr 2
s PRT3 Select ptr 3
t FPOP Prepare operand pointer
u GEAM Add timing gates (complemented)
v LPD12 Load pointer 1 or 2 (complemented)
w GEMAE Multiply gates A E (complemented)
x BTDS Binary to decimal gates (complemented)
y SP1§ Align cycles (complemented)
z FSWEQ Single word sequence flag (complemented)

3-47 AL39B

NOTE:

key Flag Name

Ln =~ > B> BN < B w Y o B v - A

-
=

™ 0 v O =2 X OUOR o

The current value of the instruction counter (PPR.IC).

FGCH
DFRST
EXH
FGADO
INTRPTD
GLDP2
GEMC
GBDA
GSPS
ICT
RS

ZERO
NEG
CARRY
OVFL
EOVFL
EUFL
OFLM
HEX

DTRGO

Meaning

Character cycle (complemented)

Processing descriptor for first time

Exhaust

Add cycle (complemented)

Interrupted

Load DP2

Multiply gate C

Binary to decimal gate A

Final align cycle

Instruction counter (See NOTE below.)
OU op-code register (RS0-8)

Indicator register (IR):

Zero indicator

Negative indicator

Carry indicator

Overflow indicator

Exponent
Exponent
Overflow
Hex mode

Transfer

overflow indicator
underflow indicator
mask indicator

indicator

go

Since the control

unit and operations unit run asynchronously and overlap is usually enabled, the
value of ICT TRACKER may not be the address of the operations unit instruction

currently being executed.

3-48

AL39B

APPENDING UNIT (APU) HISTORY REGISTERS - DPS and L68

Format: - 72 bits each

Even word of Y-pair as stored by Store Central Processor Register (scpr),

TAG = 00
1111112222222 2 33 33
0 4 5 67890 1 3. 456 901 4 5
ESN a |bjcjdlejf]eih]i]j} SDWAMRIk] PTWAMR]1

15 2111111111 41 4

0dd word of Y-pair as stored by Store Central Processor Register (scpr),

TAG = 00
3 56 66 666 677
6 9 0 2 3 5 6 7 9 0 1
ADD TRR §0 0 Ojmj0O O Ofnj]oO
24 3 31 311

Figure 3-28. Appending Unit (APU) History Register Format - DPS and L68

Description:

A combination of 16 flags and registers from the appending unit. The 16
registers are handled as a rotating queue controlled by the appending unit
history register counter. The counter is always set to the number of the
oldest entry and advances by one for each history register reference (data
entry or Store Central Processor Register (scpr) instruction).

Function:

2/82

An appending unit history register entry shows the conditions in the appending
unit at the end of an address preparation cycle in appending mode. The 16
registers hold the conditions for the last 16 such address preparation
cycles. Entries are made according to controls set in the Mode Register.
(See Mode Register earlier in this section.)

The meanings of the constituent flags and registers are:

key Flag name Meaning
ESN Effective segment number (TPR.TSR)
a BSY Data source for ESN
00 = from PPR.PSR
01 = from PRn.SNR
10 = from TPR.TSR
11 = not used
3-49 AL39B

key Flag name Meaning

b FDSPTW Descriptor segment PTW fetch

c MDSPTW Descriptor segment PTW modification

d FSDWP SDW fetch from paged descriptor segment

e FPTW PTW fetch

f FPTW2 PTW+1 fetch (prepaging for certain EIS instructions)

g MPTW PTW modification

h FANP Final address fetch from nonpaged segment

i FAP Final address fetch from paged segment

J SDWAMM SDWAM match occurred
SDWAMR SDWAM register number if SDWAMM=1

k PTWAMM PTWAM match occurred
PTWAMR PTWAM register number if PTWAMM=1

1 FLT Access violation or directed fault on this cycle
ADD 24-bit absolute main memory address from this cycle
TRR Ring number from this cycle (TPR.TRR)

m Multiple match error in SDWAM

n CA Segment is encacheable

p Multiple match error in PTWAM

r FHLD An access violation or directed fault is waiting

2782 » 3-50 AL39B

APPENDING UNIT (APU) HISTORY REGISTERS - DPS 8M

Format: - 72 bits each

Even word of Y-pair as stored by Store Central Processor Register (scpr),

TAG = 00
0 11111 1222222222233 33
(4] 4y 567890 12345678901 4 5
ESN ajbjc]dlelfigihiifijk]1]|BSYm}m? n o

5 111111111111 23 1 41

0dd word of Y-pair as stored by Store Central Processor Register (scpr),
TAG = 00

3 5 6 66666666 7T
9.0 2.3 45678901

RMA p ql r st u |jviw

24 31 2 11 2 11

Extended APU History Register:

Even word of Y-pair as stored by Store Central Processor Register (scpr),

TAG = 10
0 11 222 3
0 1.8 1.8 9 5

ZCA Instr I MOD
18 10 1 7
g 7
NOT USED

36

Figure 3-29. Appending Unit (APU) History Register Format - DPS 8M

Description:

A combination of 64 flags and registers from the appending unit. The 64
registers are handled as a rotating queue controlled by the appending unit
history register counter. The counter is always set to the number of the
oldest entry and advances by one for each history register reference {(data
entry or Store Central Processor Register (scpr) instruction).

2/82 3-51 AL39B

Function:

2/82

An appending unit history register entry shows the conditions in the appending

unit at the end of an address preparation cycle in appending mode.
registers hold the conditions for the

The 64
last 64 such address preparation

eycles. Entries are made according to controls set in the Mode Register.
(See Mode Register earlier in this section.)

The meanings of the constituent flags and registers are:

key Flag name

ESN

a

b

¢ FDSPTW

d MDSPTW

e FSDW

f FPTW

g FPTW2

h MPTW

i FANP

j FAP

k MTCHSDW

1 SDWMF
BSY

m MTCHPTW

m1 PTWMF

n PTWAM

o SDWMF
RMA

p RTRR

q SDWME

r SDWLVL

s CACHE

t

u PTWLVL

Meaning

Effective segment number

PIA Page overflow

PIA out of segment bounds
Fetch descriptor segment FTW
Descriptor segment PTW is modified
Fetch SDW

Fetch PTW

Fetch pre-page PTW

PTW modified

Final address nonpaged

Final address paged

SDW matech found

SDW match found énd used

bata source for ESN

00 = from ppr.ic
01 = from prn.tsr
10 = from tpr.swr

from tpr.ca
PTW match found (AM)

PTW match found (AM) and used

PTW AM direct address (ZCA bits U4-7)
SDW match found

Read 24 bit memory address

Temporary ring register

SDW match error

SDW match level count (O Level A)

Cache used this cycle

PTW match error

PTW match level count (0 = level A)

3-52

AL39B

key Flag name Meaning

v FLTHLD A directed fault or access wiolation fault is waiting
ZCA Computed address
INSTR Instruction executed

I Inhibit bit
MOD Instruction modifier

2/82 , 3-53 AL39B

§ conr

IGURATION SWITCH DATA - DPS and L68

Format: - 36 bits each

Data read by Read Switches (rsw), y = xxxxx0

Maintenance panel data switches

3
Data read by Read Switches (rsw), y = xxxxx2
0 0000 12 112 2 22 2 33 3
0 3456 2 3 8 9 0 6 789 2 3 5
CPU
0000 a FAULT BASE] 0 0 O O O OfbjJO 0 0 0 O O Ofcfdf ID CPU
T2 T g 1 7) 3
Data read by Read Switches (rsw), y = xxxxx1 (port A-D) or xxxxx3 (port E-H)
0 00 11 2 2 3
0 8 9 7.8 6 7 5
PORT A or E PORT B or F PORT C or G PORT D or H
ADR |cld]e] MEM | ADR Jc|dfe] mEM | aDR [c|dafe] MEM | aDR [c|dfe] MEM
37111 3 3111 3 37111 3 37111 3
Data read by Read Switches (rsw), y = xxxxxi
0 1111111 12222222222 3
Q 2.3 4567890123485 67879 5
A B C D E F G H
00000O0OCO0O0OO0OOO0DO 00000O0CO
AEEHEEEBEEEEBEAE
131111111111 111111 7

Figure 3-30. Configuration Switch Data Formats - DPS and L68

Description:

2/82

The Read Switches (rsw) instruction provides the ability to interrogate
various switches and options on the processor maintenance and configuration
panels. The 3 low-order bits of the computed address (TPR.CA) select the
switches to be read. High-order address bits are ignored. Data are placed
in the A Register.

Read Switches (rsw), y = xxxxx1 reads data for ports A, B, C, and D. Read
Switches (rsw), y = xxxxx3 reads data for ports E, F, G, and H.

3-54 AL39B

Function:

The meanings of the constituent fields are:

key Field name
a CPU-Type
FLT BASE

b dps_option

¢ cache

d ext_gcos

CPU_ID

CPU

PORT A or E,

etc.
ADR
c
d
e
MEM
A, B, etec.
f
g

2/82

Meaning

Equals "00" for a L68 or a DPS processor.
The seven MSB of the 12-bit fault base address

Processor option
0 = L68 processor
1 = DPS processor

2K cache option
0 disabled
1 enabled

GCOS mode extended memory option
0 = disabled
1 = enabled

These bit positions have a configuration of "1110"s for
a L68 or a DPS CPU.

Processor number from processor configuration panel number
switches.

Port data fields further substructured as:

Address assignment switch setting for port
Port enabled flag

System initialize enabled flag

Interlace enabied flag

Coded memory size ...

000 32K
001 6UK
010 128K
011 256K
100 512K
101 1024K
110 2048k
11 4096K

Port data fields further substructured as:

Interlace mode
0 = 4 word if interlace enabled for port
1 = 2 word if interlace enabled for port

Main memory size

0 = full, all of MEM is configured
1 = half, half of MEM is configured

3-55 AL39B

CONFIGURATION SWITCH DATA - DPS 8M

The following changes apply to the DPS 8M processor.

} Format: - 36 bits each

Data read by Read Switches (rsw), y = xxxxx2
0 00 0O 111 1 112222222 2 2 33 3
0 3 4 5 6 2 3 4 7 8901230456 8 g 2 3 5
2 2 < 2 b JFLT BASE fcf 0 0 0 0 Jdjelfrlo ofg]nji}o o o]speEp | cPU

[l 2 71 4 111 21 11 3 Il 3

Data read by Read Switches (rsw), y = xxxxx1 (port A-D)

0 00 11 2 2 3
0 8 9 .8 6 1)

PORT A PORT B PORT C PORT D

3

ADRAlilk[II MEM
31 1 1

Figure 3-31.

Description:

The Read Switches (rsw)

3 3111 3

3711

Configuration Switch Data Formats - DPS 8M

1

ADR]j|k[£[MEM | ADR ljlklll MEM | ADR |j]k|1| MEM
31 1.1

3

instruction provides the ability to interrogate

various switches and options on the processor maintenance and configuration
panels. The two low-order bits of the computed address (TPR.CA) select the

switches to be read.

in the A Register.

High-order address bits are ignore

d.

Read Switches (rsw), y = xxxxx! reads data for ports A, B, C,

ion:

Funct

2/82

The meanings of the constituent fields are:

key Field name

a

Meaning

and D.

Data are placed

If the corresponding rswl interface enabled flag, bit

(e) is ON, then
0 = 4§ word interfaces
1 = 2 word interfaces
For ports A - D

Indicates processor type

00 = L68 or DPS Processor
01 = DPS 8M Processor
10 = reserved for future use

reserved for future use

3-56

AL39B

key Field name

FLTBASE
[¢]
d
e
f
g
h
i
SPEED
CPU
ADR
J
k
1
MEM

2/82

Meaning

The seven MSB of the 12-bit fault base address

ID prom
0
1

id
id

BCD option
1 = BCD

DPS option
1 = DPS

8K cache
1 = 8K

DPS 8M Pro
1 DPS
0 DPS

GCOS/VMS s
1 Vir
0 GCO

Current or new product line peripheral type

1 = NPL
0 = CPL

Processor
0000 =
0100 =

Processor

Port enabl
System ini
Interface

Coded memo

prom not installed
prom installed

(Marketing designation)
option installed

(Marketing designation)
option

cache installed

cessor type designation
8/xxM
8/xx

witch position

tual Mode
S Mode

speed options
8/70
8/52

number

ed flag
tialize enabled flag
enabled flag

ry size:

000 32K
001 64K

010 12
011 25
100 51
101 10

8K
6K
2K
24K

110 2048K

111 40

96K

3-57

AL39B

CONTROL UNIT DATA

Format: - 288 bits, 8 machine words

Data as stored by Store Control Unit (scu) instruction

Word
0 00 11122222222 223333 3
0 2.3 7890 2 3456784901223 5
0 PRR PSR ajbjcldielfteglhfififk]l{minjo}l FCT
3 5 1111111111111 11 3
oooo0oo00OOOOTTITITITITITIT T 12 2 2 2 2 23 33
0 12 3 4 6 789 012345678490 3 4 6 7 9 0 4 5
1 albjcjdieifigihtiijilkjljminjolprlaljrisit IA | TACHN]JCNCHN}] F/TI ADDR}u
LT R e I R A R T S R D T D R S A | 4 3 3 51
0 00 11122222222 2 3 3
2.3 789012314567 9 0 5
PTW SDW
2 TRR TSR abcdle fgn 0] CPU DELTA
3 15 y [T 3 6
0 11 22 2 2 22 2 23 3
0 8 0 12 4 5 6 8 a0)
3 0000000000ODO0O0COO0OOOOQOC ISNA ISNB ISNC TEMP BIT
2 a o} a o] a |b
18 31 3 31 3
0 1112222222222 33S73 3
0 7 8901234567890 12 5
4 IC : albjeldlelfelnlilifk]1iminjo 0 0 O
MB1T1111T1T1T111 1111 4
0 111222222222 2373 3
0] 7.8 0 1 2 34 6 7.8 90 2
5 COMPUTED ADDRESS agbjclidielfleglnlilitkyl CT HOLD
1111111111111 6
0 11 2223 3
0 7.8 7.8 90 o)
é ADDRESS OPCODE I]P TAG
18 10 1 1 6
0 11 2223 3
0 7 8 78490 o)
7 ADDRESS OPCODE I}P TAG
18 10 1 1 6

Figure 53-32. Control Unit Data Format

2/82 3-58 AL39B

Description:

A collection of flags and registers from the appending unit and the control
unit. In general, the data has valid meaning only when stored with the
Store Control Unit (scu) instruction as the first instruction of a fault or
interrupt trap pair.

Function:

2/82

The control unit data allows the processor to restart an instruction at the
point of interruption when it is interrupted by an access violation fault,
a directed fault, or (for certain EIS instructions) an interrupt. Directed
faults are intentional, and most access violation faults and interrupts are
recoverable. If the interruption is not recoverable, the control unit data
provides enough information to determine the exact nature of the error.

Instruction execution restarts immediately upon execution of a Restore Control
Unit (recu) instruction referencing the Y-block8 area into which the control
unit data was stored.

Fields having an "x" in the column headed L are not restored by the Restore
Control Unit (recu) instruction.

The meanings of the constituent fields are:

Field
Word key L name Meaning
0 PRR Procedure ring register (PPR.PRR)
0 PSR Procedure segment register (PPR.PSR)
0 a P Privileged bit (PPR.P)
0 b XSF External segment flag
0 c x SDWAMM Match on SDWAM
0 d x SD-ON SDWAM enabled
0 e x PTWAMM Match on PTWAM
0 f x PT-ON PTWAM enabled
0 g x PI-AP Instruction fetch append cycle
0 h x DSPTW Fetch descriptor segment PTW
0 i x SDWNP Fetch SDW - nonpaged
0 J x SDwWP Fetch SDW - paged
0 k x PTW Fetch PTW
0 1 x PTW2 Fetch prepage PTW
0 m x FAP Fetch final address - paged
0 n x FANP Fetch final address - nonpaged
0 o x FABS Fetch final address - ébsolute
0 FCT Fault counter - counts retries

3-59 " AL39B

Word key
1 a x
X

1 b x
b4

1 c X
X

1 d x
x

1 e X
X

1 f x
X

1 g X
X

1 h x
1 i x
1 J x
1 k x
1 1 x
1 m X
1 n x
1 o X
1 P X
1 q X
1 r x
1 s X
1 t x
1 X
1 X
1 X
1 X
1 u x

2/8?2

|

Field
name

Meaning

IRO
ISN

OEB
I0C

E-OFF
TA+IM

ORB
ISP

R-OFF
IPR

OwB
NEA

W-OFF
0ooB

NO GA
oCB
OCALL
BOC

PTWAM_ER

CRT
RALR

SDWAM_ER

00SB
PARU
PARL
ONC1

ONC2

IA

IACHN
CNCHN
F/I ADDR
F/I

For access violation fault - illegal ring order
For store fault - illegal segment number

For access violation fault - out of execute bracket
For illegal procedure fault - illegal op code

For access violation fault - execute bit is OFF
For illegal procedure fault - illegal address or modifier

For access violation fault - out of read bracket
For illegal procedure fault - illegal slave procedure

For access violation fault - read bit is OFF
For illegal procedure fault - illegal EIS digit

For access violation fault - out of write bracket
For store fault - nonexistent address

For access violation fault - write bit is OFF
For store fault - out of bounds (BAR mode)

For access violation fault - not a gate

For access violation fault - out of call bracket

For access violation fault - outward call

For access violation fault - bad outward call

For access violation fault - on DPS 8M processors, a
PTW associative memory error. HNot used on DPS/L68
processors.

For access violation fault - cross ring transfer

For access violation fault - ring alarm

For access violation fault - On DPS 8M an SDW associative
memory error. An associative memory error on DPS/L68.

For access violation fault - out of segment bounds
For parity fault - processor parity upper
For parity fault - processor parity lower

For operation not complete fault - processor/system
controller sequence error #1

For operation not complete fault - processor/system
controller sequence error #2

System controller illegal action lines (see Table 3-1)
Illegal action processor port

For connect fault - connect processor port

Modulo 2 fault/interrupt vector address
Fault/interrupt flag

0
1

interrupt
fault

3-60 AL39B

.Field

Word key L name Meaning
2 TRR Temporary ring register (TPR.TRR)
2 TSR . Temporary segment register (TPR.TSR)
PTW DPS 8M processors only; this field mbz on DPS/L68

processors:

2 a x PTWAM levels A, B enabled (enabled = 1)

2 b x PTWAM levels C, D enabled

2 c x PTWAM levels A, B match (match = 1)

2 d c¢ PTWAM levels C, D match

SDW DPS 8M processors only; this field mbz on DPS/L6A8

processors:

2 e X SDWAM levels A, B enabled

2 f x SDWAM levels C, D enabled

2 g X SDWAM levels A, B match

2 h x SDWAM levels C, D match

2 CPU CPU number

2 DELTA Address increment for repeats

3 TSNA Pointer register number for non-EIS operands or for EIS
operand #1 further substructured as:

3 a PRNO Pointer register number

3 b ———— 1 = PRNO is valid

3 TSNB Pointer register number for EIS operand #2 further
substructured as for TSNA above

3 TSNC Pointer register number for EIS operand #3 further
substructured as for TSNA above

3 TEMP BIT Current bit offset (TPR.TBR)

y IC Instruction counter (PPR.IC)

4 a ZERO Zero indicator

4 b NEG Negative indicator

L c CARY Carry indicator

y d OVFL Overflow indicator

4 e EOVF Exponent overflow indicator

4 f EUFL Exponent underflow indicator

4 g OFLM Overflow mask indicator

y h TRO Tally runout indicator

4 i PAR Parity error indicator

4 3 PARM Parity mask indicator

4k BM Not BAR mode indicator

4 1 TRU EIS truncation indicator

y m MIF Mid-instruction interrupt indicator

2/82 3-61 AL39B

™

T T U =

(1IN) BN J

A U UV ;N

=

Field

" name

ABS
HEX
CA
RF
RPT
RD
RL

POT

PON

XDE

XDbO

ITP
RFI
ITS
FIF

CT HOLD

Meaning

Absolute mode indicator

Hex mode indicator (DPS 8M processors only)

Current computed address (TPR.CA)

First cycle of all repeat instructions

Execute a Repeat (rpt) instruction

Execute a Repeat Double (rpd) instruction

Execute a Repeat Link (rpl) instruction

Prepare operand tally. This flag is up until the indirect
word of an indirect then tally address modifier is
successfully fetched.

Prepare operand no tally. This flag is up until the
indirect word of a return type transfer instruction is
successfully fetched. It indicates that there is no
indirect chain even though an indirect fetch is being
performed.

Execute instruction from Execute Double even pair
Execute instruction from Execute Double odd pair
Execute ITP indirect cycle

Restart this instruction

Execute ITS indirect cycle

Fault occurred during instruction fetch

Contents of the modifier holding register

Word 6 is the contents of the working instruction register
and reflects conditions at the exact point of address
preparation when the fault or interrupt occurred. The
ADDRESS and TAG fields are replaced with data from pointer
registers, indirect pointers, and/or indirect words during
each indirect cycle. Each instruction of the current
pair is moved to this register before actual address
preparation begins.

Word 7 is the contents of the instruction holding register.
It contains the odd word of the last instruction pair
fetched from main memory. Note that, primarily because

of overlap, this instruction is not necessarily paired
with the instruction in word 6.

3-62 AL39B

DECIMAL UNIT DATA

Format:

Word

o

(L]

jw

| &=

1S

lon

1=

2/82

Data as stored by Store Pointers and Lengths (spl) instruction.

- 288 bits, 8 machine words

0 00111 3
[4) 89012 S
000O0OO0O0OO0OO}zy0]0 CH TALLY
9111 24
0 3
Q 5
00000000000000O00OO0DO00D0DOO0OOODOOOOOOOODOOO
36
0 22222 23333 3
0 3. 4567 90123 95
D1 PTR OJTA O O OJI}FjAjO O O
24 1 2 3111 3
0 0111 3
0 9 0 1 2 5
LEVEL 1 0o Dt RES
10 2 24
0 22222 2333333
0 456 7 9 0 1 2.3 14
D2 PTR OfTA JO O O}jRjFjAJO}]O]O
24 1 2 3111111
0 0111 3
9 0 12 5
LEVEL 2 00 D2 RES
10 2 24
0 22222 23333 3
0] 345617 9.0 1.2 3 S
D3 PTR OJTA]JO O OJRJFjA] JIMP
24 1 2 3111 3
0 11 3
(0] 1.2 5
00000O00O0COOOTO D3 RES
12 24
Figure 3-33. Decimal Unit Data Format
3-63 AL39B

Description:

A collection of flags and registers from the decimal unit.

Function:

2/82

The decimal unit data allows the processor to restart an EIS instruction at
the point of interruption when it is interrupted by an access violation
fault, a directed fault, or (for certain EIS instructions) an interrupt.
Directed faults are intentional, and most access violation faults and interrupts
are recoverable.

The data are restored with the Load Pointers and Lengths (1lpl) instruction.
Fields having an "x" in the column headed L are not restored. When starting
(or restarting) execution of an EIS instruction, the decimal unit registers
and flags are not initialized from the operand descriptors if the
mid-instruction interrupt fault (MIF) indicator is set ON.

The meanings of the constituent flags and registers are:

Field
Word L name Meaning

0 Z All bit-string instruction results are zero

0 @ Negative overpunch found in 6-4 expanded move

0 CHTALLY The number of characters examined by the scm, scnmr,
scd, scdr, tct, or tetr instructions (up to the interrupt
or match)

2 D1 PTR Address of the 1last double-word accessed by operand
descriptor 1; bits 17-23 (bit-address) valid only for
initial access

2,4,6 TA Alphanumeric type‘of operand descriptor 1,2,3

2 x1I Decimal unit interrupted flag; a copy of the

mid-instruction interrupt fault indicator
2,4,6 F First time; data in operand descriptor 1,2,3 is valid
2,4,6 A Operand descriptor 1,2,3 is active

3 LEVEL 1 Difference in the count of characters loaded into the
processor and characters not acted upon

3 D1 RES Count of characters remaining in operand descriptor 1

4 D2 PTR Address of the 1last double-word accessed by operand
descriptor 2; bits 17-23 (bit-address) valid only for
initial access

4,6 x R Last cycle performed must be repeated

5 LEVEL 2 Same as LEVEL 1, but used mainly for OP 2 information

5 D2 RES Count of characters remaining in operand descriptor 2

6. D3 PTR Address of the 1last double-word accessed by operand

descriptor 3; bits 17-23 (bit-address) valid only for
initial access

3-64 AL39B

Field

Word L name’ Meaning
6 JMP Descriptor count; number of words to skip to find the

next instruction following this multiword instruction

7 D3 RES Count of characters remaining in operand descriptor 3

2/82 3-65 AL39B

SECTION 4

MACHINE INSTRUCTIONS

This section describes the complete set of machine instructions for the.
Multics processor. The presentation assumes that the reader is familiar with
the general structure of the processor, the representation of information, the
data formats, and the method of address preparation. Additional information on

these subjects appears near the beginning of this section and in Sections 2, 3,
5, and 6.

INSTRUCTION REPERTOIRE

_ The processor interprets a 10-bit field of the instruction word as the
operation code. This field size yields 1024 possible instructions of which 547
are implemented. There are 456 basic operations and 91 extended instruction set
(EIS) operations.

Arrangement of Instructions

Instructions afe presented alphébetically by their mnemonic codes within
functional categories. An overall alphabetic listing of instruction codes and
their names appears in Appendix B.

Basic Operations

The 456 basie operations in the processor all require exactly one 36-bit
machine word. They are categorized as follows:

181 Fixed-point binary arithmetic

85 Boolean operations

34 Floating-point binary arithmetic
36 Transfer of control .
75 Pointer register

17 Miscellaneous

28 Privileged

Extended Instruction Set (eis) Operations

Thé 91 extended instruction set (EIS) operations are divided into 62 EIS
single-word instructions and 29 EIS multiword instructions.

41 AL39

EIS SINGLE-WORD OPERATIONS

-The 62 EIS single-word instructions 1load, store, and perform special
arithmetic on the address registers (ARn) wused to access bit- and
character-string operands, and safe-store decimal unit (DU) control information
required to service a processor fault or interrupt. Like the basic operations,
EIS single-word instructions require exactly one 36=-bit machine word.

EIS MULTIWORD OPERATIONS

The 29 EIS multiword instructions perform decimal arithmetic and bit- and
character-string operations. They require three or four 36-bit machine words
depending on individual operand descriptor requirements.

FORMAT OF INSTRUCTION DESCRIPTION

Each instruction in the repertoire is described in the following pages of
this section. The descriptions are presented in the format shown below.

MNEMONIC INSTRUCTION NAME OPCODE
FORMAT: Figure or figure reference
SUMMARY: v Text and/or bit transfer equations

MODIFICATIONS: Text
INDICATORS: Text and/or logic statements

NOTES: Text

Line 1: MNEMONIC, INSTRUCTION NAME, OPCODE
This line has three parts that contain the following:

1. MNEMONIC -- The mnemonic code for the operation field of the assembler
statement. The Multics assembler, ALM, recognizes this character
string value and maps it into the appropriate binary pattern when
generating the actual object code.

2. INSTRUCTION NAME -- The name of the machine instruction from which the
mnemonic was derived.

3. OPCODE -- The octal value of the operation code for the instruction.

A 0 or a 1 in parentheses following an octal code indicates whether
bit 27 (opcode extension bit) of the instruction word is OFF or ON.

4.2 AL39

‘Line 2: FORMAT

The layout.and definition of the subfields of the instruction word or words
are given here either as a figure or as a reference to a figure.

Line 3: SUMMARY

‘The change in the state of the processor effected by the execution of the
instruction is described in a short, symbolic form. If reference is made to the
state of an indicator in the summary, it is the state of the indicator before
the.instruction is executed.)

Line 4: MODIFICATIONS

Those modifiers that cannot be used with the instruction are 1listed
explicitly as exceptions. See Section 6 for a discussion of address
modification. :

Line 5: INDICATORS

Only those indicators are 1listed whose state can be changed by the
execution of the instruction. In most cases, a condition for setting ON as well
as one for setting OFF is stated. If only one of the two is stated, then the
indicator remains unchanged if the condition is not met. Unless stated
otherwise, the conditions refer to the contents of registers existing after
instruction execution. Refer also ‘to "Common Attributes of Instructions," later
in this section.

Line 6: NOTES

This part of the description exists~6n1y in those cases where the summary
is not sufficient for in-depth understanding of the instruction.

33 ‘ AL39

DEFINITIONS OF NOTATION

Main Memory Addresses

Y-pair

Y-blockn

Y-charnk

Y-bitk

Index Values

‘AND SYMBOLS

an 18-bit computed address as generated during address
preparation.

a 24-bit main memory'address of the instruction operand
after all address preparation (including appending) is
complete.

a pair of main memory 1locations with successive
addresses, the smaller address being even. When Y is
even, it designates the pair Y(even), Y+1; and when it
is odd, the pair Y-1, Y(odd). The main memory location
with the smaller (even) address contains the most
significant part of a double-word operand or the first
of a pair of instructions.

a block of main memory locations of 4-, 8-, 16-, or
32-word extent. For a block of n-word extent, the
processor forces Y-blockn to a 0 modulo n address and
performs address incrementing through the block
accordingly, stopping when the address next reaches a
value 0 modulo n.

a character or string of characters in main memory of
character size n bits as described by the kth operand
descriptor. n 1s specified by the data type field of
operand descriptor k and may have values 4, 6, or 9.
See Section 6 for details of operand descrlptors.

a bit or string of bits in main memory as described by
the kth operand descriptor. See Section 6 for details
of operand descriptors.

When reference is made to the elements of a string of characters or bits in
main memory, the notation shown in "Register Position and Contents" below is
used. The index used to show traversing a string of extent n may take any of

the values in the interval (1,n) unless noted otherwise. The elements of a main
memory block are traversed explicitly by using the index as an addend to the
given block address, (e.g., Y-block8+m and Y-blockl+2m+1).

Abbfeviations and Symbols

A

ARn

AQ

BAR

cQO

CA

DSBR
DSBR. ADDR
DSBR.BND
DSBR. STACK
DSBR. U

Accumulator register .
Address register n (n =10, .1, 2, ..., 7)
Combined accumulator-quotient reglster
Base address register

"Contents of"

Computed address

Descriptor segment base register
Address field of DSBR

Bound field of DSBR

Stack base field of DSBR

Unpaged flag of DSBR

4l AL39

E

Exponent register

EA Combined exponent-accumulator register

EAQ Combined exponent-accumulator-quotient register

ERN Effective ring number

ESN Effective segment number

IC Instruction counter

IR Indicator register

PPR Procedure pointer register

PPR.PRR Procedure ring register of PPR

PPR.PSR Procedure segment register of PPR)
PPR.IC "Instruction counter register of PPR (same as IC above)
PPR.P Privileged flag of PPR

PRn Pointer register n (n =0, 1, 2, ..., T)

PRn.RNR Ring number register of PRn

PRn.SNR Segment number register of PRn

PRn.WORDNO Word address register of PRn

PRn.CHAR Character address register of PRn

PRn.BITNO Bit offset register of PRn

Q Quotient register

PTWAM Page table word associative memory

SDWAM Segment descriptor word associative memory

RALR Ring alarm register

TPR Temporary pointer register '

TPR.CA Computed address register of TPR (same as CA above)
TPR.TRR Temporary ring register of TPR

TPR.TSR Temporary segment register of TPR

TPR.TBR Temporary bit register of TPR

TR Timer register '

Xn Index register n (n =0, 1, 2, ..., 7)

YA Temporary pseudo-result of a nonstore comparative operation

above,

In the definitions that follow,
as well as for main memory words,
character-strings.

Register Positions and Contents

"R" stands for any of the registers listed
word-pairs, word-blocks, and bit- or

Ry The itP bit, character, or byte position of R

R(1i) The ith register of a set of n registers named R

Ri,j The bit, character, or.byte positions i through j of R

C(R) The contents of the full register R

C(R) 4 The contents of the ith bit, character, or byte of R

C(R)i’j The contents of the bits, characters, or bytes i through j of R
XX...X A string of binary bits (0's or 1's) of any necessary length

When the description of an instruction specifies a change for a. part of a
register or main memory loeatlon, it is understood that the part of the register
. or main memory location not mentioned remains unchanged.

Other Symbols

replaces

-

compare with

AL39

& k the Boolean connective AND

H the Boolean connective OR

e the Boolean connective NON-EQUIVALENCE (or EXCLUSIVE OR)

XXX ‘ the logical inverse (ones complement) of the guantity XXX

not equal .

ni#n indicates exponéntiaeion (n -and m are integers); for

example, the fifth power of 2 is represented as 2%%5,

X multiplication; for example, C(Y) times C(Q) is represented
’ as C(Y) X c(q).

/(division; for example, C(Y) divided by C(A) is represented
as c(¥) /cn).
H concatenation; for example, stringl |} string2.

)

]

l...’ the absolute vélue of the value between vertical bars (no
algebraic sign). For example the absolute value of C(A) plus

C(Y) is represented as: IC(A) + C(Y)‘.

C(R) A coined notation for remaindering or modulo arithmetic; for

modn example C(REG) modulo 9 is represented as C(REG)modg.

COMMON ATTRIBUTES OF INSTRUCTIONS

Illegal Modification

If an illegal modifier is used with any instruction, an illegal procedure
fault with a subcode class of illegal modifier occurs.

Parity Indicator

The parity indicator is turned ON at the end of a main memory access that
has incorrect parity.

INSTRUCTION WORD FORMATS

‘Basic and EIS Single-Word Instructions

The basic instructions and EIS single-word instructions require exactly one
36~-bit machine word and are interpreted according to the format shown in Figure
41,

46 AL39

0 11 2223 3
0 7.8 7.8 9.0 2
ADDRESS OPCODE Ija TAG
18 10 1 1 6
Figure 4-1. Basic and EIS Single-Word Instruction Format
ADDRESS The given address of the operand or indirect word. This
address may be:

An 18-bit absolute main memory address if A = 0

(absolute mode only)

An 18-bit offset relative to the base address register
if A = 0 (BAR mode only)

An 18-bit offset relative to the base of the current
procedure segment if A = 0 (appending mode only)

A 3-bit pointer register number (n) and a 15-bit offset
relative to C(PRn.WORDNO) if 4 = 1 (absolute and
appending modes only)

A 3-bit address register number (n) and a 15-bit offset
relative to C(ARn) if A = 1 (all modes depending on
instruction type)

An 18-bit 1literal signed or unsigned constant (all
modes depending on instruction type and modifier)

An 8-bit shift operation count (all modes)
An 18-bit offset relative to the current value of the
instruction counter C(PPR.IC) (all modes)

OPCODE Instruction operation code.

I Intérrupt inhibit bit. When this bit is set ON, the
processor will defer all external interrupt signals. See
Section 7 for a discussion of interrupts.

A Indirect via pointer register flag. See Section 6 for a
discussion of the use of pointer registers.

TAG Instruction address modifier. See Section 6 for a
discussion of address modification.

Machine words in this format are generated by ALM in processing the basic
and EIS single-word instructions (described later in this section) and the arg
pseudo-instruction).

Indirect Words

Certain of the basic and EIS single-word instructions permit indirection to
be specified as part of address modification. When such indirection 1is

4-7 AL39

specified, C(Y) is interpreted as an indirect word according to the format shown
in Figure 4-2.

0 11 2 3 3
0 1.8 9 0 5
ADDRESS TALLY TAG
18 12 6
Figure 4-2. 1Indirect Word Format
ADDRESS The given address of the operand or next indirect word. This
address may be:
An 18-bit absolute main memory address if A = 0 in the
instruction word (absolute mode only)
An 18-bit offset relative to the base address register
(BAR) if A = 0 in the instruction word (BAR mode only)
An 18-bit offset relative to the base of the segment in
which the word resides if A = 0 (appending mode only)
Three zero bits and a 15-bit segment number if
TAG = (43) (its modification) (absolute and
appending moges only)
A 3-bit pointer register number and 15 zero bits if
TAG = (41) (itp modification) (absolute and
appending moges only)
TALLY A count field for use by those address modifiers that involve
tallying
TAG This field may be (depending on the TAG value causing the

indirection);

A 6-bit address modifier

A 6-bit increment to be added to or subtracted from ADDRESS
on each reference

A 1-bit character mode (6- or 9-bit) flag, two O bits, and
a 3-bit character position number

Machine words in this format may be generated by use of the ALM vfd
pseudo-instruction.

EIS Multiword Instructions

The EIS multiword instructions require three or four machine words depending
on the operand descriptor requirements of the individual instructions. The words
are interpreted according to the format shown in Figure 4-3. The instruction
descriptions (later in this section) contain ALM coding examples. Refer to the MPM
Subsystem Writers' Guide, Order No. AK92, "alm Command" for additional
information.

12/79 4-8 AL394A

0 11 2 2 2 3
Q 7.8 7 8 9 5
VARIABLE OPCODE I MF 1
18 10 1 7
operand descriptor or indirect pointer for operand 1
operand descriptor or indirect pointer for operand 2
operand descriptor or indirect pointer for operand 3
36
Figure 4-3. EIS Multiword Instruction Format
VARIABLE This field is interpreted variously according to the
requirements of the individual EIS instructions. Its

interpretation is given under FORMAT for each EIS
instruction. The modification fields MF2 and MF3 are
contained in this field if they are required.

OPCODE Instruction operation code as for basic and EIS
single-word instructions.

I Interrupt inhibit bit as for basic and EIS single-word
instructions.

MF1 Modification field for operand descriptor 1. See EIS
modification fields (MF) below for details.

Machine words in this format are generated by ALM in processing the EIS
multiword instructions described later in this section and their associated
operand descriptor or indirect pointer pseudo-operations.

EIS Modification Fields (MF)

Each of the operand descriptors following an EIS multiword instruction word
has a modification field in the instruction word. The modification field
controls the interpretation of the operand descriptor. The modification field
is interpreted according to the format shown in Figure 4-4.

N ©
v O
(o)}

atblc REG

Figure 4-4. EIS Modification Field (MF) Format

a AR Address register flag. This flag controls interpretation
of the ADDRESS field of the operand descriptor just as the

4-9 AL39

"A" flag controls interpretation of the ADDRESS field of the
basic and EIS single-word instructions. The ALM coding
mnemonic for this flag is "Ypr".

b RL Register length control. If RL =0, then the length (N) field
of the operand descriptor contains the 1length of the
operand. If RL = 1, then the length (N) field of the operand
descriptor contains a selector value specifying a register
holding the operand length. Operand length is interpreted as
units of the data size (1-, 4-, 6-, or 9-bit) given in the
associated operand descriptor. The ALM coding mnemonic for
this flag is "rl". '

c ID Indirect descriptor control. If ID = 1 for MFk, then the kth
word following the instruction word is an indirect pointer to
the operand descriptor for the kth operand; otherwise, that
word is the operand descriptor. The ALM coding mnemonic for
this flag is "id".

REG The register number for R-type modification (if any) of
ADDRESS of the operand descriptor. These modifications are
similar to R-type modifications for basic instructions and are
summarized in Table 4-1. Illegal modifiers have the entry
"IPR" and cause an illegal procedure fault.

Table 4-1. R-type Modifiers for REG Fields
Meaning as used in:
Octal
Code R-type Indirect operand C(operand
MF.REG descriptor-pointer descriptor)32 35
y
00 n n n IPR
01 au au au au
02 qu qu qu qu
03 du IPR IPR du (@)
i . . . (b)
o4 ic i ic i
05 al afc) al a?C)
06 ql q(C) : ql q(c)
o7 dl IPR IPR IPR
10 x0 x0 x0 x0
11 x1 x1 x1 x1
12 x2 x2 x2 x2
13 X3 x3 x3 X3
14 x4 x4 x4 x4
15 x5 x5 x5 x5
16 x6 X6 x6 x6
17 x7 x7 x7 x7
(a) The du modifier is permitted only in the second operand descriptor of the
sed, scdr, scm, and scmr instructions to specify that the test
character({s) reside(s) in bits 0-18 of the operand descriptor.
(b) The 1ic modifier is permitted in MFk.REG and C(od)32,35 only if

12/79

MFk.RL = 0, that is, if the contents of the register 1s’“dn address
offset, not the designation of a register containing the operand
length.

4-10 AL39A

¢) The limit of addressing extent of the processor is 2¥*¥18 words; that is,
given an address, y, a modifier may be employed to access a main memory
word anywhere in the range (y-2¥¥17, y+2%¥%¥17-1), provided other address
range constraints are not violated. Since it is desirable to address this
same extent as words, characters, and bits it is necessary to provide a
register with range greater than the 12 bits of N or the 18 bits of normal
R-type modifiers. This is done by extending the range of the A and Q
modifiers as follows:

Mode Range A,Q bits
9-bit 21 15,35
6-bit 21 15,35
4-bit 22 14,35
bit 24 12,35

The unused high-order bits are ignored.

MF CODING EXAMPLES

All of the EIS instruction descriptions in this section give examples of
ALM coding formats. For example, the mlr instruction shows:

mlr (MF1),(MF2)[,fill (octalexpression)][,enablefault]

descna Y-charn1[(CN1)], N1 n 4, 6, or 9 (TA1 2, 1, or 0)

descna Y-charn2[(CN2)],N2 n 4, 6, or 9 (TA2 2, 1, or 0)
»

where MF1 and MF2 represent the EIS Modifier Fields for the first and second
data descriptors, respectively.

The meanings of the various codes in an MF field are:

If C(MFn)
Contains , It Means
pr Y-charn is not the memory address of the data but is a
reference to a pointer register pointing to the data.
id The data in descn is not the data descriptor but is the
memory address (or pointer register reference) of the data
descriptor.
rl The field Nn is not the data length but is the code fecr

register containing the data length (see Table 4-1).

EIS Operand Descriptors and Indirect Pointers

The words following an EIS multiword instruction word are either operand
descriptors or indirect pointers to the operand descriptors. The interpretation of
the words is performed according to the settings of the control bits in the associated
modification field (MF). The kth word following the instruction word is interpreted
according to the contents of MFk. See EIS modification fields (MF) above for meaning
of the various control bits. “See Section 2 and Section 6 for further details.

12779 4-11 -AL39A

OPERAND DESCRIPTOR INDIRECT POINTER FORMAT

If MFk.ID = 1, then the kth word following an EIS multiword instruction word

is not an operand descriptor, but is an indirect pointer to an operand descriptor
and is interpreted as shown in Figure U4-5.

o] 11 22332173 3
0 3 8 6012 5
ADDRESS 00 0000O0OGCGOC O)JA}JO O REG
18 11 1 2 q
Figure U4-5. Cperand Descriptor Indirect Pointsr Format
ADDRESS The given address of the operand descriptor. This address may

be:

An 1€-bit absolute main memory address if A = 0 (absolute
mode only)

An 18-bit offset relative to the base address register
(BAR) if A = C (BAR mode only)

An 1g-bit offset relative to the base of the current
procedure segment if A = 0 (appending mode only)

A 3-bit pointer register number (n) and a 15-bit offset

relative to C(PRn.WORDNO) if A = 1 (all modes)
A Indirect via pointer register flag. This flapg controls

interpretation of the ADDRESS field of the indirect
pointer just as the "A" flag controls interpretation of

127715~ . BEERR P AL39A

the ADDRESS field of the basic and EIS single-word
instructions.

REG Address modifier for ADDRESS. All register modifiers except
du and dl1 may be used. If the ic modifier is used, then
ADDRESS is an 18-bit offset relative to value of the
instruction counter for the instruction word. C(REG) is
always interpreted as a word offset.

Machine words in this format are generated by the ALM arg pseudo-instruction
giving an appropriate TAG field.

ALPHANUMERIC OPERAND DESCRIPTOR FORMAT

For any operand of an EIS multiword instruction that requires alphanumeric
data, the operand descriptor is interpreted as shown in Figure U4-6.

n 11 22222 2
Q 7.8 0.1 2.3 14 a2
ADDRESS cN TA O N
¢ 18 3 21 12
Figure 4-4, Alphanumeric Operand Descriptor Farmat
ADDRESS The given address of the operand. This address may be
(for the kth operand):
in 18-bit absolute main memory address if MFk.AR=z 0
(absolute mode only)
An 18-bit offset relative to the base address register
if MFk.AR = 0 (BAR mode only)
An 18-bit offset relative to the base of the current
procedure segment if MFk.AR = 0 (appending mode only)
A 3-bit address register number (n) and a 15-bit word
offset relative to C(ARn) if MFk.AR = 1 (all modes)
CN Character number. This field gives the character position

relative to ADDRESS of the first operand character. Its
interpretation depends on the data type (see TA below) of
the operand. Table 4-2 below shows the interpretation of
the field. A digit in the table indicates the corresponding
character position (see Section 2 for data formats) and an
"x" indicates an invalid code for the data type. Invalid
codes cause illegal procedure faults. (For further
explanation, see the Note under ARpn.BITNC. 1in Section 3,
"pddress Registers".)

2/82 4-12 AL39B

' Table 4-2. Alphanumeric Character Number (CN) Codes

Data type
C(CN) 4-bit 6-bit 9-bit
000 0 0] 0]
001 1 1 X
010 2 2 1
011 3 3 X
100 4 4 2
101 5 5 X
110 6 X 3
111 1 X X
TA Type alphanumeric. This is the data type code for the

operand. The interpretation of the field is shown in
Table 4-3. The code shown as Invalid causes an illegal
procedure fault.

Table 4-3. Alphanumeric Data Type (TA) Codes

C(TA) Data type
00 9-bit
01 6-bit
10 4-bit
11 ! Invalid
N Operand length. If MFk.RL = 0, this field contains the

string length of the operand. If MFk.RL = 1, this field
contains the code for a register holding the operand
string length. See Table 4-1 and EIS modification fields
(MF) above for a discussion of register codes.

Machine words of this format are generated by ALM when processing the
desclda, descba, and desc9a pseudo-instructions.

NUMERIC OPERAND DESCRIPTOR FORMAT

For any operand of an EIS multiword instruction that requires numeric data,
the operand descriptor is interpreted as shown in Figure 4-7.

4-13 AL39

x

11 22222 23 3

78 01234 9 0 5
ADDRESS CN Jaf s SF N

18 31 2 [[

Figure U4-7. Numeric Operand Descriptor Format

ADDRESS ’ The given address of the operand. This address may be
(for the kth operand): :

An 18-bit absolute main memory address if MFk.AR= O
{(absolute mode only)

An 18-bit offset relative to the base address register
if MFk.AR = 0 (BAR mode only)

An 18-bit offset relative to the base of the current
procedure segment if MFk.AR = 0 (appending mode only)

A 3-bit address register number (g) and a 15-bit word
offset relative to C(ARn) if MFk.AR = 1 (all modes)

CN Character number. This field gives the character position
relative to ADDRESS of the first operand digit. Its
interpretation depends on the data type (see TN below) of
the operand. Table U4-2 above shows the interpretation of
the field. (For further information, see the Note under
ARn.BITNO in Section 3 on Address Registers.)

TN Type numeric. This is the data type code for the operand.
The codes are:
C(TN) ‘Data type
0 9-bit
1 4-pit
S Sign and decimal type of data. The interpretation of the

field is shown in Table 4-4.

Table 4-U4. Sign and Decimal Type (S) Codes

c(s) Sign and decimal type
00 Floating-point, leading sign
01 Scaled fixed-point, leading sign
10 Scaled fixed-point, trailing sign
11 Scaled fixed-point, unsigned
SF Scaling factor. This field contains the two's complement

value of the base 10 scaling factor; that is, the value of
m for numbers represented as n x 10%¥*m. The decimal point
is assumed to the right of the least significant digit of
n. Negative values move the decimal point to the left;
positive values, to the right. The range of m is (-32,31).

414 AL39B

N Operand 1length. If MFk.RL = 0, this field contains the
operand length in digits. TIf MFk.RL = 1, it contains the
REG code for the register holding the operand 1length and
C(REG) is treated as a 0 modulo 64 number. See Table 4-1
and EIS modification fields (MF) above for a discussion of
register codes.

Machine words in this format are generated by ALM when processing the desclfl,
descl1ls, desclts, desclns, desc9fl, desc9ls, descOts, and desc9ns
pseudo-instructions.

BIT-STRING OPERAND DESCRIPTOR FORMAT

For any operand of an EIS multiword instruction that requires bit-string
data, the operand descriptor is interpreted as shown in Figure 4-8.

0 1112 22 3
Q 7.8 9.0 3. U 5
ADDRESS C B N

18 2 L 12
Figure 4-8. Bit String Operand Descriptor Format

ADDRESS The given address of the operand. This address may be
(for the kth operand):

An 18-bit main memory address if MFk.AR= 0 (absolute
mode only)

An 18-bit offset relative to the base address register
if MFk.AR = 0 (BAR mode only)

An 18-bit offset relative to the base of the current
procedure segment if MFk.AR = O (appending mode only)

A 3-bit address register number (n) and a 15-bit word
offset relative to C(ARn) if MFk.AR = 1 (all modes)

C The character number of the 9-bit character relative to
ADDRESS containing the first bit of the operand. (For
further explanation, see the Note under ARnBITNO in Section
3 on Address Registers.)

B The bit number within the 9-bit character, C, of the first
bit of the operand.

N Operand length. If MFk.RL = 0, this field contains the

string length of the operand. If MFk.RL = 1, this field
contains the code for a register holding the operand string
length. See Table 4-1 and EIS modification fields (MF)
above for a discussion of register codes. :

Machine words of this format are generated by ALM when processing the descb
pseudo-instruction.

2/82 4-15 AL39B

FIXED-POINT DATA MOVEMENT LOAD

FIXED-POINT ARITHMETIC INSTRUCTIONS

Fixed-Point Data Movenent Load

eaa Effective Address to A 635 (9)
FORMAT: Basic instruction format (see Figure #4-1).
SUMMARY C(TPR.CA) -> C(A), 17
3

00...0 => C(A)18,35

MODIFICATIONS: All except du, dl

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF

NOTES: The eaa instruction, and the instructions eaq and eaxn,
facilitate interregister data movements. The data source
is specified by the address modification, and the data
destination by the operation code of the instruction.
Attempted repetition with the rpl instruction causes an
illegal procedure fault.

eaq Effective Address to Q 636 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY C(TPR.CA) => C(Q)g 47
?

00...0 -> C(Q)18,35

MODIFICATIONS: All except du, dl

4-16 AL39

FIXED-POINT DATA MOVEMENT LOAD

INDICATORS: (Indicators not listed are not affected)'

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)g = 1, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an

illegal procedure fault.

eaxn Effective Address to Index Register n 62n (0)
FORMAT: Basic instruction format (see Figure i-1).
SUMMARY: For n =0, 1, ..., or 7 as determined by operation code
C(TPR.CA) -> C(Xn)
MODIFICATIONS: All except du, dl
INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) = 0, then ON; otherwise OFF
Negative If C(Xn)g = 1, then ON; otherwise OFF
NOTES: Attemptedvrepetition with the rpl instruction causes an
illegal procedure fault.
leca Load Complement A 335 (0)
FORMAT: Basic instruction format (sge Figure 4-1).
SUMMARY: -C(Y) => C(B)
MODIFICATIONS: - All
4-17

AL39

FIXED-POINT DATA MOVEMENT LOAD

INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, -then ON; otherwise OFF
Negative If C(A)y = 1, then ON; otherwise OFF
Overflow If range of A is exceeded, then ON
NOTES: The 1lca instruction changes the number to its negative
while moving it from Y to A. The operation is executed by
. forming the twos complement of the string of 36 bits. In
twos complement arithmetic, the value 0 1is its own
negative. An overflow condition exists if C(Y) = -2%%35,
lcaq Load Complement AQ 337 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: -C(Y=-pair) =-> C(AQ)
MODIFICATIONS: All except du, dl, ei, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)y = 1, then ON; otherwise OFF
Overflow If range of AQ is exceeded, then ON
NOTES: The 1lcaq instruction changes the number to its negative
while moving it from Y-pair to AQ. The operation is
executed by forming the twos complement of the string of
72 bits. In twos complement arithmetic, the value 0 is
its own negative. An. overflow condition exists if
C(Y-pair) = -2%%#71,
legq Load Complement Q 336 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: -C(Y) -> C(Q)
MODIFICATIONS: All

4-18 AL39

FIXED-PQINT‘DATA MOVEMENT LOAD

- INDICATORS: - (Indicators not listed are not affected)
Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF
Overflow If range of Q is exceeded, then OMN
NOTES: " The 1leq instruction changes the number to its negative
while moving it from Y to Q. The operation is executed by
forming the twos qomplement of the string of 36 bits. 1In
twos complement arithmetic, the value 0 1is its. own
negative. An overflow condition exists if C(Y) = -2#%#35,
lexn Load Complement Index Register n 32n (0)
FORMAT: Basic instruction format (see Fiéure 4-1).
SUMMARY: For n =0, 1, ..., or 7T as determined by oberqtion code
-C(Y)O,17 -> C(Xn)
MODIFICATIONS: All except ci, sc, secr
INDICATORS: (Indicators not listed are not affeéted)
Zero If C(Xn) = 0, then ON; otherwise OFF
Negative If C(Xn)y = 1, then ON; otherwise OFF
Qverflow If range of Xn is exceeded, then ON
NOTES: The lexn instruction changes the number to its negative
while moving it from Y5 47 to Xn. The operation is
executed by forming the eﬁos complement of the string of
18 bits. In twos complement arithmetic, the value 0 is
its own negative. An overflow condition exists if
C(Y)O 17 = -2%E1T,
? -
Attempted repetition with the rpl instruction and with the
same register given as target and modifier causes an
illegal procedure fault.
lda Load A 235 (0)
FORMAT: Basic instruction format (see Figure 4-1).

4-19 AL39

FIXED-POINT DATA MOVEMENT LOAD

SUMMARY: . c(Y) => c(A)
MODIFICATIONS: All
INDICATORS: - (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF

ldac Load A and Clear 034 (0)
FORMAT : Basic instruction fdrmat (see Figure h-1).
SUMMARY: C(Y) => C(A)

00...0 => C(Y)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF
Negative -If C(A)y = 1, then ON, otherwise OFF
NOTES: The 1ldac instruction ‘causes a special main memory

reference that performs the load and clear in one cycle.
Thus, this instruction can be used in locking data.

ldaq Load AQ 237 (0)
FORMAT: Basic instruction format (see Figure U-1).

SUMMARY: C(Y=-pair) =-> C(AQ)

MODIFICATIONS: All except du, dl, ci, sec, scr

INDICATORS: (Indicators not listed afe not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)y = 1, then ON; otherwise OFF

4-20 ' AL39

FIXEﬁQPOINT DATA MOVEMENT LOAD

1di Load Indicator Register S v 634 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Y)18,31 -> C(IR)

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)
Parity If C(Y)2 = 1, and the processor is 1in absolute or
mask privilegez mode, then ON; otherwise OFF. This indicator

is not affected in the normal or BAR modes.

Not BAR Cannot be changed by the 1di instruction
mode '
Mid If C(Y)35 = 1, and the processor is in absolute or
instruction privileged mode, then ON; otherwise OFF. This indicator
interrupt is not affected in normal or BAR modes.
fault
Absolute Cannot be changed by the 1di instruction
mode
All other If corresponding bit in C(Y) is 1, then ON; otherwise, OFF -
indicators

NOTES: The relation between C(Y)18,31 and the indicators is given

in Table 4-5 below.

The tally runout .indicator reflects C(Y) regardless of
what address modification is performe on the 1di
instruection.

Attempted repetition with the rpt, rpd, or rpl
instructions causes an illegal procedure fault.

4-21 AL39

FIXED-POINT DATA MOVEMENT LOAD

Table 4-5. Relation Between Data Bits and Indicators

Bit
Position C(Y) Indicator

18 Zero

19 Negative

20 Carry

21 Overflow

22 Exponent overflow
23 Exponent underflow
24 Overflow mask

.25 Tally runout

26 Parity error

27 Parity mask

.28 Not BAR mode

29 Truncation

30 Mid instruction interrupt fault
31 Absolute mode

ldq Load Q 236 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Y) -> Cc(Q)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g 1, then ON; otherwise OFF
ldqe Load Q and Clear 032 (0)
FORMAT: Basic instruction format (seé Figure u4-1).
SUMMARY: C(Y) => C(Q)
00...0 => C(Y)
MODIFICATIONS: All except du, dl, ci, sc, scr)
4.22 AL39

FIXED-POINT DATA‘MOVEMENT LOAD

INDICATORS: (Indicators not listed are not affected)
Zero If C(Y) = 0, then ON; otherwise OFF
Negative If C(Y)g = 1, then ON, otherwise OFF
NOTES: The 1ldgqc instruction causes a special main memory
reference that performs the load and clear in one cycle.
Thus, this instruction can be used in locking data.
ldxn Load Index Register n 22n (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: For n=z 0, 1, ..., or 7 as determined by operation code
C(Y)0’17 <> C(Xn)
MODIFICATIONS: All except ci, sc¢, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) = 0, then ON; otherwise OFF
Negative If C(Xn)gy = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the frpl instruction with the
same register given as target and modifier causes an
illegal procedure.fault.
lreg . | Load Registers 073 (0)

FORMAT:

SUMMARY:

Basic instruction format (see Figure 4-1).

C(Y-block8)y 17 => C(X0)
C(Y-block8+1)g 47 => C(X2)
C(Y-block8+2) g 47 => C(XH)
C(Y-block8+3)g q7 => C(X6)
C(Y-block8+4) > C(A)

C(Y-block8+6)y 7 => C(E)

4-23

C(Y-block8) g 35 -> C(X1)
C(Y-block8+1) g 35 => C(X3)
C(Y-block8+2)1g 35 => C(X5)
C(Y-block8+3) g 35 => C(XT)
C(Y-block8+5) -> C(Q)

AL39

FIXED-POINT DATA MOVEMENT-LOAD

MODIFICATIONS; " All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: Attempted | repetition with the rpt, .rpd, or rpl
instructions causes an il}egal procedure fault.
1x1ln Load Index Register n from Lower - 72n (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: For n=0, 1, ..., or 7 as determined by operation code
C(Y)18’35 -> C(Xn)
MODIFICATIONS: All except ci, se, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) = 0, £hén ON; otherwise OFF
" Negative If C(Xn)y = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction with the
same register given as target and modifier causes an

illegal procedure fault.

4-24 » AL39

FIXED-POINT DATA MOVEMENT STORE

Fixed-Point Data Movement Store

sreg Store Registers 753 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY : C(X0) -> C(Y-block8)y 47 C(X1) -> C(Y-block8) g 35

C(X2) -> C(Y-block8+1)g 179 C(X3) -> C(Y-block8+1) g 35

C(X6) -> C(Y¥-blockB+3)g 17 C(XT) -> C(Y-block8+3) g 35

C(A) -> C(Y-block8+4) €(Q) -> c(Y-block8+5)

C(E) -> C(Y-block8+6)¢ 7 00...0 -> C(Y-block8+6)g 35

C(TR) -> C(Y-blockB+T)g 6 00...0 -> C(Y-block8+7),7 35
C(RALR) -> C(Y-b100k8+7)33’35

MODIFICATIONS: All except du, d1, ci, se¢, scr
INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions
causes an illegal procedure fault.

2/82 : 4-25 AL39B

FIXED-POINT DATA MOVEMENT STORE

sta Store A 755 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(A) => C(Y)
MODIFICATIONS: All except du, dl
INDICATORS: None affected
NOTES: Attempted repetition with the rpl instruction causes an
illegal procedure fault.
stac Store A Conditional 354 (0)
FORMAT: Basic instruction format (see Figure i-1).
SUMMARY: If C(Y) = 0, then C(A) => C(Y)
MODIFICATIONS: All except du; dl, e¢i, sc, secr
INDICATORS: {Indicators not listed are not affected)
Zero If initial C(Y) = 0, then ON; otherwise OFF
NOTES: If the initial C(Y) is nonzero, then C(Y) is not changed

by the stac instruction.

The stac instruction uses a special main memory reference
that prohibits such references by other processors between
the test and the data transfer. Thus, it may be used for
data locking.

Attempted repetition with the rpl instruction causes an
illegal procedure fault.

5-26 AL39

FIXED-POINT DATA MOVEMENT STORE

stacq | Store A Conditional on Q 654 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: If C(Y) = c(Q), then C(A) -> C(Y)
MODIFICATIONS: All except du, d1, ci, sc¢, scr
INDICATORS: (Indicators not listed are not affected)

Zero If initial C(Y) = C(Q), then ON; otherwise OFF

NOTES:

If the initial C(Y) is # C(Q), then C(Y) is not changed by
the stacq instruction.

The stacq instruction uses a special main memory reference
that prohibits such references by other processors between
the test and the data transfer. Thus, it may be used for
shared data locking and unlocking.

On the DPS 8M processor, data shared by more than one
processor may, at any time, be in more than one processor's
cache memory. To aid the integrity of shared data, the
stacq instruction will always bypass cache and obtain its
operand from main memory. In addition, a synchronizing
function inhibits completion of the stacq instruction until
the processor executing the stacq instruction is notified
by the scu that write completes have occurred and write
notifications requesting cache block clears have been sent
to the other processors for all write instructions that
the processor previously issued. This feature, therefore,
makes the stacq instruction the preferred choice for unlocking
shared data bases.

Attempted repetition with the rpl instruction causes an
illegal procedure fault.

staq Store AQ

757 (0)

FORMAT:
SUMMARY:
MODIFICATIONS:
INDICATORS:
NOTES:

2/82

Basic instruction format (see Figure 4-1).
C(AQ) -> C(Y-pair)

All except du, d1, ci, se, ser

None affected

Attempted repetition with the rpl instruction causes an
illegal procedure fault.

4-27 AL39B

FIXED-POINT DATA MOVEMENT STORE

stba Store Bytes of A 551(0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: 9-bit bytes of C(A) -> corresponding bytes of C(Y), the

byte positions affected being specified in the TAG field.

MODIFICATIONS: None (see NOTES below)

INDICATORS: None affected

NOTES: Binary ones in the TAG field of this instruction specify
the byte positions of A and Y that are affected. The
control relations are shown in Table 4-6.

ALM treats a given numeric TAG field for this instruction
as an octal number.

Attempted repetition with the rpt, rpd, or rpl instructions
causes an illegal procedure fault.

Table 4-6. Control Relations for Store Byte Instructions (9-Bit)

Bit position Bit of Byte
within TAG field instruction of A and Y

0 30 Byte O
(bits 0-8)
1 31 Byte 1
(bits 9-17)
2 32 Byte 2

(bits 18-26)

3 33 Byte 3
(bits 27-35)

2/82 4.28 AL39B

FIXED-POINT DATA MOVEMENT STORE

stbq | Store Bytes of Q - | 552 {0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: 9-bit bytés of C(Q) =-> corresponding bytes of C(Y), the
byte positions affected being specified in the TAG field.

MODIFICATIONS: None (see NOTES below)

INDICATORS: None affected

NOTES: Binary ones in the TAG field of this instruction specify
the byte positions of Q and Y that are affected. The
control relations are shown in Table 4-6 above.
ALM treats a given numeric-TAG field for this instruction
as an octal number.
Attempted repetition with the rpt, rpd, or rpl
instructions causes an illegal procedure fault.

ste1 Store Instruction Counter Plus 1 554 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(PPR.IC) + 1 => €(Y), 17
, ’

C(IR) -> C(Y)18’31 | ‘
00...0 => C(Y)32’35

MODIFICATIONS: All except du, dl, ei, se¢, scr

INDICATORS: None affected

NOTES: The contents of the instruction counter C(PPR.IC) and the

indicator register (IR) after address preparation are
stored in C(Y)y 47 and C(Y), 319 respectively. C(Y)
reflects the state of the talfy runout indicator prior to
modification. The relations between C(Y)4g 37 and the
indicators are given in Table 4-5. !

Attempted repetition with the rpt, rpd, or rpl
instructions causes an illegal procedure fault.

B-29 .AL39

FIXED-POINT DATA MOVEMENT STORE -

ste2 | Store Instruction Counter Plus 2) - 750 (0)
FORMAT: Basic instfuction'format (see Figure 4-1).
SUMMARY: C(PPR.IC) + 2 => C(Y), 17
’
MODIFICATIONS: All except du, dl, ei, sc, ser
INDICATORS: None affected
NOTES: The contents of the instruction counter C(PPR.IC) are
stored in C(Y), 17
?
Attempted repetition with the rpt, rpd, or rpl
instructions causes an illegal procedure fault.
stca 'Store Characters of A ‘ 751 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Characters of C(A) -> corresponding characters of C(Y),
the character positions affected being specified in the
TAG field. .
MODIFICATIONS: None (see NOTES below)
INDICATORS: None affected
NOTES: Binary ones in the TAG field of this instruction specify

character positions of A and Y that are affected. The
control relations are shown in Table 4-7.

ALM treats a given numeric TAG field for this instruction
as an octal number.

Attempted repetition with the rpt, rpd, or rpl
instructions causes an illegal procedure fault.

4-30 . ' AL39

"FIXED-POINT DATA MOVEMENT STORE

Table 4-7. Control Relations for Store Character Instructions (6-Bit)

Bit position Bit of Character
within TAG field . instruction | of A and Y
0 30 Char O
(bits 0-5)
1 3 . Char 1
(bits 6-11)
2 32 . Char 2
(bits 12-17)
3 . 33 Char 3
(bits 18-23)
y 34 Char &4
(bits. 24-29)
5 35 Char 5
(bits 30-35)

stecq Store Characters of Q 752 (0)
~ FORMAT: Basic instruction format (see Figure u4-1).

SUMMARY: Characters of C(Q) =-> corresponding characters of C(Y),
the character positions affected being specified by the
TAG field. -

MODIFICATIONS: None (see NOTES below)

INDICATORS: None affected

NOTES: Binary ones in the TAG field of this instruction specify

the character positions of Q and Y that are affected. The
control relations are shown in Table U4-T7 above.

ALM tfeats a given numeric TAG field for this instruction
as an octal number.

Attempted repetition with the rpt, rpd, or rpl
instructions causes an illegal procedure fault.

4-31 AL39

FIXED-POINT DATA MOVEMENT STORE

| sted Store Control Double _ _ . 357 (0) -
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(PPR) => C(Y-pair) as follows:
000 -> C(Y-pair)o,z
C(PPR.PSR) => C(Y-palr)3'17
C(PPR.PRR) -> C(Y—pair)18,20
(43)8 -> C(Y-palr)30’35
C(PPR.IC)+2 => C(Y-pair)36,53
00...0 => C(Y-pair)sa’71
MODIFICATIONS: All except du, dl, eci, se, ser
INDICATORS: None affected
NOTES: Attempted repetition with the rpt, rpd, or rpl
instructions causes an illegal procedure fault.
sti Store Indicatorbkegister » - 754 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY : C(IR) => C(Y)qg 39
00...0 => C(Y)32’35
MODIFICATIONS: All except du, dl, ei, se, scr
INDICATORS: None affected
'The contents of the indicator register after address

NOTES:

preparation are stored in C(Y), c(Y)4 31 reflects
the state of the tally runout 1nd%cator prld? to address
preparation. The relation between C(Y)18 31 -and the
indicators is given in Table u4-5. !

4-32 ' AL39

FIXED-POINT DATA MOVEMENT STORE

Attempted repetition with . the rpt, rpd, or rpl
instructions causes an illegal procedure fault.

stq | Store Q : . ' 1 756 (0)
 FORMAT: Basic instruction format (see Figure u51).
SUMMARY: C(Q) => ¢(Y)

MODIFICATIONS: All except du, dl
INDICATORS: None affected

NOTES: Attempted repetition with the rpl instruction causes an
illegal procedure fault.

stt Store Time Register 454 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(TR) -> C(Y)°,26

MODIFICATIONS: All except du, dl, ci, sec, ser
INDICATORS: " None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl
' instructions causes an illegal procedure fault.

4-33 AL39

FIXED-POINT DATA MOVEMENT STORE

stxn Store Index Register n : T4n (0)
.FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: For n =0, 1, ..., or T as determined by operation code'
C(Xn) -> C(Y)0,17_
MODIFICATIONS: All except du, dl, ci, sec, ser
INDICATORS:. None affected
" NOTES: Attempted repetition with the rpl instruction causes an
illegal procedure fault.
stz Store Zero 450 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: 00...0 => c(Y)
MODIFICATIONS: All except du, dl
INDICATORS: None affected
NOTES: Attempted repetition with the rpl instruction causes an
illegal procedure fault. :
sxln | Store Index Register n in Lower 44n (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: For n=0, 1, ..., or T as determined by operation code

c(xn) -> C(Y)1g 35

4-34 i AL39

FIXED-POINT DATA MOVEMENT STORE

MODIFICATIONS: All except du, d1, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpl instruction causes an
v illegal procedure fault.

4-35 AL39

FIXED-POINT DATA MOVEMENT SHIFT

Fixed-Point Data Movement Shift

alr A Left Rotate 775 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Shift C(A) left the number of positions given in
C(TPR.CA) ¢4 173 entering each bit leaving Ay into Assg.
H T
MODIFICATIONS: All except du, dl, c¢i, sc¢, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an
illegal procedure fault.
als A Left Shift 735 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Shift C(A) left the number of positions given in by
: C(TPR.CA)11,17; filling vacated positions with zeros.
MODIFICATIONS: All except du, d1, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
Carry If C(A)O changes during the shift, then ON; otherwise OFF
NOTES: Attempted.repetitiod with the rpl instruction causes an

illegal procedure fault.

AL39

" FIXED-POINT DATA MOVEMENT SHIFT

arl | A Right Logical S | 771 (0)
FORMAT: .Basic instruction format (see Figure 4-1).
SUMMARY: Shift C(A) right the number of positions given in-
C(TPR.CA)11,17; filling vacated positions with zeros.
MODIFICATIONS: All except du, dl, ci, sc, ser
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
NOTES: - Attempted repetition with the rpl instruction causes an
illegal procedure fault.
ars A Right Shift :) 731 (0).
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Shift C(A) right the number of positions given in
C(TPR. CA)11 17; filling vacated positions with initial
MODIFICATIONS: All except du, dl, ci, sc, secr
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = O, then ON; otherwise OFF
Negative If C(A)y = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an

illegal procedure fault.

4-37 - AL39

FIXED-POINT DATA MOVEMENT SHIFT

1llr Long Left Rotate ‘ 777 (0)
FORMAT: Basic instruction format (see Figure 4-1).
- SUMMARY: Shift C(AQ) 1left by the number of positions given in
C(TPR.CA)11 173 entering each bit leaving AQq irto AQ71.
’. . » .
MODIFICATIONS: All except du, dl, ci, sc, secr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)y = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl -instruction causes an
illegal procedure fault.
1lls Long Left Shift 737 (0)
FORMAT: Basic instruction format (see Figure i4-1).
SUMMARY: Shift C(AQ) 1left the number of positions given in
C(TPR.CA)11,17; filling vacated positions with zeros.
MODIFICATIONS: All except du, d1, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)g = 1, then ON; otherwise OFF
Carry If C(AQ)y changes during the shift, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an

illegal procedure fault.

4-38 AL39

FIXED-POINT DATA MOVEMENT SHIFT

irl Long Right Logical ; . V - 773 (0)

FORMAT:

Basic instruction format (see Figure i4-1).

SUMMARY: Shift C(AQ) right the number of positions given in
C(TPR.CA)11'17; filling vacated positions with zeros.
‘MODIFICATIONS: All except du, dl, eci, se¢, secr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)g = 1, then ON; otherwise OFF
NOTES:’ Attempted repetition with the rpl instruction causes an
illegal procedure fault.
irs Long Right Shift ' - 733 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Shift C(AQ) ‘rlght the number of positions given in
. C(TPR. CA)11 173 filling vacated positions with initial
C(AQ) 4.
MODIFICATIONS: - All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)y = 1, then ON; otherwise OFF
NOTES: Atﬁempted repetition with the rpl instruction causes an

illegal procedure fault.

4-39 . S AL39

FIXED=-POINT DATA MOVEMENT SHIFT

qlr Q Left Rotate . . | | 776 (0)
- FORMAT: . Basic instruction format (see Figure 4-1).
SUMMARY: Shift C(Q) 1left the number of positions given in

C(TPR.CA)11’17; entering each bit leaving Qg into Q3g.
MODIFICATIONS: - All except du, dl, ci, se, scr
. INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an’
illegal procedure fault.

qls Q Left Shift 736 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Shift C(Q) 1left the number of positions given 1in

C(TPR.CA)11,17; fill vacated positions with zeros.
MODIFICATIONS: All except du, dl, ci, sc¢, scr
INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF
Carry If C(Q)O changes during the shift, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an
illegal procedure fault.

u-40 AL39

FIXED—POINT‘DATA MOVEMENT - SHIFT

qrl Q Right Logical 772 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Shift C(Q) right the number of positions specified by
Y11’17; fill vacated positions with zeros.
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an
illegal procedure fault.
qrs Q Right Shift 732 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Shift C€(Q) right the number of positions given in
C(TPR. CA)11 173 filling vacated positions with initial
MODIFICATIONS: All except du, dl, ci, se, ser
INDICATORS: (Indicators not listed are not affected)
~ Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF
NOTES: " Attempted repetition ‘with the rpl 1nstruction causes an

illegal procedure fault.

4-41 AL39

'FIXED-POINT ADDITION

Fixed-Point Addition

ada Add to A » . 075 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(A) + C(Y) => C(4a)

MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)y = 1, then ON; otherwise OFF

Overflow If range of A is exceeded, then ON
Carry If a carry out of Ag is generated, then ON; otherwise OFF
adagq Add to AQ 077 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(AQ) + C(Y-pair) => C(AQ)

MODIFICATIONS: All except du, d1, ci, se, secr
INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)y = 1, then ON; otherwise OFF
Overflow If range of AQ is exceeded, then ON

Carry If a carry out of AQg is generated, then ON; otherwise OFF

4-42 AL39

FIXED-POINT ADDITION

adl Add Low to AQ ’ ' ' 033 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY : C(AQ) + C(Y) sign extended => C(AQ)
MODIFICATIONS: All except ci, sc, scr
INDICATORS: ‘(Indicators not listed are not affected)
Zero "If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)g = 1, then ON; otherwise OFF
Overflow If range of AQ is exceeded, then ON
Carry If a carry out of AQ; is generated, then ON; otherwise OFF
NOTES: A 72-bit number is formed from C(Y) in the following

manner:

The lower 36 bits (36,71) are identical to C(Y).
Each of the upper 36 bits (0,35) is identical to C(Y)O.

This T2-bit number is added to the contents of the
combined AQ-register.

adla Add Logical

to A ' 035 (0)

FORMAT:
SUMMARY :
MODIFICATIONS:
INDICATORS:

Zero
Negative

Carry

NOTES:

Basic instruction format (see Figure 4-1).

C(A) + C(Y) => C(A)

All

(Indicators not listed are not affected)

If C(A) = 0, then ON; otherwise OFF
If C(A)y = 1, then ON; othérwise OFF

If a carry out of A, is geqerated, then ON; otherwise OFF

The adla instruction is identical to the ada instruction
with the exception that the overflow indicator is not

43 " AL39

FIXED-POINT ADDITION

affected by the adla 'instruction, nor does an overflow
fault occur. Operands and results are treated as
unsigned, positive binary integers.

adlaqg Add Logical

to AQ : ' 037 (0)

© FORMAT:
SUMMARY :
MODIFICATIONS:
INDICATORS:

Zero
Negative

Carry

NOTES:

Basic instruction format (seé Figure 4-1).
C(AQ) + C(Y-pair) => C(AQ)

All except du, dl1, ci, sc, .scr

(Indicators not listed are not affected)

If C(AQ) = 0, then ON; otherwise OFF
If C(AQ)y = 1, then ON; otherwise OFF

If a carry out of AQy is generated, then ON; otherwise OFF

The adlaq instruction is identical to the adaq instruction
with the exception that the overflow indicator is not
affected by the adlaq instruction, nor does an overflow
fault occur. Operands and results are treated as
unsigned, positive binary integers.

adlq Add Logical

to Q 036 (0)

FORMAT:
SUMMARY :
MODIFICATIONS:
INDICATORS:

Zero
Negative

Carry

NOTES:

Basic instruction format (see Figure 4-1).
C(Q) + C(Y) -> C(Q

All

(Indicators not listed are not affected)

If C(Q) = 0, then ON; otherwise OFF
If C(Q)g = 1, then ON; otherwise OFF
If a carry out of Qg is generated, then ON; otherwise OFF
The adlq instruction is identical to the adq instruction

with the exception that the overflow indicator is not
affected by the adlq instruction, nor does an overflow

4= o AL39

FIXED-POINT ADDITION

fault are.

occur. Operands and results treated as
unsigned, positive binary integers. .
_adlxn | Add Logical to Index Register n 02n (0)
- FORMAT:. Basic instruction format (see Figure U4-1).
SUMMARY: For n =0, 1, ..., or 7T as determined by operation code
C(Xn) + C(Y)o’17 -> C(Xn)
MODIFICATIONS: All except ci, sc¢, secr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) = 0, then ON; otherwise OFF
Negative If C(Xn)g = 1, then-ON; otherwise OFF '
Carry If a carry out of Xng is generated, then ON; otherwise OFF
NOTES: The adlxn instruction is identical to the adxn instruction
with the exception that the overflow indicator- is not
affected by the adlxn instruction, nor does an overflow
fault occur. Operands and results are treated as
unsigned, positive binary integers. :
adq Add to . -Q 076 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: c(Q) + C(Y) => ¢c(Q)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF
Overflow If range of Q is exceeded, then ON
Carry If a carry out of Qy is generated, then ON; otherwise OFF

4-45 AL39

FIXED-POINT ADDITION

adxn Add to Index Register n | 06n (0)
FORMAT: _ Basic instruction format (see Figure u4-1).
SUMMARY: ' For n =0, 1, ..., or T as determined by operation_code

C(Xn) + C(Y)o’17 -> C(Xn)
MODIFICATIONS: All except .ci, sc, secr
INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF
Negative If C(Xn)g = 1, then ON; otherwise OFF

Overflow If range of Xn is exceeded, then ON
Carry If a carrj out of Xng is generated, then ON; otherwise OFF
‘aos Add One to Storage 054 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: SC(Y) + 1 => C(Y)

MODIFICATIONS: All except du, dl, ci, se, ser
INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF
Negative If C(Y)y = 1, then ON; otherwise OFF

Overflow If range of Y is exceeded, then ON
Carry If a carry out of Y, is generated, then ON; otherwise OFF
"NOTES: Attempted repetition with the rpl instruction causes an

illegal procedure fault.

asa Add Stored to A 055 (0)

446 : AL39

FIXED-POINT ADDITION

FORMAT: . Basic instruction format (see Figure 4-1).
SUMMARY: C(A) + C(Y) => c(Y)
MODIFICATIONS: All except du, dl, ci, sc, ser
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y) = 0, then ON; otherwise OFF
Negative If C(Y)g = 1, then ON; otherwise OFF
Overflow If range of Y is exceeded, then ON
Carry If a carry out of Y, is generated, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an
. illegal procedure fault.
asq Add Stored to Q 056 (0)
FORMAT: ‘ Basic inétruction format (see Figure 4-1). e
SUMMARY: C(Q) + C(Y) -> C(Y)
MODIFICATIONS: All except du, dl, ci, sec, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y) = 0, then ON; otherwise OFF
Negative IF C(Y)y = 1, then ON; otherwise OFF
Overflow If range of Y is exceeded, then ON
Cafry If a carry out of Y, is generated, then ON; o;herwise OFF
NOTES: Atteﬁpted repetition with the rpl instruction causes an

illegal procedure fault.

asxg' Add Stored

to Index Register n 04n (0)

FORMAT:

Basic instruction format (see Figure 4-1).

y-y7 AL39

FIXED-POINT ADDITION

SUMMARY: -Forrn =0,1, ..., or T as determined.by operation code
C(Xn) + Q(Y)0’17 -> C(Y)o’17
MODIFICATIONS: All except du, dl, ci, sc, ser
_ INDICATORS: (Indicators not listed are not affected)
Zero If C(Y)o’17 = 0, then ON; otherwise OFF
Negative If C(Y)g = 1, then ON; otherwise OFF
Overflow If range of Y0’17 is exceeded, then ON
Carry If a carry out of Yo is generated, then.ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an
illegal procedure fault.
awca Add with Carry to A] o711 (@
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: If carry indicator OFF, then C(A) + C(Y) -> C(A)
If carry indicator ON, then C(A) + C(Y) + 1 => C(A)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
Overflow If range of A is exceeded, then ON
Carry If a carry out of Ay is generatéd, then ON; -otherwise OFF
NOTES: The awca instruction is identical to the ada instruction
with -the exception that when the carry indicator is ON at
the beginning of the instruction, 1 is added to the sum of
C(A) and C(Y).
. aweq ‘Add with Carry to Q 072 (0)

4-48 AL39

: FIXED-POINT ADDITION

FORMAT: Basic instruction format (see Figure #4-1).

SUMMARY: If carry indicator OFF, then C(Q) + C(Y) => C(Q)
"~ If carry indicator ON, then C(Q) + C(Y) + 1 => C(Q)

. MODIFICATIONS: All
INDICATORS: - (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF
Negative | If C(Q)g = 1, then ON; otherwise OFF

Overflow If range of Q is exceeded, then ON
Carry - If a carry out of Qg is generated, then ON; otherwise OFF
NOTES: The aweq ihstruction is identical to the adq instruction

with the exception that when the carry indicator is ON at
the beginning of the instruction, 1 is added to the sum of
C(Q) 'and C(Y). :

4-49 ' AL39

FIXED-POINT. SUBTRACTION

Fixed-Point Subtraction

sba Subtract from A : ,) 175 (0)
FORMAT: ' Basic instruction format (see Figure 4-1).

SUMMARY: C(a) = C(Y) => c(a)
MODIFICATIONS: All
INDICATORS: " (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF
Negative - If C(A)g = 1, then ON; otherwise OFF

Overflow If range of A is exceeded, then ON

Carry _ If a carry out of Ay is generated, then ON; otherwise OFF
sbaq Subtract from AQ 177 (0)
FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(AQ) - C(Y-pair) => C(AQ)
MODIFICATIONS: All except du, dl, ci, se, ser
INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)y = 1, then ON; otherwise OFF

Overflow If range of AQ is exceeded, then ON

Carry If a carry out of AQm is generated, then ON; otherwise OFF
sbla Subtract Logical from A 135 (0)
FORMAT: Basic instruction format (see Figure 4-1).

4-50 AL39

FIXED=POINT SUBTRACTION

SUMMARY: C(A) - C(Y) -> C(A)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative Iif C(A)o = 1, then ON; otherwise OFF
Carry If a carry out of Ay is generated, then dN; otherwise OFF
NOTES: The sbla instruction is identical to the sba instruction
with the exception that the overflow indicator is not
affected by the sbla instruction, nor does an overflow
fault occur. Operands and results are treated as
unsigned, positive binary integers. ’
sblaq | Subtract Logical from AQ 137 (0)

FORMAT:

Basic instrﬁction format (see Figure 4-1).
SUMMARY: C(AQ) - C(Y-pair) => C(AQ)
MODIFICATIONS: All except du, dl, ci, sc,'scr
INDICATORS: (Indicators not listed are not affected)
Zero If c(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)g = 1, then ON; otherwise OFF
Carry - If a carry out of AQp is generated, then ON; otherwise OFF
NOTES: The sblaq instruction is identical to the sbaq instruction
with the exception that the overflow indicator is not
affected by the sblaq instruection, nor does an overflow
fault occur. Operands and results are treated as
unsigned, positive binary integers.
sblq Subtract Logical from Q 136 (0)

FORMAT:

Basic instruction format (see Figure U-1).

- 4-51 AL39

FIXED-POINT SUBTRACTION

SUMMARY: C(Q) - c(Y) => c(Q)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
~Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF
Carry If a carry out of Qp is generated, then ON; otherwise OFF
NOTES: The sblq instruction is identical to the sbq instruction
with the exception that the overflow indicator is not
affected by the sblq instruction, nor does an overflow
fault occur. Operands and results are treated as
unsigned, positive binary integers.
sblxn Subtract Logical from Index Register n 12n (0)

FORMAT: " Basic instruction format (see Figure 4-1).
SUMMARY: For n=0, 1, ..., or T as determined by operation code
C(Xn) f C(Y)0'17 -> C(Xn)
MODIFICATIONS: All except ci, sec, ser
INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) = 0, then ON; otherwise OFF
Negative If C(Xn)g = 1, then ON; otherwise OFF
Carry If a carry out of Xng is generated, then ON; otherwise OFF
NOTES The sblxn instruction is identical to the sbxn instruction
with the exception that the overflow indicator is not
affected by the sblxn instruction, nor does an overflow
fault occur. Operands and results are treated as
unsigned, positive binary integers. :
sbq " Subtract from Q 176 (0)

4-52 AL39

FIXED-POINT SUBTRACTION

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Q) - C(Y) => C(Q)
MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

.-

Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF

Overflow If range of Q is exceeded, then ON
Carry If a carry out of Qp is generated, then ON; otherwise OFF
sbxn Subtract from Index Register n :] 16n (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: For n = 0O, 1, «sey Or T as determined by operation codé

C(Xn) - C(Y)0’17 -> C(Xn)
MODIFICATIONS: All except ci, se, scr
INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF
Negative If C(Xn)o = 1, then ON; otherwise OFF

Overflow - If range of Xn is exceeded, then ON
Carry If a carry out of Xng is generated, then ON; otherwise OFF
ssa Subtract Stored from A 155 (0)
FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(A) - C(Y) > C(Y)

MODIFICATIONS: All except du, dl, ci,Asc, scr

4-53 AL39

FIXED-POINT SUBTRACTION

INDICATORS:

(Indicators not listed are not affected)
Zero If C(Y) = 0, then ON; otherwise OFF
‘Negative If C(Y)y = 1, then ON; otherwise OFF
Overflow If range of Y is exceeded, then ON
Carry If a carry out of Yy is generated, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an
illegal procedure fault.
ssq Subtract Stored from Q 156 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Q) - C(Y) -> c(Y)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If c(Y) = 0, then ON; otherwise OFF
Negative If C(Y)g = 1, then ON; otherwise OFF
Overflow If range of Y is excgeded, then ON
Carry If a carry out of Y, is generated, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an
illegal procedure fault.
ssxn Subtract Stored from Index Register n ‘ 14n (0)
AFORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: For n=0, 1, ..., or 7 as determined by operation code
C(Xn) - C(Y)0’17 -> C(Y)O’17
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)

4_54' AL39

FIXED-POINT SUBTRACTION

Zero If C(Y)g, 47 = O, then ON; otherwise OFF
. Negative If C(Y)y = 1, then ON; otherwise OFF
Overflow If range of YO,17 exceeded,. then ON »
Carry If a carry out of Yy is generated, then ON; otherwise OFF
NOTES: Aﬁﬁempted repetition with the rpl instruction causes an
illegal procedure fault.
sweca Subtract with Carry from A) 171 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: If carry indicator ON, then C(A) - C(Y) -> C(A4)
If carry indicator OFF, then C(A) - C(Y) - 1 => C(A)
MODIFICATIONS: All
INDICATORS: (IﬁdicatorS'not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
Overflow If range of A is exceeded, then ON
Carry k If a carry out of Ap is generated, then ON; otherﬁise OFF
NOTES: The sweca instruction is identical to the sba instruction
with the exception that when the carry indicator is OFF at
the beginning of the instruction, +1 .is subtracted from
.the difference of C(A) minus C(Y). The swca instruction
treats the carry indicator as the complement of a borrow
indicator due to the implementation of negative numbers in
twos complement form.
sweq Subtract with Carry from‘Q . 172 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: If carry indicator ON, then C(Q) - C(Y) => C(Q)

IT carry indicator OFF, then C(Q) - C(Y) - 1 => €(Q)

4-55 | o AL39

FIXED-POINT SUBTRACTION

MODIFICATIONS:
INDICATORS:

Zero
Negative
Overflow

Carry

NOTES:

‘All

(Indicators not listed are not affected)

If ¢c(Q) = 0, then ON; otherwise OFF -
If C(Q)g = 1, then ON; otherwise OFF
If range of Q is exceeded, then ON

If a carry out of Qg is generated, then ON; otherwise OFF

The sweq instruction is identical to the sbq instruction
with the exception that when the carry indicator is OFF at
the beginning of the instruction, +1 is subtracted from
the difference of C(Q) minus C(Y). The sweq instruction
treats the carry indicator as the complement of a borrow
indicator due to the implementation of negative numbers in
twos complement form. :

1-56 S AL39

FIXED-POINT MULTIPLICATION

Fixed-Point Multiplication

mpf Multiply Fraction 4ot (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: c(a) X c(Y) -> C(AQ), left adjusted

MODIFICATIONS: All except e¢i, sc, ser
INDICATORS: (Indicators not listed are not affected)

Zero If c(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)y = 1, then ON; otherwise OFF

Overflow If range of AQ is exceeded, then ON

NOTES: Two 36-bit fractional factors (including sign) aremultiplied
to form a 7T1-bit fractional product (including sign), which
is stored left-adjusted in the AQ register. AQg4 contains
a zero. Overflow can occur only in the case of A and Y
containing negative 1 and the result exceeding the range
of the AQ register.

00 3 00 3
0 1 5 0 1 9
s factor X 1s factor
c(na) Cc(Y)
yielding
00 T7
0 1
s product 0
c(AQ)
mpy Multiply Integer 402 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY : c(Q) X c(Y) -> c(AQ), right adjusted

2/82 4-57 AL39B

FIXED~POINT MULTIPLICATION

MODIFICATIONS: All except ci, se, scr
INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)g = 1, then ON; otherwise OFF

NOTES: Two 36-bit integer factors (including sign) are multiplied
to form a T1-bit integer product (including sign), which
is stored right-adjusted in the AQ-register. AQO is
filled with an "extended sign bit".

00 3 00 3
01 5 0.1 2
s factor X |s factor
cw) Cc(Y)
yielding
00O 7
012 1
sls product
C(AQ)

In the case of (-2%#35) X (-2%%#35) = +2%¥%#70, AQ; is used
to represent the product rather than the sign. No
overflow can occur.

4-58 AL39

Fixed-Point Division

FIXED-POINT DIVISION

div Divide Integer ' - | 506 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: c(Q) //(Y) integer quotient -> C(Q)
integer remainder -> C(A)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
If division takes place: If no division takes place:
Zero If C(Q) = 0, then ON; If divisor = 0, then ON;
otherwise OFF otherwise OFF .
Negative If C(Q) = 1, then ON; If dividend < 0, then ON;
otherwise OFF otherwise OFF
NOTES: A 36-bit integer dividend (including sign) is divided by a

36-bit integer divisor (including sign) to form a 36-bit
integer quotient (including sign) and a 36-bit integer
remainder (including sign). The remainder sign is equal
to the dividend sign unless the remainder is zero.

00 3 00 3
1 5 0 1 o)
s dividend /’ s divisor
c(Q) c(Y)
yielding
00 ' 3 00 . 3
0 1 5 0 1 5
s | remainder. . s quotient
C(A) - Q)

If the dividend = -2%¥#35 and the divisor = -1 or if the
divisor = 0, then division does not take place. Instead,
a divide check fault occurs, C(Q) contains the dividend
magnitude, and the negative indicator reflects the
dividend sign. ’

4-59 AL39

FIXED-POINT DIVISION

dvf Divide Fraction | 1 507 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: " ¢(aQ) / (Y) fractional quotient => C(A)

fractional remainder -> C(Q)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)
If division takes place: If no division takes place:
Zero If C(A) = 0, then ON; If divisor = 0, then ON;
otherwise OFF otherwise OFF
Negative If C(A)o = 1, then ON; If dividend < 0, then ON;
otherwise OFF otherwise OFF
NOTES: A T1-bit fractional dividend (including sign) is divided

by a 36-bit fractional divisor yielding a 36-bit
fractional quotient (including sign) and a 36-bit
fractional remainder (including sign). C(AQ) 74 is
ignored; bit position 35 of the remainder corresponds to
bit position 70 of the dividend. The remainder sign is
equal to the dividend sign unless the remainder is zero.

00 T7
0 1 0 1
s dividend lxl
c(AQ)
0o 3
0 1 5
// s divisor
c(Y).
yielding
00 3 0o 3
0_1 5 0 1 5
F quotient s remainder
c(a) c) .

4760 : ' AL39

- FIXED=-POINT DIVISION

if ldividendl >= ldivisorl or if the divisor = 0, division
does not take place. Instead, a divide check fault

occurs, C(AQ) contains the dividend magnitude in absolute,
and the negative indicator reflects the dividend siga.

4-61 AL39

FIXED-POINT NEGATE

Fixed-Point Negate

| neg Negate A : » ‘ 531 (0)
- FORMAT: Basic instruction format (seevFigure 4-1).
SUMMARY : -C(A) => C(A) if C(A) # 0

MODIFICATIONS: All, but none-affect instruction execution.
INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
Overflow If range of A is exceeded, then ON
NOTES: ' The neg instruction changes the number in A to its
negative (if # 0). The operation is performed by forming

the twos complement of the string of 36 bits.

Attempted repetition with the rpl instfuction causes an
illegal procedure fault.

negl Negate Long | 533 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: -C(AQ) -> C(AQ) if C(AQ) # O

MODIFICATIONS: All, but none affect instruction execution.
INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)y = 1, then ON; otherwise OFF

Overflow If range of AQ is exceeded, then ON

NOTES: . The negl instruction changes the number in AQ to its
. negative (if # 0). The operation is performed by forming
the twos complement of the string of 72 bits.

4-62 L AL39

FIXED-POINT COMPARISON

Attempted repetition with the rpl ihstruction‘causes an
illegal procedure fault. .

4-63 AL39

FIXED-POINT COMPARISON

Fixed=-Point Comparison

cmg Compare Magnitude 405 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY : [cn] :::|C(Y)|
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero 1r Jca)] = {c(n)|, then ON; otherwise OFF
Negative If |c(m)| < Jc(x)|, then ON; otherwise OFF
cmk Compare Masked _ 211 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: For i =0, 1, ..., 35
c(2)y = CTQ; & [cea); o cny)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(Z) = 0, then ON; otherwise OFF
Negative If C(Z)g = 1, then ON; otherwise OFF
NOTES: The cmk instruction compares the contents of bit positions

of A and Y for identity that are not masked by a 1 in the
corresponding bit position of Q.

The zero indicator is set ON 1if the comparison is
successful for all bit positions; 1i.e., if for all
i=o0,1,...,35 there is -either: C(A); = C(Y); (the
identical ~case) or C(Q); = 1 (the masked "case);
otherwise, the zero indicator is set OFF.

‘The negative indicator is set ON if the comparison is

unsuccessful for bit position 0; i.e., if C(A)y & C(Y),

4-64 AL39 -

FIXED-POINT COMPARISON

(they are nonidentical) as well as C(Q)o»= 0 (they are
unmasked); otherwise, the negative indicator is set OFF.

cmpa Compare with A o | 115 (0)
- FORMAT: Basic instruction format (see Figure 4-1).
SUHHARY: c(a) :: c(m
MODIFICATIONS: . " All
INDICATORS: (Indicators not listed are not affected)
The zero (Z), negative (N), and carry (C) indicators are
set as follows:
. Algebraic Comparison (Signed Binary Operands)
Z N C Relation Sign |
0 0 0 C(a) > C(Y) C(A)g =0, C(Y)g =1
0 0 1 c(aA) > ¢c(Y)
1 0 1 C(A) = C(Y) ¢ C(A)g = C(Y),
0 1 0 c(a) < Cc(Y)
0 1 1 C(A) <C(Y) C(A)g=1, C(Y)g=0
Logical Comparison (Unsigned Positive Binary Operands)
zZ C Relation
0o 0 C(A) < C(Y)
11 C(A) = C(Y)
0 1 ca) >
cmpaq | Compare with AQ | o 117 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(AQ) :: C(Y-pair)
MODIFICATIONS: All except du, dl, ci, sc, ser

4-65 ' AL39

FIXED-POINT 'COMPARISON

INPICATORS: . (Indicators not listed are not affected)

The zero (Z), negative (N), and carry (C) indicators are

set as follows:

Algebraic Comparison (Signed Binary Operands)

Z N C Relation Sign
0 0 C(AQ) > C(Y-pair) C(AQ),

0
0 0 1 C(AQ) > C(Y-pair)
0

1 1 C(AQ)

00 1 0 C(AQ) < C(Y=-pair)
0

101 C(AQ) < C(Y=-pair) C(AQ)gy = 1, C(Y-pair),

0, C(Y-pair),

"
—_

C(Y-pair) C(AQ)y = C(Y=-pair),

)
(=]

Logical Comparison (Unsigned Positive Binary Operands)

Z C Relation

0 0 C(AQ) < C(Y-pair)
1 1 C(AQ) = C(Y-pair)
0 1 C€AQ) > C(Y-pair)

cmpq Compare with Q 116 (0)
FORMAT: Basic instruction format (see Figure 4-1}.
SUMMARY: C(Q) :: Cc(Y)

MODIFICATIONS: All

INDICATORS: ' (Indicators not listed are not affected)

The zero (Z), negative (N), and eérry (C) indicators are

set as follows:

4-66

AL39

FIXED-POINT COMPARISON

Algebraic Comparison (Signed Binary Operands)

Z

0
0

(=

0
-0
0

—

1
1

Relation Sign
C(Q) > C(Y) C(Q)q
c(Q) > c(Y)

C(Q) = C(Y) @ C(Q)g
C(Q) < c(Y)

€@ < C(N €@,

o, C(Y)o
c(¥)q

1, C(Y),

"
-

"
()

Logical Comparison (Unsigned Positive Binary Operands)

£
0
1
1

Relation

c(Q)
c(Q)
c(Q)

<

>

c(1)
c(Y)
c(Y)

cmpxn | Compare with Index Register n

10n (0)

FORMAT:

SUMMARY:

-MODIFICATIONS:

INDICATORS:

Basic instruction format (see Figure 4-=1).

For n =0, 1, sesy Or T as determined by operation code

C(Xn) :: C(¥)g qq

All except ci, se, ser

(Indicators not listed are not affected)

The zero (Z), negative (N),

set as follows: -

and carry (C) indicators are

Algebraic Comparison (Signed Binary Operands)

-z

0
0

N

0
0
0

c

0

4-67

Relation Sign
C(Xn) > C(Y)g 47 C(Xn)g
C(Xn) > C(Y)g 47

C(Xn) = C(Y)g, q7 ¢ C(Xn)g
C(Xn) < C(¥)q 17

C(Xn) < C(Y)g 47 ClXn)g

o, C(Y)o
C(Y)g

1, C(Y)o

AL39

FIXED-POINT COMPARISON

Logical Comparison (Unsigned Positive Binary Operands)

Z . C Relation
0 0 C(Xn) < C(Y)0’17
1 1 ' C(Xn) = C(Y?0’17
0 1 C‘Xn) ? C(Y)o{17
cwl Compare with Limits 111 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Y) :: closed interval [c(a);c(@)]
C(Y) :: €(Q) |
MODIFICATIONS: All
i
INDICATORS: (Indicators not listed are not| affected)
Zero If C(A) <= C(Y) <= C(Q) or C(A) >= C(Y) >= C(Q), then ON;
otherwise OFF.
The negative (N) and carry (C) indicators are set as
follows:
N C Relation Sign
0 o0 c(Q) > ¢c(y) C(Q)g = 0, C(Y)g =1
0 1 €(Q) >= c(Y)
C(Q) = C(Y),
1 0 c(Q) < C(Y)
1 1 c(Q) < Cc(Y) ‘C(Q)O = 1, C(Y)o =0
NOTES: The cwl instruction tests the value of C(Y) to determine

if it is within the range of values set by C(A) and C(Q).
The comparison of C(Y) with C(Q) locates C(Y) with respect
to the interval if C(Y) 1is not contained within the

- interval.

4-68 ‘ AL39

FIXED-POINT MISCELLANEOUS -

Fixed-Point Miscellaneous

szn Set Zero and Negative Indicators , 234 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Set indicators according to C(Y)

MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF .
Negative If C(Y)g = 1, then ON; otherwise OFF

szne Set<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>