Multics

Commands and Active Functions

Honeywell Bull

MULTICS
COMMANDS AND ACTIVE FUNCTIONS

SUBJECT

Description of Standard Multics Commands and Active Functions

SPECIAL INSTRUCTIONS

This publication supersedes the previous edition of the manual, Order No.
AG92-05, dated January 1983, and its addendum AG92-05A, dated December
1983.

Marginal change indicators (change bars and asterisks) indicate technical
changes.

SOFTWARE SUPPORTED
Multics Software Release 11.0

ORDER NUMBER
AG92-06 ’ February 1985

Honeywell Bull

The Multics Commands and Active Functions manual is organized into four sections.
Section 1 contains a basic introduction to manual use and term definition. Section 2 contains the
standard Multics commands and active functions arranged by function. Section 3 contains the
descriptions of those commands and active functions in alphabetical order. Section 4 describes
the requests used to gain access to the system.

Throughout this manual. references are made to the Mu/tics Programmer’s Reference Manual
(AG91) and the Mu/tics Subroutines and /10 Modu/es (AG93). For convenience, these are
referred to in the text as the Programmer’s Reference Manual and the Subroutines manual.

Significant Changes in AG92-06B

I The disconnect command was added to section 3.

The following commands changed 1o improve functionality:
abbrev
contents
dial
fortran
help
print_motd
switch_on
switch_off

The following commands have been extensively revised:
copy_dump_tape
compare_dump_tape .
read_tape_and_query

The enter_output_request command was revised to satisfy a customer change request.

Honeywell Bull disclaims the implied warranties of merchantability and fitness for a par-
ticular purpose and makes no express warranties except as may be stated in its written
agreement with and for its customer. In no event is Honeyweli Bull liable to anyone for any
indirect, special or consequential damages.

The information and specifications in this document are subject to change without notice.
Consult your Honeywell Bull Marketing Representative for product or service availability.

Copyright © Honeywell Bull Inc., 1985 File No.: 1L13 AG92-06

12/87

Section 1

Section 2
Section 3

CONTENTS

Manual Use and Term Definition 1-1
Description of Manual Format 1-1
General Definition of a Command 1-5
General Definition of an Active Function 1-5
Examples of Command vs Active Function Use. 1-6
25 o - J 1-6
Storage System Entry Types 1-6

Segment L e e e e e e e e e e e e e e e e 1-6
DITECIOTY .« ¢ v v v et e 1-6
Link e e e e e e e e e e e e e 1-6
Multisegment File, 1-7
Data Management File 1-7
Extended Entry Types ¢ o i i i i v i it e e e 1-7
Date/Time Values & o i i i i it ittt it e ee e 1-8
Date/Time Input Values 1-8
Time Strings (DT Values)c.... 1-8
Date/Time Output Values 1-13
Time Format 1-13
Reference to Commands and Active Functions 2-1
Commands and Active Functions.t o v ... 3-1
abbrev (D) e e e e e e e e e e e 3-2
accept_messages (@m)t e e e e e 3-8
ACCEPLING .+ & ¢ v v v e e e e e e e e e e e e e e e e e e 3-12
acquire_resource (aqgr) 3-12
add_name (an) e e e e e e e e 3-14
add_pnotice e e e e e e e e e e e 3-14.2
add_search_paths (asp) i 3-15
add_search_rules (ast) 3-17
adjust_bit_count (@abc) e e e 3-18
after (af) e e e e e 3-19
alm .. e e e e e e e e e e e e e e 3-20
alm_abs (@) e 3-48
3 1 o 3-50
ANSWET . i it e 3-50
apl (V2apD) e e 3-53
archive (aC) e e e e e 3-54
archive_sort (@as) i 3-64
archive_table (act) 3-65
ATeA_STALUS . . . v v vt et e e e e e e e e e e e e e e e e e e e 3-67
assign_tesource (ar) i i i e e e e e e e e 3-68
attach_audit (ata) i i i ittt e e 3-71
attach_lv (alv) e e 3-78
basic e e e e e e e e e e e e e e e 3-79
before (be) v i it e e e e e e e e e e 3-80
iii AG92-06B

12/87

before_journal_status (bjst) 3-81

binary (bin) 384
bind (bd) e 3-85
bj_mgr_call (bjmc) 3-92
BOOl e e e e e e 3-97
branches e e e e e e 3-98
57 3-98.1
o . 3-99
Calendar L e 3-102
calendar_clock e e e e e e e 3-107
cancel_abs_request (car)t 3-108
cancel_cobol_program (CCPJ . - + « « v v v v vt e e e e 3-110
cancel_daemon_request (cdr), 3-111
cancel_output_request (cor) 3-113
cancel_resource (Cnr) e e 3-115
cancel_retrieval_request (CIT) ittt o 3-116
canonicalize (canon) e e e 3-118
canonicalize_mailbox e 3-119
cell .. L e e e e e e e e e 3-121
change_default_wdir (cdwd) 3-121
change_error_mode (cem) 3-122
change_wdir (cwd) 3-123
check_file_system_damage (cfsd) 3-124
check_dacl e e e e e e e e e 3-125
check_info_segs (cis) 3-126
ClOCK . . o i e 3-128
close_file (ef) e e 3-129
CObOL . . . e e e e e e e e e 3-130
cobol_abs {cba) 3-134
Collate e e e e e e e e e e e e e e e e e 3-136
collated e e e e e e e e e e e e e e 3-136
comp_dir_info e e e e e 3-137
COMPATE .« o v v v e v e e e e e e e e e e e e e e et e e e e 3-140
compare_ascii (Cpa) e 3-142
compare_config_ deck e e e 3-146
compare_dump_1apPe i e e e e e e e e e e e e 3-148
compare_entry_names (cen) ittt 3-150
compare_object (cob) 3-150.1
compare_pPll (CPP) i e e e e e e e e e 3-151
COMPONENLt i v vt ottt e e e s et e e e v e o e e e e e 3-152
o3 14 L=7+2 A 3-152
L7031 17 11 5 3-153
convert_characters {(Cve) 3-154
convert_ec (CVEC) o v i i i e e e e e e e e e e e e e 3-155
COPY (CP) -« o v i e e e e e e e e 3-158
COPY_8Cl & . i e e e e e e e e e e e e e e 3-160
copy_cards (ced) 3161
copy_characters (cpch) e . 3-162
copy_dir (epd) e 3-163
COPY_QUMP_tAPE . . & v v vt et e e e e e e e e e e e e e 3-165
copy_file (Cpf) e 3-167.1
copy_dacl_dir e e e e e e e e e e e e 3-171
COPY 180 SEE . v v vt e e e e e e e e e e e e e e e 3-172
COPY_MNAMES & « v v v v v e v o v e o v ottt ottt e i s e a e e 3-172
iv AG92-06B

12/87

Create (CT) & . . o v e 3-173

CTEALE_ATEA . & v v v e v v e e o e e e e e e e e e e e e e 3-174
create_data_segment (cds) oL, 3-175
create_dir (€d) e e e e e e e 3-176
create_dm_file e e e e e e e e e e 3-179
cross_reference (cref} 3-180.1
cumulative_page_trace (cpt) L 3-185
T2 2 1 3-188
a1 7 3-189
date_compiled (dtc) e e 3-190
date_deleter i e e e e e e e 3-192
date_time it e e e e e e e e e e e e e e e e 3-194
date_time_after (dtaf), 3-195
date_time_before (dtbe)« . i i it e 3-195
date_time_equal (dteq) 3-196
date_time_interval {(dii), 3-19%
date_time_valid (dtv) 3-198
day ... e e e e e e e e e e 3-199
day_name e e e e e e e e e e e e e e e e 3-200
debug (Ab) e e e e e e e e 3-201
10 L= | 3-226
decimal (dec) i e e e e e 3-227
decode e e e e e e e e e 3-227
decode_access_class (dac) e 3-229
default e e e e e e e e e 3-229
default_wdir (dwd) 37230
defer_messages (dm)« . i it 3-231
delete (A1) i it e e e e e e 3-232
delete_acl {(da) c i v i i ittt e e e e, 3233
delete_dir (dd) i it e e 3-235
delete_external_variables (dev) 3-236
delete_jacl_dir (did) 3-236
delete_iacl_seg (dis) e 3-238
delete_message (dlm) 3-239
delete_name (dn)t 3-241
delete_search_paths (dsp), 3-243
delete_search_rules {(dsr} 3-243
delete_volume_quota (dlvg) 3-244
describe_entry_type (dset)o 3-244.1
desCribe_PSP & . v i i e 3-246
detach_audit (dta) v ittt 3-247
detach_Iv (d1v) i e 3-247
dial_manager_call it 3-248
Qial_OUL e e e e e e e e e e e e e e e e e 3-250
directories (dirs) i i i it e e e e 3-255
directory (dir) i i e e e e e e 3-256
discard_output (dco)o e e e 3-256.1
disconnect e e e e e e e e e e e e 3-256.2
display_audit_file (daf)ot 3-257
display_cobol_run_unit (der) 3-260
display_component_name (den) 3-260
display_entry_point_dcl (depd) 3-261
display_mailing_address (dsmla) 3-263
display_pllio_error (Ape) i it it e 3-264
\{ AG92-06B

12/87

display_pnotice 3-265

display_subsystem_usage 3266
display_time_info (dsti) 3-268
display_ttt e e 3-269
divide L e e e e e e e e 3-270
dm_display_version e 3-270
dm_user_shutdown 3-271
Lo 3-271
do_subtree e e 3-276.1
dprint (dp) e e 3-278
dpunch (dpn) i i e e e e e 3-282
dump_segmenti (S} ittt 3-285
edm e e e e e e e e e e e e e e e 3-289
EIMACS « v v v v v e 3-290
encode e e e e e e e e e e e e e e e e 3-293
encode_access_class (eac) 3-294
enter_abs_request (€aT) i i i e e e e 3-294
enter_output_request (€0T) ittt 3-300
enter_retrieval_rtequest {(err) 3-314
ENITIES . . . L L . L e e e e e e e e e e e e e e e e e e 3-316
=3 115 3-317
entry_path e 3-317
equal e e e e e e e e e e 3-318
equal_name (enm) 3-319
exec_com, ec (version 2) 3-320
exec_com, ec (version 1)t 3-336
execute_string (€XS) e e e e e 3-346
L4135 3-350.1
expand_cobol_source (ecs) 3-350.5
explain_doc (edoc) e 3-352
exponent_control e e e e e e e 3-355
fast e e e e e e e e e e e 3-356
file_output (fo) e 3-356
filles . . . v i e e e e 3-358
floor e e e e e e e e 3-359
format_document (fdoc) 3-360
format_line (f) 3-366
format_line_nnl (flnnl) 3-368
format_pll (fp) o i i e e e e e 3-370
format_string (fstr), 3-392
fortran (fU) i e e e e 3-394
fortran_abs (fa) 3-399
BCOS (BC) e e e e 3-401
general_ready (8r) 3-403
generate_pnotiCe e e e e e e 3-410
get_dir_quota e e 3-412
get_effective_access (gea) 3-413
get_ips_mask e e e 3-414
get_library_segment (gls), 3-415
getmode e e e e e e e e e 3-419
get_pathname (8pn) 3-419
geL_quota (8G) it e e e 3-420
get_system_search_rules (gsst) 3-422
-0 (211> 3-422

vi AG92-06B

12/87

hash_table (ht) o o i et e e e e e e e e e 3-423
nave_mail. e e e e e e e e e e e e e e e e e 3-425
have_messages o 3-427
have_gueue_entries o . i it i i e e 3-429
help . . . e e e e 3-430
hexadecimal (hex) & i i i i e 3-432.8
IR .« © v o e e e e e e e 3-432.9
BIBHY .« o o o e e e e e e e e 3-432.9
history_comment (hcom) 3-432.9
home_dir (hd) i it e e e e e e e e e e e 3-432.23
hour e e e e e e e e e 3-432.23
how_many users (hmu) 3-432.24
UL e 3-432.26
411301 A « 1= o 3-432.27
5 3-432.29
immediate_messages (im), 3-439
indent (ind) e e e e e e e e 3-440
34T 1<) 3-442
IMNAEK _SEL & v v v i e 3-442
initiate (in) e e e e e e e 3-444
fo_call (B0) . . v . v i e e e e e e e e 3-445
is_component_pathname (icpn) 3-466.1
Kermit e e e e e e e e e e e e e e e e 3-467
(0 3-476
last_message (Im) i i 3-477
last_message_destination (Imds) 3-478
last_message_sender (Ims)ttt 3-479
last_message_time (Imt), 3-480
length (In) i e e e 3-481
1 3-482
library_descriptor (Ids) 3-483
library_fetch (If) i 3-485
line_length (1) it ittt 3-489
Hnk (AK) e e e e e e e e e e e 3-490
linkage_editor (le)« i 3-492
HDKS & v o e e e e e e e e e e e e e e e e e 3-492.3
T -3 2 3-452.4
list_abs_requests (lar) 3-500
list_accessible (1ac) i i e e e e 3-503
list_acl 1a) e e e e e e e e e e e e e e e 3-504
list_daemon_requests (Idr) 3-506
Bist_dir_info i i i i e e e e e e e e e e e e e e 3-509
listemacs Ctls v i i it eenne... 3510
list_entry_types (Iset) ot i ittt 3-510
list_external _variables {lev) 3-511
list_fortran_storage (Ifs) @i i i i it it 3-511
list_heap_variables (Ihv} e.... 3-512
list_help (Ih) o ittt e e e e 3-512.1
list_facl_dir (Lid) i it 3-513
list_dacl_seg (IiS) v i v i it it it it 3-514
listmdir (Imd) 0 v ittt e e e e e e e e e e e 3-516
list_not_accessible {Inac) 3-518
list_output_requests (lor), 3-519
list_pnotice_names ¢t v v i it et e e 3-521
vii AG92-06B

12/87

list_ref_nmames {Irn) i i i i i e e e 3-522
list_resource_types (Irt) e 3-523
list_resources {Ir) 3-524
list_retrieval_requests (Irt) 3-525
list_sub_tree (Ist) 3-527
list_tape_contents (1tC) 3-528
list_temp_Segmentis v v i vt e e e e e e e e e 3-531
JOgIn_aTgS. e e e e e e e e e e e e 3-532
JOBOUL . . . L e e e e e e e e e e e e e e e 3-534
Jong date e e e e e e e e e e 3-535
IOng _Year e e e e e e e e e e e e 3-536
OW . e e e e e e e e e e e e e e e e e 3-536
lower_case (IOWETCaSE) v v v v v v i e e it e e 3-537
rim e e e e 3-538
Iv_attached e e e 3-538
mail (ml) e e 3-539
manage_volume_pool (mvp) 3-542
master_directories (mdirs) 3-556
MAX . . v i e 3-558
mbx_create (mber) e e 3-558
011 0.0 Lo O 3-559
MENU_CTEALE v v it e e et e e e e e e e e e e e e e e 3-563
menu_delete L. e e e e e e e e e e e e 3-565
menu_describe L. L L e e e e e e 3-566
menu_display e e e e e e e e e 3-567
menu_get_choice 3-567
MeNu_liST o vt e e e e e e e e e e e e e e e e e 3-570
merge_ascii (ma) e e 3-570
message_status (mSgst) e e 3-574
micro_transfer (Mt) i it e e 3-575
1.1 1 o O 3-578
MINUS ot e 3-579
11111 117 3-579
mOd . .. e e e e e e e e e e e e e e e e e e e 3-580
MONitOT_qQUOLA vt et e e e e e e e e e e e 3-581
month e e e e e e e e e e e e e 3-582
moNth_Name i it e e e e e e e e e e e e e 3-583
move (MV) e e e e e e e 3-584
move_abs_request (Mar) it 3-585
move_daemon_request {mdr), 3-587
move dir (mvd) e e 3-590
MOVE_MAMES .+ v v v v & v v o v e v et m e o ot oot e e e e u e 3-592
move_output_request (mor) 3-592
move_quota (mq@)t 3-594
mtape_delete_defaults 3-596
mtape_get_defaults 3-597
mtape set_defaults e 3-598
1113 3-596
nequal L e 3-597
network_request (RT)t e 3-597
DEW_PTOC . & o v v v e v e e et e e e e e e e e et 3-601
T (< 11 3-605
DIESS . o v e e e e e e e e e e e e e e e e e e e 3-605
no_save_on_disconnect et e e e e e e e 3-606

viii AG92-06B

12/87

nonbranches ¢ i i i it e e e e e e e e e e e 3-606

nondirectories (nondirs) 3-607
nonfiles e e e 3-608
1700 01+ 1« 3-609
nonmaster_directories (nmdirs)ttt e et 3-610
nONMSES e e e e e e e e e e e 3-611
nonnull_links (nnlinks) o o it e e e 3-612
nonobject_files (nobfiles) 3-613
nonobject_msfs (nobmsfs) 3-614
nonobject_segments (nobsegs) 3-616
nonsegments (NONSEES) . . « « v v v v v v v b e e e e et e e 3-616.1
nonzero_files (nzfiles) 3-616.2
nonzero_msfs (nzmsfs) i i e 3-616.3
nonzero_segments (NZSEES) v+ v v it e v i 3-616.4
17 A 3-616.5
nothing (nt) 3-616.5
null_links (nlinks) 3-616.6
object_files (obfiles) e 3-616.7
object_msfs (obmsfs) 3-616.8
object_segments (0SEES) v i it i e e e e 3-616.9
octal (OCt) i e e e 3-616.10
o) 3-616.11
< (e 3-618
overlay (OV) e e 3-619
page_trace (PEL) e e e 3-620
pascal (Pas) e e e e e e e e e e e e 3-622
pascal_area_SIAtUSt it e i e e e e e e e e e e e 3-626
PasCal_CTEALE_ATEA . . . « v v v v v v v e et e e e 3-628
pascal_cross_reference (pascal_cref) 3-629
pascai_delete_area i e e e 3-630
pascal_display e e e 3-631
pascal_file_status it e e e e . 3-632.3
pascal_indent e, 3-632.3
PasCal_TESEL_BTEA . . - - & « v v v et e e e e e e e e e e e e 3-632.5
pascal_Set_Prompt v i it e e e e e e e e e e e . 3-632.5
PAER « v o e e e e e e e e 3-632.6
peruse_crossref (peref) 3-634
picture (PiC) e e e 3-636
) 1 3-637
pll_abs (pa) e e 3-644
Pll_macro (Pmac) i i it i i e e e 3-645
PIUS . . . e e e e e e e e e e e e e e 3-651
PHAL BT o o v v e e e e e e e e e 3-652
print_attach_table (pat) 3-656
print_auth_names (pan), 3-657
print_bind_map (pbm) 3-658
print_configuration_deck (ped) 3-659
print_default_wdir (pdwd) 3-661
print_error_message (Pem) i ittt e e 3-662
print_link_info (pli) 3~663
print_linkage_usage (plu) 3-665
print_mail (prm) e e 3-665
print_messages (PM) e e e e e e e e 3-670

ix AG92-06B

12/87

print_motd (pmotd) e 3-673

print_proc_auth {ppa) 3-673.1
print_relocation_info (pri) 3-674
print_request_types (PTt) 3-674.1
print_sample_refs e 3-675
print_search_paths (psp)\ i 3-677
print_search_rules (pst) 3-678
print_terminal_types (ptt) 3-678
print_time_defaults (ptd) 3-678
print_ttt_path 3-680
print_wdir (pwd) 3-680
probe (Pb) e e 3-680
process_dir (pd) e 3-707
process_switch_off (pswf) 3-707
process_switch_on (pswn) 3-708
profile (pf) e e 3-708
program_interrupt (pi) 3-714
Progress (PE) . - .t i i i e e e e e e e e e e e e e e e 3-715
gedx (GX) . . . v i e e e e e 3-717
o 1815 3-728
QUOLIENT o i e e e e e e e e e e e e e e e e e e e 3-730
TANK . . ot f e 3-731
read_mail (rdm) e 3-731
read_tape_and_query (rtq) i i it i 3-741
ready (rdy) e e o 3749
ready_off (rdf) e 3-749
ready_on {rdn) e e e e e e e 3-750
rebuild_dir e e e e e e e e 3-750
reconnect_ec_disable, 3-751
reconnect_ec_enable e.... 3-751
reductions (rdc) e e e e 3-752
release (T1) e e e e e 3-790
release_tesource (rlr) 3-790
rename (TN) i i i e e e e e e e e 3-791
reorder_archive (ra) i it e e 3-792
repeat_line (rpl) e 3-793
repeat_query (rqQ) e e e e 3-794
reprint_error (Te) e e e e 3-79%
TESeIVe_Tesource (IST) . . v v v v v i e e e i e e e e e e e e 3-79%
reset_external_variables (rev) 3-798
reset_ips_mask e e e e e e e 3-798
resolve_linkage error (rle), 3-799
resource_status (rst) 3-800
resource_usage (TU) i i i i i i e e e e 3-802
TESPOMSE & v v e e v e 3-803
Teverse (TV) i i e e e e e e e e 3-806
reverse_after {rvaf) e e 3-807
reverse_before (rvbe) 3-808
reverse_decat (rvdecat) e e e e e e e e 3-809
reverse_index (rvindex) 3-810
reverse_search (rvsth) i it i i 3-811
reverse_substr (rvsubstr) i it .. 3-812
reverse_verify (rvverify) 3-812.1
revert_ ontput (ro) 3813

X AGY92-06B

583 ¢ o P 3-814

1.1+ 3-814
run_cobol (T€) e e e e 3-819
runoff (f) o e e e e e e e e e e e e 3-822
runoff_abs (rfa) e e e e 3-842
sample_refs L e e e e 3-844
save_dir_info e e e e e e e e e e 3-845
save_hiStOry_TegiSterS & . v v v i e e e e e e e e e e e 3-846
save_on_disconnecto ... e e e e e e 3-847
search (STh) e e e e e e e 3-847
SEEMENLS (SEES) - « v v v v e v e e e e e e e e e e e e e 3-848
select e e e e e e e e e e e e e e e 3-849
send_mail (sdm} 3-851
send_message (SM) v v i it e e e 3-861
Set_aCl (S8) i e e e e e e e e e e e e e e e e 3-864.1
set_bit_count {Sbc) e e e 3-867
<2 A O 3-868
set_dir_ring_brackets (sdrb) 3-869
set_epilogue_commando 3-870
set_fortran_common (sfc) 3-871
set_jacl_dir (sid) 3-872
set_dacl_seg (SiS) e e 3-873
sel_ips_mask e e e e e e e e e e 3-875
set_mailing_address (smla), 3-875
set_max_length sml) 3-876
set_mdir_account (smda) 3-877
set_mdir_owner (smdo), 3-877
set_mdir_quota (Smdq) i e e 3-878
SEL_TesoUrce (SELr) . . . v v v v i i e e e e e e e e e e e e e e e 3-879
set_ring_brackets (stb) 3-881
set_search_paths (SSp)« ¢ v v it it e 3-882
set_search_tules (SST) v v i i i e e e 3-883
set_severity_indicator (ssi) 3-884
SCL_SYSIEM_SIOTAZE . » v+ v v v v v e et e e e e e e e e e e e e 3-884
set_time_default (Std) v i i i i e e 3-885
set_ttt_path e e e e e e e e e e e e e e e 3-887
Sel_tty (STLY) L L L e e e e e e e e 3-887
SEL_USET_SIOTALE . . .« . v v v e e e e e e e e e e e e e e e e e 3-896
set_volume_quota (SVQ) . . . v v v i i i e e e e e e 3-898
SEVETILY v v i e 3-899
shortest_path i i i i e e e e e e 3-900
SIgNAl . . L. e e e e e e e e e e e e 3-901
SOTL_SEE (SS) . v v v it e e e e e e e e e e e e e e e 3-903
SOTt_Srings (SSIT) . . . v v v i it i e e e e e 3-912
175 A (-3 o 3-919
Status (SU) e e e e e e e e 3-919
stop_cobol_run (SCI) it e e e e e 3-926
3 7 o J05 1) o K 3-927
1 |17 3-928
1A 3« 3-928
strip_component (SPC) i it e e e 3-930
SIip_entry (SPE) . . . v o i it e e e e e e e e 3-931
substitute_arguments (sbag) 3-932
SUDSIT & e 3-935

12/87 xi AG92-06B

12787

311 . 3-935
syn_output (SO) e 3-940
L3 177 1+ 3-940
SYSIEIM_LYPE . . o i i e e e e e e e e e e e e e e e e e e 3-940.3
tape_archive (ta), 3-940.4
TBPE_IN « o v v o et e e e e e 3-951
@PE_OUL L e e e e e e e e e e e e e e 3-965
=7+ o 3-971
(15774 = 5 () 3-1006
1eCO_SSA i e e e e e e e e e e e e e e e e e e e 3-1007
terminal_output (to) e 3-1007
terminate (LM o e e e e e e e e e e e e 3-1008
terminate_refname (tmr) 3-1009
terminate_segno (tms) ittt 3-1010
terminate_single_refname (tmsr) 3-1011
test_archive e e e e e e e 3-1012
5.2 7 3-1012
UMES e e e e e e e e e e e e e e e e 3-1012.1
total_output_requests (tor) 3-1013
5 o 3-1014
trace_meters (IMU) v v v vt e e e e e e e 3-1024
trace_stack (IS) e 3-1026
transaction (IXN) it e e e e e e e e e 3-1027
translate e e e e e e e e e e 3-1037
ITUNC . . o ot i i e 3-1038
truncate (IC) e e e e e e e 3-1039
morial . . oL L e e e e e e e e e e 3-1040
unassign_rtesource (Ur) e 3-1040
underline L e e e e e e e e e e e e e e e 3-1041
UNIQUE L e 3-1042
unlink (Ul) e 3-1043
upper_case (UPPErcase) v v v v vt it e 3-1044
115 3-1045
validate_info_seg (vis) 3-1049
validate_pictured_data (vpd) 3-1051
value_defined (vdf) 3-1050
value_delete (v@D) e e 3-1052
value_get (V8) e 3-1054
value_list (VIS) e e e 3-1057
value_path (vp) 3-1060
value_set (VS) e e e e e e e 3-1060
value_set_path (vsp) 3-1064
VeIl Y . . . e e e e e e e e e e e e 3-1065
vfile_adjust (vfa) 3-1065
vfile_find_bad_nodes 3-1067
viile_status (VS) e 3-1072
walk_subtree {ws) 31074
wWatCh e e e e e e e e e e e e 3-1076
where (Wh) e 3-1078
where_doc (Wdoc) i 3-1030
where_search_paths (wsp) 3-1080.2
k71T 2 3-1082
window_call (wdc) 3-1084
working dir (wd) 3-1094
xii AG92-06B

12/87

Section 4

Index

5 5 3-1094

zero_segments (Zsegs)t i e e 3-1095
Access to the System Lt e e e e e e e e 4-1
access_class (aCC) i i i 4-2
dial (@) e 4-2
eChO e e e e e e e 4-3
enter (€) P 4-4
enterp (€P) . . . i e e e e e e e e 4—4
hangup e e e e e 4-6
hello e e e e e e e 4-6
help (HELP) i ittt e et e e e e e e e e e e 4~7
login (D o e e e 4-7
Jogout e e e e e e e e e e e e e e e e e 4-15
MAP . . e e e e e e e e e e e e e e e e e e 4-16
MOBES . & v v ittt e 4-17
NOEChO e e e e e e e e e e e 4-17
slave e e e e e e e e e e 4-18
terminal_id (tid) 4-19
terminal_type (ftp) 4-19
xiii AG92-06B

'SECTION 1
MANUAL USE AND TERM DEFINITION

This section deals with the proper use of this manual, a description of the format
used, and a general definition of terms.

You are encouraged to take advantage of the information available in the manual’s
detailed index and table of contents. The index alphabetically lists programs by name
and subject. Cross-references among command descriptions assist in locating programs
applicable to a given task.

DESCRIPTION OF MANUAL FORMAT

Section 2 contains a breakdown by function of the programs described in this manual.
Section 3 contains an alphabetized listing of the standard Multics system commands
and active functions. Section 4 contains descriptions of the preaccess and access
requests that are used to gain access to the Multics system.

Each command description provides, minimally, the long (and short) name, syntax line,
and function of the program. Standard headings, in the order in which they appear,
when present, are as follows:

SYNTAX AS A COMMAND

SYNTAX AS AN ACTIVE FUNCTION
FUNCTION

ARGUMENTS

CONTROL ARGUMENTS

ACCESS REQUIRED

NOTES

EXAMPLES

Syntax lines give the order of required and optional arguments accepted by a
command or active function. Optional portions in the syntax line are enclosed in
braces ({3). The syntax for active functions is always enclosed in brackets ([]), which
are required for active function use. To indicate that a command accepts more than
one of a specific argument, an "s" is added to the argument name (e.g., {paths},
~control_args).

Keep in mind the difference between a plural argument name that is enclosed in

hennae {Antianmal)l acmd ~e. P P PSPy |

braces {optional) and one that is not (u:quuv‘d)f il it is enciosed in braces, you need
not give any argument of that type; if it is not, you must supply at least one
argument of that type. Thus you could write "paths” in a usage line as:

pathl {path2...pathN}

The convention of using "paths” rather than using the above is merely to save space.

1-1 AG92-06

Different arguments that you must give in pairs are numbered:

xxx1 yyyl {...xxxN yyyN}

To indicate that you must provide the same generic argument in pairs, the arguments
are given letters and numbers:

argl arg2 {...argIN arg2N}

Some of the standard arguments accepted by commands and active functions are:

STR
any character string.

N
any character string that represents a number, either decimal or binary. Examples
are integers (5, 1024, or 101b), real numbers (1.37 or -10.01b), and floating—point
numbers (1.3e+4 or 1010.001e+5b).

DT or time_string
a date-time character string. Examples are "4/25/84 noon est Sun", "November
7", "7:30 pm 10 June 19857, and "midnight". (See "Date/Time Values" below for
a description of valid time strings.)

star_name
any pathname or User_id conforming to the star convention, described under "Star
Names" in the Programmer’s Reference Manual.

virtual_pointer
A virtuali pointer is a characier siring representation of a pointer value. It
consists of a segment identifier (pathname, reference name, or segment number)
and an optional octal offset into the segment. In the table that follows, W is an
octal word offset from the beginning of the segment; it can have a value from 0
to 777777 inclusive. B is a decimal bit offset within the word; it can have a
value from 0 to 35 inclusive. The possible forms are:

path | W(B)
| points to the octal word W, decimal bit B, of the segment or multisegment
| file (MSF) identified by absolute or relative pathname path. If the path you
| give identifies a MSF, the offset given is in component 0 of the MSF.

path |W
same as path|W(0).

path|
same as path|0(0).

path
same as path|0(0).

path | entry_pt

| points to the word identified by entry point entry_pt in the object file
| (segment or MSF) identified by path.

11/86 B 1-2 AG92-06A

dir>entry$entry_pt
points to the word identified by entry point entry_pt in the object file |
identified by pathname dir>entry.

<dir>entry$entry_pt
points to the word identified by entry point entry_pt in the object file |
identified by pathname <dir>entry.

<entry$entry_pt
points to the word identified by entry point entry_pt in the object file |
identified by pathname <entry.

ref_nameSentry_pt
points to the word identified by entry point entry_pt in the file whose |
reference name is ref_name.

ref_name$W(B) .
points to the octal word W, decimal bit B, of the segment or MSF whose
reference name is ref_name. If ref_name is a reference name on an MSF
(i.e., on component 0 of the MSF), the word and bit offsets are applied
within component 0.

ref_name§W
same as ref_name$W(0).

ref_name$
same as ref_name$0(0).

segno | W(B)
points to the octal word W, decimal bit B, of the segment whose octal
segment number is segno.

segno | W
same as segno | W(0).

segno |
same as segno | 0(0).

segno
same as segno|0(0).

segno | entry_pt :
points to the word identified by entry point entry_pt in the segment whose
octal segment number is segno. If segno identifies component 0 of an object |
MSF, the pointer returned may not point within the segment identified, since
the target of a definition in component 0 of an object MSF will be in
another component of the object MSF. |

A virtual pointer that does not contain § or | is interpreted as a pathname
if it contains > or <, as a reference name otherwise.

A null pointer is represented by the virtual pointer 77777|1, -1|1, or -1. |

11/86 1-3 AG92-06A

virtual_entry
is a character string representation of an entry value. It consists of a segment
identifier and an optional offset into the segment. In the table that follows, W is
an octal word offset from the beginning of the segment; it can have a value

from 0 to 777777 inclusive. The possible forms are:

path | W
| entry at octal word W of segment or multisegment file (MSF) identified by
| absolute or relative pathname path. If the path you give identifies a MSF,
| the offset given is in component 0 of the MSF.

path |
same as path|0.

path |entry_pt
| entry at word identified by entry point entry_pt in the object file (segment
| or MSF) identified by path.

dir>entry$entry_pt
| entry at word identified by entry point entry_pt in the object file identified
by pathname dir>entry.

<dir>entry$entry_pt
entry at word identified by entry point entry_pt in the object file identified
by pathname <dir>entry.

<entry$entry_pt
| entry at word identified by entry point entry_pt in object file identified by
pathname <entry.

path
same as path| [entry path].

ref_nameSentry_pt
entry at word identified by entry point entry_pt in segment found via search
rules whose reference name is ref_name.

ref_name$W
| entry at octal word W of the segment or MSF found via search rules whose
reference name is ref_name. If ref_name is a reference name on an MSF
(i.e., on component 0 of the MSF), the word and bit offsets are applied
within component 0.

ref_name$
same as ref_name$0.

ref_name
same as ref_name$ref_name, but like path if it contains > or < characters.

A virtuai entry that does not confain § or | is interpreied as a pathname if it
contains > or <, as a reference name otherwise.

| A null pointer is represented by the virtual pointer 77777|1, -1|1, or -1

11/86 1-4 AG92-06A

Use of a pathname in a virtual entry initiates the referenced segment with a
reference name equal to its final entryname. Name duplication errors occurring
during the initiation are resolved by terminating the previously known name.

Arguments, when present, are listed with a brief description and the default value, if
any. To indicate one of a group of the same arguments, an "i" is added to the
argument name (e.g., pathi, User_idi).

The list of control argumenis give the possible values for —control_args in the syntax
line. The long name and the short one (if any) are given. For simplicity, common
control argument values are indicated as follows:

STR
any character string; individual command descriptions indicate any restrictions (e.g.,
must not exceed 136 characters).

11/86 1-4.1 AG92-06A

This page intentionally left blank.

11/86 AG92-06A

N
any number; individual command descriptions indicate whether N is octal or
decimal and any other restrictions (e.g., cannot be greater than 4).

DT
a date-time character string (see "Date/Time Values" below). |

ID
a numerical request identifier as described in the Programmer’s Reference Manual.

path
the pathname of an entry; unless otherwise indicated, it may be either a relative
or an absolute pathname.

The lines below are samples of control arguments that take values:

-access_name STR, -an STR
-ring N, -rg N

-date DT, -dt DT
-pathname path, -pn path

The "Notes" section is used to provide additional information and cross—reference with
other manuals.

Examples, while not extensive, try to provide additional help and insight on the proper
use and formatting of commands and active functions. Examples showing lines that
you type are preceded by an exclamation mark (!). Examples of command use show
the response you can expect to see on the terminal. Examples of active function use
show the return value substituted by the command processor for the active string.

GENERAL DEFINITION OF A COMMAND

A command performs some action for you, such as displaying information on your
terminal, formatting a report, or compiling a program. Each command has a specific
purpose. The default action performed by a command is generally the most common
use of the command. Many commands have optional arguments that refine the actions
that are performed. You can invoke commands at the beginning of a command line at
command level and can put multiple commands on a single line, with a semicolon (;)
as a delimiter between each one.

GENERAL DEFINITION OF AN ACTIVE FUNCTION

An active function is most frequently used to shorten the amount of typing required
to invoke a command. You invoke an active function inside an active string
(surrounded by brackets []), which is replaced by a character string return value
before the command line containing it is executed. Active functions are often used
together with the exec_com, abbrev, and do commands to implement command

language macros.

When you give multiple commands on a line, active functions in each are expanded
before execution. This means that the first command is executed before active
functions in the second command invocation are expanded. Therefore the execution of
a command may affect the values of active functions that appear later in the line.

1-5 AG92-06

EXAMPLES OF COMMAND VS ACTIVE FUNCTION USE

You can invoke many programs as either a command or active function. The format
of the active function return string is slightly different from the command’s printed
output. In these examples, and all interactive examples throughout this manual, lines
you type are preceded with an exclamation point (1).

! status reportl -nm

names: report_first_quarter.runoff
reportl.runoff
reportl

versus the corresponding status active function:

! string [status reportl -nm]
report_first_quarter.runoff reportl.runoff reportl

ERRORS

Commands report errors by signaling command_error and printing a message. Messages
that do not begin with "Warning:" usually terminate execution of the command, though
later commands on the same line are subsequently executed.

Active functions report errors by signaling active_function_error. The default action is
to print a message and return to command level. Respond by typing:

! release
to abort the command line, and then issue, the corrected line.

The command_error and active_function_error conditions are further described in the
Programmer’s Reference Manual.

STORAGE SYSTEM ENTRY TYPES
The basic elements within the Multics storage system are segments and directories.
Multics supports additional entry types that are maintained for convenience or to aid

programmers who require a storage medium with special qualities or attributes. The
various entry types are described below.

Segment

The segment is the unit of storage of the Multics System that is analogous to a file
on other systems. A segment is a collection of instructions or data you specify.

Directory

A directory is a catalog of subordinate entries.

1-6 AG92-06

Link

A link entry is a reference to an entry in another directory. You make the reference
by giving the pathname of the target entry.

Muitisegment File

Very large data bases may exceed the size of a single segment. In such cases Multics
treats this data base as a group of segments in a single multisegment file. The
segments are grouped under a common directory whose multisegment file indicator is
set. The directory and its contents are called a multisegment file (MSF).

Any directory whose multisegment file indicator is not 0 is an MSF. For an MSF this
indicator is a count of the number of segments it contains. Not all of the attributes
listed above are applicable to MSFs. Some of the attributes are the same for any
entry; however, due to the nature of an MSF when viewed as a file, many of the
attributes are implemented differently. For example, the bit count of an MSF is the
sum of the bit counts of the segments it contains. The access control list for an MSF
directory applies to all of the segments it contains. You can use the safety switch
attribute; however if you set it for one of the segments in the MSF, you should set
it for all of them. For more information on these and other attributes of MSFs, see
the msf_manager_ subroutine.

Most standard system programs that work on segments also work on MSFs; however
.some commands and subroutines give unpredictable results when used on MSFs. You
should consult the individual command or subroutine description before invoking it on
an MSF.

Data Management File

A data management (DM) file is composed of a set of pages known as control
intervals, numbered from 0 through N and addressable only through software calls to
the file manager. Data is accessed by specifying a control interval number, byte
offset, and length.

You can implement DM files with concurrency control and recovery support. At
present the ability to use data management files is available only to programs accessing
files through the Multics Relational Data Store (MRDS) facility.

Extended Entry Types

The Multics storage system supports special-case entry types called extended entry
types. They are so called because the Multics storage system has been enhanced
(extended) to treat these storage elements as segments (even though they are structured
differently from segments). The following system-supplied storage system elements have
been implemented as extended entries: mailboxes, forum meetings, message segments,
before journals, and the person name table. Most file system commands (e.g., copy,
set_acl, etc.) will operate on extended entries. Each extended entry is identified by a
suffix appended to the entry name, as described below:

1-7 AG92-06

NAME SUFFIX

mai lbox .mbx
forum meeting forum
message segment .ms
before journal .bj
person name table .pnt

DATE/TIME VALUES

Multics use of date/time values is described in the following subsections. Multics
accepts dates from the year 0001 through 9999. The Julian calendar is used for dates
from 0001-01-01 through 1582-10-04. The Gregorian calendar is used for dates from
1582-01-15 through 9999-12-31. (The dates from October 5, 1582 through October 14,
1582 do not exist; they were dropped when the Gregorian calendar was adopted.) The
leap day is always February 29. The lower limit on dates of January 1, 0001 A.D.,
was picked since it begins the era; the upper limit of December 31, 9999, was chosen
to limit year numbers to four digits. The time zones as now defined are used
regardless of the year. The Multics date/time software does not account for "leap
seconds”, and, therefore, the difference between any two binary clock values that are
precisely an integral number of days (hours, minutes, seconds, etc.) apart is guaranteed
to be evenly divisible by the number of microseconds in a day (hour, minute,
second,etc.).

Date/Time Input Values

Often you must supply date and time information to a command. Programs that
accept date and time information use the convert_date_to_binary_ subroutine (see the
Subroutines manual) to convert a time string to an internal (binary) value.

TIME STRINGS (DT VALUES)

The time string can have up to six parts: adverbial offset, date, time, day of week,
signed offset, and time zone. Adverbial offsets, if present, must appear leftmost in
the string. Beyond that, all the parts are optional and can be in any order. The parts
can be made up of alphabetic fields, numeric fields, and special characters.

An alphabetic field is made up of letters and must contain a whole word or an
abbreviation (often made up of the first three letters of the word). No distinction is
made between uppercase and lowercase characters. Although this description gives
examples in English, each of the words is available in several languages. You can use
any of these languages in time strings, but all words within a given string must be in
the same language. To see the languages defined on your site, type

display_time_infc -lang

A numeric field consists of an optionally signed integer of one or more decimal digits.
The special characters that you can use in either alphabetic or numeric fields are: the
slash (/), the period (.), the colon (:), the plus (+), the minus (-), and the comma (,).
Blanks are not required beiween aiphabetic and numeric fields in the time sirings;
however they are required between two numeric fields unless the second field begins

1-8 AG92-06

with a plus or minus sign. For example,

2dayshhours10minutes
1245.17+7hours
10/17/79%ednesday

Unless otherwise indicated in the command description, supply the input time string as
a single argument. This means that you must enclose within quotations time strings
that contain spaces. Alternatively you can use underscores instead of blanks in the
time string. For example,

09/25/79__14k2.6_+5_hours

Usually when you enter a time string, the time zone is omitted. Although the time
zone is seldom seen, it is very important: it determines the interpretation of items
given in the time string; it is also involved in defaults supplied for missing items. All
defaults are taken from the current absolute time, adjusted by a working time zone.
If you give a zone in the string, that becomes the working zone; otherwise the process
default time zone is used.

This means that whether you convert a string with an explicit zone, such as
"XXXX_ast", or set the process default to "ast" and then convert the string "XXXX",
vou get the same absolute time. (Note that setting the process default also influences
output conversion, while giving an explicit zone does not) To display your default
zone, type

print_time_defaults zone

The six parts of the time string are described below. In these descriptions whenever
an assumed value is mentioned, it refers to the current date/time adjusted to the
working zone.

1. date
is the day of the year; you can specify only one date. You can supply a date
using normal date format, calendar date format, day of the week, date keywords,
fiscal week, request—id, or you can omit it entirely. If no date is present, it is
assumed to be the next occurrence of the time specified; for instance, "10A" gives
the date on which 10:00am next occurs. If you give no date and time, the
current date is used.

In normal date format, you can specify dates as month (or month abbreviation),
day of month, and year, or as day of month, month, and year. The year is
optional and, if omitted, is assumed to be the year in which the date occurs next;
that is, if today is March 16, 1985, then March 20 is equivalent to March 20,
1985; while March 12 is the same as March 12, 1986. There are three forms of
normal date:

16 March 16 March 1985
March 16 March 16 1985 March 16, 1985 (The comma is optional)
3/16 3/16/85 3/16/1985

The calendar date format allows you to supply dates as a year, month, and day
of month, separated by minus signs. This is the International Standards
Organization (ISO) standard format. The year is required, and you can give it as
a year of the century. For example,

1-9 AG92-06

85-12-31 or 1985-12-31
represents December 31, 1985.

The day of the week is a date specifier if present with no other form of date.
It then selects the first occurrence of the named day after today.

The date keywords are "yesterday", "today", and "tomorrow"; for instance,

6:35A today
yesterday +120days
The fiscal weck is of the form FWyyyyww. FW is .the fiscal indicator (in

English), yyyy is the year number, and ww is the week number. The fiscal week
begins on Monday and ends on Sunday. This form converts to the date of
Monday, but you can select a day within the week by adding a day name; for
example, "FW198413 m" gives "03/26/84 0000. Mon", while "FW198413 m Wed"
gives "03/28/84 0000. Wed". You can separate the fiscal indicator from the
number, but the ordering must remain, i.e., "FW185425" or "FW 185425", but not
"185425 FW™.

A rtequest-id is a 19-character string used by several programs in the system, such
as list_output_request. It contains a complete date from year, in century, down
through microseconds in this form

yymmddHHMMSS . SSSSSS

If you provide no zone, it is interpreted in GMT, not the process default. A
requesi—id specifies a time as well as a daie, so you can give no other time
specification.

day of week

is a day of the week (e.g., Monday) and can be present only once. When the
day of the week is present along with one of the other forms of date
specification, that date must fall on the indicated day of the week. You can
optionally follow it by a comma.

time

is the time of day and can only be present once. If omitted, it is assumed to be
the current time. You can give time as 24-hour format, 12-hour format, or the
time keyword "now". The 24-hour time format consists of a four—digit number
followed by a period: hhmm., where hh represents hours and mm is minutes.
You can follow this number by an optional decimal fraction-of-a-minute field
(e.g., hhmm.m). Also acceptable are hours and minutes fields separated by colons
(hh:mm). You can optionally follow this by either a fraction-of-a—minute field
(hh:mm.m) or a seconds field (hh:mm:ss). The seconds, in turn, can include a
fraction-of-second field (e.g., hh:mm:ss.s). Examples of 24-hour time are:

1545
1545.715
15: 45
15:45.715
15:45:42
15:45:42.08

1-10 AG92-06

You must end the 12-hour time format with a meridiem designator (i.e., A, P,
am, pm, noon (n), midnight (m). You can indicate midnight and noon by giving
just the meridiem designator. You can precede the designator by time expressed as
hours, hours:minutes, or hours:minutes:seconds (inciuding an optional fraction of a
second or fraction of a minute). Examples of 12-hour time are:

midnight

5 am

SsL5A
3:59:59.000001pm
11:07:30.5pm

12 n

There is a set of illegal times—-24:00-24:59--which are handled anyway. These are
taken to mean 00:00-00:59 of the following day; midnight (00:00) is the beginning
of a day, not the end.

signed offset
is an adjustment to be made to the clock value specified by the other fields.
You can supply offsets in any the following units:

year years yr
month months mo
week weeks wk
day days da
hour hours hr
minute minutes - min
second seconds sec

microsecond microseconds usec

Each unit can be present one or more times, each preceded by an optionally

signed fixed point number. If offset fields are the only thing present, the offsets
are added to the default values of date and time, as described above.

If the month offset results in a nonexistent date (e.g., "Jan 31 3 months" would
yield April 31), the last date of the resulting month is used (ie., April 30).
Examples of offset fields are:

3 weeks =60 hours (60 hours before 3 weeks after now)

1

1

w
.5 hr 5min {(an hour and 35 minutes from now)
hour 5 minutes (an hour and five minutes from now)

The order in which offset values are applied to the clock value can affect the
resultant clock value. Offset values are applied in the following order:

year, month, week, day, hour, minute, second, microsecond

"Monday 6 am 2 weeks" means "two weeks after the next occurrence of Monday,
at 6:00 am on that day".

Assuming that today is September 25, 1985, then

10/1 -1 day +1 month

1-11 AG92-06

results in a clock value for 10/31/85, rather than for 10/30/85.

Note: There is also a nonoffset use of these words, available in combination
with the word "this". Some of these combinations can be used -in
building date and time parts. For example, "this_month_1,_this_year”™ or
"this_hour:23" is valid, while just "this_day" is not. The exact form of
this combination varies according to the language used. In some languages
the word for "this" changes according to the gender of the unit it is
applied to; in others there may be a single word that does the job. To
list the word used as "this" for each unit, type

display_time_info -offset -language LANGUAGE_NAME

Lh

adverbial offset
is a before/after kind of adjustment that you can use any number of times. You
can recognize it by the presence of "before", "on", or "after" in the time string.
If present, it must appear first. These are the forms available:

DAY-NAME before
DAY-NAME on or before
DAY-NAME before or on
DAY-NAME after
DAY-NAME on or after
DAY-NAME after or on
SIGNED-OFFSETs before
SIGNED-OFFSETs after

When adverbial offsets are present, they partition a time string into a series of
adjustments followed by a base time. These sections are processed from right to
ieft. The example below has 3 sections: first '"6:00 am 400sec” is handled,
supplying all necessary defaults and making the ordinary (400sec) offset adjustment;
then "Monday after” is applied to give a new value; finally "2 wk -5min after” is
applied to this new value to give the final value.

2 wk -5min after Monday after 6:00 am 400sec
20 minutes before now

2 days after today

2500 weeks after 1776-7-4

Tue after Mon on or after 11/1

The last item describes election day in the USA: the first Tuesday after the first
Monday in November.

6. zone '

is the time zone to be used in making the conversion to Greenwich mean time,
which is the internal form of all clock readings. It can be either a zone
differential or any of the zone abbreviations known at your site. A zone
differential is a five—character string, "sHHMM" (s is a sign, HH is a two-digit
hour, and MM is a two-digit minute). You can use this only immediately
following a time specification: "12:15-0330" says that 12:15 is the local time, and
-0330 specifies that the local time was generated by subtracting 3.5 hours from
GMT. To list the zone abbreviations known at your site, type

display_time_info -zones

1-12 AG92-06

If any defaults are needed, the current instant is broken down into years, months,
days, and so forth with respect to a "working zone". This working zone can
make much difference because, for example, at a given instant it can be Tuesday
in New York and Wednesday in Bankok, or it can be 22:07 in London and 3:37
in Singapore. Thus the zone is as important in applying defaults to week days
and years as it is to hours and minutes.

Many of the date/time commands allow you to supply a "-zone X" argument. In
this case, X can be any of the zones known at you site; it can’t be a time
differential.

Date/Time Output Values

One way to get a clock value into a readable form is by using the date/time
commands (calendar_clock, day, etc). The first argument to the clock command is a
control string describing. the format wanted. All other date/time commands have
intrinsic formats. These commands convert a readable time string to an internal value
and then convert this internal clock reading to the specified output time format.

An input time string is converted to internal form by convert_date_to_binary_. This is
the usual form for storing dates in data bases. To convert an internal clock reading
into a readable form, you can call date_time_ to get a 24-character form like this:

03/14/79 0000.0 cet Fri

But when other formats are needed, date_time $format is available. It takes a clock
value and a control string describing the format wanted and returns a string ready for
printing.

An effort has been made to make all date/time outputs from the system software
usabie as daie/time inpuis 1o sysitem sofiware, bui the time formai mechanism is so
flexible that you can easily use it to generate formats that are not recognizable. Also
some strings are apparently recognized, even though they are ambiguous. For instance,
"7/1/82" means the 7th month, first day in the United States, but in many European
countries would mean the 7th day of the first month. Multics follows the American

interpretation.

TIME FORMAT

The control string for the date_time_$format subroutine, clock command, and other
commands that expect a time_ format argument is either a keyword or a character
string consisting of text and/or selectors. The selectors are always identified by a
leading circumflex character (). There are two types of selectors: “A<keyword>, which
allows a keyword to be embedded within a format, and the general form AXX. XX is
a two-letter code that specifies what information is wanted. You can place an optional
PL/1 picture specification between the A and XX if the default form is not adequate.
If the control string does not contain any circumflex characters, it must then be one
of the known set of keywords. Each keyword identifies a control string for a
predetermined format named by that keyword.

1-13 AG92-06

LIST OF FORMAT KEYWORDS

all
A9999yc-Amy—-Adm__AHd:AMH:A99.(6)9UMAzd_Aza_Ada
decAde UcAUc.

calendar_clock
A9999yc-Amy-~dm__ Hd:AMH:A99.(6)9UM_Aza_Ada.

clock
A9999yc~-Amy-~dm AHA:AMH:A99.(6)9UM Aza Ada.

date
is the process default value for daie.

date_time
is the process default value for date and time.

iso_date
A9999yc-Amy-~dm.

iso_date_time
A9999yc-*my—-~dm AHd:AMH:ASM Aza.

iso_long_date
A9999yc-Amy-Adm Ada.

iso_long_date_time
A9999yc-Amy-Adm AHA:AMH:A99.(6)9UM Aza,

iso_long_time
AHd:AMH:799.(6)9UM.

iso_time
AHd:AMH:ASM.

multics_date
Amy/Adm/ Aye.

multics_date_time
Amy/Adm/Aye AHAA99v.9MH Axxxxza’xxxda.

multics_time
AHd:AMH.

request_id

AMi

M6)9fw

Ama

dy*dy

AycAmyAdmAHAAMHA99.(6)9UM. The output from this keyword is specified in the
process default time zone; therefore if you want a valid request-id, specify -zone
GMT in commands or give GMT as the zone argument when calling date_ time_$format
with the request_id keyword (see "Request IDs" in Section 3 of the Programmer’s

Reference Manual).

system_date_time
is the system default value for date and time.

1-14

AG92-06

system_date
is the system default value for date.

system_time
is the system defauit value for time.

time
is the process default value for time.

Your site can change the "system" strings. For an application that depends upon the
historic formats the three builtin "multics”" strings are available.

Processing of a control string proceeds by scanning the control string until a
circumflex is found or the end of the string is reached. Any text (including any
blanks) passed over is copied to the output string. The selector is then interpreted and
executed. This causes a datum from the input clock value to be edited into the output
string. Processing continues in this way until the control string is exhausted.

You can express dates and times placed in the output string in units of years, months,
weeks, days, hours, minutes, seconds, and microseconds, and the total calendar value as
a single unit; for example, you could express the calendar value representing 79-09-08
9:42A GMT as 1979 years, as 722702 days, or as 722702.112499 days. This is the set
of "total” selectors:

~yc total number of years in the calendar value

“mc total number of months in the calendar value

“dc total number of days in the calendar value

“He total number of hours in the calendar value

“Mc total number of minutes in the calendar value

~Se total number of seconds in the calendar value

~Uc total number of microseconds in the calendar -value.

You can also express dates and times as the number of units remaining after a larger
unit has been removed from the calendar value; for example, 09/08/79 09:42 includes
units for the 9th month of the year, the 8th day of the month, the 9th hour of the
day, and the 42nd minute of the hour. The following are the most common:

“my month in the year

~“dm day of the month

“dw day of the week

“Hd hour of the day (2L-hour format)
“Hh hour in half day (12-hour format)
“MH minute of the hour

~“SM second of the minute

~Us microsecond of the second.

There are several items of date/time data that are nonnumeric, such as day of week,
day of month, and time zone used for conversion.

1-15 AG92-06

“mn month name

“ma month name, abbreviated (char (3))

“dn day name

~“da day name, abbreviated {char (3))

~zn time zone name

~za time zone name, abbreviated (char (4))
~2d zone differential (char(5))

“mi meridiem indicator (A or P)

~fi fiscal indicator (FW in English)

The selectors of numeric data are, in general, made up of two letters taken from this
sequence: ¢ ym wd H M S U. These letters stand for calendar, year, month, week,
day, hour, minute, second, and microsecond, respectively. All 81 combinations are not,
however, valid. The form can generally be read as "unit of unit", e.g., "seconds of
week". The first unit is always smaller than the second one. In trying to keep the
specifiers reasonably mnemonic (in English) there is a problem: both month and
minute begin with an "m". So all date values are used as lowercase letters while all
time values are in uppercase.

It is difficult to try to handle all the forms needed in a general manner. Hd is hour
of the day and is thus 24-hour time; this is not always what is wanted. Hh is chosen
as hour in half day to get the 12-hour form of time. To go along with this there is
"mi" for Meridiem Indicator, which gives A or P to make up AM or PM. This does
not give AM or PM because ANSI and ISO standards specify that time be given as
"3P", not "3PM". If you want the M, put the literal in, e.g., " miM".

Another way of looking at a calendar value is in terms of fiscal week. This is
selected with the "Afw" code. Its value is four digits of year followed by two digits
of week number, ie., yyvvww. The default picture has been chosen to give a vaiue of
yww. The associated fiscal indicator is selected by "Afi". A complete value is obtained
by specifying "Afirfw",

The table below shows the complete set of selectors. The row specifies what unit is
wanted, the column specifies within what other unit, e.g., ASy is seconds of year.

1-16 AG92-06

DATE/TIME SELECTORS

of of of of of of of of
calen-| year [month week day hour |minute|second
——————— dar
micro- +------ & N——— E S—- ¥ T Fm————— Fo————— & SR T +
second | "Uc | Uy | "Um | "Uw | "Ud | “UH | ~UM | “US |
e e s T e e T - +
second | "S¢ | “Sy | "Sm | °Sw | °Sd | "SH | ~SM |
e dmm———e o - e . S R +
minute | “Mc | "My | “Mm | “Mw | "Md | "MH |
R L dmmm e ¥ T S S +
hour | “Hc | “Hy | “Hm | “Hw | ~Hd |
Fommm e e e s R +
day | ~dc | ~dy | "dm | “dw | month day zone
- fmmm e domm e Tt + e oo T +
month | | *my | name | “mn | ~dn | “zn |
O T + e e e +
year | “yc | abbrev | "ma | ~da | "za |
oo + e S S — T +
| ~“Hh | <-hour of half day differential | ~zd |
+---m-- + (12-hour form) e e +
| "mi | <-meridiem indicator (A" or "P")
Fommmem +
| ~fw | <-fiscal week (form: yyyyww)
e +
| ~fi | <-fiscal indicator ("FW" in English)
$mmm——— +

You can control the formatting of date and time values by an optional PL/I picture
specification included in the selector; for instance, a code of AOQ099yc formats the
total years in the calendar value into a two-digit year of the 20th century and
A9999yc provides a full, four-digit year. The following is a brief description of the
most frequently used picture characters. For more details on PL/I pictures, see the
Multics PL/I Language Specification manual (AG94) and the Multics PL/I Reference
Manual (AMS83).

9 represents a mandatory decimal digit in the displayed value.

z represents a decimal digit in the displayed value. Nonsignificant zeros on the left
are replaced by a space when they occupy a "z" digit position.

produces a period in the displayed value. This has no relation to the location of
the decimal point in the value actually being displayed. If zero suppression is in
effect, this is replaced with a space.

, produces a comma in the dispiayed vaiue. Ii has all the characteristics of the
period.

v locates the value’s decimal point in the result. This determines how the value
digits are oriented with respect to the picture specification. If you supply no "v",
it is assumed to appear after the rightmost picture character.

1-17 AG92-06

The picture characters above are sufficient for displaying most numeric values. For
example, the control string A99HdA99.vOMH represents the time in hours, minutes, and
tenth of minutes; the control string #zz9.999vUS represents the number of milliseconds
of the second, using the decimal point and "v" to scale the microsecond unit. Scaling
can also be performed by a picture scale factor.

f(N) scales the value by multiplying or dividing by a power of 10, thus shifting
the location of the decimal point in the value. For example, f(2) shifts the
decimal two places left, effectively dividing the value by 100; f(-3) shifts
three places right, effectively multiplying by 1000.

Using a picture scale factor, you can display the milliseconds in excess of a second to
the nearest tenth using the control string Azz9.9f(3)US. You can display a value of
48634 microseconds as " 48.6" milliseconds.

There are two extensions to numeric picture handling that you can use in time format
selectors:

Z represents a decimal digit in the displayed value. Nonsignificant zeros to the left
of the decimal point are omitted when they occupy a "Z" digit position; to the
right of the decimal point they are omitted when they occupy a "Z" digit

position.

Z characters must appear as the leftmost or rightmost digit positions in the
picture specification since these are the positions that nonsignificant zeros can
occupy. Z performs a selective Itrim or rtrim (of zero) operation on the
displayed value. For example, vou can specify the millisecond specification given
above as AZZ9.9ZZUS without using a picture scale factor; with this specification
you can display 48630 microseconds as 48.63 milliseconds (without the leading
space or trailing zero).

O represents a decimal digit in the displayed value that should be omitted.
Specifying 799yc for a year like 1941 results in a size condition since it takes
four digits to handle that number. To get the year in century you can use
AOO099yc; this gives four digits into which the value is placed and then the first
two digits are discarded. A picture like OO0z9 with a value of 1502 gives 02
because the zero suppression applies to 1502, and then the first two digits are

dropped.

You can format character date/time values such as day of the week, month name, and
time zone using a character picture specification with the "x" picture character.

X
represents a position that can contain any character. Since national characters
occur in some of the time names, avoid use of the "a" picture character. Values
are left—justified in the picture specification, with truncation of the rightmost
characters if the value is longer than the picture or padding with spaces on the
right if the value is shorter than the picture.

For example, Axxxxxxxxdn displays Wednesday as "Wednesday" and Monday as
"Monday ". You can use a picture repetition factor to shorten the control string to
"A(Q)xdw". With A(5)xmn January is displayed as "Janua" and May is displayed as
"May ". (Note that in some languages the abbreviation of a time name is not the
first three letters of it.)

1-18 AG92-06

The selector picture specification allows an extension of the "x" picture specification.

X represents an optional character position in the displayed value. The character
position is omitted if there is no corresponding character in the value being
displayed.

X characters must appear as the rightmost character position in the picture
specification since this is the position that nonsignificant spaces can occupy. X
performs a selective rtrim operation on the displayed value.

The code A(9)Xdw displays Wednesday and Monday both without trailing spaces.

The table below shows the default picture specifications for all selectors. The row
specifies what unit is wanted, the column specifies within what other unit.

DEFAULT PIiCTURE VALUES

of of of of of of of of
calen-|year month [week day hour minute|second
dar
micro- +------ +o————- -il- ------ S Baleiabedady to-———— +---——- o to—m—— +
second |(18)29|(1&)29[(13)29](12)Z9|(11)29|(IO)Z9|(8)Z9 |(5)Z9 |
__ +
second |(12)Z9|(12)Z9|(8)29 |(6)29 l(5)29 |(h)Z9 | 99 |
------------------------------------ ot
minute |(10)Z9|(6)Z9 l(5)29 |(5)Z9 I(h)ZB | 99 |
———————————————————————————————————— +
hour |(3)Z9 I(h)19 |(3)19 |(3)Z9 | 99 |
—————————————————————————————— +
day |(7)29 I 999 | °9 | 9 | month day zone
------------ e s i & B e ST TR S
month { | 99 | name | (32)x | (32)X |(6L)X |
- " TR + S fommmme Fommmm- +
year | 0099 | abbrev | (8) X | 8) x | (8) x |
Homm——e T s
| 99 | <-hour of half day dlfferentlal |s9999 |
+ommme— + (12-hour form) 4------
| x | <-meridiem indicator
o +
iuu0999| <-fiscal week {form: yyyyww)
+ ______
| xx | <-fiscal indicator
Fom——— +

1-19 AG92-06

The following table shows how date and times strings are displayed by a variety of

control strings.

Amn AZod A9000yc

1111, £s/NA1l4y g

displays September 8, 1979.

Amn Az9dm, A9999yc
displays September 8, 1979.

Adm *ma 79999yc Azn
displays 08 Sep 1979 Mountain Standard Time.

Amy/Adm/Aye AHAA99v.9MH Aza Ada
displays 09/08/79 0242.4 mst Sat.

AHd:AMH:ASM*zd
displays 02:42:25-0700.

A9999yc—Amy-Adm__AHA:AMH:799.(6)9UM_Aza_Ada
displays "1979-09-08__02:42:25.048634_mst_Sat.

<-A<multics_time>xyzA<multics_date>—>
displays <-02:42xyz09/08/79—>.

1-20

AG92-06

SECTION 2

REFERENCE TO COMMANDS AND ACTIVE
- FUNCTIONS

The Multics commands and active functions are presented in this section by
functional use.

ACCESSING THE MULTICS SYSTEM

access_class logout

dial MAP

echo modes

enter noecho
hangup slave

hello terminal_id
help, HELP terminal_type
login

COMMAND LINE PROCESSING

abbrev progress

answer query

convert_ec release

default repeat_gquery

do response

do_subtree Tun

exec_com select

execute_string set_epilogue_command
if severity

login_args start

on stop_run

pause substituie_arguments

program_interrupt

walk_subtree

2-1

AG92-06A

PROCESS ENVIRONMENT

change_error_mode
exponent_control
general_ready
home_dir

logout

new_proc
no_save_on_disconnect
print_auth_names
prini_proc_auth
process_dir
process_switch_off

STORAGE SYSTEM NAMES

add_name

branches
component
compare_entry_names
copy_names
default_wdir
delete_name
directories
directory

entries

entry

entry_path
equal_name

files

get_pathname
home_dir
is_component_pathname
links

list

list_subtree

list_ref _names
list_temp_segments
master_directories
move_names

msfs

nonbranches
nondirectories

process_switch_on
ready

ready_off

ready_on
reconnect_ec_disable
reconnect_ec_enable
reprint_error
save_on_disconnect
set_tty

system

user

nonfiles

nonlinks
nonmaster_directories
nonmsfs
nonnull_links
nonobject_files
nonobject_msfs
nonobject_segments
nonsegments
nonzero_files
nonzero_msfs
nonzero_segments
null_links
object_files
object_msfs
object_segments
path

process_dir
rename

segments
shortest_path
strip
strip_component
strip_entry

suffix
working_dir
Zero_segments

AG92-06A

adjust_bit_count
canonicalize
convert_characters
convert_ec

Copy

create

delete

edm

emacs
expand_cobol_source

SEGMENT ATTRIBUTES

add_name
adjust_bit_count
check_file_system_damage
copy_acl
coOpy_names
delete_acl
delete_name
describe_entry_type
get_effective_access
list_acl
list_entry_types
list_temp_segments

SEGMENT MANIPULATION

archive
archive_sort
canonicalize
compare
compare_ascii
compare_pll
contents

copy

create

decode

delete
dump_segment
encode
initiate

before_journal_status
bj_mgr_call
create_dm_file

CREATING AND EDITING SEGMENTS

file_output
format_pll
indent
merge_ascii
gedx
set_bit_count
SOrt_seg

teco
teco_error
teco_ssd

rename

set_acl
set_bit_count
set_max_length
set_ring_brackets
status
switch_off
switch_on
truncate
vfile_adjust
vfile_status

linkage_editor
mbx_create
merge_ascii

move

overlay

print
reorder_archive
sort_seg
tape_archive
terminate
terminate_refname
terminate_segno
terminate_single_refname
truncate

DATA MANAGEMENT FILE MANIPULATION

dm_display_version
dm_user_shutdown
transaction

AG92-06A

DIRECTORY ATTRIBUTES

add_name
check_file_system_damage
copy_acl
copy_iacl_dir
copy_iacl_seg
copy_names
delete_acl
delete_iacl_dir
delete_iacl_seg
delete_name
get_dir_quota
get_effective_access
get_quota

list_acl

DIRECTORY MANIPULATION

comp_dir_info
copy_dir
create
create_dir
date_deleter
delete
delete_dir
directories
do_subtree
link

EXTENDED ENTRY TYPES

add_name

copy
copy_names
delete
delete_acl
delete_name
describe_entry_type
entries

exists

list_acl
list_entry_types

list_iacl_dir
list_iacl_seg
move_dir_quota
move_quota
rename

set_acl
set_dir_ring_brackets
set_iacl_dir
set_iacl_seg
set_mdir_account
status

switch_off
switch_on

linkage_editor
list
list_dir_info
list_sub_tree
move_dir
rebuild_dir
save_dir_info
unlink
walk_subtree

move
move_names
Tename

set_acl
set_bit_count
set_max_length
set_ring_brackets
status

switch_off
switch_on

AG92-06

LINKS AND SEARCH FACILITIES

add_search_paths
add_search_rules
change_wdir
change_default_wdir
default_wdir
delete_search_paths
delete_search_rules
get_system_search_rules
hunt

hunt_dec

initiate
list_ref_names

print_default_wdir
print_search_paths
print_search_ruiles
print_wdir
resolve_linkage_error
set_search_paths
set_search_rules
terminate

where
where_search_paths
working_dir

ACCESS CONTROL AND RINGS OF PROTECTION

check_iacl

copy_acl
copy_iacl_dir
copy_iacl_seg
delete_acl
delete_iacl_dir
delete_iacl_seg :
get_effective_access
list_accessible
list_acl

list_not_accessible
list_iacl_dir
list_iacl_seg
print_auth_names
print_proc_auth
set_acl

set_iacl_dir
set_iacl_seg
set_dir_ring_brackets
set_ring_brackets

STORAGE SYSTEM, LOGICAL VOLUMES

attach_lv
delete_volume_quota
detach_lv

list_mdir

lv_attached

set_mdir_account
set_mdir_owner
set_mdir_quota
set_volume_quota

STORAGE SYSTEM BACKUP AND RETRIEVAL

cancel_retrieval_request
compare_dump_tape
copy_dump_tape

ONLINE INFORMATION

check_info_segs
explain_doc

help
how_many_users
list_help

enter_retrieval_request
list_retrieval_requests

print_motd
tutorial
validate_info_seg
where_doc

who

2-5

AG92-06

MENU AND VIDEO SYSTEM

menu_create
menu_delete
menu_describe
menu_display

INTERUSER COMMUNICATION

accept_messages
accepling
defer_messages
deieie_message
display_mailing_address
have_mail
have_messages
immediate_messages
last_message
last_message_destination
last_message_sender

INPUT/OUTPUT SYSTEM CONTROL

attach_audit
cancel_daemon_request
cancel_output_request
close_file

connect

copy_cards

copy_file
detach_audit
dial_manager_call
dial_out
discard_output
display_audit_file
dprint

dpunch
enter_output_request
file_output

get_mode
have_queue_entries
io_call

kermit

16_ftf

line_length

menu_get_choice
menu_list
window_call

last_message_time
mail
message_status
mbx_creaie
print_mail
print_messages
read_mail
send_mail
send_message
set_mailing_address
who

list_daemon_requests
list_emacs_ctls
list_output_requests
micro_transfer
move_daemon_request
move_output_request
network_request
print
print_attach_table
print_request_types
print_terminal_types
repeat_line

set_tty

tape_archive

tape_in

tape_out
total_output_requests
vfile_adjust
vfile_find_bad_nodes
vfile_status
window_call

2-6 AG92-06

~11/86

FORMATTED OUTPUT FACILITIES

cancel_daemon_request
cancel_output_request
dprint

dpunch
enter_outpui_request
format_document
format_line
format_line_nnl
format_pll
format_string
have_queue_entries
indent
list_daemon_requests

TERMINAL INTERFACE PROGRAMS

cv_tif
connect
dial_out
display_ttt
get_mode
kermit
line_length
16_ftf

cancel_abs_request
cobol_abs
enter_abs_request
fortran_abs

alm

alm_abs

apl

basic

cobol

cobol_abs
create_data_segment
fortran

fortran_abs
list_fortran_storage
pascal
pascal_area_status

list_output_requests
move_daemon_request
move_outpui_request
overlay

picture

print
print_request_types
runoff

runoff_abs

set_cc

sort_strings
fotal_output_requests

micro_transfer
network_request
print_terminal_types
print_ttt_path
set_ttt_path

set_tty

window_call

CONTROL OF ABSENTEE COMPUTATIONS

list_abs_requests
move_abs_request
pll_abs
runoff_abs

PROGRAMMING LANGUAGES (COMPILERS)

pascal_cross_reference
pascal_create_area
pascal_delete_area
pascal_display
pascal_file_status
pascal_indent
pascal_reset_area
pascal_set_prompt
plil

pll_abs
pll_macro
reductions

2-7

AG92-06A

11/86

PROGRAMMING/DEBUGGING AIDS

add_pnotice
cancel_cobol_program
close_file
create_data_segment
cumulative_page_trace
debug
delete_external_variables
display_cobol_run_unit
display_entry_point_dcl
display_pllio_error
display_pnotice
expand_cobol_source
exponent_control

fast

format_pll
history_comment
indent

io_call
list_external_variables
list_fortran_storage
list_pnotice_names
nothing
print_bind_map
print_error_message
print_link_info

OBJECT SEGMENT MANIPULATION

archive

archive_table

bind

compare_object
cross_reference
date_compiled
display_component_name

AREA MANAGEMENT

area_status
create_area

print_linkage_usage
print_sample_refs
probe
process_switch_off
process_switch_on
profile

progress
reset_external_variables
Tun

run_cobol
sample_refs
save_history_registers
set_fortran_common
set_cc
set_severity_indicator
severity

signal

stop_run
stop_cobol_run

trace

trace_meters
trace_stack
valid_pictured_data
watch

hunt_dec
linkage_editor
print_bind_map
print_link_info
print_relocation_info
reorder_archive

set_system_storage
set_user_storage

PERFORMANCE MONITORING FACILITIES

cumulative_page_trace
page_trace
print_linkage_usage

profile

Drogress
trace
trace_meters
watch

AG92-06A

SYSTEM LIBRARIES

add_pnotice
cross_reference
describe_psp
display_pnotice
generate_pnotice

ARCHIVE SEGMENT MANIPULATION

archive

archive_sort
archive_table

bind

compare_ascii
component
get_library_segment
is_component_pathname
library_fetch

get_ips_mask
monitor_quota
reset_external_variables

RESOURCE CONTROL PACKAGE

attach_lv
acquire_resource
assign_resource
cancel_resource
detach_lv
list_resources
list_resource_types

TAPE MAINTENANCE UTILITIES

list_tape_contents
manage_volume_pool
read_tape_and_query
mtape_delete_defaults
mtape_get_defaults

CONDITION HANDLING

change_error_mode
display_pllio_error
on

get_library_segment
library_descriptor
library_feich
list_pnotice_names
peruse_crossref

linkage_editor
merge_ascii

path

print
print_link_info
reorder_archive
strip_component
test_archive

SYSTEM MAINTENANCE AND DEBUGGING TOOLS

reset_ips_mask
set_ips_mask

lv_attached
release_resource
Teserve_resource
resource_status
set_resource
unassign_resource

mtape_set_defaults
tape_archive
tape_in

tape_out

reprint_error
signal

2-9

AG92-06A

Y —

SETTING AND STORING VARIABLES

delete_external_variables value_get
list_external_variables value_list
reset_external_variables value_path
value_defined value_set
value_delete value_set_path

ADMINISTRATIVE UTILITIES

check_file_system_damage print_configuration_deck
compare_configuration_deck set_mdir_account
deiete_volume_guota set_mdir_owner
list_mdir set_volume_quota

monitor_quota

ARITHMETIC OPERATIONS

calc min

ceil mod
divide plus
floor quotient
index_set times
max trunc
minus

LOGICAL OPERATIONS

and nequal
equal ngreater
exists nless
greater : not

if or

less select

CONVERSION OPERATIONS

binary decimal
convert_characters dump_segment
convert_ec hexadecimal
cv_ttf octal

2-10 AG92-06

CHARACTER STRING OPERATIONS

after

before

bool

byte

collate

collate9
copy_characters
decat
format_line
format_line_nnl
format_string
high

high9

index

index_set
length

iow

lower_case
Itrim

picture

DATE AND TIMES

calendar
calendar_clock
clock

date

date_time
date_time_after
date_time_before
date_time_equal
date_time_interval
date_time_valid
day

day_name

rank

reverse
reverse_after
reverse_before
reverse_decat
reverse_index
reverse_search
reverse_substr
reverse_verify
rtrim

search
sort_strings
string

substr
translate
underline
unique
upper_case
verify

display_time_info
hour

long_date
long_year

memo

minute

month
month_name
print_time_defaults
set_time_default
time

year

2-11

AG92-06A

SECTION 3
COMMANDS AND ACTIVE FUNCTIONS

This section contains descriptions of the Multics commands and active functions,
presented -in alphabetical order.

3-1 AG92-06

abbrev

11/86

Name: abbrev, ab

SYNTAX AS A COMMAND

ab {-control_args}

SYNTAX AS AN ACTIVE FUNCTION
[ab]

FUNCTION

provides a mechanism for abbreviating parts of or whole command lines in the
Multics command environment. As an active function, returns “"true” if abbreviation
expansion of command lines is currently enabled, "false” otherwise.

CONTROL ARGUMENTS

-escape STR, -esc STR
changes the abbrev escape character used to indicate that a command line is
actually a request line. STR must be a single, nonblank character. (See "Notes on
Control Requests” and the .escape control request.) (Default a period [.])

-off
disables abbreviation expansion in subsequent command lines (see the .quit request).

-on
enables abbreviation expansion within subsequent command lines until you use
either -off or .quit. (Default)

-profile path, -pf path
changes the pathname of the profile segment. The "profile” suffix is assumed if
you don’t supply it If the specified segment is nonexistent, you are asked for
permission to create it (See the .use request) (Default:
>udd>Project_id>Person_id>Person_id.profile) cbf

NOTES

The abbrev command sets up a special command processor that is called for each
command line input to the system until abbrev processing is explicitly reverted. The
abbrev command processor checks each input line to see if it is an abbrev request
line, recognized by a period as the first nonblank character of the line, and, if so,
acts on that request (see "List of Control Requests”). If the input line is not an
abbrev request line and abbreviations are included in the line, they are expanded only
once (ie., they cannot be nested) and the expanded string is passed on 1o the normal

abbrev

Multics command processor. The abbrev command processor is, therefore, spliced

between the listener and the normal command processor.

32 AG92-06A

abbrev abbrev

NOTES ON CONTROL REQUESTS

An abbrev request line has a period () as the first nonblank character of the line.
An abbrev request line, with the exception of .s and .<space>, is neither checked for
embedded abbreviations nor (even in part) passed on to the command processor. If
the command line is not an abbrev request line, abbrev expands it and passes it on o
the current command processor.

LIST OF CONTROL REQUESTS
. The character immediately after the period of an abbrev request line is the name
of the request. The following requests are recognized:

prints "abbrev” followed by the current version number of the abbrev processor.

.<space> <rest of line>

passes <rest of line> on to the current command processor without expanding
it. Using this request, you can issue a command line that contains abbreviations
that are not to be expanded. :

.a <abbr> <rest of line>

adds the abbreviation <abbr> to the current profile segment. It is an abbreviation
for <rest of line>. The <rest of line> string can contain any characters. If
the abbreviation already exists, you are asked whether to redefine it. You must
respond with "yes" or "no." The abbreviation must be no longer than -eight
characters and must not contain break characters.

.ab <abbr> <rest of line>

adds an abbreviation that is expanded only if found at the beginning of a line or
directly following a semicolon (;) in the expanded line. In other words, this is an
abbreviation for a command name.

.abf <abbr> <rest of line>

adds an abbreviation that is expanded only at the beginning of a line and forces
it 1o replace any previous one with the same name. You are not asked whether
to redefine it.

.af <abbr> <rest of line>

adds an abbreviation to the profile segment and forces it to overwrite any
previous one with the same name. You are not asked whether to redefine it.

.d <abbri>...<abbrN>

deletes the specified abbreviations from the current profile segment.
.f

enters a mode (the. default) that forgets each command line after executing it (see
.r and .s).

.1 <abbri>...<abbrN>

lists the specified abbreviations and the strings they stand for. If none are given,
all abbreviations in the current profile segment are listed.

3-3 AGI92-06

abbrev

11/87

.2 NAME LINE

adds the abbreviation NAME to the current profile segment. It is an abbreviation for LINE.
The LINE string can contain any characters except break sequences. (See "Notes on Break
Sequences.") If the abbreviation already exists, you are asked whether to redefine it; respond
with "yes" or "no."”

.ab NAME LINE

adds an abbreviation that is expanded only if found at the beginning of a line or after a
semicolon (;), semicolon vertical bar pair (;|), or left bracket ([) in the expanded line. In
other words, this is an abbreviation for 2 command name.

.abf NAME LINE

adds an abbreviation that is expanded only at the beginning of a line and forces it to replace
any previous one with the same name. You are not asked whether to redefine it.

.af NAME LINE

adds an abbreviation to the profile segment and forces it to overwrite any previous one with
the same name. You are not asked whether to redefine it.

.debug

invokes debug to debug a process in which it is no longer possible to execute commands
although it is still possible to execute abbrev request lines.

.delete NAMESs, .di NAMEs, .d NAMEs

deletes the specified abbreviations from the current profile.

.edit NAME

invokes Qedx to edit the definition of the specified abbreviation (see "Notes on Editing
Abbreviations").

.escape {STR}, .esc {STR}

changes the escape character used to indicate that a command line is actually a request line.
STR must be a single, nonblank character. If you give no STR, the escape character presently
in use is displayed. (Default: a period [.])

forget, .f

disables .remember; i.e., it forgets each command line af ter executing it (see .remember and
.show). (Default)

.1 {NAMEs}

displays the names, switches, and definitions of the specified abbreviations in alphabetical
order. If you give no names, all abbreviations in the profile are listed.

Ja STRs

displays the names, switches, and definitions of any abbreviations whose names start with
one of the given strings. Supply at least one string.

abbrev

3-4 AG92-06B

abbrev

11/87

Jab, IaAb STRs

displays the names, switches, and definitions of abbreviations which are beginning—of-line
abbreviations (lab) or not beginning-of-line abbreviations (la*b), starting with STRs.

b, 1b {names}

displays the names, switches, and definitions of the given abbreviations; 1b for
beginning—of-line, 1*b for not beginning of line abbreviations. If no names are given, lists
all of the abbreviation—type.

JIs STRs

displays the names, switches, and definitions of any abbreviation which contain STRs in its
name.

JIsb, Is*b STRs

displays the names, switches, and definitions of any beginning-of-line abbreviations (Isb) or
not beginning-of-line abbreviations whose name contains STRs.

Ix STRs

displays the names, switches and definitions of abbreviations whose definitions contain
STRs.

JIxb, IxAb STRs

displays the names, switches and definitions of beginning-of-line abbreviations (Ixb) or not
beginning~of-line abbreviations (IxAb) whose definitions contain STRs.

abbrev

3-4.1 AG92-06B

abbrev abbrev

parentheses 0
apostrophe '
period
semicolon
less than
greater than
brackets
braces
vertical bar

——raar1 VA e
St d

The two-character-sequence archive component pathname delimiter (::) is also recognized
as a break sequence.

EXAMPLES

Suppose that you wish to abbreviate the pathname of a directory in which you do a
lot of work. Instead of having to type the entire pathname every time you need to
reference it, it can be called up easily with much fewer keystrokes as in the following
examples:

Invoke the abbrev command:

! ab

Define the abbreviation:

! .a myinfo >udd>States>Washington>info

Now that "myinfo" is defined, you can change to that directory.

! cwd myinfo

Change to the inferior directory called data_dir.

! cwd myinfo>data_dir

Another useful abbreviation is for the enter_output_request command, when you
frequently use a certain printer queue and a special request type. The do command is
used to substitute arguments into the abbrev. For example:

i .ab printx do "eor &1 -q 2 -rqt x1200 -nt -he '"By George''"

Now to request a printout of a segment contained in "myinfo," type:

! printx myinfo>data.list

With the do command you can also perform a series of functions that are defined by
one simple abbrev; for example:

! .ab send_cp do "sms Lincoin.States A copy of &l that |'ve prepared
this week is being printed for you.; printx -dl -he Lincoin &1"

35 AG92-06

abbrev abbrev

NOTES ON BREAK SEQUENCES

When abbrev expands a command line, it treats certain character sequences as special break
sequences. An abbreviation cannot contain break sequences. Any character string up to eight
characters long and bounded by break sequences can be expanded. The string is looked up in the
current profile segment and, if found, the expanded form is placed in a copy of the command line
to be passed on to the normal command processor. The following single-character break
sequences are recognized by abbrev:

apostrophe !
backquote !
braces {}
brackets]
dollar sign S
formfeed FF
greater than >
horizontal tab HT
less than <
newline NL
parentheses 0
period .
quote "
semicolon H
space

vertical bar |
vertical tab vT

The beginning and end of the line and the two—character-sequence archive component pathname
delimiter (::) are also break sequences.

LIST OF ABBREVIATION DEFINITION SWITCHES
The following switch is part of the definition of each abbreviation:

beginning_of_line, bol
specifies that this abbreviation is only expanded in a command when appearing at the
beginning of a line or immediately after the semicolon (;), semi~colon vertical bar pair (;|)
or left bracket (). (I.e., when the abbreviation is used as the command name). If thisswitch
is off, the expansion occurs anywhere on a command line.

NOTES ON EDITING ABBREV/IATIONS

When you invoke the edit request to edit an abbreviation, it first displays the definition of the
abbreviation and then invokes Qedx with the definition in buffer 0.

Using the Qedx write request without a pathname saves the revised definition in the profile
segment. Using the read or write request with a pathname, in any buffer, makes the pathname be
interpreted as the name of an abbreviation. Presently, youcan’'t read a buffer from, or write it to,
a segment.

11/87 3-6 AG92-06B

abbrev

abbrev

When writing 2 buffer and an abbreviation of the given name does not exist, it is |
created with the bol switch set off. If the abbreviation already exists and is not the
default for the buffer as displayed by the Qedx status request, abbrev asks for
permission to overwrite the definition of the abbreviation. In this case, the
abbreviation retains its original setting of the bol switch.

EXAMPLES

Suppose that you wish to abbreviate the pathname of a directory in which you do a
lot of work. Instead of having to type the entire pathname every time you need to
reference it, you can use fewer keystrokes, as in the following examples:

Invoke the abbrev command:

‘! ab

11/86

Define the abbreviation

! .a Opinfo >user_dir_dir>Antarctica>0Opus>0Opus.profile
Now that "Opinfo" is defined, you can change to that directory.
! cwd Opinfo

Change to the inferior directory called data_dir.

! cwd Opinfo>data_dir

When you frequently use a certain printer queue and a special request type, an
abbreviation for the enter_output_request command is

! .ab printx do "eor &1 -q 2 -rqt x1200 -nt -he "By Jove'"

Now, to request a printout of a segment contained in "Opinfo,” type:

! printx myinfo>data.list

With the do command you can also perform a series of functions that are defined by
one simple abbrev; for example,

! .ab send_cp do "sms Opus.Antarctica A copy of &1 that |'ve prepared
this week is being printed for you.; printx -dl -he Opus &1"

3-7 AG92-06A

abbrev

. 11/86

accept_messages

Then the following send a message and a copy of data.list to Opus.

send_cp data.list

An abbreviation can invoke other abbreviations, as seen above. If you want to ensure,
within the do’s command line, that a string not be expanded, enclose it in an extra
layer of quotes; for example,

.ab eor do """eor"" &1 -rqt x1200 -q 3"

Name: accept__messages, am

SYNTAX AS A COMMAND

am {mbx_specification} {-control_args}
FUNCTION

initializes or reinitializes your process both for accepting messages that are sent by
send_message and for notifications.

ARGUMENTS

mbx_specification
specifies the mailbox on which messages are to be accepted. If not given, the
user’s default mailbox (>udd>Project>Person>Person.mbx) is used.

LIST OF MBX SPECIFICATIONS

-log
specifies the user’s logbox and is equivalent to

-mailbox >udd>Project_id>Person_id>Person_id.sv.mbx

-mailbox path, —-mbx path
specifies the pathname of a mailbox. The suffix .mbx is added if necessary.

—-save path, -sv path
specifies the pathname of a savebox. The suffix .sv.mbx is added if necessary.

-user STR
specifies either a user’s default mailbox or an entry in the system mail table.

STR
is any noncontrol argument, and is first interpreted as -mailbox STR; if no
mailbox is found, STR is then interpreted as —save STR; if no savebox is found,
it is interpreted as -user STR.

3-8 AG92-06A

accept_messages accept_messages

CONTROL ARGUMENTS

-brief, -bf
prevents accept_messages from informing you that it is creating a mailbox, and
prints messages in short format.

-call {cmdline}
when the message is received, instead of printing it in the default format,
accept_messages calls the command processor with a string of the form

cmdline number sender time message {path}
where:

cmdline

is any Multics command line; enclose it in quotes if it contains blanks or
other command language characters.

number

is the sequence number of the message, assigned when you use —hold_messages;
otherwise it is 0.

sender
is the User_id of the person who sent the message.

time
is the date-time the message was sent.

message
is the message sent.

path
is the pathname of the mailbox to which the message was sent. If the
message was sent to the default mailbox, path is omitted.

To suppress a previous —call, give —call with no cmdline argument.

-flush DT
discards messages sent before the specified date-time (see Section 1 for a

description of valid DT values). This control argument should be used by
operators and consultants.

-hold_messages, —hdmsg

holds messages until explicitly deleted by delete_message. Messages printed when
-hold_messages is in effect are preceded by an identifying number.

11/86 3-9 AG92-06A

accept_messages accept_messages

| -hold_notifications, —hdnt

11/86

holds notifications in the mailbox after being printed. This implies —notifications.

-long, -lg
precedes every message printed by the sender’s Person_id and Project_id and
prints the date-time string It prints the message number only if you use
-hold_messages. (Default)

-no_hold_messages, —nhdmsg
reverts —hold_messages.

-no_hold_notifications, —nhdnt
deletes notifications after being printed. (Default)

-no_notifications, —nnt
deletes notifications as they are received. This implies —no_hold_notifications.

-no_print, -npr
does not print old messages. (Default)

-no_short_prefix, —nshpfx
does not print the prefix when messages are printed in short format.

-notifications, -nt
prints notifications. (Default)

-prefix STR, -pfx STR
places STR in front of all messages printed as they are received. STR can be up
to 12 characters long, and can contain the ioa_ control strings A/, A|, and A- if
desired.

-print, -pr
prints all messages that you received since the last time you were accepting
messages. The messages are deleted after printing, unless you are holding them.

=short, -sh
precedes consecutive messages from the same sender by "=" instead of the
Person_id and Project_id, and prints the date-time string only if less than five
minutes have passed since the previous message. It omits the date if the current
message and the previous one are received on the same date.

-short_prefix, -shpfx
prints the prefix when messages are printed in short format. (Default)

3-10 AG92-06A

_ accept_messages accept_messages

—-time N, -tm N
prints undeleted messages every N minutes, preceded by a message of the form

You have X messages

where X is the number of undeleted messages. If N equals 0, the time mode is
reseL.

NOTES

A default mailbox is created the first time you issue print_mail, read_mail, or
accept_messages. The default mailbox is

>udd>Project_id>Person_id>Person_id.mbx

Messages sent when you are not logged in or when you are deferring messages (see
defer_messages) are saved in the mailbox; you can read them later with print_messages.
The send_mail command stores mail in the same mailbox.

Don’t share the same mailbox with others.

At any time, only one process can be accepting messages from a given mailbox. If
you create two processes that accept messages from the same mailbox, the second
process (i.e., the one issuing an accept_messages most recently) automatically take over
the command function. The first process receives no indication that messages are being
routed to the second process. If the second process logs out or is destroyed, the
messages do not revert to an earlier process; thus if you send a message to that
mailbox, you are informed that the addressee is currently not accepting messages or is
not logged in. So if you are registered on multiple projects using a common mailbox,
be aware that this behavior affects your processes.

Generally don’t accept messages in absentee processes; the start_up.ec should distinguish
between interactive and absentee processes, and should issue accept_messages only in an
interactive process.

You can accepi messages on more than one maiibox at a time and on a maiibox other
than the defaultt If you use a nondefault mailbox and it does not exist,
accept_messages queries you whether it should be created. When messages are printed
from a nondefault mailbox, the mailbox is always identified.

11/86 3-11 AG92-06A

accepting acquire_resource

11/86

Name: accepting
SYNTAX AS A COMMAND

accepting address

SYNTAX AS AN ACTIVE FUNCTION

[accepting address]
FUNCTION

determines whether messages are being accepted on the mailbox specified by the
address supplied.

ARGUMENTS

address

can be of the form Person_id.Project_id to specify a mailbox belonging to that
person; a string containing at least one > or < to specify the pathname of a
mailbox; one of the arguments -mailbox (-mbx), -log, or —save (-sv), immediately
followed by a string giving the pathname of a mailbox, logbox, or save box,
respectively; -last_message_destination (~Imds) if you have used send_message in
this process; or -last_message_sender (-Ims) if a message has been received in the
user’s default mailbox.

Name: acquire__resource, aqr

SYNTAX AS A COMMAND

aqr type STR1 {...STRs} {-control_args}

aqr type -number N {-control_args}

FUNCTION

selects a resource of a given type from a free pool of all such resources and makes
you the accounting owner of the resource. You are given full control over the access
rights for all users of the resource, as well as control over many parameters of the

resource. Ownership of the resource is terminated by release_resource.

ARGUMENTS

type
is a resource type defined in the resource type description table (RTDT).

3-12 AG92-06A

acquire_resource acquire_resource

STRs ’
is the unique identifying name of the particular resource being acquired. If STR |
looks like a control argument, precede it by -name (-nm). If you give no -name,
a resource is chosen to satisfy any constraints imposed by the control arguments
given.

CONTROL ARGUMENTS

—access_class accr, —acc accr
sets the initial AIM access class parameters, where accr is-an access class range.
Users at any authorization within the access class range inclusive are allowed to

read and write to the resource (provided they also meet other access requirements).
(See "Notes.™)

—acs_path path
specifies the pathname of the access control segment (ACS) for this resource. You
must create the ACS and set the desired access control list. If the ACS doesn’t
exist or you don’t specify it, the default access is rew to the accounting owner
and null to all others. If path is a null string, any existing ACS is disassociated
from the resource.

—-alloc STR
sets the allocation state of the resource to allocated or free, where STR must be
either "on" (allocated) or "off" (free). The allocation state flag exists for your
convenience and is largely ignored by resource management. (Default: off)

—attributes STR, -attr STR
searches for resources possessing the attributes specified in STR. If vou give -attr
with -nm, then the resource specified by the explicit name is searched for, and,
when found, its attributes are set to those specified with -attr.

—comment STR, -com STR
specifies the desired value of the comment string for this resource, where STR
can be an arbitrary comment string with a maximum length of 168 characters. |

-;Ock STR
locks or unlocks the resource, preventing or allowing use of that resource, where

STR must be either "on" (prevents use of the resource) or "off" (allows use of
the resource). (Default: off)

-number N, -nb N
specifies that the number of such resources to be acquired is N. If you supply
no -nb, 1 is assumed. You can supply -nb only if you supply no name.

11/86 3-13 AG92-06A

add_name add_name

ARGUMENTS

path
is the pathname of a segmeni, multisegment file, data management file, directory, extended
entry, or link. This argument can consist of "-name STR" to specify a nonstandard
entryname STR which already exists and which begins with a hyphen or contains ASCII
control characters or any of the nonstandard characters ", <, >, 8, %, 7, *,=, (.), [,], =.

names
are additional names to be added. This argument can consist of "-name STR" when the
entryname begins with a hyphen. The other nonstandard characters detailed above are not
recommended for entrynames and this command will not generate entrynames which
contain them.

CONTROL ARGUMENTS

-brief, —bf
suppresses the error message "Name already on entry.”

-long, ~lg
does not suppress the error message "Name already on entry." (Default)

ACCESS REQUIRED

You need modify permission on the parent directory.

NOTES

Two entries in a directory cannot have the same entryname; therefore add_name takes special
action if the added name already exists. If the added name is an alternate name of another entry,
the name is removed from this entry, added to the entry specified by path, and you are informed
of this action. If the added name is the only name of another entry, you are asked whether to
delete this entry. If you answer "yes," the entry is deleted and the name is added to the entry
specified by path; if you answer "no," no action is taken.

See the delete_name and rename commands.

EXAMPLES

The command line

! an >my_dir>example.pil samplie.pl]

adds the name sample.pll to the segment example.pll in the directory >my_dir.

11/87 3-14.1 AG92-06B

add_name add_pnotice

The command line

1 an >udd>%*.private ==.personal

adds to every entry having a name with "private” as the last component a name with "personal” as
the last component.

Name: add__pnotice
SYNTAX AS A COMMAND
add_pnotice path {-control_args}

FUNCTION

protects source code programs by adding, at the beginning of a program, a software protection
notice (copyright public domain, or trade secret notice) in a box delimited as a comment.
Multiple protection notices are supported. You can protect archives of source code programs
using this command. The archive pathname convention is supported. If a particular language or
suffix is not supported, an appropriate message is printed.

ARGUMENTS

path
is the name of a source code program or an archive of source programs. You can give an
archive component pathname to name a single archive component. You must include the
language suffix or archive suffix.

CONTROL ARGUMENTS

-brief, —bf
suppresses printing of both the source program name and the name of the pnotice that was
added.

—default_copyright, —dc
specifies that the notice to be added to the segment is the default copyright notice.
Normally, this is a Honeywell copyright, but your site can change the default (see "Notes").

—default_trade_secret, —dts
specifies that the notice 1o be added to the segment is the default trade secret notice.
Normally, this is a Honeywell trade secret notice, but your site can change the default (see
"Notes").

-long, -lg
specifies that both the name of the source program and the name of the pnotice are printed
when a protection notice is added. (Defauli)

-name STR, -nm STR
where STR specifies the name of a protection notice template to be added (see "Notes").

11/87 3-14.2 AG92-06B

add_pnotice add_pnotice

NOTES

If you give no control arguments and there are no existing pnotices in the program, an error
message is issued and no changes are made to the program. If copyright pnotices are found and
you use ~dc or —nm, the 10-year rule is applied to the named pnotice; that is, if the notice is more
than nine years old, a new copy of the notice is added with the current year. If copyright pnotices
exist and you give neither —dc nor ~nm, the 10-year rule is applied to the most recent copyright
pnotice.

You can obtain a list of available copyright and trade secret protection notice template names
with list_pnotice_names; you can use -nm to specify any of these templates.

To list the pnotice segments in a source porgram, use display_pnotice.

A given program may contain several copyright notices or a trade secret notice or a public domain
notice, but cannot contain a mixture of pnotice types.

11/87 3-14.3 AG92-06B

acquire_resource add_name

-owner STR, -ow STR

specifies that this is an acquisition for the user specified by STR. If you give
STR as "system,” the resource is assigned to the system pool; if as "free,” the
resource is acquired to the free pool (effectively the same as no -ow). If STR is
of the form Person_id.Project_id (where neither Person_id nor Project_id can be
a star), the user specified has all the rights of ownership to the resource, as if he
had acquired it personally, except that if you give "-rll on", the .owner can’t
release (give up ownership of) the resource voluntarily. (See "Notes.")

-priv
specifies that a privileged call is to be made to obtain the status of this resource.

-release_lock STR, -rll STR
specifies whether this resource can be released by the owner or only by a
privileged process, where STR must be either "on" or "off." If you supply no
-rll, the resource can be released by the owner. (See "Notes.")

ACCESS REQUIRED

| You need execute access to the rcp_admin_ gate to use -access_class, —owner, -priv,
or -release_lock.

NOTES

This command acquires a resource for either you (requestor) or the user specified by
-ow. If you are registered on more than one project and need corresponding access,
or other users (on any project) need access to acquire a resource, you must create or
modify the ACS. You must then specify the new/modified ACS by using "aqr
-acs_path." The User_id (Person_id.Project_id) specifies the user to be added to, or
deleted from, the ACS.

You must give —priv with —acc, —ow, and -ril.

Name: add__name, an
SYNTAX AS A COMMAND

an path names {-control_args}
FUNCTION

adds alternate name(s) to a segment, multisegment file (MSF), directory, link, data
management (DM) file, or extended entry.

11/86 3-14 AG92-06A

add_search_paths add_search_paths

Name: add__search__paths, asp
SYNTAX AS A COMIMAND

asp search_list search_pathl {-control_args}...search_pathN
{-control_args}

FUNCT!ON
adds one or more search paths to the specified search list.
ARGUMENTS

search_list
is the name of the search list to which the new search paths are added.
Synonyms of search_list are described in the individual command descriptions.

search_pathi
specifies a new search path, where search_pathl is a relative or absolute pathname
or a keyword. (For a list of acceptable keywords see "List of Keywords" below.)
Each search_path argument can be followed by either the -after, —before, —first,
or -last control argument to specify its position within the search list. If no
search path position control argument is specified, -last is assumed.

CONTROL ARGUMENTS
are used only after the search_path argument. Only one is allowed for each
search_path.

-after STR, -af STR
specifies that the new search path is positioned after the STR search path. The
current search path is an absolute or relative pathname or a keyword. In
representing STR it is necessary to use the same name that appears when the
print_search_paths (psp) command is invoked.

-before STR, —be STR
specifies that the new search path is positioned before the STR search path.

—first, —ft .
specifies that the new search path is positioned as the first search path in the
search list.

~last 1t

,specifies that the new search path is positioned as the last search path in the
search list. '

LIST OF KEYWORDS
Listed below are the keywords accepted as search paths in place of absolute or relative

pathnames. There is no restriction as to the position of any of these keywords within
the search list.

3-15 AG92-06

add_search_paths add_search_paths

-home_dir, ~hd
-process_dir, -pd
-referencing_dir, -rd
-working_dir, -wd

NOTES

In addition, a pathname can be specified with the Multics active function [user name]
or [user project]. A search path enclosed in quotes is not expanded when placed in
the search iist. It is expanded when referenced in a user’s process. This feature allows
search paths to be defined that identify the process directory or home directory of
any user.

If a link target does not exist, the search facility continues to search for a matching
entryname.

LIST OF RELATED SEARCH FAC/LITY COMMANDS
add_search_paths, asp
delete_search_paths, dsp
print_search_paths, psp
set_search_paths, ssp
where_search_paths, wsp
EXAMPLES

The command line

! asp translator >udd>Project_id>Person_id>include

adds the absolute pathname >udd>Project_id>Person_id>include as a search path. This
new search path is positioned as the last search path in the translator search Ilist.

The command line

! asp trans <include_files -first

adds the absolute pathname represented by the relative <include_files as a search path
to the trans search list where trans is a synonym for translator. This new search path
is positioned as the first search path in the search list

The command line

! asp info info_files ~after >doc>info
adds the absolute pathname represented by the relative pathname info_files as a search

path to the info search list. This new search path is positioned in the info search list
after the >doc>info search path.

3-16 AG92-06

add_search_paths add_search_rules

The command line

! asp translator >udd>[user project]>incl -be >1dd>incliude

adds the unexpanded pathname >udd> [user project] >incl to the translator search list
This new search path is positioned before the >ldd>include search path.

Name: add__search__rules, asr

SYNTAX AS A COMMAND

asr pathl {-controi_args}...pathN {-control_args}
FUNCTION

adds pathnames and keywords to the search rules for object segments.

ARGUMENTS

pathi
is the absolute or relative pathname of a directory or one of the keywords listed
below. ~

CONTROL ARGUMENTS

-after path, —af path
appends the previous path argument after the existing search rule named by path.

-before path, —be path
inserts the previous path argument before the existing search rule named by path.

-force, —fc
deletes any old occurrence of path in the search rules before adding the new
rule.

-no_force, —nfc
fails and oprints an error message if a rule to be added already exists in a
different position. (Default)

LIST OF KEYWORDS

Both pathi and path arguments can be either pathnames or keywords. The defined
keywords are:

' initiated_segments

referencing_dir
working_dir

3-17 AG92-06

add_search_rules adjust_bit_count

In addition, path in control args can be:

home_dir
process_dir
any site-defined keywords

NOTES

is printed if a rule to be added already exists in the same position as
that for which it is intended.

No warning

&iil

‘ The limit on the number of search rules allowed for a process is 21.

Name: adjust__bit__count, abc
SYNTAX AS A COMMAND
abc paths {-control_args}

FUNCTION

sets the bit count of a segment that for some reason does not have its bit count set
properly (e.g., the program that was writing the segment got a fault before the bit
count was set or the process terminated without the bit count being set).

ARGUMENTS

paths

are the pathnames of segments and multisegment files. The star convention is
allowed.

CONTROL ARGUMENTS

—character, -ch
set the bit count to the last nonzerc character. (Default: the last nonzero word)

—chase
chases links when using the star convention. (Default: to chase links only for
nonstarred pathnames)

-long, -lg
print a message when the bit count of a segment is changed, giving the old and
new values.

-no_chase
does not chase links when using the star convention. (Default)

3-18 AG92-06

adjust_bit_count after

ACCESS REQUIRED

You must have write access on the segment or multisegment file.

NOTES

The adjust_bit_count command looks for the last nonzero 36-bit word or (if specified)
the last nonzero character in the segment and sets the bit count to indicate that the
word or character is the last meaningful data in the segment.

If the bit count of a segment can be computed but cannot be set (e.g., the user has
improper access to the segment), the computed value is printed so that the user can
use the set_bit_count command after resetting access or performing other necessary
corrective measures.

The adjust_bit_count command should not be used on segments in structured files.
The vfile_adjust command should be used to adjust inconsistencies in structured files.

Name: after, af

SYNTAX AS A COMMAND

af STRA STRB

SYNTAX AS AN ACTIVE FUNCT/ION
[af STRA STRB]

FUNCT/ION

returns the string foliowing the first occurrence of STRB in STRA. If STRB does not
occur in STRA, the null string is returned.

EXAMPLES

! string [after abcdef123defli56 def]
123defk56

! string [after abcdef gh]

! string [format_line XY~aZZ [after 1.4596e+17 71]

3-19 AG92-06

alm alm

Name: alm
SYNTAX AS A COMMAND
aim path {-control_args}
FUNCTION

ALM is the standard Multics assembly language. It is commonly used for privileged
supervisor code, higher level support operators and utility packages, and data bases. It
is occasionally used for efficiency or for hardware features not accessible in higher
level languages; however, its routine use is discouraged.

The alm command invokes the ALM assembler to translate a segment containing the
text of an assembly language program into a Multics standard object segment. A
listing segment can also be produced. These segments are placed in the user’s current
working directory.

The ALM language is described briefly in this command description. The Mul/tics
Processor Manua/ (AL39) fully describes the instruction set.

ARGUMENTS

path
is the pathname of an ALM source segment that is to be translated by the ALM
assembler. If path does not have a suffix of alm, one is assumed. However, the
suffix must be the last component of the name of the source segment.

CONTROL ARGUMENTS

are optional arguments that can only appear after the path argument. The control
arguments are:

-arguments STR, -ag STR
indicates that the assembled program may expect arguments. If present, it must be
the last control argument to the alm command and must be followed by at least
one argument. See "Macros in ALM" later in this description.

-brief, -bf
prevents errors from being printed on the terminal. Any errors are flagged in the
listing (if one has been requested).

~list, -Is
produces an assembly listing segment.

-no_symbols
suppresses the listing of a cross-reference table in the listing segment. This
cross-teference table is included by default in the listing segment when the -list
control argument is given.

3-20 AG92-06

alm alm

NOTES

The only result of invoking the alm command without control arguments is to generate
an object segment.

A successful assembly produces an object segment and leaves it in the user’s working
directory. If an entry with that name existed previously in the directory, its access
control list (ACL) is saved and given to the new copy. Otherwise, the user is given re
access to the segment with ring brackets v,v,v where v is the validation level of the
process that is active when the object segment is created.

If the user specifies the -list control argument, the alm command creates a listing
segment in the working directory and gives it a name consisting of the entryname
portion of the source segment with the suffix list rather than alm (e.g., a source
segment named prt_conv_.alm would have a listing segment named prt_conv_.list). The
ACL is as described for the object segment except that the user is given rw access to
the newly created segment. Previous copies of the object segment and the listing
segment are replaced by the new segments created by the compilation.

The assembler is serially reusable and sharable, but cannot be reentered once
translation has begun; that is, it cannot be interrupted during execution, invoked again,
then restarted in its previous invocation.

ERROR CONDITIONS

Errors arising in the command interface, such as inability to locate the source segment,
are reporied in the normal Muitics manner. Some conditions can arise within the
assembler that are considered malfunctions in the assembler; these are reported by a
line printed on the terminal and also in the listing. Any of the above cases is
immediately fatal to the translation.

Errors detected in the source program, such as undefined symbols, are reported by
placing one-letter error flags at the left margin of the erroneous line in the listing
segment. Any line so flagged is also printed on the user’s terminal, unless the -brief
control argument is in effect. Flag letters and their meanings are given below.

LIST OF FLAGS

B mnemonic used belongs to obsolete (Honeywell Model 645) processor instruction
set.

D error in macro definition or macro expansion; more detailed diagnostic for
specific error given in listing.

E malformed expression in arithmetic field.

F error in formation of pseudo—operation operand field.

M reference to a multiply defined symbol.

3-21 AG92-06

alm

N unimplemented or obsolete pseudo-operation.
unrecognized opcode.

phase error; location counter at this statement has changed between passes,
possibly due to misuse of org pseudo-operation.

R expression produces an invalid relocation type
S error in the definition of a symbol.

T undefined modifier (tag field).

U reference to an undefined symbol

7 digit 8 or 9 appears in an octal field.

The errors B, E, M, O, P, and U are considered fatal. If any of them occurs, the
standard Multics "Translation failed" error message is reported after completion of the
translation.

ALM LANGUAGE

An ALM source program is a sequence of statemenis separated by newline characters
or semicolons. The last statement must be the end pseudo-operation.

Fields must be separated by white space, which is defined to include space, tab, new
page, and percent characters.

A name is a sequénce of uppercase and lowercase letters, digits, underscores, and
periods. A name must begin with a letter, period, or underscore and cannot be longer
than 31 characters.

LABELS

Each statement can begin with any number of names, each followed immediately by a
colon. Any such names are defined as labels, with the current value of the location
counter. A label on a pseudo-operation that changes location counters or forces even
alignment (such as org or its) might not refer to the expected location. White space is
optional. It can appear before, after, or between labels, but not before the colon.

OPCODE

The first field after any labels is the opcode. It can be any instruction mnemonic or
any one of the pseudo—operations listed later in this description under "Pseudo-operations.”
The opcode can be omitted, and any labels are still defined. White space can appear
before the opcode, but is not required.

3-22 AG92-06

alm alm

OPERAND

Following the opcode, and separated from it by mandatory white space, is the operand
field. For instructions, the operand defines the address, pointer register, and tag
(modifier) of the instruction. For each pseudo-operation, the operand field is
described under “Pseudo-operations” below. The operand field can be omitted in an
instruction. Those pseudo—operations that use their operands generally do not permit
the operand field to be omitted.

NOTES

Since the assembler ignores any text following the end of the operand field, this space
is commonly used for comments. In those pseudo-operations that do not use the
operand field, all text following the opcode is ignored and can be used for comments.
Also, a quote character (") in any field introduces a comment that extends to the end
of the statement. (The only exceptions are the acc, aci, and bci pseudo-operations, for
which the quote character can be used to delimit literal character strings.) The
semicolon ends a statement and therefore ends a comment as well.

INSTRUCTION OPERANDS

The operand field of an instruction can be of several distinct formats. Most common
is the direct specification of pointer register, address, and tag (modifier). This consists
of three subfields, any of which can be omitted. The first subfield specifies a pointer
register by number, user—defined name, or predefined name (pr0, prl, pr2, pr3, prd4,
pr5, pr6, pr7). The subfield ends with a vertical bar. If the pointer register and
vertical bar are omitted, no pointer register is used in the instruction. The second
subfield is any arithmetic expression, relocatable or absolute. This is the address part
of the instruction, and its default is zero. Arithmetic expressions are defined below
under "Arithmetic Expressions.” The last subfield is the modifier or tag. It is
separated from the preceding subfields by a comma. If the tag subfield and comma
are omitted, no instruction modification is used. (This is an all zero modifier.) Valid
modifiers are defined below under "Modifiers."

Other formats of instruction operands are used to imply pointer registers. If a
symbolic name defined by temp, tempd, or temp8 is used in the address subfield (it
can be used in an arithmetic expression), then pointer register 6 is used if no pointer
tegister is specified explicitly. This form can have a tag subfield.

Similarly, if an external expression is used in the address subfield, then pointer register
4 is implied; this causes a reference through a link. The pointer register subfield may
not be specified explicitly. If a modifier subfield is specified, it is taken as part of
the external expression; the instruction has an implicit n* modifier to go through the
link pair. External expressions are defined below under "External Expressions.”

3-23 AG92-06

alm alm

A literal operand begins with an equal sign followed by a literal expression. The
literal expression can be enclosed in parentheses. It has no pointer register but can
have a tag subfield. A literal reference normally causes the instruction to refer to a
word in a literal pool that contains the value of the literal expression. However, if
the modifier du or dl is used, the value of the literal is placed directly in the
instruction address field. Literal expressions are defined below under "Literal
Expressions.”

SPECIAL INSTRUCTION FORMATS

Certain instructions assembled by the ALM assembler do not follow the standard
opcode-operand format as described above. These instructions fall into three basic
classes: the repeat instructions, special treatment of the index and pointer register
instructions, and EIS instructions. Each of these special cases is described below.

REPEAT INSTRUCTIONS

The repeat instructions are used to repeat either one or a pair of instructions until
specified termination conditions are met. There are two basic forms:

rpt tally,delta, terml, term2,...,termN

generates the machine rpt instruction as described in the Multics Processor Manual.
Both tally and delta are absolute arithmetic expressions. The termi specify. the
termination conditions as the names of corresponding conditional transfer instructions.
This same format can be used with the rpt, rpd, rpda, and rpdb pseudo-operations:

rptx ,delta

generates the machine rpt instruction with a bit set to indicate that the tally and
termination conditions are to be taken from index register 0. This format can be used
with rplx and rpdx.

INDEX REGISTER INSTRUCTIONS

The opcodes for manipulation of the index registers have the general form opxN,
where N specifies the index register to be used in the operation. ALM allows the
more general form:

opx index,operand

which assembles opxN, where index is an absolute arithmetic expression whose value is
N. This format can be used for all index register instructions.

POINTER REGISTER [INSTRUCTIONS

As with the index register instructions, the opcodes for the manipulation of the
pointer registers have the general form oprN, where N specifies the pointer register to
be used. ALM extends this form to allow:

3-24 AG92-06

alm alm

opr pointer,operand

which assembles as oprN, where N is found as follows: If pointer is a built-in
pointer name (pr0, prl, etc.), that register is selected; otherwise, pointer must be an
absolute arithmetic expression whose value is N. This format can be used with all
pointer register instructions except spri.

E/S MULTIWORD INSTRUCTIONS

An EIS multiword instruction consists of an operation code word, followed by one or
more descriptor words. The descriptor words can be assembled by using the desc
pseudo-operations listed under "Pseudo—operations” below. The operation code word has
the following general form:

eisop (MF1), (MF2) ,keyword] (octexpression),keyword2
where:

MF1.MF2
are EIS modification fields as described in "EIS Modifiers” below.

keywordl
can be either fill, bool, or mask.

octexpression
is a logical expression that specifies the bits to be placed in the appropriate parts
of the instruction.

keyword2
can be round, enablefault, or ascii; these cause single option bits in the instruction
to be set.

Keywords can appear in any order, before or after an MF field. This format can be
used for all Multics EIS multiword instructions.

£/S SINGLE-WORD [NSTRUCTIONS

The Multics processor contains a set of 10 instructions that may be used to alter the
contents of an address register. These instructions have the following general form:

opcode pr|offset,modifier
where:

pr
selects the address register that is to be modified by the instruction.

of fset :
is a value whose interpretation is dependent upon the opcode used.

3-25 AG92-06

alm

alm

modifier
must be one of the register modifiers (au, gl, x0, etc.).

These instructions have two modes of operation depending on the setting of bit 29 in
the instruction. If bit 29 is 1, the current contents of the selected address register are
used in determining its new contents; if bit 29 is 0, the contents of the word and bit
offset portions of the selecied address regisier are assumed to be zero at the start of
the instruction (this results in a load operation into the selected address register).
ALM normally sets bit 29 to 1, unless the opcode ends in x (e.g., awdx is an awd
instruction with bit 29 set to 0). This format can be used with adbd, a6bd, a9bd, abd

& L0 1VRLNG ari oV,

awd, s4bd, sbbd, s9bd, sbd, and swd.
EXAMPLES OF INSTRUCTION STATEMENTS

Seven examples of instruction statements are shown below. A brief description of each
example follows the sample statements.

xlab: lda proj2,* " Example 1.
eax] xlab-1
rccl <sys_info>|[clock_],* " Example 2.
segref sys_info,time_delta "' Example 3.
adl time_del ta+]
temp nexti " Example L.
1x10 nexti,*
1ink goto,<unwinder_>|[unwinder_] " Example 5.
tra pri|goto,*
ana =0777777,du " Example 6.
ada =v36/1list_end-1
agbd pr3|0,qu " Example 7 (a).
a9bdx pr3|0,qu "" Example 7(b).

Example 1 shows direct specification of address, pointer register, and tag fields. In the
second instruction, no pointer register is specified, and the symbol xlab is not external,
S0 no pointer register is used.

Example 2 shows an explicit link reference. Indirection is specified for the link, as
the item at clock_ (in sys_info) is merely a pointer to the final operand.

Example 3 uses an external expression as the operand of the adl instruction. In this
particular case, the operand itself is in sys_info.

Example 4 uses a stack temporary. Since the word is directly addressable using pr6,
the modifier specified is used in the instruction.

3-26 AGY2-06

alm

11/86

Example 5 shows a directly specified operand that refers to an external entity. Unlike
segref, it is necessary in this case to specify the pointer register and modifier fields.

Example 6 uses two literal operands. Only the second instruction causes the literal
value to be stored in the literal pool.

In Example 7(a), the values in pr3 are added to the values calculated using the q
register (see Section 4 of the Multics Processor Manual, AL39).

In Example 7(b), the word and bit offset of pr3 are replaced by those calculated
using the q register.

ARITHMETIC EXPRESSIONS

An arithmetic expression consists of names {other than external names) and decimal
numbers joined by the ordinary operators + - * /. You can use parentheses with
their normal meaning.

An asterisk in an expression, when not used as an operator, has the value of the
current location counter.

All intermediate and final results of the expression must be absolute or relocatable

with respect to a single location counter. A relocatable expression cannot be multiplied
or divided.

LOG/CAL EXPRESSIONS

A logical expression is composed of octal constants and absolute symbols combined
with the Boolean operators + (OR), - (XOR), * (AND), and » (NOT). You can use
parentheses with their normal meaning.

EXTERNAL EXPRESSIONS

An external expression refers symbolically to some other segment. It consists of an
external name or explicit link reference, an optional arithmetic expression added or
subtracted, and an optional modifier subfield. An external name is one defined by the
segref pseudo-operation. An explicit link reference must begin with a segment name
enclosed in angle brackets (<>) and followed by a vertical bar (|). You can optionally
follow this by an entryname in square brackets ([]). For example:

<segname> | [entryname]
<segname>|0, 5%

An alternative form of external expression must begin with a segment name followed
by a dollar sign. You can follow this by an entryname, an arithmetic expression, or a
modifier, all of which are optional. For example:

segname$
segnameSentryname-1
segname$+3,5

alm

3-27 AG92-06A

A segment name of #*text, *link, or =static indicates a reference to this procedure’s
text, linkage, or static sections.

A segment name of *system indicates a reference to the external variable (or common
block) entryname, which is managed by the linker. A link pair is constructed for each
combination of segment name, entryname, arithmetic expression, and tag that is
referenced.

LITERAL EXPRESS/IONS

A literal reference causes the instruction to refer to a word in a literal pool that
contains the value specified. However, the du and dl modifiers cause the value to be
stored directly in the address field of the instruction. The literal pool is allocated in
the text section. The various formats of literals are described in the following
paragraphs.

A decimal literal can be signed. If it contains a decimal point or exponent, it is
floating point. If the exponent begins with "d" instead of "e", it is double precision.
A binary scale factor beginning with "b" indicates fixed point and forces conversion
from floating point. The binary point in a literal with a binary scale factor is
positioned to the right of the bit indicated by a decimal integer following the "b".

An octal literal begins with an "o" followed by up to 12 octal digits.

ASCII literals can occur in two forms. One form begins with a decimal number
between 1 and 32 followed by "a" followed by the number of data characters
specified by the integer preceding the "a", which can cross statement delimiters. The
other form begins with "a" followed by up to four data characters, which can be
delimited by the newline character.

A GBCD literal begins with "h" followed by up to six data characters, which can be
delimited by the newline character. Translation is performed to the 6-bit character
code.

An ITS (ITP) literal begins with "its" ("itp") followed by a parenthesized list
containing the same operands accepted by the its (itp) pseudo—operation. The value is
the same as that creaied by the pseudo-operation.

A variable-field literal begins with "v" followed by any number of decimal, octal, and
ASCII subfields as in the vfd pseudo-operation. You must enclose it in parentheses if
a modifier subfield is to be used.

If you use a variable—field literal, octal literal, or fixed-point literal (decimal literals
with a "b" binary scale factor) with du or dl modification, then the lower 18 bits of
the literal are placed in the address field of the instruction. If you use any other
type of literal with du or di modification, then the upper 18 bits of the literal are
placed in the address field of the instruction.

alm

3-28 AG92-06

alm

MODIFIERS

These specify indirection, index register address modification, immediate operands, and
miscellaneous tally word operations. They can be specified as 2-digit octal numbers
(particularly useful for instructions like stba) or symbolically using the mnemonics
described here.

Simple register modification is specified by using any of the register designators listed
below. It causes the contents of the selected register to be added to the effective
address.

Designators Register

x0 O index register 0

x] 1 index register 1

x2 2 index register 2

x3 3 index register 3

xh 4 index register 4

x5 5 index register 5

x6 6 index register 6

x7 7 index register 7

n none {no modification)

au A bits 0-17

al A bits 18-35 or 0-35
qu Q bits 0-17

ql Q bits 18-35 or 0-35
ic instruction counter

In addition to the above, any symbol that is not otherwise a valid modifier (e.g., au,
ql, x7) may be used as a modifier to designate an index register. Thus,

equ regc,3
lda sp|0,*regc

is equivalent to:
lda sp|0,%*3

Register—then—indirect modification is specified by using any of the register designators
followed by an asterisk. If the asterisk is used alone, it is eguivalent to the n+
modifier. The register is added to the effective address, then the address and modifier
fields of the word addressed are used in determining the final effective address.

Indirect cycles continue as long as the indirect words contain an indirect modifier.

Indirect-then-register modification is specified by placing an asterisk before any one
of the register designators listed above.

alm

3-29 AG92-06

alm alm

Direct modifiers are du and dl. They cause an immediate operand word to be
fabricated from the address field of the instruction. For dl, the 18 address bits are
right—justified in the effective operand word; for du they are left—justified. In either
case, the remaining 18 bits of the effective operand are filled with 0’s.

Segment addressing modifiers are its and itp; they can only occur in an indirect word
pair on a double-word boundary. The addressing modifier its causes the address field

of the even word to replace the segment number of the effective address, then
continues the indirect cycle with the odd word of the pair. Nearly all indirection in

Multics uses ITS pairs. For itp, see the Mu/tics Processor Manual.

Tally modifiers i, ci, sc, scr, ad, sd, id, di, idc, and dic control incrementing and
decrementing of the address and tally fields in the indirect word. They are difficult
to use in Multics because the indirect word and the data must be in the same
segment. Fault tag modifiers f1, f2, and {3 cause distinct hardware faults whenever
they are encountered. The modifier f2 is reserved for use in the Multics dynamic
linking mechanism; the other modifiers result in the signalling of the conditions
fault_tag_1 and fault_tag_3.

EIS MODIF/ERS

An EIS modifier appears in the first word of an EIS multiword instruction. It affects
the interpretation of operand descriptors in subsequent words of the instruction. No
check is made by ALM to determine whether the modifier specified is consistent with
the operand descriptor specified elsewhere.

An EIS modifier consists of one or more subfields separated by commas. Each
subfield contains either a keyword as listed below, a register designator, or a logical
expression. The values of the subfields are OR’ed together to produce the result.

Keyword Meaning

pr Descriptor contains a pointer register reference.
id Descriptor is an indirect word pointing to the true descriptor.
ri Descriptor length field names a register containing data length.
xN Descriptor address is offset by the value in index register N

(N can be 0 - 7, as above).

SEPARATE STATIC OBJECT SEGMENTS

If a separate static object segment is desired, a joint pseudo—operation specifying static
should exist in the program.

L/IST OF PSEUDO-OPERATIONS
The pseudo-operations are listed below in alphabetical order. Additional pseudo-operations

are provided by the macro facility. See "Macros in ALM" (following this list of
pseudo-operations) for a further description of their syntax.

3-30 AG92-06

alm alm

acc /string/,expression

assembles the ASCII string <string> into as many contiguous words as are required
(up to 42). The delimiting character (/ above) can be any character other than
white space. The quoted string can contain newline and semicolon characters. The
length of the string is placed in the first character position in

acc format. If present, expression defines the length of the string; otherwise, the
length is the actual length of the quoted string. If the given string is shorter
than the defined length, it is padded on the right with blanks. If it is longer, it
will be truncated to the defined length.

aci /string/.expression
is similar to acc, but no length is stored. The first character position contains the
first character in aci format.

ac4 /siring/,expression ,
is similar to aci, but only the rightmost four bits of each ASCII character are
stored into the corresponding character position of a string of 4-bit characters. If
the given string is shorter than the defined length, it is padded on the right with
Zeros.

arg operand
assembles exactly like an instruction with a zero opcode. Any form of instruction
operand can be used.

bci /string/.expression
is similar to aci, but uses GBCD 6-bit character codes and GBCD blanks for
padding.

bfs name,expression
reserves a block of expression words with name defined as the address of the
first word after the block reserved.

bool name,expression
defines the symbol name with the logical value expression. See the definition of
logical expressions above under "Logical Expressions.”

bss name,expression
defines the symbol name as the address of a block of expression words at the
current location. The name can be omitted, in which case the storage is still
reserved.

call routine(arglist)
calls out to the procedure routine using the argument list at arglist. Both routine
and arglist can be any valid instruction operand, including tags. If arglist and the
parentheses are omitted, an empty argument list is created. All registers are saved
and restored by call.

dec numberl,number2,...,numberN

assembles the decimal integers numberl, number2, through numberN into consecutive
words.

3-31 AG92-06

alm alm

descd4a address(offset),length

desc6a address(offset),length

desc9a address(offset),length
generates one of the operand descriptors of an EIS multiword instruction. The
address is any arithmetic expression, possibly preceded by a pointer register
subfield as in an instruction operand. The offset is an absolute arithmetic
expression giving the offset (in characters) to the first bit of data. It can be
omitted if the parentheses are also omitted. The length is either a built~in index
register name (al, au, ql, x0, etc.) or an absolute arithmetic expression for the
data length field of the descriptor. The character size (in bits) is specified as
part of the pseudo-operation name.

desc4f] address(offset),length,scale

desc4ls address(offset),length,scale

desc4ns address(offset),length.scale

desc4ts address(offset),length,scale
generates an operand descriptor for a decimal string. The scale is an absolute
arithmetic expression for a decimal scaling factor to be applied to the operand. It
can be omitted, and is ignored in a floating-point operand. Data format is
specified in the pseudo-operation name: desc4fl indicates floating point, descdls
indicates leading sign fixed point, descdns indicates unsigned fixed point, and
descdts indicates trailing sign fixed point. Nine-bit digits can be specified by
using desc9fl, desc9ls, desc9ns, and desc9ts.

descb address(offset),length
generates an operand descriptor for a bit string. Both offset and length are in
bits.

dup expression
duplicates all source statements following the statement containing the dup. The
number of times that the statements are duplicated is equal to the value of the
expression. This value must be positive and nonzero. Also, dup statements may
not be nested.

dupend
terminates the range of a dup pseudo-operation.

eight
(see the even pseudo-operation)

end
terminates the source segment.

3-32 AG92-06

11/86

entry namel name2,...,nameN

generates entry sequences for labels namel, name2, through nameN and makes the
externally defined symbols namel, name2, through nameN refer to the entry
sequence code rather than directly to the labels. The entry sequence performs
such functions as initializing base register pr4 to point to the linkage section,
which is necessary to make external symbolic references (link, segref, explicit
links). The entry sequence can use (alter) base register pr2, index registers 0 and
7, and the A and Q registers. It requires pr6 and pr7 to be properly set (as they
normally are).

entrybound
places the current value of the location counter in the object_map entrybound
field. If more than one such operation is encountered, the last one is effective.
(See gate_macros.incl.alm). Setting the entry bound of the object segment’s
direciory entry is still necessary (see hcs_$set_entry_bound).

equ name,expression
defines the symbol name with the arithmetic value expression.

even
inserts padding (nop) to a specified word boundary.

ext_entry label{/code_label} {,size} {,name}
makes a probe—able entry sequence for label with a stack frame size of size and
with descriptors at label name. If you specify code_label, it is assigned the value
of the address of the code associated with the entry sequence.

firstref extexpressionl{extexpression2)
calls the procedure extexpressionl with the argument pointer extexpression2 the
first time (in a process) that this object segment is linked to by an external
symbol. If you omit extexpression2 and the parentheses, an empty argument list is
supplied. The expressions are any external expressions, including tags.

If extexpression2 exists, the actual argument of the trap procedure (extexpressionl)
is a pointer to the link to extexpression2. For example, suppose that the trap
procedure is an external pll procedurs and that the argument is a number in the
text section of the program containing the firstref statement, then the firstref
statement looks like

firstref trap_procStrap_proc (<*text>|firstref_argument)

where firstref_argument is a label on the number and the trap procedure looks
like

alm

3-33 AG92-06A

11/86

alm

trap_proc: proc(arg_ptr);
del arg_ptr ptr;
dcl based_ptr ptr based;
dcl arg fixed fin (35) based;
dcl number fixed bin (35);

number = arg_ptr-->based_ptr-->arg;

getlp
sets the pointer register pr4 to point to the linkage section. You can use
this with segdef to simulate the effect of entry. This operator can use
pointer register pr2, index registers 0 and 7, and the A and Q registers, and
requires pré6 and pr7 to be set properly.

include segmentname

inserts the text of the segment segmentname.incl.alm immediately after this
statement. The "translator™ (trans) search list is used to locate the segment
(see the search commands).

inhibit off
instructs assembler to turn off the interrupt inhibit bit (bit 28) in

subsequent instructions. This mode continues until vou use the inhibit on
pseudo—operation.

inhibit on

instructs assembler to turn on bit 28 in subsequent instructions. This mode
continues until you use the inhibit off pseudo—operation.

itp prno,offset,tag
generates an ITP pointer referencing the prno pointer register.

its segno,offset,tag
generates an ITS pointer to the segno segment, word offset <offset>, with
optional modifier tag. If the current location is not even, a word of padding

(nop) is inserted, which causes any labels on the statement to be incorrectly
defined.

join /text/namel,name2,.../link/name3,name4,.../static/names,names,....
appends the location counters namel, name2, etc., to the text section; appends
the location counters name3, name4, etc., to the linkage section; and appends
the location counters name5, nameb, etc., to the static section. Any number
of names can appear. Each name must have been previously referred to in a use
statement. Any location counters not joined are appended to the text section.
If vou give both link and static in join psendo-operations, a warning is
printed on the terminal.

3-34 AG92-06A

alm

link name,extexpression
defines the symbol name with the value equal to the offset from lp to the link

pair generated for the external expression extexpression. An external
expression can include a tag subfield. The name is not an external symbol, so

an instruction should refer to this link by "pr4|name,s*".

maclist keyword {save}
indicates how listing of statements generated by macro expansion is to be

done. The following keywords are accepted:

off
suppresses the listing of macro—generated statements and object code.

11/86 3-34.1 AG92-06A

alm alm

on
lists such statements and their associated object code.

object
lists only the object code .

restore
reverts the macro listing mode to a previously saved setting.

The save argument, if present, saves the current macro listing in a pushdown
stack. The default macro listing mode is on.

macro name
indicates the start of a macro definition. When a macro name is defined, it may
then be used as a pseudo—operation to trigger the expansion of the macro. See
"Macros in ALM" below for a complete description of the definition and
expansion of macros in ALM.

mod <expression>
inserts padding (nop) to an <expression> word boundary.

name objectname
specifies again the object segment name as it appears in the object segment. By
default, the storage system name is used.

PO 1 |
null

is ignored. This pseudo-operation is used for comments.

oct numberl,number2,...,numberN
is like dec, with octal integer constants.

odd
(see the even pseudo-operation)

Oorg expression
sets the location counter to the value of the absolute arithmetic expression
<expression>. The expression can only use symbols previously defined.

perprocess_static
turns on the object segment’s perprocess siafic swiich. See the description of the
run command for an explanation of perprocess static.

push expression
creates a new stack frame for this procedure, containing expression words. If
expression is omitted (the usual case), the frame is just large enough to contain
all cells reserved by temp, tempd, and temps8.

rem
(see the null pseudo-operation)

3-35 AG92-06

alm

11/87

return
is used to return from a procedure that has performed a push.

segdef namel,name2,...,nameN
makes the labels namel, name2, through nameN available to the linker for referencing from
outside programs, using the symbolic names namel, name2, through nameN. Such incoming
references go directly to the labels namel, name2 through nameN so the segdef
pseudo-operation is usually used for efining external static data. For program entry points,
the entry pseudo-operation is usually used.

segref segname,namel,name2,...,nameN
defines the symbols namel, name2, through nameN as external symbols referencing the
entry points namel, r:ame2, through nameN in segment segname. This defines a symbol with
an implicit base regi:ier reference.

set name,expression
assigns the arithmetic value expression to the symbol name. Its value can be reset in other set
statements.

short_call routine

calls out to routine usi ig the argument list pointed to by pr0. Only pr4 and pr6 are preserved

by short_call. short_return is used to return from a procedure that has not performed a
push.

sixtyfour
(see the even pseudo-operation)

source_line numi,num2,num3,num4 {,num5}
generates a statement map entry for statement num$ (default 1) of line num? in file num1
that starts after character num3 and has a length of numd.

source_seg numl,path {,num2 {,num3}}
generates a source map entry for file numl with pathname path, a unique id of num2, and a
date time contents modified clock value of num3. The unique id and dtcm will be looked up
if not specified.

temp namel(nl),name2(n2),...,nameN(nN)
defines the symbols namel, name2, through nameN to reference unique stack temporaries of
nl, n2, through nN words each. Each n’ is an absolute arithmetic expression and can be
omitted (the parentheses should also be omitted). The default is one word per namei.

a/m

3-36 AG92-06B

alm alm

temp8 namel(nl),name2(n2),...,nameN(nN)
is similar to temp, except that 8-word units are allocated, each on an §-word boundary.

tempd namel(nl),name2(n2),...,nameN(nN)
is similar to temp, except that nl1 (n2 through nN) double words are allocated, each on a
double-word boundary.

use name

assembles subsequent code into the location counter name. The default location counter is
".text.".

11/87 3-36.1 AG92-06B

alm alm

vfd T1L1/expressionl, T2L.2/expression2,..., TNLN/expressionN
is variable format data. Each expressioni is of type Ti and is stored in the next
Li bits of storage. As many words are used as required. Individual items can
cross word boundaries and exceed 36 bits in length. Type is indicated by the
letters "a" (ASCII constant) or "o" (logical expression) or none (arithmetic
expression). Regardless of type, the low-order Li bits of data are used, padded if
needed on the left. The Ti can appear either before or after Li

Restrictions: The total length of the variable format data cannot exceed 128
words. A relocatable expression cannot be stored in a field less than 18 bits long,
and it must end on either bit 17 or bit 35 of a word.

zero expressionl,expression2
assembles expressionl into the left 18 bits of a word and expression2 into the
right 18 bits. Both subfields default to zero.

MACROS IN ALM

The ALM macro facility provides a means for defining and using sequences of text to
be inserted at various points in an ALM program. Each such sequence of text, called
a macro, is defined by the use of the macro pseudo-operation in ALM. A macro
definition consists of all text following the line containing the macro pseudo—operation
until the character string, &end. The sequence of text is named by the symbol
appearing as the operand to the macro pseudo-operation.

At any point in a program subsequent to the definition of a macro, the macro name
can be used as a pseudo-operation in ALM. Whenever it is so used, ALM inserts the
text sequence defined as that macro.

The macro facility is purely text manipulative. It deals with macro definitions as a
continuous stream of text characters interspersed with control sequences. Each control
sequence begins with the & character. The control sequence &end terminates the
macro definition. When a macro is invoked by using its name as a pseudo-operation,
the macro definition is scanned from left to right. All text between control sequences
is copied, and variable information is inserted in place of the control sequences. The
resulting macro expansion is presented to ALM for assembly.

Macros may be given arguments by placing operands in fields corresponding to the
operands of a pseudo—operation. These arguments can be substituted into the expanded
copy of the macro as specified by various control sequences within the macro
definition. Control sequences are also provided to facilitate iteration, conditional text
selection, unique symbol generation, and other operations.

The macro facility also provides a set of special pseudo—operations that are distinct
from the regular ALM pseudo-operations. These special pseudo-operations allow for
the conditional assembly of source lines and the printing of messages to the user’s
terminal during assembly. The argument syntax of these pseudo-operations is the same
as that of macros, not the expressions and symbols of the ALM assembler.

3-37 AG92-06

alm alm

CONTENTS OF A MACRO

The body of a macro (i.e., the text starting on the line following the macro
pseudo-operation and ending just before the character string &end) can include any
text and control sequences which, when expanded, yield valid ALM source code. The
body of a macro can include invocations of other macros and even the definition of
other macros.

Macro definitions are shown in the assembly listing with their iniernal line numbers io
the left of the ALM source line number. (These internal numbers are used in
diagnostics produced by the macro expander.) Macros may be redefined, the later
definition replacing the earlier. Macros may also redefine all existing ALM operations
and pseudo—-operations.

An example macro is given below:

macro move_a_to_b

lda a
sta b
&end

INVOKING A MACRO

A macro is invoked by specifying its name as a pseudo—operation. Arguments to the
macro can appear in the variable field separated by commas. A comment may follow
the argument list, separated from it by white space or a double quote. Arguments to
macros that include spaces, tabs, newline characters, commas, or semicolons must be
enclosed in matching parentheses. The parentheses are stripped from the argument
during macro expansion. The use of parentheses allows macro invocations to extend
over several lines. Argument lists may also be continued on successive source lines by
following the last macro argument of a line with a comma. Leading white space
preceding the continuation of the argument list on the next line is ignored.

Code and statements produced by the macro facility are placed in the assembly listing
without source line numbers. Symbols used by a macro expansion appear in the
cross-reference listing as though they were referenced on the line of the macro
invocation. The listing of statements produced by macro expansion may be controiled
through the wuse of the maclist pseudo—-operation. See the description under

"Pseudo—-operations” above.

RESTRICT/ONS

Any macro definition that begins in an include file must end in that include file.

A macro must be defined before it is expanded. It can appear before its definition

within another macro definition, but that other macro may not be expanded until the
macro it invokes is defined.

3-38 AG92-06

alm alm

Macros may be invoked in code produced by macro expansions. The depth of such
recursion, however, must not exceed the current limit of 100.

L/IST OF CONTROL SEQUENCES

Character substitutions and conditional expansions at the time of macro expansion are
effected by the control sequences detailed below. The use of any ampersand followed
by any sequence not defined below is noted by ALM as an assembly error.

&0, &1, &2
the character & followed immediately by any positive decimal integer (< 100) is
replaced, upon expansion, with the corresponding argument passed to the macro
(see "Notes” and "Examples" below).

" The special sequence &0 causes a reference to a unique label at the start of the
macro expansion. The label is generated only if the &0 sequence is generated
within a macro.

&u
is expanded to be a unique character string of the form ...00000, ...00001, etc.,
that is different from any other such strings expanded with &u control.

&p .
is expanded to be the same string as the previous &u expansion.

&n
is expanded to be the same string as the next &u expansion.

&U
is expanded to be a unique character string of the form .._00000, .._00001;
however, multiple occurrences of &U within the same macro yield the same
string.

&(N)
indicates the beginning of an iiteration sequence. The text foilowing the &{(N and
up to but not including the next &) is expanded repeatedly (see "Iteration”
below).

&i
is expanded to the particular element of the iteration set for which the current
iteration is being performed (see "Iteration" below).

&X
is expanded into the decimal integer corresponding to the relative position of the
particular element of the iteration set over which the current iteration is being
performed.

&AN

is expanded to be the Nth argument following the -ag or -arguments control
argument to the alm command.

3-39 AG92-06

alm

&K
is expanded as a decimal number equal to the number of arguments in the
current macro invocation.

&k
is expanded as a decimal number equal to the number of elements in the current
iteration set.

N

2.1

[C'A8Y]
is expanded as a decimal number equal to the length in characters of the Nth
argument in the current macro invocation.

&&
is expanded to a single & character. This facilitates macro definitions within
macro expansions.

&FN
expands to a string constructed by concatenating all arguments to the macro
invocation, from the Nth onward, separated by commas. If N is not given, 1 is
assumed.

&FgN or &FQN
is similar to &FN, except that each argument is enclosed in parentheses as it is
concatenated to the expanded string. This conirol sequence should be used when
sublists of macro arguments are to- be passed lo other macros and there is a
possibility that some of these arguments may contain white space, newline
characters, etc.

&N
is similar to &FN, except that the elements of the current iteration set are
concatenated.

&fgN or &fQN
is similar to &FgN and &FQN, except that the elements of the current iteration
set are enclosed in parentheses.

&RM,N

is used to cause iteration over the arguments in a macro invocation, as opposed to
the iteration elements of a single macro argument. The use of &R affects the
operation of the next &(control sequence. The M is a decimal number equal to
the number of the first argument to be selected; N is a decimal number equal to
the number of the last argument to be selected. If N is missing or zero, it is
assumed to be equal to the number of arguments in the macro invocation. If M
is missing or zero, it is assumed to be 1 (see "Notes" below).

alm

3-40 AG92-06

alm alm

&l
marks the start of a selection group. The text following the &[and up to but
not including the matching &] is expanded conditionally. The elements of a
selection group are separated by the control sequence & . Each element can
contain other selection groups to a nesting depth of 10. When a macro is
expanded, only one element of a selection group is used. This element is chosen
by a control sequence preceding the & [control sequence.

&sN
selects the Nth eclement of the following selection group. All expanded text
between the &s and & [control sequences is interpreted as the decimal number N.
If N is zero or greater than the number of elements in the selection group, no
element is selected.

&=cl,c2
all expanded text between the &= and the next & [control sequence is broken
into two character strings. If no comma is found in the expanded text, c2 is
taken to be a null string. If the two strings are equal, by character string
comparison, the first element of the following selection group is used. Otherwise,
the second element, if present, is used.

&*=cl,c2
the &7= control sequence is identical to the &= control sequence, except that the
first element is selected if the strings are unequal, and the second, if present, is
selected if they are equal.

&>nl,n2

&<nl,n2

&>=nl,n2

&<=nl,n2
these control sequences are similar to the &= and &”*= control sequences, except
that the expanded text between this control sequence and the next &[control
sequence is interpreted as two decimal integers. If no comma is found, n2 is
taken to be zero. An arithmetic comparison of the numbers is performed, as
specified by the particular control sequence used. A result of true causes the first
element of the following selection group to be used. A result of false causes the
second element, if present, to be used.

&end
signifies the end of the macro definition. The statement containing the &end
control sequence is not part of the macro body, and hence, is not included as

drmateona

NOTES

Decimal numbers produced by &K, &Kk, and &x are generated with no leading blanks
or zeros. The number zero is generated as the single digit 0.

3-41 AG92-06

alm alm

Numeric arguments to &N, &(N, &FN, &fN, &FgN, &fqN, and &AN can be
comprised of from zero to three digits. These numbers must appear as such in the
unexpanded macro definition. If numeric text is to follow one of the above control
sequences, all three digits of N must be supplied.

The numbers used by &RM,N, as well as the strings and numbers used by the
relational and selection control sequences can be of any length. They appear in the
expanded text and need not necessarily be in the macro definition. These expanded
strings and numbers are, of course, not placed in the final macro expansion being
generated.

If a given macro argument is not specified in a particular invocation of that macro, a
null character string is used for that argument during macro expansion.

ITERATION

The macro facility provides the ability to map the expansion of a subset of a macro
definition over a set of elements, expanding that part of the definition repeatedly,
selectively substituting each element of the iteration set in turn. By means of this
technique, lists may be processed.

An iteration set consists of elements separated by commas. It has the same syntax as
the argument list of a macro invocaticn, including conventions on the use of
parentheses for quoting and continuation via the trailing comma. Two types of
iteration sets may be referenced in a macro expansion:

The argument list to a macro invocation itself may be used as an iteration set, in
which case the arguments of the macro invocation are the elements. This type of
iteration set is specified by means of the &R control sequence.

Any argument to a macro invocation may be used as an iteration set, if it. internally,
has the same syntax as an argument list t0 a macro invocation. This type of iteration
set is specified when &R is not used.

The text between the sequences &{ and &) is expanded once for each element in the
iteration set, in left to right order. If the second form of iteration set is used, the
number of the argument to the macro invocation may appear (one to three digits, no
digits are mapped into 1) immediately after the &(sequence. Any occurrence of the
sequence &i between the sequences &(and &) is replaced by the current element of
the iteration set. The sequence &x is replaced by the decimal number of the relative
position of that element in the iteration set (not the argument number, in the first
type of iteration set). Iterations may not be nested. Any iteration that starts in an
element of a selection group must end in that element of a selection group. No
iteration may end in any element of a selection group unless it started in that element
of that selection group.

3-42 AG92-06

alm

MACRO FACILITY PSEUDO-OPERATIONS

The macro facility provides a set of pseudo—operations in addition to the macro
pseudo—operation already described. These pseudo—operations are different from the
other pseudo-operations provided by the assembler insofar as the syntax of their
arguments, which is the syntax of macro invocation arguments, with all quoting and
continuation conventions of them, and not the syntax of other pseudo—operation
arguments to the assembler.

The use of these pseudo-operations, like all other ALM pseudo-operations, is not
limited to code produced by macro expansion. They can be placed anywhere in source
segments and include files, as well as in macro code, but the conditional
pseudo-operations can not be nested.

warn
prints out its first argument on the user’s terminal, preceded by the string "ALM
assembly:" and followed by a newline character. This argument, without the
prefix, is also placed in the program listing.

ife
the character strings that are the first and second arguments to ife are compared.
If they are the same character string, all assembler statements between the one
containing the end of the argument list to ife, and the next one containing the
string ifend in any context at all are assembled. No part of the line containing
the string ifend is assembled. If the first and second arguments are not equal,
none of these lines are assembled.

ine
the same as ife, but assembly of the text up to ifend proceeds only if the first
two arguments are not equal by character string comparison.

ifint
the first argument to the ifint pseudo-operation is inspected to see if it is a valid
decimal integer. If so, all assembler statements between the one containing the
end of the argument list fo ifint and the next one containing the string ifend in
any context at all are "If the first argument to ifint is not a valid integer, none
of these lines are assembled.

inint
the same as ifint, but assembly of the text up to ifend proceeds only if the first
argument is not a valid decimal integer.

alm

3-43 AG92-06

alm alm

ifarg
all of the arguments to the alm command following the -ag or -arguments
control argument are inspected, and compared with the first argument to ifarg If
any of these command arguments compare equal, by character string comparison,
to the first argument to ifarg, all assembler statements between the one containing
the end of the argument list to ifarg and the first one containing the string ifend
in any context at all are assembled. No part of the line containing the ifend is
assembled. If the first argument to ifarg does not appear among the arguments
following —-ag or -arguments, none of these lines are assembled.

inarg
the same as ifarg, but assembly of the text up to ifend proceeds only if the first
argument to inarg is not found among the arguments to the alm command
following —ag or -arguments.

In all of the conditional constructs above, the key string, ifend, must appear in
the same source segment or macro expansion as the statement containing the
conditional pseudo-operation. If the ifend key string appears in the ifend_exit
string, and the entire construct appears in a macro expansion, and the predicate
of the conditional construct is met (i.e., the statements are being assembled, not
skipped), the assembler ceases to take input from that macro expansion, as though
the last statement in that macro expansion had been assembled.

EXAMPLES

The following macro definitions show typical expansions:

macro load
1dé1 &2
gend

might be used as follows:

load x0, temp 1dx0 temp
or:

load a, (sp|3,%) lda sp|3,*

The use of parentheses in the second example causes the comma to be ignored as a
parameter delimiter. The macro definition:

macro test

lda &1

tpl &u

sta fast_minus
&U sta &2

gend

might be used as follows:

3-44 AG92-06

alm

alm

test a,b lda a
tpl .._00000
sta last_minus
.._00000: sta b

The following example shows how iteration is used. The macro definition:

macro table
&RE (vfd 18/8i,18/80
&)

& end

might be used as follows:

el: table 4,6,8,10 vfd 18/L4,18/e1
vfd 18/6,18/e1
vfd 18/8,18/e1
vfd 18/10,18/e1

The following example shows how conditional expansion can be used. The macro
definition:

macro meter

lda &1l

ife &2,on

aos meterword,al
i fend

&end

might be used as follows:

meter foo,on ida foo
aos meterword,al

The following macro shows how &X might be used. The macro definition:

macro calim
&(3 eppbp &i

spribp &2+EX%2
&)

eaq 2%&EXx-2

I1s 36

staq &2

call &1(82)

&end

might be used as follows:

callm sys,arg, (=1, (=14aError from ~d.))

3-45 AG92-06

alm

alm

yielding:
eppbp =1
spribp arg+1%2
eppbp =lkaError from ~d.
spribp arg+2%2
eaq 2%hL-2
11s 36
staq arg
call sys (arg)

The following macro definition shows how conditional expansion might be used:

macro
&RE (6=&x,18&[
&end

tab9g
vfd £;,6]09/6i6)

This macro might be invoked as follows:

tab9
expanding 1o:

vid

16,42,13,36,67

09/16,09/42,09/13,09/36,09/67

The following example shows how macros may be defined by macros, and used to

powerful effect. These macros allow a call like a PL/I call 1o be generated, with
descriptors.

The following macro is invoked to declare variables by specifying their address, data

type, and precision:

macro declare

macro decl_¢&1

epp0 &2

epp! =v1/1,6/83,17/0,12/¢&h
&&end

&end

This macro may be invoked as follows:

declare count,buffer+2,fixed, 17
or:
declare progname, (1p|x1ink,*),char, 32

These macro invocations cause the following macro definitions to be produced:

AG92-06

alm

alm

macro dcl_count

epp0 buffer+2

epp! =v1/1,6/fixed, 17/0,12/17
&end

macro dc1_progname

epp0 Ip|xlink,*

eppl =vi/1,6/char,17/0,12/32
&end

Assume that at some point in the assembly the statements:

equ char,21
equ fixed,1

defining the PL/I descriptor types for these data types appear.

The following macro definition, when invoked, generates a full PL/I call with
descriptors. Assume that the statement:

tempd argl (16)

appears at some point in the program.

macro gcall
&R2¢ (dcl_6&i
spri0 argl+2%§&x
spril argi+2%§K-2+2%&xX
&)
Idaq =v18/2%&K-2,18/0,18/2%8K-2,18/L
staq argl
call &1(argi)
&end

When the foliowing macro invocation is issued:
gcall program,count,progname

the following expansion is immediately produced:

dcl_count

spri0 argl+2#1

spril argl+2%3-2+2%]

dc1_progname

spri0 argl+2%3-2

spril argl+2%3-2+2%2

ldaq =v18/2%3-2,18/0,18/2%3-2,18/L
staq argl

call program (argl)

3-47 AG92-06

alm

alm_abs

This is further expanded when the dcl_count and dcl_progname macros are expanded
to:

epp0 buffer+2

eppl =v1/1,6/fixed,17/0,12/17
spri0 argl+2#%i

spril argl+2%3-24+2%]

epp0 Ip|xlink,*

eppl =v1/1,6/char,17/0,12/32
spri0 argl+2%2

spril argl+2%3-242%2

1daq =v18/2%3-2,18/0,18/2%3-2,18/4
staq argl

call program(argi)

which is precisely the code required for a full PL/I call.

Name: alm__abs, aa

SYNTAX AS A COMMAND

aa paths {-alm_arg} {-dp_args} {-control_args}
FUNCTION

submits an absentee request to perform ALM assemblies. The absentee process for
which alm_abs submits a request assembles the segments named and sends to the
printer and deletes each listing segment if it exisis. If you don’t give -output_file, an
output segment (path.absout) is created in your working directory. If you supply more
than one path, the first is used. If the segment to be assembled cannot be found, no
absentee request is submitted.

ARGUMENTS

paths
are pathnames of segments to be assembled.

alm_arg
can be the -list control argument to the alm command.

dp_args

can be one or more control arguments (except -delete) accepted by the dprint
command.

3-48 AG92-06

alm_abs alm_abs

CONTROL ARGUMENTS

~hold
specifies that alm_abs should not dprint or delete the listing segment.

~limit N, -li N
places a limit on the CPU time used by the absentee process. The parameter N
must be a positive decimal integer giving the limit in seconds. The default limit
is defined by your site for each queue. An upper limit is defined by your site
for each queue on each shift. Jobs exceeding the upper limit for the current shift
are deferred to a shift with a higher limit.

-output_file path, —of path
specifies that absentee output is to go to a segment with a pathname of path.

—queue N, -g N
is the priority queue of the request. The default queue is defined by your system
administrator. (See "Notes.")

NOTES

Control arguments and segment pathnames can be mixed freely and can appear
anywhere on the command line after the command. All control arguments apply to all
segment pathnames. If an unrecognizable control argument is given, the absentee
Tequest is not submitted.

Unpredictable results can occur if two absentee requests are submitted that could
simultaneously attempt to assemble the same segment or write into the same absout
segment.

When performing several assemblies, it is more efficient to give several segment
pathnames in one command rather than several commands. With one command, only
one process is set up. The links that need to be snapped when setting up a process
and when invoking the assembler need be snapped only once.

If the -queue control argument is not specified, the request is submitted into the
default absentee priority queue defined by the site and, if requested (via -list), the
listing files are dprinted in the default queue of the request type specified on the
command line (via dp_args). (If no request type is specified, the "printer" request
type is used.)

if requesied {via —iist} when the —queue controi argument is specified, the Iisting files
are dprinted in the same queue as is used for the absentee request. If the request
type specified for dprinting (via dp_args) does not have that queue, the highest-numbered
(i.e., the lowest priority) queue available for the request type is used and a warning is
issued.

3-49 AG92-06

and

answer

Name: and

SYNTAX AS A COMMAND

and {tf_args}

SYNTAX AS AN ACTIVE FUNCTION

[and {tf_args}]

FUNCTION

returns true if all the tf_args are equal to true, otherwise it returns false. If there
are no tf_args, it returns the and-identity "true". If any of the tf_args has a value
other than true or false, an error message is printed.

EXAMPLES

The command line

! and [st -ssw ([segs =x])]

returns true if all segments in the current working directory have their safety switches
on, or if there are no segments in the working directory.

The active function

[and [equal &r1 a] [equal &r2 bl]

inside an exec_com returns true only if the first argument to ec is "a" and the second
is "b".

Name: answer
SYNTAX AS A COMMAND

answer STR {-control_args} command_line
FUNCTION

provides preset answers to questions asked by another command.

3-50 AG92-06

answer

answer

ARGUMENTS

STR ‘
is the desired answer to any question. If the answer is more than one word, it
must be enclosed in quotes. If STR is —query, the question is passed on to the
user. The —query control argument is the only one that can be used in place of
STR.

command_line
is any Multics command line. It can contain any number of separate arguments
(i.e., have spaces within it} and need not be enclosed in quotes.

CONTROL ARGUMENTS

—brief, -bf
suppresses printing (on the user’s terminal) of both the question and the answer.

-call STR
evaluates the active function string STR to obtain the next answer in a sequence.
STR must be quoted if it contains command language characters. The surrounding
brackets must be omitted, as in "segs *.pll1". The return value "true" is translated
to "yes", and "false" to "no". All other return values are passed as is.

-match STR
answers only questions whose text matches STR. If STR is surrounded by slashes
(/), it is interpreted as a gedx regular expression. Otherwise, answer tests whether
STR is literally contained in the text of the question. Multiple occurrences of
-match and -exclude are allowed (see Notes below). They apply to the entire
command line.

—-exclude STR, —-ex STR
passes on, to the user or other handler, questions whose text matches STR. If
STR is surrounded by slashes (/), it is interpreted as a qedx regular expression.
Otherwise, answer tests whether STR is literally contained in the text of the
question. Multiple occurrences of -match and -exclude are allowed {(see Noies
below). They apply to the entire command line.

—-query
skips the next answer in a sequence, passing on the question to the user. The
answer is read from the user_io I/0 switch.

-then STR
supplies the next answer in a sequence.

—~times N

gives the previous answer (STR, -then STR, or -query) N times only, where N is
an integer).

3-51 AG92-06

answer answer

NOTES

Answer provides preset responses to questions by establishing an on unit for the
condition command_question, and then executing the designated command. If the
designated command calls the command_query_ subroutine to ask a question, the on
unit is invoked to supply the answer. The on unit is reverted when the answer
command returns to command level. See the Programmer’s Reference Manual for a
discussion of the command_question condition.

If a question is asked that requires a yes or no answer, and the preset answer is
neither "yes" nor "no", the on unit is not invoked.

The last answer specified is issued as many times as necessary, unless followed by the
-times N control argument.

The -match and -exclude control arguments are applied in the order specified. Each
-match causes a given question to be answered if it matches STR, each -exclude
causes it to be passed on if it matches STR. A question that has been excluded by
—-exclude is reconsidered if it matches a -match later in the command line. For
example, the command line

answer yes -match /fortran/ -exclude /fortran_io/
-match /“fortran_io/

answers questions containing the siring “fortran”, except that it does not answer
questions containing "fortran_io", except that it DOES answer questions BEGINNING
with "fortran_io".

EXAMPLES

To delete the test_dir directory without being interrogated by the delete_dir command,
type:

answer yes -bf delete_dir test_dir

To automatically see the first three blocks of an info segment named fred.info and
then be interrogated about seeing any more blocks, type:

answer yes -times 2 help fred

The help command prints the first block, then prints another block every time the
user answers yes. In this example, the first three blocks are printed before the user is
interrogated. Sequences of answers are especially useful in exec_coms and absentee
jobs. To supply the sequence of answers "yes, no, no, yes”, type:

answer yes -then no -times 2 -then yes command_line

To supply the sequence of answers "no, ask the user twice, yes, no", type:

answer no -query -times 2 -then yes -then no command_line

3-52 AG92-06

answer apl

To supply the answer “start_seg" once and call the temp_seg active function successive
times, type:

answer start_seg -call '"temp_seg args' command_line
To substitute the query "More?" for the one printed by help, type:

answer -call '"query More?" -bf help fo

Name: apl, vZapl

SYNTAX AS A COMMAND

apl {workspace_id} {-control_args}
FUNCTION

invokes the APL interpreter, optionally loading a saved workspace.
ARGUMENTS

workspace_id
is the pathname of a saved workspace to be loaded. The default is to load the
user’s continue workspace, if any, otherwise to provide a clear workspace.

CONTROL ARGUMENTS

—brief_errors, —bfe
prints short error messages. (Default)

~check, —ck
causes a compatibility error to occur if a monadic transpose of rank greater than
2 or a residue or encode with a negative left argument is encountered. (The
definition of these cases in Version 2 APL is different from Version 1.)

—debug, —-db
calls the listener (cu_$cl) upon system errors. This puts vou at a new command
level. The default is to remain in APL. This control argument is intended for
debugging apl itself.

-long_errors, -lge
prints long error messages. The short form of the message is printed, followed by
a more detailed explanation of the error.

-no_quit_handler, -ngh
ignores the quit condition. (Default: to trap all quits within APL)

3-53 AG92-06

apl archive

—-temp_dir path, -td path
changes the directory that is used to hold the temporary segments that contain the
active workspace to path. (Default: to use the process directory)

—-terminal_type STR, -ttp STR
specifies the kind of terminal being used. Possible values of STR are:

1050 TELERAY11 BITPAIRED
1030 TYPEPAIRED LA36

ASCII 2741 TEK4015
CORR2741 ARDS TN300
TEK4013

This control argument specifies which one of several character translation tables is
to be used by APL when reading or writing to the terminal. Since there are
several different kinds of APL terminals, each incompatible with the rest, it is
important that the correct table be used. Specifying a terminal type to APL
changes the terminal type only as long as APL is active. The default depends on
the user’s existing terminal type (see the set_tty command). These terminal types
default to the same APL terminal type: 1050, 2741, CORR2741, ARDS, TN300,
TEK4013, TEK4015, ASCII, LA36, TELERAY1l. All other terminal types default
to ASCII. The APL terminal types BITPAIRED and TYPEPAIRED are generic
terminal types that can be used with any APL/ASCII terminal of the appropriate
type.

-user_number N
sets the APL user number (returned by some APL functions) to N. (Default: 100)

NOTES

This command invokes the Version 2 APL interpreter, which replaces the obsolete
Version 1 APL interpreter.

For a complete description of the APL language, terminal conventions, and directions
for converting Version 1 APL workspaces, refer to Multics APL (AK95).

Name: archive, ac

SYNTAX AS A COMMAND

ac operation archive_path paths

FUNCTION

combines an arbitrary number of separate segments into one single segment. The
constituent segments that comprise the archive are called components of the archive

segment. For more information on how archives can be sorted and reordered, see the
archive_sort and reorder_archive commands.

3-54 AG92-06

archive archive

ARGUMENTS

operation
is one of the functions listed below under "List of Operations.”

archive_path
is the pathname of the archive segment to be created or used. The archive suffix
is added if you do not supply it. If the archive segment does not exist for
replace and append operations, it is created. The star convention can be used
with extraction and table of contents operations.

paths ‘
are the components to be operated on by table of contents and delete operations.
The star and equal conventions cannot be used. For append, replace, update and
extract operations, each path specifies the pathname of a segment corresponding to
a component whose name cannot be used. (Some operations may not require any
path arguments; refer to the specific operation for details.)

LIST OF OPERAT/ONS

The archive command performs a variety of operations that you can employ to create
new archive segments and to maintain existing ones. The operations are:

Table of Contents Operation

t
print the entire table of contents if no components are named by the path
arguments; otherwise print information about the named components only. Title
and column headings are printed at the top.

tl
print the table of contents in long form; operates like t, printing more
information for each component.

th
print the table of contents, briefly; operates like t, except that the title and
column headings are suppressed.

tlb
print the table of contents in long form, briefly; operates like tl, except that the
title and column headings are suppressed.

Append Operation
a
append named components to the archive segment. If a named component is

already in the archive, a diagnostic is issued and the component is not replaced.
At least one component must be named by the path arguments.

3-55 AG92-06

archive archive

ad
append and delete; operates like a2 and then deletes all segments that have been
appended to the archive.

adf
append and force deletion; operaies like a and then forces deletion of all
segments that have been appended to the archive.

ca
copy and append; operates like a, appending components to a copy of the new
archive segment created in your working directory.

cad
copy, append, and delete; operates like ad, appending components to a copy of
the archive segment and deleting the appended segments.

cadf

copy, append, and force deletion; operates like adf, appending components to a
copy of the archive segment and forcibly deleting the segments requested for
appending.

Replace Operation

T
replace components in, or add components to, the archive segment. When no
components are named in the command line, all components of the archive for
which segments by the same name are found in your working directory are
replaced. When a component is named, it is either replaced or added.

rd .
replace and delete; operates like r, replacing or adding components, then deletes
all segments that have been replaced or added.

rdf
replace and force deletion; operates like r and forces deletion of all replaced or
added segments.

cr
copy and replace; operates like r, placing an updated copy of the archive segment
in your working directory instead of changing the original archive segment.

crd
copy, replace and delete; operates like rd, placing an updated copy of the archive
segment in your working directory.

crdf

copy, replace, and force deletion; operates like rdf, placing an updated copy of
the archive segment in your working directory.

3-56 AG92-06

archive archive

Update Operation

u
update; operates like r except that it replaces only those components for which
the corresponding segment has a date-time modified later than that associated with
the component in the archive. :

ud :
update and delete; operates like u and deletes all updated segments after the
archive has been updated.

udf
update and force deletion; operates like u and forces deletion of all updated
segments.

cu
copy and update; operates like u, placing an updated copy of the archive segment
in your working directory.

cud
copy, update, and delete; operates like ud, placing an updated copy of the archive
segment in your working directory.

cudf

copy, update, and delete force; operates like udf, placing an updated copy of the
archive segment in your working directory.

Dejete Operation

d
delete from the archive those components named by the path arguments.

cd

copy and delete; operates like d, placing an updated copy of the archive segment
in the working directory.

Extract Operation

X
extract from the archive those components named by the path arguments, placing
them in segments in the storage system. The directory where a segment is placed
is the directory portion of ihe paih argumeni. The access mode stored wiith ihe
archive component is placed on the segment for the user performing extraction.
If no component names are given, all components are extracted and placed in

segments in the working directory. The archive segment is not modified.

xd

extract and delete; operates like x but deletes the component from the archive if
it is extracted successfully.

3-57 AG92-06

archive archive

xdf
extract, delete force and delete component; operates like xd, forcing deletion of
any duplicate names or segments found where the new segment is to be created.

xf
extract and delete force; operates like X, forcing deletion of any duplicate names
or segments found where the new segment is to be created.

NOTES

The process of placing segments in an archive is particularly useful as a means of
eliminating wasted space that occurs when individual segments do not occupy complete
pages of storage. Archiving is also convenient as a means of packaging sets of related
segments; it is used this way when interfacing with the Multics binder (see the bind
command description in this document).

The table of contents operation and the extract operation use the existing contents of
an archive segment; the other operations change the contents of an archive segment. A
new archive segment can be created with either the append or replace operation. In
each of the operations that add to or replace components of the archive, the original
segment is copied and the copy is written into the archive, leaving the original
segment untouched unless deletion is specified as part of the operation. Use of the
various operations is illustrated in the "Examples” at the end of this description.

The table of contents operation is used to list the contents of an archive segment It
can be made to print information in long or brief form with or without column
headings.

The append operation is used to add components to the archive segment and to create
new archive segments. When adding to an existing archive, if a component of the
same name as the segment requested for appending is already present in the archive
segment, a diagnostic message is printed on your terminal and the segment is not
appended. When several segments are requested for appending, only those segments
whose names do not match existing components are added to the archive segment.

The replace operation is similar to the append operation in that it can add
components to the archive segment, and therefore it is also used to create new archive
segments. However, unlike the append operation, if a component of the same name as
the segment requested for replacing is already present in the archive segment, that
component is overwritten with the contents of the segment. When several segments are
requested for replacing, those segments whose names do not match existing components
are added to the archive segment, as in the append operation.

The update operation replaces existing components only if the date-time modified of a
segment requested for updating is later than that of the corresponding component
currently in the archive segment. When a segment whose name does not match an
existing component of the archive segment is requested for updating, it is not added
to the archive segment.

3-58 AG92-06

archive archive

The delete operation is used only to delete components from archive segments. It
cannot delete segments from the storage system and is not analogous to the deletion
feature described below.

The extract operation is used to create copies of archive components elsewhere in the
storage system. The extract operation performs a function opposite to the append
operation.

In addition to the operations described above, there are two features, copying and
deletion, that can be combined with certain operations to modify what they do. Since
copying and deletion are features and not operations, they cannot stand alone, but
must always be combined with those operations that permit their use. The deletion
feature is distinct from the delete operation.

The copying feature can be combined with the append, replace, update, and delete
operations. Since an archive segment can be located anywhere in the storage system, it
is occasionally convenient to move the segment during the maintenance process or to
modify the original segment while temporarily retaining an unmodified version. When
the copying feature is used, the original archive segment is copied from its location in
the storage system, updated, and placed in your working directory.

The deletion feature can be combined with the append, replace, and update operations
to delete segments from the storage system after they have been added to or replaced
in an archive segment. The deletion can be forced to bypass the system’s safety
function, i.e., you are not asked whether to delete a protected segment before the
deletion is performed. (This is analogous to the operation of the delete -force
command.) Nothing is deleted until after the archive segment has been successfully

updated.

Deletion of segments (deletion feature) is not to be confused with deletion of
components from archive segments. The delete operation is a stand-alone function of
the archive command that operates only on components of archive segments, deleting
them from the archive. The deletion feature, on the other hand, performs deletions
only when combined with an operation of the archive command, and then deletes only
segments from the storage system after copies of those segments have been added to,
or used to update, archive segments.

The archive command can operate in two ways: if no components are named on the
command line, the requested operation is performed on all existing components of the
archive segment; if components are named on the command line, the operation is
performed only on the named components.

The star convention can be used in the archive segment pathname during extract and
table of contents operations; it cannot be used during append, replace, update, and
delete operations.

No commands other than archive, archive_table, archive_sort, and reorder_archive
should be used to manipulate the contents of an archive segment; using a text editor
or other command might result in unspecified behavior during subsequent manipulations
of that archive segment.

3-59 AG92-06

archive archive

Each component of an archive segment retains certain attributes of the segment from
which it was copied. These consist of one name, the effective mode of the user who
placed the component in the archive, the date-time last modified, the bit count, and
the date-time placed in the archive. When a component is extracted from an archive
segment and placed in the storage system, the new segment is given the name of the
component, the bit count of the component, and the mode associated with the
component for the user performing the extraction.

The date-time-modified value of a component has a precision of one tenth of a
minute. This means that a copy of a component modified less than a tenth of a
minute after the archived copy is not updated. Users who use exec_coms to update
archives should be aware of this limitation.

Date-time values are stored in ASCII without a time zone. The time is expressed
relative to the time zone set for the process that placed the component in the archive.
If the time zone set during the archive update operation differs from the zone set
when the component was first archived, the update will not be performed correctly.
This can cause a component to be updated needlessly, or prevent a component from
being updated even though changes were made to its corresponding segment. The time
zone of a process can be changed via the set_time_zone command.

The archive command maintains the order of components within an archive segment.
When new components are added, they are placed at the end. The archive sort or
reorder_archive commands can be used to change the order of components in an
archive segment.

The archive command cannot be used recursively. You are asked a question if the
command detects an attempt to use the archive command prior to the completion of
its last operation.

Because the replacement and deletion operations are not indivisible, it is possible for
them to be stopped before completion and after the original segment has been
truncated. This can happen, for example, if one gets a record quota overflow. When
this situation occurs, a message is printed informing you what has happened. In this
case, the only good copy of the updated archive segment is contained in the process
directory.

Archive segments can be placed as components inside other archive segments,
preserving their identity as archives, and can later be extracted intact.

When the archive command detects an internal inconsistency, it prints a message and
stops the requested operation. For table of contents and extraction operations, it will
have already completed requests for those components appearing before the place
where the format error is detected.

For segment deletions after replacement requests, if the specified component name is a
link to a segment, the segment linked to is deleted. The link is not unlinked.

3-60 AG92-06

archive archive

The archive command observes segment protection by interrogating you when
(unforced) deletion is requested of a segment to which you do not have write
permission. If you can obtain write permission (i.e., has modify permission on the
superior directory) and replies that the segment should be deleted, the segment is
deleted.

The archive command refers to the archive segment by full pathname (rather than
only the entryname portion) in all printed messages.

EXAMPLES

Assume that you have several short segments and wants to consolidate them to save
space. The working directory, >udd>Project_id>dir_one, might initially look like
the following:

list

Segments = 5, Lengths = 5.

rw 1 epsilon
rw 1 delta
rw 1 gamma
rw 1 beta

rw 1 alpha

You create an archive segment (using the append operation) containing four of the
five segments.

archive a greek alpha beta gamma delta
archive: Creating >udd>Project_id>dir_one>greek.archive

The working directory then has one more segment (the archive segment), and a table
of contents of the new archive segment shows the four components.

Tiet
=S

Segments = 6, Lengths = 6.

rw 1 greek.archive
rw 1 epsilon

rw 1 delta

rw 1 gamma

rw 1 beta

rw 1 alpha

3-61 AG92-06

archive

archive tl greek

archive

>udd>Project_id>dir_one>greek.archive

name

alpha
beta

gamma
delta

updated mode modified length
09/12/82 1435.0 rw 09/12/82 1434.2 Lk
09/12/82 1435.0 rw 09/12/82 143L4.2 257
09/12/82 1435.0 rw 09/12/82 143L4.2 694

09/12/82

After changing the segment delta, you
(using the replace operation) the segment epsilon to the archive segment. You also

delete the component gamma.

archive r greek delta epsilon
archive: epsilon appended to >udd>Project_id>dir_one>greek.archive

archive d greek gamma

1435.0 rw 09/12/82 143L4.2 109

replace it in the archive segment and appends

A table of contents new shows a different set of components:

archive t greek

>udd>Projeci_id>dir_one>greek.archive

updated

09/12/82
09/12/82
09/12/82
09/12/82

1435.0
1435.0
1437.5
1437.5

name

alpha
beta
delta
epsilon

You later replace the component alpha with an updated copy and deletes the storage
system segment alpha, causing the updated column of a table of contents to change
and a list of the working directory to show one less segment.

archive rd greek alpha

archive t greek

>udd>Project_id>dir_one>greek.archive

updated

09/12/82
09/12/82
09/12/82
09/12/82

1641.5
1435.0
1437.5
1437.5

name

alpha
beta
delta
epsilon

3-62 AG92-06

archive

archive

list

Segments = 5, Lengths = 5.

rw 1 greek.archive
rw 1 epsilon

rw 1 delta

rw 1 gamma

rw 1 Dbeta

In another directory, >udd>Project_id>dir_two, which contains a more recent
version of the segment alpha, you copy and update the archive segment, causing the
component alpha to be replaced and the updated archive segment to be placed in the
working directory.

archive cu <dir_one>greek

archive: Copying >udd>Project_id>dir_one>greek.archive

archive: alpha updated in >udd>Project_id>dir_two>greek.archive

list

Segments = 2, Lengths = 2.

rw 1 greek.archive
rw 1 alpha

archive t greek

>udd>Project_id>dir_two>greek.archive

updated name
09/12/82 1648.3 alpha
09/12/82 1435.0 beta
09/12/82 1437.5 delta
05/12/82 1k37.5 epsiion

ac t <dir_one>greek

>udd>Project_id>dir_one>greek.archive

updated name
09/12/82 16k1.5 alpha
09/12/82 1435.0 beta
09/12/82 1437.5 delta
09/12/82 1437.5 epsilon

3-63 AG92-06

archive archive_sort

Notice that the entry in the updated column for the component alpha differs in the
two tables of contents. Finally, you extract two components into the new working
directory, presumably to work on them.

archive x greek beta delta

list

Segments = 4, Lengths = 4.
rw 1 delta

rw 1 beta

rw 1 greek.archive
rw 1 alpha

Name: archive__sort, as
SYNTAX AS A COMMAND

as paths
FUNCTION

sorts the components of an archive segment. The components are sorted into ascending
order by name using the standard ASCII collating sequence. The original archive
segment is replaced by the sorted archive. For more information on archives and
reordering them, see the archive and the reorder_archive commands.

ARGUMENTS

paths
are the pathnames of the archive segments to be sorted. You need not supply the
archive suffix.

NOTES

There can be no more than 1000 components in an archive segment that is to be
sorted.

of the archive segment back into your original segment result in diagnostic messages
and preservation of the sorted copy in your process directory. If the original archive
segment is protecied, you are interrogated to determine whether it should be
overwritten.

3-64 AG92-06

archive_table archive_table

Name: archive__table, act

SYNTAX AS A COMMAND

act archive_path {starnames} {-control_args}
SYNTAX AS AN ACTIVE FUNCTION

[act archive_path {starnames} {-control_args}]
FUNCTION

returns the names of specified archive components in a specified archive segment. As
a command, archive_table prints one component name per line. As an active function,
it returns names individually requoted and separated by single spaces.

ARGUMENTS

archive_path
is the pathname of an archive segment, with or without the archive suffix. The
star convention is not allowed.

starnames
are optional component names to be matched against names of archive components. .
The star convention is allowed.

CONTROL ARGUMENTS

—-absolute_pathname, —absp

causes component names to be returned as absolute pathnames, of the form
ARCHIVE_DIR>ARCHIVE_NAME: : COMPONENT_NAME, rather than just the component

names.

-bit_count, -bc
returns the bit count of the selected components.

—-component_name, —cnm

returns only the component name portion of the selected components. It has no
effect if —no_name is selected. (Default)

—date_time_contents_modified, —dtcm

111rm th Anta_ts — tom e AifinA
TEWTNS i Gaie—ume-Conienis—inoaiiica

last updated in the archive.

AFf thha macen e
Ui e

—date_time_updated, —dtud
returns the date-time when the selected components were last updated in the
archive.

-header, -he
prints a header. Not accepted by the active function.

3-65 AG92-06

archive_table archive_table

-mode, -md
returns the access mode of the selected components.

-name, -nm
returns the name of the selected components. (Default)

-no_bit_count, —nbc
suppresses bit count information. (Default)

-no_date_time_contents_modified, —ndtcm
suppresses date-time-contents-modified information. (Default)

-no_date_time_updated, —ndtud
suppresses component update time information. (Default)

-no_header, —nhe
prints no header. (Default)

-no_name, -nnm
suppresses component name information.

-no_requote
does not requote component attribute groups.

-requote
causes the attributes of each component to be requoted as a single entity. This
control argument is ignored by the command. (Default)

NOTES ON ACTIVE FUNCTION

If -name is given, archive_table always requotes the component name (if ~component_name
is selected) or archive pathname (if —absolute_pathname is selected).

If more than one of -bit_count, —date_time_contents_modified, —date_time_updated,
-mode, and -name is supplied, the selected attributes are returned, separated by a
space. The order of items is always: name, date-time-contents-modified, mode,
date~time—updated, bit count; which is the same order found when using the archive
command’s "tl" key.

If -no_requote is used, the selected attributes for each component are returned
separated by spaces. If more than one component is specified, successive component
attributes are separated by a space.

If -requote is given, the selected attributes for each component are requoted separated

by spaces. If more than one component is supplied, then each component’s requoted
attribute group is separated from the others by a space.

3-66 AG92-06

archive_table area_status

EXAMPLES

The following examples assume an archive ("sample") with three components: "one",
"two", and "three (3)". Note that the practice of including characters such as " " in
segment names typically requires more complicated command line constructs and should
be avoided; it is included here only to clarify the requoting of names.

! act sample -he -nm -dtcm -dtud -mode -bc

>udd>A_Project>A_person>sample.archive

NAME UPDATED MODE MODIFIED LENGTH
cne 12/01/82_1513.4 r i2/01/82_1512.9 36
two 12/01/82_1513.4 r 12/01/82_1513.0 63
three (3) 12/01/82_1513.4 r 12/01/82_1513.2 g0

! do "do ""format_line "'"""name = "~a, length = ~a."""" gerfi1"" &f1"

t... ([act sample -m -bc])
name = one, length = 36.
name = two, length = 63.

name = three (3), length = 90.

! do '"do "'format_line """"item = ~a.,"""" ggrf1"" grfi"
t... ([act sample -nm -bc -no_requote])

item = one.

item = 36.

item = two.

item = 63.

item = three (3).

item = 90.

! format_line "bit count of component "''one"" is “a."

!... [act sample -nnm -bc one]
bit count of component '"one' is 26.

Name: area__status
SYNTAX AS A COMMAND
area_status virtual_pointer {-control_args}

FUNCTION

displays some information about an area.

3-67 AG92-06

area_status assign_resource

ARGUMENTS

virtual_pointer
| is a virtual pointer specifier to the area to be looked at (see Section 1 for a
l description of virtual pointers).

CONTROL ARGUMENTS

-leng, -lg

dumps the contents of each block in both octal and ASCII format.

—trace
displays a trace of all free and used blocks in the area.

NOTES

If the area has internal format errors, they are reported. The command does not
report anything about (old) buddy system areas except that the area is in an obsolete
format.

Name: assign__resource, ar

SYNTAX AS A COMMAND

ar resource_type {-control_args}
SYNTAX AS AN ACTIVE FUNCTION
[ar resource_type {-control_args}]
FUNCTION

calls the Resource Control Package (RCP) to assign a resource to the user’s process.
ARGUMENTS

resource_type
specifies the type of resource to be assigned. Currently, only device types can be
designated. The -device control argument is used to name a specific device to
assign. Other control arguments are used to indicate characteristics of the device
to be assigned. The following device type keywords are supported:

tape_drive

disk_drive
console

3-68 AG92-06

assign_resource assign_resource

printer
punch
reader

special
CONTROL ARGUMENTS

-comment STR, —com STR
is a comment string that is displayed to the operator when the resource is
assigned. If more than one string is required, the entire string must be in quotes.
Only printable ASCII characters are allowed. Any unprintable characters (like tabs
or new lines) found in this string are converted to blanks.

—density N, —den N
supplies the density capability characteristic of a tape drive. There can be more
than one instance of this argument. A tape drive is assigned that is capable of
being set to all of the indicated densities. The acceptabie values for this argument
are: 200, 556, 800, 1600, and 6250.

Note that the values permitted depend on the particular hardware on the system.

—device STR, —-dv STR
specifies the name of the device to be assigned. If used, other control arguments
that indicate device characteristics are ignored (see "Examples” below). If used
with -long, a message containing the name of the assigned device is printed on
the user’s terminal; otherwise, no message is printed. If found several times on
the command line, the last one supplied overrides any previous ones.

-line_length N, -1l N
supplies the line length of a printer. Its value must be one that is found in the
"line length"” field of a printer PRPH configuration card. If this field is not
given on a printer PRPH configuration card, this device characteristic is ignored
for this printer.

-long, -lg
prints all of the device characteristics of the assigned device. If not supplied,
only the name of the assigned device is printed.

-model N
specifies the device model number characteristic. Only a device that has this
model number is assigned. To find the acceptable model numbers, use
print_configuration_deck.

3-69 AG92-06

assign_resource assign_resource

-number N, -nb N
suppplies the number of resources to assign. All of the resources assigned have
the device characteristics indicated by any other arguments passed to this
command. If -number is not given, one resource is assigned.

~speed N
gives the speed of a tape drive. The acceptable values depend on the particular
hardware on the system and can be: 75, 125, or 200.

-system, -sys
indicates that the user wants to be treated as a system process during this
assignment. If not used or if the user does not have the appropriate access, then
the RCP assumes that this assignment is for a nonsystem process.

—-track N, -tk N
specifies the track characteristic of a tape drive. The value can be either 9 or 7.
If both -track and -volume are not given, a track value of 9 is used when
assigning a tape device.

—-train N, -tn N
specifies the print train characteristic of a printer.

-volume STR, -vol STR
specifies the name of a volume. If possible, the device assigned is one on which
this volume has already been placed. If this is not possible {e.g., the volume is
on a device assigned to a process) any available, appropriate, and accessible device
is assigned.

-wait {N}, -wt {N}
indicaies that the user wants to wait if the assignment cannot be made at this
time because the resources are assigned to some other process. The value N
designates the maximum number of minutes to wait. If N minutes elapse and a
resource is not yet assigned, an error message is printed. If N is not given, it is
assumed that the user wants to wait indefinitely.

NOTES

An assigned device still must be attached by a call to some I/0 module. If a device
is successfully assigned, the name of the device is printed. If the user requests a
specific device that is successfully assigned, the name of the device is not printed
unless the user asks for it

NOTES ON ACTIVE FUNCTION

The active function returns "true" if an assignment was successful or "false" if the
resource is unavailable. Other errors are reported by active_fnc_error_. The -long
control argument is not allowed. Use list_resources to obtain the name of the assigned
device(s).

3-70 AG92-06

assign_resource attach_audit

EXAMPLES

In the first example, the user issues assign_resource with the tape_drive keyword and
-model. The system responds with the name of the assigned device.

! ar tape_drive -model 500
Device tape_O4 assigned

In the next example, the user issues assign_resource with tape_drive and -device and
-long. The system responds with the name of the assigned device and the model
number, track, density, and speed characteristics.

! ar tape_drive -device tape_05 -iong

Device tape_05 assigned

Model = 500

Tracks = 9

Densities = 200 556 800 1600
Speed = 125

In the last example, the wuser issues assign_resource as an active function with
tape_drive and -model. The system returns "true" if a model 610 tape drive was
assigned, "false" if not.

! format_line [ar tape_drive -model 610]

true

Name: attach__audit, ata

SYNTAX AS A COMMAND

ata {old_switch {new_switch}} {-control_args}
FUNCT/ON

sets up a specified I/0 switch, with a stream_input_output opening, to be audited by
the audit_ 1/0 module.

ARGUMENTS
old_switch

is the name of an I/O switch to be audited. The default is user_i/o. If only
one switch is specified, it is the old_switch.

3-1 AG92-06

attach_audit attach_audit

new_switch
is the name of an I/0 switch to be used by the audit_ I/O module. If only
one switch argument is given, it is the old_switch. The default value for
new_switch is audit_i/o.<time>, where <time> has the value MM/DD/YY.hhmm.m.

CONTROL ARGUMENTS

-modes STR
set the modes on the switch being audited using STR as the mode string,
—pathname path, —pn path
specifies that path is the pathname of the audit file to use. If pathname is not
given, the audit file is in your home directory and named date.audit

—truncate, —tc
truncates the audit file if it already exists. If this control argument is not given,
the audit file is extended by default.

NOTES

If used with no arguments, attach_audit sets up auditing for the user_i/o I/0 switch
with input and output audited and editing on. Auditing of old_switch is done by
moving the attachment of old_switch to new_switch and then attaching old_switch to
new_switch via audit_. See the audit_ I/O module and the detach_audit command for
more information.

LIST OF AUDITING REQUESTS

A three—character sequence is used to make an auditing request: the audit trigger
character (™" by default), followed by the specific request character, followed by a
newline. An auditing request can either be alone on a line or have text preceding it
on the same line. When an unrecognized request is given, the entire line is treated as
a regular input line (with no special processing).

1
prints the combination of input and/or output being audited.

prints a brief description of available auditing requests.

enters the audit editor. The entry preceding this sequence becomes the current
line to be edited.

enters the audit editor, and processes any text preceding the sequence on the same
line as editing requests. If no text precedes the sequence, the effect is the same
as for le.

3-72 AG92-06

attach_audit attach_audit

la
expands abbreviations in the input line (see the abbrev command).

redisplays the input line and strips off the newline. Further input can then be
appended to the redisplayed line until another newline is typed, but no further
erase or kill processing is performed on the redisplayed portion. The redisplayed
line plus the appended input (if any) becomes the input line that is returned to
the I/0 module being audited.

instructs the audit_ I/0 module not to log the input line; this makes the input
line transparent.

specifies that the input line to which this is appended is deleted. This is used to
kill a line that has been redisplayed with the !r request.

'n
specifies no operation; this is useful when the !n follows another auditing request
sequence that you do not want interpreted.

NOTES ON AUDIT FILE

The audit file, by default, has the pathname:
>udd>Project_id>Person_id>date.audit

where date is the first eight characters (the date portion) returned by the date_time_

subroutine at the time of attaching, and is of the form MM/DD/YY. This pathname
can also be specified using active functions:

[home_dir]>[date].audit
The default audit file size is unlimited, and the audit file can become a multisegment
Audit files contain binary information. Use the display_audit_file command to print
the contents of audit files.

The audit editor operates on entries, rather than lines, and the entry type identifiers
are:

EL edit line
IC input characters
IL input line

OC output characters

3-73 AG92-06

attach_audit attach_audit

TC trace of control operations
TM trace of modes operations

NOTES ON AUDIT EDITOR

The audit editor is invoked by typing the e or E auditing request sequence described
above. It edits and executes lines that have been logged by the audit_ I/0O module.
The syntax of editing requests is similar to that of qedx requests (see the gedx
command in this manual). Any number of requests can be on the same line and
spaces are ignored.

Addressing is done the same way as in the qedx editor, with two exceptions. The ".”
is a request for self-identification rather than an indicator for the current entry, and
addresses are expressed in terms of entries in the audit file rather than lines in a
buffer. The edit buffer contains only one entry at a time. If the default search tag
is in use, as is the case unless specifically overridden, the absolute entry number refers
to the number of entries, with the default search tag, from the beginning of the file.
Similarly, a relative entry address refers to the number of entries, with the default
search tag, before or after the current address.

LIST OF EDITING REQUESTS

The audit editor requests are presented below in two categories: familiar (gedx-like)
requests, and special requests.

FAMILIAR REQUESTS

s/REGEXP/STR/

substitutes the string STR for occurrences of the regular expression REGEXP in
the edit buffer.

ADR

locates the entry with address ADR. If ADR is not followed by a request, the
audit file entry is printed. An ADR can contain an absolute entry reference at its
beginning, relative addresses in any portion, and regular expressions in any portion.
If a regular expression in the address is preceded by the less than character (<), a
backward search is done to find a match for the regular expression. An absolute
address is either a number, or the dollar sign (§) to indicate the last entry in the
audit file.

{ADR1,ADR2}p ,

prints the current entry if no ADR is specified; prints the addressed audit file
entry if a single address is specified; prints entries from address 1 through address
2 if two addresses are specified.

prints the current entry number. This value is dependent on the current default
search tag. If the default search tag changes, the current entry may also change.

3-74 AG92-06

attach_audit attach_audit

..STR

passes the string STR to the command processor and then returns to the audit
editor.

quits the editor and returns the current line to the I/O module being audited,
with the !e or !E sequence included.

SPECIAL REQUESTS

expand, .expand
expands abbreviations in the edit buffer (see the abbrev command).

off, .off
disables auditing of input and output in the editor.

on, .on
enables auditing of input and output in the editor.

1, .1
addresses the last audit file entry returned by the audit editor.

r[STR], .r[STR]
quits the editor and returns the string STR to the I/O module being audited. If
STR is not specified, the r request quits the editor and returns the edit buffer.

n, .n
returns a newline character.

type, .type
prints the audit file entry type of the current position.

exec, .exec ‘
passes the edit buffer to the command processor and returns to the audit editor.

d/STR/, .d/STR/
sets the default search tag to the string STR. If STR is only one character, only
the first character of the tag is used to determine if an entry is seen (in
counting entries and doing searches). If STR is two characters, the match is made
on both characters of the tag.

!

prints a brief description of available audit editor requests.

o~)

ey

overrides the default search tag for those requests following on the same line (i.e.,
any tag is matched). A newline reestablishes the default search tag.

3-75 AG92-06

attach_audit attach_audit

NOTES

The REGEXP field of a substitute request is interpreted as a qedx-style regular
expression. The STR field of a substitute request is also interpreted as in gedx, and
the & convention is supported. If REGEXP is null in a substitute request, the last
REGEXP specified in a previous substitute request is used.

No lines in the audit file are changed by the editor; only copies are modified.

If execution of a request should fail for any reason, the processing of that request
line is aborted, you are informed of the failure and a new request is prompted for.

Note that this means you are left in the editor when a problem is encountered
executing a request line associated with an E audit request.

The audit editor may be entered recursively, and each level of the editor has its own
memory for the last returned line from its level.

If the audit editor is being audited, the audit editor can be invoked from within the
editor. For every level of the editor, a distinct last returned line is remembered.

EXAMPLES

To set up with a default audit file in- your home_dir:

! ata

To set up with an audit file in the process_dir:

! ata -pn [pd]>my_audit_file

To set the audit file to be a circular file of 5 records:

! io modes user_i/o audit_file_size=5

To re-execute the last use of the pll command:

b o</7pl1/rlE

To execute the above command line again:

PoarlE

In the example given below, there has been such extensive use of the erase character
that you may want to see it displayed. In order to verify the input line given, it can
be replayed by using the !'r requesi. The ! at the beginning of the line indicaies lines
typed by you.

! str#ty =#-print_mod########modes red!r
stty -pmodes red

3-76 AG92-06

attach_audit attach_audit

This line does not end with a newline character, so the next character typed would
appear immediately following the "red” and on the same line. In this example,
-pmodes was entered instead of —modes. Typing the following on that same line:

Y #RREA i ##modes red!r

does not correct the error, but returns:

stty -pmodes redmodes red

The erase character cannot be used to correct portions of a line that has already been
replayed. The current situation can be corrected as follows:

! stty -pmodes redmodes redie

i

L p
stty -pmodes redmodes red

! s/redmodes red/red/ s/pmodes/modes/p
stty -modes red

! .r

The above procedure enters the audit editor with the le request. The p request prints
the contents of the edit buffer. If no argument is given for p, the most recent input
line is printed. Corrections are made to the line and the modified line is printed.
The request .r exits the audit editor and returns the line to the I/O module being
audited.

An alternative procedure is the following:

! stty -pmodes redmodes red!n
stty -modes red

The request n suppresses the entire input line and it is then reentered correctly.

In the first example given, there are two ways to set the red shift mode. It can be
turned off and then on again, as follows:

A

! stty -modes “red

! oLlLrlE

The .1t enters the audit editor. This puts the last entry returned by the audit editor
in the edit buffer, then returns the contents of the buffer. To request the stty
-modes “red command, type:

! </"stty/p.rlE
stty -modes “red

This does a backward search in the audit file for an input entry beginning with stty,

puts this entry in the edit buffer, prints the contents of the edit buffer, and returns

the contents of the edit buffer.

3-71 AG92-06

attach_audit attach_lv

To see the last five input entries in the audit file at this point, type:

! -L,plE
s/redmodes red/red/ s/pmodes/modes/p
.r
stty -modes “red
.d.rlE

</"stty/p.rlt

To see the last five output entries prior to this invocation of the audit editor, type:

! .d/0/

' -h4,p
stty -pmodes red
stty -pmodes redmodes red
stty -pmodes redmodes red
stty -modes red
stty -modes “red

Note that the entries that are the result of a replay (Ir) do not end in a newline
character, so they run together on the same line when being printed.

Name: attach__lv, alv

SYNTAX AS A COMMAND

alv volume_name

FUNCTION

calls the resource control package (RCP) to attach a logical volume.
ARGUMENTS

volume_name
specifies the name of the volume to be attached.

ACCESS REQUIRED

A user must have rw access to the logical volume to be attached, as defined by the
access control segment (ACS) associated with the logical volume.

3-78 AG92-06

attach_lv basic

NOTES

Attaching a logical volume involves informing the storage system that a particular
volume is attached for a particular process. A logical volume (unless it is a public
logical volume) must be attached for each process that wishes to use it. To be
attached, the logical volume must first be physically mounted. This mounting involves
mounting all of the physical volumes that compose the logical volume.

If the specified volume is not already mounted, the system operators are requested to
mount the volume, if appropriate resources are available. The attach_lv command does
not return until the volume is mounted or the operator has denied the request.

The status command issued with the -device control argument prints the name of the
iogical volume on which a segment resides.

Name: basic

SYNTAX AS A COMMAND
basic path {-control_arg}
FUNCTION

invokes the BASIC compiler to translate a segment containing BASIC source code.
Either the compiled code is executed, or a standard object segment is created to be
executed at a later time.

ARGUMENTS

path :
is the pathname of the segment to be translated. The basic suffix need not
appear as part of the pathname. It musi, however, be the last componeni of the
name of the source segment.

CONTROL ARGUMENTS

—compile
requests BASIC to compile the program and generate a bindable Multics standard
object segment. The resulting object segment is placed in the user’s working
directory.

~time N
where N is a decimal number that requests a limit of N seconds on the execution
of the BASIC program. If the limit is exceeded, the user is asked whether to
continue.

3-79 AG92-06

basic

NOTES

The —compile and —-time control arguments are incompatible.

If the —compile control argument is not specified, the compiled code is then executed
and not saved for future execution. If the -compile control argument is specified, a
standard object segment is created for subsequent execution.

For a description of the BASIC ianguage on the Muitics sysiem, consuli the Mu/tics
BAS/C manual (AMS2).

For information on using the FAST subsystem to compile BASIC source code, refer to
the Multics FAST Subsystemn Users' Guide (AU2S5).

Name: before, be

SYNTAX AS A COMMAND

be STRA STRB

SYNTAX AS AN ACTIVE FUNCTION
[be STRA STRB]

FUNCTION

returns the string preceding the first occurrence of STRB in STRA. If STRB does not
occur in STRA, the entire string STRA is returned.

EXAMPLES

' string [before abcdefl23defabc def]
abc

! string [before abcdef g]
abcdef

! string [before abcdef123 abcl]

! string [format_line XY"aZZ [before 1.4596e+17 71]
XY1.4596e+122

before

3-80 AGI92-06

before_journal_status before_journal_status

Name: before__journal__status, bjst
SYNTAX AS A COMMAND

bjst {PATHS} {-control_args}
FUNCTION

displays status information for before journals that you have access to open. This
command is part of the command level interface to Multics data management (DM)
(see the Programmer’s Reference Manual).

ARGUMENTS

PATHS
are the relative pathnames of before journals for which status is desired. If you
supply no pathnames, status information for all journals in use in the process is
displayed. If you don’t give the .bj suffix, it is assumed.

CONTROL ARGUMENTS

-all .
displays the status of all journals active in the current invocation of the data
management system (DMS) that you have access to open.

-brief, -bf
displays the pathname, unique identifier, usage state or activity, control interval
size, and control intervais in the before journal for each journal specified that is
either in use or not in use (see "Examples”).

-long, -lIg

for each journal specified that is in use, displays, besides the above information,
the disposition of control intervals in use, i.e., if they are buffered, put, flushed,
or on disk; the last time a control interval was queued or written; the time the
header was updated; the last record id; the status of images not yet written on
disk or not being flushed; and the number of users and transactions using the
journal. For each journal specified that is not in use, displays, besides the
information given by -brief, the time the header was updated. (See "Examples.")

If you give neither —brief nor -long, the command yields the information supplied by

1
-brief plus the disposition of control intervals in use at the time of the request if the
journal(s) specified is in use.

3-81 AG92-06

before_journal_status before_journal_status

EXAMPLES

The example below requests the status, in long form, of the system_low system default
before journal, which is in use.

I bist >site>dm>system low>system default -lg

pathname: >site>Data_Management>system_low>system_default.bj
journal uid: 132233107561
activity: in use
control interval size: L4096 bytes
control intervals: 4000
control intervals used: 86
last control interval
buffered: 86
put: 86
flushed: 86
o disk: o 86"
time last control interval
queued: 01/14/85 1104.9 est
written: 01/14/85 1104.9 est
time header updated: 01/14/85 1104.9 est
last record id: 000001260013
images not on disk: 0
images being flushed: 0
users: 2
transactions: 1
where:
pathname

is the pathname of the before journal

journal uid
is the octal unique identifier of the before journal

activity
is "in use" if a process currently has the before journal open, "not in use"
otherwise.

control interval size
is the size of each control interval in the before journal, in bytes. Currently 4096
bytes is the only supported size.

control intervals
is the number of control intervals in the before journal

3-82 AG92-06

before_journal_status before_journal_status

controi intervais used
is the number of control intervals in the before journal containing before images
still needed to roll back modifications made by a transaction. Images that are not
needed. include those that have. already been. used in a complete rollback and
those for a transaction that has ended.

last control interval buffered
indicates the last control interval put in a special buffer used for before journals.

last control interval put
indicates the last control interval put into the before journal.

last control interval flushed
indicates the last control interval flushed to disk.

last control interval on disk
indicates the last control interval safely on disk.

time last control interval queued
is the last time a before image was put in the before journal

time last control interval written
is the last time a control interval was written to disk.

time header updated
is the last time the header of the before journal was written.

last record id
is the address of the last before image in the journal.

images not on disk
is the number of images not written to disk yet.

images being flushed
is the number of before images for which a flush from memory to disk has been
requested.

users
is the number of users with openings.

transactions
is the number of active transactions in the before journal

3-83 AG92-06

before_journal_status binary

The example below requests the status, in long form, of the system_low system
default before journal, which is not in use.

!' bjst >site>dm>system_low>system_default -1g

pathname: >site>dm>system_default.bj
journal uid: 127120202215

activity: not in use

control interval size: 4096 bytes

control intervals: L4000

time header updated: 08/26/84 1228.6 edt

Name: binary, bin
SYNTAX AS A COMMAND

bin values

SYNTAX AS AN ACTIVE FUNCTION

[bin values]
FUNCTION

returns one or more values in binary.
ARGUMENTS

value
is a value to be processed. The last character of value indicates its type.
Acceptable types are binary (b), quartenary (q), octal (o), hexadecimal (x), and
unspec (u). Any valid PL/I real value is allowed. The absence of any specifier
means decimal. The unspec value is limited to eight characters.

EXAMPLES

! string [binary 657.40o]
110100111.1

:

1 s
1
i

el m i
QT
o«
[

n
1
i

in i
000100110

3-84 AG92-06

bind bind

Name: bind, bd

SYNTAX AS A COMMAND

bd path_specs {-control_args}
FUNCTION

produces a single bound object segment from one or more unbound object segments,
which are called the components of the bound segment. You can use archive segments
or unarchived segments to specify pathnames of object components. !

ARGUMENTS

path_specs
can be one or more of the following logically concatenated in a left—-to-right
order to produce a single sequence of input component object segments.

-archive PATHs, —ac PATHs
indicates that each PATH is the pathname of an archive segment containing
one or more object segments. If the .archive suffix does not exist, it is
assumed. (All arguments following -archive but preceding the next control
argument arc considered to be pathnames.)

-segment PATHs, —~sm PATHs
indicates that each PATH is the pathname of a stand-alone segment. The
pathname is tried as given, ie., nc suffixes are assumed. (All arguments
following -segment but preceding the next control argument are considered to
be pathnames.)

PATHs
functions exactly as —archive PATHs.

CONTROL ARGUMENTS

-bindfile path, -bdf path |
specifies the name (not pathname) of the bindfile to be used to control the |
binding process. The suffix .bind is assumed. (See "Notes on Bindfile" below.) |

-brief, -bf
suppresses printing of warning messages.

—-force_order, —fco
is equivalent to including a Force_Order statement in the bindfile. Since the need
to use Force_Order is often temporary and caused by update archives that have
had components deleted, this is preferable to using the Force_Order statement
because you need only use it while the temporary condition exists.

3-85 AG92-06

—-force_update path_specs, —fud path_specs
is similar in function to -update except that the path_specs (see the path_specs
argument above) specified following —force_update need not exist. Any path that
exists is treated the same way as for —-update and any that doesn’t is simply
ignored. This is useful for constructing abbreviations used for binding objecis that
may or may not have update paths in various locations.

-list, -Is
produces a listing segment whose name is derived from the name of the bound
object segment plus a suffix of list. The listing segment is generated to dpriat; it
contains the bound segment’s bind control segment (see "Notes on Bindfile"), its
bind map, and that information from the bound object segment printed by the
print_link_info command. You can’t invoke -list with —map. In the absence of
-list or —map, no listing segment is generated.

-map
produces a listing segment (with the.suffixes list and map) that. contains only .the
bind map information. It is incompatible with -list In the absence of -list or
-map, no listing segment is generated.

i —update path_specs, ~ud path_specs

indicates that the following list of path_specs (see the path_specs argument above)
specifies update rather than input object segments. The update object segments are
matched against the input object segments by object segment name. Matching
update object segments replace the corresponding input object segments; unmatched
ones are appended to the sequence of input object segments. If several update
object segments have the same name, only the last one encountered is bound into
the bound segment.

NOTES

Compilers and the assembler produce unbound object segments. Binding has three
benefits: the reduction of storage fragmentation, the prelinking of external references
between the components, and the reduction of size of address space necessary to
execute the components.

Each of these benefits saves CPU time and storage usage if the set of components
bound is used with regularity. This reduction in usage translates directly into lower
charges for the users of the bound segment. System efficiency is also increased by
binding together common sets of programs. A reference in one component to an entry
point defined in another component is resolved during the binding. This prelinking
avoids the cost of dynamic linking, and it also ensures that the reference is linked to
the component regardless of the state of a process at the moment that dynamic
linking takes place. References to an entrypoint are prelinked unless the contrary is
specified by an instruction in the bindfile. The bindfile is a segment containing
instructions that control various aspects of the binding operation (see "Notes on
Bindfile" below). (See the print_link_info command.)

bind

3-86 AG92-06

bind bind

NOTES ON OUTPUT

The binder produces as its outpul two segments: an executable bound object segment
and an optional, printable ASCII listing segment. The name of the bound segment is,
by default, derived from the entryname of the first input archive segment encountered
by stripping the archive suffix from it. The name of the listing segment is derived
from the name of the bound segment by adding the list suffix to it. Use of the
Objectname master statement in the bindfile (see "List of Master Keywords” below)
allows the name of the bound segment to be stated explicitly. In addition, use of the
Addname master statement in the binding instructions adds additional segment names to
the bound segment. The primary name of the bound segment must not be the same
as the name of any component.

NOTES ON BINDFILE SELECTION

As the binder is examining the archive components and loose segments, it is also |
looking for a bindfile. Any segment whose name ends with the suffix "bind" is

considered a bindfile. If you specify -bindfile, only bindfiles by that name are l
considered and the last one by that name is selected; otherwise the first bindfile |
found among the input segments and all bindfiles among the update segments are

considered and the last one is selected. If more than one bindfile is found among the |
input segments, the second through last are ignored and generate a warning. i

NOTES ON BINDFILE

The bindfile is a segment containing symbolic instructions that control the operation of
the binder. The syntax of the bindfile siaiemenis consist of a keyword followed by
zero or more parameters and then delimited by a statement delimiter. Master
statements pertain to the entire bound object segment; normal statements pertain to a
single component object within the bound segment. Master statements are identified by
master keywords that begin with a capital letter;, normal keywords begin with a
lowercase letter. A keyword designates a certain action to be undertaken by the binder
pertaining to parameters following the keyword.

LiST OF MASTER KEYWORDS

Objectname
the parameter is the segment name of the new bound object.

Order
the parameters are 2 list of objectnames in the desired binding order. In the
absence of an order statement, binding is done in the order of the input
sequence. If an Order statement is present in the bindfile, every object segment
being bound must be mentioned in its parameter list.

Force_Order
same as Order except that the list of parameters can be a subset of the input
sequence, allowing the archive segments to contain additional segments that are not
to be bound (e.g., source programs). However, the parameter list must include all
segments mentioned in objectname statements.

3-87 AG92-06

bind bind

Partial_Order
same as Order except that the list of parameters can be a subset of the input
sequence; the named objectnames are placed in the bound output segment in the
order specified and the remaining objects are placed after those named, in the
order of the input sequence.

Ignore
the parameters can be a subset of the input sequence, indicating objects not

included in the bound output segment. The ignored obiects are still mentioned

the bound segment’s source map.

Global
the single parameter can be retain, delete, or no_link. The parameter selected
pertains to all component object segments within the bound segment. A global or
explicit statement concerning a single component object or a single external symbol
of a component object overrides the Global statement for that component object
‘or symbol.

Addname
the parameters are the symbolic names to be added to the bound segment. If
Addname has no parameters, it adds to the bound segment the segment names and
synonyms of those component objects for which at least a single entrypoint was
retained.

No_Table
does not require parameters. It omits from the bound segment the symbol tables
from all the component symbol sections containing symbol tables. If you don’t
give this keyword, all symbol tables are kept.

Perprocess_Static
does not require parameters. It turns on the perprocess_static flag of the bound
segment, which prevents the internal static storage from being reset during a run
unit.

! The Order, Force_Order, and Partial_Order statements are mutually contradictory; only
one of these can be present in any bindfile.

If you supply no bindfile, the binder assumes default parameters corresponding to the
following:

Objectname: segment name of the first input archive file.
Global: retain; /*regenerate all definitions%/

3-88 AGI2-06

bind bind

LIST OF NORMAL KEYWORDS

objectname
the single parameter is the name of a component object as it appears in the
archive segment. The objectname statement indicates that all following normal
statements (up to but not including the next objectname statement) pertain to
the component object whose name is the parameter of the objectname statement.

synonym
the parameters are symbolic segment names declared to be synonymous to the
component object’s objectname. When b is declared to be a synonym for a,
references (in the bound components) of the form b or b$x (any x) are resolved
during binding by searching for a definition of b or x in component a. Give
the synonym instruction if such references are to be prelinked. The synonym
instruction also affects dynamic linking so that if b is a reference name for
the bound segment, then references of the form b or b$x are resolved by
searching component a. In this case the synonym instruction may reduce the
cost of dynamic linking, and it avoids possible ambiguities when two
components contain definitions for the symbol b. State explicitly in a
synonym statement all the normally used segment names of a component object.

For example, the create and create_dir commands are implemented in one
procedure, and both have abbreviations; thus a bindfile for the bound segment
in which this procedure resides contains

objectname: create;
synonym: create, cr, create_dir, cd;

Failure to state segment names results in inefficient linker performance.

retain
the parameters are the names of entrypoints defined within the component object
segment that you wish to retain as entrypoints of the bound object segment.

delete
the parameters are the names of entrypoints defined within the component object

segment that you don’t wish to be retained as entrypoints of the new bound
segment.

no_link

the parameters are the names of entrypoints that are not to be prelinked during
binding. This statement implies that the specified names be retained.

The retain, delete, and no_link statements are considered exclusive. An error message

is displayed if the binder recognizes that two or more such statements were made
regarding any single entrypoint.

11/86 3-89 AG92-06A

global
the single parameter can be retain, delete, or no_link. The parameter selected
becomes effective for all entrypoints of the component object. An explicit retain,
delete, or no_link statement concerning a given entrypoint of the component
object overrides the global statement for that specific entrypoint. A global
no_link causes all external references to the component object to be regenerated
as links to entrypoints; this ailows execution time substitution of such a
component by a free-standing version of it for debugging purposes, for example.

..__bi-

does not require parameters. It retains the symbol table for the component and is
needed to override the No_Table master keyword.

L/ST OF BINDFILE DELIMITERS

keyword delimiter used to identify a keyword followed by one or more
parameters. A keyword that is followed by no parameters is delimited by a
statement delimiter..

; statement delimiter

, parameter delimiter. The last parameter is delimited by a statement delimiter.

/% begin comment.

*/ end comment.

NOTES ON ERROR MESSAGES

The binder produces three types of error messages. Messages beginning with the word
"Warning” do not necessarily represent errors, but warn you of possible inconsistencies
in the input components or bindfile. Messages beginning with the word "bind"
normally represent errors in the input components. Errors detected during the parsing
of the bindfile have the format:

ERROR J SEVERITY 3 iIN LINE N

or
WARNING J IN LINE N

where J is the error number and N is the line number of the erroneous statement. If
an error is detected during parsing, the binder aborts because it cannot bind according
to your specifications.

The message

“"bind: Fatal error has occurred; binding unsuccessful."

indicates that it was impossible for the binder to produce an executable object segment

« because of errors detected during binding.

11/86

3-90 AG92-06A

bind

EXAMPLES

bind

The bindfile for the debug command, which is named bound_debug.bind, is as follows:

Objectname:
Global:
Addname;

objectname:
synonym:
retain:

objectname:
retain:

objectname:
retain:

bound_debug;
delete; /*delete all old definitions%/
/*add names debug, db, list_arg_ and gr_print
to bound segment bound_debug®*/

debug;

db; /*indicate db is synonymous to debug*/

debug,

db; /*retain entrynames debugSdebug and debug$db%/
list_arg_;

list_arg_; /*retain entryname list_arg_$list_arg_%*/
gr_print;

gr_print; /%*retain entryname gr_print$Sgr_print%/

The following illustrates other uses of the bindfile:

Objectname:
Global:
Order:

Addname:

No_Table;

objectname:
retain:

objectname:
Synonyms:
no_link:

table;

bound_test;
delete;
test,

/*delete all old definitions%/

/*1ist all components in the order they are
to be bound*/

test_utility,

test_init,

reset;

test,
test_utility, /%*add so that link can be snapped
to version in bound segments/

reset;

/*omit all symbol tables®/

reset;
reset;

test_utility;
rest_of_test;
test_utility;

/*another entrypoint%/

/*do not prelink to this entrypoint;
generate external link¥/

/*keep this component's symbol table%/

3-91 AG92-06

bj_mgr_call bj_mgr_call

Name: bj__mgr__call, bjmc
SYNTAX AS A COMMAND
bjmc key {path} {-control_args}
SYNTAX AS AN ACTIVE FUNCTION

[bimc key {path} {-control_args}]

FUNCTION

enables you to nmanipulate before journals in your process by calling
before_journal_manager_ entry points from command level. This command is part of
the command level interface to Multics data management (DM) (see the Programmer’s
Reference Manual).

ARGUMENTS

key
designates the before journal manager operation to be performed. See "List of
Operations” below for a description of each operation, its command and active
function syntax lines, and specific application.

path
specifies the absolute or relative pathname of the before journals being
manipulated (required for all key operations except get_default_path). Give
-pathname (-pn) PATH with pathnames constructed with leading minus signs to
distinguish them from control arguments. If you supply no .bj suffix, it is
assumed.

CONTROL ARGUMENTS

can be one or more control arguments, depending on the particular operation.

LIST OF OPERAT/ONS

Each operation is described in the general format of a command/active function.
Where appropriate, notes and examples are included for clarity.

Operation: close, cl

SYNTAX AS A COMMAND

bjmc ¢l path

3-92 AG92-06

bj_mgr_call bj_mgr_call

SYNTAX AS AN ACTIVE FUNCTION

[bjme cl path]

FUNCTION

closes the before journal specified by path. Separate pathnames by spaces if multiple
journals are to be closed. Specifically close by name each journal opened in the
process. The active function returns true if the journals were closed successfully, false
otherwise.

ARGUMENTS

path
is the absolute or relative pathname of before journals to be ciosed. If you
supply no .bj suffix, it is assumed.

NOTES

If a before journal being closed by this operation is the default journal, the last
journal opened in the process becomes the default.

Operation: closed

SYNTAX AS A COMMAND

bjmc closed path

SYNTAX AS AN ACTIVE FUNCTION
[bjmec closed path]

FUNCT/ON

returns true if the before journal specified by path is not open in your process, faise
otherwise.

ARGUMENTS

path
is the absolute or relative pathname of a before journal. If you don’t give the
.bj suffix, it is assumed.

3-93 AG92-06

bj_mgr_call bj_mgr_call

Operation: create, cr

SYNTAX AS A COMMAND

bjmc cr path {-control_args}
SYNTAX AS AN ACTI/VE FUNCTION
[bijmec ¢

FUNCTION

creates the before journal specified by path. The active function returns true if the
before journal is created successfully, false otherwise.

ARGUMENTS

path
is the absolute or relative pathname of the before journals to be created. If you
supply no .bj suffix, it is assumed.

CONTROL ARGUMENTS

-length N, -iIn N ,
specifies the size of the before journal, where N is the number of 4096-byte
control intervals. Once established, you can’t alter a journal’'s size. (Default: if
you specify no value at the time of creation, the size is 64 control intervals)

—-transaction_storage_limit N, —ts] N
specifies the maximum number of bytes a single transaction can use in the before
journal (Default: the entire journal)

NOTES

Before journals are extended entry types; you can delete them using the delete
command. You can only delete before journals if they are not required for recovery.

Operation: get__default__path, gdp
SYNTAX AS A COMMAND

bjmc gdp

SYNTAX AS AN ACTIVE FUNCTION

[bjmc gdp]

3-94 AG92-06

bj_mgr_call bj_mgr_call

FUNCT/ON

returns the pathname of the process’s default before. journal.

Operation: open, ©

SYNTAX AS A COMMAND

bjmc o path

SYNTAX AS AN ACTIVE FUNCTION
[bjmc o path]

FUNCTION

opens the before journal specified by path. The active function returns true if the
journal is opened successfully, false otherwise.

ARGUMENTS

path
is the absolute or relative pathname of before journals to be opened in your
process. If you supply no .bj suffix, it is assumed.

NOTES
If no journal has been specifically designated as the default (see the set_default_path
operation) for your process, the last before journal opened in the process becomes the

default. If no journal is opened in your process when a transaction is started, the
system before journal is opened and used as the default

Operation: opened

SYNTAX AS A COMMAND

bjmc opened path

SYNTAX AS AN ACTIVE FUNCTION

[bjmc opened path]

FUNCTION

returns true if the before journal specified by path is opened in your process, false

otherwise.

3-95 AG92-06

bj_mgr_call bool

ARGUMENTS

path
is the absolute or relative pathname of a before journal. If you supply no .bj
suffix, it is assumed.

Operation: set__default__path, sdp
SYNTAX AS A COMMAND

bjmc sdp path

SYNTAX AS AN ACTIVE FUNCTION
[bjmc sdp path]

FUNCTION

sets the default before journal for the process to the specified pathname. The active
function returns true if the pathname is successfully set, false otherwise.

ARGUMENTS

path
is the absolute or relative pathname of the before journal to be used as the
default by your process. If you supply no .bj suffix, it is assumed.

NOTES

If no default before journal is set for your process, the last journal opened in the
process is used as the default (see the open operation). If no before journal is open
in the process when a transaction is started, the system before journal is opened and
used as the default.

Name: bool
SYNTAX AS A COMMAND
bool B1 B2 B3

SYNTAX AS AN ACTI/VE FUNCTION

[bool B1 B2 B3]

3-96 AG92-06

FUNCTiON

performs bit string operations on character string representations of bit strings.

ARGUMENTS
Bl, B2, and B3

are bit strings entered as { and 1 characters.

NOTES

The shorter of the two strings is extended at the right with zeroes to equal the length

of the longer string.

B3 must be four bits long. It causes the following logical operations to be performed

on Bl and B2.

B3 Name
0000 clear
0001 and

0010

0011 move Bl
0100

0101 move B2
0110 xor

o111 or

1000 ~or

1001 ~xor

1010 invert B2
1011

1100 invert Bl
1101

1110 ~and

1111 ~clear
EXAMPLES

Result

all zeroes

Bl & B2

B1 &°B2

Bl

~B1 & B2

B2

(B17B2) | (“B1&B2)
Bl | B2

~(B11B2) = (*B18"B2)

~((B16"B2) | ("B1&B2)) = (“B1|B2) & (B1]|"B2)
~B2

~(*B1eB2) = (B1|"B2)
~B1

~(B1&7B2) = (~B1|B2)
~(B18B2) = ("B1|"B2)
all ones

! string [bool 1010 0101 0111]

111

! string [bool 1001001 1101001010 0110]

0100000010

3-97 AG92-06

branches branches

11/86

Name: branches

SYNTAX AS A COMMAND

branches star_names {-control_args}
SYNTAX AS AN ACTIVE FUNCTION
[branches star_names {-control_args}]
FUNCTION

returns the entrynames or absolute pathnames of segments, directories, and multisegment
files (MSFs) that match one or more star names.

ARGUMENTS

star_name
is a star name to be used in selecting the names to be returned.

CONTROL ARGUMENTS

-absolute_pathname, -absp
returns absolute pathnames rather than entrynames. (Default: to return entrynames)

—chase
processes the targets of links when you specify a starname.

-inhibit_error, -ihe
returns false if star_name is an invalid name or if access to tell of an entry’s
existence is lacking.

-no_chase
does not process the targets of links when you specify a starname. (Default)

-no_inhibit_error, —nihe
signals an error if star_name is an invalid name or if access to tell of an entry’s
existence is lacking. (Default)

NOTES

Only one name per branch is returned; i.e., if a branch has more than one name that
matches star_name, only the first match found is returned.

Since each entryname (or pathname) returned by branches is enclosed in quotes, the

command processor treats each name as a single argument regardiess of the presence
of special characters in the name.

3-98 AG92-06A

byte

11/86

Name: byte

SYNTAX AS A COMMAND

byte N

SYNTAX AS AN ACTIVE FUNCT/ON

[byte N]

3-98.1

byte

AG92-06A

This page intentionally left blank.

11/86 AG92-06A

byte

calc

FUNCTION

Prints or returns the character in a specified position in the Multics ASCII collating
sequence.

ARGUMENTS

N
is the zero—origin position of the desired character in the collating sequence. If
the number ends with the character "o", it is interpreted as an octal number;
otherwise it is decimal.

Name: calc
SYNTAX AS A COMMAND
calc {expression}

SYNTAX AS AN ACTIVE FUNCTION

[calc expression]
FUNCT/ION

provides you with a calculator capable of evaluating arithmetic expressions with
operator precedence, a set of often-used functions, and a memory that is symbolically
addressable (i.e., by identifier).

ARGUMENTS

expression
is an arithmetic cxpression {(see below) to be evaluated. If this argument is
specified, the calc command prints its value and returns to command level. The
expression must be quoted if it contains spaces or other command Ilanguage
characters. Variables are not allowed.

L/IST OF REQUESTS
. print "calc".

..STR
execute the Multics command line STR.

<expression>
type value of expression.

3-99 AG92-06

cale

<var iable>=<expression>
assign value of expression to variable.

list
list variables.
return to command level.

NOTES

Invocation of calc with a newline enters calculator mode. You can then type in
expressions, assignment statements, or list requests, separated from each other by one
or more newline characters. All of these operations are described below.

You must use the quit request with a newline character to return to command level

NOTES ON EXPRESSIONS
Arithmetic expressions involving real values and the operands +, -, * /, and *»*
(addition, subtraction, multiplication, division, and exponentiation) can be typed in. A
prefix of either plus or minus is allowed. Parentheses can be used, and blanks
between operators and values are ignored. Calc evaluates each expression according to
rules of precedence and prints out the result. The quit request (followed by a newline
character) returns you to command level. The order of evaluation is as follows:

expressions within parentheses

function references

prefix +, prefix -

*%

For example, if you type:
2+3+4

calc responds
- 14

Operations of the same level are processed from Ieft to right except for the prefix
plus and minus, which are processed from rtight to left. This means 2+%3**4 is

vntad am (Daw

mwrem Vo
cvaiuaiea as \1.*-»3}**4.

3-100 AG92-06

calc calc

Numbers can be integers (123), fixed point (1.23) and floating point (1.23e+2, 1.23e2,
1.23E2, or 1230E-1). All are stored as float bin(27). An accuracy of about seven
figures is maintained. Variables (see below) can be used in place of constants, e.g.,
pi * T *x),

Seven functions are provided: sin, cos, tan, atan, abs, In, and log (In is base e, log is
base 10). They can be nested to any level, e.g., sin{(In(var).5+pi/180).

NOTES ON ASSIGNMENT STATEMENTS
The value of an expression can be assigned to a variable. The name of the variable

must be from one to eight characters in length and must be made up of letters
(uppercase and/or lowercase) and the underscore character (_). The form is

<variable>=<expression>
For example, the following are legal assignment statements:
X =35
Rho = sin(2+theta)

The calc command does not print any response to assignment statements. The variables
"pi" and "e" have preassigned values of 3.14159265 and 2.7182818, respectively.

NOTES ON THE LIST REQUEST

If "list" is typed, calc prints out the names and values of all the variables that have
beenn declared so far. The value