
HONEYWELL .

I LEVEL 68
INTRODUCTION
TO PROGRAMMING
ON MULTICS

. SOFTWARE

LEVEL 68

INTRODUCTION TO PROGRAMMING ON MULTICS

SUBJECT

Introduction to Programming in the Multics Operating System Environment,
Intended as a Guide for Applications Programmers

SPECIAL INSTRUCTIONS

This manual presupposes some basic knowledge of the Multics operating
system. This information can be found in the 2-volume set,New Users'Introduc
tion to M ultics (Order Nos. CH24 and CH25).

This manual supersedes AG90, Revision 2, which was titled Multics Program
mer's Manual. Together with the 2-volume set, New Users' Introduction to
Multics, it supersedes AL40, Revision 1, which was titled Multics Introductory
Users' Guide. The manual has been extensively revised and does not contain
change bars.

SOFTWARE SUPPORTED

Multics Software Release 9.0

ORDER NUMBER

AG90-03 July 1981

Honeywell

PREFACE

The purpose of this manual is to introduce the Multics environment to
applications programmers who have experience on another operating system but are
new to Multics.

It is very important that you understand exactly who this manual is for,
and what assumptions this manual makes about its audience, before you begin to
use it.

The intended audience of this manual is applications programmers. It is
assumed that you have programmed on some other system(s) and that you have some
basic knowledge of at least one higher level language (COBOL, FORTRAN, PL/I,
etc.). No attempt is made here to teach you how to program. This manual is
only intended to show you how to do the things--You know how to do on another
system on Multics.

As an applications programmer, you look at an operating system from the
viewpoint of some programming language. This manual does not attempt to discuss
the use of any particular language on Multics, but rather, concerns itself with
those practices which are appropriate no matter which language you use. For
information on speCific languages you should refer to the Language Users'
Guides. The names of these guides are included in the list of useful manuals
for new programmers given at the end of this preface.

This manual assumes that you are registered on Multics, and that you know
how to log in and use a terminal. It also assumes that you have some general
familiarity with the fundamental concepts and facilities of the Multics system.
This information is available in the following publications:

New Users' Introduction to Multics - Part I
New Users' Introduction to Multics - Part TI ----- ---

Order No. CH24
Order No. CH25

You should feel comfortable with the use of segments, directories, text
editors, access control, commands, and active functions. If you don't, you
should review the manuals listed above, as no review of this material will be
presented here.

The information and specifications in tbiB document are
subject to change without notice. This document contains
information about Honeywell products 01' IIel'ViceII that may
not be available outside the UDited Statee. c-Jt your
Honeywell Marketing Bepreeentatbe.

(£) Honeywell Information Systems Inc., 1981 File No.: 1L13

AG90-03

Section 1 of this manual offers an overview of the Multics operating system
in general terms, to give you some idea of why programming on Multics may be
different from working on other systems.

Section 2 offers a step-by-step approach to the essentials of programming
on Multics. It shows you how to create, compile, execute, revise, and document
your programs in this environment, how to manipulate your segments, and how to
create storage system links. Sample terminal sessions are also included.

Section 3 takes you one step further by showing you the uses of dynamic
linking on Multics.

Section 4 provides you with an introduction to Multics input/output
processing, showing you how to use the terminal for I/O and how to begin using
I/O commands.

Section 5 discusses the use of a Multics debugging tool.

Section 6 discusses the use of a Multics performance measurement tool.

Section 7 explains the Multics absentee facility, which offers capabilities
similar to batch processing on other systems.

Section 8 offers a reference to all of the Multics commands by function,
including a brief description of each command.

The appendixes of this manual contain material which is specific to a
particular language, somewhat advanced, or useful only to certain users.

Appendix A shows you how to use Multics to best advantage in PL/I
programming.

Appendix B offers a step-by-step explanation of a PL/I text editor program.
(This is for people who are ready to begin systems programming work.)

Appendix C briefly introduces you to various Multics sUbsystems.

Appendix D shows you how to use the Edm text editor.

The information presented here is a subset of that contained in the primary
Multics reference document, the Multics Programmers' Manual (MPM). The MPM
should be used as a reference to Multics once you have become familiar with the
concepts covered in this introductory guide. The MPH consists of the following
individual manuals:

Reference Guide

Commands and Active Functions

Subroutines

Subsystem Writers' Guide

Peripheral Input/Output

Communications Input/Output

Order

Order

Order

Order

Order

Order

iii

No. AG91

No. AG92

No. AG93

No. AK92

No. AX49

No. CC92

AG90-v3

Throughout this manual, references are made to the MPM Reference Guide, the
MPM Commands and Active Functions, the MPM Subroutines~nd the MPM-subSystem
Writers' Guide manuals. For convenience, these references are as follows:

MPM Reference Guide
MPM Commands
MPM Subroutines
MPM Subsystem Writers' Guide

Other Multics manuals of interest to new programmers are listed below.

• Languages:

Multics APL

Multics Basic

Multics COBOL Users' Guide

Multics COBOL Reference Manual

Multics FORTRAN Users' Guide --- ---
Multics FORTRAN Reference Manual

Multics PL/I Language Specification

Multics PL/I Reference Manual

• Subsystems:

Multics FAST Subsystem Users' Guide

Multics GCOS Environment Simulator

Multics Graphics System

Logical Inquiry and Update System
Reference Manual

Multics Relational Data Store (MRDS)
Reference Manual--- ---- ----

Multics Report Program Generator
Reference Manual

Multics Sort/Merge

WORDPRO Reference Guide

• Micellaneous:

Multics Pocket Guide - Commands
and Active Functions

Index to Multics Manuals ---- -- ------ -----

Order No. AK95

Order No. AM82

Order No. AS43

Order No. AS44

Order No. CC70

Order No. AT58

Order No. AG94

Order No. AM83

Order No. AU25

Order No. AN05

Order No. AS40

Order No. AZ49

Order No. AW53

Order No. cc69

Order No. AW32

Order No. AZ98

Order No. AW17

Order No. AN50

The Multics operating system is referred to in this manual as either
"Multics" or "the system". The Emacs, Qedx, Ted, and Edm text editors are
referred to as "Emacs", "Qedx", "Ted", and "Edm" respectively.

iv AG90-03

Section

Section 2

Section 3

Section 4

Section 5

Section 6

Section 7

CONTENTS

The Multics Approach ••••
Segmented Virtual Memory •

Process, Address Space, and Execution
Paint ••••••••

Segments and Addressing
Dynamic Linking •••••••••
Controlled Sharing And Security

Access Control Lists
Administrative Control

Programming on Multics
Designing and Writing Programs

Source Segments • • • • •
Compiling Programs

Object Segments ••••••••
Executing Programs • • • • • •

Some Results of Execution
Revising and Documenting Programs
Sample Terminal Sessions •

A Note on Examples • • • • • •
Archiving Segments • • • • • • • • •
Binding Segments • • • • • • • • • •
Li nks •••••• • • • • • • • • •

Dynamic Linking • • •
A Naming Convention
Search Rules • • • •

A Note on Initiated Segments
Uses of Dynamic Linking
Search Paths • • • • • • • • • • •

Input/Output Processing • • • • • • • • • •
The Five Basic Steps Of Input/Output ••
Using The Terminal For I/O • • • • • •
Using Segments As Storage Files
Using I/O Commands And Subroutines •
Card Input and Conversion •••••

A Debugging Tool
The Stack
Probe

A Performance Measurement Tool

Absentee Facility ••••

v

Page

1-i
1-2

1-4
1-6
1-7
1-10
1-12
1-12

2-1
2-1
2-2
2-3
2-5
2-6
2-6
2-7
2-8
2-8
2-8
2-11
2-11

3-1
3-1
3-1
3-3
3-5
3-7

4-1
4-2
4-5
4-8
4-10
4-12

5-1
5-1
5-5

6-1

7-1

AG90-03

Section 8

Appendix A

Appendix B

Appendix C

Appendix D

Index

CONTENTS (cont)

Reference to Commands by Function • • • •
Access to the System • • • • • • • • •
Storage System, Creating and Editing

Segments ••••••••••••••
Storage System, Segment Manipulation •
Storage System, Directory Manipulation
Storage System, Access Control •••••
Storage System, Address Space Control
Formatted Output Facilities
Language Translators, Compilers, and
Interpreters •• • • • • • • • • • •

Object Segment Manipulation •••••
Debugging and Performance Monitoring
Facilities ••••••••

Input/Output System Control
Command Level Environment ••••
Communication Among Users
Communication with the System
Accounting • • • • • • • • • • • •
Control of Absentee Computations
Miscellaneous Tools ••••

Using Multics to Best Advantage •

A Simple Text Editor

Multics Subsystems
Data Base Manager
Fast • • • • • •
Gcos Environment Simulator
Graphics • • • • • • • • • •
Logical Inquiry and Update
Report Program Generator •
Sort/Merge • • • • •
Wordpro

The Edm Editor ••••••••
Requests • • • • • • • • • • •
Guidelines • • • • • • • • • • • •••
Request Descriptions • • • • • •

Backup (-) Request •••••••••
Print Current Line Number (~) Request ••
Comment Mode (,) Request
Mode Change (.) Request.
Bottom (b) Request ••••••
Delete (d) Request ••••
Find (f) Request
Insert (i) Request
Kill (k) Request •• ••
Locate (1) Request ••••
Next (n) Request ••••
Print (p) Request ••
Quit (q) Request
Retype (r) Request •
Substitute (s) Request
Top (t) Request •• • ••••••••
Verbose (v) Request •••••
Write (w) Request •••••

vi

Page

8-1
8-1

8-2
8-2
8-3
8-3
8-4
8-5

8-5
8-6

8-6
8-6
8-7
8-8
8-9
8-9
8-10
8-10

A-1

B-1

C-1
C-1
C-1
C-1
C-2
C-2
C-2
C-2
C-2

0-1
0-1
D-2
0-2
0-3
D-3
0-3
0-4
0-4
D-4
0-5
D-5
0-5
0-6
0-6
0-6
0-6
0-7
0-7
0-8
0-8
0-8

i-1

AG90-03

Figure 1-1.
Figure 1-2.
Figure 1-3·
Figure 1-4.
Figure 1-5.
Figure 2-1-
Figure 2-2.
Figure 3-1-
Figure 4-1.
Figure 4-2.
Figure 4-3·

Figure 5-1.
Figure 5-2.
Figure 6-1.

Figure 7-1.

CONTENTS (cont)

ILLUSTRATIONS

Traditional System vs. Multics Virtual Memory .
Processes Sharing a Segment . • . .
Two-Dimensional Address Space • . . . • . • • .
The Life of a Segment • • . • . • • • . . • • •
Resolving a Linkage Fault (Snapping a Link)
Sample Terminal Session #1 ...•
Sample Terminal Session #2
Initiated Segments
Flow of Data • . • . .
Standard Attachments
Attachments After Execution of file_output

Command •.•....... " ...
State of Stack •. . • • . • • • . .
Allocation of Stack Frames •
Use of profile Command With -list Control

Argument . • . • . •. ..•.
Interactive vs Absentee Usage • • . . • . .

vii

Page

1-3
1-5
1-8
1-9
1-11
2-9
2-10
3-4
4-3
4-6

4-13
5-2
5-4

6-4
7-2

AG90-03

SECTION 1

THE MULTICS APPROACH

The Multics approach is quite different from that of a traditional batch
operating system. The intent of this section is to show you how Multics is
different, by giving you a general overview of the system's "personality", then
describing in more detail three of its major characteristics: segmented virtual
memory, dynamic linking, and controlled sharing and security. As these
characteristics are discussed, important concepts associated with each will be
introduced and explained. Familiarity with these concepts will help you when
you read later sections of this manual and begin to program on Multics.

Multics is a large, powerful, well-established system, which is constantly
being refined, and provides a wide range of commands, languages, and subsystems.
Despite its size and complexity, Multics is easy to learn and use. It has been
designed to serve a wide variety and number of users, all cooperating and sharing
resources. Multics offers its users the following advantages:

• support for online usage: Multics has been designed to support online
processing as well as batch processing. You can accomplish all of
your programming tasks as either an interactive (online) user or an
absentee (batch) user. Applications, debugging tools, data base
management facilities, administrative tools and utilities are all
accessi ble online. In one terminal session, you can write, compile,
execute and debug your program. (See "Sample Terminal Sessions" in
Section 2, and "Probe" in Section 5.)

• consistent user interface: A great deal of thought has gone into
making similar parts of Multics work in similar ways. For example,
common control arguments such as -all and -brief are used with many
different commands, and in each case, the control argument performs a
similar function. In addition, all parts of the system have been
designed to work together.

• uniformity of control language: Batch processing on Mul tics is supported
by the absentee facility (described in Section 7). An absentee job is
processed like an interactive terminal session; it's directed by the
same language as that used for interactive jobs. In other words, no
special job control language (JCL) is ever required on Mul tics. The
system commands and routines provide the logical branching, conditional
execution, input/output control, and file system specifications necessary
to direct any job.

• ease of use: On Multics, users are not asked to give information or
make decisions ahead of time. There are many examples of this. You
don't have to know or specify either a segment's size or its location
to use it. You don't have to make your need for tape drives and
similar resources known in advance. Intelligent defaults mean that
you need not create a correspondence between a file and an I/O name.
Dynamic linking (described later in this section) means that you need
not name or prefetch programs you want to execute. You can set up a
tempor~ry working array for your PL/I or FORTRAN program in its own
segment, without specifying how much space you need or worrying that
the array will get too big. You will find that this lack of required
prespecification greatly simplifies your use of the system.

1-1 AG90-03

SEGMENTED VIRTUAL MEMORY

The most significant difference between the Multics programming environment
and that of most other contemporary computer programming systems lies in its
approach to addressing online storage. Most computer systems have two sharply
distinct environments: a resident file storage system in which programs are
created, and translated programs and data are stored; and an execution environment
consisting of a processor and a "core image", which contains the instructions
and data for the processor. Supervisor procedures provide subroutines for physically
moving copies of programs and data back and forth between the two environments.

In Multics, there is one conceptual memory, which is known as the virtual
memory. The traditional distinction between secondary storage and main memory
has no meaning, because a single infinitely large memory is simulated by the
software, with data stored in finite segments which appear to be in memory at
all times. Figure 1-1 illustrates this difference between a traditional system
and the Multics virtual memory.

With the line between the two traditional environments deliberately blurred,
program construction on Mul tics is simplified: most programs need only be cognizant
of one environment instead of two. This blending of the two environments is
accomplished by extending the processor/ core image environment. In Mul tics,
your share of the processor is termed a process, and your core image is abstracted
into what is called an address space. In a sense, each segment is a core image,
and your process can have lots of them.

The easiest way to think about the terms process and address space is to
imagine your process as a private computer and your address space as a private
memory for your process to work in. (See "Process, Address Space, and Execution
Point" next in this section.)

Another important difference between the Mul tics environment and that of
most other systems is that an address in Multics has two parts: a segment
identifier and a location, or offset, within the segment.

Traditional Address

I Segment I Offset Multics Address

(See "Segments and Addressing" later in this section.)

1-2 AG90-03

CORE IMAGE
o

N L..;.-. ___

o
o
o

TRADITIONAL SYSTEM

r------------------------------USER1----------------------------~

SEG 1 SEG2 SEG3 SEG 4
o o o o

•••

MULTICS VIRTUAL MEMORY

Figure 1-1. Traditional System vs. Multics Virtual Memory

1-3

r---- USER 2 -----... ~

SEG 1
o

•••

AG90-03

Process, Address Space, and Execution Point

When you log in to the system, you are allocated system resources in an
environment known as a process. A process consists of a collection of segments
called an address space, over which a single execution point is free to roam
(i.e., to fetch instructions and make data references). -----

A process executes programs on your behalf, either directly in response to
your instructions or automatically as part of supporting the programs you invoke
directly. The programs executed on your behalf and the data they reference make
up your address space, and that address space combined with the act ion of execut ing
those programs make up your process. Your execution point is whatever is executing
at any moment.

Space within the virtual memory is dynamically assigned to your aaaress
space. Its contents are a function of the sequence of instructions that are
processed between the time you log in and the time you log out, and thus it
dynamically shrinks and grows as necessary. Your address space is different
from the usual core image in that it is larger and it is segmented. A segment
may be of any size from 0 to 255K, and an address space may have a large number
of segments (typically about 200). Usually, each separately translated program
resides in a different segment; collections of data which are large enough to be
worthy of a separate name are placed in a segment by themselves. The system
assigns attributes (access control and length, for example) to each of these
segments based on their logical use. There is a distinct address space for each
user who is logged in, even though many users may share the very same segments
in their address spaces.

Your process is created when you log in, and destroyed when you log out,
when you request a new process with the new proc command, or when some kinds of
errors occur. You may view your process as if all system resources are dedicated
to it alone--as if you have a processor all to yourself--when in reality, all
resources are being shared among many processes. Not only are there other interactive
processes running, there are also absentee processes running as "background" to
the interactive ones, and there are various daemon processes running, which are
associated with the normal operation of the system and not connected to any
user. All of these processes are continually cooperating and competing for
processor time and main storage resources. The processor is multiplexed between
processes according to rules defined for the system as a whole, with the object
of sharing resources in an equitable manner.

Processes can share with each ether, and this sharing is of two types.
First, any references to a segment by more than one process are references to
the same segment. Second, a large part of the address space in all processes is
identical, because the parts of the system shared by all users are given segment
numbers (described below) that are the same for all processes. Figure 1-2 illustrates
this sharing of segments.

You should remember that each process's virtual memory is private to it.
This means that changes made to one process's virtual memory assignments do not
affect those of other processes. In addition, when a segment is being shared,
it means that multiple users may not only read the segment, but also write it.

1-4 AG90-03

D D
~ 7'

[]
0 D
USER 1

PROCESS 1

z

o D
USER 2 PROCESS 2

Figure 1-2. Processes Sharing a Segment

1-5 AG90-03

Segments and Addressing

It's important to understand that a Mul tics segment is not a file. A
segment can be addressed directly, like memory. It doesn't have to be read or
written record by record like a file on other systems. On Multics, everything
is in a segment:

program source code
program object code
data files
mail boxes
work areas
temporary storage
exec coms

There are two main reasons why segments are used in Multics. The first is
that they make it possible for all your process's programs and data to be easily
and directly addressable. The second is that they make it possible to protect
and share programs and data by controlling access at the hardware level. (For
more on this, see "Controlled Sharing and Security" later in this section.)

The segment ; ~ often described as the basic unit of storage in Multics
because all locating (addressing) of data in the system is done in terms of
segments. The physical mo~ement of information between main memory and secondary
storage is fully automatic in Multics (it is done by the paging mechanism). The
usual complex combination of file access methods and job control language which
you are probably used to is replaced by a simple two-dimensional addressing
scheme. This scheme involves the user-assigned symbolic name of the segment
(its pathname), and the address of the desired item within the segment. Even
relative addresses are usually given in symbolic terms through the data description
facilities of the language you're using. Thus, each segment appears to its user
as independent memory, symbolically located. Segments don't have to be in specific
storage locations. They can be relocated anywhere in memory and grow and shrink
as need be.

1-6 AG90-03

References to any portion of your address space consist of a segment name
and a location wi thin the segment; all addresses are interpreted as offsets
within segments. To increase the efficiency of a storage reference, a segment
number becomes associated with a segment name when the segment is initiated
(added to your process's address space). A segment is said to be known to a
process when it has been uniquely associated with a segment number in that
process. The segment number is a temporary alias for the segment name, which is
more easily translated into a storage address by the hardware. When you write:

<symbolic_name> [symbolic_offset]

the hardware uses:

<segment_number> [offset_number]

The association between a segment name and a segment number is retained until
the segment is terminated (removed from your process's address space). If it is
terminated and initiated again, the number will be different. (See the discussion
of initiating and terminating segments in Section 3.) Thus, every address or
pointer is a pair of numbers: the segment number and the offset wi thin the
segment. This pair of numbers forming an address represents the coordinate of a
location in the two-dimensional address space. See Figure 1-3 for a graphic
representation of a two-dimensional address space. See Figure 1-4 for an
illustration of the life of a segment.

A program can create a segment by issuing a call to the system specifying
the symbolic name as an argument. Different users can incorporate the same
segment into their programs just by specifying its name. (A program need not
copy a segment to use it.) A program can address any item wi thin a segment
using "segment, 1" where segment is the symbolic name of the segment and 1 is
the location of the desired item within the segment. The ALM (Multics assembly
language) instruction shown below illustrates a symbolic reference to location
"x" in segment "data":

Ida data$x

For more information on the Multics virtual memory, see th~ MPM Reference
Guide.

DYNAMIC LINKING

Many programs make .calls to external subroutines or use external variables.
On most systems, these external references are resolved during loading or linkage
editing. When the program is loaded into memory, external subroutines are loaded
from libraries or user data sets, and storage is allocated for external variables.
On Multics, external references are resolved when the program~; i.e., the
point at which something is used is the point at which it is found. This means
that a compiled program on Multics is directly executable. Segmentation is what
makes this possible - it gives each segment a "zero" location, so no relocation
is necessary.

1-1 AG9o-o3

256K

I
Z
w
~
(!)
w
en
o
I
Z

I
w
en
Ll.
Ll.
o

o

SUPERVISOR USER PROGRAMS, DATA, COMMANDS

y

SEGMENTS

co
E
E
0')

o
0.

Figure 1-3. Two-Dimensional Address Space

1-8

,

AG90-03

Note 1.

Note 2.

create

exists

delete

has
segment
number

initiate; per process

terminate

has
page
table

(activate)

I
Lage 1 in memory

pages 2 and 4 in memory

(deactivate)

Figure 1-4. The Life of a Segment

Events in parentheses are not user visible.

Segments are automatically divided by the hardware into storage units
known as pages4 with a fixed size of 1024 words. (One word is equal
to 36 bits or 9-bit bytes.)

1-9 AG90-03

Dynamic linking is accomplished by having the compiler leave in the object
code of a compiled program an indirect word with a "fault tag" which, if used in
an indirect address reference, causes a linkage fault to the dynamic linker.
The linker inspects the location causing the fa~ and from pOinters found
there, locates the symbolic name of the program being called or the data segment
being referenced. It then locates the appropriate segment, maps it into the
current address space, and replaces the indirect word with a new one containing
the address of the progr~m or data entry point, so that future references will
not cause a linkage fault. When the system comes across an unresolved reference,
it uses what are known as search rules (described in Section 3) to find the
needed segment and establish the necessary link. This process is known as snapping
a link. To see how the linkage fault caused by the ALM instruction mentioned
previously would be resolved, refer to Figure 1-5.

With dynamic linking, you don't pay the cost of resolving references (for
example, calls to error routines) unless they are actually needed. If a subroutine
is never called, it doesn't even have to exist, and the main program will still
run correctly. An item in the file system has to be in your address space for
you to use it, but it doesn't have to be copied and brought into memory before
execution. The virtual memory guarantees that any item you reference is where
the processor can address it directly.

Dynamic linking simplifies your programming by totally eliminating the loading
step. It also eliminates the need for a complicated job control language for
retrieving, prelinking, and executing programs, and for defining and locating
input/output files.

For more information on dynamic linking, see the MPM Reference Guide.

CONTROLLED SHARING AND SECURITY

Mul tics permits controlled sharing of the operating system software and
libraries, the language compilers, the data bases, and all user code and data.
You can create links to other programs and data, give and revoke access, directly
access any information in the system to which you have access, and share a
single copy in core.

1-10 AG90-03

ALM program

Ida data$x

linkage (before)

compilation
"data"

L
linkage (after)

execution

new indirect word

Figure 1-5. Resolving a Linkage Fault (Snapping a Link)

1-11 AG90-03

Access Control Lists

One way of controlling the sharing and security of information is by using
access control lists. ACLs, as you have already learned in the New Users'
Introduction to Multics, define the access rights for each segment and directory.
You can grant permission to use your segments and directories by individual
user, by project, by instance (interactive/absentee), or by combinations of these.
You can also grant different access to different users of the same segment. A
good example of using ACLs is a compiler which resides in a segment that can be
executed but not written.

For more details on access control, see the MPM Reference Guide.

Administrative Control

Another kind of information control is administrative. Mul tics administration
defines three levels of responsibility: system, project, and user. A system
administrator allocates system resources among the proj ects on his system; a
project administrator allocates project resources among the users on his project;
a user can manage his own data through storage management and access controls.

Your project administrator can define the environment of the users under
his project. He can give you complete control in creating your own process, or
he can limit the requests and commands available to you. He can determine the
dollar limit that you may incur in a single month (or other period of time), and
arrange things so you'll be automatically logged out if you exceed this limit.
You won't be able to log in again until the next month begins or the limit is
changed. He can also determine several other items, including whether a user
can preempt others, specify his own directory, or have primary or standby status
when logging in.

You yourself also have flexibility in shaping your programming environment
on Mul tics. A good example of this is the special command processor which
allows you to make abbreviations for your frequently used commands (abbrev).

For more information on Multics administrative features,
the manuals in the Multics Administrators' Manual (MAM) set:

Project Administrator
Registration and Accounting Administrator
System Administrator

1-12

refer to one of

Order No. AK51
Order No. AS68
Order No. AK50

AG90-03

SECTION 2

PROGRAMMING ON MULTICS

Programming on Multics is very different from programming on other systems.
Many of the constraints and restrictions you may be used to are simply removed.
'The system provides high-level terminal control, data base management, 1/0
interfaces, and data securi ty. There is no need for overlays, chaining or parti tions.

This section explains how to write, compile and execute programs in the
Multics environment. It also offers advice on revising and documenting programs,
manipulating segments, and creating storage system links.

DESIGNING AND WRITING PROGRAMS

Let's say you've been given specifications for a program which will compute
the sum of three numbers. Obviously, this is not a realistic task for a computer,
but it will provide us with a very simple example.

Of course, the first thing you need to do is to develop a design for your
program, be ita flow chart, a functional diagram, a hierarchy, or whatever.
Once you have a good design, the next step is to decide which language you will
write your program in. The following programming languages are available on
Multics:

• APL: A terse, powerful language, with strong data manipulation
capabilities.

• BASIC: A simple language for beginners, which can perform string and
arithmetic operations without much difficulty.

• COBOL: A business oriented, high-level, English-like language with many
string and arithmetic capabilities.

• FORTRAN: A high-level, scientific language designed mostly for arithmetic
applications, with very limited character manipulation capabilities.

• PL/I: A very powerful, high-level language that offers almost total
control over the operations of the program, and has many capabilities
to manipulate characters and perform arithmetic operations.

(ALM, the assembly language on Multics, is also available, but is not recommended
for general use.) For this program, let's say you choose PL/I. The code for
your program might look like this:

2-1 AG90-03

simple_sum: proc options (main);

1* this program computes the sum of three numbers set in the program,

then prints the answer at the terminal *1

declare
sysprint file,
first no fixed binary
second no fixed binary -third no fixed binary -the sum - fixed binary

1* set the three numbers *1

first no = 123;
second no = 456;
third no = 789;

1* add them up *1

1*
(17) , 1*
(17) , 1*
(17) , 1*
(17) ; 1*

the
the
the
the
the

the sum = first no + second no + third_no;

1* print the answer *1

terminal output *1
first number *1
second number *1
third number *1
answer *1

put skip list ("The sum of the three numbers is:", the_sum);
put skip;

Notice the use of sysprint for the terminal output. For more information on
this, see "Using the Terminal for 1/0" in Section 4.

Source Segments

The next step is to create a segment containing your code. You can input
your code by using anyone of several text editors. Two editors you are already
familiar with are Qedx and Emacs. Detailed information on these edi tors is
available in the Qedx Users' Guide (Order No. CG40) and the Emacs Users' Guide
(Order No. CH27)respective~ Of special interest to programmer5are the
programming language modes available in Emacs. The FORTRAN, PL/I and ALM modes
provide editing environments which facilitate the creation, formatting and debugging
of programs written in these languages.

Two more editors will be introduced here. One is Edm. This is the most
basic Multics editor and is described in Appendix D of this manual. The other
is Ted. Ted is a more advanced version of Qedx, which offers many advantages.
These include more flexibility in addressing characters within a line, two types
of input mode, regular and bulk, and more ways of manipulating buffers. Ted is
a programmable editor, which means that you can write character manipulation
programs in the Ted editor language. Other Ted features include sorting and
tabbing capabilities, the ability to translate letters from upper to lower case
and vice versa, and the ability to have lines fill and adjust. For more information
on Ted, use the help command.

The segment that your source code is stored in is called a source segment.
Once your source segment is created, you should give it an entryname which
follows the Multics convention for such names. This convention is to add a dot
suffix to the end of the name indicating which language the program is written
in~ Thus, the form for a source segment entryname is:

2-2 AG90-03

A good name for your program would therefore be:

simple_sum.pI1

Some other examples of program names are:

ran num gen. basic
payroll-:-cobol
square_root.fortran

(Remember that upper and lower case characters are not interchangeable on Multics.
Thus, "payroll.cobol" and "Payroll.cobol" are two different names. See the MPM
Reference Guide for more information on naming conventions.)

You will probably find it useful to create several different directories
for yourself, each containing a different sort of segment. For example, you
could have one directory for the final (debugged) versions of your programs, one
directory for the programs you are writing or revising, another directory for
test data, etc. If you write programs in several different languages, you could
also have directories for programs in each language. (Remember that your segments
are not physically located in directories any more than you are physically in
the phone book. When a segment is said to be "in" a directory, it means that
the directory contains an entry for the segment.)

COMPILING PROGRAMS

Mul tics provides a compiler for each higher level language it supports.
Compilers are system programs which translate source code into obj ect code,
machine level language that is executable by the hardware. The input to a
compiler is a source segment. The output of a compiler is a corresponding
object segment. (This discussion does not apply to APL, which is an interpreted
language. There is no APL compiler and no APL obj ect segment.) Your working
directory is always assumed to be the location of the source segment you want to
compile, and the intended location of the object segment you want to create,
unless you say otherwise.

To execute a compiler, you invoke it as a command, with a command line
which looks like this:

language_name path {-control_arguments}

where language name is the name of the language your program is written in, path
is the entry name of your source segment, and {-control arguments} are any of a
number of optional control arguments you can supply to the compiler. Several of
these control arguments instruct the compiler to create a listing segment in
your directory. (No compile listing is produced by default.) This segment has
the same entryname as your source segment, but with a suffix of "list" instead
of "pI1" or whatever. A listing segment contains a line-numbered list of your
source program, plus information that is useful for understanding, debugging,
and improving the performance of your program.

The control arguments which produce a listing segment are:

-list
produces a complete source program listing including an assembly-like listing
of the compiled program. Use of this control argument significantly increases
compilation time and should be avoided whenever possible by using -map.

2-3 AG90-03

-map
produces a partial source program listing of the compiled program which
should contain sufficient information for most online debugging needs.

Another useful control argument is:

-table
generates a full symbol table for use by symbolic debuggers. The symbol
table is part of the symbol section of the object program (discussed later
in this section) and consists of two parts: a statement table that gives
the correspondence between source line numbers and object locations, and a
name table that contains information about names actually referenced by the
source program. This control argument usually causes the object segment to
become significantly longer, so when the program is thoroughly debugged, it
should be recompiled without -table.

See the MPM Commands under the specific compiler for detailed information on all
of the control arguments and the information they provide. Also see the various
Language Users' Guides.

So, your command line for compiling your program might look like this:

! pl1 simple_sum.pI1 -map

In this and all interactive examples in this manual, an exclamation point
is used to indicate a line that you type at the terminal. You do not type the
exclamation point, nor does Multics type it as a way of prompting you. It is
strictly a typographical convention, to distinguish between typing done by you
and typing done by Multics.

In reality, you don't have to type the dot suffix component of your entryname.
The compiler assumes that the input is a source segment, and will search your
working directory (or whatever directory you're using) for the segment with the
appropriate suffix. Thus:

! pl1 simple_sum.pI1

means exactly the same to the compiler as:

! pl1 simple_sum

If your source code is clean and the compile is successful, an object
segment is placed in the directory you're using, with the same entryname as your
source segment, but stripped of the language name suffix:

ran num gen. basic
payroll:-cobol
square_root.fortran

--------->
--------->
--------->

So, if you execute this command line:

pl1 simple_sum -map

ran num gen
payroll
square_root

then you list your working directory, you'll see:

simple sum
simple-sum.pI1
simple=sum.list

Your listing segment, simple sum.list, can be printed on your terminal
with the print command, or printed on paper with the dprint command. Since
listing segments take up a large amount of space, the sensible thing to do
is to dprint the segment, then delete it:

! dprint -delete simple_sum. list

2-4 AG90-03

If there are problems with your source code, the compiler will produce
error messages. The compiler can detect errors according to the definitions of
the language involved. These include typing errors, syntax errors, and semantic
errors. These messages are printed for you at your terminal. The format and
details of error messages vary from compiler to compiler. The following is a
sample PLII error message:

ERROR 158, SEVERITY 2 ONLINE 30
A constant immediately follows the identifier "zilch"
SOURCE: a = zilch 4;

If your compile is taking a long time, you can issue a QUIT signal and take
a look at your ready message. Since a ready message contains the amount of CPU
time used since the last ready message, if the CPU times on your last two
messages are different, you know your compilation is working. To resume it,
type start. You can also use the progress (pg) command to get information on
how a command's execution is going. To check on your compile of simple sum.pl1
with the -map control argument, you would type: -

! progress pl1 simple_sum -map

The system would periodically type information about the pl1 command's progress
in terms of CPU time, real time, and page faults. (A page fault occurs when a
page of a referenced segment is not in memory.) See the MPM Commands for a
detailed explanation.

Object Segments

As you may remember from the discussion of dynamic linking in Section 1, an
object segment is an executable module. This is quite different from other
systems, where the object module which is the output of the compiler cannot be
executed until it has been through some kind of linkage editing to become a load
module. On Multics, there is no such distinction between an object module and a
load module. Thus, there is no need for you to determine in advance the absolute
addresses of programs in memory, or give instructions for linking and calling
programs or loading them. All compiled programs are ready to run.

Most higher level languages supported by Multics compile into Multics standard
object segments. These are divided into several sections. The first section is
called the text section and contains the binary machine instructions that were
translated from the source code and are executed by the processor. The next
section is the definition section, which defines the names and locations of
entry points present in the segment, and the names of external entry points used
by the segment. An entry point is a symbolic offset within a segment. (See "A
Naming Convention" in Section 3.) After the definition section comes the linkage
section, which serves as a template of all virtual addresses for all external
entry points used by the program. It contains per-process information used by
the dynamic linker to resolve these external references. The next section is
the static section, which contains data items to be allocated on a per-process
basis. (This section may be included in the linkage section, and not exist as a
separate section.) Then there is the symbol section, which contains information
on all the variables declared in the program. The symbol section is always
present in the object segment. If -table is specified when the program is
compiled, then a symbol table is included in this section. Some compilers (e.g.,
p11) support the -brief table control argument, which produces a shorter symbol
section. Finally there1s the object map, which contains the lengths and offsets
for each section of the object segment. Details about the format of object
segments and what each section contains may be found in the MPM Subsystem Writers'
Guide.

2-5 AG90-03

Where the standards for the source language permit, all obj ect segments
produced by Multics are:

• pure: the object segment contains no code that modifies itself during
execution. Information about calls outside the segment is copied into
a special segment, and all modifications are made to the copy. The
same segment can be executed by more than one user. No copies of
object segments are made on a per-user basis; there is one shared
segment in the address space of all who use it. For example, even
when multiple users are simultaneously compiling COBOL programs, only
one copy of the COBOL compiler is in use.

• recursive: the object segment can call itself.

• in standard format: the calling protocols for object segments are the
same irrespective of the higher-level language of origin. This means
that a program in one language can call a program in another language.
Programs can also access any data or file which can be described by
data types supported by the particular language.

EXECUTING PROGRAMS

Now that you have an object segment, you are ready to try executing your
program. To do this, all you have to do is type the name of your program from
command level. The entryname is understood as a command--the system is instructed
to find your program and execute it, just as when you type the name of a command
(like list), the system is instructed to find the program by that name and
execute it. Source and object segments are both permanent (they don't have to
be copied to a special directory to be saved), so your program can be run over
and over until you choose to delete it.

Some Results of Execution

• The program runs to normal termination and you get a ready message,
indicating that execution was successful.

r 10:29 3.0 350

• The program pauses for input from your terminal.

• The program halts because of a breakpoint you've put in it for debugging
purposes.

• The program runs to normal termination, but the output you get is
wrong.

• The program halts because you issue a QUIT signal, and the system
responds with a ready message indicating a new command level:

QUIT
r 10:40 0.1 497 level 2

• The program halts because of an execution error. Examples of such
errors are overflows, underflows, data conversions, and undefined
references. The system prints an error message, then gives you a
ready message indicating a new command level:

Error: Exponent overflow by >udd>ProjA>MacSissle>bad_pgmI143
(line 33)

System handler for condition returns to command level
r 10:38 0.185 98 level 2

2-6 AG90-03

The new command level means that you are again in a position to invoke
commands. There are some special commands that can be put to appropriate use
here, such as the release, start, program interrupt, or probe commands. The
release command ret urns you to the original command 1 evel--the work you were
doinp at the time of the interrupt is simply discarded. The start command
resumes execut ion where it 1 e ft 0 ff. The program int errupt command ret urns execut ion
to a predetermined point from v;hich to resume execution. For the use of the
probe command see Section 5, "Debugging Tools."

~ultics will provide you with as specific an error message as possible.
One common error that happens to almost everyone at some time or other is the
following:

Error: record_quota_overflow condition by <program_name>

This message means that you have run out of storage space in the system. The
best way to fix this situation is to delete unneeded segments and type start.
(For descriptions of other common error messages, see Nultics Error Messages:
Primer and Reference Manual, Order No. CH26.)

REVISING AND DOCUMENTING PROGRAMS

If you edit your program and recompile it, you may want to save the old
object segment instead of replacing it with the new one. In the process of
developing and testing new versions of a program, you may in fact end up with
several versions, all of which you want to keep. Here are some ways you can do
it:

• You can move the old object to another directory, using the move command:

! move simple_sum obsolete_p11_obj>simple_sum

• You can copy the faulty source (should you wish to save it as well)
and give a new name to the edited version using the copy and rename
commands:

copy simple sum.p11 obsolete p11 source>simple sum.p11
rename simple_sum.p11 new_simple=sum.p11 -

• You can change the name of the old object:

You need to be aware of certain dangers involved in renaming segments which are
already known to your process. Renaming a segment doesn't change the association
between the segment name and the segment number. So, if pgma calls pgmb, then
you rename pgmb as badb, create a new pgmb, and run pgma again, when pgma calls
pgmb, it will end up with the old badb instead of the new pgmb. For more
information on the association between segment names and segment numbers, see "A
Note on Initiated Segments" in Section 3.

If you ever get confused as to wnlcn version of your source program is
which, you can use the compare ascii (cpa) command, which compares ASCII segments
and prints any differences. -

Remember that final versions of your programs should be correctly formatted
to improve their readability. There are several Multics commands which can help
you do this. For example, the indent (ind) command indents free-form PL/I source
code according to a set of standard conventions. For another example, the
format cobol source (fcs) command converts free-form COBOL source programs to a
fixed format-: These commands also detect and report certain types of syntax
errors, and can be used for pre-compile examinations.

2-7 AG90-03

Your final versions should also be well-documented. There are two kinds of
documentation for programs. One is internal, and consists of a step-by-step
description of what the program does. This sort of documentation is best created
by the generous use of comments throughout your code. The other kind of documentation
is external, and consists of a more general description of the programs purpose,
design, and use. ".jriting info sep;ments is an excellent \-lay of creating this
sort of documentation. (Remember that the information in an info segment is
printed using the help command).

Fin.:.3.11y, all of your source a.nd object segments should have the proper
access set, so only the appropriate people can use them.

SAMPLE TERMINAL SESSIONS

Figure 2-1 displays the interaction -between Multics and the user Karen
f'l:acSissle as she logs in and writes, compiles, and executes the simple sum program.
MacSissle uses the Qedx editor to put the program online, the pll command to
compile it, and the program name (without the language suffix) to execute it.
Note that MacSissle does not have the usual ready message. She sets her message
to "Karen is here" by using the general ready (gr) command in her start up.ec,
the special exec com that runs each time-she logs in. (See the ~~PM Commands for
information on the use of general_ready.)

In Figure 2-2, user Tom Smith is shown writing a program called times 2,
which accepts an integer and prints the value of 2 times that integer. SmIth
takes advantage of the terminal for both input to and output from his program.

A Note on Examples

Because ~ultics is written mainly in PLII, you may find that its runtime
environment is somewhat oriented towards the convenience of PLII programmers.
Ways to take advantafe of this orientation are presented in Appendix A, "Using
Multics to Best Advantage". However, as mentioned in the preface, this manual
is intended to be useful for all programmers. Although the majority of the
examples are given in PLII, t here is no need to be discouraged if you aren't
familiar with this language. ~ost of the examples are extremely simple. To see
how you could write the same program in either PLII, FORTRA~:, or COBOL, see
Section 4, "Using the Terminal for 110".

ARCHIVING SEGMENTS

Segments in Mul tics are assigned space in increments of pages (4096 characters) •
This can be very wasteful if you have many short files stored in the system.
The archive (ac) command allows you to combine several segments into a single
segment called an archive. Once in an archive, the individual segments are
called components of the archive segment. Packing segments together in this way
can produce significant savings in storage allocation and cost.

By invoking the archive command with different arguments, you can manipulate
the archive segment in a variety of ways. For example, in addition to creating
your archive, you can also get a table of contents that names each component in
the archive, extract one or more components from the archive, update and replace
one or more components, and delete individual components.

2-8 AG90-03

lop:in KacSissle
Password:

MacSissle ProjA logged in 03/18/81 0921.4 mst Wed from VIP7801
terminal "none".

Last login 03/18/81 0726.2 mst Wed from VIP7801 terminal "none".
Karen is here

qed x
a
simple_sum; proc options (main);

1* this program computes the sum of three numbers set in the program,
then prints the answer at the terminal *1

declCl.re
sysprint
first no
second no
third no
the sum

file,
fixed
fixed
fixed
fixed

binary (17),
binary (17),
binary (17),
binary (17);

1* the terminal output *1
1* the first number *1

1* set the three numbers *1

first no = 123;
second no = 456;
third_no = 789;

1* add them up *1

1* the second number *1
1* the third number *1
1* the answer *1

the sum = first no + second no + third_no;

1* print the answer *1

put skip list ("The sum of the three numbers is:", the_sum);
put skip;

end simple_sum;
\f
w simple_sum.pl1
q
Karen is here

pl1 simple sum
PL/I -
Karen is here

simple sum
The sum of the three numbers is: 1368
Karen is here

Figure 2-1. Sample Terminal Session Hi

2-9 AG90-03

login TSmith
Password:

TSmith ProjA logped in 06/07/79 0937.5 ~st Tue from ASCII
terminal "234".

Last login 06/06/79 1359.8 mst Mon from ASCII terminal "234".

A new PLII compiler was installed; type: help pl1 new
Rates for CPU usaRe have changed; type: help prices
r 9:37 1.314 30 -

qedx
a
times 2: proc;
decla~e (n~m,product) fixed bin(17);
declare (sysin input, sysprint output) file;
put list ("Enter integer");
put skip;
p-et list (num);
product = num*?;
put skip list ("2 times your integer is:", product);
put skip;
close file (sysin), file (sysprint);
end;
\f
w times 2.p11 -q
r 9:40 4.875 62

pl1 times 2 -PLII
r 9: 41 2.906 272

times 2 -Enter integer
19

2 times your integer is: 38
r 9:43 0.231 50

Figure 2-2. Sample Terminal Session "2

2-10 AG90-03

For more information about the archive command and its use, refer to the MPH
Corr,manos.

BINDING SEGMENTS

The !':ultics bind (be) command is used to merge several separately compiled
object segments into a single executable object segment called a bound segment.
The binder is primarily an optimizer, which saves search time and link snapping.
It resolves as many external references as it can in order to avoid the necessity
of resolving them at run time. These references are resolved without recourse
to the search rules--the binder looks only in the programs that are being bound.
ane rejects any progra~s in which there are ambiguous external references.

Binding offers the advantages of taking up less storag:e for the object
code, decreasinR execution time, and avoiding many linkage faults that would
otherwise occur if the bound programs referenced each other frorr separate segments.
Those programs that you call frequently and that are interrelated (ie, reference
one another) should be bound to improve program efficiency. The segments must
be archived before they are bound.

For more information about the bind command, refer to the -MPH Commands.
Also, the MPM Subsystem Writers' Guide provides information on the structure of
bound segments.

LINKS

The word "link" is used for two separate things in Hultics: an intersegment
link and a storage system link. This can be confusing for beginners, but once
you know the system, things are usually clear from their context.

An intersegment link is an interprocedure reference, resolved by the linker.
This kind of link is described in Section 3, "Dynamic Linking".

A storage system link is essentially a "pointer" to a "target". This kind
of link is described here. A storage system link is catalogued in a directory
like a segment, but just gives the pathname of some other place in the directory
hierarchy. The target of such a link is usually a segment, but it can also be a
directory, or even another link. A storage system link enables you to access a
segment located in some other portion of the directory hierarchy without actually
making a copy of it, just as if it were catalogued in your own working directory.
This is one of the ways in which Hultics facilitates sharing.

Multics allows you to create a link anywhere in the storage system as long
as you have the proper access to the directory in which the link is to be
placed. You invoke the link (lk) command to create a link and the unlink (ul)
command to delete a link. (Refer to the HPM Commands.) To see a list of the
linkq you have in your working directory, you can use the list command with the
-link control argument.

2-11 AG90-03

SECTION 3

DYNAHIC LINKING

As the discussion of dynamic linking in Section 1 indicated, external references
on Multics are resolved when a program is
across an unresolved reference, it uses what
the necessary segment and establish the link.
explain hoVl the search rules operate, then
dynamic linking.

A NA~ING CONVENTION

executed. 1.-'hen the system comes
are known as search rules to find

The purpose of this section is to
to show you some of the uses of

Due to a PIlI extension which is local to t-:ultics, the "$" character is
understood when it appears as part of an external name. a$b is interpreted to
mean segment a, entry point b. (Remember that an entry point is a symbolic
offset within the segment. Refer to the discussion of two-dimensional addressing
in Section 1.) Thus, hcs_$initiate, which will be discussed later in this section,
is interpreted to mean segment hcs_, entry point initiate.

SEARCH RULES

Let's suppose that you are writing a new version of the Qedx Text Editor,
and have a segment in your working directory named "qedx". If you type "qedx"
on your terminal, you are instructing Multics to find the program named qedx and
execute it. But which qedx do you want--yours or the system's? To make the
situation a little bit more complicated, let's suppose that one of your coworkers
is also writing a new version of Qedx, and has a segment in one of his directories
named "qedx", to which you have access. You might want to run his prograrr
sometimes instead of yours or the system's.

In each case, it's up to Multics to figure out which segment you want. The
way Multics does this is by searching. To understand why Multics searches the
way it does, you first need to know some of the assumptions it works under.

Once you have invoked some program or accessed some data base, r1ul tics
assumes there is a good chance you will do so again. If the item is in your
address space, that cuts down on the system overhead required to make a complete
search for it a second or third time. So Multics keeps track of all the work
you do after you login. It records your movement through the file system,
noting each item it has located for you and putting these items in your address
space. Multics also assumes that any time you use a reference name which you
have already used, you mean the same item you meant the first time. (A reference
name is a name used to identify a segment that has been made known by the user.)
The name of the item and the information the system needs to find it are recorded
in a table called the reference name table. Segments in this table are referred
to as initiated segments.

3-1 AG90-03

The search rules are a list
until the desired segment is found.

1. initiated_segments

of directories which are searched
The standard search rules are:

in order

Reference names for segments that have already been made known to a specific
process are maintained by the system. A reference name is associated with
a segment in one of four ways:

a. use in a dynamically linked external program reference.

b. use in an invocation of the initiate command.

c. a call to hcs $initiate, hcs $initiate count, or hcs $make seg with a
nonnull character string supplied as-the ref name-areum-ent. These
hcs entry points are described in the ~~PM Subroutines.

d. a call to hcs $make ptr or hcs_$make_entry (described in the t-:PM
Subroutines). - -

2. referencing_dir

The referencing directory contains the segment \-lhose call or reference initiated
the search. So, if pgma calls pgmb, and pgmb isn't in the reference name
table, the system looks for pgmb in the directory where pgma resides.

3. lrTOrking_ dir

The working directory is the one associated with you at the time of the
search. This may be any directory established as the working directory by
either the change wdir command or the change wdir subroutine (described in
the ~1PP Commands-and MPt~ Subroutines respectively). The initial working
directory is your home directory.

4. system libraries
The system libraries are searched in the following order:

>system library standard
ThIs library contains standard system service modules, i.e., most system
commands and subroutines.

>system library unbundled
ThIs library contains Multics Separately Priced Software.

>system library 1
ThIs library contains a small set of subroutines that are reloaded
each time the system is reinitialized.

>system library tools
ThIs library contains software primarily of interest to system
programmers.

>system library auth maintained
ThIs library c()ntains user maintained and installation maintained
programs.

You can see what your process's current search rules are by using the
print_search_rules (psr) command:

3-2 AG90-03

psr
initiated segments
referencinr: dir
working dir
)system-library standard
)system-library-unbundled
)system-library-1
)system-library-tools
)system=library=auth_maint

Note that, according to these search rules, if you have in your working
directory a program with the sa~e name as a system co~mand or subroutine, your
program will be used rather than the system's. Don't give your programs the
same names as those of system programs, unless you really are trying to replace
them. Here is an example of the trouble you can fet into when you duplicate the
name of a system program. Suppose you have a program of your own which creates
an output file and you name the file "list." If you run your program, then try
to list your working directory usinf the list command, you will get a message
like this:

command_processor_: Linkage section not found. list

The system thinks you are trying to run your output file, list, as a program!

You can modify your search rules by using the add search rules (asr),
delete search rules (dsr), and set search rules (ssr) commands, described in the
MPM Commands. In addition, your system administrator can modify the default
search rules described above for all users at your site.

Thus, the first time you invoke a program after login, the system begins
its search for the segment by looking in the reference name table. The search
fails there, so it continues through the list of directories in the search rules
until the segment is found or all the directories have been searched. Subsequent
invocations of the sarle program are much faster, because the system finds the
program right away in the reference name table.

A Note on Initiated Segments

If your program named x references a program named y by means of a call or
function reference, a dynamic link is established between x and y so that all
subsequent references to y by x are accomplished by using the segment number
(the alias for the segment name discussed in Section 1). If you change to a new
working directory, and execute a program named z that calls a program in this
new directory named y, the system will establish a dynamic link to the original
segment y because the reference name y is still associated with the original
segment and segment number. The system maintains this association until the
reference is terminated. See Figure 3-1 for an illustration of initiated segments
working in this way.

3-3 AG90-03

workin9_dir _1

\,---------",,/
, I

'--- ------ ------------..",~
x call y z calls y

Figure 3-1. Initiated Segments

3-4 AG90-03

Segments can be mace known to your process by using the initiate (in)
commc_nd. You can list your initiated segments with the list ref names (lrn)
command. References can be terminated by using one of the ter~inate commands,
either terminate (tm), terminate refname (tmr), terminate serno (tms) or
terminate single refname (tmsr), whlch allmV' you to remove segments from the
list of segments- known to your process. (The new proc command also erases all
previous associat ion between segment names and segment numbers, by sT,{eeping out
your entire address space.) For more detailed information on these commands,
see the MPM Commands.

Deleting a segment also terminates it. Recompiling a program unsnaps all
links in the current process which point to the program, since the location of
symbolic entry points may be changed by recompilation. Both of these actions
affect only the process performing the operation. Recompiling or deleting a
segment in one process may cause other processes using the segment to malfunction.

USES OF DYNAMIC LINKING

There are many ways in which dynamic linking can be used, but the following
three are probahly the most significant:

• to permit initial debup-ging of collections of programs before the entire
collection is completely coded.

• to permit a program to include a conditional call to an elaborate
error handling or other special-case handling program, without invoking
a search for or mapping of that program unless the condition arises in
which it is actually needed.

• to permit a group of programmers to work on a collection of related
programs, such that each one obtains the latest copy of each subroutine
as soon as it hecomes available.

The use of dynamic linking in program development is shown by the following
script. When the script starts, the program "k" and subprogram "y" have already
been written and compiled by our user MacSissle.

k: procedure;

declare (x, y, z)
declare i
declare (sysprint, sysin)

put list ("Which option?");
get list (i);
if i = 1 then call x;
else if i = 2 then call y;
else if i = 3 then call Z;
else put list ("Bad option
return;

end k;

y: procedure;

entry;
fixed binary;

file;

II) ;

declare sysprint
put list (lly has
put skip;

file;
been called. II);

end y;

In this example and all others like it in this manual, comments on the
script are distributed throughout the script itself.

3-5 AG90-03

k
Which option? ! 2

Y has been called.

r 17:11 0.123 11

The program "k" is invoked by typing its name. MacSissle calls for option
2, and the program "y" is called. "k" runs successfully even though two of the
three subroutines it could call do not exist, because the subroutine it does
call is available. Since linking is done on demand, and no demand for "x" or
"z" occurs, their nonexistence does not keep the program from running.

In the next use of "k", MacSissle asks for an option corresponding to the
program iiZ,ii which doesn1t exist.

k
Which option? ! 3
Error: Linkage error by)udd)ProjA)MacSissle)k1152 (line 11)
referencing zlz
Segment not found.

r 17:11 0.283 90 level 2

The attempt to call the nonexistent subroutine "z" fails. The linkage
error handler invokes a second command level, as indicated by the field "Level
?" in the ready messafe. The error message shoHs the full pathname of the
program attempting to locate "z," and rives the name of the program that could
not be found. The notation "zlz" means entry point "z" in segrnent "z." It is
necessary to separate entry pojnt name from segment name, since a PL/I program
in a segment could have several entry points with different names.

Execution of "k" is suspended, since it cannot continue with the call.
f'! a c Sis s I e has the c h 0 j C € 0 f g i v in g up, 0 r c rea tin g " z . " She in v 0 k est h e qed x
editor and creates the segment.

qed x
! a

z: procedure;
declare sysprint file;
put list ("This is Z")
put skip;

end z;
\f
w z.p11
q
r 17:12 0.382 48 level 2

Now the segment must be compiled to create a callable object segment.

p11 z -table
PL/I
r 17:12 0.234 65 level 2

With the object segment "z" created, the call from "k" can be restarted.
MacSissle does this with the start command.

3-6 AG90-03

start
This is Z

r 17: 12 0.166 27

The program finishes successfully. It can now be run with option 3 without
any additional intervention.

k
Which option? ! 3

This is Z

r 17: 13 0.075 18

For more information on the details of dynamic linking, see the MPH Reference
Guide sections on object segments, system libraries and search rules. You might
also want to learn about the resolve linkage error (rle) command, which can be
used to satisfy the linkage fault after your process encounters a linkage error.
This command is described in the MPM Commands.

SEARCH PATHS

. Searching is something that Multics has to do all the time. So far we've
only talked about searching for object serments--what Multics has to do when you
type the name of a program you want to execute, or your program references an
external procedure. Hultics has to searcr. for other things, too, notably input
of some kind. For example, the help co~mand requires as input an info segment.
You can tell the system to look in specific places for the input by creating
search paths. Search paths have the same basic function as search rules, but
are used for things like subsystems and language compilers. A set of commands
similar to those available for modifying search rules are available for modifying
search paths. These commands are add search paths (asp), delete search paths
(dsp), print search paths (psp), set search paths (ssp), and where-search-paths
(wsp). All are documented in the HP~:r Commands. --

3-7 AG90-03

SECTION 4

INPUT/OUTPUT PROCESSING

Input/output (I/O) processing on Multics can be handled in many different
ways. The intent of this section is to show you how to do simple kinds of I/O
on Multics, and to introduce you to the basics of doing more complex I/O.

The rultics I/O system handles logical rather than hardware I/O. This
means that I/O on Multics is essentially device independent. In other 1rlOrds,
you don't have to write your program with a specific device in mind. Most I/O
operations refer only to logical properties (e.g., the next record, the number
of characters in a line) rather than to particular device characteristics or
file formats. To understand how I/O processing on Multics works, you must first
be familiar with two important terms.

(1) I/O switch: a software construct through which the file name in your program
is associated with an actual device. The I/O switch is like a channel, in
that it controls the flow of data between your program and a device. It
keeps track of the association between itself and the device and the I/O
module.

(2) I/O module: a system or user-written program that controls a physical device
and acts as an intermed iary bet'Voleen it and your program. The I/O modul e
knows what the attributes of the device are, and "hides" them from you so
you don't have to worry about them. It processes the I/O requests that are
directed to the switch attached to it. The ~1ultics system offers the following
I/O modules:

discard
provIdes a "sink" for unwanted output.

rdisk
supports I/O directly from/to removable disk packs. (These are packs
which are allocated in their entirety to a process; they do not contain
files in the Multics storage system.)

record stream
provides a-means of doing record I/O on a stream file or vice-versa.

syn
establishes one switch as a synonym of another.

tape ansi
supports I/O from/to magnetic tapes according to standards proposed by
the American National Standards Institute (ANSI).

4-1 AG90-03

tape ibm
supports I/O from/to magnetic tapes according to IEr1 standards.

tape r.1ult
supporIs I/O from/to marnetic tapes in Multics standard tape format.

tape_nstd
supports I/O from/to magnetic tapes in nonstandard or unknown format.

tty
supports I/O from/to terminals.

vfile
supports I/O from/to files in the storage system.

~lgure 4-1 illustrates the
module, and a device.

flow of data between a

THE FIVE BASIC STEPS OF INPUT/OUTPUT

nY'''''o"Y'~m t-' ... - C','" ~ ; an 1/0 S~!itCh7 an 1/0

For every input/output data stream you are using, you must follow the 5
basic steps of ~ultics I/O processing, which involve attaching en I/O switch to
an I/O module, opening the switch, performing the data transfer, closing the
switch, and detaching it from the I/O module. These steps may be accomplished
outside of your program by means of commands input before and after your program
runs, or inside your program by means of subroutine calls or language I/O statements.
(Defaults are arranged so you can often appear to skip these steps, and they
will be done correctly anyway.)

(1) Attach the Switch

This step associates your data with a file in your program. The switch is
the program's name for each data stream. (In FORTRAN, switches are called
file05, file10, etc.) An attachment statement in ~ultics is comparable to
a JCL data definition (DD) statement in IBf'1 systems. A switch remains
attached until you detach it or you issue a new_proc or lo~out command.

A switch may be attached by:

• invoking the io_call command

• issuing a call to the iox subroutine

• using a language open statement (if the switch hasn't been previously
attached)

• using the default attachments associated with PL/I gets and puts,
FORTRAN reads and writes, or COBOL reads and writes

4-2 AG90-03

00
TAPE

Figure 4-1. Flow of Data

4-3 AG90-03

(2) Open the Switch

This step describes the data you're going to use. It tells the system how
the data is organized (its file type) and how it is to be accessed (its
mode). Data sets can be organized in four fundamental 1-lays: stream,
sequential, blocked, and keyed. Only the first two ways will be discussed
here.

A stream file is a collection of data that is like free-form text. The
data is a continuous flow of information, with individual items separated
by blanks, commas, or newline characters. A stream file can be created,
examined, and updated via a text editor, and can be meaningfully printed on
a terminal or line printer, because it contains only ASCII characters.
It's size is arbitrary.

A sequential file is a collection of data that is broken into discrete
units called re-cords, \-lhich have a fixed form. A sequential file is created
by a program, and is used for information which is meant to be read and
processed by another program. The data are in the same coded form as data
stored internally in the computer and can't be printed meaningfully.

~ost tape files are sequential. Disk files may be either stream or sequential.
Terminal I/O is stream-oriented.

Data sets can be operated on in three fundamental ways: input only, output
only, or both input and output. Some of the opening modes of a switch are
therefore:

si - stream input
so - stream output
sio - stream input/output

A switch may be opened by:

• invoking the io call command

• issuing a call to the iox subroutine

• using a language open statement

sqi - sequential input
sqo - sequential output
sqio - sequential input/output

• using PL/I gets, puts, reads, and writes, FORTRAN reads and writes, or
COBOL reads and writes--the switch is opened by default

(3) Perform I/O Operations

This step is where the data transfer actually occurs.

Data transfer may be performed by:

• invoking the io_call command

• issuing a call to the iox subroutine

• using language defined I/O statements (gets, puts, reads, writes, etc.)

(4) Close the Switch

This step tells the system you are through (at least temporarily) with the
I/O switch. It prevents further access to the data through that switch,
enables you to re-open the switch la':.er with a different mode, and with
output disk files and tapes, sets the length of the file.

4-4 AGgo-o3

A switch may be closed by:

• invoking the io call command

• issuing a call to the iox subroutine

• using a language close statement

• default (on your program's return), if and only if the switch
was opened by default

(5) Detach the Switch

This step disconnects your program from your data.

A switch may be detached by:

• invoking the io_call command

• issuing a call to the iox subroutine

• using a language close statement

• default (on your program's return), if and only if the switch
was attached by default

USING THE TERMINAL FOR 1/0

The simplest way to do 1/0 on Multics is to use the terminal. There are
four standard switches which are attached when your process is created.

(1) user i/o: this switch acts as a common collecting point for all terminal
1/0. It's attached to your terminal through the 1/0 module tty and opened
for stream input and output. -

(2) user input: this switch controls command and data input at the terminal.
It's-attached to user ilo through the 1/0 module syn , and through that to
your terminal. It's opened for stream input. -

(3) user output: this switch controls command and data output at the terminal.
It's attached to user ilo through the 1/0 module syn_, and through that to
your terminal. It's opened for stream output.

(4) error output: this switch controls output of error messages at the terminal.
It's attached to user ilo through the 1/0 module syn_, and through that to
your terminal. It's opened for stream output.

Figure 4-2 illustrates these standard attachments.

4-5 AG90-03

PROCESS

Figure 4-2. Standard Attachments

4-6 AG90-03

If you don't specify switch names and 1/0 ~odules when you run your program,
the system uses these defaults. So, it's possible to write your program using
the terminal for input and output and not worry about files. For example, here
is a revised version of our sample program from Section 2, simple sum. It has
been renamed any sum, and changed to accept input typed by the-user at the
terminal in response to a prompting message. The output is typed back on the
terminal. Notice the use of sysin and sysprint for the terminal input and
output.

any_sum: proc options (main);

1* this program computes the sum of any three 1 to 6 digit numbers typed
at the terminal, then prints the answer at the terminal *1

declare
sysin file, 1* the terminal input *1
sysprint file, 1* the terminal output *l
first no fixed binary (20) , 1* the first number *1
second no fixed binary (20) , 1* the second number *1
third - fixed binary (20) , 1* the third number *1 no
the - fixed binary (24) ; 1* the *1 sum answer

1* get the three numbers *1

put skip list ("please type three 1 to 6 digit numbers:");
get list (first_no, second_no, third_no);

1* add them up *1

the sum = first no + second no + third_no;

1* print the answer *1

put skip list (lithe sum of the three numbers is:", the_sum);
put skip;

Here are FORTRAN and COBOL versions of the same program.

c This program computes the sum of any three numbers typed at the
c terminal, then prints the answer at the terminal.

integer first no, second_no, third no
integer the sum

the 3 numbers
the answer

c Get the three numbers

print, "please type three numbers:"
input, first_no, second_no, third no

c Add them up

the sum = first no + second no + third no

c Print the answer

print, "the sum of the three numbers is:", the sum

stop
end

4-7 AG90-03

Detailed information about how the command utility and active function error
subroutines can be used from an active function procedure is provided in the MPM
Subroutines and the MPM Subsystem Writers' Guide respectively.

The same procedure can be programmed to operate both as an active function
and as a command procedure. Typically when such procedures are called as a
command, they print on the user's terminal the value of the string they would

I return as an active function. These command/active function procedures are coded
as active functions and should call cu $af return arg instead of cu $af arg count.
If cu $af return arg returns the error-code error-table $not act friC, trieyoperate
as cOmmar1ds. If the code returned is zero, they use the -returned pointer and
length to base the return value. Any other nonzero error code should be fatal.
Note that eu $af return arg always returns a correct argument count even if the
active functIOn was invoked as a command, so the user can go on to use cu_$arg_ptr
with no further checking.

ADDRESS SPACE MANAGEMENT

When a user logs in, he or she is assigned a newly created process. Associated
with the process is a collection of segments that can be referenced directly by
system hardware. This collection of segments, called the address space, expands
and contracts during process execution, depending on which segments are used by
the running programs.

Address space management consists of constructing and maintaining a
correspondence between segments and segment numbers, segment numbers being the
means by which the system hardware references segments. Segment numbers are
assigned on a per-process basis (i.e., for the life of the process), by supplying
the pathname of the segment to the supervisor. This assignment is referred to
as "making a segment known." Segments are made known automatically by the dynamic
linker when a program makes an external reference; making a segment known can
also be accomplished by explicit calls to address management subroutines. In
addi t ion, when a segment is made known, a correspondence can be established
between the segment and one or more reference names (used by the dynamic linker
to resolve external references); this is referred to as "initiating a reference
name." When dynamic linking is the means used to make a segment known, the
initiation of at least one reference name is performed automatically. (For more
information on reference names, see "Reference Names" in Section 3 and "Making a
Segment Known" below.) A general overview of dynamic linking is given below.

Dynamic Linking

The primary responsibility of the dynamic linker is to transform a symbolic
reference to a procedure or data into an actual address in some procedure or
data segment. In general, this transformation involves the searching of selected
directories in the Multics storage system and the use of other system resources
to make the appropriate segment known. The search for a referenced segment is
undertaken after program execution has begun and is generally required only the
first time a program references the address.

The dynamic linker is activated by traps originally set by the translator in
the linkage section of the object segment. These traps are used by instructions
making external references. When such an instruction is encountered during
execution, a fault (trap) occurs and the dynamic linker is invoked.

9/81 4-7. 1 AG91C

The dynamic linker uses information contained in' the object segment's
d efin i t ion and 1 inkage sec t ion s to fi nd the symbol ic reference name. (For a
detailed description of these sections, see "Multics Standard Object Segment" in
Section 1 in the MPM Subsystem Writers' Guide.) Using the search rules
currently in effect, the dynamic linker determines the pathname of the segment
being referenced and makes that segment known. The linkage trap is modified so
that the fault does not occur on subsequent references; this is referred to as
snapping the link.

8/80 4-7.2 AG91B

identification division.
program-ide anysum.
author. KMacSissle.
date-written. February 1981.
date-compiled.

remarks. This pro~ra~ computes the sum of any three 1 to 6 digit
numbers typed at the terminal, then prints the answer at the
terMinal.

environment division.
configuration section.
source-computer. Multics.
object-computer. Multics.

data division.
working-storage section.

01
01
01
01

first-no
second-no
third-no
the-sum

pic 9(6)
pic 9(6)
pic 9(6)
pic 9(7)

procedure division.

100-get-three-numbers.

value zeroes.
value zeroes.
value zeroes.
value zeroes.

display "please type three 1 to 6 digit numbers".
display "(numbers less than 6 digits long must be zero-filled,".
display" and each number must be typed on a neH line):".

accept first-no.
accept second-no.
accept third-no.

200-add-the£T1-up.
compute the-sum = first-no + second-no + third-no.

300-print-the-answer.
display "the sum of the three numbers is:" the-sum.
stop run.

USING SEGMENTS AS STORAGE FILES

v] hen you rap pI i cat ion r e qui res the use 0 f a s tor age f i 1 e for I/O, the
easiest thing to do is to use a segment in your working directory (or a segment
in another directory to which you have created a link). In your program, you
must do the following:

(1) Give the file a name and declare it as a file;

(2) Open it (connect it to your program, prepare it for processing, and position
it at the beginning);

(3) Do data transfer via one or more get, put, 'read or write statements (depending
on the language you're using);

(4) Close it (disconnect it from your program).

4-8 AG90-03

Here is a revised version of the any sum program. It's been renamed compute sum,
and changed so that it gets its input from a segment in your working directory
called in file. The output goes to another segment in your working directory
called out file.

compute_sum: proc options (main);

1* this program computes the sum of three 1 to 6 digit numbers read from
an input file, then writes the answer to an output file *1

declare
in file stream file,
out file stream file,
first no fixed binary (20),

second-no fixed binary (20),
third no fixed binary (20),
the sum fixed binary (24);

1* open the files *1

open file (in file) input,
file (out_file) output;

1* get the three numbers from the input file *1

1* add them up *1

1* the input file *1
1* the output file *1
1* the first number *1
1* the second number *1
1* the third number *1
1* the anSvler * I

the sum = first no + second no + third_no;

1* put the answer in the output file *1

put file (out file) list (the_sum);

1* close the files *1

close file (in file),
file (out=file);

end compute_sum;

Doing 1/0 this way also takes advantage of the default switches and modules.
The open statement attaches and opens the switch, the close statement closes and
detaches the switch.

What if the files you need to use are not segments in your working directory?
One thing you can do, if you're a PL/I programmer, is to use the title option on
your open statement. For example:

open file (in file) title
("vfile_ >udd>ProjA>MacSissle>data_files>test file 1") input;

where

vfile >udd>ProjA>MacSissle>data_files>test_file_1

is an example of an attach description. An attach description is a string of
characters which identify the name of an 1/0 module and options to control its
operation. In this case, the only option given is the source/target of the
attachment (i.e., the name of the device or file).

4-9 AG90-03

Other languages have constructs which are somewhat similar to the PL/I
title option. In FORTRAN, there is the attach specifier, which is used on an
open statement. In COBOL, there is the catalog-name clause. See the Language
Users' Guides for information on how to use these constructs.

USING 110 COMMANDS AND SUBROUTINES

The use of 1/0 commands and subroutines is where 1/0 processing may become
more complex. The following discussion is not intended to fully explain their
use, but rather, to introduce the basic concepts involved. For more information,
refer to the MPM Reference Guide, Section 5. Information is also available in
the Language Users' Guides.

The command for performing operations on designated 1/0 switches is io call
(io). Its syntax is:

io opname switchname {args}

It is used as follows:

(1) To attach a switch:

syntax: io attach switchname modulename {args}
example: io attach my_switch vfile_ >udd>ProjA>MacSissle>my_file

(vfile >udd>ProjA>MacSissle>my file is another example of an attach
description.)

(2) To open a switch:

syntax: io open switchname mode
example: io open mY_SWitch sequential_input

(3) To close a switch:

syntax: io close switchname example: io close my_switch

(4) To detach a switch:

syntax: io detach switchname example: io detach mY_SWitch

The io call command is used outside of your program. A typical sequence at
command level would involve attaching and opening the switches, running your
program, then closing and detaching the switches. (Switches that are attached
and opened at command level should usually be closed and detached at command
level. However, they can also be closed explicitly by the program using language
close statements.)

Other I/O-related commands include:

close file (cf)
closes specified FORTRAN and PL/I files. This command is very useful if
your program opens a file, then terminates unexpectedly before closing
it. You must close the file before you run the program again, or you'll
get an end-of-file error.

4-10 AG90-03

copy cards (ccd)
copies specified card image segments from the system pool storage into
your directory. The segments to be copied must have been created using
the Multics card image facility.

copy file (cpf)
copies records or lines from an input file to an output file.

display pl1io error (dpe)
describes the most recent file on which a PL/I I/O error was raised and
displays diagnostic information associated with that errore

file_output (fa)
directs all subsequent output over user_output to a specified segment.

print attach table (pat)
prInts information about I/O switch attachments.

revert output (ro)
restores all subsequent output to the previous device.

stop cobol run (scr)
causes the termination of the current COBOL run unit.

terminal output (to)
directs all subsequent output over user_output to a terminal.

Three of these commands can show you a little about how switches work. Type
"pat" on your terminal and the system will print this:

user i/o
- stream input

user input -
user-output
error_output

tty -login channel
output -
syn user i/o
syn- user-i/o
syn:= user:=i/o

You can see from this that user i/o is attached via the module tty to the login
channel, and user input, user output, and error output are attached-Via the module
syn_ to user i/o.- - -

Type "fo my file; pat; ro; pr my_file" on your terminal and the system will
print something like this:

03/10/81 1124.0 est Mon

user i/o tty -login channel
stream input output -

user_input - syn_ user i/o
user output syn_ fo !BBBJKqdcZHXHFf
error output syn user i/o '
fo save !BBBJKqdcZJXgxW-

- syn user i/o
fo !BBBJKqdcZHXHFf vfile >udd>ProjA>MacSissle>my_file -extend

- stream_output

You can see from this that user output was attached via vfile instead of syn •
(Refer to Figure 4-3.) For complete information on all of these commands, see
the MPM Commands.

4-11 AG90-03

The most important subroutine for doing 1/0 is iox. It is called from
vlithin your program just like any other subroutine, and can be used to attach,
open, close and detach switches, as ,..reI 1 as to read and write records, and
perform various other 1/0 operations. Another subroutine for doing 1/0 is ioa ,
which is used for producing formatted output; it can be very handy. The use of
these subroutines is beyond the scope of this manual. Detailed information is
available in the MPH Subroutines.

CARD INPUT AND CONVERSION -----

You may have programs punched on cards that you would like to compile and
run under r~ultics. The standard way of handling a card deck on ~'lultics is to
place the deck in a card reader and read it into a system pool. Once this is
done, you log in on a terminal, and transfer the card file from the system pool
to your working directory using the copy_cards command already mentioned.

A minimum of three control cards must accompany your deck. These control
cards identify you to the system, and specify the format of the card input you
are submitting. There are two kinds of card input on Multics. One is bulk data
input, which is usually a progra~ or a data file. The format of a card deck for
bulk data input is shown belovl:

++DATA DECK NAME PERSON ID PROJECT ID
++PASST,.]OR D PA SSWOR D
++CONTROL OVERWRITE
++AIM ACCESS CLASS OF UAlA CARDS
++FORMAT PUNCH FORMAT MODES
++INPUT

(user data cards)

The three cards required as a minimum are the first, which is an identifier
card, the second, which is a password card, and the last, which signals the end
of control input.

The other kind of card input is remote job entry, which is a series of
t-1ultics commands to be run as an absentee jOb':'""" ~information on absentee
jobs, and the format of a card deck for remote job entry, see Section 7. For a
complete explanation of all the ~ultics control cards, see Appendix C of the MPM
Reference Guide.

4-12 AG90-03

Figure 4-3. Attachments After Execution of file_output Command

4-13 AG90-03

SECTION 5

A DEBUGGING TOOL

A variety of debugging tools are available on Multics. They allow you to
look at your program piece by piece, in a vlaY that is closer to the way the
machine sees it. The most powerful of these tools is an interactive program
naDed probe, which permits source-language breakpoint debugging of PL/I, FORTRAN,
and COBOL programs. To understand the discussion of probe given later in this
section, you must first know a little about the Nultics stack.

THE STACK

Each process has associated with it a stack segment (called the stack) that
contains a history of the environment. The stack is essentially a push down
list which contains the return points from a series of outstanding interprocedure
calls. It also holds storage for automatic variables. If you were to stop a
running process and trace its stack, you would find, starting at the oldest
entry in the stack, a record of the procedures used to initialize the process,
followed by the command language processor, followed by the procedure most recently
called at command level and any procedures it has called. Your stack can be
visualized as follows:

The lines in the illustration above define stack frames. As control passes
from program to program within the system, your stack ::grows ii new stack frames:

5-1 AG90-03

D

Fi gure 5-1 gives a pictorial v ievJ 0 f what t he stack rr.ight look 1 ike at
diffecent times during the execution of a program. In Figure 5-1a, the last.
frame of the stack is for the command level programs. From command level, you
can type commands at the terminal. Once a command is typed, that program is
called and a stack frame immediately allocated for it. (This is shown in Figure
5-1b). The stack remains in this state for the duration of execution of the
program.

a

Header Header Header

initial initial initial
program program program

first first first
comrr:and command command
level level level

program program

b
(signal
overhead)

second
command
level

c

Figure 5-1. State of Stack

(a) State of Stack after Login
(b) State of Stack after Command is invoked
(c) State of Stack after QUIT

5-2

QUIT
information

AG90-03

Figure 5-1c depicts the stack after a QUIT is signalled. Here a second
command level is established. The first command level, and the program itself,
have been suspended, but nothing has been thrown out.

At this point further commands could be issued. The start command vlould
cause the program to resume execution, and the stack to revert to the state
illustrated in Figure 5-1b. The release command '.-lould cause the stack frame
(and hence the execution state) of the program to be discarded, and the stack to
revert to the state depicted in 5-1a.

Note that it would be possible at the second command level (Figure 5-1c) to
invoke the same program called at the first command level.

Figure 5-2 illustrates several of the states of the stack during execution
of a program consisting of several subprograms. The call/return sequence depicted
is:

ProGram A calls program B
Program B calls program C
Program C returns to B
Program B calls program D
Program D returns to B
Program B returns to A
Program A returns to command processor

These diagrams illustrate the behavior of four separately compiled programs,
each allocated a new stack frame every time it is called:

5-3 AG90-03

Header Header Header

initial initial initial
program program program

first first first
command command command
level level level

a
Program A Program A

b
Program B

c

Header Header Header

initial initial initial
program program program

first first first
command command command
level level level

Program A Program A Program A

Program B Program B Program B

e
Program C Program D

d f

Header Header Header

initial initial initial
program program program

first first first
command command command
level level level

1

Program A Program A

h
Program B

g

Figure 5-2. Allocation of Stack Frames

5-4 AG90-03

(a) User at command Jevel.
(b) A is invoked and gets stack frame, in which automatic variables are

allocated and initialized.
(c) A call s B. B get sst a c k f r am e, i n '>-1 h i c h aut 0 mat i c va ria b 1 e s are a 11 0 cat e d

and initialized.
(d) B calls C, C gets stack frame, in which automatic variables are allocated

and initialized.
(e) C returns to S, the stack frame for C is discarded, and storage is

released.
(f) B calls D, D gets stack frame, in which automatic variables are aJlocated

and initialized.
(g) D returns to B, the stack frame for D is discarded, and storage is

released.
(h) B returns to A, the stack frame for B is discarded, and storage is

released.
(i) A returns to command level. All program-specific automatic storage

has been released.

Automatic storage is storage "Ihich stays around only for the life of a
program. Static storage is storafe which stays around for the life of a process,
or is retained across processes.

If an unexpected error occurs (or you press the QUIT button), the syster.1
will save the current environment, mark the stack at its current level, and push
a frame onto the stack for a new activation of the command processor.

The new activation of the command processor accepts commands just as the
original one did. It is possible to restart the suspended program, or to discard
the saved environment, or to use one of the Multics debugging tools to examine
the saved environment.

The release command causes the command processor to return to its own previous
activation, and discard the intervening stack contents. The programs whose stack
contents have been discarded cannot be resumed or examined after the stack has
been released.

The start command causes the command processor to attempt to continue execution
of the suspended program at the point of interruption. Depending on the nature
of the error, and what has been done since the error occurred, the restart
attempt mayor may not succeed. Programs may always be restarted after a QUIT,
but only seldom after an error. If the program cannot be restarted, the error
message will usually be repeated. An unsuccessful attempt to restart a program
is usually harmless.

If you would like to examine the stack history of your process in detail,
try using the trace stack (ts) command, described in the MPM Commands.

PROBE

The probe (pb) command can be used to examine the saved stack and the
current state of suspended programs. (Remember that a program which makes a
call to another program is suspended just as a program which makes an error is
suspended, except that a program which makes a call can always be resumed.)
Probe can print the values of program variables and arguments, as well as reporting
the last program location to be executed.

The use of probe is shown here in a series of examples, which make use of
the following program, blowup.pI1. This program has an illegal reference to the
array "a", and the subscriptrange condition occurs when it is run. Since

5-5 AG90-03

suhscriptrange checking is disabled by default in PL/I, the error manifests
itself as an out of bounds condition instead of a subscriptrange. (In practice,
it is recommended-that PL/I programmers' enable such conditions as subscriptrange.)
Althougr. this error is easy to spot, the behavior of the program is typical of
other, harder to spot errors.

print blowup.pl1

b I 01rlU P • P I 1

blowup: procedure;

j dcl
dcl
del

a (10)
sum

a (*) = 1;
do j = -1 to -100000 by -1;

sum = a (j);
end;

end blowup;

r 13:320.11020

pl1 blowup -table
PL/I
r 13:32 0.675 174

04/17/80 1332.0 mst Thu

f xed b nary
f xed b nary
f xed b nary

The program is compiled with the -table control argument. This action
causes a symbol table to be created, and stored with the program in the executable
object segment. The information it contains can be used by the Multics debugging
aids. A symbol table should always be created while debugging, so that errors
may be found more easily.

blowup

Error: out of bounds at)udd)ProjA)MacSissle)blowupl24 (line 9)
referencing stack 41777777 (in process dir)
Attempt to access-beyond end of segment.

r 13:32 0.228 32 level 2

The program is invoked by typing its name. It takes an 'out of bounds'
fault, because the subscript used in the reference to array "a" is inialid. The
program does not use PL/I subscriptrange checking, so it attempts to calculate
the address of the (nonexistent) element of "a" referenced. The resulting address
does not exist, so the fault occurs.

This message shows the name of the error condition, the pathname of the
program, the octal location in the object segment where the error occurred, the
line number, and an additional message about the error. If blowup was a FORTRAN
program, the pathname would look like this:)udd)ProjA)MacSissle)blowup$main,
blowup being the name of the segment and main the name of the program entry
point. This is because every FORTRAN program has a "main" program entry point
and fvlultics uses this as part of its name. If the program had not included a
symbol table, the line number would not have been part of the message.

probe
Condition out of bounds raised at line 9 of blowup (level 7).

5-6 AG90-03

t1acSissl e invokes t he probe command. Probe looks for the program wh ich
caused the trouble, and prints a messa£"e about the most recent error found in
HacSissle's process. The word "level" here refers not to command processor
level, but to the number of programs saved on the stack. The error occurred in
blowup, which was the seventh program on the stack.

stack

13
12
1 1
10

9
8
7
6
5
4
3
2
1

read listl13400
command processor 110301
abbrev T1501 -
release stackl1355
unclaimed signall24512
wall14410-
blowup (line 9)
read listl 13400
command processor 110301
abbrev T1507 -
listen-17355
process overseer 135503
user inlt admin T40100 - - -

out of bounds

The stack is displayed by the "stack" request. This request shows every
program on the stack, in the order invoked. There i.,rill alt.·lays be unfamiliar
programs on your stack. You can just ignore them--they are for handling errors,
processing command, etc. The numbers on the left show the order of activation.
The entry for blowup ShOltlS the source line number corresponding to the last
location executed, and the name of the error that occurred. The line number can
be determinerl because blowup was compiled with a symbol table. The other programs
have no symbol table, so the display shows the octal offset of the last instruction
executed.

source
sum = a (j);

Using the "source" request, the source statement for line 9 is displayed.
This is the line that was being executed when the error occurred. More precisely,
the error occurred executing the object code corresponding to this source line.

value j
j = -2689
symbol a
fixed bin (17) automatic dimension (10)
Declared in blowup

The value of the variable "j" is displayed v-lith the "value" request. This
request takes as its argument the name of a variable; and prints the value of
the variable. (Note that a program must be suspended for you to look at its
automatic variables.) Next, the "symbol" request is used, to show the attributes
of !l a ."

position 8

do j = -1 to -100000 by -1;

5-7 AG90-03

The "position" request is used to examine different lines of the program,
in this case the line before the one that caused the hang. This request can
also be used to examine different programs on the stack. For example, to look
at the abbrev program on level 4, MacSissle could type "position level 4".
However, she would most likely get the answer "probe (position): Cannot get
statement map for this procedure," which means that the program was not compiled
with the -table option. (Most systerr. commands have -table omitted, to save
space.)

quit
r 13:33 1.080 129 level 2

The last probe request used is "quit," which exits probe, and returns to
command level. riacSissle is still at command level two, and the program 23

still intact. The next command typed is the release command, which discards the
saved frames, returning to level one.

release
r 13:33 0.057 16

Unlike interactive programs like read mail, probe doesn't prompt you for
requests. If you're not sure whether probe-is listening, type a dot, and probe
will respond with "probe 5.2" (or \vhatever the version number is) if it is
there.

Probe has many more features than there is room to present here. It should
still be useful to you even if you don't use the other features, but to learn
about them you can use the "list requests" request, which tells you the name of
every probe request, and the "help" request, which tells you about probe requests
and also about probe itself. For example, you can type "help value" to find out
about the "value" request, or "help help" to find out about "help".

Another debugging tool which you may find useful is the trace command,
which allows you to monitor all calls to a specified set of external procedures.
Full descriptions of the probe and trace commands are available in the r~pr~

Commands.

5-8 AG90-03

SECTION 6

A PERFORMANCE MEASUREMENT TOOL

After a program is written and debugged; it is often desirable to increase
its efficiency. Multics provides performance measurement tools which identify
the most expensive and most frequently executed programs in a given collection.
Within these crucial programs, the most costly lines are found by using the
profile facility.

To use the profile facility, the first thing you have to do is compile your
program with the -profile control argument. This control argument causes the
compiler to generate special code for each statement, recording the cost of
execution on a statement-by-statement basis. Then, after executing your program
many times, you can use the profile command to look at its performance statistics.

The example that follows shows the use of profile with a very small sample
program to be used as a subroutine:

procedure (trial prime) returns (bit (1) aligned);
declare trial prime fixed binary (35) parameter;
declare trial-factor fixed binary,

last factor fixed binary;
declare (mod~ sqrt) builtin;
last factor = sqrt (trial prime);
do trial factor = 2 to last factor;

if mod (trial prime, trial factor) = 0
then return (~O"b); -

end;
return ("1"b);

end prime_;

This subrout ine cannot be called directly from command level, since only
programs whose arguments are nonvarying character strings may be called directly.
It is to be used with other programs. To test it, a simple command is written
which accepts one argument, converts it to binary; and calls the prime subrout ine.
The testing command is called test_prime. It is not shown here. -

pl1 prime -profile
PL/I
r 17:44 0.699 140

test prime 3
3 is a prime.

r 17:44 .110 23

6-1 AG90-03

First, the prime subroutine is compiled using the -profile control argument.
Next, the test_prime command is invoked with the argument "3". Test prime converts
the 3 to binary, and calls the prime_ subroutine with it.

discard output "test_prime ([index set 500J)"
r 17:lj5-5.103 5lj

To evaluate the performance of the subroutine, several hundred calls to it
should be made, over a wide range of values. The next command line invokes
test prime 500 times, witt values from 1 to 5eO. The index set active function
returns the numbers from 1 to 500, and the parentheses invoke test prime once
for each value.

The output from the program is not interesting, so the discard output (dco)
command is used. This command causes output from the program to be discarded,
instead of printed on the terminal.

profile prime -
Program: prime

LINE STMT COUNT

6 1000
7 1000
7 4lj18
8 4218
9 800

10 3418
1 1 200

Totals: 15054
r 17:46 0.368 51

COST

34000
3000

13254
59052

8800
6836
2600

127542

STARS

~H*

**
**

OPEBATORS

mod fx 1
return

return

\.Jhile the program was run, performance statistics were saved. tJow the
profile command is used to display those statistics. For each line, it displays
the total times executed, an estimate of the cost, and the PL/I operators used.

Note that some statements (those in the loop) were executed more than others.
The COST for a statement is the product of the number of instructions for the
statement and the number of times the statement was executed. This cost does
not take into account the fact that some instructions are faster than others, or
the time spent waiting for missing pages (page faults). The STARS column gives
a rough indication of the relative cost of each statement.

The names of the PL/I operators used are also given. The operator fx1_to_f12
is used to convert the fixed point number to float, so that its root may be
taken. The dsqrt operator takes the square root. Finally, the operator f12 to fxl
converts the result back to integer. The PL/I mod builtin is implemented-by-the
mod fxl operator. These operators are the most expensive things in the program.
Occasionally a program can be rewritten to not require expensive operators.

6-2 AG90-03

profile prime_ -sort cost -first 5

Program: prine
LINE STMT CTIUNT

8 4?18
6 1000
7 4418
9

10
800

3418

Totals: 15054
r 17:46 0.205 49

COST STARS
59052 ****
34000 ***~
132S4 ***

8800 **
683E **

127542

OPERA TOPS
mod fx 1
fx1=to_f12, dsqrt, f12 to fx1

return

When profiling large proframs, it is usually desirable to look only at the
most expensive lines, since they are the only ones of interest. The profile
command can be instructed to sort the lines by cost, and display the five most
costly lines in order.

The profile command can a1so be instructed to produce a source language
type of listing with performance statistics adjacent to each source line. Figure
6-1 shows MacSissle using the profile command with the -list control argument to
produce such a listing for the compute sum prograM. rlote that t..rhen -list is
used, the profile command produces a seement with the sane nace as the progr2m,
but with a suffix of "pfl". (Note also that MacSissle has again set her ready
message to read "Karen is here".)

More detailed records of execution are available if you compile your program
\-lith the -long_profile control argument. Hhen this is done, the program samples
the Multics clock before every instruction, so the total time per statement is
available to the profile command. The performance data from a program compiled

"v.rith -long profile is displayed with the profile command. For further information,
see the HPM Commands description of profile.

6-3 AG90-03

! ~11 eomput~_~u~ -profile
'PL./I
I(arefl is here

compute_sum
Karen is here

~rof;lp. eo~pute_~um -list
Karen is h"!'re

Profile listin~ of >ud~>ProjA>~acSfssle>co~pute_qu~.o11
Date: ~5/01/~1 11?4.7 edt fr;
Tota' count: 7 Total cost: 1°7

COltNT

:?
3 1* t~;~ oro~"a~ eo~putes t~e su~ of three 1 to b digit numbers read fro~ a~
G input fii~, then wr~tes t~~ answer to an out out file *1

20 ***

~5 ***

c:;9 ****

4

~b ***

10 .oIr

c;

6 ~ecll'lrp.
7 in_file strea~ file,

out_file streAm ffle,
first_no f;xe rl ~inary (?O',
sec~n~_"o fixed binary (20),
t~i"d_n~ f;xe~ ~;ne"y (?O),
t~e_sUM fixed binarY (2q):

Ooen fije (in_file) inout,
file (out_file) outout;

1* arl~ the~ UP *1
2/J

2~ thP._su~ = flrst_"O + s"!'cond_"o + third_no;
2~
27 1* put t~e answer in the output file *1
2f:l
2Q Put fne Cout_f;1e) list (the_Sum)J
30
31 1* close t~e files *1
3;>
3~ cl~sp. file (;n_filA),
311 f;j,. (out_file):
35
3~ erd c~m~ute_sum~
37

Figure 6-1. Use of profile Command With -list Control Argument

6-4

1* the input f f1 e *1
1* the outout file *1
1* the first number *1
1* the •• cond number *J
1* the third nymber *1
1* the anlw.r *1

AG90-03

SECTION 7

ABSENTEE FACILITY

A common programming pattern is to develop a program online, using debugging
tools and trying a variety of test cases interactively to check on a program's
correctness. After the program is working, you may wish to do a large "production"
run. Since the production run may produce a large amount of output or take a
long time, you may not wish to wait at your terminal for the results. Production
runs on Multics are best done using absentee jobs, which are somewhat analogous
to batch jobs on other systems. ----

An absentee job runs in an environment similar to that of an interactive
user. In other words, an absentee job uses Multics in much the same way that a
person does. It logs in to your home directory, and runs your start up.ec, if
any. This must be kept in mind, both when writing a start_up.ec and when submitting
an absentee job. If you forget that your absentee job will run your start up.ec,
you may discover that it has stolen your messages or tried to read your mail.
If you assume that your absentee job will log in to the directory from which you
submitted it, you may discover that it has run the wrong version of your program.

A big difference between an absentee job and an interactive user is that an
absentee job is not associated with a terminal. Its input comes from a file,
and its output goes to a file. (In an absentee process, the I/O switches are
attached to the input and output segments, instead of the terminal.)

An absentee input file, or control file, is a segment with the suffix
"absin". At its simplest, it is just a collection of commands to be executed.
The language used in an absentee job is the same as that used in exec coms. It
is a superset of the command language. You must anticipate any responses or
commands you must give ahead of time, and put all of this data into your control
file.

An absentee job is submitted by supplying the name of the absin file to
the enter abs request (ear) command. The absin file is not copied. It stays
absentee job. You must not, for example, edit a file it is using, or recompile
a program it is running.

The absentee job is placed in a queue and run as "background" to the normal
interactive work of the system. This technique allows the system to utilize its
resources most effectively, by keeping a queue of jobs that can always be run,
and delayed for serving interactive users. For these reasons, the charging rate
for absentee jobs is normally substantially lower than for interactive work.

Output from an absentee job goes into a file whose name is the same as the
absin segment, but with the suffix "absout" instead of "absin". When the job
completes, you may print this absout segment. Figure 7 -1 illustrates the differences
between interactive usage and absentee usage.

7-1 AG90-03

I ~~~A I
~

COMMANDS

RESPONSES

COMMANDS

RESPONSES

ABSIN
FILE

DATA ABSOUT
FILE FILE

Figure 7-1. Interactive vs Absentee Usage

7-2 AG90-03

Suppose MacSissle has written a FORTRAN program which figures square roots.
The program resides in her directory of FORTRAN programs, and she would like to
compile and run it absentee. The first thing she does is create a segment
called compile_run.absin.

cwd)udd)ProjA)MacSissle)fort progs
fortran square root.fortran -list
dprint -dl square root.list
square root -
dprint-file10
logout

Then she types this command line:

Her absentee job is submitted. When it runs, it changes to the proper working
directory, compiles the program and produces a listing segment, prints the listing
segment on the line printer and deletes it, runs the program, prints the output
file "file10" on the line printer, and finally, logs out.

To run this same absentee job via remote job entry, MacSissle would put the
statements shown above on cards instead of in a segment. Then she would surround
her cards with control cards and put the deck in a card reader. Her absentee
job would be executed automatically.

The format of a card deck for remote job entry is shown below:

++RJE DECK NAME PERSON ID PROJECT ID
++PASSWORD -PASSWORD
++AIM ACCESS CLASS OF ABSENTEE PROCESS
++RJECONTROL CONTROL ARGS TO THE EAR COMMAND
++RJEARGS ARGUMENTS FOR THE ABSENTEE PROCESS
++EPILOGUE COMMAND
++FORMAT PUNCH FORMAT MODES
++INPUT

(user absentee file)

The three cards required as a minimum are the first, which is an identifier
card, the second, which is a password card, and the last, which signals the end
of control input

For another example, suppose MacSissle wants to use the prime subroutine
discussed in Section 6 to check the prime-ness of the first five integers, and
she wants to use the absentee facility to do it. Remember that prime is called
by test prime~ and that the index set active function can be used to return a
set of numbers.

7-3 AG90-03

qedx
a
test_prime ([index_set 5])
\f
w test5.absin
q
r 16:40 0.218 39

MacSissle uses the Qedx editor to create her absin file.

enter abs request test5 -notify
ID 210805~1; 5 already requested
r 16:41 0.450 63

Multics confirms her submission, g1v1ng the request id and the number of
previously submitted jobs in the absentee queue. Often, many of these jobs may
be "deferred", which is to say, they will not be run until a later time. Thus,
"5 already requested" doesn't necessarily mean that five jobs must be run before
MacSissle's job will run.

From Initializer.SysDaemon (absentee) 04/21/80 1641.4 mst Mon:
Absentee job)udd)ProjA)MacSissle)test5.absin 2i0805.i
logged in.

MacSissle used the -notify control argument on her ear command, so the
system sends her a message when her job logs in.

who -absentee

Absentee users 3/9
JQUser.ProjB*
TSmith.ProjA*
MacSissle.ProjA*
r 16:42 0.272 22

MacSissle uses the who command to print a list of all absentee jous. It
shows that there are three already running, and that a total of nine can run at
one time. Absentee users are identified by the asterisk after their project.

From Initializer.SysDaemon (absentee) 04/21/80 1643.1 mst Mon:
Absentee job)udd)ProjA)MacSissle)test5.absin 210805.1
logged out.

The system also sends her a message when her job logs out.

7-4 AG90-03

print test5.absout

test5.absout 04/21/80 1643.6 mst Mon

Absentee user MacSissle ProjA logged in: 04/21/80 1641.4 mst Mon
r 16:41 2.364 55

test prime ([index set 5J)
1 is-a prime -
2 is a prime
3 is a prime
4 is not a prime
5 is a prime
r 16:42 0.198 20

abs io: Input Stream exhausted.

Absentee user MacSissle ProjA logged out 04/21/80 1643.1 mst Mon
CPU usage 3 sec, memory usage 1.0 units

MacSissle's job is done, so she prints the absout segment.

With more advanced use of the absentee facility, you can also supply arguments
to be substituted inside the absentee control segment, make absentee job steps
conditional, delay absentee work until a chosen time, and develop a periodic
absentee job which is run, say, once every two days.

The next example shows how absentee jobs can accept arguments.

print prime.absin

prime.absin

test_prime ([index_set &1])

r 1 6: 55 • 110 1 9

04/21/80 1655.7 mst Mon

This absin segment accepts one argument. The character string "& 1" is
replaced by the argument wherever it occurs. MacSissle tests it by invoking it
as an exec com. In order to use the absin segment as an exec com, it must have
a name wit~ the suffix "ec" added to it. -

add name prime.absin prime.ec
r 10:56 0.100 5

exec com orime.ec 2
test-prime ([index set 2])

1 is a prime -
2 is a prime

r 17:00 0.210 30

MacSissle invokes the exec com with the argument 2. As it runs, it prints
the commands in the file. The argument mechanism seems to work, so she submits
an absentee job.

7-5 AG90-03

! enter abs request prime.absin -arguments 100
ID: 22T023~4; 6 already requested.
r 17:05 0.273 50

Here, the argument 100 is passed to the absentee job. MacSissle goes about
other business while the request runs.

A common problem for many users is an absentee job that blows up unexpectedly
because it is asked an unanticipated question, and the user has not provided an
appropriate answer. For example, a job may be asked, "Do you wish to quit?" It
can try to use its next command for an answer, but it will be told to "Please
answer yes or no." At this point, the job will probably die.

Suppose MacSissle has set up a daily absentee job that reads her mail. Her
absin segment, called mail.absin, looks like this:

enter abs request mail -time "07:00" -notify
read mail-
print all
quit
dprint -delete mail.absout

MacSissle types the command line

enter_abs_request mail -time "07:00" -notify

once. Her absentee job submits a request for the next absentee job, then reads
her mail. Once in the read mail request loop, it asks that all of her mail be
printed, then quits out of the loop. Finally, it dprints her absout segment.

This job seems like it should work fine. But what will happen if MacSissle
doesn't have any mail? The request to read her mail will return the answer,
"You have no mail". Then the request to print all of her mail will return the
answer, "Segment all not found". The request to quit will return a similar
answer. So, the job may not die in this case; but it will give MacSissle some
unexpected results. To avoid this problem; MacSissle can change her absin segment
to look like this:

enter abs request mail -time "07:00" -notify
read mail--request "print all; quit"
dprint -delete mail.absout

Now, if she has no mail, she'll just get the answer, "You have no mail",
which is what she wants.

For further information on absentee jobs, see the MPM Commands manual
descriptions of the enter abs request and exec com commands. See also the
descriptions of the p11 abs, cobol abs, and fortran abs commands, which invoke
language compilers in abSentee jobs~

7-6 AG90-03

SECTION 8

REFERENCE TO COMMANDS BY FUNCTION

All of the Multics commands described in the MPM Commands are arranged here
according to function and are briefly described. The Multics command repertoire
is divided into the following 17 groups:

Access to the System
Storage System, Creating and Editing Segments
Storage System, Segment Manipulation
Storage System, Directory Manipulation
Storage System, Access Control
Storage System, Address Space Control
Formatted Output Facilities
Language Translators, Compilers, and Interpreters
Object Segment Manipulation
Debugging and Performance Monitoring Facilities
Input/Output System Control
Command Level Environment
Communication Among Users
Communication with the System
Accounting
Control of Absentee Computations
Miscellaneous Tools

Many commands can perform more than one function, so they are listed in
more than one group.

Detailed descriptions of these commands~ arranged alphabetically rather than
functionally, are given in the MPM Commands. In addition, many of the commands
have online descriptions, which you may obtain by invoking the help command.

ACCESS TO THE SYSTEM ------ -- ---

dial

echo
enter
enterp
hangup

hello

login

logout
modes
slave

connects an additional terminal to an existing
process

sets terminal into echoplex mode before login
connects an anonymous user to the system

(used at dialup only)
terminates communication between terminal and

Multics
repeats greeting message printed when terminal

is first connected
connects registered user to the system (used

at dialup only)
disconnects user from the system
sets terminal modes before login
changes service type of channel from login to

slave for duration of connection

8-1 AG90-03

terminal type
MAP -

029 and 963

sets terminal type before login
tells system user is attempting to gain access

from terminal whose keyboard generates only
uppercase characters

tells system whether user is attempting to
gain access from device similar to EBCDIC
or Correspondence code IBM Model 2741

STORAGE SYSTEM, CREATING AND EDITING SEGMENTS

adjust bit count

canonicalize

compare_ascii
compose

edm

emacs

indent

merge ascii
qedx -

set bit count

ted

sets bit count of a segment to last nonzero
word or character

ensures that contents of a segment are in
canonical form

compares ASCII segments, reporting differences
composes forma.tted documents for production

on various devices, including terminals
and line printers

allows inexpensive, easy editing of ASCII
segments

enters the Emacs text editor, which has a large
repertoire of requests for editing and
formatting text and programs

indents a PLII source segment to make it more
readable

merges two or more related ASCII text segments
allows sophisticated editing, including macro

capabilities
sets the bit count of a segment to a specified

value
used to create and edit ASCII segments; can

do many kinds of text processing

STORAGE SYSTEM, SEGMENT MANIPULATION

adjust_bit count

archive
archive table

compare

compare_ascii
copy

copy_file

create
damaged sw off
damaged-sw-on
delete - -

link

merge_ascii

sets bit count of a segment to last nonzero
word or character

packs segments together to save physical storage
returns the names of specified archive

components in specified archive segment
compares segments word by word, reporting

differences
compares ASCII segments, reporting differences
copies a segment or multisegment file and its

storage system attributes
copies records from an input file to an output

file
creates an empty segment
resets damaged switch off for segments
sets damaged switch on for segments
deletes a segment or multisegment file and

questions user if it is protected
creates a storage system link to another

segment~ directory, link, or multisegment
file

merges two or more related ASCII text segments

8-2 AG90-03

move

set bit count

tape_archive

truncate
unlink
vfile adjust
volume_dump_switch_off

moves segment or mul tisegment file and its
storage system attributes to another
directory

sets the bit count of a segment to a specified
value

sorts ASCII segments according to ASCII
collating sequence

performs a variety of operations to create
and maintain a set of files on magnetic
tape

truncates a segment to a specified length
removes a storage system link
adjusts structured and unstructured files
turns off the specified volume dump switch of

a segment
turns on the specified volume dump switch of

a segment

STORAGE SYSTEM, DIRECTORY MANIPULATION

add name

cancel retrieval_request

copy_dir

create dir
delete-dir

delete name

enter retrieval_request

link

list
move dir

rename

safety_sw_off

status

unlink
vfile status

adds a name to a segment, directory, link, or
multisegment file

deletes request for a volume retrieval that
is no longer needed

copies a directory and its subtree to another
point in the hierarchy

creates a directory
destroys a directory and its contents after

questioning user
removes a name from a segment, directory, link,

or multisegment file
queues volume retrieval requests for specific

segments, directories, multisegment files,
and subtrees

creates a storage system link to another
segment, directory, link, or multisegment
file

lists retrieval requests in the retrieval daemon
queues

prints directory contents
moves a directory and its subtree to another

point in the hierarchy
renames a segment, directory, link, or

multisegment file
turns safety switch off for a segment,

directory, or multisegment file
t urns safety swi tch on for a segment, directory,

or multisegment file
prints all the attributes of an entry in a

directory
performs a variety of operations to create

and maintain a set of files on magnetic
tape

removes a storage system link
prints the apparent type and length of storage

system files
turns off the specified volume dump switch of

a segment
turns on the specified volume dump switch of

a segment

8-3 AG90-03

STORAGE SYSTEM, ACCESS CONTROL

check iacl
copy acl
copy-iacl dir
copy-iacl-seg
delete acT'
delete-iacl dir
delete-iacl-seg
list accessIble

list acl
list-not accessible

list iacl dir
list-iacl-seg
print_auth_names

set acl
set-iacl dir - -

compares segment ACLs with the initial ACL
copies ACL from segment or directory
copies a directory initial ACL
copies a segment initial ACL
removes an ACL entry
removes an initial ACL for new directories
removes an initial ACL for new segments
lists segments and directories with a given

access condition
prints an ACL entry
lists segments and directories to which user

does not have a given access condition
prints an initial ACL for new directories
""'~~"'"' " ..",.... ~1"'\a; ;~' I\(,T ~n,.... 1"'\OT .. T C!orrmoni-C! ,}.Jl. -LJ.I'-'s.J GLll ..L.ll..L.""..L.Q.J- .n.'V'.&...-' .L V.L '-,"""'OLU""",....,

prints names of sensitivity levels and access
categories for an installation

adds (or changes) an ACL entry
adds (or changes) an initial ACL for new

directories
adds (or changes) an initial ACL for new segments

STORAGE SYSTEM, ADDRESS SPACE CONTROL

add search_paths

add search rules

attach Iv

change default wdir
change-wdir -
delete=search_paths

delete search rules
detach-Iv -

initiate
list ref names

new proc
print default wdir
print=proc_auth

print_search_paths

print_search_rules

print wdir
set_search_paths

set search rules
terminate -

walk subtree

where

adds one or more search paths to the specified
search list

allows users to change (insert) search rules
dynamically

calls the resource control package to attach
a logical volume

sets the default working directory
changes the working directory
allows user to delete one or more search paths

from specified search list
allows users to delete current search rules
detaches logical volumes attached by the

resource control package
prints definitions of site-defined search rule

keywords
adds a segment to the address space of a process
prints all names by which a segment is known

to a process
creates a new process with a new address space
prints name of default working directory
prints access authorization of the current

process and current system privileges
prints the search paths in the specified search

list
prints names of directories searched for

segments referenced dynamically
prints name of current working directory
allows user to replace search paths contained

in specified search list
allows users to modify search rules
removes a segment from the address space of a

process
executes a command line in all directories

below a specified directory
uses current search rules to locate and print

pathname of a segment

8-4 AG90-03

FORMATTED OUTPUT FACILITIES

cancel_daemon_request
compose

dprint

dpunch

overlay

print

returns absolute pathname(s) of entryname when
search list name and entryname are specified

cancels a previously submitted daemon request
composes formatted documents for production

on various devices, including terminals
and line printers

queues a segment or multisegment file for
printing on the high-speed printer

queues a segment or multisegment file for card
punching

prints segment contents in octal, ASCII, or
EBCDIC

prints list of print and punch requests
currently queued

moves a request from one 1/0 daemon queue to
another

reads several ASCII segments and writes on
user output 1/0 switch output that is the
result of superimposing print - positions
from each segment

prints an ASCII segment

LANGUAGE TRANSLATORS, COMPILERS, AND INTERPRETERS

apl
basic
bind

cobol
cobol abs

create data_segment

display cobol run unit
expand_cobol_source

fast
format cobol source

fortran
fortran abs

indent

lisp

pl1
pl1 abs
profile

run cobol

invokes the APL interpreter
compiles BASIC programs
packs two or more object segments into a single

executable segment
cancels one or more programs in the current

COBOL run unit
compiles COBOL programs
submits an absentee request to perform COBOL

compilations
translates a create data segment source program

into an object-segment
displays the current state of a COBOL run unit
translates COBOL source program containing COPY

and REPLACE statements to equivalent source
program not containing these statements

allows user to enter FAST subsystem
converts free-form COBOL source to fixed-format

COBOL source
invokes the site's "standard" FORTRAN compiler
invokes the site's "standard" FORTRAN compiler

in an absentee job
indents a PLII source segment to make it more

readable
enters interactive Lisp subsystem, where Lisp

forms can be typed at user's terminal and
evaluated

compiles PLII programs
invokes the PLII compiler in an absentee job
prints information about execution of

individual statements within program
executes a COBOL run unit in a main program

8-5 AG90-03

set cc

set fortran common
stop_cobol_run

OBJECT SEGMENT MANIPULATION

archive
archive table

bind

date_compiled

sets carriage control transformation for
FORTRAN files

initializes common storage for a FORTRAN run
terminates the current COBOL run unit

packs segments together to save physical storage
returns the names of specified archive

components in specified archive segment
packs two or more object segments into a single

executable segment
prints date and time compiled and compiler

identifier for object segments

DEBUGGING AND PERFORMANCE MONITORING FACILITIES

attach audit

cumulative page trace
debug - -
display_audit_file

dump_segment

general ready
page_trace

probe
profile

progress

ready

ready off
ready=on
reprint error
resolve=linkage_error

trace

trace stack

INPUT/OUTPUT SYSTEM CONTROL

assign resource
cancel-resource

close file
copy cards
copy=file

sets up specified I/O switch to be audited by
the audit I/O module

adjusts length and content of system condition
messages

accumulates page trace data
permits symbolic source language debugging
displays the file produced by the audit I/O

module
displays diagnostic information about PL/I I/O

errors
prints segment contents in octal, ASCII, or

EBCDIC
allows user to format ready messages
prints a history of system events within calling

process
permits program debugging online
prints information about execution of

individual statements within program
prints information about the progress of a

command as it is being executed
prints the ready message: a summary of CPU

time, paging activity, and memory usage
suppresses the printing of the ready message
restores the printing of the ready message
reprints an earlier system condition message
satisfies linkage fault after a process

encounters a linkage error
permits the user to monitor all calls to a

specified set of external procedures
prints stack history

assigns peripheral equipment to user
cancels reservations made with the reserve

command
cancels a previously submitted print or punch

request
closes open PLII and FORTRAN files
copies card decks read by 110 Daemon
copies records from an input file to an output

file

8-6 AG90-03

discard_output

dprint

dpunch

file output
io call

line_length

list daemon_requests

list resources
print
print_at tach_table

print_request_types
reserve resource

tape_archive

unassign resource
vfile adJust
vfile-status

COMMAND LEVEL ENVIRONMENT

abbrev

add search_paths

add search rules

answer
attach audit

change default wdir
change=error_mode

change wdir
delete=search paths

delete search rules
detach-audit -
display_audit_file

do

exec com

fast
file_output

executes a command line while temporarily
suppressing output on specified 110
switches

displays diagnostic information about PL/I 110
errors

queues a segment or multisegment file for
printing on the high-speed line printer

queues a segment or multisegment file for card
punching

directs terminal output to a file
allows direct calls to inputloutput system

entries
allows users to control maximum length of output

lines
prints list of print and punch requests

currently queued
prints a list of all resource types described

in a resource type description table (RTDT)
lists peripheral equipment assigned to user
prints an ASCII segment
prints list of current inputloutput system

switch attachments
prints available 110 Daemon request types
reserves resource (s) for use by the. calling

process
performs a variety of operations to create

and maintain a set of files on magnetic
tape

unassigns peripheral equipment assigned to user
adjusts structured and unstructured files
prints the apparent type and length of storage

system files

allows user-specified abbreviations for command
lines or parts of command lines

adds one or more search paths to the specified
search list

allows users to change (insert) search rules
dynamically

answers questions normally asked of the user
sets up specified 110 switch to be audited by

the audit 110 module
sets the default working directory
adjusts length and content or system condition

messages
changes the working directory
allows user to delete one or more search paths

from specified search list
allows users to delete current search rules
removes audit from specified switch
displays the file produced by the audit 110

module -
expands a command line with argument

substitution
allows a segment to be treated as a list of

executable commands
allows user to enter FAST subsystem
directs terminal output to a file

8-7 AG90-03

gcos

general ready
get_system_search_rules

if
line_length

memo
new_proc
on

print default wdir
print=search_paths

print wdir
program_interrupt

ready

ready off
ready-on
release

reprint error
resolve=linkage~error

run

set_search_paths

set search rules
set=tty -

start

where search_paths

COMMUNICATION AMONG USERS

accept_messages

defer_messages

delete message
immediate messages
print mail
print-messages
read mail

invokes GCOS environment simulator to run single
GCOS job in user's process

allows user to format ready messages
prints definitions of site-defined search rule

keywords
conditionally executes a command line
allows users to control maximum length of output

lines
allows users to set reminders for later printout
creates a new process with a new address space
establishes handler for specified set of

conditions, executes imbedded command line
with handler in effect, reverts handler

prints name of default working directory
prints the search paths in the specified search

list
prints names of directories searched for

segments referenced dynamically
prints name of current working directory
provides for command reentry following a quit

or an unexpected signal
prints the ready message: a summary of CPU

time, paging activity, and memory usage
suppresses the printing of the ready message
restores the printing of the ready message
discards process history retained by a quit

or an unexpected signal interruption
repeats the last query by the command query

subroutine - -
reprints an earlier system condition message
satisfies linkage fault after a process

encounters a linkage error
provides user with temporary, somewhat

isolated, environment for execution of
programs

allows user to replace search paths contained
in specified search list

allows users to modify search rules
prints and sets modes associated with user's

terminal
continues process at point of a quit or an

unexpected signal interruption
effects abnormal termination of run-unit

created by run command
returns absolute pathname(s) of entryname when

search list name and entryname are specified

initializes the process to accept me.::sages
immediately

inhibits the normal printing of received
messages

deletes messages saved in user's mailbox
restores immediate printing of messages
prints all messages in a mailbox
prints any pending messages
provides a facility for examining and

manipulating messages

8-8 AG90-03

send mail
send message
send-message acknowledge
send=message=express

send_message_silent

who

COMMUNICATION WITH THE SYSTEM
~~~~~---- ---- ---

check_info_segs 

damaged sw off 
damaged-sw-on 
help --
how many users 
enter retrieval_request 

list retrieval_requests 

no save on disconnect 

print_motd 

save on disconnect 

who 

ACCOUNTING 

get quota 
move_quota 

resource_usage 

transmits a message to one or more recipients 
sends message to specified user 
sends message and acknowledges its receipt 
sends message only if user will receive it 

immediately 
sends message but does not acknowledge its 

receipt 
prints list of users and absentee jobs currently 

logg~d in 

deletes request for a volume retrieval that 
is no longer needed 

checks information (and other) segments for 
changes 

resets damaged switch off for segments 
sets damaged switch on for segments 
prints special information segments 
prints the number of logged-in users 
queues volume retrieval requests for specific 

segments, directories, multisegment files, 
and subtrees 

displays names of all info segments pertaining 
to a given topic 

lists retrieval requests in the retrieval daemon 
queues 

moves a request from one absentee queue to 
another 

disables process preservation across hangups 
in user's process 

prints the portion of the message of the day 
that changed since last printed 

reverses effect of no save on disconnect - -command 
turns off the specified volume dump switch of 

a segment 
turns on the specified volume dump switch of 

a segment 
prints list of users and absentee jobs currently 

logged in 

prints secondary storage quota and usage 
moves secondary storage quota to another 

directory 
prints resource consumption for the month 

8-9 AG90-03 



CONTROL OF ABSENTEE COMPUTATIONS 

cobol abs 

enter abs request 
fortran abs 

how many users 
list_abs=requests 

pl1 abs 
runoff abs 
who 

MISCELLANEOUS TOOLS 

calc 
calendar 
canonicalize 

decode 
encode 
manage_volume pool 

memo 
merge 
progress 

sort 

cancels a previously submitted absentee job 
request 

submits an absentee request to perform COBOL 
compilations 

adds a request to the absentee job queue 
invokes the site's "standard" FORTRAN compiler 

in an absentee job 
prints the number of logged-in users 
prints list of absentee job requests currently 

queued 
moves a request from one absentee queue to 

another 
invokes the PL/I compiler in an absentee job 
invokes the runoff command in an absentee job 
prints list of users and absentee jobs currently 

logged in 

performs specified calculations 
prints a calendar page for one month 
ensures that contents of a segment are in 

canonical form 
deciphers segment, given proper coding key 
enciphers segment, given a coding key 
allows users to regulate use of a predefined 

set of volumes 
allows users to set reminders for later printout 
provides generalized file merging capability 
prints information about the progress of a 

command as it is being executed 
provides generalized file sorting capability 

8-10 AG90-03 



APPENDIX A 

USING MULTICS TO BEST ADVANTAGE 

You may, if you wish, treat Multics as simply a PL/I, FORTRAN, APL, BASIC, 
or COBOL machine, and contain your activities to just the features provided in 
your preferred programming language. On the other hand, much of the richness of 
the Multics programming environment involves use of system facilities for which 
there are no available constructs in the usual languages. To use these features, 
it is generally necessary to call upon library and supervisor subroutines. 
Unfortunately, a simple description of how to call a subroutine may give little 
clue as to how it is intended to be used. The purpose of this appendix is to 
illustrate typical ways in which many of the properties of the Multics programming 
environment may be utilized. 

When you choose a language for your implementation, you should carefully 
consider the extent to which you will want to go beyond your language and use 
system facilities of Mul tics which are missing from your language. As a well-known 
standard for completeness of that language (e.g., ANSI or IBM). However, in 
going beyond the standard languages, you will find that Multics supervisor and 
library routines are designed primarily for use from PL/I programs. This results 
from the fact that most of these routines are themselves implemented in PL/I. 
For example, if you plan to write programs which directly call the Multics 
storage system privacy and protection entries, in FORTRAN or BASIC, you have no 
convenient way to express such structures. Note that the sit uation is not hopeless, 
however. Programs which stay within the original language can be written with 
no trouble. Al so, in many cases, a trivial PL/I interface sub rout ine can be 
constructed, which is callable from, say, a FORTRAN program, and goes on to 
reinterpret arguments and invoke the Mul tics facility desired. This is made 
possible by the Multics conventions which ensure that FORTRAN and PL/I programs 
can communicate. (For more information, see the MPM Subsystems Writers' Guide.) 
Using such techniques, almost any program a standard call is performed, the 
argument pointer is set to point at the originally prepared for another system 
can be moved into the Multics environment. 

The examples which follow show that the effect of the mapping together of 
the main memory and secondary storage environments can range from the negligible 
(programs can be written as though there was a traditional two-environment system) 
to a significant simplification of programs which make extensive use of the 
storage system. Here are seven brief examples of programs which are generally 
simpler than those encountered in practice, but which illustrate ways in which 
online storage is accessed in Multics. 

A-1 AG90-03 



1. Internal Automatic Variables. The following program types the word "Hello" 
on four successive lines of terminal output: 

a: procedure; 
declare i fixed binary; 
do i = 1 to 4; 

put list ("Hello"); 
put skip; 

end; 
return; 
end a; 

The variable i is by default of PL/I storage class internal automatic: 
in Multics it is stored in the stack of the current process and is available 
by name only to program a and only until a returns to its caller. It is 
declared binary for clarity : although the defaul t base for the representation 
of arithmetic data is binary according to the PL/I standard, as well as in 
Mul tics PL/I, some other popular implementations have a decimal default. 
There is no need for decimal arithmetic in this program, and binary arithmetic 
is faster. 

2. Internal Static Variables. The following program, each time it is called, 
types out the number of times it has been called since its user has logged 
in: 

b: procedure; 
declare j fixed binary internal static intial(O); 
j = j + 1; 
put list (j, "calls to b."); 
put skip; 
return; 
end b; 

The variable j is of PL/I storage class internal static; in Multics it 
is stored in bls static section (discussed in Section 2) and is available 
by name only to program b. Its value is preserved for the life of the 
process, or until b is terminated (by the terminate command, recompilation, 
etc.), whichever time is shorter. The "initial" declaration causes the 
value of j to be initialized at the time this procedure is first used in a 
process. 

A-2 AG90-03 



3-4. External Static. Suppose you wish to set a value in one program and have 
it printed by some other program in the same process: 

c: procedure; 
declare z fixed binary external static; 
z = 4; 
return; 
end c; 

d: procedure; 
declare z fixed binary external static; 
put list (z); 
put skip; 
return; 
end d; 

In both programs, the variable z is of PL/I storage class external 
static; in Mul tics it is stored in a particular segment where all such 
variables are stored, and is available to all procedures in a particular 
process, until the process is destroyed. External static is analogous to 
common in FORTRAN, but with the important difference that data items are 
accessed by name rather than by relative position in a declaration. Program 
d above could be replaced by the following FORTRAN program: 

integer n 
common /z/ n 
print, n 
end 

Multics calls such data items external variables. There are commands 
(for example, list_external_variables) to list, reinitialize, and otherwise 
deal with all the external variables used by a process. Each variable 
which is accessed in this form generates a linkage fault the first time it 
is used. Later references to the variable by the same procedure in that or 
subsequent calls do not generate the fault. 

5. Direct Intersegment References. The following program prints the sum of 
the 1000 integers stored in the segment w: 

e: procedure; 
declare w$(1000) fixed binary external static; 
declare (i, sum) fixed binary; 

sum = 0; 
do i = 1 to hbound (w$,1); 

sum = sum + w$(i); 
end; 
put list (sum); 
put skip; 
return; 
end e; 

A-3 AG90-03 



The dollar sign in the PL/I identifier "w$" is recognized as a special 
symbol by the PL/I compiler, and code for statement 6 is constructed which 
anticipates dynamic linking to the segment named w. Upon first execution, 
a linkage fault is triggered, and a search undertaken for a segment named 
w. If one is found, the 1 ink is snapped, and all fut ure references will 
occur with a single machine instruction. The storage for array "w$" is the 
segment w. 

If no segment named w is found, the dynamic linker will report an 
error to the user and return to command level. At this point, it is possible 
to create an appropriate segment named w, and then continue execution of 
the interrupted program, if such action is appropriate. 

6. Reference to Named Offsets. The following procedure calculates the sum of 
1000 integers stored in segment x starting at the named offset u: 

f: procedure; 
declare x$u(1000) fixed binary external static; 
declare (i, sum) fixed binary; 
sum = 0; 
do i = 1 to 1000; 

sum = sum + x$u(i); 
end; 
put list (sum); 
put skip; 
return; 
end f; 

The difference between this example and the previous one is that segment 
x is presumed to have some substructure, wi th named internal locations 
(entry points). To initially create a segment with such a substructure, 
the compilers and assemblers are used, since information must be placed in 
the segment to indicate where within it the entry points may be found. 
Unfortunately, the PL/I language permits specification of such structured 
segments only for procedures, not for data. The create data segment 
subroutine can be used in conjunction wi th the create data -segment (cds T 
command to create such data segments from PL/I data structures passed to it 
as parameters. The create data segment command translates a CDS source 
program into a data segment ~actually a standard object segment). A sample 
CDS source program~ x.cds, is shown below: 

x: procedure; 
declare 1 x aligned, 

2 u(1000) fixed binary; 
declare create_data_segment_ entry (ptr, fixed binary (35)); 

(overhead required to utilize create_data_segment_) 

call create data segment <cds_args); 
return; - - -
end x; 

A-4 AG90-03 



The ALM assembler can also be used to create a structured data segment, as 
shown by x.alm below: 

name x 
segdef u 

u: bss 1000 
end 

7. External Reference Starting With a Character String. In many cases, a 
segment must be accessed whose name has been supplied as a character string. 
In those cases, a call to the Multics storage system is required in order 
to map the segment into the virtual memory and to obtain a pointer to it. 
The following program uses the supervisor entry hcs $make ptr to perform a 
search for a segment of a given name, identical to-that undertaken by the 
linker in the previous examples. 

g: procedure(string); 
declare string character(*) parameter; 
declare hcs $make ptr entry (pointer, character(*), 

character(*) ,-pointer, fixed binary(35»; 
declare null builtin; 
declare p pointer; 
declare ec fixed binary (35); 
declare hcs $terminate seg entry (ptr, fixed binary (1), 

fixed binary (35»;-
declare com err entry options (variable); 
declare (i,-sumT fixed binary; 
declare v(1000) fixed binary based(p); 
call hcs $make ptr (null (), string, "", p, ec); 
if p= null then do; 

call com err (ec, "g", "Aa", string); 
return; 

end; 
sum = 0; 
do i = 1 to 1000; 

sum = sum + p veil; 
end; 
1* The segment should be terminated, since it was 

initiated *1 
call hcs $terminate seg (p, 0, (0»; 
return; - -
end g; 

The PL/I null string value ("") indicates that it is not a named entry 
point in the segment to which a pointer is wanted, but a pointer to its 
base. Perhaps the segment does not even have named entry points. The PL/I 
null pointer value (null() ) and the zero passed by value «0» in the call 
to hcs $make ptr are relevant to its handling of error conditions and some 
of the-parameters of the search for the segment. See the MPM Subroutines 
for a full description of the hcs_$make_ptr subroutine. 

A-5 AG90-03 



8. Reference to Segment Via Pathname. The following procedure finds a segment 
specified by an absolute or relative pathname given as an argument •. Most 
Multics commands accept pathnames and find the segments they are to operate 
on in this fashion. This procedure also adds all the numbers in the segment, 
obtaining the number of entries in the array by using the bit count of the 
segment. 

h: procedure(string); 
declare string char(*); 
declare expand pathname entry (char(*), char(*), char(*), fixed 

binary(35)); -
declare dn char(168), en char(32), ec fixed binary(35); 
declare com err entry() options(variable); 
declare hcs-$initiate count entry char(*), char(*), char(*)7 fixed 

binary(2Q), fixed binary(2), ptr, fixed binary(35)); 
declare null builtin; 
declare bc fixed binary(24); 
declare p ptr; 
declare nwords fixed binary; 
declare i fixed binary; 
declare sum fixed binary (35); 
declare w (nwords) fixed binary(35) based (p); 
declare hcs $terminate noname entry (ptr, fixed binary (35)); 
declare sysprint file;-
call expand pathname (string,dn,en,ec); 
if ec A= ° then do; -

err: call com err (ec,"h","Aa",string); 
return; 

end; 
call hcs$initiate count (dn,en,"",bc,O,p,ec); 
if p = null then goto err; 
nwords = divide (bc,36,17,0); 
sum = 0; 
do i = 1 to nwords; 

sum = sum + wei); 
end; 
call hcs $terminate noname (p,(O)); 
put list-(sum); 
put skip; 

end h; 

The expand pathname procedure is a library subroutine which accepts a relative 
or absolute pathname and returns the directory name and entryname ready for use 
by supervisor entries such as hcs $ini tiate count. No search for the segment 
specified is undertaken in this case. Since the segment was initiated with a 
null reference name (third argument to hcs $ini tiate count), the procedure is 
responsible for terminating it as well. - -

Further improvements to this procedure are possible. It lacks the ability 
to handle several common error cases; if no argument is supplied, for example, 
the program will malfunction. Code to handle this possibility should be included, 
as well as code to handle the possibility of a zero-length input segment, or the 
possibility of a fixed point overflow. 

A-6 AG90-03 



APPENDIX B 

A SIMPLE TEXT EDITOR 

The sample program discussed in this appendix is a printing-terminal text 
editor similar to, but simpler than, Edm. (See Appendix D for a description of 
Edm.) It is a typical example of an interactive program which makes use of the 
Multics storage system via the virtual memory. In overview, the editor creates 
two temporary storage areas, each large enough to hold the entire text segment 
being edited; copies the segment into one of these areas, so as not to harm the 
original; and then, as the user supplies successive editing requests, constructs 
in the other area an edited version of the segment. When the user finishes a 
pass through the segment, the editor interchanges the roles of the two storage 
areas for the next editing pass. When the user is done with the editor, the 
appropriate temporary storage area is then copied back over the original segment. 
This example is not intended to be a model for designing or implementing text 
editors, but rather, an illustration of the techniques used in interactive Multics 
PL/I programs, particularly commands. 

For this example, a program listing as produced by the PL/I compiler is 
used. The program itself is derived from the edm command of Multics, and it 
exhibits several different styles of coding and commenting, since it has had 
many different maintainers. 

The program listing is preceded by several pages of comments on the program. 
The comments appear in the same order as the item(s) in the program that they 
comment on. Where possible, they refer to line numbers in the program listing. 
Unfortunately, programs do not always invoke features in the best order for 
understanding, so the following strategy may be useful: as you read each comment, 
if its implications are clear and you feel you understand it, check it off. If 
you encounter one which does not fit into your mental image of what is going on, 
skip it for the moment. Later comments may shed some light on the situation, as 
will later reference to other Multics documentation. Finally, a hard core of 
obscure points may remain unexplained, in which case the advice of an experienced 
Multics programmer is probably needed. Be warned that the range of comments is 
very wide, from trivial to significant, from simple to sophisticated, and from 
obvious to extremely subtle. 

Finally, some comments provide suggestions for "good programming practice". 
Such suggestions are usually subjective, and often controversial. Nonetheless, 
the concept of choosing among various possible implementation methods one which 
has clarity, is consistent, and minimizes side effects is valuable, so the suggestions 
are provided as a starting point for the reader who may wish to develop his own 
style of good programming practice. 

You will also notice that some comments appear to be critical of the program 
style or of interfaces to the Mul tics supervisor. These comments should be 
taken in a spirit of illumination of the mechanisms involved. Often they refer 
to points which could easily be repaired, but which have not been in order to 
provide a more interesting illustration. Most of the points criticized are 
minor in impact. 

B-1 AG90-03 



The program listing appears after the commentary. 

Line number 

fifth unnumbered line 

3,4,5 

9 

9 

12 

The command "p11 eds -map -optimize" was typed at the terminal. This 
line records the fact that the map and optimize options were used. 
The map line option caused a listing and variable storage map to be 
produced. A source segment named eds. pl1 was used as input; the compiler 
constructed output segments named eds .list (containing the listing) 
and eds (containing the compiled binary program.) 

No explicit arguments are declared here, even though eds should be 
called with one argument. Instead, the keyword "options (variable)" 
appears, which indicates that this program can be called with a variable 
number of arguments. This is a Multics extension to ANSI PL/I. Since 
eds is used as a command, it is a good human engineering practice to 
check explicitly for missing arguments; the PL/I language has no feature 
to accomplish this check gracefully. Library subroutines are available 
to determine the number and type of arguments supplied (see lines 
102-121). All Multics commands are declared and process their arguments 
in this way. 

It is common practice to include a short comment at the beginning of 
every program which briefly describes it. This should be followed by 
a comment or series of comments identifying the date of writing and 
original author, and the date, author and purpose of any subsequent 
modifications. This history, or "journalization" as it is called, is 
very helpful to others who may wish to modify the program in the 
future. 

To avoid errors when program maintenance is performed by someone other 
than the original coder, all variables are explicitly declared. This 
practice not only avoids surprises, but also gives an opportunity for 
a comment to indicate how each variable is used. 

One default which is used here (and is subject to some debate) is that 
the precision of fixed binary integers is not specified, leading to 
use of fixed binary(17). This practice has grown up in an attempt to 
allow the compiler to choose a hardware-supported precision, and in 
fear that an exact precision specification might cause generated code 
to check and enforce the specified precision at (presumably) great 
cost. In fact, the PL/I language does not require such checks by 
default (although they can be specified). Thus, it is usually wise to 
specify data precision exactly. In some cases (for instance, all of 
the fixed binary (21) variables used to hold string lengths), the 
compiler might attempt to hold these values in half-length registers 
were this precision not specified. 

However, a large class of variables which will contain" small or reasonable 
size integers" can still be conveniently declared with the 
implementation's default precision. 

All character strings in this program are declared unaligned, by the 
defaul ts of the language • Given the fact that the Mul tics hardware 
has extremely powerful and general string manipulation instructions, 
no advantage is to be gained in speed or length of object code by 
declaring strings (when they are over two words, or eight characters, 
long) with the aligned attribute. 

Therefore, almost all supervisor and library subroutines which accept 
character string arguments require unaligned strings. By the rules of 
PL/I, aligned and unaligned strings may not be interchanged as parameters, 
and thus, there is incentive to avoid aligned character strings in all 
cases. 

B-2 AG90-03 



14 

15 

23,24 

24,50 

43 

56 

All line buffers are designed to hold one long typed line (132 characters 
for input terminals with the widest lines), plus a moderate number of 
backspaceloverstrike characters. To support memorandum typing, the 
buffers permit a 70-character line which is completely underlined. 

By use of temporary segments as work areas (see line 149), an almost 
unlimited number of nearly infinite work-variables can be constructed, 
virtually avoiding the "fixed length buffer" problem. However, the 
acquisition and maintenance of such segments are not as cheap as PL/I 
automatic variables, and judgement should be exercised as to where 
traditional "fixed length" variables are appropriate. 

The variable named "code" has precision 35 bits, since it is used as 
an output argument for several supervisor entries which return a fixed 
binary(35) value. Almost all supervisor and library subroutine entries 
return an "error code" value, which indicates the degree of success of 
the operation requested. The values of system error codes require 35 
bits. It would seem appropriate, on a 36-bit machine, to use fixed 
binary(35) declarations everywhere. However, use of fixed binary(35) 
variables for routine arithmetic s~ould be avoided since, for example, 
addition of two such variables results in a fixed binary(36) result, 
forcing the compiler to generate code for double precision operations 
from that point on. We must be careful of the PL/I language rule 
which requires the compiler to maintain full implicit precision on 
intermediate results. 

Legal PL/I overlay defining can be an extremely powerful tool for 
increasing the readability and maintainability of code. The variable 
"commands" is declared here as occupying the same storage as the variable 
"buffer", but only being as long as that part of it which contains 
valid characters, as defined by the value of "count". Thus, we need 
only write "commands" when we want the portion of "buffer" that has 
valid data in it, instead of "the substring of 'buffer' starting at 
the first character for 'count' characters." 

All editing is done by direct reference to virtual memory locations. 
The variable "from ptr" is set to point to a source of text, and the 
based variable "frOm seg" is used for all reference to that text. The 
number 1048576 (two -to the twentieth power) is the largest possible 
number of characters in a segment. 

The general operation of the editor is to copy the text from one 
storage area to another, editing on the way. The names "from_seg" and 
"to_seg" are used for the two storage areas. 

One set of supervisor interfaces calls for 24 bit integers; this 
declaration guarantees that no precision conversion is necessary when 
calling these interfaces. (See line 133.) 

The PL/I language provides no direct way to express literal control 
characters. The technique used here, while it clutters the program 
listing, at least works. The string is typed as a quote, a newline, a 
tab, a space, and a quote. This order is used because it produces the 
least ambiguous printed representation; for instance, had the tab and 
space been reversed, it would not be possible to distinguish by observation 
between the space, tab sequence and a single tab. 

PL/I does not provide any "named constant" facility, either. The Multics 
PL/I implementation allows the" options (constant)" attribute for internal 
static variables, which instructs the compiler to allocate the variable 
in the pure (unmodifiable) portion of the object segment. This is 
advantageous for three reasons: first, if an attempt is made to modify 
such a variable, the hardware will detect an error, thus checking and 
enforcing its "constant" use; second, it allows the variable to be 
shared between processes, conserving storage; third, it is an indication 
to others reading the program that a "named constant" is intended. 
These "constants" are customarily given all uppercase names, as an 
additional hint to the reader of their constant nature; this is a 
standard Hultics PL/I convention. 

B-3 AG90-03 



64,77 

65 

65 

67 

70 

90 

92 

102 

103 

Subroutines com err and ioa are called with a different number of 
arguments each time, a feature not normally permitted in PL/I. The 
Multics implementation, however, has a feature to permit such calls. 
The "options" clause warns the compiler that the feature is used for 
this external subroutine. 

All subroutines other than com err and ioa are completely declared 
in order to guarantee that the compller can check that arguments being 
passed agree in attribute with those expected by the subroutine. Warning 
diagnostics are printed if the compiler finds argument conversions 
necessary. (All of the subroutines used by this program are described 
in the MPM Subroutines Manual. 

The procedure cu (short for command utility) has many different entry 
points. The Multics PL/I compiler specially handles names of external 
objects which contain the dollar sign character. The dollar sign is 
taken to be a separator between a segment name and an entry point name 
in the compiled external linkage. Thus, this line declares the entry 
point name arg_ptr in the segment named cu_. 

For many procedures, the segment name and entry point name are identical, 
so the compiler also permits the briefer form cv dec , which is handled 
identically to cV_dec_$cv_dec_. - -

The hardcore (ring zero) supervisor entries (hardcore gates) are all 
easily identifiable since they are entered through a single interface 
segment named hcs. Segment hcs consists of just a set of transfers 
to the subroutine- wanted. A transfer vector is used to isolate, in 
one easily available location, all gates into the Multics supervisor. 
(There are in fact hard core gate segments other than hcs , but you 
will probably not have occasion to deal with them.) For a-discussion 
of the ring structure and hardcore gates, see the MPM Reference Guide. 

The program will need to know what I/O switches will be used in order 
to perform certain I/O operations. I/O switches are the general 
source/sink I/O facility of Multics. Multics PL/I programs manipulate 
I/O switches as PL/I pointer values. The two external variables declared 
on this line contain the pointer values identifying the standard terminal 
input and terminal output switches. 

As mentioned above, system error codes are returned by most supervisor 
and library subroutine entries. In one case, we will need to know if 
a specific error (see line 142) was returned by a supervisor entry. A 
segment (error table ) exists which has entry point definit ions for 
external static variables (see Appendix A) containing all the possible 
values that can be returned as errors by system routines. The variable 
error table $noentry contains the value returned as an error code by 
system routines to indicate that "the entry you specified in the directory 
you specified does not exist". 

The first order of business is to determine how many arguments were 
supplied to the command, and also to find out whether the command was 
called properly. This is done by calling a library subroutine. 

If the error code from cu $arg' count is nonzero, it means that the 
program which called cu $arg count was not invoked as a command. This 
usually indicates attempted use as an active function, which is invalid 
for eds. 

B-4 AG90-03 



104 The library subroutine com err is called to print out the error message 
describing the invalid call:- It produces an English explanation 
associated with the error code, which is obtained from a system-wide 
table (the error table). It also causes terminal output to be produced 
even if the user-is temporarily diverting output to a file. In general, 
com err should be called to report all command usage and operation 
errors. The output from such a call looks like this: 

eds: This command cannot be invoked as an active function. 

105 A Multics command exits simply by returning to its caller. (See also 
line 437). It should, however, clean up allocated storage, terminate 
segments, and return temporary segments if it needs to. In general, a 
program should do exactly the same things when it exits normally as 
its cleanup handler does. These actions are omitted for this return 
(and the next) because the program has yet to do anything which would 
require cleaning up, and because the variables which would inform the 
cleanup handler of its job have not yet been set. (See lines 133-134.) 

109 The eds editor must be invoked with exactly one argument. If it is 
not, we wish to print a message describing what was wrong, and suggesting 
the proper usage. This message is produced by picking an appropriate 
standard error table code to describe the error, and assigning it to 
code. All the standard error table codes are listed in the MPM Reference 
Guide, Section 7. 

113' The com err subroutine, as well as the ioa subroutine (see line 
162), allows-substi tution of parameters in its message. The" "an string 
here is used to get the command name into the error message. It is 
done this way, rather than simply putting "eds" in the message, to 
make it possible to change the name of the program by changing only 
the declaration of MYNAME. 

117 After verifying that the right number of arguments (one) was supplied, 
we access the argument. As pointed out above, this is done via library 
subroutine rather than PL/I parameter passing. Since the command argument 
is nominally unlimited in length, cu $arg ptr returns a pointer to the 
argument as stored by the command -processor, and its length. The 
based variable "sname" will describe the argument once this pointer 
and length are obtained. The last argument is a zero, passed by value, 
because it is known that there is exactly one argument, and there is 
therefore no reason to receive or check the error code. This should 
only be done when it is guaranteed that no error can arise from the 
call, since it will otherwise result in faults. 

125 We must now convert the argument to a standard (directory name, entry 
name) pair. The subroutine expand pathname implements the system-wide 
standard practice of interpreting the typed argument as either a pathname 
relati ve to the current working directory, or an absolute pathname 
from the root, as appropriate. 

134 The program will soon acquire (on line 149) a process resource, namely 
two temporary segments from the process's pool of temporary segments. 
When the program is finished executing, it will return them (line 589) 
to the pool. However, the program may be interrupted (perhaps by a 
QUIT, or a record quota overflow); and the user may abandon its stack 
frame (perhaps via the "release" command). In this case, it would 
seem that the program would not get a chance to return its "borrowed" 
resources. However, Multics defines the "cleanup" condition, which is 
signalled in all procedures when their stack frame is about to be 
irrevocably abandoned. (Refer back to Figures 5-1 and 5-2.) The handler 
for the cleanup condition invokes the procedure "cleanup", which 
relinquishes these resources. 

B-5 AG90-03 



The array "temp segs" is initialized to null pointer values before 
establishing the-cleanup handler, so that the content of the array is 
well defined at all times. (The release temp segments subroutine checks 
for null pointer values, and performs no action if it encounters them.) 
Otherwise, if the cleanup handler were invoked before the temporary 
segments were acquired, the pointer array would have undefined, probably 
invalid values, and the call to release the temporary segments would 
have unpredictable results. 

The cleanup handler is established before the temporary segments are 
reserved. This sequence guarantees that there will be no "window" in 
which the program can be abandoned between the time that the segments 
are acquired and the time that the cleanup handler is set up. 

139 The supervisor entry point hcs $initiate count is invoked to map the 
segment specified by the (directory name, entry name) pair into the 
processls virtual memory. It returns a pointer to the segment, which 
it constructs from the segment number by which the segment was mapped 
into the virtual memory of the process (made known). If the segment 
was already "known", i.e., in the process's address space, the segment 
number from the existing mapping will be used to create a pointer to 
return. Refer to the MPM Reference Guide, Section 4, for details. 

The PL II null string ("") is a spec ial signal that no (possibly addi tional) 
reference name is to be initiated for the segment. 

141 Unfortunately, the zerolnonzero value of the return code from 
hcs $initiate count cannot be used to check whether the initiation 
(mapping into-the address space) succeeded. In the particular case of 
this subroutine and hcs $initiate, a nonzero error code is returned in 
the ostensibly successful case of the segment having already been in 
the address space or the process, a case which is rarely an error. 

These two subroutines are defined to return a nonnull pointer value if 
and only if the segment has been successfully mapped into the address 
space, whether by prior act or anew. Thus, testing the return pointer 
for the PL/I null pointer value is the appropriate test for success. 

142 The editor (eds) will create a new segment (see line 496) if an attempt 
is made to edit a segment which does not exist. By comparing the 
value of the error code returned from hcs $initiate count with the 
system error code stored in the variable error table $noentry, we can 
differentiate the case of failure to initiate simply because the segment 
did not exist from all other cases (e. g., incorrect access to the 
segment specified). 

143 The pathname subroutine is used here to return a string, which is 
then substituted into the message produced by com err , which is the 
representation of the pathname. This cannot be done by simply 
concatenating the dir name, a ">", and the entry name, since if the 
dir name were ">,, (the-root directory), this would result in an invalid 
pathname containing the sequence "»". 

149 A pool of segments in a process directory is maintained by the 
get temp segments and release temp segments subroutines. These 
segments-are doled out to commands and subsystems which request them 
(via get temp segments ) and it is expected that they will be returned 
to the pool when there is no further use for them. This facility 
avoids the need for user programs to create and delete (or attempt to 
manage or share) segments needed on a "scratch" or "temporary" basis 
(for work areas, buffers, etc). Segments obtained from this facility 
are guaranteed to contain all zeros (truncated) when obtained. 

B-6 AG90-03 



The number of segments to be obtained is determined by get temp segments 
from the extent of the pointer array parameter. The name of the-subsystem 
is passed to get temp segments both to facilitate additional checking 
by release temp segments, and to support the list temp segments command, 
which describes which subsystems in a process are using temporary segments. 

161 If the segment specified on the command line does not exist, the editor 
is to assume that it is creating a new segment, and go into input 
mode. The value of the variable "source otr" will be null if this is 
the case. --

162 The ioa subroutine is a handy library output package. It provides a 
format ?acility similar to PL/I and FORTRAN "format" statements, and 
it automatically writes onto the liD stream named user output, which 
is normally attached to the interactive user's terminal.- When used as 
shown, it appends a newline character to the end of the string given. 
Programmers who are more concerned about speed and convenience than 
about compatibility with other operating systems use ioa in preference 
to PL/I "put" statements, because ioa is cheaper, easier to use, and 
far more powerful. 

The formatting facilities of ioa are used in a simple way in this 
example. The circumflex (""''') in-the format string indicates where a 
converted variable is to be inserted; the character following the 
circumflex indicates the form (in this case, a character string) to 
which the variable should be converted. The first argument is the 
format string, remaining arguments are variables to be converted and 
inserted in the output line. 

165 The storage system provides for every segment a variable named the 
"bit count". For a text segment, by convention, the bit count contains 
the number of information bits currently stored in the segment. The 
bit count of the segment being edited was returned by hcs $initiate count 
(hence its name) on line 139. --

This statement converts the bit count to a character count. Note that 
we have here embedded knowledge of the number of hardware bits per 
character in this program. 

165 The PL/I language specifies that the result of a divide operation 
using the division sign is to be a scaled fixed point number. To get 
integer division, the divide builtin function is used instead. Note 
that the precision of the quotient is specified to match its size. 

166 Here, we invoke some of the most powerful features of the Mul tics 
virtual memory. This simple assignment statement copies the entire 
source segment to be edited into the temporary buffer named "from seg". 
A single hardware string-copy instruction is generated for this-code, 
copying data at processor speed. The string-copy instruction may be 
interrupted by page faults on either "source seg" or "from seg" several 
times; after allocating or reading the required page, the instruction 
is restarted where it left off. Note that we are regarding the entire 
text segment as a simple character string of length "size". We may 
regard it this way because the storage representation for permanent 
text segments is, by convention, identical to that of a PL/I nonvarying 
character string. 

167 Be sure to read the comments embedded in the program, too. 

B-7 AG90-03 



115 The standard lID system is being invoked to read a line from the 
user's terminal. The line is read from the lID switch identified by 
the external pointer iox $user input. Although passing the buffer to 
be used as a character string-would be more convenient, this set of 
interfaces was designed with maximal efficiency in mind, and this form 
of call is more efficient. Note that it would also be safer than 
passing a pointer to the character string, since that would allow PL/I 
to check that an appropriate character string was being passed, as 
opposed to a pointer, which can point to any data type. This design 
demonstrates the frequent tradeoff between efficiency and convenience. 

115 Subroutine iox $get line is often used for input rather than the PL/I 
statement "read file (sysin) into ... ", again because of efficiency 
and error-handling considerations. The PL/I facility ultimately calls 
on the Multics iox package anyway. (Again, if you wished to write a 
program which would also work on other PL/I systems, you would be 
better advised to use the PLiI IiO statements instead.) 

116 It is highly unlikely that a call to read a line from the terminal 
will fail. Nevertheless, in cases of people debugging their own extensions 
to the Multics 110 system (a practice intended by the designers of the 
110 system), it can occur. It is reasonable to abort the entire editor 
in this unlikely case rather than repeating the call: presumably that 
would repeat the error too. 

180 For the sake of human engineering, the editor ignores blank command 
lines. Since complete input lines from the typewriter end with a new 
line character, the length of a blank line is one, not zero. 

182 The code to isolate a string of characters on the typed input line is 
needed in four places, so an internal subroutine is used. This subroutine 
is not recursive, which makes it possible for the compiler to construct 
a one-instruction calling sequence to the internal procedure. Certain 
constructs (e. g., variables of adjustable size declared within the 
subroutine) will force a more complex calling sequence. For details, 
you should review the documentation on the Multics PL/I implementation, 
contained in the Multics PIlI Language Specification, Order No. AG94. 

184 Al though the dispatching technique used here appears costly, it is 
really compiled into very quick and effective code 2 machine 
instructions for each line of PL/I. For such a short dispatching 
table, there is really no point in developing anything more elaborate. 
If the table were larger, one might use subscripted label constants 
for greater dispatching speed. 

189 Human engineering: the typist is forced to type out the full name of 
the one "powerful" editing request which, if typed by mistake, could 
cause overwriting of the original segment before that overwriting was 
intended. 

200 Whenever a message is typed which the typist is probably not expecting, 
it is good practice to discard any type-ahead, so that he may pxamine 
the error message, and redo the typed lines in the light of tnis new 
information. 

201 The general strategy of the editor is as follows: lines from the 
typewriter go into the variable named "buffer" (accessed as "commands") 
until they can be examined. Another buffer, named" line buffer" (accessed 
as "line") holds the current line being "pointed at II by the eds conceptual 
pointer. Subroutine "put" copies the current line onto the end of 
to seg, while subroutine "get" copies the next line in from seg into 
the current line buffer. -

225 The procedure get num sets up the variable "n" to contain the value of 
the next typed integer on the request line. Such side-effect communication 
is not an especially good programming practice. 

B-8 AG90-03 



226 

237 

254,265 

284 

422 

427 

456 

468 

469 

500 

538-540 

551 

The delete request is accomplished by reading lines from from seg, but 
failing to copy them into to seg. If deletion were a common operation, 
it might be worthwhile to use more complex code to directly push ahead 
the pointer in from_seg, and thus avoid a wasted copy operation. 

More side-effect communication: the variable "edct" is always pointing 
at the last character so far examined in the typed request line. 

All movement of parts of the material being edited is accomplished by 
a simple string substitution, using appropriate indexes. 

The locate request is accomplished by use of the index builtin function, 
used on whatever is still unedited in from_seg. 

A negative number in the next request results in moving the conceptual 
pointer backward. The resulting code is quite complex because the eds 
editing strategy requires interchanging the input and output segments 
before backward scanning, so that the backward scan is with regard to 
the latest edited version of the segment. 

This code to search a character string backward is recognized by the 
compiler as such. Extremely efficient object code to search the substring 
backward is generated, using a single hardware instruction. No copies 
are made in this fairly expensive-looking statement: it is, in fact, 
cheap. Combinations of reverse, index, substr, search, verify, etc. 
that seem like they ought to generate efficient code in fa~t usually 
do. The -profile control argument and the profile command are useful 
tools for discovering where inefficient code is causing performance 
problems. 

Before exiting from the editor, the temporary segments should be returned 
to the temporary segment manager, and the segment that was initiated 
terminated. 

Another human engineering point: since the user may have typed several 
lines ahead, the error message includes the offending request, so that 
he can tell which one ran into trouble and where to start retyping. 

Note a small "window" in this sequence of code. If the editor is 
delayed (by "time-sharing") between lines 468 and 469, it is possible 
that the message on line 468 will be completed, and the user will have 
responded by typing one or more revised input lines, all before line 
469 discards all pending input. Al though in principle fixable by a 
reset option on the write call, Multics currently provides no way to 
cover this timing window. Fortunately, the window is small enough 
that most interactive users will go literally for years without 
encountering an example of a timing failure on input read reset. 

Note the practice of copying data into the original segment, setting 
its bit count, and truncating it in that order. This provides for 
maximal data being saved should there be a system failure between any 
two lines. Common sense seems to indicate this order as "maximally 
safe", and analysis of the data involved will demonstrate this as 
well. 

The input and output editing buffer areas are interchanged by these 
three statements. Here is an example of localizing the use of pointer 
variables to make clear that they are being used as escapes to allow 
interchange of the meaning of PL/I identifiers. 

The IIO system provides this entry point to perform control operations 
(e.g., "resetread") upon the objects represented by IIO switches. 

B-9 AG90-03 



563 This editor considers typed-in tab characters to be just as suitable 
for token delimiters as are blanks. Ideally, tab characters would 
never reach the editor, having been replaced by blanks by the typewriter 
input routines. Such complete canonicalization of the input stream 
would result in some greater simplicity, but would require a more 
sophisticated strategy to handle editing of text typed in columns. 

563, 566 The PLfI search and verify builtins, which are quite useful in 
circumstances like this (parsing lines), are compiled into very effic ient 
single-instruction hardware operations by the Multics PLfI compiler. 

580 The cv dec library routine is used here rather than a PLfI language 
feature, because cv dec will always return a value, even if the number 
to be converted is-ill~formed (in which case it returns zero). Thus, 
the editor chooses not to handle ill-formed numbers. Had it wished to 
check for them, it could have used the cv dec check subroutine. PLfI 
language conversion would cause an error-signal whIch must be caught 
and interpreted lest PLfI' s runtime diagnostic appear on the user's 
console. Thus, eds retains complete control over the error comments 
and messages which will be presented to the user. Such control is 
essential if one is to construct a well-engineered interface which 
uses consistent and relevant error messages. 

589 The cleanup procedure calls the release temp segments subroutine to 
release the temporary segments acquired- earlier. A -binary zero is 
passed to release temp segments by value (by enclosing it in parentheses) 
because the cleanup 'handler has no use for an error code. Cleanup 
procedures should never print messages, even error messages, because 
they are only invoked when exiting a procedure. There is no corrective 
action the user can take. 

590 If the segment edited was not known before editing it, it should be 
unknown after the editor finishes as well. The supervisor maintains a 
reference count for each segment in the process. This count is incremented 
by the call to hcs $initiate and decremented by the call to 
hcs $terminate noname. - If the count goes to zero (i. e. the segment 
was-made known-by the editor), then the segment is made unknown. 

B-10 AG90-03 



!j:.~}JT '- 'T T'-i t- 'I ~i T •• G r~F ·:::~C,J·~t, '.:" e..ools 
;J"'o;joc t'v; [YD"'r;II''''nta 1 '"'LIT L",~;r:i't::r r';f Tt-urs'iaY, Feo"uerv 2b, 19B1 at 18:23 
o·p41 .. C a~: ~0n~y~el 1 LT~~ Phne~iwr ~ys~e~ ~ 

ro"'c.;i1!"o c.n: Jf,/11/6~ it" .. :-'.1 "'ut ~~o'" 
no~inns; o?timize ~a~ 

1 .. ~~: 
? 
, 11< 

!.l 11< 

<; lie 
f., 

7 lie 

q dec]p!'" 
l~ -:-Ier:]",r<> 
11 ,-let:' 1"1 r D 

l' ~erl"'ro 
13 decla"'~ 

1" "'erl-"lr" 
1<:: .-I?~l",r'" 

lt--
17 de~l-"Ir"" 
11\ c'ec:- 'j '" r o 

10 "'~rl",r" 
21) rle~l",r .. 

2t rler:l",r~ 
2~ rle("l;::.r", 
2' '"'er:l"'I"" 
2'l ':leel!!!r .. 
20::; 
21, r:!ec:-Iar" 
27 "'E!cl-"lr'" 
cR ~;eCl?r'" 

~q '~e~i"'!'''' 
31' ~ecl",rp 

51 "'er: I i'\ r'" 
3? rle~l"'r" 

3" r'e~l",r'" 
sa 'ier:i",ro 
3': "er-I",rp 
~ .. rlecl~r .. 
:'7 t1e~l~ro 

3(' '"'?cll"r o 

j<" rerl ;:\1"'" 

4n .-Ier:ll"re 
,,11. .-lec L:'!r~ 
iJ? rle~i"'r" ii, ("Iee]"'r!> 
"iIi .-fe"'l3re 
,:jc:. 0ecl-'\r~ 

4!'-
47 ryer:]",r" 
4R rleel?r .. 
4Q .-feel"'r" 
51' reCl!H'p 

:51 

~" 

~j~cle text pcitnr -- examnie nrD9r~~ */ 
"r; ttcl"! .Tu 1 '1' 117'1, kif """,,"one 0. Vn"", Id 
"orlif;pd ,''''1, 1''1''1, for)~q.(I suhrClutines, ov Someone Else *1 

a"'g_c"'u"'t 
nr-~"'k 
0'" -{, 

:)l.If~e .. 
c '" ~!""!~.J ~ S _0 (" cur r- ~ ,--! 
cf"'l· ... j~ 
C:":;if"'l dl'"'l·.;~ 

C"'U""':t 

csi?e 
er'c~ 

d; r_1"1'1"'" 
e!"l t .. y _n '" cr, <> 

frou",_ ... t'"' 
frc·''''_~~'"'J 

'J' 0"5'-! 

i 
1 i 
; ,"!,j~ 

; '''I\J t 

1 ; r,e' 

1 1 "., •• >-l,.. f f'" r 
1;N'] 
l""c::>t ,.,; 

n 
s""a""e 
:.ina""p._i+-~ 

s"'CI~e_ptr 

S"'u roC p_c:-o!.)r. t 
s"u"cp_t:'tl" 
s"':.J"'c!'_se" 

t"'1r'''_se''ls 
1;1 i'" 
tlrn 

fj)fe rl binary: 
character (1), 
fil(e,; hinary: 
ch?rade" (210), 
.... i t (l) 1 

1* Number of command line arguments *1 
1* ~o'ds bre8~ char for change *1 

fi~e,; ~;'"!ary (~S); 

character (c"'vnt) hased 

1* Ty~ewriter input buffer. *1 

(ario,. (t/uffer»; 
1* Va'i~ oortion of buffer *1 

fjve~ h;nary (~1); 

~;~erl .... i"a,.v (~l); 

fp:e.-! I,;nary; 
char"'cte!" (If.b); 
eharactel" O?)! 

1* Valid length of data in "buffer" *1 

1* Oirectory containing segment *1 

1* Temporary pointer holder. *1 [')o;r,~er; 

:'"lo;nte"; 
Character-

1* Pointer to current from_se9. *1 
(1~4~~76) haserl (fro~_ptr)1 

flxet'l 
-f;Yer! 
fiyer' 
-fixe'" 
~i)(e~ 

f;xe rl 

':">ina!"y 
I- ; ~a"'y 

!-. i r-·ar-y 
'"'inal"v 
h;""ary 
""ina"y 

(~1), 

(? 1) ; 

C;:'l); 
(71) ; 
(1); 
(? 1); 

fjYe.-l bi~a~y (~l); 

1* fdit1no is from this segment. .1 

~har~cter (l;n~l) hase~ (arior fline_buffer))J 
c~ar~cte~ (210); 1* Holds li~e currently being edited •. 
f;Ye'"' t.i"'ar.,,~ 1* lenot'" of "l;ne" *1 
fll<e-' .... ;I"\i::lrv~ 
~ixe~ ~;no~Y (~l); 

~iYe~ ri""al"y C?l~; 

cn?rac~e" (sna~e_l~h) ~aserl 

fiYe-l hi~ary (?1); 
(s~a~e_ptr); 1* Source name *1 
1* Length of ~ouree segment name. *1 
1* Pointer to source segment name. *1 
1* Holos seament bit length. *1 

'"'ointe ro ; 

five-l h;l"\ori (?~); 

!"·ointe r , 
char~c~el" rl~4~~7o) hase1 

,..J; 'T"e"s; C'" 

cr· a rae tel" 
chi'lr~ete" 

cr·~raC~E'r-

(2) l"Io;nte~, 

(210); 
((' ; 
(10!.!P5 7 t» I.,a~ery 

1* Pointer to source seQ. *1 
(s(')ul"ce_otr): 

1* ~utside seament for read or write. 

1* Ruffer to no'd outout of cnange. 
1* HOld& next item on typed line *1 

(t ",_ot r) : 
,* cditina is to this seg~ent. *1 
1* Pointer to to_sea. *1 

*1 

sa 1* ronstQ~t~ +/ 

B-11 AG90-03 

*1 



55 
56 
57 
58 
5q 
60 
61 

" ) J 
deelare 

deelArl"! 

Nt 

~HJTESPACF 
II); 1* ~IL TAB SPACE 

MVfljll!·iF. 

eharacter' (1) static ootio"'s (eonstant' initial (II 

charecte" (3) st"Hic o~tions (co!"lsta"'tl initial (II 

1</ 

character' (3) stAtic o"'tio"'s (constant' initial ("eds"); 

62 /* 
63 

~xtep'nal sUbr'outine declarations. 1</ 

6lJ 
6'5 
b6 
b7 
bPo 
69 
70 
71 
72 
n 
7U 
75 
76 
77 
78 
1Q 

8~ 

81 
62 
83 
84 
85 
86 
87 

dee leN! 
declare 
declare 
declare 
declare 
rleclere 
deelare 

declare 

declare 
declare 
neelAre 
.... eclere 
declare 
rlecl~re 
daels;-~ 
rleelere 
deell!1re 

rleelare 
deelerl"! 

com_er'r_ 
cu_$arQ_count 
cu_~a,.g_ptr 

cv_dee_ 
expand_oathna~e_ 

get_temo_se~ments_ 

hcs_$initiate_cnunt 

hcs_$set_bc_seg 
hes_$te,.minate_nona~e 

hes_~truncate_seg 

i08_ 
ir.>x_$eontr'o' 
iox_$oet_line 
io~_$eut_ehars 

patl-namE'_ 
relI"!9se_temo_seo ments_ 

cleanup cond;tio~~ 
(adrlr', divide, inrle~, 

entry 
pntrY 
entry 
Fi!ntrY 
~ntrY 

pntrY 
entry 
fixer! 
entry 
fixe(l 
entry 
pntrv 
entry 
Fi!ntrv 
E'ntrv 
pntrY 
~ntrv 

options 'var;abl~)~ 
(f;xed binarY, fixea bin~ry (35»; 
(fixpd o;narY, oO;!"Iter. fixer! b;"ary (21), fixed binarY (35); 
(c,",a,.aeter (*)) r'etur'n~ (fixed binarv(35')~ 
(c~a~~cter (*), chAracte~ C*), chap'acter (*), ffwerl binap'y (35»1 
(char8et~r (*), oo;nter' dimension C*), fixed bfnary (35»; 
(charact~r' (*), character' (*), character (*), fixerl binary (24), 
~;~ary, pointer, fixed bfnarv (3~»; 
(char'acter C*), character (*), ch8~acter (*), 
h;~ (5), ~tr. fixed ~;nar'Y (35», 
(pn;nt~r, fixerl ~;nar'y C~4), fixed bfnery(35')~ 
(ooint~r, fixerl ~inar'Y (3~»: 
(po;nt~r, f;xe~ ~inar'y (t9), fixed bfnary(3S»J 
ootinns (varfa~le)J 
(po;~t~r, cnarac~er' (*), 
(oninter. pointe~, fixed 
(poi:"':teri ~ointe:-, tixt=?d 

pointer, fixed binap'y (35»r 
bfnar'Y (21), f;xerl binary (~1', fixed binarY (35» 
binarY (21). fixed binary (35»: 

~ntrv (charactpr (*), cnaracter' C*» retur"s (character (168»' 
entrY (c~a~aetp.r (*), oointer' rl;~ension C*), fixed binarY (35», 

jpnoth' !'lui1, 
"'uiltin; 

rpvp.rse, search, su~str, verify) 

88 /* eq 
~xternel data *1 

90 
91 

.9? 
93 
9lJ 

deelare (;ox_$user_outout, iox_$user_input) 
declare err'Or'_tab'e_SnoAr~ 
deelftre er'ror_teb'e_$nopntrY 
declare error_teb1e_Ston_~any_ar'gs 

~ointer' exter'nal static; 
fixed binary (35) extep'nel static; 
fixed binar'Y (35) extep'nal static; 
fixe rl ~;"'ary (35) external static; 

B-12 AG90-03 



:;0:; 
91-. 
97 1* 
9P 
9() 

10" /~ C~ecK t~ ~ep if a~ fnn~t ~r~u~e"t w~s ~iven *1 
, 0 1 
10? 
lQ~ 

104 
1:)<; 

10f. 
107 
10P. 
1 i)Q 

111" 
1 1 1 

1 1? 
lP 
1 III 
1 1 c:: 

116 
117 
11 n 
llc 
12 r 
121 
12;:> 

cal I CU_~i}I"<.;_Cl")u,.,t (ar,,_counl:, coo",); 
if coa~ -: 0 t~e'" ~o~ 

c31' co""_err-_ (cerle, '~'I~'.\;"·E); 

rpturl"l; 

/* Not called 89 a command *1 

if ~r~_CDunt ; 1 t~e" corle = 0: 1* T~is fs correct *1 
pl~e if Aro_ccunt = ~ thpn CDoe : ~rl"or_table_~noarg: ,* ArrQument is missina *1 
01~~ CD{J° = prl"or-_ta~IP_~tl")c_~~ny_ar~s: /* Otherwise, there were too m8nV *1 

if coa", A: 0 the" ~o~ 

CAl' co",_prr-_ (~orle, 

r!"tur n ; 

1* If not called correetly, eomplain *1 
r·T,: • .d·E, ""/Usa"e~"'-"~ <PATH>", MYN4ho\F): 

cal I cl)_"'a~,.!_;'.'tr 0, s,.,a"'e_otr, sna'l,E'_'tl-:, (I))); 
if CI")Q~ "': 0 t~e" ric; 

ci'lll co"'_orr_ (co,-le, ")~'M~Cl, "lJsaoe! "a <PATH>", MY~JA"'f.); 

rl'!t u r"'; 

12' 
~ 211 

12C:: 
126 
127 

1 .,., I' ~ ," " ,. t ~ p" ; "1 t "! r 1: n t no", e ') ~,1 '" n t t () t' P e d ; ted .,., I 

1t!.P 

12 c 

13(1 

l.5t '* 
132 
U"t. 
i 30. 
ne:: 
Uf-

ca'1 eX0~n~_nath~a·@_ rs~a~e, ~ir_na~e, 

if c~0~ A; 0 then ~o: 

ca1' t::'o .... _ .. rl"_ (corle, ',:., "IAf'E, ""a", 
r'!turn; 

SO,,'r~e_.:tr::: n'Jl1 ()~ 

~ntrv_na~e, code); 
1* Bad P8t~n8me *1 

l:e"'~_s!"(;t:; (*' = nulj l), 1* Make- SUl"8 handler h8S valid d8ta *1 
On con~iti~n (cl'!a~ucJ eail cl~an_ug; 

'37 /k !nitiat~ th", sourCe se9 M e"'t. *1 

14l-

raJ] ncs_~initiate_c~unt (rlir_"a~e, entry_name, "", souree_cnunt, 0, source_Dtr, codel, 
1* Initiate the segment *1 

;f s!11,..rc'!_ntl" = "1,..11 () 
t~en if c~o~ A; el"r~r_table_$noentrY th~n d~;I* Pl"ohlem 01" Just new seg? *1 

~al1 c~~_err_ (ende, ijy~a~~, "rannot acceSS A a ", D8thname_ (dil"_name, entry_name»)' 
r-eturn: 

1~7 /" <:et '_';::' '~lJt"el" Se.,r,lPnts. 1<1 

,.",11 ~;et_ter1::-_~e""rH"l"Its_ (,.Vl,t.r,:F, te:nr"_sees, ~orle); 
;f C~~e A; v t~en ~c: 

c"'ll co"_""r"_ (ro'"'e, "'tt'A"t, "Can!'lot (Jet: telllPl:'rarY segments.")' 
c<"l' clpa"_l.lo; 
rptur"li 

8-13 AG90-03 



ISO 
1ul' 
161 
lto? 
16"1: 

loll 
loS 
, 0'" 
, 07 
loP 

~~"~_D~~ = temr_~€cs (1); 
to_Dtr = t·mn_~e~s ('): 

CS;ZP, ina f , inot = ~; 1* In;tial1z~ buffer control vars. *1 
if Snu~cp_"t~ = null then ~o~ 

c"Il' ;0"'_ ("!)I;'c·"'e"t"~ "ot fou"ri.", e1"lt .. y_nam~)J 
qc tc, ;::.;rmut; 

jC:In~; 

rS;ZF = ~;virie (~ourr.e_count, 

C;J~str (fr"T'l_s .. \.', 1 C"11e) 

(f, c:: 1, v); 

~u~str (source_seg, 
1* change ~;t count to c~ar count *1 
1, csize)~ 
1* Move S1"lu"Cp. segm~nt into buffer. 

'0" 1* "",;f) e.-l;tl"C:; l(\o~ ••••• *1 
171l 
1.71 

1 7," "'e ~ t ! 

1 7 c; 
171, 
177 
:71':. 
,7 0 

'-a'i 10._~"~et_'i"e (;vY_~u·:H.~_;f)l"lJ~, anal" (ouffe!"), 'el"lgtll (l'Iuffer), COUl"lt, code)J 
if cndp -= 0 the~ ,.Ie; 

e-n~; 

c"l' c"~_~r~_ (role, ~··l·""~, nt"ror r ... ad;r'lg il"lput line"'; 
",n to f;"is~, 

*1 

ldr. 
LlI 

; f cnunt = i then 00 tn r.ext~ 

~ JI'" t = 1 ~ 
1* if l"Iull line then get another line, don't print error *1 
1* Set up counter to scan this '1ne. *1 

II'? 
1-::"1: 
14/1 

'8<0 
ld~ 

1l\ .., 

1~" 
10Q 

19" 
1~ 1 
1. '/? 

1 Ct; 

'9<:; 
190-

.. a' 1 U!!t_tC'<.en: 

; f t"n ";" t'er- roo 
; t ti.on ",..1' t"e" ~o 

; f tv" n 1 II t!-.e~ "'0 
if t '" 

"nil t ~e"', "'0 

if t''1 ",..," t"e" (']0 

; f t "n "Cj'dve " thp'" 
; f 

t "" 
II C 'I r"-le .... "0 

if t L n 11 ...,n t"Er '':''IrJ 

; f t J..., "'\...,11. t;'e.- ",., 
; f t i< r) 1'1': II t ~ f; ~ "'0 

if t <'l "h" t"e" ""0 
; f t In-, n ., t"er- co 

tr inse~t: 

tl"l retyr>e' 
to locate: 
t"l r>r;nt; 
to "'exii,,: 
;;" t:> HIe; 
tn cn'ln'Je1 
t'"' rie' i in: 
tn "'SPlv~; 

to to,.,; 
tl' f',ot"tOfTI: 

to C'i"'plJt: 

197 1* Tf "11"1..,- ~f t~e a~ove tke" I"Int ~ re"u~st */ 
,q" 

1* Tcentify next tokel"l. *1 

call i1"l8_ r~'·PI' ~(\t d" P~;t ~eque~t", sub9tr (cnmmands, 1, length (commends) - 1»; 
cll'l res'!tr'eaC1: 

?Cl ~o t'"' "'e~t: 
?P 
'0' I.", *+>:**".** i'-Ollt [',n'll;' *******~* *1 
?JG 

1* print worrl input *1 

?JQ ca'l inx_~oet_'i"e (;:>v_~use'-_!nput, arij~ (Duffer), length (buffer), count, code" 
'v Q if coo- -= v t~er ~o: 
'10 cal' co"'_-r~_ (cc,.le, "tfIA,,'t, "E:,!"ror rl"sriir'lg i..,out-mode l;ne."); 
?11 ~o to ti"isk; 
'1' ~",.I; 
?l' 
:? 111 r C<"l,r."'8"C!!, j" ') 

B-14 AG90-03 



?Ie:: 
?1!-. 
217 
':>1" 
?lq 
::>2 !'I 
':>21 

~a' 1 V'Jt; 
1,ne1 ':: len~th l~o~r~n~s'; 

'2; 1* **~*~*.** opl~tP *~*.***** *' 
;>23 
?2ll ,.Ie 11; rl ~ 
::>2'5 
'??f:o.. 
227 
'?2P 
?2<':l 
':>30 
2,51 

rio ; = 1 to n - 1; 
c .. 11 <"let; 

t?f!,.J; 

1; !"Ie 1 ':: (); 
00 tr) nelCt; 

23? 1* ~***~**** ins~rt ***.***~k *1 
'B 
?3£! in<::er-t: 
?30::; 
?36 ret'yl"e! 
'37 
'?3~ 

':>3 0 

?1.i.'1 

, i n e 1 ':: 1 e'" q t h ( c 0 ~,n i'! n 'i s) - e ci c t ; 
'i~e = substr- rcom~ancs, erlct + 1); 
~o to neltt; 

'41 1* ****~*.** "~,t **+**~*~* *i 
'?4? 

24 't "'e" 1 ; n = 
?i4'J 
"4"' 

?4f. 
247 
'4 A 
?~q 

?sn 
?51 

cal 1 q~t_nur:;~ 
; f n < 0 t ~ e n ,~o to h de" ~J 0 : 
"', j ; ; ""J ~; 

ca'l J:,ut: 
""-0 i :; 1 to .. ; 

if j >= c~i2e then '0 tn n_l'!of; 
K = i"a~x (suhstr (fro~_se~, I + 1, 

if ~ :: 0 th~r c~~ 

cc;i7.e 

;>5? "'_I'!()~~ 

?53 
if ;nc f >:: c~ize t~en 00 to eofi 
1, roe1 :: !'Ii 

?'::ll 
251:; 
?5~ 

':>57 
::>5~ 

?sq 
';>(1) 

?Q~ 

?6? 
?b't 
'?ell 

i r>c1f :: P 
, i!"le' :: f(i 

su~str (to_3e~, inrlt + 1, csizp - m) 

in";f :: csi7e~ 

in~t = ;ret + csizp - m; 
"0 t.., ecfi 

-

1* cheek for mod~ chenoe *1 

1* mov~ l;~e inputted into inter~edi8te storage *1 
1* repeat "til "." *1 

1* do for eaeh line to be de1eted *1 

Ix nullify lest 1ine *1 

1* Add current line to output segment *1 
1* This;s also the retype request. *1 

1* ado replaeed l;~e *1 

1* save Where YOU are */ 

1* once for eaeh nl *1 
1* cheek for eof *1 

j), \ILl; 
1* locate end of line */ 
1* no nl (~of) print eof *1 

1* set to no Ifne */ 
= substr (from_geo, m + 1, esize - m)' 

1* move in top of file *1 

1* set pointers *1 

1* increment j by length of line *1 

1* set Dointers end move in too of file *1 

1* put working line in line *1 
?6"' 
?66 

li~e :; substr (fro~_se~, j - k t 1, linel)~ 

suhstr (tc_se~, in1t ~ 1, i~rlf - linel - m) = su~str (from_seg, m + 1, indf - line1 - m)1 
1* fil1 rest of file *1 

';>67 

?6P 
::>:'0 
27(1 1* 
'71 
?P 
2B 
?71J 

tnrlt :: i~ot • ;~rif - lin~l - m; 
"'0 to revt: 

if erlct = lenqtr. 
P¢<"t:: e:-:!ct + 1; 
, :: i w"t! 

tnen qo to cad_svntax; 1* check for Dlein "1 NLR *1 
I~ Skip delimiter. *1 
1* initialize nointers for index type search *1 

B-15 AG90-03 



275 
276 
277 
?7e. 
2H 
?8() 
2iH 
?8? 
283 
28£1 
285 
286 
287 
28P 
?8Q 
290 
291 
292 
293 
294 
29r; 
296 
297 
298 
?99 
300 
301 
';02 
303 
30 11 

305 
306 
307 
30A 
309 
310 
311 
312 
313 
314 
~ 1'; 
~16 
317 
318 
31 Q 

320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 

orint: 

orint1: 

!"I 0 1 ; ne: 

'" = ; nelf ; 
~ = csize .. indf; 
ea'l put: 
if (cs;ze = 0) I (n <= 0) then do; 

call switr:h; 

enl'f; 

;f ! > (\ th~n n = j .. 1: 
else n : (\i 
m, J = n; 

i = index (substr- (fl'o"'_':Ie", indf + 1, n), subst" (com'l'ands, e-ict, length (comma"ds) .. erict»); 
if ; A: 0 then do; 1* ;f founrl then do *1 

k = index ("eve"s~ (SUQstl' (fl'o~_se"l' 1, inrlf + il), NL)i 
;f ~ -: 0 t~en k = in~f + i - ~ + 1; 1* k = index of NL *1 
j = index (su~str (fr~m_seQ, k + 1, esize - k), NL)7 1* find end of line *1 
if J = n thpr inof = csizei 
else indf = j + k~ 
sub~tl' (to_~et'!, l!"1ot + 1, I( - 'Il) = suhs t " (from_seg, m + t, k - 01); 

p.nrli 

1;ne1 = ;!"I<jf - k; 
indt = indt + k - m: 
line = substr (fr~m_seg, 

n = U 
go to pl';nt1i 

cali copv; 
ca'l switch; 
"'0 tr) next; 

ea'l get_nurli: 
if linel = 0 t"en ';0= 

eel' ioa_ ("~D l1 n e."); 
go to nolin~; 

1* mOve in top of file *1 

... 1, 1 i nl'> 1 ) ; 1* put found line in line *1 

1* print found line if want en *1 

1* get next command *1 

1* print indication of no lines *1 

call ;ox_$out_ch".rs Ciox_$user_outr'lu t , arid" Cline), length (line), codl'!)J 
~f code ~= 0 then ~o: 

cal' eOr'l_erl'_ (code, r·i"A'~E, "P"'cblp,." .. ,,;t;!"Ig edito" output"); 
QO to finis,",; 

n = n - 1; 
if n = 0 then 00 to !"Ieyt~ 
cail put; 
call get; 
00 to C'rintP 

1* ~r-ite the l;n!'! *1 

1* any mOre to b~ printed? *1 

1* ********* cha!"lg~ ****+*+** *1 

ehanoe: located = n; 
if count = 2 then do; 

count = count - 1: 
cal' 109_ ("I~D"ooel': -a", eo~"'ands)~ 
call reset reao:i; 
go to next; 

end; 
brkl = erlct ... ?; 
break = substr (co~manrls, eoct + 1, 1): 

B-16 

1* Strip NL off "commands" *1 

1* Pick ur'l the delimiting char-acter. *1 

AG90-03 



'l;)r; 
3.36 
~37 

33? 
'l3Q 
'Z.4 rl 

~41 

3 .. ;> n)l.~I"(": 

~i), 

'7j4{J 

~4C:; 

34(0, 

31:.7 
'!-:.lP 
~I.iQ 

351' 
351 
'Z.5~ 

3':>3 
35/) 
3sr; 
35(· 
'l57 
'Z.SFI 
'2.59 
3bf! 
,61 
'b2 
"iG, C'n:>; 
30ll 
,::,<:: 

'6f.. 
~i;.7 

36" 
'Z,o'7 
37f' 
371 
~7'? 
~p. 

371! 
7.7'" 
3H 
-;n 
,7~ 

7..7° 
-;a!'l 
'2.81 c;>rt: 
36;> 
vn 
364 
38<:: 
36~ 

307 
,;)R 
,8C' 
,9(1 
39'. 
,q;> S i< ; I' ~ h ~ 
,93 
,~l! 

:: inrle Y (su~~t~ (c"~~a~~~1 ~~~')' hr~ak): 
t i :: 0 then ~o tn ha1_st~t~x~ 

:: inrfex (su[:.Str (eor"",';;l"\ds, i + t,ri(1), br~alr)~ 

f j :: 0 then i = '~~~th leo"'m~n~$) - i - ~r~1 + 1; 
eq!"t :: e"'ct of. i + I ~ 1; 1* 
O]ODSW :: "n"~; /* 
"1 :: 1; 1* 

Contfnue seannfnq edft line. */ 
Assume onlY one change. */ 
Assume only one )ine c~anged. */ 

ca'l '.:let tn;'; .. n; 
if tk~ .; " " thPn d~; 

if tk"1 :: "q" then ~lo~sw :: ala?: 
e'sp. call CV_l"Iu'"" 

/* If token there. Drocess ft. *1 
/* Change ell occurrences. *1 

go to r\ltar,-': 1* Try for another erqument. */ 

cn~n~e~_oc~u~r~? :: H""~; 

"', ij, 1 :: 1: 
;f ; :: 1 t~en ~o: 

"r-r'; 

C~anges_onCurre~ :: "l~u; 

l.,cateu :: l~ 
SUbst ... (t'in, 1, • 1) 

suo~t ... rt'i~, j, 'e~9tn 

;i :: 1 ... 'i"e' - 1; 
1 :: j + Ii nf' I + 1; 
go to cnrt; 

/* ind~xe8 to strings *1 
/* add to beQinninq of line *1 

; S'Ib'Oltr CCt:lrn'l'lar"lds, ol'kl + i, j - 1); 
1* COpy nal't to ~e added */ 

(1;ne)) :: line; 1* copy 01'" line *1 

v = inciell' 'SIJj,'';tr'' (lin~,,,), suestr (Ct'l'n"lanUS, bl'k,l, i - 1»): 

*1 

/* locat-. what ;s to be changed */ 
if ~ -; " th~n C~; 

S'!b~tr (tlir-, ii, .<. - J.J :: sl.J~str (line, m, I( - Pi 
1* cOPV line UD to cnang~ *1 

SUrc~tr (t'i"'l 11 ~ I( - 1, j - U = suhstr (cO'l1ma",ds, brkl + i, J - 1), 
/* put in ehanQe */ 

ffi :: m t - c: /* ir"lcl'ement inaexes *1 
iJ ~ ij + k t - c; 
J :; 1 + IC + j - .::: 
Clo,a"91"S_OCC'Jr r e'" :; "l"p~ 

1 oc~te0 ; 1: 
/* indicate tnat you did sometinq *1 

if ~lOb~W t~e~ 00 to cn~; 
"'n r , 
sui-str (tlin, ij, le'"'~;t:; (',"1e) -",,'''' 1):: suoSt~ (l;ne, /TIl; 

1* COpy rest of line */ 
ij :; ii ... 'e~(;tr, (1;"'e 1 - "'; 
, :; 1 ... lel"lqtn (';r-e) - ~i 

i f c"'a""~",s_OCC\lr"e'" tll~n ;;'0, 
cal' ;ox_'Dut_c~al's liox_~u~er_Outout, ad~r 
i~ co~e -:: ~ then ~Oi 

1* ~rite cna",g~s */ 
(tlin), 1, co~e); 

cal] cf'\flJ_e~r_ (::oJe, ,y;.~.:,r:, "Fr~or writino chanQe line"); 
"'0 to -F;r'I;~n: 

~.,,...;; 

, il'el :: ; p 
line : su~~t~ (t'in, i, ij)i 

i f n <. = 1. t: to ~ n ,~ ..... 
if 'ocaterl :: ~ t:'~n ur; 

count :: CC'Jl1t - 1; 1* Get rid of NL 

B-17 

"commends" *1 

AG90-03 



39'5 
396 
397 
39e. 
399 

cal' ina_ ("Mothtna chanaed by: AS", co~mands); 

ca' 1 rp.sp.t"e~;H 
end~ 

go to next; 

lIOt " = ,., - 1; 
402 ca1l put; 
403 eall g~t~ 
aoa ao to cn1; 
a05 
aOb 
IJ07 
ao~ 1* ********* top ********* *1 

too: call COpy; 

call swl tch; 
00 to next: 

1* ********* botto~ ********* *1 

bottom: ca'l COpY; 

line' = n; 
r'l0 to "input: 

1* ********* backuo *********P*I 

backup: i = indt; 
eal i COPy; 

call switCh; 
indf = ; + 1: 
do n :; n to 0; 

r- nci 

j = il"id~x ("evers~ rSUQstr Uro.,,_sp.::'I. 1, 
if J A:; 0 t~en indf :; ind f - I; 
else if n :; u t~en indf :; C: 
else ~o~ 

, ; ne' :; n; 
n :; 1;. 
;nrlt, ;n~f :; 0; 
00 t" ~of; 

in"'t :; ;ndfj 

1* if not located *1 

1* ;~" 1; ne buffer *1 

1* save otrs *1 

1* restore ot,., *1 
1* Note that "n" 8ta,.ts neg~tive. 

in';f - l), NUi 

1* ~~nt off ton of file *1 

substr (to_seg, 1" ;not) :; sucstr Cfro"'_seCl, 1, 
1* line starts 8S indt *1 

inrlt)i 
1* move in top of file ~I 

1* find en rl of lfne *1 do inaf = inrlt t 1 by 1 to csize~ 
substr (l;np., inOf - ;nrit, 1.) :; sub~tr (f"o"'_~eo, indf, 1); 

;f suns!:r (frnn_se>J' inrif, 1) :; i;t 
then r'lO to ';ne_en~: 

1145 end; 
046 indf :; csize~ 
{J~7 1ine_e.,d: 
1148 1;nel = incf - indt; 
1I4Q I" = 1; 
450 00 t~ printl~ 

451 
liS? 1* ********** "fileR re~up.st ********** _I 
453 
Dsa file! call COpy; 

8-18 

1* move into line *1 

1* search for end of line *1 

AG90-03 

*1 



~.el i SAve; 1* Save it. *1 
call c1e3n_Ul"; 
'"'etul"n; 

1* Te~minate source and release temp segs *1 
1* RetuFn to eomm8nd Droc~ssor *i 

1* Finish COPY. *1 
1* Save it. *1 

Ca 1 I CO;;'11 

cal I savp.; 
""0 to ne'(t: 1* Continue aecepting requests. *1 

co'mt = cc.vnt: - 1 1* Rem/')ve NL *1 
cal1 iaa_ (Hfn~ of Fi1 0 ~e~che~ ~y:·I·a", co~mands); 

<':a11 rps~t ~e"o; 

"0 to P'1ext: 

/*********kI··.Tt., ~i-~L~:;; 

~cny! l"r~c~aur~; 1* COoy rest of file into to file *1 
Svhstr (to_seq, in"';t + 1, 'e.,;;th (line)) = linp.; 

inrlt = in;:;t + le n qtt'l (line); 
1; ne1 = (1; 
if cS;2'e ;:; u 

1* CODY current line. *1 

1* No more line *1 

._'1"" rptur,,; 
i) ;:; c~i2'e - i~cf. 

1* If new input, then no cooy needed. *1 
1* do rest of file *1 

q 11"'!'I 
thon sUbst~ (to_seo, 
;n"';t ;:; ;nct + ij, 
;n,",f = c~ize; 

;"1:;t + 1, ;1) = SlJb"'tl" (f~om_seo, indf + i, ill' 
1* s~t counters *1 

... ·r"c .. ot'r ... i 
if sou",ce_rtr ~ null t~e" ~o: 

1* Proceour~ to write out all o~ Dart 01 "to" buffer. 
1* Must be a new seg~ent *1 

lDr'ln, 

cel' hCS_S~8~p_qen ( ir_na~p., entl"y_na~e, 

if cc~e A: (1 then ~" 
call c!')~i'_e~r_ "(.;P., J', v,,~-',F, "r.al'1not 
ret u ron ~ 

"", 010tOb, source_Dtr, code)1 

$w!--str (~ource_seq, 1, II"'(.:tJ :::: SlJO$lr (to_!'leo, 1, indt); 
~a' 1 hcs_J,!':et_rc_s"'c;: ('3o'Jrce_~'tr, ;n~t * 4, co~e); 
if c(')d~ = I') 

tnpn cell hc!,:_Ttr~"'C9tP_!':e~ (s~urc~_~t~, divid~ (i"dt + 3, 4, 19. 0), code); 
;f C~UP A= 0 t~en ~o~ 

cill1 cc~,_prr_ (corle, • i"A"E., "CPlnnot t:runcate/sp.t bit COUl'lt (Aa) on "'a", 
;n~t * ~, nathnaMe_ (~ir_n<'lm~, e"'try_name); 

pr.rii 
"'eturn: 

B-19 AG90-03 

*1 



151'5 "ut: 
516 croeer'ure: 
517 
51~ 
51~ 

~20 

52' 
&:;22 
523 
521.1 
525 
526 
527 
528 
52q 
530 
531 
153? 
533 
531.1 
535 
536 
537 
S3~ 
539 
54{\ 
51.11 
542 
543 
54D 
545 
546 
547 
548 
541:1 
550 
551 
552 
553 
551.1 
sse; 
556 
557 

! 55~ 
I:)sq 

560 
561 
562 
563 
564 
565 
566 
t;67 
56~ 
1:)69 
570 
571 
&:;72 
573 
57" 

oet: 

er-d: 

sukstr (to_S~g, ;ndt t 1, ler"!qth (line)) = Hne; 
4n~t = indt + length (l;ne); 
, ; ne1 = n; 

proeerlure; 
l;nel = n; 

end; 

if ;ndf ~= c~;7e t~en no to ~Cf; 
11nel = index (substl" (fro"'_!;eo, ;ntiof' + 1, c9ile 

ff lfn!'!l = 0 t"'er'l linel = es;z~ - inrlf; 
l;ne = substl" (fro",_seo, indf + 1, linel); 
fndf = linel + ;nd f ; 

I"eturn: 

1* do !!love *1 
1* set counters *1 
1* O;scard old line. 

1* Reset. eUl"rent line lenotk. *1 
1* If no inout left, give UP. 

- ; ndf), NU; 
1* Fir-o the next new 'ine. *1 
1* If no I'll found, treat end of segment as one. 
1* Return the lfne to caller. *1 
1* ~ove the "from" I'ofnter ahead one line. *1 

switch~ 
orocedure' 1* maKe fro~-ffle to file, and v.v. *1 

~x~tr = from_ptr: 
from_ptr = to_rtr; 
to_pt.r = exptr~ 
es;ze = ir'lr'!t: 
i n('jt, i nd f = 0 ~ 
11,.,e1 = OJ 
return; 

ena Switch; 

resetreerl: 
procerlul"e; 1* Call ;/0 system reset read entry. *1 

1* In nne Dlac~ to centralize error handling *1 
ea 11 fox_5eor'ltrol (;ox_:'lJser_;nput, "rt"sf!troel!ld", null (), code); 
'f code ~= 0 the~ ea 1] c~~_el"r_ (COj~, kY~~~E, n[ann~t r~setl"el!ld user'_1n~ut"'J 

return; 

~et_token: 

procedure~ 

tkn = n "; 1* Set for easy fa1lur~ *1 
wh;t~_'th = ver;fy (su~str (co~mAn~s, p.dct), ~HITE~PAC~) - lJ 
if wh;te_lth < 0 then return: 1* unly whftesoace left *1 
edet = edet • ~hit~_lth; 
to~en_lth = seereh (9u~str (eo~~anrls. edetl, ~~ITESPAC~) - l' 
if to~en_lth < 0 the~ tov.e~_'th = length (eO~m8n~s'- edct; ~ 

tkn = substr (commands. ~dct, toke~_'th): 1* Extract token *1 
edct = edct + token_lt~; 
return; 

B-20 AG90-03 

*1 



:7r::. oet _"ll--: 
:71-- ~I-o~e~~re; 

:7'7 ~a' 1 ~i~t_to"pn~ 
: 7 Pelt' _n 'H. ~ 
,7C! e.,try: 
5" ~ = cv_dpc_ (t~n); 

81. ifn=Qtr-e"",::'i 
8~ "p.tu"n~ 
.s:t 
8a e!"lo gP t_nu.r ~ 
dr::. 
6~ rloil"_l.IP: 
0 7 D .. oc~~~~e: 
8P 

1* Pout~ne to eonvept token to bi~8fY i"teger. *1 
1* Deli~;t the tokel"l. *1 

1* Enter here if token already avai1abl@. *1 
1* Co"vert it. *1 
1* nefault count is 1. *1 

8" Ci'l11 "fo"e<3S~_te"'L'_sP9"'ent"!_ ~~",' ... ",t., te'!'H;)_segs, (('I)); 
9('1 ;~ ~OIJrCp_r;~r "= ... »11 t"'e" r:~11 hcs_;ilterrrdnate_rlol"lalTle (source_otr, CO)), 
91 

9? enc c'ei'l"_~"'; 

B-21 AG90-03 



LI~E ~U~BFR "ATE MnDIFIEn ~~~E 

o Ob101/~1 'b a3.1 ~os.oll 

B-22 

PATH~lAME. 

>udd>Pubs>userd>AG90-02>eds.ol1 

AG90-03 



IOENTIFIER OFF~ET 

NAMES DECLARFD flY nECLARF.: 5TAHI"lENT. 
MYNA"'E oo%n 0 consta~t 

NL 001110<: constant 
WHITESPACE 1l0 00'l1 constant 
addr 

arg_count OOl}100 autolTll!tic 
break nOl)101 automatic 
brkl 000102 at1t"."at; c 
buffer 0(i Ol1\3 auto'!1at;c 

A~anC!es_o¢curred non170 automatic 
'anup OOi'l472 stac\( refeN'nce 
Ie 1"0"171 automatic 

cOIII_err_ nOOO1O c(')nstant 

cOlllmands b"lseo 

count nOO172 al.ltomat; c 

csize 00()173 aut(')matic 

cu_Sar!1_co unt 1')00012 con'>tl!nt 
eu_Sarc:l_ptr OOtlO14 constant 
ev_dec_ 00 00'6 constant: 
dir_name 000175 automatic 

divide 
edet (\00174 aut"matic 

entry_name 00°247 automatic 

error_table_'noa .. g 001')0% e)'ternal stat c 
error_table_~n(')entry i'lOOOI'O el(ternal stat c 
error_table_~too_many_args nOO062 el(terna l !'Itat c 
expand_pathname_ (l000?0 e~nstant 
eXDtr 0002"0 automatic 
from_ptr tlO"'2f.2 aut"mat;c 

cl,a .. (~) 

cha" (1) 
c kar(3) 
ou;ltfn function 

fixed bin(17,O) 
cl,a .. (1) 

fixed bin(17,O) 
cka .. C:?l 0) 

bit(!) 
conci; t i on 
fixed binC3r;,O) 

entry 

char-

fixea 0;n(21,0) 

1;xeo b;n(21,0) 

entr-y 
eP'1t .. y 
ent .. y 
char(16P) 

bui 1 t; n funetion 
fixed bin(17,O) 

c kar-02) 

f;xeo bin(35,O) 
fixed bin(3'5,O) 
fixed bin(3r;i O) 
entry 
pointer 
pointer 

B-23 

ATTRI8UTES ANO REFERENCES 
(* indicates II set context) 

initial unaligned del bO set ref 104* Ill* 113* 119* 
119. 127* 143* 149* 151* 177* 210* 313* 385* 498* 
507* 552* 589* 

initial unaligned del 5& ref 249 286 288 427 443 528 
initial unaligne~ del 58 ref 563 566 
dcl 85 ref 174 174 199 199 199 199 207 207 214 217 

?1~ 218 236 238 23S 264 272 284 284 295 311 311 
311 311 311 311 329 334 335 337 338 356 358 358 
363 363 366 36A 377 377 379 380 383 383 390 195 
441 40A 476 478 480 517 517 518 531 5&3 566 567 
!:i68 

del q set ref 10?* 108 109 
unaligned del 10 set ref 334* 335 337 
del 11 set ref 333* 335 337 338 356 363 368 
unaligned del 12 set ref 174 174 174 174 199 199 199 

199 207 207 207 207 214 217 218 236 238 ~72 284 
284 329 334 335 J37 338 356 363 368 395 46A 5&3 
56" 567 568 

unaligned dcl 13 set ref 351* 354* 373* 381 
del A4 ref 135 
dcl 14 set ref 102* 103 104* 108* 109* 110* 112 113* 

118 119* 125* 12b 127* 139* 14' 143. 149* 150 151* 
174* 176 177* ?07* 209 210* 311* 312 313* 383* 384 
~85* 496* 497 49A* 503* 504 504* 506 507* 551* 552 
552* 

external del 64 ,.ef 104 113 119 127 143 151 177 210 
313 385 498 507 552 

unaligned del 15 set ref 199 199 199 199 214 2t7 218 
236 238 272 284 ?84 329* 334 335 337 338 356 363 
36~ 395* 468* 563 566 567 568 

rle l 17 set ref 174* 180 199 199 199 199 207* 214 214 
217 218 236 238 272 284 284 326 327* 327 329 329 
J34 335 337 33~ 356 363 368 394* 394 3Q5 395 467* 
467 468 46~ 563 ~66 ~67 568 

del 18 set ref 160* 165* 166 Ib6 248 249 252 254 254 
25~ 257 276 27~ 288 ~89 440 446 482 484 488 527 
52~ 531) ':;41* 

@)(ternal del 65 ref 102 
~xte"nal del 66 ref 117 
p)(ternal del 67 re~ 58n 
unsligned del 20 set ref 125* 139. 143* 143* 4Q6* 

498* 498* 507* 507* 
del ~5 ref Ib5 504 504 
~el 19 set rpf 181* 236 23~ 272 273* 273 284 284 333 

334 339* 339 5~3 565* 565 566 567 568 56Q* 569 
unaligned del 21 set ref 125* 139* 143* 143* 162* 

496* 498* 498* 507* 507* 
del 91 ref 109 
del n ref 141 
de' Q3 r@f liO 
external del 68 ref 125 
del 22 set ref 5J8* 540 
del 23 set ref 155* 166 249 254 264 265 284 286 288 

291 295 427 438 441 443 485 528 531 538 539* 

AG90-03 



oet_~e~._s~~~ent~_ 

.,lot!"'" 
"'cs_C;: i '"I; t i I't"'_r-Ollnt 
"'C5_ 'f~Ii!kp._se ... 
hcs_"'s"!t_b~_Se,. 

~cs_~t"'rm;nate_n~na~~ 

hC5_~tr~"catp_~e~ 

; 

i j 

inoell 
inrlf 

io,,_ 
; ox_~ CO!)fo p"'n 1 

; 0 x _ ~ ,; .. t _ I ; n" 
; 0 II _ <: C, II t _c I- drS 

;Ox_'t\JRe .... _;rH'''II,.j+ 

; Oll_ ~user_("ut:::·"t 
I 

le"ot., 

1; ne 

1; neo' 

locate,", 

null 
nathna."e_ 
re'ease_te.u_spq~e'"'ts_ 

revers" 
se .. rc-h 

bas"o 

(\O('lv~ .. constant 
I'IQ(l2fJ Clut"rrat; c 
1'1(,1'10::'4 c,>n,:;t?lilt 
11(1'10::'0 c""'st",nt 
11\; ('''J:t (i cnnst a,rt 
1'I\j"()~2 COf"lst"nt 
1'I(;'l0~4 C"lnst",nt 
Ov~2"5 automatic 

"on21'-6 dtlt"linat i c 

r.onZ/.,i alIt ("rr>?lt i c 

0(,'" O~O c">nst'!n t 
I' ij(\lilJ IJ C(""'5t'lnt 
'10"\ C IJ': cnnstant 
niln (j!JI.! cnnst :H'I~ 
"0")00::" e"t~rnal 
nOI1 iJc;.:: ext"r"al 
'lv"i:'71 a I.J tor;; ~ t ; c 

n003~2 auto~~tic 
ron,Sf.·3 (lllt"!1'at;c 

rOf\()!!!:; C~"stA'lt 
rvniJc;(j CO'i'3tAnt 

st;,tic 
st'!!tic 

char(10ll8~7f.,) 

entry 
bi t (1) 

e"try 
ent,.y 
ent ry 
entry 
e'"lt,..v 
fixpd bin(21,O) 

builtin fllnct;o,", 
fixed bin(21,O) 

fixed bin(21,0) 

entry 
entry 
e"try 
e'"lt,.y 
ooint~r 
oo;ntPr 
fixed bin(21,O) 

fixe:] bin(21,O) 
ouiltin fU'"Iction 

char 

cha"'(?'lO) 

fixed binC17,O) 
fixed t,;n(21,0) 

fixP.d bin(2t,tl) 

builtin function 
e"try 
e'"ltry 
built;" functio" 
builtin funetio" 

B-24 

unaligned del 24 set ref 166* 249 254 264 265 284 
286 288 291 295 421 438 441 443 485 528 531 

@xternal del 69 ref 149 
unaligned del 26 aet ref 340* 345* 315 
external del 70 ref 139 
external del 72 ref 496 
~xte~nal del 74 ref 503 
~xternal del 7~ ref 590 
external dcl 76 ref ~04 
riel 27 set ref 2?6* 247* 2~4* 285 286 281 335* 336 

337 338 339 353 356 363 368 370 422* 425 
del 28 set r~f 3~2* 359* 366 368 371* 371 377 379* 

379 389 390 484* 4AS 485 485 487 
del 85 ref 249 2~4 286 288 335 337 363 427 528 
del 29 set ref 160* 245 252 256* 262* 265 265 267 

~7~ 276 284 286 287 289* 290* 293 425* 427 428* 
a2~ 429* 433* 437 440* 441 441 443* 446* 447 4e4 
485 48~* 527 528 528 530 531 532* 532 542* 

del 30 set ref 160* 254 257* 257 265 267* 267 274 
291 294* 294 422 433* 437* 438 43e 440 441 447 47e 
480* 480 485 4A7* 487 502 502 503 504 504 507 517 
~lA* 518 541 542* 

external del 77 ref 162 172 199 205 307 329 395 468 
external dcl 7~ ref 551 
fl'xtern&l dcl 79 ref 17ll 207 
i!!xtel'nal dcl 80 I"ef 311 383 
del 90 set ref 174* 201* 551* 
del 90 set ref 311* 383* 
dcl 31 set ref 245* 248 249 249 260* 260 262 264 

27ll* 2AO 2~0 282* 288* 289 290 337* 338 338* 339 
35~ 356 358 359 360 368 368 371 372 427* 428 428 

del 32 set ref 249* 251 260 263 264 286* 287 287* 
287 288 288 290 291 291 293 294 295 363* 365 366 
366 368 370 371 372 

del 33 set ref 3~2* 360* 372* 372 380* 380 383* 
del AS ref 174 174 199 199 207 207 217 236 27c 284 

~lt 311 338 358 377 379 380 47~ 480 517 51a 567 
uneligned del 34 set ref 218* 238* 264* 295* 311 311 

'11 311 35R 35~ 363 366 377 377 379 380 390* 441* 
478 478 480 517 517 SlR 531* 

unaligned del 35 s@t ref 218 238 264 c95 311 311 311 
311 35A 358 3b~ ~6~ 317 377 379 380 390 441 478 
47~ 480 517 ~17 51a 531 

del 36 set ref 217* 218 229* 236* 238 253* 263* 264 
26ll 265 265 267 293* 295 295 306 311 311 311 311 
349 35A 35~ 359 360 363 366 377 377 379 380 389* 
390 417* 431* 44' 447* 478 478 480 481* 517 517 
518 519* 526* 52A* 530 530* 531 531 532 543* 

dc' 37 aet ref 325* 35~* 374* 393 
del 38 set ref 245* 254 254 254 257 265 265 265 267 

275* 282* 291 291 291 294 352* 363 366 370* 370 
377 377 379 3SO 

del 39 set ref c?6 244 2117 276* 278 280* 281* 284 
296* 317* 317 318 341* 392 401* 401 426* 426* 429 
432* 449* 580* 581 581* 

del 1145 ref 133 134 141 161 495 551 551 590 
i!!xternel del 81 ref 143 143 498 498 507 507 
~xternel del 82 I"ef 58 Q 

del 85 ref 286 427 
del 85 ref 566 

AG90-03 



.".me bas eO e~ar unaligned del 40 set ref 125* 127w 

."eme_lt~ (l0"3~5 automatic. f ixeo bin(21,O) del 41 set ref 117* 12C; 125 127 127 

.neme_Dtr t')O(l36b autnmi"!tic :>o;nter del 42 set rflf 117* 125 127 
source_count 000370 automatie Hxed bin(Z4,O) del 43 set rflf 139* 16C; 
souree_ptr 00n372 automatic pn;nter del 44 set ref 133* 139* 141 161 166 495 496* 502 

503* 504* '590 590* 
souree_seg basI";) c~ar (1 0/J8576) uneligned del LIS set ref 166 502* 
substr puilt;n function /'Icl 85 set ref 166* 166 199 199 214 238 249 2511* 254 

2611 265* 265 2114 211\4 28& 2813 291* 291 295 334 '335 
337 356* 356 3513* ,63 3&3 366* 366 3613* 368 377* 
377 390 427 43~* 438 441* 441 443 478* 4~5* 485 
502* 502 517* 52R 531 '563 566 568 

temp_seps 1')0037L1 automi"!tic o<",;nter arraY dcl 47 set ref 134* 149* 155 156 589* 
tkn nOIlL/ A6 autol1at i c c"ar (I~) uMligned dcl 49 set ref 184 185 186 187 188 1M 190 

191 192 193 19/J 19'5 344 345 562* 568* 5130* 
t lin nO l1 400 aut on,at; C c"a"(10) uneligned dcl 48 set ref 356* 358* 366* 368* 377* 

383 383 390 
to_Dtr OOO/Po automatic pointer dcl '52 set ref 1'56* 254 265 291 438 478 /J85 502 517 

539 '540* 
to_seg cas~o c"arC1.0 1l 857t,) un!!ligne('f dcl 50 set ref 254* 265* 291* 438* 478* 

485* 502 517* 
token_lt~ 000':1% alltomatic fixed bln(21,0) dc' 56n set ref 56£0,* 567 567* 568 569 
ler! fy built;n function ('fe' 115 ref 563 
~hite .. .1tk 1'l()(\S"7 auto'nllt;c f;XPd bi n (21,0) de' '560 set ref 563* 56/.1 565 

.MES DEr.LARED BY FXPL TCn C(l/~TEXT • 
aCi(UP 110?u7/J constcont: label dc' IJ2;) ref 241J 

lad_syntax 001775 consti"!nt label /'Iel 327 ref 272 336 
lottOm nO?0+71 constar'lt 1901"1 ciel 416 ref 191J 
:n 1 /'IO?1~6 con!>tant label dcl 351 ref 404 
:n2 nO?21'l3 cnnst"nt lab"l de' ;63 ref 37C; 
:henge 001771 constanl: label dcl 325 ref 190 
:lean_up 11034,3 constant entry inte,.nsl dcl 586 ref 135 152 /.IS 6 
:o~y no?(;"O cnnstant entry fntern81 dcl 477 ref 2q9 410 416 423 454 461 
:prt IlO~3lJ5 constant label de' 381 ref 361 
:v_num OO~4r;o constant e"try inte,.nal del 578 ref 346 
Ie' I in 0013t! 1 constant I aoel de' 224 ,..ef 191 
'ds oon2~0 constant entry I!!xte"n81 dcl 1 
'of 00?6?1 constant label del 467 ref 252 251\ 434 527 
ile 00?6 07 cnnstant label del 454 ref 189 
; nish 00;:>011 cOr1star'lt lab!!'! riel /lSI, ref 1711 :1Ilt 314 386 
'et 0031 7 2 constl'l"lt entry intern8l del 524 ref 227 3:110 403 
et_nu" 007;4 11 3 COrl!'ltant entry internal del 575 ref 224 243 305 
et_token 00'B24 conlltant ent,.y internal del 557 ref 182 311 2 577 
nDut 0012"1 c"'1st;jnt laoel del 207 ref 219 
nsert 00'357 CO'1st9nt 1 aoel del 2311 ,.ef lB4 
!ne_e.,d 0026 01 constar'!t lahel de' 1147 ,..ef 443 
ocate 00 1 5;:>1 constant 1 ebel dc l 272 ,..ef 113£0, 
_eof 1')01432 constant lao!!l riel 252 ref 248 
eIClin 001.H3 c~nstant 1 ;joel del 243 ref 18~ 
eICt "010;:>0 cI'Jr'!!;tant label de' 174 ref 1M 201 230 239 2611 301 318 331 399 412 

463 'HO 
ol;ne 00171,2 const'llnt 1 abel del 317 ref 308 
Xl!lrq !'0?114 constant I ao!!l dcl 342 ref 347 
edit (lOtO I1 5 COr')stant Il!b~1 del 172 !"ef 214 
input 001.2'0 const'llr'lt labei dcl 205 ,.ef 163 195 418 
rint 001.6 7 3 constant 1aoe1 "'cl 305 ,..ef 187 
!'intl "01]12 cO"lstClnt lab'!l del 311 ref 297 321 450 
Jt 003157 eon!'ltant entry internal dcl 515 ref 21b 234 246 277 319 402 
uetread 007;2 D2 cl)nstant el'ltry 1r'1tern81 dcl 548 ref 200 330 397 469 

B-25 AG90-03 



retyr>e 
!;lave 
sk;p~h 

~w; tl':'l 
to" 
WSi\V'" 

I'lL'lCV ',;,i.";: 

!"as 

{107~ 

t:ln unit nr lin", 13'= 
COpy 
save 
nut 
oet' 
switch 
!"esetrPd"" 
~et_to'<e'" 

t:'Iet _""J'" 
clea"'_u o 

': 1 "5 

"01 V,O Cl:lnst<'li"lt 
"IJ '?"/ :'\6 cOr)<;t",,,t 
nu?i;~2 C"iist~nt 
flO)i:>5 CO'"lstant 
'()?LI~,} c""stan+: 
"O:>td ,; cor.o;;tan t 

I _ ; n'" <:Y"'D" 1 
r:Y':4 tJ4r:: oj 

':"'4 210 

"T ,:..rf< :;:'T ,e= Tyr'E 
...... ? .. )\te"'r;al 

"I.I "" ur'lit 
i"tern",l 
;r"\t:ern3i 
in+:e"'nal 
;nt-e'"nai 
;nte"nal 
;n+:e"nal 
;nte,""i'li 
;.nt~r;je:i 

6 n i '11: e "na I 

S T C1 j'! n ,; != r '.j r.o ~ i, T ,_. .:. T I" '/ rI ,,) 1 ~ i' I . t ~ • 

~ T A ..:: v F~:·- ~. 

Ad'" 

~'y r L r i T i 1= 11:' ..; 
,riot ul', aro_I':OI.Jf't 

l:(\:)101 !--orpa~ 

:) "10' i):> '"' r" 1 
0~(;'C~ "'1J~f .. r 
~0~17~ ~hann~"'_occ~~r-e~ 

JI',;,", 1 cO""e 
f)"l() 1 7,") count-
1)I\J17~ o::s;z<:' 
,) 110 17't .. drt 
lr!"l(i17<:; o:-'i,,_p"i'l"'e 
vf\u?~7 .. ntrv_na~e 
I.'"' I) ? (;. ,., ex;:, t r 
V '1 (,;"o=' 
'oj" \]:t f)'~ 

i,1 '''}If'''O~ 

fJ')u:"o:." 
j"()~c7 

;)'10"'7'1 

of r"l"_pt" 
,...1 "It: S" 
; 
iJ 

() '10::>71 
0'1t'P7:> '< 
'j!j()n~ 

0"O~/~ 'i~e_buff~~ 

u"03iJl l;n~' 
()"t01c.? 'o,,:ate'~ 
!)l')iJ~6~ .., 

:;:'\fJ~1j11 ., 

'J '1 (J <;;, c:: 0;: n ~ ;., P _ 1 t I, 

CI\\J<:~'t., :c;n",,::;p_rt~ 

0('1,)'1:7') source_co\J"'t 

lAbel 
el"lt I'''y 

lab~l 
ent"'y 
1 abel 
jaoe1 

'1e f s 
'11 03 
C!~1 

pr-oce.-!ure 

p"'oceC'iure 
"roce.-lu!"e 
oroce~ure 

proce.-!ure 
procerure 
D'"oce(lu"'e 
w'"ocenur-e 
~ roC ~I'!u r~ 

p"ocer-lur'e 

Static 
l!.F4 

o 

del :!!36 I'ef 1815 
intel'nal del qq~ ref 455 4&2 
del 392 I'ef 34q 
intel'nal del 530 ref 279 300 411 4c 
del 410 I'ef 193 
del 4b1 set ref 192 

If'rlV '.IONQlJ!r:K/WHO SHARES STACK FRAME 
;s an extern~l proee~uI'e. 

shares stack fl'ame of extel'nal proeedul'e eds. 
shares stacie fl'a"'e of I!!xtel'nal pI'oee~ul'e .ds. 
'9har~s staek fl'al1le of extel'nel pl'oeedul'. eds. 
Sh~res stack fl'8"'e of extel'nal proeedul'e eds. 
Clhares stacl( fl"'8"'e of lI!xternal pfOoeeduI'e eds. 
snares staek frame of extel'nal pl'ocedul'e eds. 
<;hi'lrps staek f"'8me of extel'nal pl'ocedul'e eds. 
qhi;f.s.S 5ta~k frame: o~ ei::terna1 p:-Qcadura a:is. 
is e~ 11 ed by several r"\"n.:tuick orocedul'es. 

'1V"CK ~IAMt:: 

~dS 

e"s 
e()<1 

"0<1 

~(jS 

eds 
ed~ 

edq 
",dq 

PO'9 
ej!,! 

e:;j:<; 

"'dS 
eos 
... ds 
eo! 
eo! 

POS 
ecJs 
eo'S 
!"d"! 

",oJS 

eds 
'!OS 

",oj! 

~d"l 
",d!;l 
eds 
eos 

B-26 AG90-03 



000372 souree_ptr 
000'374 temp_sf!gs 
QOOf.lO O tlir; 
000466 U:!"l 
0(10 11 7" to_ptr 
OOO"'5A toi(en_'th 
0"0"57 ~lhHe_'th 

TH~ FOLLO~IN~ ~XTEQNfL UPE~ATQPS APE U~En Ry TUl~ p~n~~~~. 

eds 
eas 
~d9 

",us 
A.CiS 

..,et_toke n 

ne·_toke n 

81loc_cs call_ext_out_d~sc ea'l_ext_out ca'l_;~t_t~;s 
enable sh~rten_stack ext_~ntry int_~ntry 

c a 1 1 _ ; n t _0 the r 
set_cs_eis 

return 
(ndex_cs_eis 

eO'TI_err_ 
exoa~d_pat~n8me_ 

"cs_~set_bc_geo 
iox_~control 
rele8se_temp_seg~e!"lts_ 

cu_!i.aro_Collnt 
Qet_temD_seg~ent~_ 

hcs_~tprm;nate_ncn~me 

iOlt_ltget_linp 

eu_:!iaro_otl" 
~c!'!_~;!"l;t;ate_count 

hcs_~trunC8te_seo 
iox_4:out_c nars 

'HE FOLLOWING FXTEP~AL ~AHIARLFS APE USE!"! ~y TYl~ PRnGnA~. 
error_tablp._$noarg error_tahle_~noentry error_tahl"'_~too_m8nY_8ros 

iox_$usel"_OUtpllt 

LINE LnC t I'!E LUr LTI';~ LnC L 1 "IE L JC LINE Lnc 
1 0002?7 1(')2 000235 1.03 1')()02'l5 1"\"1 O(\O2~7 105 1'100264 

110 (10031'10 112 01'10303 11 , 'llln305 111..( Of'0334 117 000335 
120 001'1411 1?5 O!'l()Llp 12~ r)v04a~ In OI'lC!l411 12A 00(\47& 
13" 000514 1~9 0OO53~ • q 1 001'61'1(, 1113 O"Uf.ll'1 144 001"662 
151 00(171'16 It::2 0OO73? '5~ ()001'6 1"'5 01'10 737 156 0007111 
162 0007"'2 If.3 01')077e; 16<:: I'Ivr)77l) 160 01')1 0 01 172 00101)5 
177 001045 178 00107 11 1(1) "\0 1 075 lAl 0(')1101'1 182 001102 
186 001115 IP7 o r'J 112' 168 1'I011?? lR9 001134 190 OOlllll 
193 00'160 1°4 00110'5 19!) 1)(; 1172 1°9 ()01177 201'1 1)012~3 
?07 0012"'1 21'9 O!'lP7 11 ?11'1 "012. 7 0 211 0017;2;:> ?14 0013:='3 
218 001335 219 001340 ?2!1 OOU!Jl 226 OOL~4;:> 227 f')013"'2 
230 OOn Ci 6 234 001'357 ?31:> ouUb0 2~8 onl~63 ?39 001372 
?45 001376 2Ub O(\1 IJ OI ?47 0014(12 2uS v01 Ll l! 249 001414 
253 ('01435 20::4 001/136 ?5f, Ilv1ifO:;:.:> 257 0('111.:5" ~5~ 001460 
fib? 1'10'4"" 21.3 (lnliJ6~ ;>6 /1 1'I()1~7iJ 2"5 \lOlll77 267 001514 
?73 00'524 274 (lOl')2Cj ;>"15 'led 5'1 27 0 0/')1"'3 1 ?77 001534 
280 (101542 21'\1 01'11547 ?8? (')0150:;0 2P.!.j vnl'5~? :='85 001571 
?8R 001613 2~9 001f,27 ;:>lfn 0Olo1:~ 2('11 0('11"3') 293 0016':'1 
296 001065 20 7 0011,07 '99 "0t67() ~OO (t ')1 f,71 301 001672 
307 001676 3('b 00 1711 1:11 1')0 1712 312 OOl73~ 313 (101735 
31P 00'-1"4 319 00176f, '32('\ nO'7b7 3:'.1 001770 325 001771 
329 001.777 31:0 002025 ~31 nO?Pb 333 002027 334 002032 
337 002056 na 002076 ';3 Cl ('10;:>1-14 3 t1 0 002111 341 002112 
34c; 00?1?2 3 11 6 002132 347 00;:>1'33 3<'19 002134 351 0021'3& 
354 (l021llb 3')5 002'50 3';>6 OO?lt::c: 3';8 002166 359 I) Q2173 
~6~ 0022(13 3~';> 002'227 ~6b 1'102230 3~o O'l224{" 1:70 OO::?265 
373 00231)4 374 002~O6 ~75 Ou?31() 377 0021:12 ';79 002335 
383 (\023£!7 31'4 0(\2361, 360:: OO?,)7v 3P.6 O!"l2lJ11J 389 002'115 
391; 1)0?4;:>5 3e~ 0021J27 39'" CQ?u'31 :'°7 on2457 399 (')02'160 
a03 (\0~464 un4 002465 lJl!'\ 1'102460 411 on211&7 lI12 0021.170 
a1F~ 002473 4?2 OO2 11 711 lJ2~ 00?'476 424 O()2L177 425 00;:>500 
l!2R (102524 42'1 0021:j(l l!3t 002534 4~2 Q02"'3r::; 1133 002537 
1.13 7 OO:?5l14 47,8 0°2"'41, l.f40 "\O'~53 4ill 01')2563 1143 002571 

B-27 

cv_dec_ 
~cs_!make_seg 

108_ 
I'athna!!le_ 

LINE LOC 
108 000265 
118 OOO~55 
133 Oooa77 
149 000663 
160 000743 
174 001021'1 
18a 001103 
191 001146 
201 001235 
210 01'l1332 
228 00BS3 
2a3 001373 
251 001431 
260 001~&1 

268 001520 
278 0015315 
2Ao 001'572 
294 001651J 
305 001673 
314 001761 
320 001772 
335 002037 
3£12 0(12114 
352 002137 
360 002177 
371 002277 
380 0"23'11 
3QO 002417 
401 0021161 
410 0021171 
:.l~6 0025Q3 
434 002541 
4~5 002-;75 

AG90-03 

LINE LOC 
10q 000272 
l1q 000357 
131.1 000501 
150 000704 
1&1 00074& 
176 001043 
185 001110 
192 001153 
205 00123& 
217 001333 
22q 00135~ 
2~4 001374 
25? 001432 
261 001462 
272 001521 
~79 001541 
287 00160& 
295 f')01660 
306 001074 
317 001762 
327 001775 
336 002055 
344 002115 
353 002143 
361 002202 
372 002277 
381 OOi?345 
392 002422 
402 002463 
417 {l02"72 
427 OQ2507 
1I3b 002542 
446 002577 



'147 r;O'6i'11 4l"~ 01'12601.1 45" !'l'G '01'1 0 4~4 002607 LIse; n02bl0 456 002611 457 002615 
46 1, 00::»6 1 0 4f,i on2~17 I1b~ ~Pb?0 467 002~2', 46~ 002623 469 002646 470 002647 
077 t'026t::() 4'70 0026~1 tib"l ni,j"i'br:.7 481 Ol)cF,bl a82 002&62 484 002665 1.185 002667 
a87 nO?/01 "ili) 0I'1c7()~ CIjO o v 2'/"5 40 4 0(\27iJ~ 495 0027"7 49b 002713 tJ97 002752 
1J9R !'l02-, C:;t.j L1Q", \)1'31'12 7 "=(;' i')v'30~u 503 00.$036 50q 0030C;4 SOb 003075 S07 003077 
ell) 1'10311::6 ';i1:> 0 11 3157 C::17 n(j3,i.f-iJ '::ita 01')3166 C;lQ (103170 520 003171 '524 003172 
52f. (1031 73 V7 (J f13i 7ii S2 R .... ;. "Z • "'"7 ' v .. ~,1. , , ~30 o n3? 1'~ 1:\31 OO'3~20 532 003223 533 003224 
t:;36 r'032"S 5"Z8 OI'l3?2'" t::;;q I'\v323u ~IIO 0 11 3'3' ~41 0032"51.1 542 003236 543 003240 
~'11! (I O~~l! 1 S'!d 0"3' .. 1' 1:;51 "il1;2 u ,5 '5~2 on3?7S 553 1'103323 557 003324 Sb2 003325 
f.\o; 1i(j"l:3 "7 ;'L.i.i I.in3~"'~ <:6C:; "\J3,,1::2 5 k 6 00.33S3 t;b7 003372 568 003376 56Q 003401 
e..7fl "1)341'12 575 0t'l3 11 (;) S77 "i.J ".1'14 5 7 6 0"'3401:\ Ci80 OO~4n7 SAl 003426 C;S2 00'3431 
r::.&f-. 003 .. 1:2 S~'1 On3 U4" r::.'11'l I'H,l'104 A2 5Q2 003501 

B-28 AG90-03 



APPENDIX C 

MULTICS SUBSYSTEMS 

The Mul tics system offers many special' subsystems, designed to serve a 
part icular set of users or perform a particular set of tasks. Some of these 
subsystems are already familiar to you--the Qedx and Emacs text editor systems, 
the input/output system. Various other subsystems are described briefly here. 
For detailed information on any of them, see individual manuals. 

DATA BASE MANAGER 

The Multics Data Base Manager (MDBM) supports the description and processing 
of data bases of widely varying sizes and organizations, and provides a large 
measure of data independence. It consists of an integrated set of functions 
which offer a full range of data base retrieval and update capabilities, and it 
is writ ten to interface with any programming language that supports a call statement. 
The MDBM offers a powerful, extremely flexible method of structuring and manipulating 
data bases: the Multics Relational Data Store (MRDS). 

MRDS supports the relational model of data base organization, in which data 
relationships are represented by means of formal algebraic entities. It allows 
you to structure and access data without concern for how or where it is actually 
stored. A special MDBM query language called LINUS (described later in this 
section) provides comprehensive query capabilities for MRDS data base users. 

Data bases reside wi thin the Mul tics storage system and are protected by 
all of the security features inherent in the Multics virtual memory environment. 

FAST 

The Multics FAST subsystem is a simple-to-use, low-cost user interface for 
creating and running BASIC and FORTRAN programs. The Mul tics FAST command language 
is a subset of Multics commands with additional commands for manipulating 
line-numbered text. 

GCOS ENVIRONMENT SIMULATOR 

The GCOS environment simulator, together with several Multics facilities, 
permits GCOS batch-processing jobs to be run under the control of Multics and 
provides some job-scheduling facilities. Invoked via the Multics gcos command, 
the simulator immediately runs one GCOS job in your process. Your terminal is 
treated as if it were the GCOS operator's console. 

C-1 AG90-03 



It's also possible to simulate GCOS time-sharing usage, by invoking the 
Multics gcos_tss (gtss) command. 

GRAPHICS 

The Multics Graphics System provides a general purpose interface through 
which user or application programs can create, edit, store, display, and animate 
graphic material. It is a terminal-independent system, which means that a program 
writ ten for one type of graphic terminal is operable without modification on 
another terminal having similar capabilities. 

LOGICAL INQUIRY n 1IT1"'\ 
.t1nu nn1"'\/I'T'V 

UJ:Ul1.J.D 

The Logical Inquiry and Update System (LINUS) is a facility for accessing 
MRDS data bases. The complete data base management capability provided by LINUS 
includes both retrieval and update operations. 

LINUS makes use of a high-level nonprocedural language called LILA (LINUS 
Language) that can be understood by individuals who aren't necessarily computer 
specialists. 

REPORT PROGRAM GENERATOR 

The Multics Report Program Generator (MRPG) is a language translator used 
to generate a PL/I source program from an MRPG source program, with the purpose 
of generating formatted reports. 

SORT/MERGE 

The Sort/Merge subsystem provides generalized file sorting and merging 
capabilities, specialized for execution by user-supplied parameters. Sort orders 
an un ranked file according to the values of one or more specified key fields in 
the records you are using. Merge collates the contents of up to ten ordered 
files according to the value of one or more key fields. Input and output files 
associated with the Sort/Merge subsystem can have any file organization and be 
on any storage medium. Records can be either fixed or variable length. 

WORDPRO 

The Multics word processing system, WORDPRO, consists of a set of commands 
that assist you in the input, update, and maintenance of documents. The commands 
provide tools for text editing and formatting, Speedtype, dictionaries for 
hyphenation and spelling, list processing, and electronic mail. 

An important part of the WORDPRO system is the compose command, which is 
used for formatting manuscripts, and has programmable requests that make it a 
minor programming language. 

C-2 AG90-03 



APPENDIX D 

THE EDM EDITOR 

The Edm editor is a simple Multics context editor which is used for 
creating and editing ASCII segments. Edm is less sophisticated than Qedx, and 
far less sophisticated than Emacs, so if you are already comfortable with one of 
these editors, this appendix will not be very useful to you. However, if you 
would like to learn how to use a simpler editor, this appendix will help. 

To invoke the Edm editor, you type: 

edm pathname 

when pathname identifies the segment to be either edited or created. 

The Edm editor operates in one of two principal modes: edit or input. If 
pathname identifies a segment that is already in existence, Edm begins in edit 
mode. If pathname identifies a segment that does not exist, or if pathname is 
not given, Edm begins in input mode. You can change from one mode to the other 
by issuing the mode change character: a period (followed by a carriage return) 
which is the only character on a line. For verification, Edm announces its mode 
by responding "Edit." or "Input." when the mode is entered. 

The Edm requests assume that the segment consists of a series of lines and 
has a conceptual pointer to indicate the current line. (The "top" and "bottom" 
lines of the segment are also meaningful.) Some requests explicitly or 
implicitly cause the pointer to be moved; other requests manipulate the line 
currently pointed to. Most requests are indicated by a single character, 
generally the first letter of the name of the request. 

REQUESTS 

Various Edm requests and their functions are listed below. Detailed 
descriptions of these requests are given later in this section. This list does 
not include all of the Edm requests; it identifies only those requests that you 
will need as you begin using this editor. For a complete listing and 
description of all the Edm requests, see the MPM Commands. 

backup 

= print current line number 

comment mode 

mode change 

b bottom 

d delete 

D-l AG90-03 



f find 

i insert 

k kill 

1 locate 

n next 

p print 

q quit 

r retype 

s substitute 

t top 

v verbose 

w write 

GUIDELINES 

The following list offers helpful suggestions about the use of Edm. 

1. It is useful to remember that the editor makes all changes on a copy 
of the segment, not on the original. Only when you issue a w (write) 
request does the editor overwrite the original segment with the edited 
version. If you type a q (quit) without a preceding w, the editor 

2. 

warns you that editing will be lost and the original segment will be 
unchanged, and gives you the option of aborting the request. 

You should not issue a QUIT signal (press ATTN, BRK, 
while in the editor unless you are prepared to lose 
you have done since the last w request. However, if 
issued, you may return to Edm request level without 
by issuing the program_interrupt command. 

INTERRUPT, etc.) 
all of the work 

a QUIT signal is 
losing your work 

3. If you have a lot of typing or editing to do, it is wisest to 
occasionally issue the w request to ensure that all the work up to 
that time is permanently recorded. Then, if some problem should occur 
(with the system, the telephone line, or the terminal), you only lose 
the work done since your last w request. 

4. You should be sure that you have switched from input mode to edit mode 
before typing editing requests, including the wand q requests. If 
you forget, the editing requests are stored in the segment, ins~ead of 
being acted upon. You then have to locate and delete them. 

5. As you become more familiar with the use of Edm, you may conclude that 
it provides verification responses more often than necessary, thus 
slowing you down. You may use the k (kill) request to "kill" the 
verification response. However, once you feel confident enough to use 
the k request, you are probably ready to begin using the more 
sophisticated editor, Qedx. The Qedx editor provides you with a 
repertoire of more concise and powerful requests, permitting more 
rapid work. 

D-2 AG90-03 



REQUEST DESCRIPTIONS 

The following Edm requests are the ones that you will find most useful as 
you begin working with this editor. Examples are included to help you see the 
practical use of each request. 

Backup (-) Request 

The backup request moves the pointer backward (toward the top of the 
segment) the number of lines specified, and prints the line to show the location 
of the pointer. For example, if the pointer is currently at the bottom line of 
the following: 

get list (n1, n2); 
sum = n1 + n2; 
put skip; 
put list ("The sum is:", sum); 

and you want the pointer at the line beginning with the word "sum," you type: 

-2 
sum = n1 + n2; 

If you don't specify a number of lines with the backup request, the pointer 
is moved up one line. (Typing a space between the backup request and the 
integer is optional.) 

Print Current Line Number (=) Request 

The print current line number request tells you the number of the line the 
pointer is currently pointing to (all the lines in a segment are implicitly 
numbered by the system--1, 2, 3, ••• , n). 

Whenever you want to check the implicit line number of the current line, 
you issue this request and Edm responds with a line number. 

= 
143 

Comment Mode ~ Request 

When you invoke the comment mode request, Edm starts printing at the 
current line and continues printing all the lines in the segment in comment mode 
until it reaches the end of the segment, or until you type the mode change 
character (a period) as the only entry on a line. 

To print the lines in comment mode means that Edm prints a line without the 
carriage return, switches to input mode, and waits for your comment entry for 
that line. When you give your comment line and a carriage return, Edm repeats 
the process with the next line. 

If you have no comment for a particular line, you type only a carriage 
return and Edm prints the next line in comment mode. When you want to leave 
comment mode and return to edit mode, you type--as your comment--the mode change 
character (a period). 

D-3 AG90-03 



Programmers will find that the comment mode request gives them a fast and 
easy way to put comments in their programs. 

Mode Change ~ Request 

The mode change request allows you to go from input mode to edit mode or 
vice versa simply by typing a period as the only character on a line. This 
request is also the means by which you leave the comment mode request and return 
to edit mode. 

For example, when you finish typing information into a segment, you must 
leave input mode and go to edit mode in order to issue the write (w) request and 
save the information. 

last line of segment 

Edit. 
w 

Bottom (b) Request 

The bottom request moves the pointer to the end of the segment (actually 
sets the pointer after the last line in the segment) and switches to input mode. 
This request is particularly helpful when you have a lot of information to type 
in input mode; if you see some mistakes in data previously typed, you can switch 
to edit mode, correct the error, then issue the bottom request and continue 
typing your information. 

red 
oramge 
yellow 
green . 
Edit. 
-2 
oramge 
slmlnl 
orange 
b 
Input. 
blue 

Delete (d) Request 

This request deletes the number of lines specified. 
current line and continues according to your request. 
the current line plus the next five lines, you type: 

d6 

Deletion begins at the 
For example, to delete 

If you issue the delete request without specifying a number, only the 
current line is deleted. (That is, you may type either d or d1 to delete the 
current line.) 

After a deletion, the pointer is set to an imaginary line following the 
last deleted line but preceding the next nondeleted line. Thus, a change to 
input mode would take effect before the next nondeleted line. 

D-4 AG90-03 



Find (f) Request 

The find request searches the segment for a line beginning with the 
character string you designate. The search begins at the line following the 
current line and continues, wrapping around the segment from bottom to top, 
until the string is found or until the pointer returns to the current line; 
however, the current line itself is not searched. If the string is not found, 
Edm responds with the following error message: 

Edm: Search failed. 

If the string is found and you are in verbose mode, Edm responds by 
printing the first line it finds that begins with the specified string. 

f If 
If the string is found and you are in verbose mode, Edm responds by 

When you type the string, you must be careful with the spacing. A single 
space following the find request is not significant; however, further leading 
and embedded spaces are considered part of the specified string and are used in 
the search. 

In the find request, the pointer is either set to the line found in the 
search or remains at the current line if the search fails. Also, if you issue 
the find request without specifying a character string, Edm searches for the 
string requested by the last find or Yocate (1) request. 

Insert (i) Request 

The insert request allows you to place a new line of information after the 
current line. 

If you invoke the insert request without specifying any new text, a blank 
line is inserted after the current line. If you type text after the inse~t 
request, you must be careful with the spacing. One space following the insert 
request is not significant, but all other leading and embedded spaces become 
part of the text of the new line. 

For example, if the pointer is at the top line of the following: 

sum = n1 + n2; 
put list ("The sum is:", sum); 

and you issue the following insert request: 

i put skip; 

the result is: 

sum = n1 + n2; 
put skip; 
put list ("The sum is:",sum); 

If you want to insert a new line at the beginning of the segment, you first 
issue a top (t) request and then an insert request. 

D-5 AG90-03 



Kill (k) Request 

The kill request suppresses the Edm responses following the change (c), 
find (f), locate (1), next (n), and substitute (s) requests. To restore 
responses to these requests, you issue the verbose (v) request. 

It is recommended that as a new user you not use the kill request until you 
are thoroughly familiar with Edm. The responses given in verbose mode are 
helpful; they offer an immediate check for you by allowing you to see the 
results of your requests. 

Locate ill Request 

The locate request searches the segment for a line containing a 
user-specified string. The locate and find (f) requests are used in a similar 
manner and follow the same conventions. (Refer to the find request description 
for details.) With the find request, Edm searches for a line beginning with a 
specified string; with the locate request, Edm searches for a line 
containing--anywhere--the specified string. 

Next (n) Request 

The next request moves the pointer toward the bottom of the segment the 
number of lines specified. If you- invoke the next request without specifying a 
number, the pointer is moved down one line. When you do specify the number of 
lines you want the pointer to move, the pointer is set to the specified line. 
For example, if you type: 

n4 

the pointer is set to the fourth line after the current line. The Edm editor 
responds, when in verbose mode, by typing you-specified line. 

Print (p) Request 

The print request prints the number of lines specified, beginning with the 
current line, and sets the pointer to the last printed line. If you do not 
specify a number of lines, only the current line is printed. 

If you want to see the current line and the next three lines, you type: 

p4 
current line 
first line after current line 
second 
third 

In Edm, every segment has two imaginary null lines, one before the first 
text line and one after the last text line. When you print the entire segment, 
these lines are identified as "No line" and "EOF" respectively. 

D-6 AG90-03 



Quit (q) Request 

The quit request is invoked when you want to exit from Edm and return to 
command level. 

For your convenience and protection, Edm prints a warning message if you do 
not issue a write (w) request to save your latest editing changes before you 
issue the quit request. The message reminds you that your changes will be lost 
and asks if you still wish to quit. 

q 
Edm: Changes to text since last "w" request will be lost if you quit; 
do you wish to quit? 

If you answer by typing no, you are still in edit mode and can then issue a 
write (w) request to save your work. If you instead answer by typing yes, you 
exit from Edm and return to command level. 

Retype i£l Request 

The retype request replaces the current line with a different line typed by 
you. 

One space between the retype request and the beginning of the new line is 
not significant; any other leading and embedded spaces become part of the new 
line. To replace the current line with a blank line, you type the retype 
request and a carriage return. 

Substitute ~ Request 

The substitute request allows you to change every occurrence of a 
particular character string with a new character string in the number of lines 
you indicate. If you are in verbose mode (in which Edm prints responses to 
certain requests), Edm responds by printing each changed line. If the original 
character string is not found in the lines you asked Edm to search, Edm 
responds: 

Edm: Substitution failed. 

For example, if the pointer is at the top line of the following: 

get list (n1, n2); 
sum = n1 + n2; 
put skip; 
put list ("The sum is:", sum); 

and you want to search the next three lines and change the word "sum" to 
"total," you type: 

s4/sum/totall 
total = n1 + n2; 
put list ("The total is:", total); 

D-7 AG90-03 



The four lines searched by the editor are the current line plus the next 
three. (The search always begins at the current line.) If you do not specify 
the number of lines you want searched, Edm only searches the current line. If 
you do not specify an original string, the new string is inserted at the 
beginning of the specified line(s). 

Notice in the example that a slash (/) was used to delimit the strings. 
You may designate as the delimiter any character that does not appear in either 
the original or the new string. 

Top (t) Request 

The top request moves the pointer to an imaginary null line immediately 
above the first text line in the segment. (See the print request description 
concerning imaginary null lines in Edm.) 

An insert (i) request immediately following a top request allows you to put 
a new text line above the "original" first text line of the segment. 

Verbose ~ Request 

The verbose request causes Edm to print responses to the change (c), find 
(f), locate (1), next (n), and substitute (5) requests. 

Actually, you do not need to issue the verbose request to cause Edm to 
print the responses; when you invoke Edm, the verbose request is in effect. The 
only time you need to issue the verbose request is to cancel a previously issued 
kill (k) request. 

Write (w) Request 

The write request saves the most recent copy of a segment in a pathname you 
specify. (The pathname can be either absolute or relative.) 

If you do not specify a pathname, the segment is saved under the name used 
in the invocation of the edm command. When saving an edited segment without 
specifying a pathname, the original segment is overwritten (the previous 
contents are discarded) and the edited segment is saved under the original name. 

If you do not specify a pathname and you did not use a pathname when you 
invoked the edm command, an error message is printed and Edm waits for another 
request. If this happens, you should reissue the write request, specifying a 
pathname. 

D-8 AG90-03 



INDEX 

MISCELLANEOUS 

-absentee control argument 7-4 

-all control argument 1-1 

-arguments control argument 7-6 

-brief control argument 1-1 

-brief_table control argument 2-5 

-first control argument 6-3 

-link control argument 2-11 

-list control argument 2-3, 6-3, 6-4, 
7-3 

-long_profile control argument 6-3 

-map control argument 2-4, 2-5, B-2 

-notify control argument 7-4, 7-6 

-optimize control argument B-2 

-profile control argument 6-1, 6-2, 
6-4 

-sort control argument 6-3 

address space 1-2, 1-10, 2-6, 3-1, 
3-5, 8-4, 8-5, 8-8, B-6 

addressing online storage 1-7, 3-2, 
A-1 

add search_paths command 3-7, 8-4, 
- 8-7 

add_search_rules command 3-3, 8-4 

administrative control 1-12, 3-3 

alignment of variables B-2 

ALM programming language 1-10, 2-1, 
2-2, A-4 

apl command 8-5 

APL programming language 2-1, 2-3, 
8-5, A-1 

archive 
component 2-11, 8-2, 8-6 
segment 2-8, 8-2, 8-6 

archive command 2-8, 2-8, 8-2, 8-6 

attach description 4-9, 4-10 

attaching switch 4-2, 4-9, 4-10 

-table control argument 2-4, 3-6, 5-6, automatic storage 5-5 
5-8 

A 

absentee facility 1-1, 4-12, 7-1, 7-3, 
7-4, 7-5, 7-6, 8-5, 8-9, 8-10 

accepting arguments 7-5 
capabilities 7-5 
control file 7-1, 7-3, 7-5, 7-6 
enter abs request command 7-1, 7-3, 

£-4,-7-6 
input file 7-1, 7-3, 7-5, 7-6 
job 1-1, 4-12, 7-1, 7-4, 7-5, 7-6, 

8-5, 8-10 
output file 7-1, 7-5, 7-6 
process 1-4, 7-1 
production runs 7-1 

absin segment 7-1, 7-3, 7-5, 7-6 

absolute pathname A-6, B-5 

absout segment 7-1, 7-5, 7-6 

access 1-5, 2-6, 2-8, 4-5, 8-4, 8-1, 
B-5, C-1 

access control list 1-12, 8-4 

ACL 
see access control list 

add search rules command 8-7 

i-1 

B 

background 1-4, 7-1 

backup request 
see Edm editor requests 

basic command 4-10 

BASIC programming language 2-1, 8-5, 
C-1 

batch 1-1, 7-1 

binary 2-2, 2-5, 2-9, 4-7, B-2 

bind command 2-11, 8-5 

binding 
bind command 2-11 
binder 2-11 
bound segment 2-11 

bit count 1-9, 8-2, 8-3, A-6 

bottom request 
see Edm editor requests 

builtin functions 
divide B-7 
index B-9 
reverse B-9 
search B-10 

AG90-03 



builtin functions (cont) 
substr B-9 
verify B-10 

bulk data input 4-12 

byte size 1-9 

C 

cards 
bulk data input 4-12 
control 4-12, 7-3 
conversion 4-12 
input 4-12, 7-3 
remote job entry 4-12, 7-3 

change_wdir command 3-2, 8-4 

change_wdir subroutine 3-2 

character string 3-2, 7-5, A-5, B-2, 
D-5 

cleanup handler B-5, B-6 

close file command 4-10, 8-6 

closing switch 4-4, 4-5, 4-9, 4-10 

cobol command 8-5 

COBOL programming language 2-1, 2-6, 
2-7, 2-8, 4-2, 4-4, 4-7, 4-10, 
4-11, 5-1, 8-5, 8-10 

cobol abs command 7-6. 8-5. 8-9 

command 
level 2-6, 3-6, 4-10, 5-1, 5-3, 5-5, 

5-8, 6-1, D-7 
line 2-3, 6-2, 7-6, 8-4, 8-7, 8-8 
name B-5 
processor 5-3, 5-5, 5-7, B-5 

commands 
add search paths 3-7 
add"-search-rules 3-3, 8-4 
apl- 8-5 -
archive 2-8, 2-8, 8-2, 8-6 
basic 4-10 
bind 2-11, 8-5 
change wdir 3-2, 8-4 
close file 4-10, 8-6 
cobol- 8-5 
cobol abs 7-6, 8-5, 8-9 
compare ascii 2-7, 8-2 
compose- 8-2, 8-5, C-2 
copy 2-7, 8-2 
copy cards 4-11, 4-12, 8-6 
copy-file 4-11, 8-2, 8-6 
create data segment 8-5, A-4 
delete-search paths 8-7 
delete-search paths 3-7, 8-4 
delete-search-rules 3-3, 8-4, 8-7 
discard output 6-2, 8-7 
display-pl1io error 4-11, 8-6, 8-7 
edm 8-~, D-1~ D-8 
enter abs request 7-1, 7-3, 7-4, 

7-6,-8-10 
exec com 2-8, 7-5, 7-6, 8-7 
fast- 8-5, 8-7 
file output 4-11, 8-7 
format cobol source 2-7, 8-5 
fortran 7-3~ 8-5 
fortran abs 7-6, 8-5, 8-10 
gcos 8=8, C-1 
gcos tss C-1 
general ready 2-8, 8-6, 8-8 
get system search rules 8-4, 8-8 
indent 2-1, 8-2-
initiate 3-2, 3-5, 8-4 
io call 4-2; 4-4; 4-5; 4-10; 8-7 

i-2 

commands (cont) 
link 2-11, 3-3, 8-2, 8-3 
list 2-11, 8-4, 8-3 
list external variables A-3 
list-ref names 3-5, 8-4 
move 2-7, 8-3 
new proc 1-4, 3-5, 4-2, 8-4 
pl1 2-4, 2-5, 2-8, 2-9, 2-10, 3-6, 

5-6, 6-1, 8-5 
pl1 abs 7-6, 8-5 
print 2-4, 4-11, 5-6, 7-4, 7-5, 7-6, 

8-4, 8-5, 8-6, 8-7 
print attach table 4-11, 8-7 
print-search-paths 3-7, 8-4, 8-8 
print-search-rules 3-2, 8-4, 8-8 
probe- 2-7, 5-1, 5-5, 5-6, 5-8, 5-7, 

8-6 
profile 6-1, 6-2, 6-3, 8-6, B-9 
program interrupt 2-7, 8-8, D-2 
progress 2-5, 8-6, 8-10 
release 2-7, 5-3, 5-5, 5-8, 8-8, 

B-5 
rename 2-7, 8-3 
resolve linkage error 3-7, 8-8 
revert output 4-11 
set search paths 3-7, 8-4, 8-8 
set-search-rules 3-3, 8-4, 8-8 
start 2-5~ 2-7, 3-7, 5-3, 5-5, 8-8 
status 8-3 
stop cobol run 4-11, 8-6 
termTnaloutput 4-11 
terminate 3-5, 8-4, A-2 
terminate refname 3-5 
terminate-segno 3-5 
terminate-single refname 3-5 
trace 5-1, 5-8,-8-6 
trace stack 5-5, 8-6 
unlink 2-11, 8-3 
where search paths 3-7, 8-5, 8-8 
who 7-4, 8-10 

comment mode request 
see Edm editor requests 

compare_ascii command 2-7, 8-2 

compiler 1-10, 1-12, 2-3, 2-4, 2-5, 
2-6, 2-10, 6-1, 8-5, 8-6, 8-10, 
B-1, B-2, B-4, B-3 

compiling 1-1, 2-6, 3-5 

compose command 8-2, 8-5, C-2 

com err B-5 

com err subroutine A-5, A-6, B-4, 
B-5, B-6 

constant 2-5, B-3 

control arguments 
-absentee 7-4 
-all 1-1 
-arguments 7-6 
-brief 1-1 
-brief table 2-5 
-first- 6-3 
-link 2-11 
-list 2-3, 6-3, 7-3 
-long profile 6-3 
-map -2-3, 2-4, 2-5, B-2 
-notify 7-4, 7-6 
-optimize B-2 
-profile 6-1, 6-2 
-sort 6-3 
-table 2-4, 3-6, 5-6, 5-8 

control cards 4-12, 7-3 

control characters B-3 

controlled security 1-1, 1-12, 2-1, 
C-1 

AG90-03 



controlled sharing 1-1, 1-4, 1-5, 
1-10,1-12,2-11, B-3 

copy command 2-7, 8-2 

copy_cards command 4-11, 4-12, 8-6 

copy_file command 4-11, 8-2, 8-6 

core 
see memory 

core image 1-2 

create data_segment command 8-5, A-4, 
A-=-5 

create data segment subroutine A-4, 
A-=-5 - -

cu subroutine B-4 

cu_$arg_count B-4 

cu_$arg_count subroutine 

cu_$arg_ptr B-5 

B-4 

cu_$arg_ptr subroutine B-5 

cv dec subroutine B-4, B-10 

D 

daemon 1-4, 8-3, 8-5, 8-9 

data base manager subsystem C-1 

debugging 1-1, 2-2, 2-3, 2-4, 2-6, 
3-5, 5-1, 5-5, 5-6, 5-8, 6-1, 7-1, 
8-6 

debugging tools 
see probe 

default 2-3, 4-2, 4-4, 4-5, 4-9, 5-6, 
8-4, 8-7, 8-8, A-2, B-2 

definition section 2-5 

delete request 
see Edm editor requests 

delete search paths command 3-7, 8-4, 
8-=-7 -

delete search rules command 3-3, 8-4, 
8-=-7 

designing 2-1 

detaching switch 4-2, 4-5, 4-10 

device independence 4-1 

direct inter segment references A-3 

dollar sign 3-2, A-4, B-4 

dynamic linking 1-1, 1-10, 2-5, 3-1, 
3-5, 3-7, A-4 

usage 3-5 

E 

editing 1-10, 2-2, 2-5, 8-2, B-3, C-2, 
D-2 

editor 2-2, 2-8, 3-6, 4-4, 7-4, B-3, 
B-5, D-1 

Edm 2-2, 8-2, B-1, D-1 
Emacs 2-2, 8-2 
Qedx 2-2, 2-8, 2-9, 2-10, 3-1, 3-6, 

7-4, 8-2 
Ted 2-2, 8-2 

edm command 8-2, B-1, D-1, D-8 

Edm editor 
requests 

backup 
bottom 

2-2, 8-2, B-1, D-1 
D-1, D-2 
D-3 
D-4 

comment mode D-3 
delete D-4 
find D-5 
insert D-5 
kill D-6 
locate D-6 
mode change D-4 
next D-6 
print D-6 
print current line number D-3 
quit D-7 
retype D-7 
substitute D-7 
top D-8 
verbose D-8 
write D-8 

Emacs editor 2-2, 8-2 

enter abs request command 7-i, 7-3, 
7-4,-7-6, 8-10 

entry point 1-10, 3-2, 3-6, 5-6, A-5, 
B-4, B-6 

entryname 2-2, 2-3, 2-6, 8-5, 8-8, 
A-6 

error handLing 1-4, 1-10, 2-5, 2-6, 
2-7, 3-5, 3-6, 3-7, 4-5, 4-11, 
5-5, 5-6, 5-7, 8-6, 8-8, A-5, A-6, 
B-2, B-3, B-4, B-5, D-4, D-5, D-8 

error_output switch 4-5, 4-11 

execution 1-2, 1-4, 1-10, 2-1, 2-3, 
2-5, 2-6, 4-12, 5-2, 5-3, 5-6, 
6-3, 7-1, 7-3, 8-5, 8-6, 8-7, 8-8, 
A-4 

execution point 1-4 

directory 2-3, 2-4, 2-11, 3-2, 3-3, exec com command 2-8, 7-5, 7-6, 8-7 
7-1, 8-3, 8-4, 8-7, 8-8, 8-9, A-6, 
B-4, B-5 expand_pathname_ subroutine A-6, B-5 

home 3-2, 7-1 
working 2-3, 2-4, 2-11, 3-2, 3-3, external references 1-10, 2-11, 3-1, 

4-8, 8-4, 8-7, 8-8 A-4 

discard_output command 6-2, 8-7 

display pl1io error command 4-11, 8-6, 
8-7 -

divide builtin function B-7 

documenting 2-1, 2-7 

external static variables B-4 

F 

fast command 8-5, 8-7 

fast subsystem 8-5, 8-7, C-1 

i-3 AG90-03 



fault 1-10, 2-5, 2-11, 3-7, 5-6, 8-6, 
8-8, B-7 

linkage 1-10, 1-11, 2-11, 3-7, 8-6, 
8-8 

page 2-5, B-7 

file 2-2, 2-9, 3-1, 3-3, 4-1, 4-4, 
4-8, 4-9, 4-11, 7-1, 7-3, 7-4, 
8-2, 8-3, 8-5, 8-7, 8-10, B-5, 
C-2 

sequential 4-4 
stream 4-1, 4-4, 4-9 

file_output command 4-11, 8-7 

find request 
see Edm editor requests 

format cobol source command 2-7, 8-5 

fortran command 7-3, 8-5 

FORTRAN programming language 1-1, 2-1, 
2-2, 2-8, 4-2, 4-4, 4-7, 4-10, 
5-1, 8-5, 8-6, 8-10, A-1 

fortran abs command 7-6, 8-5, 8-10 

G 

gates 8-4 

gcos command 8-8, C-1 

gcos subsystem 8-8, C-1, C-2 

gcos tss command C-1 

general_ready command 2-8, 8-6, 8-8 

get system search rules command 8-4, 
- 8-8 - -

get_temp_segments B-6 

get_temp_segments_ subroutine B-6 

graphics subsystem C-2 

H 

hardware 1-5, 1-9, 2-3, 4-1, B-2, B-3 

hcs subroutine 3-1, 3-2, B-4 

hcs_$initiate A-6 

hcs $initiate subroutine 3-1, 3-2, 
- A-6, B-6, B-10 

hcs $initiate count subroutine 3-2, 
- A-6, B-6-;- B-7 

hcs_$make_entry subroutine 3-2 

hcs_$make_ptr subroutine 3-2, A-5 

hcs_$make_seg subroutine 3-2 

hcs $terminate noname subroutine A-6, 
- B-10 -

help request 
see probe requests 

higher level language 2-3, 2-6 

home directory 3-2, 7-1 

i-4 

I 

I/O 
see input/output processing 

I/O module 4-1, 4-2, 8-6 
vfile 4-9, 4-10, 4-11 

I/O switch 4-1, 4-2, 4-4, 4-5, 4-9, 
4-11, 7-1, 8-2, 8-3, 8-5, 8-6, 
8-7, 8-9, B-4, D-4 

indent command 2-7, 8-2 

index builtin function B-9 

info segment 2-8, 3-7, 8-9 

initiate command 3-2, 3-5, 8-4 

initiating segments 1-7, 3~5, A=6 

input/output processing 1-1, 2-2, 2-8, 
2-9, 2-10, 4-5, 4-8, 4-9, 4-10, 
4-11, 4-12, 7-1, 8-2, 8-5, 8-7, 
8-8, B-2, B-3, B-4,. B-5 

modules 4-1, 4-2, 4-5, 8-6 
switches 4-1, 4-2, 4-4, 4-5, 4-9, 

4-11, 7-1, 8-2, 8-3, 8-5, 8-6, 
8-7, 8-9, B-4, D-4 

attaching 4-2, 4-9, 4-10 
closing 4-4, 4-5, 4-9, 4-10 
detaching 4-2, 4-5, 4-10 
error ouput 4-5 
error-output 4-11 
opening 4-2, 4-4, 4-9, 4-10 
user input 4-5, 4-11 
user-io 4-5, 4-11 
user=output 4-5, ~-11, 8-5, B-7 

insert request 
see Edm editor requests 

interactive 1-1, 1-4, 2-4, 5-8, 7-1, 
8-5, B-1 

internal automatic variables A-2 

internal static variables A-2, B-3 

interpreted language 2-3, 8-5 

inter segment link 2-11 

ioa subroutine B-4, B-7 

iox - subroutine 4-2, 4-4, 4-5, 4-12, 
B-8 

iox $get line subroutine B-8 - -
iox $user input B-8 -
iox $user input subroutine B-8 - -
io call command 4-2, 4-4, 4-5, 4-10 

J 

JCL 
see job control language 

job control language 1-1, 1-7, 4-2 

AG90-03 



K 

kill request 
see Edm editor requests 

L 

language 1-1, 
3-7, 4-2, 

higher level 
interpreted 
machine 2-3 

2-1, 2-2, 2-3, 2-5, 2-6, 
8-6, A-1, B-2, B-3, C-1 
2-3, 2-6 

2-3, 8-5 

programming 2-2, C-1 
ALM 1-10, 2-1, 2-2, A-4 
APL 2-1, 2-3, 8-5, A-1 
BASIC 2-1, 8-5, C-1 
COBOL 2-1, 2-6, 2-7, 2-8, 4-2, 

4-4,4-7,4-10,4-11,5-1, 
8-5, 8-10 

FORTRAN 1-1, 2-1, 2-2, 2-8, 4-2, 
4-4, 4-7, 4-10, 5-1, 8-5, 8-6, 
8-10, A-1 

PL/I 1-1, 2-1, 2-2, 2-5, 2-7, 2-8, 
2-9, 3-6, 4-2, 4-4, 4-10, 
4-11,5-1,6-2,8-5,8-6, 
8-10, A-1, A-2, B-1, B-2, B-3, 
B-4, B-5, B-6, C-2 

source 2-5, 6-3, 8-6 

library 1-10, 3-2, 3-7, A-1, A-6, B-2, 
B-3, B-4, B-5 

link 
intersegment 
storage system 

2-11 
2-11, 8-2, 8-3 

link command 2-11, 3-3, 8-2, 8-3 

linkage editor 
see loading 

linkage fault 1-10, 1-11, 2-11, 3-7, 
8-6, 8-8 

linkage section 2-5 

linking 1-10, 2-5, 2-11, 3-1, 3-3, 
3-6, 3-7, 8-2, 8-3, 8-6, 8-8, B-4 

LINUS 
see logical inquiry and update 

subsystem 

list command 3-3, 8-3 

listing segment 2-3, 2-4, 6-3, 7-3, 
B-2 

list external variables command A-3 

list ref names command 3-5, 8-4 

list requests request 
see probe requests 

load module 
see loading 

loading 1-10, 2-5 

locate request 
see Edm editor requests 

logical inquiry and update subsystem 
C-2 

M 

machine language 2-3 

i-5 

making a segment known 1-5, 2-7, 3-1, 
8-4, B-5 

MDBM 
see data base manager subsystem 

memory 1-1, 1-2, 1-7, 1-10, 7-5, 8-6, 
8-8, A-1, B-1, B-3, B-6, C-1 

merge subsystem C-2 

mode change request 
see Edm editor requests 

move command 2-7, 8-3 

MRPG 
see report program generator 

subsystem 

N 

named offsets A-4 

naming conventions 2-3 

new_proc command 1-4, 3-5, 4-2, 8-4 

next request 
see Edm editor requests 

null string A-5 

o 

object map 2-5 

object name 2-4 

object program 
see object segment 

object segment 2-3, 2-5, 2-6, 2-7, 
2-11, 3-6, 5-6, 8-5, A-4, B-3 

section 
definition 2-5 
linkage 2-5 
object map 2-5 
static 2-5, A-2 
symbol 2-5 
text 2-5 

online 2-4, 2-8, 7-1, 8-1, 8-6, A-1 

opening modes 4-4 

opening switch 4-2, 4-4, 4-9, 4-10 

options (constant) B-3 

options (variable) B-2 

overlay defining B-3 

p 

page 1-9, 2-5, 8-6, 8-10, B-7 

page fault 2-5, B-7 

pathname 3-6, 8-4, A-6, B-5, D-1, D-8 
absolute A-6, B-5 
relative A-6, B-5 

pathname_ B-6 

pathname_ subroutine B-6 

AG90-03 



performance measurement tools 
see profile facility 

PL/I programming language 1-1, 2-1, 
2-2, 2-5, 2-7, 2-8, 2-9, 3-6, 4-2, 
4-4, 4-10, 4-11, 5-1, 6-2, 8-2, 
8-5, 8-6, 8-10, A-1, A-2, B-1, 
B-2, B-3, B-4, B-5, B-6, C-2 

pl1 command 2-4, 2-5, 2-8, 2-9, 2-10, 
3-6, 5-6, 6-1, 8-5 

pl1 abs command 7-6, 8-5 

position request 
see probe requests 

precision of variables B-2, B-3 

print command 2-4, 4-11, 5-5, 5-6, 
7-4, 7-5, 7-6, 8-4, 8-5, 8-6, 8-7 

print current line number request 
see Edm editor requests 

print request 
see Edm editor requests 

print_attach table command 4-11, 8-7 

print search paths command 3-7, 8-4, 
"8"-8 -

print search rules command 3-2, 8-4, 
"8"-8 -

probe 2-7, 5-1, 5-5, 5-6, 5-8 
requests 

help 5-8 
list requests 5-8 
position 5-7 
quit 5-8 
source 5-7 
stack 5-7 
symbol 5-7 
value 5-7 

Q 

Qedx editor 2-2, 2-8, 2-9, 2-10, 3-1, 
3-6, 7-4, 8-2 

quit request 
see Edm editor requests 
see probe requests 

QUIT signal 2-5, 2-6, 5-2, 5-5, B-5, 
D-2 

R 

ready message 2-5, 2-6, 2-8, 3-6, 6-3, 
8-6, 8-8 

record 1-5, 4-1, 4-11, 4-12, 5-1, 6- 3, 
8-2, B-2, B-5, C-2 

recursive procedure 2-6 

reference name 3-1, 3-2, 3-3, A-6, 
B-6 

reference to named offsets A-4 

references 
external 1-10, 2-11, 3-1, A-4 

relative pathname A-6, B-5 

release command 2-7, 5-3, 5-5, 5-8, 
8-8, B-5 

release_temp segments B-6 

release temp segments subroutine B-6, 
B-To - -

remote job entry 4-12, 7-3 

rename command 2-7, 8-3 

probe command 2-7, 5-1, 5-5, 5-6, 5-8, report program generator subsystem 
8-6 C-2 

process 1-12, 3-2, 3-5, 4-5, 5-1, 7-1, 
8-1, 8-4, 8-6, 8-7, 8-8, 8-9, B-2, 
B-3 

processor 1-2, 1-10, 1-12, 5-1, 5-3, 
5-5, B-5 

production run 7-1 

profile command 6-1, 6-2, 6-3, 8-6, 
B-9 

profile facility 6-1, 6-3 

programming 1-12, 2-1, 2-2, 7-1, B-1, 
C-1 

programming environment 1-2, 1-4, 
1-12, 2-1, 2-8, 4-8, 5-1, 5-5, 
7-1, 8-8, C-1 

programming language 2-2, C-1 

program_interrup command 8-8 

program_interrupt command 2-7, D-2 

progress command 2-5, 8-6, 8-10 

pure procedure 2-6, B-3 

i-6 

resolve linkage error command 3-7, 
8-"8" -

restarting suspended programs 2-7, 
3-7, 5-5 

retype request 
see Edm editor requests 

reverse builtin function B-9 

revert_output command 4-11 

ring structure B-4 

s 

search builtin function B-10 

search paths 8-4, 8-7, 8-8 

search rules 3-1, 3-2, 3-3, 3-7, 8-4, 
8-7, 8-8 

segment 
absin 7-1, 7-3, 7-5, 7-6 
absout 7-1, 7-5, 7-6 
archive 2-8, 8-2, 8-6 
bound 2-11 
info 2-8, 3-7, 8-9 
listing 2-3, 2-4, 6-3, 7-3, B-2 
number 1-7, 2-7, 3-3, B-6 

AG90-03 



segment (cont) 
object 2-3, 2-5, 2-6, 2-7, 2-11, 

3-6, 5-6, 8-5, A-4, B-3 
size of B-3 
source 2-2, 2-3, 2-7, 8-2, 8-5, B-2, 

C-2 
stack 5-1 
structured data A-5 

segment number 1-7, 2-7, 3-3, B-6 

segments 
temporary B-3 

sequential file 4-4 

set search paths command 3-7, 8-4, 
- 8-8 -

set search rules command 3-3, 8-4, 
8-8 -

snapping a link 1-10, 1-11, 2-11, 3-5, 

subroutines (cont) 
hcs $make seg 3-2 
hcs-$terminate noname A-6, B-10 
ioa- B-4, B-7-
iox 4-2, 4-4, 4-5, 4-12, B-8 
iox=$get_line B-8 

substitute request 
see Edm editor requests 

substr builtin function B-9 

subsystem 
data base manager C-1 
fast 8-5, 8-7, C-1 
gcos 8-8, C-1, C-2 
graphics C-2 
logical inquiry and update C-2 
merge C-2 
report program generator C-2 
sort C-2 
wordpro C-2 

A-4 suffix 2-2, 2-3, 2-4, 6-3, 7-1, 7-5 

sort subsystem C-2 

source language 2-5, 6-3, 8-6 

source program 
see source segment 

source request 
see probe requests 

source segment 2-2, 2-3, 2-7, 8-2, 
B-2, C-2 

stack 5-1, 5-2, 5-3, 5-5, 5-7, 8-6, 
B-5 

frame 5-2, 5-5, B-5 

stack request 
see probe requests 

standard format 2-6 

start command 2-5, 2-7, 3-7, 5-3, 5-5, 
8-8 

start_up.ec 2-8, 7-1 

static section 2-5, A-2 

static storage 5-5 

status command 8-3 

stop_cobol_run command 4-11, 8-6 

storage 1-7, 1-12, 2-1, 2-11, 4-8, 
5-5, 8-3, 8-6, 8-7, 8-9, A-1, A-2, 
B-1, B-2, B-3, B-5, C-1 

automatic 5-5 
static 5-5 

storage system link 2-11, 8-2, 8-3 

stream file 4-1, 4-4, 4-9 

structured data segment A-5 

subroutines 
change wdir 3-2 
com err A=5, A-6, B~4, B-5, B-6 
create data segment A-4 
cu B=4 - -
cv-dec B-4, B-10 
expand-pathname A-6, B-5 
hcs 3-1, 3-2,-B-4 
hcs-$initiate 3-1, 3-2, B-6, B-10 
hcs-$initiate count 3-2, A-6, B-6, 

- B-7 -
hcs $make entry 3-2 
hcs=$make=ptr 3-2, A-5 

i-7 

symbol request 
see probe requests 

symbol section 2-5 

symbol table 2-4, 2-5, 5-6, 5-7 

system 1-1, 1-12, 2-1, 2-11, 3-2, 3-3, 
4-1, 4-4, 5-5, 5-7, 7-4, 8-2, 8-6, 
8-7, 8-8, 8-1, A-5, B-1, B-3, B-4, 
C-1 

T 

Ted editor 2-2, 8-2 

temporary segment B-5 

terminal 
session 1-1, 2-8, 2-9, 8-5 
using for I/O 2-2, 2-6, 2-8, 2-9, 

4-5, 7-1, 8-7, 8-8, B-4, B-5 

terminal_output command 4-11 

terminate command 3-5, 8-4, A-2 

terminate refname command 3-5 

terminate_segno command 3-5 

terminate_single_refname command 3-5 

terminating segments 
A-6, B-5 

1-7, 3-3, A-2, 

text section 2-5 

top request 
see Edm editor requests 

trace command 5-1, 5-8, 8-6 

trace stack command 5-5, 8-6 

u 

unlink command 2-11, 8-3 

user_input switch 4-5, 4-11 

user io switch 4-5, 4-11 

user output switch 4-5, 4-11, 8-5, 
-B-7 

AG90-03 



v 

value request 
see probe requests 

variables 
alignment B-2 
external static A-3, B-4 
internal automatic A-2 
internal static A-2, B-3 
precision B-2, B-3, B-7 

verbose request 
see Edm editor requests 

verify builtin function B-10 

vfile I/O module 4-9, 4-10, 4-11 

virtual memory 1-4, 1-5, 1-7, 1-10, 
B-1, B-3, B-6, C-1 

w 

where search paths command 3-7, 8-5, 
"8-8 -

who command 7-4 

word 1-9 

word pro subsystem C-2 

working directory 2-3, 2-4, 2-11, 3-2, 
3-3, 8-4, 8-7, 8-8 

write request 
see Edm editor requests 

writing 2-1, A-1, B-2 

i-8 AG90-03 



HONEYWELL INFORMATION SYSTEMS 
Technical Publications Remarks Form 

TITLE LEVEL 68 
INTRODUCTION TO PROGRAMMING ON MULTICS 

ERRORS IN PUBLICATION 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

r\ Your comments will be investigated by appropriate technical personnel 

y ::~n~:~~~:~~ ~~::~:~, ~~ ~::U~~~:ir::C~~:i~:da~~~~~~~h:~I~ ~:re. 0 

FROM: NAME -------------------------------------------
TITLE __________________________ . ____________ _ 

COMPANY --------
ADDRESS _______________________________________ __ 

ORDER No·1 AG90-03 

DATED I JULY 1981 

DATE 



PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154 

POSTAGE WILL BE PAID BY ADDRESSEE 

HONEYWELL INFORMATION SYSTEMS 
200 SMITH STREET 
WALTHAM, MA 02154 

ATTN: PUBLICATIONS, MS486 

Honeywell 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 



Honeywell 
Honeywell Information Systems 

In the U.S.A.: 200 Smith Street, MS 486, WaHham, Massachusetts 02154 
In Canada: 155 Gordon Baker Road, Willowdale, Ontario M2H 3N7 

In the U.K.: Great West. Road, Brentford, Middlesex TW8 9DH 
In Australia: 124 Walker Street, North Sydney, N.S.W. 2060 

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. 

32397, 5C981, Printed in U.S.A. AG90-03 


	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07.0
	4-07.1
	4-07.2
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	6-01
	6-02
	6-03
	6-04
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	i-01
	i-02
	i-03
	i-04
	i-05
	i-06
	i-07
	i-08
	replyA
	replyB
	xBack

