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SECTION 1

INTRODUCTION

1.0 Purpose

This document specifies the environment for processes
executing in the GC0OS 8 Native Mode. The document contains
both conceptual and cetailed 1information. Sections 2
through 4 deal with conceptual level information on:

* system gcals

* design constraints

* process and module shkaring

*x interprocess control

* performarce considerations

Section S5, tc be suppliecs, will contain detailed information
on:

* The nature of the user visible extention to the high
level Llanguages required to fully use the Native Mode
(but not the exact syntax)

* The format and contents of the files created by the com-
pilers and assemblers

* The calling sequences, conventions and system services
used by the object ccde generated by the compilers

* The JCL and ECL used 1in the preparation of programs for

execution 1in Native Mode, and the steps required for
placing a process in execution
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SECTION 2

GOALS AND CONSTRAINTS

1.0 System_Ggals

From the customer point of viewr, functionality 1is the sine
qua non of an operating system, We have, therefore,
attempted to identify as system goals those functions that
will be most important tc¢ both ourselves and our customers.
This is not to say that performance has been ignored. Per-
formance represents the grimary criterion by which alternate
designs for a given functionality are evaluated,

These gcals have implicetions for two different Llevels of
the run-time environment, the macro-structure level and the
micro-structure level, The macro=-structure of the environ-
ment deals with the technology of program management, such
as loading, Linking, and program Llibrary structures., The
micro=-structure of the run-time environment deals with the
technology of program execution, such as calling sequences.,
scope of reference, address calculation, etc.

1.1 Rarc_Protection

1.17.1 Migration _Suoport
It must be possible to rmrigrate programs, both user applica-
tions and Honeywell procucts, from GCOS-III to the GCOS 8

native run—-time environment,

Programs written in high order languages must be able to mi-
grate without source charges.

It 1is desirable that assembly Llanguage programs migrate
without source changes,

It is desirable that migration require no job control lan-
guage changes.

These goals are important for both our customers and our=
selves since we both have a large investment 1in currently
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existing programs. The primary implication for the system

is

that atl currently supported higher level language features

must have a functional ecuivalent in GCOS 8.

T.1.2 GCOS=111 Slave Mode Agccmmodation

The run—time environﬁent must support the slave mode execu-—
tion of GCOS—=II1 executable file formats (Qx, H*, **, etc.).

It also must support the following environments:
* TSS slave environment
* DMIV=~TP TPR environment

* TDS TPR environment

This objective 1implies support of a GCOS-III MME interface

as defined by some choser GCO0S=III system release.

1.7.3 Pecformance Relative to GCOS=III

A given application must execute in GCOS 8 native mode with
at least 907% of its perfcrmance in GCOS=-III native mode when

utilizing the same resources.

fFor a given application'mix, the total throughput of the
system must kte at least 60% as good in GCOS 8 native mode as

it is in GCOS-III native mode.

These are very ambiticus goals, given the system overhead
implied in meeting the virtual memory and security goals of
the system, It 1is recognized at the outset that we may be

unable toc meet the 90% performance figure.

1.2 Ease_of Use_and Programmer Productivity

1.2.1 UYniform Envirgonment

The macro-structure of the system should have a single per-
sonality, for example ECL, that encompasses all methods of

user interaction: batch, time sharing, and remote batch,

It is very desirable that the micro=-structure of the system
have a common run—time ervironment for both user and system
software, This commonality must apply to all module interac-

tion conventions and accesses to services,

0f all the system goals, wuniformity has the greatest impact
on the long-term software viability. From a human engineer-
ing point of views, unifcrmity reduces cost. From a system
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design point of view, its major impact is in simplification

and the cost reductions to be gained thereby.

1.2.2 Support High Qrder Lapguage _Conceptual _Enoviconments

The run-time environment must support the implementation of
high level language features for lLanguages such as COBOL.,
PL/1, Pascal, Ada, etc. Certain language features will re-
quire explicit support ir the run-time environment, For ex-

ample:
* uyser visible address values in data space
* autcmatic space allocation and recursion
* process synchronization
* tasking
* exception processing techniques

* dynamic subprogram irvocation

1.2.3 Support VYery Large Apglications

The run—-time environment must be able to support applica-
tions whose procedure sgace and/or data space may each ex-
ceed a segment of 256K words and whose total space require-
ment doces nct exceed 1024 segments. The run-time environ-
ment shculd be able toc support single structures or arrays
that exceed a segment. Such support must not require user
preplanning ¢f memory maragement techniques such as program

overlays.

The run=-time environment should be able to support a large
number of files, between 200 and 1000, for each application.

The run—-time environment should be able to support a large
number of connected terminalss, on the order of 10,000 con-
current interactive trarsaction processing users and 5000

simultaneous time sharing users,

1.2.4 Support Multiple Versiors of the Same_Software Element

The run—-time environment should allow multiple versions of
both wuser ard system scftware modules. This <capability is
necessary tc¢ support efficient software development and

testinge.
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1.3 Iechnological _Image
1.3.1 Distrikuted Systems Architecture Support

The run—time environment must support the Honeywell
Distributed System Architecture (DSA). :

1.3.2 Virtual Envirgament

The run-time environment must support a virtual address
space that is larger than the real memory. The support
technigque will be transparent to the user. The run—-time en-
vironment must not only allow the execution of Llarge pro-
grams on smaller real memory but must also provide the ef-
fective application of large physical memory.

This goal implies that the run-time environment will use the
virtual memory technology of the hardware.

1.3.3 Shared Elements

The run=-time environment must support the sharing of unigue
instances of procedure or data among processes.

1.3.4 gystem_and_Appolications Secyrity

The run—-time environment must guarantee the integrity of all
program and data within the system,

The run—time environment must allow user definable access
control cver units of their applications. The access control
mechanism will utilize the hardware segment protection capa-
bilitye.

1.3.5 Qynamic Software Installation
The system will support the addition, deletion, and updating
of systenr scftware modules without system ‘dnterruption, It

is recognizec that the replacement of certain system modules
may reqguire system interruption.

1.4 Cost _Control

le4.1 Use_Cyrrent Hardware

The GC0S 8 run-time environment must utilize the current
(NSA) hardware, Althoucgh hardware changes are possible,
they must be Llimited tc field changeable items. The end
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user is indifferent to hardware details as long as his func-
tional and performance needs are met.

1.4.2 Extenditle to Future Preduct Directions

The operating system anc¢ run—time environment should insu-
late user interfaces anc system software from evolutionary
hardware charges and harcware dependencies.

1.4.3 Protect Honevwell Priceg Software

The user manipulation of the system personality must not re-
quire change to Honeywell delivered software modules. This
objective assumes that the users have valid reasons, such as
local accounting conventions, to change the personality of
the system, The user must not, however, require access to
Honeywell separately priced software products at the source
level,
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1.5 Goal _Summary

The following table sumnarizes the GCOS 8 system goals and
classifies them as to their degree of desirability.

Goal Rank Reference

.

Migrate without HOL sowirce changes must
Accommcdate GCOS-III executable formats must
Accommodate GCOS-III TSS, TDS, & DMIV-TP must
Job performance at least 90% of GCOS-III must

[]
¢ ¢

.
*

L}
[}

Throughput at least 90% of GCOS-III must ale
User visible address values must el
Automatic space allocation and recursion must P
Exception grocessing must el
Dynamic sukprogram invccation must el
Support large procedures must el
Support lLarge data spaces must el
Support Distributed System Architecture must e
Support a virtual environment must «de
Support shared elements must e
Provide prcgram and data integrity must e3a
Provide user access cortrol must

Use current hardware must -

Uniform micro—-structure environment
Uniform macro-structure personality
Process synchronizatior

Support large number of files

Support Llarge number ¢f terminals
Support multiple versicns of same module
Support dynamic software installation
Extendible to future product directions
Support arrays larger than 256K

Protect Honeywell priced software
Migrate without assembly source changes
Migrate without JCL changes

Tasking

o« o 8
& b o @
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2.0 Design_Constraints
2.1 Business_Constraints

The business constraints placed upon the run—time environ—
ment are few in number yet very important. :

2.1.1 Release with SR200Q_(5V)

The multi-segment shared run-time environment must be
released for customer use with GCOS 8 Release 2000 (5v).
This impcses schedule corstraints on the environment, first
for a timely definition and second for Llimiting its content
to insure a timely release.

The schedule constraint requires that the run-time environ-
ment be consistent with that which exists in GCOS 8, Release
1000 C4vX). It cannot be radically different or the sched-
ule cannot be met,

2.1.2 Minimize CQoyersion

At this writing, there zre interim environments 1in use and
more in deve lopment: the ITP environment, the ACOS environ-
ment », and the PL-6 environment., Each has sharing
mechanisms, calling seqiences, and other conventions which
differ from one to another,

It is a <constraint that modules which execute under one of
the interim environments be able to be converted to execute
under the new environment with a minimum of change., This is
especially true for the modules of ITP. Modules from other
environments are of lesser importance,

It is a constraint that domains written according to an in-
terim environment coexist with domains written using the new
environment. Adapters may be used as necessary to meet this
constraint. It is not required that modules within a domain
be mixed - some from an interim environment and some from
the new.

2.2 Hardware Architecture Constraints

The multi-segmented run—time environment owes its existence

to the NSA hardware., The environment's design,
functionality, and performance is totally constrained by the
hardware definition., The following sections descuss the

more constraining attributes of the NSA hardware.
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2.2.7 Agcess_Control

The NSA hardware handles two types of memory space, real and
virtual. Only the most grivileged modules of the operating
system may use real memory addressing. ALl other procedures
must use virtual memory addressing. -

The virtual address space of the system is diviced into 512
equal length virtual memcories <called Working Spaces, Work-
ing Spaces are accessitle to a process via eight Working
Space Registers (WSR's). The contents of a WSR <cannot be
changed by a slave mode instruction. The addressability of
a process is thus limitec to eight working spaces.,

In NSA, a segment is a variable Llength subdivision of a
Working Space. It occupies contiguous virtual memory space
and has a hcmogeneous set of attributes. These attributes
differentiate uses of tre segments, for example, procedure
versus data,

The NSA hardware supports two types of segments, a standard
segment with a maximum of one million bytes and a super seg-
ment with a maximum size of 64 million bytes.

A segment is controllec by a two-word Segment Descriptor
which specifies:

* the particular Workirg Space containing the segment or a
WSR containing the number of to that Working Space.,

* the base of the segment relative to a particular Working
Spaces

* the upper byte address limit in the segment, and

* the valid access rights (read, write, execute) to the
segment.

As a means of access control, the hardware requires that all
segment descriptors reside in special segments <called
"Descriptor Segments'", recognizable by the hardware, and
that these Descriptor Segments, in turn, reside on special
pages, called "Housekeeping Pages". The hardware 1is so
designed that Housekeeping Pages can be written to (with
normal instructions) only in Privileged Master Mode and can
be read (with normal instructions) only in Privileged Master
Mode or Master Mode. The address space of a process is thus
limited to those segments given to it by the Operating Sys-

tem. Furthermore, since descriptors are not storable 1in
slave data space, they are not usable as address value vari-
ables.
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ALl memcry addresses have two components, a segment
descriptor identificatior and an offset within the segment.
For normal segments, these two components are brought to-
gether in the NSA pointer construct. There is no equivalent
hardware construct that points into the full extent of a
super segment. -

2.2.2 Domains

The term "Dcmain'" refers to the particular set of segments
that are addressable by a process at any given moment.

A domain consists of a static part and a dynamic part. The
static part of a domain is defined by a special Descriptor
Segment, the Linkage Segment. There are at most 1024
entries in the Linkage Segment. The dynamic part of the do-
main i1s defired by the Farameter Segment and the Data Stack
Segment. The Parameter Segment provides for passing argu-
ments irto a domain., The Data Stack Segment provides scratch
data space.

A domain may include segments 1in several \Working Spaces.
During execution, a domain may be augmented by passed param—
eters or by grivileged master mode manipulation of its Link-
age Segment,

A process i1s not restricted to a single domain but will gen-
erally execute within several domains. The Linkage, Parame-
ter, anrd Data Stack Secments are managed by the hardware
when changing domains. In using the CLIMB instruction to
change domains, however, all of the NSA pointers in data
space are irvalidated. Furthermore, the CLIMB instruction
makes the caller's data stack invisible to the callee. In
combination, these constraints complicate exception
processing and error reccvery. '

2.3 High_Qrder Larguage Constraints

We have a need to suppcrt our present—-day high order lan-
guages such as FORTRAN, (COBOL, PL/1, and PL~-6, and also to
look ahead to the needs c¢f such languages as Pascal and Ada.
This need conrstrains the design of the run-time environment
in that it 1implies many system functions. The following
sections discuss those language features that will require
explicit supgort in the run—time environment.

2.3.17 Automatic Sgace Allocation_and Regursign

The dynamic, block stryuctured languages (i.e.r, all except
FORTRAN and (COBOL) provice the allocation of automatic data
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space whenever a procedure f(or block) is entered. The
run-time environment, therefore, must contain facilities to
grow the data space of a process and must be able to identi=-
fy the current instance of the data space that is to be
referenced by the procedure., The automatic space allocation
technology is necessary to support the general recursion fa-
cility offered by these languages.

2.3.2 Dynamic Space Allocatior by the User

In addition to the automatic space allocation feature, PL/I.,
Pascal, and Ada allow the wuser to dynamically allocate
space. The International Organization for Standardization
(ISO0) 1is ccnsidering the addition of this facility to
FORTRAN. A variation of cynamic allocation is implied by the
COBOL CALL/CANCEL facility. This language feature implies
the same type of run—-time facility for the growth of process
data space as is impliec by the automatic space allocation
facilities.

2.3.3 User_Visible Address_Valuyes

PL/1, PL—-6, Pascal, and Ada allow programs to declare vari=-
ables containing address values. These variables may appear
within data structures and, all Llanguages considered, may
point anywhere within the static, automatic, or dynamic data
space of the program. When created, these adcress values
should remain valid throughout the Llife of the program.
Since any datum may be used as an argument to another proce-
dure, the value of a adcress variable should remain useful
across scome depth of procedural calls.

Since all of the high crder languages support or plan to
support tit aligned data, address values must be able to re-
solve storage to the bit level.

2.3.4 Exception Processing

AlL of the high order languages except Pascal have specified
some facility for handling error <conditions or exception
procedures. There is no consistency 1in these facilities
from Llanguage to Llanguage. The run—-time environment must
therefore prcocvide an exception handling technology that is
sufficiently robust to support the full spectrum of lLanguage
specifications.
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2.3.5 Data_Space_lInitializatico

ALl of the high order languages allow the wuser to specify
initial values for some classes of data. The run-time envi—-
ronment must contain the controls in both its
micro=-structure and its macro—structure to allow these ini-
tial values to be realized at execution time,

2.3.6 Process Synchropnizatian

Several of the high orcer languages support semaphore or
signal constructs that may be used to communicate between
separately scheduled prccesses. Typically, these features
are wused to synchronize two or more processes. In
supporting these features, the operating system may require
special helg from the structures of the run—=time environ—
ment .

2.3.7 Iasking

In addition to process synchronization, some languages pro-
vide the ability to initiate the separate scheduling of a
separate process. As in synchronization, the operating sys-
tem may require special help from the run-time environment,

2.3.8 subprogram_lnvocation

ALl of the languages provide for the invocation of separate-
ly compiled programs. Current structured programming tech-
nology encourages the use of this facility., Therefore, the
calling sequence technolcgy of the run-time environment will
be an important determinant of system performance, The
technology must also supgort the various language specifica-
tions for passing arguments by reference or by wvalue., The
ANS CO0BOL specification expands the problem in two ways. Its
CALL/CANCEL facility allcws the dynamic association, invoca-
tion, and disassociaticn of subprograms whose names are
supplied at execution time. This facility will require spe-
cial run-time environment techniques in both program invoca-
tion and prcgram packaging. The C(O0BOL SORT/MERGE facility
allows the wuser to estakblish procedures within his program
that are to be used as co-routines by the system software
that supports the sort or merge. The run-time environment
must solve the program packaging problem posed by such
co-routines and must prcvide an extremely efficent invoca-
tion technolcgy for them.
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SECTION 3

DESIGN OVERVIEW

1.0 System_Ccncepts

1.1 Conceptual Mocgel

The operating system is cescribed in the accompanying GCOS 8
ARCHITECTURE document as a layered construct at the center
of which resides an inviolate system kernel. That kernel
provides the hardware dependent functions and those house=-
keeping functions that require privileged master mode execu-—
tion. System shared software 1is closely associated with the
kernel. This software prcvides the common service functions
that are usec by all users, regardless of their interface to
the system. The outermost layer of the system grovides the
end-user 1interfaces that define the personalities of the
system,

The system is also planned to be naturally adaptable to the
Distributed Systems Architecture. Support services such as
session control and workstation management will be supported
in the system shared sortware,

1.2 System_Qrganization

Both the construction and wutilization of the system are
organized around the concept of segmentation., In terms of
construction, segments may be <considered singly or may be
organized into domains. These single segments and domains
are, in turn, organized into Working Spaces for the sake of
execution,

Utilization cf the system is organized around the concept of
"process". A process is a triplet composed of an execution
stream, its associated déta, and the processor that is doing
the execution. The execution stream may involve several pro-
cedure segmerts and/or dcmains and/or Working Spaces in suc—
cession. It may also invclve many data segments in disparate
domains and/cr Working Spaces.
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The organization of the run—time environment has two differ-
ent level s, the macro-structure level and the
micro=-structure level. The macro=-structure of the environ—
ment deals with the technology of program managements, such
as loading, linkings, and program Llibrary structures. The
micro=structure of the run—time environment deals with the
technology of program execution, such as calling sequences,
scope of reference, address calculation, etc.
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2.0 System_Magro-structure
2.1 The Virtual Epvironment

The virtual environment is defined by the segments available
to the system. The segments are organized into Working
Spaces. The wvirtual environment available to a process 1is
limited to those Working Spaces that are addressable through
the Working Space Registers (WSR's), The virtual memory lo-
cal to the process itself, that 1is, 1its segments and
domains, are rooted in a single Working Space. That Working
Space is accessed via WSR7. The other WSR's are loaded to
provide the process access to system level and shared do-
mains and segments.

ALl Working Spaces have the same general structure, although
all types of segments d¢ not exist in every Working Space.
This consistency of structure across Working Spaces permits
easy access to data that is canonically Llocated within the
Working Space.,

2.2 Ihe_Sharing_Mechanism

Resource sharing is an important objective of GCOS 8. How-
ever, this sharing of resources must be balanced with anoth=
er objective, security. The criteria for security are that,
without proper authority., no user should be able to:

* retrieve another user's data or programs

* manipulate another user's data or programs

* deny the resources of the system to another user

These criteria imply that resource sharing, while desirable,
must be tightly controlled. The system must Lte protected
from the external users and the users from each other,

This isolation is accomplished at four levels:

1. Working Space Level - a Working Space is addressable
only if the Working Space Number is loaded into one of
the Working Space Registers for the process.

2. Page Level - to reference a page, it must be mapped
intc the page table and the reference must be consis-
tent with the housekeeping and write protect flags in
the Page Table Word.

3. Domain Level - to reference a datum, a segment

descriptor for the segment containing the datum must be
accessatle in the dcmain.
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4, Segment Level =~ the data reference must be within the
segment's bounds ard must be consistent with its type
field (data, descrigtcr, or entry) and permission flags
(read, write, executer etc.).

When two or more processes share a Working Space, sharing
takes three forms, domain instance sharing, domain pattern
sharing, and segment sharing.

2.2.1 Domain_lostance_Sharing

The first form of sharing is the sharing of a wunique in-
stance of a domain. There is one Linkage Segment for the
shared domain and all grocesses CLIMB to the domain via
identical entry descriptcrs to that single Linkage Segment.

A consequence of domain instance sharing is that all static
segments of the domain are shared. There are no process lo—-
cal secments accessible to the shared domain other than
those passed as parameters of the CLIMB,

2.2.2 Domain_Patterp_Sharing

The second form of sharing is the sharing of a pattern or
template for a domain. A skeleton Linkage Segment is used
as a pattern to create nultiple occurrences of the domain.
Each occurrence of the comain is created by allocating one
or more data segments ir the invoking domain and inserting
them into the skeleton Linkage Segment, The resulting Link-
age Segment, i.e.r, domain, will embrace shared procedure
segments local to the new domain and data segments in either
the caller's Working Space or in the shared Working Space or
both.

This type of sharing is wuseful when the domain must include
both shared and process local segments. The shared domain
pattern includes the shared segments, but each occurrence of
the Linkage Segment is given separate instances of the local
segments., Since the one pattern is always used to construct
the domain occurrencess, all the Linkage Segment occurrences
have the same layout or cefinition.

2.2.3 Segmenti_Sharing
The third tyge of sharing is segment sharing, In this case.,
individual segments are shared among multiple domains. This
type of sharing has a number of restrictions which, when
met, allcw very efficient operation.

The restrictions which agply to shared segments are:
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1« If the segment is a procedure segment, it may access
descriptors in the comain's Linkage Segment or Parame-
ter Segment only when they are in fixed, canonical lo-
cations or when pointers (NSA pointers) are passed as
arguments of a calla

2. Prccedure segments must be pure,

3. Data segments, if dimpure, must be gated by means of a
monitor, i.e.r, access to them must be through a monitor
procedure.

2.3 Working_Space Packaging

2.3.1 Qyerview

The following figure depicts the steps required to prepare a
program for execution, beginning with compiling the program
and ending with the mapging of the program into a Working
Space.

A compiler oc¢r assembler produces an A-unit from the source
program. The A-unit contains the initial segment contents.,
both code and data.

If desired, multiple #=-units may be <combined 1into one
A-unit. The result of this merging is that segments with
compatible attributes are combined, thereby reducing the to-
tal number of segments required.

Next, one or more A-units are input to the B-unit Builder
which ccmbines them intec domains, as specified by the direc~
tives, to produce a B-unit. The B-unit is a file containing
a Working Space 1image c¢f the domains and their segments,
Optionally, an existing E-unit may have one or more A-units
added, deleted, or replaced.

The Working Space Assignment function assigns a Working
Space Number and a Working Space Register to the B-unit, Ex-
ecution commences when the process structure is added to the
Working Space by the Prccess Initiator and the root domain
of the process is dispatched. '
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2.3.2 Packaging Elements

2..»3.241 A:“m
An A=-unit is a file which contains the object representation
of an dindegendently <c¢cmpiled or assembled program unit

(eeger a PL/I external grocedure or a (CO0BOL program). The
creation of an A-unit is not a privileged operation. All
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compilers and assemblers produce an A=-unit as output. An
A-unit contains the follcwing types of information :

* A-unit icentificatior

* segment cefinitions and references (SEGDEF/SEGREF)

* domain definitions and references (ENTDEF/ENTREF)

* symbol definitions and references (SYMDEF/SYMREF)

* object text

* debug schema

* relccaticn informaticn

* resource requirements
Before a prcgram represented by an A-unit can te executed,
it must be combined to form one or more B-units by the
B-unit Builder.

2.3.2.2 Bzupnit

A B-unit is a file which contains a representation of one or
more dcmains, including procedure, data., and Linkage Seg-
ments for each domain. B—units are produced by the B-unit
Builder from one or more A=-uynits. The B8-unit Builder is
able to "upcate" an existing B-unit by adding or replacing
A-units. A B-unit contains the following types of informa-
tion :

* B=-unit identificatior

* skeletal page table (describes virtual space assignment)

* one cr mcre domains

* Linkage, procedure, and data segments for each domain

* Domain Directory of all domains (ENTDEF's)

* Glokal Segment Directory for all segments known exter-
nally to the B-unit

* directory of unresolved segment references (SEGREF)
* directory of unresolved domain references (ENTREF)
Note that a B=-unit does not contain any process structure

(ee3er hardware stack segments, SSA segments, etc.). All
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tional base address. Domain and segment references are re-
solved where possible. A page table that describes the
assigned virtual space is also created.

The B-unit that is prodiuced includes a Domain Directory, a
Global Segmert Directory, and a directory of unresolved seg—-
ment references. The (fomain Directory contains an entry
describing each domain ir the B=-unit, while the Global Seg-
ment Directory contains an entry describing each segment in
the B-unit which may be referenced from outside the B-unit.

Sufficient irformation 1is kept in the B=unit to permit the
addition, deletion, or replacement of one or more A=-units in
an existing B-unit.

No shared Llibraries are referenced 1in order to <create the
B-unit. ALl references outside the B-unit are left
unresolved. References to external domains result in a dy-
namic linking descriptor that references the name of the do-
main., Segment references result in segment descriptors with
the "missing segment” attribute., These dynamic references
will be resolved by the Cynamic Linker at process initiation
time-

2.3.6 Working Spagce Structure

All Working Spaces have the same general structure. At the
beginning of each Working Spaces, offset zero, 1is a
descriptor segment which serves as a directory to the Work-
ing Space. This Working Space Unique System Header (WSUSH)
has the same canonical definition for each Working Space.,
regardless of the function for which the Working Space is
employed., Ffcr a given Working Space, not all entries of the
WSUSH are valid (e.ge.r trte entry for the SSA Segment is not
valid for a shared Working Space). Invalid entries contain
null descriptors.

The segments located via the WSUSH fall into two categories:
those required for all Working Spaces regardless of their

function and those required only for Working Spaces that
instantiate a processes.

2.3.6.1 Segments Fegquired in ALl Working Spacges
ALl Working Spaces require at least the following segments:

* the Domain Directory., a table that defines every domain
in the Wcrking Space.
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the Global Segment Directory, a table that defines every
global segment (i.e.sr every segment known externally) in
the Working Space.

a directeory of all the dynamically allocated segments.

the Page Table, a variable length segment containing the
page table entries fcr the Working Space.

the PAT segments, a variable Llength segment used to con-
tain the Peripheral Allocation Tables (PATs) for the
Working Spacea

the DCW buffer, a segment wused for DCW Llist storage for
paging 1/0, process swapping I1/0, SYSOUT 1/0, etc.

2.3.6.2 Segments _Reguired in Frocess Workipg _Spaces

In addition to the segmenrts required in all Working Spaces.,
those Working Spaces usec to contain processes also require
at least the following segments:

*

the Exception Procedure Entry Descriptor Segment
(EPEDS), a descriptor segment containing the entry
descriptors to the exception handling procedures for the
defined exception corditions.

the User's Linkage Segment Descriptor Segment, a vari-
able Llength descriptor segment containing the Linkage
Segrments for all user domains in the process.

the Safestore Stack Segment, a variable {ength segment
used to store registers when changing domains.

the Argument/Parameter Stack Segment, a variable length
segment used to pass arguments between domains,

a segment used by the Dispatcher,

the SYSCUT segment, used to collect the system output
recaords. The size, content, and location of this seg-
ment vary with the number of SYSOUT lines.

the SSA Data Segment, a segment <containing control in-
formation equivalent to the GCOS~-III control information
contained in the Slave Service Area (SSA).

the SPA Data Segment, a segment containing control in-
formatior equivalent to some of that contained 1in the
GCOS-IIl Slave Prefix Area (SPA).
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* the Process Control Block (PCB), a segment containing
information necessary to control the process.

2.3.7 Assigning.a B-upit_to 3 Working Space

A B-unit may either be rplaced in execution, that is, become
a processs or be a shared B-unit, that is, be referenced by
or executed by many processes. In either <case, the B-unit
must be assigned to a Wcrking Space. The function of Work=-
ing Space Assignment is not to load B-units into the virtual
memory of the Working Sgpace, but to associate the B-units

with t he Working Sgace. This is accomplished by
constructing a Domain Directory and a Global Segment Direc-
tory in the wvirtual mermory of the Working Space. These

directories completely cefine all domains and global seg-
ments cocntained in the B-unit or B-unit Library. These
directories are searched by the Dynamic Linker when
attempting to resolve a reference to a domain or segment., At
the first reference to a domain the B-unit containing the
desired domain or segment will be loaded.

The input to the Working Space Assignment function is either
a single B-unit or a B-urit Library that is to be assigned a
Working Space. The resource requirement information is read
from the B-units and is used to create a backing store file.
The Domain Directory anc Global Segment Directory are read
from each of the B8-units. These directories are combined
and are located canonically in the Working Space.

After ccmpletion of the Working Space Assignment step, a
skeletal page table, ©Dcmain Directory, and Glcbal Segment
Directory exist in virtual space and a backing store file
will have been created fcr the Working Space. An available
Working Space Number will have been assigned. The assignment
of a Working Space Register for the B-unit will depend on
whether the Working Space is to be shared or is to become
the root of a process.

2.3.8 Working Space Register Usage

The fundamental sharing mechanism in GCOS 8 is the sharing
of domains and segments in shared Working Spaces. By
mapping Working Spaces into the same virtual address space
of a set of processes, the contents of the Working Spaces
may be shared among the grocesses.

Within GCOS &, WSR?7 is reserved for all process local infor-
mation. The other WSR's are used for shared software and
data. The smaller the WSR number, the more global the
sharing. The provisional assignment of WSR's and sharing is
as follows:
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WSR _Number Usage

Operating System Hard Core

Operating System Hard Core

Operating System Slave Mode

Priced Software Products

Installation (Site) Specific Software
User Shared Software

Workstation Local

Process Local

NOWV SN 20O

The mapping is performed by the WSR <contents., A Working
Space is shared if two or more processes have its Working
Space Number in the same WSR. When a Working Space is
shared, it must be shared by using the same WSR in all the
sharing processes. This restriction is due to the fact that
references tc the WSR appear in the Working Space itself,
Each segment descriptor <contains a value for the WSR
containing the segment it describes,

Furthermore, once two processes have established the sharing
of a Working Space in some given WSR, all of the more global
WSR's must have matching values for the two processes,

The Working Spaces referenced by WSRO through WSR4 are
shared by all processes in the system. WSRS is reserved for
customer controlled sharing. WSR6 contains the same value
for all processes of a workstation. The content of WSR?7 is
unique tc each single prccess.

2.4 Process_Execution

2.4.17 RProgcess Initiation

The B-unit destined tc become a process, having been
assigned to a Working Space, now only requires the addition
of the process structure to be executable., The Process
Initiator assigns a process number, builds the process
structure (e.g.r, hardware stacks, SSA segment, process con-
trol block, etc.)», and lcads the Working Space Registers for
the process.

The B-unit itself has still not been loaded in virtual memo-
rye Only the "definition” of the B-unit, in terms of the
names of its domains ard global segments and its process
structure have been loaded.

Finally, the Process Initiator executes a CLIMB instruction
to the wuser entry point. Since the B-unit containing the
user's domain has not yet been loaded, this CLIMB generates
a dynanic Linking faulta. The Dynamic Linker resolves the
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reference and the process begins executing in its root do-
main.,

2.4.2 Dynamig¢ Linking

The Dynamic Linker is invoked to resolve references to both
segments and domains. This involves wutilizing the search
rules that govern the orcer 1in which the Working Spaces are
searchecd, Llccating the desired object, and replacing the
unresolved reference wWwith the appropriate entry or segment
descriptecr.

Linking to shared domains occurs dynamically while the proc-
ess is in execution, while linking to shared segments occurs
at the time when the E-unit containing the reference 1is
loaded into virtual memcry., References to shared segments
are resolvec by Llocating the segment and storing the
descriptor of the segmert in the referencing domain (i.e..,
Linkage Segment).

2.4.2.1 Search Rules

Whenever a dynamic reference to a segment or domain occurs.
a search must be conducted 1in an orderly manner through the
virtual space addressable by the executing process, that is.,
through the Working Spaces loaded behind the WSR's for that
process. The search begins with the Working Space
containing the instruction segment of the executing domain
and proceeds sequentially through more global (decreasing)
values c¢f Working Space Register number. For example, if
while executing a domair whose procedure segment is behind
WSRS and a dynamic linkirg fault occurss, then the search for
the referenced domain begins with WSRS and continues in se—
quence through WSR4, WSR3, WSR2, WSR1, and WSRO wuntil the
desired domain is found.

At times it is desired to reference a domain at a lesser
scope of sharability, that is, a domain behind a higher val-

ue of WSR. This functicnality is useful 1in the support of
exception processing., user exit procedures, etc, This
"outward"” reference will be allowed only when explicitly
declared on the reference. In this <case, the dynamic

linking descriptor contains a field which specifies the de-
gree to which the outward reference is permitted.

2.442.2 Dynamic Linking tg Dgonains

Each Working Space <contains a Domain Directory that is
located canorically via the WSUSH and describes the domains
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of the Working Space. Each entry in the Domain Directory
contains at least the following information:

* domain name
* name of EB—-unit cotairing the domain

* entry descriptor to comain (valid only if the B-unit has
been activated)

* domain type (unsharec, shared domain, shared domain oc-
currence, etc.)

* count of outstanding references to the domain

When a dynamic linking fault is generated by the execution
of a CLIMB instruction through a dynamic Llinking descriptor,
the Dynamic Linker is irvoked to resolve the domain refer-
ence. If the domain is not found, the Dynamic Linker re-
turns an error status and exception processing commences,
If the name is found ard the B=-unit containing the domain
has not bteen loaded, then the B=-unit is activated. The ref-
erence to the domain is then resolved depending upon the
WSR's behind which the dnvoked and invoking domains are
found and upcn the domain types.,

1f the referenced domain uses unique domain instance sharing
and the referenced domain has been found behind a more glob-
al WSR than the referencing domain, then the dynamic linking
descriptor is replaced with the actual entry descriptor to
the shared domain and the CLIMB is re-executed.

If the referenced domain uses unique domain instance sharing
but has been found behind a Lless global WSR than the
referencing domain, then the C(LIMB 1is completed without
replacing the dynamic lirking descriptor in the referencing
domain.

If the referenced domainr wuses domain pattern sharing, the
prototype Lirkage Segment is copied into the caller's space.
Any local segments are <created dynamically and initialized.
Then the original dynamic¢ Llinking descriptor in the calling
domain 1is replaced by an entry descriptor to the newly
created Linkage Segment and the CLIMB is re-executed.

2.4e2.3 Dynamic _Linking to _Segmentis

Each Working Space contains a Global Segment Directory that
is located canonically via the WSUSH, This directory de=-
scribes the segments of that Working Space which are exter-
nally visible (i.e.r shared among B-units). Each entry 1in
the directory contains at least the following information
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* segment rame
* name of B-unit containing the segment

* segment descriptor (valid only 1if the B-unit has been
activated)

* count of outstanding references to the segment

If, when Lloaded into virtual memory, a B-unit contains any
unresolved references t¢ segments, then the Dynamic Linker
is invoked to resolve thcse references before the B-unit is
executed. The Dynamic Linker employs the search rules to
determine the Working Spaces to be searched and then
searches the associated Global Segment Directories for the
desired segment name. If the name is not found behind a
more global Working Space Register, a descriptor with the
"missing segment” flag set is returned. If the name s
found and the B=-unit ccntaining the segment has not been
loaded, then the B=-unit 1is activated. Finally, the
descriptor framing the desired segment is returned.

2.4.3 Bzynit Activation

A B-unit is activated in response to a call from the Dynamic
Linker when attempting to resolve a reference to a segment
or domain. The referenced B—unit is assigned an origin or
base for data segments and another for descriptor segments.
ALl of the descriptor segments for the B—unit are then
loaded in virtual memory.

ALL of the segment descriptors and entry descriptors in the
B-unit were initialized with a value for the Waorking Space
Register (WSR) when the B-unit was created. If that value
for WSR is not the same as that assigned by the Working
Space Assignment function, then the WSR wvalues in the
descripteors must be adjusted to the correct value, If the
base wvirtual addresses for both data and descriptors
assigned by the B—-unit Activator do not agree with those
assigned by the B=-unit Builder, then the base virtual
addresses in the descriptors must also be adjusted.

The page table for the working Space is wupdated to reflect
the addition of the paces for the B-unit and the backing
store file may be initialized at this time. The real memory
working set is also adjusted to reflect the addition of the
B-unit to the Working Space. The Domain Directory and the
Global Segment Directory are updated to reflect the actual
virtual memory address of the domain and segment (i.e., en—
try and segment descriptcrs) in the B-unit.
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Finally, the B-unit Activator must determine whether this
B-unit itself has any urresolved segment references. This
is accomplished by accessing the table of unresolved segment
references 1in the B-unit., For each unresolved reference.,
the B=-unit Activator <calls the Dynamic Linker, This, in
turn, may cause other B-units, the ones containing the
referenced segments, to te activated. When this process 1is
complete, the B=unit activation has been finishec.

Note that references frcm the B-unit to segments have now
been resclved, However, references to other domains outside

the B=-unit have not. Dcmain references still exist in the
form of dynamic linking cescriptors.

2.5 Ipter=Process_Communicaticn _and Synchronization

The Process Synchronization facility of GCOS & exists to
perform two tasks:

* maintain the integrity of shared data, and

* synchronize the execttion of parallel process.

A more specific discussion of these <concepts 1is to be
supplieds
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3.0 System Micro-structure

The micro-structure of tke run—=time environment consist
the conventicns for:

* intra-domain calling sequences
* inter-domain calling sequences
* stack hardling

* register allocation

* excegtion processing

* jnterrupt handling

* condition handling

* inter-process synchrcnization
*x operators

* debugging aids

* segment structure anc binding

3.1 Standard _Segments

Each dcmain contains a number of standard segments.
are:

* Linkage Segment

* Parameter Segment

* Argument Stack Segmert
* Software Stack Segmert
* Procedure Segment(s)

* Data Segment(s)

* Operator Segment

3.2 software Stack Conventions

Each domain has a Software Stack Segment for argument p
ing and subroutine linkace within the domain., The Soft
Stack Segment may be a static part of the domain or it
be dynamical ly obtained from the Data Stack. If 4t is 1in

s of

They

ass-
ware
may
the
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Data Stack, the entire amount required by the domain s

allocated upcn entry.

The descriptcr framing the complete Software Stack segment
is saved in location 0 c¢f the Argument Stack and in a con—
ventional ODR., The associated pointer register always points

to the base of the current stack frame.

There are twec kinds of stack frames in the Software Stack =--

a root frame and a basic frame.

3.2.1 Root_frame

There is one root frame in the Software Stack and it
root frame ccntains the following information:

* a3 fault recursion count

* a pointer to the exception processing array

* the base of the current stack frame

* the total size of the stack

* the location of all cefault enabled conditions, and

* the location of the rext available stack frame.

is al-
ways the first frame., It is created on domain entry.

The

The root frame 1is updated when each internal <call is made,

i.2.» when a basic frame is created or released.

3.2.2 Basic frame
There are many basic frames 4in the Software Stacke.

procedures, CN CONDITION handlers,

A basic
frame is created when a subroutine is called, e.g., external

A basic frame contains a fixed area for control information
and a variaktle length area for parameter passing and the

subroutire's (block's) aiLtomatic storage,
The information consists of:

* register safe store (optional)

* control information

* pointers to input and output parameters

* pointers to argument descriptions (optional)., and
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* aytomatic storage.

It is impor tant to note that the parameters passed in the
stack are the addresses c¢f the data items. In GCOS 8, these
addresses are NSA pointers having a 24-bit bit address and a
12-bit segmert identification.

3.3 Qperators

Included in every domain is a segment reference to a shared
procedure segment contairing operators, Operators are short
procedure sequences which perform some support service to
the <compilec procedure., Among the operators are code se-
quences to handle intra-domain procedure calls (between seg-
ments of the domain) and exits, various arithmetic
functions, <cperating system call adapters (PMME adapters)
and inter-dorain calls ard returns.

Operators are invoked ty an inter-segment {(cross—segment)
transfer to the correct entry point in the operator segment,

The sutroutine Linkage operators perform all the stack
handling and environmert preparation required during a
subroutine call., The preparation of arguments 1is done be-
fore the operator is invcked.

3.4 Iptra=dgmain_Callipg _Seguence

The calling sequence used within a domain establishes con-
ventions for how the parameters are passed, how the Software
Stack is handled, how the return linkage is handled and how
the callee's environment is created,

3.4.71 Subroutine Linkage

The actions that are recuired for subroutine invocation are
divided between the calling procedure and the interface op-
erator. The calling procedure prepares the arguments and
argument descriptions while the interface operator handles
the stackr, does any register saving and <creates the return
linkage.

3.4.2 Parametec Passing
Parameters are passed frcm the caller to the callee by pass~-

ing a list of addresses of the parameters plus (optionally)
the addresses of their argument descriptions.,
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Since the adcresses are NSA pointers, the descriptors of the
segments which form the comain must be in either the Linkage
Segment, the Parameter Segment or the Argument Stack. Sub-
ordinate descriptor segments cannot be usede.

Note t hat no parameters or addresses are passed in
registers., This 1dinsulates one subroutine from the ODR
and/or register conventicns of another,

3.5 Program_Segmepnt_Structure

The output c¢f a compiler is an A=-unit containing procedure
and/or data segments. A procedure segment consists of
generated code, a pointer areas, and one oOr more entry areas.
The generated code is all IC relative, i.e., it is floating
code.

Except for entry points, there are no references to a proce=-
dure segment from outside the segment., Constants are

packaged within the procedure segment, thus the minimum per-
missions for the segment are Read and Execute.

3.5.1 Bointer Area

The pointer area is an area containing all the NSA pointers
needed by the procedure for references to other segments as
shown in Figure 3(a). The procedure loads ODR's (via LDPi
instructions) from this area when necessary. All references
to the pointer area are IC relative,

3.5.2 Entcy. Pgoint _Structure

Associated with each entry point to a procedure segment 1is
data which defines:

* The ASCII name of the entry point

* The number of parameters expected

* The language and version which created the procedure
* The amounrt of automatic (stack) storage necessary

* The Llocation of the executable procedure, the pointer
area and debugging irformation (debug schemal.

This data is tentatively located at negative offsets rela~-
tive to the entry pointe.
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Figure 3(a) Frocedure Segment Layout

3.5.3 Procedure _Segment _Merging

Binding a prccedure segment intc a domain involves resolving
the inter-segment references contained in the pcinter area.
This will cause the SEGID and the 24-bit address fields of
each pointer to be adjusted as the Linkage Segment of the
domain is established. Only the pointers which refer to the
Linkage Segment are adjusted. Those which refer to the Pa-
rameter Segment and Argument Stack do not require adjustment
(relocation) .

Multiple procedure segments may be merged 1into one segment

during the btinding process. This is possible when their

combined size is less thkan 256K and their attributes (exe-
cute., read) are identical. Since the generated code is

floating code, two procedure segments can be combined into

one by concatenating thkem and adjusting the inter-segment

references of all segments in the domain.,
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Figure 3(b) VMerged Procedure Segments

3.5.4 Data_Segment Merging
Multiple data segments may be merged into one segment during
the binding phase. This is possible when their combined
size is Lless than 256K and their attributes (read, write.,
cache~bypass) are identical.

References tc the segmerts which have been merged must be
adjusted by relocating the NSA pointers which form the ref-
erences. Similarly, references from one data segment to an-
other via NSA pointers {(which arise from pointer data types)
must be adjusted, both ir their SEGID field and their 24-bit
address field.

3.6 Exception Processing
Excepticn processing includes the handling of:
* ON CONDITIONS
* faults
* inter%upts
Each is handled by a cordition handler unigue to the event.

ON CONDITION events may be detected synchronously during
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normal grocessing or they may be detected asynchronously by

a hardware fault., Another asynchronous
handled the same way is & "software interrupt”,

terrupt from one process to another,

event

ice'l

which
an in-

is

The things which are used in handling exception conditions

ares:

* The Exception Processing Pointer Array (EPPA)

* The CN CONDITION hanclers,

* The Exception Processing Entry Descriptors (EPEDS)

3.6.1 Exception _Processing Pointer Array

Associated wWwith every domain 1is an array

which contains
routines for

pointers to the asynchronous event processing

the domain. This array is Llocated by a pointer

0 of the stack segment, which 1is 1din turn

descriptor in location 0 of the Argument Stack.

The EPPA may be in 1its own segment or

may be

in location

located by

a

part of a

larger segment. The EPPA contains NSA pointers to the pro-

cedures which handle

* The hardware faults (overflow, lockups, etc.)

* Software interrupts

*

GELOCP detection
* Wrapup

* Restart.

3.6.2 Exception Progessing Entry Descriptors

To be supplied.

3.6.3 QN_CONDITIQN Handlers

To be supplied

3.6.4 Exceptign Processing Elgw

To be supplied.
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SECTION 4

REALIZATION OF GOALS

1.0 Introductian

This section describes hcw the proposed environment does or
does not meet the goals that were stated in Section 2, The
summary table from Section 2 1is reprinted with a column
which indicates whether the proposed design Wwill meet the
goal, whether it Wwill not meet the goal, or whether its re-
sponse to the goal still needs to be determined. In those
cases where a simple answer will not suffice, the column
contains a reference to a succeeding paragraph in this sec-
tion.
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2.0 goal Realization Summary
Goal Rank Response

Migrate without HOL source changes must yes
Accommodate GCOS-III executable formats must - yes
Accommgcdate GCOS-III 7SS, TDS, & DMIV-TP must . yes
Job performance at least 90% of GCOS-III must 3.0

Throughput at least 90% of GCOS-III must 3.0
User visible address values must yes
Automatic space allocation and recursion must yes
Exception processing must 780
Dynamic subprogram invccation must 78D
Support Large procedures must yes
Support Large data spaces must 78D
Support Distributed System Architecture must yes
Support a virtual environment must yes
Support shared elements must yes
Provide prcgram and data integrity must yes
Provide user access cortrol must yes
Use current hardware must yes
Uniform micro-structure environment 1 yes
Uniforre macro-structure personality 2 yes
Process synchronizatior 2 ‘yes
Support large number of files 2 yes
Support large number of terminals 2 yes
Support multiple versiens of same module 2 yes
Support dynamic software installation 2 yes
Extendible to future product directions 2 yes
Support arrays larger than 256K 3 no
Protect Honeywell priced software 3 78D
Migrate without assembly source changes 4 4.0
Migrate without JCL changes 4 4.0
Tasking 4 78D
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3.0 System _Performance Estimates

Two tygpes of performance analysis were done,’ The first
analyzed programs executing in an existing multi-segment en-
vironment using four performance case studies. The programs
were analyzed to determine their instruction mix and then.,
from the mixes, the perfcrmance of the programs relative to
their execution on the ursegmented GCOS~III was estimated.

In the second analysis, the object code of two programs
compiled for GCOS-III was modified for the multi-segment en-
vironment and analyzed relative to the original versions.

It is imgortant to note that many factors in addition to the
execution environment affect the performance of the system.
The analyses presented in this section do not predict the
overall GCOS 8 performance relative to GCOS-III. Rather the
numbers state that for a given number of instructions
executeds, the GCOS & performance will be b times the
GCOS~-III performance. Since b is Less than one, using the
multi-segment capability of the NSA hardware in the GCOS 8
environment effectively ce—-rates the (PU., Other factors not
included 1in this analysis such as the differences in the
supporting run-time subroutines, the operating system ser-
vices, etc., will significantly affect the total performance
of GCOS 8.

3.1 Performance Case Studies

References :

1) Ireland, R.J. and O'Laughlin, J.T..,
"Virtual Unit Instructions, Times, and Counts",
Analysis Note =-- 132,
February 14, 1980,

2) Browns FoMar
Vue—=gragh tables on NSA instructions dated
January 28, 1980.

3) Irelands ReJ.r private communications on NSA timing.,
February 18, 1980.

4) Krasnys, Las
"Virtual Unit Instrictions on CP=6",
March 11, 1980.

The interesting combinations of hardware and operating sys-
tems are presented in tte following table, using GCOS III
performance on the 6680 without the NSA option as a
baseline.
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GCOS II1I GCOS 8 GCOS 8
Accommodation Native

6680 X ax b X

- - - -~

The coefficients "a”" and "b" represent the performance fac—
tors. Due tc the pipelire structure of ADP, it is impracti-
cal to derive the ADP coefficients without simulation or
measurement. Therefore, this study only attempts to derive
values feor the 6680 coefficients "a" and "b".

A number of case studies are presented, some representing
static analyses of wvarious programs and some representing
actual measurements. ALl of the analyses calculate figures
for instruction mix, particularly of NSA instructions, and
based on the instructior mix and the timing of the various
instructions, derive the coefficient "b". Coefficient "a"
is determined from an actual measurement,

The calculations of the two <coefficients are based on two
assumptions:

1. The non=NSA instructions in the GC0OS 8 environment
take an average c¢f 1.735 microseconds (Ref. 1).

2. Instructions in the GCOS III environment take an av-
erage of 1.644 microseconds (Ref. 1,3).
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3.17.1 Summacry

The following table summarizes the results of the various
case studies.

6680
Performance
Coefficient

CASE STUDY 1
Accommodat ion Mode .93

NSA instruction use in native mode 1is .88
in same proportion as reasured in
SR100C master mode.

CASE STUDY 2
CP=-6 Scrt Command Execitive - 827

CP=-6 Sort Tournament Driver «928

CASE STubdY 3
SR10CC Gloktal Data Management «86

CASE STUDY 4
(P-6 Measurements 94
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3.17.2 Congclusions

Although case studies 2 and 3 are based on a static analysis
rather than actual measurements, the results correlate quite
closely with the measured resuits in case studies 1 and 4.

Two factors are seen tc affect performance for the 4680:
the percentage of NSA instructions executed and the percent-
age of CLIMB instructicns executed., Most of the NSA in-
structions are slightly slower than non-NSA instructions.,
however, the CLIMB is over ten times slower,

%4 CLIMB's % Non NSA Case Study Coefficient ""b"

-~ ——— [Po—

.03 84.48 4 <935
.04 87.37 4 945
.05 87.3 4 <945
<1 98.18 1 <93
28 90.33 2 «928
«6 89.0 1 88
.93 91.19 3 «86
1.36 90.36 2 827

The following table provides an estimate of the 64680 perfor-
mance values for the GC0OS 8 environment. The coefficient
"b" is an average of the first three case studies. The (P=6
measurements are not ircluded due to the wunrealistically
small percentage of CLIME's.,

GCOS 111 GCOS 8 GCOS 8
Accommodation Native

—-_—

6680 X « 93X . 87X
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3.17.3 Case_Study. 1

The table below summarizes the results from measurements of
GCOS 8 Accommodation Mode (Ref., 1).

Instructicn %2 of Total 6680 Weight 6680 Weight

Type Instructions Factor Value
LDD 0.18 1.9 0.3462
cLIMB 0.1 20.5 2.05
EPPR 0.06 0.3 0.018
Other NSA 0.28 2.0 0.56
Non NSA 98.18 1735 170.34

Weighted Totals 176.868

Ccefficient: b = 1é4.4 / 176,868 = 0.930

In accommodation mode, the slave instructions are based on a
single segment environment, while the master mode instruc-—
tions are based on a multisegment environment., One can pre-
dict the per formance of the multisegment environment by con-
sidering only the mix of master mode instructions., This is
presented in the table below.
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Instruction Z of Total 6680 Weight 6680 Weight

Type Instructions Factor Value
LDP 7.8 2.0 15.60
LDD 1.2 1.9 2.28
cLimsg 0.6 20.5 12.3
EPPR 0.4 0.3 0.12
Other NSA 1.0 2.0 2.0
Non NSA 89.0 1.735 154.415

Weighted Totals 1864715

Coefficient: b = 164,64 / 186.715 = 0.88

3.7.4 Case _Study ¢

A static analysis of twe Sort/Merge modules implemented in
PL-6 for CP-6 is shown below. Since these modules do access
multiple segments and are written in PL=6, they should pro-
vide a good indication ¢f overall multisegment environment
performance.

The first table shows the results for the Sort Command Exec~—

utive, while the seconc table shows the results for the
Tournament Driver.
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Command _Executiyve

Instruction % of Total 6680 Weight 6680 Weight
Type Instructions Factor Value
LDP 6.01 2.0 12.02
LDD 0.0 1.9 0.0
CLIME 1.36 20.5 27.88
EPPR 1.36 0.3 0.408
Other NSA 0.91 2.0 1.82
Non NSA 90.36 14735 156.77
Weighted Totals 198,898
Coefficient: b = 164.4 / 198.898 = (0,827
Ioucnament Driver
Instruction %2 of Total 6680 Weight 6680 Weight
Type Instructions Factor Value
LDP 7.29 2.0 14,58
LDD 0.0 1.9 0.0
cLIMB 0.28 20.5 5«74
EPPR 0.28 0.3 0.08
Other NSA 1.82 2.0 3.64
Non NSA 90.33 1.735 156.72
Weighted Totals 177.12

Coefficient: b = 1644 / 177.12 = 0.928
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3.7.5 Case_Study 2
A static analysis of the Global Data Management module of
ITP yielded the results shown 1in the table below. Though
coded in GMAF, this module was chosen for the following rea-
sons : ~
- it is highly structured

- it is reasonably large (5K)

- it deals with many segments so—~"that register
cptimization is limited

- it is reasonably linear so that the assumption that a
uniform executior takes place should be a good one

Instructicn %Z of Total 6680 Weight 6680 Weight
Type Instructions Factor Value
LDP 1.76 2.0 3.52
LDD 1.64 1.9 3.12
CLIMB 0.93 20.5 19.06
EPPR 2.3 0.3 0.69
Other NSA 2.16 2.0 6432
Non NSA 91.19 1.735 159445
Weighted Totals 190.16

Coefficient: b = 1684.4 / 190.16 = 0.86

This mocule coes perhaps do more register optimization than
a PL-6 generated module might, The relatively high percent—-
age of EPPR's is due to moving the contents of one ODR to
another., In a PL=6 module this would probably generate a
LDP rather than an EPPR. 1If one-half the EPPR's are changed
to LDP's, then the following figures are generated.
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Instructicn Z of Total 6680 Weight 6680 Weight

Type Instructions Factor Value
LOP 2.91 2.0 5.82
LDD 1.64 1.9 3.12
cLIMB 0.93 20.5 19.06
EPPR 1.15. 0.3 0.345
Other NSA 2.16 2.0 4,32
Non NSA 91.19 1.735 159.450

Weighted Totals 192.115

Coefficient: b = 164,46 / 192.115 = 0.86

It is interesting to note that the number of LDP's executed
is of little consequence on the 6680 since the instruction
time is not significantly greater than for other instruc-
tions.

3.17.6 Lase _Study 4

The tables Gtelow summarize the results of three (P-6 mea-
surements. The average cf the three measurements results in
b=.942., See reference 4 for more information,

These measurements are rot indicative of GCOS 8 timing due
to the very small ratic of CLIMB's to total instructions
executeds but are incluced for a comparison of typical in-
structicn mixes,
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Measuregent 1

Instruction % of Total

6680 Weight

6680 Weight

Tyge Instructions Factor Value
LDP 7.25 2.0 14.5
LDD 0.0 1.9 0.0
cLIMB 0.04 20.5 0.82
EPPR 2.17 0.3 0.651
Other NSA 3.17 2.0 634
Non NSA 87.37 1.735 151.587

Weighted Totals 173.898

Coefficient: b = 164.4 / 173.898 = 0.945

Measurement 2

Instructicn % of Total 6680 Weight 6680 Weight
Type Instructions Factor - Value

LDP 7.15 2.0 14.3

LDD 0.0 1.9 0.0

CLIMB 0.05 20.5 1.025

EPPR 2.25 3 0.675

Other NSA 3.25 2.0 6.5

Non NSA | 87.3 1.735 151.466
Weighted Totals 173.966
Coefficient: b = 1€4.46 / 173.966 = 0.945
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Measurement 3

Instructicn % of Total 6680 Weight 6680 Weight
Type Instructions Factor Value
LDP 12.31 2.0 | 24,62
LDD 0.0 1.9 0.0
cLIimB 0.03 20.5 0.615
EPPR 1.37 0.3 0.411
Other NSA 1.81 2.0 3.62
Non NSA 84,48 1735 146.573
Weighted Totals 175.839
Coefficient: b = 16é4.,4 / 175.839 = 0.935

3.2 Qbiect Code Apalysis

This section compares projected multi-segment code genera-
tion of C0BOL and FORTRAN in GCOS 8 with the actual code
generated in GCOS-III. This discussion describes parameters
of the <comparison, highlights results from the comparison,
and concludes with recommended future directions.

Detailed numters are nct presented.

3.2.1 Sgurce Program_Rescriptions

FORTRAN — This program is a matrix inversion from a scien-
tific berchmark., Of significant interest was the analysis of
code production within the program's innermost loop. This
critical code section was determined to be executed 100 mil-
lion times.

C0BOL=-74 ==~ This program, obtained from a benchmark support
demonstration program, heavily wuses COBOL=-74 string manipu=-

lation verbs == INSPECT, STRING, UNSTRING and the PERFORM
verb.

3.2.2 Iypes_gf Cogparisaon

FORTRAN == The program was compiled with FORTRAN-Y, It then
represented the GCOS—III environment. The innerlcop code was
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examined and changed according to multi-segment environment
requirements. This versicn then represented the GCOS 8 envi-
ronment,

Those two versions were then compared in two ways. First,
the GCOS-III wversion was compared with the GC0S 8 version
assuming the hardware was constant (6680). Seconds, the envi—
ronment was held constart (multi-segment, GCOS 8) and the
hardware varied (6680 vs. ADP).

C0BOL-74 -- This program was handled in the same manner as

the FfORTRAN program =—-— an existing (BL74 generated code
listing was compared with a hand-coded GCOS 8 version.

3.2.3 Information_Qbtained

3.2.3.1 Dypagic
FORTRAN = The innermost loop instruction count was examined
in terms of number of irstructions, and execution time ac-
crual per loop trip. Execution time was adjusted for ADP
pipeline breaks and cache misses.,
C0BOL-74 -~ Since this routine <contained neither iterated
code or conditionally executed code, a static analysis was
sufficient.

32342 Static
For all routines the following information was recorded:

* routine name

* number lines of source

* size of produced procedure for each environment being
comgared

* numter LDPn produced for each environment
* percent LDPn for each envirconment

* the average number of words of procedure code generated
for each procedure statement for each environment,

3.2.4 Besults
* The COBOL~-74 sample had a relatively low level of LDP's

(1%) A COB0OL-74 sample with more parameter passing
would gererate more LDP instructions.
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* The (C0BCL-74 sample has a potential problem regarding
excessive ADP pipeline breakage during execution of
subrcutire and library call Linkage.

* The C0BOL-74 multi-segment sample also has an excessive
ADP pipeline breakace problem for PERFORM <¢code genera-
tion. This problem results when exiting a perform block,
i.e0 "TRA to a TRA",

* C0BOL-74 generated code for the multi-segment environ—
ment (ADP) should execute above the ADP 6X baseline,

* Degradation from tte GCOS-II1 performance baseline
should be less thar 10% for COBOL-74 generated code,
Since COBOL-74 has ro "dynamic"” pointers except passed
parameters, it is essential to continue gloktal register
assignments for parameter addresses and further to ex-
tend COBOL-74 to subject base pointers (to wcrking stor-
ages, process arear, etc.) to the same register management
as parameter addresses,

* The FORTRAN sample aslso had a relatively Llow number of
LDPs (2.3%4). Again, this was partially due to the nature
of the language (no cynamic data segments), however much
credit tc reducing this figure must go the the FORTRAN-Y
optimizer, as there was parameter passing of signicance
(4 ger subroutine call)., The LDPs for the parameter ad-
dress Loading totaled 400 (4 parameters * 100 calls to
the matrix 1inversior routine). However, references to
these parameter adgress values totaled within the
innerloog one millicn. Thus, the ratio of Lloads to use
was quite Lows as well as being well secarated.

* FORTRAN cenerated coce for the multi-segment environment
(ADP) shculd have no problem meeting the ADP 66X baseline
perfcrmarce goal., Ir fact, after accounting for cache
misses and pipeline breaks., this 1inner Loop <code
improved in excess of a 10X factor.

* There should be minimal degradation when <comparing
GCO0S—-II1I environment code productions with GCOS 8
multi-segment environment ¢ode productions, The
innerloogr code in particular should not degrade at all
since there are no calls and no LDPs are within it. The
degradation, if any, would result from the new calling
sequence and the glotal pointer register loads upon each
entry to the matrix inversion, However, as previously
$tated, those events only occur 100 times.
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3.2.5 Congclyusions

1.

From the small number of programs examined it would ap-
pear that both FORTRAN-Y and CO0BOL will meet the per-
formance goals for the code generated by the compilers.
More work needs to be done to quantify performance in
this area as well as in the linkage to the I1/0 support
routines, which was not analyzed. Suggestions for this
are included in the recommendations.

Global c¢ptimizing ccmpilers will have a significant ef-
fect on performance. This is true on the 6680 where an
optimizer would recuce the number of Load Pointer in-
structicns generatec and executed. It will ke even more
significant on the ADP where an optimizer would take
advantage of the pigeline as well as reduce the number
of Load Pointer instructions.

3.2.6 Recommerdations

1.

2.

REALIZATION COF GOALS 4

Plans should be put in place to add optimizers to all
language translators which do not have them.

Possibilities of a binder changing/adding/celeting in-
structicns in addition to relocating addresses should
be studied., The possibilities include adjusting of ad-
dress fields in conjunction with the removal of address
register manipulation and recognizing references to
bound segments and changing references as a result., The
extreme to which this can be utilized is to bind pro-
grams and data into a single segment.,

Improve the code gererator 1in the COBOL-74 compiler to
improve the instructions generated for both PERFORM and
CALL. ’

Perform studies on ¢COS~III by inserting pulse instruc-
tions into the call and entry operators to determine as
much of the information on performance factors as pos=—
sible and <compare those with the hand calculated num-
bers for the recommended model.
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4.0 Migration

**%* To be supplied *x*x*

REALIZATION OF GOALS 4=-17 March 31, 1980 - 15:20



SECTION 5

DETAILED SPECIFICATIONS

1.0 Control _Structures

To be supplied,
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2.0 Intecface Conyentigns

To be supplied.,
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APPENDIX A

ADDRESS REPRESENTATION

1.0 Introduction

The representation of address wvalues is the central problem
in the design of the micro-structure for the multi-segmented
run-time environment. The use of address values 1is wide-
spread and interacts strcngly with the overall system goals.

Address values are required in the implementation and con—-
trol of:

Exception Processing

Memory Management and Software Stacks
Arguments and Parameter Referencing
Locate mode input~-oiLtput

List structure processing

Connection to run—time support

In high order languagess, these facilities show up as dis-
tinct language constructs for:

Pointers and Based Storage
Entries and Labels _
Alternate returns ard Exception conditions

Both the facilities and their high order language constructs
appear in Honreywell and <customer software. Their wide usage
is reflected 1in the larce number of system goals that are
related to the choice of address value:

Job performance and throughput

Uniform micro=-structure

User visible address values

Autcmat ic space allccation and recursion
Exception processing

Large procedures and data spaces

Support of virtual environments

Suprport of shared elements

Provide program and data integrity
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Use current hardware
Minimize ITP conversion

In the cesign process, these several aspects of address val-
ues were reduced into the following set of design criteria:

J*

The address value must be storable in user data space.,
The address value representation must be a legal slave
space data format,

The adcress value representation must allow uniform
reference to cdomain=external parameters and
domain-local data.

The substantive address value must retain its identity
throughcut being loaded into and stored from an Operand
Descriptor Register (ODR).

The address value representation must support bit level
addressability for cperands.

It is desirable that the address wvalue regresentation
use hardware with relatively high performance.

It is desirable that the address value representation
support segment level content integrity.,.

It is <cesirable that the address value representation
support an addressaktility greater than 256K words.

It is cesirable that the address value representation
support domain structures containing more than 1024
segment s,

It is desirable that the address value be valid across
domains .

The following sections ciscuss the alternate address value

representations investigated.
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2.0 NSA _Pointec

The NSA pointer 1is a hardware single word data format
containing an address field and a segment identifier. The
word has the following fcrmat:

0 2 2 3
o} 34 5
| mm——— - - | e m e o]

1 address field | segid |
| : |~ |

The address field, bits (-23, has the same format as an ad-
dress register and gives a words, byte, and bit offset into
the associated segment. The segid, bits 24=-35, identifies
the descriptor segment ind entry value for the descriptor
framing the associated segment, The segid may reference
only the linkage descriptor segment, the argument descriptor
segment, or the parameter descriptor segment, The size of
the segid field allows a maximum of 1024 entries in each of
the three descriptor segments.

There are several drawbacks to the use of the NSA pointer as
the address value representation:

1« The hardware instruction for loading a pointer (LDP) is
not one of the faster NSA dinstructions, The instruction
is inherently slowes since it includes a second memory
access to acquire thke NSA descriptor referenced by the
segid value,

2. The address field cf 24 bits Limits the useful offset
value tc a segment cf 256K words.

3. The NSA pointer is effectively Llimited to a domain of
1024 segments. A dcmain is defined by the contents of
the Llinkage descriptor segment. The segid value makes
direct reference to the Llinkage segment and is limited
to 1024 entries.

4, The NSA pointer value is not valid across domains,
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3.0 NSA Descriotor and Address Register Value

The NSA descriptor s @ hardware double-word data format
identifying the location and extent of a segment., Since both
location anc extent are 1in terms of bytes, the NSA
descripter must be accomganied by an address register value
to give the bit address cf the operand. This three word ad=—
dress value representaticn would have the format:

0 1 2 3

0 9 0 5

| | - -1

0 1 bounds | controls |
| - ; | —————————

1 1 base |
i : |- -— |

2 1 bit address | unused i
|- - - | e ——————— |

0 2 2 3

0 3 4 5

The bounds field, bits 0-19 of word 0, contains the maximum
valid byte address within the segment, The control field.,
bits 20-35 <c¢f word 0, iddentifies the working space within
which the segment resides and contains access control infor-
mation, The base field, word 1, locates the byte offset of
the segment within the werking space identified by the con=-
trol field., The bit address, bits 0-23 of word 2, has the
same format as an address register and gives the word, byte
and bit c¢ffset of the cperand within the segment,

Using a NSA cescriptor plus an address register value as an
address value representation has the disadvantage that such
a construct cannot usefully be stored into user data space.
Although the address register value and descriptor content
can be stored into operand spaces, the descriptor cannot be
loaded into a descriptor register from operand space. Sepa-
ration of the address register value in operand space from
the descriptor in a special descriptor segment raises insur-—
mountable problems in syrchronizing the two spaces and pass-
ing address values between procedures witnin a domain.,
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4.0 Segment _Table_ Index

When represented as a bit address and an offset (index) into
some descrigtor segment, the address value representation
would require a two word construct:

0 2 2 3

0 34 5

| | |

0 | bit address | unused |
| - - i jmmmmm |

1 1 segment index | unused |
|- - | ————————

0 11 3

0 7 8 5

The bit address field, bits 0-23 of word 0, has the same
formst as an address register and gives the word, byte, and
bit offset within the associated segment., The segment in-
dex, bits 0-17 of word 1, contains a value that identifies
the proger descriptor within an associated descriptor seg-
ment. The descriptor segment would have to be located by a
descriptor at some cancrical position in the linkage seg-
ment. To maintain efficiency, at Least one ODR would have to
be dedicated to framing this descriptor segment.

There are at least three drawbacks to the use of this format
for the address value regresentation:

1« The value of the address value cannot be maintained
across the loading c¢f an ODR, The associated descriptor
can be placed into an ODR and the bit address value can
be placed 1in the matching address register., There is
no place, however, in which to remember the segment in-
dex value. There is no way., therefore, in which the
address value can be reconstituted in data space.

2. This format is not especially efficient, recuiring sev—
eral instructions tc load the ODR and address register,

3. This regresentation is not valid across domains.
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5.0 Super_Pointer

The suger pcinter representation of an address value is
predicated on all of the data segments in a domains, regard-
less of access controlss being collected into a single super
segment, The super pointer locates data within- this super
segment. The super pointer is envisicned as a two word con-
struct:

0 2 2 3
0 3 4 5

| - —|m———m— -]

0 | bit address ] unused 1

| ———m—— | == mm e mmmm |

1 1 ext ended base |

i - SR ——

The bit address field, bits 0=-23 of word 0, has the same
format as an address register and gives the word, byte, and
bit offset from the base value within the associated super
segment, The extended tase field, word 1, gives the byte
offset of a datum within the associated super segment, The
super segment itself would have to be located by a super
descripter at some cancnical position within the Llinkage
segment. Tc maintain efficiency, at Lleast one ODR would
have to be dedicated to framing the super segment.

There are several drawbacks in wusing a super pointer as the
address value representation:

1. Address values represented as super pointers stored in
user data space can point only into the super segment.
Parameters passed 1into a domain are not in the super
segment, Therefore, parameter address values cannot be
represented via super pointers.

Moving parameter values 1into the invoked domain and
back to the invoking domain is inefficient.

Creating self-describing super pointers is inefficient
in that each pointer would have to be tested for type
before being utilized.

2. The collection of all data segments of a domain into a
single super segmert wvitiates any attempt to control
the access to particular segments or classes of data.
ALl of the content ¢f the super segment would have the
same access permissions as the most public cdatum in the
super segment,

3. The super pointer is not valid across domains.
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6.0 Evaluation Summacy
The following table summarizes the attributes of each possi-
ble address value representation against the stated design
criteria.

CRITERION RANK NSA DESC. TABLE SUPER

PTR. ADDR. INDEX PTR,
Storable in data space must Y N Y Y
Uniform parameter referencing must Y Y Y N
Retain identity through (DR must Y Y N Y
Bit level addressability must Y Y Y Y
Relatively high performarce 1 N Y N Y
Support segment integrity 1 Y Y Y N
Addressability greater than 256K 2 N Y Y Y
Domains exceeding 1024 segments 2 N Y Y Y
Valid across domains 3 N Y N N

Only one alternative, the NSA pointer, supports all of the
absolute requirements.
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APPENDIX B

DESIGN SOURCES

The following sections describe alternative program environ-
ment definitions considered as input to the GCOS 8 design
process.
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1.0 Myltics Program Enyirgoament
1.1 Qbjiectives of Multics Runtime Environment

Ease of prcgram develogment
Considered major and increasing factor in computer expense
System developers as well as end users
Large address space
Minimum pre-specification
High level language support
Efficient execution
Minimize copying
Minimize main storage requirement
Protection
User from himsel f
User from other users
System from user
Accicent or malice
Resource administratior and control
Centralizable or delegatable
Automatic
Flexible
Adaptability
To different needs of different users
To varying scale configurations
To future requirements
To future technology
New devices
Declining cost of storage
New prcgramming languages and techniqgues

1.2 Eeatures cf Multics Ruptime Epvirooment

Process is fundamental structure
Addressing mechanism
Memecry size limits
256K wcrds per segnent
4094 segments per grocess
Segmentation
Hardware supports use of segment number and offset
Pointer registers
ITS indirect worgc pair
Implicit use of Frocedure Segment Register
Uses of segments
Procedure segments
Single compilation, directly executable
Bound seqment, same format as compiler output
Pure procedure
Data segments
Process private
Shared
Supervisor procecure and data
Paging
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Invisitle to user

ALL instructions and modifiers work across page fault
Segments don't share pages
Page mapped 1:1 with disk record; memory encaches disk
Segments can grow

lero pages in secment allocated when stored into
Uses of paging

Efficient buffer allocation

Configuration incependence of user programs

Security and integrity
Access centrol per-segment, per-user
Derivec from information in file system
Upcated immediately if information changes
Access ccntrol dimensions
Intraprocess access control: rings
Rings 0=-7, 0 most privileged (central)
Brackets for write, read, execute, call
Hardware validation of ring number in pointer
Uses
Protection of supervisor from user
Running a program in an isolated environment
Prcviding controlled use of data or program
Per-user access cortrol: Access Control List
Modes Read, Execute, Write
Enforced by hardware on every reference
Uses
Read sharing: use of common data and program
Memory and channel efficiency
Coordination of user activity (library)
Write sharing
Process synchronization
Nondiscretionary access control: Access Isolation Mechanism
Level and category, like military security :
Uses
Prevention of accidental disclosure of information
Defaul ts make access control transparent for common case

Generated code
Stack segment (per-ring) for program temporary storage
Stack header has environment definition pointers
Hardware knows stack segment number and register convention
Does not know any fixed offsets in stack
Recursive code stardard
Threaded code with ofperator segment references
Operator segment shared by multiple processes, all rings
Operatcr segment lccated by language convention at entry
Stancard object segment format
Text (instructions. and constants)
Definitions (inward reference)
Entrypoint
Argument descriptors for each entrysoint
Symbol (optional)
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Static template (optional)
Break map (for debuggers) (optional)
Object map
Linkage section per ring
Contains ITS pointers or fault pairs
Supplies segment niumber for external reference
Static storage area ger ring
Allocated in the same place as linkage
Stancard call operatcr
Used even by assemtly language programs, via macro
Standard argument list
Header
Argument pointers
Argument descriptors
Standard data representation
ASCII character set
Machine-supported cata types
Array and string representation
Packing and alignment
Pointers
Implemented as ITS pair, can use for indirection
Packed pointers
Ring number in pcinter in storage

Supervisor
Name management
Segments searched for by symbolic name
Assigned segment number and made known
Subs equent searches for same object very efficient
Per-ring search rules control search for object
Referencing directory rule helps subsystem packaging
System command irternals available to user
Site may modify cefault search rules
Linkage and name sgpace not reset implicitly
No job step or c¢ccmmand concept
Run units, explicit termination optional
Interprogram linkage
Dynamic linking stendard
Binding optional
Prelinking optional
Unlinking of dynamic Link on demand
Run units
Superviscr call and return
Same mechanism as any other call
Inner ring programs take some care not to te subverted
Excegtion handling
Error indication
Symbclic error ccdes only, numeric values sealed
Convention is to use final argument of subroutine
Standard 1/0 stream for error messages
Query handling
Signal mechanism
Condition handlers
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Clearup handlers
Any_other handlers
Cross-ring signalling
Static condition handlers
Hardware faults handled as signals
QUIT handled as signal
Default environment action
New command Llevel
Start, release

Process terminatior

Epilogue handlers
Replace parts of environment

Sukset

Extend

Test new version

Uniform execution recardless of input stream

Stream 1/0 system

Resource Control Package
Symbolic resource names

User may create outer module

User may generate CCWs for 1/0
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2.0 cp=6_Program _fovironment
2.1 Goals

The goals of C(P-6 are t¢ provide an attractive upgrade al-
ternative to Sigma series hardware wusers by offering a sys-
tem personality very similar to CP=-V. Conversion of data
files in format and from EBCDIC to ASCII was assumed neces~-
sary but all file system and file access method
functionality of CP-V was copied as closely as pcssible.

Development of the system was to be based on using a higher
order language for most c¢f the implementation, Both external
(command language) and irternal (calling sequence) uniformi-
ty were given early attertion and high priority.

Compatibility with GCOS was explicitly of secondary impor-
tance.,

2.2 General Charactecistics

CP-6 uses the same NSA hardware as GCOS 8 but in a much more
limited way. Although stcrage managemment takes advantage of
the page tabless, dynamic¢ paging is not supported. The do-
main structure of user grograms is fixed and the user ad-
dress space is limited tc a total of 398K words.

Approximately 90% of system software 1is written in PL=-6,
Uniform interface conventions are strongly enforced.

The system is seperated into four domains and each user has
a single domain, The system domains are:

Monitcr
Ccmmand Processor

Interactive Debugger
Alternrate Shared Library

2.3 Progcess_Structuce

Each user process 1is assigned a Working Space of fixed
structure,

o A fixed page table space allocation Limits each WS to
512K words.

o The user program can access at most 398K of the WS.
o There is one domain having a fixed segment structure.
0 Segments addressatle by the user process are:

- Instruction Segment, 256K maximum size.
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- Control Segment; 14K maximum and Read=-Only.

- Data Segmerts; at most 8 segments totalling
128K
o The WS page table is used for memory control.
- Certain gortions are pre—-assigned for
functions,
- Process and/or constant data sharing is

achieved by mapping the same physical page into
two or more WS page tables. (32K of wuser in-
struction segment is normally reserved for a
"({ibrary” of shared pure procedure,)

- The user prcgram may request dynamic allocation
of pages in the page table.

- Overlay wusage in the Instruction Segment is
supported.

2.4 Program_Structuce

Compiler output is not directly executable but must be
linked with 1its supportirg subroutines into a run unit.

Large programs must be overlay structured in a conscious
WaYe

Intra-domain procedure calls are implemented using TSX in-
structions.

The user domain may CLIMB to the Alternate Shared Library
and reaches the Monitor ty PMME,

The user process may directly manipulate pages:

- allocate and free data segment space in words.,

- allocate and free real Instruction Segment pages oth-
er than those allccated via the linking process.,

~ Allocate and free virtual Instruction Segment pages
other than those allocated via the linking process.

Subroutines may be sharec only by being page mapped into the
top 32K cf the Instructicn Segment,

User procedures may be shared via special post-linking
processing tc identify them as sharable elements.

Hardware pointers and vectors are usable via both assembly
language and PL-6.

Compiler output segregates data and procedure., Pure proce-~
dure is created by PL-6 to allow sharing.
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2.5 £xception Progcessing

The standard calling seqLence provides for an alternate re-
turn point,

A one~-way inter-procedure exception path is supported by the
PL-6 REMEMBER/UNWIND feature.

Process level exceptions (ON conditions) are supported via

ASYNCHRONOUS procedures and the M$XCON (exit control) facil-
ity of the ogperating system.

2.6 System_Personality

A single JCL provides fcr both batch and interactive usage
modes.

The same system interface mechanism is available to programs
in batch and interactive execution modes.

The same I1/0 mechanism wcrks for both batch and interactive
programs. The inteactive state may be determined from file
attributes.

System search rules are the same for JCL and programmatic
procedure invocation,

System modules are dynamically replaceable without system
interruption.
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3.0 gC0s_8_SR_100C Program_Enyvironment
3.1 Brief _History

The native environment present in SR 1000 is partially
inherited from ACOS V1.1 which was based on a Toshiba=HIS
joint design effort goirg back to 1975 and 1976. It goes
beyond that base in many ways including chec kout of the mul-
tiple Shared Run Unit Litrary capability and the addition of
a limited capability Dynamic Linker,

3.2 Goals

The goals of the release which apply to the native environ-
ment include:

0 Overcome limitations of GCOS-III
- Slave memory size
Files per activity (increased PAT space)
- Program number limit
SSA module fragmentation
- Memcry fragmentation (compaction overhead)

o Utilize NSA hardware features
- Optimize real memory utilization
- Improve integrity and security

0 Support the Integrated Transaction Processing system

3.3 Geperal Characteristics

The unigue address space of a program is in a private Work-
ing Space "viewed" through WSR 7. This process—=local Work-
ing Space 1is divided into control information storage (the
process structure) and program storage. The first 64K vir-
tual addresses are reserved for control information and
descriptor storage. All wused pages in this area must be
memory resident when the process 1s not swapped oute.

Dynamic gaging of both program and shared address spaces 1is
supportec by ruling out unsupportable instruction sequences,
Explicit overlay management is not supported by the system
in native mode,

Program construction facilities treat each compile unit as a
domain. Thus all runtime services are invoked by a CLIMB in-
struction,

Segmentation is assumed in program construction and is al-

ways based on standard descriptors. This means that the
largest segment size is 256K words.
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Operating system services are reached either by a CLIMB or a
PMME ‘instruction., The interfaces are not consistent in style
and some have undesirable features such as passing codes in
registers.,

3.4 Shacing _Mechapisms

Addressability to Sharec Working Spaces is available to a
native made program via WSRs 2-6., Content of these Shared
Working Spaces may be loaded by an unrealesed utility to
Working Spaces having fixed relationshios to the WSRs.
These relationships, the status of the contentss, and other
information is recorded ina hard-core table,

An unreleased utility grovides optional static linking to
Shared domains but Run Units so linked are vulnerable to
changes in the content of Shared Working Spaces to which
they are linked, Compatibility of a Run Unit with the
Shared Working Spaces available at the time of its execution
is checked tc prevent a mis-match.

Alternatively, dynamically assigned Working Spaces may be
loaded by a loader program which s part of the
developmental scaffolding used by ITP. The Shared Working
Spaces in this method are controlled by a "sleeping"” process
which holds the Working Space, backing store, etc.

A primitive Dynamic Linker supports linking to ITP shared
software,

3.5 Process_Structure

User prcgram (process local) virtual address space may be at
least 1.6 million words.

More than 25C files may te assigned to an activity.
Construction of both user and shared programs is completely

flexible (within hardware constraints) in the use of multi-
ple segments and multiple domains.
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4.0 GCOS=IV, June 1979 Prograns Enviropment
4.1 Brief History

This environment definition was developed primarily within
the Language and Database organization in 1978 -and 1979 to
provide a base for compiler planning and particularly to es-
tablish a target environment for the development of PL=-6 for
GCOS 8., It is a slight extension of the SR 1000 environment
in that rew approaches are taken to the construction of pro-
grams which free the system designer to construct domains
from multiple compile units.

Certain conventions worked out during development of this
specification became part of SR 1000. In particular, domain
structure, null descriptcr, null pointer and revised excep-
tion prccessing conventicns were adopted.

4.2 Goals

Definition of the execution environment as seen by a compil-
er code generator was tte fundamental goal of this effort,
Support of all general features of higher order language
systems, efficient inter—module calling sequences, and maxi-
mum wuniformity of <conventions were c¢onsidered of highest
priority.

Maximum generality of skaring, uniformity, and ease of use
were alsc taken as important goals.

4.3 General _Characteristics

The most significant variation from the program construction
available previously for native mode is the assumption that
modules generated by a compiler would normally be combined
with others in a single comain. This choice was made in or-
der to employ the hardware '"pointer'" datum as the "pointer"
data tyge of several language systems. It also led to a
means of providing intimate run time supporting software
that could be shared without the use of the CLIMB instruc-
tion.

A generalization of dynamic Llinking was envisioned in which
symbolic information in every domain would provide names to
be matched against directories in each Shared Working Space.

Dynamic association of Shared Run Unit Libraries with Work—

ing Spaces and of process with Syared Working Spaces was
proposed but not fully defined in the specification.
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5.0 An_Enyvirgcnment Modeled on Multics

This ncte describes briefly how to adapt the Multics
multi-segment runtime environment to the NSA machine, in or-
der to create 3 GCOS~-IV nulti-segment runtime environment,

5.1 Eundamental_Mapping
A Multics segment will be mapped into an NSA segment.
Pointer values will be represented by NSA pointers.
Multics rings will be aggproximated by NSA domains.

Each domain will have a cescriptor segment; segment numbers
in all dcmains of a process will refer to the same segment.,
with possibly different access rights.

5.2 Detailed _Description
5.2.1 Segment Nyumker Assignmepnt_and _Pointers

Pointers can be shared between domains only if the segment
numbers are assigned didentically 1in both domains. The
Multics apprcach to this problem involves several rules:

1. Pointers are never valid after shutdown and reboot.

2. Pointers are valid across processes only 1in a special
case: system-wide assignments of segment numbers to
supervisor segments at bootload time. Thuss, a pointer
to a supervisor segment is valid in all processes.

3« Pointers are freely passed within a processs, but it is
the process's own resposibility to garbage collect
pointers within a dcmain (ring)., That is, a process can
construct a pointers, hide it somewhere, and release the
segment number’ the pointer is invalid but the system
does not automatically invalidate the pointer,

Segment numbers O0~-N will be reserved for supervisor segments
in all processes (N set at bootload time). Then, segment
numbers N+1 to N+M will be reserved for per-work station
segments, where M is variable according to work station and
determined at process creation time. The rest of the seg-
ments in the process are assigned segment numbers on a
first-come, first—-served basis.

This does not preclude two processes sharing a procedure

segment, assigning it different segment numbers in different
processes. The procedure will, however, require a linkage
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section which is impure and per-domain which contains seg-

ment numbers needed by the executable code to refer to
environment and for inward reference.

5.2.2 Structures Adopted from the Muyltics Enviconment -

Stack

Stack frame

Linkage Offset Table
Combined Linakge Area
Reference Name Table
Known Segment Table
Argument Llist header
Argument List
Argument descriptor

5.2.3 Progcedure _call

its

One procedure will call another according to the following

scenario. (Suppose A calls B):

1. Prccedure A prepares an argument list for B 1in
stack frame,

2. Prccedure A obtains a pointer to procedure B.

3. Procedure A enters the CALL operator.

A's

4, The CALL operator saves the return point in A's stack

frame and enters prccedure B,

S. Prccedure B performs a standard entry sequence which

- Builds a stack frame for B

- Establishes addressability for B8's linkage section

- Establishes addressability for B's arguments

Arguments will be passec as they are 1in Multics, not

via

CLIMB. The argument list will be a Llist of NSA pointers to

argument values, stored ¢n the software stack. If CLIMSB

is

useds it will not be usec for argument passing. The parame-
ter stack is not used. The only CLIMB opcode will be in the

operator segment which cocntains the call operator,

5.2.4 Compiler Output

Pointers may be passed between domains. The output of a
compiler s a file which <contains several sections:
executable ccde, linkage definitions, linkage section tem=-
plate, symbol section, ard object map. Output from separate
compilations can be combined into one segment by a "binder."
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5.2.5 Differepces from Myltics due to NSA

Compiler output is pure procedures, threaded code. A process
may have many domains, but there is a limit of 1024 segments
per processS. (Multics had this {imit for many years: most
processes still operate within it. Administrative action
can increase the size to 4096 for special processes.)

Pointers do not carry a ring number., This requires that all
pointers input to a domain be validated by the callee. Such
code was once written for 645 Multics: its construction is
fraught with subtleties and dangers. On the other hand, we
understand the problem,

Since NSA dces not provide an ITS pointer, all idindirect
addressing must be replaced by explicit register loading.

The size of a segment is 256K words, same as in Multics, un-

less super descriptors are used, These can be used if there
are some limitations, like only one per processe.

5.3 What Must be Built
5.3.1 Supervisor_Services
Nape_Management
Per~-domain reference\name management.

Per-process and per-work—station segment number management.

Per-ring search rules.
Interprogram_Linkage

Dynamic linking
Unlinking of dynamic Llirk on demand
Run units

Superyisor_call_and return

Write—-arounds to G(0S=-8 functions must be provided so that
the user program can call wupon the supervisor by a lLanguage
call instead of via a MME, The supervisor routines must take
some care not to be subverted if pointer arguments are
passeda. '

Exception _Hapdling

Software convention must be established for
érror code
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Standard 1/0 stream fcr error messages
Query handling
Signal mechanism
Conditicn handlers
Cleanup handlers
Any_other handlers
Cross=-ring signallirg
Static condition handlers
Hardware faults hancled as signals
Default environment action
QUIT
Process termination
Epilogue handlers

5.3.2 Language_Support

Standard _Operators

The standarc <call, push, and return operators must be
written, If multiple ogerator segments are permitted in a
domain then the conventicns for making the various operator
segments addressable must be worked out.

Linker

The: standarc linker must be designed. This requires the
following pieces:

Fault handling

Definition search

Linkage space assignment

Linkage temglate loading

Process restart

8inder

A binder will be requirec for the initial release, in order
to conserve segment numbers,

Intecface _to _langyage_cuntime I/0Q

Efficiency of the C0BOL and FORTRAN I/0 packages will be im=-
portant, and special care must be given to making this func-
tion efficiert.
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6.0 Qtherc Inpguts

TBS by GA Mann,
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APPENDIX C

DESIGN EVALUATION

The GCOS Multi-Segment Runtime Environment Committee
evaluated the alternative design strategies proposed for the
GCOS 8 MSRTE and chose an approach which was an evolutionary
deve lopment from the current 4VX product., The major reason
for this choice was the feeling that no other approach could
be implemented for delivery at the end of 1981,

1.0 Maior _Approaches
11 Multics_Approach

The Multics approach is a low risk approach to satisfying
most of the functional design objectives for the runtime en-
vironment’; we know this because Multics satisfies most of
these objectives and already works. Performance parity with
GCOS~-1II is gprobably not possible with this approach, or any
other agproach considerec: but predicting the performance of
a Multics—apgroach envircnment was not pursued in detail.

The amount of code to be written for the Multics approach is
known toc be large; compiler <code generators for all compil-
erss, binders, linkers, and supervisor services must be built
as described above. This amount of code is about the same
for all proposed implementations, but the additional work
for the Multics approach would be the re-implementation of
4VX/ITP and other GCOS code to work with the new environ-
ment .

This approach was not given a large amount of consideration.
Once we determined that the complete job was very large, and
could nct be reasonably gromised for end of 1981, we turned
to other schemes, Another reason we did not pursue this ap—-
proach too far was that it used NSA pointers and the LDP
opcode heavily, and at the time we were in hopes of
discovering an approach which did not suffer from the per-
formance problems of this method.
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1.2 CP=6_Apprgach

We really didn't evaluate this approach, because (P-6 does
not provide sufficient support for Llarge address spaces.
The question of how to alter the CP-6 environment to support
Larger address spaces was not investigated.

1.3 gC0S_8_SR 1000 Environment

Although code generators for all languages, an A-unit merg-
er, and a B=-unit binder must be written, it is possible that
some use may be made of the existing loader, and the dynamic
Linking and nmemory management software used by ITP.

Compared to the Multics approachs, this method might be Lless
code, or it might be more, depending on how much old code
can be adapted to the new circumstances. It 1is definitely
more design: many complex features of the RTE would have to
be invented, which coulc be copied from Multics if we took
the Multics approach.

1f we assume that ITP is going to be kept with minimum
change, then the desire for a uniform environment will have
a strong influence on the shape of the MSRTE. Several
strategies used by ITP, such as process structure, memory
management, per—opening domains for every use of a file,
cannot be accommodated within many of the possible RTEs,

Some of the committee menbers expressed the strong desire to
avoid any caronicalizaticn of domain internals’; that is, it
would be possible to have many different internal structures
in different domains, This was advanced as an advantage to
program cevelopers since the effects of an error would not
propagate.

1.4 GCOS=1V _June 1973 Environgent
This environment was considered to be a minor variant of SR

1000 and our eventual design adopted features as appropri-
ate.
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APPENDIX D

COMPETITIVE COMPARISON
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MULTI-SEGMENT SHARED RUN-TIME ENVIRONMENT

0 GOALS & CONSTRAINTS
o MACRO-STRUCTURE
o MICRO-STRUCTURE

PERFORMANCE

o
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GOALS

GOAL

MIGRATE WITHOUT HOL SOURCE CHANGES
ACCOMMODATE GCOS-I11 EXECUTABLE FORMATS
ACCOMMODATE GCOS-TIT TSS, TDS, & DMIV-TP
JOB PERFORMANCE AT LEAST 90% OF GCOS-111
THROUGHPUT AT LEAST 90% OF GCOS-I11

USER VISIBLE ADDRESS VALUES

AUTOMATIC SPACE ALLOCATION AND RECURSION
EXCEPTION PROCESSING

DYNAMIC SUBPROGRAM INVOCATION

SUPPORT LARGE PROCEDURES

SUPPORT LARGE DATA SPACES

SUPPORT DISTRIBUTED SYSTEM ARCHITECTURE
SUPPORT A VIRTUAL ENVIRONMENT

SUPPORT SHARED ELEMENTS

PROVIDE PROGRAM AND DATA INTEGRITY
PROVIDE USER ACCESS CONTROL

USE CURRENT HARDWARE

RANK

MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST

RESPONSE

YES
YES
YES
TBD
1BD
YES
YES
TBD
1BD
YES
TBD
YES
YES
YES
YES
YES
YES
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GOALS (CONTINUED)

GOAL

UNIFORM MICRO-STRUCTURE ENVIRONMENT
UNIFORM MACRO-STRUCTURE PERSONALITY
PROCESS SYNCHRONIZATION

SUPPORT LARGE NUMBER OF FILES |
SUPPORT LARGE NUMBER OF TERMINALS
SUPPORT MULTIPLE VERSIONS OF SAME MODULE
SUPPORT DYNAMIC SOFTWARE INSTALLATION
EXTENDIBLE TO FUTURE PRODUCT DIRECTIONS
SUPPORT ARRAYS LARGER THAN 256K

PROTECT HONEYWELL PRICED SOFTWARE
MIGRATE WITHOUT ASSEMBLY SOURCE CHANGES
TASKING

RANK

LS o0 W W RN N NN -

RESPONSE

YES
YES
YES
YES
YES
YES
YES
YES
NO

TBD
TBD
TBD
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CONSTRAINTS

RELEASE WITH 5V
MINIMIZE CONVERSION
USE CURRENT HARDWARE

SUPPORT HIGH ORDER LANGUAGE FUNCTIONS
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SUBCOMMITTEES

TWO SUBCOMMITTEES WERE FORMED.

1. MICRO-STRUCTURE SUBCOMMITTEE
DEFINE THE INTERNAL ENVIRONMENT
o THE STRUCTURE INTERNAL TO A DOMAIN

0
0

CALLING SEQUENCES WITHIN & BETWEEN DOMAINS
LINKAGE SEGMENT LAYOUT

MEMBERS :

DICK WILSON (CHAIRMAN), JOHN WERTZ, TOM VAN VLECK, FRANK LITTLE

2, MACRO-STRUCTURE SUBCOMMITTEE
DEFINE THE EXTERNAL ENVIRONMENT

0

0]
0
0
0

EVERYTHING EXTERNAL TO THE DOMAIN - PROCESS STRUCTURE, OBJECT UNIT
AND RUN UNIT STRUCTURE, WSQ STRUCTURE, . . .

RUN TIME SUPPORT SERVICES - DYNAMIC LINKER, ETC.

PROCESS & DOMAIN CREATION MECHANISMS

SHARING MECHANTSMS JCL, PROCESSORS, . . .
HANDLING OF WSR'S & SEARCH RULES

MEMBERS:

CHARLIE COFLIN (CHAIRMAN) GEORGE MANN, AL BEARD
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EXTERNAL ENVIRONMENT

1. USAGE OF WORKING SPACE REGISTERS TO SUPPORT SHARING

2. TYPES OF SHARING

3. CONSTRUCTION OF THE VIRTUAL ENVIRONMENT



WSR USAGE FOR SHARING

. e
: 7
R ==
llgem e"’ | |
¢‘on3,
SYSTEM % SUE, | DYANIC  NORKSTATION | PROCESS
( perety | SIS | SHRE | USER LOCAL | LOCAL
Kepnel Shared | sormipge SHARING

WSV - WSR%ARE COMMON TO ALL PROCESSES
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TYPES OF SHARING

1. DOMAIN INSTANCE SHARING

- LINKAGE IS SHARED
ALL SEGMENTS OF DOMAIN ARE SHARED

CLIMB ///////////,,/% PROCEDURE
DATA

LINKAGE .

7

N

NS

SEGMENT '



2,

DOMAIN PA

- LINKAGE SEGMENT IS NOT SHARED

TTERN SHARING

TYPES OF SHARING

(CONTINUED)

- DESCRIBES BOTH SHARED AND UNSHARED SEGMENTS

CLIMB 3

PROCESS LOCAL

JESS——

5

LS;

LOCAL
DATA

N
P

SHARED

PROCEDURE

SHARED
DATA

PROCESS LOCAL

CLIMB

521 <

LOCAL
DATA




3. SEGMENT SHARING
- IF PROCEDURE SEGMENT, THEN:
o ALL DATA REFERENCES ARE TO PARAMETERS OR DYNAMIC DATA
o PURE PROCEDURE
- IF DATA SEGMENT, THEN:
o MUST BE GATED

PROCESS LOCAL SHARED PROCESS LOCAL
LSl S PROCEDURE & L82
OR
DATA
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DEF - A-UNIT

A FILE OF OBJECT TEXT PRODUCED BY COMPILERS & ASSEMBLERS

DEF - B-UNIT
A FILE THAT CONTAINS A WORKING SPACE IMAGE
o ONE OR MORE DOMAINS
o LINKAGE, PROCEDURE, DATA FOR THOSE DOMAINS

o SKELETAL PAGE TABLE
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CONSTRUCTION OF VIRTUAL ENVIRONMENT

SOURCE
v

{ COMPILER

l

A-UNIT A-UNTT

!

MERGER
(OPTIONAL)

|

A-UNIT

A-UNIT . . .
DIRECTIVES T / '
T

-UNIT BUILDER

!

B-UNIT ~ OR B-UNIT LIBRARY

|

WORKING SPACE
ASSTGNMENT

A 4

(WSR, WSN, B-UNIT, . . )

A 4

PROCESS INITIATION

v
PROCESS
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CONSTRUCTION OF VIRTUAL ENVIRONMENT (CON'T)

SOURCE

COMPILER

A-UNIT

JCL

$ COBOL
$ PRMFL SOURCE
$ PRMFL A-UNIT

FUNCTIONS

- COMPILES ‘OR ASSEMBLES SOURCE

- DEFINE INITIAL SEGMENT CONTENTS
- SUPPLY RELOCATION INFORMATION

- SUPPLY DEBUG SCHEMA
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CONSTRUCTION OF VIRTUAL ENVIRONMENT (CON'T)

A-UNIT;  A-UNIT,

\

A-UNIT MERGER

!

A-UNIT

JCL

$ A-MERGE
$ PRNFL  A-UNIT,

$ PRMFL  A-UNIT,

$ PRMFL OUTPUT A-UNIT

FUNCTIONS

- COMBINES SEGMENTS
- PERFORMS RELOCATION
- ADJUSTS SYMBOLIC SEGMENT REFERENCES
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CONSTRUCTION OF VIRTUAL ENVIRONMENT (CON'T)

DIRECTIVES A-UNIT;  A-UNIT,

|/

B-UNIT BUILDER B-UNIT

B-UNIT

JCL

$ B-BUILD
$ PRMFL A-UNIT;

$ PRMFL A-UNIT,

$ DATA
DIRECTIVES
$ ENDCOPY

FUNCTIONS

CREATES DOMAINS

ASSIGNS VIRTUAL SPACE

RESOLVES REFERENCES

CREATES DIRECTORY OF DOMAINS AND GLOBAL SEGMENTS

- ADD, DELETE, OR REPLACE A-UNITS IN AN EXISTING B-UNIT
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CONSTRUCTION OF VIRTUAL ENVIROMMENT (CON'T)

B-UNIT ~ OR  B-UNIT LIBRARY

\ /

'WORKING SPACE ASSIGNMENT

i

JCL

$ RUN
§ PRMFL  B-UNIT
§ SHRNM SHARE LEVEL, B-UMIT LIBRARY

FUNCTIONS
- ASSIGNS WSR AND WSN

- CREATES A BACKING STORE FILE

- CREATES A DIRECTORY OF DOMAIN AND SEGMENT NAMES FOR
ALL B-UNITS IN WS
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CONSTRUCTION OF VIRTUAL ENVIRONMENT (CON'T)

ASSIGNED WORKING SPACE

PROCESS INITIATION

P§£tESS

JCL

$ RUN
$ PRMFL  B-UNIT

FUNCTIONS
- ASSIGNS KPX
- BUILDS PROCESS STRUCTURE-
- LOADS WSR's

- CLIMB's TO INITIAL ENTRY POINT
(GENERATES DYNAMIC LINKING FAULT)
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CONSTRUCTION OF VIRTUAL ENVIRONMENT (CON'T)

DOMAIN OR SEGMENT NAME

v

DYNAMIC LINKER

%
ENTRY OR SEGMENT DESCRIPTOR

INVOCATION

- DYNAMIC LINKING FAULT REFERENCING A DOMAIN

- REFERENCE TO A SEGMENT EXTERNAL TO THE B-UNIT

FUNCTIONS

- USE SEARCH RULES TO DETERMINE THE ORDER OF WSRs TO
SEARCH

- SEARCH DIRECTORY OF DOMAIN AND SEGMENT NAMES FOR EACH WSR

- IF B-UNIT CONTAINING DESIRED DOMAIN OR SEGMENT NAME HAS
NOT BEEN LOADED, THEN ACTIVATE B-UNIT
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CONSTRUCTION OF VIRTUAL ENVIRONMENT (CON‘T)

WSR B-UNIT

L/

B-UNIT ACTIVATION

LOADED B-UNIT

INVOCATION

_ FROM DYNAMIC LINKER

FUNCTIONS

- FIX WSR VALUES IN ALL DESCRIPTORS

IF NOT FIRST B-UNIT IN WS, THEN RELOCATE VIRTUAL ADDRESSES

INITIALIZE B-UNIT ON BACKING STORE FILE

ACQUIRE REAL MEMORY WORKING SET

RESOLVE SEGREF'S VIA DYNAMIC LINKER
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B-UNIT LIBRARY

FILE SYSTEM LIBRARY DIRECTORY

B ) <:%E:) Bs B-UNITS

DOMAINS DOMAINS DOMAINS
Dy D3 Dy
Dy Dy
Dg
SEGMENTS SEGMENTS SEGMENTS
S1 - S
S3

AFTER ASSIGNMENT OF LIBRARY TO WORKING SPACE:

DOMAIN DIRECTORY SEGMENT DIRECTORY
D By S1 By

Dz B 1 82 B3

D3 Bo S3 B3

Dy Bz

Ds B3

Dg B3
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DYNAMIC LINKING

WSR2

DOMAIN DIRECTORY
Dy Bl __
Do B
D3 B  E.D,
Dy Bz  E.D.
D Bz  E.D.
Dg Bz  E.D.

$1 By __
S92 Bz S.D
S3 Bz S.D

WSR7
DOMAIN DIRECTORY
X B ENTRY

LS (X)
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MACRO-STRUCTURE - FUTURE WORK

o DEFINE FORMATS FOR A-UNIT, B-UNIT

o DEFINE WORKING SPACE FORMAT

o DEFINE SEARCH RULES FOR DYNAMIC LINKING
o DEFINE REQUIRED JCL

o DETAIL SHARING CONTROL MECHANISMS

o COMPLETE SPECIFICATIONS FOR:

- A-UNIT MERGER

- B-UNIT BUILDER

- B-UNIT MERGER

- B-UNIT ACTIVATOR

- PROCESS INITIATION

o SPECIFY DYNAMIC LINKING MECHANISMS

o SPECIFY DYNAMIC LOADING MECHANISMS

o DEFINE SYSTEM TABLES AND DIRECTORIES REQUIRED TO SUPPORT SHARING
& LINKING MECHANISMS |

o SPECIFY USE OF FILE SYSTEM FOR LIBRARIES

o TASKING
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. AL ENVIRONM

ADDRESS VALUE REPRESENTATION
- IMPORTANCE

- OPTIONS CONSIDERED

- COMPARISON

- CONCLUSION

INTERNAL STRUCTURES
- SOFTWARE STACK
- PROCEDURE SEGMENT LAYOUT

PERFORMANCE
- NON-ADP
- ADP

FUTURE WORK
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REPRESENTATION OF ADDRESS VALUE IS IMPORTANT BECAUSE:

HIGH ORDER LANGUAGES USE ADDRESS VALUES FOR:

POINTERS EXCEPTION PROCESSING
ENTRIES STACK CONTROL INFO
LABELS PARAMETER REFERENCING
ALTERNATE RETURN ARGUMENT LIST BUILDING
BASED STORAGE LOCATE MODE 1/0

OUTER BLOCK REFERENCING
CONNECTION TO RUNTIME

BECAUSE THESE FACILITIES ARE WIDELY USED, THEY MUST BE IMPLEMENTED EFFICIENTLY, BE
EASY TO USE, AND MUST BE SUFFICIENTLY POWERFUL TO SUPPORT MULTIPLE HOL USE.
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ADDRESS VALUE OPTIONS CONSIDERED

1.

NSA POINTER

DESCRIPTOR

+

AR VALUE

TABLE INDEX

SUPER POINTER

BIT ADDR

SEG 1D

BYTE BDRY

FLAGS

BASE

BIT ADDR

BIT ADDR

SEG INDEX

BIT ADDR

EXTENDED BASE

REQUIRES

LINKAGE SEGMENT

DESCRIPTOR SEG

“CANONICAL" DS
+] ODR

“CANONICAL" SUPER DESCRIPTOR
+1 0DR
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EVALUATION OF ADDRESS VALUE REPRESENTATION

'
CRITERIA Eig DESC.  TABLE  SUPER
1. STORABLE IN DATA SPACE Y N Y Y
2. UNIFORM REFERENCE TO PARAMETERS INDEPENDENT Y Y Y N
OF DOMAIN PACKAGING

3. RETAIN IDENTITY WHILE IN ODR Y Y N Y

L4, SUPPORTS SEGMENT-LEVEL PROTECTION Y Y Y N

5. CAN ADDRESS > 256K N* Y Y Y

6. CAN HAVE > 1024 SEGMENTS . N* Y Y Y
/. RELATIVE HIGH PERFORMANCE | N? Y N Y

8. VALID ACROSS DOMAINS W Y N N

9. BIT LEVEL ADDRESSABILITY Y Y Y Yy

————————— ABOVE THIS LINE, N IS UNACCEPTABLE
*  CAN BE IMPROVED BY HARDWARE CHANGE
?  SOME HARDWARE IMPROVEMENT POSSIBLE
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CONCLUSTONS ON ADDRESS VALUE REPRESENTATION

CAN'T USE DESCRIPTOR + OFFSET
- NOT STORABLE IN DATA SPACE

CAN'T USE TABLE INDEX
- LOADING TO ODR LOSES SEGMENT NUMBER
- REQUIRES SEVERAL INSTRUCTIONS TO LOAD

CAN'T USE SUPER POINTER

- NO WAY A PROCEDURE CAN TELL WHETHER TO REFERENCE PARAMETERS RELATIVE TO
THE SUPER DESCRIPTOR FOR THE DOMAIN OR RELATIVE TO THE PARAMETER STACK

- COMPROMISES INTRA-DOMAIN SEGMENT PROTECTION, SINCE ALL DATA REFERENCE IS
THROUGH ONE DESCRIPTOR

ONLY ALTERNATIVE LEFT IS NSA POINTER
- DESPITE PERFORMANCE PROBLEM
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SOFTWARE_STACK

EACH DOMAIN HAS A SOFTWARE STACK TO CONTROL INTRA-DOMAIN TRANSFERS AND
EXCEPTION PROCESSING

ROOT FRAME

- CREATED ON DOMAIN ENTRY

- POINTS TO EXCEPTION PROCESSING ARRAY
- CONTROLS STACK SPACE

- UPDATED DURING EVERY CALL

BASIC FRAME

- REGISTER SAFE STORE

- PARAMETER HANDLING

- AUTOMATIC STORAGE SPACE
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SINGLE PROCEDURE SEGMENT

ENTRY
POINT___

ENTRY
POINT___

POINTER
AREA

ENTRY POINT
DATA

PROCEDURE &
CONSTANTS

ENTRY POINT
DATA

PROCEDURE &
CONSTANTS

PROCEDURE SEGMENT LAYOUT

MERGED PROCEDURE SEGMENTS

POINTER
AREA A

PROCEDURE A &

ENTRY POINTS

POINTER
-~ AREA B

PROCEDURE B &
ENTRY POINTS
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FUTURE WORK

STACK FRAME FORMAT & CONTENT

STANDARD CALLING SEQUENCE

ARGUMENT LIST FORMAT

EXTERNAL ENTRYPOINT CONVENTIONS

ADDRESSING CAPABILITIES WITHIN OBJECT UNIT

PLS VS. CANONICALIZING OF LINKAGE SEGMENT

HOW A PROCEDURE FINDS ITS LINKAGE

HANDLING OF LARGE ARRAYS

EXCEPTION HANDLING

SUPPORT OF ON UNITS AND SIGNALLING

SEGMENT LEVEL SHARING

OPERATOR SEGMENT ADDRESSING, SHARING, LOCATION
RUNTIME SYMBOL TABLE & DATA DESCRIPTION SCHEMA
DYNAMIC LINKING SUPPORT

/0 SYSTEM INTERFACE

TASKING SUPPORT

CALL/CANCEL SUPPORT

PRIORITY SEGMENTATION
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SUMMARY

WE HAVE EXHAUSTIVELY INVESTIGATED THE USE OF THE NSA POINTER AS THE ADDRESS
VALUE.

PERFORMANCE MAY BE A PROBLEM.

A UNIFORM SYSTEM MICRO-STRUCTURE (CALLING SEQUENCES,ETC.) IS BEING INVESTIGATED
BASED ON THE USE OF NSA POINTERS.

A FIRST CUT HAS BEEN MADE OF THE DEFINITION OF SYSTEM MACRO-STRUCTURE
(JCL, ETC.) |

MUCH DETATLED WORK REMAINS FOR BOTH AREAS.
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