
GCOS-8 SOFTWARE DESIGN SPECIFICATION

by:aa~-----
A. L. Beard, Chairman
Mu,lti-Segment Environm.ent Team

I s,s u:e .. 0 ate : M a·r ch 31,, 1 9 8 0
Re.v i s i on D at e : M a r ch 3 1 , 1 9 8 0 H 0 NE Y WE LL P R 0 PRI.E. T AH Y

PREPARED BY:

A. Beard
c. Coflin
f. Little
G. Mann
T. Vanvleck
J. Wert"2
J. w·itson

APPROVED BY:

G. A. Gillette---~---- --------------
'Director, Multi-Environment Development Center

K. E. Norland ______ .. __________________________ ...,_....,_

Director, Software Systems Engineering

J. R. Roe ---~---------------------... _...._._ __ __,.. ____ _
Director, GCOS Oevelcpment Center

1. 0 Purpo.se

CONT .ENT S

Section 1
INTRODLCTION

.
Section 2

GOALS AND CONSTRAINTS

Page

·• . ·• 1-1

1.0 System Goals • • • • • • • • • • • • • •••• 2-1
1.1 Pare Protection • • • • • • • • • • • • • • • 2-1

1.1.1 M"igration Support 2-1
1.1.2 GCOS-III Slave Moce Accommodation • • • 2-2
1.1 •. 3 Performance Relative .to GCOS-III... 2-2

1.2 Ease of Use and Programrrer Productivity ••• 2-2
1.2.1 U.niform Environmer.t 2-2
1.2.2 Support High Order Language

Conceptual Environments • .. • • • • • • • • 2-3
1.2.3 Support Very Large Applications .. • 2-3
1.2.4 Support Multiple \Jersions of the Same

S o f t wa r e E l e m e n t • • • .. • • • • • • • .. • 2- 3
1.3 Technological Image 2-3

1.3.1 Distributed Systems Architecture
S up i:: or t • • • .• • • .. .• • • • • • • .• 2- 3

1.3.2 Virtual Environmert • • • • • • • • • .. 2-4
1.3.3 Shared Elements 2-4
1 .. 3.4 System and Applications Security 2-4
1.3.5 Dynamic Software Installation 2-4

1.4 Cost Control ••••••••••••••••• 2-4
1.4.1 Use Current Hardware • • • • • • • .. • • 2-4
1.4.2 Extendible to Fut~re Product

Directions 2-5
1.4.3 Protect Honeywell Priced Software ••• 2-5

1.5 Goal Summary. • • 2-6

2.0 Design Constraints
2.1 Business Corstraints

2 ... 1 .. 1 Release with SR2000 (5V) • ·• . .
i

.. . . -·
·• . -· . .. ·•

2-7
2-7
2-7

2. 2

2.3

CONTENTS <cont)

2 .. 1. 2 Minimize Conversi en . • • • . • • • • •
Hardware Ar chit e c tu re Constraints • . . . • .
2.2.1 A cc es s Control • . • • • • • • . • .
2.2.2 Domains • • • • • • • • .. • .. •
High Order Language Constraints • . . • • • •
2.3.1 Automatic Space All oc at ion and

Rec·ursion
2.3.2 Dynamic Space Altccation by the User .. .
2.3.3 User Visible Address Values ••••••
2.3.4 Exception Pr6cessing ••••••••••
2.3.5 Data Space Initialization •••••••
2.3 .. 6 Process Synchronization
2. 3. 7 Task i ng • • • • • • • • • • • • .• • • •
2.3.8 Subprogram Invocation •••••••

Sect ·ion 3
DESIGN CVERVIEW

1.0 System Concepts •••••
1.1 Conceptual l"odel
1.2 System Organization •

. . . ·• ..
·•

. :•
2. 0 System Macro-st ru ct u re • .. • • .• • • • • • • •

2.1 The Virtual Environment • • • ••••
.2.2 The Sharing Mechanism

2.2.1 Domain Instance S~aring •••••••
2.2.2 Domain Pattern Sharing •••••••••
2.2 .3 Segment Sharing

2.3 Working Space Packaging •••••••••
2.3.1 Overview ••••• ~ • • • •
2.3.2 Packaging Elements • • • •••

2.3 .. 2.1 A-unit
2.3.2.2 a-unit • • • • • • ••••••
2.3.2.3 Libraries ••••••••••••

2 • 3 • 3 C om p i l i n g • • • • • • • • • • • • •
2. 3. 4 A-uni t Mer g·i n g • .. • • • .. • • • • •
2.3.S 8-unit Builder •••• ,
2 .. 3.6 Working Space Str~cture

2.3.6.1 Segments Required in All
Working Spaces

2.3.6.2 Segments Recuired in Process
Working Spaces

2.3.7 Assigning a a-unit to a Working Space
2.3.8 Working Space Register Usage ••••••

2. 4 Pro c es s Exe cut i on • • • • • • • • • • •
2.4.1 Process Initiatior •••••••••••

i i

Page

- 2-7
2-7
2-7
2-9
2-9

2-9
2-10
2-10
2-10
2-10
2-11
2-11
2-11

3-1
3•1
3-1

3-3
3-3
3-3
3-4
3-4
3-4
3-5
3-5
3-6
3-6
3-7
3-8
3-8
3-8
3-8
3-9

3-9

3-10
3-11
3-11
3-12
3-12

CONTENTS <cont)

2.4.2 Dynamic Linking
2.4,,.2.1 Search Rules . . . • •
2.4.2.2 Dynamic Linking to Dama ins •
2.4.2 .• 3 Dynamic Linking to Segments •

2.4.3 8-un i t Activation
2.5 Inter-Frocess Communication and

Synchronization .
3.0 System Mi c r o- st ru ct u re

3.1 Standard Segments
3.2 Software St ac k Conventicns .

3.2.1 Root Frame . •
3.2.2 Sas i c Frame

3.3 Operators • •
3.4 Int r a - d om a i r Calling Se cuence •

3.4.1 S1;broi;tine Linkage •
3.4.2 Parameter Passing •

3.5 Program Segment Structure • . .
3.5.1 Pointer Area • • . • •
3.5.2 Entry Point Structure • . ..
3.5.3 P roe e cure Segment Merging •
3. 5. 4 Data Segment Merging •

3.6 Exception Processing
3.6.1 E.xc e pt ion Processing Pointer Array •
3.6.2 Exception Processing Entry Descriptors
3.6.3
3.6.4

CN CONDITION Handlers
Exception Processing Flow

Section 4
REALIZATION OF GOALS

1.0 Introduction • . .
2.0 Goal Realization Summary • --
3.0 System Performance Estimates

3.1 Perforreance Case Studies
3. 1 • 1 Summa ry .. • •
3 • 1 • 2 Con c l us i on s
3.1.3 Case Study 1
3.1.4 Case Study 2
3.1.S Case Study 3
3 .. 1.6 Case Study 4.

3.2 Object Code Analysis

• . ..
·• ..

3 • 2 • 1 Sour c e P r o gram De s c r i pt i on s
3.2.2 Types of Compariscn

i i i

. • • . • .

•

•

. . •

•

. .

.

•

Page

3-13
3-13
3-13
3-14
3-15

3-16

3-17
3-17
3-17
3-18
3-18
3-19
3-19
3-19
3-19
3-20
3-20
3-20
3-21
3-22
3-22
3-23
3-23
3-23
3-23

4-1

4-2

4-3
4-3
4-5
4-6
4-7
4-8
4-9
4-11
4-13
4-13
4-13

CONTENTS <cont>

Page

3.2.3 lnformation Obtaired • • • • • • .. 4-14
3. 2 .. 3. 1 Dynamic • • .. • • ·• • • .. • ·• 4-14
3.2.3.2 Static .. . • • • 4-14

3.2 .• 4 Results • • .. • • • • . • • .. • 4-14
3.2.5 C enc l us i on s .. • .. • • • • • • • 4-15
3 .. 2.6 Recomrr.endations • .. • .. • . . • • • • • 4-16

4.0 Migration • . • • . .. • • • • • • • • • 4-17

Section 5
DETA1LED SP EC IF l CA TI 0 NS

1. 0 Cont rot St rue tu res • • • • • • • . • 5-1

2.0 Interface C on v e n t i on s • .. • • • • .• • • • • 5-2

Appendix A
ADDRESS REPRESENTATION

1.0 Intro duct i c n • • • • • • .. • • • • • • • • • A-1

2 .. 0 NSA Pointer • ·• .. • • • • • • .. • • . • • • • • • A-3

3.0 NSA Oe.scri i=tor and Address Register Vat ue .. • • A-4

4.0 Segment Table Index • • • • .. • • .. • • A-5

s.o Super Point er .. • . • • • • • • .. • • • • • • • A-6

6.0 Evaluation Summary • • . • • • • • • . .. • • • .. A-7

Appencix B
DESIGN SOURCES

1. 0 Multics Program Environment .• . • • .. • • • • 8-2
1 • 1 Objectives of Multics R 1.n ti me En v i r o nm en t • B-2
1 • 2 Features of Multics Runtime Environment 8-2

2.0 CP-6 Program Environment .. "' .• . • • .. • • • 8-6
2.1 Goa ls .. • • . • • • ·• • • • • 8-6
2.2 General Cha rac teri sti cs • • • • • .. • 8-6
2.3 Process Structure .. • • . • • • • • • 8-6

iv

CONTENTS (cont)

Page

2.4 Program Structure • • . • • • • - B-7
2.5 Exception P roe es sing ·• • • • • • • B-7
2.6 System Pers on a l i t y ·• B-8

3.0 GCOS 8 SR 1000 Program Environment • • . • • B-9
3.1 Brief History • . • • B-9
3.2 Goals .. • • . • • 8-9
3.3 General Characteristics • • • • B-9
3.4 Sharing Mechanisms .. • . . • • • B-10
.3.5 Process St rt.ct u re • . . • • . • • B-10

4. 0 GCOS-IV, June 1 979 Program Environment • • • • B-11
4.1 Brief History • .. • .. • . ·• • B-11
4.2 Goals . • • • • • B-11
4. 3 General Characteristics • . • .. • • . B-11

5.0 An Environment l"odeled on Mdtics • • B-12
5.1 Fundamental Mapping • • • • • • • . B-12
5.2 Detailed De script ion • • • . . • • • ·• B-12

5.2.1 Seg.me nt Number Assignment and Pointers • B-12
5.2.2 Structures Adopte c from the Multics

Environment • • • . • • . • • • • • B-13
5.2.3 Pro c e cure call • • • • • • • B-13
.5.2.4 Ccmpi ler Output ,. . .. • • .. • • • • B-13
s.2.s Oif fe rences from ~ultics due to NSA • B-13

5.3 What Must be Bui l t • .. • ·• • ·• .. B-14
5.3.1 Supervisor Services • • • • • • B-14

Name Management . • . • • . • B-14
Int erprogram Lirkage . • • ·• • .• B-14
Supervisor call and return • • • a-14
Exception Handling • .. • • • • • • • B-14

S.3.2 Language Support . . . • 8-15
Stardard Ope.rat crs • • • • • • 8-1 5
Linker • • • . • • . • • • • B-1 5
Binder • .. • • .. • • • • • .. • B-15
Interface to language run ti me I/O • B-1 S

6.0 Other Inputs ·• • • . . • • . • • • • B-16

Append x c
OES1GN E liA LUA Tl ON

1.0 Major Approaches • • . • . . • • C-1
1. 1 Multics App roach • . • • • . • c-1
1.2 CP-6 App.roach • • . • • • • c-1

CONTENTS <cont)

1.3 GCOS 8 SR 1000 Environment ••••••
1 • 4 G C 0 S·- I V J u n e 1 9 7 9 En v i r c nm en t • • • •

Appencix D
COMPETITIVE COMPARISON

v i

·•

Page

c-2
c-2

SECTION 1

INTNODUCTION

This document specifies the environment for processes
executing in the GCOS 8 Native Mode. The document contains
both conceptual and cetailed information. Sections 2
through 4 deal with conceptual level information on:

* s y st em g cal s

* design constraints

* process and module sraring

*interprocess control

* performance considerations

Section 5, tc be suppliec, will contain detailed information
on:

*The nature of the \.iser visible extention
level Languages reql.iired to fully use the
(but not the exact syntax)

to the high
Native Mode

* The format and contents of the files created by the com­
pilers and assemblers

* The calling sequences, conventions and
used by the object cede generated by the

system services
compilers

*The JCL and ECL used in the preparation of programs for
execution in Native Mode, and the steps required for
placing a process in execution

INTRODUCTION 1-1 March 31, 1980 - 15:20

SECTION 2

GOALS AND CONSTRAINTS

From the customer point of view, functionality is the sine
qua non of an operating system. We have, therefore,
attempted to identify as system goals those functions that
w i l l be rn o s t i mp o r t a n t t c bot h o u rs e l v e s an d our c us t om e r s •
This is not to say that performance has been ignored. Per­
formance represents the crimary criterion by which alternate
designs for a given functionality are evaluated.

These gcals have implications for two different levels of
the run-time environment, the macro-structure level and the
micro-structure level. The macro-structure of the environ­
ment deals ~ith the technology of program management, such
as loading, linking, and program library structures. The
micro-structure of the run-time environment deals with the
technology of program execution, such as calling sequences,
scope of reference, address calculation, etc.

It must be possible to rrigrate programs, both user applica­
tions and Honeywell procucts, from GCOS-III to the GCOS 8
native run-time environment.

Programs written in high order languages must be able to mi­
grate without source charges.

It is desirable that
without source changes ..

assembly language programs migrate

It i s desirable that misration require no job control lan-
guag e changes.

These goals are important for both our customers
selves since we both ha~e a large investment in

and our­
c ur rent l y

GOALS ANO CONSTRAINTS 2-1 March 31, 1980 - 15:20

existing programs. The primary implication for the system is
that all currently supported higher level language features
must have a functional ecuivalent in GCOS 8.

The run-t;me environment m:ust support the slave mode execu­
tion of GCOS-111 executable file formats (Q•, H*, **' etc.>.
It also must support the following environments:

* TSS slave environment

* OMIV-TP TPR environment

* TOS TPR environment

This objective implies support of a GCOS-III MME interface
as defined by some chaser GCOS-I1I system release.

A given application must execute in GCOS 8 native mode with
at least 90% of its perfcrmance in GCOS-III native mode when
utilizing the same resources.

For a given application mix, the total throughput of the
system must te at least ~0% as good in GCOS 8 native mode as
it is in GCOS-III native mode.

These are very ambitious goats, given the system overhead
implied in meeting the virtual memory and security goals of
the system. It is recognized at the outset that we may be
unable to meet the 90% performance figure.

1 • 2 ~a1~_.Qf_.!J.il_.u1.d-f.tQ.g.til!J!U-EL.Q.dlJ..Ui.lti1 . .'t

1 • 2 • 1 11 aiillm-tultit.Q.om~

The macro-structure of the system should have a single per­
sonality, for example ECL, that encompasses all methods of
user interaction: batch, time sharing, and remote batch.

It is very desirable that the micro-structure of the system
have a common run-time ervironment for both user and system
software. This commonality must apply to all module interac­
tion conventions and accesses to services.

Of all the system goats, uniformity has the greatest impact
on the long-term s-0ftware viability. From a human engineer­
ing point of view1 unifcrmity reduces cost. From a system

GOALS AND CONSTRAINTS 2-2 March 31, 1980 - 15:20

design point of view, its major impact is in simplification
and the cost reductions to be gained thereby.

The run-time environment must support the implementation of
high level language features for languages such as COBOL,
PL/I, Pascal, Ada, etc. Certain language features will re­
quire explicit support ir the run-time environment. For ex­
ample:

* user visible address values in data space

*automatic space allocation and recursion

* process synchronization

* tasking

* exce~tion processing techniques

* dynamic subprogram irvocation

The run-time environment must be able to support applica­
tions whose procedure s~ace and/or data space may each ex­
ceed a segment of 256K ~ords and whose total space require­
ment does net exceed 1024 segments. The run-time environ­
ment should be able to support single structures or arrays
that exceed a segment. Such support must not require user
preplanning cf memory maragement techniques such as program
overlays ..

The run-time environment should be able to sup~ort a large
number of fi Les, between 200 and 1000, for each application.

The run-time environment should be able to support a large
number of connected teririnals, on the order of 101000 con­
current interactive trarsaction processing users and 5000
simultaneous time sharing users.

The run-time environment should allow multiple versions of
both user ard system s-0ftware modules .. This capability is
necessary tc support efficient software development and
testing.

GOALS AND CONSTRAINTS 2-3 March 31, 1980 - 15:20

1 •. 3 r~~11.a..12J...12li~,a.t..l.m.ag~

1 • 3. 1 Qjj,J.Lit.J.11.~.~L.S.:t..s .. t~li-.A.t~li.1~~1JJU-~U..12l2QJ:1

The run·-t i me environment must support the Honeywell
Distributed System Architecture (DSA>.

The run-time environment must support a virtual address
space that is larger than the real memory. The support
technique will be transparent to the user. The run-time en­
vironment must not only allow the execution of large pro­
grams on smaller real ~emory but must also provide the ef­
fective application of large physical memory.

This goat implies that the run-time environment will use the
virtual memory technology of the hardware.

The run-time environment must support the sharing of unique
instances of procedure or data among processes.

The run-time environment must guarantee the integrity of all
program and data within the system.

The run-time environment must allow user definable access
control ever units of their applications. The access control
mechanism will utilize tre hard1o1are segment protection capa­
bility.

The system will support the addition, deletion, and updating
of system scftware modules without system interruption. It
is recognizec that the replacement of certain system modules
may req1..ire system interruption.

The GCCS 8 run-time en~ironment must utilize the current
(NSA) hardware. Althoush hardware changes are possible,
they must be limited tc field changeable items. The end

GOALS ANO CONSTRAINTS 2-4 March 31, 1980 - 15:20

user is indifferent to hardware details as long as his func­
tional ard performance needs are met.

The operating system anc run-time environment should insu­
late user interfaces anc system software from evolutionary
hardware charges and harcware dependencies.

The user manipulation of the system personality must not re­
quire change to Honeywell delivered software modules. This
objective assumes that the users have valid reasons, such as
local accounting conventions, to change the personality of
the system. The user must not, however, req.uire access to
Honeywell separately priced software products at the source
level.

GOALS AND CONSTRAINTS 2-5 March 31, 1980 - 15:20

The following table sumnarizes the GCOS 8 system goals and
classifies them as to thEir degree of desirability.

Goal Rank Reference

must Migrate without HOL so4rce changes
Accomrncdate GCOS-III e~ecutable formats must
Accommodate GCOS-III TSS~ TOS, & OMIV-TP must
Job perforaance at least 90% of GCOS-III must
Throughput at least 90% of GCOS-III must
User visible address v~lues must
Automatic space allocation and recursion nust
Exception ~rocessing
Dynamic sutprogram invocation
Support large procedure.s
Support large data spaces

must
must
must
must

Support Distributed System Architecture must
Support a virtual environment must
Support shared elements
Provide program and data integrity
Provide user access cortrol
Use current hardware
Uniform micro-structure environment
Uniform macro-structure personality
Process synchronizatior
Support large number of files
Support large number of terminals
Support multiple versicns of same module
Support dynamic software installation
Extendible to future product directions
Su pp or t a r ray s l a r g e r than 2 5 6K
Protect Honeywell priced software
Migrate without assembly source changes
Mi grate without JCL changes
Tasking

must
mu.st
must
must

1
2
2
2
2
2
2
2
3
3
4
4
4

1. 1. 1
1.1.2
1.1.2
1.1.3
1 .. 1. 3
1 .. 2.2
1.2.2
1..2 .. 2
1.2.2
1.2.3
1.2.3
1.3.1
1.3.2
1 • .3. 3
1 • .3 .. 4
1 .. 3 .. 4
1.4.1
1 .. 2. 1
1.2.1
1.2.2
1.2.3
1 .. 2 .3
1 .. 3.5
1.2.4
1.4.2
1.2.3
1.4.3
1 .. 1 .1
1.1.1
1 .. 2. 2

GOALS AND CONSTRAINTS 2-6 March 31, 1980 - 15:20

The business constraints placed upon the run-time environ­
ment are few in number yet very important.

The multi-segment shared run-time environment must be
released for customer ~se with GCOS 8 Release 2000 (5V).
This impcses schedule corstraints on the environment, first
for a timely definition and second for limiting its content
to insure a timely release.

The schedule constraint requires that the run-time environ­
ment be consistent with that which exists in GCOS g, Release
1000 (4VX). It cannot be radically different or the sched­
ule cannot be met.

At this writing, there are interim environments in use and
more in development: the ITP environment, the ACOS environ­
ment, and the PL-6 environment. Each has sharing
mechanisms, calling seq~ences, and other conventions which
differ from one to another.

It is a constraint that modules which execute under one of
the interim environments be able to be converted to execute
under the new environment with a minimum of change. This is
especially true for the rrodules of ITP. Modules from other
environments are of Lesser importance.

It is a constraint that domains written according to an in­
terim environment coexist with domains written using the new
environment. Adapters may be used as necessary to meet this
constraint. It is not required that modules within a domain
be mixed - some from an interim environment and some from
the new.

The multi-segmented run-time environment owes its existence
to t he l\S A hard w a re.. The en vi r on men t 's des i g n,
functionality, and performance is totally constrained by the
hardware definition. The following sections descuss the
more constraining attrib~tes of the NSA hardware.

GOALS AND CONSTRAINTS 2-7 March 31, 1980 - 15:20

The NSA hardware handles two types of memory space, real and
virtual. Only the most privileged modules oi the operating
system may use real memory addressing. All other procedures
must use virtual memory addressing.

The virtual address space of the system is diviced into 512
equal length virtual memories called Working Spaces .. Work­
ing Spaces are accessible to a process via eight Working
Space Registers CWSR's>. The contents of a WSR cannot be
changed by a slave mode instruction. The addressability of
a process is thus limitec to eight working spaces ..

In NSA, a segment is a variable length subdivision of a
Working Space. It occupies contiguous virtual memory space
and has a homogeneous set of attributes. These attributes
differentiate uses of t~e segments, for example, procedure
versus data.

The NSA hardware supports two types of segments, a standard
segment with a maximum oi one million bytes and a super seg­
ment with a maximum size of 64 million bytes.

A seg.ment is controllec by a two-word Segment Descriptor
which specifies:

* the ~articular Working Space containing the segment or a
WSR .containing the n&..mber of to that Working Space,

* the base of the segment relative to a particular Working
Space,

* the upper byte address limit in the segment., and

* the valid access rights (read, write, execute) to the
segment.

As a means of access control, the hardware requires that all
s e gm e n t d e s c .ri p t o r s r e s·i d e i n s p e c i a l s e g 111 en t s c a l l e d
"Descriptor Segments", re~ognizable by the hardware, and
that these Descriptor Segments, in turn, reside on special
pages, called "Housekeeping Pages". The hardware is so
designed that Housekeeping Pages can be written to <with
normal instructions) only in Privileged Master Mode and can
be read (with normal instructions) only in Privileged Master
Mode or Master Mode. The address space of a process is thus
limited to those segments given to it by the Operating Sys­
tem. Furthermore, since descriptors are not storable in
slave data space, they are not usable as address value vari­
ables.

GOALS ANO CONSTRAINTS 2-8 March 31, 1980 - 15:20

All memcry addresses have two components, a segment
descriptor identificatior and an offset within the segment.
For norrral segments, these two components are brought to­
gether in the NSA pointer construct. There is no equivalent
hardware construct that points into the full extent of a
super segment.

2 • 2 • 2 ~ .£im..ai..a..s

The term "Dcmain" refers to the particular set of segments
that are addressable by a proce.ss at any given moment.

A domain consists of a static part and a dynamic part. The
static part of a domain is defined by a special Descriptor
Segment, the Linkage Segment. There are at most 1024
entries in the Linkage Segment. The dynamic part of the do­
main is defined by the Farameter Segment and the Data Stack
Segment. The Parameter Segment provides for passing argu­
ments irto a domain. The Data Stack Segment provides scratch
data space.

A domain may include segments in several Working Spaces.
During execution, a domain may be augmented by passed param­
eters or by i:;rivileged master mode manipulation of its Link­
age Segment.

A process is not restricted to a single domain but will gen­
erally execute within se~eral domains. The Linkage, Parame­
ter, and Data Stack Segments are managed by the hardware
when changing domains. In using the CLIMB instruction to
change domains, however, all of the NSA pointers in data
spa c e a re i f'V a l i d at e d • F u rt h e rm o re , t he C L IM B i n st r u c t i on
makes the caller's data stack invisible to the callee. In
combination, these constraints complicate exception
processing and error reccvery.

We have a need to suppcrt our present-day high order lan­
guages such as FORTRAN, COBOL, PL/I, and PL-61 and also to
look ahead to the needs cf such languages as Pascal and Ada.
This need corstrains the design of the run-time environment
i n t h a t i t i mp l i es man y s y s t em fun ct i on s. T he f o l low i n g
sections discuss those language features that will require
explicit supi::ort in the run-time environment.

The dynamic, block str1..ctured languages <i.e., alt except
FORTRAN and COBOL) provice the allocation of automatic data

GOALS AND CONSTRAINTS 2-9 March 31, 1980 - 15:20

space ~henever a procedure <or block> is entered. The
run-time environment, therefore, must contain facilities to
grow the data space of a process and must be able to identi­
fy the current instance of the data space that is to be
referenced by the procedLre. The automatic space allocation
technology is necessary to S{.Jpport the general recursion fa­
cility offered by these languages.

In addition to the automatic space allocation feature, PL/I,
Pascal1 and Ada allow the user to dynamically allocate
space. The International Organization for Standardization
(ISO) is ccnsidering the addition of this facility to
FORTRAN. A variation of cynamic allocation is implied by the
COBOL CALL/CANCEL fa-cility .. This language feature implies
the same type of run-time facility for the growth of process
data space as is impliec by the automatic space allocation
fa c i l i t i es ..

PL/I, PL-6, ~ascat, and Ada allow programs to declare vari­
ables cortaining address values. These variables may appear
within data structures and, all languages considered, may
point anywhere within the static, automatic, or cynamic data
space of the program. When created, these adcress values
should remain valid throughout the life of the program.
Since any datum may be used as an argument to another proce­
dure, the value of a adcress variable should remain useful
a c r o s s s om e de p t h of p r o c e du r a l c a LL s ..

Since all of the high crder languages support or plan to
support bit aligned data, address values must be able to re­
solve storage to the bit level.

All of the high order languages except Pascal have specified
some facility for handling error conditions or exception
procedures. There is no consistency in these facilities
from language to language. The run-time environment must
therefore provide an exception handling technology that is
sufficiently robust to s~pport the full spectrum of language
specifications.

GOALS AND CONSTRAINTS 2-10 March 31, 1980 - 15:20

All of the high order languages allow the user to specify
initial values for some classes of data. The run-time envi­
ronment must contain the controls in both its
micro-structure and its ~aero-structure to allow these ini­
tial values to be realized at execution time ..

Several of the high orcer languages support semaphore or
signal constructs that "ay be used to communicate between
separately scheduled processes. Typically, these features
are used to synchronize two or more processes. In
supporting these feature~, the operating system may require
special help from the structures of the run-time environ­
ment.

2.3.7 Ia~li.o.g

ln addition to process synchronization, some languages pro­
vide the ·ability to initiate the separate scheduling of a
separate process. As in synchronization, the operating sys­
tem may require special help from the run-time environment.

All of the languages pro..,ide for the invocation of separate­
ly compiled programs. Current structured programming tech­
nology encourages the use of this facility. Therefore, the
calling sequence technology of the run-time environment will
be an important deterainant of system performance. The
technology must also sup~ort the various language specifica­
tions for passing arguments by reference or by value~ The
ANS COBOL specification expands the problem in t~o ways. lts
CALL/CANCEL facility allows the dynamic association, invoca­
tion, and disassociaticn of subprograms whose names are
supplied at execution ti"e. This facility will require spe­
cial run-time environment techniques in both program invoca­
tion and program packaging. The COBOL SORT/MERGE facility
allows the user to establish procedures within his program
that are to be used as co-routines by the system software
that supports the sort or merge. The run-time environment
must solve the progra« packaging problem posed by such
co-routines and must prcvide an extremely efficent invoca­
tion technolcgy for them.

GOALS ANO CONSTRAINTS 2-11 March 311 1980 - 15:20

SECTION 3

DESIGN OVERVIEW

The operating system is oescribed in the accompanying GCOS 8
ARCHITECTURE document as a layered construct at the center
of which resides an in~iolate system kernel. That kernel
provides the hardware dependent functions and those house­
keeping functions that require privileged master mode execu­
tion. System shared soft~are is closely associated with the
kernel. This software prcvides the common service functions
that are usec by all users, regardless of their interface to
the system. The outermost layer of the system ~rovides the
end-user interfaces that define the personalities of the
system.

The system is also planned to be naturally adaptable to the
Distributed Systems Architecture. Support services such as
session control and workstation management will be supported
in the syste~ shared sortware.

Both the construction and utilization of the system are
organized a round the concept of segmentation. In terms of
construction, segments may be considered singly or may be
organized into domains. These single segments and domains
are, in turn, organized into Working Spaces for the sake of
exec u t ·i on.

U t il i z a t ion of the sys ten i s organize d a r o un d th e concept of
"process". ft p,rocess is a triplet compo.sed of an execution
stream, its associated d~ta, and the processor that is doing
the execution. The execution stream may involve several pro­
cedure segme~ts and/or dcmains and/or Working Spaces in suc­
cession. 1t "ay also invclve many data segments in disparate
domains and/er Working Spaces.

DESIGN CVERV IEW March 31, 1980 - 15~20

The organization of the run-time environment has t~o differ­
ent levels, the macro-structure levet and the
m·icro-structure level. The macro-structure of the environ­
ment deals ~ith the technology of program management, such
as loading, linking, and program library structures. The
micro-structure of the run-time environment deals with the
technology of program execution, such as calling sequences,
scope of reference, address calculation, etc.

DESIGN OVERVIEW 3-2 March 31, 1980.- 15:20

2. a .s~.s..t.e m_.!:1.a.&.c..Q=.s..tc...u"-t.u.t.e

2 • 1 l.h.e-~i.t.1.IUi-~.mtil:.Q.O.lllJ:Jll

The virtual environment is defined by the segments available
to the system. The segments are organized into Working
Spaces. The virtual en\ironment available to a process is
limited to those Working Spaces that are addressable through
the Working Space Registers (WSR' s>. The virtual memory lo­
cal to the process itself, that is, its segments and
domains, are rooted in a single Working Space. That Working
Space is accessed via WSR7. The other WSR's are loaded to
provide the process access to system level and shared do­
mains and segments.

All Working Spaces have the same general structure, although
all types of segments de not exist in every Working Space.
This consistency of structure across Working Spaces permits
easy access to data that is canonically located within the
Working Space.

Resource sharing is an i"portant objective of GCOS 8. How­
ever, this sharing of resources must be balanced with anoth­
er objective, security. The criteria for security are that,
without proper authority, no user should be able to:

* retrieve another user's data or programs

* manipulate another user's data or programs

* deny the resources of the system to another user

These criteria imply that resource sharing, while desirabl~,
must be tightly controlled. The system must be protected
from the external users and the users from each other.

This isolation is accomplished at four levels:

1. Working Space Level - a Working Space is addressable
only if the Working Space . Number is loaded into one of
the Working Space Registers for the process.

2. Page Level - to reference a page, it must be mapped
into the page table and the reference must be consis­
tent with the housekeeping and write protect flags in
the Page Table Word.

3. Domain Level to reference a datum, a segment
descriptor for the segment containing the datum must be
accessable in the dcmain.

DESIGN OVERVIEW 3-3 March 31, 1980 - 15:20

4. Segment Level - the data reference must be within the
segment's bounds ard must be consistent with its type
field Cdata~ descri~tor, or entry) and permission flags
(read, write, e~ecute1 etc.>.

When two or more processes share a Working
takes three forms, domain instance sharing,
sharing, and segment sharing.

Space, sharing
domain pattern

The first form of sharing .is the sharing of a unique in­
stance of a domain. There is one Linkage Segment for the
shared domain and all ~rocesses CLIMB to the domain via
identical entry descriptcrs to that single Linkage Segment.

A conse<:;uence of domain instance sharing is that all static
segments of the domain are shared. There are no process lo­
cal segments accessible to the shared domain other than
those passed as parameters of the CLIMB.

The second form of sharing is the sharing of a pattern or
template for a domain. A skeleton Linkage Segment is used
as a pattern to create nultiple occurrences of the domain.
Each occurrence oi the domain is created by allocating one
or more data segments ir the invoking domain and inserting
them into the skeleton Linkage Segment. The resulting Link­
age Segment~ i.e., domain, will embrace shared procedure
segments local to the new domain and data segments in either
the caller's Working Space or in the shared Working Space or
both.

This type of sharing is useful when the domain must include
both shared and process local segments. The shared domain
pattern includes the shared segments, but each occurrence of
the Linkage Segment is given separate instances of the local
segments. Since the one pattern ts always used to construct
the domain occurrences, all the Linkage Segment occurrences
have the same layout or aefinition.

The th·ird tyi:e of sharing is segment sharing. In this case,
individual segments are shared among multiple domains. This
type of sharing has a number of restrictions which, when
met, allow very efficient operation.

The restrictions which ai:ply to shared segments are:

DESIGN OVERVIEW 3-4 March 31, 1980 - 15:20

1. If the segment is a procedure segment, it may access
descriptors in the comain's Linkage Segment or Parame­
ter Seg111ent only when they are in fixed, canonical lo­
cations or when pointers (NSA pointers) are passed as
arguments of a call.

2. Procedure segments 111ust be pure.

3 .. Data segments, if impure, must be gated by means of a
monitor, i.e., access to them must be through a monitor
procedure.

The following figure depicts the steps required to prepare a
program for execution, beginning with compiling the program
and ending ~ith the map~ing of the program into a Working
Space.

A compiler er assembler produces an A-unit from the source
program. The A-unit contains the initial segment contents,
both code and data ..

If desired, multiple •-units may be combined into one
A-unit. The result of this merging is that segments with
compatible attributes are combined, thereby reducing the to­
tal number of segments required.

Next, one or more A-units are input to the B-~nit Builder
which combines them into domains, as specified by the direc­
tives, to produce a B·-unit. The B-unit is a file containing
a Working S~ace image cf the domains and their segments.
Optionally, an existing e-unit may have one or more A-units
added, deleted, or replaced.

The Working Space Assignment function assigns a Working
Space Number and a Working Space Register to the 8-unit. Ex­
ecution commences when the process structure is added to the
Working Space by the Precess Initiator and the root domain
of the process is dispatched.

DESIGN CVERV IEW 3-5 March 31, 1980 - 15:20

0 IR EC TI VES
l

S CU RC E
J
I
v

J COMPILER I • _____ J

I
J
v

A-UNIT
I

A-UN IT
I

I J------1
v v
- ---·-

...

A-UNIT MERGER I (OPTIONAL STEP)
1 __ - • ~--.-..-.... - I

I
I
v

A-UNIT
j

A-UNIT
I

...
I --·--·---·- I I 1~--·--I

v v v
._..., ·---------I B-UNil BUILDER J<----B-UNIT (OPTIONAL)

I.......,__...,.-- ... --
J
l
v

8-UNIT
I

- • ...,_ 1

or B-UNIT LIBRARY
J

I I--~----·------- I
v v

I WORKI~G SPACE I
I ASSI~NMENT I

v
(WSR, ws~, 8-UNIT, •••)

2. 3. 2 ea,.i.a.g.i.o.g _ _;~m..e.o.u

2.3. 2 .. 1 A=.ullit

An A-unit is a file which contains the object representation
of an independently ccmpiled or assembled program unit
<e.g .. , a PL/I external r:rocedure or a COBOL program>. The
creation of an A-unit is not a privileged operation. All

DESIGN OVERVIEW 3-6 March 31, 1980 - 15:20

compilers and assemblers produce an A-unit as output. An
A-unit contains the follcwing types of information :

* A-unit icentificatior

* segment cefinitions and references CSEGDEF/SEGREF)

*domain definitions and references (ENTDEF/ENTREF)

* symbol definitions and references CSYMDEF/SYMREF)

* object text

* debug schema

* relccaticn informaticn

* resource requirements

Before a prcgram represented by an A-unit
it must be combined to form one or more
B-un it Build er.

can be executed,
B-units by the

2. 3. 2 • 2 .e.=.1.1Lli..l

A B-unit is a file which contains a representation of one or
more domains, including procedure, data, and Linkage Seg­
ments for each domain. B-units are produced by the B-unit
Builder from one or more A-units. The B-unit Builder is
able to "upcate" an existing B-unit by adding or replacing
A-units. A 8-unit contains the following types of informa­
tion :

* B-unit identificatior

*skeletal page table (describes virtual space assignment)

* one er mere domains

* Linkage, procedure, and data segments for each domain

*Domain Directory of all domains CENTDEF's)

* Global Segment Directory for all segments
nally to the 8-unit

known exter-

* directory of unresol~ed segment references (SEGREF>

*directory of unresol~ed dom~n references CENTREF)

Note that a a-unit does not contain any process structure
<e.g., hard~are stack segments, SSA segments, etc.). All

DESIGN OVERV1EW 3-7 March 31, 1980 - 15:20

references to segments and domains outside the a-unit are
left unresolved .•

It is necessary at times to reference groups of files as a
unit. For example, a group oi a-units may be assigned to a
Working Space. This is accomplished by referencing a li­
brary containing those a-units. A library is implemented as
a d i r e c to r y i n t h e F i l e S y s t em • T hi s di r e c t or y c o n t a i n s
only files, no subordinate directories, and all these files
are of the same type <e.g., a-units>. Since the files are
of the same type and ha~e common attributes such as control
interval size, access to these files can be optimized.

The compilation process employed for the GCOS 8 environment
is the ccnvertional one in which source programs in the form
of text files are processed to produce object modules in the
form of A-units, and, o~tionally, a report of the compila­
tion process in the form of a listing. Such A-units usually
require the support of r1.ntime libraries for their execution
and may require other user-supplied A-units for their execu•
ti on.

A typical A-"nit will contain two or more segments <at least
one instruction segment and one data segment>. However, some
language constructs or irrplementation techniques may produce
large numbers of segments.

The merging of A-units is combining the segments of two or
more A-units into fewer total segments. The segments with
compatible attributes are combined and relocation is
performed on the segment references. Thus all of the proce­
dure segments, one for each A-uni ti might be combined to
form only one procedure segment. The output oi the A-unit
Merger is a new A-unit that contains the segments of all of
the input A-uni ts ..

The a-unit Builder prcduces a B-unit from one or more
A-units and a set of cirectives that describe how these
A-units are to be combined into domains. The B-unit Builder
creates a Linkage Segment for each domain and assigns virtu­
al space to each segment of the domain starting at a conven-

DESIGN OVERVIEW 3-8 March 31, 1980 - 15:20

tional base address. Doaain and segment references are re­
solved where possible. A page table that describes the
assigned virtual space is also created.

The B-unit that is prod~ced includes a Domain Directory, a
Global Segmert Directory, and a directory of unresolved seg­
ment references. The Domain Directory contains an entry
describing each domain ir the 8-unit, while the Global Seg­
ment Directory contains an entry describing each segment in
the B-unit which may be referenced from outside the &-unit.

Sufficient information
addition, deletion, or
an existing 8-unit.

is kept in the 8-unit to permit the
replacement of one or more A-units in

No shared libraries are referenced in order to create the
8-unit. All references outside the B-unit are left
unresolved. References to external domains result in a dy­
namic linking descriptor that references the name of the do­
main. Segment references result in segment descriptors with
the "missing segment" attribute. These dynamic references
w il l b e re s o l v e d b y t h e C y n a m i c L i nk e r a t pr o c e s s i n i t i a t i o n
time.

At l W o r k in g Sp a c e s h ave th e same g e n er a l st r u c t u re • A t t h e
beginning of each Working Space, offset zero, is a
descriptor segment which serves as a directory to the Work­
ing Space. This Working Space Unique System Header CWSUSH>
has the same canonical definition for each Working Space,
regardless of the function for which the Working Space is
em pl o y e d • F c r a g i v en W or k i n g Sp ace , n o t al l en tr i es o f t he
WSUSH are valid <e .. g., tte ent.ry for the SSA Segment is not
valid for a shared Working Space). lnvalid entries contain
null descriptors.

The segments located via the WSUSH fall into two categories:
those required for all Working Spaces rega rdle.ss of their
function and those required only for Working Spaces that
instantiate a processes.

All Working Spaces require at least the following segments:

* the Domain Directory, a table that defines every domain
in the Werking Space.,.

DESIGN CVERV IEW 3-9 March 31, 1980 - 15:20

* the Global Segment Directory, a table that defines every
global segment Ci.e.1 every segment known externally) in
the Working Space.

*a directory of all the dynamically allocated segments ..

* the Page Table, a variable length segment containing the
page table entries fer the Working Space.

* the PAT segment, a variable length segment used to con­
tain the Peripheral Allocation Tables CPATs> for the
Working Space.

* the DCW buffer, a segment used for ocw list storage for
paging 1/0, p.rocess swapping I/O, SYSOUT I/O, etc,.

In addition to the segments required in all Working Spaces,
those Working Spaces usea to contain processes also require
at least the following segments:

*the Exception Procedure Entry Descriptor Segment
(EPEOS), a descriptor segment containing the entry
descriptors to the exception handling procedures for the
defined exception corditions.

*the User's Linkage Segment Descriptor Segment, a vari­
able length descriptor segment containing the Linkage
Segments for all user domains in the process.

* the Safestore Stack Segment, a variable length segment
used to store registers when changing domains.

* the Argument/Parameter Stack Segment, a variable length
seg#ent ~sed to pass arguments between domains.

* a s e gm en t us e d by t h e Di spa t c her •

* the SYSOUT segment, used to collect the
records. The size, content, and location
ment vary with the n~mber of SYSOUT lines.

system output
of th i s s eg-

* the SSA Data Segment, a segment containing control in­
formation equivalent to the GCOS-IIl control information
contained in the Sla\e Service Area CSSA).

* the SPA Data Segment, a segment containing control in­
formation equivalent to some of that contained in the
GCOS-III Slave Prefix Area (SPA).

DESIGN OVERVIEW 3-10 March 31, 1980 - 15:20

* the Process Control Block (PCB), a segment containing
information necessary to control the process.

AB-unit may either be tlaced in execution, that is, become
a process, or be a shared B-unit, that is, be referenced by
or executed by many processes. In either case, the B-unit
must be assigned to a Werking Space. The function of Work­
ing Space Assignment is not to load B-units into the virtual
memory of the Working Stace, but to associate the B-units
with the Working Stace. This is accomplished by
constructing a Domain Directory and a Global Segment Direc­
tory in the virtual mewory of the Working Space. These
directories completely cefine all domains and global seg­
ment s c o.n t a i n e d i n t h e B- u n i t or B- un i t L i b r a r y • T h e s e
directories are searched by the Dynamic Linker when
attempting to resolve a reference to a domain or segment. At
the first reference to a domain the B-unit containing the
desired domain or segment will be loaded.

The input to the Working Space Assignment function is either
a single B-unit or a B-urit Library that is to be assigned a
Working Space. The reso~rce requirement information is read
from the a-units and is ~sed to create a backing store file.
The Domain Di rectory anc Global Segment Di recto.ry are read
from each of the a-units. These directories are combined
and are located canonically in the Working Space.

After completion of the Working Space Assignment step, a
skeletal page table, Dcmain Directory, and Glcbal Segment
Directory exist in virt~al space and a backing store file
will have been created fer the Working Space. An available
Working Space Number will have been assigned. The assignment
of a Working Space Register for the B-unit will depend on
whether the Working Space is to be shared or is to become
the root of a process.

The fundamental sharing mechanism in GCOS 8 is the sharing
of domains and segments in shared Working Spaces. By
mapping Working Spaces into the same virtual address space
of a set of processes, the contents of the Working Spaces
may be shared among the trocesses.

Within GCOS 8, WSR7 is rEserved for all process local infor­
mation. The other WSR's are used for shared software and
data. The smaller the WSR nu~ber, the more global the
sharing .. The provisional assignment of WSR' s and sharing is
as follows:

DES1GN OVERVIEW 3-11 March 31" 1980 - 15:20

}i ilJhUI!li.J:

0
1
2
3
4
5
6
7

Operating System Hard Core
Operating System Hard Core
Operating System Slave Mode
P r i c e d So f t w a r e P r ad u ct s
Installation (Site> Speci fie Software
User ·Shared Software
Workstation Local
Process Local

The mapping is performed by the WSR contents. A Working
Space is shared if t~o or more processes have its Working
Space Number in the san:e WSR .. When a Working Space is
shared, it must be shared by using the same WSR in all the
sharing processes .. This restriction is due to the fact that
references to the WSR appear in the Working Space itself.
Each segment descriptor contains a value for the WSR
containing the segment it describes.

Furthermore, once two processes have established the sharing
of a Working Sp~ce in so"e given WSR, all of the more global
WSR's must have matihing values for the two processes.

The Working Spaces referenced by WSRO through WSR4 are
shared by all processes in the system. WSRS is reserved for
customer controlled sharing. WSR6 contains the same value
for all processes of a ~orkstation. The content of WSR7 is
unique tc each single precess.

2 • 4 f.t..Q-'..:li _.£.J.:~.U..ti.s2.0

2 .. 4 • 1 e~.u.s~.oi..ti.a..ti.s2.o

The a-unit destined tc become a process, having been
assigned to a Working Space, now only requires the addition
of the process structure to be executable. The Process
I n i t i a t o r a s s i g n s a p r o c e s s n u mb e r, bu i l d s t h e pro c e .s s
structure <e.g., hardware stacks, SSA segment, process con­
trol block, etc.>, and leads the Working Space Registers for
the process.

The a-unit itself has still not been loaded in virtual memo­
ry. Only the "definition" of the a-unit, in terms of the
names of its domains ard global segments and its proce.ss
structure have been loaded.

Finally, the Process Initiator executes a CLIMB instruction
to the user entry point. Since the 8-unit containing the
user's domain has not yet been loaded, this CLIMB generates
a dynawic linking fault. The Dynamic Linker resolves the

DESIGN OVERVIEW 3-12 March 31, 1980 - 15:20

reference and the process begins executing in
ma in.

its root do-

The Dynamic Linker is in\loked to resolve references to both
s e gm e n t s a n d d om a i n s • T h i s i nv o l v e s u t i l i z i n g t h e s e a r c h
rules that govern the orcer in which the Working Spaces are
searched1 lccating the desired object, and replacing the
un re so t v ed r e fer enc e w i th t he ap prop r i ate e n t r y or segment
desc ri ptcr.

Linking to shared domains occurs dynamically while the proc­
ess is in execution, while linking to shared segments occurs
at the time when the E-unit containing the reference is
loaded in~o virtual memcry. References to shared segments
are resolved by locating the segment and storing the
descriptor of the segmert in the referencing domain Ci.e.1
Linkage Segment).

Whenever a dynamic reference to a segment or domain occurs,
a search must be conducted in an orderly manner through the
virtual space addressable by the executing process; that is,
through the working Spaces Loaded behind the WSR's for that
process. The search begins with the Working Space
containing the instruction segment of the executing domain
and proceeds sequentially through more global (decreasing)
values cf Werking Space Register number. For example, if
while executing a domain whose procedure segment is behind
WSR5 and a dynamic tinkirg fault occurs, then the search for
the referenced domain begins with WSRS and continues in se­
q u en c e t hr o u g h W SR 4 , W S R 31 W SR 2, W S R 1 , and W SR 0 u n t i l t he
desired domain is found.

At times it is desired to reference a domain at a lesser
scope of sharability, that is, a domain behind a higher val­
ue of WSR. This functicnality is useful in the support of
exception processing, ~ser exit procedures, etc. This
"outward" reference will be allowed only when explicitly
declared on the reference. In this case, the dynamic
linking descriptor contains a field which specifies the de­
gree t o w hi c h t he o u t w a rd ref e r en c e i s per mi t t ed.

Each Working Space contains a Domain Directory that is
located canorically via the WSUSH and describes the domains

DESIGN OVERVIEW 3-13 March 31, 1980 - 15:20

of the Working Space. Each entry in the Domain Directory
contains at least the following information:

* domain name

*name of B-unit cotaidng the domain

* e.ntry descriptor to comain <valid only if the B-unit has
been activated)

* domain type (unshared, shared domain, shared domain oc­
currence, etc.>

* count of outstanding references to the domain

When a dynamic linking fault is generated by the execution
of a CLIMB instruction through a dynamic linking descriptor,
the Dynamic Linker is i"voked to resolve the domain refer­
ence. If the domain is not found, the Dynamic Linker re­
turns an error status and exception processing commences.
If the name is found ard the a-unit containing the domain
has not been loaded, then the a-unit is activated. The ref­
erence to the domain is then resolved depending upon the
WSR's behind which the invoked and invoking domains are
found and upcn the domain types.

If the referenced domain uses unique domain instance sharing
and the referenced domain has been found behind a more glob­
al WSR than the referencing domain, then the dynamic linking
descriptor is replaced i..ith the actual entry descriptor to
the shared domain and the CLIMB is re-executed.

If the referenced domain uses unique domain instance sharing
but has been found behind a less global WSR than the
referencing domain, then the CLIMB is completed without
replacing the dynamic lirking descriptor in the referencing
domain.

If the referenced domain uses domain pattern sharing, the
prototype Linkage Segment is copied into the caller's space.
Any local segments are created dynamically and initialized.
Then the original dynamic linking descriptor in the calling
domain is replaced by an entry descriptor to the newly
created Linkage Segment and the CLIMB is re-executed.

Each Working Space contains a Global Segment Directory that
is located c.anonically "ia the WSUSH. This directory de­
scribes the segments of that Working Space which are exter­
nally visible <i.e., shared among B-units>. Each entry in
the directory contains at least the following information:

DESIGN OVERVIEW 3·-14 March 31, 1980 - 15:20

* segment rame

*name of e-unit contajning the segment

* segment descriptor <valid only
activated)

if the 8-unit

* count of outstanding references to the segment

has been

If, when loaded into virtual memory, a 8-unit contains any
unresolved references tc segments, then the Dynamic Linker
is invoked to resolve these references before the 8-unit is
executed. The Dynamic Linker employs the search rules to
determine the Working Spaces to be searched and then
searches the associated Global Segment Directories for the
desired segment name. If the name is not found behind a
more global Working Space Register, a descriptor with the
"missing segment" flag set is returned. If the name is
found and the 8-unit ccntaining the segment has not been
loaded, then the 8-unit is activated. Finally, the
descriptor framing the desired segment is returned.

A 8- u n i t i s a c t i v a t e d i n re s po n s e to a c a L l f r om t he D y n am i c
Linker when attempting to resolve a reference to a segment
or domain. The referenced 8-unit is assigned an origin or
base for data segments and another for descriptor segments.
All of the descriptor segments for the 8-unit are then
l o ad e d i n v i rt u a l me mo r y •

All of the segment descriptors and entry descriptors in the
8-unit were initialized with a value for the Working Space
Register (WSR) when the 8-unit was created. If that value
for WSR is not the sarre as that assigned by the Working
Space Assignment function, then the WSR values in the
descripto.rs rrust be adjusted to the correct value. If the
base virtual addresses for both data and descriptors
assigned by the 8-unit Activator do not agree with those
assigned by the 8-unit Builder, then the base virtual
addresses in the descriptors must also be adjusted.

The page table for the ~orking Space is updated to reflect
the addition of the pa9es for the B-unit and the backing
store file may be initialized at this time .. The real memory
working set is also adjusted to reflect the addition of the
B-unit to the Working Space. The Domain Directory and the
Global Segment Directory are updated to reflect the actual
virtual memory address of the domain and segment <i.e .. , en­
t r y and s e gm en t de s c r i pt c r s) i n t he 8 -u n i t •

DESIGN OVERVIEW 3-15 March 31, 1980 - 15:20

Finally, the a-unit Activato.r must determine \iihether this
B-unit itseli has any urresolved segment references. This
is accomplished by accessing the table of unresolved segment
references in the a-~nit. Fo.r each unresolved reference,
the 9,-unit Activator calls the Dynamic Linker .. This, in
turn, may cause other B-units, the ones containing the
referenced segments, to be activated. When this process is
complete~ the a-unit activation has been finishea.

Note that references frcm the B-unit to segments have now
been resolved. However, references to other domains outside
t h e B- u n i t ha v e not • D cm a i n r e f e re n c e s s t i l l ex i s t i n t h e
form of dynan:ic linking cescriptors.,

The Process Synchronization facility of GCOS 8 exists to
perform two tasks:

* maintain the integrity of shared data, and

* synchronize the exec~tion of parallel process.

A more spe~ific discussion of these concepts is to be
supplied,.

DESIGN OVERVIEW 3-16 March 31, 1980 - 15:20

The micro-structure of t~e run-time environment consists of
the conventions for:

* intra-do"ain calling sequences

* inter-domain calling sequences

* st .a ck ha rd l j n g

* register allocation

* e~ce~tion processing

* interrupt handling

* condition handling

* inter-process synchrcnization

* operators

* debugging aids

* s e g n: en t s t r u c t u r e a n c b i n d i ng

Each domain contains a n~mber of standard
are:

* Linkage Segment

* Parameter Segment

* Argument Stack Segmert

* Software Stack Segmert

* Procedure SegmentCs>

* Data SegmentCs>

* Operator Segment

segments. They

Each domain has a Software Stack Segment for argument pass­
ing and subroutine linkase within the domain. The Software
Stack Segment may be a static part of the domain or it may
be dynamically obtained from the Data Stack. If it is in the

DESIGN OVERVIEW 3-17 March 31~ 1980 - 15:20

Data Stack, the entire amount required by
allocated upon entry.

The descriptcr framing the complete Software
is saved in locati'on 0 cf the Argument Stack
ventional OOR. The associated pointer register
to the base of the current stack frame.

the do ma i n is

Stack segment
and in a -con­
always points

There are two kinds of stack frames in the Software Stack -­
a root frame and a basic frame.

There is one root frame in the Software Stack and it is al­
ways the first frame. It is created on domain entry. The
root frame ccntains the following information:

* a fault recursion co 1.1.n t

*a pointer to the exception processing array

* the base of the current stack frame

*the total size of the stack

* the location of all cefault enabled conditions, and

* the location of the rext avai table stack frame.

The root frarre is updated when each internal call is made,
i.e., when a basic frame is created or released.

There are many basic frarres in the Software Stack. A basic
frame is created when a subroutine is called, e.g., external
procedures, ON CONDITION handlers.

A b a s i c fr a m e c on t a i n s a f i x e d a r ea f o r c on t r o l i n f o r ma t i on
and a variable length ~rea for parameter passing and the
subroutine's (block's> a1.1tomatic storage.

The information consists of:

* register safe store (optional>

* control information

* pointers to input and output parameters

* pointers to argument descriptions (optional>, and

DESIGN OVERV lEW 3-18 March 31, 1980 - 15:20

* auto mat i c storage.

It is important to note that the parameters passed in the
stack are the addresses cf the data items. In GCOS 8, these
addresses are NSA pointers having a 24-bit bit address and a
12-bit segmert identification.

Included in every domain is a segment reference to a shared
procedure segment contairing operators. Operators are short
procedure sequences which perform some support service to
the co"pilec procedure. Among the operators are code se­
quences to handle intra-domain procedure calls (between seg­
ments of the domain> and exits, various arithmetic
functions, cperating system call adapters (PMME adapters>
and inter-do"ain calls ard returns.

Operators are invoked ty an inter-segment <cross-segment)
transfer to the correct entry point in the operator segment.

The subroutine linkage operators perform all the stack
handling and environment preparation required during a
subroutine call. The preparation of arguments is done be­
fore the operator is invcked.

The calling sequence used within a domain establishes con­
ventions for how the parameters are passed, how the Software
St a c k i s handled, how t he re tu rn l i n k a g e is handled and how
the callee's environment is created.

The actions that are re~uired for subroutine invocation are
divided between the calling procedure and the interface op­
erator. The calling procedure prepares the arguments and
argument descriptions while the interface operator handles
the stack, does any regist•r saving and creates the return
linkage.

Parameters are passed frcm the caller to the callee by pass­
ing a list of addresses of the parameters plus (optionally)
the addresses of their argument descriptions.

DES1 GN OVERVIEW 3-19 March 31, 1980 - 15:20

Since the addresses are ~SA pointers, the descriptors of the
segments which form the comain must be in either the Linkage
Segment, the Parameter Segment or the Argument Stack. Sub­
ordinate descriptor segments cannot be used.

Note that no parameters or addresses are passed in
registers. This insulates one subroutine from the ODR
and/or register conventicns of another.

The output cf a compiler is an A-unit containing procedure
and/or data segments. A procedure segment consists of
gener~ted code, a pointer area, and one or more entry areas.
The generated code is all IC relative, i.e., it is floating
code.

Except for entry points, there are no references to a proce­
dure segment from outside the segment. Constants are
packaged within the procedure segment, thus the minimum per­
missions for the segment are Read and Execute.

The pointer area is an
needed by the procedure
shown in Figure 3Cal.
instructions) from this
to the pointer area are

area containing all the NSA pointers
for references to other segments as
The procedure loads ODR's <via LDPi
area when necessary. All references
IC relative.

Associated with each entry point to a procedure segment is
data which defines:

* The ASCII name of the entry point

* The number of parameters expected

* The lang~age and version which created the procedure

* The amourt of automatic <stack> storage necessary

* The location of the executable procedure, the pointer
area and debugging irformation (debug schema).

This data is tentativel) located at negative offsets rela­
tive to the entry point.

DESIGN OVERVIEW 3-20 March 31, 1980 - 15:20

Entry
Point

Entry
Point

--·------------------
I

I Pointer Area I
I I
I ------------------ I
I Entry Point Data I

--> 1------------1
I I
I Procecure I
I And Ccnstants I
I I
1-----------·------ I
I Entry Point Data I

--> 1-------------- I
I I
I Procecure I
I And Ccnstants I
I I ----·----------

Figure 3(a) Frocedure Segment Layout

Binding a procedure segment into a domain involves resolving
the inter-segment references contained in the pointer area.
This will cause the SEGID and the 24-bit address fields of
each pointer to be adjusted as the Linkage Segment of the
domain is established. Only the pointers which refer to the
Linkage Segment are adjusted. Those which refer to the Pa­
rameter Segment and Argu«ent Stack do not require adjustment
(relocation).

Multiple procedure segments may be merged into one segment
during the binding process. This is possible when their
combined size is less t~an 256K and their attributes (exe­
cute, read) are identical. Since the generated code is
floating code, two procedure segments can be combined into
one by concatenating t~em and adjusting the inter-segment
references of all segments in the domain.

D.ESlGN CVERVIEW 3-21 March 31, 1980 - 15:20

I Pointer Area
f 1------·-------.. J

Procecure
And Ertry Points

1------------.... - I
I Pointer Area
J
1------------.... ----.-- I

Procecure
And Ertry Points

Figure 3Cbl ~erged Procedure Segments

Multiple data segments may be merged into one
the binding phase~ This is possible when
size is less than 256K and their attributes
cache-bypass> are identi<al.

s e gm e n t d u ri n g
their combined

(read, write,

References tc the segmerts which have been merged must be
adjusted by relocating the NSA pointers which form the ref­
erences. Si~ilarty, references from one data segment to an­
other via NSA pointers (~~ich arise from pointer data types)
must be adjusted, both ir their SEGIO field and their 24-bit
address field.

Excepticn processing includes the handling of:

* ON CONDITIONS

• faults

*interrupts

Each i s hand led by a
ON COND1TION events

DESIGN OVERVIEW

cord it ion hand le r uni Que to the event.
may be detected synchronously during

3-22 March 31, 1980 - 15:20

normal ~recessing or they may be detected asynchronously by
a hardw~re fault. Another asynchronous event which is
handled the same way is a "software interrupt", i.e., an in­
terrupt from one process to another.

The things which are used in handling exception conditions
are:

* The Exce~tion Processing Pointer Array CEPPA)

* The CN CONDITION hanclers.

* The Exce~tion Processing Entry Descriptors CEPEDSl

Associated with every domain is an array which contains
pointers to the asynchronous event processing routines for
the domain. This array is located by a pointer in location
0 of the stack segment~ which is in turn located by a
descriptor ir location 0 of the Argument Stack,.

The EPPA may be in its own segment or may be part of a
larger segment. The EPPA contains NSA pointers to the pro­
cedures which handle

* The hardware faults <overflow, lockup, etc4)

* Software interrupts

* GELOOP detection

* Wrapup

* Restart.

To be supplied.

T 0 be s UP p l i e d

To be supplied.

DESIGN OVERVIEW 3-23 March 31~ 1980 - 15:20

SECTION 4

REALIZATION OF GOALS

This section describes hew the proposed environment does or
does not meet the goals that were stated in Section 2. The
summary table from Section 2 is reprinted with a column
which indicates whether the proposed design will meet the
goal, whether it will not meet the goal, or whether its re­
sponse to the goal still needs to be determined .. In those
cases where a simple answer will not suffice, the column
contains a reference to a succeeding paragraph in this sec­
tion ..

REALIZATION CF GOALS 4-1 March 31, 1980 - 15:20

Go al Rank Response

Migrate without HOL so~rce changes must yes
Accommodate GCOS·-111 executable formats must yes
Accommodate GCOS-111 Tss, Tos, & DM1V-TP must yes
Job performance at least 90% of GCOS-111 must 3.0
Throughput at least 90% of GCOS-111 must 3.0
User visible address values must yes
Automatic space atlocation and recursion must yes
Exception processing must TBD
Dynamic subprogram invccation must TBD
Support large procedures must yes
Support large data spaces must TBD
Support Distributed System Architecture must yes
Support a virtual environment must yes
Support shared elements must yes
Provide program and data integrity must yes
Provide user access cortrol must yes
Use current hardware must yes
Uniform micro-structure environment 1 yes
Uniform macro-structure personality 2 yes
Process synchronizatior 2 yes
Support large number of files 2 yes
Support large number of terminals 2 yes
Support multiple versicns of same module 2 yes
Support dynamic software installation 2 yes
Extendible to future product directions 2 yes
Supp o rt a r rays la r g e r than 2 S 6K 3 no
Protect Honeywell priced software 3 TSO
Migrate without assembly source changes 4 4.0
Migrate without JCL changes 4 4.0
Tasking 4 TBD

REALIZATION OF GOALS 4-2 March 31, 1980 - 15:20

Two types of performance analysis were done. The first
analyzed programs executing in an existing multi-segment en­
vironment using four performance case studies. The programs
were analyzed to determine their instruction mix and then,
from the mixes1 the perfcrmance of the programs relative to
their execution on the ursegmented GCOS-III was estimated.

In the second analysis, the object code of two programs
compiled for GCOS-I1I was modified for the multi-segment en­
vironment and analyzed relative to the original versions.

I t i s i m po r t an t t o n o t e th a t m a ny f a c t o r s i n a d d i t i o n t o t h e
execution environment affect the performance of the system.
The analyses presented in this section do not predict the
overall GCOS 8 performance relative to GCOS-III. Rather the
numbers state that for a given number of instructions
executed, the GCOS 8 performance will be b times the
GCOS-III performance. Since bis less than one, using the
mu l t i - s e gm e n t c a p a b i l i t y o f th e N SA ha rd w a r e i n t h e G C 0 S 8
environment effectively ce-rates the CPU. Other factors not
i n cl u de d i n th i s an a l y s i s such as the di f fer enc es i n the
supporting run-time subroutines, the operating system ser­
vices, etc., will significantly affect the total performance
of GCOS 8.

Re·ferences :

1) Ireland, R.,J. and O'Laughlin, J.T.,
"Virtual Unit Instructions, Times, and Counts",
An a l y s i s Not e -- 1 8 2,
February 14, 1980.

2) B r o wn , F. M • ,
Vue-graph tables on NSA instructions dated
.JantJary 28, 1980 ..

3) Ireland, R.J., private communications on NSA timing,
feb.ruary 18, 1980.

4 > Kr a sn y, L.,
"Virtual Unit Instn.ctions on CP-6",
M a r ch 1 1 , 1 9 8 o ..

The interesting combinations of hardware and operating sys­
tems are presented in tte following table, using GCOS III
performance on the 6620 without the NSA option as a
baseline.

REALIZATION OF GOALS 4-3 March 31, 1980 - 15:20

GCOS Ill GCOS 8 GC OS 8
Accommodation Native

-----------------------..-.-----··-·--
6680 x ax bX

The coefficients "a" and "b" represent the performance fac­
tors. Due to the pipelire structure of ADP, it is impracti­
cal to deri~e the ADP coefficients without simulation or
measurement. Therefore, this study only attempts to derive
values for the 6680 coefficients "a" and "b".

A number of case studies are presented1 some representing
static analyses of various programs and some representing
actual measurements .. All of the analyses calculate figures
for instruction mix, particularly of NSA instructions, and
b a s e d on t h e i n s t r u c t i or mi x a nd th e t i m i n g o f t h e v a ri o us
instructions, derive the coefficient "b". Coefficient "a"
is determined from an actual measurement.

The calculations of the two coefficients are based on two
as sump t i on s :

1. The non-NSA instructions in the GCOS 8 environment
ta k e a n a v e r a g e cf 1 • 7 3 S m i c r o s e c o nd s (R et • 1> ..

2. Instructions in the GCOS III environment take an av­
erage of 1.644 microseconds (Ref. 1,3).

REALIZATION OF GOALS 4-4 March 311 1980 - 15:20

The following table surnrrarizes the results of the various
c a s e s t u di e s •

CASE STUDY 1
Accom"'odation Mode

NSA instruction use in native mode is
in same proportion as ffeasured in
SR1000 master mode.

CASE STUDY 2
CP-6 Sert Command Exec~tive

CP-6 Sort Tournament Driver

CASE STUDY 3
SR100C Glocal Data Management

CASE STUDY 4
CP-6 Measurements

6680
Performance
C o ef f i c i en t

.93

• 88

• 827

.928

.86

,.94

REALIZATION CF GOALS 4-5 March 31, 1980 - 15:20

Although case studies 2 and 3 are based on a static analysis
rather than actual measurements., the results correlate quite
closely with the measured resu\ts in case studies 1 and 4,.

Two factors are seen tc affect performance for the 6680:
the percentage of NSA instructions executed and the percent­
age of CLIMB instructicns executed. Most of the NSA in­
structions are slightly slower than non-NSA instructions.,
however, the CLIMB is over ten times slower.

% C.LIMB's % Non NSA Case Study Coefficient ~'b"

.03 84.48 4 _.935

.04 87.37 4 .945

.as 87.3 4 .. 945

• 1 98 .• 18 1 .93·

.28 90.33 2 • 928

.6 89.0 1 .88

• 93 91.19 3 .86

1. 36 90.36 2 .. 827

The following table provides an estimate of the 6680 perfor­
mance values for the GCOS 8 environment. The coefficient
"b" is an average of the first three case studies .. The CP-6
measurements are not ircluded due to the unrealistically
small percentage of CLIMe•s.

GCOS Ill GCOS 8 GC OS 8
Accommodation Native

6680 x • 93X • 87X

----·-----..--...---------------·------------

REALIZATION OF GOALS March 31.1 1980 - 15:20

The table below summarizes the results from measurements of
GCOS 8 Accommodation Mode (Ref. 1).

Instructicn % of Total
Ty~e Instructions

LOP 1 • 2

L DD 0.18

CLIMB 0.1

EPPR o .. 06

Other NSA 0.28

Non NSA 98.18

6680 Weight
Factor

2.0

1. 9

20. 5

0.3

2.0

1. 735

6680 Weight
Value

2.40

0.342

2.05

0.018

0.56

170.34

Weighted Totals 176.868

Cceffi cient: b = 1 t.4.4 I 176.868 = O. 930

In accom~odation mode, the slave instructions are based on a
single segment environment, while the master mode instruc­
tions are based on a multi segment environment. One can pre­
dict the performance of the multi segment environment by con­
sidering only the mix of master mode instructions. This is
presented in the table below.

REALIZATION Of GOALS 4-7 March 31, 1980 - 15:20

Instruction % of Total
Type Instructions

LOP 7. 8

L DD 1 • 2

CLIMB o. 6

EPPR 0.4

Other NSA 1.0

Non NSA 89 .. 0

6 6 80 Weight
Factor

2 .. 0

1 • 9

20 .. 5

0.3

2 .. 0

1 • 73 5

6680 Weight
Value

15.60

2.28

12. 3

0.12

2.0

154.415

Weighted Totals 186.715

Coefficient: b = 1c4.4 I 186.715 = 0.88

A static analysis of two Sort/Merge modules implemented in
PL-6 for CP-6 is shown below. Since these modules do access
multiple segments and are written in PL-61 they should pro­
vide a good indication cf overall multisegment environment
performance.

T h e f i r s t t a b l e s h o w s t h e r e s u l t s f o r t h e So r t C om m a n d E x e c -
utive1 while the seconc table shows the results for the
Tournament Driver.

REALIZATION OF GOALS 4-8 March 31, 1980 - 15:20

Instruction % of Total
Type Instructions

LOP 6.a1

L DD a.a

CLIMB 1.36

EPPR 1.36

Other NSA a.91

Non NSA 9a.36

668a Weight
Factor

2.a

1 • 9

2a. 5

a.3

2.a

1 • 73 5

668a Weight
Value

12.a2

a.a

27.88

a.4a8

1.82

156.77

________________ . ___ ..__ ____ . ________________ _
Weighted Totals 198.898

Coefficient: b = 164 .. 4 I 198 .. 898 = a. 827

I n s t r u c t i on % of T o ta l
Type Instructions

6680 Weight
Factor

6680 Weight
Value

'---·-----------------------------------
LOP 7.29 2.a 14.58

LDD a.a 1 • 9 a.a

CLIMB a.28 20.S 5.74

EPPR a.28 a.3 a.08

Other NSA 1.82 2.0 3.64

Non NSA 90.33 1 • 73 5 156.72

Weight ed Tot a Ls 177.12

CoEfficient: b = 164 .. 4 I 177.12 = a. 9 2 8

REALIZATION Of GOALS 4-9 March 31, 1980 - 15:20

A static analysis of the Global Data Management module of
ITP yielded the results shown in the table below. Though
coded in GMAF, this module was chosen for the following rea­
sons:

it is highly structured

it is reasonably large (50

- it deals with many segments
ti mi t ed

so_,,..that regi.ster
opt i 1d z at ion is

- it is reasonably linear so that the assumption that a
uniform executior takes place should be a good one

Instructicn % of Total
Type Instructions

6680 Weight
Factor

6680 Weight
Value

---...--------------·-· ---·----------·-------·--------
LOP 1. 7 6 2.0 3.52

LOO 1.64 1.9 3.12

CLIME 0.93 20 .. 5 19. 06

EPPR 2.3 0.3 0.69

Other NSA 2.16 2.0 4. 32

Non NSA 91 .. 19 1 • 73 5 159.45

Weighted Totals 190.16

Coefficient: b = 164.4 I 190.16 = a. 86

This module coes perhaps do more register optimization than
a PL-6 generated module might. The relatively high percent­
age of EPPR's is due to moving the contents of one ODR to
another. In a PL-6 module this ~ould probably generate a
LOP rather tha,n an EPPR. If one-half the EPPR's are changed
to LDP's1 then the follo~ing figures are generated.

REALIZATJON OF GOALS 4-10 March 311 1980 - 15:20

Instructicn % of Total
Type Instructions

L DP 2.91

LOO 1.64

CUMB 0.93

EPPR 1. 1 5.

Other NSA 2.16

No.n NSA 91.19

6680 Weight
Factor

2. 0

1. 9

20. 5

0.3

2,. 0

1. 73 5

6680 Weight
Value

5.82

3. 12

19.06

0.345

4.32

159.450

Weighted Totals 192.115

Coefficient: b = 164.4 I 192.115 = 0.86

It is interesting to note that the number of LDP's executed
is of little consequence on the 6680 since the instruction
time is not significantly greater than for other instruc­
t i on s.

The tables below summarize the results of three CP-6 mea­
surements. The average cf the three measurements results in
b=.942. See reference 4 for more information.

These measurements are rot indicative of GCOS 8 timing due
to the very small ratic of CLIMB's to total instructions
executed, but are included for a comparison of typical in­
struction mixes.

REALIZATION OF GOALS 4-11 March 31,, 1980 - 15:20

Instr~ction % of Total
Type Instructions

6680 Weight
Fae tor

6680 Weight
Value

_...__.,..__._._ ____ ._. __ , ________________ ·_· __________ ,..__

LOP 7 .. 2 5 2.0 14.5

LOO o .. o 1.9 o.o

CLIMB o .. 04 20.5 0.82

EPPR 2.17 0.3 0.651

Other NSA 3 .. 1 7 2 .. 0 6 .. 34

Non NSA 87.37 1. 735 151.587

Weighted Totals 173.898

Coefficient: b = 164.4 I 173.898 = 0.945

.a..e..aJ.J,u:..e.uo1_l

I n st r uc t i on % of To ta l 6680 .Weight 6680 Weight
Type Instructions Factor Value

........ ·-- _ _.,... __________ _..,..._..__,.._

LDP 7 ... 15 2.0 14.3

L DD o .. o 1 • 9 o.o

CLIMB a. 05 20 .. 5 1.025

EPPR 2 .. 25 • 3 0.675

Other NSA 3 .. 25 2.0 6.5

Non NSA 87 ... 3 1. 73 5 151.466
............. ______ . __________________ ...__ _____________ ... _____ .._.....

Weighted Totals 1 73. 966

C o ef f i c i e n t : b = 1 6 4 .. 4 I 1 7 3 • 9 6 6 = 0. 9 4 5

REALIZATION OF GOALS 4-12 March 31, 1980 - 15:20

Instructicn % of Total
Type Instructions

LOP 12.31

LOO a.a

CLIMB o .. 03

EPPR 1. .. 3 7

Ot.he.r NSA 1 .. 81

Non NSA 84 .. 48

6680 Weight
Factor

2. 0

1 • 9

20. 5

0.3

2.0

1. 73 5

6680 Weight
Value

24.62

o.o

0.615

o. 411

3.62

146.573

Weighted Totals 175.839

Coefficient: b = 1c4.4 I 175.839 = 0.935

This section compares projected multi-segment code genera­
tion of COBOL and FORTRAN in GCOS 8 with the actual code
generated in GCOS-III. This discussion describes parameters
of the comparison~ highlights results from the comparison,
and concludes with recommended future directions.

Detailed numbers are net presented.

FORTRAN - This program is a matrix inversion from a scien­
tific benchmark. Of significant iriterest was the analysis of
code production within the program's innermost loop. This
critical code section was determined to be executed 100 mil­
lion tin:es.

COBOL-74 -- This program~ obtained from a benchmark support
demonstration program1 heavily uses COBOL-74 string manip~­
lation verbs -- INSPECT~ STRING, UNSTRING and the PERFORM
verb,.

FORTRAN - The program was com pi led with FORTRAN-Y. It then
represented the GCOS-111 environment. The inner loop code was

REALJZATlON OF GOALS 4-13 March 311 1980 - 15:20

examined and changed according to multi•segment environment
requirements. This versicn then represented the GCOS 8 envi­
ronment.

Those two versions were then compared in two ways. First,
the GCOS-II1 version was compared with the GCOS 8 version
assuming the hardware was constant C6680). Second, the envi­
ronment was held constart (multi-segment, GCOS 8) and the
hardware varied (6680 vs. ADP).

COBOL-74 -- This progran: was handled in the
the FORTRAN program an existing CBL74
listing was compared with a hand-coded GCOS 8

same manner as
generated code
version.

FORTRAN - The innermost loop instruction count was
in terms of number oi irstructions, and execution
crual per loop trip. Execution time was adjusted
pipeline breaks and cache misses.

examined
time ac­
tor ADP

COBOL-74 -- Since this routine contained neither iterated
code or conditionally e~ecuted code, a static analysis was
sufficient.

3. 2. 3 .. 2 ~.t-a.ti~

For all routines the following information was recorded:

* routine name

*number lines of source

* size of produced procedure for each environment being
comi:ared

* number LDPn produced for each environment

* p e r c en t l DP n f or e a c h e n v i r on m en t

* the average number of words of procedure code generated
for each procedure statement for each environment.

*The COBOL-74 sample had a relatively low level of LDP's
(1%). A COBOL-74 sample with more parameter passing
would generate more LOP instructions.

REALIZATION CF GOALS 4-14 March 31, 1980 - 15:20

* The COBCL-74 sample has a potential problem regarding
excessive ADP pipeline breakage during execution of
subrcutir.e and library call Linkage.

* The COBOL-74 multi-segment sample also has an excessive
ADP pipeline breakase problem for PERFORM code genera­
tion. This problem results when exiting a perform block,
i.e •. , "TRA to a TRA" ..

* COBOL-74 generated code for the multi-segment environ­
m e n t < A D P > s h o u l d e x e c u t e a bo v e t h e .A D P 6 X b a s e L i n e •

* Degradation from tte GCOS-III performance baseline
should be Less thar 10% for COBOL-74 generated code.
Since COBOL-74 has ro "dynamic" pointers except passed
parameters, it is essential to continue glotal register
assignments for parameter addresses and further to ex­
tend COBOL-74 to subject base pointers Cto wcrking stor­
age, process area, etc.) to the same register management
as parameter addresses.

* The FORTRAN sample also had a relatively low number of
LDPs <2.3%). Again, this was partially due to the nature
of the language <no cynamic data segments), however much
credit tc reducing this figure must go the the FORTRAN-Y
optimizer, as there ~as parameter passing of signicance
(4 per subroutine call). The LDPs for the parameter ad­
d r e s s l o ad i n g t o t a l e d 4 0 0 (4 pa r am et er s * 1 0 0 ca l l s t o
the matrix inversior routine>. However, references to
these parameter adaress values totaled within the
innerloop one millicn ... Thus, the ratio of loads to use
was qui t e Low, as we l l as be i n g we l l s e::i a rated.

* FORTRAN generated coce for the multi-segment environment
(ADP) shculd have no problem meeting the ADP 6X baseline
perfcrmarce goal. Ir fact, after accounting for cache
m1sses and pipeline breaks, this inner Loop code
improved in excess of a 10X factor.

* There should be minimal degradation when comparing
GCOS-III environment code productions with GCOS 8
multi-segment environment code productions. The
innerloop code in particular should not degrade at all
since there are no calls and no LDPs are within it. The
degradation, if any, would result from the new calling
sequence and the glotal pointer register loads upon each
entry to the matrix inversion. However, as previously
stated, those events only occur 100 times.

REALIZATION Of GOALS 4-15 March 31, 1980 - 15:20

3 • 2 • s ~,Q.O.k ... tu.si.Qo~

1. From the small number of programs examined it would ap­
pear that both FORTRAN-Y and COBOL will meet the per­
formance goats for the code generated by the compilers.
More work needs to be done to quantity performan~e in
this area as well as in the linkage to the I/O support
routines, which was not analyzed. Suggestions for this
are included in the recommendations.

2. Global cptimizing ccmpilers will have a significant ef­
fect on performance. This is true on the 6680 where an
optimizer would recuce the number of Load Pointer in­
structi ens generatec and executed. It will be even more
significant on the ADP where an optimizer would take
advantage of the pi~eline as well as reduce the number
of Load Pointer instructions.

1. Plans should be put in place to add optimizers to all
language translators which do not have them.

2. Possibilities of a binder changingladding/ceteting in­
strlicti ens in addition to relocating addresses should
be studied. The possibilities include adjusting of ad­
dre9s fields in conjunction with the removal of address
register manipulation and recognizing references to
bound segments and changing references as a result. The
extreme to which this can be utilized is to bind pro­
grans and data into a single segment.

3. Improve the code gererator in the COBOL-74 compiler to
improve the instructions generated for both PERFORM and
CALL.

4., Perform studies on ECOS-1II by inserting pulse instruc­
tions into the call and entry operators to determine as
much of the information on performance factors as pos­
sible and compare those with the hand calculated num­
bers for the recommended model.

REALIZATION CF GOALS 4-16 March 31, 1980 - 15:20

4 • 0 t:ligi:.a.ti.Q.LJ

*** To be supplied ***

REALIZATION OF GOALS 4-17 March 31, 1980 - 15:20

SECTION 5

DETAILED SPECIFICATIONS

To be supplied.

DETAILED SPECIFICATIONS 5-1 March 311 1980 - 15:20

To be supplied.

DETAILED SPECIFICATIONS s-2 March 31, 1980 - 15:20

APPENDIX A

ADDRESS REPRESENTATION

The representation of address values is the central problem
in the design of the micro-structure for the multi-segmented
run-time environment. The use of address values is wide­
spread and interacts strcngly with the overall system goals.

Addre~s values are required in the implementation and con­
trol of:

Exception Processing
Memo.ry Management and Software Stacks
Arguments and Parameter Referencing
Locate mode input-o~tput
List structure processing
Connection ta run-time support

In high order languages~ these facilities show up as dis­
tinct language constructs for:

Pointers and Based Storage
Entries and Labels
Alternate returns ard Exception conditions

Both the facilities and their high order language constructs
appear in Honeywell and customer software. Their wide usage
i s r e f l e ct e d i n t he l a r ~ e nu m be r o f s y st em go a l s t h a t a r e
related to the choice of address value:

Job performance and throughput
Uniform micro-structure
User visible address values
Automatic space allccation and recursion
Exception processins
Large procedures and data spaces
Support of virtual environments
Su~~ort of shared elements
Provide program and data integrity

ADDRESS REPRESENTATION A-1 March 31, 1980 - 15:20

Use current hardware
Minimize ITP conversion

ln the design process1 t~ese several aspects of address val­
ues were red~ced into the following set of design criteria:

* The address value mLst be storable in user data space.
The address value representation must be a legal slave
space data format.

* The adcress value representation must allow uniform
reference to domain-external parameters and
domain-local data.

* The substantive addf'ess value must retain its identity
throughout being loaded into and stored from an Operand
Descriptor Register COOR>.

* The address value representation must support bit level
addressabi ti ty for cperands,.

* It is desirable that the address value representation
use hardware with relatively high performance.

* It is desirable that the address value representation
s u p po r t s e gm en t l e v e l c on t en t i n t e g d ty ,.

* It is cesirabte that the address value representation
support an addressatility greater than 256K words.

*It is desirable that the address value f'epresentation
support domain str~etures containing more than 1024
segments.

* I t i s d es i r a b l e t h a t t h e add re s s v a l ue be v a l i d a c r o s s
domains ..

The following sections discuss the alternate address value
representations investigated.

ADDRESS REPRESENTATION A-2 March 31, 1980 - 15:20

The NSA pointer is a hardware single
containing an address field and a segment
word ha~ the following fcrmat:

0
a

2 2
3 4

3
5

1------·----------------1-----------J
add res s f i e l d se g id

I----------------I·-------.... ·- I

word data format
identifier. The

The address field, bits C-231 has the same format as an ad­
dress register and gives a word, byte, and bit offset into
the a s soc i at ed segment. The s eg i d, bi ts 2 4-3 5 , i dent i f i es
the descriptor segment and entry value for the des-criptor
framing the associated segment. The segid may reference
on Ly t he l i n k age des c ri p tor segment, th e a r g um en t des c ri pt or
segment, or the parameter descriptor segment. The size of
the segid field allows a maximum of 1024 entries in each of
the three descriptor seg~ents.

There are several drawbacks to the use of the NSA pointer as
the address value representation:

1. The hardware instruction for loadin_g a pointer CLOP> ·is
not one of the faster NSA instructions. The instruction
is inherently slow, since it includes a second memory
access to acquire tre NSA descriptor referenced by the
segid value.

2. The address field cf 24 bits limits the useful offset
value to a segment cf 2S6K words.

3. The NSA pointer is effectively limited to a domain of
1024 segments. A dcmain is defined by the contents of
the linkage descriptor segment. The segid value makes
direct reference to the linkage segment and is limited
to 1024 entries.

4. The NSA pointer value is not valid across domains.

ADDRESS REPRESENTATION A-3 March 31, 1980 - 15:20

The NSA descriptor is a hardware double-word data format
identifying the location and extent of a segment. Since both
location and extent are in terms of bytes, the N.SA
descriptor must be accompanied by an address register value
to give the bit address ci the operand. This three word ad­
dress value representat·icn would have the format:

a

0
0

1 2
9 0

3
s , _____________ ,_.....__, ,._..,._,._... _______ -----1

bounds controls
t ---·---..---.-------I------.. ------·-· .. I

1 base

2
!---·-·--------.... --~-__..__._ 1----------1

bit address unused
1-~-..-. - -·-------------41 1-----------1
0
a

2 2
3 4

3
5

The bounds field, bits 0-19 of word Q, contains the maximum
valid byte address within the segment. The control field,
bits 20-35 cf word Q, ~dentifies the working space within
which the segment resides and contains access control infor­
mation. The base field, word 1, locates the byte offset of
the segment within the working space identified by the con­
trol field. The bit address, bits 0-23 of word 2, has the
same for~at as an addres~ register and gives the word, byte
and bit offset of the operand within the segment.

Using a NSA descriptor plus an address register value as an
address value representation has the disadvantage that such
a construct cannot usefully be stored into user data space.
Although the address register value and descriptor content
can be stored into operand space, the descriptor cannot be
loaded into a descriptor register from operand space. Sepa­
ration of the address register value in operand space from
the descriptor in a special descriptor segment raises insur­
mountable problems in synchronizing the two spaces and pass­
ing address 11alues between procedures witnin a domain.

ADDRESS REPRESENTATION A-4 March 31, 1980 - 15:20

When represented as a bit address and an offset <index) into
some descrir::tor segment, the address value representation
would require a two word construct:

a 2 2 3
a 3 4 s

I --·------------1--·--------·-I
0 l bit address I unused I

1-------·---· ·---·-- l---- J----------""".-1
1 I s e g rr e n t i n d e x I un u s e d I

I-·----------·--·--- 1------------------1
0 1 1 3
a 7 a s

The bit address field, bits 0-23 of word Q, has the same
formst as an address register and gives the word, byte, and
bit offset within the associated segment. The segment in­
dex, bits 0-17 of word 1, contains a value that identifies
the pror::er descriptor within an associated descriptor seg­
ment. The descriptor segment would have to be located by a
de s c r i p tor at s om e c a n c r i ca l po s i t i on i n t h e l i n k a g e s e g -
ment. To maintain efficiency, at least one ODR would have to
be dedicated to framing this descdptor segment.

There are at least three drawbacks to the use of this format
for the address value rer::resentation:

1. The value of the address value cannot be maintained
across the loading cf an ODR. The associated descriptor
can be placed into an OOR and the bit address value can
be placed in the matching address register. There is
no place, however, :in which to remember the segment in­
dex value. There is no way, therefore, in which the
address value can be reconstituted in data space.

2. This format is not especially efficient, recuiring sev­
eral instructions tc load the ODR and address register ..

3. This representation is not valid across domains.

ADDRESS REPRESENTATION A-5 March 31, 1980 - 15:20

The super painter representation of an address value is
predicated on all of the data segments in a domain, regard­
less of access controls, being collected into a single super
segment. The super pointer locates data within this super
segment. The super pointer is envisioned as a tko word con­
struct:

0

0
0

2 2
3 4

3
5 1--,----------·-------------I-·----__ ...,....,_ _,

bit address unused
1---------------------------l------ ----·-I

1 extended base I --------------------------------------1
The bit address field, bits 0-23 of word o, has the same
format as an address register and gives the word, byte, and
bit offset from the base value within the associated super
segment. The extended tase field, word 1, gives the byte
offset of a datum within the associated super segment. The
super segment itself wodd have to be located by a super
descriptor at some cancn·ical position within the linkage
segment. Tc maintain efficiency, at least one OOR would
have to be dedicated to framing the super segment.

There are several drawbacks in using a super pointer as the
address value representation:

1. Address values represented as super pointers stored in
user data space can point only into the super segment.
Parameters passed into a domain are not in the super
segment. Therefore, parameter address values cannot be
represented via super pointers ..

Moving parameter values into the invoked domain and
back to the invoking domain is inefficient.

Creating self-describing super pointers is inefficient
in that each pointer would have to be tested for type
before being utilized.

2 • T h e c o l le c t i o n o f a ll d a t a s e g m en t s o f a d om a i n i n t o a
single super segmert vitiates any attempt to control
the access to particular segments or classes of data.
All of the content cf the super segmerlt would have the
same access permissions as the most public datum in the
sui:er segment.

3. The super pointer is not valid across domains.

ADDRESS REPRESENTATION A-6 March 31, 1980 - 15:20

The following table summarizes the attributes of each possi­
ble address value representation against the stated design
criteria.

CRITERION RANK NSA DESC. TABLE SUPER
PTR. ADDR. INDEX PTR.

Storable in data space must Y N y y

Uniform ~ara~eter referencing must Y y y N

Retain identity through CDR must Y y N y

Bit level addressability must Y y y y

Relatively high performarce N y N y

Support segment integrity y y y N

Addressability greater than 256K 2 N y y y

Domains exceeding 1024 segments 2 N y y y

Valid across domains 3 N y N N

Only one alternative, the NSA pointer, supports all of the
absolute requirements.

ADDRESS REPRESENTA~10N A-7 March 311 1980 - 15:20

APPENDIX B

D ES 1 G N S OU R CE S

The following sections describe alternative program
ment definitions considered as input to the GCOS
proce.ss.

environ-
8 design

D E S I G N S OU R C ES 8-1 March 31, 1980 - 15:20

Ease of program development
Considered major and increasing factor in computer expense
Sy s t em d eve l o p e r s a s we lt a s e nd us e rs
Large address space
Minimum pre-specification
High level language support

Efficient execution
Minimize copying
Minimize main storage requirement

Protection
User from himself
User from other users
System from user
Accicent or malice

Resource administratior and control
Centralizable or delEgatable
Automatic
Flexible

Adaptability
To different needs of different users
To varying scale configurations
To future requirements
To future technology

New de\lices
Declining cost of storage
New programming languages and techniques

Process is fundamental structure
Addressing mechanism

Memory size limits
256K wcrds per segnent
4094 segments per ~recess

Segment a ti on
Hardware supports use of segment number and offset

Pointer registers
ITS indirect wore pair
Implicit use of Procedure Segment Register

Uses of segments
Procedure segments

Single compilation, directly executable
Bound segment, same format as compiler output
Pu re procedu.re

Oat a segment s
Process private
Shared

Supervisor procecure and data
Paging

D E S I G N S CU R C ES B·-2 March 31, 1980 - 15:20

Invisible to user
All instructions and modifiers work across page fault

Segments don't share pages
Page mapped 1:1 with disk record; memory encaches disk
Segments can grow

Zero pages in segment allocated when stored into
Uses of paging

Effic-ient buffer allocation
Configuration incependence of user programs

Security and integrity
Access ccntrol per-segment, per-user

Derived from inforrration in file system
Upcated immediately if information changes

Access ccntrol dimensions
Intraprocess access control: rings

Rings 0-7, 0 most privileged <central>
Brackets for .write, read, execute, call
Hardware validation of ring number in pointer
Uses

Protection of supervisor from user
Running a program in an isolated environment
Prcviding controlled use of data or program

Per-user access cortrol: Access Control List
Modes Read, Exec~te, Write
Enforced by hardware on every reference
Uses

Read sharing: 4se of common data and program
~emory and channel efficiency
Coordination of user activity <library)

Write sharing
Process synchronization

Nondiscretionary access control: Access Isolation Mechanism
Level and category, like military security
Uses

Prevention of accidental disclosure of information
Defaults make access control transparent for common case

Generated code
Stack segment (per-ring) for program temporary storage

Stack header has e nvi r o nm en t de f i nit ion pointers
Hardware knows stack segment number and register convention

Does not know any fixed offsets in stack
Recursive code stardard

Threaded code with o~erator segment references
Operator segment shared by multiple processes, all rings
Operator segment lccated by language convention at entry

Standard object segment format
Te x t (ins t r tJ c t i on s and cons t an t s)
D e f i n i t i o n s < i n w a r d r e f e r en c e)

Entrypoint
Argument descriptors for each entryooint

Symbol <optional)

DES I G N S CUR C ES B-3 March 31, 1980 - 15:20

Static template Coi:tionall
Break rrap (for debuggers) {optional>
Object map

Linkage section per ring
Contains ITS pointers or fault pairs
Supplies segment n~mber for external reference

Static storage area i:er ring
Allocated in the same place as linkage

Standard call operatcr
Used even by asseml:ly language programs, via macro

Standard argument list
Header
Argument pointers
Argument descriptors

Standard data representation
ASC1I character set
Machine-supported cata types
Array and string representation
Packing and alignment
Pointe rs

Implemented as ITS pair, can use for indirection
Packed pointers
Ring number in pcinter in storage

Supervisor
Name management

Segments searched for by symbolic name
Assigned segment number and made known
Subsequent searches for same object very efficient
Per-ring search rules control search for object
Referencing directory rule helps subsystem packaging
System command irternals available to user
Site may modify cefault search rules

Linkage and name si:ace not reset implicitly
No job step or ccmmand concept
Run units, explicit termination optional

Int e rp r o g.r am linkage
Dynamic linking standard
Binding optional
Prelinking optional
Unlinking of dynamic link on demand
Run units

Superviscr call and return
Same mechanism as any other call
Inner ring programs take some care not to be subverted

Excei:tior. handling
Error indication

Symbolic error cedes only, numeric values sealed
Convention is to use final argument of subroutine
Standard I/O stream for error messages

Query handling
S i gn a l me ch an i s m

Condition handlers

DESIGN SOURCES B-4 March 31, 1980 - 15:20

Clearup handlers
Any_other handlers
Cross-ring signalling
Static condition handlers
Hardware faults handled as signals
QUIT handled as signal
Default environment action

New command level
St art, release

Process terminatior
Epilogue handlers

Replace parts of environment
Subset
Extend
Test new version

Uniform execution regardless of input stream
Stream 1/0 system
Resource Control Package

Symbolic resource names
User may create outer module
User may generate CCWs for IIO

DESIGN SOURCES B-5 March 31, 1980 - 15:20

2 .1 G~ili

The goals of CP-6 are tc provide an attractive upgrade al­
ternative to Sigma series hardware users by offering a sys­
tem personality very si"ilar to CP-V. Conversion of data
files in format and from EBCDIC to ASCII was assumed neces­
sary but all file system and file access method
functionality of CP-V was copied as closely as possible.

Development of the systew was to be based on using a higher
order language for most cf the implementation. Both external
(command language) and irternal <calling .sequence.) uni formi­
ty were given early attertion and high priority.

Compatibility with GCOS was explicitly of secondary impo:r­
tanc e.

CP-6 uses the same NSA hardware as GCOS 8 but in a much more
limited way. Although stcrage managemment takes advantage of
the page tables, dynamic paging is not supported. The do­
main structure of user s:rograms is fixed and the user ad­
dress .space is lim·ited tc a total of 398K words ..

Approxi~ately 90% of system software is written in PL•6.
Uniform interface conventions are strongly enforced.

The system is seperated into four domains and eac.h user has
a single domain. The system domains are:

Mon it er
Command Processor
Interactive Debugger
Alternate Shared library

Each user proces.s is assigned
structure.

a Working Space of fixed

o A fixed page table space allocation limits each WS to
512K words ..

o The user program can access at most 398K of the ws.

o There is one domain having a fixed segment structure.

o Segments addressatle by the user process are:
- Instruction Segment: 256K maximum site.

DESIGN SOURCES 8-6 Mareh 31, 1980 - 15:20

Control Segll'ent; 14K
Data Segmerts: at
128K.

maxim um
most 8

and Read-Only.
segments totalling

o The WS page table is used for memory control.
- Certain ~ortions are pre-assigned for

functions.
Process and/or constant data sharing is
achieved by mapping the same physical page into
two or more W S page tab l es. < 3 2 K of user in­
s tr u ct ion segment is normally reserved for a
"Library" of shared pure procedure.)

- The user prcgram may request dynamic allocation
of pages in the page table.

- Overlay usage in the Instruction Segment is
supported.

Compiler output is not directly executable but must be
linked with its supportirg subroutines into a run unit.

Large
way.

programs must be overlay structured in a conscious

Intra-domain procedure
structions.

calls are implemented using TSX in-

The user domain may CLI~B to the Alternate
and reaches the Mani tor l::y PMME.,

Shared library

The user process may directly manipulate pages:

- allocate and free data segment space in words,
allocate and free real lnstruction Segment pages oth­
er than those allccated via the linking process,
Allocate and free virtual Instruction Segment pages
other than those allocated via the Linking process ..

Subroutines may be sharec only by being page mapped into the
top 32K cf the Instructicn Segment.

User procedures m.ay be shared via special post-linking
processing to identify them as sharable elements ..

Hardware pointers and vectors are usable via both assembly
language and PL-6.

Compiler output segregates data and procedure. Pure proce­
dure is created by PL-6 to allow sharing.

DES1 GN SOU RC ES B-7 March 31, 1980 - 15:20

The standard calling seq~ence provides for an alternate re­
turn point.

A one-way inter-procedure exception path is supported by the
PL-6 REMEMBER/UNWIND feature.

Process level exceptions {ON conditions) are supported via
ASYNCHRONOUS procedures and the MSXCON <exit control> facil­
ity of the ocerating system.

A single JCL provides fer both batch and interactive usage
modes.

The same sys tern interface mechanism is avail able to programs
in batch and interactive execution modes.

The same I/O mechanism wcrks for both batch and interactive
programs. The inteactive state may be determined from file
attributes.

System search rules are the same for JCL and programmatic
procedure i n vo c at i on.

System modules are dynamically replaceable without system
interru~tion ..

DESIGN SOURCES B-8 March 31~ 1980 - 15:20

The native environment present in SR 1000 is partially
inherited from ACOS V1.1 which was based on a Toshiba-HIS
joint design effort goirg back to 1975 and 1976. It goes
beyond that base in many ways including checkout of the mul­
tiple Shared Run Unit Litrary capability and the addition of
a limited capability Dynamic Linker.

The goals of the release which apply to the native environ­
ment include:

o Overcome limitations of GCOS-I1I
Slave memory size

- Files per activity (increased PAT space>
Program number limit

- SSA module frag"entation
Memcry fragmentation (compaction overhead)

o Utilize NSA hardware features
Optimize real memory utilization

- Improve integrity and security

o Sup~ort the Integrated Transaction Processing system

The uni~ue address space of a program is in a private Work­
ing Space "viewed" through WSR 7. This process-local work­
ing Space is divided into control information storage (the
process structure) and program storage. The first 64K vir­
tual addresses are reserved for control information and
descriptor storage. All used pages in this area must be
.memory resident when the process is not swapped out.

Dynamic ~aging of both program and shared address spaces is
supported by ruling out ~nsupportable instruction sequences.
Explicit overlay manage"ent is not supported by the system
in native mode.

Program construction faciUties treat each compile unit as a
domain. Thus all runtime services are invoked by a CLIMB in­
struction.

Segmentation is assumed in program construction
ways based on standard descriptors. This means
largest segment size is 256K words.

and is al­
that the

DESIGN SCURC ES B-9 March 31, 1980 - 15:20

Operating system services are reached either by a CLIMB or a
PMME 'instruction. The interfaces are not consistent in style
and some have undesirable features such as passing codes in
registers.

Addressability to Sharee Working Spaces is available to a
native made program via WSRs 2-6~ Content of these Shared
Working Spaces may be .loaded by an unrealesed utility to
Working Spaces having fixed relationshiJs to the WSRs.
These relationships, the status of the contents, and other.
information is recorded ina hard-core table.

An unreleased utility ~rovides optional static linking to
Shared domains but Run Units so linked are vulnerable to
changes in the content of Shared Working Spaces to which
they are linked. Compatibility of a Run Unit with the
Shared Working Spaces available at the time of its execution
is checked tc prevent a rnis-match.

Alternatively, dynamically assigned Working Spaces may be
loaded by a loader program which is part of the
develop"entat scaffolding used by ITP. The Shared Working
Spaces in this method are controlled by a "sleeping" process
which holds the Working Space, backing store, etc.

A primitive Dynamic Linker supports linking to ITP shared
software,.

User program (process local> virtual address space may be at
least 1.6 million words ..

More than 2SC files may te assigned to an activity.

Construction of both user and shared programs is completely
flexible <within hardware constraints) in the use of multi­
ple segments and multiple domains.

DESIGN SOU Rt ES B-10 March 31, 1980 - 15:20·

4. O ~.'-Q.~:lJl,L~Q~_12Z.2_ft.Q.g.r:..a . .JI_~.ali.t.mi.m~o t

4 • 1 .eti~i-.!iLil.Q.C~

This environment definition was developed primarily within
the Language and Database organization in 1978 and 1979 to
provide a base for compiler planning and particularly to es­
tablish a target environ~ent for the development of PL-6 for
GCOS 8. It is a slight extension of the SR 1000 environment
in that new approaches are taken to the construction of pro­
grams which free the system designer to construct domains
from multiple compile units.

Certain conventions worked out during development of this
specification became part of SR 1000 .• In particular, domain
structure, null descr-iptcr, null pointer and revised excep­
tion precessing conventicns were adopted.

Definition of the execution environment as seen by a compil­
er code generator was the fundamental goal of this effort.
Support of all general features of higher order language
systems, efficient inter-module calling sequences, and maxi­
mum uniformity of conventions were considered of highest
priority ..

Maximum generality of sharing, uniformity, and ease of use
were alsc taken as important goals.

The most significant variation from the program construction
av a i l a b l e p r e vi o us l y f o r n a t i v e m od e i s t he a s s ump t i on t ha t
modules generated by a compiler would normally be combined
with others in a single comain. This choice was made in or­
der to employ the hardware "pointer" datum as the "pointer"
data type of several language systems. It also Led to a
means of providing intimate run time supporting software
that could be shared without the use of the CLIMB instruc­
tion.

A genera l i z a ti on of d y n arr i c l i nk i ng wa s e nv i s i one d i n w hi ch
symbolic information in every domain would provide names to
be matched against directories in each Shared Working Space.

Dynamic association of Shared Run Unit Libraries with Work­
ing Spaces and of process with Siared Working Spaces was
proposed but not fully defined in the specification ..

DESIGN SOURCES B-11 March 31, 1980 - 15:20

This note describes briefly how to adapt the Multics
multi-segment runtime en"ironment to the NSA machine, in or­
der to create a GCOS-1V ~ulti-segment runtime environment.

A Multics segment will be mapped into an NSA segment.

Pointer values will be represented by NSA pointers.

Multics rings will be ag~roximated by NSA domains.

Each domain wilt have a cescriptor segment; segment numbers
in all dcmair.s of a process will refer to the same segment,
with possibly different access rights.

Pointers can be shared between domains only if the segment
numbers are assigned identically in both domains. The
Multics approach to this problem involves several rules:

1. Pointers are never valid aft•r shutdown and reboot.

2. Pointers are valid across processes only in a special
case: system-wide assignments of segment numbers to
supervisor segments at boatload time .. T.hus, a pointer
to a supervisor segrrent is valid in all processes.

3. Pointers are freely passed within a process, but it is
the process's own resposibility to garbage collect
pointers within a dcmain Cring> .. That is, a process can
construct a pointer, hide it somewhere, and release the
segment number; the pointer is invalid but the system
does not automatically invalidate the pointer.

Segment numbers 0-N will be reserved for supervisor segments
in all proce.sses CN set at boot load time>. Then, segment
numbers N+1 to N+M will be reserved for pe.r-work station
segments, where M is variable according to work station and
determined at process creation time. The rest o1 the seg­
ments in the process are assigned segment numbers on a
first-come, first-served basis.

This does not preclude two processes sharing a procedure
segment, assigning it different segment numbers in different
processes. The procedure will, however, require a linkage

OE SIGN SOU RC ES e-12 March 311 1980 - 15:20

section which is impure and per-domain which contains seg­
ment numbers needed by the executable code to refer to its
environment and for inward reference.

St a ck
Stack frame
Linkage Offset Table
Combined Linakge Area
Reference Name Table
Known Segment Table
Argument list header
Argument list
Argument descriptor

0 n e pr o c ed u r e w i l l c a l l a not he r a cc o rd i n g
scenario. (Suppose A calls B>:

to the following

1 .. P r o c e du re A pre pa r es an a r g um e n t
stack frame.

list for B in A's

2. Prccedure A obtains a pointer to procedure 8.

3 • P r o c e du re A en t er s the C ALL o pe r at or •

4. The CALL operator saves the return point
frame and enters prccedure B.

in A's stack

S. Procedure B performs a standard entry sequence which
- Builds a stack frame for 8
- Establishes addressability for B's linkage section

Establishes addressability for B's arguments

Arguments w i l L be pass e c as they a re in Mu l t i cs, not vi a
CLIMB. The argument list will be a list of NSA pointers to
argument values, stored en the software stack. If CL1M8 is
used, it will not be usec for argument passing. The para.me­
ter stack is not used. The only CLIMB opcode will be in the
operator segment which contains the call operator.

Pointers may be passed between domains. The output of a
compiler is a file ~hich contains several sections:
executable cede, linkage definitions, linkage section tem­
plate, symbol section, ard object map. Output from separate
compilations can be combined into one segment by a "binder."

DES I G N SOUR C ES B-13 March 31, 1980 - 15:20

Compiler output is pure procedure, threaded code. A process
may have many domains1 b~t there is a limit of 1024 segments
per process. {Multics had this limit for many years: most
processes still operate with:in it. Administrative action
can increase the size to 4096 for special processes.>

Pointers do not carry a ring number. This requires that all
pointers input to a domain be validated by the callee. Such
code was once written for 645 Multics: its construction is
fraught with subtleties and dangers. On the other hand, we
understand the problem.

Since NSA does not pro~ide an 1TS pointer, all indirect
addressing must be replaced by explicit register loading.

The size of a segment is 256K words, same as in Multics, un­
less super descriptors are used. These can be used if there
are some limitations, like only one per process.

Per-domain reference name management.

Per-process and per-work-station segment number management.

Pe r- r i n g s e a r ch r u l e s •
1.o..t.~.c.a.c_g~ .ca m_J,.i,oJs..a~u::

Dynamic linking
Unlinking of dynamic lirk on demand
Run units

Write-arounds to GCOS-8 functions must be provided so that
the user program can call upon the supervisor by a language
call instead of via a MME. The supervisor routines must take
some c a re n o t t o b e sub v er t ed if p o i n t e r a r gum en t s a r e
passed.,

Software convention must be established for
error code

D E S I G N SOU R C ES 8-14 March 31, 1980 - 15:20

Standard 1/0 stream fer error messages
Query handling
Signal mechanism

Conditicn handlers
Cleanup handlers
Any_other handlers
Cross-ring signallirg
Static condition handlers
Hardware faults hancled as signals
Default environment action

QUIT
Process termination
Epi Logue handlers

The standard call, push, and return operators must be
written. If multiple o~erator segments are permitted in a
domain then the conventicns for making the various operator
segments addressable must be worked out.

The standard linker must be designed. This
following pieces:
Fault handling
Definition search
Linkage space assignment
Linkage template loading
Process restart

requires the

A binder will be requirec for the initial release, in order
to conserve segment numbers.

Efficiency of the COBOL and FORTRAN I/O packages will be im­
portant, and special care must be given to making this func­
tion efficiert.

DE S I G N SOUR C ES B-1 S March 31, 1980 - 15:20

6 • 0 .Ql.h~J:.-l.O..QJJ.1..S.

TBS by GA Mann.

DESIGN SOU RC ES B-16 March 31, 1980 - 15:20

APPENDIX C

DESIGN EVALUATION

The GCOS ~ulti-Segment Runtime Environment Committee
evaluated the alternative design strategies proposed for the
GCOS 8 MSRTE and chose an approach which was an evolutionary
development from the current 4VX product. The major reason
for this choice was the feeling that no other approach could
be implemented for delivery at the end of 1981.

The Multics approach is a low risk approach to satisfying
most of the functional design objectives for the runtime en­
vironment; we know this because Multics satisfies most of
these objectives and already works. Performance parity with
GCOS-III is probably not possible with this approach, or any
other a~proach considere~: but predicting the performance of
a Multics-approach envircnment was not pursued in detail.

The amount of code to be written for the Multics approach is
known to be large; compiler code generators for all compil­
ers, binders, linkers, and supervisor services must be built
as described above. This amount of code is about the same
for all proposed implerrentations, but the additional work
for the Multics approach ~ould be the re-implementation of
4VX/1TP and other GCOS code to work with the new environ­
ment.

This approach was not gi~en a Large amount of consideration.
Once we determined that the complete job was very large, and
could net be reasonably promised for end of 1981, we turned
to other schemes. Another reason we did not pursue this ap­
proach too far was that it used NSA pointers and the LDP
opcode heavily, and at the time we were in hopes of
discovering an approach which did not suffer from the per­
formance problems of this method.

DESIGN EVALUATION C-1 March 31, 1980 - 15:20

We really didn't evaluate this approach, because CP-6 does
not provide sufficient support for large address spaces.
The question of how to alter the CP-6 environment to .support
larger address spaces was not investigated.

Although code generators for all languages, an A-unit merg­
er, and a B-~nit binder "ust be written, it is possible that
some use may be made of the existing loader, and the dynamic
linking and rremory management software used by ITP.

Compared to the Multics approach, this method might be less
code, or it might be more, depending on how much old code
can be adapted to the new circumstances. It is definitely
more design: many complex features of the RTE would have to
be invented, which coulc be copied from Multics if we took
the Multics approach.

If we assume that ITP is going to be kept with minimum
change1 then the desire for a uni form environment will have
a strong influence on the shape of the MSRTE. Several
strategies ~sed by ITP, such as process structure, memory
management, per-opening domains for every use of a file1
cannot be accommodated within many of the possible RTEs.

Some of the committee menbers expressed the strong desire to
avoid any caronicalizaticn of domain internals: that is, it
would be possible to have many different internal structures
in different domains. T~is was advanced as an advantage to
program aevelopers since the effects of an error would not
propagate.

This environment was considered to be a minor variant of SR
1000 and our eventual design adopted features as appropri­
ate.

~ESIGN EVALUATION C-2 March 31, 1980 - 15:20

TBS

APPENDIX D

COMPE~ITIVE COMPARISON

COMPETITIVE COMPARISON D-1 March 31, 1980 - 15:20

MULTI-SEGMENT SHARED RUN-TIME ENVIRONMENT

o GOALS & CONSTRAINTS

o MACRO-STRUCTURE

o MICRO-STRUCTURE

o PERFORMANCE

4/18/80

G 0 A L S

GOAL RANK RESPONSE

MIGRATE WITHOUT HOL SOURCE CHANGES MUST YES
ACCOMMODATE GCOS-111 EXECUTABLE FORMATS MUST YES
ACCOMMODATE GCOS-111 TSSJ TDSJ & DMIV-TP MUST YES
JOB PERFORMANCE AT LEAST 90% OF GCOS-llI MUST TBD
THROUGHPUT AT LEAST 90% OF GCOS-III MUST TBD
USER VISIBLE ADDRESS VALUES MUST YES
AUTOMATIC SPACE ALLOCATION AND RECURSION MUST YES
EXCEPTION PROCESSING MUST TBD
DYNAMIC SUBPROGRAM INVOCATION MUST TBD
SUPPORT LARGE PROCEDURES MUST YES
SUPPORT LARGE DATA SPACES MUST TBD
SUPPORT DISTRIBUTED SYSTEM ARCHITECTURE MUST YES
SUPPORT A VIRTUAL ENVIRONMENT MUST YES
SUPPORT SHARED ELEMENTS MUST YES
PROVIDE PROGRAM AND DATA INTEGRITY MUST YES
PROVIDE USER ACCESS CONTROL MUST YES
USE CURRENT HARDWARE MUST YES

4/18/80

G 0 A L s (CONTINUED)

GOAL RANK RESPONSE

UNIFORM MICRO-STRUCTURE ENVIRONMENT 1 YES
UNIFORM MACRO-STRUCTURE PERSONALITY 2 YES
PROCESS SYNCHRONIZATION 2 YES
SUPPORT LARGE NUMBER OF FILES 2 YES
SUPPORT LARGE NUMBER OF TERMINALS 2 YES
SUPPORT MULTIPLE VERSIONS OF SAME MODULE 2 YES
SUPPORT DYNAMIC SOFTWARE INSTALLATION 2 YES
EXTENDIBLE TO FUTURE PRODUCT DIRECTIONS 2 YES
SUPPORT ARRAYS LARGER THAN 256K 3 NO
PROTECT HONEYWELL PRICED SOFTWARE 3 TBD
MIGRATE WITHOUT ASSEMBLY SOURCE CHANGES 4 TBD
TASKING 4 TBD

4/ 18180

CONSTRAUilS

RELEASE WITH 5V

MINIMIZE CONVERSION

USE CURRENT HARDWARE

SUPPORT HIGH ORDER LANGUAGE FUNCTIONS

4/18/80

SUBCOMMITTEES

TWO SUBCOMMITTEES WERE FORMED.

1. MICRO-STRUCTURE SUBCOMMITTEE
DEFINE THE INTERNAL ENVIRONMENT
o THE STRUCTURE INTERNAL TO A DOMAIN
o CALLING SEQUENCES WITHIN & BETWEEN DOMAINS
o LINKAGE SEGMENT LAYOUT
MEMBERS:

DICK WILSON <CHAIRMAN)) JOHN WERTZ) TOM VAN VLECKJ FRANK LITTLE

2. MACRO-STRUCTURE SUBCOMMITTEE
DEFINE THE EXTERNAL ENVIRONMENT
o EVERYTHING EXTERNAL TO THE DOMAIN - PROCESS STRUCTURE) OBJECT UNIT

AND RUN UNIT STRUCTURE) wso STRUCTURE) I I I

o RUN TIME SUPPORT SERVICES - DYNAMIC LINKER) ETC.
o PROCESS & DOMAIN CREATION MECHANISMS
o SHARlNG MECHANISMS JCL) PROCESSORS) I I I

o HANDLING OF WSR'S & SEARCH RULES
MEMBERS:

CHARLIE COFLIN <CHAIRMAN) GEORGE MANN) AL BEARD

4/18/80

EXTERNAL ENVIRONMENT

1. USAGE OF WORKING SPACE REGISTERS TO SUPPORT SHARING

2. TYPES OF SHARING

3. CONSTRUCTION OF THE VIRTUAL ENVIRONMENT

0 1 2

SYSTEM

~~~ 

WSR USAGE FOR SHARING 

. WSR . 

3 4 

"~!~ SOFTWARE 
SOFH/ARE 

5 

DYNAMIC 
USER 

SHARI MG 

wsi;t - wsrf ARE COMMON TO ALL PROCESSES 

6 7 

WORKSTATION PROCESS 
LOCAL LOCAL 

4/18/80 



1. DOMAIN INSTANCE SHARING 
- LINKAGE IS SHARED 

TYPES OF SHARING 

- ALL SEGMENTS OF DOMAIN ARE SHARED 

CLIMB 

I > LINKAGE 
SEGMENT 

I 
) 

CLIMB 

PROCEDURE 

I DATA 

I DATA 



TYPES OF SHARING (coNTINUED) 

2. DOMAIN PATTERN SHARIMG 
- LINKAGE SEGMENT IS NOT SHARED 
- DESCRIBES BOTH SHARED AND UNSHARED SEGMENTS 

PROCESS LOCAL 

CLIMB > LS1 

LOCAL 
DATA 

SHARED 

PROCEDURE 

SHARED 
DATA . 

PROCESS LOCAL 

LS2 -< --~C"'-""L-.:....1 M...=.B 

LOCAL 
DATA 



3. SEGMENT SHARING 
- IF PROCEDURE SEGMENT) THEN: 

o ALL DATA REFERENCES ARE TO PARAMETERS OR DYNAMIC DATA 
o PURE PROCEDURE 

- IF DATA SEGMENT) THEN: 
o MUST BE GATED 

PROCESS LOCAL SHARED 

PROCEDURE 

OR 
DATA 

PROCESS LOCAL 

4/18/80 



DEF A-UNIT 

A FILE OF OBJECT TEXT PRODUCED BY COMPILERS & ASSEMBLERS 

DEF - B-UNIT -
A FILE THAT CONTAINS A WORKING SPACE IMAGE 

o ONE OR MORE DOMAINS 

o LINKAGE) PROCEDURE) DATA FOR THOSE DOMAINS 

o SKELETAL PAGE TABLE 

4/18/80 



CONSTRUCTION OF VIRTUAL ENVIRONMENT 

SOURCE 
t 

J COMPILER I 
l 

A-UNIT A-U~IT I I I 

i / 
MERGER 

<OPTIONAU 

i 
A-UNIT /A-UNIT I I I 

DIRECTIVES~· t ;/ 
I B-UNIT BUILDER I 

t 
B-UNIT OR B-UNIT LIBRARY 
i 

WORKING SPACE 
ASSIGNMENT 

l 
CWSRJ WStL B-UN IT) I I I) 

1 
I PROCESS INITIATION l 

l 
PROCESS 

4/18/80 



CONSTRUCTION OF VIRTUAL ENVIRONMENT <CON'T) 

SOURCE 

l 
I COMPILER I 

JNIT 

JCL 

$ COBOL 
$ PRMFL SOURCE 
$ PRMFL A~UNIT 

FUNCTIONS 

- COMPILES ·oR ASSEMBLES SOURCE 
- DEFINE INITIAL SEGMENT CONTENTS 
- SUPPLY RELOCATION INFORMATION 
- SUPPLY DEBUG SCHEMA 

4/18/80 



JCL 

CONSTRUCTION OF VIRTUAL ENVIRONMENT CCON'T) 

A-UNIT1 A]NIT2 

A-UNIT MERGER 

'1/ 

A-UNIT 

$ A-MERGE 
$ PRMFL A-UNIT1 
$ PRMFL A-UNIT2 

$ PRMFL OUTPUT A-UNIT 

I I I 

FUNCTIONS 

- COMBINES SEGMENTS 
- PERFORMS RELOCATION 
- ADJUSTS SYMBOLIC SEGMENT REFERENCES 

4/18/80 



JCL 

CONSTRUCTION OF VIRTUAL ENVIRONMENT CCON'T) 

DIRECTIVES 

$ B-BUILD 
$ PRMFL A-UNIT1 
$ PRMFL A-UNIT2 

$ DATJl. 
DIRECTIVES 

$ ENDCOPY 

A-UNIT1 A-UNI~2 I I I 

B-UNIT BUILDER w;...---- B-UNIT 

i 
B-UNIT 

FUNCTIONS 

- CREATES DOMAINS 
- ASSIGNS VIRTUAL SPACE 
- RESOLVES REFERENCES 
- CREATES DIRECTORY OF DOMAINS AND GLOBAL SEGMENTS 
- ADD, DELETE, OR REPLACE A-UNITS IN AN EXISTING B-UNIT 

4/18/80 



CONSTRUCTION OF VIRTUAL ENVIRONMENT CCON'T) 

B-UNIT OR B-UNIT LIBRARY 

WORKING SPACE ASSIGNMENT 

JCL 

$ RUN 

$ PRMFL B-UN IT 
$ SHRNM SHARE LEVEL B-UN IT LIBRARY 

FUNCTIONS 

- ASSIGNS WSR AND WSN 

- CREATES A BACKING STORE FILE 

- CREATES A DIRECTORY OF DOMAIN AND SEGMENT NAMES FOR 
ALL B-UNITS IN WS 

4/18/80 



JCL 

CONSTRUCTION OF VIRTUAL ENVIRONMENT (CON'T) 

$ RUN 

ASSIGNED WORKING SPACE 

PROCESS INITIATION 

PRiCESs 

$ PRMFL B-UNIT 

FUNCTIONS 

- ASSIGNS KPX 

- BUILDS PROCESS STRUCTURE 

- LOADS WSR's 

- CLIMB's TO INITIAL ENTRY POINT 
CGENERATES DYNAMIC LINKING FAULT) 

4/18/80 



CONSTRUCTION OF VIRTUAL ENVIRONMENT CCON'T) 

DOMAIN OR SEGMENT NAME 

l 
jDYNAMIC LINKER I 

l 
ENTRY OR SEGMENT DESCRIPTOR 

INVOCATION 

- DYNAMIC LINKING FAULT REFERENCING A DOMAIN 

- REFERENCE TO A SEGMENT EXTERNAL TO THE B-UNIT 

FUNCTIONS 

- USE SEARCH RULES TO DETERMINE THE ORDER OF WSRs TO 
SEARCH 

- SEARCH DIRECTORY OF DOMAIN AND SEGMENT NAMES FOR EACH WSR 

- IF B-UNIT CONTAINING DESIRED DOMAIN OR SEGMENT NAME HAS 
NOT BEEN LOADED, THEN ACTIVATE B-UNIT . 

4/18/80 



CONSTRUCTION OF VIRTUAL ENVIRONMENT <CON'T) 

WSR B-UNIT 

~ I 
B~UNIT ACTIVATION 

l 
LOADED B-UNIT 

INVOCATION 

- FROM DYNAMIC LINKER 

FUNCTIONS 

- FIX WSR VALUES IN ALL DESCRIPTORS 

- IF NOT FIRST B-UNIT IN WSJ THEN RELOCATE VIRTUAL ADDRESSES 

- INITIALIZE B-UNIT ON BACKING STORE FILE 

- ACQUIRE REAL MEMORY WORK I NG SET 

- RESOLVE SEGREF'S VI.A DYNAMIC LINKER 

4/18/80 



DOMAINS 

D1 

Dz 

SEGMENTS 

S1 

B~UNIT LIBRARY 

DOMAINS 

D3 

SEGMENTS 

FILE SYSTEM LIBRARY DIRECTORY 

DOMAINS 

D4 

D5 

D5 

SEGMENTS 

Sz 
S3 

B-UNITS 

AFTER ASSIGNMENT OF LIBRARY TO WORKING SPACE: 

DOMAIN DIRECTORY SEGMENT DIRECTORY 

D1 B1 S1 B1 
Dz B1 Sz B3 
D3 Bz S3 B3 
D4 B3 
Ds B3 
D5 B3 

4/18/80 



DYNAMIC LINKING 

I I I WSR2 I I I WSR7 

DOMAIN DIRECTORY DOMAIN DIRECTORY 

D1 B1 x B ENTRY 

D2 B1 

D3 B2 E.D. 

Dt1 B3 E.D. LS CX) 

Ds B3 E.D. 

D5 B3 E.D I 

SEGMENT DIRECTORY D1 D3 

S1 B1 

S2 B3 S.D. 

S3 B3 S.D. 

4/18/80 



MACRO-STRUCTURE - FUTURE WORK 

o DEFINE FORMATS FOR A-UNITJ B-UNIT 

o DEFINE WORKING SPACE FORMAT 

o DEFINE SEARCH RULES FOR DYNAMIC LIN'KING 

o DEFINE REQUIRED JCL 

o DETAIL SHARING CONTROL MECHANISMS 

o COMPLETE SPECIFICATIONS FOR: 

- A-UNIT MERGER 
- B-UNIT BUILDER 
- B-UNIT MERGER 
- B-UNIT ACTIVATOR 
- PROCESS INITIATION 

o SPECIFY DYNAMIC LINKING MECHANISMS 

o SPECIFY DYNAMIC LOADING MECHANISMS 

o DEFINE SYSTEM TABLES AND DIRECTORIES REQUIRED TO SUPPORT SHARING 

& LINKING MECHANISMS 

o SPECIFY USE OF FILE SYSTEM FOR LIBRARIES 

o TASKING 
4/18/80 



INTERNAL ENVIRONMENT 

ADDRESS VALUE REPRESENTATION 
- IMPORTANCE 
- OPTIONS CONSIDERED 
- COMPARISON 
- CONCLUSION 

INTERNAL STRUCTURES 
- SOFTWARE STACK 
- PROCEDURE SEGMENT LAYOUT 

PERFORMANCE 
- NON-ADP 
- ADP 

FUTURE WORK 

4/18/80 



REPRESENTATION OF ADDRESS VALUE IS IMPORTANT BEf.AUSE: 

HIGH ORDER LANGUAGES USE ADDRESS VALUES FOR: 

POINTERS 
ENTRIES 
LABELS 
ALTERNATE RETURN 
BASED STORAGE 

EXCEPTION PROCESSING 
STACK CONTROL INFO 
PARAMETER REFERENCING 
ARGUMENT LIST BUILDING 
LOCATE MODE 1/0 
OUTER BLOCK REFERENCING 
CONNECTION TO RUNTIME 

BECAUSE THESE FACILITIES ARE WIDELY USED) THEY MUST BE IMPLEMENTED EFFICIENTLY) BE 
EASY TO USEJ AND MUST BE SUFFICIENTLY POWERFUL TO SUPPORT MULTIPLE HOL USE. 

4/18/80 



ADDRESS VALUE OPTIONS CONSIDERED· 

1. NSA POINTER 

2. DESCRIPTOR 
+ 

AR VALUE 

3. TABLE INDEX 

4. SUPER POINTER 

I BIT ADDR I SEG ID I 

BYTE BDRY j FLAGS 

BASE 

I BIT ADDR I~! 

BIT ADDR 

SEG INDEX I 

BIT ADDR 

EXTENDED BASE 

REQUIRES 

LINKAGE SEGMENT 

DESCRIPTOR SEG 

"CANONICAL" DS 

+l ODR 

"CANONICAL" SUPER DESCRIPTOR 

+l ODR 

4/18/80 



EVALUATION OF ADDRESS VALUE REPRESENTATION 

NSA 
CRITERIA £lR DESC. TABLE SUPER 

1. STORABLE IN DATA SPACE y N y y 

2. UNIFORM REFERENCE TO PARAMETERS INDEPENDENT y y y N 
OF DOMAIN PACKAGING 

3. RETAIN IDENTITY WHILE IN ODR y y N y 

------------------------------------------------------------------------------------
4. SUPPORTS SEGMENT-LEVEL PROTECTION y y y N 

5. CAN ADDRESS > 256K N* y y y 

6. CAN HAVE > 1024 SEGMENTS N* y y y 

7. RELATIVE HIGH PERFORMANCE N? y N y 

8. VALID ACROSS DOMAINS N y N N 

9. BIT LEVEL ADDRESSABILITY y y y y 

---------ABOVE THIS LINE) N IS UNACCEPTABLE 

* CAN BE IMPROVED BY HARDWARE CHANGE 
? SOME HARDWARE IMPROVEMENT POSSIBLE I 

4/18/80 



CONCLUSIONS ON ADDRESS VALUE REPRESENTATION 

CAN'T USE DESCRIPTOR + OFFSET 
- NOT STORABLE IN DATA SPACE 

CAN'T USE TABLE INDEX 
- LOADING TO ODR LOSES SEGMENT NUMBER 
- REQUIRES SEVERAL INSTRUCTIONS TO LOAD 

CAN'T USE SUPER POINTER 
- NO WAY A PROCEDURE CAN TELL WHETHER TO REFERENCE PARAMETERS RELATIVE TO 

THE SUPER DESCRIPTOR FOR THE DOMAit~ OR RELATIVE TO THE PARAMETER STACK 
- COMPROMISES INTRA-DOMAIN SEGMENT PROTECTION) SINCE ALL DATA REFERENCE IS 

THROUGH ONE DESCRIPTOR 

ONLY ALTERNATIVE LEFT IS NSA POINTER 
- DESPITE PERFORMANCE PROBLEM 

4/18/80 



SOFTWARE STACK 

EACH DOMAIN HAS A SOFTWARE STACK TO CONTROL INTRA-DOMAIN TRANSFERS AND 
EXCEPTION PROCESSING 

ROOT FRAME 
- CREATED ON DOMAIN ENTRY 
- POINTS TO EXCEPTION PROCESSING ARRAY 
- CONTROLS STACK SPACE 
- UPDATED DURING EVERY CALL 

BASIC FRAME 
- REGISTER SAFE STORE 
- PARAMETER HANDLING 
- AUTOMATIC STORAGE SPACE 

4/18/80 



ENTRY 
POINT 

ENTRY 
POINT 

SINGLE PROCEDURE SEGMENT 

POINTER 
AREA 

ENTRY POINT 
> 

.. DATA 

PROCEDURE & 
CONSTANTS 

ENTRY POINT 
DATA 

> 

PROCEDURE & 
CONSTANTS 

PROCEDURE SEGMENT LAYOUT 

MERGED PROCEDURE SEGMENTS 

POINTER 
AREA A 

PROCEDURE A & 

ENTRY POINTS 

POINTER 
AREA B 

PROCEDURE B & 

ENTRY POINTS 

4/18/80 



,j 

FUTURE WORK 

STACK FRAME FORMAT & CONTENT 
STANDARD CALLING SEQUENCE 
ARGUMENT LIST FORMAT 
EXTERNAL ENTRYPOINT CONVENTIONS 
ADDRESSING CAPABILITIES WITHIN OBJECT UNIT 
PLS VS. CANONICALIZING OF LINKAGE SEGMENT 
HOW A PROCEDURE FINDS ITS LINKAGE 
HANDLING OF LARGE ARRAYS 
EXCEPTION HANDLING 
SUPPORT OF ON UNITS AND SIGNALLING 
SEGMENT LEVEL SHARING 
OPERATOR SEGMENT ADDRESSING1 SHARING) LOCATION 
RUNTIME SYMBOL TABLE & DATA DESCRIPTION SCHEMA 
DYNAMIC LINKING SUPPORT 
I/O SYSTEM INTERFACE 
TASKING SUPPORT 
CALL/CANCEL SUPPORT 
PRIORITY SEGMENTATION 

4/18/80 



SUMMARY 

1. WE HAVE EXHAUSTIVELY INVESTIGATED THE USE OF THE NSA POINTER AS THE ADDRESS 
VALUE. 

2. PERFORMANCE MAY BE A PROBLEM. 

3. A UNIFORM SYSTEM MICRO-STRUCTURE <CALLING SEQUENCESJETC.) IS BEING INVESTIGATED 
BASED ON THE USE OF NSA POINTERS. 

4. A FIRST CUT HAS BEEN MADE OF THE DEFINITION OF SYSTEM MACRO-STRUCTURE 
(JCL ETC I) 

5. MUCH DETAILED WORK REMAINS FOR BOTH AREAS. 

4/18/80 


