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SECTION 1 

INTNODUCTION 

This document specifies the environment for processes 
executing in the GCOS 8 Native Mode. The document contains 
both conceptual and cetailed information. Sections 2 
through 4 deal with conceptual level information on: 

* s y st em g cal s 

* design constraints 

* process and module sraring 

*interprocess control 

* performance considerations 

Section 5, tc be suppliec, will contain detailed information 
on: 

*The nature of the \.iser visible extention 
level Languages reql.iired to fully use the 
(but not the exact syntax) 

to the high 
Native Mode 

* The format and contents of the files created by the com­
pilers and assemblers 

* The calling sequences, conventions and 
used by the object cede generated by the 

system services 
compilers 

*The JCL and ECL used in the preparation of programs for 
execution in Native Mode, and the steps required for 
placing a process in execution 
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SECTION 2 

GOALS AND CONSTRAINTS 

From the customer point of view, functionality is the sine 
qua non of an operating system. We have, therefore, 
attempted to identify as system goals those functions that 
w i l l be rn o s t i mp o r t a n t t c bot h o u rs e l v e s an d our c us t om e r s • 
This is not to say that performance has been ignored. Per­
formance represents the crimary criterion by which alternate 
designs for a given functionality are evaluated. 

These gcals have implications for two different levels of 
the run-time environment, the macro-structure level and the 
micro-structure level. The macro-structure of the environ­
ment deals ~ith the technology of program management, such 
as loading, linking, and program library structures. The 
micro-structure of the run-time environment deals with the 
technology of program execution, such as calling sequences, 
scope of reference, address calculation, etc. 

It must be possible to rrigrate programs, both user applica­
tions and Honeywell procucts, from GCOS-III to the GCOS 8 
native run-time environment. 

Programs written in high order languages must be able to mi­
grate without source charges. 

It is desirable that 
without source changes .. 

assembly language programs migrate 

It i s desirable that misration require no job control lan-
guag e changes. 

These goals are important for both our customers 
selves since we both ha~e a large investment in 

and our­
c ur rent l y 
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existing programs. The primary implication for the system is 
that all currently supported higher level language features 
must have a functional ecuivalent in GCOS 8. 

The run-t;me environment m:ust support the slave mode execu­
tion of GCOS-111 executable file formats (Q•, H*, **' etc.>. 
It also must support the following environments: 

* TSS slave environment 

* OMIV-TP TPR environment 

* TOS TPR environment 

This objective implies support of a GCOS-III MME interface 
as defined by some chaser GCOS-I1I system release. 

A given application must execute in GCOS 8 native mode with 
at least 90% of its perfcrmance in GCOS-III native mode when 
utilizing the same resources. 

For a given application mix, the total throughput of the 
system must te at least ~0% as good in GCOS 8 native mode as 
it is in GCOS-III native mode. 

These are very ambitious goats, given the system overhead 
implied in meeting the virtual memory and security goals of 
the system. It is recognized at the outset that we may be 
unable to meet the 90% performance figure. 

1 • 2 ~a1~_.Qf_.!J.il_.u1.d-f.tQ.g.til!J!U-EL.Q.dlJ..Ui.lti1 . .'t 

1 • 2 • 1 11 aiillm-tultit.Q.om~ 

The macro-structure of the system should have a single per­
sonality, for example ECL, that encompasses all methods of 
user interaction: batch, time sharing, and remote batch. 

It is very desirable that the micro-structure of the system 
have a common run-time ervironment for both user and system 
software. This commonality must apply to all module interac­
tion conventions and accesses to services. 

Of all the system goats, uniformity has the greatest impact 
on the long-term s-0ftware viability. From a human engineer­
ing point of view1 unifcrmity reduces cost. From a system 
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design point of view, its major impact is in simplification 
and the cost reductions to be gained thereby. 

The run-time environment must support the implementation of 
high level language features for languages such as COBOL, 
PL/I, Pascal, Ada, etc. Certain language features will re­
quire explicit support ir the run-time environment. For ex­
ample: 

* user visible address values in data space 

*automatic space allocation and recursion 

* process synchronization 

* tasking 

* exce~tion processing techniques 

* dynamic subprogram irvocation 

The run-time environment must be able to support applica­
tions whose procedure s~ace and/or data space may each ex­
ceed a segment of 256K ~ords and whose total space require­
ment does net exceed 1024 segments. The run-time environ­
ment should be able to support single structures or arrays 
that exceed a segment. Such support must not require user 
preplanning cf memory maragement techniques such as program 
overlays .. 

The run-time environment should be able to sup~ort a large 
number of fi Les, between 200 and 1000, for each application. 

The run-time environment should be able to support a large 
number of connected teririnals, on the order of 101000 con­
current interactive trarsaction processing users and 5000 
simultaneous time sharing users. 

The run-time environment should allow multiple versions of 
both user ard system s-0ftware modules .. This capability is 
necessary tc support efficient software development and 
testing. 
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1 • 3. 1 Qjj,J.Lit.J.11.~.~L.S.:t..s .. t~li-.A.t~li.1~~1JJU-~U..12l2QJ:1 

The run·-t i me environment must support the Honeywell 
Distributed System Architecture (DSA>. 

The run-time environment must support a virtual address 
space that is larger than the real memory. The support 
technique will be transparent to the user. The run-time en­
vironment must not only allow the execution of large pro­
grams on smaller real ~emory but must also provide the ef­
fective application of large physical memory. 

This goat implies that the run-time environment will use the 
virtual memory technology of the hardware. 

The run-time environment must support the sharing of unique 
instances of procedure or data among processes. 

The run-time environment must guarantee the integrity of all 
program and data within the system. 

The run-time environment must allow user definable access 
control ever units of their applications. The access control 
mechanism will utilize tre hard1o1are segment protection capa­
bility. 

The system will support the addition, deletion, and updating 
of system scftware modules without system interruption. It 
is recognizec that the replacement of certain system modules 
may req1..ire system interruption. 

The GCCS 8 run-time en~ironment must utilize the current 
(NSA) hardware. Althoush hardware changes are possible, 
they must be limited tc field changeable items. The end 
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user is indifferent to hardware details as long as his func­
tional ard performance needs are met. 

The operating system anc run-time environment should insu­
late user interfaces anc system software from evolutionary 
hardware charges and harcware dependencies. 

The user manipulation of the system personality must not re­
quire change to Honeywell delivered software modules. This 
objective assumes that the users have valid reasons, such as 
local accounting conventions, to change the personality of 
the system. The user must not, however, req.uire access to 
Honeywell separately priced software products at the source 
level. 
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The following table sumnarizes the GCOS 8 system goals and 
classifies them as to thEir degree of desirability. 

Goal Rank Reference 

must Migrate without HOL so4rce changes 
Accomrncdate GCOS-III e~ecutable formats must 
Accommodate GCOS-III TSS~ TOS, & OMIV-TP must 
Job perforaance at least 90% of GCOS-III must 
Throughput at least 90% of GCOS-III must 
User visible address v~lues must 
Automatic space allocation and recursion nust 
Exception ~rocessing 
Dynamic sutprogram invocation 
Support large procedure.s 
Support large data spaces 

must 
must 
must 
must 

Support Distributed System Architecture must 
Support a virtual environment must 
Support shared elements 
Provide program and data integrity 
Provide user access cortrol 
Use current hardware 
Uniform micro-structure environment 
Uniform macro-structure personality 
Process synchronizatior 
Support large number of files 
Support large number of terminals 
Support multiple versicns of same module 
Support dynamic software installation 
Extendible to future product directions 
Su pp or t a r ray s l a r g e r than 2 5 6K 
Protect Honeywell priced software 
Migrate without assembly source changes 
Mi grate without JCL changes 
Tasking 

must 
mu.st 
must 
must 

1 
2 
2 
2 
2 
2 
2 
2 
3 
3 
4 
4 
4 

1. 1. 1 
1.1.2 
1.1.2 
1.1.3 
1 .. 1. 3 
1 .. 2.2 
1.2.2 
1..2 .. 2 
1.2.2 
1.2.3 
1.2.3 
1.3.1 
1.3.2 
1 • .3. 3 
1 • .3 .. 4 
1 .. 3 .. 4 
1.4.1 
1 .. 2. 1 
1.2.1 
1.2.2 
1.2.3 
1 .. 2 .3 
1 .. 3.5 
1.2.4 
1.4.2 
1.2.3 
1.4.3 
1 .. 1 .1 
1.1.1 
1 .. 2. 2 
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The business constraints placed upon the run-time environ­
ment are few in number yet very important. 

The multi-segment shared run-time environment must be 
released for customer ~se with GCOS 8 Release 2000 (5V). 
This impcses schedule corstraints on the environment, first 
for a timely definition and second for limiting its content 
to insure a timely release. 

The schedule constraint requires that the run-time environ­
ment be consistent with that which exists in GCOS g, Release 
1000 (4VX). It cannot be radically different or the sched­
ule cannot be met. 

At this writing, there are interim environments in use and 
more in development: the ITP environment, the ACOS environ­
ment, and the PL-6 environment. Each has sharing 
mechanisms, calling seq~ences, and other conventions which 
differ from one to another. 

It is a constraint that modules which execute under one of 
the interim environments be able to be converted to execute 
under the new environment with a minimum of change. This is 
especially true for the rrodules of ITP. Modules from other 
environments are of Lesser importance. 

It is a constraint that domains written according to an in­
terim environment coexist with domains written using the new 
environment. Adapters may be used as necessary to meet this 
constraint. It is not required that modules within a domain 
be mixed - some from an interim environment and some from 
the new. 

The multi-segmented run-time environment owes its existence 
to t he l\S A hard w a re.. The en vi r on men t 's des i g n, 
functionality, and performance is totally constrained by the 
hardware definition. The following sections descuss the 
more constraining attrib~tes of the NSA hardware. 
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The NSA hardware handles two types of memory space, real and 
virtual. Only the most privileged modules oi the operating 
system may use real memory addressing. All other procedures 
must use virtual memory addressing. 

The virtual address space of the system is diviced into 512 
equal length virtual memories called Working Spaces .. Work­
ing Spaces are accessible to a process via eight Working 
Space Registers CWSR's>. The contents of a WSR cannot be 
changed by a slave mode instruction. The addressability of 
a process is thus limitec to eight working spaces .. 

In NSA, a segment is a variable length subdivision of a 
Working Space. It occupies contiguous virtual memory space 
and has a homogeneous set of attributes. These attributes 
differentiate uses of t~e segments, for example, procedure 
versus data. 

The NSA hardware supports two types of segments, a standard 
segment with a maximum oi one million bytes and a super seg­
ment with a maximum size of 64 million bytes. 

A seg.ment is controllec by a two-word Segment Descriptor 
which specifies: 

* the ~articular Working Space containing the segment or a 
WSR .containing the n&..mber of to that Working Space, 

* the base of the segment relative to a particular Working 
Space, 

* the upper byte address limit in the segment., and 

* the valid access rights (read, write, execute) to the 
segment. 

As a means of access control, the hardware requires that all 
s e gm e n t d e s c .ri p t o r s r e s·i d e i n s p e c i a l s e g 111 en t s c a l l e d 
"Descriptor Segments", re~ognizable by the hardware, and 
that these Descriptor Segments, in turn, reside on special 
pages, called "Housekeeping Pages". The hardware is so 
designed that Housekeeping Pages can be written to <with 
normal instructions) only in Privileged Master Mode and can 
be read (with normal instructions) only in Privileged Master 
Mode or Master Mode. The address space of a process is thus 
limited to those segments given to it by the Operating Sys­
tem. Furthermore, since descriptors are not storable in 
slave data space, they are not usable as address value vari­
ables. 
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All memcry addresses have two components, a segment 
descriptor identificatior and an offset within the segment. 
For norrral segments, these two components are brought to­
gether in the NSA pointer construct. There is no equivalent 
hardware construct that points into the full extent of a 
super segment. 

2 • 2 • 2 ~ .£im..ai..a..s 

The term "Dcmain" refers to the particular set of segments 
that are addressable by a proce.ss at any given moment. 

A domain consists of a static part and a dynamic part. The 
static part of a domain is defined by a special Descriptor 
Segment, the Linkage Segment. There are at most 1024 
entries in the Linkage Segment. The dynamic part of the do­
main is defined by the Farameter Segment and the Data Stack 
Segment. The Parameter Segment provides for passing argu­
ments irto a domain. The Data Stack Segment provides scratch 
data space. 

A domain may include segments in several Working Spaces. 
During execution, a domain may be augmented by passed param­
eters or by i:;rivileged master mode manipulation of its Link­
age Segment. 

A process is not restricted to a single domain but will gen­
erally execute within se~eral domains. The Linkage, Parame­
ter, and Data Stack Segments are managed by the hardware 
when changing domains. In using the CLIMB instruction to 
change domains, however, all of the NSA pointers in data 
spa c e a re i f'V a l i d at e d • F u rt h e rm o re , t he C L IM B i n st r u c t i on 
makes the caller's data stack invisible to the callee. In 
combination, these constraints complicate exception 
processing and error reccvery. 

We have a need to suppcrt our present-day high order lan­
guages such as FORTRAN, COBOL, PL/I, and PL-61 and also to 
look ahead to the needs cf such languages as Pascal and Ada. 
This need corstrains the design of the run-time environment 
i n t h a t i t i mp l i es man y s y s t em fun ct i on s. T he f o l low i n g 
sections discuss those language features that will require 
explicit supi::ort in the run-time environment. 

The dynamic, block str1..ctured languages <i.e., alt except 
FORTRAN and COBOL) provice the allocation of automatic data 
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space ~henever a procedure <or block> is entered. The 
run-time environment, therefore, must contain facilities to 
grow the data space of a process and must be able to identi­
fy the current instance of the data space that is to be 
referenced by the procedLre. The automatic space allocation 
technology is necessary to S{.Jpport the general recursion fa­
cility offered by these languages. 

In addition to the automatic space allocation feature, PL/I, 
Pascal1 and Ada allow the user to dynamically allocate 
space. The International Organization for Standardization 
(ISO) is ccnsidering the addition of this facility to 
FORTRAN. A variation of cynamic allocation is implied by the 
COBOL CALL/CANCEL fa-cility .. This language feature implies 
the same type of run-time facility for the growth of process 
data space as is impliec by the automatic space allocation 
fa c i l i t i es .. 

PL/I, PL-6, ~ascat, and Ada allow programs to declare vari­
ables cortaining address values. These variables may appear 
within data structures and, all languages considered, may 
point anywhere within the static, automatic, or cynamic data 
space of the program. When created, these adcress values 
should remain valid throughout the life of the program. 
Since any datum may be used as an argument to another proce­
dure, the value of a adcress variable should remain useful 
a c r o s s s om e de p t h of p r o c e du r a l c a LL s .. 

Since all of the high crder languages support or plan to 
support bit aligned data, address values must be able to re­
solve storage to the bit level. 

All of the high order languages except Pascal have specified 
some facility for handling error conditions or exception 
procedures. There is no consistency in these facilities 
from language to language. The run-time environment must 
therefore provide an exception handling technology that is 
sufficiently robust to s~pport the full spectrum of language 
specifications. 
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All of the high order languages allow the user to specify 
initial values for some classes of data. The run-time envi­
ronment must contain the controls in both its 
micro-structure and its ~aero-structure to allow these ini­
tial values to be realized at execution time .. 

Several of the high orcer languages support semaphore or 
signal constructs that "ay be used to communicate between 
separately scheduled processes. Typically, these features 
are used to synchronize two or more processes. In 
supporting these feature~, the operating system may require 
special help from the structures of the run-time environ­
ment. 

2.3.7 Ia~li.o.g 

ln addition to process synchronization, some languages pro­
vide the ·ability to initiate the separate scheduling of a 
separate process. As in synchronization, the operating sys­
tem may require special help from the run-time environment. 

All of the languages pro..,ide for the invocation of separate­
ly compiled programs. Current structured programming tech­
nology encourages the use of this facility. Therefore, the 
calling sequence technology of the run-time environment will 
be an important deterainant of system performance. The 
technology must also sup~ort the various language specifica­
tions for passing arguments by reference or by value~ The 
ANS COBOL specification expands the problem in t~o ways. lts 
CALL/CANCEL facility allows the dynamic association, invoca­
tion, and disassociaticn of subprograms whose names are 
supplied at execution ti"e. This facility will require spe­
cial run-time environment techniques in both program invoca­
tion and program packaging. The COBOL SORT/MERGE facility 
allows the user to establish procedures within his program 
that are to be used as co-routines by the system software 
that supports the sort or merge. The run-time environment 
must solve the progra« packaging problem posed by such 
co-routines and must prcvide an extremely efficent invoca­
tion technolcgy for them. 
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SECTION 3 

DESIGN OVERVIEW 

The operating system is oescribed in the accompanying GCOS 8 
ARCHITECTURE document as a layered construct at the center 
of which resides an in~iolate system kernel. That kernel 
provides the hardware dependent functions and those house­
keeping functions that require privileged master mode execu­
tion. System shared soft~are is closely associated with the 
kernel. This software prcvides the common service functions 
that are usec by all users, regardless of their interface to 
the system. The outermost layer of the system ~rovides the 
end-user interfaces that define the personalities of the 
system. 

The system is also planned to be naturally adaptable to the 
Distributed Systems Architecture. Support services such as 
session control and workstation management will be supported 
in the syste~ shared sortware. 

Both the construction and utilization of the system are 
organized a round the concept of segmentation. In terms of 
construction, segments may be considered singly or may be 
organized into domains. These single segments and domains 
are, in turn, organized into Working Spaces for the sake of 
exec u t ·i on. 

U t il i z a t ion of the sys ten i s organize d a r o un d th e concept of 
"process". ft p,rocess is a triplet compo.sed of an execution 
stream, its associated d~ta, and the processor that is doing 
the execution. The execution stream may involve several pro­
cedure segme~ts and/or dcmains and/or Working Spaces in suc­
cession. 1t "ay also invclve many data segments in disparate 
domains and/er Working Spaces. 
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The organization of the run-time environment has t~o differ­
ent levels, the macro-structure levet and the 
m·icro-structure level. The macro-structure of the environ­
ment deals ~ith the technology of program management, such 
as loading, linking, and program library structures. The 
micro-structure of the run-time environment deals with the 
technology of program execution, such as calling sequences, 
scope of reference, address calculation, etc. 
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The virtual environment is defined by the segments available 
to the system. The segments are organized into Working 
Spaces. The virtual en\ironment available to a process is 
limited to those Working Spaces that are addressable through 
the Working Space Registers (WSR' s>. The virtual memory lo­
cal to the process itself, that is, its segments and 
domains, are rooted in a single Working Space. That Working 
Space is accessed via WSR7. The other WSR's are loaded to 
provide the process access to system level and shared do­
mains and segments. 

All Working Spaces have the same general structure, although 
all types of segments de not exist in every Working Space. 
This consistency of structure across Working Spaces permits 
easy access to data that is canonically located within the 
Working Space. 

Resource sharing is an i"portant objective of GCOS 8. How­
ever, this sharing of resources must be balanced with anoth­
er objective, security. The criteria for security are that, 
without proper authority, no user should be able to: 

* retrieve another user's data or programs 

* manipulate another user's data or programs 

* deny the resources of the system to another user 

These criteria imply that resource sharing, while desirabl~, 
must be tightly controlled. The system must be protected 
from the external users and the users from each other. 

This isolation is accomplished at four levels: 

1. Working Space Level - a Working Space is addressable 
only if the Working Space . Number is loaded into one of 
the Working Space Registers for the process. 

2. Page Level - to reference a page, it must be mapped 
into the page table and the reference must be consis­
tent with the housekeeping and write protect flags in 
the Page Table Word. 

3. Domain Level to reference a datum, a segment 
descriptor for the segment containing the datum must be 
accessable in the dcmain. 
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4. Segment Level - the data reference must be within the 
segment's bounds ard must be consistent with its type 
field Cdata~ descri~tor, or entry) and permission flags 
(read, write, e~ecute1 etc.>. 

When two or more processes share a Working 
takes three forms, domain instance sharing, 
sharing, and segment sharing. 

Space, sharing 
domain pattern 

The first form of sharing .is the sharing of a unique in­
stance of a domain. There is one Linkage Segment for the 
shared domain and all ~rocesses CLIMB to the domain via 
identical entry descriptcrs to that single Linkage Segment. 

A conse<:;uence of domain instance sharing is that all static 
segments of the domain are shared. There are no process lo­
cal segments accessible to the shared domain other than 
those passed as parameters of the CLIMB. 

The second form of sharing is the sharing of a pattern or 
template for a domain. A skeleton Linkage Segment is used 
as a pattern to create nultiple occurrences of the domain. 
Each occurrence oi the domain is created by allocating one 
or more data segments ir the invoking domain and inserting 
them into the skeleton Linkage Segment. The resulting Link­
age Segment~ i.e., domain, will embrace shared procedure 
segments local to the new domain and data segments in either 
the caller's Working Space or in the shared Working Space or 
both. 

This type of sharing is useful when the domain must include 
both shared and process local segments. The shared domain 
pattern includes the shared segments, but each occurrence of 
the Linkage Segment is given separate instances of the local 
segments. Since the one pattern ts always used to construct 
the domain occurrences, all the Linkage Segment occurrences 
have the same layout or aefinition. 

The th·ird tyi:e of sharing is segment sharing. In this case, 
individual segments are shared among multiple domains. This 
type of sharing has a number of restrictions which, when 
met, allow very efficient operation. 

The restrictions which ai:ply to shared segments are: 
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1. If the segment is a procedure segment, it may access 
descriptors in the comain's Linkage Segment or Parame­
ter Seg111ent only when they are in fixed, canonical lo­
cations or when pointers (NSA pointers) are passed as 
arguments of a call. 

2. Procedure segments 111ust be pure. 

3 .. Data segments, if impure, must be gated by means of a 
monitor, i.e., access to them must be through a monitor 
procedure. 

The following figure depicts the steps required to prepare a 
program for execution, beginning with compiling the program 
and ending ~ith the map~ing of the program into a Working 
Space. 

A compiler er assembler produces an A-unit from the source 
program. The A-unit contains the initial segment contents, 
both code and data .. 

If desired, multiple •-units may be combined into one 
A-unit. The result of this merging is that segments with 
compatible attributes are combined, thereby reducing the to­
tal number of segments required. 

Next, one or more A-units are input to the B-~nit Builder 
which combines them into domains, as specified by the direc­
tives, to produce a B·-unit. The B-unit is a file containing 
a Working S~ace image cf the domains and their segments. 
Optionally, an existing e-unit may have one or more A-units 
added, deleted, or replaced. 

The Working Space Assignment function assigns a Working 
Space Number and a Working Space Register to the 8-unit. Ex­
ecution commences when the process structure is added to the 
Working Space by the Precess Initiator and the root domain 
of the process is dispatched. 
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2.3. 2 .. 1 A=.ullit 

An A-unit is a file which contains the object representation 
of an independently ccmpiled or assembled program unit 
<e.g .. , a PL/I external r:rocedure or a COBOL program>. The 
creation of an A-unit is not a privileged operation. All 
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compilers and assemblers produce an A-unit as output. An 
A-unit contains the follcwing types of information : 

* A-unit icentificatior 

* segment cefinitions and references CSEGDEF/SEGREF) 

*domain definitions and references (ENTDEF/ENTREF) 

* symbol definitions and references CSYMDEF/SYMREF) 

* object text 

* debug schema 

* relccaticn informaticn 

* resource requirements 

Before a prcgram represented by an A-unit 
it must be combined to form one or more 
B-un it Build er. 

can be executed, 
B-units by the 

2. 3. 2 • 2 .e.=.1.1Lli..l 

A B-unit is a file which contains a representation of one or 
more domains, including procedure, data, and Linkage Seg­
ments for each domain. B-units are produced by the B-unit 
Builder from one or more A-units. The B-unit Builder is 
able to "upcate" an existing B-unit by adding or replacing 
A-units. A 8-unit contains the following types of informa­
tion : 

* B-unit identificatior 

*skeletal page table (describes virtual space assignment) 

* one er mere domains 

* Linkage, procedure, and data segments for each domain 

*Domain Directory of all domains CENTDEF's) 

* Global Segment Directory for all segments 
nally to the 8-unit 

known exter-

* directory of unresol~ed segment references (SEGREF> 

*directory of unresol~ed dom~n references CENTREF) 

Note that a a-unit does not contain any process structure 
<e.g., hard~are stack segments, SSA segments, etc.). All 
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references to segments and domains outside the a-unit are 
left unresolved .• 

It is necessary at times to reference groups of files as a 
unit. For example, a group oi a-units may be assigned to a 
Working Space. This is accomplished by referencing a li­
brary containing those a-units. A library is implemented as 
a d i r e c to r y i n t h e F i l e S y s t em • T hi s di r e c t or y c o n t a i n s 
only files, no subordinate directories, and all these files 
are of the same type <e.g., a-units>. Since the files are 
of the same type and ha~e common attributes such as control 
interval size, access to these files can be optimized. 

The compilation process employed for the GCOS 8 environment 
is the ccnvertional one in which source programs in the form 
of text files are processed to produce object modules in the 
form of A-units, and, o~tionally, a report of the compila­
tion process in the form of a listing. Such A-units usually 
require the support of r1.ntime libraries for their execution 
and may require other user-supplied A-units for their execu• 
ti on. 

A typical A-"nit will contain two or more segments <at least 
one instruction segment and one data segment>. However, some 
language constructs or irrplementation techniques may produce 
large numbers of segments. 

The merging of A-units is combining the segments of two or 
more A-units into fewer total segments. The segments with 
compatible attributes are combined and relocation is 
performed on the segment references. Thus all of the proce­
dure segments, one for each A-uni ti might be combined to 
form only one procedure segment. The output oi the A-unit 
Merger is a new A-unit that contains the segments of all of 
the input A-uni ts .. 

The a-unit Builder prcduces a B-unit from one or more 
A-units and a set of cirectives that describe how these 
A-units are to be combined into domains. The B-unit Builder 
creates a Linkage Segment for each domain and assigns virtu­
al space to each segment of the domain starting at a conven-
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tional base address. Doaain and segment references are re­
solved where possible. A page table that describes the 
assigned virtual space is also created. 

The B-unit that is prod~ced includes a Domain Directory, a 
Global Segmert Directory, and a directory of unresolved seg­
ment references. The Domain Directory contains an entry 
describing each domain ir the 8-unit, while the Global Seg­
ment Directory contains an entry describing each segment in 
the B-unit which may be referenced from outside the &-unit. 

Sufficient information 
addition, deletion, or 
an existing 8-unit. 

is kept in the 8-unit to permit the 
replacement of one or more A-units in 

No shared libraries are referenced in order to create the 
8-unit. All references outside the B-unit are left 
unresolved. References to external domains result in a dy­
namic linking descriptor that references the name of the do­
main. Segment references result in segment descriptors with 
the "missing segment" attribute. These dynamic references 
w il l b e re s o l v e d b y t h e C y n a m i c L i nk e r a t pr o c e s s i n i t i a t i o n 
time. 

At l W o r k in g Sp a c e s h ave th e same g e n er a l st r u c t u re • A t t h e 
beginning of each Working Space, offset zero, is a 
descriptor segment which serves as a directory to the Work­
ing Space. This Working Space Unique System Header CWSUSH> 
has the same canonical definition for each Working Space, 
regardless of the function for which the Working Space is 
em pl o y e d • F c r a g i v en W or k i n g Sp ace , n o t al l en tr i es o f t he 
WSUSH are valid <e .. g., tte ent.ry for the SSA Segment is not 
valid for a shared Working Space). lnvalid entries contain 
null descriptors. 

The segments located via the WSUSH fall into two categories: 
those required for all Working Spaces rega rdle.ss of their 
function and those required only for Working Spaces that 
instantiate a processes. 

All Working Spaces require at least the following segments: 

* the Domain Directory, a table that defines every domain 
in the Werking Space.,. 
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* the Global Segment Directory, a table that defines every 
global segment Ci.e.1 every segment known externally) in 
the Working Space. 

*a directory of all the dynamically allocated segments .. 

* the Page Table, a variable length segment containing the 
page table entries fer the Working Space. 

* the PAT segment, a variable length segment used to con­
tain the Peripheral Allocation Tables CPATs> for the 
Working Space. 

* the DCW buffer, a segment used for ocw list storage for 
paging 1/0, p.rocess swapping I/O, SYSOUT I/O, etc,. 

In addition to the segments required in all Working Spaces, 
those Working Spaces usea to contain processes also require 
at least the following segments: 

*the Exception Procedure Entry Descriptor Segment 
(EPEOS), a descriptor segment containing the entry 
descriptors to the exception handling procedures for the 
defined exception corditions. 

*the User's Linkage Segment Descriptor Segment, a vari­
able length descriptor segment containing the Linkage 
Segments for all user domains in the process. 

* the Safestore Stack Segment, a variable length segment 
used to store registers when changing domains. 

* the Argument/Parameter Stack Segment, a variable length 
seg#ent ~sed to pass arguments between domains. 

* a s e gm en t us e d by t h e Di spa t c her • 

* the SYSOUT segment, used to collect the 
records. The size, content, and location 
ment vary with the n~mber of SYSOUT lines. 

system output 
of th i s s eg-

* the SSA Data Segment, a segment containing control in­
formation equivalent to the GCOS-IIl control information 
contained in the Sla\e Service Area CSSA). 

* the SPA Data Segment, a segment containing control in­
formation equivalent to some of that contained in the 
GCOS-III Slave Prefix Area (SPA). 
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* the Process Control Block (PCB), a segment containing 
information necessary to control the process. 

AB-unit may either be tlaced in execution, that is, become 
a process, or be a shared B-unit, that is, be referenced by 
or executed by many processes. In either case, the B-unit 
must be assigned to a Werking Space. The function of Work­
ing Space Assignment is not to load B-units into the virtual 
memory of the Working Stace, but to associate the B-units 
with the Working Stace. This is accomplished by 
constructing a Domain Directory and a Global Segment Direc­
tory in the virtual mewory of the Working Space. These 
directories completely cefine all domains and global seg­
ment s c o.n t a i n e d i n t h e B- u n i t or B- un i t L i b r a r y • T h e s e 
directories are searched by the Dynamic Linker when 
attempting to resolve a reference to a domain or segment. At 
the first reference to a domain the B-unit containing the 
desired domain or segment will be loaded. 

The input to the Working Space Assignment function is either 
a single B-unit or a B-urit Library that is to be assigned a 
Working Space. The reso~rce requirement information is read 
from the a-units and is ~sed to create a backing store file. 
The Domain Di rectory anc Global Segment Di recto.ry are read 
from each of the a-units. These directories are combined 
and are located canonically in the Working Space. 

After completion of the Working Space Assignment step, a 
skeletal page table, Dcmain Directory, and Glcbal Segment 
Directory exist in virt~al space and a backing store file 
will have been created fer the Working Space. An available 
Working Space Number will have been assigned. The assignment 
of a Working Space Register for the B-unit will depend on 
whether the Working Space is to be shared or is to become 
the root of a process. 

The fundamental sharing mechanism in GCOS 8 is the sharing 
of domains and segments in shared Working Spaces. By 
mapping Working Spaces into the same virtual address space 
of a set of processes, the contents of the Working Spaces 
may be shared among the trocesses. 

Within GCOS 8, WSR7 is rEserved for all process local infor­
mation. The other WSR's are used for shared software and 
data. The smaller the WSR nu~ber, the more global the 
sharing .. The provisional assignment of WSR' s and sharing is 
as follows: 
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Operating System Hard Core 
Operating System Hard Core 
Operating System Slave Mode 
P r i c e d So f t w a r e P r ad u ct s 
Installation (Site> Speci fie Software 
User ·Shared Software 
Workstation Local 
Process Local 

The mapping is performed by the WSR contents. A Working 
Space is shared if t~o or more processes have its Working 
Space Number in the san:e WSR .. When a Working Space is 
shared, it must be shared by using the same WSR in all the 
sharing processes .. This restriction is due to the fact that 
references to the WSR appear in the Working Space itself. 
Each segment descriptor contains a value for the WSR 
containing the segment it describes. 

Furthermore, once two processes have established the sharing 
of a Working Sp~ce in so"e given WSR, all of the more global 
WSR's must have matihing values for the two processes. 

The Working Spaces referenced by WSRO through WSR4 are 
shared by all processes in the system. WSRS is reserved for 
customer controlled sharing. WSR6 contains the same value 
for all processes of a ~orkstation. The content of WSR7 is 
unique tc each single precess. 

2 • 4 f.t..Q-'..:li _.£.J.:~.U..ti.s2.0 

2 .. 4 • 1 e~.u.s~.oi..ti.a..ti.s2.o 

The a-unit destined tc become a process, having been 
assigned to a Working Space, now only requires the addition 
of the process structure to be executable. The Process 
I n i t i a t o r a s s i g n s a p r o c e s s n u mb e r, bu i l d s t h e pro c e .s s 
structure <e.g., hardware stacks, SSA segment, process con­
trol block, etc.>, and leads the Working Space Registers for 
the process. 

The a-unit itself has still not been loaded in virtual memo­
ry. Only the "definition" of the a-unit, in terms of the 
names of its domains ard global segments and its proce.ss 
structure have been loaded. 

Finally, the Process Initiator executes a CLIMB instruction 
to the user entry point. Since the 8-unit containing the 
user's domain has not yet been loaded, this CLIMB generates 
a dynawic linking fault. The Dynamic Linker resolves the 
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reference and the process begins executing in 
ma in. 

its root do-

The Dynamic Linker is in\loked to resolve references to both 
s e gm e n t s a n d d om a i n s • T h i s i nv o l v e s u t i l i z i n g t h e s e a r c h 
rules that govern the orcer in which the Working Spaces are 
searched1 lccating the desired object, and replacing the 
un re so t v ed r e fer enc e w i th t he ap prop r i ate e n t r y or segment 
desc ri ptcr. 

Linking to shared domains occurs dynamically while the proc­
ess is in execution, while linking to shared segments occurs 
at the time when the E-unit containing the reference is 
loaded in~o virtual memcry. References to shared segments 
are resolved by locating the segment and storing the 
descriptor of the segmert in the referencing domain Ci.e.1 
Linkage Segment). 

Whenever a dynamic reference to a segment or domain occurs, 
a search must be conducted in an orderly manner through the 
virtual space addressable by the executing process; that is, 
through the working Spaces Loaded behind the WSR's for that 
process. The search begins with the Working Space 
containing the instruction segment of the executing domain 
and proceeds sequentially through more global (decreasing) 
values cf Werking Space Register number. For example, if 
while executing a domain whose procedure segment is behind 
WSR5 and a dynamic tinkirg fault occurs, then the search for 
the referenced domain begins with WSRS and continues in se­
q u en c e t hr o u g h W SR 4 , W S R 31 W SR 2, W S R 1 , and W SR 0 u n t i l t he 
desired domain is found. 

At times it is desired to reference a domain at a lesser 
scope of sharability, that is, a domain behind a higher val­
ue of WSR. This functicnality is useful in the support of 
exception processing, ~ser exit procedures, etc. This 
"outward" reference will be allowed only when explicitly 
declared on the reference. In this case, the dynamic 
linking descriptor contains a field which specifies the de­
gree t o w hi c h t he o u t w a rd ref e r en c e i s per mi t t ed. 

Each Working Space contains a Domain Directory that is 
located canorically via the WSUSH and describes the domains 
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of the Working Space. Each entry in the Domain Directory 
contains at least the following information: 

* domain name 

*name of B-unit cotaidng the domain 

* e.ntry descriptor to comain <valid only if the B-unit has 
been activated) 

* domain type (unshared, shared domain, shared domain oc­
currence, etc.> 

* count of outstanding references to the domain 

When a dynamic linking fault is generated by the execution 
of a CLIMB instruction through a dynamic linking descriptor, 
the Dynamic Linker is i"voked to resolve the domain refer­
ence. If the domain is not found, the Dynamic Linker re­
turns an error status and exception processing commences. 
If the name is found ard the a-unit containing the domain 
has not been loaded, then the a-unit is activated. The ref­
erence to the domain is then resolved depending upon the 
WSR's behind which the invoked and invoking domains are 
found and upcn the domain types. 

If the referenced domain uses unique domain instance sharing 
and the referenced domain has been found behind a more glob­
al WSR than the referencing domain, then the dynamic linking 
descriptor is replaced i..ith the actual entry descriptor to 
the shared domain and the CLIMB is re-executed. 

If the referenced domain uses unique domain instance sharing 
but has been found behind a less global WSR than the 
referencing domain, then the CLIMB is completed without 
replacing the dynamic lirking descriptor in the referencing 
domain. 

If the referenced domain uses domain pattern sharing, the 
prototype Linkage Segment is copied into the caller's space. 
Any local segments are created dynamically and initialized. 
Then the original dynamic linking descriptor in the calling 
domain is replaced by an entry descriptor to the newly 
created Linkage Segment and the CLIMB is re-executed. 

Each Working Space contains a Global Segment Directory that 
is located c.anonically "ia the WSUSH. This directory de­
scribes the segments of that Working Space which are exter­
nally visible <i.e., shared among B-units>. Each entry in 
the directory contains at least the following information: 
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* segment rame 

*name of e-unit contajning the segment 

* segment descriptor <valid only 
activated) 

if the 8-unit 

* count of outstanding references to the segment 

has been 

If, when loaded into virtual memory, a 8-unit contains any 
unresolved references tc segments, then the Dynamic Linker 
is invoked to resolve these references before the 8-unit is 
executed. The Dynamic Linker employs the search rules to 
determine the Working Spaces to be searched and then 
searches the associated Global Segment Directories for the 
desired segment name. If the name is not found behind a 
more global Working Space Register, a descriptor with the 
"missing segment" flag set is returned. If the name is 
found and the 8-unit ccntaining the segment has not been 
loaded, then the 8-unit is activated. Finally, the 
descriptor framing the desired segment is returned. 

A 8- u n i t i s a c t i v a t e d i n re s po n s e to a c a L l f r om t he D y n am i c 
Linker when attempting to resolve a reference to a segment 
or domain. The referenced 8-unit is assigned an origin or 
base for data segments and another for descriptor segments. 
All of the descriptor segments for the 8-unit are then 
l o ad e d i n v i rt u a l me mo r y • 

All of the segment descriptors and entry descriptors in the 
8-unit were initialized with a value for the Working Space 
Register (WSR) when the 8-unit was created. If that value 
for WSR is not the sarre as that assigned by the Working 
Space Assignment function, then the WSR values in the 
descripto.rs rrust be adjusted to the correct value. If the 
base virtual addresses for both data and descriptors 
assigned by the 8-unit Activator do not agree with those 
assigned by the 8-unit Builder, then the base virtual 
addresses in the descriptors must also be adjusted. 

The page table for the ~orking Space is updated to reflect 
the addition of the pa9es for the B-unit and the backing 
store file may be initialized at this time .. The real memory 
working set is also adjusted to reflect the addition of the 
B-unit to the Working Space. The Domain Directory and the 
Global Segment Directory are updated to reflect the actual 
virtual memory address of the domain and segment <i.e .. , en­
t r y and s e gm en t de s c r i pt c r s ) i n t he 8 -u n i t • 
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Finally, the a-unit Activato.r must determine \iihether this 
B-unit itseli has any urresolved segment references. This 
is accomplished by accessing the table of unresolved segment 
references in the a-~nit. Fo.r each unresolved reference, 
the 9,-unit Activator calls the Dynamic Linker .. This, in 
turn, may cause other B-units, the ones containing the 
referenced segments, to be activated. When this process is 
complete~ the a-unit activation has been finishea. 

Note that references frcm the B-unit to segments have now 
been resolved. However, references to other domains outside 
t h e B- u n i t ha v e not • D cm a i n r e f e re n c e s s t i l l ex i s t i n t h e 
form of dynan:ic linking cescriptors., 

The Process Synchronization facility of GCOS 8 exists to 
perform two tasks: 

* maintain the integrity of shared data, and 

* synchronize the exec~tion of parallel process. 

A more spe~ific discussion of these concepts is to be 
supplied,. 
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The micro-structure of t~e run-time environment consists of 
the conventions for: 

* intra-do"ain calling sequences 

* inter-domain calling sequences 

* st .a ck ha rd l j n g 

* register allocation 

* e~ce~tion processing 

* interrupt handling 

* condition handling 

* inter-process synchrcnization 

* operators 

* debugging aids 

* s e g n: en t s t r u c t u r e a n c b i n d i ng 

Each domain contains a n~mber of standard 
are: 

* Linkage Segment 

* Parameter Segment 

* Argument Stack Segmert 

* Software Stack Segmert 

* Procedure SegmentCs> 

* Data SegmentCs> 

* Operator Segment 

segments. They 

Each domain has a Software Stack Segment for argument pass­
ing and subroutine linkase within the domain. The Software 
Stack Segment may be a static part of the domain or it may 
be dynamically obtained from the Data Stack. If it is in the 
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Data Stack, the entire amount required by 
allocated upon entry. 

The descriptcr framing the complete Software 
is saved in locati'on 0 cf the Argument Stack 
ventional OOR. The associated pointer register 
to the base of the current stack frame. 

the do ma i n is 

Stack segment 
and in a -con­
always points 

There are two kinds of stack frames in the Software Stack -­
a root frame and a basic frame. 

There is one root frame in the Software Stack and it is al­
ways the first frame. It is created on domain entry. The 
root frame ccntains the following information: 

* a fault recursion co 1.1.n t 

*a pointer to the exception processing array 

* the base of the current stack frame 

*the total size of the stack 

* the location of all cefault enabled conditions, and 

* the location of the rext avai table stack frame. 

The root frarre is updated when each internal call is made, 
i.e., when a basic frame is created or released. 

There are many basic frarres in the Software Stack. A basic 
frame is created when a subroutine is called, e.g., external 
procedures, ON CONDITION handlers. 

A b a s i c fr a m e c on t a i n s a f i x e d a r ea f o r c on t r o l i n f o r ma t i on 
and a variable length ~rea for parameter passing and the 
subroutine's (block's> a1.1tomatic storage. 

The information consists of: 

* register safe store (optional> 

* control information 

* pointers to input and output parameters 

* pointers to argument descriptions (optional>, and 
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* auto mat i c storage. 

It is important to note that the parameters passed in the 
stack are the addresses cf the data items. In GCOS 8, these 
addresses are NSA pointers having a 24-bit bit address and a 
12-bit segmert identification. 

Included in every domain is a segment reference to a shared 
procedure segment contairing operators. Operators are short 
procedure sequences which perform some support service to 
the co"pilec procedure. Among the operators are code se­
quences to handle intra-domain procedure calls (between seg­
ments of the domain> and exits, various arithmetic 
functions, cperating system call adapters (PMME adapters> 
and inter-do"ain calls ard returns. 

Operators are invoked ty an inter-segment <cross-segment) 
transfer to the correct entry point in the operator segment. 

The subroutine linkage operators perform all the stack 
handling and environment preparation required during a 
subroutine call. The preparation of arguments is done be­
fore the operator is invcked. 

The calling sequence used within a domain establishes con­
ventions for how the parameters are passed, how the Software 
St a c k i s handled, how t he re tu rn l i n k a g e is handled and how 
the callee's environment is created. 

The actions that are re~uired for subroutine invocation are 
divided between the calling procedure and the interface op­
erator. The calling procedure prepares the arguments and 
argument descriptions while the interface operator handles 
the stack, does any regist•r saving and creates the return 
linkage. 

Parameters are passed frcm the caller to the callee by pass­
ing a list of addresses of the parameters plus (optionally) 
the addresses of their argument descriptions. 
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Since the addresses are ~SA pointers, the descriptors of the 
segments which form the comain must be in either the Linkage 
Segment, the Parameter Segment or the Argument Stack. Sub­
ordinate descriptor segments cannot be used. 

Note that no parameters or addresses are passed in 
registers. This insulates one subroutine from the ODR 
and/or register conventicns of another. 

The output cf a compiler is an A-unit containing procedure 
and/or data segments. A procedure segment consists of 
gener~ted code, a pointer area, and one or more entry areas. 
The generated code is all IC relative, i.e., it is floating 
code. 

Except for entry points, there are no references to a proce­
dure segment from outside the segment. Constants are 
packaged within the procedure segment, thus the minimum per­
missions for the segment are Read and Execute. 

The pointer area is an 
needed by the procedure 
shown in Figure 3Cal. 
instructions) from this 
to the pointer area are 

area containing all the NSA pointers 
for references to other segments as 
The procedure loads ODR's <via LDPi 
area when necessary. All references 
IC relative. 

Associated with each entry point to a procedure segment is 
data which defines: 

* The ASCII name of the entry point 

* The number of parameters expected 

* The lang~age and version which created the procedure 

* The amourt of automatic <stack> storage necessary 

* The location of the executable procedure, the pointer 
area and debugging irformation (debug schema). 

This data is tentativel) located at negative offsets rela­
tive to the entry point. 
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Entry 
Point 

Entry 
Point 

--·------------------
I 

I Pointer Area I 
I I 
I ------------------ I 
I Entry Point Data I 

--> 1------------1 
I I 
I Procecure I 
I And Ccnstants I 
I I 
1-----------·------ I 
I Entry Point Data I 

--> 1-------------- I 
I I 
I Procecure I 
I And Ccnstants I 
I I ----·----------

Figure 3(a) Frocedure Segment Layout 

Binding a procedure segment into a domain involves resolving 
the inter-segment references contained in the pointer area. 
This will cause the SEGID and the 24-bit address fields of 
each pointer to be adjusted as the Linkage Segment of the 
domain is established. Only the pointers which refer to the 
Linkage Segment are adjusted. Those which refer to the Pa­
rameter Segment and Argu«ent Stack do not require adjustment 
(relocation). 

Multiple procedure segments may be merged into one segment 
during the binding process. This is possible when their 
combined size is less t~an 256K and their attributes (exe­
cute, read) are identical. Since the generated code is 
floating code, two procedure segments can be combined into 
one by concatenating t~em and adjusting the inter-segment 
references of all segments in the domain. 
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I Pointer Area 
f 1------·-------.. J 

Procecure 
And Ertry Points 

1------------.... - I 
I Pointer Area 
J 
1------------.... ----.-- I 

Procecure 
And Ertry Points 

Figure 3Cbl ~erged Procedure Segments 

Multiple data segments may be merged into one 
the binding phase~ This is possible when 
size is less than 256K and their attributes 
cache-bypass> are identi<al. 

s e gm e n t d u ri n g 
their combined 

(read, write, 

References tc the segmerts which have been merged must be 
adjusted by relocating the NSA pointers which form the ref­
erences. Si~ilarty, references from one data segment to an­
other via NSA pointers (~~ich arise from pointer data types) 
must be adjusted, both ir their SEGIO field and their 24-bit 
address field. 

Excepticn processing includes the handling of: 

* ON CONDITIONS 

• faults 

*interrupts 

Each i s hand led by a 
ON COND1TION events 

DESIGN OVERVIEW 

cord it ion hand le r uni Que to the event. 
may be detected synchronously during 
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normal ~recessing or they may be detected asynchronously by 
a hardw~re fault. Another asynchronous event which is 
handled the same way is a "software interrupt", i.e., an in­
terrupt from one process to another. 

The things which are used in handling exception conditions 
are: 

* The Exce~tion Processing Pointer Array CEPPA) 

* The CN CONDITION hanclers. 

* The Exce~tion Processing Entry Descriptors CEPEDSl 

Associated with every domain is an array which contains 
pointers to the asynchronous event processing routines for 
the domain. This array is located by a pointer in location 
0 of the stack segment~ which is in turn located by a 
descriptor ir location 0 of the Argument Stack,. 

The EPPA may be in its own segment or may be part of a 
larger segment. The EPPA contains NSA pointers to the pro­
cedures which handle 

* The hardware faults <overflow, lockup, etc4) 

* Software interrupts 

* GELOOP detection 

* Wrapup 

* Restart. 

To be supplied. 

T 0 be s UP p l i e d 

To be supplied. 
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SECTION 4 

REALIZATION OF GOALS 

This section describes hew the proposed environment does or 
does not meet the goals that were stated in Section 2. The 
summary table from Section 2 is reprinted with a column 
which indicates whether the proposed design will meet the 
goal, whether it will not meet the goal, or whether its re­
sponse to the goal still needs to be determined .. In those 
cases where a simple answer will not suffice, the column 
contains a reference to a succeeding paragraph in this sec­
tion .. 
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Go al Rank Response 

Migrate without HOL so~rce changes must yes 
Accommodate GCOS·-111 executable formats must yes 
Accommodate GCOS-111 Tss, Tos, & DM1V-TP must yes 
Job performance at least 90% of GCOS-111 must 3.0 
Throughput at least 90% of GCOS-111 must 3.0 
User visible address values must yes 
Automatic space atlocation and recursion must yes 
Exception processing must TBD 
Dynamic subprogram invccation must TBD 
Support large procedures must yes 
Support large data spaces must TBD 
Support Distributed System Architecture must yes 
Support a virtual environment must yes 
Support shared elements must yes 
Provide program and data integrity must yes 
Provide user access cortrol must yes 
Use current hardware must yes 
Uniform micro-structure environment 1 yes 
Uniform macro-structure personality 2 yes 
Process synchronizatior 2 yes 
Support large number of files 2 yes 
Support large number of terminals 2 yes 
Support multiple versicns of same module 2 yes 
Support dynamic software installation 2 yes 
Extendible to future product directions 2 yes 
Supp o rt a r rays la r g e r than 2 S 6K 3 no 
Protect Honeywell priced software 3 TSO 
Migrate without assembly source changes 4 4.0 
Migrate without JCL changes 4 4.0 
Tasking 4 TBD 
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Two types of performance analysis were done. The first 
analyzed programs executing in an existing multi-segment en­
vironment using four performance case studies. The programs 
were analyzed to determine their instruction mix and then, 
from the mixes1 the perfcrmance of the programs relative to 
their execution on the ursegmented GCOS-III was estimated. 

In the second analysis, the object code of two programs 
compiled for GCOS-I1I was modified for the multi-segment en­
vironment and analyzed relative to the original versions. 

I t i s i m po r t an t t o n o t e th a t m a ny f a c t o r s i n a d d i t i o n t o t h e 
execution environment affect the performance of the system. 
The analyses presented in this section do not predict the 
overall GCOS 8 performance relative to GCOS-III. Rather the 
numbers state that for a given number of instructions 
executed, the GCOS 8 performance will be b times the 
GCOS-III performance. Since bis less than one, using the 
mu l t i - s e gm e n t c a p a b i l i t y o f th e N SA ha rd w a r e i n t h e G C 0 S 8 
environment effectively ce-rates the CPU. Other factors not 
i n cl u de d i n th i s an a l y s i s such as the di f fer enc es i n the 
supporting run-time subroutines, the operating system ser­
vices, etc., will significantly affect the total performance 
of GCOS 8. 

Re·ferences : 

1) Ireland, R.,J. and O'Laughlin, J.T., 
"Virtual Unit Instructions, Times, and Counts", 
An a l y s i s Not e -- 1 8 2, 
February 14, 1980. 

2 ) B r o wn , F. M • , 
Vue-graph tables on NSA instructions dated 
.JantJary 28, 1980 .. 

3) Ireland, R.J., private communications on NSA timing, 
feb.ruary 18, 1980. 

4 > Kr a sn y, L., 
"Virtual Unit Instn.ctions on CP-6", 
M a r ch 1 1 , 1 9 8 o .. 

The interesting combinations of hardware and operating sys­
tems are presented in tte following table, using GCOS III 
performance on the 6620 without the NSA option as a 
baseline. 
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GCOS Ill GCOS 8 GC OS 8 
Accommodation Native 

-----------------------..-.-----··-·--
6680 x ax bX 

The coefficients "a" and "b" represent the performance fac­
tors. Due to the pipelire structure of ADP, it is impracti­
cal to deri~e the ADP coefficients without simulation or 
measurement. Therefore, this study only attempts to derive 
values for the 6680 coefficients "a" and "b". 

A number of case studies are presented1 some representing 
static analyses of various programs and some representing 
actual measurements .. All of the analyses calculate figures 
for instruction mix, particularly of NSA instructions, and 
b a s e d on t h e i n s t r u c t i or mi x a nd th e t i m i n g o f t h e v a ri o us 
instructions, derive the coefficient "b". Coefficient "a" 
is determined from an actual measurement. 

The calculations of the two coefficients are based on two 
as sump t i on s : 

1. The non-NSA instructions in the GCOS 8 environment 
ta k e a n a v e r a g e cf 1 • 7 3 S m i c r o s e c o nd s ( R et • 1> .. 

2. Instructions in the GCOS III environment take an av­
erage of 1.644 microseconds (Ref. 1,3). 
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The following table surnrrarizes the results of the various 
c a s e s t u di e s • 

CASE STUDY 1 
Accom"'odation Mode 

NSA instruction use in native mode is 
in same proportion as ffeasured in 
SR1000 master mode. 

CASE STUDY 2 
CP-6 Sert Command Exec~tive 

CP-6 Sort Tournament Driver 

CASE STUDY 3 
SR100C Glocal Data Management 

CASE STUDY 4 
CP-6 Measurements 

6680 
Performance 
C o ef f i c i en t 

.93 

• 88 

• 827 

.928 

.86 

,.94 
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Although case studies 2 and 3 are based on a static analysis 
rather than actual measurements., the results correlate quite 
closely with the measured resu\ts in case studies 1 and 4,. 

Two factors are seen tc affect performance for the 6680: 
the percentage of NSA instructions executed and the percent­
age of CLIMB instructicns executed. Most of the NSA in­
structions are slightly slower than non-NSA instructions., 
however, the CLIMB is over ten times slower. 

% C.LIMB's % Non NSA Case Study Coefficient ~'b" 

.03 84.48 4 _.935 

.04 87.37 4 .945 

.as 87.3 4 .. 945 

• 1 98 .• 18 1 .93· 

.28 90.33 2 • 928 

.6 89.0 1 .88 

• 93 91.19 3 .86 

1. 36 90.36 2 .. 827 

The following table provides an estimate of the 6680 perfor­
mance values for the GCOS 8 environment. The coefficient 
"b" is an average of the first three case studies .. The CP-6 
measurements are not ircluded due to the unrealistically 
small percentage of CLIMe•s. 

GCOS Ill GCOS 8 GC OS 8 
Accommodation Native 

6680 x • 93X • 87X 

----·-----..--...---------------·------------
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The table below summarizes the results from measurements of 
GCOS 8 Accommodation Mode (Ref. 1). 

Instructicn % of Total 
Ty~e Instructions 

LOP 1 • 2 

L DD 0.18 

CLIMB 0.1 

EPPR o .. 06 

Other NSA 0.28 

Non NSA 98.18 

6680 Weight 
Factor 

2.0 

1. 9 

20. 5 

0.3 

2.0 

1. 735 

6680 Weight 
Value 

2.40 

0.342 

2.05 

0.018 

0.56 

170.34 

Weighted Totals 176.868 

Cceffi cient: b = 1 t.4.4 I 176.868 = O. 930 

In accom~odation mode, the slave instructions are based on a 
single segment environment, while the master mode instruc­
tions are based on a multi segment environment. One can pre­
dict the performance of the multi segment environment by con­
sidering only the mix of master mode instructions. This is 
presented in the table below. 
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Instruction % of Total 
Type Instructions 

LOP 7. 8 

L DD 1 • 2 

CLIMB o. 6 

EPPR 0.4 

Other NSA 1.0 

Non NSA 89 .. 0 

6 6 80 Weight 
Factor 

2 .. 0 

1 • 9 

20 .. 5 

0.3 

2 .. 0 

1 • 73 5 

6680 Weight 
Value 

15.60 

2.28 

12. 3 

0.12 

2.0 

154.415 

Weighted Totals 186.715 

Coefficient: b = 1c4.4 I 186.715 = 0.88 

A static analysis of two Sort/Merge modules implemented in 
PL-6 for CP-6 is shown below. Since these modules do access 
multiple segments and are written in PL-61 they should pro­
vide a good indication cf overall multisegment environment 
performance. 

T h e f i r s t t a b l e s h o w s t h e r e s u l t s f o r t h e So r t C om m a n d E x e c -
utive1 while the seconc table shows the results for the 
Tournament Driver. 
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Instruction % of Total 
Type Instructions 

LOP 6.a1 

L DD a.a 

CLIMB 1.36 

EPPR 1.36 

Other NSA a.91 

Non NSA 9a.36 

668a Weight 
Factor 

2.a 

1 • 9 

2a. 5 

a.3 

2.a 

1 • 73 5 

668a Weight 
Value 

12.a2 

a.a 

27.88 

a.4a8 

1.82 

156.77 

________________ . ___ ..__ ____ . ________________ _ 
Weighted Totals 198.898 

Coefficient: b = 164 .. 4 I 198 .. 898 = a. 827 

I n s t r u c t i on % of T o ta l 
Type Instructions 

6680 Weight 
Factor 

6680 Weight 
Value 

'---·-----------------------------------
LOP 7.29 2.a 14.58 

LDD a.a 1 • 9 a.a 

CLIMB a.28 20.S 5.74 

EPPR a.28 a.3 a.08 

Other NSA 1.82 2.0 3.64 

Non NSA 90.33 1 • 73 5 156.72 

Weight ed Tot a Ls 177.12 

CoEfficient: b = 164 .. 4 I 177.12 = a. 9 2 8 
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A static analysis of the Global Data Management module of 
ITP yielded the results shown in the table below. Though 
coded in GMAF, this module was chosen for the following rea­
sons: 

it is highly structured 

it is reasonably large (50 

- it deals with many segments 
ti mi t ed 

so_,,..that regi.ster 
opt i 1d z at ion is 

- it is reasonably linear so that the assumption that a 
uniform executior takes place should be a good one 

Instructicn % of Total 
Type Instructions 

6680 Weight 
Factor 

6680 Weight 
Value 

---...--------------·-· ---·----------·-------·--------
LOP 1. 7 6 2.0 3.52 

LOO 1.64 1.9 3.12 

CLIME 0.93 20 .. 5 19. 06 

EPPR 2.3 0.3 0.69 

Other NSA 2.16 2.0 4. 32 

Non NSA 91 .. 19 1 • 73 5 159.45 

Weighted Totals 190.16 

Coefficient: b = 164.4 I 190.16 = a. 86 

This module coes perhaps do more register optimization than 
a PL-6 generated module might. The relatively high percent­
age of EPPR's is due to moving the contents of one ODR to 
another. In a PL-6 module this ~ould probably generate a 
LOP rather tha,n an EPPR. If one-half the EPPR's are changed 
to LDP's1 then the follo~ing figures are generated. 

REALIZATJON OF GOALS 4-10 March 311 1980 - 15:20 



Instructicn % of Total 
Type Instructions 

L DP 2.91 

LOO 1.64 

CUMB 0.93 

EPPR 1. 1 5. 

Other NSA 2.16 

No.n NSA 91.19 

6680 Weight 
Factor 

2. 0 

1. 9 

20. 5 

0.3 

2,. 0 

1. 73 5 

6680 Weight 
Value 

5.82 

3. 12 

19.06 

0.345 

4.32 

159.450 

Weighted Totals 192.115 

Coefficient: b = 164.4 I 192.115 = 0.86 

It is interesting to note that the number of LDP's executed 
is of little consequence on the 6680 since the instruction 
time is not significantly greater than for other instruc­
t i on s. 

The tables below summarize the results of three CP-6 mea­
surements. The average cf the three measurements results in 
b=.942. See reference 4 for more information. 

These measurements are rot indicative of GCOS 8 timing due 
to the very small ratic of CLIMB's to total instructions 
executed, but are included for a comparison of typical in­
struction mixes. 
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Instr~ction % of Total 
Type Instructions 

6680 Weight 
Fae tor 

6680 Weight 
Value 

_...__.,..__._._ ____ ._. __ , ________________ ·_· __________ ,..__ 

LOP 7 .. 2 5 2.0 14.5 

LOO o .. o 1.9 o.o 

CLIMB o .. 04 20.5 0.82 

EPPR 2.17 0.3 0.651 

Other NSA 3 .. 1 7 2 .. 0 6 .. 34 

Non NSA 87.37 1. 735 151.587 

Weighted Totals 173.898 

Coefficient: b = 164.4 I 173.898 = 0.945 

.a..e..aJ.J,u:..e.uo1_l 

I n st r uc t i on % of To ta l 6680 .Weight 6680 Weight 
Type Instructions Factor Value 

........ ·-- _ ........ _.,... ________ ......__ _..,..._..__,.._ 

LDP 7 ... 15 2.0 14.3 

L DD o .. o 1 • 9 o.o 

CLIMB a. 05 20 .. 5 1.025 

EPPR 2 .. 25 • 3 0.675 

Other NSA 3 .. 25 2.0 6.5 

Non NSA 87 ... 3 1. 73 5 151.466 
............. ______ . __________________ ...__ _____________ ... _____ .._..... .... 

Weighted Totals 1 73. 966 

C o ef f i c i e n t : b = 1 6 4 .. 4 I 1 7 3 • 9 6 6 = 0. 9 4 5 
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Instructicn % of Total 
Type Instructions 

LOP 12.31 

LOO a.a 

CLIMB o .. 03 

EPPR 1. .. 3 7 

Ot.he.r NSA 1 .. 81 

Non NSA 84 .. 48 

6680 Weight 
Factor 

2. 0 

1 • 9 

20. 5 

0.3 

2.0 

1. 73 5 

6680 Weight 
Value 

24.62 

o.o 

0.615 

o. 411 

3.62 

146.573 

Weighted Totals 175.839 

Coefficient: b = 1c4.4 I 175.839 = 0.935 

This section compares projected multi-segment code genera­
tion of COBOL and FORTRAN in GCOS 8 with the actual code 
generated in GCOS-III. This discussion describes parameters 
of the comparison~ highlights results from the comparison, 
and concludes with recommended future directions. 

Detailed numbers are net presented. 

FORTRAN - This program is a matrix inversion from a scien­
tific benchmark. Of significant iriterest was the analysis of 
code production within the program's innermost loop. This 
critical code section was determined to be executed 100 mil­
lion tin:es. 

COBOL-74 -- This program~ obtained from a benchmark support 
demonstration program1 heavily uses COBOL-74 string manip~­
lation verbs -- INSPECT~ STRING, UNSTRING and the PERFORM 
verb,. 

FORTRAN - The program was com pi led with FORTRAN-Y. It then 
represented the GCOS-111 environment. The inner loop code was 
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examined and changed according to multi•segment environment 
requirements. This versicn then represented the GCOS 8 envi­
ronment. 

Those two versions were then compared in two ways. First, 
the GCOS-II1 version was compared with the GCOS 8 version 
assuming the hardware was constant C6680). Second, the envi­
ronment was held constart (multi-segment, GCOS 8) and the 
hardware varied (6680 vs. ADP). 

COBOL-74 -- This progran: was handled in the 
the FORTRAN program an existing CBL74 
listing was compared with a hand-coded GCOS 8 

same manner as 
generated code 
version. 

FORTRAN - The innermost loop instruction count was 
in terms of number oi irstructions, and execution 
crual per loop trip. Execution time was adjusted 
pipeline breaks and cache misses. 

examined 
time ac­
tor ADP 

COBOL-74 -- Since this routine contained neither iterated 
code or conditionally e~ecuted code, a static analysis was 
sufficient. 

3. 2. 3 .. 2 ~.t-a.ti~ 

For all routines the following information was recorded: 

* routine name 

*number lines of source 

* size of produced procedure for each environment being 
comi:ared 

* number LDPn produced for each environment 

* p e r c en t l DP n f or e a c h e n v i r on m en t 

* the average number of words of procedure code generated 
for each procedure statement for each environment. 

*The COBOL-74 sample had a relatively low level of LDP's 
(1%). A COBOL-74 sample with more parameter passing 
would generate more LOP instructions. 
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* The COBCL-74 sample has a potential problem regarding 
excessive ADP pipeline breakage during execution of 
subrcutir.e and library call Linkage. 

* The COBOL-74 multi-segment sample also has an excessive 
ADP pipeline breakase problem for PERFORM code genera­
tion. This problem results when exiting a perform block, 
i.e •. , "TRA to a TRA" .. 

* COBOL-74 generated code for the multi-segment environ­
m e n t < A D P > s h o u l d e x e c u t e a bo v e t h e .A D P 6 X b a s e L i n e • 

* Degradation from tte GCOS-III performance baseline 
should be Less thar 10% for COBOL-74 generated code. 
Since COBOL-74 has ro "dynamic" pointers except passed 
parameters, it is essential to continue glotal register 
assignments for parameter addresses and further to ex­
tend COBOL-74 to subject base pointers Cto wcrking stor­
age, process area, etc.) to the same register management 
as parameter addresses. 

* The FORTRAN sample also had a relatively low number of 
LDPs <2.3%). Again, this was partially due to the nature 
of the language <no cynamic data segments), however much 
credit tc reducing this figure must go the the FORTRAN-Y 
optimizer, as there ~as parameter passing of signicance 
(4 per subroutine call). The LDPs for the parameter ad­
d r e s s l o ad i n g t o t a l e d 4 0 0 ( 4 pa r am et er s * 1 0 0 ca l l s t o 
the matrix inversior routine>. However, references to 
these parameter adaress values totaled within the 
innerloop one millicn ... Thus, the ratio of loads to use 
was qui t e Low, as we l l as be i n g we l l s e::i a rated. 

* FORTRAN generated coce for the multi-segment environment 
(ADP) shculd have no problem meeting the ADP 6X baseline 
perfcrmarce goal. Ir fact, after accounting for cache 
m1sses and pipeline breaks, this inner Loop code 
improved in excess of a 10X factor. 

* There should be minimal degradation when comparing 
GCOS-III environment code productions with GCOS 8 
multi-segment environment code productions. The 
innerloop code in particular should not degrade at all 
since there are no calls and no LDPs are within it. The 
degradation, if any, would result from the new calling 
sequence and the glotal pointer register loads upon each 
entry to the matrix inversion. However, as previously 
stated, those events only occur 100 times. 
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3 • 2 • s ~,Q.O.k ... tu.si.Qo~ 

1. From the small number of programs examined it would ap­
pear that both FORTRAN-Y and COBOL will meet the per­
formance goats for the code generated by the compilers. 
More work needs to be done to quantity performan~e in 
this area as well as in the linkage to the I/O support 
routines, which was not analyzed. Suggestions for this 
are included in the recommendations. 

2. Global cptimizing ccmpilers will have a significant ef­
fect on performance. This is true on the 6680 where an 
optimizer would recuce the number of Load Pointer in­
structi ens generatec and executed. It will be even more 
significant on the ADP where an optimizer would take 
advantage of the pi~eline as well as reduce the number 
of Load Pointer instructions. 

1. Plans should be put in place to add optimizers to all 
language translators which do not have them. 

2. Possibilities of a binder changingladding/ceteting in­
strlicti ens in addition to relocating addresses should 
be studied. The possibilities include adjusting of ad­
dre9s fields in conjunction with the removal of address 
register manipulation and recognizing references to 
bound segments and changing references as a result. The 
extreme to which this can be utilized is to bind pro­
grans and data into a single segment. 

3. Improve the code gererator in the COBOL-74 compiler to 
improve the instructions generated for both PERFORM and 
CALL. 

4., Perform studies on ECOS-1II by inserting pulse instruc­
tions into the call and entry operators to determine as 
much of the information on performance factors as pos­
sible and compare those with the hand calculated num­
bers for the recommended model. 
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*** To be supplied *** 
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SECTION 5 

DETAILED SPECIFICATIONS 

To be supplied. 
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APPENDIX A 

ADDRESS REPRESENTATION 

The representation of address values is the central problem 
in the design of the micro-structure for the multi-segmented 
run-time environment. The use of address values is wide­
spread and interacts strcngly with the overall system goals. 

Addre~s values are required in the implementation and con­
trol of: 

Exception Processing 
Memo.ry Management and Software Stacks 
Arguments and Parameter Referencing 
Locate mode input-o~tput 
List structure processing 
Connection ta run-time support 

In high order languages~ these facilities show up as dis­
tinct language constructs for: 

Pointers and Based Storage 
Entries and Labels 
Alternate returns ard Exception conditions 

Both the facilities and their high order language constructs 
appear in Honeywell and customer software. Their wide usage 
i s r e f l e ct e d i n t he l a r ~ e nu m be r o f s y st em go a l s t h a t a r e 
related to the choice of address value: 

Job performance and throughput 
Uniform micro-structure 
User visible address values 
Automatic space allccation and recursion 
Exception processins 
Large procedures and data spaces 
Support of virtual environments 
Su~~ort of shared elements 
Provide program and data integrity 
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Use current hardware 
Minimize ITP conversion 

ln the design process1 t~ese several aspects of address val­
ues were red~ced into the following set of design criteria: 

* The address value mLst be storable in user data space. 
The address value representation must be a legal slave 
space data format. 

* The adcress value representation must allow uniform 
reference to domain-external parameters and 
domain-local data. 

* The substantive addf'ess value must retain its identity 
throughout being loaded into and stored from an Operand 
Descriptor Register COOR>. 

* The address value representation must support bit level 
addressabi ti ty for cperands,. 

* It is desirable that the address value representation 
use hardware with relatively high performance. 

* It is desirable that the address value representation 
s u p po r t s e gm en t l e v e l c on t en t i n t e g d ty ,. 

* It is cesirabte that the address value representation 
support an addressatility greater than 256K words. 

*It is desirable that the address value f'epresentation 
support domain str~etures containing more than 1024 
segments. 

* I t i s d es i r a b l e t h a t t h e add re s s v a l ue be v a l i d a c r o s s 
domains .. 

The following sections discuss the alternate address value 
representations investigated. 

ADDRESS REPRESENTATION A-2 March 31, 1980 - 15:20 



The NSA pointer is a hardware single 
containing an address field and a segment 
word ha~ the following fcrmat: 

0 
a 

2 2 
3 4 

3 
5 

1------·----------------1-----------J 
add res s f i e l d se g id 

I----------------I·-------.... ·- I 

word data format 
identifier. The 

The address field, bits C-231 has the same format as an ad­
dress register and gives a word, byte, and bit offset into 
the a s soc i at ed segment. The s eg i d, bi ts 2 4-3 5 , i dent i f i es 
the descriptor segment and entry value for the des-criptor 
framing the associated segment. The segid may reference 
on Ly t he l i n k age des c ri p tor segment, th e a r g um en t des c ri pt or 
segment, or the parameter descriptor segment. The size of 
the segid field allows a maximum of 1024 entries in each of 
the three descriptor seg~ents. 

There are several drawbacks to the use of the NSA pointer as 
the address value representation: 

1. The hardware instruction for loadin_g a pointer CLOP> ·is 
not one of the faster NSA instructions. The instruction 
is inherently slow, since it includes a second memory 
access to acquire tre NSA descriptor referenced by the 
segid value. 

2. The address field cf 24 bits limits the useful offset 
value to a segment cf 2S6K words. 

3. The NSA pointer is effectively limited to a domain of 
1024 segments. A dcmain is defined by the contents of 
the linkage descriptor segment. The segid value makes 
direct reference to the linkage segment and is limited 
to 1024 entries. 

4. The NSA pointer value is not valid across domains. 
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The NSA descriptor is a hardware double-word data format 
identifying the location and extent of a segment. Since both 
location and extent are in terms of bytes, the N.SA 
descriptor must be accompanied by an address register value 
to give the bit address ci the operand. This three word ad­
dress value representat·icn would have the format: 

a 

0 
0 

1 2 
9 0 

3 
s , _____________ ,_.....__, ,._..,._,._... _______ -----1 

bounds controls 
t ---·---..---.-------I------.. ------·-· .. I 

1 base 

2 
!---·-·--------.... --~-__.._ . ..._._ 1----------1 

bit address unused 
1-~-..-. ........ - .... -·-------------41 1-----------1 
0 
a 

2 2 
3 4 

3 
5 

The bounds field, bits 0-19 of word Q, contains the maximum 
valid byte address within the segment. The control field, 
bits 20-35 cf word Q, ~dentifies the working space within 
which the segment resides and contains access control infor­
mation. The base field, word 1, locates the byte offset of 
the segment within the working space identified by the con­
trol field. The bit address, bits 0-23 of word 2, has the 
same for~at as an addres~ register and gives the word, byte 
and bit offset of the operand within the segment. 

Using a NSA descriptor plus an address register value as an 
address value representation has the disadvantage that such 
a construct cannot usefully be stored into user data space. 
Although the address register value and descriptor content 
can be stored into operand space, the descriptor cannot be 
loaded into a descriptor register from operand space. Sepa­
ration of the address register value in operand space from 
the descriptor in a special descriptor segment raises insur­
mountable problems in synchronizing the two spaces and pass­
ing address 11alues between procedures witnin a domain. 
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When represented as a bit address and an offset <index) into 
some descrir::tor segment, the address value representation 
would require a two word construct: 

a 2 2 3 
a 3 4 s 

I --·------------1--·--------·-I 
0 l bit address I unused I 

1-------·---· ·---·-- l---- J----------""".-1 
1 I s e g rr e n t i n d e x I un u s e d I 

I-·----------·--·--- 1------------------1 
0 1 1 3 
a 7 a s 

The bit address field, bits 0-23 of word Q, has the same 
formst as an address register and gives the word, byte, and 
bit offset within the associated segment. The segment in­
dex, bits 0-17 of word 1, contains a value that identifies 
the pror::er descriptor within an associated descriptor seg­
ment. The descriptor segment would have to be located by a 
de s c r i p tor at s om e c a n c r i ca l po s i t i on i n t h e l i n k a g e s e g -
ment. To maintain efficiency, at least one ODR would have to 
be dedicated to framing this descdptor segment. 

There are at least three drawbacks to the use of this format 
for the address value rer::resentation: 

1. The value of the address value cannot be maintained 
across the loading cf an ODR. The associated descriptor 
can be placed into an OOR and the bit address value can 
be placed in the matching address register. There is 
no place, however, :in which to remember the segment in­
dex value. There is no way, therefore, in which the 
address value can be reconstituted in data space. 

2. This format is not especially efficient, recuiring sev­
eral instructions tc load the ODR and address register .. 

3. This representation is not valid across domains. 
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The super painter representation of an address value is 
predicated on all of the data segments in a domain, regard­
less of access controls, being collected into a single super 
segment. The super pointer locates data within this super 
segment. The super pointer is envisioned as a tko word con­
struct: 

0 

0 
0 

2 2 
3 4 

3 
5 1--,----------·-------------I-·----__ ...,....,_ ..... _, 

bit address unused 
1---------------------------l------ ----·-I 

1 extended base I --------------------------------------1 
The bit address field, bits 0-23 of word o, has the same 
format as an address register and gives the word, byte, and 
bit offset from the base value within the associated super 
segment. The extended tase field, word 1, gives the byte 
offset of a datum within the associated super segment. The 
super segment itself wodd have to be located by a super 
descriptor at some cancn·ical position within the linkage 
segment. Tc maintain efficiency, at least one OOR would 
have to be dedicated to framing the super segment. 

There are several drawbacks in using a super pointer as the 
address value representation: 

1. Address values represented as super pointers stored in 
user data space can point only into the super segment. 
Parameters passed into a domain are not in the super 
segment. Therefore, parameter address values cannot be 
represented via super pointers .. 

Moving parameter values into the invoked domain and 
back to the invoking domain is inefficient. 

Creating self-describing super pointers is inefficient 
in that each pointer would have to be tested for type 
before being utilized. 

2 • T h e c o l le c t i o n o f a ll d a t a s e g m en t s o f a d om a i n i n t o a 
single super segmert vitiates any attempt to control 
the access to particular segments or classes of data. 
All of the content cf the super segmerlt would have the 
same access permissions as the most public datum in the 
sui:er segment. 

3. The super pointer is not valid across domains. 
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The following table summarizes the attributes of each possi­
ble address value representation against the stated design 
criteria. 

CRITERION RANK NSA DESC. TABLE SUPER 
PTR. ADDR. INDEX PTR. 

Storable in data space must Y N y y 

Uniform ~ara~eter referencing must Y y y N 

Retain identity through CDR must Y y N y 

Bit level addressability must Y y y y 

Relatively high performarce N y N y 

Support segment integrity y y y N 

Addressability greater than 256K 2 N y y y 

Domains exceeding 1024 segments 2 N y y y 

Valid across domains 3 N y N N 

Only one alternative, the NSA pointer, supports all of the 
absolute requirements. 
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APPENDIX B 

D ES 1 G N S OU R CE S 

The following sections describe alternative program 
ment definitions considered as input to the GCOS 
proce.ss. 

environ-
8 design 
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Ease of program development 
Considered major and increasing factor in computer expense 
Sy s t em d eve l o p e r s a s we lt a s e nd us e rs 
Large address space 
Minimum pre-specification 
High level language support 

Efficient execution 
Minimize copying 
Minimize main storage requirement 

Protection 
User from himself 
User from other users 
System from user 
Accicent or malice 

Resource administratior and control 
Centralizable or delEgatable 
Automatic 
Flexible 

Adaptability 
To different needs of different users 
To varying scale configurations 
To future requirements 
To future technology 

New de\lices 
Declining cost of storage 
New programming languages and techniques 

Process is fundamental structure 
Addressing mechanism 

Memory size limits 
256K wcrds per segnent 
4094 segments per ~recess 

Segment a ti on 
Hardware supports use of segment number and offset 

Pointer registers 
ITS indirect wore pair 
Implicit use of Procedure Segment Register 

Uses of segments 
Procedure segments 

Single compilation, directly executable 
Bound segment, same format as compiler output 
Pu re procedu.re 

Oat a segment s 
Process private 
Shared 

Supervisor procecure and data 
Paging 
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Invisible to user 
All instructions and modifiers work across page fault 

Segments don't share pages 
Page mapped 1:1 with disk record; memory encaches disk 
Segments can grow 

Zero pages in segment allocated when stored into 
Uses of paging 

Effic-ient buffer allocation 
Configuration incependence of user programs 

Security and integrity 
Access ccntrol per-segment, per-user 

Derived from inforrration in file system 
Upcated immediately if information changes 

Access ccntrol dimensions 
Intraprocess access control: rings 

Rings 0-7, 0 most privileged <central> 
Brackets for .write, read, execute, call 
Hardware validation of ring number in pointer 
Uses 

Protection of supervisor from user 
Running a program in an isolated environment 
Prcviding controlled use of data or program 

Per-user access cortrol: Access Control List 
Modes Read, Exec~te, Write 
Enforced by hardware on every reference 
Uses 

Read sharing: 4se of common data and program 
~emory and channel efficiency 
Coordination of user activity <library) 

Write sharing 
Process synchronization 

Nondiscretionary access control: Access Isolation Mechanism 
Level and category, like military security 
Uses 

Prevention of accidental disclosure of information 
Defaults make access control transparent for common case 

Generated code 
Stack segment (per-ring) for program temporary storage 

Stack header has e nvi r o nm en t de f i nit ion pointers 
Hardware knows stack segment number and register convention 

Does not know any fixed offsets in stack 
Recursive code stardard 

Threaded code with o~erator segment references 
Operator segment shared by multiple processes, all rings 
Operator segment lccated by language convention at entry 

Standard object segment format 
Te x t ( ins t r tJ c t i on s and cons t an t s) 
D e f i n i t i o n s < i n w a r d r e f e r en c e) 

Entrypoint 
Argument descriptors for each entryooint 

Symbol <optional) 
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Static template Coi:tionall 
Break rrap (for debuggers) {optional> 
Object map 

Linkage section per ring 
Contains ITS pointers or fault pairs 
Supplies segment n~mber for external reference 

Static storage area i:er ring 
Allocated in the same place as linkage 

Standard call operatcr 
Used even by asseml:ly language programs, via macro 

Standard argument list 
Header 
Argument pointers 
Argument descriptors 

Standard data representation 
ASC1I character set 
Machine-supported cata types 
Array and string representation 
Packing and alignment 
Pointe rs 

Implemented as ITS pair, can use for indirection 
Packed pointers 
Ring number in pcinter in storage 

Supervisor 
Name management 

Segments searched for by symbolic name 
Assigned segment number and made known 
Subsequent searches for same object very efficient 
Per-ring search rules control search for object 
Referencing directory rule helps subsystem packaging 
System command irternals available to user 
Site may modify cefault search rules 

Linkage and name si:ace not reset implicitly 
No job step or ccmmand concept 
Run units, explicit termination optional 

Int e rp r o g.r am linkage 
Dynamic linking standard 
Binding optional 
Prelinking optional 
Unlinking of dynamic link on demand 
Run units 

Superviscr call and return 
Same mechanism as any other call 
Inner ring programs take some care not to be subverted 

Excei:tior. handling 
Error indication 

Symbolic error cedes only, numeric values sealed 
Convention is to use final argument of subroutine 
Standard I/O stream for error messages 

Query handling 
S i gn a l me ch an i s m 

Condition handlers 
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Clearup handlers 
Any_other handlers 
Cross-ring signalling 
Static condition handlers 
Hardware faults handled as signals 
QUIT handled as signal 
Default environment action 

New command level 
St art, release 

Process terminatior 
Epilogue handlers 

Replace parts of environment 
Subset 
Extend 
Test new version 

Uniform execution regardless of input stream 
Stream 1/0 system 
Resource Control Package 

Symbolic resource names 
User may create outer module 
User may generate CCWs for IIO 
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2 .1 G~ili 

The goals of CP-6 are tc provide an attractive upgrade al­
ternative to Sigma series hardware users by offering a sys­
tem personality very si"ilar to CP-V. Conversion of data 
files in format and from EBCDIC to ASCII was assumed neces­
sary but all file system and file access method 
functionality of CP-V was copied as closely as possible. 

Development of the systew was to be based on using a higher 
order language for most cf the implementation. Both external 
(command language) and irternal <calling .sequence.) uni formi­
ty were given early attertion and high priority. 

Compatibility with GCOS was explicitly of secondary impo:r­
tanc e. 

CP-6 uses the same NSA hardware as GCOS 8 but in a much more 
limited way. Although stcrage managemment takes advantage of 
the page tables, dynamic paging is not supported. The do­
main structure of user s:rograms is fixed and the user ad­
dress .space is lim·ited tc a total of 398K words .. 

Approxi~ately 90% of system software is written in PL•6. 
Uniform interface conventions are strongly enforced. 

The system is seperated into four domains and eac.h user has 
a single domain. The system domains are: 

Mon it er 
Command Processor 
Interactive Debugger 
Alternate Shared library 

Each user proces.s is assigned 
structure. 

a Working Space of fixed 

o A fixed page table space allocation limits each WS to 
512K words .. 

o The user program can access at most 398K of the ws. 

o There is one domain having a fixed segment structure. 

o Segments addressatle by the user process are: 
- Instruction Segment: 256K maximum site. 
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Control Segll'ent; 14K 
Data Segmerts: at 
128K. 

maxim um 
most 8 

and Read-Only. 
segments totalling 

o The WS page table is used for memory control. 
- Certain ~ortions are pre-assigned for 

functions. 
Process and/or constant data sharing is 
achieved by mapping the same physical page into 
two or more W S page tab l es. < 3 2 K of user in­
s tr u ct ion segment is normally reserved for a 
"Library" of shared pure procedure.) 

- The user prcgram may request dynamic allocation 
of pages in the page table. 

- Overlay usage in the Instruction Segment is 
supported. 

Compiler output is not directly executable but must be 
linked with its supportirg subroutines into a run unit. 

Large 
way. 

programs must be overlay structured in a conscious 

Intra-domain procedure 
structions. 

calls are implemented using TSX in-

The user domain may CLI~B to the Alternate 
and reaches the Mani tor l::y PMME., 

Shared library 

The user process may directly manipulate pages: 

- allocate and free data segment space in words, 
allocate and free real lnstruction Segment pages oth­
er than those allccated via the linking process, 
Allocate and free virtual Instruction Segment pages 
other than those allocated via the Linking process .. 

Subroutines may be sharec only by being page mapped into the 
top 32K cf the Instructicn Segment. 

User procedures m.ay be shared via special post-linking 
processing to identify them as sharable elements .. 

Hardware pointers and vectors are usable via both assembly 
language and PL-6. 

Compiler output segregates data and procedure. Pure proce­
dure is created by PL-6 to allow sharing. 
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The standard calling seq~ence provides for an alternate re­
turn point. 

A one-way inter-procedure exception path is supported by the 
PL-6 REMEMBER/UNWIND feature. 

Process level exceptions {ON conditions) are supported via 
ASYNCHRONOUS procedures and the MSXCON <exit control> facil­
ity of the ocerating system. 

A single JCL provides fer both batch and interactive usage 
modes. 

The same sys tern interface mechanism is avail able to programs 
in batch and interactive execution modes. 

The same I/O mechanism wcrks for both batch and interactive 
programs. The inteactive state may be determined from file 
attributes. 

System search rules are the same for JCL and programmatic 
procedure i n vo c at i on. 

System modules are dynamically replaceable without system 
interru~tion .. 
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The native environment present in SR 1000 is partially 
inherited from ACOS V1.1 which was based on a Toshiba-HIS 
joint design effort goirg back to 1975 and 1976. It goes 
beyond that base in many ways including checkout of the mul­
tiple Shared Run Unit Litrary capability and the addition of 
a limited capability Dynamic Linker. 

The goals of the release which apply to the native environ­
ment include: 

o Overcome limitations of GCOS-I1I 
Slave memory size 

- Files per activity (increased PAT space> 
Program number limit 

- SSA module frag"entation 
Memcry fragmentation (compaction overhead) 

o Utilize NSA hardware features 
Optimize real memory utilization 

- Improve integrity and security 

o Sup~ort the Integrated Transaction Processing system 

The uni~ue address space of a program is in a private Work­
ing Space "viewed" through WSR 7. This process-local work­
ing Space is divided into control information storage (the 
process structure) and program storage. The first 64K vir­
tual addresses are reserved for control information and 
descriptor storage. All used pages in this area must be 
.memory resident when the process is not swapped out. 

Dynamic ~aging of both program and shared address spaces is 
supported by ruling out ~nsupportable instruction sequences. 
Explicit overlay manage"ent is not supported by the system 
in native mode. 

Program construction faciUties treat each compile unit as a 
domain. Thus all runtime services are invoked by a CLIMB in­
struction. 

Segmentation is assumed in program construction 
ways based on standard descriptors. This means 
largest segment size is 256K words. 

and is al­
that the 
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Operating system services are reached either by a CLIMB or a 
PMME 'instruction. The interfaces are not consistent in style 
and some have undesirable features such as passing codes in 
registers. 

Addressability to Sharee Working Spaces is available to a 
native made program via WSRs 2-6~ Content of these Shared 
Working Spaces may be .loaded by an unrealesed utility to 
Working Spaces having fixed relationshiJs to the WSRs. 
These relationships, the status of the contents, and other. 
information is recorded ina hard-core table. 

An unreleased utility ~rovides optional static linking to 
Shared domains but Run Units so linked are vulnerable to 
changes in the content of Shared Working Spaces to which 
they are linked. Compatibility of a Run Unit with the 
Shared Working Spaces available at the time of its execution 
is checked tc prevent a rnis-match. 

Alternatively, dynamically assigned Working Spaces may be 
loaded by a loader program which is part of the 
develop"entat scaffolding used by ITP. The Shared Working 
Spaces in this method are controlled by a "sleeping" process 
which holds the Working Space, backing store, etc. 

A primitive Dynamic Linker supports linking to ITP shared 
software,. 

User program (process local> virtual address space may be at 
least 1.6 million words .. 

More than 2SC files may te assigned to an activity. 

Construction of both user and shared programs is completely 
flexible <within hardware constraints) in the use of multi­
ple segments and multiple domains. 
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This environment definition was developed primarily within 
the Language and Database organization in 1978 and 1979 to 
provide a base for compiler planning and particularly to es­
tablish a target environ~ent for the development of PL-6 for 
GCOS 8. It is a slight extension of the SR 1000 environment 
in that new approaches are taken to the construction of pro­
grams which free the system designer to construct domains 
from multiple compile units. 

Certain conventions worked out during development of this 
specification became part of SR 1000 .• In particular, domain 
structure, null descr-iptcr, null pointer and revised excep­
tion precessing conventicns were adopted. 

Definition of the execution environment as seen by a compil­
er code generator was the fundamental goal of this effort. 
Support of all general features of higher order language 
systems, efficient inter-module calling sequences, and maxi­
mum uniformity of conventions were considered of highest 
priority .. 

Maximum generality of sharing, uniformity, and ease of use 
were alsc taken as important goals. 

The most significant variation from the program construction 
av a i l a b l e p r e vi o us l y f o r n a t i v e m od e i s t he a s s ump t i on t ha t 
modules generated by a compiler would normally be combined 
with others in a single comain. This choice was made in or­
der to employ the hardware "pointer" datum as the "pointer" 
data type of several language systems. It also Led to a 
means of providing intimate run time supporting software 
that could be shared without the use of the CLIMB instruc­
tion. 

A genera l i z a ti on of d y n arr i c l i nk i ng wa s e nv i s i one d i n w hi ch 
symbolic information in every domain would provide names to 
be matched against directories in each Shared Working Space. 

Dynamic association of Shared Run Unit Libraries with Work­
ing Spaces and of process with Siared Working Spaces was 
proposed but not fully defined in the specification .. 
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This note describes briefly how to adapt the Multics 
multi-segment runtime en"ironment to the NSA machine, in or­
der to create a GCOS-1V ~ulti-segment runtime environment. 

A Multics segment will be mapped into an NSA segment. 

Pointer values will be represented by NSA pointers. 

Multics rings will be ag~roximated by NSA domains. 

Each domain wilt have a cescriptor segment; segment numbers 
in all dcmair.s of a process will refer to the same segment, 
with possibly different access rights. 

Pointers can be shared between domains only if the segment 
numbers are assigned identically in both domains. The 
Multics approach to this problem involves several rules: 

1. Pointers are never valid aft•r shutdown and reboot. 

2. Pointers are valid across processes only in a special 
case: system-wide assignments of segment numbers to 
supervisor segments at boatload time .. T.hus, a pointer 
to a supervisor segrrent is valid in all processes. 

3. Pointers are freely passed within a process, but it is 
the process's own resposibility to garbage collect 
pointers within a dcmain Cring> .. That is, a process can 
construct a pointer, hide it somewhere, and release the 
segment number; the pointer is invalid but the system 
does not automatically invalidate the pointer. 

Segment numbers 0-N will be reserved for supervisor segments 
in all proce.sses CN set at boot load time>. Then, segment 
numbers N+1 to N+M will be reserved for pe.r-work station 
segments, where M is variable according to work station and 
determined at process creation time. The rest o1 the seg­
ments in the process are assigned segment numbers on a 
first-come, first-served basis. 

This does not preclude two processes sharing a procedure 
segment, assigning it different segment numbers in different 
processes. The procedure will, however, require a linkage 
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section which is impure and per-domain which contains seg­
ment numbers needed by the executable code to refer to its 
environment and for inward reference. 

St a ck 
Stack frame 
Linkage Offset Table 
Combined Linakge Area 
Reference Name Table 
Known Segment Table 
Argument list header 
Argument list 
Argument descriptor 

0 n e pr o c ed u r e w i l l c a l l a not he r a cc o rd i n g 
scenario. (Suppose A calls B>: 

to the following 

1 .. P r o c e du re A pre pa r es an a r g um e n t 
stack frame. 

list for B in A's 

2. Prccedure A obtains a pointer to procedure 8. 

3 • P r o c e du re A en t er s the C ALL o pe r at or • 

4. The CALL operator saves the return point 
frame and enters prccedure B. 

in A's stack 

S. Procedure B performs a standard entry sequence which 
- Builds a stack frame for 8 
- Establishes addressability for B's linkage section 

Establishes addressability for B's arguments 

Arguments w i l L be pass e c as they a re in Mu l t i cs, not vi a 
CLIMB. The argument list will be a list of NSA pointers to 
argument values, stored en the software stack. If CL1M8 is 
used, it will not be usec for argument passing. The para.me­
ter stack is not used. The only CLIMB opcode will be in the 
operator segment which contains the call operator. 

Pointers may be passed between domains. The output of a 
compiler is a file ~hich contains several sections: 
executable cede, linkage definitions, linkage section tem­
plate, symbol section, ard object map. Output from separate 
compilations can be combined into one segment by a "binder." 
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Compiler output is pure procedure, threaded code. A process 
may have many domains1 b~t there is a limit of 1024 segments 
per process. {Multics had this limit for many years: most 
processes still operate with:in it. Administrative action 
can increase the size to 4096 for special processes.> 

Pointers do not carry a ring number. This requires that all 
pointers input to a domain be validated by the callee. Such 
code was once written for 645 Multics: its construction is 
fraught with subtleties and dangers. On the other hand, we 
understand the problem. 

Since NSA does not pro~ide an 1TS pointer, all indirect 
addressing must be replaced by explicit register loading. 

The size of a segment is 256K words, same as in Multics, un­
less super descriptors are used. These can be used if there 
are some limitations, like only one per process. 

Per-domain reference name management. 

Per-process and per-work-station segment number management. 

Pe r- r i n g s e a r ch r u l e s • 
1.o..t.~.c.a.c_g~ .ca m_J,.i,oJs..a~u:: 

Dynamic linking 
Unlinking of dynamic lirk on demand 
Run units 

Write-arounds to GCOS-8 functions must be provided so that 
the user program can call upon the supervisor by a language 
call instead of via a MME. The supervisor routines must take 
some c a re n o t t o b e sub v er t ed if p o i n t e r a r gum en t s a r e 
passed., 

Software convention must be established for 
error code 
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Standard 1/0 stream fer error messages 
Query handling 
Signal mechanism 

Conditicn handlers 
Cleanup handlers 
Any_other handlers 
Cross-ring signallirg 
Static condition handlers 
Hardware faults hancled as signals 
Default environment action 

QUIT 
Process termination 
Epi Logue handlers 

The standard call, push, and return operators must be 
written. If multiple o~erator segments are permitted in a 
domain then the conventicns for making the various operator 
segments addressable must be worked out. 

The standard linker must be designed. This 
following pieces: 
Fault handling 
Definition search 
Linkage space assignment 
Linkage template loading 
Process restart 

requires the 

A binder will be requirec for the initial release, in order 
to conserve segment numbers. 

Efficiency of the COBOL and FORTRAN I/O packages will be im­
portant, and special care must be given to making this func­
tion efficiert. 
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TBS by GA Mann. 
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APPENDIX C 

DESIGN EVALUATION 

The GCOS ~ulti-Segment Runtime Environment Committee 
evaluated the alternative design strategies proposed for the 
GCOS 8 MSRTE and chose an approach which was an evolutionary 
development from the current 4VX product. The major reason 
for this choice was the feeling that no other approach could 
be implemented for delivery at the end of 1981. 

The Multics approach is a low risk approach to satisfying 
most of the functional design objectives for the runtime en­
vironment; we know this because Multics satisfies most of 
these objectives and already works. Performance parity with 
GCOS-III is probably not possible with this approach, or any 
other a~proach considere~: but predicting the performance of 
a Multics-approach envircnment was not pursued in detail. 

The amount of code to be written for the Multics approach is 
known to be large; compiler code generators for all compil­
ers, binders, linkers, and supervisor services must be built 
as described above. This amount of code is about the same 
for all proposed implerrentations, but the additional work 
for the Multics approach ~ould be the re-implementation of 
4VX/1TP and other GCOS code to work with the new environ­
ment. 

This approach was not gi~en a Large amount of consideration. 
Once we determined that the complete job was very large, and 
could net be reasonably promised for end of 1981, we turned 
to other schemes. Another reason we did not pursue this ap­
proach too far was that it used NSA pointers and the LDP 
opcode heavily, and at the time we were in hopes of 
discovering an approach which did not suffer from the per­
formance problems of this method. 
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We really didn't evaluate this approach, because CP-6 does 
not provide sufficient support for large address spaces. 
The question of how to alter the CP-6 environment to .support 
larger address spaces was not investigated. 

Although code generators for all languages, an A-unit merg­
er, and a B-~nit binder "ust be written, it is possible that 
some use may be made of the existing loader, and the dynamic 
linking and rremory management software used by ITP. 

Compared to the Multics approach, this method might be less 
code, or it might be more, depending on how much old code 
can be adapted to the new circumstances. It is definitely 
more design: many complex features of the RTE would have to 
be invented, which coulc be copied from Multics if we took 
the Multics approach. 

If we assume that ITP is going to be kept with minimum 
change1 then the desire for a uni form environment will have 
a strong influence on the shape of the MSRTE. Several 
strategies ~sed by ITP, such as process structure, memory 
management, per-opening domains for every use of a file1 
cannot be accommodated within many of the possible RTEs. 

Some of the committee menbers expressed the strong desire to 
avoid any caronicalizaticn of domain internals: that is, it 
would be possible to have many different internal structures 
in different domains. T~is was advanced as an advantage to 
program aevelopers since the effects of an error would not 
propagate. 

This environment was considered to be a minor variant of SR 
1000 and our eventual design adopted features as appropri­
ate. 
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MULTI-SEGMENT SHARED RUN-TIME ENVIRONMENT 

o GOALS & CONSTRAINTS 

o MACRO-STRUCTURE 

o MICRO-STRUCTURE 

o PERFORMANCE 
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G 0 A L S 

GOAL RANK RESPONSE 

MIGRATE WITHOUT HOL SOURCE CHANGES MUST YES 
ACCOMMODATE GCOS-111 EXECUTABLE FORMATS MUST YES 
ACCOMMODATE GCOS-111 TSSJ TDSJ & DMIV-TP MUST YES 
JOB PERFORMANCE AT LEAST 90% OF GCOS-llI MUST TBD 
THROUGHPUT AT LEAST 90% OF GCOS-III MUST TBD 
USER VISIBLE ADDRESS VALUES MUST YES 
AUTOMATIC SPACE ALLOCATION AND RECURSION MUST YES 
EXCEPTION PROCESSING MUST TBD 
DYNAMIC SUBPROGRAM INVOCATION MUST TBD 
SUPPORT LARGE PROCEDURES MUST YES 
SUPPORT LARGE DATA SPACES MUST TBD 
SUPPORT DISTRIBUTED SYSTEM ARCHITECTURE MUST YES 
SUPPORT A VIRTUAL ENVIRONMENT MUST YES 
SUPPORT SHARED ELEMENTS MUST YES 
PROVIDE PROGRAM AND DATA INTEGRITY MUST YES 
PROVIDE USER ACCESS CONTROL MUST YES 
USE CURRENT HARDWARE MUST YES 
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G 0 A L s (CONTINUED) 

GOAL RANK RESPONSE 

UNIFORM MICRO-STRUCTURE ENVIRONMENT 1 YES 
UNIFORM MACRO-STRUCTURE PERSONALITY 2 YES 
PROCESS SYNCHRONIZATION 2 YES 
SUPPORT LARGE NUMBER OF FILES 2 YES 
SUPPORT LARGE NUMBER OF TERMINALS 2 YES 
SUPPORT MULTIPLE VERSIONS OF SAME MODULE 2 YES 
SUPPORT DYNAMIC SOFTWARE INSTALLATION 2 YES 
EXTENDIBLE TO FUTURE PRODUCT DIRECTIONS 2 YES 
SUPPORT ARRAYS LARGER THAN 256K 3 NO 
PROTECT HONEYWELL PRICED SOFTWARE 3 TBD 
MIGRATE WITHOUT ASSEMBLY SOURCE CHANGES 4 TBD 
TASKING 4 TBD 
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CONSTRAUilS 

RELEASE WITH 5V 

MINIMIZE CONVERSION 

USE CURRENT HARDWARE 

SUPPORT HIGH ORDER LANGUAGE FUNCTIONS 
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SUBCOMMITTEES 

TWO SUBCOMMITTEES WERE FORMED. 

1. MICRO-STRUCTURE SUBCOMMITTEE 
DEFINE THE INTERNAL ENVIRONMENT 
o THE STRUCTURE INTERNAL TO A DOMAIN 
o CALLING SEQUENCES WITHIN & BETWEEN DOMAINS 
o LINKAGE SEGMENT LAYOUT 
MEMBERS: 

DICK WILSON <CHAIRMAN)) JOHN WERTZ) TOM VAN VLECKJ FRANK LITTLE 

2. MACRO-STRUCTURE SUBCOMMITTEE 
DEFINE THE EXTERNAL ENVIRONMENT 
o EVERYTHING EXTERNAL TO THE DOMAIN - PROCESS STRUCTURE) OBJECT UNIT 

AND RUN UNIT STRUCTURE) wso STRUCTURE) I I I 

o RUN TIME SUPPORT SERVICES - DYNAMIC LINKER) ETC. 
o PROCESS & DOMAIN CREATION MECHANISMS 
o SHARlNG MECHANISMS JCL) PROCESSORS) I I I 

o HANDLING OF WSR'S & SEARCH RULES 
MEMBERS: 

CHARLIE COFLIN <CHAIRMAN) GEORGE MANN) AL BEARD 
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EXTERNAL ENVIRONMENT 

1. USAGE OF WORKING SPACE REGISTERS TO SUPPORT SHARING 

2. TYPES OF SHARING 

3. CONSTRUCTION OF THE VIRTUAL ENVIRONMENT 



0 1 2 

SYSTEM 

~~~ 

WSR USAGE FOR SHARING 

. WSR . 

3 4 

"~!~ SOFTWARE 
SOFH/ARE 

5 

DYNAMIC 
USER 

SHARI MG 

wsi;t - wsrf ARE COMMON TO ALL PROCESSES 

6 7 

WORKSTATION PROCESS 
LOCAL LOCAL 
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1. DOMAIN INSTANCE SHARING 
- LINKAGE IS SHARED 

TYPES OF SHARING 

- ALL SEGMENTS OF DOMAIN ARE SHARED 

CLIMB 

I > LINKAGE 
SEGMENT 

I 
) 

CLIMB 

PROCEDURE 

I DATA 

I DATA 



TYPES OF SHARING (coNTINUED) 

2. DOMAIN PATTERN SHARIMG 
- LINKAGE SEGMENT IS NOT SHARED 
- DESCRIBES BOTH SHARED AND UNSHARED SEGMENTS 

PROCESS LOCAL 

CLIMB > LS1 

LOCAL 
DATA 

SHARED 

PROCEDURE 

SHARED 
DATA . 

PROCESS LOCAL 

LS2 -< --~C"'-""L-.:....1 M...=.B 

LOCAL 
DATA 



3. SEGMENT SHARING 
- IF PROCEDURE SEGMENT) THEN: 

o ALL DATA REFERENCES ARE TO PARAMETERS OR DYNAMIC DATA 
o PURE PROCEDURE 

- IF DATA SEGMENT) THEN: 
o MUST BE GATED 

PROCESS LOCAL SHARED 

PROCEDURE 

OR 
DATA 

PROCESS LOCAL 
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DEF A-UNIT 

A FILE OF OBJECT TEXT PRODUCED BY COMPILERS & ASSEMBLERS 

DEF - B-UNIT -
A FILE THAT CONTAINS A WORKING SPACE IMAGE 

o ONE OR MORE DOMAINS 

o LINKAGE) PROCEDURE) DATA FOR THOSE DOMAINS 

o SKELETAL PAGE TABLE 
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CONSTRUCTION OF VIRTUAL ENVIRONMENT 

SOURCE 
t 

J COMPILER I 
l 

A-UNIT A-U~IT I I I 

i / 
MERGER 

<OPTIONAU 

i 
A-UNIT /A-UNIT I I I 

DIRECTIVES~· t ;/ 
I B-UNIT BUILDER I 

t 
B-UNIT OR B-UNIT LIBRARY 
i 

WORKING SPACE 
ASSIGNMENT 

l 
CWSRJ WStL B-UN IT) I I I) 

1 
I PROCESS INITIATION l 

l 
PROCESS 
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CONSTRUCTION OF VIRTUAL ENVIRONMENT <CON'T) 

SOURCE 

l 
I COMPILER I 

JNIT 

JCL 

$ COBOL 
$ PRMFL SOURCE 
$ PRMFL A~UNIT 

FUNCTIONS 

- COMPILES ·oR ASSEMBLES SOURCE 
- DEFINE INITIAL SEGMENT CONTENTS 
- SUPPLY RELOCATION INFORMATION 
- SUPPLY DEBUG SCHEMA 
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JCL 

CONSTRUCTION OF VIRTUAL ENVIRONMENT CCON'T) 

A-UNIT1 A]NIT2 

A-UNIT MERGER 

'1/ 

A-UNIT 

$ A-MERGE 
$ PRMFL A-UNIT1 
$ PRMFL A-UNIT2 

$ PRMFL OUTPUT A-UNIT 

I I I 

FUNCTIONS 

- COMBINES SEGMENTS 
- PERFORMS RELOCATION 
- ADJUSTS SYMBOLIC SEGMENT REFERENCES 
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JCL 

CONSTRUCTION OF VIRTUAL ENVIRONMENT CCON'T) 

DIRECTIVES 

$ B-BUILD 
$ PRMFL A-UNIT1 
$ PRMFL A-UNIT2 

$ DATJl. 
DIRECTIVES 

$ ENDCOPY 

A-UNIT1 A-UNI~2 I I I 

B-UNIT BUILDER w;...---- B-UNIT 

i 
B-UNIT 

FUNCTIONS 

- CREATES DOMAINS 
- ASSIGNS VIRTUAL SPACE 
- RESOLVES REFERENCES 
- CREATES DIRECTORY OF DOMAINS AND GLOBAL SEGMENTS 
- ADD, DELETE, OR REPLACE A-UNITS IN AN EXISTING B-UNIT 
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CONSTRUCTION OF VIRTUAL ENVIRONMENT CCON'T) 

B-UNIT OR B-UNIT LIBRARY 

WORKING SPACE ASSIGNMENT 

JCL 

$ RUN 

$ PRMFL B-UN IT 
$ SHRNM SHARE LEVEL B-UN IT LIBRARY 

FUNCTIONS 

- ASSIGNS WSR AND WSN 

- CREATES A BACKING STORE FILE 

- CREATES A DIRECTORY OF DOMAIN AND SEGMENT NAMES FOR 
ALL B-UNITS IN WS 
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JCL 

CONSTRUCTION OF VIRTUAL ENVIRONMENT (CON'T) 

$ RUN 

ASSIGNED WORKING SPACE 

PROCESS INITIATION 

PRiCESs 

$ PRMFL B-UNIT 

FUNCTIONS 

- ASSIGNS KPX 

- BUILDS PROCESS STRUCTURE 

- LOADS WSR's 

- CLIMB's TO INITIAL ENTRY POINT 
CGENERATES DYNAMIC LINKING FAULT) 
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CONSTRUCTION OF VIRTUAL ENVIRONMENT CCON'T) 

DOMAIN OR SEGMENT NAME 

l 
jDYNAMIC LINKER I 

l 
ENTRY OR SEGMENT DESCRIPTOR 

INVOCATION 

- DYNAMIC LINKING FAULT REFERENCING A DOMAIN 

- REFERENCE TO A SEGMENT EXTERNAL TO THE B-UNIT 

FUNCTIONS 

- USE SEARCH RULES TO DETERMINE THE ORDER OF WSRs TO 
SEARCH 

- SEARCH DIRECTORY OF DOMAIN AND SEGMENT NAMES FOR EACH WSR 

- IF B-UNIT CONTAINING DESIRED DOMAIN OR SEGMENT NAME HAS 
NOT BEEN LOADED, THEN ACTIVATE B-UNIT . 
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CONSTRUCTION OF VIRTUAL ENVIRONMENT <CON'T) 

WSR B-UNIT 

~ I 
B~UNIT ACTIVATION 

l 
LOADED B-UNIT 

INVOCATION 

- FROM DYNAMIC LINKER 

FUNCTIONS 

- FIX WSR VALUES IN ALL DESCRIPTORS 

- IF NOT FIRST B-UNIT IN WSJ THEN RELOCATE VIRTUAL ADDRESSES 

- INITIALIZE B-UNIT ON BACKING STORE FILE 

- ACQUIRE REAL MEMORY WORK I NG SET 

- RESOLVE SEGREF'S VI.A DYNAMIC LINKER 
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DOMAINS 

D1 

Dz 

SEGMENTS 

S1 

B~UNIT LIBRARY 

DOMAINS 

D3 

SEGMENTS 

FILE SYSTEM LIBRARY DIRECTORY 

DOMAINS 

D4 

D5 

D5 

SEGMENTS 

Sz 
S3 

B-UNITS 

AFTER ASSIGNMENT OF LIBRARY TO WORKING SPACE: 

DOMAIN DIRECTORY SEGMENT DIRECTORY 

D1 B1 S1 B1 
Dz B1 Sz B3 
D3 Bz S3 B3 
D4 B3 
Ds B3 
D5 B3 
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DYNAMIC LINKING 

I I I WSR2 I I I WSR7 

DOMAIN DIRECTORY DOMAIN DIRECTORY 

D1 B1 x B ENTRY 

D2 B1 

D3 B2 E.D. 

Dt1 B3 E.D. LS CX) 

Ds B3 E.D. 

D5 B3 E.D I 

SEGMENT DIRECTORY D1 D3 

S1 B1 

S2 B3 S.D. 

S3 B3 S.D. 

4/18/80 



MACRO-STRUCTURE - FUTURE WORK 

o DEFINE FORMATS FOR A-UNITJ B-UNIT 

o DEFINE WORKING SPACE FORMAT 

o DEFINE SEARCH RULES FOR DYNAMIC LIN'KING 

o DEFINE REQUIRED JCL 

o DETAIL SHARING CONTROL MECHANISMS 

o COMPLETE SPECIFICATIONS FOR: 

- A-UNIT MERGER 
- B-UNIT BUILDER 
- B-UNIT MERGER 
- B-UNIT ACTIVATOR 
- PROCESS INITIATION 

o SPECIFY DYNAMIC LINKING MECHANISMS 

o SPECIFY DYNAMIC LOADING MECHANISMS 

o DEFINE SYSTEM TABLES AND DIRECTORIES REQUIRED TO SUPPORT SHARING 

& LINKING MECHANISMS 

o SPECIFY USE OF FILE SYSTEM FOR LIBRARIES 

o TASKING 
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INTERNAL ENVIRONMENT 

ADDRESS VALUE REPRESENTATION 
- IMPORTANCE 
- OPTIONS CONSIDERED 
- COMPARISON 
- CONCLUSION 

INTERNAL STRUCTURES 
- SOFTWARE STACK 
- PROCEDURE SEGMENT LAYOUT 

PERFORMANCE 
- NON-ADP 
- ADP 

FUTURE WORK 
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REPRESENTATION OF ADDRESS VALUE IS IMPORTANT BEf.AUSE: 

HIGH ORDER LANGUAGES USE ADDRESS VALUES FOR: 

POINTERS 
ENTRIES 
LABELS 
ALTERNATE RETURN 
BASED STORAGE 

EXCEPTION PROCESSING 
STACK CONTROL INFO 
PARAMETER REFERENCING 
ARGUMENT LIST BUILDING 
LOCATE MODE 1/0 
OUTER BLOCK REFERENCING 
CONNECTION TO RUNTIME 

BECAUSE THESE FACILITIES ARE WIDELY USED) THEY MUST BE IMPLEMENTED EFFICIENTLY) BE 
EASY TO USEJ AND MUST BE SUFFICIENTLY POWERFUL TO SUPPORT MULTIPLE HOL USE. 
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ADDRESS VALUE OPTIONS CONSIDERED· 

1. NSA POINTER 

2. DESCRIPTOR 
+ 

AR VALUE 

3. TABLE INDEX 

4. SUPER POINTER 

I BIT ADDR I SEG ID I 

BYTE BDRY j FLAGS 

BASE 

I BIT ADDR I~! 

BIT ADDR 

SEG INDEX I 

BIT ADDR 

EXTENDED BASE 

REQUIRES 

LINKAGE SEGMENT 

DESCRIPTOR SEG 

"CANONICAL" DS 

+l ODR 

"CANONICAL" SUPER DESCRIPTOR 

+l ODR 
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EVALUATION OF ADDRESS VALUE REPRESENTATION 

NSA 
CRITERIA £lR DESC. TABLE SUPER 

1. STORABLE IN DATA SPACE y N y y 

2. UNIFORM REFERENCE TO PARAMETERS INDEPENDENT y y y N 
OF DOMAIN PACKAGING 

3. RETAIN IDENTITY WHILE IN ODR y y N y 

------------------------------------------------------------------------------------
4. SUPPORTS SEGMENT-LEVEL PROTECTION y y y N 

5. CAN ADDRESS > 256K N* y y y 

6. CAN HAVE > 1024 SEGMENTS N* y y y 

7. RELATIVE HIGH PERFORMANCE N? y N y 

8. VALID ACROSS DOMAINS N y N N 

9. BIT LEVEL ADDRESSABILITY y y y y 

---------ABOVE THIS LINE) N IS UNACCEPTABLE 

* CAN BE IMPROVED BY HARDWARE CHANGE 
? SOME HARDWARE IMPROVEMENT POSSIBLE I 
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CONCLUSIONS ON ADDRESS VALUE REPRESENTATION 

CAN'T USE DESCRIPTOR + OFFSET 
- NOT STORABLE IN DATA SPACE 

CAN'T USE TABLE INDEX 
- LOADING TO ODR LOSES SEGMENT NUMBER 
- REQUIRES SEVERAL INSTRUCTIONS TO LOAD 

CAN'T USE SUPER POINTER 
- NO WAY A PROCEDURE CAN TELL WHETHER TO REFERENCE PARAMETERS RELATIVE TO 

THE SUPER DESCRIPTOR FOR THE DOMAit~ OR RELATIVE TO THE PARAMETER STACK 
- COMPROMISES INTRA-DOMAIN SEGMENT PROTECTION) SINCE ALL DATA REFERENCE IS 

THROUGH ONE DESCRIPTOR 

ONLY ALTERNATIVE LEFT IS NSA POINTER 
- DESPITE PERFORMANCE PROBLEM 
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SOFTWARE STACK 

EACH DOMAIN HAS A SOFTWARE STACK TO CONTROL INTRA-DOMAIN TRANSFERS AND 
EXCEPTION PROCESSING 

ROOT FRAME 
- CREATED ON DOMAIN ENTRY 
- POINTS TO EXCEPTION PROCESSING ARRAY 
- CONTROLS STACK SPACE 
- UPDATED DURING EVERY CALL 

BASIC FRAME 
- REGISTER SAFE STORE 
- PARAMETER HANDLING 
- AUTOMATIC STORAGE SPACE 
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ENTRY 
POINT 

ENTRY 
POINT 

SINGLE PROCEDURE SEGMENT 

POINTER 
AREA 

ENTRY POINT 
> 

.. DATA 

PROCEDURE & 
CONSTANTS 

ENTRY POINT 
DATA 

> 

PROCEDURE & 
CONSTANTS 

PROCEDURE SEGMENT LAYOUT 

MERGED PROCEDURE SEGMENTS 

POINTER 
AREA A 

PROCEDURE A & 

ENTRY POINTS 

POINTER 
AREA B 

PROCEDURE B & 

ENTRY POINTS 
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FUTURE WORK 

STACK FRAME FORMAT & CONTENT 
STANDARD CALLING SEQUENCE 
ARGUMENT LIST FORMAT 
EXTERNAL ENTRYPOINT CONVENTIONS 
ADDRESSING CAPABILITIES WITHIN OBJECT UNIT 
PLS VS. CANONICALIZING OF LINKAGE SEGMENT 
HOW A PROCEDURE FINDS ITS LINKAGE 
HANDLING OF LARGE ARRAYS 
EXCEPTION HANDLING 
SUPPORT OF ON UNITS AND SIGNALLING 
SEGMENT LEVEL SHARING 
OPERATOR SEGMENT ADDRESSING1 SHARING) LOCATION 
RUNTIME SYMBOL TABLE & DATA DESCRIPTION SCHEMA 
DYNAMIC LINKING SUPPORT 
I/O SYSTEM INTERFACE 
TASKING SUPPORT 
CALL/CANCEL SUPPORT 
PRIORITY SEGMENTATION 
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SUMMARY 

1. WE HAVE EXHAUSTIVELY INVESTIGATED THE USE OF THE NSA POINTER AS THE ADDRESS 
VALUE. 

2. PERFORMANCE MAY BE A PROBLEM. 

3. A UNIFORM SYSTEM MICRO-STRUCTURE <CALLING SEQUENCESJETC.) IS BEING INVESTIGATED 
BASED ON THE USE OF NSA POINTERS. 

4. A FIRST CUT HAS BEEN MADE OF THE DEFINITION OF SYSTEM MACRO-STRUCTURE 
(JCL ETC I) 

5. MUCH DETAILED WORK REMAINS FOR BOTH AREAS. 
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