
1
1-1
1-2
1-3
1-4
1- 5

ps
wait
si gna l
reqcid
re t c ; d
sfwint

CLASS: ps
Table of Contents

-1-

Mission Description
Process Management
Process Synchronization

2
30
34
38
41
44

CLASS: ps

Mission Description Runoff: 03/05/79

---Functional Description of ps

Process synchronization exists as a monitor of process management
to do the following two ,tasks:

o maintain the in~egrity of shared data
o synchronize the' execution of parallel processes

The basic building bLock of process synchronization is the notion
of WAIT and SIGNAL. These two constructs are the mechanism by
which one process may communicate with another. Moreover, these
constructs are very usefuL if a process must wait for a
com~unication from another process without being in execution.
This need for inter-process communication has given rise to the
abstract notion of a condition. A ~QDQiliQD can be thought of as
a queue. Two operations ,may be performed on a condition, namely,
"wAIT" and "SIG1\;AL". ~hen a process executes a SIGNAL function,
the process enqueued at ,the head of the queue is again made
eligible for execution (i.e., the process is enabled). If there
are no processes enqueued on the condition' when the SIGNAL
function is executed, no action is taken (i.e.,the signal is
forgotten). Another use for these conditions is in the
notification of event~. For exampLe, if a process has reached a
point in its execution where it cannot continue until some
subsequent event occurs, it can execute a WAIT function on a
condition that has been associated with that event. When the
event occurs, another process SIGNALS the same condition to let
the first process know that the event has occurred.

If the important thing is not that some event occurred after a
process wAITed on the associated condition but that it occurred
at all, then this mechanism is not sufficient. To handle this
case a semaphore faci lity was implemented. A ~~w2~bQr~ is a
specialized conrlition that has a count associated with it. This
count is used to remember the SIGNALS that occur when no process
is enqueued on the condition. Three operations may be performed
on a semaphore: e-Q~' ~-QQ' and I-Q~. When a process executes a
E-QQ function the count is looked at and if it is greater than
zero, this indicates that there have been more SIGNALS than WAITS
performed. In this case the count is decremented by one and the
process continues in execution. If the count is less than one,
then there are no events being re~embered and the count is
decremented by one and the process is taken out of execution and
enqueued on the condition.

When a process executes a ~-QQ function the count is looked at
and if it is negative it is incremented by one and a SIGNAL
operation is executed on the condtion. If the count is not
negative it is simply incremented by one and no further action

-2-

CLASS: ps

Mission Description Runoff: 03/05/79

takes place.

When a process exeCutes a I-gg function the count is looked at
and if it is greater than zero, it is decremented by one and the
process continues executing knowing the event had occurred. If
the count is not greater than zero, no action is taken and the
process continues in execution knowing that the event has not yet
occurred.

Note that to prevent unauthorized W~ITS and SIGNALS on any
arbitrary condition, some process must initiate (request) a
condition. The initiating (requestirg) process is returned a
condition identifier (CIO) which is a secure token(which really
is an illegal T=15 descriptor). The CID must be presented
whenever a e-gg, ~-gg or !-gg function is to be performed on the
condition.

desides the abstract concepts of a condition and a semaphore,
several others have been developed, namely, monitor, critical
section, software interrupt, and message semaphore. A mcoilQ! is
a set of data shared among multiple process~s and a set of
procedures which are the only procedures permitted to access
these shared data. The procedures of the monitor may each have
their own private data. The only other data they may access are
the parameters paSsed when the procedure is called.

Only one procedure of a monitor may be executed at a time. If a
Subsequent call to a monitor occurs while one of its procedures
is in execution (oy any process), that request must be delayed
until the current executing process exits the monitor. In this
way potential conflicts resulting from multiple accesses to
monitor data are avoided.

Each procedure of a monitor is designed and implemented so as to
maintain the data invariant of the monitor. In addition, every
monitor has an initialization procedure executed on every monitor

I start or restart (monitor creation) which establishes the
invariant before any calls are performed in normal usage.

Two types of monitors have been defined:

loop-type o access to the monitor procedures in this type of
monitor is controlled by a loop gate. When two
processes attempt to cal l a monitor procedure, one
of the processes loop on the monitor gate until
the other procesS exits the monitor. This monitor
must also be in a type-1 critical section (defined
below).

-3-

CLASS: ps

Mission Description Runoff: 03/05/79

Queue-type 0 access to the monitor procedures in this type of
monitor is controlled by a loop gate and a
non-message semaphore. When two processes attempt
to call the same monitor, one of the processes is
enqueued on the semaphore unti l the other process
exits the monitor. This monitor must also be at
least in a type-2 critical section (defined
beLow) •

Both Loop-type and Queue-type monitors may execute a WAIT. For a
loop-type monitor the monitor is exited and the process is
enqueued on thespecified condition. For a Queue-type monitor the
process is enqueued on the specified conditon and the monitor is
exited by that process. If there is another process waiting on
the monitor, it is signaLLed.

A ~rili£21 ~~£tiQQ is a state that a process can enter which
defines certain Li~its to the conditions under which the process
wiLL give up control of the processor on which it is executing.

Two t Y pes 0 f c r i tic a l sec t iOn s h d ve bee n de f i n'e d :

type-1 0 the process cannot giv~ up cortroL of the processor to
another process nor can it aL Low software interrupts to
occur for this process. The orocess can only give up
the processor by executing a ~AIT function. A type-1
criticaL section is impLemented by using the inhibit
interru~t feature of the hard~are.

type-2 0 the process can reLinquish the processor to other
processes but re-dispatch to the process must be to the
pOint of interruption within the type-2 criticaL
section. That is, the process cannot be aborted or have
software interrupts or courtesy calls paid to it, or
allow any other exception processing to occur until it
has exited the type-2 critical section.

A SQ11Wgr~ iDl~!!UQt is a mechanism by which a process can be
interrupted by another process. When performed a software
interrupt forces the execution of the target (to be interrupted)
process to be continued at the specified "interrupt handLing
routine". The process number (KPX) of the target process and the
entry descriptor to the interrupt handling routine must be
supplied by the user. The software interrupt is paid via the
courtesy call mechanism from within the dispatcher. The user
should note that a software interrupt for a swapped process or
one within a type-2 critical section wiLL be Queued and not paid
until the process is swapped back into core or the process has
exited the type-2 critical section.

-4-

CLASS: ps

Mission Description Runoff: 03/05/79

A m~~~gge ~emgchcr~ is a semaphore which has associated with it a
two-word message. The message is passed in the AQ with the
invoked VMSEM macro and it is returned in the AQ from the invoked
PMSEM or TMSEM macro if an event has occurred.

The monitor maintains several lists in order to keep track of
processes. At node initialization time there are three lists
which have entries on theffi:

o Free Conditions (CON)
o Free Entry Definitions (ENT)
o Assigned Process Definitions (PRD)

In addition there exists two empty lists:

o Assigned CON's
o Assigned ENT's.

II

Usage Information of ps

I. Overview and Introduction

There are a number of macros which when used in conjunction with
process synchronization provid~ users Jitn an easy way of using
both loop-type dnd queue-type monitors. These macros can be
executed in either slave or master mode. The following pages will
describ~ each macro by giving a brief description of the macro
fol lowed by its argument re4uirements and any other notes the
user of the macro should be cognizant of. Note, that only the
argument names are given when the macro is described below.
However, a glossary containing the meaning of each argument is
included following the last macro descri~tion.

II. ICOND - Initialize COndition

A. Description

This macro is providied to initialize conditions for the user.
The condition identifer (CID) returned to the user (in the
descriptor space provided by the user) is a secure token. This
token takes the form of a T=15 descriptor (an illegal type) which
contains in the descriptor base field the protected data. This
descriptor cannot be shrunk and therefore cannot be mOdified.
This descriptor can be used by other macros to coordinate
processes by dOing WAITs and SIGNAls.

B. Argument list

-5-

Mission Description

NAME

ARGO
ARGBD
QTYPE
FLAGS
COUNT
CIDOFF

C. Notes

NUr-, ElE R

1
2
3
4
5
6

CLASS: ps

USAGE

Required
OPt.ional
Optional
Reserved
Optional
Optional

Index register zero (XO> is destroyed.

-6-

Runoff: 03/05/79

CLASS: ps

Mission Description Runof f: 03/05179

III. SIGNL - Signal Condition

f,. Description

This macro ;s provided to allow a precess to notify another
process(es) that some event has occurred. If there are no
process(es) ~aiting on the condition, the signal is lost (i.e.,
the event ;s not rembered). If desired, a process may signal a
condition anu specify that all processes ~a;ting on the condition
are to be signalled rather than just' the one On top of the
waiting Queue.

D. Argument Lis t

NMiE NU;'1BER USAGE
------ -----

ARGD 1 Requi red
ARGBD 2 Op,t,ion,ll
RE.ASON 3 Optional
BRDCST 4 OptionaL
(lDOF F 5 OptionaL

C. Notes

Accumulator register (AR) ;s dPstroyec. This function should be
invoked from wi thin a monitor.

-7-

CLASS: ps

Mission Description Runoff: 03/05/79

IV. NTRLM - Enter Loop Monitor

A. Description

This macro is used to enter a loop-type monitor. It shuts the
gate specified by the ~ser and increments the loop monitor count
in the Process Control Block (PCB). The user must insure that
interrupts are inhibi'ied while executing within a loop-type
monitor.

B. Argument List

NAM E NUMBER USAGE
------ -----

GATOFF 1 Optional
IRF.OD 2 Optional
G~TSEG 3 Required
PCB5EG 4 R'equi red

C. Notes

Index register zero (XOj is destroyed.

-8-

CLASS: ps

Mission Description Runoff: 03/05/79

v. X!TLM - Exit Loop Monitor

A. Description

This macro is used to exit a loop-type monitor. It opens the gate
specified by the user and decrements the loop monitor
the PCB.

o. Argument List

NAM E NUMBER USAGE
------ -----

GATOFF 1 Optional
IRMOD 2 Optional
GATSEG 3 Requi red
PCBSEG 4 ReQu; red

(. No t e s

Index register zero (XO) is destroyed.

count in

CLASS: ps

Mission Description Runoff: 03/05/79

VI. WAITLM - Wait From Loop Monitor

A. Description

This macro is provided to allow the user to perform a WAIT
function on a condition from inside a loop-type monitor. If the
condition was initiated with a priority queue the priority may be
specified by the user. A timer ~ay also be specified which will
cause the process to be placed into execution if it has not been
signaLled within that time. The WAIT function will open the loop
monitor gate specified by the uSer so that the process will no
longer be in the loop monitor when it resumes execution.

B. Argument Lis t

NArll E NUMBER

ARGO 1
ARGBD 2
PRIOL 3
Tl f" E R 4
C 10 OF F 5
GATOFF 6

C. Notes

Accumulator and
function should be

USAGE

Requi red
O~tional
OptionaL
Optional
Optional
Optional

Quotient registers
invoked only within

-10-

(AQ) are destroyed. This
a loop monitor.

CLASS: ps

Mission Description Runoff: 03/05/79

VII. ISEM - Initialize Semaphore

A. Description

This macro is provided to initialize a semaphore. Arguments can
be provided which specify the attributes of the condition and the
initial value of the count can be specified. Since the count is a
shared data item it must be in a loop monitor and the gate for
this monitor is in the word before the count. The qate word must
be on an even word boundary.

B. Argument List

I'4A~l E NUr., BER USAGE
------ -----

ARGD 1 ReQui red
ARGBD 2 Optional
SEMSEG 3

II
ReQui red

!COUNT 4 Optional
QTYPE 5 Optional
FLAGS 6 Reserved
ClDOn 7 Optional
GATOFF 8 OPtional

C. Notes

Accumulator and Quotient registers (AQ) and index register zero
(xO) are destroyed.

-11-

CLASS: ps

Mission Oescription Runoff: 03/05/79

VIII. TSEM - Terminate Semaphore

A. Description

This macro is used to delete a semaphore. The tIO must be
returned to the system and the CID is made invalid.

B. Argument List

NAME

ARGO
ARGBD
CIDOFF

c. Notes

NUMBER

1
2
3

US AGE

Required
Optional
Optional

Accumulator register (AR) is destroyed.

-12-

CLASS: ps

Mission Description Runoff: 03/05/79

IX. PSEM - P-op Semaphore

A. Description

This macro performs a P-operation on the semaphore specified by
the user. If an event has occurred the count is decremented and
the process will continue in execution. If an event has not
occurred, the process wi II be taken out of execution and enqueued
on the condition until it is signalled or until the timer
specified by the user has elapsed.

cl. Argument Lis t

NM.,E NUt" Hf R US,\GE
------ -----

PC8SEG 1 Required
ARGD 2 Requi red
AR G 8D 3 O;Jtional
SEMSEG 4 Optional
PR I OL 5 Optional
TIM E R 6 Optional
CIDOFF 7 Optional
GATOFF 8 OPtional

C • fJo t e s

Accumulator and quotient registers (AQ) and index register zero
(XO) are destroyed. There are two exits from this macro, EXIT #0
3na EXIT #1 (defined below).

-13-

CLASS: ps

Mission Description Runoff: 03/05/79

x. VSEM - V-op Semaphore

A. Description

This macro performs a V-opeTation on the semaphore specified by
the user. If any process(es) are enqueued on the condition, the
one at the front of the queue will be si':1nalled. If there are no
process(es) enqueued, the event will be remembered by
incrementing the count field.

B. Argument Lis t

N Af.1 E NUr-lIH R USAGE
------ -----

PCBSEG 1 Required
ARGO 2 Requi red
ARGBD 3 OPtional
SfMSEG 4 Op't ion a l
REASOtJ 5 Optional
CIDOFF 6 Optional
Ulon 7 Option3L

C. Notes

Accumuldlor dnJ Quotient registers (AQ) and index register zero
(XO) are destroyed. There are two exits from this macro, EXIT #0
and EXIT #1 (defined below).

-14-

CLASS: ps

Mission Description Runoff: 03/05/79

XI. TSTSEM - Test Semaphore

A. Descript ion

This macro provides the user with the acility to test if an event
has occured. If so, the count field is decremented by one. If no
events occurred, the process dues not wait but continue in
execution.

B. Argument list

NAM E N U r~ BE R

GATOFF 1
I Rf'lOD 2
GA T S E G 3
PCBSEG 4

C • r~ 0 t e s

Accumulator register
destroyed. The re are
r1 (defined below).

USAGE

Optional
Optional
Requ; reo
Requ; red

(A R) and i n d e x reg; s·t e r z e r 0 (X 0) are
two exits from this macro, EXIT 110 and EX!T

-15 -

CLASS: ps

Mission DescriPtion Runoff: 03/0,/79

XII. INITQM - Initialize Queue Monitor

A. Description

This macro initializes a queue-type monitor. Since a queue
monitor is realized with a semaphore, this macro simply
initializes a semaphore with an initial count of one. This
semaphore can then be used for queue monitor operations.

8. Argument Lis t

NAr"E NUMBER USAGE
- -- --- -----

ARG D 1 Required
ARGBD 2 OptionaL
SEMSEG 3 Requi red
QTYPE 4 OptionaL
FLAGS 5 Reserved
CIDOFF 6 OptionaL
GA TO FF 7 Optional

C. No t e s

AccumuLator and quotient registers (AJ) and iridex register zero
(XO) dre destroyed.

CLASS: ps

Mission Description Runoff: 03/05/79

XIII. TERMQM - Terminate Queu~ ~on;tor

A. Description

This macro terminates a Queue-type monitor. This is simply a
termination of the semaphore used by the monitor. After this is
executed, no more Queue monitor operaticns may take place ~sing
this semaphore.

B. Argument List

NAr-' E Nur~BER US AGE
------ -----

ARGD 1 ReQui red
ARG SD 2 OPtional
CIDOFF 3 OotiondL

C. Notes

Accumulator register (A f() i s destroyed.

-17-

CLASS: ps

~;ss;on Description Runoff: 03/U5/79

XIV. NTRQM - Enter Queue Monitor

A. Descript ion

This macro allows the user to enter a queue-type monitor. If the
monitor is DUSY, the process will be taken out of execution and
enqueued on the condition associated with the Queue monitor
semaphore. When the monitor becomes avai lable (via XITQM) the
condition will be signalled and the process will be placed into
execution. This macro also places the process into a type-2
critical section and increments the count field in the PCB.

8. Argument Lis t

NAi·l E Nur'lBER USAGE
------ -----

PCBSEG 1 Requi red
ARG D 2 II

Requi red
ARGBD 3 OptionaL
SEr·1SEG 4 Requi red
PRIOL 5 OptionaL
T 1 r'l E R 6 OptionaL
CIDOFF 7 OptionaL
GA T 0 FF 8 OptionaL

C • Notes

AccumuLator and Quotient registers (AQ) and index register zero
(XO) are destroyej. Because this macro invokes the PSEM macro its
exits are the samE' as those for the PSEI" macro.

-18-

CLASS: ps

Mission Description Runoff: 03/05/79

xv. XITQM - Exit Queue Monitor

A. Description

This macro allows the user to exit a queue-type monitor. A
V-operation is performed on the monitor semaphore and if SOme
process(e5) are enqueued, the one at the front of the queue be
signalled. The uSer process exits the type-2 critical section.

b. Argument Lis t

NAto1 E NUMeER USAGE
--- --- -----

PCBSEG 1 Requi rea
ARG 0 2 Requ; red
ARGBD 3 Optioned
S E I~ S E G 4 OptionaL
REASO~J 5 Optional
(IOOH 6 Optiondl
GAT 0 F F 7 Optional

C • Notes

Accumulator and quotient registers (AG) and index register zero
(X 0) are des t roy e d. B e C a use t hi sma C r 0 i n II 0 k est n e V S E r~ maC r 0 its
exits arP the same as those for the VSEM macro.

-19-

CLASS: ps

Mission Description Runoff: 03/05/79

XVI. WAITQM - Wait From Queue MOnitor

A. Description

This macro allows a user to wait on some event from a Queue-type
monitor. A V-operation is performed on the monitor semaphore and
if some process(es) are enqueued, the one at the head of the
queue is signalled. The user process then performs a WAIT
function on the condition specified for the event. It is
important to note that the type-Z critical section is not exited
until the process is placed back into execution after the WAIT
has been broken. Therefore, the process cannot be interrupted by
a software interrupt while waiting in this situation. After this
macro is finished, the process is no longer within the queue
monitor.

B. Argument Lis t

NAr~ E tiUfJlBtR USAGE
------ -----

PCBSEG 1 Re:::1ui red
SI\RGD 2 Optional
SARGOD 3 Optional
SH1SEG 4 OptionaL
REASOtJ 5 OptionaL
wAR G D 6 Requi red
\oiARGdD 7 Optional
PRIOL 8 Optional
T H1 ER 9 Optional
SCIDOF 1 (] OptionaL
WCIDOF 1 1 Optional
SGATOF 1 2 OptionaL
WGATOF 1 3 OptionaL

c. Notes

Accumulator and Quotient registers (AQ) and index register zero
(XO) are destroyed.

-20-

CLASS: ps

Mission Description Runoff: 03/05/79

XVII. NTR2CS - Enter Type-2 Critical Section

A. Description

This macro enters a type-2 critical Section. A nesting count of
type-2 critical secti6hs is kept in the PCB and is incremented.

While in a type-2 critical section, a process will be
re-dispatched only at t'he point of interrUPtion. Thus, all other
events, (such as, termination, exception processing, software
interrupts, courtesy calLs, etc.) are d~layed untiL the process
is no longer within the tYDe-2 critical section.

B. Argument Lis t

NAM E NUMBER USAGE
------ -----

PCBSEG 1 Required

C • Notes

AccumuLator register (A R) i s destroyed.

-21-

CLASS: ps

Mission Description Runoff: 03/05/79

XVIII. XIT2CS - Exit Type-2 CriticaL Section

A. Description

This macro exits a type-2 critical section. The nesting count of
type-2 critical sections in the PCB is decremented.

B. Argument Lis t

NAN E I~ur., 3ER USAGE
------ -----

PCBSEG Requi red .
C • Notes

Accumulator register (1\ R) i 5 de s t royed.

-22-

CLASS: ps

to'; ssion Description Runoff: 03/05/79

XIX. IMSEM - Initialize Message Semaphore

A. Description

This macro is provided to initialize message semaphores for the
user. A condition is requested and the semaphore gate is opened.
The user is aLLowed to define the queuein~ strategies for the
process and the messages, where either can be queued FIFO, LIFO
or based on some priority.

13. Argument Lis t

rJAM E NUr"iBER uSAGE
------ -----

ARGO 1 Requi red
ARGBD 2 OotionaL
SH'SEG 3 Required
F LA GS 4 Reserved
pQTYPE 5 OptionaL
f'lQ T Y P E 6 Optional

C. Notes

Accumulator and Quotient registers
register zero (ODKO) and index re~iter

-23-

(AQ), operand
zero (XO) are

descriPtor
destroyed.

CLASS: ps

Mission Description Runoff: 'J3/05/79

xx. PMSEM - P-op Message Semaphore

A. Description

This function performs a p-o~eration on the message semaphore
specified by the user. If an event has occurred the two-word
semaphore messaqe is put into the AQ for the user. If no event
occurred, a WAIT is performed. If the WAIT is broken by a reason
ether than a SIGNAL no se~aphore message is returned in the AG.

B • Argument List

NM1E NU!'j8ER USAGE
- -- --- -----

PCRSEG 1 Requi red
A R G () 2 Required
ARGSD 3 Optional
SEMSEG 4

II
Required

PRIOL 5 Optional
TIM E R 6 Optional

C • Not e s

Accumulator and quotient regi~ters (AQ),
register zero (ODRO) and index re~iter zero
The messa~e Queue index registers LPRIOR,
(defined oelow) are updated.

-24-

operand
(xO) are

UJEXT

descriptor
destroyed.
and LCURR

CLASS: ps

Mission Description

~

XXI. TMSEM - Test Message Semaphore

A. Descript ion

Runoff: 03/05/79

This function performs a test on the message semaphore specified
by the user. If an event has occurred the two-word semaphore
message ;s put into the AQ for the user and the semaphore count
is decremented by one. If no event occurred, no me sage is
returned and the process does not wait but continue its
execution.

8. Argument List

NAM E

PCtl SEG
S E rt. S E G

C. Notes

NUMBER

1
2

USAGE

Requ; red
Requ; red

AccumuLator and Quotient registers (AQ), uperand descriptor
register zero <ODRG) and index regiter zero (XO) are destroyed.
The message Queue index registers LPRIOR, LNEXT and LCURR
(defined beLow) are updated.

-25-

CLASS: ps

Mission Description Runoff: 03/05/79

XXII. VMSEM - V-op Message SemaPhore

A. Description

This function performs a V-operation on the message semaphore
specified by by the user. If any process(es) are enqueued on the
condition, the one at the front of the cueue is signalled and the
two-word semaphore message is passed to the waiting process. If
no process is waiting, the event is remembered and the two-word
message ;s stored into the next available message queue.

8. A r 9 uloent Lis t

NAr~ E NUMBER USAGE
------ -----

PCBSEG 1 Required
AR G D 2 Required
ARGl:.3D 3 OPtional
SEMSEG 4 Required
MPRIO 5 O;Hional

C • Notes

Accumulator and quotient registers
register zero (ODRO) and index regiter
The message Queue index registers
(defined below) are updated.

(AQ), operand
zero (xO) are
LPf<IOR, LNEXT

descriptor
destroyed.
and LCURR

gLossary of ps

This section gives a brief description of the terms contained in
the argument lists for the preceding macros.

EXIT #0 0 this ;s the first instruction following the macro call.
Return to this location implies that the invoked PMME
was executed successfully.

EXIT #1 0 this is the second instruction foLlowing the macro
call. Return to this location implies that the invoked
PMME was not executed successfully. It is the
responsibiLity of the macro user to interpret the
meaning of the return code as returned from the invoked
P f>lM E •

.ARGD o this operand descriptor register <ODR) frames the
arguments for the invoked PM~E. This argument must not
be in OORO if ARGBD is not specified and any other
optional arguments are specified. ARGO will frames two
or three descriptors/vectors depending upon the invoked
PMME, the first of which must be ARGBD.

-26-

CLASS: ps

Mission Description Runoff: 03/05/79

ARGBD 0 this ODR contains the descriptor which frames the
argument block for the invoked PMME. If this argument
is not specified it wiLL be loaded into ODRO from the
first descriptor/vector framed by ARGO if any other
optional argument is specified. If none of those
arguments are given and ARGBD is not soecified, it is
assumed that the user has already initialized the
argum~nt block. Depending upon the function, the
argument bLocK can be either 3, 4 or 5 words with the
first two words containing return codes. The remaining
words contain the request data for the invoked PMME.

QTYPE 0 a literal which describes the queueing strategy to be
maintai,ed for processes waiting on a condition. The
possibLe literaL argument can be 'F', 'L' or 'pI, which
respectively indicates a First-in,F;rst-out (FIFO),
Last-in,First-out (LIFO) or priority queueing strategy
to oe used. If not specified, FIFO is assumed.

II

fLAGS o

COUNT 0

this argument is reserved for compatability and
Longer reLevant to the uSer.

i s

this is the number of CID's being requested and if
specified will be set to one.

no

not

CIDOFF 0 this is the offset whi~h specifies Where in the segment
the CID can be found/saved. If not specified it is
assumed to be zero. If specified this argument can have
the form <constant> or the form «constant>,<IRmod»
where either part is optionaL.

REASON 0 this is the code that can be passed to a signaLled
process to let it know why it was signalled. The range
for the reason code is 0 <= REASON <= 2047. If not
specified it is set to zero. If specified the argument
can be of the form <constant> of the form
«constant>,<IRmod» Where either part is OPtional.

aRDCST 0 if specified this argument must be the literal 'B'. If
given all processes currently waiting on the specified
condition will be Signalled.

GATOfF 0 this is the offset which specifies where in the segment
the semaphore gate is found. If not specified it is
assumed to be zero.

IRMOD 0 this is the index register modification to be applied
durin9 address development of the semaphore gate. If
not specified no index register modification is
appLied.

-27-

CLASS: ps

Mission Description Runoff: 03/05/79

~
GATSEG 0 thi s is the ODR modification thdt is used to reference

the semaphore gate.

PCBSEG 0 this is the ODR modification that is used to reference
items within the Process Control Block (PCS).

PRIOL a this is the priority level (0-63) with which the
process will wait on the specified condition. This
argument is assumed to be zero if it is not specified.
If the condition was not requested with a priority, it
will be ignored.

T H1 E Rot his i s the tim eli mit (i n mill i sec on d s) bey 0 n d w h i c h
the process is unwiLling to wait for a SIGNAL. This
argument can take either of three forms: (i) null, in
which a default timer is used, (ii) "r~AX", in which a
timer of 30 bits all set to one (the largest allowable
vaLue) is used, and (ii i) a symbolic location/constant.
(III) can further be specified in either 01 the
following forms: <constant>, «constant>,<IRmod» or
«constant>,<IRmod>,<ODRmod» where either part is
optional.

SEMSEG 0 this ODR frames the segment containing the gate and
count fieLd to be used by the semaphore. The gate is at
the location specified by GATOFF and the count fieLd ;s
at the location plus one. This argument must not be in
ODRO if ARGBD is not specified.

ICOUNT 0 the value with which tne count field in SEMSEG will be
initialized. This argument is assumed to be zero if
not specified.

SARGD 0 this ODR is exactly as .ARGD in its nature except that
it specifically frames the arguments for PMME SIGNAL
for the WAITQM macro.

SARG8D 0 this ODR is exactly as ARGBD
it specifically frames the
SIGNAL for the WAITQM macro.

in its nature except that
argument block for PMME

WARGD 0 this ODR is exactly as ARGD in its nature except that
it specifically frames the arguments for PMME WAIT for
the WAITQM macro.

WARGBD 0 this ODR is exactly as ARGBD in its nature except that
it specifically frames the argument block for PMME WAIT
for the WAITQM macro.

-28-

CLASS: ps

Mission Description Runoff: 03/05/79

SCIOOF 0 this offset is exactly as CIDOFF in its nature except
that it specifically is used as the offset to the CIO
for PMME SIGNAL for the WAITQM macro.

WCIDOF 0 this offset is exactly as CIDOFF in its nature except
that it specifically is used as the offset to the CID
for P~ME wAIT for the WAITQM ~acro.

SGATOF 0 this offset is exactly as GATOFF in its nature except
that it specifically ;s used as the offset to the gate
for PMME SIGNAL for the WAITQM macro.

WGATOF 0 this offset is exactly as GATOFF in its nature except
thdt it specificalLy is used as th~ offset to the gate
for PMME WAIT for the WAITQM m3cro.

PQTYPE 0 this is the process queueing strategy. It has the same
function and conventions as QTYPE.

MQTYPE 0 this is the message Queueing strategy.
function and conventions as QTYP·E.
'priority' •

It has the same
The default is

MPRIO 0 an integer indicating the index register containing the
priotity (0-63) associdted with the V-operation used in
the VMSEM macro. This argument is relevant only if the
Queueing strategy was defined as 'priority' at
semaphore initialization (via IMSEM). The default value
of priority is zero. Index register zero (XO) may not
be used.

LPRIOR 0 this index register contains the pointer to the prior
messaq~ Queue entry. Index register four (X4) is the
default register if LPRIOR is not set by the user.

LNEXT 0 this index register contains the pointer to the next
message Queue entry. Index register two (x2) is the
default register if LNEXT is not set by the user.

LCURR 0 this index register contains the pointer to the current
message Queue entry. Index register three (X3) is the
default register if LCURR is not set by the user.

-29-

CLASS:· ps
FUr.CTION: wait

Mission Description Runoff: 03/05/79

Functional Description of wait

This function provides the user with the ability to suspend the
execution of a process.' If a process has reached a point in its
execution where it cannot continue unti l some subsequent event
occurs, then this funct·ion should be used. A time value (in
milliseconds) may be specified which will cause the suspended
process to resume execution if it has net been signalled within
that time. This function will open the loop monitor gate
specified by the user so that the process will no longer be in
the loop monitor when execution is resumed.

Usage Information of wait

The wait function has two externaLly visible interfaces, one for
p r i vi leg e d pro 9 ram sex e'c uti n gin mas t e r mod e (• CAL L) and 0 n e for
slavp mode users (PMME). The .CALL interface will be describea
first followed by the PMr-1E interface •

Coding Format:

lnput State:

Output State:

Argument Declaration:

• CALL Interface --

.C·ALL .MSY~JC,1

Condition Identifier (x1)

Gate Pointer (ODR2)
Time Limit (QR)

Return Code (XO)

Reason Code (X2)

dcl 01 Return_Code,
02 Fill Bit (2),
02 Result Bit (16); 1* 0 = Successful

3 = Ti mer Runout
4 = Software Interrupt *1

-30-

Mission Description

dcl 01 Reason_Code,
02 Fill Bit (6),

CLASS: os
FUNCTION: wait

Runof f: 03/05/79

02 Reason Fixed Bit (12); /* 0 = Null

dcl 01 Condition_Identifier,

-1 = Timer Runout
>0 = Via SIGNAL */

02 CID Bit (18); /* This is the CID pointer
returned by a call to REQCID */

del 01 Gate_ptr,
02 Address Bit (18), /* Gate offset */
02 Gate_Seg DESC (0); /* This segment must contain

the monitor gate which will
be opened */

del 01 Time_Limit,
02 PrioritY_Level Bit (6), /* This is the priority

lpvel with which the
process will wait on
the condition if the
condition was requested
with priority */

02 Time ~;t (30); /* Time (msecs) (0 = Default> */

-31-

CLASS: ps
FUNCTION: wait

Mission Description Runoff: 03/05/79

-- PMME Interface --

Coding Format: PMrH WAIT

Input Variables:
Argument Block (.PS+O)
Conjition Identifier (.PS+1)
Gate Segment (.PS+2)

Argument DecLaration:

d c l 01 A r 9 ume n t _ i:3 l 0 c k,

02 Immediate_Return_Code,
03 Module_Number [3it (12),
03 Entry_Point Bit (6),
03 F ill Bit (2),
03 Return Bit (18),1* 0 = Successful

02 Original_Return_Code,

= ILLegal CID
3 = Timer Runout
4 = Software Interrupt */

Q3 Module_Number Bit (12),
03 Entry_Point Bit (6),
U3 Fill Bit (2),
03 Return Bit (18), 1* 0 = Successful

02 Offset_List,

1 = III eg a l C I D
3 = Timer Runout
4 = Software Interrupt */

03 CID_offset Bit (13), 1* CID offset *1
03 Gate_offset Bit (18), 1* Gate offset *1

02 Reason_Code,
03 Fill Bit (24),
03 Reason Fixed Bit (12),1* 0 = Null

02 Time_Limit,

-1 = Timer Runout
>0 = Via SIGNAL *1

03 Priority_Level Bit (6), /* This is the priority
level with whiCh the
process will wait on
the condition if the
condition was made
with priority *1

03 Time Bit (30); /* Time (msecs) (0 = Default) */

-32-

CLASS: os
FUNCTION: wait

Mission Description Runoff: 03/05/79

dcl 01 Condition_Identifier DESC (1);
1* This frames the token provided by the call to PMME REQCID

and is used to identify the condition being waited on.
The token is an illegal descriptor (T=15) with bits 0-35 of
word 1 being the condition identifier and bits 0-17 of
word 0 being the key and is located at the offset specified
by CID_cffset. *1

dcL 01 Gate_Segment DESC (0);
1* This descriptor frames the segment in which the gate

resides at the offset specified by Gate_offset. *1

-33-

Mission Description

CLASS: ps
FUNCTION: signal

Functional Description of signal

Runoff: 03/05/79

This function permits a process to notify (signal) another
process(es) that so~e event has occurred. If there is some
process Queued waiting on a condition, then the process is
re-entered into the dispatch Queue. If there are no process
waiting, the signal is ignored. If the broadcast option of this
function is used, then all processes waiting on the specified
condition are signaLled rather than just the one on top of the
waiting Queue.

Usage Information of signaL

The signal function has two externaL ly visible interfaces, one
for privileged programs executiny in master mode (.CALL) and one
for sLave mode users (PMj"lE). The .CALL interface wiLL be
described first folLowed by the PMME interface.

-- .CALL Interface --

Coding Format: • CAL L • r·, S'r fJ C , 2

InPut State:
Condition Ijentifier (1)

Reason Code (x2)

Output State:
Return Code (0)

Argument Declaration:

dcl 01 Return_Code,
02 Fill Bit (2),
02 Return Bit (16); 1* a = Successful

2 = Queue Empty
3 = Program Not Enabled *1

dcl 01 Reason_Code,
02 Broadcast Bit (1), 1* If this bit is on, all

processes currently waiting
on the condition will be

-34-

Mission Description

CLASS: ps
FUNCTION: signal

sign all e d * /
02 Fill Bit (5),

Process Synchronization

Runoff: 03/05/79

02 Reason Fixed Bit (12), /* This code will be passed
to the signalled process
via its reason code */

dcl 01 Condition_Identifier,
02 CID Oit (18); /* This is the CID pointer

returned by a call to REQCID */

-35-

J

CLASS: ps
FUNCTION: signaL

Mission Description Runoff: 03/05/79

-- PMME Interface --

Coding Format: p r~ M E S I G N A L

Input VariabLes:

Argument DecLaration:

Argu~ent BLock (.PS+O)
Condition Identifier (.PS+1)

deL 01 Argument_Block,
02 Immediate_Return_Code,

03 Module_Number Uit (12),
03 Entry_Point Bit (6),
U3 Fill Cit (2),
03 Return Bit (16),1* 0 = Succ.essful

1 = Illegal CID
2 = Que ue Em p t Y
3 = Program Not Enabled */

02 Original_Ret urn_Code,
03 Module_Number 8it (12),
03 Entry_Point Bit (6),
03 FilL Bit (2),
D3 Return Bit (1 6: , 1* 0 =

1 =
2 =
3 =

02 Reason_Code,

Successful
III eg a l CID
Que ue Empty
Program Not Enabled

03 CID_offset Bit ·(18), 1* CID offset *1

*1

03 broadcast Bit (1), /* If this bit is on, all
processes currently
waiting on the condition
wi lL be signaLLed *1

03 Fill Bit (5),
03 Reason Fixed Bit (12),1* 0 = Null

dcl 01 Condition_Identifier DESC (1);

-1 = Timer Runout
>0 = Via SIGNAL */

/* This frames the token provided by the call to PMME REQCID
and is used to identify the condition being waited on.
The token is an illegal descriptor (T=15) with bits 0-35 of
word 1 being the condition identifier and bits 0-17 of
word 0 being the key and is located at the offset specified

-36-

Mission Description

CLASS: ps

FUNCTION: signal

-37-

Runoff: 03/05/79

CLASS: ps
FUNCTION: reQcid

Mission Description Runoff: 03/05/79

Functional Description of reqcid

This function returns upon request one or more condition
identifiers (CIDs) i~ the form of secure tokens. These tokens,
which really are illegal T=15 descriptors, provide protected data
that cannot be modified. These descriptors are the basic
constructs used to coordinate W4ITs and SIGNALs among processes.

Usage Information of reQcid

The reQcid function has two externally visible interfaces, one
for privileged pr03rams executing in master mode (.CALL) and one
for slave .mode users (PMME). The .CAlL interface will be
jescribed first followed by the PMME interface.

-- .CALL Interface

Coding Format:

Input State:

Output State:

.CALL .MSYNC,3

Request'- Oata (X1)
Block Pointer (P2)

Return Code (XO)

Request Data (x1)

Argument Declaration:

dcl 01 Return_Code,
02 Fill Bit (2),

02 Return Bit (16); 1* 0 = Successful

del 01 Request_Data,
02 Fill Bit (4),

1 = Request Not Fulfilled
2 = Count Was Zero *1

02 Queue_Type Bit (2), 1* a = FIFO
1 = LIFO
2 = Priori ty
3 = Undefined *1

-38-

Mission Description

CLASS: ps
fUNCTION: reqcid

Runoff: 03/05/79

02 Return_Count Bit (6), '* Output *1
02 Request_Count Bit (6); 1* Input *1

dcl 01 Block_Pointer,
02 Address Bit (18),
02 Block_Seyment DESC (0);

-39-

1* The CIOs returned are
18 bit entities and
each one is returned
in the upper half *1

CLASS: ps
FUNCTION: reQci d

Mission Description Runoff: 03105/79

-- PMME Interface --

Coding Format: P M ~, ERE Q C I D

Input Variables:
Argument Block (.PS+O)
Block Segment (.PS+1)

Argument Declaration:

dcl 01 Argument_Blocb
02 Immediate_Return_Code,

03 Module_Number ~it (12),
03 Entry_Point Bit (6),
03 Fill Bit (2),
03 Return Bit (16),1* 0 = Suctessful

02 Original_Return_(ode,

1 = Request Not Fulfilled
2 = Count Was Zero *1

03 Module_Number 3it (12),
05 Entry_Point Bit (6),
03 Fill Bit (2),
03 Return Bit (16), 1* 0 = Successful

02 Request_Data,

1 = R e Que s t No t F u l f ; II e d
2 = Count Was Zero *1

03 start_offset Bit (18),
03 Fill Bit (4),

1* Starting offset *1

03 Queue_Type Bit (2), 1* o = FIFO
1 = LIFO

03
03

2 = Priority
3 = Undefined

Return_Count Bit (6), 1* Output *1
Request_Count Bit (6); /* Input */

dcl 01 Block_Segment DESC (1); /* The CIDs returned are
illegal descriptors

-40-

(T = 15) and each one is
returned ;n the two-word
pa;r start;ng at the
location spec;f;ed by
Start_offset */

Mission Description

CLASS: ps
FUNCTION: retcid

Runoff: 03/05/79

---Functional Description of retcid

This function deletes one or more condition identifiers (CIDs) as
requested by the user. Once made invalid the returned CIDs can no
longer be used to cooridnate WAITs and SIGNALs between processes.

---usage Information of retcid

The retcid function has two externally visible interfaces, one
for privileged programs executing in master mode (.CALL) and one
for slave mode users (PMriE). The .CALL interface loIill be
described first followed by the PMME interface •

Coding Format:

Input State:

Output State:

• CALL·lnterface -
II

• CAL L • M S y tJ C , 4

Request Data (1)

BLock Pointer (P~)

Return Code <x0)
Request Data (X1)

Argument Declaration:

del 01 Return_Code,
02 Fill Bit (2),
02 Return Bit (16); 1* 0 = Successful

1 = Someone Waiting
2 = Count Was Zero *1

del 01 Request_Data,
02 Fill Bit (4),
02 Queue_Type Bit (2), /* o = FIFO

1 = LIFO
2 = Priority
3 = Undefined */

02 Return_Count Bit (6), /* Output */
02 Request_Count Bit (6); /* Input */

-41-

Mission Description

CbASS: ps
FUNCTION: retcid

del 01 BLock_Pointer,
02 Address Bit (18),
02 alock_Segment DESC (0);

-42-

Runoff: 03/05/79

1* The CIOs returned are
18 bit entities and
each one is returned
in the upper half *1

CLASS: ps
FUNCTION: retcid

Mission Description Runoff: 03/05/79

-- PMME Interface --

Coding Format: PM~'E RETCID

Input Variables:
Argument Block (.PS+O)
Block Segment (.PS+1)

Argument Declaration:

d c l 01 A r 9 '.Jlile n t _ 8 l 0 C k,
02 Immediate_Return_Code,

o 3 ~1 0 d u l e'':' N u m be r Bit (1 2),
03 Entry_Point Bit (6),
03 Fill Bit (2),
83 Return Bit (16), 1* 0 = Successful

02 OriginaL_Ret urn_Code,

1 = Someone waiting
2 = COunt Was Zero
3 = R e Q ue s t Not F u l f ill e d * I

03 MOduLe_Number Hit (12),
03 Entry_Point Bit (6),
03 Fill Bit (2),
03 Return 8it (16), /* 0 = Successful

1 = Someone Waiting
2 = Count Was Zero
3 = R e Que s t Not F u l f iLL e d * I

02 Request_Data,
03 Start_offset Bit (18),
03 F ill Bit (4) ,
03 Queue_Type Bit (2), 1*

/* Starting offset */

o = FIFO
1 = LIFO
2 = Priority
3 = Undefined

03 Return_Count Bit (6), /* Output *1
03 R e que s t _ Co u n t 0 i t (6); / * I np u t * 1

del 01 Block_Segment DESC (1); 1* The CIDs returned are
illegal descriptors

-43-

(T = 15) and each one is
returned in the two-word
pair starting at the
location specified by
Start_offset *1

Mission Description

CLASS: ps
FUNCTION: sfwint

Functional Description of sfwint

Runoff: 03/05/79

This function allows a proceSS to interrupt another process.
Specifically, the exe'cution of the target (tc) be interrupted)
process is forced to a specific "interrupt handling routine" at
the next dispatch to t~e target process.

Usa~e Information of sfwint

The sfwint function has two external ly visible interfaces, one
for privileged programs executing in master mode (.CALL) and one
for slave mode users (PMME). The .CALL interface will be
described first followed by the PMME interface.

-- ~tALL Interface --

Coding Format: • CAL L • ~~ S y r~ c , 5

Input State:
Target Process (AU)
User Entry Descriptor (ODR2)

Output State:
Return COde (xO)

Aryument Declaration:

dcl 01 Return_Cede,
02 Fill Bit (2),
02 Result Bit (16); 1* 0 = Successful

1 = Interrupt Not Paid *1

dcl 01 User_Entry_Desc DESC (11);

/* Descriptor to segment where control is to be passed
after the software interrupt has been paid *1

-44-

Mission Description

Coding Format:

Input Variables:

CLASS: ps
FUNCTION: sfwint

-- PM~E Interface --

P M i-1E S F WIN T

Argument Block (.PS+O)

Runoff: 03/05/79

User Entry Descriptor (.PS+l)

Argument Declaration:

del 01 Argument_Block,
02 Immediate_Return_Code,

03 Module_Number Bit (12),
03 Entry_Point Bit (6),
U3 Return Bit (18),1* 0 = Successful

1 = Int~~rupt Not paid */
02 Original_Ret urn_Code,

03 MOdule_Number ~it (12),
03 Entry_Point ait (6),
03 Return [)it (18), /* 0 ':: Successful

02 Request_Data,
03 Target_KPX Bit (18),
03 Fill Bit (18);

dcl 01 User_Entry_Desc DESC (11);

1 = Interrupt Not paid */

1* Descriptor to segment where control is to be passed
after the software interrupt has been paid *1

-45-

