
Honeywell

SERIES 60 (LEVEL 65)/6CXX>

SOFTWARE

TIME SHARING SYSTEM
REFERENCE MANUAL

HoneY"'en·
TIME SHARING SYSTEM
REFERENCE MANUAL

SERIES 60 (LEVEL 66)/6000

SOFTWARE

SUBJECT:

General Description of the Time Sharing System (TSS) including the Command
Language, Files, Terminal Usage, BASIC, FORTRAN, Text Editor and Service
Subsystem.

SPECIAL INSTRUCTIONS:

This manual replaces the following manuals:
Time Sharing BASIC, DD16
TSS System Programmers Reference Manual, DD17
Time Sharing Text Editor, DD18
TSS Terminal/Batch Interface, DD21
TSS General Information~ DD22

SOFTWARE SUPPORTED:

DATE:

SERIES 60 LEVEL 66 SOFTWARE RELEASES 4S2 and DPS1~2
SERIES 6000 SOFTWARE RELEASE JS2

October 1979

ORDER NUMBER:

DJ31-00

PREFACE

This man~al provides overall information on the Time Sharing System (TSS).
Included in this document are command language, time sharing file description,
terminal usage, system programming, test and debug aids, BASIC, text editor, FORTRAN,
error message definitions, and site administrator tools.

The usage of temporary user files is described on the basis of what is done by
the Honeywell-supplied TSS subsystems, primarily BASIC and EDITOR, in Section
I I.

Section III contains general descriptions of and operational procedures for
several remote terminals. Paper tape preparation and reading are included. Methods
Jf correcting ope~ator typing errors are described.

The full complement of supplied commands available to a user is described in
alphabetic order in Section IV~

Section VI describes how the user can build subsystem programs to operate in
the time sharing environment using derail (DRL) instructions which are
equivalent to master-mode entry (MME) functions in the batch mode.

Section VII describes the loading of subsystem programs and testing them using
TSS debug trace package.

BASIC <Beginner's All-purpose Symbolic I~struction Code) is a
problem-oriented, algebraic programming language that enables the user to present
his program in ordinary mathem•tical notation, with simple and precise vocabulary
and grammar.

The text editor subsystem allows a user to build a text file, append to an
existing file, and edit a file.

The time sharing system FORTRAN is described in Section XI.

The error messages generated by the time sharing system are documented in Section
XI I.

Section XIII describes the subsystems and function available to site
administrators to allow them to customize the time sharing system.

G) Honeywell Information Systems Inca, 1980 File No.: 1713 1P13

DJ31-00

Section I

Section II

Section III

Section IV

Section V

CONTENTS

Introduction.

File System ••••••
Temporary User Files Assigned By TSS •

Collector File <SY**L ••••
Current Fi le (*SRC) •••••

Permanent Files Assi~ned By User ••
Structure Of The File System ••
Catalogs And Fil~s.

Passwords •••• · .••••••
Permissions ••••••••••
User's Contact With The File System •

Available File Table (AFT) Usage ••••••
Temporary Fi Les • • •••
Permanent Fi Les • • •••

File I/O.

Terminal Usage. • • • •••
Teleprinter Oper~tion ••••••••••••

Terminal Applications •
Editing •••••••
Logan Procedure •••••
Entering Build Mode Input ••••••
Correction Or Modification Of

Line-Numbered Files ••••••
Automatic Terminal Disconnections ••
Logoft Procedure •••••••••
Terminating An Output Process ••
Paper Tape Input In Build Mode ••
Building File From Non-ASCII Paper Tape •
Automatic Paper Tape Input ••••••••

Keyboard/Display Terminal Operation ••
Data Display And Transmission
Log on • • • • • • • • • • • • • • • •
Logoft ••••••••••••
Unique Features •••••••

7700 Series VIP Tape Cassette And Print
Page Adapt~r O~erations •

Output To Cassette ••
Input From Cassette •
Echo Back ••••••
Backspace Cassette ••
Rewind Cassette ••
Output To Printer ••
Continuous Output Mode.
Summary Of 7700 Cassette/Printer Commands

Commands For VIP Terminals • • • ••••
Form Feed Commands ••••••••••••
Case Commands • • • • • • • •

Command Language Reference ••
Command General Form ••

Page

1 -1

2-1
2-1
2-1
2-1
2-2
2-2
2-3
2-3
2-3
2-4
2-4
2-5
2-5
2-5

3-1
3-1
3-1
3-2
3-3
3-6

3-7
3-7
3-8
3-8
3-9
3-9
3-10
3-11
3-13
3-14
3-15
3-15

3-15
3-15
3-16
3-16
3-16
3-16
3-17
3-17
3-17
3-18
3-18
3-18

4-1
4-2

Subsystem Organization. • • • • • • • • • • 5-1
Subsystem Program Organization 5-1
Subsystem Program Descriptor Organization. • 5-1

i ; i DJ31-00

Section VI

CONTENTS (cont)

Primary Portion Of Program Descriptor
Program Descriptor

Command-Language/Primitive list.
Command Language And Primitives.
Keyboard Input Modes •••
Primitives •••••••••

Format Of Primitives ••
Primitive Descriptions.

Startup Procedure ••••••••••
Use Of Existing Subsystems •
Program Descriptor Examples ••

Programming For The Time Sharing System
Subsystem Protection •••••••••
Subsystem Data Area And Fault Vector ••

Usage Of Flags Within UST, First Flag
Word C.LFLAG) ••••••••••

Second Flag Word Usage C.LFLG2) •
Third Flag Word Usage (.LFLG3).

Subsystem Switch Words •••••••••••
Lucid Command Bit (5) •••
Hold/Send Bit (11) .•••
Parity/Noparity Bit <16> ••••••••

System Macros n ••••••••••

Derai Ls. • • • • • • • • • • •••
DRL ABORT, Abort (Octal 7). . ..••
DRL ABTJOB, Abort Batch Job (Octal 51) ••
DRL ADDMEM, Add Memory (Octal 16) ••
DRL ATTRI, Pick Up User's Attributes

(Octal 70> •••••••••••.•
DRL CALLSS, Internal Call To Another

Subsystem <Octal 30) •••••...
DRL CGROUT, Process Line Switch (Octal

46) ••••• 0 ••••••••••

DRL CONSOL, Talk To System Console
(Octal 52) ••..••.•••..•

DRL CORFIL, Data From/To Core File
(Octal 17> ••••••••

DRL DEFIL, Define And Access A Temporary
File <Octal 6) •••••••••••••

DRL DIO, Do I/O On User's File (Octal 1).
DRL DRLDSC, Disconnect Terminal (Octal

4 3) • • • • • • • •. • • • • • • • •
DRL DRLIMT, Store Processor Time Limit

<Octal 54) •••••••••••••
DRL DRLSAV, Save Program On Permanent
File <Octal 62). • • • ••••

DRL FILACT, Permanent File Activities
<Octal 36) .•.•••••••..•

FILACT, Create Catalog Function ••
FILACT, Create File Function •••
FILACT, Access File Function •••
FILACT, Access Subroutine Libraries.
FILACT, Purge/Release Catalog/File

Function •••••••••••••••
FILACT, Modify Catalog/File Function •
FILACT, System Master Catalog Query ••
System Master Catalog Service

Functions ••••••••••••••
DRi FILSP, Space A Linked File (Octal 13)
DRL GROW, Grow A Permanent Or Temporary

File (Octal 50>. • • • • • • • • ••
DRL GWAKE, Wake Me Later (Octal 66) •••

iv

Page

5-2

5-2
5-2
5-6
5-.7
5-7
5-7
5-9
5-9
5-10

6-1
6-1
6-1

6-8
6-10
6-13
6-13
6-14
6-14
6-15
6-15
6-15
6-18
6-18
6-19

6-19

6-20

6-20

6-21

6-22

6-22
6-24

6-25

6-26

6-26

6-28
6-32
6-33
6-34
6-37

6-38
6-39
6-40

6-41
6-43

6-43
6-44

DJ31-00

i

CONTENTS (cont)

DRL JOUT, Manipulate Job Output <Octal
5 5) • • • • • • • . • • • • • • • • • • • •

DRL JSTS, Obtain Job Status (Octal 45) ••
DRL KIN, Keyboard Input Last Line <Octal

4) • • • • • • • • • • • • • • • •
DRL KOTNOW, Keyboard Output From
Unfilled Buffer {Octai 56) ••••

DRL KOUT, Keyboard Output (Octal 2)
DRL KOUTN, Keyboard Output Then Input

(Octal 3). • •••.•.••.
DRL MORLNK, Add Links To Temporary File

<Octal 34) ••••••••••••
DRL NEWUSR Logan New User Without

Disconnect (Octal 35) •••.•..•
DRL OBJTIM, Processor Time And Memory

Size Limit (Octal 57) •.••...••.
DRL PART, Partial Release Of Temporary

Fi Le (Octal 47) •••••••..•••.
DRL PASAFT, Pass List Of Files To

Subsystem (Octal 22) ••
DRL PASDES, Pass AFT File Names And
Descriptions (Octal 44) .••..•

DRL PASFLR, Pass File To Remote Batch
Processor (Octal 60) •..•..

DRL PASUST, Pass UST To Subsystem (Octal
3 3) • • • • • • • • • • • • • • • • • • •

DRL PDIO, Do I/0 On A System File (Octal
2 4) • • • • • • • . • • • • • • • • • • • •

DRL PRGDES, Pass Program Descriptor To
Subsystem (Octal 65) ••••••••

DRL PSEUDO, Simulated Keyboard Input
(Octal 64) •.•••••.••••.

DRL RELMEM, Release Memory (Octal 15)
DRL RESTOR, Overlay-Load A Subsystem

(Octal 25) ..••••••••••.
DRL RETFIL, Return A File (Octal 14).
DRL RETURN, Return To Primitive List

<Octal 5). • •••••••••
DRL REW, Rewind A Linked File (Octal 12).
DRL RSTSWH, Reset Switch Word (Octal 11).
DRL SETLNO, Set Line Number/Increment In

UST (Octal 37) •••••..•••...
DRL SETSWH, Set Switch Word (Octal 10) •.
DRL SNUMB, Obtain Snumb (Octal 20) •.•.
DRL SP~WN, Pass File To Batch Processor

<Octal 26) • • • • • • . • • •..
DRL STQPPT, Stop Paper Tape Input (Octal

61) • • ,; • • • • • • • • • • • • • •
DRL STPSYS Stop Execution Of Master

Subsystem <Octal 41) ••••.•
DRL SYSRET, Cancet Current System
Selection (Octal 40) ••••••

DRL S~ITCH, Switch Temporary File Names
<Octal 53) •••.••••••••••••

DRL TAPEIN, Start Paper Tape Input
<Octal 27) • • • • • • • • ••••

DRL TASK, Spawn A Special Batch Activity
(Octal 63) ••••••••...••

DRL TERM Clean Up UST After User
Termination <Octal 32) •

DRL TERMTP, Terminal Type And Line
Number <Octal 23) ••••

v

Page

6-45
6-46

6-50

6-50
6-51

6-52

6-52

6-53

6-54

6-55

6-55

6-56

6-57

6-58

6-59

6-60

6-60
6-61

6-62
6-63

6-64
6-64
6-65

6-65
6-66
6-66

6-68

6-69

6-69

6-70

6-70

6-71

6-72

6-75

6-75

DJ31-00

Section VII

CONTENTS (cont)

DRL TIME, Obtain Processor Time And Time
Of Day (Octal 21) ••••••••••••

DRL T.CFIO, Command File And Deferred
Processing Support (Octal 77) •.•.

DRL T.CMOV Examine Areas Of Memory
(Octal 73) •••••••••••••

DRL T.EXEC, Execute Code On Behalf Of
The Executive (Octal 10G) ••••••

DRL T.GOTO, Call From One Subsystem To
Another (Octal l2) • • . • • ••.

DRL T.LINL, Change Terminal Input Line
Length (Octal 74) •• ~ • • • •••

DRL T.LINL, Change Terminal Input Line
Length <Octal 74). • • • • • • ••.

DRL T.SYOT, Pass Data File To Backdoor
SYSOUT <Octal 75) ••••••••••••

DRL T.PAGE, Output In Scrolled Fashion
<Octal 1CJ1) •••••••••••••••

DRL T.RSCC, Read System Controller Clock
<Octal 101) •••••••••••••••

DRL T.MAIL, Mail Message Sent (Octal 102)
DRL T.ERR, Error Detected <Octal 103) ••
DRL T.CRYP, Password Encryption <Octal

6 7) • • • • • • • • • • • • • • • • •
DRL USERID Pass User ID And Priority To
Exec~tive <Octal 31> •••

Honeywell-Supplied Subsystems.
Honeywell Subsystem Types •
Honeywell Subsystem Descriptions •••
BSED (Line Editor) Subsystem ••

Loading User Subsystem Programs •
Command Loader Subsystem •
Command Loader Usage •
L 0 DX. • • • • • • • •
Post-Loading Options •••••
PATCH ••••••••

PATCH Filedescr •
SAVE • • • • • • • •

SAVE Fi ledescr.
SAVE Filedescr;Progname •

RUN. • • • • • • • • • • •
RUN nnnnnn.

LOOT • • • • •
L 0 D S • • • • • • •
General Rules Regarding All Loader Functions
Subsystem Dump Facility ••••••

Dump Procedure •••••••••
SABT (Scan Abort Fi Le) Subsystem ••

Source (SRC) File Format ••••••••••
SY* Fi le Format. ••••••••••••••

Fin al Nonempty Re c·o rd: • •
TAP* ·Fi le Format • • • • • • • •
Time Sharing Debug Trace Package ••••••

Binding Trace Package With Target Program
Command Language Usage ••••
Nontrace Commands ••••••••

ABORT (Terminate Execution Via DRL
ABORT) ••••••••••••••

B OR BA (Establish Breakpoint) •
C (Enable Control Vi~ Break Key)
CALLSS (Call Subsystem) •••
D Or DA (Delete Breakpoint).

vi

Page

6-77

6-77

6-79

6-80

6-81

6-81

6-81

6-82

6-83

6-83
6-84
6-84

6-85

6-86
6-87
6-87
6-87
6-88

7-1
7-1
7-2
7-3
7-3
7-4
7-4
7-4
7-4
7-4
7-5
7-5
7-5
7-5
7-6
7-7
7-7
7-7
7-8
7-11
7-11
7-12
7-13
7-14
7-15
7-16

7-16
7-16
7-17
7-18
7-18

DJ31-00

Section VIII

CONTENTS (cont)

DEC <Decimal-To-Octal Conversion) •••
E (Execute Instructions) •••••••
F Or FA (Find Data Pattern In Memory).
L (Locate SYMDEF) •••••••••••
MA,MG,ME,MI,MXn,MARn (Modify Register)
O (Establish Offset) •••••••
OCT (Octal-To-Decimal Conversion) •••
P OR PA (Patch Memory) ••••••••
R Or RA (Run; i.e., Resume Execution).
S,SA,SI,SIA (Snap Memory) •••••••
SAVE (Save Current Program State) ••
RESTORE (Rest~re Program State From
Last Save) ••••••••••••••

TERMINATE (Terminate Execution Via
DRL Return) •••••••

X,XA,XO,XE,XI,XB,Xn,ARn,AR (Display
Register)

Tracing. • • • • • • • • • •••
Ty p e.s 0 f T r a c e s • • • • • • • • • •

Transter Trace (TRA). • •••
Operation Code Trace C~P) ••••••
Modifier Trace (MOD). • •••••••
Use Trace (USE) •••
Change Trace (CHG) ••
Full Trace (FULL) •• u •••

Map Trace (MAP) • · ••
Own Code Trace CO~N) •••••

Commands Related To Tracing ••
DISPLAY (Display Trace-Related

Information) ••••••••••
I (Initialize Queues/Frequencies) •
NOTRACE (Disengage Trace Mechanism)
PAUSE (Pause Before Instruction

Execution) ••••••••••••
NOPAUSE (Discontinue Pause Mode).
Q (Queue Trace Output).

Error Messages •••••••••
Supplemental Information
Example Of Usage ••••••••••••••

Support Facilities ••••
Time Sharing ~edia Conversion Program ••

Operational Description ••••
Definitions •••••
Errors •••••••
Binary Card Format ••••••
Sample Deck Setups ••

Time Sharing UFAS •••
File Specification ••
File Accessing ••••
Terminal Interface ••

File And Record Processing Routines •••
.GETLL ••••••••••••••••

Calling Sequence • • • • ••••
Argument Description ••

SC AF • • • • • • • • • • • • • • • • •
Calling Sequence ••
Argument Description •
File Description
Fi Le Names •••

GT FL. • • • • • • • •
Calling Sequence
Argument Description ••

vi ;

Page

7-19
7-19
7-19
7-20
7-21
7-21
7-22
7-22
7-23
7-23
7-24

7-24

7-25

7-25
7-26
7-32
7-32
7-32
7-33
7-33
7-34
7-34
7-34
7-35
7-37

7-37
7-39
7-40

7-40
7-41
7-41
7-41
7-42
7-43

8-1
8-1
8-1
8-3
8-4
8-4
8-4
8-5
8-5
8-6
8-7
8-10
8-10
8-10
8-10
8-11
8-11
8-11
8-14
8-14
8-15
8-15
8-15

DJ31-00

Section IX

CONTENTS (cont)

Output Argument Description.
Description ••••••
Permissions ••••••
Fi le In Available Fi le Table
File Not In The AFT •••••••
File Names Greater Than Eight
Characters •••

Creating Fi Les •
Aborts • • • • •

RDRC~ •••••••
Calling Sequence ••••••
Argument Description
Terminal Input •
COMDK Records ••
Error Messages •

WT RC. • • • • • • •
Calling Sequence ••
Argument Description
Description ••
Record Storage Strategy •••
Grow Strategy. • • •••
Error Messages •

RTFL ••••••••
Calling Sequence
Argument Description
Description •••
Error Messages
Abort ••••••

RWFL ••••••••
Calling Sequence •
Argument Description •
Description •••••

File Control Area Description ••
Entry Description •

Time Sharing GFRC •••••••

BASIC •
Statement Defihition •
Mathematical Notation And Op~rations Within

A Statement •••••••••••
List And Table Variables.
Use Of Numbers ••••
Arithmetic Operations • ~ ••••
Relational Symbols •••
Use Of Expressions ••••
Mathematical Functions ••
Miscellaneous functions

Statement Descriptions ••
Arithmetic Statements ••
Specification Statements ••
Input/Output Statements •
Loop And Subroutine Statements.
Logic Statements.· •••
Utility Statements •••••••••
Documentation Statement ••

A BASIC Program Example ••
Analyzing The Problem •
Converting To BASIC Language.
explanation Of The Statements ••••
Entering And Running The Program ••
Program With Loops •••
Program With Subroutine ••••
Program With A List And Table

vi ; ;

Page

8-17
8-18
8-18
8-18
8-19

8-19
8-19
8-20
8-20
8-20
8-20
8-21
8-21
8-22
8-22
8-22
8-22
8-23
8-24
8-24
8-25
8-25
8-25
8-25
8-26
8-26
8-26
8-26
8-26
8-26
8-27
8-27
8-29
8-32

9-1
9-1

9-2
9-2
9-3
9-3
9-3
9-4
9-5
9-6
9-6
9-6
9-8
9-10
9-16
9-18
9-21
9-23
9-24
9-24
9-25
9-26
9-28
9-30
9-31
9-32

DJ31-00

CONTENTS (cont)

Advanced BASIC ••••••••••••
Formatting Output With A Comma Or

Semi colon ••••••••••••••
Spacing Within An Output Line With

Functions TAB(X) And SPC(X).
Formatting Line Output •••

Integer-Type Field •••
Decimal-Type Field ••
Exponential-Type Field •
Alphanumeric Type Fields ••
Literal-Type Field • • • • ••••
Concatenation Of Multiple Formatted

Images. • • • • • • • • • ••••
Defining Functions •••••••••
Multiple-Line DEF Statement •••••
DATA Input During Program Execution ••
Matrices....... • •••
Additional Functions • • ••••••••

Function INT(X) ••••
Function RND(X) • • •••
Function SGN(X)
Function DET<X)
Function TIM<X)
Function CLK$ •
Function DAT$ •
Function NUM(X)
Function SST(X$,Y,Z) •••••••••••
Function TAB(X) •
Function SPC(X) ••••••
Function LEN(X$) ••
Function LIN(X) •
Function ASC(X) ••••••
Function STR$(N) ••
Function VAL (S$) •
Function TST(S$) ••
Function HPSCX) •

Subroutines ••••
Loops •••••••
Lists And Tables • • •••••••••
Alphanumeric Data And String Manipulation ••
ASCII Data Files •••••••••••
ASCII Data File Input/Output Statement

Formats • • • • • • • • • • • • ••••
File Preparation Statements •••••
File Read Statements. • • •••
File Write Statements • • • ••••
Matrix Input Statem~nts • • • ••••
Matrix Output Statements. • ••••
File Manipulation Statements •••••••
Utility Statements •••••••

Binary Fi Les .••••• -•••••••••••
Binary File Input/Out~ut Statement Formats •

File Preparation Statements • • •••
File Read Statement •••••••••••
File Write Statement. • • •••••
Matrix Input Statem•nt. • ••••
Matrix Output Statement •
File Manipulation Statements •••
Utility Statements. • • • ••

Multiple Statements Within One Line.
Saving Temporary Files ••••••
Saving And Executing Object Files ••
File Access •••••••••• ~ ••••••

ix

Page

9-33

9-33

9-35
9-37
9-37
9-38
9-38
9-39
9-40

9-40
9-40
9-42
9-43
9-44
9-48
9-49
9-49
9-51
9-51
9-52
9-52
9-52
9-53
9-53
9-53
9-53
9-54
9-54
9-55
9-56
9-56
9-57
9-57
9-58
9-59
9-62
9-64
9-7(J

9-72
9-72
9-75
9-77
9-81
9-83
9-85
9-87
9-91
9-93
9-93
9-96
9-98
9-99
9-100
9-101
9-103
9-107
9-107
9-107
9-109

DJ31-00

Section X

CONTENTS (cont)

Page

EDITOR And RUNOFF • • • • • • • • • 10-1
EDITOR Subsystem Functions • • • • 10-1
Entry To EDITOR Subsystem. • • • • 10-1
Building Or Adding To A File • • •• 10-2

Entering Text From Terminal Keyboard ••• 10-2
Line Numbered Files • • • • • • 10-3
Resequencing Line-Numbered Files ••••• 10-4
Entering Text From Paper Tape • • • 10-5

Protecting Files • • • • • • ••••• 10-6
Search Pointer Conventions •• 10-8
EDITOR Language. • • • • • • • • • • 10-9

Command Format. • • • • • • 10-9
Operand Field Of The Command. • • •• 10-10

Line length. • • • • • • • • • • 10-13
Responses From EDITOR • • • • • • •• 10-14
RUNOFF Format Control Words • • • • 10-16

Time Sharing System Control Commands •• 10-16
EDITOR Commands ••••••••••••••• 10-17

AFTLIN Command And BEFLIN Command 10-17
BACKUP Command •••••••••••••• 10-18
BUILD Command • • • • • • • • • • • • 10-19
CASE Command And STANDARD Command • 10-20
COPY Command. • • • • • • • • • • • • 10-21
COLUMN Function • • • • • • • •••• 10-22
CUT Command • • • • • • • • • •• 10-23
DELETE Command. • • • • • • 10-24
FIND Command. • • • • • • • • 10-27
INSERT Command. • • • • • • • 10-29
LIMIT Function. • • • • • • • • • • • 10-33
LINE Command ••••••••••••••• 10-34
MARK Command ••••••••••••••• 10-34
MASK Function •••••••••••• 10-34
MODE Command. • • • • 10-35
OCCURRENCE Function • • •• 10-35
OCTAL Function. • • • • • • 10-35
PASTE Command • • • • 10-36
PRINT Command • • • • • • •• 10-39
REPLACE Command • • • • • • • • • • • 10-43
RUNOFF Command. • • 10-47
STRING Command. • • • 10-47
TRANSPARENT Command • • •••• 10-47
VERIFY Command And NOVERIFY Command ••• 10-48
WHERE Function. • • • • • • • 10-48

RUNOFF Subsystem •••••••••••••• 10-49
RUNOFF Commands. • • • • • • • • • 10-49

EDITOR Command. • • • • • • ••••• 10-49
NOSTOP Command. • • •••••• 10-49
NUMBER Command. • • • • • • • •• 10-50
PR.INT Command • • • • • • • 10-50
REFORM Command. • • • •• 10-50
SKIP n Command. • • • • • • 10-51

RUNOFF Format Control Words ••••••••• 10-52
.ALLCAPS. • • • • • • • • • •••• 10-53
.BEGINPAGE n. • . •••.••.•.• 10-53
.BOLDFACE n • • • • •••••• 10-53
.$0TTOMMARGIN n • • • • • • • •• 10-54
.BREAK. • • • • • • • • • • • • 10-54
.(ENTER n • • • • • • • ••• 10-54
.COMMENT. • • • • • • • 10-54
.DOUBLESPACE. • • • • • • • 10-54
.FILL ••••••••• o • • • • • • 10-54
.FOOTING x,n. • • • • • ••..• 10-54
.HEADER x,n • • • • • • • • • • • • • 10-55

x DJ31-00

Section XI

CONTENTS (cont)

.IGNORE x,x, •••••
• INDENT n •• ·
.JUSTIFY ••••••
.LEFTOENT n •
.LINELENGTH n ••
.LITERAL ••
.MARGIN t,b,l,r •
.MULTISPACE n •
.NOOENT •••••
.NOFILL •
• NOJUSi •
.NOTAB •••••••
.PAGE x,y,n •
.PAPERLENGTH n ••
.PARAGRAPH ••••
.PARAGRAPH n1,n2 ••
.POINT n •• · •••

Page

. 10-55
• 10-55

10-55
. 10-56

• •••• 10-56
• •••• 10-56

• 10-56
. 10-56
. 10-56

• •••• 10-56
• 10-57
• 10-57
• 10-57

• • 10-57
• 10-57

10-58
• ••••• 10-58

• 10-58
. 10-58
• 10-59

10-59
• 10-59

• REFERENCE (x ••• x) ••
.REPLACE x,x •••••
.SCOREUNDER n
.SINGLESPACE •••
·.SPACE n ••
.SUBHEADING x,n •
.SUBFOOTING x,n •
.SUBPARAGRAPH n •

• ••••.•••• 10-59
. 10-59

.TABULATE t,n, ••• n. • •••

.TOPMARGIN n. • •••

.UNOENT n ••

. •••• 10-60
. 10-60
• 10-60
. 10-60

RUNOFF Examples. . 10-61

Time Sharing System FORTRAN •••••••••• 11-1
Program Statement Input. • • • 11-1

Format. • • • • • • • • • • 11-1
Control Character • • • •••• 11-2
Blanks (Or Spaces) Within A Line Of Input 11-3

Source Program Modification. • • 11-4
Input Error Recov~ry. • • • • •••• 11-5

I-0-S/II In A FORTRAN Time Sharing
Environment •••••••••••••••• 11-6

Files Required By I-D-S/II •••••••• 11-6
Comparison Of The FORTRAN And YFORTRAN

Time Sharing Systems •••••••••• 11-7
The YFORTRAN Time ~ha~ing System Run Command 11-8

FORTRAN Time Sharing System Run
Command ••••••••••••

Alternate Named Files •••••••
Accessing I-0-S/II Files Required For

Execution ••••
First Line RUN Command ••
TSS RUN Examples.
OML TSS Example ••••

• 11-12
• 11-16

• 11-18
• •• 11-19

11-20
• 11-21

Batch Activity T~ Build Time Sharing H*
Fi le • • • • • • • • • • • • • • 11-21

Tim' Sharing System RUNL Command For
link/Overlay •••••••••••••• 11-21

Example Of RUNL Inputs And Link H*
Cr_eation •••••••••••••

Example Of LINK/LLINK Usage ••••
Example Of Loader Input File •••
Example Of A Time Sharing Session •

Supplying Direct-Mode Program Input ••
Limitations Imposed By The AFT •••

xi

• 11-24
• 11-25

• • 11-25
• 11-26
• 11-27

11-27

DJ31-00

Section XII

Section XIII

CONTENTS (cont)

Page

Memo I' y Cons 1 de 1«H ll> 11 s • • • • • • • • • I I .. ·ti

Restrictions On Load Usage ••••••••• 11-28

Time Sharing Error Messages Explanation • • 1 2-1

Site Ad~inistrator ••• ·• • • • • • • • •• 13-1
Master And Privileged Subsystems • • •• 13-1
Master Subsystems. • • • • • • • 13-2

Operating Procedure ••••••••••• 13-3
Use Of The Master Function •••••••• 13-3
MAST Subsystem Functions. • • ••• 13-3

.DONE • • • • • • • • ••••• 13"'."5
MESS • • • • • • • •••••• 13-5
MONITOR.o ••• 13-5
MSOF • • • • •• 13-6
MUPDATE. • •• 13-6
PATCH. • • • •••••• 13-7
PRIORITY • • • • • • 13-7
PSWD • • • • • • •• 13-10
SMCL. • •• 13-10
SNAP • • •• 13-11
SPEC •••••••• 13-12
SSPATCH. • • •••• 13-12
STATUS • • 13-13
TALK • • • • • • • • • • • • 13-14
TCALL. • • ••••• 13-15
UPDATE • • ••• 13-15
WHOSON • • • • • • • • • • 13-16
AFT. • • • • • • • 13-16
PEEK • • ••••• 13-17
PROF • • • • • • • • 13-17
VERB.. • 13-18

TSAR Subsystem. • • •• 13-19
Display 1. . ••••. 13-20
Display 2. • • • • • • 13-21
Display 3. • • • • • 13-22
Display 4. • • . ••• 13-23

TSRI Subsystem. • • • • • • • • ••• 13-24
Privileged Subsystems. • • • • • 13-24
Master User Interf~ce With Deferred

Processing ••••••••••••••••• 13-25
Deferred Processing Queue File •••••• 13-25

Listing Passwords By Users' Catalogs And
Files • • • • • • • • • • • • • • • • • 13-26

Accounting Method For User Charges ••••• 13-27
Designating Master ID And Passwords. • • 13-29
Logon Security Mechanism • • • • • 13-30
TSS Init File. • • • • •• 13-31

$INFO Section • • • 13-32
$PATCH Section. • • •••••••• 13-34

Sample Patches • • • • • • • 13-34
$LOAD Section • • • • • • • • 13-35

Sample Init File • 13-36
Changing System Initialization Tables •••• 13-37

System Files ••••••••••••••• 13-37
TSS Priority Dispatch • • • • • • • • 13-f8
Visual Information Projection (VIP) Type

Terminals. • • • • • • • 13-38
Determining Maximum Number Of Time Sharing

Users • • • • • • • • • • • • • • • • • 13-39
TSS Executive Edit Load Map ••••••••• 13-40
Building A Library Of User Programs ••••• 13-41
Setting Processor Time And Memory Size

x i i DJ31-00

Appendix A

Appendix B

Appendix c

Appendix D

Index

Figure 2-1.
Figure 3-1.
Figure 5-1.
Figure 5-2.

Figure 8-1.

Figure 8-2.
Figure 8-3.

Table 3-1.
Table 6-1.
Table 6-2.
Table 9-1.

CONTENTS (cont)

Page

Limits. • • • • • • • • ••••• 13-41
Limits Set By Site. • •••••••• 13-41
Limit. Set By User •••••••••••• 13-42
Operation • • • • • • ••••• 13-42

Time Sharing System Options. • 13-43
.TSLOG Patches (Accounting Calculations). 13-43
Assigning Class B Priority To Time

Sharing ••••••••••••••••• 13-46
Security Mechanism Patches. • • ••• 13-46

List Of Derails

Executive Error Messages.

System Macros •

Octal-ASCII Conversion Equivalents ••

ILLUSTRATIONS

Logical Structure Of The Fi le System.
Keyboard For 775/785 Series VIP Keyboard. .
Program Descriptor Format
Program Descriptor And

Command-Language/Primitive List -- Example 1
Batch Activity To Create H* Fi le For Execution

In Time Sharing Environment. . . .
Example Of A Fi Le-To-Fi Le
Batch Execution To Create

Time Sharing

TABLES

Display Devices •••
List Of Derails •••
Terminal Type Codes •
Numeric Code Table ••

xi i ;

. .
Copy. . .
Executable

.
H* For
.

.

A-1

B-1

c -1

D-1

i-1

2-2
3-11
5-4

5-11

8-8
8-30

8-33

3-12
6-16
6-76
9-68

DJ31-00

SH TION I

INTRODUCTION

The Time Sharing System (TSS) operates under the direction of the General
Comprehensive Operating Supervisor (GCOS), and constitutes one dimension of an
integrated, multidimension information processing system. Under GCOS, the
multiprocessing dimensions carry on their activities simultaneously, with
intercommunication existing between all processing dimensions. This
intercommunication feature has considerable significance for the user of a time
sharing terminal.

The Time Sharing System (TSS) consists of a Time Sharing Executive, a number
of independent processing subsystems which operate under the Executive, and a
common command language. ·The major subsystems of the Time Sharing System include
the following:

0 ABACUS A
capabilities
variables.

desk calculator facility featuring complex
such as functions, summation operations, and

algebraic
remembered

o BASIC -- An algebraic-Language compiler/executor designed for the user
with numerical calculations involving relatively small quantities of
data.

o CONVERT -- A facility for submitting a punch card format job at a time
sharing terminal for processing as a batch job. Job status is available
on request. The JOUT subsystem complements the batch subnission
facilities of JRN by providing the capability to scan the job output.

o dataBASIC -- Honeywell 1 s dataBASIC subsystem provides for data base
management and inquiry by combinin~ data base manipulation
capabilities with a BASIC type Language. It permits a file to be
constructed, maintained, retrieved, and deleted on a content-addressable
basis.

o TEXT EDITOR (and RUNOFF) -- A facility for building, maintaining, and
~eformatting text files.

o TSS ALGOL -- An ALGOL subsystem that gives the time sharing user access
to the capabilities of the ALGOL language.

o TSS JOVIAL -- A JOVIAL subsystem that provides the time sharing user with
access to the capabilities of the JOVIAL language processor.

o TSS FORT -- A time sharing based FORTRAN subsystem. Refer to the FORTRAN
manual.

o TSS YFORT -- A subsystem interface to the batch-based FORTRAN compiler.
Refer to the section on FORTRAN or to the FORTRAN Reference Manual,
DG75.

1-1 DJ31-00

The following subsystems and subroutines provide service and utility
functions for the Time Sharing System:

o ACCESS -- a file system manipulation subsystem which allows the user to
create, delete, and modify file system catalogs, subcatalogs, and
named files. The file space, not file content, is manipulated with
ACCESS.

o Command Loader -- a default subsystem which is invoked whenever an
unrecognized command is given, either at system-selection level or in line
numbered build mode. The input is assumed to be the catalog/file
description of an H* file to be loaded and executed or a series of responses
for a command file CCRUN) application.

o FDUft'IP -- a remote-terminal, word-oriented file inspection and maintenance
facility for files, regardless of their format. The files may have been
generated in either batch, remote batch, or time sharing environments.

o File and Record Control Subroutines (TSS) -- provides File and Record
Control subroutines needed for FORTRAN, ALGOL, and JOVIAL. These
subroutines may also be used in COBOL or may be called directly by
programs written in GMAP. These subroutines also provide automatic
functions for dealing with the variety of file and device types available
on the system. See the File and Record Control manual.

o HELP -- permits a terminal user to obtain a detailed explanation of any
system error message.

o JOUT -- provides a means for inspecting output from batch jobs. The batch
job could be a job submitted using the JRN command with a disposition code
of J or JOUT, a remote terminal batch job (GRTS), or a job submitted at
the central site.

o TRACE -- a powerful, conversational debug tool which permits a time sharing
program to be executed in a controlled environment.

o LOOS -- provides q debugging environment for a specified Time Sharing
subsystem by loading the Debug Trace Package with the subsystem.

o LOOT -- similar to LOOS, except that the debugging environment is provided
for a user program resident on an H* file.

o LODX -- allows the user to load and execute a program resident on an H•
f i le.

o Media Conversion Program -- a batch-world program that may be run either
at the central computer site or entered through a remote batch
terminal. It generates a standard form~t, time sharing text file from a
suitable card deck, or conversely, produces a card deck from such a
f i le.

o CONVERT -~ provides for the conversion of textual information between
physical file formats, the reformatting of files, and the initiation of
batch jobs.

o RBUG a conversational debug routine which can be used in
conjunction with jobs submitted to the batch environment using· the JRN
command. RBUG has all the capabilities of the DEBUG routine of the batch
world, permitting the user to monitor execution of the program, insert and
remove breakpoints, and alter contents of memory locations and registers
dynamically, all in an interactive manner.

1-2 OJ31-00

o SABT -- retr1eves specific locations of the ABRT file for printing at the
user's terminal or optionally on the central site printer. When the system
aborts the user's program, the memory storage area containing the program
is written to the kBRT file.

o SCAN -- provides a means of examining output of a batch job from a time
sharing terminal; the batch job may have been submitted using the JRN
command through remote batch or as a central site job with the output placed
into the file system.

The primary fun:tions of the time sharing command Language are as follows:

o Initiation of processing within a subsystem (e.g., LIST and JRN
commands)

o Storage, retrieval, and purge of permanent files (e.g., SAVE and OLD
commands)

o Request for operations on temporary time sharing files <e.g., NEW and
SEQUENCE commands)

o Request f o r p e rt i n en t ope rat i n g i n-f o rm at i on (e • g • , HELP and ST AT US
commands)

o Direction of flow of control within the subsystem (e.g., DONE and BYE
commands)

In addition to the usual time sharing facilities at his disposal, the Time
Sharing System user also has access to remote batch facilities. This capabi.Lity is
provided by a group of functionally interrelated.subsystems called the Terminal/Batch
Interface Facility.

The time sharing terminal user can perform the following operations:

o Access and modify a fi Le of informa~ion created in the batch or remote batch
dimension.

o Submit a job, such as a GMAP assembly and execution, to the batch dimension
and inspect t~e output directly from a terminal.

o Establish conversational communication between a batch program and the
user's terminal.

o Use an a~jacent remote batch terminal as a high volume, hard copy output
device, and, indirectly, as a high volume input device.

The basis for this communication between the several processing dimensions is
the GCOS File System, which provides a common data base for all users of the system,
and the common interface provided by GCOS. The fi Le system provides automatic storage
and retrieval of symbolically named permanent files on high capacity storage devices.
These files are readily accessible in any processing mode. As a byproduct, the use
of physical file volumes, such as card decks and tape reels, actually handled and
stored by the user is considerably de-emphasized.

1-3 DJ31-00

Considerable effort has been made to standardize error messages and comments
for all subsystems in the Time Sharing System, and to have error message explanations
immediately available at the terminal. Identical error or exception conditions
arising in different subsystems are identified by the same error message text. Those
messages that are not fully self-explanatory are prefixed with a message number
enclosed by carets (i.e., <nn>), in almost all cases. This message number relates
to a message explanation as given by the HELP subsystem. Upon encountering an error
message that is not fully understood, the user can call the HELP subsystem and give
the error message number when the number is requested, and receive an e~planation
of the error condition and suggestions as to possible courses of remedial
action.

The Time Sharing System is completely modular and open-ended in that it is
explicitly designed to allow user-implemented subsystems, tailored for a specific
application, to be added to the Honeywell-supplied subsystems. This implementation
of subsystems can be done readily, with no disturbance to the system. Specialized
debugging facilities are provided for the checkout of new subsystems simultaneously
with normal time sharing operation.

1-4 DJ31-00

SECTION II

FILE SYSTEM

TEMPORARY USER FILES ASSIGNED BY TSS
~~ ~~- ~ ~-

The usage of standard temporary user files is described here on the tasis of
what is done by the Honeywell-supplied TSS subsystems, primarily BASIC and EDITOR.
The designer of a new subsystem that requires a source fi Le for each user may select
this usage, both for overall system consistency and to take advantage of facilities
already provided in TSS. All standard temporary files should have at Least one
asterisk (ASCII 052) in their names· to differentiate them from user-created
files.

There are two standard temporary files for each terminal user; the
collector file, SY**, and the current file, •SRC.

Collector File CSY**)

The SY** file is automatically assigned to each terminal user by the TSS
Executive. All terminal input except command language is collected on-this file while
the system is in build mode. This is the raw data received from the terminal. The
collection of input is performed by the Line Service portion of the TSS Executive;
that is, no subsystem is in execution. Thus, the assignment of SY**, the collection
of input data on it, and the scanning of the input for command language are automatic
functions of TSS, provided that the selected subsystem used build mode for the
collection of new or additional input destined for a source file. Examples of SY**
input are the numbered language statements in BASIC and the text entries in
EDITOR.

Current File C•SRC)

The •SRC file receives the edited and/or merged version of the file with
which the user is currently working. For example, if the user is writing a new
BASIC program, the collector CSY**) file contains all the raw input, including any
mistakes and corrections, other than keying errors corrected by commercial at sign
(@) or CRTL/X.

When the user gives one of the BASIC commands, this causes the BSED
subsystem to edit the data on SY** -- all corrections are applied, duplications
removed, etc. SY** is then written to the current file, *SRC, which is the copy that
is listed, run, or saved.

2-1 DJ31-00

For an old BASIC program, the OLD file is copied directly to the user's *SRC
file. Any changes that are typed are collected on SY** until a BASIC command is
given. This causes the SY** file to be edited and then merged with the data on
*SRC and the new, merged copy written to *SRC. Again, it is this new copy of the
program that is run, listed, or saved.

In an OLD file, the user is always working with a copy of that file on *SRC
either as is, or modified by SY** data -- and not the original. This feature Leaves

the OLD (permanent) file as backup copy <except when using OLDP/NEWP commands>.

PERMANENT FILES ASSIGNED BY USER ---

TSS never assigns permanent file space to a user unless specifically told to
do so by that user. Permanent files are handled by the File System, which is common
to all programs operating under GCOS. Permanent time sharing files are ordinarily
created by using SAVE or PERM commands; otherwise, they are created via the ACCESS
subsystem or a batch FILSYS activity. (See also NEWP/OLDP commands.)

Structure Of The File System

The GCOS File System is described in the File Management Supervisor manual. The
main points of interest to the TSS user are described below.

The GCOS File System is, in formal terms, a tree structure of indefinite length
whose origin is the system. master catalog. The primary nodes of the tree are user's
master catalogs; the Lower-level nodes are subcatalogs created by the user. The
terminal points of the structure are the files themselves. (See Figure 2-1.)

SUBCATALOG

Legend:

< > Denotes a file

SYSTEM MASTER
CATALOG

USER'S MASTER
CATALOG

<QA><QA>

< >

<QA> Denotes a quick-access file

SUBCATALOG

< > < >

Figure 2-1. Logical Structure Of The File System

2-2 DJ31-00

The master catalogs for each user are identified by USERID. A USERID must be
unique within the system. All subcatalog and file names are automatically qualified
by the user's master catalog name and the names of any intermediate subcatalogs. The
system master catalog cannot be accessed by the normal user.

Catalogs And Files

A catalog c~ns· sts of a description containing
permissions. A catc.log cannot be read or written,
data.

catalog name, password, and
since it contains no user

In the GCOS File System, a file consists of a description containing file
name, file size, password, permissions, and the specification of the physical file
space. The file description i~ distinct from the physical file space, which may
contain user data and can be read or written.

Passwords

Passwords can be attached to any catalog or file. A password simply allows a
user to traverse a catalog/file string. The user can get to a given catalog or file
only by giving the passwords for all higher-level catalogs in the string. The
originator of a given string must also give the required passwords when traversing
that string. However, when traversing a string, a password must not be given if none
has been attached.

Permissions

Permissions, both general and specific, can be attached to any catalog or file.
When permissions are attached at the catalog Level, they apply to all subordinate
catalogs and files. The originator of a catalog/file string has all permissions for
that string but must give the passwords.

READ or R

WRITE or W

APPEND or A

EXECUTE or E

RECOVERY or REC

Allow transfer of information from file to program but not
from program to file.

Allow transfer of information both from file to program
and program to file.

Not implemented. Treated as WRITE permission.

Allow transfer of information from file to program but only
for a compiler or loader. After the compiler or loader has
completed its work, do not allow any transfer between program
and file. Anyone with READ permission has EXECUTE
permission. In any of the compilers, if the file is a source
file and the only permis§ion is execute, the RUN command
cannot be used to build an object (H*) fi Le.

Allow WRITE when f i le ; s abort locked or has defective
space. Also accept directive to abort Lock the f i le or to
reset an existing abort Lock. Anyone with RECOVERY
permission i s also given permission to WRITE and hence
READ.

2-3 DJ31-00

PURGE or P

CREATE or C

LOCK or L

MODIFY or M

Allow file to be deleted (file description to be deleted and
file space to be returned with or without prior overwrite of
space) or catalog to be deleted and all subordinate files to
be deleted. Anyone permitted to PURGE can also perform any
of the actions permitted by RECOVERY, including WRITE and
hence READ.

Allow catalogs and files to be entered as subordinate to
this catalog.

Allow directive to security Lock the file or catalog (which
security locks subordinate files) or to remove an existing
security lock. A security lock does not apply to users with
LOCK permission (since they are able to remove the lock).

Allow catalog or file description to be modified. Allow
entries to be made in catalog for subordinate files or
catalogs. Anyone permitted to MODIFY is allowed to perform
any actions, since he could change permissions to give
himself permission to perform these. Hence MODIFY includes
CREATE, LOCK, and PURGE, which in turn includes RECOVERY
and hence WRITE and READ.

Mu l t i p l e concur rent read i n g or exec u t i. n g of a f i Le i s a L lowed by t he F i Le Sys t em,
but multiple writing or appending is not.

User's Contact With The File System

The terminal user's contact with the GCOS File System is mainly through the
Old-New COLON) and Save/Resave-Purge (SAVE) subsystems.

OLDN, when OLD is selected, writes the contents of the permanent (OLD) file
onto the user's current file, *SRC. SAVE or RESAVE writes the contents of *SRC onto
the named permanent file. In either case, to "access"·a permanent file means to enter
it into the user's Available File Table (AFT), as explained in the following
description of the AFT.

AVAILABLE FILE TABLE (AFT) USAGE

TSS maintains an Available File Table <AFT> for each user. Before any I/O can
be done on a file, an entry for that file must be placed in the AFT.

The AFT allows sufficient file descriptions to be kept in memory, thus
minimizing the access time tor these files. The AFT also allows files to br
identified by their file names alone; for permanent files, the full file description
may consist of many catalogs and passwords.

2-4 DJ31-00

Temporary Files

DRL DEFIL (Define and Access a Temporary File) creates a temporary file and
places the file entry in the AFT. Every temporary file defined by a subsy~10m

should contain at Least one special character (that is, other than alphabetic,
numeric, period, or hyphen) in the fi Le name. The asterisk is used by
Honeywell-supplied subsystems. Since special characters are not allowed in
permanent file names defined from a terminal, any conflict is avoided.

DRL RETFIL <Return a File) removes the file entry from the AFT and releases the
file space back to the system. When a subsystem is finished with a file, it should
return the file. ALL user's files· in the AFT are released upon termination.

Permanent Files

DRL FILACT function number 4 (Access File) places the file entry in the AFT
and sets the file "busy" for the permissions requested.

NOTE: This function does not create a file. Before a permanent file can be
accessed it must have been created by DRL FILACT function number 3 (Create
Fi le).

DRL RETFIL (return a file) removes the file entry from the AFT and sets it "not
b u s y " w i t h r e s p e c t t o t h e c u r r e n t u s e r • T h e f. i l e i s n o t r e l e a s e d f r o m t h e f i l e s y s t e m
w h en a D R L R E T F I L i s i s s u e d , b u t r a t h e r i s d e t a c h e d f r o m t h e c u r r e n t u s e r ' s• p r o c e s s
(deaccessed).

FILE I/O

After the file is placed in the AFT, the following can be executed:

DRL DIO Reads or writes a f i le

DRL FILSP Positions a file forward or backward

DRL REW Positions a f i le to ; ts beginning

DRL MORLNK Increases the size of a temporary f i Le

DRL GROW Adds space to a permanent f i Le, up to ; ts maximum size

DRL PART .Re Le as es a portion of a temporary file

DRL SWITCH Switches two temporary f i le names

These are the only file I/O derails that affe6t or relate to the AFT and are
most often used by subsystem programs. The others (all of the FILACT functions except
Access Fi le) affect only the G·c 0 S Fi le System.

2-5 DJ31-00

SECTION III

TERMINAL USAGE

This section contains general descriptions of and operational procedures for
several remote terminals. For complete detai Ls pertaining to a particular terminal,
the user should refer to the instruction manual accompanying the terminal unit.

TELEPRINTER OPERATION

Terminal Applications

The following types of teleprinter terminals, or their equivalent, may be used
to communicate with the Time Sharing System:

o IBM 2741

o Teletype models 33, 35 and 37

o GE TermiNet 300

These terminals communicate with the Time Sharing System via the Remote Terminal
Supervisor CGRTS) or the Network Processing Supervisor (NPS). These interfaces are
described in the Remote Terminal Supervisor (GRTS) manual and the Network Processing
Supervisor CNPS) manual.

Each time a key is struck, the character is transmitted to the remote
communication system and stored until the carriage return is struck. A carriage
return indicates that the Line is complete. The number of characters in a line may
range up to 160 characters plus a carriage return.

If the terminal is equipped with a paper tape reader/punch, this device may be
used for input/output. The input must be formatted the same as for keyboard input,
but each line must be terminated with carriage return, line feed, and two rubouts.
The input tape must be terminated with an ASCII X-OFF (or DC3) character.

3-1 DJ31-00

Editing

Keyboard input is sent to the host computer in units of complete Lines. A Line
of terminal input is terminated by a carriage retufn. Therefore, corrections to a
Line-in-progress Ci.e., a partial Line not yet t~rminated) can be made.

A typing error detected before the Line is terminated can be corrected in one
of two ways. One or more characters may be deleted from the end of a partial Line
or the incomplete Line and may be cancelled. Character or line deletions are
effected by means of two special characters designated as control characters. These
control characters may differ between terminals.

For teleprinter terminals

character control function

@(commercial at sign) character deletion

CTRL plus X keys Line deletion

For IBM 2741 or DATEL terminals

character control function

1/4 (or degree symbol) character deletion

+ Line deletion

NOTE: Line deletion does not occur until a carriage return is given or
ATTN (IBM 2741) or INT (DATEL) is pressed.

The editing rul~s are as follows:

o Use of the character-delete control deletes from the Line the character
preceding the deletion character; use of n consecutive deletion characters
deletes n preceding characters <including blanks) up to the beginning of
the 'Line-:

For example:

*ABCDF@E would result in ABCDE being transmitted to the program file.

*A 8 C .SD E F .Ql.@@@D E F w o u l d res u l t i n ABC DEF be i n g t rans mi t t e d •

(The characters to be deleted are underlined for illustration.)

3-2 OJ31-00

o Use of the Line-delete control causes all of a Line to be deleted. The
characters DEL are printed to indicate deletion. For example:

*ACDEFG CTRL/X DEL

or

(all characters deleted;
carriage return automatic)

-<ready for new input)

* AC D E F G + (c l r r i a g e r· e t u r n)

DEL (all characters deleted)

-<ready for new input)

NOTE: CTRL/X, ATTN, or INT do not require a carriage return.

The control-character pair for each type of terminal cannot be used
for other than the deletion function assigned them.

In AUTOX and AUTO (automatic line number generation) line numbers and
spaces are not deleted.

Logan Procedure

To initiate communication with the Time Sharing System, the user performs the
following steps:

o Turns on the terminal

o Obtains a dial-tone on the associated phone-set

o Dials one of the numbers of his time sharing center

The user wi LL then receive either a busy signal to indicate that the Line is
not presently available or a high-pitched ton.: -- a "beep" -- to indicate that his
terminal has been connected to the computer.

The Time Shari.ng System is then prepared to output a logon message; either
automatically Cno terminal action required) or following a carriage return from the
terminal. The following is a sample of the automatic Logan message:

HIS TIMESHARING ON date AT time CHANNEL nnnn TS1

where time is given in hours and thousandths of hours Chh.hhh), and nnnn is the user's
ch an n e""'l'n'U m be r • Thi s i s t he st and a rd message, however t he use r s i t e may put i n a
message of its own. ·

The following is a sample of the logon message when a carriage return is
required:

110601
HIS TIMESHARING ON date AT time CHANNEL nnnn TS1

3-3 DJ31-00

The number "110601" identifies the type of channel to which the terminal is
connected. For a detailed explanation of the meaning of this number, refer to the
Remote Terminal Supervisor CGRTS) manual or the Network Processing Supervisor (NPS)
manual.

Following this message, the system asks for the.user'' identification:

USER ID -

The user responds, on the same line, with the user-ID assigned by the time sharing
installation management. This user-ID uniquely identifies a particular user already
known to the system. This ID is used to locate his programs and files subordinate
to the SfWIC and to account for usage of the time sharing resources. An example request
and response might be:

USE~ ID -J.P.JONES

NOTE: User's responses are underlined for illustrative purposes.

A carriage return must be given following any complete response, command, or
Line of information typed by the user. If a charge number is also required for
accounting purposes, the user can supply it as follows:

USER ID -J.P.JONES;1234567E

The charge number may consist of from 1 to 12 alphanumeric characters, separated
from the user-ID by a semicolon.

After the user responds wit~ his user-ID, the system asks for the sign-on
password that was assigned to the user along with the user-ID as follows:

PASSWORD--
111111111111

The user should type the password directly on the "strikeover" mask
provided below the PASSWO~D request. The password is used by the system as a check
on the legitimacy of the named user. If either the user-ID or password is given
incorrectly two consecutive times, the user's terminal is immediately disconnected
from the system.

On teletype-compatible devices, after the password is entered on the strikeover
mask, a random alphabetic character string is typed over the password entry. _The
user's password is thus "sandwiched" ·between strikeovers for hard copy devices or
totally overwritten for screen displayed devices.

On Visual Information Projection CVIP) devices, upon receipt of the
password, a Reverse Line Feed CRLF) character, followed by a string of spaces, is
issued to erase the entry from the screen.

3-4 DJ31-00

The user-ID and password may be given on the same Line when the query "USER ID-"
is issued, separated from one another by a dollar sign ($). Charge number, when
specified, must follow the password and be separated from the Latter with a semicolon.
Note that security is compromised by entering the password in this manner, since it
is not typed on a strikeover mask. Assuming the password of user J.P. Jones is
"JPJ", this method of Logan would be:

USER ID - J.P.JONES$JPJ;1234567E

The system attem 1 ts to overstrike the user's password after it is entered in
conjunction with the user-ID. The overstrike utilizes a backspace (BSP) character
that may not be recognized by some terminal types. Any Line (CTL/X) or character
editing (@) use during entry of the combined user-ID and password also effects the
completeness of the password overstrike.

At this point, if the accumulated charges for the user's past time sharing usage
equals or exceeds 100 percent of the current resource allocation, a warning message
is sent:

RESOURCES OVERDRAWN n%

If the accumulated charges exceeds 110 percent of the current resources, the
user receives the following message and is immediately disconnected:

RESOURCES EXHAUSTED - CANNOT ACCEPT YOU

If the user's file space utilization (used:avai lab le) is greater than 88 percent
used, the following information message is sent:

n BLOCKS FILE SPACE AVAILABLE

The number n specifies the number of 320-word blocks of unused file space for
this user. This does not affect the Logon procedure, and the user is permitted to
continue.

The following is an example of a complete Logon procedure, up to the point where
the user is ready to begin file building or exercising commands:

HIS TIMESHARING ON 05/26/77 AT 14.568 CHANNEL 0012

USER ID -J.P.JONES
PASSWORD
unuuuu
* - (the user begins entering input on this Line)

3-5 DJ31-00

The BRN, FRN, and JRN comm~nds can be issued independent of previous system
~election (if any) and imply RUN for BASIC, FORTRAN, and batch job submission,
resdectively. The command BSEQUENCE can be used to resequ~nce a BASIC file and
SEQUENCE can be used to resequence a non-BASIC fi Le, independent of the current system
selection.

Entering Build Mode Input

Following the logon procedure, the user is in build mode Cas indicated by the
initial asterisk) and is ready to build files and/or exercise commands. All lines
of input other than commands are accumulated on the user's current file. This is
normally the file that contains the program or text the user wants to work with. If
the user is building a new file, the current file will initiall.Y be empty.

If the user has recalled an old file {OLD filename) the content of the named
old file will initially be on the current file. Any input <except control commands)
will either be added to, merged with, or replace lines in the current file, depending
up o n t h e r e l a t i v e l i n e n um b e r i n g .o f t h e L i n e s i n t h e f i l e a n d t h e n e w i n p u t • (R e f e r
to "Correction or Modification of Line-Numbered Files" below.)

Following each Line of input (that is not a command) and terminating carriage
return, the subsystem supplies an initial asterisk, indicating that it is ready to
accept more input. In the case of command language input, the user is normally
returned to bui Ld mode following execution of the process requested by the
command.

A line of file building input must begin with a line number contained within
the first eight character positions of the Line. This number may optionally be
preceded by one or more initial blanks. The Line number facilitates correction
and mo.di f i cation of the source program • The l in e number i s a L ways terminated, (i • e • ,
immediately followed) by a nonnumeric character, which may be a blank.

3-6 DJ31-00

Correction Or Modification Of Line-Numbered Files

The correction or modification of the current file in Line number sequence
proceeds according to the following rules:

o Replacement: a numbered line will replace any identically numbered Line
that was previously typed or already contained on the current file; i.e.,
the last entered line numbered nnn will be the only Line numbered~ in
the file.

o Deletion: a Line consisting of a Line number only, (i.e., nnn), will cause
the deletion of any identically numbered line that was previously typed
or is already contained on the current file.

o Insertion: a line with a line number value that falls between the Line
number values of two existing Lines will be inserted in the file between
those two Lines.

At any point in the process of entering file building input in
Line-numbered subsystems, the LIST command may be given, which results in a
clean, up-to-date copy of the current file being printed. In this way, the results
of any previous corrections or modifications can be verified visually. Following
the command OLD filename, the LIST command can be used initially to inspect the
c on t en t s o f t h e c u r r en t sou r c e f i l e ; i . e • , t h e '' o l d 11 p r o g ram •

Automatic Terminal Disconnections

Once communication with the Time Sharing System has been established, any
question or request must be answered within ten minutes. If these time Limits are
exceeded, the user's terminal will be disconnected. A time-out of the user's line
will occur when the Line has I/O pending (e.g., output then input request).

3-7 DJ31-00

Logof f Procedure

To terminate the user's current session with the Time Sharing Syst.em and
disconnect the terminal, the BYE or LOGOFF command may be given.

*BYE

or

*LOGO FF

A report of the user's time sharing usage charges is given, as illustrated by
the following example, and the terminal is disconnected.

**COST: $ 0.17 TO DATE: $ 206.11=21%
**ON AT 15.000 - OFF AT 15.016 ON 04/19/77

If the BYE command is used, prior to the issuance of the user's usage charges,
the AFT is scanned for the user's temporary files and the user is queried as to their
disposition if such files exist. A carriage return in response to temporary file
disposition will release the temporary file(s) Listed. To save one or more of the
listed files, the user responds with the file names to be saved.

To terminate the current session without disconnecting the terminal, the command
NEWUSER may be given in place of BYE. This procedure allows another user to logon
immediately. The current user's logoff report is then printed and a new logon
sequence is initiated. NEWUSER may also be used to change the charge number, but
without going through the logoff/logon procedure.

Failure to follow logoff procedures as described above may result in
unpredictable problems (lines or files remaining busy, etc.). Certain data sets do
not automatically disconnect after logoff from the terminal. In such cases, it is
necessary to manually disconnect the data set by lifting the handset, pressing the
talk button, and hanging up the handset when the dial tone is heard.

Terminating An Cutput Process

A lengthy listing or other output of information at the terminal, initiated for
example by a LIST command, may be prematurely terminated by the use of the interrupt
control peculiar to the type of terminal in use. This interrupt control is as
follows:

o For teleprinter terminals -- the BREAK key

o For typewriter-Like terminals -- the ATTN or INT key

This control can also be used for abnormal termination of a program execution.
However, the user is cautioned against indiscriminate use of this control since the
results of its use are in some cases unpredictable (in regard to the status of files,
for example). The subsystem wi L l normal Ly return to build mode or to the subsystem
selection level following the use of an interrupt control.

3-8 DJ31-00

In order to supply file-building input from paper tape, the user gives the
command TAPE (#TAP if the subsystem is Text Editor). The subsystem responds with
READY. If the tape reader is ready, it will be turned on automatically. If it is
not ready, the user should position his tape in the tape reader and start the device.
Input is terminated when an X-OFF (or DC3) character is read by the paper tape
reader, or the tape is stopped and the user types X-OFF Cor DC3).

The tape may be~ repared off line from the keyboard, or it may be the result of
previous output punched by the paper tape unit. If prepared offline, it should
include carriage returns to terminate each line, just as if entering data online,
plus explicit line feeds to obtain legibility on the terminal printer during
preparation and transmission. The carriage return and Line feed must be followed
by two rubout characters for terminal timing considerations.

Command language may not be included on the tape. The input should be preceded
by several rubout characters and terminated by an X-OFF (or DC3) followed by several
rubout characters. NeithPr the X-OFF (or DC3) nor the rubout characters will appear
in the file.

As with keyboard input, a maximum of 160 characters is permitted per Line of
paper tape input. Excessive lines will be truncated at 160 characters, with the
remaining data placed in the next line. A maximum of two disk links (7680 words)
of paper tape input will be collected during a single input procedure, except in LUCID
mode, which has a limit of six links. All data in excess of two disk links will be
lost.

Building File From Non-ASCII Paper Tape

In order to supply file building input from non-ASCII paper tape (unaltered
eight-bit codes), the user gives the command LUCID instead of TAPE. The system reads
in the tape and stores the data on a file without editing or parity modifications.
The system does not delete or act on any characters in the data stream, such as DEL,
X-OFF (or DC3), CR, etc. The input will be terminated when a pause of over one second
occurs in the data transmission. Termination does not require an X-OFF (or DC3)
character, as does normal paper tape input via a Front-End Network Processor.

NOTE: LUCID cannot be used if data communication is via a Low-Speed Line Adapter
(LSLA) or an Asynchronous Communication Base (ACB) on a DATANET 355/6600
Front-end Network Processor.

During paper tape input via a Front-end Network Processor, the paper tape
input will stop when an error message is to be sent to the terminal.

3-9 DJ31-00

Automatic Paper Tape Input

At any point during the operation of the Time Sharing System and at a time when
the user must supply keyboard ihput, a previously prepared paper tape in special
format may be used to simulate a s·equence of resp()nses, one Line at a time. The system
need not be in build mode and direct (i.e., conversational> responses, file building
input, and/or commands may be entered.

This feature allows the preparation of a paper tape for input to the Time Sharing
System and/or subsystem<~> prior to connection with the system and allows terminal
operation without supervision during the connection. The paper tape input may be
for a specific subsystem or production program execution only, or may include anything
from logon through logoff procedures. Obviously such a tape must be error free.

The required format for each input line is as follows:

data string (up to 80 characters)
carriage return
X-OFF (or DC3)
RUBOUT (may be multipl~, but one is minimum requirement)

Character-delete control characters may be used. Line-delete controls must be
used as follows:

NOTE:

data string (to be deleted)
(line-delete control) character
X-OFF (or DC3)
RUBOUT (one is minimum)
corrected data itring
carriage return
X-OFF (or DC3)
RUBOUT

Par i t y errors encountered du r i n g paper tape i n put m·a y cause the term in a L
to be disconnected.

It is sugge~ted that extraneous Line feeds not be included in the tape. If,
however, the user desires line feeds for terminal printer Legibility, they should
be either between the data string and carriage return, or one line feed immediately
following x~OFF (or DC3).

To initiate automatic paper tape input~ the user should position the tape and
start the reader at any time that keyboard input is required.

The terminal is automatically disconnected if no input is received within ten
minutes of the request for such input, whether via paper tape or keyboard.

3-'10 DJ31-00

KEYBOARD/DISPLAY TERMINAL OPERATION

The keyboard/display terminals are cathode-ray tube display devices which ~re
similar in operation to the teleprinter terminals. This section describes operation
of some types of display devices commonly used with the Time Sharing system:

o DATANET 760 VIP (Visual Information Projection)

o 765/775/785'7700 Series VIP

The keyboard for the 775/785 Series VIP is shown in Figure 3-1. Most of the
display devices have a similar keyboard. Some of the keys and their function are
discussed here, but for a complete description, the user should refer to the manual
for the specific device.

r---- OPTIONAL FUNCTION KEV GROUP----,

ICLRI A I B I c ID IE IF I G

x

&

6

SPACE

TAB

NEW
LINE

SHIFT

(

7 8

$ %
4 s

! ..
1 2

~

Figure 3-1. Keyboard For 775/785 Series VIP Keyboard

3-11

)

9

&

6

41=
3

=

PRT

TX

LR

PR

E.TX

TAB

DJ31-00

The Time Sharing System can interface with most of the VIP terminals. Both
synchronous and asynchronous units are available, with line speeds of 1200, 2000,
24uU or 48uU bits per second. A complete pnge of input may be composed before
transmission to the Time Sharing System, and a complete page of output may be
displayed. The page consists of 4 to 26 lines, depending on the model. (See Table
3-1.)

NOTE: The number of characters transmitted or received is subject to
Limitations of the terminal. Also the user should reference the Remote
Terminal Supervise~ (GRTS) manual.

Table 3-1. Display Devices

Terminal Device Char/ Lines/ Char/ End of Text Transmit Print Receive
Type Code line Page Page Symbol Symbol Symbol Symbol

7651775
VIP 11 46 22 1012 II none none none

785/786
VIP 1 2 92 22 2024 none none none

7700
VIP 13 8U 1 2 960 none none none

77UU
VIP 14 46 22 1012 none none none

770U
VIP 1 5 80 24 1920 none none none

780U
VIP 22 80 24 1920 none none ·none

The keyboard/display terminals differ significantly from the
keyboard/printer terminals in entering data. As mentioned above a complete page can
be entered by one transmission; also while the user is composing the input from
the keyboard, thP. terminal is in effect offline since no data is transmitted until
the user initiates the proper transmit procedure.

CAUTION: The system automatically rlisconnects any terminal which does not
input (transmit from the terminal) within ten minutes.

3-12 DJ31-UU

Also when a user requests output <e.g., LIST), only a full page is sent even
though the file could be Longer. The remainder of a file may be displayed, a page
at a time, by continued requests for transmissions until the end-of-file is
reached.

Data Display And Transmission

The keyboard is similar to that used with hard-copy terminals. Most of the keys
are in the same physiC1L Location on the keyboard. Although the user should depend
upon the instruction manual accompanying the unit for the function of special keys,
some of those special keys are discussed here.

After the unit is turned on and allowed time to warm up, an entry marker should
appear in the upper left-hand corner of display unit. This entry marker is the
position on the display where the next character or space will be entered. As a key
or space is struck the entry marker advances to the next position. When the end of
a line is reached, the entry marker moves to first character position Cleft side)
of the next line. When the end of the last line on the page is reached, the entry
marker moves to the top of the screen, first character position.

NOTE: The entry marker can be positioned by the use of special keys
without changing or clearing the display. The most obvious are the four
arrow keys. Some devices (see Figure 3-1) have line return CLR), page
return CPR), new line, backspace CBS), and forward space CFS) keys which
also position the entry marker without changing the display.

The entry marker also marks the point where transmission to the computer is to
begin. For example to enter one line, possibly a one-word command, the steps are
as follows:

1. Type the word LIST
The entry marker now appears at the space following the "T" in LIST.

2. Press ETX, end of text.
c.

The ETX symbol is two vertical Lines Cl j) or

3. The entry marker moves another space and must be moved to the first
Letter to be sent, "L" in this case. LR Line return will return the marker
to the beginning of the Line or with the backspace key (..-.).

4. Pressing TX (transmit) sends the Line, LIST, to the system.

On some keyboard/display terminals the transmit sequence CETX, LR, TX) is
generated by pressing a single function key.

In general, a transmission is bracketed by the position of the entry
marker, and end-of-text which may be one or more Lines.

3-13 DJ31-00

After turning on the unit, the user should allow
Some units require approximately 30 seconds to warm up.
appear on the screen before continuing.

time for it to warm up.
The entry marker should

When the key boa rd Id i s p L a y ·uni t i s ready, t he use r d i a L s t he number of t he t i me
sharing center. T~e following is a typical Logan procedure <user responses are
underlined; comments in parentheses):

$•SSC PASSWD,NN,TSS
(screen is cleared by the system)
112501
HIS TIMESHARING ON DATE AT TIME CHANNEL NNNN · TS1

USER ID -
UR-I DENT
PASSWORD - -

OLD FILEX
(password erased from screen)

(screen is cleared by the system)

Where: SC - user selected station code

PASSWD - password

NN - number of Lines per page: 04, 08, 12, 16, 22, 22L, 22N, 24
or 2 6

The initial Logan input:

S•SSC PASSWO,NN,TSS

is a requirement of the particular system configuration and may vary. Users should
be notified by their computer operations group as to the exact format required at
the site. The message:

TERMINAL DISCONNECT ISP

is displayed to notify the user that the Logon was incorrectly entered. Since the
terminal is still online, the us~r may attempt to enter a corrected Logon message.
It is not necessary to re-dial.

Additional rejection error codes may be sent to the terminal as a result of some
central system detected error condition. (See Remote Terminal Supervisor (GRTS)
manual).

3-14 DJ31-00

Logof f

The logoff procedure and the logoff message are identical to that for the
teleprinter. However, in addition to the BYE command the display units may be
disconnected with the command "$*$DIS".

Unique Features

In addition to the logon procedure, the following features are unique to the
keyboard/display terminals.

o TAPE/#TAPE/LUCID/#LUCID commands cannot be used.

o More than one Line of data may be transmitted to or received from the system
at one time.

o Special character-delete and line-delete control characters are not
applicable, as all errors may be corrected by positioning the entry marker
over the erroneous character and typing the correct one.

o A LIST or other output commands will display only one page, up to 2024
characters. If a file is Longer than one page, the remainder of the file
may be displayed by either depressing the print CPRT) key or repeating the
output command.

o A "BREAK" (interrupt) signal is transmitted to the system by means of the
following control message:

This message can be used to interrupt some lengthy output process, such
as the unwanted remainder of a long listing, or to interrupt execution of
a user's program.

o With the use of algebraic subsystems BASIC and ABACUS, the up-arrow
(+) symbol used as the exponentiation operator is replaced by a BLK
(blink) charact~r preceding the expon~nt. The blink character it~elf is
displayed as a blank, and causes the exponent characterCs) following the
blank, in turn, to blink.

7700 SERIES VIP TAPE CASSETTE AND PRINT PAGE ADAPTER OPERATIONS

The 7700 Series VIP can read or write to a tape cassette unit or direct data
to a print page adapter for hard-copy printing •. All three units are capable of off Line
operation. For' a description of offline operation, refer to the 7700 Series
Visual Information Projection {VIP) Systems manual, Order Number AL29-.---

Output To Cassette

Cassette output is initiated with a WRITE TAPE n command where n is the tape
numper Cn=1 or 2, default tape number =1>. The Time Sharing System directs output
to the designated tape cassette unit. The output is also displayed on the screen.
The WRITE CEOF n command disables the cassette output mode of operation and writes
an end-of-file (EOF) on the current tape.

3-15 DJ31-00

Example:

*OLD TEST
wWRITE TAPE
*LIST
10 THIS IS A TEST
20 OF THE TAPE
30 CASSETTE FUNCTIONS
40 END
*WRITE CEOF 1
EOF

*

Input From Cassette

Displayed on screen ~nd
sent to tape cassette.

Writes EOF on tape.

Cassette input is initiated with a READ TAPE n command which is similar to the
TAPE command used to initiate paper tape input. Data from the cassette is transmitted
in variable sized blocks of up to a maximum block size equal to the screen size. The
c a s s e t t e t a p e m u s t h a v e a n E O F C w r i t t e•n o n t h e t a p e w i t h t h e W R I T E C E 0 F n
command) to terminate the TAPE READ sequence.

Example:

*NEW
*READ TAPE 1
10 THIS IS A TEST
20 OF THE TAPE
30 CASSETTE FUNCTIONS
40 END
EOF

*

Echo Back

Sent from cassette
to screen and to
the system.

The 7700 terminal operator can have the data that is keyed in recorded on the
print page adapter as well as on the system by depressing the PRINT KEY. The Time
Sharing Executive "echoes" the input block back to the printer.

Backspace Cassette

The BSP TAPE n command enables the terminal user to backspace the cassette tape
one record.

Rewind Cassette

The REW TAPE n command enables the terminal user to rewind the cassette
tape.

3-16 DJ31-00

Output To Printer

The PTON command enables subsystem output to be routed to the print page adapter.
The PTOF disables the printer mode of operation in TSS.

Example:

*OLI> TEST
*PTON
*LIST

*PTOF

*
or

*NEW
*PTON
*CATALOG

*PTOF

*

All output goes to printer - not displayed
on the screen.

Catalog output goes to printer - not
displayed on the screen.

Continuous Output Mode

When data is routed to the cassette unit or to the printer, a continuous stream
of data is transmitted. While the data is visible on the screen, for cassette
functions, the blinking asterisk is omitted and there is no need to press the print
key for each page.

Summary 2...!. 7700 Cassette/Printer Commands

PTON print on

PTOF print off

WRITE TAPE n write cassette n

WRITE CEOF n write EOF on cassette n

READ TAPE n read cassette n

BSP TAPE n backspace cassette n one record

REW TAPE n rewind cassette n

Where: n is optional; if not specified, the default value is 1. If
specified, n is either 1 or 2.

Caution: These commands can only be used on 7700 Series VIP (device 13, 14,
or 15 octal>.

3-17 DJ31-00

COMMANDS £..QB_ VIP TERMINALS

In addition to the cassette/printer commands, the commands described below are
only for VIP-type terminals. ·

Form Feed Commands

The no form feed command (NFORM) ~llows the user to control the
transmission (from the Time Sharing Executive) of the form feed character after the
prompt for a page.request. The NFORM command can be entered at system selection
level or at build input level. It causes the cursor to be returned to column one
- in character position one of the screen. This leaves all of the previous data on
the screen. The command FORM reverses the NFORM command, whereby form feeds are again
transmitted after the prompt for a page request.

Case Commands

These commands are for VIP terminals which can display both uppercase and
Lowercase characters. At logon all lowercase characters are transliterated to
uppercase characters. The command LCASE allows both uppercase and lowercase
c h a r a c t e r s t o b e t r a n s m i t t e d ·t o t h e V IF>ter m i n a l • T h e c om ma n d U C A S E r e v e r s e s t h e
operation.

3-18 DJ31-00

SECTION IV

COMMAND LANGUAGE REFEREN~E

The time sharing user accomplishes tasks during a session by entering commands
or service requests in response to a system prompt. The full complement of supplied
commands available to a user is described in this section. Each command is described
in the following sequence:

Purpose describes the function of the command

Format describes the full capabilities of the command in a standard
notation. The standard notation is described below under "Command
General Form".

Description describes in more detai L some of the parameters used in the general
form. If the command requires no arguments or requires rather
straight forward options, this section may be absent.

Discussion the function of the command describes any special uses and notes
any Limitations of which the user should be aware.

Examples shows different uses of the command.

4-1 DJ31-00

Command General Form

The general form of each command is described using a standard notations. The
following is a complete set of rules for the notations used in the general form:

1. Material enclosed in square brackets, [J, indicates optional
parameters. They may be included or omitted as required by the user.

2. When material is enclosed in braces, { }, one, and only one, of the
enclosed parameters must be chosen.

3. An ellipsis,
repeated.

indicates that the preceding parameter may be

4. Mater·ial enclosed in angle brackets,< >,represents parameters the us.er·
is to supply.

5. The vertical bar "I" indicates that a choice among the parameters separated
by vertical bars must be made.

6. All text printed entirely in capital letters must be typed as is, unless
the portion of the general form containing it is itself optional.

7. All underlined notation is required, unless the portion of the format
containing it is itself optional. Any underlined portion overrides any
implied editorial notation (i.e., [J {} < > I).

8. Any usage of spaces, semicolons, commas, dashes, parentheses, etc., in the
general form indicates required punctuation.

9. ::=may be interpreted as "is defined to be". Parameters enclosed in angle
brackets, < > , are separated from their definition by the ::= symbol.

For example, using this notation, the general form of the RELEASE command is
described as follows:

General Form RELE[ASE][<fi Ledesc>[;<fi ledesc>J. •• J

In the above example, special meaning is implied by the notation. Since square
brackets indicate that the enclosed items are optional, RELE[ASEJ means that ASE is
optional in typing the command name, and.[<filedesc>[;<filedesc>J ••• J means that
this field, <filedesc>[;<filedesc>J. •• , is optional after the command name. Within
this l.atter field is another optional field, namely, ;<filedesc>. The ellipsis that
follows ;<filedesc> indicates that this field may be repeated. The angular.brackets
that appear in the field, <filedesc>, indicate that the user supplies a name for that
field. Depending upon which optional parts are used, the punctuation that may be
required is a space and, possibly, semicolons. In summary, the RELEASE command may
be t y p e d as RE L E o r RE LE A S E f o l l owed by none , one , o r m .o r e t h a n one f i L e n am e • Th e
command name and the first file name must be separated by a space; any additional
file names must be preceded by semicolons.

4-2 DJ31-00

Some of the valid forms for the RELEASE command are:

1) RELEASE (prompts for the name of the f i le to be
released)

2) RELE <same as RELEASE)

3) RELEASE FILEA (releases the f i Le FILEA)

4) RELE FILE A FIL EB (releases the f i L.es FILE A and FILES)

s) RELE FILEA;FILEB;FILEC (releases the f i le s FI LEA, FILES, and FILEC)

The usefulness of the notation becomes clearer when more difficult commands are
considered.

Example 1
Format

Examples

OLD [<file-ref>[{; I: I tn< fi Le-ref>] ••• J

<file-ref> ..
<line-range>::=

I
I

<begin-line>::=
<end-line> ::=
<line> ::=

OLD

2) OLD DATA74

{*l<fi ledesc>HC<line-range>)J
<begin-Line>-<end-Line>
<begin-line>-
-<end-line>-
<line>
<Line>
a 1- to 8-digit decimal number

(prompts for the file name)

(the contents of file DATA74 replace the prior
contents of the current file)

3) OLD MAIN.;SUB1;SUB2
(the contents of files MAIN, SUB1 and SUB2 are
concatenated in the order listed and replace the
prior contents of the current file)

4) OLD WEIGHTSC100-500);VOLUME(100-500)
Clines 100 through 500 of file VOLUME are appended
to lines 100 through 500 of file WEIGHTS and they
replace the prior contents of the current file)

5) OLD PROG1;FIXES;SUB1;SUB2*ALTERS
(merges the contents of the files PROG1 and FIXES,
concatenates with the result the contents of files
SUB1 and SUB2, and merges the contents of the
file ALTERS with the result)

4-3 DJ31-00

J:xample 2
Format

or

Examples

LISTCHlEC<columns>JJ[[<file-list>:<Line-list>JJ

LISTL[*:<filedesc>J

<columns
<file-List>
<file-ref>
<line-list>
<line-ref>
<line-range>

<begin-line>
<end-Line>
<line>

LI ST

: : =
: : =
: : =
: : =
: : =
: : =

: : =
: : =
: : =

a decimal number
<file-ref~(;<file-ref>J •••
C*l<filedesc>}[(<line-list>)J
<Line-ref>[,<line-ref>J •••
<line>l<line-range?
<begin-line>-<end-line>
<begin-line>-
-<end-line>
<line>
<line>
a 1- to 8-digit decimal number

<Lists the entire contents of the current file)

2) LIST 50-80,90,120
(lists lines SO through 80, 90, and 120 of the
current file)

3) LIST CLARION(10-50,100-150,);TEMPIN(10,30,220-)

4) LISTH TESTFILE

(lists lines 10 through 50 and lines 100 through 150
in file CLARION; and, lists lines 10, 30, and 200
through the end of the file TEMPIN)

(lists the entire contents of file TESTFILE with a
date and time header)

5) LISTE /STUDENT/GRADES

6) LIS TL

<lists the entire contents of the file GRADES in
subcatalog STUDENT with each line in the file listed
with 72 columns per line on the terminal)

<Lists the last line of the current file)

Generally the user will be able to use a command after examining
examples and reading the comments for a command. But, to understand the
capabilities of a command, the user must understand the general form.

the
fu L l

4-4 DJ31-00

AB\\
Purpose \.

')-

ABC

The ABC\'irnmmand invokes the ABACUS subsystem to evaluate a
arithmetic ex~ressior.

user supplied

Format

ABC [<expression>]

<expression>::= arithmetic expression to be evaluated

Discussion

FOR variable - iV, LV, STEP; arithmetic expression
<IV>::= initial value for FOR variable
<LV>::= Limiting value for FOR variable

<STEP>::= step increment for FOR variable.
A step of 1 is assumed.

The ABACUS subsystem evaluates arithmetic expressions in an interpretive manner
and displays the results. Using expressions or iterative FOR Loops, the subsystem
can calculate the answers to a variety of mathematical problems.

The subsystem can carry intermediate results forward into other calculations
by assigning the interim results to named variables. Variable names are composed
of one to eight alphanumeric characters, the first of which must be alphabetic: e.g.
A1, B, SQRTSUM. Variable names are used within ABACUS to perform an assignment of
value and are of the form "variable= expression". Variables can appear as part of
free-standing expressions or in FOR Loop assignments. When a variable is used within
the scope of a FOR loop it no longer is preserved for follow-on calculations.

Expressions in ABACUS can employ a mixture of integers, decimal fractions, or
numbers expressed in scientific notation. Using the standard arithmetic
operators for addition, subtraction, multiplication and division augmented with
a summation operator C& - ampersand) and an exponentiation operator Cf-up arrow),
the user can construct a variety of expressions. Parenthesis may be used freely to
clarify the evaluation of an expression.

ABACUS has a number of constants and functions whlch may be used during the
construction and evaluation of expressions:

CONSTANT

PI
RADIAN
E

DEFINED VALUE

3.14159 •••
57.295 •••
2.71828 •••
significance to 18 digits

4-5 DJ31-00

ABC

FUNCTION

ABS(X)
ATN(X)
COS(X)
EXPCX)
LOG(X)
SIN(X)
SQR/SQT(X)
TANCX)
rnTCX)

MEANING

Absolute Value of X
Arctangent of X
Cosine of X
e to power of X
Natural Logarithm of X
Sine of X
Square root of X
Tangent of X
Integer of X
For trigonometric functions
X is an angle in radians

ABC

Function names are reserved words and may not be used as variable names.
Constant names may be used in a variab~e assignment if the constant value is to be
changed.

To compute a summation, the ampersand must appear at the beginning of an
expression and may not be enclosed in parenthesis. The entire portion of the
expression is assumed to be the argument to be summed. Examples of FOR Loop usage
may be combined with summation expressions.

If the step value, c, is not specified, 1 is assumed. Substitutions for a, b,
and c may be positive or negative integers, expressions, or predefined
variables.

For example:

? FOR X = 1, 5;
z = 2199.1149

FOR Y 7, 50, 9; z &CX+Y>*PI

In summations, all FOR variables are treated as summation indices and in the
case of summations over two or three FOR variables, the indicated summations are
n~sted. Each s.ummation variable takes on the values a, a+c, a+2c, ••• up to but not
exceeding the value b. Thus the expression above would expand as follows:

s 43

z L: 2: (x +Y)
X=1,2, ••• Y=?,16, •••

z ((1+7) rr + (1+16) 7T + (1+25) 7r + ••• +(5+34) TT' + (5+43) TT')

Although an expression containing a summation operator must be preceded by one
or more FOR specifications (in order to be meaningful), FOR variables may also be
used in expressions that do not contain the & operator. For example:

? FOR A = 3, 11, 2; FOR B 1, 3; x

4-6 DJ31-00

ABC ABC

In these cases, the expression will be evaluated separately for each possible
combination of FOR values (as is done in FORTRAN). The output from the example
e~pression just above would appear as:

A
3
3
3
5
5
5
7
7
7
9
9
9

11
11
11

B
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3

x
3
9

27
5

25
125

7
49

343
9

81
729

11
1 21

1331

If a Label variable is used, as in the above example (X), the Last determined
value is remembered for the variable.

ALL calculations in ABACUS are performed in double-precision floating-point
with a precision of 18 digits. Displayed results are limited to seven places in the
fractional portion although 18 significant digits are carried internally.

Examples

'1) ABC (prompts for the expression)
2) ABC 3.14159*7.63-2.513
3) ABC 1.379-2
4) ABC X = SIN C30/RADIAN)
5) ABC X = 5

x 2*4
6) ABC Y -5*2.41E-3
7) ABC X 3

Y 3*(X)
Z 3(X) 3*(X), 3*X, and 3(X) are equivalent

8) ABC
?X= ·4*3*2/5

x
?Y= SINC45)

y

? Z·= X*Y
z

9) ABC FOR 1=1,5; A=Z*l

10) *ABC X=PI*5
x

1
2
3
4
5

4-7

4.8

0.85090352

4.0843369

a
4.0843369
8.1686738
12.253011
16.337348
20.421685

15.707963

DJ31-00

ACCESS
ACCE

Purpose

ACCESS
ACCE

The ACCE command provides an interface to the file system which permits the
manipulation of catalogs, files and the attributes of each. Subordinate to the user's
own SMC/UMC entry, the ACCE subsystem allows the user to perform the following:
create and modify structure, add or remove passwords, give specific or general
permissions to catalogs or files, set file modes of access, create files and catalogs
and alter file sizes, list structure, rename catalogs or files, and release
structure.

Format

ACCE
ACCE

<arguments>
[user supplied short-form argumentsJ[jargsJ

where <arguments> is defined as:

<function>,<pathname>,<option> •••• <option>

<function> ::= CCICFIAFIDFIMCIMFIPCIPFjRCIRFILCILS
<CC> ::= catalog create function
<CF> ::= create file function
<AF> ::=access file function
<Of> ::= deaccess file function
<MC> ::=modify catalog function
<MF> ::=modify file function ·
<PC> ::=purge catalog function
<Pf> ::=purge file function
<RC> ::= release catalog function
<Rf> ::= release file function
<LC> ::= List catalog function
<LS> ::= List specific function

The initial communication from ACCESS, following subsystem selection, is a
request for a choice of function; i.e., FUNCTION?.

4-8 DJ31-00

ACCESS
ACCE

ACCESS
ACCE

The functions that may be requested and the effect produced by each function
are as follows (function may be spelled out or abbreviated as indicated by the
underlining):

ACCESS FILE - Brings a file into the Available File Table.

CREATE CATALOG - Creates a subcatalog.

CREATE FILE

DEACCESS FILE

LIST CATALOG

LIST SPECIFIC

MODIFY CATALOG

MODIFY FILE

PURGE CATALOG

PURGE FILE

Defines file space and attributes for a given file
name.

- Takes a file out of the Available File Table.

- Lists the names of the catalogs and files which emanate
from this catalog.

- Lists in detail the description of the catalog or file
specified.

Modifies the name, password, and/or permissions
associated with a given catalog.

Modifies the name, maximum size, password, and/or
permissions associated with a given file.

- Deletes a catalog from the system along with any
subcatalogs and files which are subordinate to it. ALL
released file space is overwritten.

- Deletes a file from the system, overwriting the
released file space.

RELEASE CATALOG - Deletes a catalog from the system, along with any
subcatalogs and files which are subordinate to it. Any
released file space is not overwritten.

RELEASE FILE - Deletes a file from the system,
overwriting the released file space.

but without

Each function requires a series of responses from the user. The short form
allows the user to supply the responses on a single Line preceded by the
function. Typical prompts are (as supplied by ACCE):

CATALOG STRUCTURE TO WORKING LEVEL?
NEW CATALOG NAME?
PASSWORD?
GENERAL PERMISSIONS?
SPECIFIC PERMISSIONS?
ACCESS FILE?
FILE NAME, SIZE CIN LLINKS) 1 MAX SIZE, MODE?

The responses can be seen in the following short form response:

FUNCTION? CF,/CAT1$ABC/CAT2$AOK/FIL1,B/4,j12~,R,AF

4-9 DJ31-00

ACCESS
ACCE

ACCESS
ACCE

The function is CREATE FILE; the catalog is CAT1 with password ABC, the
subcatalogs CAT2 with password AOK; the file name is FIL1 a file with an initial size
of 4 blocks (8) and a maximum of 12 blocks; it has read·(R) permissions as well as
access for the user (AF>.

DEVICE/name or type/

AF
OPEN

CLEAR

request a specific device name or type specified as
follows:

DSS170
DSS180
DSS181
DSS190
OSS191
DSS270
MS·0310
MS0400
MS0450
MS0500
MS0501

access file after creating it

zero (erase) file space after creating and ac~essing
it

Access type and mode are defined under each applicable function description.
Options may appear, comma-separated, in any order. The keywords BLOCKS and LINKS
may be abbreviated to the first letter, as may the access-type and mode options.
Options unique to the Modify Catalog and Modify File functions are described along
with those functions.

All replies may be extended to two or more typing lines by terminating a line
with a word delimiter <slant, comma, or dollar sign plus carriage return), at a
convenient point,. implying that the input is not complete but is to be carried over
to the next line or lines.

QUESTIONS AND RESPONSES

Sets of questions associated with each function fo~low, along with the general
form of the response to each question. The minimum re qui red user response is
underlined for illustrative purposes. Each set is followed by examples.

4-10 DJ31-00

ACCESS
ACCE

CREATE CATALOG

FUNCTION? £f.

CATALOG STRUCTURt TO WORKING LEVEL?

ACCESS
ACCE

user-ID/cat-name$pasword/ ••• /cat-name$pasword (qualified catalog names)

NEW CATALOG NAME? cat-name

PASSWORD?
KUii UM U UDUC

GENERAL PERMISSIONS? access-type, ••• ,access-type

SPECIFIC PERMISSIONS? access-type, ••• ,access-type/user-ID/user-ID/ •••

The access-types follow; all may be spelled out, or abbreviated as underlined;
except for EXCLUDE and LOCK, which must be spelled out:

Acceptable
Permission Abbreviation Attaches Permission(s)

.!!_EA D R R, E

WRITE w R,W,A,E

APPEND A A

EXECUTE E E

PURGE p R,W,A,E,P,REC

MODIFY M R,W,A,E,P,M,LOCK,C,REC

LOCK (none) LOCK

CREATE c c

RECOVERY REC R,W,A,E,REC

EXCLUDE (none) EXCLUDE (specific permission only)

If no response to the question SPECIFIC PERMISSION? is given, (i.e., only a
carriage return>, the catalog is created and the question NEW CATALOG NAME? is
reissued.

Example replies <user responses are underlined):

FUNCTION? CC

CATALOG STRUCTURE TO WORKING LEVEL?

JDOE/CAT1$ABC

4-11 DJ31-00

ACCESS
ACCE

ACCESS
ACCE

This response states that there is a subcatalog named CAT1 that is concatenated
directly to the user's master catalog identified by the user-ID JDOE, and that it
is desired to create a new catalog from this level. The password ABC was attached
to catalog CAT1 when it was created.

NEW CATALOG NAME? ~

This response indicates the name of the catalog, CAT2, created at this
point •

PASSWORD?
IXIUIUIURNM

The response, AOK, is entered on the strikeover mask, indicating that this is
the desired password. CA carriage return only response would indicate no
password.)

GENERAL PERMISSIONS?

The carriage return only response here indicates that general permission is
not granted at this level. A response of READ would indicate that any unspecified
user has permission to read and execute (if _meaningful> any fi Le that emanates
from this catalog.

SPEClFIC PERMISSION? READ/BJONES/ASMITH

SPECIFIC PERMISSION? WRITE/WHITE

This combination of responses states that the users who have Logged onto the
system under the names BJONES and ASMITH can pass through this Level with read or
execute permission for any files below, and that the user WHITE can pass through with
read, .write, execute, and append permissions.

SPECIFIC PERMISSION?

The carria9e return alone means that no further specific permissions are to be
given; the catalog is now created and the question

NEW CATALOG NAME?

is reissued, allowing the user to create another catalog at the same Level (i.e.,
also emanating from CAT1).

Alternative forms of the response to CATALOG STRUCTURE TO WORKING LEVEL? are
as follows:

/CAT1$ABC

4-12 DJ31-00

ACCESS
ACCE

ACCESS
ACCE

Assuming the user to be JDOE, this response is equivalent to the one given above,
JDOE/CAT1SABC. The initial slant indicates the user's own master catalog.

A response of indicates that the user desires to create a structure
directly subordinate t) the User Master Catalog (UMC). This response is equivalent
to specification of only the user-ID alone.

Example of short form reply:

FUNtTION? CC,/CAT1$ABC/CAT2,PASSWORD/AOK/,READ/BJONES,
MORE? ASMITH/,WRITE/ALLONG/

"CREATE FILE

FUNCTION? CF

CATALOG STRUCTURE TO WORKING LEVEL?

user-ID/cat-name$password/ ••• /cat-name$password (qualified catalog name)

FILE NAME,SIZECIN LLINKS),MAX SIZE,MODE?

file name, initial size Cllinks), maximum size Cllinks), mode .CR or S)

PASSWORD?
I XI UIDUlltURU

GENERAL PERMISSIONS? access-type, ••• ,access-type

The access types are the same as those for Create Catalog.

SPECIFIC PERMISSION?

access-type, ••• ,access-type/user-ID ••• /user-ID

Random File Specification: If required, a file
random-access-treatment indication, by responding to
LLINKS),MAX SIZE,MODE? question as follows:

file name, initial size, max. size, R

can be created with a
the FILE NAME,SIZE(IN

If random CR> is specified, a further question will be asked:

LOGICAL RECORD SIZE? record size in words

Random I/O files for Time Sharing FORTRAN may have a Logical record size
attribute; if use of random files does not require this attribute, a response with
a carriage return only is required.

4-13 DJ31-00

AC"CES'S ACCESS
ACCE ACCE

ACCESS FILE? .:!!1., !, ~, or C

This option allows the user to access Copen) a file at the time it is created.
If CLEAR or C is specified, the file space will be zeroed.

Example replies (user responses are underlined):

FUNCTION? CF

CATALOG STRUCTURE TO WORKING LEVEL?

/CAT1$ABC/CAT2$AOK

This response defines user-ID/CAT1/CAT2 as the catalog from which the file is
to emanate. The initial slant indicates that the succeeding qualifier string is
concatenated to the user's own master catalog.

FILE NAME,SIZE(IN LLINKS),MAX SIZE,MODE? FIL1,4,12

This response asks for a file space of four llinks initially, with a
maximum eventual size Limit of 12 llinks, named FIL1. Since mode is not specified,
the file will be created for sequential Clinked) usage.

PASSWORD?
MSllKISININM•~ <null response given)

No password is assigned to this individual file.

GENERAL PERMISSIONS? READ

SPECIFIC PERMISSION?

None is granted at this Level, but those granted at the Level of CAT2 (CREATE
CATALOG in the pr~vious example) app(y to this file.

ACCESS FILE? YES

This option allows the user to access Copen) a file at the time it is
created.

FILE NAME,SIZECIN LLINKS),MAX SIZE,MODE?

This permits creation of other files at the same level.

4-14 DJ31-00

ACCESS
ACCE

Example of short form reply:

FUNCTION? ~AT1$ABC/CAT2$AOK/FIL1,B/4,12/,R,AF

ACCESS
ACCE

NOTE: File mode by default is linked (sequential); i.e., MODE/SEQ/.

ACCESS FILE

FUNCTION? AF

CATA~OG STRUCTURE T0 WORKING LEVEL?

user-ID/cat-name$password/ ••• /cat-name$password (qualified catalog name)

FILE NAME? filename$password"altname"

PERMISSIONS DESIRED?

access-type, ••• ,access-type

The following table summarizes the legal permission combinations:

Type of Allocation Allowable Operations Fi le Conditions Permissions
Word Abbrev. on Fi le Content Reguired Required

READ R read no writers, not READ
abort locked

WRITE w read and write no other writers, WRITE
READ~WRITE R,W not abort locked

APPEND A append no writers, not APPEND
abort locked

EXECUTE E execute no writers, not EXECUTE
abort locked

READ,APPEND R,A read and append no writers, not READ and
abort locked APPEND

RECOVERY REC read and write no other writers RECOVERY

QUERY Q read none READ

READ, R,C read not abort Locked READ
CHANGING

TEST T read and write no writers, not READ
to scratch f i le abort locked

TEST, T,C read and write not abort locked -~.READ
CHANGING to scratch file

WRITE,C w,c read and write not abort locked WRITE
READ,WRITE,C R,W,C

4-15 DJ 3_1 -00

~\CITS'$
ACCE

ACCESS
ACCE

Random File Specification: A file can be accessed for random treatment, whether
created as random or linked, by responding to the FILE NAME? question with:

filename$password,R

or

f i Lename$f:)assword"al tname" ,R

If the file was created as Linked, the random treatment indication is temporary;
i.e., for the current access only. If the fi Le was created as random, the ,R
specification is superfluous.

Example replies (user responses are underlined):

FUNCTION? AF

CATALOG STRUCTURE TO WORKING LEVEL?

JDOE/CAT1$ABC/CAT2$AOK

The user in this case is not the creator of the file to be accessed, so the user
must define the other user's master catalog (e.g., JDOE) from which the file emanates,
along with any required subcatalogs and passwords.

FILE NAME? .£1.!:..!.

If a password were required, it could be concatenated to the name with a dollar
sign; i.e., FIL1$ABC. Otherwise, it will be requested.

PERMISSIONS DESIRED? READ

General Read permission was granted for this file. <Several specific Read
permissions were also granted at the level immediately above CAT2.) Termination of
this response with only a carriage return causes the file. to be accessed and the
request

FILE NAME?

to be reissued.

Example of short form reply:

FUNCTION? AF,JDOE/CAT1$ABC/CAT2$AOK/FIL1,R

4-16 DJ31-00

ACCESS
ACCE

DEACCESS FILES

FUNCTION? DF

ACCESS
ACCE

FILE NAME? fi le.1ame (or CLEARFILES, PERMFILES, STAR FILES, or TEMPFILES)

The response for this function is the name of the file to be deaccessed. The
name supplied is always the name under which the file was accessed, whether this was
the actual name or a temporary alternate name. If CLEARFILES is used, all of the
user's available files (except *SRC and SY**) are deaccessed including temporary
files. PERMFILES or TEMPFILES may be used to remove all permanent or temporary.fi Les
(except *SRC and SY**) from the AFT, respectively. STARFILES removes all files
(except *SRC and SY**) from the AFT that contain an asterisk in the name. Note that
the input collector file (SY**) will never be deaccessed.

Example of short form reply to deaccess a file that was created in an earlier
example:

FUNCTION? DF,FIL1

PURGE CATALOG

FUNCTION? PC

CATALOG STRUCTURE TO WORKING LEVEL?

user-ID/cat-name$password/ ••• /cat-name$password (qualified catalog name)

CATALOG TO BE PURGED? cat-name$password

The dollar sign is used only when the password is concatenated directly to a
file or catalog name.

Example replies (user responses are underlined):

FUNCTION? PC

CATALOG STRUCTURE TO WORKING LEVEL?

/CAT1$ABC

4-17 DJ31-00

i1C"C'Es"'S
ACCE

ACCESS
ACCE

This response defines the subcatalog CAT1 concatenated to the user's own master
catalog.

CATALOG TO BE PURGED? CAT2$AOK

(The catalog and all catalogs and files subordinate to it are now purged.)

CATALOG TO BE PURGED?

is reissued.

Example of short form reply to purge a catalog that was created in an earlier
example:

FUNCTION? PC,/CAT1$ABC/CAT2$AOK

PURGE FILE

FUNCTION? PF

CATALOG STRUCTURE TO WORKING LEVEL?

user-ID/cat-name$password/ ••• /cat-name$password (qualified catalog name)

FILE TO BE PURGED? file name$password

Password request will be issued if incorrectly given or omitted.

Example replies <user responses are underlined):

FUNCTION? PF

CATALOG STRUCTURE TO WORKING LEVEL?

JDOE/CAT1$ABC/CAT2$AOK

The user in this case is ALLONG, not the file creator.

FILE TO BE PURGED? FIL1

<The file is now purged.)

The request

FILE TO BE PURGED?

is reissued.

4-18 DJ.31-00

ACCESS
ACCE

ACCESS
ACCE

Example of short form reply to purge a file that was created in an earlier
example:

FUNCTION? !:f...d.!1E/CAT1SABC/CAt2SAOK/FIL1

RELEASE CATALOG

FUNCTION? RC

The question/response sequenee and the short form reply for this function are
completely analogous to t~ose for the Purge Catalog function. The Release Catalog
functio~ would normally be used in preference to Purge Catalog -- as it is more
economical -- unless the user has a very stringent file-securi~y requirement.

RELEASE FILE

FUNCTION? RF

The question/response sequence and the short form reply ior this functi~n are
completely analogous to those for the Purge Fi le function. The Release Fi le function
would normally·be used in preference to Purge File -- as it is more economical -
unless the user has a very stringent file-security requirement.

MODIFY CATALOG

FUNCTION? ~

CATALOG STRUCTURE TO WORKING LEVEL?

user-ID/cat-~ame$passwor~l •• ,/cat-nameSpassw-0rd (qualified catalog name>

CATALOG TO BE MODIFIED? cat~name and password (if needed)

NEW NAME? new cat-name

C
new password}

NEW PAS SW'OR D?
Ml&l!Dl~WINIOI DELETE .

C
access-type, ••• ,access-type}

GENERAL PERMISSIONS?
DELETE ·

C
a c. c e s s - t y p e. , ••.•. ' a c ·.c e s s - t y p e I J

SPECIFIC PERMISSION? user-ID ••• /user-ID
DELETE/user-ID/ ••• /user-ID

4-19 OJ31-00

ACTffi"
ACCE

Example replies (user responses are underlined>:

FUNCTION? MC

CATALOG STRUCTURE TO WORKING LEVEL? /CAT1$ABC.

CATALOG TO Bf MODIFIED? CAT2$AOK

NEW NAME?

ACCESS
ACCE

A carriage return only response means that the catalog name is to remain
unchanged.

NEW PASSWORD?
i1111~IMUKllUUC (response "XYZ" given)

The original password AOK is replaced by XYZ.

GENERAL PERMISSIONS? READ

As originally created, general permissions were not assigned at this Level.
This response replaces this null set with READ and EXECUTE permission.

SPECIFIC PERMISSION? W/BJONES

This respons~ replaces the original specific READ permission for BJONES with
R£AD, WRITE, EXECUTE and APPEND permission.

SPECIFIC PERMISSION? DELETE/ASMITH

This response cancels any permissions for ASMITH that previously existed.

SPECIFIC P~RMISSION? P,LOCK/WHITE

This response replaces the original set of permissions for WHITE with PURGE and
LOCK.

SPECIFIC PERMISSION?

The carriage return implies that no further modifications are to be made; the
changes are now processed and the question

CATALOG TO SE MODIFIED?

is reissued.

4-20 OJ31-00

ACCESS
ACCE

Special Short Form Option Formats

To rename a catalog:

NEWNAME/cat~log/ or N/catalog/

To exclude, by user-ID, from any general permissions:

EXCLUDE/user-ID, ••• , user-ID/

To delete specific permissions, by user-ID:

DELETE/user-ID, ••• ,user-ID/

To delete all general permissions:

DELETE/GEN'L/(or simply DELETE)

NOTE: EXCLUDE and DELETE may not be abbreviated.

Example of short form reply:

ACCESS
ACCE

FUNCTION? MC,/CAT1$ABC/CAT2$AOK,PASSWORD/XYZ/,W/BJONES/,DELETE/ASMITH/

MORE?- P/WHITE/,LOCK/WHITE

MODIFY FILE

FUNCTION? MF

CATALOG STRUCTURE TO WORKING LEVEL?

user-ID/cat-name$password/ ••• /cat-name$password (qualified catalog name)

FILE TO BE MODIFIED? filename and password (if needed)

NEW NAME? new filename

NEW MAX SIZE? new maximum size (in Llinks)

NEW PASSWORD?
~llllKINIXK~MN (

new password}

DELETE

4-21 DJ31-00

.ATfES'S A c C E s s
ACCE ACCE

C
access-type, ••• ,access-type}

GENERAL PERMISSIONS?
DELETE

(

a c .c e s s - t y p e I us e r - I D I ••• I u s e r - I D }
SPECIFIC PERMISSION?

DELETE/user-ID/ ••• /user-ID

Example replies (user responses are underlined):

FUNCTION? MF

CATALOG STRUCTURE TO WORKING LEVEL?

/CAT1$ABC/CAT2$XYZ

FILE TO BE MODIFIED? FIL1

NEW NAME? MASTER1

NEW MAX SIZE? 20

This response increases the maximum file size to 20 llinks (originally 12).

NEW PASSWORD?
KllllRIMIXKDCDU((response "DEPT37" given)

This response attaches the password DEPT37 (which would be in the
strikeover area) to this file (none originally assigned).

GENERAL PERMISSION? DELETE

The original general READ permission is deleted.

SPECIFIC PERMISSION? P/BJONES

PURGE permission for user BJONES is added at this level. This permission applies
to this file only.

Special short form option formats:

To rename a file:

NEWNAME/filename/or N/filename/

To exclude, by user-ID, from any general permissions:

EXCLUDE/user-ID, ••• ,user-ID/

4-22 DJ31-00

ACCESS
ACCE

To delete, by user-ID, specific permissions:

DELETE/user-ID, ••• ,user-ID/

To delete all ge~eral permissions:

DELETE/GEN'L/

or

DELETE

NOTE: EXCLUDE and ~ELETE may not be abbreviated.

To change the mode of a file:

MODE/mode/

Example of short form reply:

FUNCTION? MF,ICAT1$ABC/CAT2$XYZ/FIL1,N/

MORE? MASTER1/,B/20/,PASS/DEPT37/,DELETE,P/BJONES/

LIST CATALOG

FUNCTION? !:.£_ or !:.!1.!. CATALOG

CATALOG STRUCTURE INCLUDING CATALOG TO BE LISTED?

user-ID/cat-namel, ••• ,/cat-name,n,x(mm-dd-yy),S,A,R,FIRST/name/

ACCESS
ACCE

Passwords need not be given in the catalog structure unless the catalog to be
listed was created by another user. A user may list only catalogs created by him,
or the libr~ry catalog (#LIB) or, the command library catalog C#CMD), or catalogs
belonging to other users for which the user has modify permission.

4-23 DJ31-00

ACCESS
ACCE

ACCESS
ACCE

The List Catalog provides selective Listing of catalog and file names by the
use of the optional parameters n,x<mm-dd-yy),S,A,R, FIRST/name/ where:

name.

x, specifies whether date is date created CO, date of Last access
<A>, or last date the file contents were changed (L)

mm-dd-yy, starting date for C, A, or L option

n, number of files to be Listed

s, sort the names

A, abbreviated list (eight per Line)

R, reverse the order of printing

FIRST/name/ starts the catalog listing at the specified catalog or file

Any option may be omitted and the order in which they are given is
immaterial.

Examples (user responses are underscored):

FUNCTION? LC

CATALOG STRUCTURE INCLUDING CATALOG TO BE LISTED?

/CAT1

Requests a list of the catalog and files emanating from CAT1.

/CA11,C(01-01-79)

Requests a Li5t of all catalog and file names created under CAT1 since January
1, 1979.

/CAT1,A(07-01-79),R

Requests a list of all catalog and file names that emanate from CAT1 and were
accessed since July 1, 1979 and in reverse order (most recent to oldest).

/CAT1,L(06-01-79),10

Requests a list of the first ten catalog and file names that emanate from CAT1
and whose contents were changed since June 1, 1979.

4-24 DJ31-00

ACCESS
ACCE

/CAT1,R,10

ACCESS
ACCE

Requests a List of the ten most recently created catalog and fi Le names emanating
from CAT1.

/CAT1,10

Requests a List of the ten oldest catalog and fi Le names emanating from
CAT1.

/CAT1,FIRST/FILX/

Requests a List of catalog and file names emanating from CAT1, starting at
FILX.

LIST SPECIFIC

FUNCTION? LS

CATALOG STRUCTURE TO WORKING LEVEL?

user-ID/cat-name/, ••• ,/cat-name

CATALOG OR FILE TO BE LISTED?

CATALOG OR FILE NAME

Example replies (user responses are underlined):

FUNCTION? LS

CATALOG STRUCTURE TO WORKING LEVEL?

/CAT1

CATALOG OR FILE TO BE LISTED? FIL1

Passwords need not be given in the catalog structure unless the specified file
or catalog was created by another user.

The description of FIL1 would now be Listed.

4-25 DJ31-00

ACCESS
ACCE

ACCESS
ACCE

The system wi L l provide the fol lowing information <but not the password) about
the catalog or file:

FILE NAME
ORIGINATOR
DATE CREATED-
DATE CHANGED-Cmonth/day/year plus time of day in parentheses>
LAST DATE ACCESSED-
NUMBER OF ACCESSES-
MAX FILE SIZE-
CURRENT FILE SIZE-
FILE TYPE-RANDOM,LINKED or I-D-S
DEVICE-
GENERAL PERMISSIONS
SPEC IF IC PERMISSIONS-

In addition to a List of the user's own catalogs or files, a user may obtain
a specific List of the library (#LIB), the command Library (#CMD), or the catalogs
or fi.Les belonging to other users for which the user was the creator or has modify
permission.

EXAMPLES OF LINE DELIMITER USE

The Line delimiters can be used in several ways either to shorten the
question/response sequence or terminate a function at any given point.

Examples of the effect of different response terminations are as follows:

FUNCTION? CC

CATALOG STRUCTURE TO WORKING LEVEL?

The carriage return alone implies a master catalog.

NEW CATALOG NA~E1 001*

Passwords or permissions are not wanted for this catalog and no further questions
are wanted. Return is to NEW CATALOG NAME? Level.

NEW CATALOG NAME? 002

PASSWORD?
~llll~IMllK~MN (PASS2**)

4-26 DJ31-00

ACCESS
ACCE

ACCESS
ACCE

No permissions are to be assigned to this catalog, and creation of catalogs at
this position is finished. Return is to function level.

FUNCTION? if.

CATALOG STRUCTURE TO WORKING LEVEL?

/002$PASS2

FILE NAME,SIZE(IN LLINKS),MAX SIZE,MODE? 02.1,1,3

PASSWORD?
MMMMMMMMMMMM <null response given)

GENERAL PERMISSIONS? READ

SPECIFIC PERMISSION? W/RJJONES**

Creation of files at this level has been completed.

FUNCTION? carriage return Cor DONE)

Finished with ACCESS.

*

Return to the subsystem selection level.

SPECIAL FEATURES

F i L e s c r ea t e d by me a-n s o f t h e C re a t e F i l e fun c t i on a r e no t n e c e s s a r i l y
contiguous; i.e., successive Llinks of a file are not necessarily in physical sequence
on the storage device. Furthermore, both the Create File ~nd Access File functions
assume that the file will be treated as a Linked file. For the standard
subsystems provided with the Time Sharing System, these file characteristics are
suitable because Linked files are most commonly used.

If, however, in the use of a given subsystem, it would be advantageous to have
contiguous files, this characteristic can be specified in response to FILE
NAME,SIZE(IN LLINKS),MAX SIZE,MODE?. The form of this response is:

filename,initial size C

The parameter C indicates, in Create File only, that a contiguous file is
desire~. No maximum size may be specified.

Similarly, if random treatment of files is required in a given user-written
subsystem, a file can either be created as a random fi Le or accessed as a random fi Le.
If created as such, it is always treated by the GCOS I/O Supervisor as a random file.
If it is created as a linked file, it can be accessed as a random file, but in that
case, the random treatment indication is temporary; i.e., it applies to that
access only.

4-27 DJ31-00

A-c: CE SS
ACCE

Example

ITC'Ess
ACCE

Type all underline responses and note the general comments. To test a catalog
structure it will be helpful to draw block diagrams as we go. Since our user-ID is
ANITA we will start at that level.

c ANITA)

Enter subsystem access and create a subcatalog.
*ACCESS
FUNCTION? CC CREATE A CATALOG.
CATALOG STRUCTURE TO WORKING LEVEL?
A.NITA Identify the USER ID

0

NEW CATALOG? MIKE3 The new name is MIKE3
PASSWORD? KAR~ MIKE3's Password is KARLA3
GENERAL PERMISSIONS? R,W,E,A The permissions are READ, WRITE, EXECUTE,

APPEND
SPECIFIC PERMISSIONS? (carriage return) None specified
NEW CATALOG? (carriage return) stop adding catalogs at this level

ANITA

RESULT --

MIKE3

FUNCTION? CC
CATALOG STRUCTURE TO WORKING LEVEL?
ANITA/MIKE3$KARLA3 Add a

Level
catalog to the catalog MIKE3 - Lower

NEW CATALOG? KIM
PASSWORD? TI_M __
GENERAL PERMISSIONS?
SPECIFIC PERMISSIONS
NEW CATALOG? CR

RESULT --

R,W,E,A
CR

ANITA

KIM

4-28 DJ31-00

ACCESS
ACCE

ACCESS
ACCE

FUNCTION? CF
CATALOG STRUCTURE TO WORKING
/MIKE3$KARLA3/KIM$TIM

Create a file
LEVEL?

FILE NAME, SIZE (IN rLCKS),MAX
HUBER,12,36

PASSWORD? JOE
GENERAL PERMISSIONS? ~

FILE NAME, SIZE (IN BLKS) MAX.

RESULT--

FUNCTION? CF

Place this file under the catalog KlM
SIZE?

The name is HUBER and it is a min. of 1 link
and a max. of 3

Permissions are read and write, the asterisk
indicates you a~e through with your responses -
process this information and return to the first
question.

SIZE? CR

ANITA

HUBER

CATALOG STRUCTURE
/MIKE3$KARLA3

TO WORKING LEVEL?

FILE NAME, SIZE (IN BLKS) MAX.
COLEMAN,1242
PASSWORD? CR
GENERAL PERMISSIONS? R,W,*
FILE NAME, SIZE (IN BLKS) MAX.
FASICK,12,12
PASSWORD? JIM*
FILE NAME, STfE (IN BLKS) MAX.
BROWN,12,24
PASSWORD? BILL**

Files will ~e added to catalog MIKE3
SIZE?

Fi le name COLEMAN, min. -1 link, max. 2 links
Do not assign a password
Return to original question

SIZE?
File is FASICK with 1 Link min. and max.
Password is JIM - return to original question

SIZE?
File is BROWN 1 to 2 links
Password is BILL - double asterisks indicate a
completion of this series of questions, return
to the function le~el.

FUNCTION? AF This wi LL access a file
CATALOG STRUCTURE TO WORKING LEVEL?
LIBRARY Access a library file
FILE NAME $ PASSWORD? FOOTBALL
PERMISSIONS DESIRED? R*

FIL~ NAME $ PASSWORD? DONE

*AFT

Read permission desire, then return to original
question.
The word DONE given at any Level will return
you to system.
Request a listing of open files to see if
FOOTBALL is added.

4-29 DJ31-00

~~CCESS
ACCE

ACCESS
ACCE

At this point Lets Look at the complete catalog-file outline with passwords.

COLEMAN

DF
FOOTS.ALL**
DONE

FASICK
$ JIM

LIBRARY

FOOTBALL

BROWN
$ BILL

--RESULT

KIM
$ TIM

HUBER
$ JOE

Re-enter access subsystem
Deaccess a file

*ACCE
FUNCTION?
FILE NAME?
FUNCTION?
*STATUS If the file FOOTBALL was deaccessed there will

not be any open files.

*ACCE
FUNCTION? LC List a catalog
CATALOG STRUCTURE INCLUDING CATALOG TO BE LISTED?
/MIKE3 List from the catalog level MIKE3
FUNCTION? LC
CATALOG STRUCTURE INCLUDING CATALOG TO BE LISTED?
/MIKE3SKARLA3/KIM List from catalog level KIM down.
Now that this catalog/file mountain is built, let's tear it down:

FUNCTION? PC Purge a catalog
CATALOG STRUCTURE TO WORKING LEVEL?
/MIKE3$KARLA3 ·catqlog to be purged is below the level CMIKE3)
CAT. TO BE PURGED? KIM
PASSWORD? TIM
NOTE: THIS"""'WfPES OUT CATALOG KIM AND ALL THE FILES UNDER KIM (HUBER $ JOE)

CATALOG STRUCTURE TO WORKING LEVEL? CR
FUNCTION? PF PURGE A FILE
CATALOG STRUCTURE TO WORKING LEVEL?
ANITA/MIKE3$KARLA3 The file is assigned to MIKE3 catalog
FILE TO BE PURGED? COLEMAN
PASSWORD? CR
FILE TO BE PURGED? CR

4-30 OJ31-00

ADMN ADMN

Purpose

The ADMN command gives the System software administrator, whose user-ID is
•• SYS ADMIN, the ab Lity to control the FMS structure necessary to support
Selectable Unit CSU) ~ackaging.

Format

ADMN

D e s c .r i p t i o n

The commands of the ADMN subsystem are:

CREATE - Creates user-ID required to hold a Selectable Unit CSU>.

RELEASE - Deletes a SU version by releasing the space it occupies back to
FMS.

INSTALL - Installs a previously Loaded SU version as the production
version.

DESTROY - Deletes an entire SU (opposite of CREATE)

AUDIT - Produces a report of all the installed software. -

DONE - Used to exit th~ System Administrators interface.

4-31 DJ31-00

AFT AFT

Purpose

The AFT command displays the contents of the Available File Table (AFT>.

Format

AFT

Discussion

The AFT command provides a convenient display of all files presently open in
the use r ' s av a i l ab l e f i l e t a·b l e. The d i s p l a y l i st s t he f i l e names i n a
condensed manner with multiple entries per line. The AFT command allows the user
to quickly determine the presence or absence of a file from the available file table.
Both temporary and permanent files that are present are listed.

Examples

*AFT
SY** *SCR *CFP TEMP1

*GET TEMP2
*AFT

SY** *SCR *CFP TEMP1 TEMP2

4-32 DJ31-00

ALGOL ALGOL

Purpose

fhe ALGOL commard invokes the subsystem interface to the ALGOL compiler.

Format

ALGO (LJ

Discussion

The ALGOL time sharing system provides the capability for com~iling, Loading,
and executing ALGOL programs. Refer to ALGOL manual (0027) for further details.

4-33 DJ31-00

A PB APB

Purpose

The APB command allows a user to retrieve the last All Points Bulletin
issued by either the host console operator or the MASTER user.

Format

APB

Discussion

If no message exists, an immediate return to the previous level of
processing is taken. If a message exists in the time sharing executive communication
r~gion buffer area, a DRL T.CMOV is executed to obtain the message for subsequent
display formatting at the terminal.

Example

1) *APB

2) *APB
12.015 TEST MESSAGE

4-34 DJ31-00

A PRINT A PRINT

Purpose

The APRINT command invokes the CONVERT subsystem to generate an ASCII printer
report of a TSS file. Typically the output file from RUNOFF is a candidate for
APRINT.

Format

APRI[NTJ [INFILEJ [:OPTIONS]

[INFILEJ::=<filedesc>
[OPTIONS J

Description

Media Code Options

The output record format options specify the physical
record. The default option for the CONVERT command is "ASCII".
and their meanings is as follows:

BCD - variable-length BCD - media code 0

format of the output
A list of the options

COMDK - BCD compressed deck card image (COMDK) - media code 1

CARD - BCD 14-word card image - media code 2

PRINT - BCD variable-length print line image - media code 3

OLDASC - obsolete TSS ASCII - media .code 5

ASCII - standard system format ASCII - media code 6

A PRINT ASCII print line image - media code 7

ACARD - ASCII card image - media code 10

SAME a record output media code is the same as its input media
code

4-35 DJ31-00

A PRINT A PRINT

Line Number Options

Line numbers can exist with COMDK, CARD, ACARD, OLDASC, and ASCII records. All
BCD, PRINT, and APRINT records cannot possess line numbers. The line number for an
ASCII or OLDASC record consists of 1 to 8 numeric characters. These numeric
characters must be among the first eight characters in a line. A Line number is
defined to include any leading blanks. A line number is terminated by a nonnumeric
character, including blank. If the "#" character terminates a line number and
if it is one of the first eight characters of a line, it is considered to be a
delimiter. It is treated as neither part of the line number nor part of the text.
The line number for COMDK, CARD, and ACARD records is defined to be all the trailing
digits in columns 73-80. This field may begin with nonnumerics; these also are
considered neither part of the line number nor part of the text.

The line number options may specify:

1. Whether line numbers are to appear in the output text.

2. The actual Line number values.

The default line number option is "ASIS". A description of each of the options
follows:

ASIS

STRIP

MOVE

I(i,j)

Line numbers are assumed not to be present in the input file.
Text, including leading/trailing numeric characters and ·11 #"'s are
left as is.

Strip line numbers from the input text before reformatting and writing
the output text. Input COMDK, CARD, and ACARD records are truncated
at column 72. Line numbers on ASCII and OLDASC records, when present,
are discarded and the first character following the line number is
treated as the first character of the line.

Move line numbers. The input records have the line numbers
detached from the text string, either from the front CASCll or OLDASC)
from columns 73-80 (COM DK, CARD, or ACARD). The output records have
the line numbers reattached to the text string, either at the front
(ASCII or OLDASC) or in columns 73-80 (COMDK, CARD, or ACARD). If
the output records are BCD, PRINT, or APRINT, the line numbers are
not reattached and the M option acts similar to the S option.

Insert line numbers beginning
j. The arguments i and j are
defaults are i=10 and j=1.0.
line-numbered. If the output
numbers are not inserted and

4-36

with line number i and incrementing by
optional. If they are not given, the
The input file is assumed not to be

records are BCD, PRINT, or APRINT, line
the I option is ignored.

DJ31-00

A PRINT A PR 1 NT

RCi,j) Resequence line numbers. Strip any existing line numbers from the
input text and insert new Line numbers in the output text, beginning
with i and incrementing by j. The arguments i and j are optional.
If thev are not given, the defaults are i=10 and j=10. If the output
record; are BCD, PRINT, or APRINT, line numbers are not inserted and
the R uption behaves as the S option.

NCch) Implies the M option and specifies that the normal tab character
(the colon) and tab settings (8, 16, 32, 73) have been employed in
bui Lding the input fi le(s). The (ch) argument may be used to define
a character which replaces the colon as the tab character.

LABEL CabcdeCi-j)fghijCi-j)---) If the output records are COMDK, CARD, or
ACARD, then a Label is placed Left-justified in columns 73-77. The
label is specified as 1 to 5 nonblank characters. The fields
"abcde" anj "fghij" represent the Labe.Ls. The Label is placed on only
those Lines with line numbers between i and j inclusive. Up to 10
distinct Labels may be given. If more than one Label is given though,
the Ci-j) specifications may not overlap.

The LABEL option is meaningful only if Line numbers are attached to
output records. Therefore, the Label option is completely ignored
unless it is accompanied by either the insert, resequence, or move
option.

For the I and R options, output Line numbers for ASCII and OLDASC records wi LL
h a v e ·a t L e a s t t h e n um b e r o f d i g i t s s p e c i f i e d · f o r i i n I (i , j) o r R < i , j) • T h u s
RC0010,10) will result in line numbers 0010, 0020, 0030,---.

Input records are assumed to have line numbers when the STRIP, MOVE, and
RESEQUENCE options are specified. Otherwise, Line numbers are assumed to be absent
and leading numerics in ASCII format are treated as real text. When Line numbers
are assumed present, tabbing and columnizing are performed relative to the start of
the real text.

The user must be careful not to alter the Line number values of a BASIC
f i Le •

Character Manipulation Options

A description of each of· the character manipulation options follows.

TAB(ch,i,j---;ch,i,j---;----> Expand tab characters into blanks. Use "ch" as
a tab character with settings i,j,k,etc. Usually, any
occurrence of the tab character in the input file(s) results in
the replacement of the tab character with a string of blanks up
to the next tab setting. However, if a tab character is
encountered beyond the ~ast tab setting specified for that tab
char~cter, tt is treat&d as a normal nontab character.

4-37 DJ31-00

APR INT A PRINT

If a tab character is specified without specifying any tab
s et t· i n g s , d e f a u l t s e t t i n g s o f 8 , 1 6 , 3 2 , a n d 7 3 a r e a s s um e d • I f
the tab option is given without any arguments, the normal tab
character, colon, and the default settings are assumed. There
is no limit to the number:- of tab characters or settings
allowed.

UNTABCch,i,j---;ch,i,j---;----> Insert tab characters, replacing blanks. Use

LOWER

UPPER

BEGINCch)

COLUMNS Ci- j)

SQUEEZE

TRAIL

"ch" as a tab character with settings i, j, k, etc. Any
occurrence of a string of blanks terminating on an "untab" tab
stop is replaced by the character "ch".

If a tab character is specified without specifying any tab
settings, default settings of 8, 16, 32, and 73 are assumed. If
the untab option is given without any arguments, the normal tab
character, colon, and the default settings are assumed. There
is no limit to the number of tab characters or settings
allowed.

Convert all alphabetic characters to lowercase. This option is
meaningful only if the output record·s are ASCII, OLDASC, or
APR INT.

Convert all alphabetic characters to uppercase. This option is
meaningful only if the output records are ASCII, OLDASC, or
APRINT.

Begin a new line (record) immediately after the character
"ch". The character "ch" is treated as a delimiter and not part
of the text. It is not placed in the output text. When the "ch"
character is located at the beginning or end of a line, it
is simply deleted. Strings of the "ch" character are treated
as a single "ch" character.

Delete all of the characters in a line except those which
are located within columns i through j inclusively. The options
BEGIN and TAB are both completed before COLUMNS takes effect.
If a record does not extend through column j prior to the COLUMNS
option execution, it is blank filled to column j. Thus, when
the COLUMNS options is in effect, the length of all generated
output records is j-i+1 characters.

Replace any string of two or more blanks by a single blank. The
options BEGIN, TAB, COLUMNS, and UNTAB are all performed before
SQUEEZE is executed.

Delete all trailing blanks on a Line. The TRAIL option is
performed immediately after the SQUEEZE option.

A number of options affect the length of an output text line. It is
important that the user understand the order in which these options are
performed. The order (from first to last) in which the options are executed is:

BEGIN
TAB
COLUMNS
UN TAB
SQUEEZE
TRAIL

4-38 DJ31-00

A PRINT A PRINT

Miscellaneous Options

VERIFY

IGNORE

DISCARD

TIME

DEFAULT

If th"' VERIFY option is in effect when CONVERT completes the
proces>ing of an input file, then CONVERT gives a brief summary of
the nuriber of records obtained from the file. This summary gives,
for each media code, the number of records which had that media
code.

Ignore all embedded $$ control lines. Treat them as text.

Discard all nontext records. Nontext records are those records whose
media code is not one recognized and interpreted by CONVERT. The JRN,
JPRINT, JPUNCH, APRINT, and DISPLAY commands require that nontext
records be di:scarded. The CONVERT command normal Ly does not re qui re
that nontext records be discarded. When nontext records are
encountered during the execution of the CONVERT command, they are
written to the output file, but no reformatting or media conversion
is performed.

When the TIME option is invoked, the date and time of day are printed
at the user's terminal.

The DEFAULT option is used to nullify all options which the user has
specified either on the command line or embedded $$ control Lines.
The default option has no affect on any of the "specialized" options.
Because of the nature of the DEFAULT option, it is meaningless for
it to be located in the options field of the command Line. Therefore,
if the DEFAULT option is encountered in the options field, an
error message is issued. The same reasoning applies to the placement
of the DEFAULT option anywhere other than the beginning of a$$ control
line.

File Processing Options

SELECT (file) The SELECT option is analogous to the$ SELECTA card. The select
option allows an input file to specify other input files. Upon
encountering the SELECT option, the selected file is obtained
and is used in place of the$$ control line. Nesting of selects
is permitted up to 17 Levels. The SELECT option is meaningful
and valid only on a$$ control line. Only one SELECT option may
be specified on a $$ control line.

INCLUDE If the INCLUDE option is in effect, CONVERT, upon encountering
the SELECT option, uses the selected file as an input file.

EXCLUDE If the EXCLUDE option is in effect, CONVERT ignores the SELECT
option.

The purpose of the INCLUDE and EXCLUDE options is to allow the user to
control the performance of the select options while not forcing
disregard:

him to

1. Other options on the same$$ control Line.

2. All $$ control lines.

4-39 DJ31-00

A PRINT A PRINT

The INCLUDE option is the default option for the JRN command. The EXCLUDE option
is the default option for the JPRINT, JPUNCH, APRINT, DISPLAY, and CONVERT
commands.

Specialized Options

The "specialized" options are a class of options completely distinct and separate
from all preceding options. The "spe.cialized" options are unlike other options in
that they take effect only when all input files have been read, converted, and
closed; i.e., after the output file has been completely generated. All other options,
of course, are meant to be used when the output file is in the process of being
generated.

ROUT(xx)

WAIT

COPY(nn)

IDENT<info)

MONITOR

The ROUT option is applicable to the JRN, JPRINT, APRINT, and
JPUNCH commands. This option causes the implied fi Les generated
by the program execution to be directed to the specified
two-character remote station. Only one ROUT entry is
permitted.

The WAIT option is applicable to the JRN, JPRINT, APRINT,and
JPUNCH commands. This option causes the user to wait until the
completion of the spawned job in the batch environment. The wait
period may be broken out of by hitting the break key. When
the job completes execution, the user is informed of the job's
termination status and, if the JOUT option is in effect, the JOUT
subsystem is invoked.

The COPY option is applicable only to the JPRINT, APRINT, and
JPUNCH commands. This option causes the generation of nn
multiple copies of the listing or punched deck. The maximum
number of copies that can be produced from a single JPRINT/JPUNCH
job is 13.

The IDENT option is applicable to the JPRINT, APRINT, and JPUNCH
commands. This option allows the user to minimize the
subsystem/user interface involved in the use of the
JPRINT/JPUNCH commands. When the IDENT option is present, the
normal question/answer sequence of

$!DENT? response

is bypassed.
argument is
question.

The information presented as the !DENT option
used ·instead of the user-response to the

The MONITOR option is applicable to the JPRINT, APRINT, JPUNCH,
and JRN commands. This option allows the user to monitor or
track the status of his spawned job as it is executed in the batch
environment. When the job completes execution, the user is
informed of the job's termination status and, if the JOUT option
is in effect, the JOUT subsystem is invoked.

4-40 DJ31-00

)

A PR I NT A PRINT

DIRECT The DIRECT option is applicable to the JRN, JPRINT, APR INT, and
JPUNCH commands. If the DIRECT option is given on the command
Line, it overrides any JOUT or ROUT option which the user has
rLaced on a$$ control Line. This option allows the user who,
1:>r instance, usually specifies the JOUT option to place it on
a $$ control line. He can then override it without being
required to change his $$ control Line.

INDENTC99) The INDENT option applies to the APRINT command and
specifies the number of print columns to indent from the Left
margin.

PAGELENGTHC99) The PAGELENGTH
specifies the
processed.

option applies
print page size

to
for

the APRINT
non-RUNOFF

command and
files being

The ROUT, JOUT, and DIRECT options are mutually exclusive. The MONITOR, TALK,
WAIT, and DISMISS options are also mutually exclusive. Mutually exclusive options
are a group of options for which only one member of the group of options may be in
effect. If the user attempts to give two mutually exclusive options in the options
field of the command Line or on a $$ control Line, an error message is given.

Example

*LIST

.page 1

.pape 66

.head 1,1
TSS DESIGN SPECIFICATION
.spac 3
.cent 1
EXTERNAL DESIGN SPECIFICATION
.spac (LIST interrupted)
*RUNO
ready
REFORM *,TEMPPRT
ready
NO STOP
ready

runoff complete
DONE

/

*APR! TEMPPRT:IDENTCP10ACAJ12,L. MILLER,STATION J J J),INDEC10),COPYC2)
SNUMB 2155V

4-41 DJ31-00

ASCASC ASCASC

Purpose

To convert an media code-5 ASCII format file to the standard, media code-6 ASCII
time sharing format; or, convert a type-6 ASCII format file to type-5 ASCII format;
or, convert a ASCII time sharing format file to type-5 ASCII format.

Format

ASCA[SCJ[<infi le>; [otfi le>JJ

<infi le>
<otfile>

Discussion

: : =
*l<filedesc>
*l<filedesc>

In the execution of the ASCASC command, the input file is read and converted
to the format required for the output file. The input file's record control word
is checked to determine the format of the file. If the record media code is 5, the
file is in time sharing ASCII format. If the record media code is 6, the file is
in standard system ASCII format. Based on this determination, one of the following
translations is performed:

1. If the input file is in time sharing ASCII format (character-oriented
file), the characters in the file are read and converted to th0
word-oriented standard system ASCII format for the output file.

2. If the input file is in standard system ASCII format, the words in the file
are read and converted to the time sharing ASCii format for the output file.
Up to 72 characters will be converted.

If neither record media code 5 or 6 is found in th.e record control work, a message
is sent to the user informing him that the file specified is not an ASCII file.

Examples

1) ASCASC
(prompts for the names of the two ASCII files)

2) ASCA ASCIIS;NEWASCII
(assuming that the file ASCIIS contains old type-5 ASCII
format data, converts it to the new ASCII time sharing
format and stores the result in the file NEWASCII>

4-42 DJ31-00

ASCASC

3)

4)

ASCASC

ASCA ASCII6;ASCII5
(assuming that the file ASCII6 contains old type-6 ASCII
format data, converts it to the old type-5 ASCII format and
stores the result in the file ASCII5)

ASCASC NEWASCil;ASCIIS
(assuming that the file NEWASCII contains new ASCII time
sharing format data, converts it to the old type-5 ASCII
format and stores the result in th~ file ASCitS>

4-4) D.J11 -'.)Q

ASCBCD ASCBCD

Purpose

To convert an ASCII time sharing format file to a standard system format BCD
file.

Format

ASCBCCDJ[<ascfile>;C<bcdfile>JJ

<ascfile>
<bcdfile>

Description

<ascfi Le>

<bcdfile>

Discussion

::= •l<filedesc>
::= <filedesc>

is the name of a file or the current file that contains ASCII time
sharing format data. The current file is specified by an
asterisk.

is the name of a file that will contain the converte·d standard
system format BCD data. If this file does not already exist, it
is created with general READ permission.

The characters in the ASCII fi Le are converted to corresponding BCD characters,.
For some ASCII. characters, however, there are no equivalent BCD characters. Refer
to Appendix D for a description of the character transliterations.

A question/answer sequence is initiated by this command unless the ASCil file
contains first-line reformatting information.

Examples

1) ASCBCD
(prompts for the names of the ASCII and BCD files)

2) ASCBCD DATA.A;DATA.B

3) ASCB *;OATA.B

4) ASCB DATA.A;

(converts the contents of the file DATA.A to BCD and stores
the result in the file DATA.B)

(converts the contents of the current file to BCD and stores
the result in the file DATA.B)

(prompts for the name of the BCD file)

4-44 DJ31-00

AUTOMATIC AUTOMATIC

Purpose

To cause the auto'llatic creation of line numbers at the point the automatic mode
is entered or reenter d.

Format

AUTOCMATICJ(XJ(<begin-line>J[,<increment>J

<begin-line> a decimal number
=
* <increment> ::=a decimal number

Description

<begin-line> sets the starting line number. If <begin-line> is not specified,
Line numbering will start at 10 on the first entry to automatic
mode. On reentry to automatic mode, Line numbering will resume
where the previous automatic numbering Left off. This default
for <begin-line> is used in Examples 2, 4, and 6.

<increment>

If <begin-Line> is specified as a number, line numbering will
begin with the value of <begin-line>, which would be 10, 40, 100,
and 100 respectively, in Examples 1, 3, 5, and 7.

If <begin-line> is specified as=, on first entry to automatic
mode, Line numbering will begin at 10. On reentry to automatic
mode Line numbering will begin at the las.t Line number generated
by the previous AUTO command minus the Last value of
<increment>.

If <begin-Line> is specified as*, Line numbering will begin at
10 for an empty current file or at the Last Line number of the
file plus the <increment> for a nonempty current file.

<begin-Line> is affected only by whether or not the entry is the
first entry to the automatic mode and whether or not the current
file is empty.

sets the increment between Line numbers. If no value for
<increment> is given, on the first entry to automatic mode the
value 10 will be used. On reentry, the previous value of
<increment> will be used.

4-45 DJ31-00

AUTOMATIC AUTOMATIC

Discussion

When the AUTO or AUTOMATIC form of the command is used, each line number will
be followed by a blank. This would be the case in Examples 1, 2, 3, 8, and 9. If
the letter X is affixed to the end of the AUTOMATIC command, <i.e., AUTOX or
AUTOMATICX) then the blank following the line number will be suppressed. This would
be the case in E~amples 4, 5, 6, 7, and 10. Since no blank character follows the
line number generated by AUTOX, any numbers typed immediately following the AUTOX
line number become a part of the line number.

When AUTO is used, the generated Line number is represented by three digits as
long as the line number is Less than 1000 (e.g., 010, 020, 100, 999). All line numbers
greater than 999 are represented by seven digits with 9999999 as the maximum value
for a Line number (e.g. 0001000, 0001010, 0030000, 9999999).

When AUTOX is used, the generated Line number is represented by four digits as
long as the line number is less than 1000 <e.g. 0010, 0020, 0100, 0999>. All
Line numbers greater than 0999 are represented by eight digits with 99999999 as the
maximum value for a line number (e.g., 000010000, 00010000, 99999999).

The Line numbers created by this command appear in the terminal copy, and are
written in the current file, just as though the user had typed them.

No commands are recognized while in the automatic mode. The automatic mode is
cancelled by giving a carriage return immediately following the issuance of an
asterisk and line number by the system. The user may not use a character-delete or
a line-delete character to delete characters in the generated line number nor, if
AUTO is used, can the blank after the Line number be deleted.

In the current "LOGON" session, on exit from the AUTOMATIC command, the current
values specified for <begin-line> and <increment> will not be affected by other
commands and will be the defaults in a subsequent AUTOMATIC command.

4-46 DJ31-00

A UT OMA TIC AUTOMATIC

Examples

1) AUTO 10, 10

2) AUTOMATIC (same as AUTO 1B,10)

3) AUTO 40,5

4) A UT OX

5) A UT OX 100

6) AUTOX , 20

7) AUTOMATICX 100,2

8) AUTO *
9) AUTO

10) AUTOX =,4

4-47 DJ31-00

BASIC BASIC

Purpose

The BASIC command invokes the BASIC subsystem for entering, compiling and
running BASIC programs.

Format

BASI[CJ

Discussion

The BASIC subsystem can be invoked while under another subsystem by entering
the BRN run command. For further explanation and examples of BASIC usage, see Section
IX or see the description of the BRN command.

4-48 DJ31-00

BC DA SC BCDASC

Purpose

To convert a standard system format BCD file to an ASCII time sharing format
file.

Format

BCDA[SCJ[<bcdfi le>[;<ascfile>JJ

<bcdfile>
<ascfi le>

Description

<bcdfile>

<ascfile>

Discussion

: : = <f i l edesc>
::= *l<filedesc>

the name of a file that contains standard system format BCD
data.

the name of a file or the current file that will contain the
converted ASCII time sharing format data. If <ascfile> is an
asterisk as in Example 3, the output is put into the current file.
If the ASCII file does not already exist, it is created with
general READ permission.

A question/answer sequence is .initiated by this command.
for a description of the responses that can be given in
sequence.

Refer to Appendix E
the question/answer

Examples

1) BCDASC CARDS;A.CARDS

2) BC DA

3) BCDASC B.DATA;*

4) BCDA BCD.INFO

5) BCDASC B.FILE;

(converts the contents of the file CARDS to ASCII and
stores the result in the file A.CARDS)

(prompts for the names of the BCD and ASCII files)

(converts the contents of the file B.DATA to ASCII and
stores the result in the current file)

(assumes the current file for the ASCII file>

(prompts for the ASCII file name>

4-49 DJ31-00

SPRINT SPRINT

Purpose

To print in BCD the contents of an ASCII time sharing format file or files on
the host high-speed printer.

Format

BPRI[NTJ[<ascfile>[;<ascfile>J ••• J

<ascfile>::= *l<filedesc>

Discussion

The contents of the ASCII file are converted to BCD before they are
printed. This means that all lowercase Letters are converted to uppercase and all
control characters and some special characters are replaced with a blank. In
addition, only the first 80 characters of each Line are printed.

Fifty-two Lines of the ASCII file are printed on each page. A one-Line header
is printed in the top margin of each page, consisting of the snumb, date, time
and characters 16 through 75 of the first Line of the file as the title and the page
number. There is no recognition of any slew control that may be in the ASCII
f i le •

BPRINT initiates a question/answer sequence if the file does not contain
first-line reformatting information.

Since a batch job is spawned by this command, the batch $!DENT card information
is requested from the user. See Appendix E for an explanation of the question/answer
sequence.

BPRINT provides an easy way to List long files on a high-speed printer.

Examples

1) SPRINT (assumes the current file for the ASCII file)

2) BPRINT * (same as BPRINT>

3) SPRINT LONGFILE

4) BPRI MAIN;/SUBCAT/SUB1

4-50 DJ31-00

BPUNCH BPUNCH

Purpose

To punch the contents of an ASCII time sharing format file or files onto BCD
cards at the host.

Format

BPUN[CHJ[<ascfi Le>[;<ascfi Le>J ••• J

<ascfile> ::= *l<filedesc>

Discussion

The contents of the ASCII file are converted to BCD before they are punched.
This means that all Lowercase letters are converred to upper~ase and all control
characters and some special characters are replaced with a blank. In addition,
only the first 80 characters per Line are punched. The characters are punched in
the Honeywell character set which differs from the IBMF and the IBMEL character
sets.

BPUNCH initiates a question/answer sequence if the file does not contain
first-Line reformatting information.

Since a batch job is spawned by this command, the batch$ I DENT card information
is requested from t~e user.

BPUNCH provides a means of creating a hard copy backup (cards) for time sharing
files.

Examples

1) BPUNCH (assumes the current file for the ASCII file)

2) .BPUNCH * (same as BPUNCH)

3) BPUNCH DATA.CRD

4) BPUN MAIN;/SUBCAT/SUUB1

4-51 DJ31-00

BRN BRN

Purpose

To run a specified BASIC file.

Format

BRN(HJ(-<time>J(<filedesc>J(=<objfil>[(NOGO)JJ

Description

<time>

<objfil>

D1scussion

is the maxi~um central ~rocessor (cpu) time in seconds that the
program is allowed for execution.

is the file where the resulting object code is to be saved. If
this file does not already exist, it is created as a random file
with no general permi~sions.

The user can control two phases of a BASIC run. The first phase is compilation
during which the BASIC source statements are translated into a code the computer
can understand. The code is called the object code and it can be saved in a file
as in Examples 5 and 6. Note, the object code cannot be modified directly by the
user. If the program has to be changed, the BASIC source statements must be changed
and a new object file created by running the source program again.

The second phase is execution during which the object code is Loaded into memory
and executed. A time Limit on execution can be imposed as in Examples 3, 4 and 7.
This time Limit represents the actual processor time used for the execution which
is considerably less than the elapsed time. It is a good idea to specify a time
Limit if the program is being executed for the first time or after substantial changes
have been made. This will ensure that a limited amount of the computer resources
are wasted if the program has a looping error.

Programs should be saved as object code if they are going to be CHAINed to
repeatedly from w.ithin another program. This will eliminate the time and cost
of recompiling each time the program is CHAINed to.

4-52 DJ31-00

BRN BRN

Examples

1)

2)

3)

BRN

BRNH ANNUIT

BRN -10

(compi Les and executes the current fi Le)

(If file ANNUIT contains a BASIC source program, compiles
and executes it. If file ANNUIT contains BASIC object
code, executes it. The time and date are printed as a
header.>

(compi Les the BASIC source program in the current fi Le and
executes it for no Longer than 10 cpu seconds)

4) BRN -10 ANNUIT (similar to Example 2 except that it executes the program
for no Longer than 10 cpu seconds)

5) BRN LIMITS=O.LIMITS
(assuming that fi Le LIMITS contains a BASIC source program,
compiles it, stores the object code in file O.LIMITS, and
executes it)

6) BRN STATS=O.STATSCNOGO)
(similar to Example 5 except that the program is not
executed because of the NOGO option)

7) BRN -10 O.STATS (assuming that file O.STATS contains BASIC object
code, executes it for no Longer than 10 cpu seconds)

8) BRN /MARTIN/GUITARS

9) BRN USERID/FILE,R

4-53 DJ31-00

• '! 'J
~

BSEQUENCE BSEQUENCE

Purpose

To sequence the line numbers of a BASIC program that is in the current file and
modify the corresponding statement number references <such as GOTO, IF ••• THEN,
etc.).

Format

BSEQ[UENCEJ[[<initial>J[,[<increment>J[,<line-rang~>JJJ

<initial>
<increment>
<line-range>

<begin-line>
<end-line>
<line>

Description

<initial>

<increment>

= <line>
= a decimal number
= <begin-line>-<end-line>

<begin-line>[-)
-<end-line>

= <line>
<line>

= a 1- to 8-digit decimal number

the 1- to 8-digit line number to be used as the first line number
in the sequenci~g. The default value is 10.

the increment between line numbers. The default value is 10.

<begin-line> the 1- to 8-digit line number at which sequencing is to begin.
If <begin-line> is not specified, the first Line number of the
file is assumed.

<end-line> the 1- to 8-digit line number at which sequencing is to stop. If
<end-line> is not specified, the last line number of the file is
assumed.

Discussion

Care should be taken in sequencing concatenated BASIC files as the statement
references may become invalid.

WARNING- The results are unpredictable if the current file does not contain a
BASIC program.

4-54 f)J31-00

BSEQUENCE

Examples

BSEQUENCE

2) BSEQ~ENCE 10,10

3) BS E Q , 5

BSEQUENCE

(sequences all the Line numbers and modifies the
statement references, using 10.as the beginning Line number
and 10 as the increment>

(same as BSEQUENCE)

<sequences all the Line numbers
statement references using 10 as
number and 5 as the increment)

and
the

modifies
beginning

the
Line

4) BSEQ 2,2,-100 (sequences the Line numbers from the beginning of the
current file to the current Line 100 using 2 as the new
beginning Line number and 2 as the increment, and modifies
the statement references throughout the file)

5) BSEQ 500,10,300-
(sequences the Line numbers from the current line 300 to
the end of the current fi Le, using 500 as the new beginning
Line number and 10 as the increment, and modifies the
statement references throughout the file)

6) BSEQUENCE 500,10,300
(same as Example 5)

7) BSEQ 400,,400-600
<sequences the line numbers from the current Lines 400 to
600 using 400 as the new beginning line number and 10 as
the increment, and modifies the statement references
throughout the current file)

4-55 DJ31-00

BSP BSP

Purpose

The BSP command backspaces a designated tape cassette one record.

Format
•.

BSP TAPE [nJ

[n) : : = or 2, default value is 1.

Discussion

This command can only be used on 7700 Series VIP (device 13, 14, or 15
octal>.

4-56 DJ31-00

BYE BYE

Purpose

To disconnect th~ terminal and to report the user's system usage in the following
terms:

dollars used during the current "LOGON" session
- dollars used to date during this billing period and the percent of the monthly

allotment that amount represents
- the storage LLINKS in use, the total LLINKS allocated to the user-IO and the

percent of those LLINKS that are in use.

Format

BYE

Discussion

Before the usage report is printed, the Available File Table (AFT) is scanned
for user's temporary files. A messegn ·is issued as to the n1.rn1he1 01 1.·11;1"'' '"Y
r iL e s , a f t e r w h i c; h t h e u s e r I s q u c r· i 1.? J a " t o t h e i r d i s po s i t i o r 1 • l ,)(; h 1. ~ m p u , > : i 1 t>

name is printed followed by a question mark. The user will not be qutr ice for a
disposition of file ABRT if it is a temporary file. The user may respond as
follows:

1) carriage return - implies the file is not to be saved as an entry in the
file system.

2) NONE - implies this file and all.of the succeeding temporary files are not
to be saved.

3) SAVE[<filedesc>J - specifies that the temporary file is to be saved in
the permanent file specified by <filedesc>. If the permanent file does
not already exist, it is created with general READ permission.

Example

BYE

4-57 DJ31-00

CARDIN CARDIN

Purpose

The CARDIN command invokes the CARDIN subsys~em to allow a terminal user to
submit a job to the batch portion of the system. Job streams consist of intermingled
data and control card images which are processed by batch job flow.

Format

CARD[IN) [<infile>)

<infile> ::= <filedescr>

Discussion

Unless the input file contains first-line formatting (example 1>, the CARD
subsystem responds t~ RUN with CARD FORMAT, DISPOSITION?

The response to FORMAT can be one of following:

ASIS <run the job (file> as is)
or A

MOVE (move sequence numbers to field
or M numbers 73-80)

NORM (implies the MOVE option and
or N normal tab character (the colon)

and tab settings C8, 16, 32, 73) have been
employed in building the file>

STRIP (remove line numbers and make
or S the ftrst nonnumeric the first

character in each line)

The response to DISPOSITION can be one of the following (commas included as
shown>:

,JOUT
or, J

(save all implied files for examination
by the JOUT subsystem>

,ROUTCXX) (direct output to station XX)
or, R

, TALK
or , T

Center conversational mode - must
have permission specified for the
user's SMC from the MASTER user)

,URGC(XX) <assign specified urgency to this
or, U job>

,WAIT
or, W

<wait for job termination)

4-58 DJ31-00

CARDIN CARDIN

If the response to FORMAT was A, M or S, (not N), the subsystem prompts:

TAB CHARACTERS AND SETTINGS?

I f t h e u s e r d i d no t u s e a n y t a b s i n p r e pa r i n ·g h i s i n p u t , t h e r e s p o n s e i s a c a r r i a g e
return; otherwise, the response is the tab character followed by tab settings
separated by commas.

;,4, 8, 16, 32, 73

Specifies that the tab character is a semicolon and tab settings are 4, 8, 16,
32 and 73.

Examples

1) *CARD
*Oli)CARDJOB
*ITST
1~ I DENT cccc.iii,bbbnn,XOOOO
12$ OPTION FORTRAN
14$ FORTY
16 READ,A,B,C
18 D = A + B + C
20 PRINT 20,D
22 10 STOP
24 20 FORMAT (4H D , F10.2)
26 END
28$ EXECUTE
30$ LIMITS 01,10k,,2000
32#2, 7,3,4,687
34$ END JOB
*RUN

CARD FORMAT,DISPOSITION ?

TAB CHARACTERS AND SETTINGS?
* SNUMB 1234T

STRIP,ROUT (AB)

4-59 DJ31-00

CARDIN

2) *CARD
*O[j)
OLD NAME - REACBIN

*LIST
10ifii"NORM,ROUTCiq)
20$:IDENT;cccc,iii,bbbnn,XOOOO
30$:0PTION:FORTRAN
40$;SELECT:FSxxxx/CSTAREAC (Binary File)
SO$: EXECUTE
60#215,365
70#216,37
80#6305,45
90#605,271
100#125,68
110$:ENDJOB
*RUN

SNUMB 12241

CARDIN

The double number sign in line 10 is interpreted by the CARD subsystem to
mean that this record is first Line formatting information. The number
signs in lines 60 through 100 separate the line number from numeric
data that is to be used during program execution.

3) The following sample program illustrates the use of interrelated time
sharing subsystems and batch programming features. The program is
submitted by means of the time sharing CARDIN subsystem. Direct
conversation between the program and the user's terminal is then initiated,
and use is made of two conversational batch features--Conversational Debug
Routine (RBUG) and conversational I/O extensions to File and Record
Control. Text within brackets is not part of the program but has been added
to illustrate particular features.

4-60 DJ31-00

CARDIN CARDIN

The program, submitted under CARDIN, makes use of conversational I/O
extensions to File and Record Control.

0100$;1DENT;VXE00,JDOE
0200$;0PTl(~;FORTRAN
201$,USE;.R ·yp Required when$ DAC cards are present.
0300$,FORTRAN;NDECK
400#2;WRITE(6,3)
050G#3;FORMAT<27HPROGRAM TO CALCULATE RECOIL)
0600#1;WRITEC6,4)
0700#4;FORMAT(9HRIFLE WT.)
0800;READ(5,5,END=999)WR
0900#5;FORMATCV)
1000; WR IT E (6, 7>
1100#7;FORMATC10HBULLET WT.)
1 2 0 0 ; R E A D (5 , 5) ~· 8
1300#9;WRITE(6,10)
1400#10;FORMAT(8HVELOCITY)
1500#11;READ(5,5)VB
1600;WRITE(6,13)
1700#13;FORMAT(10HPOWDER WT.)
1800;READ(5,S)WP
1900;X=WB*VB+4700.*WP
2000;Y=7000.*WR
2100;Z=WR/64.4
2200;E=Z*(X/Y)**2
2300#1S;WRITEC6,16)E
2400#16;FORMAT(8HENERGY= ,F6.2,9H FT. LBS.)
2500;GO TO 1
2550#999;STOP
2600;END
2700$;EXECUTE
2800$;DAC;05
2900$;DAC;06
3000$;ENDJOB

The program is then formatted for Legibility.

*PRINT
CARD FORMAT ?
NORM<;>

09/10/79 09.69

4-61 DJ31-00

CARDIN CARDIN

0100 $ I DENT VXEOO,JDOE
0200 $ OPTION FORTRAN
201 $ USE • RTYP
0300 $ FORTRAN NDECK
400 2 WRITE(6,3)
0500 3 FORMATC27HPROGRAM TO CALCULATE RECOIL)
0600 1 WRITE(6,4)
0700 4 FORMAT(9HRIFLE WT.)
0800 READC5,5,END=999)WR
0900 5 FORMAT(V)
1000 WRITEC6,7)
1100 7 FORMAT<10HBULLET WT.)
1200 READ(5,5)WB
1300 9 WRITEC6,10)
1400 10 FORMATC8HVELOCITY)
1500 11 READ(5,5)VB
1600 WRITE(6,13)
1700 13 FORMAT<10HPOWDER WT.)
1800 READC5,5)WP
1900 X=WB*VB+4700.*WP
2000 Y=7000.*WR
2100 Z=WR/64.4
2200 E=Z*(X/Y)**2
2300 15 WRITE(6,16)E
2400 16 FORMAT<8HENERGY= ,F6.2,9H FT. LBS.)
2500 GO TO 1
2550 999 STOP
2600 END
2700 $ EXECUTE
2800 $ DAC 05
2900 $ DAC 06
3000 $ END JOB

[The program is then passed to the batch system for processing; the TALK option permits
direct-access connection.)

*RUN
SNUMB # 0165T

CARD FORMAT, DISPOSITION ?
N 0 RM (;) , TALK
PROGRAM TO CALCULATE RECOIL
RIFLE WT.
05?8.5
BULLET WT.
05?150
VELOCITY
05?3200
POWDER WT.
05?58
ENERGY=320.06 FT. LBS.
RIFLE WT.
05? Carriage return; null response.
CLOSING FILE 05
CLOSING FILE 06

ACTIVITY TERMINATED
NORMAL TERMINATION

4-62 DJ31-00

CARDIN CARDIN

A$ USE RBUG card is substituted for$ USE .RTYP to initiate the RBUG subroutine,
and breakpoints are inserted. The program is then formatted in its new version.

•20H;USE;R lUG
•202$;DUMP; •••••
•203;DEBUG;2/(BREAKPOINT)
•204;DEBUG;15/(BREAKPOINT)
*PRINT
CARD FORMAT ?
NORMC;)

09/10/79 0 9. 85

0100 $ I DENT VXEOO,JDOE
0200 $ OPTJ ON FORTRAN
201 $ USE RBUG
202 $ DUMP
203 DEBUG 2/CBREAKPOINT)
204 DEBUG 15/(BREAKPOINT)
0300 $ FORTRAN NDECK
400 2 WRITE(6,3)
0500 3 FORMAT(27HPROGRAM TO CALCULATE RECOIL)
0600 1 WRITE(6,4)
0700 4 FORMATC9HRIFLE WT.)
0800 READCS,5,END=999)WR
0900 5 FORMAT(V)
1000 WRITE (6, 7)

1100 7 FORMAT<10HBULLET WT.)
1200 READ(5,5)WB
1300 9 WRITEC6,10)
1400 1 0 FORMAT(8HVELOCITY)
1500 11 READC5,5)VB
1600 WRITE(6,13)
1700 13 FORMATC10HPOWDER w T.)

1800 READC5,5)WP
1900 X=WB*VB+4700.*WP
2000 Y=7000.*WR
2100 Z=WR/64.4
2200 i:=Z*(X/Y)**2
2300 1 5 WRITEC6,16)E
2400 1 6 FORMAT(8HENERGY= ,F6.2,9H FT. LBS.)
2500 GO TO 1
2550 999 STOP
2600 END
2700 $ EXECUTE
2800 $ DAC 05
2900 $ DAC 06
3000 $ END JOB

4-63 DJ31-00

CARDIN CARDIN

The program is again passed to the batch system, along with the TALK option.
Control of the program is obtained at breakpoints, interrogations are made, and the
program is then permitted to continue and run to termination.

*RUN
SNUMB #0166T

CARD FORMAT, DISPOSITION ?
NORM<;>,TALK
***ROUTINE LOC 2
??? R
PROGRAM TO CALCULATE RECOIL
RIFLE WT.
05?8.5 8 AND 1/2 POUNDS
BULLET WT.
05?150.0 150 GRAINS
VELOCITY
05?3200.0 FEET PER SECOND
POWDER WT.
05?58.0 GRAINS
***ROUTINE . LOC 15
???FE GET A PEEK AT ANSWER
E
'?'??R LOOKS GOOD
ENERGY= 21.11 FT. LBS.
RIFLE WT.
05?7.S
BULLET WT.
05?150.
VELOCITY
05?2175
POWDER WT.

COUNT

COUNT

05?0. AGAIN FORGOT THE DECIMAL POINT
***ROUTINE LOC 15 COUNT
???R#2 TRY AGAIN
***ROUTINE LOC 2
???R TRY A "NORMAL" RUN
PROGRAM TO CALCULATE RECOIL
RIFLE WT.
05?7.5
BULLET WT.
05?150.0
VELOCITY
05?2175.0
POWDER WT.
05?31.0

COUNT

000001

000001

000004

000004

***ROUTINE LOC 15 COUNT 000002
???FE PEEK AT ANSWER
E 0.94112817E 01
???R ANSWER SEEMS ABOUT RIGHT FOR 30/30 WITH LIGHT LOAD
ENERGY= 9. 41 FT. LBS.

4-64 OJ31-00

CARDIN

RIFLE WT.
05?7.5
BULLET WT.

TRY 30.06 TYPICAL LOAD

05?180.0
VELOC ITV
05?2505.0
POWDER WT.
05?45.0
***ROUTINE LOC 15
???R LET IT GO NORMALLY
ENERGY= 18.54 FT. LBS.
RIFLE WT.
05?0.
BULLET WT.
05?0.
POWDER WT.
05?0.

DIV CHECK AT LOCATION
EXP OVERFLO AT LOCATION

***ROUTINE LOC 15
???T LET THE PROGRAM QUIT NORMALLY
**EXIT
CLOSING FILE 05
CLOSING FILE 06

ACTIVITY TERMINATED
NORMAL TERMINATION

*BYE

4-65

COUNT

037651
037400

COUNT

CARDIN

000003

000004

DJ31-00

CATALOG CAtALOG

Purpose

The CATALOG command Lists the names of subcatalogs and files which are
u n d e r t h e c u r r e n t " LOG ON" u s e r - I D o r t o l i s t t h e a t t r i bu t. e s o f a s p e c i f i e d f i L e i n
the current "LOGON" user-ID.

Format

CATA[LOGJ [<filedesc>!<catdesc>l#CMDl#LIBIJ
<catdesc><options>l~user-ID>••

#CMD:: produces a catalog listing for the CMDLIB user-ID. The CMDLIB
user-ID contains user supplied routines which can be used to
augment the common command list.

#LIB:: produces a catalog listing for the LIBRARY user-ID. The LIBRARY
user-ID contains various routines in a user accessible
Library.

<options>:: nlx<mm-dd-yy>ISIAIRIFIRST/name/I*

Allows limited listing of catalog and file names. Optional fields
are:

x, to specify whether the date is date created CC), date of
last access CA>, or last date the file was changed CL)

date, in the form mm-dd-yy is required when C, A, or L is
requested.

n, number of files to be listed, starting from the oldest to most
recent

R, reverse the list before printing
s, sort the names
A, list in abbreviated fashion <eight per line)
*, Prints a detailed list of catalog attributes

Any option may be omitted and the order given is immaterial.
The FIRST/name/ allows the cat/file list to start at the
specified name.

<user-ID>**:: Lists catalog and file names emanating from the UMC of the
specified USERlD. The requesting user must have modify permission
at the UMC level of the specified USERID.

Discussion

The CATALOG command can normally only reference the names of subcatalogs
dnd/or files that are in the current "LOGON" user-ID.

Passwords on subcatalogs and files do not have to be specified when they are
referenced in the CATALOG command.

4-66 DJ31-00

CATALOG

In Examples 3 and 4, the attributes for file
respectively, will be Listed. The attributes that are
are:

SMITH and file
Listed for a

File Name
Originator
Date Created
Date Changed

Current File Size In Blocks
File Type

Last Date Accessed
Max File Size In Blocks

Device
General Permissions
Specific Permissions

CATALOG

UN ITS,
filename

In Examples 1 and 2, the names of all files and subcatalogs that are directly
under the current "LOGON" user-ID are Listed. But, the names of any files
and/or subcatalogs that are under a subcatalog which is directly under the current
"LOGON" user-ID are not Listed by this form of the command. In order to List the
names of all files and subcatalogs that are under another subcatalog, all of the
subcatalog Levels to the desired file must be specified in the <filedesc> of the
CATALOG command.

In order to List the names of all fi Les and subcatalogs that are under a user-ID,
a CATALOG command must be issued for each catalog.

In the Listing from a CATALOG command, to distinguish a file name from a
subcatalog name, file names are indented two columns to the right of subcatalog
names. Note, that file names listed after a subcatalog name do not belong to that
subcatalog. Example 5 Lists the names of all files and subcatalogs that are under
subcatalog METRIC, whereas Examples 1and2 list the names of all files and subcatalogs
that are directly under the current "LOGON" user-ID.

For an explanation of the fi Le system with a description of subcatalogs and fi Les
in a user-ID, refer to File System in Section II.

A user who is th~ originator of <or has modify permission for) a catalog belonging
to another user may List, purge, or release the catalog. This also applies to a
specific list request for a catalog or file. Permission is not required to List
strings which originate from ~he user's own catalog, the Library (#LIB), or the
command library (#CMD). Passwords need not be given in the catalog structure unless
the specified file or catalog was created by another user.

Examples

1) CATALOG

2) CATA

3) CATA SMITH

(Lists the names of the subcatalogs and files that are
directly under the current "LOGON" user-ID)

(same as CATALOG)

(lists the attributes of the file SMITH)

4-67 DJ31-00

CATALOG

4)

5)

6)

CATALOG

CATA /METRIC/UNITS
Clists the attributes of the file UNITS which is under
the subcatalog METRIC)

CATA /METRIC
C lists the names of the subcatalogs and fi Les that are under
sub~a~alog METRIC)

•CATA,A,S
LIST Of CATALOG TSSUNIT ON 10/12/79 AT 10.786

•4JS2 4JS2DOC 4JS2MAC *4VX SK DOC •7.1 A
APNT APR I ARH1 *ARH ARHTMP A SM-EX B

DATETIME DA TT IM DICTION DRL T DRLTST DRLTST-S DUMMY
* F 1 FILED G *HA UGH •HOLDRIDG.ITS-XMIT•KNUDSON

MAIL.BOX MAIL.BX MAK4JS2X MAKE4JS2 MAK.MAC1 MAK.MAC2 MERG.MAC
•MILLER l'Hi1 OUM P MONTHLY PGTST PGTST-S PP-UNUO

RESTORJ2 SAVEMAIL*SCHOFFEL S S4J S 2 s s 4J s 2. x s y
TEMPA TEMPE TEMPJCL TEMPQ TEST TESTSRC
TSRT *TSSDOC *TURNEY

•CATA/TSSDOC

LIST OF CATALOG TSSDOC ON 10/12/79 AT 10.794
CATALOGS

FILES

GENINFO
TERMBATC
SYS PROG
TEXTE DIT
BASIC
MASTER
TRACE
FORTRAN
CRUN

•CATA /TSSDOC,A,S,R

LIST OF CATALOG TSSDOC ON 10/12/79 at 10.799

QSTAR
TC.TMP
TS1

TRACE
BAS It

TEXTEDIT TERMBATC SYSPROG filAST~R G£NINFO FORTRAN

*CATA /TSSDOC/TRACE

FILENAME-TRACE
ORIGINATOR~TSSUNIT

DATE CREATED-040279
DATE CHANGED-040279(10.509)
LAST DATE ACCESSED-040279
NUMBER OF ACCESSES-2
MAX FILE SIZE-3620 LLIN«S
CURRENT FILE SIZE-181 LLINKS
FILE TYPE-LINKED
DEVICE-ST3
GENERAL PERMISSIONS~NONE
SPECIFIC PERMISSIONS-NONE

4-68 DJ31-00

CMOD CMOD

Purpo'se

The CMOD command allows the user to modify or display the Program Switch Word
(PSW).

Format

CMOD operation-1;operation-2; ••• ;operation-n

Discussion

Each operation is an arithmetic, Boolean operation, or action item and when
evaluated affects the Lower half (bits 18-35) of the PSW.

An operation may include any of the following forms:

n
+n
-n
Si
Si-j
Ri
Ri-j
Ni
Ni-j
D
E

MEANING

Set CCPSW) bits 18-35 to n
Add n to C(PSW) bits 18-35
Subtact n from C(PSW) bits 18-35
Set bit i
Set bits i through j
Reset bit i
Reset bits i through
Negate bit i
Negate bits i through j
Display CCPSW) bits 0-35
Store error code in PSW bits 18-35

4-69

RESTRICTIONS

n<262144
n<262144
n<262144
18<i< 36
18"<i< j <36
1s<i< 36
1 s< i < j <3 6
1s<i"<36
183\~j<36

DJ31-00

CMOD CMOD

Examples

1) CMOD 4096
(set the octal equivalent of 4096 in the PSW>.

2) CMOD +4096
Cadd the octal equivalent of 4096 to the PSW>.

3) CMOD -4096
<subtract the octal equivalent of 4096 from the PSW).

4) CMOD S18, S19, S20-23
(set bits 18 and 1 9 and 20 through 23>.

5) CMOD R 22, R30-35
(reset bits 22 and 30 through 35).

6) CMOD N22, N30-35
(negate bits 22 and 30 through 35).

7) CMOD D
(display the 36-bit contents of the PSW

8) CMOD E
(store the error code in the PSW bits 18-35>.

4-70 DJ31-00

CODE CODE

Purpose

The CODE command is u~ed to encrypt a file, making its content unintelligible
to others.

Format

CODE[<infile>[;<outfile>JJ

<infile> ::= <filedesc>

<outfile> ::= <filedesc>

Discussion

Input and output file descriptions may accompany the command, separated from
one another by a semicolon. The input file may be random or sequential(* designates
the current file) and either description may include passwords, permissions, an
alternate name and up to eight Levels of subcatalogs. The output file will be
created for the user if it does not already exist.

Upon receipt of the CODE command, the user is asked to enter (and verify) a key
to be used for encrypting the fjle. This is simply a one- to 12-character password
which may include any combination of uppercase and lowercase alphabetics and
nonprinting characters such as BELL, TAB, SPACE, etc. The encryption key is known
only to the user; i.e., it is neither resident on mass storage nor retained anywhere
in the system.

DECODE is used to obtain the original version of an encrypted fi Le. Input and
output file descriptions are required as for CODE and are managed in a similar manner.
The output file may be~ to designate the current file. Upon receipt of the DECODE
command, the user is asked to enter the encryption key. This is the same key
originally used with the CODE command to encrypt the file.

Fi le encryption offers a lev·el of data base security unsurpassed by other methods
presently available for privacy protection. Sensitive information can be safely
stored in the system without fear of penetration by unauthorized individuals. Even
if a penetrator obtains the coded file and knows the encryption algorithm used to
produce it, the fi Le cannot be decoded except by trial and error -- a process obviously
prohibitive by the 12-character key Length. Note that it is, of course, necessary
to destroy the original file once it has been encrypted. This may be conveniently
accomplished with post use of the PURGE or ERASE command.

4-71 DJ31-00

CODE

Exa111ples

1) CODE MYFILE;URFILE

2) •CODE A;TEMP
KEY:
HelllHlll·I CH I)
•CODE A;TEMPCODE
KEY:
lllllt•ttlel CHI)
VERlFY:
lllH4,HIHI CHI>
•FDUM TEMPCODE (VERIFY ENCRYPTION)
BLOCK TO BE R~AD? 1 S0-47
000000 031616255014 262273434670

000004 416563126332

000010 501451300263

000014 536131422027

000020 223034766511

000024 401323415111

000030 261012513313

000034 411333264333

000040 .610313010536

000044 034061237110

? D
•DECO TEMPCODE;•
KEY:
HHIHHHI CHI)
•LIST

1
2
3
4

722751071744

676263070033

025425567775

720054565221

455217354156

704356700110

226031124476

707514417440

107255640411

4-72

CODE

5tUt5JOJ777 363363370564

205642217313 0575l6l77520

557UH1 :U05 560034215716

340760565060 362214472422

2146J•1487044 672110313037

471112520351 443434635'4 71

725535234102 535456401613

663730167360 641546120142

462036746470 653573061613

217066!04543 463172740062

... ' '• l ·~ .. DJ31.-00

CONNECT CONNECT

Purpose

The CONNECT comm ind allows a user that was unintentionally disconnected to call
back in and reconnec~ to the same session and User Status Table CUST) previously
used. The resumptiO•i of a previous session means that the User Status Table
(UST) entry for the disconnected user is held until either the site specified
reconnect time expires or the reconnection is made.

Format

CONN[ECTJ [channel no)

[channelnoJ::= (Cha:1nel number as it appears in the sign on message).

Discussion

An accidental disconnect may be caused by noise on the phone line,
accidentally disrupting the data set, accidently hitting the clear key, or accident Ly
hitting control-C. Whenever a premature disconnect occurs the disconnected user may
attempt to reconnect to the previous session, provided the site-defined time out has
net passed. When a user knows his USERID is unique and that no other session is ongoing
with that USER ID, the line number does not have to be included in the CONNECT attempt.
In addition, a provision has been made to allow a user to CONNECT to a session on
another copy of TSS (multicopy TSS option).

4-73 DJ31-00

CONNECT

Exa11ples

0110401

HIS TIMESHARING ON 01/30/77 AT 5.241 C~ANNEL 2140 TS1

USER ID- Sf'ITH
PASSWO~~-
ttUUttti
OLO TEST
*S.TAT
CHANNEL 2140 TS1
USER STATUS ON JAN 30, 1977
PROC TIME U$ED 0.00 SEC.,
LIST OF OPEN FILES : TEST

*LIST
10 THIS IS A TESt
Cline drops)

user re-dials

0110401

AT 5:14:51 LOG-ON AT 5:13:53
F ILE l / O· 80 CH AR KE Y II 0

HIS TIMESHARING ON 01/30/77 AT 5.257 CHA~NEL 2150 TS1

USER ID - SMITHSJOHN
*CONNECT 2140
10 THIS IS A TEST
20 OF THE RECONNECT OUTPUT CONTINUES
30 FEATURE FROM PREVIOUS LIST
40 END
* STATUS
CHANNEL 2150 TS1
USER STATUS ON JAN 30, 1977 AT 5:15:51 LOG-ON AT 5:13:53
PROC TIME USED 0.05 SEC., 2 FILE I/O 264 CHAR KEY I/O

LIST OF OPEN FILES: TEST

*

4-74

CONNECT

DJ31-00

CONVERT CONVERT

Purpose

The CONVERT comm1nd invokes the CONVERT subsystem to perform file manipulation
of text between file~.

Format

CONVCERTJ(infile(s)J(=otfileJC:optionsJ

Cinfile(s)J
C=otfileJ
(:options]

Description

Media Code Options

::= •ICfiledescJ
::= *l*SRCICfiledescJ

as described below.

The output record format options specify the physical
record. The default option for the CONVERT command is "ASCII".
meanings are as follows:

BCD - variable-Length BCD - media code 0

format of the output
The options and their

COMDK - BCD compressed deck card image (COMDK) - media code 1

CARD - BCD 14-word card image - media code 2

PRINT - BCD variable-length print line image - media code 3

OLDASC - obsolete TSS ASCII - media code 5

ASCII - standard system format ASCII - media code 6

APRINT - ASCII print line image - media code 7

ACARD - ASCII card image - media code 10

SAME - a record output media code is the same as its input media code

Line Number Options

Line numbers can exist with COMDK, CARD, ACARD, OLDASC, and ASCII records. All
BCD, PRINT, and APRINT records cannot possess line numbers. The Line number for an
ASCII or OLDASC record consists of 1 to 8 numeric characters. These numeric
characters must be among the first eight characters in a line. A line number is
defined to include any Leading blanks. A line number is terminated by a non-numeric
c h a r a c t e r , i n c l u d i n g b l a n k • I f · t h e · " # " c h a r a c t e r t e rm i n a t e .s a l i n e n um b e r a n d ,
if it is one of the first eight characters of a line, it is considered to be a
delimiter; it is treated as neither part of the line number nor part of the text.
The line number for COMDK, CARD, and ACARD records is defined to be all the trailing
digits in columns 73-80. This field may begin with non-numerics; these also are
considered neither part of the line number nor part of the text.

4-75 DJ31-00

CONVERT CONVERT

. The line number options may specify:

1. Whether line numbers are to appear in the output text.

2. The actual line number values.

The default line number option is "ASIS". A description of each of the options
follows:

ASIS

STRIP

MOVE

ICi,j)

Line numbers are assumed riot to be present in the input file.
Text, including leadingitrailing numeric characters and "#"'s are
left as is.

Strip line numbers from the input text before reformatting and writing
t h e o u t p u t t e x t • I n p u t ·c 0 M DK , CA R D , and A C A R D r e c o r:- d s a r e t r u n c a t e d
at column 72. Line numbers on ASCII and OLDASC records, when present,
are discarded and the first character following the line number is
treated as the first character of the lihe.

Move line numbers. The input records have the line numbers
detached from the text string, either from the front <ASCII or OLDASC)
from columns 73-80 CCOMD.K, CARD, or ACARD). The output records have
the line numbers re•attached to the text string, either at the front
(ASCII or OLDASC) or in columns 73-80 (COMDK, CARD, or ACARD). If
the output records are BCD, PRINT, or APRINT, the line numbers are
not re-attached and the M option acts similar to the S option.

Insert line numbers beginning
j. The arguments i and j are
defaults are i=10 and j=10.
line-numbered. If the output
numbers are not inserted and

with line number i and incrementing by
optional. If they are not given, the
The input file is assumed not to be

records are BCD, PRINT, or APRINT, line
the I option is ignored.

RCi,j) Resequence Line numbers. Strip any existing line numbers from the
input text and insert new line numbers in the output text, beginning
with i and incrementing by j. The arguments i and j are optional.
If they are not given, the defaults are i=10 and j=10. If the output
records are BCD, PRINT, or APRINT, line numbers are not inserted and
the R option behaves as the S option.

NCch) Implies the M option and specifies that the normal tab character
(the colon) and tab settings C8, 16, 32, 73) have been employed in
bui Lding the input fi le(s). The <ch) argument may be used to define
a character which replaces the colon as the tab character.

LABEL CabcdeCi-j)fghijCi-j)---) If the output records are COMDK, CARD, or
ACARD, then a label is placed left-justified in columns 73-77. The
label is specified as 1 to 5 non-blank characters. The fields
"abcde" and "fghij" represent the Labels. The label is placed on only
those lines with line numbers between i and j inclusive. Up to 10
distinct labels may be given. If more than one label is given though,
the (i-j) specifications may not overlap.

4-76 DJ31-00

CONVERT CONVERT

The LABEL option is meaningful only if line numbers are attached to
output records. Therefore, the Label option is completely ignored
unless it is accompanied by either the insert, resequence, or move
option.

For the I and R options, output Line numbers for ASCII and OLDASC records will
have at Least the number of digits specifie.d for i in ICi,j) or R(i,j). Thus
RC0010,10) will result in Line numbers 0010, 0020, 0030,---.

Input records are assumed to have Line numbers when the STRIP, MOVE, and
RESEQUENCE options are specified. Otherwise, Line numbers are assumed to be absent
and teading numerics in ASCII for~at are treated as real text. When line numbers
are assumed present, tabbing and columnizing are performed relative to the start of
the real text.

The user must be careful not to alter the line number values of a BASIC
f iL e.

Character Manipulation Options

A description of each of the character manipulation options follows.

TAB(ch,i,j---;ch,i,j---;----) Expand tab characters into blanks. Use "ch" as
a tab character with settings i,j,k,etc. Usual.l.y, any
occurrence of the tab character in the input file(s) results in
the replacement of the tab character with a string of blanks up
to the next tab setting. However, if a tab character is
encountered beyond the Last tab setting specified for that tab
character, it is treated as a normal nontab character.

If a tab character is specified without specifying any tab
settings, default settings of 8, 16, 32, and 73 are assumed. If
the tab option is given without any arguments, the normal tab
character, colon, and the default settings are assumed. There
is no limit to the number of tab characters or settings
allowed.

UNTAB(ch,i,j---;ch,i,j---;----) Insert tab characters, replacing blanks. Use
"ch" as a tab character with settings i, j, k, etc. Any
occurrence of a string of blanks terminating on an "untab" tab
stop' is replaced by the character "ch".

LOWER

If a tab character is specified without specifying any tab
settings, default settings of 8, 16, 32, and 73 are assumed. If
the untab opt·ion is given without any arguments, the normal tab
character, colon, and the default settings are assumed. There
is no Limit to the number of tab characters or settings
allowed.

Convert all alphabetic characters to lowercase. This option is
meaningful only if the output records are ASCII, OLDASC, or
APRINT.

4-77 DJ31-00

CONVERT

UPPER

BEGIN(ch)

CONVERT

Convert all alphabetic characters to uppercase. This option is
meaningful only if the output records are ASCII, OLDASC, or
A PRINT.

Begin a new line (record) immediately after the character
"ch". The character "ch" is treated as a delimiter and not part
of the text. It is not placed in the output text. When the "ch''
character is located at the beginning or end of a line, it
is simply deleted. Strings of the "ch" character are treated
as a single "ch" character.

COLUMNS Ci- j) Delete all of the characters in a line except those which
are located within columns i through j inclusively. The options
BEGIN and TAB are both completed before COLUMNS takes effect.
If a record does not extend through column j prior to the COLUMNS
option execution, it is blank-filled to column j. Thus, when
the COLUMNS options is in effect, the length of all generated
output records is j-i+1 characters.

SQUEEZE

TRAIL

Replace any string of two or more blanks by a single blank. The
options BEGIN, TAB, COLUMNS, and UNTAB are all performed before
SQUEEZE is executed.

Delete all trailing blanks on a line. The TRAIL option is
performed immediately after the SQUEEZE option.

A number of options affect the length of an output text Line. It is
important that the user adhere to the order in which these options are
performed. The order (from first to last) in which the options are executed is:

BEGIN
TAB
COLUMNS
UN TAB
SQUEEZE
TRAIL

Miscellaneous Options

VERIFY

IGNORE

DISCARD

If the VERIFY option is in effect when CONVERT completes the
processing of an in~ut file, then CONVERT gives a brief summary of
the number of records obtained from the file. This summary gives,
for each media code, the number of records which had that media
code.

Ignore all embedded SS control lines. Treat them as text.

Discard all nontext records. Nontext records are those records whose
media code is not one recognized and interpreted by CONVERT. The JRN,
JPRINT, JPUNCH, APRINT, and DISPLAY commands require that nontext
rec o rd s be d i s c a rd e d • Th e C 0 NV E R T c om man d no rm a l l y doe s no t r e q u i re
that nontext records be discarded. When nontext records are
encountered during the execution of the CONVERT command, they are
written to the output file, but no reformatting or media conversion
is performed.

4-78 DJ31-00

CONVERT

TIME

DEFAULT

CONVERT

When the TIME option is invoked, the date and time of day are printed
at the user's terminal.

The DEFAULT option is used to nullify all options which the user has
specii ied either on the command line or embedded$$ control lines.
The de.ault option has no affect on any of the "specialized" options.
Because of the nature of the DEFAULT option, it is meaningless for
it to be located in the options field of the command line. Therefore,
if the DEFAULT option is encountered in· the options field, an
error message is issued. The same reasoning applies to the placement
of the DEFAULT option anywhere other than the beginning of a$$ control
l in e •

File Processing Options

SELECT Cfi le) The SELECT option is analogous to the$ SELECTA card. The select
option allows an input file to specify other input files. Upon
encountering the SELECT option, the selected file is obtained
and is used in place of the$$ control line. Nesting of selects
is permitted up to 17 levels. The SELECT option is meaningful
and valid only on a$$ control line. Only one SELECT opt·ion may
be specified on a $$ control line.

INCLUDE If the INCLUDE option is in effect, CONVERT, upon encountering
the SELECT option, uses the selected file as an input file.

EXCLUDE If the EXCLUDE option is in effect, CONVERT ignores the SELECT
option.

The INCLUDE and EXCLUDE options allow the user to control the performance of
the select options while not forcing him to disregard:

1. Other options on the same$$ control line.

2. All $$ control lines.

The INCLUDE option is the default option for the JRN command. The EXCLUDE option
is the default option for the JPRINT, JPUNCl-1, APRINT, DISPLAY, and CONVERT
commands.

Specialized Options

The "specialized" options are a class of options completely distinct and
separate from all preceding options. The "specialized" options are unlike other
options in that they take effect only when all input files have been read, converted,
and closed; i.e., after the output file has been completely generated. All other
options, of course, are meant to be used when the output file is in the process of
being generated.

4-79 DJ31-00

CONVERT

JOUT

ROUT< xx)

WAIT

TALK

URGC(xx)

COPYCnn)

IDENTCinfo)

MONITOR

CONVERT

Th~ JOUT option is applicable only to the JRN command. This
option results in all implied fi Les being saved so that they may
be examined using the JOUT subsystem.

The ROUT option is applicable to the JRN, JPRINT, APRINT, and
JPUNCH commands. This option causes the implied files generated
by the program execution to be directed to the specified
two-character remote station. Only one ROUT entry is
permitted.

The WAIT option is applicable to the JRN, JPRINT, APRINT,and
JPUNCH commands. This option causes the user to wait until the
completion of the spawned job in the batch environment. The wait
period ·may be broken out of by hitting the break key. When
the job completes execution, the user is informed of the job's
termination status and, if the JOUT option is in effect, the JOUT
subsystem is invoked.

The TALK option is applicable only to the JRN command. This
option implies that the batch job includes execution of a program
containing conversational (direct access) input/output. This
option causes the user's terminal to be placed in direct access
connection with the submitted program (by SNUMB) following its
submission to the batch environment. When the job completes
execution, the user is informed of the job's termination status
and, if the JOUT option is in effect, the JOUT subsystem is
invoked.

The URGENCY option is applicable only to the JRN command. This
option indicates that the user wishes to assign initial urgency
xx to the spawned batch job. If the assigned urgency is greater
than the maximum allowed for the user, the message ILLEGAL
URGENCY is se.nt and the batch job is not spawned. If xx is not
specified, maximum allowable urgency is automatically
assigned.

The COPY option is applicable only to the JPRINT, APRINT, and
JPUNCH commands. This option causes the generation of nn
multiple copies of the listing or punched deck. The maximum
number of copies that can be produced from a single JPRINT/JPUNCH
job is 13.

The IDENT option is applicable to the JPRINT, APRINT, and JPUNCH
commands. This option allows the user to minimize the
subsystem/user interface involved in the use of the
JPRINT/JPUNCH commands. When the IDENT option is present, the
normal question/answer sequence of

$ IDENT? response

is bypassed.
argument is
question.

The information presented as the IDENT option
used instead of the user-response to the

The MON IT 0 R 0 pt i 0 n i s a pp l i e ab l e t 0 the J p R INT, A p R INT, J p u N c H,
and JRN commands. This option allows the user to monitor or
track the status of a spawned job as it is executed in the batch
environment. When the job completes execution, the user is
informed of the job's termination status and, if the JOUT option
is in effect, the JOUT subsystem is invoked.

4-80 DJ3·1-00

CONVERT CONVERT

DIRECT The DIRECT option is applicable to the JRN, JPRINT, APIUNI, and
JPUNCH commands. II the DIRECT option is givPn on the command
line, it overrides any JOUT or ROUT .option which the 1F.l'r 11,,~;
rlaced on a$$ control Line. This option allows the us1·r uho,
1 >r i.nstance, usually specifies the .JOUT option to place Hon
a $ $ cont r o l L i n e and L at e r o v e r r i d e i t w i t ho u t c h an g i n ~1 t h ,, $ $

control Line.

DISMISS The DISMISS option is applicable only to the JRN command. If
the DISMISS option is given on the command Line, it overrides
any TALK, WAIT, or MONITOR option which the user has placed on
a $$ control Line. This option allows the user who, for
instance, usually specifies the MON~TOR option to placP it on
a$$ control line. He can then override ·it without bPin~J

required to change his$$ control Line.

INDENT(99) The INDENT option applies to the APRINT commanJ und
specifies the number of print columns to indent from the left
margin.

PAGELENGTHC99) The PAGELENGTH
specifies the
processed.

option applies
print page size

to
for

the APRINT
non-RUNOFF

command and
files being

The ROUT, JOUT, and DIRECT options are mutually exclusive. The MONITOR, TALK,
WAIT, and DISMISS options are also mutually exclusive. Mutually exclusive options
are a group of options for which only one member of the group of option~ ma)' be in
effect. If the user attempts to give two mutually exclusive options in the options
field of the command line or on a $$ control line, an error message is given.

Discussion

The CONVERT subsystem converts textual information from any text file format
to any other text file format.

Examples

1) Retrieve the contents of saved fi Le named FILEA and write contents onto
the current file.

CONVERT FILEA

The text of FILEA is copied as is onto the current file in ASCII turmdt.
Line numbers, if present, are treated as text. There is no case shifting,
tabulation, or reporting. This usage is equivalent to OLD FILEA except
that non-ASCII files are accepted.

2) Save the contents of the current file on file named FILEA.

CONVERT = FILEA

The output file format is ASCII. Line numbers, if present, are copied as
text. This usage is equivalent to RESAVE FILEA, except that if FILEA does
not exist, C-ONVERT will create a temporary file of that name.

4-81 DJ31-00

'

CONVERT CONVERT

3) Save the current file on FILEA in card format.

CONVERT = /FILEA: CARD

If FILEA does not exist, CONVERT will create it as a permanent file.

4> List the contents of FILEA on the terminal.

CONVERT FILEA = **

This usage is identical to LIST FILEA except that non-ASCII files are
accepted.

5) Resequence line numbers on the current file.

CONVERT: RC0020,20)

This usage is equivalent to RESE 20,20 <except for BASIC files>. Minimum
width of each line number is four digits.

6) Insert line numbers on the current file.

CONVERT: I

This usage is equivalent to RESE#.

7) Convert alphabetics on the current file to Lowercase.

8)

CONVERT: LOWER

Replace tab characters
of blanks.

CONVERT TC:;>,7,13),M

and on the current file by the indicated number

The M option is required to cause tab stops to be calculated relative to
the text and not relative to the beginning of the line numbers. Because
no tab settings are specified for the character, 8,16,32,73 are
assumed.

9) Determine how many lines are on the current file.

CONVERT: V

10) Retrieve all lines between the 15th and 44th. inclusively on file named
SOURCE and insert the : tab character, with default settings of
8,16,32,73. Copy to the current file (the assumption is that SOURCE has
no line numbers).

CONVERT SOURCE (#15-44):U

11) Save the Lines numbered 10 to 100 from CATA/FILEA and lines 150 to 200 from
the current file on file named SAVEFILE in card format, without line
numbers.

CONVERT CATA/FILEAC10-100>;*(150-200)=SAVEFILE:CARD,S

4-82 DJ31-00

CONVERT CONVERT

12) Save the current file on FILEA in card format with li~e numbers moved
to columns 73 to 80 and with the label ABC on those lines with line
numbers between 10 and 100 inclusive.

CONVERT = F LEA: CARD, M, L CABCC10-10Q))

13) Concatenate the contents of files FILEA, FILEB, and FILEC, strip all line
numbers, expand tabs, save in BCD variable-length records on SAVEFILE, and
report the results.

CONVERT FILEA;FILEB;FILEC=SAVEFILE:S,V,BCD,

MORE? TC:,10,20,30,40,50)

4-83 DJ31-00

CPY

Purpose

The CPY command copies the contents of one file into a:noth·er ...

Format

c PY [<in.file>; <out file> C; <s i ze>J.J

<inf.; le>
·< o,u t f i l e >
<size>

Description

: ·: = * I < f i l e des c >
: .: = *I < f i led es c >
;!= a d~cimal numb•r

<infile> the file that is to be copied from.

<outfile> the file that is to be copied onto .• If this fi.l,e does not
already exist, it is cr.eated to the correct size to ·hold all th·e
data up to the first end of file a·nd it is given general RE:AD
permission.

<size>

Discussion

the number of LLI~KS to be copied, startin9 ir-0m the heyinnin~ of
the file. The d .. efault is the number of LLINKS required to copy all
the data up to th~ first end of file~

Any type of file can be copied: ASCII, BCD, H•, etc.

T~e input file is not changed by the .copy functifrn.

Th i s c om m an d c a n b e us e d t o e f fe c t i v e l .y sh r i n k a f il e , b y c o p y i n g a f il e .w h o s e
content size ·i.s larger than its used size, into a new file. The system will create
the new file just l.arge enough to hold the logical fi l.e .• The creation of an output
file by the system pr.eser.ves the incoming file's attrib.utes (e.g. sequential ve.rsus
random). The ol.d file can then be RELEASEd .a-nd the new file renamed if desired. The
user can copy pa·rt of a file by specifying the number :of L.LINKS that ar:e to .b.e
copied .star,ti,n.g ·fro.m the beginning of the file. This could .be .used to recov.e·r part
of a file th.at .w.a.s destroyed by .a system malfunction. The resulting fi l·e ·may not
have an EOF .(.end·-;of-fi le mark), .but it can be patched using the FDVMP subsystem.

4-84 :DJ 31-00

C PY C PY

Examples

C PY (prompts for the name of the input and the output
fi Les).

2) CPY TEMP;S.RECOVR
(copies the contents of the file TEMP onto the file
S.RECOVR)

3) CPY DATA1;/PROJECT/JUN75
(copies the contents of file DATA1 onto the file JUN75 in
subcatalog PROJECT)

4) CPY STATE BUDGET COSTS
(copies the contents of file BUDGET in user-ID STATE onto
the file COSTS in the current "LOGON" user-ID)

5) CPY XX510001/MONDAY"X";MONDAY
(copies the contents of the file MONDAY in user-ID XX510001
onto the fi Le MONDAY in the current "LOGON" user-ID. Since
two files with the same name cannot be referenced at the
same time, it is necessary to use an alternate name
("X" was used here) for the first one.

6) CPY PROG;REPAIR;2
(copies th~ first 2 LLINKS of the file PROG onto the file
REPAIR. The file REPAIR may end up without an EOF.)

4-85 DJ31-00

COUT COUT

Purpose

The COUT command permits all output accumulated since either the beginning of
a command file application or a previous COUT to be directed to the user's remote
device or permanent file.

Format

COUT *l<filedescr>(EXCLUDEJ

(EXCLUDE) ::= (eliminate user lines containing responses from the output)

Discussion

COUT is used in conjunction with command file or deferred processing.

Examples

COUT * Call accumulated output is directed to the current file)

COUT FILEA Call accumulat~d output is directed to FILEA)

COUT FILE1;EXCLUOE

4-86 &J31-00

C POS C POS

Purpose

The CPOS commanc permits either conditional alteration of the normal serial
processing of input re ;ponses for a command file application or conditional execution
of a single command, iased on the contents of the PSW (Program Switch Word) •.

Format

CPOS expression; operation.

Discussion

The first parameter represents a Boolean expression which, when true, causes
the operation implied by the second parameter to be performed. Expression
operands may include any of the following:

Form

LTn

LEn

G.Tn

GEn

EQn

NEn

DEF

Is True When:

Bit of the PSW is on

Bits 18-35 of CCPSW) are less
than n

Bits 18-35 of CCPSW> are less
than or equal to n

Bits 18-35 of CCPSW> are
greater than n

Bits 18-35 of CCPSW) are
greater than or equal to n

Bits 18-35 of CCPSW) are equal
to n

Bits 18-35 of CCPSW) are not
equal to n

session is a deferred run

4-87

Restrictions

0 < i < 36

n < 262144

n < 262144

n < 262144

n < 262144

n < 262144

n < 262144

DJ31-00

C POS CPOS

Permissible operators include+ COR>, * CANO), - (EXCLUSIVE OR) and I (NOT).
Although I is a unary operator involving only one operand, by convention A/Bis taken
to mean A*/B. The expression is evaluated from left to right (without regard to
operator hierarchy) and the resulting truth value CTRUE or FALSE) displayed. When
false, or if a requested operation does not accompany the expression, CPOS processing
is terminated. Otherwise, the operation is performed, constituting either a branch
to a given response line on the input file or execution of a single specified
command. A branch declaration is identified by an integer offset, optionally
prefixed by + or - to denote forward or backward positioning (absence of the sign
prefix implies forward positioning) or a label prefixed by a dollar sign. The offset
represents the number of the response lines to forward or backspace, relative to the
line containing the offset 1tself. Thus, the interpretation of the command,

CPOS 18+GE5*LT10;+2

is, "when bit 18 of the PSW is on or the magnitude of its lower half is greater than
or equal to 5 and less than 10, then skip the command immediately following the CPOS".
The expression itself is optional and, when omitted, causes the requested operation
to be unconditionally performed; e.g. CPOS ;+2.

When an offset declaration requesting a forward space exceeds the number of
response lines remaining, the application is terminated normally. Thus, the
command,

CPOS EQ0;9999

results in terminating the command file application in which it appears when the lower
half of the PSW is zero.

The requested operation may instead be a command to.be conditionally executed,
optionally accompanied by any necessary parameter declarations. For example,

CPOS 34-35;CRUN INFIL;OTFIL

would initiate the requested CRUN when either bit 34 or 35 Cbut not both> of the PSW
is set.

Both CMOO and CPOS request continuation input when the last character of the
line is a semicolon. A null response to such a request indicates completion. When
parameters do not accompany either command Con the same line>, the query, "FUNCTION?",
is issued. The user must, at this time, enter all information necessary to perform
the required operation.

4-88 OJ31-00

CRN CRN

Purpose

The COBOL-74 tim' sharing system provides the capability for compiling, loading,
and executing COBOL-74 and I-D-S/II programs from a terminal under the control of
the time sharing execu ive. Additionally, OM-IV Transaction Processing Routines may
be compiled using this facility.

Format

CRN [(:iledescriptor-1} i

[[IDENT=string-1]

[; NOLOA.D J

[;NOGO J

(
ONLINE)

[;P*= REMOTE(ii)]
filedescriptor-2

[;**=filedescriptor-3 J

[;*S=filedescriptor-4 J

[r NDUMP} =filedescriptor-5]
l DUMP

(

NDECK

[(DECK) (
ONLINE }

= REMOTE(ii) · J
fi lede.scriptor-6

. 4-89 DJ31-00

CRN

Format (cont.):

(·;{c::::Dk)
· AC01'4DK · (

ONLINE }~J = REMOTECii)
filedescriptor-7 •

[;COPY=filedescriptor-8 [,filecode J J •••
(;REPLACE J

C;RESEQ C,Cinteger-1,integer-2> J J

[; DWK J

(; (NLSTIN}

LS TIN

(;ALTNO

[;ASCII PRT J

[;MAP J

(;DEBUG J

c ;CNLsrou) J

LSTOU

(;XREF J

[;LNRSM J

[;NCLIST J

(;NWARN J

(;NMESS]

[;IDSLIST J

[;NRESET J

[; LL J

(;LIL J

[;HIL J

(; HL]

J

4-90

CRN

DJ31-00

CRN

Format (cont.):

[;ANSI J

[; COBOL-7 J

[; T p J

[;OSE J See <1>

[;H*=filedescriptor-9 J

[;CORE=integ<r-3 [,integer-4 J J

[;TIME=integer-5 J

[;LIBRARY=filedescriptor-10 J •••

[;fc=fi Ledescriptor-11 ["altname"J J •••

[;DSS= [SCHEMA J [,GOJ

[;MAIN=name-1 J

[;USE=string-2 J

[;LOADOPTION= [C74LNK J [,NOSETU J ••• J

[;LINK=name-2 [, [origin) [,option) J
[;ENTRY=name-3 J
[;OBJECT=filedescriptor-12 J ••• J

CRN

Syntax Rules:

1. Options may be entered in either uppercase or lowercase.

2. Options may be specified in any order, with the. following exceptions:

a. The LIBRARY
LOAOOPTION,
effective.

option(s) must
USE, ENTRY, or

logically precede
OBJECT, options

any MAIN, LINK,
in order to be

b. The MAIN option must logically precede any LINK, ENTRY, or OBJECT
options in order to be effective.

c. The LINK, ENTRY, and OBJECT options are processed as encountered, so
t h e i r p L a c em e.n t a f f e c t s t h e o r d e r o f t h e c on t en t o f t h e R * f i l e t h a t
controls the loading process.

3. Options may follow the colon in the CRN comm~nd or may precede tht~ source
text in the source file, or both. Option lines in the source file must
contain a "$" as the first nonnumeric character.

4-91 OJ31-00

CRN

4.

s.

6.

7.

Discussion

CRN

Multiple options on a single Line must be separated by se~icolons, but a
semicolon need not follow the last option on a line, even if another option
line follows.

Options are processed in the order encountered on the source file,
followed by those appearing in the CRN command. In the case of
contradictory options, the last option encountered is effective. This
means t~at an option found in the source fite m~y b~ overridden by a
contradictory option in the CRN command except for options pertaining to
the creat_ion of the H* file. These options are mutually exclusive and may
be used in the source file or in the CRN command, but not both. The H*
options are : NOLOAD, NOGO, DSS, LIBRARY, MAIN, LINK, ENTRY, OBJECT.

In each set of options given in the CRN command general format, the default
option is listed first.

A CRN command may span more than one line as long as the line is terminated
by a semicolon.

The COBOL-74 time sharing system provides the capability for compiling loading,
and executing COBOL-74 programs from a terminal under the control of the time sharing
e x e c u t i v e • Add i t i o n a l i n fo rm at i o n r e g a r d i n g C R N o pt i o n s m a y b e o b t a i .n e d fr om
the COBOL-74 ~Guide CDE02>.

4-92 DJ31-00

CRUN CRUN

Purpose

The CRUN command initiates command file processing. Command file processing
is a noninteractive ml :le within time sharing during which user inputs are obtained
from a file instead 0) the terminal. The output from the CRUN may be directed to
the user's terminal or collected on a file for Later examination.

Format

CRUN {infile};[otfileJ;[option-1;option-2; ••• option-n

{infile} ::= {filedesc}
[otf i Le] : : = [fi LedescJ

option-i ::= nn ••• n Maximum processor time Limit

::= arg-1,arg-2 ••• arg-n Substitutable arguments

::= ARG/c Substitution-implying character

::= DELie Delete character

::=INCLUDE or EXCLUDE Output f i le user
disposition

::=UPPER or LOWER Output file case

Discussion

response

Command file processing is initiated upon receipt of the CRUN command. CRUN
parameter declarations and syntax conventions are nearly identical to DRUN--the
command used to schedule a deferred session. The execution phase of such a session
constitutes a command file application. It is essential to review the DRUN command
as it contains instructions for input file preparation and describes the functional
characteristics of command file processing.

When no parameters accompany the command, the output file description is
optional, but when present must constitute the second parameter. When only an input
file description is specified, or is followed by two consecutive semicolons, all
keyboard output generated for the command file application is directed to the user's
remote -device upon completion of the application. Output fi Le management and
description variations are similar to DRUN conventions, with the exception that a
temporary file is created for the user when (1) the named file does not already exist,
and (2) the description consists solely of a file name. The current file may be
declared for either the input or output description (both, if desired) and is denoted
by an asterisk (*).

The input file for a CRUN application may optionally contain line numbers and/or
first Line parameter declarations. Parameters unique to deferred processing
applications are ignored when encountered as such first Line declarations. This
relaxation permits the same input file to be utilized for either a command file or
deferred processing application.

4-93 DJ31-00

CRUN CRUN

The presence of line numbers on the input file is determined by the occurrence
of a digit <0-9> as the first nonblank character of the first line. When an input
file without line numbers otherwise begins with a numeric, an initial line may be
introduced containing only the characters, ##; e.g.,

100 DIMENSION DATE(2)
200 CALL DATIM(DATE,TIME)
300 PRINT 100,DATE,TIME
400 100 FORMAT("ODATE: ",2A4," - TillllE:",F7.3)
500 STOP; END
END

The input file illustrated above is shown merely for the sake of example and
would have Limited utility for a CRUN application, since it assumes the user is in
build mode on behalf of the FORTRAN system selection and expects the current file
to be in an initialized state. These shortcomings, in addition to the ## line
requirement, can be overcome by replacing the ## Line with the command:

*FORT NEW

The response of FORT NEW results in establishing FORTRAN as the current
system selection with an empty current file.

The CRUN subsystem can be entered from another subsystem by preceding any
recognizable command with a quote (").

$*$ FUNCTIONS

Various special response lines are recognized by the TSS Executive when command
file processing is in progress. Such lines are identified by a leading string
of "S•S". S•S response lines may appear anywhere in the input file; i.e., they
are not restricted to recognition at system selection or build mode levels.

The response line S•SBRK may appear anywhere in the input file for a command
file or deferred processing application and simulates a break when the response line
is processed. The break will not terminate the CRUN or DRUN application, but rather
will behave as though the break key was depressed during a live session.

4-94 DJ31-00

CRUN CRUN

S*SCOPY causes t'1e Time Sharing Executive to send (to the user's termirial) a
co p y of a L L i n put d at , re ad and a L L out p·u t p rod u c e d by t he c om m and s • Th e f u n c t ·i on
is deactivated by the directive, S*SCOPY OFF.

$ * $ D E L E c a u s e s t h e T i m e S h a r i n g E x e c u t i v e t o -r e f r a i n f r om w r i t i n g o u t p u t t o t h e
*CFP file during command file execution. Output deleted by this feature is
irrevocably Lost. The function is deactivated by the directive, S*$DELE OFF.

$*$FILE resumes command file mode of processing.

$*$LBL defines a Label (associated with the following line) which may be
referenced as a transfer point with the CPOS command. A ma.ximum of eight labels may
be defined, each of which must consist of one to nine alphanumeric characters,
including the period and dash. Commentary information may be included on a $*$LBL
Line, separated from the label declaration by a colon or semicolon. A label
referenced with the CPOS command must constitute the operation subfield <second
parameter) of the command and be preceded by a dollar sign($).

The following examples are thus functionally equivalent in all respects:

Example 1 : Example 2:

CMOD 0 CMOD 0

$*$LBL REPEAT-IT LIST

LIST CMOD +1

CMOD +1 C POS LES;-2

CPOS LE 5; $REPEAT-1T

4-95 DJ31-00

CRUN C RUN

Two special labels, •• BREAK and •• A~ORT, may optionally be defined with thP
$•SLBL function. Each time the break key is pressed during e-ecuti~n ~fa CRUN
application, control is passed to the response line associated with the •• BREAK label,
provided it has been defined. It is important to note that no correlation exists
between the •• BREAK label and the S*SBRK function; i.e., S•SBRK invocations do not
transfer control to the •• BREAK label. Similarly, the occurrence of any error in
either a CRUN or DRUN application (which will resu~t in ab.normal termination of the
application) causes control to be passed to the response line associated with the
•• AB 0 RT lab e l • When t e rm in at i on o c curs, or i f a second error i s encountered , cont r o l
is either passed to the •• ABORT procedure of the previous level of processing (in
the case of nested CRUNs), or the application is terminated. The reason code (1-16)
for the abort is available to the user's •• ABORT procedure and may be materialized
in the lower half of the Program Switch Word via the "ERROR" (or more simply "E")
option of the CMOD command; e.g.,

$•$LBL •• ABORT : COME HERE IF ABORT OCCURS

CMOD E

$•$REM DIRECT OUTPUT TO *SRC IF ERROR CODE>6

CPOS GE6;SSKIP

COUT *
$•SLBL SKIP

Error codes (decimal) and their associated meaning are as follows:

Code#

. 1

2

3

4

5

6

7

10

11

12

13

14

15

16

Meaning

COMMAND FILE NONEXISTENT

COMMAND FILE I/O ERROR

COMMAND FILE FORMAT ERROR

EXCESSIVE OUTPUT GENERATED

INVALID USE OF DRL T.CFIO

USER ERROR #nnn DETECTED BY TSS

PPT START OR LINE SWITCH ATTEMPTED

PROCESSOR TIME LIMIT EXCEEDED

INPUT LINE LENGTH TOO LONG

COMMAND FILE INPUT EXHAUSTED

TERMINATED BY DABT WHILE EXECUTING

ERROR DETECTED IN SSname PROCESSING

SYSTEM LEVEL SYNCHRONIZATION ERROR

$•$FUNCTION NOT PERMITTED

4-96 DJ31-00

CRUN CRUN

The error numbers referenced in code 6 t•~xt are listed in Appendix A. The s:;11ilme
in code 14 represents the name of the subsystem in execution at the time the error
was detected.

When the $*$MARK response line is encountered during a command file application,
the message text starting in character position 9 is issued to the user's remote
device. The MARK function can appear anywhere on the input file and may be used to
notify the user when specific stages of processing are reached. The function is
ignored when encountered in a deferred session.

The following example utilizes the function to display the snumb of the last
batch job submitted by the user:

##;EXC;(#S)
S*SMARK LAST JOB SUBMITTED WAS #1

$*$NULL

The S*SNULL response line is the equivalent of a line containing a null response
CCR only).

The $*$QUIT response line may appear anywhere on the input file or may be given
as an interactive response. Its purpose is to immediately discontinue command filf'
processing. The output file is not produced, nor is *CFP removed from the AFT.

The $*$REM function provides a means of entering commentary notes on the input
file. Since it 1s not included as a response Line on *CFP, care must be exercised
in calculating the relative offset for CPOS repositioning; i.e., all S*$REM lines
must be ignored for such calculations.

4-97 DJ31-00

CRUN CRUN

S•STALI<: permits the user to become interactive with his command file
application. Upon receipt of this command, the last buffer of output generated on
*CFP (normally the last line requesting an input response> is issued to the user's
remote device. From this time until receipt of a s•sFILE command, all dialog
exchanged between user and computer is directed to both the remote device and
*CFP. Normal command file processing is resumed when S•SFILE is issued as the
response for any input request. The actual response for this request is obtained
from the response line on *CFP following the $•$TALK response line.

An interesting application of S•STALK is to obtain a printer listing of the log
produced by a Time Sharing session. This is easily accomplished by initiating a CRUN
of the following input file at the beginning of the session:

##*NULL;DEL/
$•STALK
COUT TEMPF
JPRINT TEMPF:IDENTCM26KLC554,JOHNDOE,STATION G)

The printer listing is produced when the S*SFILE command is given.

A command file or deferred processing application is immediately aborted upon
the occurrence of any error or exception condition detected by a subsystem. In some
instances, this action may be undesirable; e.g., use of a certain command might
knowingly cause what appears to be an error, but has no effect whatsoever on the
application. The S*STRAP ON CON is optional) and $*TRAP OFF response lines provide
a means of enabling and disabling this feature at will. All applications are
originally initiated with the trap mode enabled; however, nested CRUNs are initiated
with whatever mode is currently in effect.

When the trap mode is disabled, the user can determine the success or failure
of the command executed with the previous response line by testing bit 13 of the
program switch word with the CPOS command. If the previous command was successfully
executed, bit 13 will be reset (off); otherwise it will be set (on). Thus, in the
following example, the JRN command is not issued if the required file fails to become
the current file.

##•NULL;CFILENAME?)
$•$TRAP OFF
OLD #1
CPO S 13; +2
JRN

Note that it is necessary to examine the bit immediately following the command
in question; i.e., other response lines cannot intervene between the command and the
CPOS used to test its outcome.

4-98 DJ31-00

CR UN CRUN

S*SUSER is a spe~ial form of S*STALK, allowing a single response line to be
supplied by the user. As with $*$TALK, the last Line requesting an input response
is issued to the user's remote device; however, upon receipt of the response, command
file processing is automatically resumed.

In some instances it may be desirable to have a specific input request issued
to the user's remote device upon receipt of a $*$TALK, $*$USER or $*$QUIT response
Line. This may be accomplished by affixing an equal sign <=> to the$*$ function,
followed by the desired prompt message. For example, the response Line,

S*$USER=WHAT IS YOUR ACCOUNT NUMBER?

resuLt·s in issuing the question, "WHAT IS YOUR ACCOUNT NUMBER?" to the user's remote
device. The output file is. not affected by this feature and will contain the true
prompt.

Command File processing with VIP devices is permitted; hOWl"ver, the rl'sponse
lines $•$COPY, $•$USER, $*STALK, $•$MARK, and $•$QUIT cannot be utiliLeJ.

CRUN Processing Pushdown

Ne s t e d C R UN s m a y o c c u r i n a c o mm a n d 'f i l e o r d e f e r r e d p r o c e s s i n g a pp l i c a t i o n t o
a maximum depth of four levels. The effect of encountering a CRUN during such an
application is to suspend (pushdown> its processing until the new requested command
file application terminates, whereupon processing of the previous application is
resumed (popped up). When an error occurs during nested command file processing,
output accumulated for all levels is generated and the entire application terminated.
Note that each Level of nested processing requires a command file in the user's AFT.
Such files are identified by names •CFP through •CFT and care must be exercised to
avoid AFT removal during the application. NEWUSER processing preserves these fi Les
for the new user, thus allowing a command file application to change user-IDS at will.
Both user-ID and password must follow a NEWUSER command on the CRUN input file.
The following example illustrates a command file application to change user-ids
with no intervening output issued:

*CRUN "NEWU\JDOE\JOPASSWD";*NULL

A break or disconnect (via DRL DRLDSC) may be used to prematurely terminate a
command file application. Output generated for the application up to the point of
interruption is directed to the requisite file(s), or discarded when destined for
the user's remote device.

4-99 DJ31-00

CRUN CRUN

COMMAND LOADER INTERFACE

The Command Loader Subsystem may be utilized to initiate a command file
application. This subsystem is invoked upon receipt of any unrecognized command.
Such a "command" is construed to be a file description conforming to one of the
following conventions:

o catalog/filename

o /filename

o filename <implies CMDLIB/filename)

The mode <random vs. sequential) of the target file dictates the function to
be performed; i.e., random infers loading the resident bound program and passing
control to it, while sequential implies initiation of a command file application with
the designated file used as input. For the Latter case, optional parameter
declarations may accompany any of the file description conventions, consistent with
CRUN command constructs and syntax. Assume, for example, the following input file
is resident in CMOLIB with general read permission under the name, SIEV. Its purpose
is to support a local command called.SIEVE which produces a list of the user's
first-level catalog and file names containing a specified character pattern.

##•NULL;(PATTERN?)
"CATA";*
-0;4
"-PS:/#1/;*"

The application may be initiated by typing SIEVE (or SIEV>, whereupon the query,
"PATTERN?", is issued to obtain the desired character pattern. The pattern may
alternatively accompany the SIEVE command, as follows:

*SIEVE;; (FIL)

Note thBt this rep~esents the equivalent of:

*CRUN CMDLIB/SIEV,R;;CFIL)

When only substitutable arguments must accompany the file name,
permissible to substitute a space for the double quotes and left parenthesis.
the SIEVE command could equivalently be entered as follows:

*SIEVE FIL

4-100

it ; s
Thus,

DJ31-00

CRUN CRUN

The following example utilizes COUT to place a specified SYSOUT report
(generated by a JRN job with JOUT disposition) in the current file:

##*NULL; (SNUMB?, ,cTIVITY? ,REPORT-CODE? ,DISP?)
JOUT #1
ACTIVITY #2
PRINT #3
#4
COUT *
-D;S F;*
-8;4 D;4

Assuming this input file is resident in the user's own catalog under the name
"EXTRACT", an example appi.ication mig-ht be initiated as follows:

*/EXTRACT 6837T,1,74,RELEASE

The CMOD and CPOS commands, while not entirely restricted for use in command
file applications, permit count-controlled repetition or conditional execution of
a command sequence.

4-101 DJ31-00

DABT DABT

Purpose

The DABT command permits deferred sessions originated by the user te be
aborted or ina~tive entries on the deferred queue file to be removed.

Format

OABT [nnnno; nnnnO; ••• ;nnnnDJ [ALL] [REMO]

[nnnnOJ ::=deferred job number

[ALL] ::=abort all scheduled jobs for this user

[REMO] : := remove all of user's aborted or completed O,RUN. jobs from deferre.d.
control file

Discussion

The DABT command may be utilized to abdrt one or m6re deferred sessions which
may not have terminated. An "ALL" request aborts all jobs scheduled by the user
without regard for a specified starting date or time. Jobs which are scheduled or
executing on behalf of the user are candidates for aborting.

The REMO parameter serves as a cleanup mechanism to remove previously
aborted or completed deferred sessions from the deferred queue file.

If the parameters do not accompany the OABT command a request for "JOB ID?" will
be issued to the terminal. A line ending in a semicolon results in a continuation
request for more input.

The MASTER user has the capabilities using OABT ALL* to abort alt deferred
sessions or using DABT REMO* to ~lean out the entire deferred queue file.

Examples

1) DABT 12340

2) OABT 12340; 23450

3) DABT ALL

4) DABT REMO

4-102 DJ31-00

dataBASIC dataBASIC

Purpose

The dataBASIC conmand envokes the dataBASIC subsystem for entering, compil inq
and running dataBASIC programs.

Format

DATA[BASICJ

Discussion

Refer to the dataBASIC System Language Manual for details of the language.

4-103 DJ31-00

OE CODE DECODE

Purpose

The DECODE command is used to obtain the original version of an encrypted
file and is the complementary action to retrieve the contents of a file built using
CODE.

Format

DECO[DEJ (<infile>[;<otfile>]]

<infile> ::= <filedescr>
<otfile> ::= <filedescr>

Discussion

Input and output file descriptions are required as for CODE and are treated in
a similar manner. The output file may be * to designate the current file. Upon
receipt of the DECODE command, the user is asked to enter the encryption key. This
is the same key originally used with the CODE command to encrypt the file. Key
verification is not required with DECODE.

Example

1) DECODE SAFEFILE

2) DECO SECRET;NONSECR

4-104 OJ31-00

DELETE DELETE

Purpose

The DELETE command deletes a specified Line or Lines from the current file.

Format

[DELE[TEJ [<Line-ref>[,<Line-ref>J ••• J

<Line-ref> ::=
<Line-range>::=

I
I

<begin-Line>::=
<end-Line> ::=
<Line> ::=

<Line>l<Line-range>
<begin-Line>-<end-Line>
<begin-Line>
-<end-Line>
<Lire>
<Line>
a 1- to 8-digit decimal number

Discussion

The Lines in the current file must have Line numbers beginning in column 1 and
the numbers must be steadily increasing.

The option -<end-Line> is only accepted as the first <line-range> (Example
3) •

The option <begin-line>- is only accepted as the Last <Line-range> (Example
5) •

The Lines and line ranges must be given in ascending order.

Examples

1) DELETE 10

2) DELETE -50

<deletes Line 10)

(deletes the lines from the beginning of the current file
through line 50)

3) DELE -15,200,220-275,302,309-410

4) DELE 460-

(deletes the lines from the beginning of the current file
through line 15, line 200, lines 250 through 275, line 302,
and lines 309 through 410).

(deletes lines 460 through the end of the current file)

5) DELETE 13,25,70-90,999-
Cdeletes line 13, line 25, lines 70 through 90, and lines
999 through the end of the current file)

4-105 DJ31-00

DISPLAY DISPLAY

Purpose

The DI S PL A Y c om man d i s t h e C O'N VE RT c om man d used t o p rod u c e fo rm at t e d l i s t s
of file contents.

Format

DISP[LAYHinfi leH:optionsJ

[infi le]
[:options]

Description

: := [filedescrJ
see below

Media Code Options

The output record format options specify the physical
record. The default option for the CONVERT command is "ASCII".
and their meanings is as follows:

BCD - variable length BCD - media code 0

format of the output
A list of the options

COMDK - BCD compressed deck card image CCOMDK) - media code 1

CARD - BCD 14-word card image - media code 2

PRINT - BCD variable-length print line image - media code 3

OLDASC - obsolete TSS ASCII - media code 5

ASCII - standard system format ASCII - media code 6

APRINT - ASCII print line image - media code 7

ACARD - ASCII card image - media code 10

SAME - a record output media code is the same as its input media code

Line Number Options

Line numbers can exist with COMDK, CARD, ACARD, OLDASC, and ASCII records. All
BCD, PRINT, and APRINT records cannot possess line numbers. The line number for an
ASCII or OLDASC record consists of 1 to 8 numeric characters. These numeric
characters must be among the first eight characters in a line. A line number is
defined to include any leading blanks. A line number is terminated by a nonnumeric
character, including blank. If the "#"character terminates a line number and if
it is one of the first eight characters of a line, it is consider.ed to be a delimiter.
It is treated as neither part of the line number nor part of the text. The line number
for COMDK, CARD, and ACARD records is defined to be all the trailing digits in columns
73-80. This field may begin with nonnumerics; these also are considered neither part
of the line number nor part of the text.

4-106 DJ31-00

DISPLAY DISPLAY

The Line number options may specify:

1. Whether Lin0 numbers are to appear in the output text.

2. The actual Line number values.

The default Line number option is "ASIS". A description of each of the options
follows:

ASIS

STRIP

MOVE

ICi,j)

Line numbers are assumed not be present in the input file. Text,
including Leading/trailing numeric characters and "#'"s are Left as
i s •

Strip Line numbers from the input text before reformatting and writing
the output text. Input COMDK, CARD, and ACARD records are truncated
a t c o L um n 7 2 • L i n e n um b e r s o n AS C I I a n d O L D A S C r e c o-r d s , w h e n p r e s e n t ,
are discarded and the first character following the Line number is
treated as the first character of the Line.

Move Line numbers. The input records have the Line numbers detached
from the text string, either from the front (ASCII or OLDASC) from
columns 73-80 CCOMDK, CARD, or ACARD). The output records have the
Line numbers reattached to the text string, either at the front (ASCII
or OLDASC) or in columns 73-80 CCOMDK, CARD, or ACARD). If the output
records are BCD, PRINT, or APRINT, the Line numbers are not
reattached and the M option acts similar to the S option.

Insert Line numbers beginning
j. The arguments i and j are
defaults are i=10 and j=10.
Line-numbered. If the output
numbers are not inserted and

with Line number j and incrementing by
optional. If they are not given, the
The input file is assumed not to be

records are BCD, PRINT, or APRINT, line
the I option is ignored.

RCi,j) Resequence Line numbers. Strip any existing Line numbers from the
input text and insert new Line numbers in the output text, beginning
with j and incrementing by j. The arguments i and j are optional.
If they are not given, the defaults are i=10 and j=10. If the output
records are BCD, PRINT, or APRINT, line numbers are not inserted and
the R option behaves as the S option.

NCch) Implies the M option and specifies that the normal tab character (the
colon) and tab settings CS, 16, 32, 73) have been employed in bui Lding
the input file(s). The (ch) argument may be used to define a character
which replaces the colon as the tab character.

LABEL Cabcde(i-j)fghi (i-j)---) If the output records are COMDK, CARD, or ACARD,
then a Label is placed Left-justified in columns 73-77. The Label
is specified as 1 to 5 nonblank characters. The fields "abcde" and
"fghij" represent the labels. The Label is placed on only those Lines
with line numbers between i and j inclusive. Up to 10 distinct
labels may be given. If more than one Label is given though, the (i-j)
specifications may not overlap.

4-107 DJ31-00

DISPLAY DISPLAY

The LABEL option is meaningful only if line numbers are attached to
output records. Therefore, the label option is completely ignored
unless it is accompanied by either the insert, resequence, or move
option.

For the I and R options, output line numbers for ASCII and OLDASC records will
have at least the number of digits specified for i ih I(i,j) or R(i,j). Thus
R(0010,10) will result in line numbers 0010, 0020, 0030,---.

Input records are assumed to have line numbers when the STRIP, MOVE, and
RESEQUENCE options are specified. Otherwise, line numbers are assumed to be absent
and leading numerics in ASCII format are treated as real text. When line numbers
are assumed present, tabbing and columnizing are performed relative to the start of
the real text.

The user must be careful not to alter the line number values of a BASIC
f i le •

Character Manipulation Options

A description of each of the character manipulation options follows.

TABCch,i,j---;ch,i,j---;----) Expand tab characters into blanks. Use
"ch" as a tab character with settings i,j,k,etc. Usually,
any occurrence of the tab character in the input file(s)
results in the replacement of the tab character with a
string of blanks up to the next tab setting. However, if
a tab character is encountered beyond the last tab
setting specified for that tab character, it is treated as
a normal nontab character.

If a tab character is specified without specifying any
tab settings, default settings of 8, 16, 32, and 73 are
a s s u m ed • I f t h e t ab o pt i o n i s g i v en w i t ho u t a n y a r g um en t s ,
the normal tab character, colon, and the default settings
are assumed. There is no limit to the number of tab
characters or settings allowed.

UNTAB(ch,i,j---;ch,i,j---;----> Insert tab characters, replacing
blanks. Use "ch" as a tab character with settings i, j,
k, etc. Any occurrence of a string of blanks terminating
on an "untab" tab stop is replaced by the character
II ch II•

If a tab character is specified without specifying any
tab settings, default settings of 8, 16, 32, and 73 are
assumed. If the untab option is given without any
arguments, the normal tab character, colon, and the default
settings are assumed. There is no limit to the number of
tab characters or settings allowed.

4-108 DJ31-00

DISPLAY

LOWER

UPPER

DISPLAY

Convert all alphabetic characters to lowercase. lhis
option is meaningful only if the output records arc ASCII,
OLDASC, or APRINT.

Convert all alphabetic characters to uppercase. This
option is meaningful only if the output records are ASCII,
OLDSAC, or APRINT.

BEGIN(ch) Begin a new Line <record) immediately after the
character "ch". The character "ch" is treated as a
delimiter and not part of the text. It is not placed in
the output text. When the "ch" character is Located at the
beginning or end of a Line, it ·is simply deleted. Strings
of the "ch" characters are treated as a single "ch"
character.

COLUMNCi-j) Delete all of the characters 'in a Line except those
which are located within columns i through j inclusively.
The options BEGIN and TAB are both completed before
COLUMNS takes effect. If a record does not extend through
column j prior to the COLUMNS option execution, it is
blank filled to column j'. Thus, when the COLUMNS options
is in effect, the Length of all generated output records
is j-i+1 characters.

SQUEEZE Replace. any string of two or more blanks by a single
blank. The options BEGIN, TAB, COLUMNS, and UNTAB are all
performed before SQUEEZE is executed.

TRAIL Delete all trailing blanks on a line. The TRAIL option
is performed immediately after the SQUEEZE option.

A number of options affect the length of an output text line. It is important
that the user understand the order in which these options are performed. The order
(from first to Last) in which the options are executed is:

BEGIN
TAB
COLUMNS
UNTAB
SQUEEZE
TRAIL

Miscellaneous options

VERIFY

IGNORE

If the VERIFY option is in effect when CONVERTY completes the
processing of an input file, then CONVERT gives a brief summary of
the number of records obtained from the file. This summary gives,
for each media code, the number of records which had that media
code.

Ignore all embedded $$ control lines. Treat them as text.

4-109 DJ31-00

DISPLAY

DISCARD

TIME

DEFAULT

DISPLAY

Discard all nontext records. Nontext records are those records which
media code is not one recognized and interpreted by CONVERT. The JRN,
JPRINT, JPUNCH, APRINT, and DISPLAY commands require that nontext
records be discarded. The CONVERT command normal Ly does not require
that nontext records be discarded. When nontext records are
encountered during the execution of the CONVERT command, they are
written to the output file, but no reformatting or media conversion
is performed.

When the TIME option is invoked, the date and time of day are printed
at the user's terminal.

The DEFAULT option is used to nullify all options which the user
has specified either on the command line or embedded.$$ control lines.
The default option has no affect on any of the "specialized" options.
Because of the nature of the DEFAULT option, it is meaningless for
it to be located in the options field of the command line. Therefore,
if the DEFAULT option is encountered in the options field, an error
message is issued. The same reasoning applies to the placement of
the DEFAULT option anywhere other than the beginning of a$$ control
line.

File Processing Options

SELECT (file) The SELECT option is analogous to the$ SELECTA card. The select
option allows an input file to specify other input files.
Upon encountering the SELECT option, the selected file is
obtained and is used in place of the$$ control line. Nesting
of selects is permitted up to 17 levels. The SELECT option is
meaningful and valid only on a$$ control line. Only one SELECT
option may be specified on control line.

INCLUDE If the INCLUDE option is in effect, CONVERT, upon encountering
the SELECT option, uses the selected file as an input file.

EXCLUDE If the EXCLUDE option is in effect, CONVERT ignores the SELECT
option.

The purpose of the INCLUDE and EXCLUDE options is to allow the user to control
the performance of the select options while not forcing him to disregard:

1. Other options on the same $$ control Line.

2. All $$ control lines.

The INCLUDE option is the default option for the JRN command. The EXCLUDE option
·is the default option for the JPRINT, JPUNCH, APRINT, DISPLAY, and CONVERT
commands.

4-110 DJ31-00

DISPLAY DISPLAY

Discussion

DISPLAY FILEA :M,TCX,10,20;\,30,40,50)

The contents of FILEA are printed at the user's terminal. Line numbers are in
columns 1 through 8 and text begins in column 9. Tabs are expanded. The tab
characters are r. and\. The settings for % are 10 and 20. The settings for\ are
30, 40, and 50.

4-111 DJ31-00

DMIV

Purpose

The D~IV command invokes the ~~-IV Query and Reportin~ Proc•ssor.

Format

DMIV-

Discussion

Refer to l?!!:.!Y Query~ Reporting Processor (QRP) ~ U.sert s ~for further
information.

4-112 DJ31-00

DONE DONE

Purpose

The DONE command al Lows a user to Leave a system or subsystem so that
another can be enter(d.

Format

DONE

Discussion

To enter a different system, th~ user must first Leave control of the current
system.

4-113 DJ31-00

DRUN DRUN

Purpose

The ORUN command initiates a deferred processing job optionally at a later time
and date.

Format

DRUN {infile};{otfile};[option-1;option-2; ••• option-nJ

{inf i le}
{otfile}
option-i

Discussion

::= {filedescr}
::= {filedescr}
::= nn ••• n Maximum processor time limit
::= arg-1,arg-2, ••• arg-n Substitutable arguments
::= ARG/c Substitution-implying character
::= DELie Delete character
::=INCLUDE or EXCLUDE Output file user response disposition
::=UPPER or LOWER Output file case

The term "deferred processing" implies a planned time sharing session scheduled
by a user to be independently initiated at some given date and time. Since the user
does not actively participate in a dialog exchange with the computer during the
session, the user must anticipate responses and provide an input file containing them
in the order to be presented. An output file must also be provided to collect the
exchanged dialog. A listing of this file produced after the deferred session
terminates will appear notably similar to the log of an online user.

Upon receipt of the DRUN command, the user's input and output file descriptions
are obtained, in addition to any optional parameter declarations. The job i~ then
assigned a unique identifier (nnnnD) and recorded in a special deferred queue file
with a status indicating that it is scheduled for initiation. After establishing
the request for deferred processing, the user may continue his online session or
disconnect if desired. When the job becomes eligible for initiation, it is logged
on with the user-id of its originator and the status of the deferred queue entry is
changed to indicate the session is in progress. When termination occurs, the status
is again updated to reflect a normal or abnormal ending and the deferred session is
concluded.

If no parameters accompany the command when it is issued, the user is asked "FILE
NAMES?" and must, at this time, enter all information necessary to schedule the
deferred session. Input and output file descriptions are required and must
constitute the first two parameter declarations. Optional parameters may follow the
output file description in any order desired.

4-114 l>J 31 -00

DRUN DRUN

The input and output file descriptions declared for a deferred session must
conform to the conventional TSS format. These files must be permanent and up to
three levels of subcatalogs may be specified for each. This Limit is imposed by the
space available on the deferred queue file and, when substitutable arguments are
declared, is further reduced to a combined total of four subcatalog Levels. ALL
passwords necessary tt allocate either file must accompany its description. A line
number interval may optionally be declared for the input file and either description
may include an alternate name and/or permissions.

Continuation input is requested for a file description (or the next #fl line of
the input fi Le obtained) when the input line is prematurely terminated with a slash,
dollar sign, comma, Left parenthesis or the leading quote of an alternate name
declaration. The semicolon, used to separate parameters from one another,
always implies continuation when it occurs a~ the Last character of the line.

Preparation of the input file is essential prior to scheduling a deferred
session. This file may optionally have Line numbers, the presence of which is
established by the occurrence of a digit (Q-9) as the first nonblank character of
the first line. Line numbers serve no functional purpose for deferred processing
other than allowing the user to specify only a segment Cline-number interval) of the
fi Le to be processed. If present, th'ey are sequence-checked and otherwise discarded.
Note that as with JRN batch job submittal format, the pound sign (#) may be used to
separate the line number from the text when the latter begins with a numeric character.
Double pound signs (##) are required when the first textual character is itself a
#.

DRUN parameters may optionally be provided on the first Line of the input
file Cor input file segment), consistent with the following syntax:

##filedescr-out;option-1;option-2; ••• ;option-n

The output fi Le description is required and must constitute the first parameter
of the Line. If not provided, it must be declared explicitly null, as follows:

##;option-1;option-2; ••• ;option-n

Parameter decl~rations
declarations on the ## line.
both the DRUN command Line
declaration is ignored.

supplied with the DRUN command override similar
Thus, when an output file description is included in
and the ## line of the input file, the latter

A Limited number of user responses required for a deferred session may be
substituted for the input file description on the DRUN command Line. All such
responses must be enclosed in quotes and separated from one another by reverse slants
{\) or ampersands (@).

4-115 DJ31-00

DRUN ORLIN

The quoted string may be prematurely terminated anywhere, causing
continuation lines to be requested until the occurrence of the end quote. Maximum
string length is not easily predictable and. is a function of the presence of
substitutable arguments, the number of subcatalogs qualifying the output file, and
the number of individual responses occurring in the string. In general, two or three
Lines can usually be accommodated~ Note that two consecutive line delimiters or a
Line delimiter immediately preceding the terminating quote represents the equivalent
of a null response. A quote, reverse slant or ampersand may be used as text in the
character string by preceding it with an ESC <escape) character.

The output file for a deferred session is not utilized until the session
terminates, whereupon its allocation is attempted in accordance with the file
description declared when the session was scheduled. If the file is found to be
nonexistent, it is created for the user, provided (1) an alternate name was not
specified, or (2) requested permissions, if present, include only a subset of
R/W/A/E. Permissions and/or a password may optionally be attached to the file when
it is created by including them in the description. A special output file
declaration, *NULL, may be provided if the user does not want to save his
output.

The output file name declaration *ID may optionally be specified with the DRUN
command, causing the job identifier (nnnnD) to be used for the file name. This
declaration is also applicable for CRUN and CPOS, provided the command is executed
in a deferred processing environment. *ID may be qualified by subcatalogs and
permissions with which to create the file may accompany the description.

Example: *DRUN INFIL;/CAT1/*ID

Optional
following:

parameters that may accompany a DRUN request

o Earliest Session Initiation Date

Form: YY/MM/DD, YY-MM-DD, MM/DD/YY or MM-DD-YY

include the

This declaration indicates the earliest date on which the deferred session
can be initiated. YY represents the last two digits of the year, MM is
the month and DD is the day. MM or DD may consist of either one or two
digits. If not specified, the current date is assumed.

o Earliest Session Initiation Time

Form: HH:MM or HH.TTT

This declaration indicates the earl.iest time of day on which the deferred
session can be initiated. HH represents the hour CO HH 24) and may
consist of one or two digits, while MM indicates the minute within the hour
and must constitute two digits. TTT is a 1-3 digit fractional hour
specification. If not declared, the session will either be initiated at
the earliest possible time on the target date or at a preferred time on
that date optionally specified by the site.

4-116 DJ31-00

DRUN

0

DRUN

Maximum Processor Time Limit

Form: nn ••• n

This decla ation, consisting of an integer representing seconds, limits
the total 1 rocessor time permitted for the deferred session. The site
itself can impose such a limit for all deferred sessions, overriding the
user's declaration if the Latter is Larger. If neither site nor user
imposes this limit, the deferred session is allowed to run for an unlimited
period of time.

o Substitutable Arguments

Form: (arg-1,arg-2, ••• ,arg-n) or (arg-1;arg-2; ••• ;arg-n)

Substitutable arguments provide a means for having the character
string implied by the i-·th argument declaration substituted for any
occurrence of the characters #i appearing in the input file (the input file
itself is not modified). Up to eight arguments may be specified, each
consisting of 1-12 characters. Permissible characters include
alphanumerics, the period, dash, colon, slash, dollar sign, pound sign and
asterisk. Blanks included in a character string are retained and all
alphabetics are forced uppercase.

In some instances it may be necessary to preserve the case of alphabetics
and/or utilize characters not otherwise permitted for an argument. For
such requirements the argument may be enclosed by quotation marks and
constitute up to ten characters. An argument declared in this manner is
unrestricted with respect to content Cit may contain any ASCII characters)
and is substituted exactly as it appears.

!:.-:ample: DRUN INFIL;OTFIL;("/CAT/FIL,R","(10,100)")

Individual substitutable arguments declared on the DRUN command line
normally override the corresponding argument declaration on the line of
the input file; i.e., the Latter declaration is ignored. When override
is not desired, the specific command line argument may be declared null
by entering two consecutive commas. Note that the number of arguments
specified on the command Line may differ from the number specified on the
#fl line of the input file. Missing arguments of the shorter list are
treated as if they were explicitly declared null. The number of arguments
substituted corre~ponds to the larger list.

When a question mark (?) occurs anywhere in a nonquoted substitutable
argument, the entire argument string is issued to the user, representing
a request to enter the actual value of that argument. Thus, the argument
list, (YFOR,FILENAME?,LIST-OR-RUN?), declared for a DRUN results in
issuing the questions, "FlLENAME?" and "LIST-OR-RUN?" to the user for
obtaining the actual values of arguments #2 and #3. A quoted string <as
described above) may be entered if desired.

4-11(DJ31-00

ORUN DRUN

Certain special arguments represent·ing specific information may be
declared, as given in the following table:

~ Imelies Substitution of Format

#DATE Current date YY/MM/DD

#TIME Current time of day TT. TTT or T. TTT

#USERID Logon user-id xxx ••• x

#ACCOUNT User account number xx x ••• x

#CHANNEL Channel number NNNN

#SNUMB Last snumb # generated NNNNT

The character string which is substitute.d for such an argument declaration
corresponds to the value of that argument when the DRUN command is issued.
Thus, for example, the argument #CHANNEL equates to the channel number
associated with the user who scheduled the deferred session. The special
arguments may be abbreviated by the first character of their name. For
example, #0 is equivalent to #DATE. The following input file
illustrates use of the #ACCOUNT argument t-0 establish the same account
number for the deferred session as was in use when the session was
scheduled:

t/llOTFILE; (#A)
NEWU #1
JRN SAVEFILE
BYE

A series of 1-6 pound signs (## ••• #) may be declared for any
substitutable argument and implies the substitution of a corresponding
numbe~ of digits obtained by converting the lower half of the user's Program
Switch Word (PSW) to decimal. When fewer than six pound signs are
specified, leading digits of the converted PSW are discarded; i.e., the
value substituted consists of the least significant digits. Leading zeros
are included, when necessary.

The lower half of the PSW for a deferred session is initially set to
the corresponding PSW value of the user who &cheduled the session.

o Substitution-Implying Character

Form: ARG/c

The characters #i are normally used to request substitution of the i-th
argument. The ARG/c declaration permits the user to specify any character
(c) other than# to denote argument substitution. This is necessary, for
example, when the pound sign occurs as text in the input file.

o Delete Character

Form: DELI c

This declaration requests deletion of all occurrences of the specified
character Cc) appearing in the input file. Its use is primarily
intended for preparing null response Lines. Such a line might consist
solely of the declared character. Note that an implied <default) delete
character is not provided.

4-118 DJ31-00

DRUN

0

DRUN

Output File User Response Disposition

Form: INCLUDE or EXCLUDE

The output file produced for a deferred session normally includes the·
user's respt nses as they appear on the input file; i.e., the INCLUDE option
is implied. The EXCLUDE option may be declared when the user wishes to
eliminate all lines containing responses on the output file.
Abbreviations INC or EXC are permitted.

o Output File Case

Form: UPPER or LOWER

Alphabetic text generated on the output file may be forced to uppercase
or Lowercase by the use of the appropriate option. If neither option is
exercised, the case of alphabetic text is preserved. Abbreviations U and
L are permitted.

o Deferred Session Restart

Form: RESTART

A system interruption occurring while a deferred session is in progress
normally results in marking the session aborted when Time Sharing is
restarted. The RESTART option, which may be abbreviated RES, requests that
the session be reinitiated from the beginning if an interruption
occurs.

Deferred sessions originated by a user which are scheduled to run at some later
date and/or time may be rescheduled to run as soon as possible by utilizing the DRUN
Command with the following syntax:

DRUN #job-id-1;job-id-2; ••• ;job-id-n

Alternatively, the user may request all of his sessions scheduled for the current
date which did not specify a specific start time to be initiated by issuing the
following directive:

DRUN #ALL

Job identifiers declared with the DRUN, DSTS or DABT commands must belong to
the requesting user. When the identifiers do not accompany the DSTS or DABT command
on the same line, the query, "JOB ID?" is issued, at which time the identifier(s)
must be declared. Continuation input is requested when the tnput line ends with a
semicolon.

4-119 DJ31-00

DRUN DRUN

Functional Summary

A deferred session is logically divided into four stages of
processing--scheduling, initiation, execution and termination. Scheduling occurs
upon receipt of the DRUN command and consists of logging the request on the deferred
queue file. The queue file, cataloged as specified in the TSS communication region
definitions, serves as a collection medium for all information necessary to later
initiate the deferred session. Such information includes the job identifier
(nnnnD) assigned for the session, user-ID, starting date/time, processor time limit,
input and output file descriptions and all substitutable arguments declared.

When a job is logged on the queue file, the next candidate for initiation is
determined by the DRUN Subsystem and the TSS Executive is notified of its job
1cientifier, user-id and earliest starting date/time. Note that due to TSS load
conditions, it may not be possible to initiate the session at the exact prescribed
time; however, when conditions permit, a UST (User Status Table) is developed for
the session ~nd the DRUN Subsystem is invoked with an indication that the deferred
session is to begin. At this time, all information relevant to the session is
retrieved from the queue file and a "command file" is prepared as for the CRUN
command.

Preparation of the command file involves creating a random temporary file named
*CFP and copying the input file to it, one line per hardware sector. Initial parameter
lines are ignored, since they were processed when the session was scheduled. When
requested, argument substitution and removal of DEL character occurrences take place
during the copy; however, this is the extent of input file content analysis and
no guarantee is made regarding Legitimate command constructs or syntax. An initial
3nd final sector is generated on *CFP, bordering the sectors developed from lines
of the input file. The initial sector contains the user-id of the session originator
and is utilized by the logon subsystem. The final sector contains a COUT command,
accompanied with all information necessary to produce the output file when the session
terminates.

After marking the status of the deferred queue entry to indicate the session
1s executing and notifying the TSS Executive of the next candidate for initiation,
command file mode is enabled and control passed to the logon subsystem for user
validation. During command file processing, the TSS Executive obtains each required
user response by reading the appropriate *CFP sector and directs all generated output
to *CFP starting at the sector immediately following the generated COUT command.

Normal termination occurs when a BYE or the generated COUT command is encountered
at system selection level or while in build mode. In either case, the DRUN Subsystem
is invoked to produce the output file and change the queue file status to indicate
the deferred session has terminated. The output file description is obtained from
the *CFP sector containing the generated COUT command, after which the file is created
(if necessary) and allocated. If the EXCLUDE option was declared, the output segment
only of *CFP is read,. formatted and written to the user's output file. Otherwise,
·input and output segments are collated to produce the file. Collation is made
possible by referencing the sector number of each user response in the appropriate
sector of the *CFP output segment.

4-120 DJ31-00

ORUN DRUN

Abnormal termination can occur for a Vdriety of error conditions detec1ed by
either 'the TSS Executive or the DRUN Subsystem. When possible, the output fi Le for
the aborted session is produced and in all cases the reason message for the abort
is saved on the queue file for DSTS inquiry purposes.

Examples

1) The following example illustrates the input file for a deferred session
that results in spawning a CARDIN job (user responses are underlined):

*AUTOX
*OTOli#OTFILE
*020 JRN SAVEFILE
*030
*SAVE INFILE
*DRUN INFILE

DEFERRED ID 6772D

Line 010: Since this is the first line of the file, the## identifies it
as containing DRUN parameters. In this case, the only
parameter given is the name of the output file.

Line 020: The JRN command causes the job images on file SAVEFILE to be
sent to the batch environment for processing. Fi Le SAVEFILE
must have all questions answered as first Line default answers
(e.g.,$IDENT?). The Logan user-ID and password are implicitly
provided by the ORUN process and do not have to be included in
the file.

A Listing of file "OTFILE" produced when the deferred session terminates
might appear as follows:

HIS TIMESHARING ON 04/25/77 AT 11.583 DEFERRED #6772D TS1

USER ID-JOHNOOE

*JRN SAVEFILE
SNUMB # 2367T

*BYE
**COST: $ 0.22 TO DATE: $ 316.53= 32%
**ON AT 11.583 - OFF AT 11.589 ON 04/25/77

2) The deferred session illustrated in previous example could be requested
as follows:

DRUN"##OTFILE\JRN SAVEFILE\BYE"

or

DRUN "JRN SAVEFILE\BYE";OTFILE

4-121 DJ31-00

DRUN

3) The following DRUN reschedules itself to be rerun~

##*NULL;CFIRST-OAY?,LAST-DAY?,MONTH?,
##YEAR?,##)
CPOS NE0;+4
C.MOD #1; +1
DRUN INFIL€;0TFILE;#4/#3/#1;22:00;{#1,#2,#3,#4).
BYE
JRN SAVEFILE
CPOS GT#2;+3
CM 00 +1
DRUN INFILE;OTFILE;#4/#3/#5;2.2:00; (#1,#2,#3,#4)
BYE

The input file (named INF ILE) for the deferred se.s.sion illustrated in the
above example results in initiating a batch job, using the JR~ command,
on .a specified day at 10:00 P.M. and rescheduling its.elf t,o be initiated
the next day at the same time, continuing until (and including) a sp.ecified
termination day. rhe example assumes the lower half of the :PS.Wis initii!l.lly
zero and uses substitutable arguments to request starting date, ending
date, month and year for the deferred sessions. Note that an immediate
session is initiated to schedule the first req~isite BRUN.

4-122 DJ31-00

DSTS DSTS

Purpose

The DSTS command requests the status of deferred job originated by the
user.

Format

DSTS CnnnnD-1;nnnnD-2; ••• ;nnnnD-n](ALL]

nnnnD-i::= deferred job number

CALL] ::=all of user's deferred jobs

Description

The status message returned in response to the user query is one of the
following:

nnnnD -.SCHEDULED TO RUN yymmdd AT tt.ttt

nnnnD - RESCHEDULED TO RUN yymmdd AT tt.ttt

nnnnd - EXECUTING

nnnnd - TERMINATING

nnnnd - ABORTED BY DABT yymmdd AT tt.ttt

nnnnD - TERMINATED NORMALLY yymmdd AT tt.ttt

nnnnD - ABORTED yymmdd AT tt.ttt FOR REASON: reason text

nnnnD - ABORTED DUE TO SYSTEM INTERRUPTION

The acronym ASAP <As Soon As Possible) is substituted for date and time in the
status message for a scheduled or rescheduled when it is overdue for initiation. The
MASTER user may obtain the status of all deferred jobs by issuing a DSTS ALL*.

Example

*DSTS 1234D
1234D - EXECUTING

4-123 DJ31-00

i::DITOR EDITOR

Purpose

The EDITOR command calls the Text EDITOR subsystem into use.

format

EDITCORJ

Discussion

The Text Editor subsystem is a means by which lines of text may be entered and
edited in the current file. A line of text is any line with or without a line
number. Lines of data or program statements can be considered as text for editing
purposes.

The EDITOR can be entered from another subsystem by preceding any
recognizable command with a hyphen (-). When a hyphen followed by a recognizable
command is issued from another subsystem, the EDITOR does not determine if there is
data on the *SRC (current file). If the entry is made without a *SRC, the
EDITOR creates one and returns to the user with a hyphen, or returns to the
calling subsystem level, as appropriate.

Refer to a later section for details of the Text Editor subsystem.

*EDIT

4-124 DJ31-00

ERASE ERASE

Purpose

The ERASE command overwrites <erases) a specified file(s) with zeros, but does
not release the file<s) from the file system.

Format

ERAS[EJ[<filedescr-1;filedescr-2; ••• ;filedescr-nJ

Discussion

The ERASE command provides a user with the ability to purge the contents of a
file when the contents are no longer needed or are of a sensitive nature.

4-125 DJ31-00

FD UMP F DUMP

Purpose

The FDUMP command calls the FDUMP subsystem into use.

Format

FDUM[PJ [{*l<filedesc>l<filedesc><MODE>})

<MODE> ::= ;R access file as random if possible
;L access file as linked if possible

Discussion

The FDUMP subsystem provides for file inspection and maintenance. It allows
the user to look at the actual binary contents of a file. For system standard
files, this includes being able to look at Block Control words, Record Control words
and end-of-file marks. These are part of a file, but are not considered part of the
data content of the file. They do not, for instance, show up as part of a LISTing
or as part of a READ.

Th~ user specifies the words that are to be looked at (snapped) and they are
printed in the octal representation of the binary words. The user can modify (patch)
any word by specifying the new contents of the word in octal. Since FDUMP uses octal
representation for its functions, it is mainly used as a debugging tool.

FOUMP begins its file analysis by asking

BLOCK TO BE READ -

The permissible responses are:

carriage return - return to the FILE NAME? level.

n - the block specified by the block serial number n will be read into
an internal buffer. The Copy function (see following function
description) requires a dummy response of 1.

The response to "BLOCK TO BE READ" must take into account the mode
of the file being processed. If the file is linked, N begins with
1 and represents 3 2 0 word bloc ks of the f i le. If-the f i l e i s
random, N may range from 0 to the last physical sector of the
file. For random files the units of n ar.e 64 words (e.g., to dump
the second 320 word block of data on a random file would require
N=5).

If the block serial number is outside the limits of the file,
the error message BSN OUTSIDE FILE LIMITS is given, and BLOCK TO
BE READ is repeated. If the block serial number is within the
current file size but the implied block was not written on the file,
it is read but it contains garbage data not pertaining to that
f i le •

4-126 DJ31-00

FDUMP FDUMP

The third level (and final) question is:

FUNCTION?- (this question is repeated upon return from any of the FDUMP
func ions.)

The per~issible responses are:

carriage return - return to BLOCK TO BE READ.

Sloe - inap the specified (octal) Location.

Sloe-Loe - Snap the field specified by (octal)
Toc~tion-location (from-to). -- --

2_loc,n - Snap n (octal) words starting with the specified (octal)
location.

Ploc data - Patch the specified <octal) location with the specified
(octal) data. The data entry may be a multiple entry. For
example:-- ----

Ploc datal, data22 data3
data1 goes to Loe
data2 to loc+1
data3 to loc+2

W - Write the corrected block back into the permanent file.

C filedesc - Copy the complete file onto another file specified by
filedescr.

D- Done. Return to previous level of processing.

F Loe - (Find data pattern)

The latter function (F) may be used to find the Location(s) of one or more
occurrences of a specified data pattern (01) in a block of data with the search
commencing at any designated location. Cloe). An optional mask (D2) may be provided
to enable comparisons only on selected bit positions. If provided, bit positions
of D2 which contain a 1 will cause the corresponding bit positions of 01 to be _ignored
during the search. If the mask is not specified, comparisons will be based on a full
36-bit word.

4-127 DJ31-00

FDUl\tP

Permissible forms of the F function are given below.

F A1,D1

F A1,D1;n

F A1,D1;*

F A1,01,02

F A1,D1,D2;n

F A1,01.,D2;*

Me.an i ng

Find the first occurrence of 01,
starting at location A1.

Find the first n occurrences of 01,
starting at location A1.

Find al~ occurrences of p1, starting
at location A1.

Find the first occurrence of 01
masked by D2, starting at location A1.

Find the first n occurrences of 01
masked by 02, starting at location A1.

Find all occurrences of o1 masked
by 02, starting at location A1.

FDUMP

If the search is successful, each address at which the data pattern, 01, was
found is displayed. In addition, if a mask has been specified, the data content at
each address is displayed.

If the search is unsuccessful, the message "PATTERN NOT FOUND" is issued.

Example·s:

F0,56060062056

F100,2000,777777000777

(Find ASCII ".02." starting at octal location 0
(zero) in the block of data being scanned)

(Find all ORL OP codes starting at octal location 100
in the block of data being scanned)

Once the user has become familiar with the conversational, or question/response
sequence, form of FDUMP, a short form of function specification which effectively
eliminates questions normally asked can be used. Multiple responses can be supplied
on a single line, separated from one another by a space character. For example:

*FDUMP * 1 SS0,100 DONE

NOTE: n consecutive spaces represent the equivalent of n-1 null responses.

The FDUMP copy is a physical copy; that is, it does not stop at Logical
end-of-file but continues to the file length defined in the file system as current
size.

If the copy file is smaller than the size defined for the file to be copied,
FDUMP grows the copy file to the necessary size.

4-128 DJ31-00

FDUMP FDUMP

Note that filedescr, specifying the copy file, may be simply a file name or may
be a catalog/file string, but must not have the same filename even if duplicate
filename is under a separate catalog.

At completion of the copy, the user is returned to the FILE NAME? Level.

The FDUMP subsystem may return one of the following error messages during
processing.

1. When the named file cannot be accessed, FDUMP replies

CANNOT ACCESS FILE filename

and returns control to the calling Level.

2. When the block serial number given is either zero or is a number larger
than the possible number of blocks in the file, the error message is:

BSN OUTSIDE FILE LIMITS

BLOCK TO BE READ is then repeated.

For Linked fi Les, block size is assumed to be 320 words; the first block
serial number is 1. Random files are positioned by multiples of 64 words,
b e g i n n i n g w i t h b l o c k 0 • Ho we v e r , t h e y a r e r e a d i n b L o .c k s o f 3 2 0 •
Therefore, one read makes available five contiguous blocks of 64
words.

3. When the system receives a bad hardware status, FDUMP replies:

<51>FILE filename IIO STATUS xx

FUNCTION?

A partial block may have been read and may be correctable by use of the
S, P, and W functions. If none of the block appears to have been read,
a carriage return answer repeats the BLOCK TO BE READ question. Then the
block serial number that was specified can be verified.

4. When parameters are incorrect in form for the S, P, or W functions, FDUMP
will reply

INVALID INPUT-RETYPE

4-129 DJ31-00

FDUMP

Examples

*FDUMP (prompts for the file name>

2) *FDUMP DATA75

3) *FDUMP *

4) *FDUM E

FILE IS RANDOM

BLOCK TO BE READ? 0
FUNCTION ? S0-47
000000 000001000000

000004 000000000000

? D
*FDUM E 1 S0-17
FILE IS RANDOM

000000 000000000000

000004 000000000000

? D

000000000000

000000000000

000242000022

000000000000

4-130

252431634651

000000000000

000000000000

000000000000

FDUMP

000240000002

000000000000

000000000000

000000000000

DJ31-00

FORM FORM

Purpose

The FORM command allows the Time Sharing Executive to transmit a form feed
character after each)age request.

Format

FORM

Discussion

FORM operation of a keyboard/display device causes the screen to be cleared after
each page request. NFORM operation overrides the preceding page specification.

The FORM command is not applicable for a non-VIP keyboard display terminal under
control of the PAGE c~mmand.

4-131 DJ31-00

FRN FRN

Purpose

The FRN command compiles, loads, and/or executes a FORTRANY time sharing
program.

Format

FRN[-<time>J[<source-file>J[=[<membry-image>J

[;<object-file>]((<options>)[<user-library>JJJ

[#<run-time-file>]

<time>
<source-file>
<file-ref>
<memory-image>
<object-file>
<options>
<option>

<user-library>
<run-time-file>
<file-string>
<pseudo-file>
<unit-number>

Description

<t'ime>

<source-file>

::=a decimal number
: : = <fi le-ref>(;<fi le-ref>] •••
: := <filedesc>1*
: : = <f i l edesc>
: : = <fil edesc>
::= <option>[,<option>J •••
::= DEBU[GJ

ASCHIJIBCD
FORMINFOR(MJ
LNOINLNO
NWAR[NJ
OPTZ I NOPT [Z J
GOINOGO
ULIBINOLI[BJINULI[BJ
TIME=<number>
CORE=<number>[KJ
TEST
FDS INFOS
COMM[ONJ=<number>
NOBR[EAKJ
MAIN=<entry-name>
MAPINMAP
SYMR[EFJ

: := <fi Ledesc>[;<fi ledesc>J •••
: := <file-string>C;<file-string>J. ••
::= <pseudo-file>l<cataloged-file>
::= <unit-number>l"<unit-number>"
::= two decimal digits

is the maximum processor time in seconds that the program
is allowed for execution.

is the set of file descriptors for FORTRANY source files
in ASCII time-sharing-format, in the standard BCD
card-image format, or in compressed card-image format
(COMDK) and/or file descriptors for binary card-image
object files. Alternatively, <source-file> may be a
single file descriptor that contains a
previously-generated system-loadable (H*) file.

4-132 OJ31-00

FRN

<memory-image>

<object-file>

<options>

FRN

A <source-file> consisting of the single character *
indicates the current file. The <source-file> field is
optional, and, if missing, indicates that only the current
file is to be compiled.

is a single fi Le descriptor of a random fi Le into which the
system-Loadable (H*) file will be saved if the
compilation and loading are successful, i.e., no fatal
errors occur during compilation and loading. If the named
file does not already exist, a permanent random file is
created with an initial size of 36 LLINKS and general READ
permission.

A single file descriptor for a sequential file into which
the compiler is to place the binary CC*) result of any
indicated compilations. One object module is written to
this file for each source program in the file(s)given as
<source-file>. If the named object file does not already
exist, a permanent sequential fi Le is created with an
initial size of 3 LLINKS and general READ permission.

is a List of compilation and/or Loading options.

ALL of the options are described below with the underlined
options being the defaults.

DEBUG

NDEBUG

ASCII

BCD

FORM

- The run time debug symbol table is
generated for debugging.

The run time symbol table is not
generated.

- object character set is ASCII.

object character set is BCD. If this
option is used, BCD must be specified
whenever the General Loader is to be
called. The General Loader is called for
compile, compile-and-load, and Load
activities, but not for an execute-only
run.

- source is in "fixed" format; that is:

1) Source files may not have line
numbers.

2) Comment Lines are recognized by a C or
* in character position 1.

3) Continuation Lines are recoginzed by
a nonblank, nonzero character in
position 6.

4) Character positions to 5 are
reserved for statement Labels.

5) Statements begin in character
position 7 or thereafter.

4-133 DJ31-00

FRN

LNO

NLNO

NWARN

OPTZ

FRN

Lines containing more than 7.2 characters
have the additional characteristics:

6) Character positions 73-80 ·m.ay be used
for sequence identification
information.

7} No more than 80 characters will be
processed.

source is in "free" format; that is:

1) Source ·files may or may not have line
numbers.

2) C om m en t l i ne s a re re c o g n i zed by a C or
* in character position 1 for files
wit~o~t line numbers or as a C or *
immediately following the Line number
for files ~ith line numbers.

3) A continuation Line is indicated by
the ampersand character <&> as the
first nonblank character of the line
for files without Line numbers or as
an & as the first nonblank character
follo~ing the line number for files
with line numbers.

4) Character positions 73-80 may be used
for sequence identification
information for non-line-numbered
fi Les only. Statements may extend
into these positions for
line-numbered files.

- source file has Line numbers. This option
only applies to NFORM files.

- source file does not have Line numbers.
This option only applies to NFORM files.

- turns off all the warning messages
generated by a compilation and/or loading
as long as no fatal errors occur.

- optimize the -0bject module.

- do not optimize the object module.

GO - the program ~ill be executed at the
completion of compilation.

4-134 DJ31-00

FRN

NOGO

ULIB

NOLIB

NU LIB

TIME

FRN

- the program will not be executed at the
completion of the compilation and/or
loading. If an object file is specified,
the object will be saved. If a memory image
is specified, the system loadable CH*) file
will be saved. If a memory image is not
specified, only the compilation will be
performed.

- file descriptors follow the <options>
field and specify user Libraries to be
searched before the system library.

- no user Libraries are to be used.

- same as NOLIB.

- <number>[KJ - sets the time Limit to the
number of seconds the batch compilation
and/or General Loader activity is to take,
where <number> is Less than or equal to
180. If not specified, the time is set to
60 seconds.

CORE=<number>[KJ - sets the Limits for the amount of
memory to be used for compi Lat ion and
Loading. K represents 1024 words of
memory. In the cases where K is specified
or assumed, the number of words of memory
requested is <number> multiplied by
1024.

For compilation:

Core specified

01 <= <number> <= 16
17 <= <number> <= 40
41 <= <number>

For loading:

Core used

24K
<number>+8K
48K

Memory specified Memory used

01 <= <number> <= 40
41 <= <number>

<number>+8K
48K

Note: If (01 <= <number> <= 64) and the K
is not specified, the number of words of
memory requested is <number> times 1024.

If «number> => 65) and the K is not
specified, the number of words of memory
requested is <number>.

If «number>=> 65) and the K is specified,
the number of words of memory requested is
<number> times 1024.

4-135 DJ31-00

FRN

<user-library>

TEST

FOS

NF OS

FRN

- a test version of the compiler and/or
General Loader is to be used for the batch
activity. There must be an accessed
fi .e.,(i.e., one in the AFT) of the name
FORTRANY.

- calls the FORTRAN DEBUGGING SYSTEM (FDS).
FOS provides a symbolic dump, interactive
debugging, timing- measurement, and
user-supplied wrapup procedures.

- does not call the FORTRAN DEBUGGING SYSTEM
(F DS) •

COMMON=<number> causes blank COMMON to be
lowloaded. <number> must equal the total
number of words of storage needed for blank
COMMON. Normally, a user does not need
this option.

NOBREAK - sets up a special program termination
process to be invoked when the BREAK key is
pressed during execution of the program.

This special termination process includes
the normal emptying of buffers and closing
of files. It does not include any calls to
user-supplied wrapup routines or FDUMP
(even if the FDS option was specified
during compilation). This option is used
when creating a core-image file for
production use.

MAIN=<entry-name> - sets the
the program to
necessary, the

program entry point for
be <entry-name>. If

module known by
<entry-name> will
libraries specified.

be loaded from the

MAP - causes a memory map to be produced by the
loader. A permanent file with an alternate
name of P* should be accessed before the FRN
command is issued. A reasonable size for
this file is 24 LLINKS. After the FRN
command is complete, the file "P*" will
contain the load map in standard system
format BCD.

- no memory map is produced.

SYMREF ... turns on the SYMREF option for the loader.
The "P*" file should be large if this option
is used.

a list of the names of files containing user libraries
to be searched prior to the system library.

4-136 DJ31-00

FRN

<run-time-file> - a List of
execution.
semi-colons.
formats:

FRN

file names which will be required during
The file names are separated by
The file names may be in any of the following

1. <pseudo-file> specifying a file name in the form of
<unit-number> or "<unit -number>" where 01 <=
<unit-number> <= 43. <unit-number> represents a
Logical unit referenced by the I/O statements in the
program.

2. <cataloged-file>

The user must specify an alternate name after the
cataloged fi Le name. The alternate name is the
Logical unit attached to the specified fi Le, where 01
<= <alt-name> <= 43.

If the <run-time-file> is a unit-number, a temporary
file will be created for the user unless a file with
the same name is directly under the user-ID.

lf the <run-time-file> is a unit-number specified in
quotes, I/O will be directed to the terminal.

Unit numbers 05, 06, 41, 42 and 43 are implicitly
defined for terminal-directed I/O and need not be
mentioned in the FTN command unless I/0 is to be
directed to a fi Le. It is a good practice to use these
unit numbers only for the files they represent by
default.

Discussion

A user can include the FRN command as the first Line or Lines of his source file,
subject to the following restrictions:

1. This feature is available on ASCII time sharing format files only.

2. The Line or Lines may be in the current fi Le or a referenced permanent file;
however, they must begin with the first Line of the first source file.

3. The first two characters following the line number or for non-Line-numbered
files, the first two characters must be*#.

4. Multiple*# Lines may appear in a source file, provided the total number
of characters does not exceed 240.

5. The FRN command may be continued on more than one Line. But, continuation
to another Line is only permissible when the preceding Line ends with the
delimiter";" in a <source-file> List, a <user-library> List, and/or a
<run-time-file> List as described in th~ General Form above.

4-137 DJ31-00

FRN

6.

7.

FRN

The line(s) are treated as comment line(s) by the FORTRANY compiler.

The u~er can override a first-line FRN command by indicating save files
or options on the FTN command to execute the file.

For example, a source program in the file S.PROG contains:

10*FRN S.PROG=CNWARN,ULlB)LlB/RTNS

At the time the file S.PROG is to be executed, suppose the user types the
following command:

FRN S.PROG

The source file S.PROG is compiled, loaded, and executed. No warning messages
are printed if compilation is successful. The user library LIB/RTNS is searched
to resolve external references.

or, suppose the user types the following command:

FRN S.PROG=CNOGO)

The source file S.PROG is compiled and all warning messages are printed. Note,
the first-line FRN command is overridden~

When a BCD or COMDK source file is supplied, the source file may also include
an alter file descriptor in BCD format. The alter file must begin with a$ UPDATE
card and must be in alter-number sequence. If more than one BCD or COMDK source file
is specified, the alter file will update only the first.

Examples

1) FRN

2) FRN

3) FRN P.SOU~CE

<compiles, loads, and executes the current file.)

<same as FRN).

Ccompi les, l'Oads., and executes the FORT'RANY source program
in file P.SOURC£.)

4) FRN S.MAIN;S.SUB1;0.SUB2
<compiles source prog~ams s.MAIN and S.SUB1, then binds
them with the previously saved object file O.SUB2, loads,
and executes ..)

4-138

FRN FRN

5) FRN S.PROG=HSTAR;CSTAR(ULIB)LIB/RTNS#IN"01";0UT"02"

6) FRN #"10"

Ccompi Les, Loads, and executes source program S.PROG. The
core image will be saved on file HSTAR and the object on
file CSTAR. For the execution, the random user Library
LIB/RTNS will be scanned to resolve external references
such as subroutines and functions. The unit numbers 01 and
02 have been specified as alternate names for the fi Les IN
and OUT.)

(compi Les, Loads, and executes the current fi Le and causes
IIO for Logical file code 10 to be directed to the
terminal.)

7) FRN =H.PROGCCORE=30K,ULIB,NOGO)LIB/SPECIAL

8) FRN H.PROG#02

(compiles and Loads the current file and saves the core
image on the random file H.PROG. 30K is specified for
compilation and Loading. The user Library LIB/SPECIAL
will be scanned to resolve external references. The
program will not be executed.)

(executes a previously saved core image that is in file
H.PROG. The file 02 is accessed for IIO. If no such file
exists in the user-ID, a temporary file with name 02 is
created.)

9) FRN S.CAN=;O.CANCNOGO)
(compiles the source program S.CAN and saves the object in
file O.CAN.)

10) fRN LIBRARY/METR!C
<executes the previously saved core-image METRIC program
that is stored in user-ID LIBRARY.)

4-139 DJ31-00

GET GET

Purpose

To access the fi Le or fi Les specified and place the file names in the Available
File Table (AFT).

F o rma.t

GET <filedesc>C;<filedesc>J •••

Discussion

If permissions are specified, they are used in accessing the file.

I f p e rm i s s i on s a r e not s p e c i f i e d , and < f i l e d e s c > s p e .c i f i e s a use r - I D o t h e r t h a n
the current "LOGON" user-ID, the file access is attempted with general READ
permission, and file allocation is subject to the permissions given to the file.

If permissions are not specified, and the file is in the current "LOGON" user-ID,
the file is accessed with general READ and WRITE permission.

Under time sharin~, a file name must be 8 characters or Less. Thus, to access
a file whose name is greater than 8 characters, a GET command can be issued spec Hying
an alternate name of 8 characters or Less. The alternate name is entered in the
Available File Table. The file can then be referenced using that alternate name
during ~he current "LOGON" session unless the alternate name is removed from the AFT
with a REMOVE command. A linked file may be accessed in a r.andom fashion by specifying
MODE/RANDOM/ or MIR/ following the file description.

Examples

1) GET INPUT

2) GET INPUTFL,R

3) GET YOURID/GENRAL,R

4) GET MYID/EXPLANATION"ALTNAM",R

5) GET TEST/SEQ,MODE/RANDOM/

4-140 DJ31-00

HELP HELP

Purpose

The HELP command calls the HELP subsystem into use to assist in analyzing or
explaining standard time sharing error me~sages.

Format

HELP

Discussion

The HELP subsystem gives the user further explanation of some of the error
messages that are generated by various time-sharing subsystems and by the
Time-Sharing System Executive.

These messages are prefixed by a number that can be used in requesting further
explanation.

Refer to a Later section for details of the HELP subsystem.

Examples

HELP

4-141 DJ31-00

HOLD HOLD

Purpose

The HOLD command prevents messages sent by the computer center or the MAil
command from appearing at the terminal.

Format

HOLD

Discussion

Messages issued by the computer center or the MAIL command are sent to the user's
terminal ~fter the user's next carriage return unless the AUTOMATIC command is
in control or a HOLD command is i~ effect. If the user is in AUTOMATIC mode, the
message is transmitted upon exit from AUTOMATIC mode.

If a HOLD is in effect, messages will be stopped until a SEND command is
typed. The user m.ust assume responsibility for any warning messages that are
missed during the time of a HOLD. When a SEND is issued, the last message held is
sent, any others are Lost, and the HOLD is no longer in effect.

HOLD is used primarily before starting an interactive session to be used for
display or reproduction purposes. The RUNOFF subsystem automatically puts HOLD on
before starting and turns it off when finished.

Example

HOLD

4-142 DJ.31-00

II OS II DS

Purpose

The IIDS command invokes the OM-IV Interactive I-D-S/II subsystem.

Format

IIDS

Discussion

OM-IV Interactive Integrated Data Store/II COM-IV I-D-S/II) is a time sharing
subsystem facility of the GCOS Data Management IV COM-IV) System which allows a data
base to be accessed through a remote terminal. Individual Data Manipulation Language
(DMU statements similar to COBOL-74 can be entered, and any resultant currency and
status register information can be obtained. Many data base features available in
the batch version of OM-IV I-D-S/II are available from a remote terminal.

4-143 DJ31-00

JABT JABT

Purpose

The JABT command allows a user to abort a batch job submitted by th~ current
user-IO.

Format

JABT[<snumb>J.~.

<snumb> ::=a batch job identification

Discussion

The current "LOGON" user-IO must be the same as the one specified on the$ USER ID
card of the job to be aborted.

A batch job cannot be aborted until it has reached a certain stage in GCOS job
flow. Jobs that are in System Input (GEIN) or scheduler CRGIN) cannot be aborted
until these ph~ses are passed. A job may be aborted during any of the following
stages: peripheral allocation, memory allocation, execution or termination. The
system will respond with a "<snumb> not aborted - try again" message if. the job has
not reached the allocation stage. ·

Examples

1) JABT * (aborts most recent job submitted)

2) JABT 1234T

3) JABT 1234T 2345T

4-144 OJ31-00

JDAC JDAC

Purpose

The JDAC command establishes Direct-Access Communication (DAC) with a batch
sla.ve program.

Format

JDAC[<snumb>J

<snumb> ::=the snumb or program name of the DAC slave program

Discussion

The JDAC command is used when a user wants to establish conversational
input/output between a terminal and a running batch job. When the command is given,
the communication line is switched from time sharing to Direct Access. The terminal
waits until the program specified by <snumb> connects to it. If there is no program
called <snumb>, the terminal will continue to wait until the phone-Line is
disconnected. Since the communication Line is no Longer connected to time sharing,
it is not possible to break out of Direct-Access mode while waiting for the program
to connect to the terminal. The only way to get back to Time-sharing is to disconnect
the terminal and re-establish the connection.

A batch job that can do conversational input/output with a terminal must contain
a$ DAC card and the user-ID of the batch job must be validated for TALK permission
by the central computer site.

If the batch job is submitted through the TSS batch interface (e.g. JRN), TALK
dispositio~ may be specified at the time of the run. This is the same as issuing
a JDAC command.

Exampl.es

1) JDAC 1234T

4-145 DJ31-00

JOUT JOUT

Purpose

The JOUT command invokes the JOUT subsystem to analyze the output reports
produced by a user-submitted batch job. The output produced must have been generated
using the same user-ID as that used during the LOGON interaction.

Format

JOUT C*l<snumb>J

Discussion

<snumb>

*
::=a batch job identification
::= indicator that the last generated SNUMB (if present)

is to be used to access output.

The JOUT subsystem manipulates output from the following types of batch
jobs:

o those submitted through TSS batch interface via the JRN command with JOUT
for a disposition.

o those submitted through GRTS remote-facility Batch-entry or those
submitted at the host that designate output is directed to a remote-station
ID (e.g., $REMOTE AA).

Upon entering JOUT if the job is still running, JOUT will print its status and
return.

If the job has been released from the system <either at user request or because
it has been printed), JOUT responds "OUTPUT NOT FOUND". It may also say this when
the system output writer is not in memory, in which case the request should be tried
again.

The message "OUTPUT BUSY" is displayed if another terminal has the same job in
JOUT or if the job is printing at a remote or host.

JOUT types "FUNCTION?"
is ready to accept commands.

ACTIVITY n. <ACT!)

when it has made a connecti·on to the batch output and
Possible functions are as follows:

JOUT prepares to read the activity specified by~ where~ cannot exceed 17.

DIRECT id (DIRE)

Direct the output to the remote station specified by id.

4-146 DJ31-00

JOUT JOUT

DIRECT ONL (DIRE)

Print the output at the host.

EPRINT re (E'RI)

Simulate printer report output. The report code (re) may be any of the codes
received ·from the LIST command, or$$ may be substituted for a report code. The
$$causes the printing of the J* file (control card List and execution report)
at the· terminal. Trailing blanks and blank lines are suppressed.

HOLD

If the user responds HOLD the subsystem deaccesses the SYSOUT data and returns
the user to either the build mode or the subsystem Level and the output is not
processed by SYSOUT Report Writer. The output may subsequently be re-accessed
by JOUT or may be manipulated by the host operator console verbs (e.g.,
PURGE).

KILR re

Prevents printing of unwanted reports. The report code (re) can be any of the
codes received from the LIST command, with the exception of$$. The$$ report
cannot be killed with KILR.

LIST

List the report codes associated with the current activity.

PRINT re

Simulate printer report output. The report code (re) may be any of the codes
received from the LIST command, or$$ may be substituted for a report code. $$
causes the printing of the J* file <control card list and execution report) at
the terminal. Multiple blanks are suppressed by the PRINT command.

RELEASE (RELE)

Remove the output from the system.
point •

SCAN re

No output is produced beyond this

Scan the job output with the report code <re). The system requests FORM? From
this point, the question/answer s~quence and the fa~ilities available are the
same as for the SCAN ~ubsystem with the exceptions noted below:

1. The following SCAN verbs are!!.£..!. available: BATCH, REM, REM text, and
BYE.

2. Output in memory dump format may be scanned. (Answer DUMP to the FORM?
question. There is no initial subsystem reponse to this answer; the EDIT?
question appears immediately.)

4-147 DJ31-00

JOUT

3.

4.

JOUT

DONE returns the user to the FUNCTION level.

P - subsystem initially responds with the number of Severity Level 3 errors
detected as determined by the PL/I compiler. A typical error message:

ERROR 261, SEVERITY 3 ON LINE 122# 000103

5. STAT n
STAT nn,nn, ••• nn

Repositions the file to print the source statement in error.

Within JOUT multiple responses can be supplied on a single line, separated from
one another by a space character. For example:

•JOUT 1234T SCAN 74 G YES ERRORS

NOTE: n consecutive spaces represent the equivalent of n-1 null responses.

Examples

1) JOUT (prompts for the snumb)
2) JOUT 1234T
3) JOUT * <attempts access of output for the last generated SNUMB)
4) JOUT * SCAN 74 G Y E DONE

4-148 DJ31-00

JPRINT
JPUNCH

Purpose

JPRINT
JPUNCH

The JPRINT and ~PUNCH commands are the CONVERT commands used to initiate host
jobs to produce prin.er and punch output for the designated input file.

Format

JPRI[NTJ[infileJ[:optionsJ

[infi Le]
[:options]

Description

Media Code Options

•• - [filedescrJ
see below.

The output record format option~ specify the physical format of the output
record. The default option for the CONVERT command is "ASCII". A list of the options
and their meanings is as follows:

BCO - variable length BCD - media code 0

COMDK - BCO compressed deck card image CCOMDK) - media code 1

CARD - BCD 14-word card image - media code 2

PRINT - BCD variable-length print line image - media code 3

OLDASC - obsolete TSS ASCII - media code 5

ASCII - standard system format ASCII - media code 6

APRINT - ASCII print line image - media code 7

ACARD - ASCII card image - media code 10

SAME - a record output media code is the same as its input media code

Line Number Options

Line numbers can exist with COMDK, CARD, ACARD, OLDASC, and ASCII records. All
BCD, PRINT, and APRINT records cannot possess Line numbers. The line number for an
ASCII or OLDASC record consists of 1 to 8 numeric characters. These numeric
characters must be among the first eight characters in a Line. A Line number is
defined to include any Leading blanks. A Line number is terminated by a nonnumeric
character, including blank. If the 11 # 11 character terminates a line number and if
it is one of the first eight characters of a line, it is considered to be a delimiter.
It is treated as neither part of the Line number nor.part of the text. The line number
for COMDK, CARD, and ACARD records is defined to be all the trailing digits in columns
73-80. This field may begin with nonnumerics; these also are considered neither part
of the line n4mber nor part of the text.

4-149 DJ31-00

JPRINT
JPUNCH

JPRINT
JPUNCH

The line number options may specify:

1. Whether line numbers are to appear in the output text.

2. The actual line number values.

The default line number option is "ASIS". A description of each of the options
follows:

ASIS

STRIP

MOVE

ICi,j)

Line numbers are assumed not be present in the input file. Text,
including leading/trailing numeric characters and "#"'s are left as
is.

Strip line numbers from the input text before reformatting and writing
the output text. Input COM DK, CARD, and ACARD records are truncated
at column 72. Line numbers on ASCII and OLDASC records, when present,
are discarded and the first character following the Line number is
treated as the first character of the Line.

Move line numbers. The input records have the line numbers detached
from the text string, either from the front (ASCII or OLDASC) from
columns 73-80 (COMDK, CARO, or ACARD). The output records have the
line numbers reattached to the text string, either at the front (ASCII
or OLDASC) or in columns 73-80 (COM DK, CARD, or ACARD). If the output
records are BCD, PRINT, or APRINT, the Line numbers are not
re-attached and the M option acts similar to the S option.

Insert Line numbers beginning
j. The arguments i and j are
defaults are i=10 and j=10.
line-numbered. If the output
numbers are not inserted and

with Line number i and incrementing by
optional. If they are not given, the
The input file is assumed not to be

records are BCD, PRINT, or APRINT, Line
the I option is ignored.

R(i,j) Resequence line numbers. Strip any existing line numbers from the
input text and insert new line numbers in the output text, beginning
with i and incrementing by j. The arguments i and j are optional.
If they are not given, the defaults are i=10 and j=10. If the output
records are BCD, PRINT, or APR INT, line numbers are not inserted and
the R option behaves as the S option.

NCch> Implies the M option and specifies that the normal tab character <the
colon) and tab settings (8, 16, 32, 73) have been employed in building
the input file Cs>. The <ch> argument may be used to define a character
which replaces the colon as the tab character.

LABEL (abcde(i-j)fghi (i-j)---) lf the output records are COMDK, CARD, or ACARD,
then a label is placed left-justified in columns 73-77. The Label
is specified as 1 to 5 nonblank characters. The. fields "abcde" and
"fghij" represent the labels. The label is placed on only those Lines
with line numbers between i and j inclusive. Up to 10 distinct
labels may be given. If more than one label is given though, the Ci-j)
specifications may not overlap.

4-150 DJ31-00

JPRINT
JPUNCH

JPRINT
JPUNCH

The LABEL option is meaningful only if line numbers are attached to
output records. Therefore, the label option is completely ignored
unless it is accompanied by either the insert~ resequence, or move
optior •

For the I and R options, output line numbers for ASCII and OLDASC records will
have at least the number of digits specified for i in ICi,j) or RCi,j). thus
RC0010,10) will result in line numbers 0010, 0020, 0030,---.

Input records are assumed to have line numbers when the STRIP, MOVE, and
RESEQUENCE options are specified. Otherwise, line numbers are assumed to be absent
and leading numerics in ASCII format are treated as real text. When line numbers
are assumed present, tabbing and columnizing are performed relative to the start·of
the real text.

The user must be careful not to alter the line number values of a BASIC
file.

Character Manipulation Options

A description of each of the character manipulation options follows.

TABCch,i,j---;ch,i,j---;----) Expand tab characters into blanks. Use
"ch" as a tab character with settings i,j,k,etc. Usually,
any occurrence of the tab character in the input file(s)
results in the replacement of the tab character with a
string of blanks up to the next tab setting. However, if
a tab character is encountered beyond the Last tab
setting specified for that tab character, it is treated as
a normal non-tab character.

If a tab character is specified without specifying any
tab settings, default settings of 8, 16, 32, and 73 are
assumed. If the tab option is given without any arguments,
the normal tab character, colon, and the default settings
a r e a s .s um e d • Th e r e i s n o l i m H t o t h e n um b e r o f t a b
characters or settings allowed.

UNTABCch,i,j---;ch,i,j---;----> Insert tab characters, replacing
blanks. Use "ch" as a tab character with settings i, j,
k, etc. Any occurrence of a string of blanks terminating
on an "untab" tab stop is replaced by the character
II Ch II•

LOWER

If a tab character is specified without specifying any
tab settings, default settings of 8, 16, 32, and 73 are
assumed. If the untab option is given without any
arguments, the normal tab character, colon, and the default
settings are assumed. There is no limit to the number of
tab characters or settings allowed.

Convert alt alphabetic characters to lowercase. This
option is meaningful only if the output records are ASCII,
OLDASC, or APRINT.

4-151 DJ31-00

JPR-INT
JPUNCH

UPPER

JPRINT
JPt,JNCH

Convert all alphabetic characters to uppercase. This
option is meaningful only if the output records are ASCII,
OLD~AC, or .APRlNT~

BEGINCch) Begin a new line (record) immediately after the
character "ch". The character "ch" is treated as a
delimiter and not part of the text. It is not placed in
the output text. When the "ch" character is located at the
beginning or end of a line, it is.simply deleted. Strings
of the "ch" characters are treated as a single "ch"
character.

COLUMNSCi-j) Delete all of the characters in a line except those
which are located within columns i through j inclusively.
The options BEGIN an.d TAB are both completed before
COLUMNS takes effect. If a record does not extend through
column j prior to the COLUMNS option execution, it is
blank filled to column j. Thus, when the COLUMNS options
is in effect, the length of all generated output records
is j-i+1 characters.

SQUEEZE Replace any string of two or more blanks by a single
blank. The options BEGIN, TAB, COLUMNS, and UNTAB are all
performed before SQUEEZE is executed.

TRAIL Delete all trailing blanks on a line. The TRAIL option
is performed immediately after the SQUEEZE option.

A number of options affect the length of an output text Line. It is important
that the user understand the order in which these options are performed. The order
(from first to last) in which the options are executed is:

BEGIN
TAB
COLUMNS
UN TAB
SQUEEZE
TRAIL

Miscellaneous options

VERIFY

IGNORE

DISCARD

If the VERIFY option is in effect when CONVERTY completes the
processing of an input file, then CONVERT gives a brief summary of
the number of records obtained from the file. This summary gives,
for each media code, the number of records which had that media
code.

Ignore all embedded $$ control lines. Treat them as text.

Discard all nontext records. Nontext records are those records whose
media code is not one recognized and interpreted by CONVERT. The JRN,
JPRINT, JPUNCH, APRINT, and DISPLAY commands require that nont~xt
records be discarded. The CONVERT command normally does not requir1~
that nontext records be discarded. When nontext records are
encountered during the execution of the CONVERT command, they are
written to the output file, but no reformatting or media conversion
is performed.

4-152 DJ31-00

JPRINT
JPUNCH

TIME

DEFAULT

JPRINT
JPUNCH

When the TIME option is invoked, the date and time of day are printed
at the user's terminal.

The D"FAULT option is used to nullify all options which the user
has sp •cified either on the command Line or embedded$$ control lines.
The deiault option has no affect on any of the "specialized" options.
Because of the nature of the DEFAULT option, it is meaningless for
it to be Located in the options field of the command Line. Therefore,
if the DEFAULT option is encountered in the options field, an error
message is issued. The same reasoning applies to the placement of
the DEFAULT option anywhere other than. the beginning of a$$ control
Line.

File Processing Options

SELECT Cfi le) The SELECT option is analogo1.:1s to the$ SELECTA card. The select
option allows an input file to specify other input files.
Upon encountering the SELECT option, the selected file is
obtained and is used in place of the $$ control line. Nesting
of selects is permitted up to 17 levels. The SELECT option is
meaningful and valid only on a$$ control line. Only one SELECT
option may be specified on a $$ control Line.

INCLUDE If the INCLUDE option is in effect, CONVERT, upon encountering
the SELECT option, uses the selected file as an input file.

EXCLUDE If the EXCLUDE option is in effect, CONVERT ignores the SELECT
option.

The purpose of the INCLUDE and EXCLUDE options is to allow the user to control
the performance of the select options while not forcing him to disregard:

1. Other options on the same$$ control line.

2. ALL $$ control Lines.

The INCLUDE option is the default option for the JRN command. The EXCLUDE option
is the default option for the JPRINT, JPUNCH, APRINT, DISPLAY, and CONVERT
commands.

Specialized Options

The "specialized" options are a class of options completely distinct and separated
from all preceding options. The "specialized" options are unlike other options in
that they take effect only when all input fi Les have been read, converted, and closed;
i.e., after the output file has been completely generated. All other options, of
course, are meant to be used when the output file is in the process of being
generated.

4-153 DJ31-00

JPRINT
JPUNCH

ROUT(xx)

WAIT

COPY(nn)

IDENTCinfo)

MONITOR

DIRECT

· JPR.INT
JPUNCH

The ROUT option is applicable to the JRN, JPRINT, APRINT and
J PUN C H c om m an d s • Th i s o pt i o n c a u s e·s t h e i m p l i e d f i l e s g en e r a t e d
by the program execution to be directed to the specified
two-character remote station. Only one ROUT entry is
perm i. t t e d •

The WAIT option is applicable to the JRN, JPRINT, APRINT and
JPUNCH commands. This option causes the user to wait until
the completion of the spawned job in the batch environment.
The wait period may be broken out of by hitting the break
key. When the job completes execution, the user is informed
of the job's termination status and, if the JOUT option is in
effect, the JOUT subsystem in invoked.

The COPY option is applicable only to the the JPRINT, APRINT and
JPUNCH commands. this option causes the generation of nn
multiple copies of the listing or punched deck. The maximum
number of copies that can be produced from a single JPRINT/JPUNCH
job is 13.

The !DENT option is applicable to the JPRINT,
JPUNCH commands. This option allows the user
the subsystem/user interface involved in the
JPRINT/JPUNCH commands. When the !DENT option is
normal question/answer sequence of

$!DENT? response

APR INT, and
to minimize
use of the
present, the

is bypassed.
argument is
question.

The information presented as the !DENT option
used instead of the user-response to the

The MONITOR option is applicable to the JPRINT, APRRINT, JPUNCH,
and JRN commands. This option allows the user to monitor or
track the status of his spawned job as it is executed in the batch
environment. When the job completes execution, the user is
i n formed of t he j ob ' s t e rm i n at i on st at us and, i f the J 0 UT
option is in effect, the JOUT subsystem is invoked •.

The DIRECT option is applicable to the JRN, JPRINT, APRINT, and
JPUNCH commands. If the DIRECT option is given on the command
line, it overrides any JOUT or ROUT option which the user
has placed on a $$ control Line. This option allows the user
who, for instance, usually specifies the JOUT option to place
it on a$$ control line. He can then override it without being
required to change his $$ control line.

The ROUT, JOUT, and DIRECT options are mutually exclusive. The MONITOR, TALK,
WAIT, and DISMISS options are also mutually exclusive. Mutually exclusive options
are a group of options for which only one member of the group of options may be in
effect. If the user attempts to give two mutually exclusive options in the options
field of the commarid line or an a $$ control line, an error message is given.

4-154 DJ31-00

JPRINT
JPUNCH

Discussion

The printing or punching is done at the host.

Examples

JPRINT FILEAC:T,S)

JPRINT
JPUNCH

The contents of FILEA are printed at a high-speed printer. Tabs are expanded
and line numbers are stripped. The tab character is : and the settings are 8, 16,
32, and 73.

4-155 DJ31-00

JRN JRN

Purpos.e

The J RN comm and c au s e s a j ob under cont r o l o f t he CON VE RT sub sys t em to '' RUN"
as a batch processing job.

Format

JRN [infi le(s)H=otfi leH:optionsJ

Cinfile<s>J
C=otfi le]
[:options)

Description

Media Code Options

::= *l**ICfiledescrJ.
:!= *l~**IC=filedescrJ
see below

The output record format options specify the physical
record. The default option for the CONVERT command is "ASCII".
and their meanings is as follows:

BCD - variable length BCD - media code 0

format of the output
A list of the options

COMDK - BCD compressed deck card image CCOMDK) - media code 1

CARD - BCD 14-word card image - media code 2

PRINT - BCD variable-length print line image - media code 3

OLDASC - obsolete TSS ASCII - media code 5

ASCII - standard system format ASCII - media code 6

APRINT - ASCII print line image - media code 7

ACARD - ASCII card image - media code 10

SAME - a record output media code is the same as its input media code

4-156 OJ31-00

J RN JRN

Line Number Options

L i n e n um b e r s c a n e x is t w i t h C 0 M DK , CA R D , AC A R D , 0 L D A S C , a n d AS C I1 r e c o r d s • A l l
BCD, PRINT, and APRIN records cannot possess line numbers. The line number for an
ASCII or OLDASC reco,.d consists of 1 to 8 numeric characters. These numeric
characters must be among the first eight characters in a line. A line number is
defined to include any leading blanks. A line number is terminated by a nonnumeric
character, including blank. If the "#" character terminates a line number and if
it is one of the first eight characters of a Line, it is considered to be a delimiter.
I t i s t r e a t e d a s n e i t h e r pa r t o f t h e l i n e n um b e r no .r pa r t o f t h e t e x t • Th e L i n e ·n um b e r
for COMDK, CARD, and ACARD records is defined to be all the trailing digits in columns
73-80. This field may begin with nonnumerics; these also are considered neither part
of the line number nor part of the text.

The line number options may specify:

1. Whether line numbers are to appear in the output text.

2. The actual line number values.

The default line number option is ''ASIS". A description of each of the options
follows:

ASIS

STRIP

MOVE

_ICi,j)

Line numbers are assumed not be present in the input file. Text,
including leading/trailing numeric characters and "#"'s are left as
is.

Strip line numbers from the input text before reformatting and writing
the output text. Input COMDK, CARD, and ACARD records are truncated
at column 72. Line numbers on ASCII and OLDASC records, when present,
are discarded and the first character following the line number is
treated as the first character of the line.

Mo v e l i n e n um b e r s • Th e i n p u t r e c o rd s h a v e t h e l i n e n u mb e r s d e t a c h e d
from the text string, either from the front CASCII or OLDASC) from
columns 73-80 CCOMDK, CARD, or ACARD). The output records have the
Line numbers re-attached to the text string, either at the front
(ASCII or OLDASC) or in columns 73-80 CCOMDK, CARD, or ACARD). If
the output records are BCD, PRINT, or APRINT, the line numbers are
not re-attached and the M option acts similar to the S option.

Insert line numbers beginning
j. The arguments i and j are
defaults are i=10 and j=10.
line-numbered. If the output
numbers are not inserted and

4-157

with line number i and incrementing by
optional. If they are not given, the
The input file is assumed not to be

records are BCD, PRINT, or APRINT, line
the I option is ignored.

DJ31-00 I

JRN JRN

RCi,j) Resequence line numbers. Strip any ~xisting line numb~rs from the
input text and insert new line nu.mbers in the output text, beginning
w i t h i a n d i n c r em en t i n g b y j • Th e a r g um en t s i and j a r e o pt i o n a l.
I f t h e y a r e n o t g i v en , t h e d e fa u l t s a r e i = 1 0 and j = 1 0 • -. I f t h e o ·U t p u t
records are BCD, PRINT, or APRINT, line numbers are not inserted and
the R option behaves as the S option.

NCch) Implies the M option and specifies that the normal tab character (the
colon> and tab settings CB, 16, 32, 73) have been employed in building
the input fi le(s). The Cch) argument may be used to define a character
which replaces the colon as the tab character.

LABEL CabcdeCi-j)fghi(i-j)---> If the output records are COMDK, CARD, or ACARD,
then a label is placed left-justified in cblumns 73-77. The label
i s s p e c i f i e d a s 1 t o 5 no n b la n k c h a r a c t e r s • Th e f i e l d s " ab c d e " a n d
"fghij" represent the labels. The label is placed on only those lines
with line numbers between i and j inclusive. Up to 1D distinct
labels may be given. If more than one label is given though, the (i-j)
specifications may not overlap.

The LABEL option is meaningful only if line numbers are attached to
output records. Therefore, the label option is completely ignored
unless it is accompanied by either the insert, resequence, or move
option.

For the I and R options, output line numbers for ASCII and OLDASC records will
have at least the number of digits specified for i in I(i,j) or RCi,j). Thus
RC0010,10) will result in line numbers 0010, 0020, 0030,---.

Input records are assumed to have line· numbers when the STRIP, MOVE, and
RESEQUENCE option·s are specified. Otherwise, line numbers are assumed to be absent
and leading numerics in ASCII format are treated as real text. When line numbers
are assumed present, tabbing and columnizing are performed relative to the start of
the real t.e x t •

The user must be careful not to alter the line number values of a BASIC
file.

Character Manipulation Options

A description of each of the character manipulation options follows.

TABCch,i,j-~-;ch,i,j---;----> Expand tab characters into blanks. Use
"ch" as a tab character with settings i,j,k,etc. Usually,
any occurrence of the tab character in the input file(s)
results in the repl~cement of the tab character with a
string of blanks up to the next tab setting. However, if
a tab character is encountered beyond the last tab
setting specified for that tab character, it is treated as
a normal non-tab character.

4-158 DJ31-00

JRN JRN

If a tab character is specified without specifying any
tab settings, default settings of 8, 16, 32, and 73 are
assumed. If the tab option is given without any arguments,
the normal tab character, colon, and the default settings
are assumed. There is no Limit to the number of tab
characters or settings allowed.

UNTAB(ch,i,jr---;ch,i,j---;----) Insert tab· characters, replacing

LOWER

UPPER

BEGINCch)

COLUMNSCi-j)

SQUEEZE

TRAIL

blanks. Use "ch" as a tab character with' settings i, j,
k, etc. Any occurrence of a string of blanks terminating
on an "untab" tab stop is replaced by the character
II Ch II•

If a tab character is sp~cified without specifying any
tab settings, default settings of 8, 16, 32, and 73 are
assumed. If the untab option is given without any
arguments, the normal tab character, colon, and the default
settings are assumed. There is no Limit to the number of
tab characters or settings allowed.

Convert all alphabetic characters to lowercase. This
option is meaningful only if the output records are ASCII,
OLDASC, or APRINT.

Convert all alphabetic characters to uppercase. This
opt.ion is meaningful only if the output records are ASCII,
OLDSAC, or APRINT.

Begin a new Line (record) immediately after the
character "ch". The character "ch" is treated as a
delimiter and not part of the text. It is not placed in
the output text. When the "ch" character is located at the
beginning or end of a Line, it is simply deleted. Strings
o f t h e " c h " c ha r a c t e r s a re t re a t e d as a s i n g l-e " c h"
character.

Delete all of the characters in a line except those
which are Located within columns i through j inclusively.
The options BEGIN and TAB are both completed before
COLUMNS takes effect. If a record does not extend through
column j prior to the COLUMNS option execution, it is
blank filled to column j. Thus, when the COLUMNS options
is in effect, the length of all generated output records
is j-i+1 characters.

Replace any string of two·or more blanks by a single blank.
The options BEGIN, TAB, COLUMNS, and UNTAB are all
performed before SQUEEZE is executed.

Delete all trailing bl~nks on a Line. The TRAIL option
is performed immediately after the SQUEEZE option.

4-159 DJ31-00

JRN JRN

A number of options affect the Length of an output text Line. It is
important that the user understand tht· order in which these options are
performed. The order <from first to Last) in which the options are executed
is :

BEGIN
TAB
COLUMNS
UN TAB
SQUEEZE
TRAIL

Miscellaneous options

VERIFY

IGNORE

DISCARD

TIME

DEFAULT

If the VERIFY option is in effect when CONVERT completes the
processing of an input file, then CONVERT gives a brief summary of
the number of records obtained from the file. This summary gives,
for each media code, the number of records which had that media
code.

Ignore all embedded $$ control lines. Treat them as text.

Discard all nontext records. Nontext records are those records whose
media code is not one recognized and interpreted by CONVERT. The JRN,
JPRINT, JPUNCH, APRINT, and DISPLAY commands require that nontext
records be discarded. The CONVERT command normally does not requirt>
that nontext records be discarded. When nontext records an•
encountered during the execution of the CONVERT command, they arc
written to the output file, but no reformatting or media conversion
is performed.

When the TIME option is invoked, the date and time of day are printed
at the user's terminal.

The DEFAULT option is used to nullify all options which the user
has spec i f i e d e i the r on the comm and l in e or embedded $ $ cont r o l L in es •
The. default option has no affect on any of the "specialized" options.
Because of the nature of the DEFAULT option, it is meaningless for
it to be Located in the options field of the command line. Therefore,
if the DEFAULT option is encountered in the options field, an error
message is issued. The same reasoning applies to the placement of
the DEFAULT option anywhere other than the beginning of a$$ control
line.

File Processing Options

SELECT (file) The SELECT opt·ion is analogous to the$ SEL.ECTA ca_rd. The select
option allows an input file to specify other input files.
Upon encountering the SELECT option, the selected file is
obtained and is used in place of the$$ control Line. Nesting
of selects is permitted up to 17 levels. The SELECT option is
meaningful and valid only on a$$ control Line. Only one SELECT
option .may be specified on a $$ control Line.

4-160 DJ31-00

JRN

INCLUDE

EXCLUDE

JRN

If the INCLUDE option· is in effect, CONVERT, upon encountering
the SELECT option, uses the selected file as an input file.

If the EXCLUDE option is in effect, CONVERT ignores the SELECT
1 pt ion.

The purpose of the INCLUDE and EXCLUDE options is to allow the user to control
the performance of the select options while not forcing him to disregard:

1. Other options on the same SS control line.

2. All SS control lines.

The INCLUDE option is the default option for the JRN command. The EXCLUDE option
is the default option for the JPRINT, JPUNCH, APRINT, DISPLAY, and CONVERT
commands.

Specialized Options

The "specialized" options are a ·class of options completely distinct and
separated from all preceding options. The "specialized" options are unlike
other options in that they take effect only when all input files have been read,
converted, and closed; i.e., after the output file has been completely generated.
All other options, of course, are meant to be used when the output file is in the
process of being generated.

MONITOR

JOUT

ROUTCxx)

WAIT

The MONITOR option is applicable to the JPRINT, APRINT, JPUNCH,
and JRN commands. This option allows the user to monitor or
track the status of a spawned job as it is executed in the batch
environment. When the job completes execution, the user is
informed of the job's termination status and, if the JOUT option
is in effect, the JOUT subsystem is invoked.

The JOUT option is applicable only to the JRN command. This
option results in all implied files being saved so that they may
be examined using the JOUT s~bsystem.

The ROUT option is applicable to ~he JRN, JPR(NT, APRINT, and
JPUNCH commands. This option causes the implied fi Les generated
by the program execution to be directed to the specified
two-character remote station. Only one ROUT entry is
permitted.

The WAIT option is applicable to the JRN, JPRINT, APRINT and
JPUNCH commands. This option causes the user to wait until
the completion of the spawned job in the batch environment.
T~e wait period may be broken out of by hitting the break key.
When the job completes execution, the user is informed of the
jpb's terminatiol"! status and, if the JOUT option is in effect,
the JOUT subsystem is invoked.

4-161 DJ31-00

JRN

TALK

URGCCxx>

DIRECT

DISMISS

JRN

The TALK option is applicable only to the JRN command. This
option implies that the batch job includes execution of a program
containing conversational (direct access) input/output. This
option causes the user's terminal to be placed in direct access
connection with the submitted program Cby SNUBM) following its
submission to the batch environment. When the job completes
execution, the user is informed of the job's termination status
and, if the .JOUT option is in effect, the JOUT subsystem in
invoked.

The URGENCY option is applicable only to the JRN command. This
option indicates that the user wishes to assign initial urgency
xx to the spawned batch job. If the assigned urgency is greater
than the maximum allowed for the user, the message ILLEGAL
URGENCY is sent and the batch job is not spawned. If xx is not
specified, maximum allowable urgency is automatically
assigned.

The DIRECT option is applicable to the JRN, JPRINT, APRINT,
and JPUNCH commands. If the DIRECT option is given on the
c om m and l i n e , i t o v e r r i d e s a n y J OU T o r R 0 U·T o p t i o n w h i c h t h e u s e r
has placed on a SS control line. This option allows the user
who, for instance, usually specifies the JOUT option to place
it on a$$ control Line and Later override it without changing
the $$ control line.

The DISMISS option is applicable only to the JRN command. If
the DISMISS option is given on the command Line, it overrides
any TALK, WAIT, or MONITOR option which the user has placed on
a SS control line. This option allows the user who, for
instance, usually specifies the MONITOR option to place it on
a SS control line. He can then override it without being
required to change his $$ control line.

The ROUT, JOUT, and DIRECT options are mutually exclusive. The MONITOR, TALK,
WAIT, and DISMISS options are also mutually exclusive. Mutually exclusive options
are a group of options for which only one member of the group of options may be in
effect. If the user attempts to give two mutually exclusive options in the options
field of the command Line or on a SS control line, an error message is given.

Discussion

The three fields do not have to be ordered as shown; however, if the input file
name is not the file name fol lowing the command it must be preceded by a
semicolon.

4-162 DJ31-00

JRN

Examples

JRN INPUT

INPUT = 10$$S, ·,J,V,MONI
20$:IDENT:M24GPCX13, JANEDOE , STATION G
30$:0PTION:NOSETU,NOGO
40S:LOWLOAD ,
SOS:GMAP:COMDK
70$$ SELECTCPROJECT/SCHDC:TC;),V))
80$$ SELECT CPR-OJECT/ALTERC:V,S))
90$:LIMITS:,,,25000
100S:PRMFL:K*,RIW,S,PROJECT/SCHD-COM
110$:PRMFL:C*,R/W,S,PROJECT/SCHD-OBJ
120$:ENDJOB

JRN

The program contained in INPUT is passed to the batch system along with the
contents of the files PROJECT/SCHD and PROJECT/ALTER. INPUT has its line numbers
stripped and its tabs expanded where the tab characters is : and the settings are
8, 16, 32, and 73. PROJECT/SCHD has its Line numbers Left ASIS and its tabs expanded
where the tab character is ; and the settings are 8, 16, 32, and 73.
PROJECT/ALTER has its Line numbers stripped and no tabs are expanded. A report is
given for all three files which gives the number and type of records obtained from
each fi Le. The program is given JOUT disposition and the execution of the program
is monitored.

4-163 DJ31-00

JSTS JSTS

Purpose

To print the curre-nt p.roce.s.sing sta,tus of the batch jo.b or jobs specified by
snumb number.

Format

J.STSC*l<snumb>J •••

<snumb>

*

Discussion

::=a batch job id~ntification

::= indicator that th.e identifier of last job submitted is to
be used

The following are the status mess~ges returned by JSTS and their meanings:

MESSAGE

STATUS CHANGING

READING-Rrt1T

WAIT-ALLOC

WAIT-PER IP

IN HOLD

IN LH1BO

EXECUTING

SWAPPED

WA IT-MEDIA

IN SIEVE

OVERDUE

MEANING

The job is in a transitional state.

The job is being read by the batch .system.

The job is not yet a candidate for peripheral allocation

The job is waiting for peripheral allocation.

The job is waiting for core allocation.

A· ho l d wa s i n i t i a t e d b y t h e ope rat o r (p e r ha p s t h e j ob need e d
a tape or d.isk pack that was already being used) or the job
includes a $PRIVITY card.

T h e j ob i ·s w a i t i n g f o r t h e h o s t o p e r a t o r t o f e t c h t a p e s ,
disk packs, special forms, etc.

The j~b is in execution.

A job with higher urgency has caused your job to be
temporarily swapped out of memory.

The job is w-aiting completion of a tape or disk-pack mount
request.

The job's resource requirements exceed the limits set by
the host. The job will be run when the machine is less
busy.

The job has reached a high urgency but the system still has
not been able to get resources necessary to run your job,
i.e., disk packs, tapes, or permfiles are busy.

4--1 6;4. DJ31-00

JSTS

IN RESTART

TERMINATION

OUTPUT WAITING

JSTS

The system is restarting your job after d service
interruption.

The activity has finished executing and is in the
terminating procedure.

Execution is complete but printing is not. At this time,
JOUT output may be ~ccessed.

OUTPUT COMPLETE Printing, punching and remote I/O is complete.

JOB NOT ACCESSIBLE The job is not yet far enough into the system to identify
its status; the job is in sysout and sysout is swapped; or,
the output is complete and the job is no longer in the
system.

Early in the processing of a job, the Scheduler looks at the system resources
the job requires and puts the job in an appropriate queue. If JSTS is requested when
a job is in the Scheduler, a message of the following form is printed:

IN SCHEDULER <name> QUEUE

Where:

<name> is one of the queues defined by the site in the system startup
definitions. For additional information see DRL JSTS description.

Examples

1) JSTS *(prints status of the most recent job submitted through TSS Terminal
Batch-entry during the current "LOGON" session. If the job has
terminated, the termination code 'is printed.)

2) JSTS 1234T

3) JSTS 4567~ 5678T

4-165 DJ31-00

LCAS
LEADER

Purpose

LCAS
LEADER

Th e LC A S c om m 1tn d al l ow s b o 't h up p e r c a s e and l o we r c a s e c ha r a c t e r s t o b e
transmitted to a keyboard/display device.

Format

LCAS(E]

Discussion

This command applies to keyboard/display type devices only.
command.

Purpose

See the UCAS

The LEADER command causes a title to be punched in bold, block letters in the
paper tape followed by a list of the current file.

Format

LEADCERJ [title)

Discussion

If a title is not entered, the system requests the title. Although only
uppercase characters are punched, the title can be composed of upper or Lowercase
alphabetics, numerics, and special characters except the commercial at (@)sign. The
date is punched in the international standard format following the title. A series
of ASCII characters (carriage return, line feed, and 8 rubouts) follows the date and
preceeds the contents of the current file. After the current fi Le has been punched
another similar stream of ASCII characters (plus an X-OFF COC3) character> is appended
to the paper tape.

Example

* LEAD lllY NAME

4-166 OJ31-00

LENGTH LENGTH

Purpose

The LENGTH command generates a report of the type, current length and content
length of the specif "ed file or files.

Format

LENG[THJ[<file-ref>[;<file-ref>J ••• J

<file-ref> ::= *l<file desc>

Discussion

There are 3 Lengths associated with every file:

1) the content <or used) length,

2) the current length,

3) the maximum Length.

The Lengths are measured in LLINKS, which are 320 word blocks.

The content length is the number of LLINKS used to store the contents of a
f i le •

The current Length is the number of LLINKS reserved on mass storage for a fi Le. This
is the amount the user is charged for. If the content Length is smaller than the
current Length, the difference is being wasted.

The maximum Length is the length a file can grow to. ALL software will try to
grow a file if it needs more room, so it is best to make the maximum Length greater
than the current length to allow for growth.

4-167 DJ31-00

LENGTH

~ xamp l es

1> LENGTH

2) LENGTH *

3) LENG PROG1

4) LENG *;PROG1

LENGTH

(prints the type and content length of the current
f i le)

(prints the type, current length and content length of the
current file>

(prints the type, current Length and content length of fi Le
PR PG 1)

(prints a length· report for the current file and file
PROG1)

5) LENG COLORS/PRIMARY
(prints a length report on the file PRIMARY in the
subcatalog COLORS>

6) LENGTH COUNTY/SERVICES,R
(prints a length report on the file SERVICES in the user-ID
COUNTY>

4-168 DJ31-00

LIB LIB

Purpose

The LIB command copies a program or a portion of a program from the Common
Library to the currer t fi Le.

Format

LIB[<Lib-prog>[(<Line-range>)JJ

<Lib=prog> ::= a program in the Common Library
<Line-range>::= <begin-Line>-<end-Line>

I <begin-Line>-
! -<end-Line>

<begin-Line>::=<Line>
<end-Line> ::=<Line>
<Line> ::= a 1- to 8-digit decimal number

Discussion

There are many BASIC and FORTRANY programs in the Common Library including
engineering, business, mathematical and statistical applications. The applications
Library is distributed in file system restorable format for restoration to user-ID
LIBRARY.

Examples

1) LIB
(prompts for the Common Libary routine name)

2) LIB LIMITS

3) LIB WINGDATA (100-9999)
(picks up Lines 100 through 9999 of program WINGDATA)

4-169 DJ31-00

LINE
LINELENGTH

Purpose

LINE
LlNELENGTH

The LINELENGTH command
1

4ncreases the maximum length of an input line that may
be sent from a terminal.

Format

LINEELENGTHJ<nn>

<nn> ::= a number between 80 and 160.

Discussion

1) The LINELENGTH command cannot be used on VIP type terminals.

2) LINE or LINELENGTH followed by a carriage return will set the line length
to 80 characters.

Examples

1) LINE (sets the line length to 80 characters>

2) LINE 120 (sets the line length to 120 characters)

4-170 DJ3'f-OO

LIST LIST

Purpose

The LIST command lists the contents of the specified ASCII time sharing file,
files or file segments.

Format

LISTCHIEC<columns>JJ[<file-list>l<line-list>J

or LISTL[*l<filedesc>J

Description

<columns> ::=a decimal number
<file-list> ::= <file-ref>[;<file-ref>J. ••
<file-ref> ::= [*l<filedesc>J[(<line-list>)J
<line-List> ::= <line-ref>[,<line-ref>J •••
<line-ref> ::= <line>l<line-range>
<line-range>::= <begin-line>-<end-line>

I= <begin-line>-
1= -<end-line>

<begin-line>::= <line>
<end-line> ::=<line>
<line> ::=a 1- to 8-digit decimal number

<line-ref> defines which lines and/or line ranges are to be listed. A
combination of single line numbers and line-number ranges may be
used. However, the line numbers selected must be in ascending
order.

<begin-line> indicates which line number is to start the listing. The
form <begin-line>- means "list to the end of the file" and can
only be used as either the first-and-only or the last line
range.

<end-line>

Discussion

indicates the line number at which a line range ends. The form
-<end-line> means "list from the beginning of the file" or,
if -<end-line> is preceded by any lines or line ranges, list
starting at the line after the last one already listed."

If no file name is specified in either form of the LIST command, the current
file is assumed. In both forms, the current file may be specified explicitly by an
asterisk.

If no line numbers are specified in the first form of the LIST command, the entire
contents of the file are listed. With the LIST command, the contents of a file or
files with general READ permission in another user-ID can be Listed. The
current file is never altered by the LIST command even when other files or file
segments are Listed.

LISTH precedes the Listing with a header that contains the date and time.

4-1 71 DJ31-00

LIST LIST

LISTE<columns> lists the file but with all lines "broken" or "folded" at the
character position specified by <column>. In Example 12 if PARTS were a file
that contained an 80-character line, each line in the file would be listed as 4 lines.
If no <columns> value is given, the default value of 72 is used. Some terminals try
to fold lines that exceed the carriage width, but some characters are usually dropped.
To ensure that lines that exceed the carriage width will be listed and folded properly,
the LlSlE command should be used.

LISTL lists the last line in the file. If no file name or an asterisk is
specified, the last line in the current file is listed. If a file name is provided,
the last line in that file is listed.

Examples

1> LIST
(lists the entire contents of the current file>

2) LIST *
(same as LIST>

3) LIST S0-80,90,120

4) LIST SOO-

<lists lines SO through 80, 90, and 120 of the current
f i le>

<Lists from line 500 through the end of the current
f i le)

5) LIST 60,100,300-
(lists
current

lines 60,
f i le>

100, and 300 through the end of the

6) LIST -SO
<Lists from the beginning of the current file through line
50)

7) LIST 150-180,400-420
(lists lines 150 through 180 and lines 400 through 420 of
the current file)

8) LIST /AIRCRAFT/TANKERS
(lists the entire contents of the file TANKERS in
subcatalog AIRCRAFT>

9) LIST PLASTICC10-50,100-150>;METALC10,30,200-)

10) LISTH WOODTYPE

11) LISTH

<Lists lines 10 through 50 and lines 100 through 150 of file
PLASTIC; and lists lines 10, 30, and 200 through the end
of the file METAL)

(lists the entire contents of file WOODTYPE with a date and
time header>

<Lists the entire contents of the current file with a date
and time header>

4-172 DJ31-00

LIST LIST

12) LISTE25 NAILSIZE
<Lists the entire contents of the file NAILSIZE with each
line in the file listed with 25 columns per Line on the
terminal)

13) LISTE /CUSlOM/FURNITURE

14) LIS TL

15) LISTL *

<Lists the entire contents of the file FURNITURE in
subcatalog CUSTOM with each Line in the file Listed with
72 columns per Line on the terminal)

(lists the Last Line of the current file)

(same as LISTL>

16) LISTL /MAKER/TOOLS
<Lists the last line of the file TOOLS in subcatalog
MAKER)

17) LIST USERID/ROSTER
(Lists the entire contents of the file ROSTER in user-ID
USERID)

4-173 DJ31-00

LOOS LOOS

Purpose

The LOOS command Loads a specified TSS subsystem which is bound with the trace
package.

Format

LOOS <subsys>[:inputdata)

<sub sys>
<inputdata>

Discussion

::= name of a TSS subsystem
::= <text string parameters to pass to subsystem>

LOOS is similar to LOOT, except that a specified TSS subsystem, instead of an
H* file, is Loaded and bound with the trace package. This capability is primarily
intendeq for those responsible for subsystem maintenance and site system personnel.
The command associated with the desired subsystem, followed by any of its necessary
parameters may accompany the LOOS command. If not specified on the same Line as the
LOOS command, this information is requested from the user. As with LOOX and LODT,
an opp o r t u n i t y i s g i v en t o 11 PA TC H ,, SA VE (f il e d e s c r r e q u i r e d) OR R UN" • Pr i o r t o
relinquishing control, LOOS removes all characters of the input line that prefix the
command word (via DRL PSEUDO). This would normally be the LOOS command itself and
its terminating delimiter. Thus, for example, the following use of LOOS would result
in loading the LIST subsystem for debugging purposes:

LOOS LIST FILEXC100,220);FILEY

Use of LOOS for debugging privileged subsystems must be requested at system
selection level and is permitted for the master user only. Such subsystems include
LOGOFF, TERM, NEW, NEWU, JSTS, JOUT, and LOOS itself. Master subsystems cannot be
debugged with LOOS.

The LOOT and LOOS commands permit the load origin of the Trace Package to be
specified. (See the De~ug and .1.!:...!..£.! manual.) This specification must be preceded
by a semicolon and requ1res---rhe format, TRACE-nnnnnn, where nnnnnn is the desired
octal address at which to load the Trace Package. Thus, to load a program with
the Trace Package origin at location 14000:

*LODSJOE/JSTS;TRACE-14000:JSTS1234T

Examples

1) LODS HELP

2) LOOS ACCE:ACCE LS,/TEMP

4-174 DJ31-00

LODT LODT

Purpose

The LOOT command loads a user-supplied program from the H* file and appends a
copy of the trace parkage.

Format

LOOT <infi le>

<infile> ::= <filedescr>

Discussion

The LOOT subsystem provides a debugging environment for a user program resident
on an H* file. As with LODX, the H* file is Loaded and the user given the opportunity
to "PATCH, SAVE OR RUN". In addition, however, a copy of the trace package is appended
to the resulting Load, and TRACE is provided with the program's true entry address
in its Linkage register CX1>. When the RUN command is given, LOOT transfers control
to the trace package. TRACE is thus initially given control, and when its first "R"
command is exercised, program execution begins. If the trace mechanism is engaged
before issuing the "R" command, the user's program will be executed in a controlled
environment.

See also the later section on debugging subsystems for PATCH, SAVE and RUN
functions.

Examples

1) LOOT MYID/HSTAR;TRACE-2000

2) LOOT QUIKFILE

3) LODT SUBSYS:INPUT

4-175 DJ31-00

LODX LODX

Purpose

The LODX command loads a user supplied program from an H* file.

Format

LODX <infile>

<infi le> : := <fi ledescr>

E_iscussion

Upon completion of the loading function the user receives the message

PATCH, SAVE OR RUN?

Only the first character CP, S, or R) is necessary. If a null response is giv.en
< c a r r i a g e r e t u r n on l y) , t h e l o ad i n g fu n c t i o n i s t e rm· i n a t e d· and t h e u s e r i s
returned to the system selection level or build mode.

PATCH-LODX responds with a "?" indicating readiness to accept the f'irst
patch. The patch data must consist of a one to six digit octal address, delimited
by a blank, which in turn must be followed by any number of 1- to 12-digit octal fields
<the patch data), separated by commas. ·successive question marks are issued to obtain
patches until receipt of only a carriage return,"*", or "D". A carriage return causes
reissuance of the "P'ATCH, SAVE OR RUN?" query, whi Le an"*" or "D" causes control
to be passed to the loaded program.

PATCH filedescr - The specified file is used as the patch source. The format
of the file is exactly the same as a series of patch~s entered from the keyboard.
A patch f i le created by the text editor may a l so cont a i n the "*" or "D" ind;. cat or
to enable program execution. If an end-of-file or any error is encountered, the
"PATCH, SAVE OR RUN?" query is reissued.

The PATCH function of LOOX, LOOT, and LOOS accepts patches that are form-atte~
f o r t h e $ PA T C H s e c t i o n o f s t a r t up • A b l a n k t e r m i n a t e s t h e pa t c h d a t a a n d' a U o w s·
comments and/or module catalog names to be included on the line containing the
patchCes); e.g.

8 16 32 73

243 OCTAL 5600004 TZE 5,IC • TS A CC

SAVE - The loaded program is stored back on the H* file from which it was obtained;.
Note that the file now contains a single program element, regardless of how many
elements were initially present.

4-176 o·JJ1-00

LODX LODX

SAVE filedescr - If the specified file exists, LODX saves the loaded program
in H* format on this file. If insufficient space exists, an attempt is made to grow
the file or, if the file does not exist, it is created for the user at this time.
The trace package is not included on the saved file when LOOT or LOOS has been
specified.

SAVE fi Ledescr;progname - The loaded program is appended as
element on the specified file with a name corresponding to "progname".
consist of 1-6 alphabetic and/or numeric characters (period or
permitted).

an additional
The name must

dash is also

RUN - The Loaded program is entered for execution at the entry address specified
in the control block of the H* file.

RUN nnnnnn Same as above, except an alternate octal entry address,
nnnnnn, is desired by the user.

Examples

1) LODX SAVEHSTR

2) LODX USERA/EXEC/GAME

4-177 DJ31-00

LOGO FF
i...UC ID

Purpose

LOGO FF
LUCID

The LOGOFF command terminates a user session, prints usage statistics and
disconnects the terminal.

Format

LOGO[FFJ

Description

The LOGOFF command is an alternative to the BYE command used to terminate the
current session.

Purpose

The LUCID command is used instead of the TAPE command to read paper tape for
non-ASCII paper tape input.

Format

LUCICDJ

Discussion

The input is stored on a temporary fi Le <TAP*) file as unaltered eight-bit ASCII
character codes. The TAP* file is left open (unedited in the user's AFT). When a
pause greater than one second stops the tape read, the system returns to the subsystem
selection level. This command does not function when data communication is via a
Low Speed Line Adapter (LSLA) or an Asynchronous Communications Base (ACB) on a
OATANET 355/6600 Front-End Network Processor. In the EDITOR subsystem, this command
takes the form #LUCID.

TAP* can be copied to a permanent file by the user via the PERM or CPY command,
if desired.

4-178 DJ31-00

MAIL MAIL

Purpose

T h e MA I L s u b s y s t em co mm and o pt i o n s c on s i s t o f f i v e k e y w o r d s w h i c 'h a r e
interpreted as "act on" words, augmented with two specialized options (asterisk and
parenthesis). Thes ~action words are CREATE, DELETE, LIST, LISTL, or LISTD. Any
subset of the keywords string may be used to identify the command.

Format

The total command syntax list is made up of the following nine groups.

1) MAIL

2) MAIL*

MAIL followed immediately by a carriage return implies that the
user wishes all messages sent to that Userid to be dsiplayed at the
terminal. If no messages exist, the statement "NO MAIL AT THIS TIME"
will be displayed. This syntax additionally sets a flag which
subsequently allows the message "YOU HAVE MAIL" to be sent to that
user-ID by TSS LOGON. In effect, the use of this syntax functions
as a "receive mail" feature that gives the user the option to elect
whether or not to see the message during future logons.

Functionally similar to MAIL (or) except that the "NO MAIL AT THIS
TIME" is suppressed if no messages exist on the file. This syntax
also resets the above-mentioned flag so that the "YOU HAVE MAIL"
message is not sent to that user-ID during subsequent logons.

3) MAIL CREATE (or any subset of create)
Directs the subsystem to create a "MAIL.BOX" file for the user. The
initial size of this file is two Llinks.

NOTE: This file will be increased in size by the subsystem as needed
for Larger messages up to the maximum limit determined by the
space available under the SMC.

4) MAIL DELETE (or any subset)
Deletes all messages sent to the user's MAILBOX.

MAIL DELETE UID,UID ••• UID

Deletes all messages sent to the MAIL.BOX by the user-ID or user-IDs
specified.

5) MAIL LIST <or any subset of list)

Directs the subsystem to List the header information for each message
on the user's MAIL.BOX file without displaying the actual message
content. The header information consists of the total number of
messages sent, the user-IDs that sent them, the number of characters
in each message, and the date and time each mes~age was sent.

MAIL LIST UID

Displays the header data along with all messages sent to the mailbox
from the user-ID specified, along with the header data.

4-179 DJ31-00

MAIL

6)

MAH ..

MAIL LISTL Cno subset permitted)

Causes the header data to be displayed showing how many messages h~ye
been sent to the requesting user. Also displayed are the date, time
and user-ID of the latest messages sent Ci.e., those with the current
date>.

MAIL LISTL UID,UID ••• UID

Displays all messages sent by the user-IDs specified that have ad.ate
in their header equivalent to the current date.

7) MAIL LISTD Cno subset permitted)

Lists all header data of messages sent to the u~er and
concurrently deletes them.

MAIL LISTD UID,UID ••• UID

Lists the header data and the text of all messages sent by the user.-IDs
specified and concurrently deletes them.

8) MAIL UID TEXT

Di rec ts the MAIL subsystem to send the message text as entered to the
user-ID specified. (note: the message text is not in *SRC unless
using format #9.> The user sending the mail will be informed if the
rec e iv in g user- ID did in fact receive the message • The mess i.3 g e
initiator will receive the message "USERID NOTIFIED", where USERID
is the user-ID of the receiving user.

MAIL UID,UID ••• UID TEXT

Causes the text entered to be sent to the user-IDs specified.

MAIL UID

Directs the subsystem to prompt the user for the message input. The
user will be prompted until a null line is encountered CrespGnse is
carriage return only). Upon receiving the null line, the entered
message will be sent to the specified user-ID.

MAIL UIP,UID ••• UID

Similar in function to the above syntax, however the text is sent to
all the user-IDs specified.

9) A. MAIL =CAT/FILENAME
Prompts the user for input and sends the text to the user-xos specifiec:l
on the file (FILENAME).

B. MAIL =CAT/FILENAME TEXT
Sends the entered text to all the user-IDs specified on the file
(FILENAME).

C. MAIL =CAT/FILENAME-1 =CAT/FILENAME-2
The message contents on file FILENAME-2 are sent to the user•IDs
listed on file FILENAME-1.

4-180 PJ;31-00

MAIL MAIL

D. MAIL UID =CAT/FILENAME
Notifies the subsystem that the user wishes to send the message on
the file FILENAME to the user-ID specified.

E. MAIL UID,U D ••• UID =CAT/FILENAME
Serve~ the same function as the previous command except the
message is sent to the specified user-IDs.

Discussion

When a file is to be used by the MAIL subsystem it must be in standard system
format and contain ASCII records. The user of the contents of the file is
determined by whether the FILENAME is positionally the "first" or "second" option
on the line. In items 9A and 98, the FILENAME specification is the "first" option
and denotes the file contents as user-IDs. In items 9D and 9E, the file content
is determined to be text, rather than user-IDs, because the file specification is
the "second" option in the syntax. In item 9C both FILENAME options are present,
so FILENAME-1 (first) contains user-IDs and FILENAME-2 (second) contains text.

It should be noted that any command of the form UID,UID ••• UID can specify from
one to N user-IDs. Note also the use of the term subset. As stated previously, this
implies the use of C,CR,CRE,CREA, etc. for the CREATE command.

4-1 81 DJ31-00

MAST MAST

Purpose

The MAST command invokes the MAST subsystem for the user whose ID is
MAS TE R • Th e MAS TE R use r i dent i t y C de fa u l t M·A S TE R) i s e st ab l i s he d i n t h e TS S
communication region. The MAST command and its subfunctions are privileged and as
such are unavailable to normal users.

Format

MAST <functions>

<function>

Description

::= DONE
!MESS
!MONI[TORJ
IMSOF
IMUPD[ATEJ
IPATC(HJ
I PRIO[RITYJ
IPSWD
Is PE c
!SMCL
I SNA p
ISSPA[TCHJ
ISTAHUSJ
!TALK
ITCAL[LJ
IUPDA[ATEJ
IWHOS[ONJ
!PROF[ILEJ
I AFT
!VERB
jPEEK

DONE - Used to exit the MASTER subsystem and control is returned to the build
mode.

If the master user does not wish to continue with the use of the MAST subsystem,
he gives the response DONE to the selection request. The MAST subsystem is then
dispensed with and control is returned to the build mode level.

MESS - The MESS function permits a message to be issued to all currently active
terminals and all those terminals that subsequently become active. Up to 68
characters, including line-feed and carriage-return characters, can be written in
one or two lines. The request symbol is?. Two lines of input or a carriage return
immediately after the ? indicates the end of the message. A call to MESS and a
carriage return after the first? serves to clear out a message that is no Longer
needed.

?TSS WILL DUMP FILES AT 2250 ON 10/17/76.
?

4-1'82 DJ31-00

MAST MAST

The message, issued to all active users, is prefixed by the time of day that
the MESS function was exercised.

MONITOR - The MOI ITOR function allows the master user to select a terminal and
receive all input/output to and from that other terminal concurrently until the
monitored user disconnects, goes into TAPE mode, or the master user presses the BREAK
key.

In response to LINE NUMBER ?, the user must give an octal number
designating the user Line id. If the specified User Status Table (UST) is active
(and not occupied by the master user himself), all input/output occurring at the
corresponding user's terminal is received at the master's terminal also.

The master user may determine the line id corresponding to a user-ID by
using the WHOSON function.

In attempting to monitor a terminal, the master user may receive one of the
following error messages, which indicate the condition preventing the monitoring
function. After each error message, the function question is asked.

MONITOR IN PROGRESS

TERMINAL NOT TTY

ILLEGAL CHAR

CANNOT MONITOR SELF

USER NOT ~ONNECTED

USER IN TAPE MODE

MSOF - The MSOF function sets .TMSON to a value greater than zero and, in effect,
prevents anyone from Logging on as master user.

MUPDATE - All users, or specific users, can have their total resources
initialized to a given dollar amount and/or the resources used to date
initialized to a given dollar amount (e.g~, O>. Any previous amounts are
ignored. An SMC List report is output with the old values.

Entry to this function is similar to that of SMCL; i.e., requests for
initial values and the user entry list. The following is an example <user
responses are underlined):

INITIALIZE TOTAL RESOURCES? n or carriage return

INITIALIZE RESOURCES USED TO DATE? ~ or carriage return

Where n = dollar amount (integers)

?user-ID1 carriage return for all users or List specific users (<25)
?user-ID2
?carriage return

4-183 DJ31-00

MAST

UPDATE SYSTEM MASTER CATALOG ENTRIES

RESOURCES= amount entered above

RESOURCES USED TO DATE= amount entered above

MAX# BLOCKS
USER ID PRIORITY PASSWORD BLOCKS USED RESRCS

RESRCS
USED

MAST

The use of MUP~ (MULTIPLE-UPDATE, NO-HEADER)
information.

suppresses the header

Error messages are the same as for SMCL.

PATCH - The PATCH function allows the user to make modifications and changes
in the TSS Executive coding and in associated data tables. The patches are in force
until TSS is reloaded. Following issuance of a line feed and question mark, the user
must reply with a location <1-6 digits>, followed by one blank and one or more data
fields (1-12 digits>, separated by commas. The general form, including both the
request and response, is:

?location data,data, ••• ,data

Because of the variable format, a line may contain a variable number of data
fields, but each line must first specify the location. A blank, other than the one
separating location and data, terminates the line. A response of carriage return
or **** indicates that the function is complete.

All Location and data values must be specified in octal. All locations are
expressed relative to zero, in accordance with the memory map produced by the General
Loader.

?70000 1
?325 1437,01400000,767774000001,1
?14372 1235007,755012,14402710000
?<carriage return)

If illegal characters are typed, the following error message occurs:

ILLEGAL FORMAT--RETYPE

PRIORITY - The PRIORITY function gives the master user control over the use of
the restricted options LODX, LOOS, TALK, and CARDIN. Using the PRIORITY function,
the master user may:

1. Grant permission to all or specific users to use the LODX, LOOS, TALK
and CARDIN options.

2. Set a maximum initial urgency for a user using CARDIN.

4-1 84 DJ31-0Q

MAST MAST

3. Withdraw permission given any user to use the LODX, LOOS, TALK and
CARDIN options.

4. List all or c;pecific users who have permission to use the restricted options
and list·th~ batch job urgency of users using CAROlN.

NOTE: The master user has LODX and LOOS permission implicitly.

Input is requested, and the master user can respond with one of the following
subfunctions:

ADD system options ••• /name options •••

DEL (or DELETE) system options ••• /name options •••

LIST name options

(carriage return) done with PRIO function.

The system options are LODX, LOOS, TALK, CARD (or CARDIN}, or CARD(XX), where
XX is a number (1-40) indicating the maximum urgency of the use.r's batch job in CARDIN.
The urgency designation must be enclosed in parentheses and immediately follow the
CARD option. More than one option/nam~ option set may be specified in one directive,
with each set separated from every other set by commas. For example:

?ADD option/name,option/name •••

A continuation line is accepted when a line ends with a comma or a slash, or
following the command ADD, DELETE, or LIST.

The name options are user-IDs, separated by slashes, or the word ALL*, which
indicates that the command applies to all users in the Sysi~m Master Catalog.

The ADD directive is used to grant permission to use LODX, LOOS, TALK and CARDIN
to all or specified users <Listed by name in the option field) and to set
urgency for CARDIN users. For example, to add LODX users ABC, LMN, and XYZ:

?ADD LODX/ABC/LMN/XYZ

To add these users for CARDIN with an urgency 1 of <10>:

?ADD CARDINC10)/ABC/LMN/XYZ

To add users for both subsystems:

?ADD CARDINC10),LODX/ABC/LMN/XYZ

4-1 85 DJ31-00

MAST MA'.ST

To add all users as CARDIN users with no sp~cial urgency:

?ADD CARDIN/ALL*

To use more than one subsystem user set in t~e same di~ectiv•:

?ADD LODX/ABC/XYZ,CARDIN/ABC/XYZ/LMN,LOOS/ABC/LM~

The DEL (or DELETE) directive is used to withdraw permission to use LODX., LOOS,
TALK and/or CARDIN from specified users (listed by name in ttie option field). It
is formatted the same as the ADD except that the urgency is not allowed. For example,
to delete users ABC and XYZ from LODX and CARDIN, user LMN .frcm CARDIN o:nly and user
XYZ from TALK:

?DEL LODX/ABC/XYZ,CARDI/ABC/XYZ/LMN,TALK/XYZ

The LIST di.rective is used t.o list all users who have permission to use .CARDIN,
L 0 D X , L 0 D S , TA L K a n d t o l i s t t h e b a t c h j ob u r .g e1n c y o f C A R D l N u s e ,r s • F o r
example:

?LIST ALL*

or

?LIST ABC/LMN/QRS

where only those users that are spe~ified are listed.

A user who has be·en named in an ADD directive can be added again. This
feature can be used to change the urgency level of a CARDIN user. Adding a user to
one option does not delete that user from another option.

When the command has been executed, the system sends a SUCCESJF~Lr message to
the master user. If an error occurs in processing ~ser-IDs, the system sends the
master user an appropriat·e error message. There are f.our groups of error messages,
as follows:

Group 1 - Syntactical error detected in command striAg; the master user is asked
to reissue ~is command!

IL~EGAL COMMAND - START OVER
I~PUT REQUIRED - START OVER
ILLEGAL URGENCY - START OVER
ILLEGAL SYSTEM - START OVER
ILLEGAL USE OF ALL* - ~TART OVER
ILLEGAL·DELIMITER - START OVER

Group 2 - Name table overflow error:

TOO MANY NAMES, WILL PROCESS 25

4-186 DJ31-00

MAST MAST

PSWD - The PSWD function allows the user to determine the octal encrypted form
of a password for the purpose of preparing patch cards fbr the startup deck. In
response to FUNCTION?, the user enters PSWD, which results in an eight-character
strikeover mask being issued at the terminal. One to eight characters must be entered
at this time. The pa· sword is encrypted and displayed at the terminal as two octal
words, 12 digits each. For example:

USER ID - MASTER
PASSWORD
UUUOIM
PASSWORD
UUIROIM
*MAST
FUNCTION? PSWD
~llllRIM (user enters desired password on strikeover mask)
012345670123 456701234567

The password string may include any combination of uppercase or Lowercase
alphabetics, numerics, special characters, and nonprinting characters such as BELL,
TAB, etc. (but not including SPACE). If fewer than eight characters are entered,
trai Ling blanks are supplied to compensate for the difference. Note that nonprinting
characters offer an obvious advantage for security purposes.

SPEC - The SPEC function permits a message to be issued to a specific terminal.
Up to 68 characters, including line feed and carriage return, can be entered in one
or two Lines~ The first prompt will be a?. The desired terminal identification
may be entered in one of three ways.

1. 1- to 12-character user-ID.

2. =nnnn Station id in four octal characters.

3. =xx Station id in two BCD characters.

Following the station identification, a ? is issued for the message text. If
the user-ID form is used, the message is sent to all terminals that are signed on
with that user-ID and all subsequent terminals that sign on with that user-ID. A
response of the carriage return to the first ? will cancel all specific messages.
Entering a new specific message will cancel any previous specific messag~. The
message issued to a specific user is prefixed by the time of day that the SPEC function
was exercised.

SMCL - The SMCL (System-Master-Catalog List) function allows the master user
to list the contents of the System Master Catalog at his terminal. A request (?)
for input is issued. The master user may respond with a carriage return, in which
case the entire System Master Catalog (SMC) is Listed. The master user also has the
choice of specifying which entries in the SMC are to be listed by supplying a list
of IDs. Up to 25 names (IDs) may be entered. A request (?) for input is issued
repeatedly until a carriage return response is made, after which the designated SMC
entries are Listed in the order specified.

More than one ID may be placed on a line, each separated from one another by
a comma or a slash.

4-187 DJ31-00

MAST

Each SMC entry occupies one line in the listing; the format of the line is as
follows:

USER ID PRIORITY PASSWORD MAX. #
BLOCKS

The resource figures are in round dollars.

BLOCKS
Y.1ll

RES RCS RESRCS
us~o

The use of SMC~ (SYSTEM-MASTER-CATALOG LIST, NO-HEADER) suppresses the header
information.

Error messages that may be issued are as follows:

TOO MANY CHARACTERS IN NAME. START OVER.

TOO MANY NAMES, WILL LIST 25.

CANNOT IDENTIFY

SNAP - The SNAP function allows the master user to select and display areas of
memory at a terminal.· At the request?, the master user supplies an address for a
'.me-word snap, or fc)r a multiple-word snap, an initial and final address, separ-ated
by a dash, or an initial address and the number of words to be snapped separated by
J comma. Any locations within the memory area assigned to the TSS may be snapped.
A carriage return or**** indicates that the function is complete. Locations are
expressed relative to the TSS LAL, in accordance with the memory map produced by the
General Loader. When requesting a snapshot, an addend may be specified with the
initial address. A response of 1430+7,3 would result in words 1437, 1440, and 1441
being snapped. A* may be used to indicate the last location snapped. A sequence
21700,5 followed by a *+1,3 would result in locations 21700 through 21705 being
snapped and then locations 21706, 21707, and 21710 being snapped.

All addresses and
double-spaced, with a
octal.

?2100
<snapshot)
?1437,14
(snapshot)
?26037-26045
(snapshot)
?(carriage return)

number of words are assumed to be octal.
location followed by four words of data on

The following error message may occur:

ILLEGAL FORMAT -- RETYPE

4-188

The output is
each line in

l>J31-·00

MAST MAST

SSPATCH - The SSPATCH function, utilized for subsystem patching, enables the
master user to modify subsystems. The name of the subsystem to be patched must
be the first response. The name must be four characters Long; blanks are
required to fill out ~horter names (e.g., NEWl6). Then Locations and data, in the
s a m e f o r m a t a. s f o r PA · C H , a r e g i v e n • A L L L o c a t i o n s a n d a d d r e s s e s m u s t b e i n o c t a L ;
addresses are expres~~d relative to zero, in accordance with the memory map of the
subsystem produced by the General Loader.

STATUS - The STATUS function provides the master user with a detailed status
report of TSS operation. This report provides the accumulated statistics on TSS
operation from startup to the time of tne status request.

The first section of the report gives an accounting of number of available lines,
total logon time, a percentage of available line time used (busy time), number of
users, number of disconnects, number of subsystem starts, system interactions, etc.
The following is a sample of this part of the report:

TSS STATUS

01/12/77 3. 810 TO 01/13/77 10.924

50 LINES 10.616 HRS LOGON TIME 19% BUSY

79 USERS
17 MAX USERS
14 CUR USERS

1769 ALARMSCWAIT I/0)
650 SWAPOUTS
434 KEY I/0 SWAPOUTS

60 K CORE

%INTERACTIONS/
ELAPSED TIME(SEC)

PERCENT
87

8
2

INTERVAL
2
5
9

0 REJECTS
52 DISCONNECTS
65 TERMINATES

65 BREAKS
796 SS STARTS
746 SS KILLS

0 ALARMS(NO USERS)
4226 K SWAP OUT

24 SNUMB(CARDIN JOBS)

%INTERACTIONS/
PROGRAM SIZE

PERCENT
57

4
23

KCSIZE)
2
5
8

%INTERACTIONS/
FILE I-0

PERCENT
94

2
1

#I-0
1 a
25
50

The derail usage section of the status report lists all derails with a count
of the number of times each derail is used. This is formatted as in the following
sample.

DRL COUNT
1 173846
2 69194
3 17993

DRL
1 8
19
20

DRL USAGE

COUNT
45

1 763
6124

4-189

DRL
35
36
37

COUNT
a
a

5573

DRL
52
53
54

COUNT
8

1 a
391 6

DJ31-00

':"1AS T

In the subsystem usage section of the report, the usage of each subsystem is
described in terms of processor time {in seconds), file I/O time, key 110 .covnt (number
of characters/8) issued to the users' terminals during the exec4Jtions .of ec,ich
subsystem, number of times each subsystem was called at build mode Level, cemmand
level, or automatically Cas with BSED), and the number of times each subsysttm was
loaded for ex~cution. This data is formatted as follows:

SUBSYSTEM USAGE

NAME PROC TIME II FILE IIO II KEY IIO JI CALLS # EXEC
BASI .000 0 0 20 0
ACCE • 740 ·o 4032 7 7
CARD .000 0 0 48 0
EDIT .000 0 0 11 0
EDTX 50.924 2283 5648 18 18
BYE .ooo 0 0 11 0

The subsystem usage information is totalled <.it the bottom of the svbsystem usage
table. The final entry in the report is the total TSS processor time. (The total
processor time for the subsystems is less than the total subsystem pro~essor time,
because file building does not r.equire a subsystem and, therefore, is not reflected
in the total subsystem processor time figure.)

TALK - The TALK function permits the master user to converse with the operator
at the console. The master user must indicate if a response is expected. A maximum
of three lines is accepted as a message or a response.

RESPONSE ? yes, no, or carriage return (done)

MESSAGE ? <followed by tine feed and carriage return)

(message)

? (message or carriage return)

? (message or carriage return)

Error messages that may occur are as follows:

ILLEGAL fORMAT -- RETYPE
COFFEE BREAK -- TRY AGAIN <console operator has failed to respond)

At the completion of a response and message, if requested the cycle will be
repeated starting with the RESPONSE question.

TCALL - The TC.ALL function permits the master user to disconnect any terminal.
The terminal to be disconnected can be specified by the user-ID or by its station
code. All terminals that have the designated user-ID or station code will be
disconnected. Deferred users can be terminated either via their user-ID or by a
station code of 2020, which will terminate all such users. The response to tbe
prompting? may be a one-to-twelve character user-ID, an octal station code (;:nnnn),
an alphanumeric station code C=xx), or *ALL to disconnect all terminals.

4-190 DJ31-00

MAST MAST

Error message that may occur is as follows:

TCALL BUSY TRY LATER

UPDATE - The UPDATE function allows for updating of the System Master Catalog
(SMC) from the master user's terminal. The subsystem prints a question mark(?),
which is the request for input. The master user can then request one of the following
subfunctions:

?ADD id,res,pass,lnks
?DEL id

? INS id,res

?REP id,pass

?LKS id,Lnks

? END or (carriage return)

Add a user to SMC
Delete a user from SMC and
release his file space
Increment a user's resources
in SMC
Replace a user's password
in SMC
Change the number of Links
assigned to user
Done with UPDATE function

where: id is the 1-12 character user identification.
res is a decimal number representing even-dollar resources.
pass is the 1-12 character password.
Lnks is the number of Links to be allocated to the user, (~21,845 Links)
or
UNLIMITED to allow an unlimited number of links to be allocated.

One blank must follow the subfunction name, but no embedded blanks may occur
in the data.

Error messages that may occur are as follows:

ILLEGAL FORMAT -- RETYPE
NON-UNIQUE ID
CANT IDENTIFY -
STATUS ERROR n
NEW LINK SIZE
#LINKS > 21,845

RETYPE
(where n is the status character)

LINKS USED - RETYPE
-- RETYPE

In the Delete (DEL) subfunction, special error handling may be required. The
system will ask:

TOO MANY LEVELS/DELETE NOT COMPLETE
ERROR IN FILE RELEASE
DELETE STILL WANTED?

If the response is YES, the SMC is released before the system asks for more input.
If an error occurred in releasing files under a User Master Catalog (UMC), it should
not affect release of the SMC entry if this release is still desired. However, the
file space of a user deleted by a YES response is not returned to the system until
a total system initialization is performed.

4-1 91 DJ31-00

MAST MAST

WHOSON - The WHOSON function generates Con the master user's terminal) a list
of the current time sharing users and their respective line ids by which they are
connected. The line id is used to assist in the MONITOR function.

AFT - The AFT command allows the MASTER user visibility into another user's
available file table entries to possibly track file conflict problems. The system
will prompt the MASTER user with a question mark(?) to obtain the four digit line
identifier of the user whose AFT is to be displayed.

EXAMPLE:

*MAST AFT (CR)
?2310CCR)
SY** *SRC TEMP
?2240(CR)
SY** *CFP
(CR) DONE

The function is coded in such a manner that a null response will terminate the
AFT scanning process; otherwise, another user's line identifier may be entered. The
routine uses the DRL T.EXEC facility to locate the desired user in the UST chain by
comparing the user line identifiers in .LBUF with the line identifier entered by the
MASTER user. Once the correct user has been located, the subsystem enters master
mode to use the pointer in .LFILE to obtain the file names from the user's chained
PATs. After the file names have been gathered, the DRL T.EXEC routine is terminated
to allow main level processing to display the user'~ AFT contents.

PEEK - The PEEK command al lows the MASTER user to display the contents of memory
Locations beyond the bounds of TSS. In concept, the PEEK command is similar to the
SNAP command except that the SNAP command displays memory Locations within .TSS. The
use of the PEEK command is shown below:

SYNTAX:
PEEK ADDRESS,NUMBERWORDS,PROGRAMNUMBER

4-192 DJ31-00

MAST MAST

In the PEEK command syntax, the fields will be octal numbers if present. It
is possible to explicitly null the number o"f words to imply a PEEK of one word. If
a program number is not given, the address of the PEEK will be assumed as an absolute
address. If a program number is given, the PEEK address will be considered as an
offset to the specifi1 program's base address. The maximum number of words that may
be displayed at any ont time is 1024. The implementation of the PEEK command is based
on a DRL T.CMOV call and all rules and restrictions associated with the DRL T.CMOV
are applicable to the PEEK command. Various samples of the PEEK command are shown
below:

EXAMPLE:

*MAST PEEK(CR)
?700CCR)
?700,S(CR)
?100,3,S(CR)
?700,,S(CR)

absolute location 700(8), 1 word
absolute location 700(8), 5 words
100(8) relative to program 5, 3 words
700(8) relative to program 5, 1 word

PROF - The PROF <PROFILE) command gives the MASTER user the capability to receive
a summarization of any user's activities. The display produced by the PROF command
contains information about the user and the status of the session. Included in the
report are the following items:

USERID for the user
Station identifier
UST address
Subsystem size
Last derail location
Last derail number (type)
Contents of UST flag words.LFLAG/.LFLG2.LFLG3
Subsystem BAR
Contents of UST switch words.LSWTH/.LSWT2
Stack level indication
Stack entry name

The PROF command will prompt the MASTER user for a station identifier to be used
as the unique user-ID. The four digit station identifier is used to scan the USTs
to locate the profiled user.

EXAMPLE:
*MAST PROF(CR)
?2210CCR) Station 88 I 2210

4-193 DJ31-00

i~lA ST MAST

The routine uses the DRL T.EXEC interface to scan the USTs to locate a particular
Lser for which the display is desired. Once the user has been found, the
profile information is gathered from the UST for later display and formatting by a
main level routine.

VERB - The VERB capability within the IWIAST subsystem allows the MASTER user to
place console verb input queue entries in the core allocator's input queue for
processing. The interface to provide console verb capabilities is a one-way
·interface; no provision has been made to capture the console output generated by the
verbs entered by the MASTER user. The VERB processing will prompt the MASTER user
tor a console verb by issuing a question mark.

EXAMPLE:
*MAST VERB(CR)
?LSTALCCR).

Any valid console verb and its associated option may be entered in response
to the prompt. The verb and option will be entered in the same manner as would have
been given at the operator's console. As an example, the MASTER user might choose
to type "LIST LIMITS" in response to the prompt. The VERB routine uses the ORL T.EXEC
interface to perform the user/console functions. Once a verb and optional parameters
have been entered and syntactically checked, a GECALL is issued to load the console
verb handler <.MPOP7) to peruse the verb list for content verification. If the MASTER
user has entered a valid verb, then a MME .EMM is executed to issue a .CALL to .MPOPM,
EP3 (common queuer mechanism> to place the queue entry for the console verb into
MPOPM's input queue. Of particular note in the VERB processing is the transition
from master mode coding within a floatable subsystem to slave relocatable coding.
The DRL T.EXEC routines must be floatable and the return using the TSS instruction
wi l. l not function correctly since the float able TSS implies the use of a "master mode"
a. Therefore, the TSS back to the subsystem had to be coded using an address register
·;n addition to the IC modification to ensure the return was to the correct location.
·:-ne address register must be loaded with the complement of the TSS LAL to
execute property. An sample of the coding required to accomplish the return is as
fol lows:

EXAMPLE:

LBL

(Within
MME
LDQ
STQ
SW DX
TSS
NULL

the floatable routine of the DRL T.EXEC)
.EMM
P1,$
P2,$
0,5,AR1
LBL,$,AR1

Although an assembly error results from the above construct, the execution of
tne instruction functions correctly.

4-194 D.J 31 -00

MAST MAST

Discussion

When the master user dials the TSS, he gives the MASTER user-ID (default MASTER)
and then gives his initial master password, which has been assigned by the
computer-installation authority. At this point, the logon routine recognizes the
master user as a special user and requests a second password. The response is a second
master password, also set by the installation. The master user is given the
customary two chances to type his user-ID and first password correctly; the second
password must be typed correctly the first time or there is an immediate
disconnect.

The master user then selects the subsystem MAST. The message FUNCTION? is
issued, and the user responds with his selection. Any or all of the MAST functions
may require a password. A password flag is provided in MAST that allows the site
to mark those functions that it wants to require a password. If a function is
designated to require a password, requesting that function will produce an
eight-character strikeover mask that is an implicit request to enter the password.
An encrypted form of this password is assembled into the MAST subsystem and is set
by the installation.

The first function to be performed can be included on the MAST command line;
e.g.,

*MAST STAT

4-195 DJ31-00

":\fDQ
NEW

Purpose

The MDQ command invokes the Management Data Query System.

Format

MDQ

Discussion

MO·Q
NE'W

Refer to the Management DataQuery System CMOS) ~User's ~ for further
information.

Purpose

The NEW command causes an empty current file to be created for use.

Format

NEW [P<filesdecr>IP#<filedescr>J

Discussion

At LOGON the system sets up a temporary current file, named *SRC, on which new
files are built or on which selected old files are copied. The user can make
the current file permanent by issuing the SAVE/RESA commands.

When the user selects the NEWP format to treate a current file, the named
permanent file is created and opened with an alternate name of *SRC. The permanent
file remains the current file until another OLD or NEW command is entered.

The NEWP# format functions similarly to the NEWP form. The named file remains
the current file until either an OLD, OLDP, OLDP#, NEWP or NEWP# command is
1ssued.

Examples

NEW

NEW FILENAME

NEWP FILES

NEWP# FILESAVE

4-196 t>J31-00

NEW USER NEW USER

Purpose

The NEWUSER command initiates a new LOGON and reports the user's system usage
in the following terrs:

o dollars used during the current "LOGON" session

o dollars usec to date during this billing period and the percent of the
monthly allotment that amount represents

o the storage LLINKS in use, the total LLINKS allocated to the user-ID and
the percent of those LLINKS that are in use.

Format

NEWUCSERJ[<charge number>]

Discussion

Before the usage report is printed, the Available File Table (AFT) is
scanned for user's temporary files. A message is issued as to the number of temporary
files, then the user is queried as to their disposition. Each temporary file name
is printed followed by a question mark. The user may respond as follows:

1) carriage return - the file is not to be saved.

2) NONE - this file and all of the succeeding temporary files are not to be
saved •

3) SAVE [<filedesc>J - the temporary file is to be saved in the permanent
file specified by <filedesc>.· If the permanent file does not
already exist, it is created with general READ permission.

Examples

1) NEWU

2) NEWU CHG03 (retains the current user-ID for the session and begins a new
accumulation of charges under account number CHG03).

4-197 DJ31-00

\-i FORM
li;OPARITY/PARITY

Purpose

NF ORM
NOPARITY/PARITY

The NFORM command allows the user to inhibit the transmission (from the Time
Sharing Executive) of the form-feed character after the prompt for a page
request.

format

NF ORM

Discussion

NFORM operation (as opposed to FORM) on keyboard/display devices causes
each succeeding page to overwrite the preceding page. FORM operation clears the
screen before displaying the next page. The NFORM command is not valid when the
terminal is under the effect of the PAGE command.

Purpose

The NOPARITY/PARITY command turns off or turns back on the adding of parity on
user's output by the system.

Format

{NOPA[RITYJIPARI(TYJ}

Discussion

The system normally adds even parity to the user's output record before sending
it to the terminal. The typical user must have parity added to the output record,
as most terminals check for it.

However, there are special application.s which require data without parity
ddded. If the user wants a paper tape, cassette tape, or other storage media
3enerated without parity, the NOPARITY command can be used to turn off the adding
of parity. The command PARITY should be given before continuing with regular output
to the terminal.

Lxamples

NOPARITY (turn off the adding of parity)

2) PARITY (turn back on the adding of parity)

4-1 98 DJ31-00

OLD OLD

Purpose

The OLD command copies the specified ASCII time sharing file, files or file
segments onto the cur rent file.

Format

OLD [<file-ref>({ ;l:I} <file-ref>J ••• J

<fi Le-ref>
<Line-range>

<begin-line>
<end-Line>
<Line>

Discussion

::= { *l<filedesc>}[(<line-range>)J
::= <begin~Line>-<end-line>
I <begin-line>-
1 -<end-line>
•• - <line>

<Line>
::=a one- to eight digit decimal number

If a semicolon is used to separate the file names as in Examples 3, 5 and 6,
the contents of the files specified are joined in the order Listed and copied onto
the current file. The files need not have Lines with steadily increasing Line
numbers. No automatic sorting or resequencing of the Lines takes place.

If a colon is used to separate the file names as in Example 8, and the files
have Lines with steadily increasing line numbers, the contents of the files specified
are weaved or merged according to Line number and copied onto the current file. If
Lines with the same Line number appear in more than one file, they are all kept and
merged according to the order of the file names Listed.

If a colon is used to separate the file names and the files do not have Lines
with steadily increasing Line numbers, an error occurs.

If a pound sign is used to separate the file names, the action taken is the same
as with a colon except that when Lines with the same line number appear in more than
one file, only the Last such Line is retained.

If a combination of semicolons, colons and pound signs is used to separate the file
names as in Example 9, the concatenating and merging is performed in the order
the files are Listed Cleft to right). If however, after concatenation, the resulting
file does not have Lines with steadily increasing line numbers, and merging is the
next function, an error occurs. ·

If the file list is too long for one Line, the OLD subsystem wi LL request more
input when a semi-colon, colon, or pound sign is the Last nonblank character before
the carriage return.

4-199 DJ31-00

OLD OLD

The following formats describe options associated with the OLD command.

1. OLD filedescr (permissions and altname applicable>

File filedescr becomes the current file.

2. OLD filedescrCi,j) (permissions and altname applicable>

Lines i through l of file filedescr become the current file.
Filedescr must be a Line-numbered file.

3. OLD f-1Cj_,j); ••• ;f-n(j_,j) (permissions and altname applicable>

Then files or file segments are adjoined in the order listed and become
the current file, where f is a filedescr. Adjoining of BASIC files should
be done with caution (sequence numbers are also statement numbers). Tltte
asterisk designating the contents of the current file <or segment thereof)
may appear as a filedescr anywhere in the file list.

Note that these files or segments are concatenated on the current file and
resequencing may be required for satisfactory operation in line-number
dependent systems. Sorting or resequencing is not automatic.

4. OLD f-1Cj_,l>: ••• :f-nC..:!_,l> (permissions and altnames applicable)

Then files or file segments are merged by line numbers, and become the
currint file, where f is a filedescr (colon-separated). If duplicately
numbered statementsappear in two or more files, each such statement
appears in the order specified by the file list. If it is desired to retain
only the last duplicately numbered statement, the colons may be
replaced by pound signs {#). The asterisk designating the contents of
the current file <or segment thereof) may appear as a filedescr anywheje
in the file list.

A combination of forms {3) and (4).
in the order (from left to right)

Concatenation or merging is performed
indicated by the file list.

If the'file list is too long for one Line, the OLD subsystem will request
more input when a delimiter is the last nonblank character before the
carriage return.

6. OLDP filedescr (permissions applicable)

The specified permanent file is accessed with an alternate name of *SRC
and becomes the current file. This file is the user's current file until
another form of the OLD or NEW command is given. The contents of the file
will always be checked or verified for Time Sharing System format.

4-200 DJ31-00

OLD

7.

OLD

OLDP# filedescr (permissions applicable)

Execution is the same as for the OLDP command, except that this fi Le remains
the user's current file until Logoff, or until another OLDP, OLDP#, NEWP,
or NEWP# cc nmand is given. The normal OLD or NEW commands use this fi Le
(i.e., the File specified by OLDP# or NEWP#) as the current file. OLDP#
can be cancelled by REMOVE *SRC.

The OLDN subsystem is called in when the command OLD, NEW or LIB (normal forms)
are given by the user. If a NEWP or OLDP command was issued and then one of the normal
forms was typed in, OLDN will deaccess the permanent *SRC file and assign a new
temporary *SRC file to the user. The permanent file remains in the user's catalog
until he releases it.

If a NEWP# or OLDP# command was issued and then one of the normal forms was typed
in, OLON wi LL retain the permanent file as *SRC. If a NEWP or OLDP was typed in instead
of the normal form, the permanent *SRC will be deaccessed, and a new permanent file
with the alternate name *SRC will be created and/or accessed.

If a NEWP# or OLOP# command was issued and then followed by another NEWP# or
OLDP# command, the OLDN subsystem will deaccess the present *SRC file and then create
and/or access the newly specified *SRC file.

Merging and concatenation are not allowed with OLDP, NEWP, OLDP#, and
NEW P#.

Examples

OLD

2) OLD DATA74

(prompts for the file name)

(the contents of file DATA74 replace the prior contents of
the current file)

3) OLD MAIN;SUB1;SUB2

4) OLD *(10-200)

(the contents of fi Les MAIN, SUB1 and SUB2 are concatenated
in the order listed and replace the prior contents of the
current file)

(lines 10 through 200 of the current file replace the prior
contents of the current file, i.e., any lines outside the
range 10 through 200 are deleted)

5) OLD WEIGHTS(100-500);VOLUME(100-500)
<Lines 100 through 500 of file VOLUME are appended to lines
100 through 500 of file WEIGHTS and they replace the prior
contents of the current file)

6) OLD /PROJECT1/S.SUB1;/PROJECT1/S.SUB2
(concatenates in the order Listed the files S.SUB1 and
S.SUB2 that are in subcatalog PROJECT1, and replaces
the prior contents of the current file)

4-201 DJ31-00

vLD

7)

8)

OLD NAILS/BRADS,R
Ct he contents of the ti te SRA OS in the user ... lf) NAlL$ replace
the prior contents of the cµrrent file)

OLD DATA73:DATA74
(the contents of file DATA73 are merged with the ~qn~ent~
of file DATA74 and they replace the prior content$ of ~he
current file)

9) OLD PROG1:FIXES;SUB1;SUB2#ALTERS
(merges the contents .of the fi Les PRQG1 anQ fl.XES,
concatenates with the res.ult the contents of files sue1 and
SUB2, and merges the contents of the fil·e ALTER.S with the
result)

4-202 D ~ 31 -,00

PAGE PAGE

Purpose

The PAGE commanc allows a device (e.g. 7800 Series VIP) to display output in
a scrolled fashion. Although primarily intended for high speed devices, the PAGE
command is applicable to all devices.

Format

PAGE {-OFFl<n>[-LF<OOO> ••• J[-RL<OOO> ••• J[-FF<OOO> ••• J[-PE<OOO> ••• J}

-LF : : =
-RL : : =
-FF : : =
-PE : : =
<n> : : =

-OFF : : =
<000> : : =

Discussion

set line feed type character, add one to Line count
set reverse line feed character, subtract one from line count
set form feed character, top page without page erase
Page Erase
set the number of lines per page >O
turn off existing page mode
specifies a seven-bit ASCII character C000-177)

The PAGE command is implicitly invoked when the <n> parameter setting is used.
When no values are specified for the optional fields, the following default
values apply: -LF=012, -FF=014, and -PE=024. If any of the optional values are used,
no default values apply. Up to eight characters in total may be indicated for
any combination of the four types. As an example, the following PAGE command sets
the number of lines per page to 24 and causes the Line-feed (012) and carriage return
(015) characters to increment the line counter.

Example

PAGE 24 -LF 012 015 -FF 014

4-203 DJ31-00

PASSWORD

Purpose

The PA s SW OR D comm and a U ow s any prop e r l y v a l i d at e d use r to ch an g e th@
current System Master Catalog CSMC) password.

Format

PASS[WOR~J subsystem prompts for old and new passwords·

Discussion

The process involved in changing an SMC password requires the user to ~o through
three steps: the user is asked

1> for his current SMC password for validation ~urposes.

2) for the new SMC password.

3) to reenter the new password for validity checking.

Example

*PASS
ENTER OLD PASSWORD
UlllllllUI
ENTER NEW PASSWORD
llllllUUU
REENTER NEW PASSWORD
111111111111

4-.204 bU1-00

PERM PERM

Purpose

The PERM command copies a temporary file to a permanent file and removes the
temporary filename f ·om the Available File Table (AFT>.

Format

PERM[<temp-filename>[;<perm-file>JJ

<temp-filename>
<perm-file>

Discussion

::=a 1- to 8-character name of a temporary file
: : = <filedesc>

If the permanent fi Le does not already exist, it is created with general READ
permission.

Examples

1) PERM
(prompts for the file names)

2) PERM TEMP1;PERM1

3) PERM TEMP2;TEMP2
Cef fectively makes TEMP2 permanent)

4) PERM DAILY;JUN75$PW
(creates a permanent file JUN75 with a password PW)

5) PERM TEMP3;/SUBCAT/PERM3

4-205 DJ31-00

PRINT PRINT

Purpose

The PRINT command reformats and then prints on the terminal the specified
ASCII time sharing file, files or file segments.

Format

PRIN(TJ[<file-list>l<line-list>J

<file-list>
<file-ref>
<line-list>
<line-ref>
<line-range>

<file-ref>[;<file-ref>J •••
<*l<filedesc>}[(<line-list>)J

= <line-ref>[,<line-ref>J •••
<line>l<line-range>

= <begin-line>-<end-line>
<begin-line>
-<end-line>

<line> :.=a 1- to a-digit decimal number

Discussion

A question/answer sequence to acquire the reformatting options is initiated by
this command unless the first file name contains reformatting information in the
first line.

Examples

1) PRINT

. 2) PRINT *

3) PRINT 10-100

(reformats and prints the current file)

Csame as PRINT>

(reformats and prints lines 10 through 100 of the current
f i le)

4) PRIN 100,200,300-350

5) PRINT PROG5

<reformats· and prints lines 100, 200 and 300 through 350
of the current file)

(reformats and prints file PROGS>

6) PRIN DATA74C1000-1999)
(reformats and prints lines 1000 through 1999 of file
DATA74)

7) PRIN DATA7iC10,100,200)
(reformats and prints lines 10, 20 and 200 of file
DATA75)

4-206 [)J31-00

PRINT

8>

9)

10>

PRINT MONDAY;TUESDAY

PRINT DAILY;*;/REPORT/MONTHLY

PRINT USERtD/FIL~,R

4-207

PRINT

DJ31-00

PURGE :p1.fR GE

Purpose

The PURGE command releases the specified file(s) from the fHe sy:stefll and
overwrites the released .file space. (Refer also to the RE'L·E~SE and E:fUSE
commands.>

Format

PURG[EJ [<filedescr->;<filedescr-2>; ••• ;<filedescr-n>J

.Examples

PURG FILEA (remove FILEA fro~ the file system a~d overwrite it)

4-208 OJ31-00

PTON
PTOF

Purpose

PTON
PTOF

The PTON command enables subsystem output to be routed to the print page adapter
attached to a VIP770 1 terminal. The PTOF command disables the printer mode of
operation.

Format

PTONIPTOF

Discussion

PTON and PTOF are commands for VIP type terminals so that output can be directed
to an associated printer.

Examples

*OLD TEST
*PTON
*LIST (output goes to printer - not displayed)
*PTOF

*
*NEW
*PTON
*CATA (catalog output goes to printer - not displayed)
*PTOF

*

4-209 DJ31-00

READ

Purpose

The READ command causes a specified tape cassette to be read.

Format

READ TAPE(n]

(nJ •• - 1 or 2, the default value is 1.

~iscussion

This command can only be used on VIP 7700 Series VIP (device 13, 14 or 15
octal).

4-210 DJ31-00

RECOVERY RECOVERY

Purpose

The permanent file designated in the command input is created and/or accessed
as the input collect< r file for the user.

Format

RECO[VERYJ <filedescr>

Discussion

The RECOVERY subsystem dumps data currently on the temporary input collector
file to the current file and creates and/or accesses a permanent file specified in
the command.

Examples

2)

3)

4)

*RECO FIL1$ABC
RECOVERY NOW IN EFFECT
*

*BASIC OLDP FIL2
*RECO FIL3
RECOVERY NOW IN EFFECT

*
*ED IT NEWP .SRC
*#REC FIL4
RECOVERY NOW IN EFFECT
*

*BASIC NEWP SOURCE
*RECO FIL6$CAB
RECOVERY NOW IN EFFECT
*10 PRINT "TH IS IS LINE #10"
*20 PRINT "THIS IS LINE #20"
*30 PRINT "TH IS IS LINE 1130"
*40 PRINT "THIS IS LINE #40"
*50 PRINT "TH IS IS LINE #50"
*60 PRINT "THIS IS LINE #60"
*70 PRINT "THIS IS LINE #70.

Assume that at
back in, ~he

this point
user wi l l

the
do

computer system disconnects. After logging
the following to recover his Last input

Lines.

*BASIC OLDP SOURCE
*ROLL FIL6$CAB
FIRST AND LAST LINES OR SAVED DATA ARE:
10 PRINT "THIS IS LINE #10"
70 PRINT "THIS IS LINE #70"
RECOVERY NOW IN EFFECT
*

4-211 DJ31-00

RECOVERY RECOVERY

When the system is restarted after the distonnect, the user calls in
the RECOVERY subsystem by issuing the ROLLBACK command. The RECOVERY
subsystem will access FIL6 and sort and merge the data onto the current
w or k i n 11 f i l e • When the R.E C 0 VER Y NOW IN E F FE C T me s sag e i s i s sued , t he use r
is ready to type into an empty collector file.

4~212 C>J31~00

RELEASE RELEASE

Purpose

The RELEASE command releases the specified file(s) from the file system.

Format

RELE(ASEJ(<filedesc>[;<filedesc>J ••• J

Discussion

The file content is not overwritten or destroyed before the file ·space is
released to the file system for reallocation to other files. The user has no means
for requesting that same file space again, which means that, effectively, the content
is Lost. But, if the user is really concerned about a possible breach of
security, the content should be destroyed before releasing the file space.

Refer to the ERASE command to overwrite the file content.

Examples

1) RELEASE (prompts for the file name)

2) RELEASE DATA 74 (releases the file DATA74 from the file system)

3) RELE TYPE;~AKE;MODEL

(releases the files TYPE, MAKE and MODEL from the file
system)

4) RELE /UTILITY JCL
<releases the file JCL in the subcatalog UTILITY from the
file system)

4-213 DJ31-00

REMOVE REMOVE

Purpose

The REMOVE command r•moves file n~mes from the Available File Table (AFT).

Forma.t

REMO(VE)(<aft-ref>)

<aft-ref> ::= PERMFllES
TEMPFlLES
CLEA RF ILES
<filename>[;<filename>J •••

<filename> ::=a 1- to 8-character name

Discussion

Refer to the description of the Available Fi le Table in Section II of this manual
for more details.

Examples

1) REMO
(prompts for the file names to be removed)

2) REMOVE TEMPFILES

3) REMO PERMFILES

4) REMO CLEARFILES

5) REMOVE SOURCE

<removes all temporary file names, except *SRC and SY**,
from the AFT>

(removes all permanent file names from the AFT)

<removes both temporary and permanent file names,
except *SRC and SY**· from the AFT)

(removes the file name SOURCE from the AFT)

6) REMO ASMBLJCL;RUNJCL

7) REMO *SRt

(removes the file names ASMBLJCL and RUNJCL from the
AFT)

<removes the current file, *SRC, from the AfT)

4-214 DJ 31-{)0

RESA VE RE SAVE

Purpose

The RES AVE command saves the contents of the current file on an existing
permanent or temporary file(s), replacing their prior contents.

Format

RESA[VEJ(<filedesc>J;<filedesc>J ••• J

Discussion

If the file name is qualified, (i.e., it is preceded by a slash or a subcatalog
reference) and the file name is in the AFT, it is assumed that the user may not want
to use the file name that is in the AFT.

Examples

1) RESAVE

2) RESA WKFILE

(prompts for ihe file name)

(copies the contents of the current file onto. the existing
file WKFILE replacing the prior contents of WKFILE)

3) RESA PROG1;EXTRA
(copies the contents of the current file onto the existing
files PROG1 and EXTRA replacing the prior contents of those
files)

4) RESA /LACQUER/GLOSS
(copies the contents of the current file onto the
existing file GLOSS in the subcatalog LACQUER replacing the
prior contents of that file>

4-215 DJ31-00

RESE~UENCE RES E QU:E NC E

Purpose

The RESEQUENCE command resequences the line numbers of the current file (•SRO
when under control of BASIC.

Format

RESE[QUENCEllRESEXIRESE#(n,m,x-yJ

n ::= value of beginning line number
m ::= value to increment by

~-y ::= beginning and endin~ line numbers of a partial resequencing

Discussion

When resequencing, or perform fog a partial resequence, His p1ossibl.e to produce
files with line numbers out of order. This may be caused b~ incorre£t
para•eters on partial resequence or when new line numbers exceed eight digits (in
non BASIC files>. When line numbers are too large, a warning is given. Jn either
case, recovery may be made by resequencing the tota1 l file using; a smaller beg'"innd.ng
line number or a smaller increment.

Examples

1) RESEQUENCE

The l i n e n um be r s of t h e c u r r en t f i l e a re re s e qu enc e d • Thie
resequencing begins with line number 10 and continues. in incremen,ts of 10.
if SASIC is the selected subsystem, the file is resequenced and statement
number references in the program are modi.fied correspondingly (GOTO,
GOSUB, IF, ON, PRINT USING).

2) RESEQUENCE !!.,~,.!:,l

Th e l i n e n um be r s o f t h e c u r r e n t f i L e a r e r e s e qu e n c e d and mod i f i c a· t i o n s mad e
according to the subsystem selection. The resequencing begins with line
number ~ and continues in incre~ents of ~·

!. and z are specified only if partial resequencing is desired. ~gives
the starting point and z the ending point of resequencing, inclusive. A
null!. field <i.e., -z> specifies froll\ beginning; of fi.le to line z, a:nd
a null z field (i.e.,!,-> specifies from line!. to th·e end of file •.

In general, any blanks preceding a line number are stripped off.
Unnumber'ed lines are accepted, except under the BASIC subsystem, anid will
have line numbers added, as implied or specified in the command. Care
should be taken in resequencing concatenated BASIC files as line numbers
are also statement numbers, and statement references, after resequencing,
may become invalid.

4-216

RESEQUENCE RESEQUENCE

3) RES EX .!2_, .!!!.

Line numbers are inserted at the beginning of each line in the current file,
regardless of whether or not line numbers already exist. The numbering
begins wit' n and increments by m, or optionally, begins with 10 and
increments iy 10, if n,m are not specified. If the first character of the
existing line is a numeric, a blank is inserted following the generated
Line number. If the first character of the existing line is not numeric,
no blank is inserted.

4) RESE# !l_,.!!!.

Line numbers are inserted at the beginning of each line in the current
file, even if line numbers already exist. This numbering begins with n
and increments by m, or optionally begins with 10 and increments by 10 if
n, m are not specified. If the first character of the existing Line is
a numeric, a pound sign(#) is inserted following the generated line number.
If the first character of the existing line is not numeric, the pound sign
is not inserted.

4-217 DJ31-00

REW

Purpose

The REW co~~and rewinds a specified tape cassette.

Format

REW TAPE (n]

(n] ::= 1 or 2, default value is 1.

Oiscussion

The command can only be used on 7700 Series VIP <device 13, 14 or 15
octal).

4-218 DJ31-00

ROLLBACK ROLLBACK

Purpose

The ROLLBACK command accesses a permanent file with read and write permissions
and it becomes the i1 put collector file for the user~

Format

ROLL [SAC KJ <fi l edesc r>

<filedescr> ::=a permanent file

Discussion

Any data lines previously collected on the file will be merged with the
current file and the first and last such Lin es of recovered data will be shown
to the user. #ROLL is the format used in the Text Editor and the recovered data is
appended to the current file, instead of merged. The ROLL command is used in
conjunction with the RECOVERY command.

Examples

See RECOVERY command.

4-219 DJ31-00

RUNOFF IWNOF F

Purpose

The RUNOFF command calls the RUNOFF subsystem into use to process an E&tfO~
prepared text file for formatted output.

Format

RUNO(FFJ

Discussion

The RUNOFF subsystem allows the user.to reformat a text file and then print a
listing of the reformatted file, and/or copy the reformatted file to anoth~r file.
The format is determined by special control words in the file. Some of the form.atti·n·g
features available are paragraphs justified to a right margin, top and bottom marg.ins,
titles centered on the page, and pages numbered consecutively.

Refer to a later section for details of the RUNOFF subsystem.

Examples

RUNOr F

4-220

SABT SABT

Purpose

The SABT command calls the SABT (Scan ABort) subsystem into use to peruse the
contents of the file \BRT. The ABRT file contains the memory image of a subsystem
fault condition.

Format

SABT

Description

When a fault occurs in a subsystem which does not handle such faults or a DRL
abort is executed, and the user has a file named "ABRT" opened, the aborted subsystem
(or program) is copied into the file. By means of SABT the user may scan the ABRT
file by snapping portions of it at the terminal. Also using SABT the user can initiate
a batch print of the ABRT file contents.

Discussion

The SABT <Scan ABorT) subsystem provides special purpose scanning functions.
When a fault occurs that is not handled by a subsystem or a DRL ABORT is executed,
the aborted subsystem is copied onto a file called ABRT. The file ABRT must exist
previously and must be in the Available File Table at the time of the abort. The
user can then scan the ABRT file by snapping portions of it at the terminal.

Examples

1) *SABT
Of'"'F"ITT?W

2) *SABT

(print a Listing of the ABRT file contents)

of'"'F"ITT?W AB <makes output available to remote station AB)

3) *SABT
OFFSET?
?100
?100,4
?100-110

(snap Loe 100)
(snap Locs 100 through 103)
<snap Locs 100 through 110)

4-221 DJ31-00

SAVE SAVE

Purpose

The SAVE command saves the contents of the current file on a new permanent
file or ti.Les.

Format

SAVE(<filedesc>[;<filedesc>J ••• l

Discussion

The permanent file is created wi~h gener~l READ permission.

Examples

1) SA VE

2) SAVE DATA74

(prompts for the file name>

(creates a file called DATA74 and copies the contents of
the current file onto the file DATA74)

3) SAVE S.PROG;EXTRA
(creates two files called S.PROG and EXTRA and copies the
contents of the current file onto those files)

4) SAVE /SOURCE/PROG01
<creates a file called PROG01in the existing subcatalog
SOURCE and copies the contents of the current file onto the
fi Le PROG01)

4-222 OJ31-00

SCAN SCAN

Purpose

The SCAN command calls the SCAN subsystem into use for perusal of the generated
output of batch jobs.

Format

SCAN[<filedesc>J

Discussion

The SCAN subsystem is a batch-output scanner. It allows highly selective
listing of any type of batch output o~ any standard-system-format BCD file.

SCAN responds with the question FORM?
To this respond:

FORT
GMAP
LOAD
COBOL
USER

for FORTRAN compilations
for GMAP assembles
for Loader output
for COBOL compilations
for all others

For the answers GMAP, LOAD, COBOL, SCAN responds with the number of errors that
occurred.

For the answer USER -- SCAN responds with the question code? -- the normal answer
to this is a carriage return Cif any characters are typed in then subsequent FIND
and PRINT command will ignore any Lines that do not begin with these characters).
Any characters typed are called the Line code.

Next the question EDIT? is asked
A response of YES -- for multiple-blank suppression

NO -- for printing multiple blanks as is
A null response is the same as a no response
A * suppresses Line numbers

SCAN should return with a question mark, at which point you may enter any of
the following scan verbs:

F or FIND[/<STRING>/J[;NJ

The slash(/) represents any desired delimiter chosen by the user. The string
is a pattern of characters to be searched for. N (any integer) is used to find the
Nth occurrence of a string.

4-223 DJ31-00

SCAN SCM-1

The FIND verb is used to locate text in a report, and to position the search
pointer in a forward direction. The F verb operates only from where the pointer is
to th~ end of the f tL e • The FIND verb po s i t i on s an i mp l i e d poi n t er to the N t h
line containing the Literal string Cb~9inning with the line currently pointed to>.
rt N is not given, 1 is assumed. If no literal string is given, all lines are assumed
to match.

T~e FIND verb accepts all standard Honeywell text EDITOR forms.

Examples:

or
FIND /FORMAT/
F /FORMAT/
FIND ;1
F ;2
fI.N D IX I; 4
FS

P, PS, or PRINT[/<STRING>/J[;N;*]

will find the next line containing the word
"format" or the current line

will do nothing
will move the pointer ahead one line

will find the fourth line with an "X" in it

N is the number of lines to print. If N is the character string all, then the
rest of the lines from the current line to the end are printed. If the string* is
used, then all lines containing a string matching the <STRING> will be printed. If
no arguments are given, only the current line is printed.

Pr i n t a l lows t he use r to i n spec t t he n ex t N l i n es of t ex t i n a report , o r t he
next N lines which match a specified character string. The search pointer does not
move. Lines are printed with a scan line number which can be used with the line
verb.

The PRINT verb accepts all standard Honeywell text EDITOR forms.

Examples: P 5
P /ACTY/;*
P /fORMAT/;3

S or SPACE [NJ

Spaces the pointer ahead N Lines. If N is not specified, the :pointer will advance
one line. If the user attempts to position the file beyond its end, the file will
be positioned at the beginning, with a warning message issued .at the terminal
(EOF).

4-224 DJ31-00

SCAN SCAN

B or BACK [NJ

Spaces the pointer back N Lines. If N is not given the pointer is moved back
to Line 1.

Examples: B

LINE [NJ

BACK
B 25

(return to top of report)
(back up o~e line)
(back up 25 lines)

As each line is Listed, an automatically generated line number will be typed with
it. The LINE verb repo~itions the pointer to the specified line number, N. (The
Line number used need not have been printed prior to being referred to.)

E or ERROR [NJ

Requests a List of the next N error printouts of the form corresponding to the output
form in question. The absence of N implies all such messages.

U or UNDE·

This command (no argument> is used while scanning GMAP assembles to list all undefined
symbols.

FLAG [XJ

Lists all Lines of a GMAP assembly having the error flag specified by X CX equals
A, U, M, O, etc). The absence of a specific error tag implies that the user wishes
a List of all flagged instructions.

LOAD

Prints out an abbreviated load map. Only primary SYMDEFs are Listed, and library
routines are omitted.

C or CODE ABCDE

Employed with the user format to change the line code. The argument ABCDE is a 1-
to 5-character code of BCD characters. A null argument "turns off" Line codes. That
is, all lines codes are accepted until the code verb is used to resume with a valid
line code.

EDIT

Returns the user to the EDIT? Level.

4-225 DJ31-00

SCAN

DONE
D

SCAN

Returns the u1er to the prior level depending on how the SCAN was invoked.

LIST [NJ

LIST is synonymous with PRINT in all respects.

REM (TE XTJ

The REM verb provides a means of placing a remarks line on the terminal session log,
it if is being taken on a hardcopy terminal.

BATCH

The BATCH verb asks STATION CODE? The user replies AS or simply a carriage r~turn,
where AB is the station code of a remote-batch terminal.

The system then asks,$ IOENT?, to which the user replies the variable field of the
user•s BATCH S !DENT card.

The BATCH verb initiates a Bulk Media Conversion (BMC) job which transfer the entire
contents of the file to remote printer AB. If the station-code reply is null, the
output will be printed at the host.

·BYE

Terminates user's current session with the time sharing system.

·Examples

1) SCAN
(prompts for the file name)

2) SCAN BCDfILE

4-226 DJ3.1 ... 00

SEND SEND

Purpose

The SEND command cancels the effect of a previous HOLD command and send the last
message withheld.

Format

SEND

Discussion

Refer to the HOLD tommand for more details.

Example

SEND

4-227 DJ31-00

SEQUENCE

P1Jrpose

The SEQUENCE co11inand inserts line numbers at the beginning ot each i1ne of the
curr,nt file. If tht first character of an existing Line h nul)eric, a num.i)er sign
C#) is insert.ed following the generated line number. Otherwise, no such number
sign is inserted.

Format

SEQUCENC~J#C (<initial>JC,<increment>JJ

<initi~l> ::=<line>
<incre~ent>::= <line>
<tin~> ::= 1- to 8-digit decimal number

<inHjat> the 1- to 8-digit number to be used as the first lin.e nu111ber. The
default value is 10.

<increment> the increment between line numbers. The default value is 10.

Discusision

If there is a number si~n immediately after the line number, it is treated as
part of the iine number.

Examples

1) SEQUll 10,10

2) SEQU#

3) SEQUENCE# 100,5

4) SEQU# 1000

5) SEQU# ,5

(inserts line numbers using 10 as the beginning line number
and 10 as the increment>

(same as Example 1)

(inserts line numbers uiing 100 as the beginning line
number and 5 as the increment>

<inserts line numbers using 1000 as the first line number
and 10 as the increment)

<insert$ line numbers using 10 as the first line number and
5 as the increment>

4-228 DJJ1-00

SEQUENCEX SEQUENCEX

Purpose •
The SEQUENCEX command inserts line numbers at the beginning of each line of

the current file. I1 th~ first character of an exi~ting line is numeric, a blank
is inserted followin•J the generated line number. Otherwise, no such blank is
inserted.

Format

SEQU[ENCEJX[[<initial>J(,<increment>JJ

<initial>
<increment>
<line>

Description

<initial>

<increment>

Examples

::= <line>
::=<line>
•. - a one- to eight-digit decimal number

the 1- to 8-digit number to be used as the first line number. The
default value is 10.

the increment between line numbers. The default value is 10.

1> SEQUX 10,10

2) SEQUX

3) SEQUENCEX 100,S

4) SEQUX 1000

5) SEQUX ,S

(inserts line numbers using 10 as the beginning line number
and 10 as the increment)

<same as Example 1)

(inserts line numbers using 100 as the beginning line
number and 5 as the increment)

(inserts line numbers using 1000 as the first line number
and 10 as the increment)

(inserts line numbers using 10 as the first line number and
5 as the increm~nt)

4-229 DJ31-00

SMCL SMCl,.

Purp~se •

Format

SMCL

Discussion

The System Master Catalog contains the user-ID, password, maximum number of
llin~s permitted for saving files, current number of llinks in use, maximum dpllar
re•ources per111itted, resources used, and certain permissions 1usigned by site
personnel. SMCL will not display the password.

Example

*SMCL
USER ID-JDOE
MAX LLINKS - UNLMTD
LLINKS USED - 908
MAX RESOURCES - $10000
RESOURCES USED - $1484.71
PERMISSIONS-X S T CC35)

The per111issions are:

symbol

x

s

T

c

Name Mean ins

LODX The user is permitted to load and execute bound
programs residing on an H* or Q• file

LOOS The user is permitted to use the ~OOS subsystem for
debugging resident TSS software.

TALK The user is permitted use of the CARDIN TAL~ option

CARDIN The user i$ perlftitted to run batch jobs. Ttie suffixed
parenthesized quantity represents the highe!;it job
urgency that is allowed.

DJ31-00

SORT SORT

Purpose

The SORT command invokes the SORT subsystem for sorting files.

Format

SORT [infileJ[=otfileJ[:F1,F2 ••• Fn/S1,S2 ••• Sn<*><99>

[infi le] : : = fi ledescr

[=otfileJ ::= filedescr

Fi ::= sort field descriptors

Si ::= sort sequence dssignators

* ::= an optional
records

parameter specifying deletion of duplicate

<99> ::= an optional parameter representing the dominate record size for
the input records.

Discussion

In addition to the normal representation of the current file (*SRC) as"*", the
following abbreviations in SORT command syntax show different assumptions that may
be made regarding the input and output files for the SORT:

SORT
SORT
SORT
SORT

=:options (current file input/current file output)
IN:options (file IN input/current file output)
=OT:options (current file input/file OT output)
:options (current file input/current file output)

The SORT subsystem uses the user-supplied arguments to construct a DRL TASK
interface to the assembler in a batch activity. The source images provided to
the assembler are built using the sort macro expansions normally used in a batch sort
submission. Once the DRL TASK for the assembly returns, another DRL TASK is
initiated to execute the object code in a loader phase. The bulk of the SORT subsystem
processing deals with the correct syntax analysis of the user input Cs) so the DRL
TASK submissions will perform correctly; no dump facility exists for DRL TASK job
abort analysis.

The user-supplied field and sequence parameters for the sort are provided in
a compatible manner to the batch sort options. For example, the user input to the
sort for an ASCII file using the first fqur characters as the key might appear as
---SORT IN:A4/A1. Note the A4 field parameter is constructed from the
permissible ranges CA,B,C,W) and values (numeric representation of a four-character
field). The sequence parameter similarly corresponds to its batch equivalent
(i.e., ascending sort sequence using the first field parameter as the key (A1)). When
the length of the field or sequence parameters is known to be large, the user
may elect to be prompted for input rather than constrain the Length of the input
strings to the length of the current line.

4-231 DJ31-00

SORT SORT

hamples

1) •SORT ABC/CAT/FILEIN=ABC/SOURCE/OTFILECCR)
FIELD? A3,W2,A4,W4CCR)
SEQUENCE? D3,A1,02CCR)

When the user knows the dominant size of the sort input records is different
than the default size of 40 words, it may be useful and more efficient to
supply a dominant record size as part of the command syntax. The dominant
record sized field is a one or two digit number contained in parenthesis
that occurs on the input line following the sequence parameters or the
optional duplicate record deletion character (•).

2> •SORT IN=OT:A12/A1C4>CCR> dominant record size is 4 words Major sort
field CA12> is 12 ASCII characters in
length. Sort of field is ascending CA1).

3> •SORT IN=OT:A12/A1•(4) Same as previous example, except duplicate
records are deleted in the sort output.

4-232 OJ31-00

STATUS STATUS

Purpose

The STATUS command Lists the names of the files that are in the Available File
Table (AFT) and/or re •orts the user's status as to the station ID of the terminal,
the processor time u,;ed, the number of file I/Os completed, and the number of
characters output to the terminal.

Format

STAT[USJ [f I FILES]

Examples

1) STATUS

2) STATUSF

3) STATF

(lists the names of the user's files in the AFT and reports
the user's status)

<Lists the names of the user's files in the AFT)

(same as STATUSF)

4-233 DJ31-00

STRIP STRIP

Purpose

The STRIP command strips the line numbers from the current file.

F.ormat

STRI[PJ[8fXl#J

Discussion

The STRIP command removes leading blanks and line numbers from columns 1-8 of
the current file. The STRIPB command strips trailing blanks from the current file.
If a text line in a file consists of only a line number, STRIPB appends a single blank
to the line number. STAIPX strips the line numbers from the current file and
also the trailing blank if the next character of the line is numeric. The STRIP#
command strips the line numbers and trailing pound signs from the current file.

4-234

SYSTEM SYSTEM

Purpose

The SYSTEM command cancels any previously made system selection and causes the
named selection to 1ualify the meaning of any subsequence RUN or RESEQUENCE
commands.

Format

SYST[EMJ <name>

<name> ::=name of any time sharing subsystem

Discussion

If the name of a subsystem is not specified, SYSTEM only cancels the previous
system selection and subsequent RUN or RESEQUENCE commands result in
unpredictable situations.

Example

*BASIC
*SYSTEM EDITOR

4-235 DJ31-00

TA PE TAPE

Purpose

The TAPE command initiates the reading -0f paper tape.

Format

TAPE
#TAP[E) EDITOR subsystem

Discussion

In order to supply file-building input from paper tape, the user gives the
command TAPE (#TAP if the subsystem is Text Editor). The subsystem responds with
READY. If the tape reader is ready, it will be turned on automatically. If it is
not ready, the user should position the tape in the tape reader and start the device.
Input is terminated when an X-OFF character CDC3 on some terminals> is read by the
paper tape reader, or the tape is stopped and the user types X-OFF (or DC3).

The tape may be prepared off line from the keyboard, or it may be the result of
previous output punched by the paper tape unit. If prepared offline, it should
include carriage returns to terminate each line, just as if entering data online,
plus explicit line feeds to obtain legibility on the terminal printer during
prepar~tion and transmission. The carriage return and line feed must be followed
by two rubout characters for terminal timing considerations.

Command language may not be included on the tape. The input should be preceded
by several rubout characters and terminated by an X-OFF (or DC3) followed by several
rubout characters. Neither the X-OFF (or DC3) nor the rubout characters will appear
in the file.

As with keyboard input, a maximum of 160 characters is permitted per line of
paper tape input. Excessive lines are truncated at 160 characters, with the remaining
data placed in the next line. A maximum of two disk links (7680 words) of paper tape
input will be collected during a single input procedure, except in LUCID mode, which
has a limit of six links. All excess data will be lost.

In order to supply file building input from non-ASCII paper tape Cunattered
eight-bit codes), the user gives the command LUCID instead of TAPE .. The system reads
in the tape and stores the data on a file without editing or parity modifications.
The system does not delete or act on any characters in the data stream, such as DEL,
X-OFF, DC3, CR, etc. The input is terminated when a pause of over one second occurs
in the data transmission. Termination does not require an x-oF.F (or C>C3)
character, as does normal paper tape input via a Front-End Network Processor.

NOTE: LUCID cannot be used if data communication is via a Low-Speed Line Adapter
(LSLA) or an Asynchronous Communication Base (ACB) on a DATANET 355/6-600
Front-End Network Processor.

4-236 f>J31 •00

TA PE TAPE

During paper tape input via a Front-End Network Processor, the paper tape
input will stop when an error. message is to be sent to the terminal. At any point
during the operation of the Time Sharing System and at a time when the user must supply
keyboard input, a previously prepared paper tape in special format may be used to
simulate a sequence 01 responses, one line at a time. The system need not be in build
mode and direct (i.e., conversatio'nal) responses, file building input, and/or
commands may be entered.

This feature allows the preparation of a paper tape for input to the Time Sharing
System and/or subsystem(s) prior to connection with the system and allows terminal
operation without supervision during the connection. The paper tape input may be
for a specific subsystem or production program execution only, or may include anything
from logon through Legoff procedures.· Obviously such a tape must be error-free.

The r~quired format for each input line is as follows:

data string (up to 80 characters)
carriage return
X-OFF (or DC3)
RUBOUT (may be multiple, but one is minimum requirement)

Character-delete control characters may be used. Line-delete controls must be
used as fol Lows:

data string (to be deleted)
(Line-delete control) character
X-OFF (or DC3)
RUBOUT Cone is minimum)
corrected data string
carriage return
X-OFF (or DC3)
RUBOUT

Parity errors encountered during paper tape input may cause the terminal to be
disconnected.

It is suggested that extraneous line feeds not be included in the tape. If,
however, the user desires Line feeds for terminal printer legibility, they should
be either between the data string and carriage return, or one line feed immediately
following X-OFF Cor DC3).

To initiate automatic paper tape input, the. user should position the tape and
start the reader any time keyboard input is required.

The terminal is automatically disconnected if no input is received within 10
minutes of the request for such input, whether via paper tape or keyboard.

4"'."23 7 DJ31-00

TEMP TEMP

Purpose

The TEMP command creates a temporary file or files.

Format

TEMP (prompts for inputs)

<temp-filename>
<mode>

<SIZE>

bescription

;- a one- to eight-character name of a temporary file
:::: L(INKEDJ

R(ANDOMJ
:::: a one to three digit deci~al number

<temp-filename> the 1- to 8-character name of the filei optionally enclosed
in quotes. If <filename> could be misconstrued ~s <siie>,
<size-unit> or <mode>, it must be enclosed in quotes as shown
in Example 6. ·

<size> the initial size of the temporary file. The default is 1
LINK, which is equivalent to 12 LLlNKS. (BLOCKS and lLlN~S
are different names for the same unit#) if the si;ze is
specified in LLINKS, the size is rounded to an integral number
of LINKS. The maximum size al lowed is 25 LINKS, or 300
LUNKS.

<mode>

Discussion

is the type of file being created~
sequential.

The default is

A temporary file can be used in other commands such as IU:SAVE, ASC0CP, etc. and
can be read from and written to in a program.

The PERM com•and can be used to make a temporary file permanent.

At sign-off, the system will ask what is to be done with the t•mporary files.
Refer to the BYTE, NEWUSER, or LOGON command for a description of the r.es,pon~e$ that
can be given.

4-238 p J 31-00

TEX TEX

Purpose

The TEX command invokes the TEX subsystem

Format

TEX

Discussion

Any file building, editing or commands will be under control of the TEX
subsystem. See the TEX manual CDF72) for further details.

4-239 DJ31-00

TSAR TSA~

Purpose

The TSAR command invokes the Master Time Sharing Activity Report subsystem. The
use of the TSAR subsystem is restricted to the MASTER use onl~.

Format

TSAR

Discussion

Since TSAR is a master subsystem, the user-ID must be MASTER and requires two
passwords.

At en t r y to the subsystem, the user i s shown a l i st of the av a i l ab l e
displays from which to select the numeric equivalent and give a time (a whole number)
to observe the displ~y.

TIME SHARING SYSTEM MONITOR

1. ALLOCATION
2. ACCUMULATED STATUS
3. SUBSYSTEM USAGE
4. DONE

SELECT A DISPLAY AND GIVE A TIMECMINUTES)

* (selection,time)

A short routine validates the subsystem selection (screen display
terminal>, and displays the selection list. The time, or implied time if none is
given, is stored, a form feed is issued <clear screen>, and the routine is called
to process the selection. If a time value of zero is specified, output is produced
for the appropriate selection and the user is requested to make another
selection.

4-240 1>J 31 -00

TSAR

Examples

The following is an example of Display 1:

TIME SHARING SYSTEM MONITOR

1. ALLOCATION
2. ACCUMULATED STATUS
3. SUBSYSTEM USAGE
4. DONE

SELECT A DISPLAY AND GIVE A TIME(MINUTES)
*1,1

SWAP AREA 35K (21 to 56)
(1111111222 0000000000 0000000000 00000)

ALLOCATION
IN CORE SWAP FILE BUILD

MASTER K SMITH SER
K APM585 K BIS NET BIS NET

K 543 MOE
K M PCT ND
K ASE SA
K SQASD
K LJM
K AEP
K PASSAGE
K PROJECT2
K JONES

MASTER

4-241

TSAR

MODE

DJ31-00

TSAR

The following is an example of Display 2:.

TIME SHARING SYSTEM MONITOR

1. ALLOCATION
2. ACCUMULATED STATUS
3. SUBSYSTEM USAGE
4. DONE

SELECT A DISPLAY AND GIVE A TIMECMINUTES)
*2,1

STATUS TSS
02/04172 8.932 TO 02.14.72 13.253

35 LINES
98 USERS
14 MAX USERS
10 CUR USERS

7.077 HRS LOGON
0 URGENT USERS

12 CUR USTS

99 HELLOS
0 REJECTS

86 DISCONS
97 TERMS

31965 ALARMS(WAIT I/0)
1559 SWAP OUTS

1 ALARMSCNO USERS)
11906 K SWAP OUT

557 KEY I/O SWAPS
38 K CORE

58 SNUMBS
117 BREAKS

0 SYSTEM ERRORS

7 MME GEMORE 0 REFUSALS 31 LKS OBTAINED
0 MME GERELS 0 LKS RELEASED

TOTAL TSS PROCESSOR TIME • 291 HOURS

The following is an example of Display 3:

TIME SHARING SYSTEM MONITOR

1. ALLOCATION
2. ACCUMULATED STATUS
3. SUBSYSTEM USAGE
4. DONE

SELECT A DISPLAY AND GIVE A TIMECMINUTES)
*3,1
SYSTEM NAMES?

4-242

TSAR

OJ31-00

TSAR

The

SUBSYSTEM USA GE
NAME PROC TIME FILE I/O KEY I /0 #CALLS

SECONDS #CONNECTS #CHAR
basy 113.508 1417 62344
edtx 82. 233 3544 28104
cdin 57.531 1784 1456
ascb 27. 80 7 1034 856
run y 16.080 53 2 8216
oldn 12.727 2 716 4344
bsed 11. 892 719 1096
jout 11 • 063 1754 11976
List 7.961 445 58096
rese 7.473 342 144
save 6.146 1318 3456
runo 5.699 178 25616
pr in 5.239 134 28384
run 5.238 11 9 3136
Lodx 5.106 228 14568
cat a 2.418 0 9384
new 2.401 0 15320

following is an example of Display 4:

TIME SHARING SYSTEM MONITOR

1. ALLOCATION
2. ACCUMULATED STATUS
3. SUBSYSTEM USAGE
4. DONE

SELECT A DISPLAY AND GIVE A TIMECMINUTES)
*4
*BYE

56
59
37
10
1 5

197
137

10
123

19
127

10
24
14
34
20

104

**COST: $ 0.22 TO DATE: $ 316.53= 32%
**ON AT 11.583 - OFF AT 11.589 ON 04/25/75

4-243

TSAR

DJ31-00

TSDA

Purpose

T~e TSDA command invokes the Time Sharing Dump Analysis subsyst~~.

Format

TSDA (subsystem prompts for verbs)

TSDA verbs

aft-display files in available file tables
ale-display TSSA allocator work cells
apb-display Last all points bulletin
atr-display status of allocator (TSSL) trace
clr-clear all offsets presently in effect
cmp-display core map cells and memory use
coq-display jobs queued waiting memory
cur-display "current" user data
cwk-display UST mgmt work-hole List
def-display info about deferred processes
die-display info about Last drl from TSSK
dmo-display offset in dump by TSS module
def-display all offsets
drl-display drl Locs from map in TSSK
duo-display offset in dump for UST
emm-display .emm trace table from TSSM
~nd-terminate dump analysis
err-display TSSA error cells+TSSF trace
esq-display executive service queue
gat-display closed gates on system
his-display history register values
hld-place terminal into idle mode
ici-display ic+i value from SSA
inf-display mednings for TSSA/ust/ssa cells
ioq-display nonzero I/O queues used by TSS
Lal-display TSS base address
lvl-set different Levels of off set
mem-display memory map for whole system
pgd-display program descriptor information
prq-display jobs queued up for processor
prt-format dump and send to printer
reg-display register values from SSA+spa
sdq-display sub-dispatch queue and header
smo-set offset in dump based on TSS module
snp-snap memory Locations using any offset
sof-set offset in dump based on address
sos-display verb explanations
spa-display formatted slave prefix for TSS
ssz-display address of first SSA used by TSS
sts-display Last conso~e status message
sum-display summary about dump environment
swf-display information on swap files
tsm-display TSS specific message
tsq-display Last TSS input queue entry
tst-display formatted trace <build by TSSB)

4-244 DJ31-00

TSDA

uad-display user-ID, Lineid, and UST address
uof-set offset in dump to UST ·
uss-display user status table summary
ust-display user status table
voe-display voc<bulary

TSDA

Discussion

The time sharing dump analysis package provides a convenient and effective tool
to be used in the online analysis of time sharing system failures. The examination
of time sharing failures is performed from a terminal connected to the system. The
use of the time sharing dump analysis package with dial-in capabilities to the
front-end processor makes it possible for analysts at on-site or remote Locations
to examine time sharing .failures. In addition to executiv~ failure analysis the
package can serve as a useful tool for site analysts or training personnel who have
a need to study the structure of the TSS executive. An obvious use of the analysis
package would be in the development of changes to the executive that may result in
time sharing failures. It is possible to minimize the Loss of valuable test time
by quickly examining the image of the executive produced at failure time using the
time sharing dump analysis package as opposed to waiting for listings to be
generated.

Examples

FN??voc
sum cmp uss prq uof duo coq atr swf tst ioq aft sof pgd smo dmo drl snp reg ici
spa uad dof ale Lal ssa die sts def err apb tsq ust end prt voe sos inf clr lvl
his gat mem cur hld cwk sdq esq tsm emm

Another verb that can be usef~l to an analyst is the INF verb. The user can
enter a logical name for a cell and receive an explanation of what the cell
represents.

FN??inf .SSA
.SSA -stack tally,ic+i stack
FN??inf .TCUST
.TCUST -# USTs currently in use/ptr to first UST
FN??inf .LBUF
.LBUF -buffer addr I stat id

4-245 OJ31-00

TSDA TSDA

The SUM verb displays a short summary of the system environment for the terminal
user. InclLlded in the display are the system identifier, GCOS release identifier,
date of the dump, time of the dump, configuration dat~, an interpretation of the
lo cat i on o f the l as t t ran sf e r of cont r o l (us i n g X 1) mi g ht have been fr om, a. n i n di c at i on
of which SSA module was found in TSS's SSA at failure time, the .STATE and .STAT1
words for TSS from the SSA, and an interpret~tion of the .STATE word bits. The
abbreviations used to represent the different bits in the program .STATE word are
shown below:

abbreviations bit meaning

in-exec
in-que
ssa-load
gepr-ctl
gepr-nd
abt-ctl
abt-req
swap-ctl
swap-req
pgm-rcal
ccall-wt
pgm-dead
syot-I/0
re ling
rdblock
fi L ler
mme-.emm
class-a
no-ccall
no-gepr
wrap-end
enabl.e
gate-ssa
swap-ned
no-swap
I/0-end
alarmset
swpdelay
fi.Ller
geidse
no-proc3
no-proc2
no-proc1
no-procO

**NOTE:

0
1
2
3
4
5
6
7
8
9

10
11
12
1 3
14
15-17
18
1 9
20
21
22
23
22
25
26
27
28
29
30
31
32
33
34
35

in execution
program number in queue
system I/O in progress
gepr in control
gepr needed
abort in control
abprt request received
swap or move in control
swap or move requested
program in courtesy call
courtesy call waiting
program dead-waiting size change
sysout writing
relinquished
roadblocked

master mode entry permitted
class-a priority
do not pay courtesy call
do not set abort bit
wrapup done
enable request
gated module busy
swap requested or in control
do not swap or move
IIO complete since last link
alarm set for program
swap or move delay

mme geidse done
processor-3 can't execute this
processor-2 can't execute this
processor-1 can't execute this
processor-a can't execute this

With the six processor option it is unlikely that the last four strings
will appear.

FN??sum dump on sys-sysa GCOSid-sr3 080677 17.027 1-pro 1-iom 384K last transf.er of
control via x1 from TSSJ (015046) last module in TSS SSA was .MALC9 TSS .STATE =
400400440400 TSS .STAT1=000000000000 in-~xec pqm-ccal mme-.emm no-qepr I/O-end.

4-246 DJ31...;00

TSDA TSDA

The core map verb, CMP, breaks out each entry of the TSS core map that is nonzero.
The display first shows the three main control cells that administer the core map--1)
.TACOR, 2) .TAMPT, and 3) .TAHOL. The breakout of the core map entries follows the
display of the above cells. Any core map entry that represents a BTOS buffer entry
is flagged as such.

FN??cmp
core map

.tacor • tam pt .tahol av a i l
054000162000 000413000415 000421000000 000070
next #bl ks #blks SS prev UST user-ID
entry sub sys open La L entry addr
000417 000 000 054 000 000000 000000000000
000000 002 100 060 002 051430 honeywell BTOS

The UST summary display verb, USS, can display all current user status table
summary entries or it can display a selected entry if the user enters a user-ID
following the verb. Each UST summary entry shows the user-ID, UST address relative
to TSS, the fi Le List pointer, the subsystem size cell, the Last derail cell, the
program stack, the f Lag words, and the BTOS flag word. The breakout for the above
entries consists of interpreting the last derail type code, marking the Last stack
entry, interpreting all valid stack entries, the interpreted bits from the flag words,
and the interpreted BTOS flags. The abbreviations used to breakout the user summary
display are shown below:

abbreviations
for .LFLAG

app-fi le-I/O
rdblk-relinq
mast-ss-alc
swapot-strt
pgm-in-core
swap in-strt
new-interact
batch-job
apb-reqd
filler
ccall-reqd
pgm-swapped
pgm-alc-que
fake-I/O
f swap-pend
brk/dis-recd

bit

1 8
19
20
21
22
23
24
25
26
27-29
30
31
32
33
34
35

meaning

application file I/O process
terminal I/O rdblk or exec relinquish
master subsystem allocated
swap out in progress
program in memory
swap in in process
new interaction
non-TSS process in execution
all points bulletin required

courtesy call required
program on swap file
program in a allocator queue
fake I/O
force swap scheduled
break or disconnect received

4-247 DJ31-00

TSOA

abbreviations
for • LF LG 2

talk-mode-cf
drl-task-2
log on
term-type
command-file
vip-tape
pat-si ze-flg
reconn-xmit
hold-reconn
master-user
user-execute
cmdl-reqd
ids-user
pseudo-I/0
ccall-entry
b u f .f - I I O - re q
vip-term
line-switched
filler
2wd-lineno
auto-blank
auto-lineno
fake-dump
end-take-flg
filler
ppt-xmit-err
ppt-fi Le-err
wait-end-ppt
ppt-start
monitor-user
lastio-out
lastio-ot/in

abbreviations
for .LPQF

extra-buffer
data-xmit
ebm-refused
buffers-full
b u,f f - in-core
buff i.o-di sk

primitive codes

dummy
callp
exec
bin
po pup
discon
xcall
system
ifalse
it rue
stfals
st rue

bit

4
5
6
7
8
9

10
11
12
13
14
1 5
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

bit

18
19
20
21
22
23

meaning

user in talk mode of commafid ftle
drl task phase indicator
Logan in progress
terminal type extension bit
command file processing in progvess
7700 VIP cassette number
pat size indicator
reconnect mode with data transmit
reconnect mode with line in hold
this is the master user
user code executing
command loader must be invoked
ids user
pseudo I/O in progress
courtesy call entranc•
buffer flush required
VIP terminal
line switched to batch job

two-word line number
blank indicator in auto mode
automatic line-numbered mode
fake dump command
end of tape flag

error in transmit of ppt
error in file built from ppt
wait for end of ppt
ppt in transmission
user being monitored
last remote I/O was output
last remote I/0 was input

meaning

extra buffers present in memory
data in transmission
extra buffer request refused
all buffers full
buffers in memory
buffer I/O in progress from disk

primitive number

0
1
2
3
4
5
6
7
8
9

10
11

4-248

TSDA

FN??uss honeywell
ust summary

user-ID
honeywell

L)T Loe
055 30

program stack
055613000400 stack tally
002756007030 card/callp
003330007023<List/exec

null
null
null

stat .Lfile
055611055617

.Lflag
000140220010
rdblk-relinq
pgm-in-core
pgm-alc-que

TSDA

.lsize .LDRL(kout)
060004004000 000563000002

.Lflg2 • L pqf
004000500002 000000660010
Log on extra-buffer
ccall-entry data-xmit
vip-term buffers-full
Lastio-out buff-in-core

The processor queue display verb, PRQ, can be used to display the Linked List
of USTs eligible for processor allocation. The display first shows the start of the
processor queue emanating from the TSS communications region followed by the entries
in the Linked List. Each entry in the queue is represented by the user-ID, UST
Location, and the contents of .LPQF Clink in queue).

FN??prq
processor queue

first UST address in proc List= 055264
his Loc=055140 .Lpqf= 00131

The UOF verb can be used to set a working Level of offset for snapshot purposes
based upon a user-ID the user has supplied. If the user does not enter the user-ID
on the verb input Line, the subsystem will prompt the user for a user-ID. The verb
provides no acknowledgement if the entry was successful. The contents of the working
snap offsets may be verified using the DOF verb (see below).

FN??uof honeywell
or

F N?? uo f
enter user-ID software

The DUO verb can be thought of as complementary to the above UOF verb in the
fact that both are related to addresses in the dump referenced by a user-ID. The
DUO verb can be used to display the UST address for any given user-ID. The terminal
user may enter the user-ID fol Lowing the verb or the subsystem wi l L obtain the verb
with a succeeding prompt~ No provision is made in the DUO verb processor to handle
duplicate user-IDs. The first user-ID found in the Linked chain of UST's that matches
the desired id will be the entry that is displayed.

FN??duo education
*offset for user-ID=education

or
FN??duo
enter user-ID marketing
*offset for user-ID=marketing

055430

056720

4-249 DJ31...;00

TSDA TSDA

The COQ verb is similar to the PRQ verb discussed above except for the fact that
the memory queue Linkage is traversed. The display first shows the origin of the
memory queue based upon the start of the linked list in the TSS communication region.
Following the start of the List, the entries are displayed showing the user-ID, the
UST location, and the contents of the linkage word (.LFLAG).

FN??coq
memory queue
first UST address in mem List

~aster loc=054650
sft Loc=056720
honeywell loc=055430

054665
.lflag=OS6735
.lflag=OSS445
• l flag=000140

The TSS al Locator keeps a trace of events in the communication region, and the
event table may be displayed using the ATR verb. The display consists of the entry
pointer as found from the tally word that is used to store the entries and the formatted
entries themselves. Each entry is broken out to show the calling location from which
the call was made to the allocator, the UST address representing the user for
whom service is being performed, the argument indicating which event (type of service)
is being processed, a text description of the event, and the user-ID that corresponds
to the UST location in the entry.

FN?? at r
allocator trace Last entry index= 02

callingloc USTloc arg description user-ID
023610 055140 3 turn off fileio rd bk his
022300 055140 7 re L memory from SS his
014667 055140 0 new entry memalc q his
025032 055140 2 turn on fileio rdbk his
025636 055140 3 turn 0 ff fileio rdbk his
022300 055140 7 rel memory from SS his
014667 055140 0 new entry memalc q his
025032 055140 2 turn on fileio rdbk his
025636 055140 3 turn off fileio rdbk his
023424 055140 2 turn on fileio rdbk his
023610 055140 3 turn 0 ff fileio rdbk his
023424 055140 2 turn on fileio rdbk his
023610 055140 3 turn off fileio rdbk his
023424 055140 2 turn on fileio rd bk his
023610 055140 3 turn 0 ff fileio rd bk his
023424 055140 2 turn on fileio rd bk his

The TSS executive keeps information about the swapping required to support many
users in various cells in the communication region. The related cells may be
displayed using the SWF verb. The verb displays many items related to the size and
,3ctivity of the TSS swap files. The display indicates how many swap files are active,
their sizes and growth factors. Following the above general information, each s~ap
file is displayed showing the number of swap ins and swap outs, the file sizes., number
of entries for each file, the map showing number of available llinks and starting
llink number, followed by the total number of llinks available f6r each file.

4-250 l>J31-00

TSDA

FN?? swf
•swap files*
#swp files active=04 min swp file size=000220 min

fl s flt
#swapin in progress 0000 0000
#swapout in progress 0000 0000
swap file sizes (LL) 2570 2570
#entries 0001 0001
#avail ll/strt LL# 02567 000001 02567 000001 02567
total # llinks available 002567 002567

grow
#u

factor=000044

0000
0000
2570
0001

00001 00007
002567

#v
0000
0000
2570
0001

000.05
00007

TSDA

The executive trace module CTSSB) keeps a rotating table of event traces in the
communication region. The trace table may be formatted and displayed using the TST
verb. Each entry in the trace table is broken out showing the original two word
contents, the text description represented by the entry type, the user-ID for which
the entry is being made (located using the UST address>, and the station identifier
for those trace entry types that contain the station id. If the entry is the type
made by the derail processor, the derail type code is interpreted and shown next to
the text description. The next entry to the trace table is Located using the pointer
NXT> and is derived from the trace tally word used to store entries.

FN??tst
TSS trace table

wd1 wd2 description user-ID stat
000434000000 055140651013 a I. lo c Q removal his 6510
000071000505 054650202011 derail T.STAT master 2020
000066000511 054650202011 de r a i l GWAKE master 2020
220010660013 055430636516 collect at KE YOU 6365
220010660012 055430636516 collect at KE YOU 6365
122125116()15 055140651010 command found his 6510
000240170730 000004000006 entry Line-srv 0000
122125116015 055140651010 command found his 6510
055321055327 055140651012 alloc Q entry his 6510
000004000160 055140651011 de r a i l KIN his 6510
000033002374 055140651011 derail PAS UST his 6510
000006000214 055140651011 derail DEF IL his 6510
000012000321 055140651011 de r a i l REW his 6510
000020000340 055140651011 de r a i l SNUMB his 6510

nxt>200070600001 055140651016 collect at KE YOU 6510
220010660017 055430636516 collect at KE YOU 6365
220010660013 056720653016 collect at KE YOU 6530
220010660016 055430636516 collect at KE YOU 6365
220010660015 055430636516 collect at KE YOU 6365
220010660014 055430636516 collect at KE YOU 6365
000232347306 000004000006 enter Line-srv 0000
000233557200 000004000006 enter Line-srv 0000
200070600000 055140651016 collect at KE YOU 6510
220010660012 056720653016 collect at KEY OU 6530
000235153616 000004000006 enter line-srv 0000
000005000015 055140651011 de r a iL RETURN his 6510
000430000000 055140651013 alloc Q removal his 6510
777767777777 055140651003 system Level his 6510
000236077103 000004000006 enter Line-srv 0000
103101122104 055140651004 startp primitive his 6510
055321055327 055140651012 all o c Q entry his 6510
000010000161 055140651011 derai L SETSWH his 6510
000004000162 055140651011 derail KIN his 6510
000006000165 055140651011 de r a i l DEF IL his 6510

4-251 DJ31-00

TSDA

wdl
000036000741
000006001422
000001001543
000001001543
000001001543
220010660011
000001001543
000~37303713
000100000171
000053001153
000014001156
000012001166
000071000454
000005001204
000000000000

wd2
055140651011
055140651011
055140651011
055140651011
055140651011
056720653016
055140651011
000004000006
054650202011
055140651011
055140651011
055140651011
054650202011
055140651011
000000000000

descrip~ion
derail FILACT
derail DEFIL
derail DIO
derail DlO
derail 010
collect at KEYOU
derail 010
•nter line-srv
derail T.EXEC
derail SWITCH
derail RETFll
derail REW
derail T.STAT
derail RETURN
filler entry

4-252

us~r-IQ stat
his 6510
his 6510
his 6510
his 6S10
his 6S10

6530
his 6510

QQOO
master 2020
his 6510
his 6510
his 6510
master ZOZO
his 6510

TSDA

aJ3t-QO

TSDA TSDA

All nonzero I/0 queues found in the SSA region of the executive are available
for display through the use of the IOQ verb. The display lists the relative negative
address (offset from the origin of TSS) of the I/O queue and the status of the queue
entry prior to the eleven word entry itself. The format of the 1/0 queue entry may
be found in the systen tables manual.

FN??ioq
I/O queues
766000 bldg 000000000001 000000000000 000355000001 000000000005 036512000013
055622000055 000000000000 636262202020 000237534503 055544055546 055621046365
766013 bldg 000000000001 000000000000 000355000001 000000000005 036516000012
057112000076 000000000000 636262202020 000237202705 057034057036 057111036530

For each user on the system, a table of files is kept as a linked list, starting
from the UST and threading through the SSA area. The linked list of Available File
Table (AFT) entries is broken out using the AFT verb. The display shows the number
and names of all open files in the AFT for a given UST.

FN??aft

•aft for user-IDe=sf t
SY**

knwpatch
* s r c;:

•aft for user-ID=honeywell
SY**
aprntsrc
* src

•aft for user-ID=his
SY**
pptsrc
* src

•aft for user-ID=master
SY**

#open files=03

#open files=03

#open files=03

#open fi les=01

The SOF verb may be used to set a working level of offset to be used in snapshots.
The user may supply a string of up to six octal digits following the verb to indicate
the relative address desired for the snapshot. The subsystem will prompt the user
for the address if one is not supplied on the verb line. The address will be checked
for proper boundary values (i.e., within the limits of the memory assigned to
TSS) and for nonoctal digits. No reply is sent to the terminal if the offset has
been set accordingly. The contents of the working levels of offsets may be verified
using the DOF verb (see below).

FN??sof 123

4-253 DJ31-00

TSDA

The PGD verb is used to obtain information about •nY of tht valid sub$yste~$
contained in the list of program descriptors kept in the comm1,mic~ti~n region. The
.1erb requires the user to supply the four character name of the s.ull>S~$.ttm fc;>r w1hi!;h
the displa)I is i.ntended. If the subsystem name is thru ~haracters. (e .. g, new>. the
user must blan1r•pad his input. The di$pla)I of the descript(p" infor1nathn
contains the size of the program, its load si~e, seek addreu~ i:rtithl load addr·e>s$,,.
entry point, command language pointer, and length of CQm•and list~ Additionally,
the program descriptor permissions bits are interpreted b&neath the entr, far th~
subsystem. The abbreviations used to represent the permissions are ~s foLlQWI~

abbreviation interpretation

spz special size request
mas user of T.exec permitted
cmv use of t.cmov permitted
spo special product offering
hiu place SS on #p
tfs cannot use oldp#
nsy cannot use at system level
spc allowed use of get specific
exe execute permission on I/O
smc may look at smc
bas uses basic command list
com uses common command list
Lou place SS on #q
pch may be patched
mst master ss
prv privileged ss

FN??pgd mast
program descriptor mast
pgm-size=006756 load-size=006602
entry-pt=000154 coml-ptr=007022
mas smc mst

seek-addr=000720
#wds-coml=OOOOOO

4-254

ia-load:11:0001~4

TSDA TSDA

The DRL verb displays the derail map, kept in the derail processor CTSSK), at
the terminal. The relative addresses of each derail processor are shown next to the
name of the derail.

FN??drl
derail map

(null)-026142 dio -023252 kout -022353 koutn -022341
kin -022726 return-022267 def i l -024047 abort -027676
setswh-023051 rstswh-023045 re w -023704 f i l sp -023745
retfi l-024213 relmem-027563 addmem-027640 corfi l-026146
snumb -026222 time -026232 pasaft-025762 termtp-026274
pdio -023071 restor-030206 spawn -027204 tapein-022566
callss-026410 user-ID-026315 term -026362 pasust-026563
morlnk-027003 newusr-026507 f i Lac t-0243-2 setlno-031052
sysret-027557 stpsys-027667 status-022214 drldsc-022676
pasdec-025760 j st s -031115 cg rout-031651 part -031737
grow -032005 abtjob-032155 consol-032274 switch-031523
drlimt-033270 jout -032547 kotnow-022353 objtim-033303
pasf Lr-027203 stoppt-023065 save -034546 task -033332
pseudo-035506 prgdes-030146 gwa ke -033311 ids -026142
attri -035610 t.stat-035730 t.goto-026472 t.cmov-035746
t.Linl-036750 t.syot-036241 t.conn-036332 t .cfio-036556
t.exec-037033 t.rssc-037062

The system stores the program registers in the Slave Service Area upon
faults/interrupts. To display the register storage stack and tally word, the REG
verb may be used. The display shows the contents of the stack tally pointer followed
by the four groups of eight words used to store the contents of the registers
(X0-X7,A,Q,E,T). Each group of eight words is prefaced by the address in memory and
the Last entry is marked by a string of ">>".

FN?? reg
ssa registers register tally ptrC.SSA+1)= 211030000110
01011000 000000000000 000000000000 000000000000 000000000000

000000000000 000000000000 000000000000 000000000000
01011010 000000000000 000000000000 000000000000 000000000000

000000000000 000000000000 000000000000 000000000000
01011020 001600000000 204740224451 000000212000 000005000000

132000000000 060245076340 776000000000 000137645000
01011030 >>011664006000 021271004200 066214004200 000000200026

066214200026 066214200026 000000000000 000000000000

Just as the system stores the contents of the registers at the time of a
fault/interrupt, it also stores the IC+! (instruction counter and indicator register
values) values in a stack in the SSA. The ICI verb can be used to display the contents
of the IC+I stack and its tally word pointer.

FN??ici
ic+i stack tally (.SSA)=210002000000
260241000220 000036001200 067545104200
066214200026 000000000000 000000000000

4-255

000000200026
000000000000

066214200026
000000000000

DJ31-00

l"SDA

The tlAD verb sho,ws the station identifier" UST ,a,dd'ress., aind ·us,er·-irl> 'f«>:r ~,:fi.th

terminal logged on t·o the system ..

FN??uad
user-ID

sf t
honeywell
his
master

line id
6'5 30
6365
6510
202.0

USTloc
056720
05'543:0
055140
054650

The slave pndi~ area (SPA) can contain useful ·i:nfor·matio'n about t'h·e 1p:'togram.
I n c l u d e d i n th e b r e a k o u t o f t h e s PA a re t h e fa u l t v e c t o r s , t e ·Q i st e ·r s 't o r e err •e a ·s ,. a n d
various other su.ndry cells. The SPA c.omma,nd prod\:Kes 'th·e 'form.atte·cil S'P• dit'Spil.ay .at
the terminal.

FN?? spa
slave prefix

z o p I c m nd f L t
000000 0000000000-00

flt tag flt
000004 000000000-0UO

overflow flt
000010 000000000000

derail inst
000014 000000000000

gfrc switch
000020 000000000000

pgm entry
000024 000000000000

gelbar info
000030 000000000000

000034 000000-000000
registers-1

000040 001600000000
registers-1

000044 132000000000
registers-2

000050 0016000000
register s-,2

000054 132000000000
eof buffer

000060 001064020100

000064 000000000000
ident

000070 000000000000
ident

000074 0000000000-00

04505271000;0

04 5-062 710000

045072210000

045075710000
gelbar timer
00000000000
lut/dst code
000000000000
gecal l seq
000000000000

000000000000

224740224451

060225076340

224740224451

050245076340

00000000000

000000000000

0000000'00000

000000000000

memory flt
000·000 000000
div chk flt
000000000000
lockup flt
0000000000000
ckpt addr
000000000000
gelbar ic+i
00000000000
hist reg ptr
000000000000

000000000000
snumb-acty
000000000000

000000000000

776000000000

0000000'00000

776000000000

000000000000
ident
000000000000

000000000000

000000000000

4-256

0·4 505 7 71 0·0·00

0J.S:Q·6T7l0i00>0
Loe ab·rt/ cod~
00:00000'()'000
f cb
OOOOtlOOOOOOO
gelbar fv
O.Q0-0000000-M
wrapup add'r
oo 11 2 nooooo
00000'0-0'00000
loa•der addr
00000000000-0

ooo•oosoooooo

000132437000

O·Q:OQO 500000'0

0001 :32437(HJ.O

OOOOO'O·OOOOb

000000000'000

oooooootrnooo

0000-00000000

TSDA TSDA

The DOF verb allows the terminal user to display the current working offset and
any offsets that may have been set using the LVL verb (see below). The display shows
all addresses as six digit octal numbers relative to· the memory Limits of TSS.

FN??dof
working off set=0554~1
lvl-1=000000 lvl-2=JOOOOO lvl-3=000000
lvl-4=000000 Lvl-5=000000

Within the communication region the allocator keeps several cells that relate
to the allocation process. These cells are displayed using the ALC verb. The display
i n c l u d e s c e l l s • T A L P S , • TA T M N , • TA PM U , • T A PM R , • T A l P P , • TA S W F , A • S D 3 C , • T S I R C ,
.TSRRC, A.MBA2, A.SDP8, and .TEBMR.

FN??alc
••allocation factors•*

.talps
026000000000

.talpp
000000000004

.tsrrc
000000000001

.tatmn
000000000000

.taswf
000000000030

.a.mba2
000000000000

.tapmu
000000000012

a.sd3c
000000000000

a.sdp8
000000000000

.tapmr
0.00000000113

.tsirc
000000000000

.tebmr
000000000000

The LAL verb al Lows the user to obtain the absolute base address and upper address
for the TSS memory region.

FN??lal
•Lal= 01012000 •ual= 01144000

The SSA verb allows the user to display the absolute base address at which the
SSAs of TSS begins and the number of SSAs allocited to TSS.

FN??ssa
•ssa base addr= 01000000 •#ssa's= 000005

Within the derail processor CTSSK), two cells are kept which contain a pointer
to the l as t reg i st er storage ·and the· last IC+ I v a l u es • From the range of add re~ s es
shown in the two cells, the current subsystem is related back to a user-ID using the
SS base address. From the SS information the user-ID is found and displayed following
the register and IC+I values.

FN??dic
•last drl reg storage ptr=074040 last drl ic+i=074022 user-ID--his

4-257 DJ31-00

.i S v A

Within the executive a skeleton messa.ge i.s bui Lt to in.form the CQ·ns.o.le osuniat.o>r
of the changinq st atu.s of the exe.cut ive. The messag.e may be disp.la:yed a.t ttte t·erllt'i;n.a.~
using the STS .terb. The sta.tus message contains info.rma,tion a.bou.t the siz:e of th!e·
executive, urg.ent user in.formation, and utilization da.ta com.put.ed. from d&t• k9!pt in
tne communication region.

FN??sts
*TSS memory s.izes 04':ik=cur. OOOk=chg. 070k=ma·x. 021-k::;swap
wTSS urgent users 000 =urg OOOO=sta id waiting for 000 sec.
xTSS usages 00.03=proc. time 0000 core ne~ded by 000 us•rs

0:0·6 k,, = l 1 s,.t •.
00'0'k:i:•si: ae-

10%:=- X::u:s •di

With the addition of the deferred user concept, several cells were added. to the
communication region. These cells may be dis.played using the DE.F v.erb. lh• cells
displayed 1nclu.de .TSDMX, .TSDPT, .TSDDT, .• TSDlD, .TSD·SD~ .TS,DS·T, .TSDJ&, and
.TSDGT.

FN??def
*TSS deferred cells•

.tsdmx
000000000064

.tsdsd
000000

.tsdpt
000000000000

•. tsdst
000000000000

•. ts dd t
000000000000

.tsdjb
000000

.tsdid
00000:0000000

.tsdgt
0000'00000000

The ERR verb displays the group of cells logically related to TSS error
p~ocessing. Included in the display are the register valu~s stored upon ••try to
·;ssF, the communication region c.ells pertaining to error counts and value.s,,,, and• the
T s s F t r a c e o t e r r o r en t r i e s • Ent r i e s i n t h e TS S F e r r o r t r a c e a re bro ken o.u,t to show.
the original two words, the UST address, the error code and the user-I~.

FN??err
•TSS error cells•
.tereg (registers 0-7,a,9)
000020 064040 055140 0743AO 766041 212000 000005 OOQOQO
0~6222026232 060205076300
.teric .terrc
000000 100000

.tlsgb
000000000000

TSSF E>rrJr trace
wd1 wd2

055140000000 060205076300
OOOOOOC10000 000000000000
OJOOQOOOOOOO OOOQQQ:OOD.000
000000000000 OOOQ~OOOOOOO
00000000000-0 000000000000

USTloc
055140
000000
000000
000000
000000

.tllgb
000000000000

ccerr errcod
000000
000000
000000
0000·00
000000

user-ID
his
0000·00000.00·0
ooo·o·oao-cwo:oo
OOO'OOOO<l'Q .. QOO
oo·o·o.aoo:ooooo

The operator has. the option to broadcast genera.l m.e-ssages to a.LL users on. the
$/Stem. To display the last message (if any) sent to the users., a user may us.e the
APB verb.

FN??apb
*•07.220••test of general apb

4-258 l>J3t-O:O

TSDA TSDA

The executive makes periodic passes through the executive control module (TSSM)
and one function that is performed is the servicing of the input queue. The last
input queue entry processed by thP. executive may be displayed by using the TSQ verb.
The display formats the three-word group <Jnd attempt to interpret the entry beneath
the three word port ion. The interpretations possible are:

interpretations
return batch job
accept new users
accept no new users
status request
change memory size
issue warn msg
get console msg
send console msg
return jout snumb
jdac line return
new task max
date rollover
TSS specific msg
master allowed
master locked out

FN??tsq
last TSS input queue entry
000000000000 000000000000 040000000000
status request

At times it may be useful to display the raw images for a UST. The capability
to display a UST is provided with the UST verb. The verb processor expects a parameter
to be supplied with the verb or following a prompt from the subsystem. The parameter
may be either a user-ID or a four-digit l·ine number (to handle duplicate user-IDs).
No headings are provided for the UST cells, therefore, the user should reference the
TSS executive maintenance document or the system· tables manual for exact
correlations. The display does not include buffer areas for the UST.

FN??ust master
442162632551
000000000000
000000000000
055031055037
000000000000
000000000000
000000000000
054713054721
000000000000
000000000000
000000000000
000000000000
000000000000
000000762273
000000000012
000000000101
000000000000

202020202022
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000

000000000360
000000000000
000135000360
000100000000
000000000000
00-0000000000
000000000000
000000000000
014213000050
000000000000
000000000000
000000000000
000000002015
000332012437
OOOOOQ000006
ooooocioooooo
000000000000

4-259

000050572313
055040042020
056735100030
106002002000
000000000000
000000000000
000000000000
000000000000
000000017411
000000000000
000000000000
000000000000
000000413614
000000000000
ooopoooooo14
000000000000
000000000000

000000000000
000000000000
000000000000
600001002000
000000000000
000000000000
000000000000
000000000000
100000000000
000000000000
000000000000
106511000065
000257620000
000000000000
000000000000
000000000000
000000000000

DJ31-00

TSOA TSDA

The INF verb is provided to the termi,nal user. to serve as a quick reminder when
the function of a cell is unknown. To obtain an explanation of what a cell's function
is, the ~ser ~ay enter the verb followed by the logical name (from the macros> of
the cell. The display can provide explan~tions for logical names in the SSA, UST,
and TSSA communication region •

FN??inf
.tcfil

• tcfil
-file codes for program load files

The working levels of offset may be zero-cleared using the CLR verb. No reply
is sent to the terminal upon completion of the task.

FN??clr

The SMO and OMO verbs both function using the TSS module identifiers as
parameters (e.g. A, B, c ••• M, N, 0). The SMO verb allows the user to set a working
offset which points to the start of the module as specified by the user. The DMO
verb allows the user to obtain the offset for a given module based upon the
input.

FN??smo f
FN??dof
working offset=011504
lvl-1=000000 lvl-2000000 lvl-3=000000
lvl-4=000000 lvl-5=000000
FN??dmo f
•offset for module f 011504

The snap verb ,SNP, provides a snapshot capability to the terminal user. The
user may snap locations in the dump using different levels of offset (either working
or offset levels). The options required by the verb processor take the following
form--SNP FLD1, FLD2, FLD3. The first field is the starting address of the snap,
the second field is the number of words to snap, and the third field is the optiG>inal
l e v e l o f o f f s e t t o be a pp l i e d to t h e snap • Th e L V L v e r b ass um es a pa r ,j\ffi e- t ~ r ;; n t h e
range 1 to 5 will follow the verb. The LVL verb is use-d to move the currer'lt
working level of offset to one of five levels of offset.

4-260 f):J:Jl-00

TSDA TSDA

FN??snp 0,10 (assuming Level set by SMO verb above)
•snap*
000000
000004
FN??lvl
FN??dof

070600020002
001440,554200
4

working offset=011504

0706000502.01
011512710200

001430753200
001430753200

Lvl-1=000000 lvl-2=000000 lvl-3=000000
Lvl-4=011504 Lvl-5=000000
FN?? snp O, 10, 4
•snap* L=4 0=011504*
000000 070600020002
000004 001440554200
FN?? sof 123
FN??snp 0,1
•snap*
000000 000004056720
FN??snp 0,1,4
snap L=4 0=011504*
000000 070600022001
FN??dof
working 'offset=000123

070600050201
011512710200

001430753200
001430753200

Lvl-1=000000 lvl-2=000000 lvl-3=000000
lvl-4=011504 lvl-5=000000

011515710200
040107221203

011515710200
040107221203

The history registers captured as part of the header record may be displayed
using the HIS verb. If the dump occurred as a result of a hardware failure that was
trapped in the history registers, the formatted contents of the registers are
displayed. Included in the display are CPU#, fault type, faulting instruction,
register contents, and the 16 cycles of the OU/CU. During the tests of the
software, no faults within TSS were attributed to the type of error that could
be captured in the history registers, therefore no example exists.

T.he gates in the system are gathered as part of the header record information.
The status of the gates may be displayed using the GAT verb. The display shows all
closed gates in the system.

FN??gat
closed gates

.crlgq

Based upon the .CRLAL and .CRSNB tables captured in the header record
information, the MEM verb displays the snumb, absolute lower address, and program
number of those jobs in execution at the time of the failure.

FN??mem
memory map
snumb La L pgm#
$CALC 000136000 01
$PALC 001174000 02
$SYOT 0'0131 6000 03
SRTIN 001242000 04
TSS 001012000 05
$FSYS 000144000 1 2

4-261 DJ31-00

TSDA

w i t h i n t he e x e c u t i v e s eve r a l c e l l s p e r t a i n to t he "·c u r rent ,., us 'EH • lh ~ c el l s
i n c l u de • T C L 0 C , • TE S S 8 , • TE LA L and • TC LI N • Th e s e c e l l s ate d i s pl aye d a l on g .wit h th e
user-ID through the use of the CUR verb. The user-lD is locat~d usihQ tti~ b~~e of
the current user. · ,

FN??cur
.tcloc

074000000000
.tessb

074014055140
.tel al

074000000011
.tclim

0140000000-00
user""H>

h 'is

The executive manages a linked list of cells that indicate the ava'i-lability 1o:f
work space for UST usage. The linked list may be displayed using th~ CW1< verb. the
display locates the hole and indicates the size of the area~

FN??cwk
ust mgmt core-hole list

loc-hole size
057210 000570

The executive now has the ability to utilize more than one pro~~ssor v1a th~
s u b - d i s p a t c h q u e u e • Th e i n f o r m at i o n r e l a t i n g t o t h e u s e o f t h e s u b - ·d i s pa t c :h q w 'l~ u·e
is contained in two areas--1)the communication region (queue head·et) a1nd ·2> an area
beyond TSSO and prior to the USTs Cthe entries). The display of the Strc;i v~rb form•ats
the queue header information and follows that with th~ analy$is of eath of the
three threaded lists--1) the ready chain,2) the fault chain, and 3> the available
chain.

FN??sdq
sub-dispatch queue header

gate #pro all/dsp tod at disp
016463 open 000004000000 0002402-04633
proc time SS q b~sy c6unt ready chain
000003055375 000000000000 000000000000

temp ready count rdy limit
000000000000 000000000000 000012400004
ready chain empty
fault chain empty
avail chain

time quantum
000000002400
fault ·chain
000000000000

his
his

user-ID USiloc
055140
055140

s s- bar
074014
074012

faul ti inter
inter
inter

#disp
000000002247
avail chain
05,4420000000

The executive maintains a list of queued events called t~e ~xecutive a•rvi~~
qu·eue. The linked list is displayed using the ESQ verb. The user-ID and U'Sl°a•ddres·s
are displayed for any entries found.

FN??esq
executive service queue empty

lhe executive maintains an area in the communications region to hold the mess<'39'e
directed to a specific user-ID or station. The TSM verb can be used to di~pl~y th•
specific message cells~ The display shows whether the message wa• destin•d for a
user-ID or station id and follow that indication with the ~ess•g• itself.

4-262

TSDA TSDA

FN??tsm
•TSS specific msg for sft
••07.222**test of specific message for software

The EMM verb all··ws the terminal user to see the formatted display of the MME
.EMM trace table kept in TSSM. The trace tally pointer, is displayed first followed
by the entries themselves. Each entry is interpreted to show the original contents,
user-ID, relative address of the call to the trace routine, and the module from which
the call was made. If the value contained in index register 2 can be identified as
a UST pointer, the user-ID is interpreted as part of the display. The trace tally
pointer value is used to mark the next entry with a NXT>.

F N?? emm
emm trace tally

entry
012150224740
012150224740
012150224740
012150224740

nxt> 012150224740

ptr-046252000100
user-IDCx2->) Loe of call

000444 TSSF
000444 TSSF
000444 TSSF
000444 TSSF
000444 TSSF

To exit from the subsystem the END verb or the PRT verb may be entered by the
u s e r • Th e EN D v e r b d i s p l a y s t h e r a t i o o f d i s k I I O h i t s I m i s s e s p r i o r t o i s s u i n g t h e
DRL RETURN to complete processing. The PRT verb asks for an$!DENT image (conforming
to site standards) to be used as a header to the printer report produced. The reply
following the request for an ident image will be the snumb assigned to the
backdoor sysout job producing the report. The printed report contains some assorted
header information followed by the dump body. Throughout the dump several pointers
are inserted to identify the origin of the TSS modules and the UST's.

4-263· DJ31-00

UCAS UCA$

Purpose

The UCAS command transliterates all lowercase ASCII cheracttr$ to upperci$e
ASCII.

Format

UCAS

Discussion

This command applies to keyboard/display type devicet only.
command.

4-264

See th~ ~CAS

WRITE WRITE

Purpose

The WRITE command directs output to a designated tape cassette.

Format

WRIT[EJ TAPE [n)

[nJ ::= 1 or 2, default value is 1.

Discussion

This command can only be used on 7700 Series VIP (device 13, 14 or 15
octal).

4-265 DJ31-00

SECTION VII

LOADING USER SUBSYSTEM PROGRAMS

User subsystem programs may be executed in the Time Sharing System using one
or more of the Loader functions described in this section. LOOT and LOOS support
two of the loader functions and enable execution of a user program or resident TSS
subsystem in a debugging environment. The Command Loader is a default subsystem that
is invoked whenever an unrecognized command is given, either at system selection level
or in line-numbered build mode. The Command Loader interprets this "invalid command"
as an H• cat/file descriptor and will attempt to access, load, and pass control to
the associated program.

COMMAND LOADER SUBSYSTEM

The Command Loader Subsystem is invoked by the TSS executive whenever an
unrecognized command is given, either at system selection Level or in line-numbered
build mode. This subsystem is nearly identical with LODX, except that (1) no
questions are asked of the user, and (2) the input is construed to be the file
description of an H* file that is to be loaded and executed. The descriptor must
conform to one of the following conventions:

1. catalog/filename is taken as is. If the cat/file descriptor is qualified
by a user-ID, the reference is to the named file in the specified user's
catalog. Passwords, permissions, and up to three Levels of subcatalogs
may optionally accompany the descriptor. Default permissions will be
read only.

2. /filename implies user-ID/filename. The named file emanates from the
user's own catalog. As with the above, passwords, permissions, and
subcatalogs may be specified.

3. filename, delimited by a blank or carriage return, implies
CMDLIB/fi Lename. CMDLIB is a special system master catalog (SMC) entry,
analogous to the existing LIBRARY SMC, which may contain
installation-coded subsystems. Each such subsystem must be a quick-access
H* file having general or specific read or execute permission, with a name
consisting of the first four (or fewer) characters of its associated
command. Delimiters other than blank or carriage return should not
immediately follow the filename specification, as a loading failure may
result. Although the file may be passworded, the password cannot accompany
"filename." Note that the subsystems resident in CMDLIB may be coded in
FORTRAN, ALGOL or JOVIAL, as well as GMAP. Therefore, this convention
permits an installation to easily install its own subsystems.

A blank following an alphanumeric character string terminates the input scan.
Blanks are ignored if immediately preceded by a delimiter.

7-1 DJ31-00

The character string (conventions 1 or 2 above) im.m.ediately following the LaH
sLa·sh (/)encountered in a tile description is placed in the UST l/0 buffer vi .. a J)RL
fiSEUD'O. For example:

•JOEDOE/JST~ 1234T

A DRL KIN1
, i 1' tJCecuted· by the loaded program, w.ould receiy.e th.e .charact.er

string,

JSTS 1234T

Use of the colon (:)overrides this feature. See "Command Lo.ader Usctge" below.

I n t h e f o l l o)i. i n g e x amp l e , a n e w s ub s y s t em t o c r e a t e ~ em po r a r y f i .l e s i s d e $ i r e .d •
The subsystem is to be invoked by a new command; 11 CAEATE 11

, which may optionally be
a c c om pan i e d wit h i;t f il en am e, s i z e and mode i n d i .cat o r • I f not spec i f i .e .~, i t i s .a s s um e d
that the "CREATE" subsystem will request these parameters~

*CREATE TMPFIL1,3,RANDOM

The TSS executive, not recognizing the command "CREA", invokes the Command
Loader subsystem. The Command loader input line scan, upon encountering a blank with
no preceding slash, makes a file access with the following description:

CMDLIB/CREA,R

If the access is successful, the program is immediately loaded and control is
transferred to it. Thus, a new command has been introduced by simply placing the
subsystem H* file in the CMDLIB catalog under a name corresponding to the first four
characters of the command itself.

The Command Loader Subsystem. can be utilized to initiate a command file
application.

COMMAND LOADER ~

Conventions, "catalog/filename" or "/filename", optionally permit the user to
s p e c i f y a p a r t i c u ~ a r e l e·m en t o f a mu l t i e l e-m e n t H * f i l e t o be l o a d e d • Th i .s
s p e c i f i c a t i o n , i f p re s en t , mu s t i ·mm e d i a t e l y f o l l o w t h e f i l e d e s c r i p t o r w i t h a n
i n t e r v en i n g s em i c ·o l on (;) • I f m u l t i p l e e l e m·e n t s e ·x i st o n t h e H * f i l e a n d t h i s f i e l <:f
is not specified, the C-omm>and loader ass1.tmes that the H* file contains an ov~rlay
structure and searches the catalog block(s) for the main link, identified by the
name "111111". ~n all cas-es, the Command Loader always loads the file control block
element of an H~ file, if one e~ists.

A third field <or t~e second field, it an element name is not specified) may
accompany the input and must be prece-ded ·by a colon(:). If present, all characters
of the input line up to and including the colon itself are effectively deleted from
the key I/O buffer resident in the user's UST. Thus, a subseq1,1ent DRL KIN, when issued
by the loaded program, will only receive that portion of the original line that
immediately followed the colon.

DJ31 ... 0D

The Command Loader issues the message, "009-SYSTEM UNKNOWN" or "COMMAND
UNKNOWN" (whichever is appropriate) when any Loading failure occurs. The user may
determine the reason for the failure by requesting LODX to Load the same file.

The H* file to be Loaded is always accessed with an alternate name of the form
".HS.", where "S" assumes a value in the range 0-3, inclusive. The choice of this
value is a function of the current CALLSS pushdown level. Prior to accessing the
specified file, both the file itself and the alternate name (.HS. at the same Level)
are deaccessed. Unless the H* file contains an overlay structure, .HS. is deaccessed
upon completion of loading.

In order to force the system to invoke the Command Loader when the first four
characters of a cat/file description duplicate a known TSS command, the user can
prefix the cat/file description with any printable character(s) that are. not
syntactically Legal for a description, such as blank,!,?, etc. The Command Loader
ignores all leading characters of the input Line until it encounters a letter, digit,
dash, period, or slash. If it is necessary to ignore leading characters, the Command
Loader effectively deletes these characters from the UST I/O buffer via DRL
PSEUDO. This is for thP. benefit of subsystems that execute a DRL KIN to retrieve
the Last Line of input.

The Command Loader facility is also available through DRL CALLSS by specifying
the argument name "CMDL" (or any unique name). A program that invokes the Command
Loader in this manner must ensure that the I/0 buffer in the UST is properly prepared
for examination by the Loader. The DRL PSEUDO service function provides a convenient
means for accomplishing this.

As with the Command Loader function, a cat/file descriptor accompanied by an
optional element name and/or the partial Line-delete (colon) field is required. If
this information is not specified on the same Line as the LODX command itself, a
request is issued for it. Upon completion of Loading, the user is given the
opportunity to:

1. Apply octal patches, either from the keyboard or a file.

2. Save the loaded program, either back on the original H* file or on a
specified file.

3. Place the Loaded program into execution.

POST-LOADING OPTIONS

The following message is issued to the user upon completion of the Loading
function performed by LODX, LOOT or LOOS.

PATCH~ SAVE OR RUN?

Only the first character CP,S, or R) of the response is necessary. If a null
response is given (carriage return only), the Loading function is terminated and user
return~d to the system selection Level or build mode.

7-3 DJ31-00

LODX responds with a"?" indicating readiness to accept the first patch .. The
patch data must consist of a 1- to 6-digit octal address, delimited by a blank,. which
in turn must be followed by any number of 1- to 12-digit octal fields <the patch data),
separated by commas. Successive question marks are issued to obtain patches untit
receipt of only a carriage return,"*", or "D". A carriage return cause·s rei.ssuance
of the "PATCH, SAVE OR RUN?" query, wni le an "*" or "'D" causes contro·l to be
passed to the loaded program.

PATCH Filedescr

The specified file is used as the patch source. The format of the filtt is cuacHy
the same as a series of patches entered from the keyboard. A patch file created by
the text editor may also contain the"*" or 11 1>" indica.tor to enable program
execution. If an end-of-file or any error is encountered, the '''PATCH, SAVE OR'. RUN?''
query is reissued.

The PATCH function of LOOX, LOOT, and LOOS accepts patche·s that are
formatted for the $PATCH section of startup. A blank terminates the patch data and
allows comments and/or module catalog names to be included on the line contatnin•
the patch(es); e.g.

8 16 32 73

243 OCTAL 5600.004 TZE 5,IC • TUCC

The usefulness of this feature is apparent in that a patch file can be
constructed, tested and subsequently JPUNCHed for inclusion in the startup deck.

The loaded program is stored back oh the H* fit~ from which it was obtained.
Note that the file now contains a single program element, regardless of how •any
elements were initially present.

SAVE Fi Ledescr

If the specified file exists, LODX saves th:e loaded prog:ram in l't* format cm this
file. If _insufficient space exists, an attempt is made to grow the file or~ i·f th·e
file does not exist, it is created for the user at thi·S tillfe. ihe trace package i's
not included on the saved file when LODT or LODS has been specified.

SAVE Filedescr;Progname

The Loaded program is appended as an additional element on the specified file
with a name corresponding to "progname". The name must consist of 1•6 alphabetic
and/or numeric characters (period or dash is also permitted).

7-4 DJ31-C):O

RUN

The loaded program is entered for execution at the entry address specified in
the control block of the H* file.

RUN nnnnnn

Same as above, except an alternate ·octal entry address, nnnnnn, is desired by
the user.

LOOT

The LOOT subsystem provides a debugging environment for a user program resident
on an H* file. As with LODX, the H* file is loaded and the user given the opportunity
to PATCH, SAVE OR RUN. In addition, however, a copy of the trace package is appended
to the resulting load, and TRACE is provided with the program's true entry address
in its linkage register (X1). When the RUN command is given, LOOT transfers control
to the trace package. TRACE is thus initially given control, and when its first "R"
command is exercised, program execution begins. If the trace mechanism is engaged
before issuing the "R" command, the user's program will be executed in a controlled
environment.

LOOS

LOOS is similiar to LOOT, except that ·a specified TSS subsystem is loaded and
bound with the trace package instead of an H* file. This capability is primarily

·intended for those responsible for subsystem maintenance and site system
personnel. The command associated with the desired subsystem, followed by any of
its necessary parameters may accompany the LOOS command. If not specified on the
same line as the LOOS command, this information is requested from the user. As with
LOOX and LOOT, an opportunity is given to PATCH, SAVE (filedescr required) OR RUN.
Prior to relinquishing control, LODS removes all characters of the input line
that prefix the command word <via DRL PSEUDO). This would normally be the LOOS command
itself and its terminating delimiter. Thus, for example, the following use of LODS
would result in loading the LIST subsystem for debugging purposes:

LOOS LIST FILEX(100,200);FILEY

NOTE: The LODT and LODS commands permit the load origin of the Trace Package
to be specified. (See the Debug and Trace manual.) This
specification must be preceded by a semicolon and requires the format,
TRACE-nnnnnn, where nnnnnn is the desired octal address at which to load
the Trace Package. Thus, to load a program with the Trace Package origin
at location 14000:

*LOOT JOE/JSTS;TRACE-14000:JSTS 1234T

7-5 DJ31-00

This feature is useful for debugging overlay structures or for programs
that utilize core beyond that defined by the program size at load time.
If a program element must also be specified, it may either precede or
follow the origin specification.

GENERAL ~ REGARDING ALL LOADER FUNCTIONS

Upon completion of loading, location 31 <decimal> of the program's slave prefix
is initialized to reflect the unused space (hole) between the last location Loaded
(bits 0-17) and the end of allocated core (bits 18-35). All L.oader functions
that load from an overlay-structured H* file always leave the file in the AFT. The
ASCII name (or alternate name) of this file can be found in the slave prefix,
words 10 and 11 (decimal). The remainder of the prefix area, in addition to any core
allocated to the program that was not initialized during the loading process, is
cleared.

The default permissions used by all loader functions for accessing H* or patch
files are determined as follows:

1. READ and WRITE permissions are requested if the file description either
(1) is not qualified by a user-id; or (2) is specified with the SAVE
option.

2. READ permission only is requested in all other cases.

An explicit request for execute-only permission will be honored by both the
Command Loader and LODX functions. However, LODX does not issue the request for
options upon completion of Loading. Prior to passing control to the program, all
loader functions execute a DRL OBJTIM, notifying the TSS Executive that READ requests
on files accessed with execute-only permission can no longer be honored.

LODX and LODT deaccess the H* load file (if necessary) prior to attempting to
access it, unless the file description consists solely of a 1- to 8- character
filename. The file is not deaccessed upon.completion of loading unless execute
permission was specified (LODX). Note that none of the loader functions permit an
alternate name specification to be given for a cat/file description.

"LODX" permission must be granted to users, either selectively or collectively,
by th• master user for use of the Command Loader, LODX and LOOT functions; however,
permission is not required for use of the Command Loader when the "filename" CCMDLIB
reference) convention applies. Similarly, "LOOS" permission must be granted to those
requiring use of the LOOS facility. LOOS permission implies both LOOX and LOOS
permission. Note that since LOOS is a privileged subsystem, authorization to utilize
it should be judiciously granted.

7-6 DJ31-00

SUBSYSTEM DUMP FACILITY

Dump Procedure

If the user wishes his subsystem to be dumped to a permanent file when an exception
condition occurs Cor when, at his discretion, he calls for an abort via DRL
ABORT> he does the following:

1. Creates a linked file named ABRT of sufficient length to hold his entire
subsystem.

2. Before calling the subsystem into execution, accesses the file named ABRT.
This can be done with the ACCESS subsystem, GET command, etc.

The subsystem will now be dumped to this file when either a fault occurs that
the subsystem does not handle or a DRL ABORT is executed by the subsystem. After
this occurs, the user can inspect his dump with the subsystem called SABT (Scan Abort
File), described below.

If the user does not have an ABRT file in his AFT at the time the exception
condition occurs, the TSS Executive will create a temporary file of sufficient size
to contain the dump. ·The ABRT file is released at logoff time without regard to
disposition; i.e., the user is not given the opportunity to make it permanent as for
other temporary files.

SABT (Scan Abort Fi le) Subsystem

When a fault occurs in a subsystem that does not handle such faults, or a DRL
ABORT is executed, the aborted subsystem is copied to the ABRT file. By means of
the SABT subsystem, the user can scan the ABRT file by snapping portions of it at
the terminal.

SABT is called as a system selection or while in line-numbered build mode:

*SABT
OFFSET?

The user may specify an offset to be added to all addresses requested.
Designation of areas to be snapped can be given as in the following examples Call
numbers are octal and will have offset, if any, automatically added to them).

?1235
?172,14
?2354-2367
?(carriage return)

Meaning

snap word at 1235
snap 14 words starting at 172
snap from 2354 through 2367
done, return to calling level.

7-7 DJ31-00

Output is typed in the following form:

Loe word1 word2 ~ord3 word4

It is possible to have SABT request that the dump be printed at the central site
by responding "W" to the OFFSET? question. Upon receipt of this response, SABT
requests the IDEN7 image and constructs a batch CONVER activity ~hi ch is initiated
via DRL SPAWN. By responding "w xx" <where xx is a two character remote station
identifier, e.g., AB> to the OFFSET? question, the batch CONVER activity will route
its output to the remote destination.

SOURtE CSRC) FILE FORMAT

The standardization of source-text files allows more than one system to process
these files. For example, using a standard file format allows EDITOR to operate on
BASIC text. All text files are maintained in ASCII format. They are Linked files
that contain block and Logical record control words that allow the files to be
accessed by File and Record Control. The standard source file used by
Honeywell-released subsystems (the current file) is named *SRC. Its format is as
follows:

Initial 320-word block:·

Block Serial
Number
Record Size
C20 decimal)
Number of
320-word data
blocks used.

Line

1718
Block Size

Media Code
in bits 26-29

edit indicator

ch.

Data

0
Media Code (6)

in bits 26-29

7-8

Block Control Word

Record Control Word

1st record in file is
always type 8.

20-word file header.

RCW

2nd and subsequent records
are type 6.
Next available character
position in last word:
00-full word used
01-one character used
10-two characters used
11-three characters used

Unused characters in last
word contain delete charac
ters C177)

EOF, if the last block of
the fi Le.

l>J31-00

Block Control Word (BCW) is the first word of each 320-word data block and
contains two binary values as follows:

bits 00-17

bits 18-35

Binary equivalent of block serial
number -- the sequential number of this
physical record, beginning with 1.

Binary equivalent of block size -- the
size of the block in words, not
including the BCW.

Record Control Word (RCW) - Records within each block are variable in Length,
and each record begins with a record control word. The contents of the RCW for
nonpartitioned files are:

bits 00-17

bits 18-19

bits 20-23

bits 24-25

7-9

Binary equivalent of record size in
words, not including the RCW. If the
file is assigned to disk and this value
is zero, bits 18-23 are interpreted as
a file mark analogous to a tape
end-of-file marker.

Next available character position in
last word.

The field is interpreted as:

00 full word (four characters)
used

01 one character used
10 two characters used
11 three characters used

In all cases, the two bits indicate the
character space and may be used in the
formation of a tally word. Any unused
character positions will contain a
delete character (octal 177).

Not used unless bits 0-17 are zero, in
which case bits 18-23 contain the
specific file-mark characters. The
standard EOF character is octal 17.

Zeros.

DJ31-00

bits 26-29

bits 30-35

Record media cod~-~

O - Print~Line image with no
slew (BCD)

- Binar~ record <e.g.~ FORTAAN
binary record. tOMbK ftt.) ~

2 ... Hollerith ca,rd image Cl3CD>
3 - Print-lint ima~e <BCD>
4 - Reserved for us~r.
5 - TSS ASCII file fdrlih3t <otd

format)
6 - ASCII Standard System format
7 ~ ASCII print-tine image, with

slew control word
8 - TSS information record

9-15 - Undefined

Media Code 6 is used in tsS except the
first record which is Media Code 8 ..
Normally the other codes are not used by
TSS.

Report code.

Second and succeeding 320-word blocks:

0 1718
Block Serial Block Size
Number
Rec o r-d S 1 z e char. Media
Number of words Code 6
(binary)

Data

Recora Size char. Media
Number of words Code 6

Data

OW O]_tr -f7J! 000 EOF, if last block of fite.

The ASCII text consists of strings of 9-bit characters. A character string does
not extend from one block to another. A Record Control Word containing 000000170000
<octal> is u!ed to indicate EOF.

7-10 t>JH-eo

SY* FILE FORMAT

The SYT* file format is the same as the SY** format.

All nonempty records except the Last:

Rec •
Cont. (
Word

63
Words

v

0

Number

1718

of Words J Relative Block

Record Control Word CRCW)

9-b it ASCII characters

RCW

9-bi t ASCII characters

RCW

9-bit ASCII characters

Unused

Final Nonempty Record:

63
Words

0

1..-

1718

Number of Words l Relative Block Count

RCW

9-bit ASCII characters

RCW

9-bi t ASCII characters

170000

Unused

7-11

Count

~

35

v

Count begins w'ith
zero

DJ31-00

Empty record (a command word was the first Line in input buffer)

0 1718 35

Number of Words 1 Relative Block Count

170000 (E 0 F)

Unused

NOTE: An empty record may or may not be the first record in file. The Record
Control Word CRCW> is described earlier under "Source (*SRC> File
Format."

TAP* £..!.!:!. FORMAT

TA P * i s t h e pun c he d pa p e r tape (PP T) co L L e c to r f i l e that cont a i n s t he u n e d i t e d
PPT input. It is a random file, with a maximum of two links.

Format from mass storage devices - 64 words/block:

c 1718 333435
Number of Words Relative Block Count

31 wd.
max.

31 w d.
max.

m

9-bi t

m

9-bi t

1 x1y1o

ASCII Characters

1 x1Y10

ASCII Characters

Unused

m = character count of input data block <<120) - may be zero
x = 1 if timing error occurred
y 1 if last block

7-12 DJ31-00

TIME SHARING DEBUG TRACE PACKAGE

The debug/instrumentation capabilities available to the time sharing users
include the following.

1. A trace mechanism is capable of collecting and/or displaying information
as it steps through the program one instruction at a time.

2. Commands .:AVE and RESTORE permit the current state of the program to be
saved and subsequently restored. This feature effectively provides a
means to back up and start over again.

3. Multiple commands, separated by a slash(/), can be specified on a single
input Line.

4. Continuation input is possible by ending an input Line with a
delimiter.

5. Mnemonic operation code and modifier interpretation can optionally be
requested with memory snapshots.

6. The PATCH command permits a repeat count for patching a contiguous area
of memory with the same datum word.

7. The LOCATE command can be used to list the absolute addresses of all SYMDEFs
defining subprogram entry points. Alternatively, only selected SYMDEFs
can be listed.

8. The CALL command permits the user to invoke any selected subsystem. When
the subsystem terminates, control is returned to the trace package.

9. The break key can be used to either initiate a manual breakpoint or
terminate output being produced by a trace package command.

1 0 • P r o g r a mm e d b r e a k p o i n t s (t h o s e e s t a.b l i s h e d .b y t h e B c om m and) c a n b e
conditional; i.e., such a breakpoint is serviced only if a prescribed
condition exists.

11. The FIND command can be used to search memory for a specified data pattern
and print the address at which the pattern was found. An optional mask
and/or repeat count can accompany the command.

12. The EXECUTE command permits a specified number of target program
instructions to be executed in the controlled environment provided by the
trace mechanism, followed by a return to command level.

13. The package has a built-in user error detection capability. For example
if the user attempts to snap or patch memory outside the bounds of al located
memory, or enters an invalid command parameter an error message is
printed.

7-13 DJ31-00

Binding Trace Packa~e With Target Program

The trace package can be bound with the target program by including an object
deck in the General Loader activity which generates the LODX H* file. This technique
necessitates some means of invoking the package at execution time. Several
alternatives exist,

1. Include a $ ENTRY TRACE control card in the General Loader activity.
This causes control to be passed to the trace package by LODX upon
completion of loading. The actual entry address must be supplied with the
first RUN command, when it is finally issued.

2. Incorporate one or more calls to the trace package in the source program
before assembling or compiling. This is accomplished by using a call
statement, as follows:

CA LL TRACE

Programs coded in GMAP can utilize the following sequence for linkage:

SYMREF TRACE

TSX1 TRACE
(or)

XED TRACE

Regardless of the linkage choice, the next RUN or EXECUTE command causes
execution to be resumed at the location following the TSX1 or XED. The
trace package can accommodate both types of linkage, using the same
entry point for each type. The entry sequence is:

SYMDEF TRACE

EVEN
TSX1 O,IC*

TRACE NOP **,DU

The entry point <TRACE) is forced into an odd location. This is no problem
for the TSX1 which transfers to the NOP. The XED, however, having an odd
effective address, causes the instruction pair (TRACE-1,TRACE) to be
executed. Since the first instruction of the pair is a TSX1 with IC*
modification, its effective address is TRACE.

7-14 DJ31-00

If the linkage register (XR1) is in use and must be preserved, the
following sequence should be used to preserve it:

ST X1
TS X1

<or)

TRACE
TRACE

STX1 TRACE.
XED TRACE

3. Utilize th~ patch function of LODX to patch in a TSX1 (or XED) to the trace
package.

A special loader, LOOT, is available to: load an existing H* file, append a
copy of the trace package to the loaded program and simulate a call to it from the
program's actual entry point. This technique is possible, since the trace package
has been implemented in floatable code and can be Loaded anywhere in memory without
relocation.

Command Language Usage

Since the trace package has been bound to the target program and placed in
execution, the following message is issued when the package is invoked at its entry
SYMDEF (TRACE):

NNNNNN: FUNCTION?

This indicates readiness to accept the first command. The address, NNNNNN, is
the Location of the invoking TSX1 or XED. Unless an offset has been previously
established, the indicated address is absolute. After performing a specified
command, or if the break key is used to interrupt it before completion, the trace
package issues a question mark (?), which is an implicit request to enter the
next command. This process continues until a RUN, EXECUTE, ABORT or TERMINATE command
is exercised.

The commands can be grouped in two general categories according to type. Type
commands require a single letter function identifier although some must be

accompanied with parameters. Type 2 commands require a word response. Although the
full word can be specified, only the first four characters are required.

In most cases, both types of commands require accompanying parameters, while
with some, parameters are optional. Unless otherwise stated, the following rules
apply to parameter specification:

1. All numeric parameters (addresses, repeat counts, etc.) must be specified
in octal.

2. Parameters must be separated from one another by a single comma, or by one
or more blanks. If the first parameter is numeric, it can immediately
follow the command with no intervening delimiter.

7-15 DJ31-00

3. Alphabetics can be· specified in either uppercase or lowercase.

4. All nonprinting characters except the carriage return are ignored.

5. If more parameters must be specified than can be c~ntained on a single
line, the line can be terminated with a delimiter. This causes a request
for continuation input to be issued to the user. The terminating delimiter
can be a comma, blank, dash or semicolon, whichever is syntactically
correct for the command.

In the command descriptions which follow, the conventions listed below have been
adopted.

A1 - the first one- to six-digit octal address or data specification.

An - the nth such one- to six-digit octal quantity.

01 - the first one- to 12-digit octal data word specification.

On - the nth such one- to 12-digit octal data word.

n - one- to six-digit octal repeat count.

If fewer than the prescribed number of digits are specified, leading zeros are
assumed and the quantity is right-justified.

Nontrace Commands

ABORT <TERMINATE EXECUTION VIA ORL ABORT)

The ABORT command can be used to terminate execution abnormally, with an
immediate return to system selection level. If an abort file has been previously
accessed, the Time Sharing Executive dumps the contents of allocated memory to this
file. The dump can be scanned with the SABT subsystem.

B OR BA (ESTABLISH BREAKPOINT)

The BA command can be used to establish one or more breakpoints in the user's
program. A breakpoint is a location where the trace package re~ains control ~hen
the instruction at that location is executed. At each time, the following message
is issued:

NNNNNN: BREAKPOINT

Where: NNNNNN is the address of the breakpoint, minus the offset if one has been
previously established.

Following issuance of this message, the trace package responds with a question
mark (?), which is an implicit request to enter the first command. When the next
RUN or EXECUTE command is given, the original instruction at the breakpoint location
is executed.

7-16 DJ31-00

A breakpoint can be established at any Location that contains a Legal instruction
(DRL and EISl included); however, the Location cannot be one that is influenced by
a repeat-type instruction.

Permissible forms of the command are:

Form M.e an i ng

B A1,A2, •.• An Break at each effective address offset+Ai.

BA A1,A2, ••• ,An Break at each absolute address Ai.

In some instances, it is desirable to have a.breakpoint serviced only if certain
conditions exist. Such a breakpoint can be specified by appending a relational
operator of the form .REL. to the address, Ai. The conditions are based on indicator
register status at the time the breakpoint location is executed. The following table
describes the various operators:

Operator Causes Breakpoint Servicing Only If

.EQ. zero indicator i s on

.NE. zero indicator i s 0 ff

.LT. negative indicator i s on

.LE. negative or zero indicator i s on

.GT. negative and zero indicators are off
• GE. negative indicator ; s off
.LLT. carry indicator i s 0 ff
.LLE. carry indicator i s 0 ff or zero indicator is on
.LGT. carry indicator is on and zero indicator is off
.LGE. carry indicator i s on

Examples: B1723,1727.EG.,1730

BA 423

C (ENABLE CONTROL VIA BREAK KEY)

The C command can be used to re-enable use of the break key for initiating manual
breakpoints and/or terminating output being produced by subsequent commands.
Normally, the user does not need to exercise this command because break control is
automatically enabled by the trace package when (1) the package is first entered,
(2) any subsequent use of the break key is made, (3) a breakpoint is executed, (4)

any derail instruction is executed by the trace mechanism, and CS) a CALLSS commclnd
has been completed. Thus, its use is limited to cases where the target program
has altered the break vector in the slave prefix area.

1 Extended Instruction Set (EIS) refer~ to extensions to the original GCOS instruction
st. EIS is included in the standard instruction repertoire of Models 6025, 6040,
6 60, and 6080 of the Series 6000 system and fo~ all models of the Series 60 Le~el
6 systems.

7-17 DJ31-00

CALLSS (CALL SUBSYSTEM)

The CALLSS command can be used to initiate an internal call to any desired
subsystem via a DRL CALLSS. If a carriage return immediately follows the command,
the trace package responds wfth the question,

SYSTEM?

The user should, at this time, respond with the desired $ubsystem name<!' followed
by any parameters required by the subsystem. 1 Alternatively, this information may
be specified on the same Line as the CALLSS command. In this case, sim1,.1Lated keyboard
input Cvia DRL P~EUDO) is performed to effectively remove the CALLSS command and
its delimiter from· the input line. This benefits those subsystems that perform a
DRL KIN to obtain the last line of input.

When the called subsystem terminates normally, or if the break key is used to
abort it, the trace package issues the following mestage and resumes accepting
commands:

CALL COMPLETED

Multiple commands cannot be specified on the same 1nput line following the
CALLSS command.

Examples: CALL

SYSTEM? ACCE CF,/AB~T,B/40,100/,R

CALL JSTS 2507T

D OR DA (DELETE BREAKPOINT>

The Dor DA command can be used to delete one or more previously established
breakpoints in the user's program. Deleting a breakpoint consists of removing the
appropriate entry from the trace package breakpoint table and restoring the
original instruction at the breakpoint location.

Permissible forms of the command are:

Form

D

D A1,A2, ••• ,An

DA A1,A2, ••• ,An

D ALL

Meaning

Delete the current breakpoint only.

Delete the breakpoint at each effec;tive address,
offset+Ai.

Delete the breakpoint at each absolute address,
Ai •

Delete all breakpoints.

A request to delete a specified breakpoint which does not exist is ignored.

7-18 DJ31-00

DEC (DECIMAL-TO-OCTAL CONVERSION)

The DEC command can be used to ·convert a decimal number to its octal equivalent.
Decimal numbers up to 11 digits can be converted. The only permissible form of the
command is:

Form Meaning

DEC n Convert the given decimal number to octal and display
it.

Example: DEC 9361

E <EXECUTE INSTRUCTIONS)

The E command provides the capability to execute a specified number of target
program instructions, starting with the next instruction to be executed. Execution
is performed in the controlled environment provided by the trace mechanism. If the
trace mechanism is currently engaged, it is temporarily disengaged until the EXECUTE
command has been performed. Upon completion of the command, the "NNNNNN: FUNCTION?"
message is issued, indicating the new value of the IC (Instruction Counter) and
readiness to accept the next command.

Permissible forms of the command are:

Form Meaning

E Execute the next instruction only.

E n Execute the next n instructions.

Multiple commands cannot be specified on the same input line following the
EXECUTE command.

F OR FA (FIND DATA PATTERN IN MEMORY)

The F command can be used to find the location(s) of one or more
occurrences of a specified data pattern (01) in allocated memory, with the
search commencing at any designated location CA1). An optional mask CD2) can be
provided to enable comparisons only on selected bit positions. If provided, bit
positions of 02 that contain a 1 cause the corresponding bit positions of 01 to be
ignored during the search. If the mask is not specified, comparisons are based on
a full 36-bit word.

P~rmissible forms of the F command are given below. The effective starting
address for each form given is offset+A1. In all cases, FA can be substituted for
F if the search is to start at absolute location A1.

7-19 DJ31-00

Form

F A1,D1

F A1,D1;n

F A1,D1;*

F A1,D1,D2

F A1,D1,D2;n

F A1,01,D2;*

Meaning

Find the first occurrence of 01, starting at location
A1.

Find the first n occurrences of 01, starting at
location A1.

Find all occurrences of 01, starting at location
A1.

F i n d t h e f i r s t ·o c c u r r e n c e o f O 1 ma s k e·d b y O 2 , s t a r t i n g
at location A1.

Find the first n occurrences of D1 masked by 02.,
starting at location A1.

Find all occurrences of D1 masked by 02, starting at
location A1.

lf the search is successful, each address at which the data pattern, D1, is found
a r e d i s p l a ye d • Th e a d d r e s s e s a r e r e l a t i v e t o t h e o ff s e t , p r o v i d e d one h a s b e e n
previously established. In addition, the data content at each address is displayed,
provided a mask is specified.

If the search is unsuccessful, the following message is issued:

PATTERN NOT FOUND

Examples: F1310,56060062056 (find ASCII ".02.")

FA110,2000,777777000777;* (find all derail operation c-0des)

L (LOCATE SYMDEF)

The L command is limited to those programs and subprograms written in FORTRAN
or those th~t utilize the standard GMAP SAVE macro to identify their entry point.
It provides a means for locating an entry point (SYMDE~) location for one or
more specified SYMbEF names. The technique employed involves a pattern search of
memory to identify expansions of the SAVE macro. When an expansion is located, the
address of th@ error Linkage pair C.E.L ••) can be determined. The second word of
this pair contains the BCD name of the first SYMDEF defined in the program. If this
name matches the requested name and other save exi:>ansions cannot be found
referencing the same error linkage pair, the location of the first word of the save
expansion is the desired SYMDEF address. Ambiguity exists if multiple SAVEs
reference the same error linkage; i.e., the name specified in the error Linkage cannot
be identified with the proper SAVE. All names are listed, however.

Permissible forms of the command are:

Form Meaning

L Locate and list addresses of all SYMDEFs.

l S1,S2, ••• ,Sn Locate and list addresses of only the SYMDEFs
specified.

7-20 DJ31-00

The SYMOEF names and their corresponding absolute addresses are Listed, provided
they can be Located. If a specified SYMOEF cannot be Located, its absence in the
Listing indicates failure to find it.

A SAVE can be used to identify the entry SYMDEF for the main program, as well
as for subprograms.

Example: ..!:_Qf_:N,CLOSE,PUT,SUBL

MA,MQ,ME,MI,MXn,MARn (MODIFY REGISTER)

These commands can be used to modify (change) the contents of a register.

Permissible forms of the commands are:

Form

MA 01

MQ 01

ME A1

MI A1

MXn A1

MAR n D 1

Meaning

Modify the A-register; i.e., replace its contents
with 01.

Modify the Q-register.

Modify the E-register. A1 is greater than 0 and less
than 400.

Modify the indicator register.

Modify index register n.

Modify address register n. D1 is an eight digit octal
number

Examples: MA3271402/MQO (modify A and Q)

ME 377

MX4,400000 (note requirement of the delimiter)

0 (ESTABLISH OFFSET)

The 0 command is used to establish an offset, or to change an existing one. When
an offset is in effect, all communication between the user and the trace package
concerning memory addresses are relative to the offset, unless otherwise
specified. The only permissible forms of this command are:

Form Meaning

0 A1 Set offset value to A1.

0 Display current offset.

7-21 DJ31-00

If this command is not used, all address references are absolute; i.e., an offset
of zero will be in effect.

Example: 0110

OCT COCTAL-TO-DECIMAL CONVERSION)

The OCT command converts an octal number to its decimal equivalent. The only
permissible form of the command is:

Form Meaning

OCT n Convert the given octal number n to its decimal
equivalent and display.

Example: OCT 777777

P OR PA (PATCH MEMORY)

The P command is used to patch a contiguous area of memory, starting at a
specified address CA1). The patch data (D1,D2, ••• Dn) is processed serially and
stored in ascending Locations, starting at A1. Each such Di can assume one of the
following forms:

Di - Patch the next location with Di.

n*Di - Patch the next n locations with Di.

RDi - Add the offset to the left half of Di (bits 0-17) before inserting the
patch.

DiR - Add the offset to the right half of Di <bits 18-35) before inserting the
patch.

RDiR - Add the offset to both halves of Di before iriserting the patch.

The form, n•Di, can also be used when Di is prefixed and/or suffixed with the
relocation flag CR).

Permissible forms of the command are:

Form Meaning

P A1,D1,D2, ••• ,On Patch the specified data int.o memory starting at
location offset+A1.

PA A1,D1,D2, ••• ,Dn Patch the specified data into memory starting at
absolute location A1.

Examples: P573 314420623123,422046262066,513163314527

PA 3622 3*R712000000 102 50•0

7-22 DJ31-00

R OR RA (RUN; I.E., RESUME EXECUTION)

The R command is used to resume execution of the target program. Unless the
tface mechanism has been previously engaged, the trace package loses control until
either a breakpoint is executed, or a TSX1 or XED TRACE invokes the package
again. If execution is being resumed from a serviced breakpoint, the original
instruction at the breakpoint location is executed at this time (provided a run
address, A1, is not specified).

Permissible forms of the command are:

Form

R

R A1

RA A1

S,SA,SI,SIA (SNAP MEMORY)

Meaning

Resume execution.

Resume program execution at the effective address
offset+A1.

Resume program execution at the absolute address
A1.

These commands are used to snap, or display, a contiguous ar~a of memory,
starting at a specified address (A1). The snapshot is double-spaced and printed in
the following format:

ADDRESS DATA DATA DATA DATA

If the SI or SIA form of the command is used, the corresponding mnemonic opC'ration
code and modifier are listed beneath each data word (provided the operation code is
legal). In addition, the legal derail instructions show the service function name;
e.g., FILACT, KOUT, etc.

The first line of a snapshot has the letter R or A appended to the address to
indicate whether the address is relative to the offset or absolute.

Permissible forms of the S command are given below. The effective address for
each form given is offset+A1. In all cases, SI can be substituted for S if mnemonic
interpretations are desired. In addition, SA or SIA can be substituted for S if the
specified starting address, A1, is absolute.

Form Meaning

S A1 Snap location A1 only.

S A1,n Snap n Locations starting at A1.

S A1-A2 Snap the interval from A1 to A2, inclusive.

7-23 DJ31-00

Snapshot lines which duplicate the l9st line printed are not shown. An asterisk
(•) is appended to the address of the next Line shown, if any, to indicate the
omission.

Examples: SA1/SA3/SA5 (snap absolute locations 1, 3 and 5)

51472,10 (snap and interpret 8 locations, starting at 472)

s 100-200 <snap the interval from 100 through 200)

SAVE (SAVE CURRENT PROGRAM STATE)

The SAVE command is used to save the current state of the program. Upon receipt
of the SAVE command, the entire contents of allocated memory is written to a temporary
file (*TCP), created for this purpose by the trace package. The command can be
exercised as often as desired. Parameters are not specified.

For a variety of reasons such as no file space available, or I/O error, the
SAVE command can be unsuccessful in completing its function. Its success or failure
is always reported to the user.

RESTORE (RESTORE PROGRAM STATE FROM LAST SAVE)

The RESTORE command is used with the SAVE command. It backs the program up to
the point where the last SAVE command was issued. Its operation includes the
following steps:

1. If the size of allocated memory has changed since the last SAVE took place,
the size is adjusted accordingly.

2. The •TCP file is "bootstrapped" into memory.

3. The success or failure of the RESTORE command is reported to the user.

4. At this point, the entire state of the program has been restored and the
trace package appears to have just completed a SAVE command. If other
commands had been specified after the SAVE command on the same input line,
they are now processed again.

Multiple restores from the same SAVE are permissible. All trace options,
breakpoint locations, etc. in effe~t at the time of the SAVE are reinstated, even
though they may have changed. Files in use at the time of the SAVE are not
repositioned.

Multiple commands cannot be specified on the same input line following the
RESTORE command. As with SAVE, parameters are not specified with the RESTORE
command.

7-24 DJ31-00

TERMINATE (TERMINATE EXECUTION VIA DRL RETURN)

The TERMINATE command is used to terminate execution and return to the level
at which execution was invoked; i.e., build mode or system selection.

X,XA,XQ, XO,XE,XI,XB,Xn,ARn,AR (Display Register)

These commands are used to display the contents of all registers, or a selected
register only.

Permissible forms of· the command are:

Form Meaning

x Display the A,Q,E,I and all index registers.

XA Display the A-register only.

XQ Display the Q-register only.

XE Display the E-register only.

XI Display the indicator register only.

XB Display the base address register.

XO Display index register o.

X1 Display ind ex register 1.

X2 Display ind ex register 2.

X3 Display ind ex register 3.

X4 Display index register 4.

XS Display index register 5.

X6 Display index register 6.

X7 Display index register 7.

ARn Display address register n, where n is an octal dig it
between zero and seven.

AR Display all address registers.

7-25 DJ31-00

TRACING

Trac i n g , as a pp l i e s to the f o l l ow i n g d i s c us s i on, i s a t e c h n i q u e w h i c h cons i st s
of simulating the functional operation of a computer by utilizing one pro~ram to
interpret and execute the instructions of another program. This technique .provides
debugging and instrumentation capabilities, since each instruction of the traced
<target) program can be dynamically examined before it is executed. For ~xample,
any desired analysis can be made of the instruction's operation code, modifier,
effective address, etc.

The purpose of the debug trace package is to provide a simulator or trace
mechanism that is used in the time sharing environment. Seven different types of
traces are available: TRANSFER TRACE, OPERATION CODE TRACE, MODIFIER TRACE, USE
TRACE, CHANGE TRACE, FULL TRACE and MAP TRACE;. An eighth type COWN CODE TRACE) permits
the user to gain control before each instruction is executed.

The command which causes the trace mechanism to become engaged is TRACE (or T>.
Upon receipt of this command, the trace package responds with the question,

TYPE?

This is a request to select the type of trace to be performed. The user must,
at this time, enter one of the following:

TRA
OP
MOD
USE
CHG
FULL
MAP
OWN

If the selection is anything other than TRA, FULL or MAP, the trace package issues
a re q u es t f o r pa ram et e r s re l at e d to the s e l e c t e d type • F o r ex amp l e, i f OP was
specified, the user is asked to enter the operation codes of the instructions that
are to be traced.

The dialogue between user and trace package up to this point can be eliminated,
if desired, by including the type selection and parameters (if required) on the same
Line as the trace command. For example, the following is a request to engage an
operation code trace on the TSX1 and RET instructions:

Examples: ?TRACE

TYPE? OP

ENTER OPS: TSX1 ,RET

7-26 DJ31-00

This can be expressed on a single line as:

TRACE,OP,TSX1,RET

The only other information requirf'd before the trace mechanism can be engaged
consists of the memory locations or intervals where tracing is to take place. The
following message will be issued requesting this information:

ENTER TRACING REGION:

With the single exception of the map trace, the user can respond with any number
of locations and/or intervals specifying the areas of memory he wishes to trace. An
interval specification must take the form of A1-A2, which implies all locations from
A1 to A2, inclusive. All Locations and location intervals are considered relative
to the offset, provided one has been previously established. To specify an absolute
location or location interval, the specification may be suffixed with the letter A.
For example, to trace (1) the absolute interval from 1310 through 1570, (2) relative
location 4633, and (3) the relative interval from 4656 through 4700, the user
responds:

ENTER TRACING REGION: 1310-1570A,4633,4656-4700

A null response to this request (a carriage return only), implies the interval
specification, 0-777777A. Thus, tracing takes place throughout all allocated
memory.

The tracing region specifications may also be included on the same line as the
trace command, selection type and parameters by separating them with a slash (/).
For example:

?TRACE,OP,TSX1,RET/1310-1570A,4633,4656-4700

or, if the default interval C0-777777A) is desired:

TRACE,OP,TSX1,RET/

By using this form, dialog between user and trace package can be completely
eliminated. With the trace mechanism now engaged, a question mark (?) is issued
indicating readiness to accept another command. Following the carriage return,
unless the last command was a RUN or EXECUTE, the question MORE? is typed to
indicate that another command is expected.

At the time the next RUN command is issued, the simulation process begins; i.e.,
every instruction of the user's program is executed in the controlled environment
provided by the trace mechanism. This results in the following functions being
performed:

1. The pseudo instruction counter CPIC) that is maintained by thf' trace
mechanism is updated to the address of the next instruction to be executed.
Unless the previous instruction was a repeat, EIS, derail or one that
resulted in a transfer, the PIC is incremented by one.

7-27 DJ31-00

2. Next, the instruction word at the address furnished by PIC is obtained and
the operation code is examined. If the operation code is found to be
illegal, the following message is issued to the user:

NNNNNN: OP CODE FAULT RESULTING IF EXECU~ED

Where: NNNNNN is
relative to
established.

the address of
the offset,

the offending instruction,
if one has been previously

As with all other error conditions detected by the trace mechanism, the
user is immediately returned to command level. Since the tra¢e mechanism
never attempts to execute an instruction having illegal properties, the
user has three alternatives to resume execution:

a. Patch the offending instruction before issuing the next RUN
command.

b. Specify an address with the RUN command to bypass the
instruction.

c • Disengage the trace mechanism before issuing the next RUN
command.

3. If the instruction is not a repeat, derail or character/byte store, its
final effective address is determined. During this process, the
instruction's modifier is examined to ensure it is Legal. Also, if
indirection is specified, the indirect chain is traversed and all modifiers
encountered are similarly examined. Any of the following error messages
can be issued as a result of this analysis:

NNNNNN:

NNNNNN:

NNNNNN:

ILLEGAL MODIFICATION RESULTING IF EXECUTED
or

TAG FAULT RESULTING IF EXECUTED
or

MEMORY FAULT RESULTING IF EXECUTED

A memory fault error message is issued if the address of an indirect word
fs found to be out-of-bounds.

4. Having established the effective address, an analysis is now made to
determine if the instruction requires a memory cycle or will result in a
transfer of control. In both cases, the effective address is examined to
ensure that it is within the boundaries of allocated memory. Furthermore,
a test is made to determine if the effective address is referencing J

Location within the trace package. This analysis permits recognition of
(1) a breakpoint Location previously established by the B command, and (2)
a TSX1, XED or STX1 addressing the trace package entry point <TRACE). If
the instruction results in a store or transfer referencing some location
in the trace package and is neither (1) nor (2), the following error message
is issued:

NNNNNN: STORE OR TRANSFER INTO TRACE PKG. RESULTING IF EXECUTED

5. If the PIC is within any of the specified tracing regions, the instruction
is now ready to be examined according to the type of trace that has been
selected. For example, if an Operation Code trace is engaged, the
operation code of the instruction is compared with the operation code(s)
selected by the user to be traced. Providing (1) all conditions are met,
(2) a map trace is not engaged, and (3) trace output is not being queued,
a single Line of output is issued to the user indicating the
following:

a. Location of the instruction, relative to the offset, if one is
established.

7-28 DJ31-00

b. The mnemonic operation code.

c. The address field (bits 0-17) of the instruction word.

d. The modifier, if any.

e. The effective address, if applicable. This is also relative to the
offset, provided one is established.

For example:

004633 TSX1

o o ols o 2, Ll c __ c_o_o_s_i3_3_5_> ____ E F FE c TI v E A o o RE s s

. TAG FIELD

INSTRUCTION Y-FIELD

,__---------------------- L 0 CAT I 0 N 0 F INS TR UC TI O,N

If an offset is in effect and either the Location or effectiv~ address
is below the offset, the. absolute address is displayed with an A appended
to the appropriate field(s).

If the displayed instruction is one that is being executed by a XEC or XED,
the Location shown is that of the execute instruction, not the location
of the instruction being executed with an X appended to the Location
field.

A somewhat different format is used to display a repeat-type
instruction. In place of the instruction addrtss, modifier and
effective address fields, the repeat count, increment and terminate
condition(s) is shown. Repeat count and increment are both given in octal.
The repeated instruction(s) is also displayed on subsequent lines. These
can be identified by the absence of the Location field; i.e., this field
is blank.

7-29 DJ31-00

6. The display that results from a multiword instruction is somewhat
different. For example, the following instruction:

MVT <,,1),(1,1),20,1

ARG bESC1

ADSC9 ASCTR,1,X7

ARG TABLE

would result in the following:

MVT

-I
I

<000200

l
l

0 68CD) (000400

-II
4ASC) <002000)

T -l- LA DD R E s s 0 f II TA 8 LE ..

NINE-BIT ASCII

CHAR. POSITION
ONE

ADDRESS Of "ASCTR"

'----------SIX-BIT BCD

'-----------~SIX CHARACTERS

'--------------STARTING CHAR. POSITION

'-----------------ADDRESS Of "BCDSTR"

'--------------------..,...-OPERATION C 0 DE

--------LOCATION OF INSTRUCT I ON

The first argument of the MVT means the first descriptor is indirect;
i.e., the actual descriptor is at location DESC1. At DESC1, the
descriptor is ADSC6 BCDSTR,0,6. The second argument indicates that
the operand length is contained in a register, in this case X7. The
remaining arguments of the MVT are the fill character and the truncation
fault en~ble.

The descriptor types are as follows:

ADS.C4 PKD
ADS C 6 BCD
ADS C 9 ASC
ARG (none)
BDSC 8 IT
NOS C 4 PKD
NDSC9 ASC

7. At this point, the instruction is ready to be executed or, in the case of
certain instructions, simulated. Simulation is necessary if the
instruction (1) results in a transfer of control, (2) stores the
instruction counter <IC) register, or (3) is an XEC or XED. Otherwise,
all of the user's registers are restored and the instruction <or a tailored
version of it) is executed. Tailoring, if applicable, is performed durin9
step three and consists of stripping off modifiers of the following
types:

ALL RI and IR types

IC, IDC and DIC

7-30 DJ31-00

Derail instructions require special consideration by the trace mechanism before
they can be executed. In the time sharing environment, a derail is used to request
a service function to be performed by the Time Sharing Executive, and is analogous
to the master mode <!ntry used in the batch environment. The type of request,
identified by the address portion of the derail, is first validated by the trace
mechanism. If found to be illegal or privileged, the following error message is
issued:

NNNNNN: ILLEGA' DRL RESULTING IF EXECUTED

Next,
execution.

a test is made to determine if the derail
If so, the following message is issued:

is attempting to terminate

NNNNNN: TERMINATION VIA DRL XXXXXX RESULTING IF EXECUTED

where: XXXXXX is the symbolic name of the terminating service function.

This causes ABORT, DRLDSC, RETURN or SYSRET. Also, under certain conditions,
the service functions RELMEM and RESTOR can cause issuance of this message.

Unless the derail is a KIN request, its calling sequence is now reconstructed
within the trace mechanism, tailored if necessary, and executed. Tailoring, in this
sense, consists of changing the return address for service functions such as ADDMEM,
RELMEM and RESTOR so that the trace mechanism does not lose control when the derail
is executed.

If the derail is a KOUTN (Keyboard Output then Input>, the trace mechanism
immediately follows its execution with a KIN (Keyboard Input) to obtain the user's
response. Upon encountering a subsequent DRL KIN in the target program, the trace
mechanism simulates it by moving the input received from the last KOUTN to the user's
buffer. This procedure is necessary because the trace package can perform keyboard
I/O between the user's KOUTN and KIN, thus destroying his actual input data.

The KIN simulation requirement is a means to initiate a breakpoint and enter
command level any time the target program does a KOUTN. This can be accomplished
by responding to the program's input request with the following:

$BRK

Upon intercepting the user's input response and identifying this signal, the
trace mechanism issues the following message:

ENTER ACTUAL INPUT DATA:

At this time, the user must enter the actual data required by his program.
Following this, the trace package enters command Level and the user is now free to
exercise any of the commands available. Traced execution resumes at the time the
next RUN command is issued.

7-31 DJ31-00

~.QI_ TRAC ES

The eight types of traces available to the user are described below.

Transfer Trace (TRA)

The transfer trace displays every instruction that results in a tr~nsfer of
control, provided the instruction causing the transfer is in one of the specified
tracing regions. A conditional transfer TZE, etc. is displayed only when it
actually transfers.

Operation Code ~ (OP)

An operation code Cop code) trace can be used to display every occurrence
of the use of one or more selected operation codes, provided the instruction using
the operation code is in one of the specified tracing regions. When this selection
is given in response to TYPE?, the user is asked to enter the operation codes he wishes
to trace.

ENTER OPS:

At this time, the user must respond with one or more mnemonic operation codes.
A blank or comma is used to separate multiple specifications. If the user desires
to trace the DRL operation code, he can specify a list of only those derail service
functions he wishes to trace. This list, parenthetically enclosed, must immediately
follow the derail operation code specification with no intervening blank or comma.
The list can consist of one or more service function names and/or equivalent octal
values. For example, if it is desired to trace all repeat-type instructions and the
derail service functions OIO, FILSP and REW, the user responds:

ENTER OPS: RPT,RPL,RPO,DRLCDIO,FILSP,REW)

or,

ENTER OPS: RPT,RPL,RPD,ORL(1,13,12)

7-32 DJ31-00

Modifier Trace (MOD)

The modifier trace is similiar to the operation code trace, except that the use
of selected modifiers are traced instead of operation codes. The following message
is issued requesting the modifiers to be traced:

ENTER MODS:

The response must consist of one or·more modifiers specified in the same manner
as for GMAP coding. Only first-level modifiers or single-word instructions are
traced i.e., modifiers encountered in an indirect chain will not be considered. For
example, the following response would trace all uses of index register 1 for
modification purposes and the modifiers DL,SC and CI:

ENTER MODS: 1,1*,*1,DL,SC,CI

The modifiers N, N* and *N can also be specified; however, N* must be specified
as simply *·

Where: N = register
N* or (*) = register, indirect
*N = indirect, register

Use Trace (USE)

The use trace displays every instruction that uses, or references, one or more
specified registers and/or memory locations, provided the instruction is in one of
the specified tracing regions. The following message is issued requesting the
specifications:

ENTER REGS AND/OR LOCS TO TRACE:

Any combination of register designators, memory locations or memory location
intervals can be given as a response. As with the tracing region specifications,
a location or location interval may be suffixed with the letter A if it is given as
absolute. In this case, the offset is not added to it.

Register specifications may include:

A - A-register
Q - Q-register
AQ - combined A and Q registers
E - exponent register
EAQ - combined E, A and Q registers
Xn - index register 0 through 7
I - the indicator register
ARn - address register 0 through 7

For example, if the user desired to trace (1) all uses of the combined AQ
register, (2) references to relative location 1472, (3) all uses of index registers
1 and 4, and (4) references to any location in the absolute interval from 0 through
143 (slave prefix area), the response could be:

ENTER REGS AND/OR LOCS TO TRACE: AQ,1472,X1,X4,0-143A

7-33 DJ '1-00

In addition all traced EIS instructions can be delayed by inserting the
specification "EIS"; e.g.,

T USE/AQ,1472,EIS,X1,X4,0-143A

All multi word EIS instructions are properly traced. However, certain types of
memory location references are not detected by the trace mechanism for both use and
change tracing. Only the effective address of an instruction referencing memory is
tested for the use or change conditions. This precludes the detection of implicit
multiple word references, as is the case with LREG, SREG and double-precision
instructions. Other undetected references include:

1. Locations referenced by repeated instructions

2. Locations referenced by derail service functions

Change Trace (CHG)

The change trace is similiar to the use trace except that those instructions
that actually change the specified register(s) or memory location(s) are displayed.
A change trace is very useful for locating the cause of a register or location that
is being unexpectedly destroyed.

The "EIS" specification for this trace displays EIS instructions that alter
registers.

Full Trace (FULL)

A full trace displays every instruction executed by the program, provided the
instruction is in one of the specified tracing regions. The volume of output received
from this trace is prohibitive for a large tracing region. However, if -Output is
queued in lieu of being immediately issued, a full trace can be of much value in
revealing the final steps that lead up to an unexpected error condition. Output
queuing is discussed in Queue Trace Output in this section.

Map Trace CMAP)

The map trace is used for both debugging and instrumentation purposes.
Instrumentation, as used in this context, implies measurement of a program's
efficiency. By engaging a map trace in the program and allowing the traced program
to run to completion, the user can then display a map report showing partitioned
segments of memory and the number of instructions that were executed in each
such segment. Thus, heavily used areas of code can be identified and appropriate
action can be taken to optimize these areas.

This is the only type of trace which requires the tracing region specification
to consist of a single interval. A ,null response to the tracing region request
implicitly defines the absolute inte~val, 0-777777.

7-34 DJ31-00

The trace package is assembled with a 512 <decimal) word area dedicated for
mapping. Depending on the size of the specified tracing region interval, each word
of this dedicated area corresponds to some subdivided interval of the tracing
region. Whenever the trace mechanism executes an instruction that is in the tracing
region, it determines the subdivision the instruction is in and increments the
corresponding word in the map area by one. Repeat-type instructions are incremented
according to the number of times the repeated instruction(s) are executed. It
is possible for the repeat and the instruction(s) influenced by it to be in different
subdivisions.

The size of each subdivision is a function of the tracing region specification
and is determined as follows:

1. The total number of locations CN) implied by the tracing region interval
CA1-A2) is computed; e.g., N=A2-A1+1.

2. A trial subdivision size is now determined. It is the integral part of
the quotient resulting from the division, CN+511)/512.

3. If the trial subdivision size is an even power of 2 <e.g., 1,2,4,8, •••),
then this is the size that is used; otherwise, the first power of 2 that
is greater than the trial size is used.

It generally takes at least two map trace runs to identify the actual code that
is monopolizing the processor. Suspect areas can be isolated by first using a
relatively large tracing region specification. After displaying the map for this
run, the user can then select the subdivision interval having the most activity and
run the program again using this interval as the tracing region. The second run
provides a finer resolution. The SAVE and RESTORE commands are a means of making
repeated runs.

Own Code Trace (OWN)

The own code trace permits the user to gain control from the trace mechanism
before each instruction is executed (or simulated). To engage an own code trace,
the user must supply a special subroutine to perform his desired tracing function(s).
The entry point to this subroutine is requested by the trace package, as
follows:

ENTER ABS. ADDRESS OF OWN PROCEDURE:

At this time, the user must enter the absolute address of the entry point to
his subroutine procedure. When the next RUN command is issued, control is passed
to this entry point via a TSX1 before each instruction is executed, provided the
instruction is in one of the specified tracing regions. This includes every step
of an execute CXEC or XED) chain, but does not include repeated instructions; i.e.,
the subroutine is entered before the repeat instruction is executed,. but not before
each execution of the repeated instruction(s). Upon each entry to the subroutine,
the following registers are set by the trace mechanism:

XO - contains a pointer to the target program's registers. These registers are
loaded and stored by LREG and SREG instructions addressing this area.

X1 - the linkage register between the trace mechanism and the user's
subroutine.

7-3 5 DJ31-00

X3 - contains the pseudo instruction counter CPIC). The PIC reflects the
location of the current instruction being executed.

X4 - contains a pointer to the location of the instruction word. Except for
instructions being executed via XEC or XED, X3 and X4 are identical.

XS - index 5 contains the effective address of the single word in~truction,
if applicable.

IR - loaded with the target program's indicators.

X6 - nonzero if instruction is multiword EIS.

QR - individual bits in this register reflect attributes of the instruction,
as follows:

Bit No.

00
01
02
03
04
05
06

07
08-16

1 7
1 8
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Meaning If Bit Is On

Unconditional transfer
Conditional transfer
RPT, RPL or RPO
XEC or XED
STCA, STCQ, STBA OR STBQ
STC1, STC2 or TSXn
Instruction changes the register(s)
Specified by bits 18-33
Instruction is a store-type
Reserved
DRL
Set if EIS is executing
If OP being traced
Memory cycle(s) required
DR Tag field (EIS)
AR utilized
QR utilized
AQutilized
ER uti Li zed
EAGutilized
IR utilized
XO utilized
X1 utilized
X2 utilized
X3 utilized
X4 utilized
X5 utilized
X6 utilized
X7 utilized

CARO
(AR1
(AR 2
(AR3
(AR4
CARS
CAR6
(AR?

for EIS)
for EIS)
for EIS)
for EIS)
for EIS)
for EIS)
for EIS)
for EIS)

Following analysis, the user must return to the trace mechanism so that the
instruction can be executed and the simulation process continued. With the linkage
register CX1) restored to its contents at entry, the user has two alternatives to
relinquish control:

1. TRA 0,1 - This return prevents the instruction from being displayed.

2. TRA 1,1 - This return causes the instruction to be displayed. If pause
mode is enabled, command level is entered before the instruction is
executed.

Registers other than X1 need not be saved or restored by the user's subroutine.
They are properly restored by the trace mechanism when the subroutine returns.

7-36 DJ31-00

When using the own code trace, the user must ensure that his trace subroutine
does not use code that is also used by the target program or uses shared data
areas.

If the SAVE macro is used to id(Jntify the entry point to the user's trace
subroutine, the L command can be used to locate its absolute address in memory.

COMMANDS RELATED TO TRACING

DISPLAY (Display Trace-Related Information)

The DISPLAY command is used to selectively display information that is collected
by the trace mechanism. The command must always be accompanied with a literal
parameter indicating what is to be displayed. This literal can assume any of the
following forms:

DRLS - This selection provides a listing of derail service function usage
frequencies. The symbolic name of each service function used by the
target program is displayed, together with a decimal value indicating
the number of times the service function has been used. This frequency
tabl.e is maintained by the trace mechanism for all types of traces and
is updated without regard to the tracing region specifications. While
all frequencies are preset to zero, the table is never implicitly
initialized by the trace package. If desired, the I command can be used
to initialize it.

MAP - If a map trace is engaged, this selection displays the resulting map
report showing consecutive subdivisions of the tracing region interval
and the number of instructions executed in each subdivision. Columns
of this report are identified by the heading title:

LOC. INTERVAL ID FREQUENCY % CUM %

or, if the subdivision size is unity,

LOC. ID FREQUENCY % CUM %

LOC. INTERVAL represents the range of the subdivision and consists of
an address interval, A1-A2. This interval implies all locations from
A1 to A2, inclusive. The first line of the report has an A or R appended
to the interval specification indicating whether the addresses are
absolute or relative. The meaning of other columri identifiers are:

ID - This column contains the mnemonic operation code of the
instruction word at location A1; i.e., the first location
of the subdivision. If the operation code is illegal, this
field is blank.

FREQUENCY - This column contains a decimal count indicating the
total number of instructions that have been executed in the
subdivision. Subdivision intervals that have had no
activity (the frequency is zero) are not shown in the
report.

7-37 DJ31-00

%

CUM %

- This column contains a decimBl quantity indicating what
percent ·the subdivision's frequency is of the total number
of instructions executed by the target program.

- This column indicates cumulative percentage.
running total of the % column.

It is a

Both percentages mentioned above are rounded to the nearest hundredth
of a percent; e.g., 23.084 would be truncated to 23.08, while 23.085 would
be rounded up to 23.09. Percentages are not shown for subdivisions
having a frequency less than .005% of the total number of instructions
executed by the target program.

If desired, a partial map report can be displayed, showing only
subdivisions with the highest frequencies. This optional form of the
DISPLAY is requested by accompanying the map selection with an octal
value (N), indicating how many subdivisions are to be shown. The
resulting map report consists of the N most active subdivisions sorted
in ~escending order according to frequencies.

M# - This selection displays the total number of instructions executed in the
mapped region; i.e., the sum of all subdivisions. The value is given
in decimal.

Q - If the Q command has been used to queue trace output (in lieu of issuing
it to the user's terminal), this display selection shows the 25 most
recent Lines of trace output that would have otherwise been printed. An
octal numeric greater than 0 and less than 32 can optionally accompany
the Q display selection. If present, only the last N accumulated
output Lines are displayed. In all cases, output is shown in the proper
sequence.

Q# - This display selection shows the total number of entries that have been
made in the output queue. The value is given in decimal.

T - Whenever the trace mechanism encounters an instruction that results in
a transfer of control, an entry is made in a special transfer queue that
is structured similiar to the output queue. This queue is maintained
for all types of traces and entries are made without regard to the tracing
region specification. If an unexpected error condition occurs, the
steps leading up to the error can be viewed by displaying the transfer
queue. As with the output queue, the last 25 entries are shown, unless
an octal numeric accompanies the selection. In this case, only the Last
specified number of transfers are shown. This feature provides an
identical situation of a transfer trace with queued output in the tracing
region, 0-777777A.

T # Th i s s e L e c t i o n sh o w s t h e t o t a l d e c i m a l numb e r o f en t r i e s t h a t h av e been
made in the transfer queue.

- This selection shows the total decimal number of instructions that have
been executed (or simulated) by the trace mechanism. The value is the
iteration count for repeated instructions, as well as the instructions
executed by XEC/XED chains. The map display selection utilizes thi~

value for percentage calculations.

* - This selection displays the next instruction of the target program to
be executed.

XF - This selection displays the address registers, unless they are all zeros.
It always displays the A, Q~ E, I and all index registers.

7-38 DJ31~00

Permissible forms of the DISPLAY command are:

Form

DISPLAY DRLS

DISPLAY MAP

DISPLAY MAP N

DISPLAY M#

DISPLAY Q

DISPLAY Q N

DISPLAY Q#

DISPLAY T

DISPLAY T N

DISPLAY T#

DISPLAY II

DISPLAY *

Meaning

Show the number of times each derail service
function has been used.

Display frequencies for consecutive subdivisions of
the tracing region which has been mapped.

Display the first N subdivisions
highest frequencies.

having the

Display the total number of instructions executed in
the mapped region.

Display the Last 25 lines of trace output which
have been queued.

Display the Last N Lines of trace output which have
been queued.

Display the total number of output lines which have
been queued.

Display the Last 25 instructions which caused a
transfer of control.

Display the last N instructions which caused a
transfer of control.

Display the total number of entries made in the
transfer queue.

Display the total number
instructions executed.

of target program

Display the next instruction of the target program to
be executed.

(Initialize Queues/Frequencies)

The I command can be used to selectively (or collectively) initialize queues
and frequency counters that are maintained by the trace mechanism. As with the
DISPLAY command, a literal parameter must be specified, provided selective
initialization is desired. This parameter can assume any of the following
forms:

DRLS - This selection resets all derail service function usage frequencies to
zero. The I command is the only means by which the derail frequencies
can be initialized.

MAP This selection initializes the internal mapping area; i.e., all
subdivision frequencies are set to zero. This initialization is always
implicitly performed whenever the TRACE command is utilized to engage
a map trace.

Q - This selection initializes the trace output queue, provided the Q command
has been previously issued to enable output queuing.

7-39 DJ31-00

T - This selection initializes the trace transfer queue. The transfer queue
is always implicitly initialized whenever the TRACE command is issued
to engage the trace mechanism.

- This selection resets the count of the number of instructions executed
(or simulated) by the trace mechanism. As with the T selection, implicit
initialization of this count occurs whenever the TRACE command is
issued.

Permissible forms of the I command are:

Form

DR LS

I MAP

Q

T

Meaning

Initialize DRLS, MAP, Q, T and #.

Initialize derail service function usage
frequencies.

Reset all subdivision frequencies in the mapping area
to zero.

Initialize the trace output queue.

Initialize the transfer queue.

Reset the count of the total number of
instructions which have been executed by the trace
mechanism.

NOTRACE (Disengage Trace Mechanism)

The NOTRACE command, which may be given as N, causes the trace mechanism to become
disengaged. The program becomes "free running" when the next RUN command is
issued.

PAUSE (Pause Before Instruction Execution)

The PAUSE command places the trace mechanism in a step mode. When this mode
is enabled, the user is returned to command Level before each instruction that meets
the tracing conditions is executed. After printing the instruction, a question mark
(?) is issued indicating readiness to accept a command. When the next RUN command
:1s given, the instruction is executed and tracing continues until the next instruction
meeting the conditions is encountered. The E command can be used if it is desired
to execute the instruction and immediately return to command level.

If the next instruction to execute is to be patched while in the PAUSE mode,
it is necessary to perform the patch and issue the command:

R A1

Where: A1 is the address of the patched instruction.

7-40 !>J 31-00

Certain conditions can occur which prevent the trace mechanism from being able
to enter the command Level before executing an instruction. When such a condition
exists, it is indicated on the output Line; i.e., the following message is appended
to the Line:

••• CAN'T PAUSE

The various corditions that prevent the capability to pause are:

1 • Execution of an instruction that has been replaced by a breakpoint.

2. Execution of the instruction(s) influenced by an XEC or XED.

3. Execution of an instruction having !DC or DIC modification.

4. Execution of a TOV, TEO. or TEU instruction which results in a
transfer.

NOPAUSE (Discontinue Pause Mode)

The NOPAUSE command is the only means of cancelling the effect of a prior PAUSE
command. The mode is never implicitly cancelled, even though a different type of
trace may be engaged.

Q (Queue Trace Output)

This command enables queuing of trace output, in Lieu of immediately issuing
it to the terminal. When this mode is in effect, the Last (most recent) 25 Lines
of output that would have otherwise been issued to the terminal are saved. The queued
output can, at any time, be displayed by exercising the DISPLAY command.

Output queuing can be used in a 'variety of ways. For example, the steps Leading
up to an unexplained error condition can be revealed by engaging a Full trace
with queued output. When the error occurs, a display of the queue usually shows what
has happened. Another useful application consists of determining the number of times
a certain operation code or modifier has been used by simply engaging the appropriate
type of trace and queueing the output. The number of entries made in the output queue
can then subsequently be displayed, and this value reflects the number of times the
selected operation code or modifier was used.

The Q command must be given after the trace mechanism has been engaged. Its
effect is cancelled only if another trace command is subsequently given.

ERROR MESSAGES

1. ILLEGAL INPUT--RETYPE

This error message is issued if (1) an unknown command is given, C2) a
syntactical error is discovered while processing a command, or (3) the
command cannot, for some reason, be performed. If multiple commands are
specified on the same input line, any error detected with a command causes
all subsequent commands on that line to be ignored.

7-41 DJ31-00

2. ILLEGAL INPUT--TRACE NOT ENGAGED

An unknown type of trace, illegal parameters or an invalid tracing region
has been specified with the TRACE command. The command must be reissued
properly before the trace mechanism is engaged.

3. TABLE SPACE EXHAUSTED--TRACE NOT ENGAGED

A use or change trace has specified too many locations and/or location
intervals to trace, or the number of locations and/or location intervals
constituting the tracing region is excessive. An aggregate area of
approximately 128 words is used to store these locations and intervals.
Each location specification requires two words of this area, while a
location interval requires four words. For example, a total of up to 64
location specifications or 32 intervals could be accommodated.

4. ROOM FOR BREAKPOINT ENTRIES EXHAUSTED

This message is issued when no more breakpoints can be accepted. The user
must delete at least one previously established breakpoint before a new
one can be accepted. A maximum of 20 breakpoints can be concurrently
active.

5. ILLEGAL TO REPLACE

A specified breakpoint location has either been found to be under the
influence of a repeat-type instruction, or contains an illegal
operation code.

6. UNKNOWN BREAKPOINT ENCOUNTERED

A breakpoint location has been executed sending control into the trace
package; however, no record of ever having established the breakpoint can
be found. More than likely, the target program has moved an area of memory
containing a breakpoint location and is now executing it. The trace
package assumes the replaced instruction was a NOP.

SUPPLEMENTAL INFORMATION

1. The total memory requirement of the trace package is approximately 20000
(octal) locations, or 8K.

2. In the Time Sharing FORTRAN environment, the L (locate SYMDEF) command
provides load origins of subprograms and Library modules, as well as SYMDEF
addresses.

3. Although the trace package is implemented in floatable code and can be
loaded anywhere in memory without relocation, the code cannot be moved once
the package has been invoked.

4. Two locations within the trace package may be snapped to determine its size
and date of assembly. These Locations are relative to the entry SYMDEF
(TRACE), as follows:

TRACE-3
TRACE-2

Contains size in bits 0-17
Contains BCD date of assembly, MMDDYY

5. The KOTNOW derail service function is utilized for issuing trace output
to the terminal. If the break key is press~d while such a line is being
typed, the trace mechanism does not recognize the interrupt until after
it has executed the associated instruction.

7-42 DJ31-00

EXAMPLE Qi.~

The following example illustrates the use of the trace package. The target
program consists of a GMAP-coded subsystem to create temporary files. In the dialog
that follows, user responses are underscored.

USER ID-JOEDOE
PASSWORD-
UUIRIHUKQ(
11 BLOCi<"S"'F"ILE SPACE AVAILABLE

*OLD DEFILSRC
*DISP:N ---
01 /21175

0010
0020
0030
0040
0055
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330

$
$
$
$

15.000

NXTF IL

I DENT
LOWLOAD
OPTION
GMAP
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
LOOM
.SSDRL
DETAIL
SA VE
CALL
NULL
LDAQ
DR L
ZERO
STAQ
DRL
ZERO
ZERO
LOA
CMPA
TN2

ACCNT,J.DOE
36
NOGO,NOSETU,SAVE/DEFIL
NDECK

*
*
*
*
*
*
*
*
*
*

THIS PROGRAM CREATES TEMPORARY FILES.
PROVISION IS MADE TO SPECIFY (1) FILE
NAME, C2) MODE--LINKED OR RANDOM, AND
(3) SIZE IN LINKS FOR EACH SUCH FILE
TO BE CREATED. A NULL RESPONSE TO THE
PROGRAM'S INPUT REQUEST FOR THIS DATA
WILL RESULT IN IMMEDIATE TERMINATION.

*
*
*
*
*
*
*
*
*

*
.G3TSM

OFF

TRACE

QUERY
KOUTN
QUERY

LOAD TSS MACROS,
AND DEFINE DRL NAMES.

***PROGRAM ENTRY POINT.
INVOKE TRACE PACKAGE.
RE-ENTRY TO CREATE NEXT FILE.
PRESERVE O/P TALLY WORDS IN AQ.
ISSUE REQUEST FOR PARAMETERS.

QUERY RESTORE TALLIES TO ORIGINAL STATE.
KIN OBTAIN USER'S RESPONSE.
INPUT,COUNT
STAT
COUNT
1,DL
*+2

NO. OF CHARACTERS HE TYPED.
IF ONLY 1, IT HAS TO
BE A CARRIAGE RETURN,

7-43 DJ31-00

0330
0340
0350
0360
0370
0374
0376
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
ono
0740
0750
0760
0770
0780
0790
0800
0810
0820
0830
0840
0850
0860
0870
0880
0890
0900
0910
0920
0930
0940
0950
0954
0956

BYPAS

NOTC R

* REA DY

*
FIELD

NXTC HR

TNZ
DRL
ALS
ORA
STA
LDA
STA
EAA
TS X1
TRA
EAA
TS X1
STC 2
LDA
CM PA
TZ E
ARL
CM PA
TZ E
CM PA
TNZ
LDA
ORSA
EAQ
TNZ
LDA
REM
TTF
CM PQ
TRC
STBQ
TRA
CMPA
TZE
SB LA
cr1 PA
TRC
STA
MPY
ADLQ
TRA

ERSQ
DRL
ZERO
l. DA
LDQ
TZE
ORQ
STBQ
LOA
STA
LDAQ
TRA

NULL
ORA
STA
LDA Q

STAQ
LOA
TTF
TRA
CMPA
TZE
CMPA
TZE

*+2
RETURN
6
TALL YB
SCAN

BE A CARRIAGE RETURN,
SO TERMINATE EXECUTION.

OTHERW:SE, PREPARE A
TALLYB WORD FOR SCANNING
THE INPUT LINE.

IN CASE NO MOOE ANO/OR #LINKS
GIVEN, ASSUME 1 LINK SEQUENTIAL.

GO GET THE FILE fiAME.

1, DL
NAME+2
NAME
FIELD
READY+1
TEMP
FIELD

RETURN 1--CR ENCOUNTERED IN SCAN.
RETURN 2--FIELD TERMINATED 8Y COMMA.
NOW GET THE MODE.

B YPAS
TEMP
BLANKS
BY PAS
27
LCL,DL
B YPAS
LC R, DL
ERROR
=1818,DL
NAME+2
**

REMEMBER CR, IF WE RETURN HERE.
IF MOOE FIELD IS NULL,

THEN ASSUME USER WANTS
TO CREATE A LINKED FILE.

OTHERWISE, ISOLATE 1ST CHARACTER.
IS IT "L"?
YES.
NO" HOW ABOUT "R"?
GO COMPLAIN IF IT'S NEITHER ONE.
CHANGE MODE

TO RANDOM.
WAS #LINKS SPECIFIED?
NO, ASSUME 1 LINK DESIRED. READY

SCAN, SC RE-ENTRY TO DEVELOP BIN. EQUIVALENT

NOTCR
512,DL
ERROR
NAME+2,04
READY+1
=0040,DL
BYPAS+2
=0060,DL
10, OL
ERROR
TEMP
10, DL
TEMP
BYPAS+2

B YPA S
DE FIL
NAME, STAT
succ
STAT

OF #LINK SPECIFICATION IN QR.
TRA IF NOT CR.
IS SPECIFICATION REASONABLE?
NO, COMPLAIN.
YES, STUFF IT IN DEFIL ARG LIST,

ANO GO CREATE THE FILE NOW.
IF CHARACTER IS A BLANK,

IGNORE IT.
STRIP OFF ASCII ZONES

ANO MAKE SURE IT'S NUMERIC.

GET NEXT DIGIT, If ANY.

RESET CR FLAG FOR NEXT TIME.
ATTEMPT TO CREATE THE FILE.

ASSUME WE WERE SUCCESSFUL.
CORRECT ASSUMPTION?

*+4 YES.
=0060,DL NO, SHOW USER THE STATUS WE GOT.
INFORM+S,04
NS UC C
TEMP+2
IT ALS
ERROR+1 GO INDICATE OUR SUCCESS OR FAILURE.

** *SUBR. TO GET NEXT INPUT FIELD.
=01140,0L FWA OF RECEIVING AREA IN AR.
TEMP+2 TALLYB FWA,9
BLANKS INITIALIZE RECEIVING
TEMP+2,I AREA WITH BLANKS.
SCAN,SC RE-ENTRY TO GET NEXT CHAR. OF FIELD.
*+2 IF IT'S A CARRIAGE RETURN,
0,1 EXIT VIA 0,1.
COMMA,DL IF A COMMA,
1,1 EXIT VIA 1,1
=0040,DL IF A BLANK,
NXTCHR IGNORE IT.

7-44 DJ31-00

ERROR

CM PA
TNC
CMPA
TRC
ORA
STA
TTF
LDAQ
STAQ
DRL
ZERO
TRA

UCA,DL
*+4
UCZ+1,DL
*+2
=0040,DL
TEMP+2,SC
NXTCHR
ETA LS
TEMP
KOUT
TEMP
NXTF IL

FORCE
UPPER CASE
ALPHABETICS
TO
LOWER CASE.

PUT AWAY THE CHARACTER
AND GO GET THE NEXT ONE.
ERROR. FIELD EXCEEDS 8 CHARACTERS.

0960
0970
0980
0990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
111 0
1120
1130
1140
1150
1160
1170
11 80
11 90
1200
1 21 0
1220
1230
1240
12 50
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1400
1410
1430
1440

*
*
*

N 0 N - P R 0 C E D U R E

BLANKS EASCII
COMMA BOOL
COUNT ZERO
ETA LS ETALLY

INFORM
INPUT
IT A LS

LCL
LCR
NAME

NS UC C
QUERY

SCAN
STAT
succ
TA LL YB
TEMP
UCA
ucz

$
$

$
$

i A LL YB
OCT
AS C lI
ASCII
BSS

ET A LL Y
TALL YB
BOOL
BOOL

EASCII
ZERO
TALL YB

ETALLY
TALL YB
OCT
ASCII
TALL YB
BSS
TALL YB
TALL YB

EB SS
BOOL
BOOL
END
EXECUTE
LIMITS
PRMFL
END JOB

*JRN:N,J,IDENTCA,JDOE)
SNUMB #5927T

*LODX DEFIL
PATCH,SAVE OR RUN? R
000152: FUNCTION? L

2,
054 ASCII COMMA.

TEMP+1, 1
*+1,17
0150121771 77 CR,LF,RO,RO
4, INVALID INPUT
6,UNSUCCESSFUL
20

STATUS N

TEMP+1,2
ETALS+2,4
154 ASCII LOWER CASE "L".
162 ASCII LOWER CASE "R".
2, *NAME*

INFORM,24
*+1,1
*+1,40
015012177177
9,ENTER FILENAME,MODE(L OR R),#LINKS:
,
2
INFORM,10,2
INPUT,**
3
101 ASCII UPPER CASE "A".
132 ASCII UPPER CASE "Z".

1,7K,,500
H*,W,R,HANSEN/DEFIL

7-45 OJ31-00

•••••• -000146
?0146/SAVE
SUCCESSFUL

TRACE-000417

?FO 6002000
000071
?SI71,10

Ob0071R 000006002000.
DRL DEF IL

000075 000247600000
TZE

? 671
?TRACE
TYPE'"?"FULL

000352000373

000060276007
OR Q , DL

000375235000
LDA

000322552004
STBQ

ENTER TRACING REGION: CNULL RESPONSE GIVEN)'
?Q/R
E"NfER FILENAME,MODE(L OR R),#LINKS: TMPFIL,L,2
000071: BREAKPOINT
?DISPLAY *
000071 DRL
?E

DEF IL

000073: FUNCTION? CALL STATF

LIST OF OPEN FILES: DEFILSRC TMPFIL1

CALL COMPLETED
?DIR
SUCCESSFUL
ENTER FILENAME,MODE(L OR R),#LINKS: $BRK
ENTER ACTUAL INPUT DATA: CNULL RESPONSE GIVEN)
000012: FUNCTION? DISP Q14
000056 TRA 000237
000073 LDA 000375
000074 LDQ 000373
000075 TZE 000247
000101 STA 000402
000102 LDAQ 000350
000103 TRA 000275
000127 STAQ 000400
000130 DRL KOUT
000132 TRA 000155
000007 LDAQ 000356
000010 DRL Kou;N
?DISP Q#/DISP T#/DISP #
1 71
32
1 71
?R
000021: TERMINATION VIA DRL RETURN RESULTING IF EXECUTED
?RESTORE
SUCCESSFUL
?T MAP/0-242
?R
ENTER FILFNAME,MODE(L OR R),#LINKS: TMPFIL2
SUCCESSFUL

0003 73236000
LDQ

000355235000
LOA

ENTER FILENAME,MODE(L OR R),#LINKS: TMPFIL3 , RANDOM , 10
SUCCESSFUL
ENTER FILENAME,MODE<L OR R),#LINKS: $BRK
ENTER ACTUAL INPUT DATA: TMPFIL4,,99'9°999
000012: FUNCTION? DISPLAY MAP

7-46 OJ31-00

LOC. ID FREQUENCY % CUM %

000005R TRA • 25 • 25

000007 LDAQ 3 • 76 1 • 02

000010 DR L 3 • 76 1. 78

000012 STAQ 2 • 51 2.29

000013 DR L 2 • 51 2. 80

000016 LDA 2 • 51 3. 31

000017 CMPA 2 • 51 3. 82

000020 TNZ 2 • 51 4. 33

000022 ALS 2 • 51 4. 83

000023 ORA 2 • 51 5.34

000024 STA 2 • 51 5. 85

000025 LOA 2 • 51 6.36

000026 STA 2 • 51 6.87

000027 EAA 2 • 51 7.38

000030 TS X1 2 • 51 7.89

000031 TRA .25 8.14

000032 EAA • 25 8.40

000033 TS X1 • 25 8.65

000035 LDA • 25 8. 91

000036 CMPA • 25 9.16

000037 Tl E • 25 9. 41

000040 ARL • 25 9.67

000041 CMPA • 25 9.92

000042 TZE • 25 10.18

000043 CMPA • 25 10.43

000044 TNZ • 25 10.69

000045 LOA • 25 10.94

000046 ORSA .25 11. 20

000047 EA Q • 25 11 • 45

000050 TNZ • 25 11 • 70

000051 LOA 4 1. 02 12. 72

000052 TTF 4 1. 02 13. 74

7-47 DJ31-00

000053 CMPQ • 25 13. 99

000054 TRC .25 14.25

000055 STBQ • 25 14.50

000056 TRA • 25 14. 76

000057 CM PA 3 • 76 15.52

000060 TZ E 3 • 76 16.28

000061 SB LA 2 • 51 16. 79

000062 CMPA 2 • 51 17. 30

000063 TRC 2 • 51 1 7. 81

000064 STA 2 • 51 18.32

000065 M PY 2 • 51 18. 83

000066 ADLQ 2 • 51 19. 34

000067 TRA 2 • 51 19. 85

000071 DRL 2 • 51 20. 36

000013 LOA 2 • 51 20.87

000074 LDQ 2 • 51 21. 3 7

000075 Tl E 2 • 51 21. 88

000101 STA 2 • 5, 1 22.39

000102 LOAQ 2 • 51 22. 90

000103 TRA 2 • 51 23. 41

000104 ORA 3 .·76 24.17

000105 S Tl\ 3 • 76 24. 94

000106 .l 0 AC: 3 • 76 25.70

000107 STAQ 3 • 76 26.46

000110 LOA 26 .6. 62 33.08

o no 111 TTF 26 6. 62 39.69

000112 TRA • 25 39.95

000113 CM'PA 25 6.36 46. 31

000114 Tl E 25 6.36 52.67

00.011) CM PA 23 5.85 58.52

000116 Tl E 23 5.85 64.38

000117 CM PA 20 5.09 69.47

000120 TNC 20 5.09 74.55

7-48 DJ 31-.Qi'Q

000121 CMPA 18 4.58 79.13

000122 TRC 18 4.58 83. 72

000123 ORA 18 4.58 88.30

000124 STA 20 5.09 93.38

000125 TTF 20 5.09 98.47

000127 STAQ 2 • 51 98.98

000130 •\l> R L 2 • 51 99.49

000132 TRA 2 • 51 00.00
?DISP ti
393
?T OP DRL(KOUTN,K.IN) I
?PAUSE
?-R--
000013 DR L KIN
?R
INVALID INPUT
000010 DRL KOUTN
?R
ENTER FILENAME,MODE(L OR R),#LINKS: (NULL RESPONSE GIVEN)
000013 DRL KIN
? TERM
SYSTEM ?BYE

3 TEMPORARY FILES CREATED.

? (NULL RESPONSE GIVEN)
? (NULL RESPONSE GIVEN)
? <NULL RESPONSE GIVEN)

TMPFIL1
TMPFIL2
TMPFIL3
**COST:
**ON AT

$ 0.17 TO DATE: $ 206.11 = 21%
15.000 - OFF AT 15.016 ON 01/21/75

7-49 DJ31-00

'fl

SECTION VIII

SUPPORT FACILITIES

TIME SHARING MEDIA CONVERSION PROGRAM

The Time Sharing Media Conversion Program CTSCONV) is a batch program that may
be run either at the central computer site or through a remote batch (GRTS or NPS)
terminal. In input mode the program generates a standard system format, time sharing
ASCII file from a suitable card deck. In output mode the program produces a card
deck from a time sharing ASCII file to save the file in card form.

Operational Description

The media conversion program performs the following two functions based upon
user-supplied directives. User directives are supplied at the first record images
on the input file (I*).

o INPUT ... create a standard system format, time sharing file from cards. If
the INSERT or MOVE option is used, numeric signs (#)are inserted between
the line number and the first character of numeric data.

o OUTPUT - create a card deck from a standard system format, time sharing
text file. Numeric signs (#) between the line number and the text are
deleted.

The TSCONV program accepts its directive input from file I* and writes its output
to file OT. Files I* and OT must be present or an error occurs.

The user-supplied INPUT or OUTPUT directive is printed on the execution report
as an indication of which options are being processed.

8-1 DJ31-00

The INPUT directive begins the card image record and requests the TSCONV program
to copy the accompanying card deck onto a specific permanent file. The INPUT
directive can begin in any column of the card image and must have no imbedded blanks.
The INPUT dire·ctive is followed by one or more of the mutually exclusive options listed
below:

Option Result

ASIS,i,j The text file is generated from the input cards, from the columns
specified by i to i· Standard columns (default option) for to
j_ are 1 to ~O

MOVE,i,j,m,n The text file is generated from the input cards, from the columns
specified by i to j. Line numbers are taken from columns specified
by m ton. Standard columns for i to j are 1 to 72, and for.!!! to
~ are 73 to 80. -

INSERT,i,j,m,n The text file is generated from the input cards and from the columns
specified by i to j. Lines are sequence numbered, starting with
!!!. and incremented by~· Standard columns for i to j_ are 1 to 72.
Standard values for both !!!. and ~ are 10.

ASCII The text file is generated from input cards, using a binary deck
previously punched from this program.

COMDK,option The text file is generated from input cards consisting of a toMDK
<compressed source deck). This option is used in conjunction with
the ASIS, MOVE, or INSERT options. If ALTERs are to be made at
the time the file is generated, a $ UPDATE card must be
employed.

TAB,tab-char,pos-1,pos-2, ••• pos-n The TAB specification must appear following the
other activity options and separated from the other options by at
Least one blank. The tab character may be any single character
except blank or reverse slant. A reverse slant "\" followed by
three digits is interpreted as the octal representation of the
ASCII code for the desired tab character. The TAB specification
is terminated by the first blank encountered. The tab positions
specified must increase in ascending order. TAB supplied with the
ASCII option has no meaning, but it is checked for correctness.
Any error encountered in tab specification analysis results in a
TB abort.

Sample INPUT Control Cards

INPUT,MOVE,1,60,73,80

Text file data is to be taken from columns 1 to 60 of the punched cards and line
numbers are to be taken from columns 73 to 80.

INPUT,COMDK,ASIS,1,80

Text file data is to be taken from columns 1 to 80 of the input cards (a

COMDK).

8-2 DJ31-00

The OUTPUT directive is similar in syntax to the INPUT directive in that it must
begin the card image record options and may have no imbedded blanks. The OUTPUT
directive requests the TSCONV program to produce a card deck from the specified
time sharing file. The OUTPUT directive is followed by one or more ol the
mutually exclusive options listed below:

Option Result

ASIS,i,j Tl e text file is read and a BCD card deck is punched in the columns
specified by to j Standard columns (default option) for to j
are 1 to 80. - -

MOVE,i,j,m,n,1 The text file is read and a BCD card deck is punched, moving data
to columns specified by i to j. Line numbers are moved to columns
specified by m ton, right-justified. The l specifies the Label
to be punched-starting in column 73, Left-justified. Standard
columns for to l are 1 to 72 and for ~ to ~, 73 to 80.

STRIP,i,j The text file is read and a card deck is punched, stripping off
Line numbers, with data moved to the columns specified by j_ to l·

ASCII

TAB

Standard columns for to l are 1 to 80.

NOTE: With the above output options, data is converted from ASCII
to BCD before punching.

The text file is read and a binary deck containing the file text
is punched. (See "Binary Card Format" below.)

See options for INPUT.

Sample OUTPUT Control Card

OUTPUT,ASIS,1,56

The text file is punched into columns 1 to 56 of the card deck.

Definitions

o Each line is punched on a separate card, starting in the column specified
(OUTPUT function).

o A Line number is an initial string of numeric characters which terminate
with a nonnumeric character. Blank is considered a nonnumeric
character.

o In the case of the MOVE option, the Line numbers are stored right-justified
in the columns specified.

o A reverse slash in input processing is treated as a line separator and is
replaced with a carriage return.

o The format of a line in a text file is media code 6.

8-3 DJ31-00

Errors

The following error abort codes are produced by the TSCONV program:

SE ABORT - A binary card is out of sequence. Card number is printed out.

CK ABORT - Checksum of card does not agree with the computed checksum.

NB ABORT - First data card is not binary, but ASCII was specified on control
card.

CP ABORT - No control card found (keyword may be miaspelled).

TB ABORT - TAB specification error.

DATA LINE TOO LONG FOR I,J FIELD

••• portion of the line specified by i to j •••

- Occurs on OUTPUT only. If a line of the file is too long for the specifif'd
i to j field <i.e., nonblank characters are being discarded), this
warning message is issued along with the portion of the line specified
by i, j. A maximum of 20 such messages may be given. The complete file
is punched, as specified by the i to j field options.

Binary Card Format

Word 1

Word 2

Word 3

Words 4-24

Sample Deck Setups

7/9 punch and number of data words
(maxi mum=21)

Checksum

Card number, starting at 0

Text

The following sample job stream illustrates the copying of an input card deck
onto the permanent file FILEOUT. No editing is performed as the entire card images
are copied to the output file CASIS).

$ SNUM8
$!DENT
$ USERID
$ PROGRAM
$ PRMFL
INPUT,ASIS

(Data deck>

$ ENDJOB
***EOF

xxxxx
account number,name
JONES$SECR'ET
TSCONV
OT,W,L,JONES/FILEOUT

8-4 DJ31-00

The following Sdmple job stream accepts an input compressed deck with SALTER
changes and copies the input to output file OUTFIL.

$ SNUMB XXXXX
$!DENT account number
$ USERID JONES$SECRET
$ PROGRAM TSCONV
$ PRMFL OT,W,L,JONES/OUTFIL
$ DATA !*,,COPY
INPUT,COM~K,ASIS,1,80

(Data cards -- COMDK)

$ ENDCOPY
$ UPDATE

(ALTER deck)

$ ENDJOB
***EOF

The sample job stream below is representative of a job stream to punch an output
card deck from the record images on file TEXTIN.

$ SNUMB xxxxx
$ IDENT account number, name
$ USERID JONES$SECRET
$ PROGRAM TSCONV
$ PRMFL OT,W,L,JONES/TEXTIN
OUTPUT,ASIS
$ ENDJOB
***EOF

TIME SHARING UFAS

A user program c~ri be executed under the Unified File Access System CUFAS)
in either batch or time sharing mode. However, not all file formats supported
in the batch mode are available in the time sharing mode. The file formats supported
in the time sharing mode are the GFRC linked mass storage and the UFF of sequential,
relative, indexed, and integrated files. Tape file formats, Indexed Sequential
Processor file formats, and the building of UFF indexed alternate keys are not
supported in the time sharing mode and no label processing is provided for the file
formats supported.

The directory names (symbol references) used to select the UFAS routines to be
linked are the same for both the batch mode and time sharing mode.

File Specification

If the file code (fc - two ASCII characters) specified in the file information
block macro corresponds to a f1le already contained in the Available File Table (AFT),
the file contained in the AFT will be operated upon. If the file selected is an indexed
file, and the file code of the data file is in the AFT, then the file code assigned
to the index file in ~he file information block macro must also be in the AFT.

8-5 DJ31-00

I f the f i l e code i s not found i n the t i me sh a r i n g Av a i l ab le Fi t e Tab l e, by U f AS,
the user must supply the operand ASCII descriptor (ADSC9) for the catalog or file
s t r i n g a s t h e f i t e n a m e par am et e r , f L N AM E , i n t h e f i l e i n f o rm at i on b l o c k ma c r o .. The
file name descriptor, FLNAME, appears in word 9 of the FIS~

The file description must have one of the following formats:

o Filename

o Filename$Pas9word

o USER ID/filename

o /Catalogname/Filename

o USERID/Catalogname$Password/ ••• /FilenameSPassword,Permissions

o Filename "Alternatename",Permissions

o Filename,Permissions

o •Filename

0 *

The input strings for these formats may be in either lowercase ASCII or uppercase
ASCII characters. The scan of the file descriptor string is terminated by any
non-valid character <see File Mana9ement Supervisor manual for valid file name
characters>, excluding comma, slant, dollar sign, quotation marks, or blanks. The
two file strings for an indexed file must be given as: da,ta file string; index file
string. The ASCII descriptor in FLNAME must have a total character count, that is,
i t must inc l u de the count o f both f i l e st r i n gs p l us one for the ch a r act er " ; "

File Accessing

File name accessing when the file is not specified in the AFT or is in the AfT,
but was not entered by UFAS, is governed by the follo~ing rules:

1. If the catalog or file description has a valid alternate name, this name
becomes the file name in the AFT.

2. If the catalog or file description has a file name with less than eight
characters but no alternate name, the file name is entered in the AFT.

3. Descriptions _containing a name with eight characters or less, preceded by
an asterisk, are entered in the AFT only if the description occurs as a
separate f1 le name without user identification, permissions, or alternate
name. Tl:le asterisk as a name by itself is converted to •SRC (current fite)
and entered in the AFT.

4. A file name preceded by a slant (/) cannot be a temporary file.

8-6 DJ31-00

SECTION IX

BASIC

BASIC <Beginner's All-Purpose Symbolic Instruction Code) is a problem-oriented,
algebraic programming Language that enables the user to present his program in
ordinary mathematical notation, with simple and precise vocabulary and grammar.
BASIC is intended to be used with a keyboard-type terminal tied. into a time sharing
system.

The time sharing system uses a technique by which programs are handled in
parallel. A supervisory program acts as a controller of these programs, controlling
"stop" and "go" signals to inputs from terminals and preventing demands of one
terminal from interfering with demands of other terminals. Thus, time sharing
permits a user to work directly with the computer, whether it is within his sight
or thousands of miles away.

Time sharing permits a dialogue between the computer and user, permitting the
dialogue to begin immediately, without waiting for the computer to complete previous
programs. Data is fed from the terminal directly to the computer and answers are
received quickly at the same terminal.

If the program contains a mistake, the computer informs the user.

The program can be corrected or changed by the user as if conversation was taking
place by phone, except in this case, the conversation is typed or displayed, depending
upon the type of terminal in use.

Because BASIC is such a simple programming language and because time sharing
permits the correction and completion of most problems within minutes, BASIC as used
in a time sharing system provides a highly satisfactory computation environment for
both the novice and experienced programmer.

STATEMENT DEFINITION

Each BASIC statement consists of the following elements arra ged in the order
given:

Statement <or Line) number - by its ascending order, indicates the processing
sequence of th--e-5tatement.

BASIC word - specifies the computer operation to be performed.

Parameters in most statements are variables, expressions, and numbers used
in, or to direct the operation performed by, the statement.

9-1 DJ31-00

MATHEMATICAL NOTATION ~OPERATIONS WITHIN A STATEMENT

Variable Representation

In the BASIC language, a variable can be represented by

1. a letter

2. a letter and a digit

3. either of the above, followed by the character $

For example A,Z,K6, ar d X may represent variables, but AR, Z12, 6K, and 22 cannot.
The inadve"'tent use of the digit 0 for the letter 0 (and vice versa) in a variable
causes errors in a program; use bi the letter 0 or the digit 0 in variable
representation is not recoMmended. The user ~ay find the choice of a letter as a
mnemonic for a variable helpful; for ~ample, P for price, S for sales, and N for
"lumbers.

Variables with $s are r~str ted to the assignment of strings (alphanumeric
data) and are : e~erred to as "st ng vt..riables," in contrast to variables without
the$ that are referred to as", eric variables." Numeric variables, when used as
a starting point in calculations .e.g., for a counter), have an initial value of zero.
String variables have an initial value of zero when used for character count.

A BASIC variable is assigned a value, during the execution of a program, from
the numbers given in a related LET, FOR, READ, or INPUT statement. It retains this
value during the processing, unless it is reassigned a new value by another of these
statements.

List And Table Variables

Subscripted variables are represented in BASIC as

variable name <subscript)
or

variable name (subscript, subscript)

where the subscript can be an integer, variable, or an arithmetic expression such
as (1+K) or (A(3,7),B-C). The subscript must always be enclosed by parentheses.
Subscript values should begin at 1 <i.e., not 0).

A list variable designates an element of a one-dimensional array that can be
represented by such as PC15), PCH> or LC20). Bef9re a list variable can be used in
any statement, the maximum value of its subscript (i.e., size of list) must be
specified in a DI~ statement; otherwise a list of 10 ~r Less is implied.

A table variable designates an element of a two-dimensional array that can be
represented by such as S(15,17> or T<20,30). Before a table variable can be
referenced in any statement, the maximum value of its subscripts must be specified
in a DIM statement; otherwise, subscripts of 10 or Less are implied.

9-2 DJ31-00

Specification of the values of subscripts for list variables or table variables
in DIM statements is not required if subscripts of 10 or Less occur. BASIC provides
for automatic dimensioning in such cases. Automatic dimensioning assigns a value
of 10 for the subscript of the List variable and a value of 10 by 10 for the array
of a table value. If a subscript with a value greater than 10 is used with a list
or table variable and the List or table variable is not dimensioned in a DIM statement,
an error message is generated. Conversely, if values of subscripts less than 10 are
specified in DIM statements, no adverse programming effects result.

Use Of Numbers

A number can be positive or negative, can contain ~P to nine digits, and must
be in decimal form. BASIC accepts 0.01, 2, -3.675, 123456789, -.987654321, and
483.4156 as numbers, but rejects 14/3 (this is an expression) or 32,437 <as
representing 32437). Numbers are stored as single-precision floating-point values.
Thus, the maximum value that can be represented accurately is 134217727; larger values
are only approximated since digits beyond the eighth position are not reliable.

A number can also be expressed in "E notation," equivalent to expressing it as
a power of 10. For example, in E notation,

0.00123456789
196 7
10,000,000

can be
expressed

as

0.123456789E-2 or 12.3456789E-4
1.967E3 or 19.67E2
1E7 or 100E5

The decimal point can be position~d anywhe~e within the number as long as the
integer following the E indicates its correct position. Note that E and Jn exponent
alone cannot represent a number. For example, E7 cannot be written as a number to
represent 10,000,000; it must be written as 1E7 to indicate 1 multiplied by 10 to
the 7th power.

Arithmetic Operations

Five arithmetic operations can be performed by BASIC.
symbols represents an arithmetic operation that can
expression.

Operator symbol denotes as illustrated bl

+ addition A + 8
subtraction A - 8

* multiplication A * B
I division A I B
** or raise to a power A**B or A + B

Relational Symbols

Each of the following
be included in an

Six relational tests can be made with BASIC. Symbols representing these
relationships can be used in statements when comparisons are required. The symbols
and illustration of their use follow.

9-3 DJ31-0u

Relational symbol

<
< = or =<

>
>= or =>

<>or<>

denotes

is equal to
is less than
is less than or

equal to
is greater than
is greater than or

equal to
is not equal to

as illustrated bl

A = B
A < B
A <= B or A = <B

A > B
A>= B or A = >B

A< >B or A< >s

Those terminals that lack the symbols for less than or greater than characters
can make use of an alphabetic code to obtain required relational symbols.

Relational Code Derotes ----- As Illustrated By

EQ i s equal to A EQ B

LT is less t 1 an A LT 8

LE i s Less than or A LE 8
equal t ')

GT i s greater t ha· A GT 8

GE i s greater th. A GE B
or equal to

NE is not equal to A NE B

Use Of Expressions

The comput'er performs its primary function (that of computation) by evaluating
expressions contained within program statements. These expressions are si~ilar to
those used in standard mathematical notation with the exception that all BASIC
expressions must be complete within a statement and a statement is restricted to
a single line. Expressions are made up of numbers, variables, operations, and
functions by themselves or in conjunction with one another.

The user must understand the order in which the computer does its work. For
example, if the input is A + B * C ** D, the computer first raises C to the power
D, multiplies this result by Band then adds A to the resulting product. This is
the same convention as is usual for A + B times C raised to the power D. If this
is not the order intended, then parentheses must be used to indicate a different order.
For example, if the product of Band C raised to the power D is required, the user
writes A+ (B *Cl** O; or, if one wants to multiply A+ B by C to the power D, the
user writes CA+B)C**D. The user could even add A to B, multiply their sum by C,
and raise the product to the power D by writing ((A+B) * c> ** D. The order of
arithmetic priorities is summarized in the following rules.

1. The expression inside parentheses is computed before the parenthesized
quantity is used in further computations.

2. In the absence of parentheses in an expression involving addition,
multiplication, and the raising of a number to a power, the computer first
raises the number to the power, then performs the multiplication, and the
addition comes Last. Division has the same priority as multiplication,
and subtraction the same as addition.

9-4 OJ31-00

3. In the absence of parenthes0s in an expression involving only
multiplication and division, the operations are performed from left to
right, as they are read. The comput"er also performs addition and
subtraction from left to right.

In practice, extensive use of parentheses tend to eliminate most ambiguities
that may arise.

Mathematical Functior1s

BASIC provides for.standard mathematical functions. Each is represented by a
three-Letter mnemonic of its name and is followed by an expression enclosed in
parentheses. The user need only enter the function in a statement to obtain its
computed value in a run of a program.

Function means find the

SIN(X)
COS(X)
TAN(X)
COT(X)
ATN(X)
EXP(X)
LOG(X)
CLG(X)
ABS(X)
SQR(X)

sine of X
cosine of X
tangent of X
cotangent of X
arctangent of X
e to the power X
natural logarithm of X
common logarithm of X
absolute value of X
square root of X

In these definitions, the letter X represents an expression, which, for the
trigonometric functions, implies an angle measured in radians. If the value of X
in LOG(X), CLG(X), or SQR(X) is negative, then the negative sign is ignored, the
positive value is used, and an error message is printed.

Four additional mathematical functions are included in BASIC.

Function

INT<X)
RND(X)
SGN(X)
DET(X)

means

truncate X
produce a random number
sign determination
provide determinant of Last matrix inverted

In addition, the user can employ the DEF statement to define one or more of his
own functions.

9-5 DJ31-00

Miscellaneous Functions

A set of miscellaneous functions is available for use to provide a variety of
non-mathematical operations. These are as follows:

Function

TIM(X)
CLK$
DAT$
NUM(X)
SSTCX.£,Y,Z)
TAB(X)
SPC(X)
LEN(X$)
LIN(X)
ASC(X)
STR$(N)
VAL<$$)
TST(S$)
HPSCX)

STATEMENT DESCRIPTIONS

means obtain

elapsed processor time
time of day
calendar date
count of matrix data elements
selected characters of a string (substring)
character print position
space print position
number of cl1aracters in string
Last Line number encountered in reading/writing file
numeric value of character or abbreviation
~xpression to string conversion
string to eY.Hession conversion
nJnzero ou·~ut if string can be interpreted as a number
hcrizont?L point position of next field, in current

line, f file being written

Purpose: A concise statement of the operation it performs.

Format: The general form for its use in the program, with the literal entries in
CAPITAL Letters and descriptive names for variable entries in Lowercase
Letters enclosed within the symbols. Parentheses are to be inserted as
indicated. Note that an expression can be either a simple variable or
a formula.

Examples: Typical uses are given to explain and clarify the format. Statement
numbers are arbitrary and are used for illustrative purposes.

Rules: Requirements and cautions concerning the use of the statement.

Remarks: Pertinent comments related to the uses of the statement.

Arithmetic Statements

DEF

Purpose: To define a function that is to be used repeatedly within a given
program.

Format: DEF FN_ <variable) <expression>

Example: *10 DEF FNG(Z) 1 + SQR(1+Z•V)

9-6 DJ31-00

Rules:

Remarks:

LET

Purpose:

Format:

Examples:

Remarks:

1 • The variable must be unsubscripted.

2. Up to 26 functions can be defined within a single program; i.e., FNA,
FNB, •••• , FNZ.

3. The space following FN is to be fille~ with any alpha character.

If a function requires more than one Line for its definition, a
multiple-'ine defined function can be written.

To evaluate an expression and assign the resultant value to a specified
variable.

LET <variable> <expression>

1. *10 LET X=X+1

2. *20 LET W7=(W-X4+3)*(Z-A)/(A-B)-17

3. *30 LET X(6)=0

The LET st'atement is not a statement of algebraic equality; it is an
assignment or replacement statement.

A variable defined in a LET statement can be subscripted or
unsubscripted.

Multiple variable replacement is permitted within a LET statement.
For example:

*10 LET A=B=C
*20 LET A=B=C=100
*30 LET A(I)=BCX+Y/Z)=C(J)
*40 LET A(B(J))=B{J)=C(5)
*50 LET E$=F$=G$
*60 LET E$=F$=G$="MULTIPLE REPLACEMENT"
*70 LET H$(B(J))=H1$="EXAMPLES"

Replacement is executed on a right-to-Left basis. A numeric BASIC
variable cannot be replaced by a string variable and vice versa. Multiple
replacement is limited to 20 elements within one LET statement.

The BASIC word LET can be implied; i.e., the statement

*10 X=X+1

implies LET precedes the variable X and is a valid assignment
statement.

9-7 DJ31-00

MAT

Purpose:

Format:

Remark:

To request the system to compute or manipulate a matrix.

MAT READ <variable or comma-separated variables>

MAT PRINT <variable or comma-separated variables>

MAT INPUT <variable>

MAT <variable> = operation

A detailed description of the use of MAT statements in operations upon
matrices is giJen under "Matrices" later in this section.

Specifi,ation Statements

CHANGE

Purpose:

Format:

Examples:

Rules:

To permit translation of data from numeric code representation to its
equivalent string character and, conversely, string character to numeric
code.

CHANGE <variable> TO <variable>

1. *10 CHANGE A TO A1$

Elements of numeric variable A are converted to characters and stored
in string A1$.

2. *20 CHANGE Z5$ TO X

1.

Characters in string Z5$ are converted to their numeric equivalents
and stored in the elements of X.

One variable must be a numeric variable, the other a string
variable.

2. The number of characters to be converted is limited to 132.

3. If a numeric variable has not been previously dimensioned, it is
automatically dimensioned by 10.

4. When the conversion is to be from a numeric code list to a character
string, the user must provide a count of the number of elements to
be converted. This is done prior to the CHANGE command by an
assignment statement that stores the desired count in element <O>
of the numeric array.

For example:

*10 LET A(O) 15
*20 CHANGE A TO A1$

directs the program to convert 15 of the numeric elements in list
A to their related characters and concatenate them in string
A 1$.

9-8 DJ31-00

DATA

Purpose:

Format:

Example:

Rules:

Remarks:

If the count specified for conversion is smaller than the number of
items in the numeric list, the remaining characters are truncated;
if the count given is larger, the string contains irrelevant
information.

5. When a string is converted to numerics, a count is not specified.

6.

The complete string is converted if the numeric array· is of
sufficient Length. If the array dimension is smaller than the string
Length, an error message occurs at execution time. If the string
characters do not fill the entire array, the remaining array elements

' remain unchanged.

A table of characters and equivalent codes can
"Alphanumeric Data and String Manipulation"
section.

be found under
later in this

To specify numeric values for variables in a READ statement.

DATA <number or comma-separated numbers>

*10 READ A,B,X,L1,Z

*10Q DATA 1,3.4,7,-167.921,1.9E5

1. Only numbers (positive or negative) are allowed; numbers can be
written conventionally or with E-notation.

2. The numbers in the DATA statement must be in the same sequence as
the respective variables in the associated READ statement (in the
example, X = 7).

3. The numbers can be in one or more DATA statements, but the sequence
must correspond to that for the variables in the READ statement.
That is, the DATA statement in the example could be replaced by as
many as five DATA statements.

DATA and READ statements are always used jointly.

The collection of all numbers in all of the DATA statements of a program
is referred to as a "data block."

The placement of DATA statements in a program is arbitrary; common
practice is to collect all of the DATA statements in one place in the
program.

9-9 OJ31-00

DIM

Purpose:

Format:

To define the dimension(s) of a list or table and thereby reserve
sufficient space in the computer.

1. For a list

OIM <variable> (subscript)

2. For a table

DIM <variable> (subscript, s~bscript)

Examples: 1. *10 DIM H '.35)

Rules:

This state~ent reserves 35 computer locations.

2. *20 DIM Q(5,25)

1.

Th i s st at em t' n t r · e r ,. s 1 2 5 compute r lo cat i on s, s i n c e i t i n v o l v e s
5 items time~ 25 item~, as in 5 x 25 table.

Space for more than one list and/or table may be defined in a
single DIM statement.

*30 DIM M<SO>, RC25,35), TC10,10)

A subscripted variable must appear in a DIM statement to achieve
explicit dimensioning; otherwise, automatic dimensioning
<subscript value of 10 or less) is implied.

2. DIM statements defining variables must precede th~ use of these
variables.

3. The dimension(s) of a list or table
expressed explicitly; expressions
subscripts.

in a D!M
are not

statement must be
to be used as

4. For a List, the variable can be numeric or string; for a table, the
variable must be numeric.

Input/Output Statements

. INPUT

Purpose:

Format:

To permit the input of desired values of variables during program
execution time.

INPUT <variable or comma-separated variables>

When, in the execution of the program, this statement is reached, a
question mark is printed. The user must then enter a number or sequence
of numbers before the program can continue.

9-10 l)J31-0Q,

Example:

Rules:

PRINT

Purpose:

Format:

Example 1:

Example 2:

*10 INPUT X,Y,Z is entered into the program as a
statement

? but only a question mark appears
during execution; the user must
then type the comma-separated
values of X, Y, and Z after the
question mark.

1. Eac' INPUT statement must be positioned logically ahead (in the order
of µrocessing) of the statement that is to use the data values
requested.·

2. The numbers listed after the question mark must also be
separated by commas.

3. The numbers must be typed in the same sequence as the variables to
which they are assigned.

To instruct the system to perform one of the following print
operations:

1. Print out the result of computations.

2. Print out text, verbatim, to supply such items as messages,
information, or labels.

3. Print out a combination of uses 1 and 2.

4. Skip a Line in the printout of program execution.

Every PRINT statement begins with the BASIC word PRINT but can vary in
form, depending upon the print operation required.

*10 PRINT X,SQR(X)

results in the printing of the value of X, and a few spaces to the right
of that number, its square root.

*20 PRINT B*C,EXP(A),Y/Z,E+F,X**2

results in the printout of 5 computed values.

Whenever text is to be printed verbatim during the execution of a program,
it is enclosed within quotation marks in the statement; whatever is
enclosed is reproduced, including spaces and punctuation. This verbatim
text is referred to as a label.

*40 PRINT "NO UNIQUE SOLUTION"

results in the printout

NO UNIQUE SOLUTION

9-11 DJ.51-00

Example 3:

Example 4:

Remarks:

*SO PRINT "THE VALUE OF X IS", X

results in the printout, if X = 3,

THE VALUE OF X IS 3

*60 PRINT "THE SQUARE ROOT OF" X, "IS" SQR(X)

results in the printout, if X = 625,

THE SQUARE ROOT OF 625 IS 25

When a state~ent such as

*70 PRINT

is encountered 1:>y the progrJm during its execution, the terminal carriage
is advanced ont Line at ~hat stage of program execution.

T~e form in whic BA
us~r The followinr
statements are ut '

C prints numbers is not under the control of the
tern~ apply to the printing of numbers when PRINT

ed.

1. When a number is an integer, the decimal point is not printed.

2. When a computed value consists of an integer with more than
seven digits, BASIC prints

o the first significant digit

o followed by a decimal point

o the next five digits (the integer is rounded)

o the letter E

o followed by a space

o and finally, a number indicating the power of 10 Chow many
places the decimal point is to be moved to the right).

For example, the integer

32437528259 becomes 3.24375E 10 when printed.

3. No more than seven significant digits are printed.

4. Numbers less than 1.0 are printed with a decimal point followed by
up to seven significant digits.

For example,

.1234567

would be printed exactly as shown, whereas the number

.01234576978

would be rounded and printed as

.0123458

9-12 OJ31-00

PRINT USING

Purpose:

Format:

Example:

Rules:

S. Numbers less than 0.0001 are printed in E-format.

For example,

.00001234567

would be rounded and printed as

1.23457E-05

The PRINT statement can be modified by the use of:

commas

semicolons

function TAB(X)

function SPC(X)

in order to vary the format of the output.

To instruct the system to print out a formatted line.

PRINT USING <statement number, output list>

Where:

"statement number" is number of a statement in the program that
contains format control characters and printable constants; "output
List" consists of comma-separated arguments to be printed in
sequential order.

*10 A 100
*20 B 200
*30 c -300
*40 D$ = "END OF LIST"
*50 PRINT USING 60,A,B,C,D$
*60: 'LLLLLLLLLLLLLL
*70 END
*RUN

~~100~~200~-300~END OF LIST

1. The statement number named in a PRINT ~SING statement
an "image" statement that formats the line to be printed.
statement is of the form

statement number: image

points to.
The image

2. The image of an image statement <colon-separ~ted from the
statement number) consists of format control characters and
printable constants.

9-13 DJ31-00

Remarks:

READ

Purpose:

format:

Example:

Rules:

Remarks:

3. Format control characters are as follows:

' (apostrophe) - a 1-character field that is filled with the first
character in an· alphanumeric string, regardless of strin9
length.

#<number sign) - the replacement field for a numeric character; each
#specifies a space for one digit; a# specifies space for the mir'HJS
sign if sign is present.

(four up-arrows)
field CE-format).

specifies scientific notation for a numeric

4. Printable constants are all characters Other than format control
characters.

The image of an image statement can consist of one or more of the following
fields:

integer
decimal
exponential
alphanumeric
Literal

To read values listed in DATA statements and assign them to specified
variables.

READ variable or comma-separated variables

*10 READ A,B,X,L1,Z

*100 D~TA 1,2,7,2,-167.921

1. Each READ statement must be positioned logically ahead <in the order
of processing) of the arithmetic or PRINT statement that is to use
the data requested.

2. The variables in a READ statement must be in the same sequence
as the respective values in the associated ~ATA &tattment (in the
example, 7 is assigned to X).

R E A D a n d D A T A s t al em e n t s a r e a l w a y s u s e d j o i n t l y • i f t he r e a r e n o t e no u g h
numbers in .the data block (collection of DATA statements) for the
variable·s in a READ statement, then the program is assumed to be finished,
no further processing of data occurs, message OUT OF DATA is printed,. and
the program terminates processing.

If a READ statement is executed more than once, as if in a loop, the
data block supplies the next available number for each execution,
unless a RESTORE statement is executed.

9-14 l>J31-00

RESTORE

Purpose:

Format:

Example:

Remarks:

To restore the data block to its original state, so that it can be read
by a logically subsequent READ statement and thus used for further
processing.

RESTORE

In the following portion of

*100 READ N
* 11 0 FOR I = 1 TO N
*1 20 READ x

*200 NEXT

*560 RESTORE
*570 READ x
*580 FOR I = 1 TO N
*590 READ x

*650 DATA 4, 15, 35, 23, 9
*660 END

a program

the data is read, the data block is then restored to its original state,
and the data is then read again for processing. Statement 570 is used
to pass over the value of N, since it is already known.

When the program is executed, the data from the DATA statements are saved
in memory as a data block. The data is then assigned to variables via
a READ statement in the sequence given. The RESTORE statement directs
the computer to reassign data starting from the beginning of the data
block; if this statement were not present in the above example, then the
system would stop processing at statement 570 and print out the message
OUT OF DATA.

9-15 DJ31-00

Loop~ Subroutine Statements

CALL

Purpose:

Format:

Example:

Rules:

Remarks:

To call a program, previously saved on a permanent file, for use as a
subroutine within the primary program.

CALL <filename, password>

*10 DEF FNPCX,Y)=SQR(X*X+Y*Y)
*20 CALL SUB1
*30 DATA 3
*40 END

Program SUB1, ,reviously saved, is as follows:

*10 READ B,C
*20 IF B=O THEN 70
*25 CALL SUB2
*30 LET A=FNPCB,)
*40 PRINT "HYPOTENU~ ";A
*SL ,;oTo 10
*60 DATA 4,0,0
•70 RETURN

Program SUB2, previously saved, is as follows:

*10
•20
*30
*40
*SO
*60

IF B
PRINT
STOP
IF C
RETURN
END

0 THEN 40
"NEGATIVE ARGUMENT"

0 THEN .20

All variables and functions must be common to the primary
(calling) program and the called programs.

2. The return from a called program to the calling program must be by
the way of a RETURN statement.

A password is required only if one is attached to the filename.

Multiple returns are permitted within a called program. The return is
always to the statement immediately following the CALL statement. A
called program can call other programs.

An END or STOP statement to terminate execution can be in either the
calling or called program .•

Line numbers
independent ..

in calling or called programs are completely

DATA statements are compiled from the primary program first, and then from
each of the called program.sin the order in which the CALL statements are
encountered.

A total of 15 different programs can be called from the primary and called
programs.

9-16 DJ31-00

FOR and NEXT

Purpose:

Format:

Examples:

Rules:

The FOR statement is the initial statement of a program Loop and it
specifies the variable used to count the iterations through the loop, its
range of values, and the stepsize for each pass through the loop. The
NEXT statement is the Last statement in the Loop and it dil-ects the
processing to either repeat the Loop or continue sequential execution if
the specified number of iterations have been completed.

FOR <variable> = <expression> TO <expression>
STEP <size expression>

NEXT <variable>

<varible> specifies an unsubscripted loop-control variable.
<expression> TO <expression> specifies the range of values to be assigned
to the varia~le. The first expression sets the initial value of the
variable; the second expression sets the final value of the variable. For
a positive stepsize, the Loop is repeated until the variable reaches a
value greater than or equal to the final value. For a negative stepsize,
the loop is repeated until the variable reaches a value Less than or equal
to the final value. STEP <size expression> specifies the increment or
decrement to be added to the Loop-control variable on each pass through
the loop; if STEP and its size expression are omitted, the increm~nt is
assumed to be 1.

1.

2.

3.

4.

5.

1 •

2.

•30 FOR x 1 TO 25

*BO NEXT x

*120 FOR X4 = C17+COS(Z)/3) TO 3•SQRC10) STEP N*Z

•235 NEXT X4

*240 FOR z = B TO 3 STEP -1

*300 NEXT z

*450 FOR J = -3 TO 12 STEP 2

*500 NEXT

*30 FOR x = 0 TO 25 STEP A

*BO NEXT x

If the range requires a negative step and it is omitted, the body
of the loop is executed once for the initial value of the variable.
The variable is tested after the first time the implied step (+1)
is added, and is found to exceed the termination condition.

Paired FOR and NEXT statements must specify the same
loop-control variable.

9-17 DJ31-UO

GOSUB and RETURN

Purpose:

Format:

Example:

Remarks:

GOSUB - To direct the syst~m to the first statement of a subroutine
sequence that is located elsewhere in the program (i.e.; to ucall" a
subroutine>.

RETURN - To return the processing to the next statement following the GOSUB
statement used to call the subroutine.

GOSUB number of first statement of subroutine

*80 GOSUB 20l1
*90 LET X = 5

*200 LET X

*350 RETURN

INT(A/B)

Statement 350 rL ur~ ~ne processing to statement 90.

A subroutine can ~e .laced anywhere within a program but should only be
entered by the way of a GOSUB statement. Return from a subroutine must
be by the way of a RETURN statement; no other type of statement can be
used.

~ Statements

GOTO

Purpose:

Format:

Example:

Remark:

To transfer unconditionally to a statement other than the next one in the
processing sequence.

GOTO <statement number>

•50 GOTO 20

The GOTO statement can be used as a means of delegating a program to return
repeatedly to blocks of instructions.

9-18 DJ31-00

IF-----THEN
or

IF-----GOTO

Purpose:

Format:

Examples:

Rule:

To direct the system to either go to a designated out-of-sequence
statement if a certain condition is met or proceeds to process in sequence,
thus providing a 2-way conditional switch.

IF <expression> relation <expression> {THEN} <statement number>
GOTO

1. •10 IF SIN(X)
•10 IF SIN(X) =

M THEN 80 or
M GOTO 80

2. •20 IF G=O THEN 65 or
•20 IF G=O GOTO 65

In each example, if the condition is met, then the computer transfers to
the designated statement number; otherwise, it proceeds to process the
next statement in sequence.

BASIC provides six relational tests. The following symbols representing
relationship can be used in IF----THEN or IF~---GOTO statements when
comparisons are required.

Relational
Symbol Denote_s As Illustrated By

is equal to A = B
< is less than A < B

<= or =< is less than or A< = B or A <B
equal to

> is greater than A > B
>= or => is greater than A> = B or A = >B

or equal to
>< or >< is not equal to A >< B or A <> B

Those terminals that lack the less-than or greater-than characters can
make use of an alphabetic code to obtain required relational symbols.

Relational Code Denotes As Illustrated B~

EQ is equal to A EQ B

LT is less than A LT B

LE is less than or A LE B
equal to

GT is greater than A GT B

GE is greater than ·A GE B
or equal to

NE is not equal to A NE B

9-19 DJ31-00

ON-----THEN
or

ON-----GOTO

Purpose:

Format:

To direct the system to go to designated statements, thus providing a
multiple switch.

ON <expression>
{ THEN}

GOTO
<statement numbers>

Examples: 1. *10 ON X GOTO 100,200,150

Rules:

Remarks:

STOP

Purpose:

Format:

if X=1, the system branches to state~ent 100
if X=2, to statement 200
if X=3, to statement 150

The value of X is dependent upon conditions set in another p~rt oi
the program.

2. *110 FOR X = 1 TO 3

1.

*120 ON X GOTO 200,300,400
*200 PRINT "A"
*210 GOTO 500
*300 PRINT "B"
•310 GOTO 500
•400 PRINT "C"
*500 NEXT X
•600 STOP
•900 END
*RUN

A
B
c

Any number of statement numbers can follow T~EN or 60TO,
providing they fit on one Line.

2. Statement numbers following THEN or GOTO can be repeated.

The expression ca~ be a variable or a formula. The variable must be an
integer ranging from one to the number of statement numbers spe£ified.
For a formula, computation is made and its integer part is taken as the
value. If the integer part is less than one or is Larger than the number
of statement numbers specified, an error message is printed.

To stop the execution of the program.

STOP

9-20 DJ31-00

Example:

Remark:

END

Purpose:

Format:

Example:

Rules:

Remarks:

*250 STOP

*340 STOP

*990 END

This example illustrates that there can be more than one STOP statement
w i th i n .1 program, and i f any one i s processed, t he program i s
terminat d.

STOP is the equivalent of GOTO XXXX, where XXXX is the line number of the
END statement in the program.

To indicate the end of a program.

END

*990 END

1. The END statement is optional in a program.

2. The END statement, if used, must have the highest line number of the
program.

3. The END statement, if omitted, is simulated when the RUN command is
given and an end-of-file situation is detected.

In the execution of the program, the system recognizes the END statement
as a command to terminate output. The END statement can be reached during
program execution by normal sequential processing, or by program control
being transferred to it by means of a GOTO or STOP statement.

Utility Statements

CHAIN

Purpose:

Format:

Examples:

To permit sequential compilation and execution of a series of BASIC
programs.

CHAIN <filename, password, line number>

1. *10 CHAIN FILE1,PASS1,100

2. *20 CHAIN AS,PASS2

3. *30 CHAIN 8$,1234,

9-21 DJ~l-UlJ

Rules:

Remarks:

TRACE ON

TRACE OFF

Purpose:

Format:

Example:

1 • The filename can be expressed in the follo~in; mamner;

a • i n A S C I I c h a r a c t .e r s , a l i m i t of e i g ht c h .a r a c t e r·$

b. enclosed iri quotes.; i.e., "fil.ename"

c • a s a n a L p h a n um e r i c v a r i ab le , s u b s .c r i pt e d o r urn s 1:rb .s ,c :r :i pt .e d,,.
with the values of the variable .and subs.c:ript (if a.ny) a-s·sig·ned
at compilation or execution ti~~s.

2. lf a file with a password. is named in a CHAIN st.atement, th~p.~:SS•W.O•rd
must accompany the filename.

3. The CHAIN statement permits chaining to a Lin.e -num;ber >lidthin .. a
f i le.

4 • E a c h C H A I N s t a t em en t i s r ·e s t r i c t e d t o o n:e f i Len am ze •

5. If a password is all numeric and no line num.ber is sp.eci·f,ied,
the password must be delimited by a traHi.n.g comm.a; other.wis·e,, the
password is interpreted as a Line number.

The current file and a file named in a CHAIN stat·ement must b.:e ··files s.aved
prior to any attempt to perform t.he chaining f~nction.

If a Line number is given in a CHAIN statement, it must he giv,en a·s a
numeric value.

There is no Limit to the number of programs th·e u·s,er desir:es to
compile and execute by means of CHAIN statements.

The use of double quotes to enclose a filenam.e per"mi'ts co.m;patibi,l,ity
with programs written for other systems.

To inst.ruct the system to print out ·the Line num·bers, at e1<ecution ti·m:e,,
of t·hose statements enclosed between a TRACE O:N and TR'A:CE OFF
st at ement.

TRACE ON

sequence of statements

TRACE OFF

*1.0 LET X=O
*20 IF x 0 GOTO 80
*30 TRACE ON
*40 LET X=15
*SO PRINT "PHASE 1 II
*60 .GOTO 20
*70 TRACE OFF
*BO PR l'N T "PHASE 2"
*90 END

9-22 :D.J 3:1-00

Remarks:

When RUN is given as a command; program execution will be as follows:

* AT 40
* AT 50
PHASE 1
* AT 60
PHASE 2

A TRACE O'\I statement can be used without a TRACE OFF statement; i.e., the
END statl'nent simulates a TRACE OFF statement. If a TRACE OFF statement
is encoun1 ered before a corre-sponding TRACE ON statement, that TRACE OFF
statement is ignored.

Multiple TRACE ON-TRACE OFF statements can be made within one
program.

Documentation Statement

REM

Purpose:

Format:

Example:

Remarks:

To permit the insertion of an explanatory remark in a program.

REM <followed by the remark>

*SO REM
*60 REM
*70 REM

INSERT DATA IN LINES 900-1000.
THE FIRST NUMBER IS N, THE
NUMBER OF POINTS REQUIRED.

The computer stores the text of the REM statement and does not process
it. A GOSUB, IF-----THEN, or GOTO statement can refer to a REM statement
by referencing its statement number. When a remark exceeds a Line, a
statement number and REM must be typed on each succeeding line before
continuing the remark.

Programs containing distinctive parts such as subroutines or loops should
have these parts labeled by means of REM statements. Such labeling
readily identifies sections of a lengthy program and permits the user to
rapidly scan the program if corrections or additions a~e required.

9-23 DJ31-lJO

~ BASIC PROGRAM EXAMPLE

The first step in writing a BASIC program is to analyze the problem and determine
the exact operations that must be performed to produce the desired resu~ts. Having
determined the required operations, it is then necessary to convert them into 6ASIC
statements.

This example describes the preparation of a BASIC program that calculates and
prints out the average number of miles traveled by a vehicle per gallon of gasoline,
given:

Old New Gallons of Average Number of
Mi le s Mi Les Gasoline Used Mi le s Ber Gallon

3332 3553 14.8 ?
3801 7.4 ?
3926 15. 2 ?
4091 11 • 3 ?
4275 10.9 ?
4460 9.8 ?
4628 9.8 ?
4864 12. 3 ?
5250 1 3. 6 ?
5617 6.7 ?
6112 10.0 ?
6379 14.0 ?

Overall average miles traveled per
-gal lo n of gasoline ?

Analyzing The Problem

An analysis of the problem indicates that the following operations should be
performed to arrive at the solution:

1. Show five column headings across the typeo~t as follows:

Old Miles
New Mi Les
Miles Traveled
Gallons of Gasoline Used
Average Miles Traveled per Gallon of Gasolin~

2. Write given "old miles" value in column 1.

3. Write first given "new miles" value in column 2.

4. Write first given "gallons of gasoline" value in column 4.

5. Subtract value in column 1 from the value in column 2 and write the result
in column 3.

6. Divide value in column 3 by value in column 4 and write the result in column
5. This is average number of miles traveled per gallon of gasoline.

9-24 DJ31-00

7. Move down to second line in each column.

8. Write first given "new miles" value in column 1.

9. Write second given "new miles" value in column 2.

10. Write second given "gallons of gasoline" value in column 4.

11. Subtract last value in column 1 from last value in column 2 and write result
in column 3.

12. Divide last value in column 3 by Last value in column 4 and write result
in column 5.

13. Move down to third Line in each c~lumn.

Continue writing of appropriate values in proper columns and making
computations until all data is utilized. Move down to next Line after
completing each "average miles traveled per .gallon of gasoline"
computation and writing of result in column five.

14. Divide total number of miles traveled by total gallons of gasoline used
and title the result "Overall average miles traveled per gallon of
gasoline."

Converting To BASIC Language

Having determined the required operations, it is now necessary to convert the
operations into BASIC statements.

The following relationships and abbreviations will facilitate the writing of
the program:

M N-L and A M where:
6

M = miles traveled

L old miles

N new miles

A average miles per gallon

G gallons of gasoline

9-25 DJ31-u0

Tne following sequence of statements can now be written.

5 REM TOTAL MILES/GALS
10 PRINT"OLD MILES ";"NEW MILES ";"MITR ";"GAL GAS ";"AMPG"
20 PRINT"-------------------·-----------------------------"
30 READ L
40 LET L1 = L
50 REAi> N
60 IF N=O THEN 190
70 READ G
80 LET l'l=N-L
9U IF M=O THEN 120
100 LET A=M/G
110 IF A >< 0 THEN 130
120 PRINT "YOUR TANK HAS A HOLE IN IT"
130 IF A < 35 THEN 150
140 PR INT "I OONT BELIEVE IT"
150 PRINT L;N;M;G;A
160 LET L=N
170 LET G1=G1+G
180 GOTO 50
190 PRINT "TOTAL MILES/GALS",(L-L1>/G1
200 DATA 3332,3553,14.8,3801,7.4,3926,15.2,4091,11.3,4275
210 DATA 10.9,4460,9.8,4628,9.8,4864,12.3,5250,13.6,5617
220 DATA 6.7,6112,10.0,6379,14.0,0
230 ENO

Explanation ..Q.!_ The Statements

5 REM TOTAL MILES/GALS

Identifies the program; does not enter into the execution process.

1 0 p R I NT " 0 L D M I L E s " ; " NE w M I L E s II ; II M I T R II ; " G A L GA s .. ; " A"' p G 11

20 PRINT "---"

Statements 10 and 20 direct the system to print verbatim that information
enclosed by quotation marks.

30 READ L

Assigns the first value in the data block to variable L; i.e., 3332 to L Cold
mileage>.

40 LET L1=L

Assigns the existing value of L which is 3332, to L1. Th! value assigned to
l changes as the program execution progresses but the value assigned to L1 will
remain 3332. It is necessary to preserve the 3332 value for calculating total
miles traveled; statement 190 directs the computer to make this
computation.

50 READ N

Assigns the next value in the data block to variable N; i.e., 3553 to N <new
mileage).

9-26 DJ31-00

60 IF N=O THEN 190

Directs the system to execute statement 190 instead of statement 70 if the value
assigned to N in statement 50 was O; i.e., Last entry in data block.

70 READ G

Assigns the next value in the data block to variable G; i.e., 14.8 to G (gallons
of gasoline)

80 LET M=N-L

Directs the system to subtract the value of L from the value of N and assign
the difference to variable M (miles traveled).

90 IF M=O THEN 120

Directs the system to execute statement 120 instead of statement 100 if the value
assigned to M in statement 80 was 0.

100 LET A=M/G

Directs the system to divide the value of M by the value of G and assign the
resulting value to A (average miles per gallon).

110 IF A>< 0 THEN 130

Directs the system to execute statement 130 next instead of statement 120 it
the value assigned to A in statement 100 was any value other than 0.

120 PRINT "YOUR TANK HAS A HOLE IN IT"

Directs the system to print out, verbatim, that information enclosed by
quotation marks. ihis statement is executed only if the value assigned to A
in statement 100 was O, or if the value assigned to M in statement 90 was
o.

130 IF A < 35 THEN 150

Directs the system to execute statement 150 instead of statement 140 if the value
assigned to A in statement 100 was less than 35.

140 PRINT "I DONT BELIEVE IT"

Directs the system to print out, verbatim, information enclosed by quotation
marks. This statement is executed only if the value assigned to A in stc:itement
100 was equal to or greater than 35.

150 PRINT L, N, M, G, A

Directs the system to print, in column form, the values of L, N, M, G, Jnd A
assigned in statements 30, SO, 80, 70, and 100, respectively.

9-27 DJ.31-uO

160 LET L=N'.

A s s i gn s th e e x i s t i n g v a l u e o f N < new m i l e a g e). t o L (: o· l d; m i l e a;g;e) i n· p.c e,:pra;:r a,t· i·a.n
fo.r the next· calculation ..

17 0 L ET G 1 = G 1 + G·

Establishes a means for recording the accumula;tive· g .. al Lones, at g;a:so,:L i::ne· l:IPS~e;d;. fo:r.
the entire trip. As there was no READ stateme·nt to a·s.sign a vatu,e, .. th&.C:O'.fRiRut1H''
initially set G1 to zero.

On the first p·ass through the data block, G. was assig.ne.d' the va~l.u,e· 1''·4 •. & •. T:his
statement directs the computer to add the value of G. (14.8, im· thi·s. i.ns,t:a:nce,.
assigned in statement 70) to the initial value of G1' Cz.eroJ, e·sta.b·.liS;hin.g: a,. n:e-w.
value for G1 <14.8). On the second pass thraug:h the data b.toc:lt th.e: next val.u.e
of G <7.4) is added to the existing value of G1 C.14 .• 8) e.stablishtng another r::i.e1w
value for G1 of 22.2. This summation of G andG1 is re·p:eated an s .. u.b.s.eq,ue·nt p.a;s.s.es
a s L o n g a s t h e r e a r e n e w v a L u e s o f G i n t h e: d a t a b l o c k •.

180 GOTO 50

Directs the system to go to line 50, thus repeating. the s .. anre seq;.U.EH'lce of
statements over again to find the average mi Les. tra.vele·d per g.allo.n, of ga .. .soli·ne
for the next refueling. Eventually, a value of N equal to z·ero is. ac:h:i·e\le·d· and
statement 60 is executed. At that point, control of the ~rog~am is given to
statement 190.

1 9 0 P R I N T. " T 0 T A I.. M IL E S I G A L S " , (L - L 1) I G 1

Instructs the system to calculate and print the overall miles t.ra\leled p@:'·r Q'aLLo,n
of gasoline for the entire trip.

T h e s t a t e m e n t a c c o m p l i s h e s t h i s b y d i r e c t i n g t h e s y s t em t o s ub t r a c t L t 0. 3 3. 2
f r o m s t a t em en t 4 0) f r o m L (6 3 7 9 - t h e L a s t o l d m i l e a g e a s s i 91 nm e n t i n. t h e d a t a
block) and then divide the difference by G1 (accumulati.ve g.a.ll.ons of gas.oline
calculated in statement 170).

200, 210, 220 DATA

D a t a s t a t em en t s a r e no t e x e c u t e d • Th e y <. r e u s e d t o en t e r t h, e d a ta r e q u i r e d f o r
the subsequent execution of the program. The arrangement in which the data is
entered in the statement is critical because the computer must be directed to
store the data ·in a sequence compatible with the requirements of the program
statements.

230 END

Diretts the System to end the execution of the program.

E n t e r i n g ~ ri .d R L! n n j n g Th e P r o g r am

The sequence of statements representing the problem and its solution can now
be entered at the terminal. The complete program would appear as below, assuming
no errors have been made. To run the program, the control command RUN is given.

9-28 OJ31-DO

*5 REM TOTAL MILES/GALS
*1U PRINT "OLD MILES ";"NEW MILES ";"MITR ";"GAL GAS ";"AMPG"
*20 PRINT"--"
*30 READ L
*40 LET L1 = L
*SO READ N
*60 IF N=O THEN 190
•70 READ G
•80 LET M=N-L
•90 IF M=O THEN 12
•100 LET A=M/G
•110 IF A >< 0 THEN 130
*120 PRINT "YOUR TANK HAS A HOLE IN IT"
*130 IF A < 35 THEN 150
*140 PRINT "I DONT BELIEVE IT"
•150 PRINT L;N;M;G;A
*160 LET L=N
*170 LET G1=G1+G
*180 GO TO 50
•190 PRINT "TOTAL MILES/GALS",(L-L1)/G1
*200 DATA 3332,3553,14.8,3801,7.4,3926,15.2,4091,11.3,4275
*210 DATA 10.9,4460,9.8,4628,9.8,4864,12.3,5250,13.6,5617
*220 DATA 6.7,6112,10.0,6379,14.0,0
•230 END
*RUN

OLD MILES NEW MILES MITR GAL. GAS AMPG

3 .332 3553 221 14.8 14.93243
3553 3801 248 7.4 33.51351
3801 3926 125 15.2 8.223684
3926 4091 165 11. 3 14.60177
4091 4275 184 10.9 16.88073
4275 4460 185 9.8 18.87755
4460 4628 168 9.8 1,7.14286
4628 4864 236 12. 3 19.187
4d64 5250 ~86 13.6 28.38235

I DONT BELIEVE IT
5250 5617 367 6.7 54.77612

I DONT BELIEVE IT
5617 6112 495 10 49.50000
6112 6379 267 14 19.07143

TOTAL MILES/GALS 22.43741

9-29 D.J31-00

P r o g r a m .W i t h L o o p s

A program which creates a table of roots provides an opportunity to .study ·th·e
use of loops. In the following example,, the range of numb:e'rS for ,w1hich ro.ots
are desired are square root, cube root, and fou·rth root,. T·he st.at;e:m~e·nt '.Se.:.q,ue·nc,,e
entered at the terminal, and the resulting output are as ·follo.ws:

•10 FOR X ·= 1 TO 1 s
•20 PRINT x,
•30 FOR R = 2 TO 4
•40 PRINT X**(1/R),
•50 NEXT R
•60 PRINT
•70 NEXT x
•80 END
*RUN

1 1
2 1.414214 1.259921 1 .1,89207
3 1.7.32051 1.44225 1.316074
4 2 1.587401 1.414214
5 2.236068 1.709976 1.495349
6 2.44949 1.817121 1.565085
7 2.645751 1.912931 1.626577
8 2.8282427 2 1.681793
9 3 2.080084 1.732051

10 3.162278 2.154435 1. 77828
11 3.316625 ·2.223980 1.821160
1 2 3.464102 2.289428 1.86121
1 3 3.605551 2.351335 1 • 8 98829
1 4 3.741657 2.410142 1.934336
1 s 3.872983 2.466212 1.96799

Statements 10 and 70 create the outer loop and determine th·e range of numbers.
Statements 30 and 50 create the inner Loop and determine the roots. ~ote t~e use
of a comma (,) at the end of PRINT statements 20 and 40 to keep the output all on
the same line, and the use of PRINT statement 60 to advance the output a line space
after e~ch execution of the inner loop and thus line th~ numbers up ~ith th~ir
roots.

This brief program provides an indication of the power
hundreds of computations can be made by executing just
repeatedly.

9-30

of loops by which
a few statements,

D-J31-0U

Program With Subroutine

The following example is a program for determining the greatest common
divisor (GCD) of three integers (using the Euclidean algorithm) and illustrates the
use of subroutines.

*10 PRINT TAB(13);"A";TA8(28);"B";TAB(43);"C";TA8(58);"GCD"
*20 READ A,B,C
*.30 LET X = A
*40 LET Y = 8
*SO GOSUB 200
*60 LET X = G
*70 LET Y = C
*BO GOSUB 200
*90 PRINT A,B,C,G
*100 GOTO 20
*110 DATA 60,90,120
*120 DATA 38456,64872,98765
*130 DATA 32,384,72
*200 LET Q = INT(X/Y)
*210 LET R = X-Q•Y
*220 IF R = 0 THEN 300
*230 LET X = Y
*240 LET Y = R
*250 GOTO 200
*300 LET G = Y
*.510 RETURN
*.320 END
*RUN

A
60

".38456
32

OUT OF DATA

B
90

64872
384

c
120

98765
72

GCD
30

1
8

Statement 20 assigns the values from the DATA statements to the variables A,
8, and C. The first two numbers are selected in statements .30 and 40, and their
GCD is determined in the subroutine statements 200 through 310.

The GCD just found is called X statement 60; the third number is called Y in
statement 70; and the subroutine is entered from statement 80 to find the GCD ot these
two numbers. This number is, of course, the GCD of the three given numbers and is
printed out with them, as directed by statement 90. Statement 100 tells the program
to go back to statement 20 and process the next set of data. When all the DATA
statement values have been used, the program will end with the message, "OUT OF
DATA."

In this example, a different form of the PRINT statement PRINT TAB<X>, is used.
The TAB<X> function causes the next data field to be printed at the character position
indicated by the value of X + 1, where X may b~ an expression such as 5*SINY.

Multiple TAB(X) functions may be used in the same PRINT statement, separated
by semicolons <;>and interspersed with names of constants or variables as $hown in
the example.

. 9-31 DJ31-00

Program With A lli.!. And Table

Below is a listing and the resulting output of a program which uses both a list
and a table. The program computes the total sales of each of five salespersons all
of whom sell th~ same three products. The List P gives the price per item of th~
three products, and the table S tells how many item of each produ.ct each perso,n has
sold. Product number 1 sells for S1.25 per item, number 2 for $4.30 p.er item, and
number 3 for $2.50 per item; salesperson number 1 sold 40 items of the first product,
10 of the second, and 35 of the third, etc. The program reads in the price list via
statements 1-0, 20, and 30, using data Line 160, and reads the sales table via lines
40 through 80, using data in statements 170 through 190. {Statements 40 through 80
are nested Loops.> The same ~rogram could be used again, modifying only statem~nt
160 if the prices change, and only statements 170 through 190 to enter the sal~s for
another month.

•5
•10
•20
•30
•40
•50·
•60
•70
•80
•90

DIM S<3,5),P(3)
FOR I = 1 TO 3
READ P(l)
NEXT I
FOR l = 1 TO 3
FOR J = 1 T 0 5
READ SCI,J)
NEXT J
NEXT I
FOR J = 1 TO 5
LET S 0
FOR 1 TO 3
LET S = S+P(l)*S(l,J)
NEXT I

* 1 00
•110
•120
•130
•140
•150
•160
•170
•180
•190
•200

PRINT "TOTAL SALES FOR SALESPERSON",J, 11 $ 11 ,S
NEXT J

*RUN

DATA 1.25, 4.30, 2.50
DATA 40, 20, 37, 29, 42
DATA 10, 16, 3, 21, 8
DATA 35, 47, 29, 16, 33
END

TOTAL SALES FOR SALESPERSON
TOTAL SALES FOR SALESPERSON
TOTAL SALES FOR SALESPERSON
TOTAL SALES FOR SALESPERSON
TOTAL SALES FOR SALESPERSON

1
2
3
4
5

$

$

$
$
$

9-32

180.5
211 • 3
131.65
166.55
169.4

DJ31-00

ADVANCED BASIC

For the advanced programmer, forms of the PRINT statement and PRINT USING statement
are available that permit more flexibility in the formatting of the program
output.

F o r m a t t i n g O u t p u t ~-: .!..!!_ ~ C o m m a 0 r S e m i c o l o n

The end of a PRlNT statement signals the end of the line, unless a comma or a
semicolon is the last character of the statement.

For example, statement 20 in the program entry

* 1U FOR I = 1 TO 15
* 20 PRINT I
* 30 NEXT I
* 40 END
* RUN

results in output of 15 numbers printed on 15 lines, thus:

1
2
3
4
5
6
7
8
9

10
11
1 2
1 3
1 4
1 5

The use of a comma after a variable in a PRINT statement implies data placed
in a zone format upon printout. BASIC provides for a line comprising five zones,
each zone being referred to as a standard zone. By the use of a comma after a variable,
d~ta is allotted to zones and the data is right-justified within the zone. Thus,
by rewriting statement 20 as

* 20 PRINT I,

The resulting format i s

1 2 3 4 5
6 7 8 9 10

11 1 2 1 3 1 4 15

9-33 DJ31-00

The statement

* 10 PRINT X, Y

results in the printing of the value of X in the first standard zone, the value of
Y in the second standard zone and the return to the next line, while

* 20 PRINT X, Y,

results in the printing of these two values in the fir~t and secorid standard zones
and no return; the next value called for in a subsequent ~RHH statement is printed
in the third standard zone.

The statement

* 30 PRINT X, Y, Z, A, 8, C

results in the printing of the first five values in the five standard zones acrbss
the page; the sixth value is printed in the first zone beneath the first value. Five
values are the limit to a printout line, each value b~ing restricted automatically
within the confines of its zone upon printout. <Refer to the remarks of the PRINT
statement.)

The use of a semicolon after a variable in a PRINT statement implies a variation
of the standard zone format. Spacing is compacted to obtain more zones on the line.
Minimum size zone is 7 columns and can contain a number up to 4 characters. The next
larger size zone is 9 columns and contains up to 7 characters. All other fixed-point
numbers are printed as 12-column zones. Negative numbers are preceded by a ITTinus
sign in the first column of a zone.

For the following program (note use of semicolon in statement 20>, the printout
of values would be in compacted zones as illustrated.

* 10 FOR I = 1 TO 1 5

* 20 PRINT I;

* 3U NEXT I

* 40 END
* RUN

1 2 3 4 5 6 7 8 9 1 0 11 12
13 14 1 5

Commas and semicolons can be used within the same PRINT statement. The
statement

* 50 PRINT X,Y; Z,

results in the values of X and Z being printed in standard zones, while the zo"e of
value Y would be compacted.

Text to be printed verbatim is referred to as a label. A label is printed just
a s i t a Pp e a r s i n t h e PR I N·T s t at em en t , l e f t - j u st i f i e d i n a zone • I f t w o o r mo r e l ab e l s
appearing in the s·ame PRINT statement are comma-separated, the first label is printed
left-justified in the first zone and each succeeding label is printed left-justified
in the next succeeding available zone.

9-34 DJ.H-UU

The statement

* 10 PRINT "X VALUE", "SIZE", "RESOLUTION"

results in the printout

X VALUE SIZE RESOLUTION

Semicolon (or null-separated) labels in the same PRINT statement are printed
with no character separation.

The statement

* 20 PRINT "OLD MILES"; "NEW MILES"

results in the printout

OLD MILESNEW MILES

If a label exceeds the length of a line, the line must be ended by quotation
marks and its carryover on the next line or lines treated as additional PRINT
statements.

Spacing Within An Output Line With Functions TAB(X) And SPC(X)

When used in a PRINT statement, functions TAB(X) and SPC(X) give the user
additional control of spacing within an output line. These functions can be used
as any field within the PRINT statement.

The TAB function is expressed in th~ form:

PRINT TAB (expression); data to be printed

It causes the printing of the next data field at the character position indicated
by the value of the expression plus one.

The SPC function is expressed in the form:

PRINT SPC (expression); data to be printed

The number of spaces, equal to the value of the expression, is inserted in the
pri~t line. If this number causes the print position to exceed 72, the carriage
returns and the print position indicator is set at 1.

9-35 DJ31-UO

Exception conditions:

TAB:
r

2.

fil:

When the expression results in a numb~r less than the current character
position where the carriage is sitting, the TAB function is ignored.

When the expression results in a number greater 'than the line limit, the
TAB function is ignored.

When the expression results in a number which, when added to the current
character position on the line, exceeds the line limit, the current line
is printed and the current character position is reset to the first position
on the next Line.

Examples:

* 1Ll PRINT X, TABC20); Y; TAB<40); Z

results in the values of X starting right-justified in the first zone, the
values of Y starting at position 21, and the values of z starting at position
41.

In the example

* 10 PRINT TAB(20); "DATA"
* 20 END
* RUN

the resulting printout is DATA positioned as follows:

Position 20 21 22 23 24

D A T A

* 20 PRINT TAB<10•SIN(X)+10); X

results in the value of X being printed in the position specified by the
value of the expression (10•SIN(X)+10).

In the example

* 10 FOR x = 1 TO 5

* 20 PRINT X; SPC(X); "+"

* 30 NEXT x
* 40 END
* RUN

the resulting printout is

1 +
2 +
3 +
4 +
5 +

(separated by 1 space)
<2 spaces)
<3 spaces)
<4 spaces)
CS spaces)

9-36 DJ31-u0

Formatting Line Output

A line of output Ca printed Line) can be formatted by the user by means of the
PRINT USING and PRINT # USING state~ents.

T h e f i e L d s t h a t c om p o s e t h e i m a g e o f t h e i ma g e s t at e m e n t p o i n t e d t o b y t h e P R I N T
USING and PRINT # USING statements can be made up of the following types:

integer
decimal

exponential
alphanumeric

literal

Format control characters depict the fields within the image statement; the
fields are separated by one or more literal characters <which may be blanks).

Each character following the colon of an "image" statement pointed to by a PRINT
USING or PRINT# USING statement is treated as a print position, specifying either
a Literal or control character.

To facilitate explanation of format control characters and fields, the following
exJmples make use of the PRINT USING statement only. The PRINT USING statement
directs the system to immediately produce a visible result at the terminal upon
program execution.

INTEGER-TYPE FIELD

Each numeric of an integer-type field is indicated by a number sign (#); the
field width must also include a# for the algebraic sign, plus or minus. Upon program
execution, the numbers of an integer type field are right-justified within the field
and rounded if they are not integral.

Example:

* 10 LET A = 123
* 20 LET B = 12.34
* 30 PRINT USING 40,A,B
* 40:
* 50 END
* RUN

123 12

If a number does not fit into the specified format, a field of asterisks of the
length specified is printed upon program execution.

Example:

* 10 LET A = 1234
* 20 PRINT USING 30,A,A
* 30: # #
* 40 END
* RUN

1234 ***

9-37 DJ31-00

If an integer type field is preceded by a dollar sign($), the$ "floats .. up
against the first nonzero digit in the field upon program execution.

Example:

* 10 LET A = 123

* 20 PRINT USING 30,A

* 30: $

* 40 END

* RUN

$123

DECIMAL-TYPE FIELD

Each numeric of a decimal-type field is indicated by a#; the field width must
also include a# for the algebraic sign if minus. Upon program execution, the numbers
of a decimal-type field are right-justified within the field and the value is
rounded to the number of places specified by the #s following the decimal point.

Example:

* 10 LET A 123.45
* 20 LET B -3.456
* 30 LET C -.017
* 40 PRINT USING 50,A,B,C
* 50:###.## ##.#### #.##'
* 60 END
* RUN

123.45 -3.4560 -.02

NOTE: The remarks concerning the use of the dollar sign and display of
asterisks in regard to the integer type field also apply to the decimal
type field.

EXPONENTIAL-TYPE FIELD

An exponential-type field i~ a decimal type field followed by four up-arrows
<HH >;the up-arrows serve to reserve space for placing an exponent. The field width
must include a# for the algebraic sign if minus. For negative values, a minimum
of two #s should be specified to the left of the decimal point to provide for
the minus sign and at Least one digit. The value is rounded as with decimal-type
fields.

9-38 DJ31-1JO

Example:

* 1 0 LET A = 123000000

* 20 LET B. = 123.456
* 30 LET C = -.0177

* 40 PRINT USING 50,A,B,C

* 50:###.##···· ##.####···· #.###UU

* 60 END
* RUN

123.0JE 06 1.2346E 02 -1. 77E-02

ALPHANUMERIC TYPE FIELDS

An alphanumeric-type field can be specified in one of four possible ways, each
indicated by the use of a single quote(') followed by one or more letters to indicate
place of the alphanumeric string within the field. Note that the quote of the
designated field is also a place holder. The fields are as follows:

'L ••• L indicates the string is to be Left-justified within the field and
blank-filled or truncated.

'R ••• R indicates the string is to be right-justified within the field and
blank-filled or truncated.

'C ••• c indicates the string is to be centered within the field and blank-filled
or truncated to the right. If an odd number of characters is to be
centered in a specified format calling for an even number of characters,
the string is centered one character to the Left of a centered
position.

'E ••• E indicates the string is to be Left-justified within the field and the
field is to. be right-extended to accommodate the string if th~ string
is Longer than the field itself.

Example:

010 AS="ABCDEFG"
020 BS="ABCDEFGHIJKL"
030 PRINT"123456789012345678901234567890123456789012345678901234567890"
040 PRINT
050 PRINT USING 100,AS
060 PRINT USING 110,AS
070 PRINT USING 120,AS
080 PRINT USING 130,AS
090 PRINT USING 140,8$
100: 'LLLLLLLLL LEFT JUSTIFIED IN A 10-CHAR FIELD
110: 'RRRRRRRRR RIGHT JUSTIFIED IN A 10-CHAR FIELD
120 'CCCCCCCCC CENTER JUSTIFIED IN A 10-CHAR FIELD
130 'EEEEEEEEE EXTENDED FIELD LONGER THAN STRING
140 'EEEEEEEEE EXTENDED FIELD SHORTER THAN STRING
150 END

9-39 DJ31-00

W~en executed, this program prints:

123456789012345678901234567890123456789012345678901234567890

ABCDEFG
ABCDEFG

ABCDEFG
ABCDEFG
ABCDEFGHIJt<L

LITERAL-TYPE FIELD

LEFT JUSTIFIED IN A 10-CHAR FIELD
RIGHT JUSTIFIED IN A 10-CHAR FIELD
CENTER JUSTIFIED JN A 10-CHAR FIELD
EXTENDED FIELD LONGER THAN STRING
EXTENDED FIELD SHORTER THAN STRING

A Literal-type field is composed of characters (other than control characters).
Upon program execution, the field appears exactly as indicated by the image
statement.

Example:

* 10 LET A = 123.450
* 2U PRINT USING 30,A
* 30: THE VALUE OF A IS
* 40 END
* RUN

THE VALUE OF A IS

$.####.##

$123.45

CONCATENATION OF MULTIPLE FORMATTED IMAGES

The output of multiple PRINT USING or PRINT # USING statements can be placed
on one Line by use of a comma or semicolon following an output List. Images are
concatenated end-to-end. When used in conjunction with MARGIN to extend the
rightmost character position, Lines can be formatted beyond the normal length of 75
characters.

DEFINING FUNCTIONS

The user can define any function which is expected to be used a number of times
in a program by use of a DEF statement. The name of the defined function must be
three alpha characters. The user can define up to 26 functions. One suggested method
of accounting for the number of functions within a program is to label function names
alphabetically; e.g., FNA, FNB ••• , FNZ.

9-40 DJ31-UIJ

,,.

,,,..·

\
The value of s~ch a function can be seen in a program where the user frequently

needs the function t~ raised to -x squared). The function would be introduced by
the statement: \

\

* 10 DEF FNE CX) EXP C-X**2)

and Later on called for various values of the function by such statements as

*
*

100 LET A
200 LET B

\
F NE (1• 1)
F NE C

1
\. 45 l

I

Such a def i n i t ion c ain be a great t i me-saver when the user
function for a number of\different values of the variable.

wants values of some

\
i

The function to find the Length of the hypotenuse of a right triangle serves
as another example. Giv1n sides of X and Y, the function can be formatted in the
statement

* 20 DEF FNACX,Y) != SQR (X**2 + Y**2)
I

I
I

The
example:

f u n c t i o n c a n ft h e n b e u s e d i n t h e

* 50 LET H
* 60 LET G

\\
\

The PRINT statement

* 70 PRINT H,G

\
\
\
\

\
\

program as ·often

then results in the printout of the two r~quired answers.

as desired. For

The DEF statement must occur previous to the use of the function in the program,
and the expression to the right of the equal sign can be any formula that can fit
onto one line. It can include any combination of other functions, including those
defined by different DEF statements, and it can involve other variables besides the
one denoted as the argument of the function. Thus, assuming FNR is defined by:

* 10 DEF FNRCX) = SQR (2+LOGCX)-EXP(Y*Z)*(X+SINC2*Z)))

the current values of Y and Z are used in the computation of X.

A DEF statement can contain up to nine arguments; the total number of arguments
for all DEF statements within a program is Limited to 99.

If an argument is preceded by a sign, the argument with its sign must be enclosed
in parentheses. For example, A=FN~CX,C-Y)).

9-41 DJ31-00

MULTIPLE-LINE fil STATEMENT

The user may want to use the DEF statement wherein he .wishes to assig.n .arguments
or v.alues that Cpuse the statement to exceed the Length of a Line. If a Of·f st,atement
requires more than one Line for the definition of a function, the function can be
introduced with a OEF statement in which no equa>L sign appears, continue in a s.eries
of Lines in which arguments or val\Jes are assigned, and end in a line containing the
word FNEND. The function is thus defined in a multiple-line DEF state111ent, the end
of the statement indicated by the line FNEND. Local variables defined within a
function definition bear no relation to similarly named variables ~sed outside the
definition. Multiple-line DEF statements may not be nested. Transfers from inside
a multiple-Lin• DEF statement to ~utside, and vice versa, are not allowed.

The follo~ing examples illustrate the ~se of the multiple-line DEF
statement.

Example

Example 2

*10 DEF FNX(A,B)
*20 FNX=A
*30 IF A < B THEN 50
•40 FNX=B
*50 PRINT "FNX=";FNX
*60 FNEND
*70 ~1=FNX(5,7)
*80 END
*RUN

lines 10 through 60 constitute the DEF statement. The program results in
the printout.

*10
•20
*30
•40
•50
•60
*70
•80
•90
•100
*110
•120
•130
*RUN

FNX: 5

C=3
0=4
DEF FNA<x,nc,o
C=S
D=10
FNA:;X
IF X=Y THEN 90
FNA;:Y
PRINT "C="C;"D="D;"FNA="FNA
FNEND
C1=.FNA(9,7)
PRINT"C="C;"D="O
END

lines 30 through 100 constitute the DEF statement; therefore, the values
of C and D outside the statement bear no relation to valu•s of C and D
assigned within the statement. The program results in the printout

c;: 5
C= 3

D= 10
D= 4

FNA= 7

9-42 DJ31-00

DATA INPUT DURING PROGRAM EXECUTION -----

There are times when it is desirable to enter data during the running of a
program. This is particularly true when one person writes the program and saves it
in the system and other persons are to supply the data when they wish to make use
of the program. Data may be requested by means of an INPUT statement, which acts
as a READ statement but does not draw numbers from a DATA statement. If, for example,
the user is to supply values for X, Y, and Z into a program, the statement

INPUT X,Y,Z

appears ahead of the first statement that is to use these variables. When the system
encounters this statement during program execution, the terminal prints out a
question mark. The user then types values for X, Y, and Z immediately after the
question mark, each separated by a comma, presses the return key, and the computer
resumes program execution.

An INPUT statement can be used in conjunction with a PRINT statement to permit
identification of variable values being requested. The user can employ the
sequence

* 20 PRINT "WHAT ARE X, Y, Z";
* 30 INPUT X, Y, Z

and the terminal prints out the following during program execution:

WHAT ARE X, Y, Z?

~o which the user must respond with values, on the same line. <Without the semicolon
at the end of statement 20, the question mark would have been printed on the next
line.)

If an INPUT statement is employed in a Loop to repeatedly request input of a
numeric value, program execution must be terminated by typing the letter S (or any
word beginning with the letter S, e.g., STOP) after the question mark.

It may take a Long time to enter large amounts of numeric values using
INPUT statements. Therefore, INPUT statements should be used only when small
quantities of values are to be entered, or when there is a requirement to enter values
during the running of the program.

NOTE: The special case for matrix data input during program execution when
use is made of the MAT INPUT statement is described in "Matrices"
below.

A program to convert degrees Fahrenheit to Celsius serves to illustrate the
usefulness of the INPUT statement. Because this program is designed to Loop back
to the program beginning each time to demand another input, the user must type in
the word STOP after the question mark when the user wishes to terminate the
program.

9-43 DJ31-00

* 10 PRINT "FAHRENHEIT";
* 20 INPUT F
* 30 LET C = <F-32) * 5/9
* 40 PRINT "CELSIUS =" C
* 50 PRINT
* 60 GOTO 10
* 70 END
* RUN

FAHRENHEIT ?32
CELSIUS = 0

FAHRENHEIT ?212
CELSIUS = 100

FAHRENHEIT ?STOP

1'1ATRICES

A set of special statements is provided for operating upon matrices. These
statements are identified by the word MAT, with which each such statement begins.
Although the user can construct programs using only elementary BASIC to perform
calculations on--or otherwise manipulate--matrices, the set of MAT statements
simplifies the programming effort by shortenirig programs considerably.

The format of the MAT statements are:

MAT READ A,B,C,... Read into matrices A, B, C, ••• , their dimensions
having been previously specified. Data is read in
row-wise sequence from standard-format DATA statements,
and entered into the matrices. Each matrix may be tota.l ly
or partially filled. Zeroes are automatically assigned
to any unfilled positions.

MAT PRINT A,B,C, ••• Print matrices A, B, C, ••• The semicolon, TAB, and SPC
can be used, as in the normal PRINT statement. Double
space is provided for between rows; between folded parts
of the same row, single space is provided.

MAT INPUT A

MAT C ;:: A + B

MAT C = A - B

MAT C A * B

MAT C INVCA)

MAT C TRN(A)

Input desired values for elements of matrix A during
program execution time.

Add two matrices A and B and store result in matrix C.

Subtract matrix B from matrix A and store result in matrix
c •

Multiply matrix A by matrix Band store result in matrix
c •

Invert matrix A and store resulting matrix in C.

Transpose <interchange rows and columns) matrix A and
store resulting matrix in C.

9-44 DJ31-00

MAT c (K) * A or
MAT c A * (K) Multiply matrix A by value represented by K. K may be

either a number or an expression, but in either case it
must be enclosed in parentheses.

MAT c CON Each element of matrix c i s set to one.

MAT c ZER Each element of matrix c i s set to zero.

MAT c = ION Diagonal elements of matrix c are set to one's, yielding
an identity matrix.

The last three MAT statements can also be written with subscripts suffixed to
the right-hand side; e.g., MAT C = ZERCI,J). The use of this form is described
below.

Special
instructions.

rules apply to the dimensioning of matrices which occur
DIM statements indicate the maximum dimension of a matrix.

in MAT
Thus

DIM MC20,35)

means that M can have up to 20 rows and up to 35 columns. The dimensions of all matrices
occurring in MAT statements must be specified in DIM statements; otherwise, automatic
dimensioning (subscript values of 10 or Less) is implied.

NOTE: Rows and columns
there is no row
statements.

of matrices
or column

are numbered
numbered 0 in

through
matrices

n. That
used in

is,
MAT

The current dimension of a matrix can be determined either when it is initially
defined by the dimension statement or by special usage of certain MAT statement forms.
The four general forms used to accomplish dynamic redimensioning are:

1. MAT READ ACM,N)

2. MAT A ZER(M,N)

3. MAT A CON(M,N)

4. MAT A IDNCN,N)

The first, MAT READ, redefines the current dimensions of matrix A as M rows and
N columns and then reads M*N data values to fill in the elements. More than one matrix
may be redimensioned and read with a single statement.

The other three forms are used to redefine the current dimensions of a matrix
CA) and then fill its elements with values as specified by the statement type.

The rules for dynamic redimensioning are as follows:

1. No dimension can be changed to a value that exceeds its original declaration
in the DIM statement.

9-45 DJ31-0ll

2. Using the statement ty.pes describ€d above, dimensions ca.n be redefined in
either the upward or downward direction as Long as the definition is within
the bounds of item 1 above and the original declaration in the DIM
statement.

For example, a matrix sp.ecified in the DIM statement as <o.,4> might be
redimensioned as <4,4>, but not as <10,2) -- by rule 1 -- or <5,5) -- by rule Z.

In addition to use of a DIM statement, and possibly a declaration of
current dimensions, the user must use MAT statements with care. for example, a ;ma't:ri1<
product MAT C =A* 8 may be i Lle.gal for one of two reasons: A and B may have dimensions
such that the product is not mathematically defined, or even if it is defined, 'C may
not have reserved enough space for the answer. In either case, the message IN xx.x.x
DIM ERROR results, where XXX~ is the line number of the statement in question.

The same matrix can occur on both sides of a MAT statement in cases of addition,
subtraction, multiplication by a constant, or inversion, but not in any other
statement form. Legal form are:

MAT A
MAT A
MAT A
MAT A

=
=
=
=

A + 8
A - B
(2.5)*A
INV (A)

Also, note that the special form of matrix multiplication

MAT B :::: A * A

is legal.

Illegal forms are:

i'llAT A
MAT A =
MAT A
MAT A

13
B*A
TRN(A)
A + B - C

The last example is an attempt to use more than one arithmetic operator in a
MAT statement. Each matrix operation requires its own matrix statement.

A 2-dimensional string matrix <e.g., A1$C10,20>> is not permitted. No MAT
operations are permitted for string variables.

9-4.6 DJ31-00

The following program illustrates some simple operations upon matrices by the
use of MAT statements.

* 1 0 DIM A<2,3), 8(2,3), s<2,3>

* 20 DIM D(2,3), MC2,3), T<3,2)

* 30 MAT READ A,B
* 40 REM SUM OF MATRICE.S
* 50 MAT s = A + B
* 60 MAT PR II T s
* 70 REM DIFf '::REN CE OF MATRICES
* 80 MAT D = A - B
* 90 MAT PRINT D
* 100 REM MULTIPLY MATRIX
* 110 MAT M = (2) * A
* 120 MAT PRINT M
* 130 REM TRANSPOSE MATRIX
* 140 MAT T = TRN(B)

* 1 50 MAT PRINT T
* 160 DATA 1,2,3,4,5,6
* 170 DATA 6,5,4,3,2,1
* 180 END
* RUN

7 7 7

7 7 7

-5 -3 -1

3 5

2 4 6

8 10 1 2

6 3

5 2

4

The MAT INPUT statement permits input of data, pertaining to the elements of
a matrix, at program execution time. The function NUM(X) can be utilized to supply
a count of the number of data elements entered; thus, the matrix array can be filled
to any level desired <.t.e., user need not input data elements to fill the entire
array). The count of NUM(X) always reflects the number of input data elements for
the most recently executed MAT INPUT statement. If more than one line of values
is required, the line (and subsequent lines, if needed) is terminated with an
ampersand <&> to indicate continuation. The ampersand may or may not be
comma-separated from the last value. The MAT INPUT statement can be used with either
1- or 2-dimensional arrays. The 1-dimensional array is filled beginning with element
1; 2-dimensional arrays are filled in a row sequence.

9-47 DJ31-00

Two examples of the use of the MAT INPUT statement are as follows:

Example 1 :

* 10 DIM S{100)
* 20 MAT INPUT s
* 30 PRINT 5(1);" + ";5(2);" = ";SC1)+SC2)
* 40 LET T SC1)+SC2)
* 50 FOR I 3 TO NUMCX)
* 60 LET T T + s (1)

* 70 PRINT" + ";SCI);" = II; T
* 80 NEXT I
* 90 END
*RUN

?1,2,3,4,5,&
?6,7,a,&
?9,1U,11

1 + 2 = 3
+ 3 = 6
+ 4 10
+ 5 1 5
+ 6 = 21
+ 7 = 28
+ 8 36
+ 9 45
+ 10 = 55
+ 11 66

Example 2:

* 1 0 DIM M1 <3,4)
* 20 MAT INPUT M1
* 30 MAT PRINT M1;
* 40 END
*RUN

?1,2,3,4,5,6,7

1 2 3 4
5 6 7 0
0 0 0 0

ADDITIONAL FUNCTIONS

BASIC provides for the use of other functions in addi.tion to the standard
mathematical functions listed in Section IV.

These additional functions are as follows:

INT<X>
RND(X)
SGN<X>
DET(X)

TIMCX)
CLK$
DAT$

NUMCX)
SSTCXS,Y,Z)

9-48

TAB(X)
SPC(X)

LENCX$)
LIN(X)
ASC(X)

STRSCN)
VAL(S$)
TSTCS$)
HPS<x>·

OJ31-00

Function INTCX)

Purpose: To truncate a number to integer form.

Format: INT (expression)

Examples: * 10 PR;~T INT <2.35)
* 20 PRI H INT (-2.35)
* 3 0 PR I IH INT (2. 9)

are three examples of this function placed in a PRINT statement and used
to truncate a number. The resultant printouts would produce 2, -.5, and
2, respectively.

Function RNDCX)

Purpose:

Format:

To generate random numbers for computational procedures requiring random
variables.

The general format is

RND (any variable or con~tant)

which produces a random number between (but not including) 0 and 1.

If a great number of these ra.ndom numbers. are produced, it becomes
apparent that they tend to fall uniformly over the range, for the numbers
come from a uniformly distributed population.

Examples: * 10 FOR L = 1 TO 20
* 20 PRINT RND(X),
* 30 NEXT L
* 40 END
* RUN

might generate the following:

0 • .5199251
0.8075665
0.3074467
0.7088735

0.0590169
0.964758
0.4493044
0.2340001

0.4018556
0.2424602
0.7489442
0.9746831

0.6280534
0.066037
0.4024822
0.5227955

0.2292995
0.368314
0.301177
0.6405085

If random integers between 0 and 9 are desired, statement 20 can be ch<lnged
to read

* 20 PRINT INT (10*RND(X)),

which results in

3
B
3
l

0
9
4
2

4
2
7
9

9-49

6
0
4
5

2
3
3
6

DJ31-00

If statement 20 were changed to read

* 20 PRINT INT C20*RND(X)+5),

then the printout would contain random numbe~s bttween integers S and
24.

The range of random numbers generated, therefore, is dependent upon hGw
function RND(X) is modified.

The function RNDCX) lends itself readily
probability. For example, to simulate a
contest, the following progra~ can be ~ritten:

* 10 fOR T = 1 TO 5

* 20 IF RNDCT> =0.5 THEN 50

* 30 PRINT "HEADS"

* 40 GOTO 60
* 50 PRINT "TAILS"

* 60 NEXT T
* 70 END

to programs involving
5·trial coin tossing

The program execution is a reasonable facsimile of the re$ults of a coin
tossed five times.

The use of the RND function as described above is appropriate when the
same sequence of random numbers is to be generated each time a program
is run. If the variable or constant used as an argument is a positive
quantity and is not changed, the same sequence of random numbers is
generated for each execution of the program.

The use of a negative argument for the RND function causes an unpredictable
series of random numbers to be generated each time the program is run.
For example, if the user wishes different sequences of random numbers for
each execution of his program, one of the following techniques can be
used:

* 10 LET x = -1

* 20 FOR I = 1 TO 20

* 30 PRINT RNDCX)

* 40 NEXT I

* 50 END

* 1 0 LET x = 1
* 20 FOR I = 1 TO 20

* 30 PRINT RND(-X)

* 40 NEXT I

* 50 END

* 10 FOR I = 1 TO 20

* 20 PRINT RND(-1)

* 30 NEXT I
* 40 END

9-50 OH1-UU

Function SGN(X)

Purpose:

Format:

Examples:

To determine the sign of an expression.

SGN (expression)

The function yields +1, -1, or 0, depending upon the value
of the ex)ression. The following List gives the options:

SGN
SGN
SGN

(Value of expression)

(zero)
(positive,non-zero)
<negative,non-zero)

* 10 IF SGN(X) 1 THEN 100

Yields

0
+1
-1

In this statement, the value of X must be positive to accomplish the
• transfer of processing to statement 100.

The statement

* 20 LET X = SGN(Y)*ABS(X)

assigns to X the sign resulting from the value of Y.

Function DET(X)

Purpose:

Format:

Examples:

To obtain the determinant of the last matrix inverted.

DET <any variable or constant)

*10
*20
*.3 L)

MAT B=INV(A)
LET C=DET(X)
PRINT C

The program, when executed, inverts matrix A, stores the result in matrix
B, and prints out the value of C, the determinant of matrix A.

The determinant can be made an element of a more complex numeric
expression.

*10 PRINT 2*DET(X)
*20 IF DET(X)=O THEN 60

Any attempt to invert a singular matrix does not stop the program, but
DET(X) is set to zero. For any program, the user must decide if a
determinant is large enough to be meaningful.

9-51 DJ.51-Llll

Function TIM(X)

Purpose: To obtain elapsed processor time in seconds.

Format: TIM <any keyboard character)

Examples: *SO PRINT "PROCESSOR TIME=";TIM(X);"SECONDS"

A program including such a statement, when executed, would contain a
printout line

PROCESSOR TIME= <value> SECONDS

The processor time can be assigned a variable name.

*50 LET T=TIM(X)
*60 PRINT "PROCESSOR TIME =";T

Function CLK$

Purpose: To provide the time of day as a string.

Format: CLK$

Examples: *SO PRINT CLK$

A program including such a statement, when executed, would contain a
printout line indicating time of day in hours ranging from 1 to 24 and
in portions of hours, such as NN.NNN.

The time of day can also be assigned to a string variable.

Function DAT$

*10 LET T$=CLK$
*20 PRINT T$

Purpose: To provide the calendar date as a string.

format: DAT$

Examples: *50 PRINT DAT$

A program including such a stat~ment, w~en executed, would contain a
printout Line indicating the calendar date (month, date, year), such
as

MM/DD/YY

The calendar date can also be assigned to a string variable.

*10 LET A$=DAT$
*20 PRINT A$

9-52 DJ31-00

Function NUi'll(X)

Purpose:

Format:

To supply count of number of data elements in response to request from
MAT INPUT statement.

NUM (any alphanumeric character)

Refer tc MAT INPUT statement under "Matrices" in this section for an
example :oncerning use of NUM(X).

Function SST(X$,Y,Z)

Purpose:

Format:

To extract selected characters of a string.

SST<string variable, beginning character, number of characters)

R e f e r t o t h e u s e o f t h e L E T s t a t e m e n t u n d e r " A l p h a n u.m e r i c D a t a a n d
String Manipulation," in this section, for an explanation of the use of
this function.

Function TAB(X)

Purpose:

FormJt:

To position data field at indicated character position within an output
l in e.

TAB(expression), <data to be printed>

Refer to
SPC(X),"
function.

"Spacing
in this

Within An Output Line with
section, for an explanation

Functions
of the

TAB(X)
USC 0 f

and
this

Function SPC(X)

Purpose:

Format:

To insert spaces at indicated positions within an output line.

SPC<expression); <data to be printed>

Refer to "Spacing Within an Output Line with Functions TAB(X) and SPCCX),"
in this section, for an explanation of the use of this function.

9-53 DJ31-00

Function LENCX$)

Purpose: To determine the number of characters in a specified string variable.

Format: LEN<string variable)

Examples: *
*
*
*
*

10 READ AS,BS,CS
20 PRINT LENCA$);LENCB$);LENCC$)
30 DATA LENGTH, OF, STRING
40 END
RUN

results in a printout of

6 2 6

The value of LEN can be assigned to a variable.

* 10 LET X=LENCAS)
* 20 PRINT"LENGTH OF STRING=";X

Function LINCX)

Purpose: To provide the Last Line number encountered in reading from or writing
to a ffle.

Format: LIN<file designator)

Examples: * 1 a FILES A
* 20 SCRATCH # 1

* 30 FOR I=1 to 45

* 40 WRITE #1,I;
* so NEXT I
* 60 PRINT "LAST LINE WRITTEN IS ";LIN(1)

* 70 RESTORE #1
* 80 PRINT
* 90 FOR I=1 to 24

* 100 READ #1,X1
* 11 0 PRINT X1;
* 120 NEXT I

* 130 PRINT
* 140 PRINT "LAST LINE READ IS ";LIN(1)
* 150 END

* RUN

upon execution, the program produces

LAST LINE WRITTEN IS 50

1 2 3 4 5 6 7 8 9 10 11 12
13 14 1 5 16 17 18 19 20 21 22 23 24

LAST LINE READ IS 30

9-54 'DJ31-00

The Listing of f i Le A shows that it contains the fo L Lowing data:

000010 1 , 2, 3, 4, 5, 6, 7, '8, 9,
000020 10, 11 , 12, 13, 14, 1 5, 16, 17, 18,
000030 19, 20, 21, 22, 23, 24, 25, 2q, 27,
000040 28, 29, 30, 31, 32, 33, 34, 35, 36,
000050 37, 38, 39, 40, 41, 42, 43, 44, 45,

The value of LIN can be assigned to a variable.

* 10 LE~ N=LIN(1)

* 20 PR1NT "LAST LINE READ IS "; N

Function ASC(X)

Purpose: To provide the numeric value of a specified character or, for the case
of non-printing characters, an abbreviation.

Format: ASC {<character) }
(abbreviation)

Examples: *
*
*
*

10 PRINT "VALUE FOR A IS ";ASC(A)
20 PRINT "VALUE FOR CR IS ";ASCCCR)
30 END
RUN

results in

VALUE FOR A IS 65
VALUE FOR CR is 13

The value of ASC can be assigned to a variable.

* 10 LET X=ASC(A)
* 20 PRINT "VALUE FOR A IS ";X

The conversion equivalents for characters and non-printing characters are
Listed in the table "Numeric Code Table" in this section.

9-55 DJ31-00

Function STR.SCN>

Purpose: To produce a string corresponding to a value of a number represented by
an expression.

Format: STRS (expression>

Examples: The value of STR$ can be assigned to a string variable

*10 LET X$=STR$(N)

or can be used directly

*20 PRINT STR$(N)

where N is a number, STRS converts N to a string containing the same
digits.

*10 LET N=77.233
*20 LET X$=STR$(N)
*30 LET Y$=STR$(63)
*40 PRINT XS;Y$
*50 END

when executed, the program results in

77.233 63

U s e o f S T R $ i mp l i e s p L a c em e n t o f t h e s t r i n g r i g h t ... j u s t i f i 'e d , f o l l o w e d b y
a blank, in the smallest zone into which it will fit. Blanks occupy the
remaining character positions of the zone.

Function~~

Purpose: T o p r o du c e -a n um e r i c v a l u e c o r r e s po n d i n g t o t h e v a l u e o f a s t r i n g
represented by a string variable.

Format: VAL (string variable)

Examples: The value of VAL can be assigned to a variable

*10 LET A=VAL(S$)

or can be used as an element of a numeric expression

•20 LET A1=2*VALCS$)
*30 PRINT 3*VAL(S$)+A+A1

The string variable of VAL must be a valid constant. The program

*10 LET A$="12345"
*20 LET 8$="12.95"
*30 LET C=VALCA$)
•40 PRINT C;VAL(B$)
*50 END

when executed, results in

12345 12.95

9-56 DJ31-00

Function TST(S$)

Purpose: To produce a 1 as output if a string represented by a string variable
can be interpreted as a number, or produce a 0 i f the .st r i n g cannot be
interpreted as a number.

Format: TST (string variable)

Examples~ The value of TST can be assi·gned to a variable

*10 LET T=TST(S$)

or can be used as an element of a numeric expression

*20 PRINT VAL(S$)*TSTC5$)
*40 IF TST(5$)=0 THEN 50

The program

*10 LET A$="49"
*20 LET T=TST(A$)
•30 IF T=O THEN SO
*40 PRINT VAL(A$)
*SO END

when executed, results in

49

Function HPS(X)

Purpose: To provide a horizontal print position of the next field to be
transmitted to a specified file.

Format: HPS (file designator)

Examples: The function can be assigned to a variable

*10 LET P=HPS(Q)

or can be used as. an element of a numeric expression

*20 PRINT 12+HPSC0)

The program

*10 FOR X=1 to 8
*20 PRINT X;
•30 NEXT X
*40 LET A=HPS(Q)
•50 PRINT A
•60 END

when executed, results in

2 3 4 5 6 7 8 49

9-57 DJ31-00

SUBROUTINES

The horizontal print position of the file is 49.

*10 FILES OUT1
*20 SCRATCH #1
*30 FOR I=1 TO '5
*40 WRITE #1,I;
*50 NEXT I
*60 PRINT "HOR. PRINT POS. OF FILE 1=";HPSC1>
*70 END

This program when executed, results in

HOR. PRINT POS. OF FILE 1=44

A listing of file OUT1 would show

10 1, 2, 3, 4, 5,

The file designator for function HPS must be a numeric value between zero
and 8 inclusive. Zero is interpreted as being the user's terminal.

Th~ use of function HPS is limited to providing the horizont~l print
position for output. If the specified file is open for input, a zero
horizontal print position is returned.

When a particular part of a program is to be performed more than one time, or
possibly at several different places in the overall program, the part or parts are
most efficiently programmed as subroutines. Subroutines can be likened to programs
within the main program which permit the user to partition his main program.

The subroutine is entered by the way of a GOSUB statement. For example,

* 90 GOSUB 210

directs the processing to jump to statement 210, the first statement of the
subroutine. The last statement of the subroutine to be executed must be a RETURN
statement directing the processing to return to the earlier part of the program. For
example,

* 350 RETURN

t e .l l s t he process i n g to go b a c k to t he f i rs t st ate men t numbered great e r t ha n 9 0 and
to continue the program from there.

9--58 OJ31•00

GOSUB statements can be used within subroutines to branch to still other
subroutines. The following nonsense program illustrates the technique:

* 10 READ L

* 2 0 GOSUB so
* 30 PRINT A,B,C,

* 40 STOP

* 50 REM THIS IS SUBROUTINE

* 60 LET A = 5
* 70 GOSUB 1 u)
* 80 LET B = "° * 90 RETURN
* 100 REM THIS IS SUBROUTINE 2

* 11 0 LET C 1 5
* 120 FOR I = 1 TO L
* 1 30 LET C = I*C

* 140 NEXT I

* 150 RETURN
* 160 DATA 5
* 170 END

Statement 20 jumps the processing to Subroutine 1. Statement 70, in turn,
transfers processing from Subroutine 1 to Subroutine 2. Statement 150 then returns
the processing to the most recent point of departure -- statement 80. When sL1tement
90 is encountered, processing is returned to statement 30. Statement 40 prevents
the program from falling back into Subroutine 1 again and the program is
terminated.

LOOPS

Frequently, there are operations in programming that must be repeated many
times; therefore, some statements within a program must be executed many times. This
repetition of a set of statements is referred to as a Loop. For example, if a table
were required of the first 100 positive integers and their square roots, it could
be obtained by this program.

* 10 PRINT 1, SQR(1)
* 20 PRINT 2, SQR(2)

* 990 PRINT 99, SQR(99)
* 1000 PRINT 100, SQR(100)
* 1010 END

By means of two BASIC statements, a programming Loop can be written that
accomplishes the same as the program with 101 statements but in only four statements;
namely,

* 10 FOR X = 1 TO 100
* 20 PRINT X, SQR(X)
* 30 NEXT X
* 40 END

9-59 DJ31-00

The FOR statement denotes the beginning of the loop, and it specifies the range
(1 to 100) for the given variable CX) and in unit steps (implied step-size of 1 when
STEP is not given) as the program keeps passing through the Loop. If th.e steps were
to be increments of other than 1, then statement 10 would include the word STEP
followed by the required size. If the increments were, say 2, then the statement
wo~Ld be written as

* 10 FOR X = 1 TO 100 STEP 2

The NEXT statement .<statement 30) terminates the loop and returns the sy~tem
to statement 10, with the statement between being executed for each pass through the
Loop. When the Loop has been executed the specified humber of times C100, in the
example), then it directs the system to the statement after the NEXT statement
<statement 40>.

The program Loop described above is a simple one. The FOR and NEXT statements
can be used effectively in more complex problems wherever iterations are required.
For example, if integration of a function is required, the FOR statement can be used
to define limits and set the count of iterations through the loop. Computation
statements can then be made and the NEXT statement used to repeat the iteration until
the count has b•en achieved.

It is possible, as well as useful, to have loops within Loops. However, a loop
cannot cross another loop. To illustrate:

This method of creating Loops is allowed:

FOR X

[OR y For each pass through the x loop,

NE~T
the y Loop is executed the

y specified number of times.

NEXT X

F o r exam p le, i f t he X loop h ad a range of 5 and t he Y Loop a range of 1 0,
then for each pass through the X Loop, the Y Loop is executed 10 times. When the
X Loop has been executed 5 times, the Y Loop will have been executed 50 times <i.e.,
10 Y passes per 1 X pass).

9-60 DJ31 ... 00

This method is also allowed:

FOR X

~~~~) z 

[
FOR W 
NEXT W 
NEXT Y 

[
FOR Z 
NEXT Z 
NEXT X 

END 

This method is not allowed; note the cross-over of the Loops: 

~
FOR X 
FOR Y 
NEXT X 
NEXT Y 

Loops can also be created within a program by the use of GOTO and READ statements. 
If a READ statement contains a variable to which the user wishes to assign more than 
one value, a GOTO statement directs the program to Loop back to the READ statement 
and assign another value. 

The Loop is performed as many times as there are values available in a DATA 
statement. When the values have all been assigned, execution of the program is 
terminated and the message OUT OF DATA is printed. 

The following sample program illustrates the use of a GOT-0-READ loop: 

10 READ A,B,D,E 
15 LET G = A*E-B*D 
20 IF G = 0 THEN 65 
30 READ C,F 
37 LET X = (C*E-B*F)/G 
42 LET Y = (A*F-C*D)/G 
55 PRINT X,Y 
60 GOTO 30 
65 PRINT "NO UNIQUE SOLUTION" 
70 DATA 1,2,4 
dO DATA 2,-7,5 
dS DATA 1,3,4,-7 
90 END 

T h i s p r o g r am h a s a s s i g n e d o.n e s et o f v a l u e s t o t h e v a r i ab l e s A , B , D , E , 
but three values each to the variables C and F. Therefore, the solution should provide 
six answers. To achieve multiple answers, a loop is created by way of statement 60. 
Here the program is directed back to statement 30 to assign new values to c and F 
from the data block. 

9-61 DJ31-00 



The program and the resulting run would appear as follows: 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

10 READ A,6,D,E 
1 5 LET G=A•E-S*D 
20 IF G = o THEN 65 
30 READ C,F 
37 LET x = CC•E-B*F)/G 
42 LET y = CA*F-C*D)/G 
55 PRINT X,Y 
60 GOTO 30 
65 PRINT "NO UNIQUE SOLUTION" 
70 DATA 1,2,4 
80 DATA 2,-7,5 
85 DATA 1,3,4,-7 
90 END 
RUN 

4 
0.6666667 
-3.666667 

-5.5 
0.1666667 
3. 8333333 

OUT OF DATA IN 30 

.\:..!1ll ~ TABLES 

Often when writing a program, the need arises to make use of a list of numbers. 
The user will find it most advantageous to give the list a single variable name rather 
than provide separate variables for each number in the list. For example, if 25 
salesmen were to be Listed in a program, the List could be called Sand the salesmen 
would be represented by S and a subscript, ranging from SC1> to SC25>. Thus S<S> 
would represent the fifth salesman in List S and SC25) would represent the 25th or 
last salesman in the list. 

The user may also find the need to make use of tables in his programs. 
again, a single variable name rather than separate variables for each entry of a 
is most convenient. For example, PC3,J) would represent ro~ 3, column J in 
P; table P could be a 5 by 10 array. PC5,10> represents the entire table and 
be dimensioned as such in a DIM statement. 

Herc 
table 
table 
could 

Lists and tables thus permit the user to enter groups of numbers into a program 
that are to be worked upon concurrently. Such programs can be used over and over 
again, with the user updating the data each time the program .is used. 

The usefulness of employing a List in a program can be i Llustrated by an example. 
A brush salesman has 10 kinds of brushes he carries in his sample case. At the end 
of the day, he wishes to compute the dollar value of the orders he has taken. The 
prices of the 10 brushes are as follows: 

0.50, 1.75, 2.25, 2.75, 3.45, 4.00, 4.25, 4.75, 5.00, 5.25 

9-6.2 DJ31-IJO 



In writing his program, the salesman enters his quantity of sales for individual 
brushes and then asks for a printout of total sales. 

* 1 0 DIM p ( 1 0) 
* 20 FOR I = 1 TO 1 0 
* 30 READ p (I) 

* 40 NEXT I 

* 5U LET s = () 

* 55 FOR I = 1 TO 10 
* 60 READ B 
* 70 LET s = ..) + B * p (I) 

* 75 NEXT I 
* 80 PRINT "TOTAL SALES = $" s 
* 90 DATA 0.50, 1 • 7 5, 2.25, 2.75, 3.45 

* 100 DATA 4.00, 4.25, 4.75, 5.00, 5.25 
* 11 0 DATA 0,5,7,3,12 

- * 120 DATA 25,15,30,10,35 

* 130 END 

At the end of each work day, the salesman updates DATA statementi 110 and 120 
to ref Lect his orders and obtain new sales totals. 

Below is a listing and run of a program that uses both a List and a table. 

* 5 DIM S<3,5),P(3) 
* 1l) FOR I = 1 TO 3 
* 20 READ p (I) 

* 30 NEXT I 
* 40 FOR I = 1 TO 3 
* 50 FOR J = 1 TO 5 
* 60 READ S(I,J) 
* 70 NEXT J 
* 8U NEXT I 
* 9l) for J 1 TO 5 
* 1 uo LET s 0 
* 11 0 FOR 1 TO 3 
* 120 LET s s + P(I)*S(I,J) 
* 130 NEXT I 
* 140 PRiNT "TOTAL SALES FOR SALESMAN",J,"$",S 
* 150 NEXT J 
* 160 DATA 1.25,4.30,2.50 
* 1 70 DATA 40,20,37,29,42 
* 180 DATA 10,16,3,21,8 
* 190 DATA 35,47,29,16,33 
* 200 END 

*RUN 

TOTAL SALES FOR SALESMAN 1 $ 180.S 
TOTAL SALES FOR SALESMAN 2 $ 211.3 
TOTAL SALES FOR SALESMAN 3 $ 131.65 
TOTAL SALES FOR SALESMAN 4 $ 166.55 
TOTAL SALES FOR SALESMAN 5 $ 16'9. 4 

The user should be aware of the need to dimension a list or table to at least 
the minimum of the subscript value. But it may be expedient to dimension somewhat 
generously over the minimum to permit changes to an existing program. For example, 
the brush salesman would do well to change statQment 10 in his program to: 

* 10 DIM P(25) 

9-63 DJ31-00 



This will enable him to use his program if he adds up to 15 additional kinds 
of brtishes to his Line. 

Extra large dimensions can be defined in DIM statements <with a maximum of about 
100,000 elements>, but space in computers is limited and a realistic dimension is 
in the best interest of all users of the time sharing system. 

ALPHANUMERIC DATA AND STRING MANIPULATION 

BASIC has the ability to manipulate alphanumeric information in addition to 
numeric data. Data consisting of alphanumerics and certain sp~cial characters can 
be treated as if it were numeric data. 

A sequence of alphanumeric data is referred to as a "string;" the string size, 
in turn, is limited to 132 valid characters. Initially, space for 20 characters is 
allocated; the space is then expanded if space for more ~haracters is required. 
!'t1anipulation of a string is by means of a "string variable," created by following 
any permissible BASIC variable with the character $. For example, 

A$,KU,X5$ 

are valid string variables. Manipulation, incidentally, should not be interpreted 
as meaning arithmetic operations; such operations cannot be performed on string 
variables. 

The use of alphanumeric data and string manipulation are restricted to 
certain BASIC statements. The following is a list of these statements, each 
accompanied by explanation of alphanumeric data use and string manipulation as 
applicable. The use of quotes to enclose strings is recommended where doubt exists 
as to their use; superfluous quotes will be ignored by the system. 

o DIM 

A user may set up a list of allied strings as a one-dimensional ar.ray. The 
DIM statement must then be used to ~eserve space. For example, 

* 10 DIM A$C15),B$C25) 

Space for fifteen 20-character strings are then reserved by AS and 
twenty-five 20-character strings by BS. The user may then select 
particular strings within a string list; for example, ASC4> would be the 
fourth string in the A$ list and 8$(6) the sixth string in the 8$ 
l i st ;, 

o LET 

The LET statement can be used to assign the contents of one string variable 
to another string variable, assign a string constant to a string variable, 
concatenate strings, and extract selected characters of a string. Quotes 
must enclose any assigned string constant. An ampersand <&> is used to 
indicate string concatenation. 

9..;.64 OJ31-00 



The statement 

*10 LET R$=T$ 

assigns the contents of the string T$ to R$. 

The statement 

*10 LET G$ = "THIS IS A STRING" 

assigns t1 e string, THIS IS A STRING, to G$. 

String concatenation is limited within one LET statement to two string 
variables or one string constant and one string variable. 

The statements 

*10 LET A$ = "JOHN DOE " 
*20 LET B$ = "EMPLOYEE NUMBER 12345" 
*30 LET C$ = A$ & 8$ 
*40 PRINT C$ 

or 

*10 LET A$ 
*20 LET C$ 
*30 PRINT C$ 

"JOHN DOE " 
A$ "EMPLOYEE NUMBER 12345" 

when executed, produces the printout 

JOHN DOE EMPLOYEE NUMBER 12345 

Extraction of selected characters of a string is achieved by use of 
the substring extraction function, which has the general format 

SST <string variable, beginning character, number of characters) 

Where: 

1. String variable is assigned contents of a string 

2. Beginning character is numeric value to indicate position of 
character with which to begin extraction 

3. Number value of characters to extract 

Character positions of a string are numbered from left to right, 1 through 
132. Based on three arguments supplied to the SST function, a substring 
is extracted and stored Left-justified in the string variable specified 
to the left of the equal sign of the LET statement. Blanks within a string, 
of course, are considered as characters when the character count is 
made. 

9-65 DJ31-ll0 



The sta.tements 

*10 
*20 
*30 
*40 
*50 
*60 
*70 

LET A$ 
LET 8$ 
LET C$ 
LET D$ = 
PRINT 8$ 
PRINT C$ 
PRINT 0$., 

"THIS IS A DEMONSTRATION OF THE SUBSTRING FUNCTION" 
SST<AS,1,10) 
SSTCAS,11,14) 
SST<AS,25,25) 

upon program execution, produces printouts of 

THIS IS A 
DEMONSTRATION 
OF THE SUBSTRI~G FUNCTION 

o IF-----THEN or IF-----GOTO 

S t r i n g s a n d st r i n g v a r i ab l e s c an be m a n i p u l a t e d w i t h t h e s e s t a t em en t s a l s o • 
Only one string variable is permitted on each side of the relational symbol 
and the string must be enclosed by quotes. Relational symbols indicate 
relation in regard to alphabetic order. 

Examples are as follows: 

* 10 IF GS = "THIS IS A STRING" THEN 30 

* 10 IF G$ >H$ GOTO 30 

* 10 IF "MAY"< > MS THEN 30 

o CHANGE 

The CHANGE statement can be used to convert ASCII characters (or strings> 
to a numeric list containing their equivalent (decimal) codes or vice 
versa. 

The process involves two lists, one numeric, the other a string variable. 
~hen converting numeric codes to a character string, the numeric list is 
to contain the valid numeric equivalent of a single character in each 
element. Given the desired number of items to convert, the CHANGE command 
performs the conversion and concatenate the resulting characters into the 
string variable. The zero-th location in the list contains the number of 
characters in the string. 

In changing from 
numeric code for 
array. 

a character string, the command stores 
each character into the elements of 

Examples are as follows: 

String A$: A 6 + D 

List N(X).: 5 37 65 54 43 68 

x: (Q) (1) (2) (3) (4) (5) 

9-66 

the 
the 

related 
numeric 

DJ31-00 



The program 

* 10 A$ = "%A6+D" 

* 20 CHANGE A$ TO N 
* 30 FOR J=O TO 10 

* 40 PRINT NCJ); 

* 50 NEXT J 
* 60 END 

when exec1 ted, results in a printout of 

5 3? 65 54 43 68 0 0 0 0 0 

indicating that the operation has assigned five characters to the list and 
has entered the numeric code equivalents of these five alphanumeric 
characters into locations 1 through 5 in the list. The remaining locations 
contain zeroes. 

Note. that lists are automatically dimensioned at 10 unless otherwise 
specified. If the string to be changed contains more than 10 characters, 
a statement DIM NCX> must be provided prior to the CHANGE statement, where 
X is equal to or greater than the number of characters in the string. 

The program 

* 10 N<0)=5 
* 20 N(1)=37 N(2)=65 N(3)=54 N(4)=43 N(5)=68 
* 30 CHANGE N TO A$ 
* 40 PRINT A$ 
* 50 END 

when executed, results in the printout of 

l.A6+D 

indicating that the operation has converted the five numeric values in 
locations 1 through 5 of the list into the corresponding ASCII characters, 
and concatenated them into the string AS. 

Note that in this case, the string must be dimensioned by the NCO>=X 
statement; otherwise, an error message INVALID CHANGE IN XX results, and 
the program halts. If the string is dimensioned too small, the string 
variable is truncated. If it is dimensioned too large, the string may 
contain irrelevant characters. 

Strings may be of any Length from 1 to 132 characters. 

9-67 DJ31-00 



The following sample program i Llustrates another use of the CHANGE 
statement. 

* 10 DIM AC100) 
* 20 FOR I = 1. TO 26 
* 30 LET A(I) = 64 + I 
* 40 NEXT I 
* 45 REM AT THIS POINT THE A LIST IS 65,66,67 ••• 90 
* 50 LET AC0>=20 
* 60 REM CONVERT ONLY THE 1ST 20 CODES IN A 
* 7U REM TO EQUIVALENT CHARACTERS 
* 80 CHANGE A TO BS 
* 90 PRINT BS 
* 100 END 
* RUN 

ABCDEFGHIJKLMNOPQRST 

Statement 80 causes the conversion of numerics to their equivalent string 
characters. Statement 50 provides a count of the number of characters the 
user wishes to convert. 

Table 9-1 Lists the string characters and their equivalent numeric 
code. 

Table 9-1. Numeric Code Table 

String Code No. String Code No. 
Characters (decimal> Characters (decimal> 

Cb lank> 32 @ 64 
33 A 65 { 9 7) 

34 B 66(98) 
# 35 c 67(99) 
$ 36 D 68(100) 
% 37 E 69(101) 

38 F 70(102) 
39 G 71(103) 

( 40 H 72(104) 
) 41 I 73(105) 

* 42 J 74(106) 
+ 43 K 75c1 on 
, 44 L 76(108) 

45 M 77(109) 
46 N 78(110) 

I 47 0 79(111) 
0 48 p 80(112) 
1 49 Q 81 {113) 
2 50 R 82(114) 
3 51 s 83(115) 
4 52 T 84(116) 
5 53 u 85c11 n 
6 54 v 86<118) 
7 55 w 87(119) 
8 56 x 88(120) 
9 57 y 89(121> 

58 z 90(122) 
59 [ 91 

< 60 \ 92 
61 ] 93 

> 62 • 94 
? 63 

Numerics in parentheses indicate lower case 

9-68 DJ31-00 



Additional symbols useful on output are: 

-<backward arrow)95 
EOT (end of transmission)4 
BELL (rings bell in Teletype)? 

LF Cline feed)10 
CR (carriage return)13 
RUB-OUT <tape use only)127 

NOTES: 1. This is not a complete List - there are 128 characters 
numbered 0 through 127. Some of these numbers duplicate the 
above (on some teletypes) and some are just spaces. 

2. The EOT character hangs up the phone if it is sent to a Model 
33 Teletype. 

o READ and DATA 

READ and DATA statements are utilized in the conventional manner to 
manipulate alphanumeric data. A READ statement can be a mix of both numeric 
variables or string variables or can simply contain string variables. In 
turn, 1he DATA statement Lists the sequence of data to correspond to the 
variables Listed in the READ statement. Strings in a DATA statement must 
be enclosed in quotation marks if they begin with a digit or have an embedded 
comma. For example, 

* 10 READ A,B$,C,D$,E$,F 

* 90 DATA 85,XYZ,5,"4FG","MAY 26,1969",20 

A Leading blank in a string listed in the DATA statement is ignored unless 
the blank and its string are enclosed in quotes. 

o PRINT 

Strings are printed in the conventional manner; i.e., all forms of the PRINT 
statement are applicable when alphanumeric data is to be printed. For 
example, 

* 10 READ A$,B$,C$ 
* 20 PRINT C$;B$;A$ 
* 30 DATA ING,SHAR,TIME
* 40 END 
* RUN 

results in the printout of 

TIME-SHARING 

9-69 DJ31-00 



o lttPU T 

The requirements for handling alphanumeric data in an INPUT statement 
correspond to those of the READ statement in that the INPUT statement can 
be a mix of both numeric and string variables or can contain only string 
variables. For example~ 

* 10 INPUT X,Y$,Z 

If the string variable represents a string with an embedded comma, the 
string; when entered during program execution, must be enclosed in quotes. 
A leading blank in a string is ignored unless the blank and its string are 
enclosed in quotes. 

o RESTORE 

Numeric data and string data are stored independently within two separate 
blocks of the BASIC system. The conventional RESTORE statement restores 
both n4meric and string data. If the user wishes to restore only numeric 
data, he must use RESTORE followed by an asterisk: 

* 10 RESTORE* 

If the user wishes to restore only string data, he must use RESTORE followed 
by the $ character: 

* 10 RESTORE$ 

Additional functions pertaining to string manipulation are available. These 
functions are CLK$ <to provide time of day) DAT$ (to provide calendar date>, 
SSTCXS,Y,Z){to extract selected characters of a string>, and LEN{X$)(to determine 
the number of characters in a specified string variable). Refer to "Additional 
Functions,'' in this section, for details concerning use of these functions. 

6ASIC provides the means for creating files of data to be read, written on, or 
otherwise manipulated, all within the confines of the BASIC subsystem. A data file 
to be used as input must be prepared in advance and must be saved before it can be 
used in a program. A data file on which output is to be written during execution 
of a program does not necessarily need to have been created before that program is 
executed. If not in the user's catalog of permanent files when needed for output, 
a file is created as temporary, and can be changed to permanent status at logoff time. 
<Refer to "Saving of Temporary Files" in this section.> Data files can be created 
with or without line numbers. Data in a datafile may range from zero to an unlimited 
number of characters. 

All files are initially in read mode. A file can be placed in write mode by 
the use of a SCRATCH# statement. Read mode can be re-established by use of the RESTORE 
# statement. 

9-70 DJ31-00 



Data files are implemented by data file input/output statements that supplement 
BASIC language statements. These data file input/output statements can be 
categorized as follows: 

o File preparation statements 

FILES filename 1, password; •••• ;filename n, password 
FILES user-id/catalogname$password/ ••• / 

f: lename$password,permi ssions 
FILE # ti le designator, "filename, password", 

o File read statements 

READ# file designator, input List 
INPUT # fi"Le designator, input List 

o Fi le write statements 

WRITE# file designator, output list 
PRINT# file designator, output List 
PRINT# file designator, USING statement number, output list 

o Matrix input statements 

MAT READ # file designator, matrix input List 
MAT INPUT# file designator, matrix input list 

o Matrix output statements 

MAT WRITE # file designator, matrix output list 
MAT PRINT# file designator, matrix output list 

o File manipulation statements 

SC~ATC~ # rite designator 
RESTORE# file designator 
BACKSPACE # file designator 

o Utility statements 

APPEND# file designator 
MARGIN# file designator, expression 
DELIMIT# file designator, (character) 

IF END# file designator, 

IF MORE# file designator, 

(abbreviation) 

THEN line number 
GOTO 

THEN Line number 
GOTO 

9-71 DJ31-00 



ASCII ~ FILE INPUT/OUTPUT STATEMENT FORMATS 

The formats of data file input/output statements are described below. All 
statements, excepting FILES <used for initial data file preparation), ~a~e use of 
a data "file designator," a numeric argument whose value is used to select the data 
file desired for current operation~ The numeric argument may be an integer, variable 
<subscripted or unsubscripted) or an arithmetic expression. The file designator is 
always preceded by a number sign {#). 

File Preparation Statemeftts 

FILES 

Purpose: To establish a relationship between numeric file designators and 
alphanumeric file names. 

Format 1: FILES <filename 1,password; ••• ;filename n,p~ssword> 

Format 2: FILES <user-id/catalogname$password/ ••• /filename$password, 
permissions> 

Examples: *10 FILES MONDAY;TUESDAY,PASS1 

Rules: 

*10 FILES USERA1CAT1SPC/FIL1$PF1,R,W 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Semicolons are used as filename separators. 

Filename passwords {if any) are separated from filenames by commas 
in Format 1 and by commas or dollar signs in Format 2. Where the 
slant (/) does not precede a password, a comma can be used. 

An asterisk can be used in place of a filename, in which case the 
filename can be filled in via a FILE # statement (described 
below). 

I 
The filename of a data file must be referenced in a FILES 
statement before its first use within a program. 

Multiple FILES statements are permissible within one program; one 
program is limited to eight named files. 

Filenames cannot be duplicated within a set of FILES statements for 
a given program. 

For Format 2, there is a 3-level Limitation of catalog structure on 
files to be accessed. To exceed this 3-level limitation, the ACCESS 
subsystem must be used. See "File Access" in this section. 

9..::72 DJ31-00 



Remarks: 

FILE # 

Purpose: 

Format: 

Examples: 

The FILES statement sets all named data files to read mode. 

Format 1 Limits the user to the ability of accessing files contained in 
the user's master catalog. Format 2 permits the user to access files 
emanating from the user's subcatalogs or from catalogs and subcatalogs 
belonging to another user. The user, of course, must know the other user's 
identification, catalog and file names, and any required passwords. 
General or specific permissions for files are established by the files 
originator. Legal permission combinations are: 

READ 
WRITE: 
APPEND 
READ, WRITE 
READ,APPEND 

Additional examples of the use of Format 2 may prove helpful. 

*10 FILES USER1/CAT1$PC1/CAT2/CAT3/FIL1$PF1,R,W 

Three Levels of catalog structure (the Limit) are accessed to get to FIL1, 
another user's file. Read and write permissions for the file are 
requested. 

*10 FILES FIL2;USERB/FIL3,R,W;FIL4,PW4 

Three files are accessed. FIL2 and FIL4 are the user's own files. FIL3 
is a file originated by a user identified as USERS. Read and write 
permissions are being requested for FIL3. 

*10 FILES/CATU/FIL7;USERD/CATD$PW/FIL8,R,W 

Two files are accessed. FIL? is the user's own file located 
CATU. FIL8 is a file originated by user USERD. Read 
permissions are being requested for FIL8. 

in catalog 
and write 

To permit replacement of a data file, or to permit specification of a datJ 
file indicated by an asterisk in a FILES statement. 

FILE # <f i Le designator, "f i lename,password 11 > 

1. 

2. 

*10 FILES A;B;C 

•SO FILE #3 , II D II 

Data fHe c, the third f i le, is replaced by data f i Le D. 

*10 FILES A;*;C 

*SO FILE #2 , 11 8 11 

The asterisk-indicated d~ta file, the second file, is specified as 
data file B. 

9-73 DJ31-00 



Rules: 

Remarks: 

1. The filename can be indicated as follows: 

a. filename and pa~sword Cif any) enclosed in quotes 

b. string variables <subscripted or unsubscripted) for filename 
and pass~ord (if any) 

c. asterisk enclosed in quotes Csee remarks below> 

2. A file named in a FILE# statement cannot appear in a FILES statement, 
unless the file has been released before its use in the fiLE # 
statement. 

3. One program is limited to eight named files. 

W h en a q u o t e - e n c L o s e d a s t e r i s k i s u s e d a s a " f i l e n am e , '' t h e a s so c i at e d 
file designator is invalidated until such time that it is validated again 
by a subsequent FILE statement. For e~ample: 

•10 FILES A;B;C 

•SO FILE #3 ,"*" 

In statement 50, file designator 3 now refer.s to a null fHename and ca,nnot 
be used again until it is reset by another FILE# statement. 

A colon <instead of a comma) can be used as the separator between 
file designator and "filename." 

A s t r i n g v a r i a b L e c a n b e s u b s t i t u t e d f o r " f il .en am e '' i f t h e s t r i ng 
variable contains the filename to be referenced. fo~ example: 

*10 fILES MONDAY;TUESDAY 
*20 LET A1$ = "SATURDAY" 
*30 FILE #1,A1$ 

9-74 



File Read Statements 

READ # 

Purpose: 

Format: 

Example: 

Rules: 

Remarks: 

To read data from a data file into an input list. 

READ# <file designator, input· list> 

*10 FILES MONDAY;TUESDAY 
*20 READ #1,X1,A1$,X2,A2$ 

If data file MONDAY is represented by 

10 5.6, SEPTEMBER, 100.5, OCTOBER 

at execution time, the real value of 5.6 would be read into X1, string 
SEPTEMBER into A1$, real value 100.S into X2, and string OCTOBER into 
A2:£. 

1. The input list must consist of delimiter-separated variables, 
numeric or string, any of which can be subscripted. 

2. When an input list contains both numeric and string variables, 
data elements in the data file must correspond one-to-one to the 
input list. 

3. If the file designator is zero, data is read from internal data 
created by the program's DATA statement Cs). For reading of internal 
d a t a , t h e r e n e e d n o t b e .:i o n e - t: o - 0 !'"! e c c r r c ::: ~ :) :-: d ;;: 11 c ;;; b <= t: w .;: t: 11 11 u m i:: r i c 
and string variables in the input. list and data file. 

4. A colon can be used in the READ # statement instead of a comma 
to sepa~ate file designator from the input list. 

The line number of a datafile is not part of the data read by a fi Le read 
statement into an input List. At least one blank should separate the Line 
number from data in the data file. 

If an entire data file is not read because of insufficient variables in 
the input List of a file read statement, the word pointer remains 
positioned after the last data item read until additional file read 
statement(s) are executed. 

If the first character of an input string is a quote("), the string must 
be terminated by a delimiter following the trailing quote. The resulting 
string consists of the characters enclosed by the quotes. 

Data files to be read by the READ# statement require that elements of 
each data line be delimiter-separated. A delimiter may or may not end 
the line, the decision being left to the user. 

9-75 l)J31..,.UO 



INPUT # 

Purpose: 

Forma~: 

j:xample: 

Rules: 

Remarks: 

To r~~d data from a data file into an input List, treating line numbers 
as data items. 

INPUT# <file designator, input List> 

*10 FILES MPNDAY,TUESDAY 
*20 INPUT #1,A,B,C,D,E 

If data file MONDAY is represented by 

10 1,2,3,4,5 

the statement 

*30 PRINT A;B;C;D;E 

would produce 

101 2 3 4 5 

at program execution time. 

The input list must consist of comma-separated variables, numeric 
or string, any of which can be subscripted. 

2. When an input List contains both numeric and string variables, 
data elements in the data file must correspond one-to-one to the 
input list. 

3. A colon may be used in the INPUT statement instead of a comma to 
separate the file designator from the input list. 

4. If the file designator is zero, at execution time the program asks 
for data from the user's terminal. In response to a question 
mark, th~ user supplies data elements to correspond to the input 
l is t • 

Embedded blanks within a line number causes misinterpretation in reading 
of a line number. 

If the first character of an input string is a quote("), the string must 
be terminated by a specified delimiter following the trailing quote. The 
resulting string consists of the characters enclosed by the quotes. 

9-76 DJ31-UU 



Fi Le Write Statements 

WRITE # 

Purpose: 

Format: 

Example: 

Rules: 

Remarks: 

To generate a data file in which each line contains a line number and data 
elements delimiter-separated. 

WRITE# <file designator, output list> 

*10 FILES SUNDAY; MONDAY; ABC 
*20 READ #2, X1, A1$ 
*30 SCRATCH #3 
*40 WRITE #3, X1, A1$ 

If data file MONDAY is represented by 

10 5, OCTOBER, 1969 

the WRITE # statement generates a new data file ABC with contents of 

10 5, OCTOBER 

Data file ABC can be a temporary or permanent file. 

1. The output list can consist of numeric or string variables <any 
of which can be subscripted), or arithmetic expressions. 

2. The format conventions of the normal PRINT statement apply to 
the WRITE # statement. 

3. If the file designator is zero, the generated data file is 
written out to the user's terminal upon program execution, with no 
SCRATCH # statement required. 

4. A colon can be used in the WRITE statement instead of a comma to 
separate the file designator from the output list. 

5. The standard line length is equal to 75 characters, including 
line numbers. The MARGIN statement can be used to adjust a line from 
2 to 160 characters. 

The WRITE# statement generates a data file that begins with line number 
10 and increments by 10 for each additional Line. Each line number 
is separated from the first data element of the line by at least one blank. 
Data elements, in turn, are separated by delimiters (commas or 
user-specified delimiters>. 

When the TAB(X) function is used, the line number is included in the 
count for the tab position. 

A data file generated by a WRITE #statement is equivalent to a data 
file saved in the conventional manner; i.e., the file can serve as input 
to other subsystems (e.g., LIST). 

9-77 DJ31-00 



PRINT II 

Purpose: 

Format: 

Example: 

Rules: 

Remarks: 

To generate a data file that contains no line numbers or delimiters on 
printout. 

PRINT# <file designator, output list> 

•10 FILES SUNDAY;MONDAY;ABC 
•20 INPUT #2,X1,A1$ 
•30 SCRATCH #3 
•40 PRINT #3,X1,A1S 

If data file MONDAY is represented by 

5,0CTOBER,1969 

the PRINT# statement generates a new data file ABC with contents of 

1. 

5 OCTOBER 

The output list can consist of numeric or string variables <any of 
which can be subscripted>, arithmetic expressions, or string 
constants <literals> in quotes. 

2. The format conventions of the normal PRINT statement apply to the 
PRINT # statement. 

3. If the file designator is zero, the generated dHa file is printed 
out on the user's terminal upon program execution, with no SCRATCH 
# statement required. 

4. A colon can be used in the PRINT # statement instead of a comma to 
separate the file designator from the output list. 

S. The standard line Length is equal to 75 characters includin9 
Line numbers. The MARGIN statement can be useo to adjust a line 
from 2 to 160 characters. 

6. No delimiters are created by the PRINT # statement. 

The PRINT# and WRITE# statements are utilized in similar fashions. The 
difference lies in the manner in which the generated data file is printed 
out. With the use of the PRINT statement, no line n1Jmbers or data 
element delimiters (commas or semicolons) appear. 

A data file generated by a PRINT # statement can serve as input to 
other subsystems (e.g., LIST). 

9--78 l).J 31 •00 



PRINT # USING 

Purpose: 

Format: 

Example: 

Rules: 

To provide the ability to format data written to a data file. 

PRINT# <file designator> ,<USING statement number, output List> 

Where: 

"statement number" is number of a statement in the program that contains 
format control characters and printable constants; "output list" consists 
of comma-separated arguments to be printed in sequential order. 

*10 FILES FORMAT 
*20 SCRATCH #1 
*30 A 123.45 
*40 B = -3.456 
*50 c = -.017 
*60 PRINT #1,USING 
*70 PRINT #1,USING 
*80:DECIMAL FIELDS 
*90:EXPONENT FIELDS 
*100 END 

* RUN 
* LIST FORMAT 

DECIMAL FIELDS 
EXPONENT FIELDS 

80,A,B,C 
90,A,B,C 

###.## ##.### #.### 
##.#11# HH ##.###HH 

123.45 
12.345E 01 

-3.456 
-3.456£ 00 

##.###HU 

-.017 
-1. ?OOE-02 

1. The statement number named in a PRINT # USING statement points to 
an "image" statement which formats the line to be printed. The 
image statement is of the form 

statement number: image 

2. The image of an image statement (colon-separated from the statement 
number) consists of format control characters and printable 
constants. 

3. Format control characters are as follows: 

(apostrophe) 
first character 
length. 

a 1-character field that 
in an alphanumeric string, 

is filled with the 
regardless of string 

#<number sign) - the replacement field for a numeric character; each 
# specifies a space for one digit. 

4U• (four up-arrows) - specifies scientific notation for a numeric 
field CE-format). 

4. Printable constants are all characters other than format control 
characters. 

9-79 DJ31-00 



Remarks: The image of an image statement can consist of one or more of the following 
fields: 

integer 
decimal 
exponential 
alphanumeric 
literal 

Refer to "Formatting Line Output" in this section for details concerning 
use of format control statement. 

Data to be retrieved from a data file via READ# or INPUT #statements 
should not be placed on the file by a PRINT# USING statement. Data files 
containing data formatted by PRINT# USlNG statements are intended for 
terminal printout only by the way of the LIST command. 

9-80 DJ31-00 



Matrix Input Statements 

MAT READ # 

Purpose: 

Format: 

Example: 

Rules: 

Remarks: 

To read data from data file into a matrix input list. 

MAT READ# <file designator, matrix input list> 

*10 FILES A;B 
*20 DIM M1 (3,3),M2(5,7) 
*30 MAT READ #1,M1,M2 

If data file A is represented by 

10 1,2,3, ••••• ,10, 

so ........ 48,49,50, 

M1 contains the matrix 

1 2 3 
4 5 6 
7 8 9 

M2 contains the matrix 

10 11 1 2 1 3 14 1 5 16 
1 7 18 1 9 20 21 22 23 
24 25 26 27 28 29 30 
31 32 33 34 35 36 37 
38 39 40 41 42 43 44 

1. String variables cannot be used in the matrix input List. 

2. Matrices in the matrix input List can have their dimensions specified 
in a DIM statement or in the MAT READ # statement itself. 

3. When a matrix in the matrix input List is not dimensioned, a 10 by 
10 matrix is assumed. 

4. Fi Les to be read by a MAT READ # statement must contain Line 
numbers. 

5. A colon can be used in 
comma to separate the 
L is t • 

the MAT READ # 
file designator 

statement 
from the 

instead 
matrix 

of a 
input 

If the file designator is zero, internal data is to be read from 
user-supplied DATA statement(s) within the program. 

If there are not enough data elements in a data file to fill a designated 
matrix, the matrix is filled out with zeros. 

9-81 DJ31-00 



MAT IN.PUT II 

Purpose: 

Format: 

E'Xample: 

Rules: 

Remarks: 

To read data from a data file into a matrix input. list, treating line 
numbers as data items. 

MAT I~PUT # <file designator, matrix input list> 

* 1 0 f I. l.. E S M 1 
*ZO DIM M2C3~3) 
*30 MU IttPUT #1,M2 

If data file M1 contains 

10 1,2,3,4,5,6,7,8,9 

M2 contains the matrix 

101 
4 
7 

2 
5 
8 

3 
6 
9 

1. 

2. 

String variables cannot be used in the matrix input list. 

Matrices 
specified 
itself. 

in the matrix input 
in a .DIM statement 

list 
or in 

can have their dif11ensions 
the MAT INPUT # statement 

3. When a matrix in the matrix input list is not dimensioned, a 10 x 
10 matrix is assumed. 

4. A colon can be used in the MAT INPUT# statement instead of a comma 
to separate the file designator from the matrix input list~ 

If the file designator is zero, at execution time the program asks for 
data from the user's terminal. In response to a question mark, the user 
supplies data elements to correspond to the input list. 

If there are not enough data elements in a data file to fill a 
designated matrix, the matrix is filled out with zeros. 



Matrix Output Statements 

MAT WRITE # 

Purpose: 

Format: 

Example: 

Rules: 

Remarks: 

To write matrices specified in a matrix output list to designated 
data filP(s). 

MAT WRITE# <file designate~, matrix output List> 

*10 FILES A;B;C 
*20 DIM M1 <3,3),M2(5,7> 
*30 MAT READ #1,M1,M2 
*40 SCRATCH #2 
*SO MAT WRITE #2,M1,M2 

Matrices M1 and M2, read from data file A, are written to data file 
B. 

1. String variables cannot be used in the matrix output List. 

2. Matrices in the matrix output List must have their dimensions 
specified in a DIM statement; they cannot be dimensioned in a MAT 
WRITE # statement. 

3. A colon can be used in the MAT WRITE statement instead of a comma 
to separate the file designator from the matrix output list. 

The MAT WRITE# statement generates a data file that begins with line 
number 10 and increments by 10 for each additional line. Each Line number 
is separated from the first data element of the Line by a blank. 

9-83 DJ31-00 



MAT PRINT # 

Purpose: 

Format: 

Example: 

Rules: 

Remarks: 

To write matrices specified in a matrix outp~t list to a designated dat~ 
file that contains no line numbers or deli~iters on printout. 

MAT PRINT# <file designator, matrix output list> 

*10 FILES M1,M2 
*20 MAT INPUT #1,AC2,3) 
*30 SCRATCH #2 
*40 MAT PRINT #2,A 

If data file M1 is represented by 

1,2,3,4,5,6 

The MAT PRINT # statement generates a new data file M2 which consists 
of 

1 
4 

1. 

2 
5 

3 
6 

String variables cannot be used in the matrix output list. 

2. Matrices in the matrix output list must have their dimensions 
specified in a DIM statement; they cannot be dimensioned in a MAT 
PRINT # statement. 

3. A colon can be used in the MAT PRINT # statement instead of a c~mma 
to separate the file designator from the matrix output list. 

The MAT PRINT # and MAT WRITE # statements are utilized in similar 
fashions. With the use of the MAT PRINT # statement, no line numbers 
or data element delimiters appear. 

A data file generated by a MAT PRINT # statement can serve as input to 
other subsystems <e.g., LIST). 

If the file designator is zero, the generated data file is printed 
out at the user's terminal upon program execution. 

9-84 oJ31~00 



File Manipulation S:atements 

SCRATCH # 

Purpose: 

Format: 

Example.: 

Remarks: 

RESTORE # 

Purpose: 

Format: 

To place a data file in write mode. 

SCRATC~ I <file designator> 

*10 FILES DEBITS;CREDITS 
*20 READ #1,X1,X2,X3 
*30 SCRATCH #2 
*40 WRITE #2,X1,X2,X3 

Data file CREDITS is placed in write mode by SCRATCH# statement 30, 
prior to being written on by WRITE # statem•nt 40. 

A SCRATCH II statement deletes all data previously contained in the 
designated file providing the file has been written on; i.e., for files 
created by WRITE #, MAT WRITE #, or PRINT # statements. 

If the data file CREDITS is a file not previously created and saved, the 
file system queries the user as to the disposition of the file. 

To position the data pointer for the designated data file to the beginning 
of the file and permit the file to be read. 

RESTORE# <file designator> 

Examples: 1. *10 FILES A;B;C 

Remarks: 

*20 READ #1,X1,X2,X3 
*30 RESTORE #1 
*40 READ #1,Y1,Y2,Y3 

RESTORE # statement 30 permits data from data file A to be read 
again. 

2. *10 FILES A;B;C 
*20 READ #1,X1,X2,X3 

*50 SCRATCH #1 
*60 WRITE #1,Y1,Y2,Y3 
*70 RESTORE #1 
*BO READ #1,X1,X2,X3 

RESTORE# statement 70 places data file A in read mode and permits data 
just written to be read. 

If a designated data file is in write mode as the result of a SCRATCH# 
statement, a RESTORE # statement repositions the data pointer to the 
beginning of the file and places the file in read mode. 

9-85 DJ31-00 



BACKSPACE # 

Purpose: 

Format: 

Example: 

The Program 

Remarks: 

To position the data pointer for the designated data file backward one 
delimiter. 

BACKSPACE# <file designator> 

If data file A contains 

10 1,2,3,4,5, 

20 6,7,8,9,10, 

•10 FILES A;B;C 
*20 READ #1,X1,X2,X3,X4,X5,X6,X7 
*30 FOR I = 1 to 4 
*40 BACKSPACE #1 
•50 NEXT I 
*60 READ #1,Y1,Y2,Y3,Y4 
*70 PRINT X1,X2,X3,X4,XS,X6,X7 
•80 PRINT Y1,Y2,Y3,Y4 
•90 END 
*RUN 

produces 

2 3 4 5 6 7 

4 5 6 7 

The BACKSPACE# statement places the designated file in read mode. 

If the designated file is backspaced past the beginning of the file, 
the data pointer is positioned to the beginning of the file. 

9-86 DJ31-00 



Utility Statements 

APPEND # 

Purpose: 

Format: 

Example: 

Remarks: 

MARGIN # 

Purpose: 

Format: 

Example: 

Rules: 

To permit data to be added to a designated file. 

APPEND# <file ~esignator> 

*10 FILES A;B;C 
•20 READ #1,X1,X2,A1$ 
*30 APPEND #2 
*40 WRITE #2,X1,X2,A1$ 

APPEND# statement 30 places data file Bin write mode and permits WRITE 
# statement 40 to append data to data already on B. 

When the APPEND # statement is executed, the data pointer for the 
designated file is moved immediately past the Last data item on the 
file. The file is also placed in write mode, ready to accept the next 
WRITE # statement. 

To permit the specification of the rightmost character position for a 
designated file. 

MARGIN# <file designator, expression> 

*10 FILES A;B;C 
*20 SCRATCH #1 
*30 SCRATCH #2 
*40 MARGIN #1,20 
*SO MARGIN #2,M*N-5 
*60 WRITE #1,X1,X2,X3,X4 
*70 WRITE #2,Y1,Y2,Y3,Y4 

1. The standard Line (record) Length for files created by WRITE # 
or PRINT # statements is 75 characters, including the line 
number. By use of the MARGIN# statement, the user can explicitly 
specify a maximum line length for a designated file to be any value 
between 2 and 160 characters. If the specified Line length exceeds 
the physical capability of the terminal in use, the result can be 
a character-overprint at the end of the line. 

2. A colon can be used in the MARGIN # statement instead of a co~ma 
to separate the file designator from the expression. 

3. A file designator of zero is interpreted as being the user's 
terminal. 

9-87 DJ31-00 



DELIMIT # 

Purpose: 

Format: 

Example: 

~ules: 

Remarks: 

To permit the use of a delimiter other than a comma in a designated 
f i Le. 

DELIMIT # f i Le designator, ( Cc hara ct er) )'· 
<abbreviation) 

*10 FILES INPUT;OUTPUT 
*20 READ #1,A,B,C,D,E,F 
*30 DELIMIT #2,<LF) 
*40 SCRATCH #2 
*50 WRITE #2,A;B;C;D;E;F 

If data file INPUT contains 

10 1,2,3,4,5,6 

a printout of data file OUTPUT would produce 

1 0 

1 • 

2 
3 

4 
5 

6 

The standard delimiter separating data elements in a data f ite is 
the comma. The DELIMIT# statement can s~ecify any character, or 
abbreviation for non-printing character<s>. 

2 • Non- pr i n t i n g c ha r act e r abbrev i at i on s ( e •. g • ,, CR for car r i age re t u. r n; 
LF for Line feed) are those specified by ASCII. Refer to A,pp.endiic 
C for a List of octal/ASCII conversion equivalents. 

3. A DELIMIT II statement must be used prior to its associated READ II 
or WRITE II statement. 

4. A file designator of zero is interpreted as being the user's te·rminal 
and the DELIMIT # statement is ignored. 

A PRINT # statement results in the printout of designated data without 
delimiters <or line numbers) regardless of whether standard or 
nonstandard delimiters are used. 

9-88 



IF END 11----THEN 
or 

IF END #----GOTO 

Purpose: 

Format: 

Example: 

Rules: 

Remarks: 

To provide for a means of testing for the end of data when reading a data 
f i le. 

IF END# :file designator> (THEN) <statement number> 
GOTO 

*10 FILES A;B 
*20 READ #1,X1,X2,X3 
*30 PRINT X1,X2,X3, 
*40 IF END #1 THEN 60 
*SO GOTO 20 
*60 PRINT "OUT OF DATA IN FILE A" 
*70 END 
*RUN 

If data file A contains 

10 1,2,3,4,5,6,7, 

20 8,9,10, 

the executed program produces 

2 3 4 5 6 7 8 9 10 0 0 

OUT OF DATA IN FILE A 

A comma or a colon can be used in an IF END #---THEN statement to separate 
the file designator from the THEN portion of the statement. 

If data elements (or string data) of a data file are exhausted before the 
input list in a READ# or MAT READ #statement is satisfied, the List is 
filled out by zeros (or null) upon program execution. 

The IF END #---THEN statement directs the system to go 
designated out-of-sequence statement when no more data remains 
f i le • 

to a 
on the 

9-89 DJ31-00 



IF MORE #---THEN 
or 

IF MORE #---GOTO 

Purpose: 

Format: 

Example: 

Remarks: 

To provide for a means of testing to determine whether at Least one valid 
data element remains on a data file when reading the file~ 

I F MOR E II < f i L e d es i gnat o r > ( TH EN )·· < s t at em en t numb e r > 
GOH> 

*10 FILES A;B 
*20 READ #1,X1,X2,X3 
*30 PRINT X1,XZ,X3, 
*40 IF MORE #1 THEN 20 
*50 PRINT "OUT OF DATA IN FILE A" 
*60 END 
*RUN 

If data file A contains 

10 1,2,3,4,5,6,7, 

20 8,9,10, 

the executed program produces 

2 3 4 5 6 7 8 9 10 0 0 

OU1 OF DATA IN FILE A 

A comma or a colon can be used in an IF MORE II ---THEN statement to SPparalP 
the file designator from the THEN portion of the statement. 

If data elements (or string data) of a data file are exhausted before the 
input list of a READ II or MAT READ# statement is satisfied, the List ·is 
filled out by zeros <or null) upon program execution. 

ThP IF MORE #---THEN statement directs the 
d P '.· i ·1 n <• t ""'rl out - o f - seq u enc e st at em en t when more 
f i le. 

9-90 

system to go to a 
data remains on the 

DJ31-00 



BINARY FILES 

BASIC permits the user to perform file input/output with files made up in 
binary format. This mode of operation presupposes a sophisticated user whose 
knowledge encompasses the makeup of binary-type files and who has the need to create 
programs that have special applications. 

The use of biniry input/output, as contrasted with the use of alphanumeric 
(ASCII) input/output. speeds up program execution and compacts file space. However, 
data cannot be placeJ on a binary file directly from the user's terminal, nor can 
a binary file be Listed Cby means of the LIST command) so as to verify its 
content. 

Binary files can be either sequential or random and can be. written, read, 
backspaced, scratched, and restored. Data can be appended to the end of a sequential 
binary file. Any word on a random binary file is accessible for reading or writing 
without the need for traversing the file space which precedes the word. When a random 
binary file is to be created, file space must be obtained by means of the ACCESS 
subsystem <see "File Access" below). 

A word pointer is maintained in the file control block of each binary file so 
as to indicate the next word of the file to be read or written. Each binary file 
consists of a number of words, zero through n-1. For sequential files, the word 
pointer is initially set to word zero and moved forward with each READ: and WRITE: 
statement. The word pointer can be moved backward by means of the RESTORE:, SCRATCH:, 
and BACKSPACE: statements. This same forward and backward movement of the word 
pointer through statement manipulation exists for random files, with the exception 
that the user can alter the position of the word pointer by means of an 
additional statement--SET:. If the user wishes to begin reading and writing of a 
random file at a position other than word zero, he can position the word pointer to 
any position within the file with the SET: statement and begin his reading or writing 
at that point. The current position of the word pointer for a random file and 
the current length of a random file can be determined by use of functions LOC and 
LOF. 

Each numeric data element on a binary file occupies one word and is in 
single-precision, floating-point format. Alphanumeric strings, that can vary in 
length from 1 to 132 characters, are placed on binary files with a string control 
word on either end of the string. Each string thus occupies two words for control, 
plus enough words to contain the actual string of characters at four characters per 
word. The user must exercise caution in manipulating the word pointer on random 
binary files containing strings. A SET: statement could inadvertently position the 
word pointer to the middle of a string, causing an error in the next read or write. 
The user must take care to position the word pointer to a leading string control word 
and see to it that extended strings do not destroy data already on a file. 

All sequential files are initially in read mode. A file can be placed in write 
mode by the use of SCRATCH: statement. Read mode can be re-established by the use 
of the RESTORE: statement. Read/write mode does not apply to random files, which 
can be read or written at any point at any time. 

9-91 DJ31-00 



Binary files are implemented by binary file input/output statements that 
supplement BASIC language statements. These binary file input/output statements 
are categorized as follows and, unless indicated, apply to both sequential and 
random binary files: 

o File preparation statements 

FILES filename 1,password; •••• ;filename n,password 

FILES user-id/catalogna~e$passwordl ••• / 
filename$password,permissions 

FILE: file designator, "fi lename,passwo~d" 

o File read statement 

READ: file designator,input list 

o Fi le write statement 

WRITE: file designator,output list 

o Matrix input statement 

MAT READ: file designator,matrix input list 

o Matrix output statement 

MAT WRITE: file designator, matrix output List 

o File manipulation statements 

SCRATCH: file designator 

RESTORE: file designator 

BACKSPACE: file designator 

o Utility statements 

APPEND: file designator 
(for sequential files only) 

It END: file designator( THEN) line number 
GOTO 

IF MORE: file designator(THEN)line number 
GOTO 

SET: file designator TO expression 
(for random files only) 

The current position of the word pointer for a random binary file or its 
current Length can be determined by the use of special functions. These functions 
are as follows: 

o Word pointer location 

LOC(file designator) 

o File length 

LOF{file designator) 

9-92 DJ31-00 



Upon program execution, these functions contained within a program cause 
the printout of integers, indicating the desired word numbers. 

NOTE: For all practical purposes, the IF END: and IF MORE: statements are 
applicable to sequential files only. Random files have no logical 
end-of-data; the entire random file supposedly contains good data and 
is accessible at any point for reading and writing. Thus, if a random 
file has a current size of three blocks (960 words) and has data written 
in only he first 10 words, the IF END: and IF MORE: statements cannot 
be used to determine when the end of the first 10 words has been reached. 
The remaining 950 words are accessible data despite the fact that they 
are empty. 

BINARY FILE INPUT/OUTPUT STATEMENT FORMATS 

The formats of binary file input/output statements are described below. All 
statements, excepting FILES (used for initial binary file preparation) make use of 
a "file designator," a numeric argument whose value is used to select the binary file 
desired for current operation. The numeric argument can be an integer, a variable 
<subscripted or unsubscripted), or an arithmetic expression. The file designator 
is always preceded by a colon. 

File Preparation Statements 

FILES 

Purpose: To establish a relationship between numeric file designators and 
alphanumeric file names. 

Format 1: FILES <filename 1,password; ••• ;filename n,password> 

Format 2: FILES <user~id/catalogname$password/ ••• /> 
filename$password,permissions 

Examples: *10 FILES MONDAY;TUESDAY,PASS1 

Rules: 

*10 FILES USERA/CAT1$PC/FIL1$PF1,R,W 

1. Semicolons are used. as filename separators. 

2. Filename passwords (if any) are separated from filenames by 
commas in Format 1 and by commas or dollar signs in Format 2. Where 
the slant (/) does not precede a password, a comma can be used. 

3. An asterisk can be used in place of a filename, in which case the 
filename can be filled in via a FILE: statement (described 
below). 

4. The filename must be referenced in a FILES statement before its first 
use within a program. 

S. Multiple FILES statements are permissible within one program; 
one program is limited to eight named files. 

9-93 DJ31-00 



Remarks: 

FILE: 

Purpose: 

Format: 

6. Filenames cannot be duplicated within a set of FILES statements for 
a 9iven program. 

7. For Format 2, there is a 3-level Limitation of catalog structure on 
fi Les to be accessed. To exceed this 3-Level Limitation, the ACCESS 
subsystem must be used. See "File Access" in this section. 

The FILES statement sets all named sequentfal binary and ASCII files to 
read mode. 

Format 1 limits the user to the ability of ;Accessing files contained in 
the user's master catalog. Format 2 permits the user to access files 
emanating from the user's subcatalogs or from catalogs and subcatalogs 
belonging to another user. The user, of course, must know the other user's 
identification, catalog and file names, and any required passwords. 
General or specific permissions for files are established by the files' 
originator. Legal permission combinations are: 

READ 
WRITE 
APPEND 
READ,WRITE 
READ, APPEND 

Additional examples of the use 6f Format 2 may prove helpful. 

*10 FILES USER1/CAT1$PC1/CAT2/CAT3/FIL1$PF1,R,W 

Three levels of catalog structure Cthe Limit) are accessed to get to 
FIL1, another user's file. Read and write permissions for the file are 
requested. 

*10 FILES FIL2;USERB/FIL3,R,W;FIL4,PW4 

Three fi Les are accessed. FIL2 and FIL4 are the user's own file. FILS 
is a file originated by a user identified as USERS. Read and write 
permissions are being requested for FIL3. 

*10 FILES/CATU/FIL7;USERD/CATD$PW/FIL8,R,W 

Two f i le s arc accessed. F IL 7 i s t he use r ' s own f i le lo cat e d i n h i s c ...it .1 l n q 

CATU. FIL8 is a file originated by user USERD. Read and writ<' 
permissions are being requested for FIL8. 

To permit replacement of a binary file by another binary filename, or to 
permit specification of a binary file indicated by an asterisk in a FILES 
statement. 

FILE: <file designator, "filename,password"> 

9-94 DJ31-IJO 



Examples: 

Rules: 

Remarks: 

1. *10 FILES A;B;C 

*SO FILE: 3,"D" 

Binary file C, the third file, is replaced by binary file D. 

2. *10 FILES A;*;C 

1. 

*SO FILE: 2,"B" 

The asterisk-indicated binary file, the second file, is specified 
as binary file B. 

The filename can be indicated as follows: 

a. filename and password (if any) enclosed in quotes 

b. string variables <subscripted or unsubscripted) for filename 
and password (if any) 

c. asterisk enclosed in quotes <see Remarks below) 

2. A file named in a FILE: statement cannot appear in a FILES 
statement, unless the file has been released before its use in the 
FILE: statement. 

3. One program is limited to eight named files. 

When a quote-enclosed asterisk is used as a "filename," the associated 
file designator is invalidated until such time that it is validated again 
by a subsequent FILE statement. For example: 

*10 FILES A;B;C 

*SO FILE: 3 "*" , 

In statement SO, file designator 3 now refers to a null filename and 
cannot be used again until it is reset by another FILE~ stJtemcnt. 

A colon (instead of a comma) can be used as the separator between 
file designator and "filename." 

A string variable can be substituted for "filename" if the string 
variable contains the filename to be referenced. For example: 

*10 FILES MONDAY;TUESDAY 
*20 LET A1$ = "SATURDAY" 
*30 FILE: 1,A1$ 

9-9S DJ31-UO 



File Read Statement 

READ: 

Purpose: 

Format: 

Example: 

To read binary data from a permanent binary file into an input list. 

READ: <file designator, input List> 

The binary file SUNS contains a List of the names of basketball players, 
with each player's score average following his name. The beginning of 
the file (the first three names) could appear as follows: 

Data Word Octal Representation 

Control word 0 001600000700 
HAWK 1 110101127113 
INS 2 111116123040 
Control word 3 001400000700 

30 4 012740000000 
Control word 5 001600000400 
WALK 6 127101'114113 
Control word 7 001400000400 

20 8 012500000000 
Control word 9 001600001000 
GOOD 1 0 107117117104 
RICH 11 122111103110 
Control word 1 2 001400001000 

25 13 012620000000 

The following program produces the names of the first three players and 
their score averages. 

*10 FILES SUNS 
*20 FOR I = 1 to 3 
•30 READ:1,N$,S 
*40 PRINT USING 60,N$,S 
*50 NEXT I 
*60: 'LLLLLLLLLLL # 
*70 PRINT 
*80 PRINT "MORE TO COME" 
*90 END 
*RUN 

HAWKINS 
WALK 
GOODRICH 

MORE TO COME 

30 
20 
25 

9-96 DJ31-00 



Rules: 

Remarks: 

1 • The input List must consist of delimiter-separated variables, 
numeric or string, an1 of which can be subscripted. 

2. When an input List contains both numeric and string variables, 
data elements in the binary file must correspond one-to-one to the 
input list. 

.5. A colon can be used, instead of a comma, to separate the tile 
designator from the input List. 

If an entire binary file is not read because of insufficient variables 
in the input List file read statement, the word pointer remains positioned 
after the Last data i t em read u n t i L add i t ion al f i Le read st ate me nt ( s) are 
executed. 

9-97 DJ31-00 



File Write Statement 

WRITE: 

Purpose: 

Format: 

Example: 

Rules: 

Remarks: 

To write binary data on a permanent binary file. 

WRITE: <file designator,output list> 

•10 FILES PHX1 
•20 H1 = H2 = 5 
•30 H3 = 6 H4 = 6.2 
•40 S1$="BINARY" 
•50 S2$="DATA" 
•60 SCRATCH:1 
•70 WRITE:1,H1,H2,H3,H4,S1S,S2$ 
•80 END 

Upon program execution, the following data would be placed in binary file 
PH X 1 • 

Data Word Octal Reeresentation 

5 0 006500000000 
5 1 006500000000 
6 2 006600000000 
6.2 3 006614631463 
Control word 4 001600000600 
BINA 5 102111116101 
RY 6 122131040040 
Control word 7 001400000600 
Control word 8 001600000400 
DATA 9 104101124101 
Control word 10 001400000400 

The file's word pointer would be at word 11 of the file. 

1 • The output list can consist of numeric or string variables <any of 
which can be subscripted), or arithmetic expressions. 

2. The format conventions of the normal PRINT statement apply to 
the WRITE: statement. 

3. A colon can be used in the WRITE: statement instead of a comma 
to separate the file designator from the output list. 

The word pointer for the referenced binary file is incremented by one after 
each word is written on the file. 

9-98 DJ31-00 



Matrix Input Statement 

MAT READ: 

Purpose: 

Format: 

Example: 

Rules: 

Remarks: 

To read data from permanent binary file into a matrix input list. 

MAT READ: <file designator,matrix input list> 

Assume that binary file INTEGERS contains the numbers 0 through 10 in its 
first 11 words. The following program can be used to read data from file 
INTEGERS into a matrix input list. 

*10 FILES*;INTEGERS 
*20 DIM M8(6) 
*30 READ:2,N1,N2 
*40 MAT REA~:2,M8 
*50 MAT PRINT M8 
*60 END 

Upon execution, the program would produce the following prinlllt1t: 

1. 

2. 

2 

3 

4 

5 

6 

7 

String variables cannot be used in the matrix input list. 

Matrices 
specified 
itself. 

in the matrix input 
in a DIM statement 

list must 
or in the 

have 
MAT 

their 
READ: 

dimensions 
statement 

3. When a matrix in a matrix input list is not dimensioned, a 10 by 10 
matrix is assumed. 

4. A colon can be used, instead of a comma, to separate the tile 
designator from the matrix input list. 

If there are not enough data elements in a binary file to fill a designated 
matrix, the matrix is filled out with zeros. 

9-99 DJ31-00 



Matrix Output Statement 

MAT WRITE: 

Purpose: 

Format: 

Example: 

Rules: 

To write matrices specified in a matrix output list to designated 
permanent binary file. 

MAT WRITE: <file designator,mairix output List> 

Assume that binary file ABCD has been created via ACCESS as a random file. 
The following program can be used to write a matrix output list to file 
ABCD. 

*10 FILES ABCD 
*20 DIM T(2,3) 
*30 TC1,1)=1 TC1,2)=2 TC1,3)=3 
*40 TC2,1)=4 T(2,2)=5 TC2,3)=6 
*50 SCRATCH:1 
*60 SET:1 TO 4 
*70 MAT WRITE:1,T 
*BO END 

Statement 60 could not be used if ABCD was not random. 

Upon execution, file ABCD contains matrix T as follows: 

Data 

1 
2 
3 
4 
5 
6 

Word 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Octal Representation 

400000000000 
400000000000 
400000000000 
400000000000 
002400000000 
004400000000 
004600000000 
006400000000 
006500000000 
006600000000 

1. String variables cannot be used in the matrix output list. 

2. Matrices in the matrix output list must have their dimensions 
specified in a DIM statement; they cannot be dimensioned in a MAT 
WRITE: statement. 

3. When a matrix in the matrix output List is not dimensioned, a 10 by 
10 matrix is assumed. 

4. A colon can be used, instead of a comma, to separate the file 
designator from the matrix output list. 

9-100 DJ31-l)0 



File Manipulation Statements 

SCRATCH: 

Purpose: 

Format: 

Example: 

Remarks: 

RESTORE: 

Purpose: 

Format: 

Example: 

To place a binary file in write mode. 

SCRATCH: <file designator> 

*10 FILES ABC;XYZ 
*20 READ:1,X1,X2,X3 
*30 SCRATCH:1 
*40 WRITE:1,X1,X2,X3 

Binary file ABC is placed in write mode by SCRATCH: statement 30, prior 
to being written on by WRITE: statement 40. 

A SCRATCH: 
designated 
statements. 

statement deletes 
file; i.e., data 

all data 
written 

previously 
by WRITE: 

contained 
or MAT 

in the 
WRITE: 

The SCRATCH: statement can be used with both sequential and random 
binary files. For sequential files, the word printer is set to zero and 
the file is placed in write mode. For random files, the entire file is 
filled with floating point zeros and the word pointer is set to zero. The 
read/~rite mode does not apply to random file; therefore, the SCRATCH: 
statement need not be utilized with a random file unless the user wishes 
to clear the entire random file to zeros. 

To position the word pointer for the designated binary file to the 
beginning of the file and permit the file to be read. 

RESTORE: <file designator> 

*10 FILES HUGO 
*20 R1=B.8 
*30 R2=9.9 
*40 R3=10.10 
* 5 0 R 1$ = II TH I s LI NE s H 0 u L D App EAR T w I c E II 
*60 SCRATCH:1 
*70 WR~TE:1,R1,R2,R3,R1$ 
*80 REST0RE:1 
*90 READ:1,S1,S2,S3,S1$ 
*100 PRINT R1~;R1;R2;R3 
*110 PRINT S1$;S1;S2;S3 
*120 END 
*RUN 

produces t~e printout 

THIS LINE SHOULD APPEAR TWICE 
THIS LINE SHOULD APPEAR TWICE 

8.8 
8.8 

9.9 
9.9 

1 0. 1 
1 0. 1 

RESTORE: <statement 80) places binary file HUGO in read mode and permits 
data just written to be read. 

9-101 oJ_n-uo 



Remarks: 

BACKSPACE: 

Purpose: 

Format: 

Example: 

Remarks: 

If a designated binary file is in write mode as a result of a SCRATCH: 
statement, a RESTORE: statement repositions the word pointer to the 
beginning of the file. Thd file is placed in read mode if it is 
sequential. 

To position the word pointer for the designated binary file backward one 
data element. 

BACKSPACE: <file designator> 

*10 FILES HIPPO 
*20 A1=1 A2=2 A3=3 
*30 E1$="IS A" 
*40 E2$=" CROWD" 
*50 SCRATCH:1 
*60 WRITE:1,A1,A2,A3,E1$,E2$ 
*70 FOR J=1 TO 3 
*80 BACKSPACE:1 
*90 NEXT J 
*100 READ:1,B3,G1$,G2$ 
*110 PRINT B3;G1$;G2$ 
*120 END 
*RUN 

produces the printout 

3 IS A CROWD 

The BACKSPACE: statement places the designated binary file in read 
mode if the file is sequential. If the designated binary file is 
backspaced past the beginning of the file, the word pointer is positioned 
to the beginning of the file. 

9-102 DJ31-UO 



Utility Statements 

APPEND: 

Purpose: 

Format: 

Example: 

Rules: 

Remarks: 

To permit data to be added to a designated, sequential binJry file. 

APPEND: < "ile designator> 

Assume that the binary file SEE is a sequential file containing the 
integers 1 through 15. 

*10 FILES A;B;SEE 
*20 APPEND:3 
*30 FOR I=16 TO 20 
*40 WRITE:3,I 
*50 NEXT I 
*60 END 
*RUN 

The executed program appends the integers 16 through 20 to the file 
SEE. 

The APPEND: statement applies to sequential files only. 

The APPEND: statement sets the word pointer for the designJted file to 
the position immediately following the Last data word. The f ilc is 
then placed in write mode, ready to accept the next WRITE: statement. 

9-103 DJ31-00 



IF END: ----THEN 
or 

IF END:----GOTO 

Purpose: 

Format: 

Example: 

Rules: 

Remarks: 

To provide a means of testing for end o~ data when reading i binary 
f i le. 

(
THEN} IF END: <file designator> <statement number> 
GOTO 

*10 FILES ZORRO 
*20 K1=1 
*30 AS="EACH STRING " 
*40 BS="HAS A " 
*SO CS="LEADING AND TRAILING " 
*60 D$="CONTROL " 
*70 E$="WORD" 
*80 SCRATCH:1 
*90 WRITE:1,A$,B$,C$,D$,E$ 
*100 RESTORE:1 
*110 IF END:1 THEN 150 
*120 READ:1,V$ . 
*130 PRINT V$; 
*140 GOTO 110 
*150 END 
*RUN 

The executed program produces the printout 

EACH STRING HAS A LEADING AND TRAILING CONTROL WORD 

A comma or a colon can be used in an IF END:---THEN statement to 
separate the file designator from the THEN portion of the statement. 

The IF END:---THEN statement directs the system to go to a designated 
out-of-sequence statement when no more data remains on the file. 

9-104 OJ31-UO 



IF MORE:----THEN 
or 

IF MORE:----GOTO 

Purpose: 

Format: 

Example: 

Rules: 

Remarks: 

To provide for a means of testing to determine whether at Least one valid 
data element remains on a binary file when reading the file. 

, IF MORE: <file designator> <statement number> 
(

THEN) 

*10 FILES ZORRO 
*20 K1=1 
*30 A$="EACH STRING II 

*40 B$="HAS A II 

GOTO 

*50 C$="LEADING AND TRAILING II 

*60 D$="CONTROL II 

*70 E$="WORD" 
*80 SCRATCH:1 
*90 WRITE:1,A$,B$,C$,D$,E$ 
*100'RESTORE:1 
*110 READ:1,V$ 
*120 PRINT V$; 
*130 IF MORE:1 THEN 110 
*140 END 
*RUN 

The executed program produces the printout 

EACH STRING HAS A LEADING AND TRAILING CONTROL WORD 

A comma or a colon can be used in an IF MORE:---THEN statement to separate 
the file designator from the THEN portion of the statement. 

If data elements (or string data) of~ binary file are exhausted before 
input List of a READ: or MAT READ: statement is satisfied, the List is 
filled out by zeros upon program execution. 

The IF MORE:---THEN statement directs the system to go to a 
designa~~d out-of-sequence statement when more data remains to be read 
on the f i Le. 

9-105 DJ31-00 



SET: 

Purpose: 

Format: 

Example: 

Rules: 

Remarks: 

To permit the word pointer for a random binary file to be positioned so 
that data can be read or written at any point on the file. 

SET: <file designator> TO <expression> 

Assume random binary file ORKIN is created via the ACCESS system and 
its size is three blocks (3 x 320 = 960 words). 

*10 FILES ORKIN 
*20 SET:1 TO 620 
*30 FOR P=1 TO 36 
*40 WRITE: 1,P 
*50 NEXT P 
*70 FOR K=655 TO 620 STEP -1 
.*80 SET:1 TO K 
*90 READ:1,N 
*100 PRINT N; 
*120 NEXT K 
*130 END 
*RUN 

Upon execution, the program writes the integers 1through36 on file ORKIN, 
beginning at word 620 and ending at word 655. In addition, the 
contents of words 620 through 655 are verified and the integers <in reverse 
order) are printed out as follows: 

36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 

6 5 4 3 2 

The SET: statement applies to random binary files only. 

The expression in the SET: statement is evaluated and its integer 
portion, if greater than or equal to zero, stored in the word pointer of 
the designated file. If the integer portion is negative, an explanatory 
error message and program termination result. 

9-106 DJ31-00 



MULTIPLE STATEMENTS WITHIN ONE LINE 

While each statement of a program must be confined to a single line, the user 
can make multiple statements within a single line, utilizing one line number. 
Statements within a line are separated by means of a reverse slant(\). For example, 
the line 

*10 A=12\B=37\C=SQR(A+B)\PRINT A,B,C 

is equivalent to four statements and is identified by line number 10. 

If a multiple-statement line is used in a program employing loops or transfers, 
a transfer can only be made to the first of the multiple statements. For 
example, 

* 10 LET N=O 

* 20 READ X,Y,Z PRINT X,Y,Z N=N+1 RESTORE 

* 30 IF N 5 THEN 20 DATA 1,2,3 

* 40 END 

SAVING TEMPORARY FILES 

When the user terminates the session at the terminal with a logoff sequence, 
the system is scanned for the user's temporary files. The message 

n TEMPORARY FILES CREATED 

is issued, n being the number of files. Each temporary file name is listed, followed 
by a question mark. The user can respond as follows: 

1. carriage return -- implies that this file is to be released; pass to the 
next file if more temporary files exist. 

2. NONE -- implies this and all succeeding files are to be released. 

3. SAVE filename -- specifies that this file is to be saved as one of the user's 
permanent files; pass to the ne~t file if more temporary files exist. 

SAVING AND EXECUTING OBJECT FILES 

The BRN command can be used to save a fi Le in its object (binary) code form and/or 
execute a program with such a file. Basic forms of the BRN command ~o achieve these 
purposes are as follows: 

1. BRN = obj file 

The user's current file is compiled and saved as an object fil1~ on r.indom 
tile objfile. 

9-107 DJ31-00 



2. BRN = catalog/objfile 

Same as item 1 except that catalog/filename structure is used. 

3. BRN objfile 

The contents of random file objfile are loaded into memory and 
executed. Compilation has already been performed. 

4. BRN catalog/objfile 

5. 

Same as item 3 except that catalog/filename structure is used. 

BRN filename obj file 

The file filename is compiled, saved as an object file on random file 
objfile, and executed. 

6. BRN filename= objfile (NO GO) 

The file filename is compiled and saved as an object file on random 
file objfile. No execution takes place if (NO GO) option is utilized. 

For example, 

BRN JDOE/RACE,R MYFILE 

compiles file RACE; RACE is then saved as object file MYFILE and MYFILE is 
executed. 

BRN MYFILE 

executes object file MYFILE. 

If a 
permitted. 
are: 

catalog/filename structure is used, 
Legal permission combinations for 

READ 
WRITE 
APPEND 
EXECUTE 
READ, WRITE 
READ, APPEND 

a maximum of three Levels is 
the catalog/filename structure 

The user should note that, as a general rule, object programs are not 
transferable from software release to software release; in which case, the user should 
recompile before attempting to run a saved objfile. 

9-108 DJ31-UO 



FILE ACCESS 

For the normal time sharing user, all files (programs) are defined by user 
identification and a unique file name for each set of files. Since the user 
identification given to the time sharing system on the Logan procedure, and the file 
name <OLD program name), completely define the file for a normal situation, the time 
sharing system automatically gives the user access to his own files stored by use 
of the SAVE control command. However, if the user wishes to make use oth1·r files 
(for instance, thos 1 saved by another user), it is necessary, to previously hav~ 
accessed these file .• One method of accessing other users files is by i.l time 
sharing subsystem called ACCESS.· This subsystem allows the time sharing user to 
access files that have been saved by others, or that have been stored in the 
file system by means other than the control command SAVE (e.g., batch-world files), 
and to place these files at the user's disposal for a session at the terminal. If 
this feature is required, the user must select ACCESS before he goes to the BASIC 
system. The ACCESS subsystem is described in Section IV. 

9-109 DJ31-00 





SECTION X 

EDITOR AND RUNOFF 

EDITOR SUBSYSTEM FUNCTIONS 

The EDITOR subsystem consists of functions that permit the user to perform the 
following: 

1. Build a text file. 

2. Append to an ~xisting text file. 

3. Edit a text file by additions, deletions, or corrections. 

Under the first condition, where no text exists, the EDITOR subsystem transmits 
the editing response "ENTER" as a result of the NEW command, to the terminal and calls 
the TSS data collector to issue an asterisk. The asterisk indicates that the 
subsystem is in the build mode, and only the sys.tern commands #AUTO, #TAPE, #LUCID, 
#RECOVER, and #ROLLBACK are acceptable. 

ENTRY TO EDITOR SUBSYSTEM 

Following the log~n procedure, the user responds to the initial asterisk with 
EDITOR. A hyphen (-) then appears to indicate the availability of the EDITOR 
subsystem. 

The action the EDITOR subsystem takes upon being called depends on the tile 
accessed. The file accessed can be in one of two possible conditions: 

1. The file contains no text, as in the case of a new file to be built, or 
possibly no text exists in the file accessed by an OLD file name 
response. 

2. Text exists in the file accessed by an OLD file name response. 

1 0-1 DJ.51-00 



Under the first condition, wherein no text exists, the EDITOR subsystem 
transmits the editing response, ENTER, to the terminal and calls upon the Time Sharing 
System data collector to issue an asterisk. The asterisk indicates that the system 
is in build mode and system commands or subsystem names are acceptable as text input 
only. The entry sequence is as follows: 

*EDITOR NEW 
ENTER 

* 

Under condition two, wherein text does exist, the EDITOR subsystem accepts any 
editing command following the hyphen response. The entry sequence is as 
follows: 

*EDITOR OLD filename 
-(any editing command) 

If the user desires to append data to the file filename, the editing command 
BUILD is entered and an ENTER and asterisk are transmitte~the terminal as in the 
first condition. The entry sequence is as follows: 

*EDITOR OLD filename 
-BUILD 
ENTER 
* 

NOTE: In the first few examples shown, user entries are underscored, as a 
teaching aid. These underscores are not part of the file and do not 
appear with entries made at the terminal. 

BUILDING OR ADDING TO A FILE ----

After the message, ENTER, and the initial data collector asterisk, two methods 
can be used to build (create) or add to a file. Text can be entered from the terminal 
v i a t he keyboard, or from paper tape i f the term i n a .l i s e qui pp e d w i th a tape 
reader. 

Enterin[ Text From Terminal Keyboard 

At the keyboard, typing of the desired text can begin. After each carriagr 
return, the system types out an asterisk at the beginning of each new line. This 
asterisk does not appear in the line of text in any printout of the file~ 

The following rules apply when entering text: 

1. Text can be typed using both uppercase and lowercase letters if both ar~ 
available on the terminal. 

10-2 DJ31-00 



2. The desired text is 
characters, including 
printout of the file. 

*EDITOR NEW 
ENTER 

typed imrr.ediately following the asterisK. 
spaces, typed after the asterisk appear in 

*THIS LINE IS TYPED WilHOUT LEADING SPACES. 
* THIS LINE CONTAINS 5 LEADING SPACES. 
*(carriage return) 
-PRitT;* 
THIS 1-INE IS· TYPED WITHOUT LEADING SPACES. 

fHIS LINE CONTAINS 5 LEADING SPACES. 

END OF FILE 

Al L 
the 

3. To insert a blank Line, the space bar and then the carriage return are 
used. 

As shown in the example, a carriage return immediately following the 
asterisk terminates the text entry and produces the"-" response. At this 
point, editing or time sharing commands can be issued. 

4. A carriage return is required at the end of every Line of text entered and 
upon completion of text entry. 

5. On a keyboard/display type terminal, the first character typed in 
replaces the asterisk. To terminate text entry and use an editing command, 
two number signs (##) and a blank following the asterisk are typed. 

6. Service functions recognizable with text entry are #AUTO, #TAPE, #LUCID, 
#RECOVER, and #ROLLBACK. 

Line Numbered Fi Les 

Line numbers are not required by the EDITOR or RUNOFF subsystems, but line 
numbered files are required by most of the other time sharing subsystems. The user 
can employ the EDITOR and RUNOFF functions on line numbered files for later use 
under another subsystem. The user can supply one to eight numeric characters as the 
first entries for each Line, or line numbers can be supplied automatically by the 
Time Sharing System by the use of the #AUTO command in the "BUILD" mode. #AUTO 
can be used as follows: 

1. #AUTOMATIC 

Causes the automatic creation of Line numbers by the system, at the point 
at which the automatic mode is entered (or reentered), with line numbers 
initially starting at 010 and incrementing by 10 (or, on reentry, resuming 
where the previous automatic numbering left off). These Line numbers 
appear in the terminal copy, and are written in the file, just as though 
the user had typed them. 

2. #AUTOMATIC n,m 

Causes the automatic creation of Line numbers, as above, but starting with 
Line number ~ and incrementing by m. 

10-3 DJ31-00 



3. #AUTOMATIC ,m 
#AUTOMATIC n, 

Causes automatic creation of line numbers beginning at 10 and incrementing 
by m, or beginning at n and incrementing by 10 Con reentry, the Line 
numbering resumes where it left off). 

Normally the line number is followed by a blank. Any nonblank, nonnumeric 
character affixed to the end of the command #AUTOMATIC causes the blank to be 
suppressed. For example: #AUTONB or #AUTOMATICX. 

No commands. are recognized while in the automatic mode. The automatic mode is 
cancelled by giving a carriage return immediately following the issuance of an 
asterisk and line number by the system. Upon Leaving "#AUTO", return is to the EDITOR 
"BUI LO" rnode. The user may not use character delete (@)or line delete CCTRL X) to 
delete characters associated with the generated Line number or its associated 
blank. 

Resequencing Line-Numbered Files 

The RESEQUENCE command can be used to resequence the line numbers of the current 
file. The RESEQUENCE command must be utilized while in the "edit" mode of the Text 
Editor. 

The description of the RESEQUENCE. command is in Section IV and repeated below 
for easy reference. 

1. RESEQUENCE 

The Line numbers of the current file are resequenced. The 
resequencing begins with line number 10 and continues in increments of 
10. If BASIC is the selected subsystem, the file is resequenced and 
statement number references in the program are modified correspondingly 
<GOTO, GOSUB, IF, ON, Print USING). If FORTRAN or no system was 
selected, statement number references are not affected. 

2. RESEQUENCE n,m,x-y 

The line numbers of the current file are resequenced and modifications made 
according to the subsystem selection. The resequencing begins with line 
number~ and continues in increments of m. 

~and z are specified only if partial resequencing is desired. ~gives 
the starting point and y the ending point of resequencing, inclusive. A 
null x field (i.e., -y)-specifies from beginning of file to Line y, and 
a null l field (i.e.,-~-) specifies from line x to the end-of-file. 

In general, any blanks preceding a line number are stripped off. 
Unnumbered lines are accepted, except under the BASIC subsystem, and will 
have line numbers added, as implied or specified in the command. Care 
should be taken in resequencing concatenated BASIC files as line numbers 
are also statement numbers, and statement references, after resequencing, 
may become invalid. 

10-4 DJ31-00 



3. RESEX n,m 

Line numbers are inserted at the beginning of each line in the current file, 
regardless of whether or not line numbers already exist. The numbering 
begins with n and increments by m, or optionally, begins with 10 and 
increments by 10, if n,m are not specified. If the first character of the 
existing Line is a numeric, a blank is inserted following the genPrated 
line number. If the first character of the existing Line is not numc>ric, 
no blank is inserted. 

4. RESE# n,m 

Line numbers are inserted at the beginning of each line in the current file, 
even if line numbers already exist. This numbering begins with n and 
increments by m, or optionally begins with 10 and increments by 10 if n, 
m are not specified. If the first character of the existing Line is-a 
numeric, a number sign(#) is inserted following the generated Line number. 
If the first character of the existing Line is not numeric, the pound sign 
is not inserted. 

CAUTION: When resequencing, or performing a partial resequence, it is 
possible to produce files with Line numbers out of order. This 
may be caused by incorrect parameters on partial resequence or 
when new Line numbers exceed eight digits (in non-BASIC files). 
When Line numbers are too large, a warning is given. In either 
case, recovery may be made by resequencing the total file using 
a smaller beginning Line number or a smaller increment. 

Entering Text From Paper Tape 

A text file can be created on paper tape to be entered into the computer at a 
Later time. To do this, put the terminal in LOCAL, feed enough tape through the 
tape drive to ens~re that there are no unwanted characters, and type the text. A 
carriage return, line feed, and two rubouts must follow every line of text. An X-OFF 
(or DC3) must indicate completion of the text, followed by two rubout characters which 
provide a timing factor. 

To use a prepared tape, enter the EDITOR subsystem, and type #TAPE following 
the initial asterisk. When the READY response appears, put the.prepared tape in the 
terminal's tape reader and turn on the tape drive. The terminal must be in the online 
mode. 

Input from the tape is accepted unti L the terminal operator stops the reader, 
the tape runs out or jams, or an X-OFF (or DC3) character is read from the tape. As 
the tape is being read, a copy of its contents is printed out on the terminal. When 
tape input is complete, the system looks for an X-OFF prior to transmitting a carriage 
return and printing an asterisk. At this time, additional text may be entered at 
the keyboard or a carriage return can be given to obtain the"-" response and allow 
editing or printing. 

10-5 DJ31-00 



*EDITOR NEW 
ENTER 
*#TAPE 
A COMPUTER PROGRAM IS A SET OF INSTRUCTIONS THAT 
TELLS A COMPUTER HOW TO ACCOMPLISH A SPECIFIC 
TASK. EACH INSTRUCTION IS PERFORME~ IN THE 
SEQUENCE SPECIFIED BY THE PROGRAM. IN THIS WAY, 
THE COMPUTER PROCESSES AND PRODUCES INFORMATION 
AS DIRECTED BY THE PROGRAM. 

A PROGRAM MUST MEET TWO PRIMARY REQUIREMENTS 
BEFORE IT CAN BE RUN CHAVE ALL INSTRUCTIONS 
EXECUTED) ON A COMPUTER. 
CX-OFF or DC3) 
*(carriage return) 

The #TAPE command can also be used to add text from paper tape to a text file 
that has been built in a current session at the terminal or has been previously saved 
(refer to the SAVE and OLD command descriptions in Section IV). 

text. 

-BUILD 
ENTER 
*#TAPE 
<Read from paper tape as described above.) 
CX-OFF or DC3) 
*(carriage return) 

The #LUCID request is substituted for #TAPE for non-ASCII paper tape input. 

A printout of the file shows text from paper tape appended to the original 

Text from p·aper tape can be inserted into a file at any point in the file. Refer 
to the description of ENTER under "Responses From EDITOR" in this section. 

PROTECTING FILES 

An automatic terminal disconnect, a computer or communication Lines 
malfunction, or a· user simply forgetting to save a file before shutting down can cause 
the loss of input if the user is building or adding to a file. A large file requiring 
many hours or even days of typing input may be lost. The following paragraphs 
describe methods of preventing such losses. 

The <::implest way to ensure against loss from any condition except computer system 
malfunction is to save portions of the file at intervals while building. In this 
way, only the last unsaved portion of the file would be subject to loss. (See the 
following example.) 

10-6 DJ3l-OO: 



*EDITOR NEW 
ENTER 
*text 
*text 

* 
* 
* 
* 
*text ---------
* (carriage ret1 rn) 
-SAVE EXAM.1 
DATA SAVED--EXAM.1 

(At this point, the editing commands can be used to print or chrJnqe the 
file. For each succeeding save, use the RESAVE function and specify the original 
name. If you wish to continue building this file, use the BUILD command.) 

NOTE: The use of commands #RECOVER, #ROLLBACK, OLDP, and OLDP# can provide the 
user with additional means of file protection. Refer to the Section IV 
for details of use of these commands. 

A paper tape of the file contents also provides a hard copy backup in case a 
fi Le must be rebui Lt. This tape can be punched as you build the fi Le from the keyboard. 
The tape wi LL contain the asterisk printed by the system at the beginning of each 
line and any lines which were deleted or corrected while building. (See the following 
example.) If it is necessary to rebuild this file via tape, the rebuilt file must 
be edited. 

*EDITOR NEW 
ENTER 
*#TAPE 
RITD"Y 
*HUMAN LANGUAGES ARE IMPRACTICAL FOR PREPARING 
*COMPUTER PROGRAMS BECAUSE THESE LANGUAGES 
*CONTAIN MANY AMBIGUITIES AND REDUNDANCIES; 
*THE COMPUTER INTERPRETS LANGUAGE ABSOLUTELY 
*LITERALLY. BY THE SAME TOKEN, MACHINE 
*LANGUAGES ARE ALSO IMPRACTICAL BECAUSE THEY ARE 
*DIFFICULT FOR PEOPLE TO USE. MOST PROGRAMMING 
*LANGUAGES ARE COMPROMISES BETWEEN HUMAN AND 
*MACHINE LANGUAGES. 
(X-OFF or DC3) 
•<carriage return) 

10-7 DJ31-00 



To create ~tape that does not require extensive editing, build a portion of 
the file, enter the editing function, give a PRINT command, and punch the tape as 
the file is being printed out. The following example illustrates this method. 

*text 
*text 
*<carriage return) 
-~;* (Do not type a carriage return until the tape drive has 

been turned on and the following done: 
C1) To ensure a clean tape, repeat the rubout character 
until you have a tape leader long enough to be placed in 
the tape drive. 
(2) Backspace the tape once so that the carriage return 
is wiped out by the Last rubout character. 

Type a carriage return. 

The contents of the file is typed out while the tape is being punched. The 
message END OF FILE is punched into the tape. If the file must be rebuilt via this 
tape, this message must be deleted. 

SEARCH POINTER CONVENTIONS 

Each file upon entering EDITOR has a search pointer associated with it. This 
pointer is Located at the beginning of the file until the first editing command is 
given and is backed up a specified number of lines or returned to the beginning of 
the file by the BACKUP command. The pointer always points to the beginning of a line, 
never to a point within the line. This allows several edit operations to be 
performed on the same line, as long as the operation does not move the search 
pointer. 

The rules governing the movement of the search pointer are as follows: 

1 • T h e P'R I N. T , I N S E R T , R E PL A C E , D E L E T E , F I N D , C U T , C 0 PY , a n d P A S T E c o m m a n d s 
cause the search pointer to move forward toward the end of the fi Le, unless 
t he co m·m and a ff e c t s on l y t he l i n e at w h i c h t he po i n t er i s a l ready L o cat e d 
(usually a command with no operand field). 

2. Following the execution of any of the commands listed in rule 1., the 
pointer is Located at the Last line affected by the command. 

3. The BUIL~ command positions the search pointer to the end of the file. 
Exiting from the BUILD repositions the search pointer to the beginning of 
the file. 

4. The BACKUP command moves the search pointer backward to the beginning of 
the file or a specified number of lines from wherever it is located. 

5. For commands involving a search operation--a string field is 
specified--the file is always searched starting at the current location 
of the search pointer; the search is terminated either by a successful 
comparison with the specified string field or by encountering the end of 
the file. In the latter case, the pointer must be backed up before any 
further editing operations may be performed. 

NOTE: Iri the line mode, the search pointer can be moved forward or backward 
b· y t h e u s e o f + n o r - n w i t h a s e a r c h v e r b • " n " i s t h e n u m b e r l i n e s 
to move forward (+) or backward (-). 

10-8 DJ31-00 



If a given line has already been passed by the search pointer, the BACKUP command 
or a command with a -n mode must be used to backup the pointer to the line to be operated 
on. 

The current position of the search pointer can always be determined by using 
a PRINT command with no operand field. 

The position of ':.he search pointer is also affected by use of the terminal "break" 
key to halt the filE printout process. The position of the search pointer at the 
time the break key is pressed is dependent upon the system interfaces. If internal 
procedures have not been completed when the EDITOR subsystem is notified, the 
search pointer is positioned back at the last "-" response. If the internal 
procedures have already been completed prior to· transmitting the - response to the 
terminal, then probably the search pointer position and command execution is as if 
the break has not occurred. 

The following symbols are used in some examples illustrating the Location of 
the search pointer: 

<>Location of search pointer at the start of command execution. 

>Location of search pointer at the finish of command execution. 

<I> L o c a t i o n o f s e a r c h p o i n t e r a t b o t h s t a r t a n d f i n i s h o f c o m m a n d e x e c u t i o n • 

EDITOR LANGUAGE 

The EDITOR Language is composed of editing commands given by the user while 
working with a file and responses from the EDITOR subsystem to the user. 

Command Format 

An EDITOR command may be a single verb only or a verb plus modifier. The 
modifiers specify variations from the standard operation of the verb and make up the 
"operand field" of the command. In the examples of command format below, everything 
following the verb is part of the operand field and, therefore, optional. When the 
operand field is used, the punctuation shown is required. No intervening blanks are 
permitted in the command format. <Capitalization of the verb is not required; it 
is done here to illustrate format.) 

VERB 
VERBm;r 
VERBm:st 
VERBm:st+st 
VERBm:st-st 
VERBm:st;r 
VERBm:st,st 
VERBm:st:st 
VERBm:st,st;r 
VERBm:st;r:st 

Where: 

m is the mode indicator or +I
r is the repeat field 
st is the string field 

10-9 DJ31-00 



An abbreviated form of some verbs is allowed; the abbreviation is the initial 
letter of the verb. 

BACKUP or B 
COPY 
CUT 
DELETE or D 
FIND or F 
INSERT or I 
PASTE 
PRINT or P 
REPLACE or R 
CASE 

The following verbs cannot have an operand field: 

LINE or L 
STRING or S 
BUILD 

RUNOFF 
VERIFY 
NOVERIFY 

STANDARD 

The use of the verbs and operands are fully explained and illustrated later in 
this section. The restrictions and usage rules that apply to the operand field are 
explained in "Operand Field of the Command" below. 

The EDITOR responds to the commands with messages that inform the user when a 
command has been executed, a mistake in command format has been made, or the end of 
the file has been reached. These messages are described in "Responses from EDITOR," 
in this section. 

Operand ~ ..2...!_ The Command 

The operand field of the command can contain one or more of the following: 

o Mode indicator (used only when a string fi~ld is used) 

o Plus (+)nor minus <->n to move line pointer forward or backward Cline mode 
only). Not applicable to BACKUPCB). 

o String field, preceded by a colon 

o Repeat field, preceded by a semicolon 

If more than one of these items is used in a single command, the order must be 
as shown above. 

Insertion or replacement text can also be a part of the operand. Refer to INSERT 
and REPLACE commands in this section. 

The letter V appended to a command results in command verification. Refer to 
VERIFY and NOVERIFY commands in this section. 

The letter B appended to the INSERT command permits insertions immediately 
before instead of after a specified line or string. Refer to the INSERT command in 
this section. 

10-10 OJ31-00 



Two special forms of the operand are used with the FIND, PRINT, CUT, COPY, 
PASTE, DELETE, INSERT, and REPLACE commands to obtain AND and OR functions; refer 
to these command descriptions in this section for details. 

MODE INDICATOR 

The mode indicators used with the EDITOR verbs are "S" for string mode, #NO and 
I G N o R E ( f o r L i n e n u rr. b e r e d f i L e s ) , a n d " L " f o r L i n e m o d e • T h e m o d e d e t e r m i n e s t h e 
type of operation to be performed and the interpretation of the string field. 

In the Line mode, a command acts on one or more complete Lines of the file. 

-PRINT 
AA COMPUTER PROGRAM IS A SET OF INSTRUCTIONS 
-REPLACE:/AA/ 
ENTER 
*A 
*(carriage return) 
-PRINT 
A 

The entire Line was replaced by the single character entered. To correctly 
perform this function in Line mode, the entire Line should be retyped as 
follows: 

-REPLACE:/AA/ 
ENTER 
*A COMPUTER PROGRAM IS A SET OF INSTRUCTIONS 
*(carriage return) 

In string mode, a command acts on a specified string or strings of 
characters. 

-PRINT 
A COMPUTER PROGRAM IS AA SET OF INSTRUCTIONS 
-REPLACES:/AA/ 
ENTER 
*A 
*(carriage return) 
-PRINT 
A COMPUTER PROGRAM IS A SET OF INSTRUCTIONS 

Line mode is the normal mode of operation for EDITOR unless the string mode is 
specified by the user. When the S mode indicator is added to the verb, only that 
command is affected. ALL subsequent commands not having a mode indicator are in Line 
mode. 

It is unnecessary to use the L mode indicator except when the command, STRING, 
has been used. <See "EDITOR Commands" below.) The STRING command causes all commands 
following to operate in the string mode until the user reverts to the line mode by 
using a LINE command. If a line mode operation is desired following STRING, the L 
mode indicator can be added to the verb or, if no string field is given, the 
command operates in Line mode. 

1 0-11 DJ31-00 



In line mode, the search for a successful comparison to the string field (if 
used) is limited to the initial characters of each line. The characters specified 
in the string field must correspond to those at the beginning of a line, always 
starting with the first printing position. In the character-by-character comparison 
process involved in searching, the first character of the string field is compared 
with the first character of a line. If these initial characters are not the same, 
the search proceeds directly to the first character of the next line, rather than 
to succeeding characters in the same line. 

In string mode, a command can act upon any string of characters in the file, 
regardless of line breaks <carriage returns). The character string acted upon can 
range from one or more characters within a line, to any number of consecutive 
characters extending through several lines. For example,~ complete sentence that 
begins in the middle of one line and ends within another line could be deleted 
without disturbing the rest of the first and last lines. The character ,string 
specified in the string field need not be unique to the beginning of a line, of course, 
but the whole line is not implied, as in line mode -- only the string actually 
specified. 

STRING FIELD 

The string field is always preceded by a colon. It consists of a string of 
characters bounded on both ends by a delimiter. The delimiter can be any 
character except a blank, control character, or a character contained within a string, 
and is not entered in the file. 

The general form of the string field is: 

:dxxxxxx.xd 

where d is the delimiter and x is any character other than d. 

Examples of simple string fields are: 

(1) :/THE COMMITTEE/ 
(2) :.WHEN THE VALUE OF CF/X)*N IS O,. 
(3) :XMR. PERRY, MOR. SMITH, AND MISS JONESX 

The delimiter in example (1) is the slant, in example (2) the period, and in 
example (3) the character X. In all succeeding examples, the slant is used as the 
delimiter unless it conflicts with a slant in the string, as in example (2). The 
string to be acted on must be contained within one line. 

When the string to be acted on is very long (it can include several lines), two 
string fields, separated by a comma, can be used. This is called a point-to-point 
~tring field. The first string field must uniquely identify the starting point and 
the second string field must identify the stopping point. Each string field must 
be contained within a line. 

The above examples are shown below in the point-to-point form: 

(1) :/TH/,/TEE/ 
(2) :.WH.,.O,. 
(3) :XJllRX,XESX 

10-12 DJ31-00 



The following conventions concerning the effect of blanks and carriage returns 
are used by EDITOR in searching: 

o Carriage returns can not be used for comparison purposes. 

o Consecutive blanks in the file must be matched exactly by the blilnks in 
the operand string field: n consecutive blanks in the string fiPlrl means 
n consecutive blanks in the corresponding position of the character 
string in the file. 

Certain commands permit two special forms of the string field to be used. String 
identifiers can be combined by the use of the Boolean AND or OR functions. 

The searching conventions must be remembered when specifying string fields for 
searching to successfully Locate the desired portion of the file. 

REPEAT FIELD 

The repeat field specifies the number of times an operation is to be repeated. 
The field is always preceded by a semicolon and can contain a number which must be 
Less than 262144 or an asterisk. The number indicates the number of repetitions 
wanted; the asterisk (*)will result in the operation being repeat.ed throughout the 
entire file, unless the operation exceeds 262144 occurrences. If the operations 
exceeds 262144 occurrences, the operation will have to be repeated. 

When the repeat field is used without a string field, the operation is 
always performed in the Line mode. 

The effect of the repeat field is explained in the detailed descriptions of each 
command (see "EDITOR Commands" in this section). However, a few brief examples are 
given below. 

PRINT;S <Prints five lines, beginning at the location of the search 
pointer.) 

PRINT:/YOU/;3 (Prints the first three lines encountered beginning with the 
characters YOU. This would include YOUR, YOURS, YOU'RE, etc.) 

PRINTS:/YOU/;3 (Prints the lines containing the first three occurrences of the 
characters YOU. This results in three Lines of print, possibly the same line 
repeated if all three occurrences are in the same line.) 

PRINT;* (Prints the complete file from the location of the search pointer.) 

LINE LENGTH 

When creating or verifying lines, the text EDITOR has a buffer restriction. 
Total line Length cannot exceed 1268 characters. When verifying, line length cannot 
exceed 596 characters. Attempting to exceed these Limits may give unpredictable 
results. 

10-13 DJ31-00 



The dittere•nce b.etween string and Line mode requirements is as foLl.ows: 

LINE 

The l i n•e fie l d must cont a i n 
the initia·L characters of the 
line as i,t a,ppears in the 
tile •. 

STRING 

The string field can contain 
any characters in the line. 
(Ca~tion: If th.e strin~ to be 
operated upon appears t~ice 
in the same Line and the 
second. occurrence is w.here 
the change is tQ be mad•, be 
su,re to inclu,d& eno·UQ>h 
characters from the preceding 
or following w-0rd to m~ke t~e 

st r i n.g uni q u,e • ) 

#NO MODE 

The II N 0 mo d:e· a l l ow s a u. s e r to pr int a l i n e- numbered f i l e w i t ho u t pr i n t i n g the 
line numbers. This mode is reset by typing #YES. 

IGNORE MODE 

The IGN:OR,E mode allows the user to disregard line num.bers while making 
modificat·io·ms t<l a file using string functions. During execution, each Line is 
scanned commencing with the first character of the line. The first nonn.u.meric 
chara.cter encouAte·red is esta.blished as the first character of the line. To reset 
the mo~e to n~rmal, the user types NOIG. 

CAUTI'ONi: Wit:ten the first character of the line is a· nu.m.eric, s.ome n.onnu1m:eric 
~~•r~cter should be inserted following the Line number. 

Responses From EOJ:T0R 

- (hyphen) 

ENTER 

T h e l a. S· t c om m a n d h a s b e e n ex e c u t e d a n d E O I T 0 R i s r e a d y t o a c c e p t e i t h e r 
aA-0ther EDITOR command or a Time Sharing System command. 

This resp~nse to a REPLACE, INSERT, or 
that the replacement~ insertion, or 
ent e Ped., 

aUIL& command informs 
additional text can 

the user 
now be 

An asterisk appears after the ENTER response, indicating that the time 
sharing data collector now accepts text entry. 

10-14 D J3t-OO· 



LIMIT REACHED 

This message occurs only when a repeat field •~ u:;ed with an INSf.RT or 
REPLACE command and the text being enter1d exceeds the buffer 
capacity. All text"input before the LIMIT REACHE.n message is entered into 
t he f i l e as many t i mes as s p e. c i f i e d by t he L as t rep ea t f i e L d • The sea r c h 
pointer will be at the last location altered. 

To cont nue inserting or replacing text, back up and find the starting 
point, r ~peat the REPLACE or INSERT command dnd continue entering the rest 
of the text. 

END OF FILE 

This message occurs when the search pointer has reached the end of the 
file. This is the normal response to a command with an* in the repeat 
field. It also occurs when the specified string field does not appear in 
the file. 

Following this message, a BACKUP command should be given if more work 
is to be done on the file. 

COMMAND UNKNOWN 

EDITOR does not recognize the command, either because it is illegal or 
because it is misspelled. This response may cause the EDITOR search 
pointer to be repositioned to the beginning of the current file. To return 
t o t h e p l a c e i n t h e f i l e w h e r e t h e f a u l t y c L1 m n. a -~ ~: y i v e n , · t h e u s e r c .O\ n 
make use of the FIND command. 

STRING ERROR 

The command contains one or more of the following errors: 

1. The string mod~ has been specified but no string field has been 
entered. 

2. The ending delimiter is missing. 

3. One or more characters have been typed on the same line following the 
final delimiter. 

REPEAT ERROR 

The repeat field contains a character other than a number or * 
the command correctly. 

END OF FILE - REQUEST EXECUTED XX TIMES 

Retype 

The above message occurs when a repeat field is used and the repeat field 
specified is greater than the number of occurrences in the file or the 
repeat field is an asterisk. XX represents the number of times the 
specified function was executed. 

10-15 DJ31-00 



>ASTE NOT EXECUTED, NO DATA 

The above message occurs as a result of one of two reasons: 

1. The user failed to cut or copy data prior to issuing a PASTE 
command 

2. A system malfunction occurred preventing the data specified from 
being cut or copied. 

TEXT INSERTION ERROR 

This message occurs as a result of a missing delimiter or text 
following the terminating delimiter. 

OPERAND ERROR 

This message occurs as a result of an operand error. Either an 
inappropriate operand was used, an operand was utilized where operands are 
not permitted, or an operand was expected and not found. 

UNABLE TO CUT/COPY, NO FILE SPACE 

The message indicates an inability to cut or copy due to a lack of temporary 
file space to store the cut or copied data. 

CUT/COPY TRUNCATED, PERFORM PASTE TO CONTINUE 

<SO> 
<50> 
<50> 
<52> 
<SO> 

This message occurs as a result of an extensive amount of text being cut 
or copied, causinq the cut/copy file to overflow. Performing a paste 
function following this message allows continued use of cut/copy file. 

WORK FILE, TABLE FULL, ST A TUS 36 
WORK FILE, SYSTEM LOADED, STATUS 40 
WORK FILE, STATUS 10 
CURRENT FILE NOT DEFINED 
NO FILE SPACE, STATUS 13 

RUNOFF format contr>Ql words can be entered in the text file during the building 
or editing phase of the EDITOR subsystem to achieve such text format as spacing, 
indentation, and page numbering. These formal co11t.rol words remain embedded within 
the text tile but are removed in a printout of the file by way of the RUNOFF subsystem 
command REFORM. Refer to Section IV for descriptions of RUNOFF subsystem commands 
dnd format control words. 

TIME SHARING SYSTE~ CONTROL COMMANDS 

Time Sharing System control commands perform nonediting functions (e.g., saving 
or purging files, calling in other subsystems) for EDITOR. These control commands 
c an be en t e red i mm e di ate l y a ft e r t he a pp ea ran c e of t he - response, t he· " - " i n d i c at i n g 
system readiness to accept a command. Time Sharing System control commands and their 
a~pl ication to the EDITOR subsystem are described in the Section IV. 

10-16 



EDITOR COMMANDS 

The EDITOR commands are described below in the following order <note the 
permissible abbreviations): 

AFTLIN/BEFLIN or A/BEFL 
BACKUP or B 
BUILD 
CASE/STANDARD 
COPY 
COLUMN or COLS 
CUT 
DELETE or D 
FIND or F 
INSERT or 
LIMIT 
LINE 
MARK 
MASK 
MODE or M 
OCCURRENCE or 0 
OCTAL or OCTL 
PASTE 
PRINT or P 
REPLACE or R 
RUNOFF 
STRING 
TRANSPARENT or T 
VERIFY/NOVERIFY 
WHERE or W 

EDITOR commands can be employed singly or in multiples, the only 
restriction being that the one or more commands be contained on a single Line. With 
use of the single command, a"-" response is issued upon command execution and control 
is returned to the user. With multiple command use, the series of commands are 
executed before the"-" response is issued and control returned to the user. 
Commands (and accompanying operands, if any) in a multiple command line must be 
separate~ by one or more blanks. For example, 

-F P;S B;S P;3 D;S 

An unsuccessful command exe.cution in a multiple command aborts the execution 
of any remaining commands. 

NOTE: The slant is used as a delimiter to illustrate EDITOR commands 
below. Any keyboard character, except a blank or control character, can 
be used as a delimiter. 

AFTLIN Command And BEFLIN Command 

AFTLIN and BEFLIN are acronyms for "AFTer LINe" and "BEFore LINe. 11 They allow 
the user to append data at the end of the line{s) or at the beginning of the 
line(s). 

AFTLIN (short form A) command allows the user to append data to a line or 
number of lines specified in the repeat field. Input data can be entered in either 
of two -forms. 

1 0-17 DJ31-00 



1 • In p ll t d at a c .;in f o l low t he repeat fa c tor ( ; n o r *) i n form '' : I i n put d at a I" , 
example: 

-A;1:/abcdef/ 

where the string "abcdef" will be appended to the current line <;1). If 
the repeat fc:ictor <;n> is greater than one, the string "abcdef" will 
be app~nded to the current line plus the next n -1 lines. 

2. Input data can follow the ENTER message. 

-A;1 
ENTER 
*aocdef 
*CR<carriage return) 

NOTE: In the above form, the numeric "1" specifies the current line. If 
more than the specified "n" lines of input is entered, the excess 
is ignored. 

If";*" appears in the repeat field, the input data is appended to all of the remaining 
lines. For example: 

-.A;* 
ENTER 
*001abc 
*002def 
*003ghi 
*CR<carriage return) 

END OF FILE - REQUEST EXECUTED nnn TIMES 

In the above example, input line "001abc'' is appended to the current line, input 
"002def" is. appended to the current line plus one, and "003ghi" is appended to the 
current line Plus twq. In this form the repeat field is ignored. 

BEFLIN, is not permitted a short form since "B" would conflict with the verb 
BACKUP; the abbreviation BEFL is permitted. The same rules apply to BEFLIN as to 
the AFTLIN, except the input data is prefixed to the beginning of the Line. 

BACKUP Command 

the search pointer backward the number of lines 
If the operand field is blank, the pointer backs 
T h e u s e. o f B A C K U P i s i l l u s t r a t e d i n t h e e x a m p l e s 

The BACKUP command moves 
specified in the operand field~ 

up to the beginning of the file. 
given for other EDITOR commands. 

The formats and execution are as follows: 

Command Execution 

BACKUP Backup search pointer to beginning of file. 

BACKIJP;n Backup search pointer~ consecutive lines. 

10-18 DJ31-00 



BUILD Command 

The BUILD command enables the user to append additional text to his text file. 
When the user gives the BUILD command, the EDITOR subsystem positions the search 
pointer to the end of the file and responds with ENTER. 

The text to be entered is typed on Lines following the ENTER response. When 
text entry is comple ·e, a carriage return only in response to the asterisk generates 
the - response. 

The text entered following the ENTER response is appended to the file. When 
the carriage return is given to signal the end of text entry, the - response is given 
and the search pointer is returned to the beginning of the file. 

-PRINT;* 
TIME-SHARING PERMITS A DIALOGUE BETWEEN THE 
COMPUTER AND USER, PERMITTING THE DIALOGUE 
TO BEGIN IMM~DIATELY, WITHOUT WAITING FOR 
THE COMPUTER TO COMPLETE PREVIOUS PROGRAMS. 
DATA IS FED FROM THE TERMINAL DIRECTLY TO 
THE COMPUTER AND ANSWERS ARE RECEIVED 
QUICKLY AT THE SAME TERMINAL. 

END OF FILE 
BUILD 
ENTER 
*THE PROGRAM CAN BE CORRECTED OR CHANGED BY 
~THE USER AS IF HE WERE CONVERSING BY PHONE, 
*EXCEPT IN THIS CASE, THE CONVERSATION IS 
*TYPED OR DISPLAYED, DEPENDENT UPON THE TYPE 
*OF TERMINAL IN USE. 
*(blank,carriage return) 
*IF THE PROGRAM CONTAINS A MISTAKE, THE 
*COMPUTER INFORMS THE USER. 
*(carriage return) 
-PRINT;* 
TIME-SHARING PERMITS A DIALOGUE BETWEEN THE 
COMPUTER AND USER, PERMITTING THE DIALOGUE 
TO BEGIN IMMEDIATELY, WITHOUT WAITING FOR 
THE COMPUTER TO COMPLETE PREVIOUS PROGRAMS. 
DATA IS FED FROM THE TERMINAL DIRECTLY TO 
THE COM.PUHR AND ANSWERS ARE RECEIVED 
QUICKLY AT THE SAME TERMINAL. 
THE PROGRAM CAN BE CORRECTED OR CHANGED BY 
THE USER AS IF HE WERE CONVERSING BY PHONE, 
EXCEPT IN THIS CASE, THE CONVERSATION IS 
TYPED OR DISPLAYED, DEPENDENT UPON THE TYPE 
OF TERMINAL IN USE. 

IF THE PROGRAM CONTAINS A MISTAKE, THE 
COMPUTER INFORMS THE USER. 

END OF FILE 

10-19 DJ31-00 



CASE Command And STANDARD Command 

The CASE command enables the user to set the mode of the EDITOR subsystem so 
as to permit it to search a dual-case (upper and lower) text file from a terminal 
with a single-case keyboard. 

The STANDARD command removes the EDITOR subsystem from the CASE mode. 

The formats and execution of the CASE command are as follows, d 
representing a delimiter other than that used for delfmiting string fields. The 
delimiter must be a character not contained within the file. 

Command Execution 

CASE String fields of commands cause search and location 
by text, ignoring case. 

CASE UPPER d String fields of commands cause search and location 
of uppercase text. The specified delimiter denotes 
uppercase text for display or insertion. 

CASE LOWER d String fields of commands cause search and location 
of lowercase text. The specified delimiter denotes 
lowercase text for display or insertion. 

For example, a line of text in a file consists of the following: 

EDITOR and RUNOFF are subsystems of TEXT EDITOR. 

The user is restricted to an uppercase terminal. 

-CASE 
-PRINT:/EDITOR/ 
EDITOR ANO RUNOFF ARE SUBSYSTEMS OF TEXT EDITOR 

-CASE UPPER $ 
-PRINT 
$EDITOR$ AND $RUNOFF$ ARE SUBSYSTEMS OF $TEXT$ $EDITOR$ 

-REPLACES:/SUBSYSTEMS/:/$SSUBSYSTEMS/ 

The line of text in the file now consists of the 
following: 

EDITOR and RUNOFF are Subsystems of TEXT EDITOR. 

Note that the specified delimiter does not become part of the text. 

10-20 DJ31-00 



COPY Command 

The COPY command allows the user to copy a specified portion of text and hold 
it in reserve for a PASTE command. The copied text is not refl'loved from the file but 
is repeated at the location specified by PASTE. Sever~l sequential COPY 
commands can be given and the collected text inserted with a single PASTE command. 
Examples of the use of COPY are included with the PASTE examples. 

The format and execution are as follows: 

Command 

COPY 

COPY:/xxx/ 

COPY:/xxx/;n 

COPY:/xxx/,/yyy/ 

COPYS:/yyy/ 

COPYS:/yyy/;n 

COPYS:/yyy/,/zzz/ 

COPY:/st1/+ ••• /stn/ 

COPY:/st1/- ••• /stn/ 

Execution 

Copy the line at which the search pointer is currently 
located. CA repeat field can be used with this 
form.) 

Copy line identified by xxx. 

Copy the next n lines identified by xxx. 
used to copy all such lines.) 

(* can be 

Copy the block of Lines starting with the line 
identified by xxx through the line identified by 
yyy. (A repeat field can be used to copy ~or all such 
blocks of lines.) 

Copy the Line that contains the specified string. 

Copy n occurrences 
specified string. 
lines.) 

of the Line that contains the 
(* can be used to copy all such 

Copy text between points yyy and zzz, inclusive. CA 
repeat field can be used""""'Wlth th"l"Sform also.) 

Copy line containing all of the specified (a maximum 
of five) strings. CA repeat field can be used to copy 
n or all such lines.) 

Copy line containing any one of the specified Ca 
maximum of five) strings. CA repeat field can be used 
to copy~ or all such lines.) 

Two special forms of the operand are permissible with the COPY command to 
identify Lines containing specified strings. These forms of the command are referred 
to as the Boolean AND and OR functions. The operand can consist of up to five strings 
connected by plus signs for the AND form and minus signs for the OR form. The strings 
can be in any order; i.e., the fifth string in order of appearance in the line may 
be listed first in the operand. 

For the AND form, the user lists strings and plus signs to imply that the 
form is a Boolean AND--all of the strings listed must be present to achieve the 
co PY • For ex am p·l e, w i t h d represent i n g a de L i m i t e r, t he format i s 

COPY:dSTRING1d+ •••• +dSTRING5d 

1 0-21 DJ31-00 



For the OR form, the user lists strings and minus signs to imply that the form 
is a Boolean OR--any one of the listed strings need be present to achieve the copy. 
For example, with d representing a delimiter, the format is 

COPY:dSTRING1d- ••• -dSTRING5d 

Note that these two special forms of the operand are equivalent in line or string 
mode. 

COLUMN Function 

The function COLS:Cxxx-yyy) allows the user to restrict string searches and 
modifications in a horizontal direction; i.e., to a specific range of character 
positions within one or all Lines (depending on commands used>. It is particularly 
useful if data is in columnar (tabular) format. For example: 

-COLS:{9-11) <User restricts the horizontal range to the 
characters located within columns 9 through 
11 (3 characters) inclusive.) 

-P;2 <Print two lines) 

123456789012345678901234567890 ••••••••• 
abc def abc def abc def abc •••••••••••••• 

-RS:/abc/:/xyz/ <Replace the string abc with xyz) 

-P (Print the current line) 

abc def xyz def abc def abc ••••••••••••. 

NOTE: The string "abc" in columns 1, 2, and 3 was not affected since column 
function was restricted to columns 9, 10 and 11. A repeat factor is 
acceptable. 

Limitations: 1. Character string must start in the first column specified and 
terminate in the last column specified. 

2. Multiple occurrences of strings within column parameters are 
not permitted. 

3. Multiple column parameters are not permitted. 

4. Only numerics are permitted within parentheses; use of 
characters other than numerics result in error messages. 

NOCO nullifies the column function. 

10-22 OJ31-00 



CUT Command 

The CUT command performs the same functions as COPY, except that the copied text 
is deleted from its present location. Examples of this are included with the PASTE 
examples. The formats and execution are as follows. 

Command 

CUT 

CUT:/xxx/ 

CUT:/xxx/;n 

CUT:/xxx/,/yyy/ 

CUTS:/yyy/ 

CUTS:/yyy/;n 

CUTS:/yyy/,/zzz/ 

CUT:/st1/+ ••• /stn/ 

CUT:/st1/- ••• /stn/ 

Execution 

Copy and remove the Line at which the search pointer 
is Located. (A repeat field can be used with this 
form.) 

Copy and remove the Line identified by~-

Copy and remove the next n Lines identified by xxx. 
(* can be used to copy and remove all such lines-=-) 

Copy and remove the block of lines starting with the 
line identified by xxx through the line identified by 
yyy. <A repeat field can be used to copy and 
remove n or all such blocks of lines.) 

Copy and remove the line that contains the specified 
string. 

Copy and remove n occurrences of the line that 
contains the specified string. (*can be used to copy 
and remove all such lines.) 

Copy and remove text between points yyy and zzz, 
inclusive. (A repeat field can be use'dt""o copy---arl'd 
remove n or all such occurrences of text.) 

Copy and remove the Line containing all of the 
specified (a maximum of five) strings. (A repeat 
field can be used to copy and remove~ or all such 
Lines.) 

Copy and remove the Line or the Lines containir:ig any 
one of the specified (a maximum of five) strings. (A 
repeat field can be used to copy and remove~ or all 
such Lines.) 

Two special forms of the operand are permissible with the CUT command to identify 
Lines containing specified strings. These forms of the command are referred to as 
the Boolean AND and OR functions. The operand can consist of up to five strin~s 

connected by plus signs for the AND form and minus signs for the OR form. The strings 
can be in any order; i.e., the fifth string in order of appearance in the Line may 
be listed first in the operand. 

10-23 DJ31-00 



For the AND form, the user lists strings and plus signs to imply that the form 
is a Boolean AND--all of the strings listed must be present to achieve the cut. 
F-0r example, with d representing a delimiter, the format is 

form 
cut. 

CUT:dSTRING1d+ •••• +dSTRING5d 

For the OR form, the user Lists strings and minus signs to imply that the 
is a Boolean OR--one of the listed strings must be present to achieve the 

For example, with d representing a delimiter, the format is 

CUT:dSTRING1d- ••• -dSTRINGSd 

Note that these two special forms of the operand are equivalent in line or 
string mode. 

DELETE Command 

The DELETE command allows the user to delete any number of characters, words, 
or Lines from his file. The operand field of the command specifies the text to be 
deleted. If no operand field is given, the Line where the search pointer is located 
is deleted. 

The formats and execution are as follows: 

Command 

DELETE or DELETE;n 

DELETE:/xxx/ 

DELETE:/xxx/;n 

DELETE:/xxx/,/yyy/ 

DELETES:/yyy/ 

DELETES:/yyy/;n 

DELETES:/yyy/,/zzz/ 

DELETE:/st1/+ ••• /stn/ 

DELETE:/st1/- ••• /stn/ 

Execution 

Delete the or lines at which search pointer is 
currently located. 

Delete the line identified by~· 

Delete the next n lines identified by xxx. <*can be 
used instead of-n to delete all such-rlnes.) 

Delete the block of Lines starting with the line 
identified by xxx through the line identified by yyy. 
(A repeat fieccr-can be used to delete~ or all such 
lines.) 

Delete a specified string. 

Delete n occurrences of a specified string. (*can 
be used instead of .!:!. to delete all such 
occurrences.) 

Delete text between points yyy and zzz, inclusive. (A 

repeat field can be used with thTSform also.) 

Delete the Line containing all of the specified (a 
maximum of five) strings. (A repeat field can be used 
to delete n or all such Lines.) 

Delete the Line containing any one of the specified 
(a maximum of five) strings. <A repeat field can be 
used to delete.!:!. or all such lines.) 

10-24 DJ31-00 



To delete a string of characters, use DELETE in the string mode with or without 
a repeat field. 

-PRINT 
(HAVE ALL INSTRUCTIONS EXECUTED 0) ON A COMPUTER. 
-DELETES:/ 0/ 
-PRINT 
(HAVE ALL INSTRUCTIONS EXECUTED) ON A COMPUTER. 

To delete from point-to-point, use delete in the string mode with two 
string fields and with or without a repeat field. All data between and 
including the two points indicated is deleted. 

-PRINT;4 
COMPUTER PROGRAMS BECAUSE THESE LANGUAGES 
CONTAIN MANY AMBIGUITIES AND REDUNDANCIES; 
THE COMPUTER INTERPRETS LANGUAGE ABSOLUTELY 
LITERALLY. BY THE SAME TOKEN, MACHINE 
-B 
-DS:/THE Cl,!. 
-B 
-P;4 
COMPUTER PROGRAMS BECAUSE THESE LANGUAGES 
CONTAIN MANY AMBIGUIT!ES AND REDUNDANCIES; 
BY THE SAME TOKEN, MACHINE 
LANGUAGES ARE ALSO IMPRACTICAL BECAUSE THEY ARE 

To delete one or more Lines, use DELETE in line mode, with or without a string 
field and/or repeat field. If both a string field and repeat field are used, the 
indicated number of lines beginning with the specified string are deleted. If no 
string field is used with the repeat field, the indicated number of lines is deleted, 
beginning at the location of the search pointer. 

-PRINT;4 
HUMAN LANGUAGES ARE IMPRACTICAL FOR PREPARING 
COMPUTER PROGRAMS BECAUSE THESE LANGUAGES 
CONTAIN MANY AMBIGUITIES AND REDUNDANCIES; 
THE COMPUTER INTERPRETS LANGUAGE ABSOLUTELY 
-B;3 
-D;3 
-PRINT;2 
THE COMPUTER INTERPRETS LANGUAGE ABSOLUTELY 
LITERALLY. BY THE SAME TOKEN, MACHINE 

10-25 DJ31-00 



To delete all lines having a common beginning, use DELETE in line mode with a 
repeat field. Note that in the following example the sentence "ALL LANGUAGE 
INSTRUCTION MUST BE" is not deleted because the letter A is preceded by blanks. 

-PRINT;* 

COMPUTER PROGRAMS 

A COMPUTER PROGRAM IS A SET OF INSTRUCTIONS THAT 
TELLS A COMPUTER HOW TO ACCOMPLISH A SPECIFIC 
TASK. EACH INSTRUCTION IS PERFORMED IN THE 
SEQUENCE SPECIFIED BY THE PROGRAM. IN THIS WAY, 
THE COMPUTER PROCESSES AND PRODUCES INFORMATION 
AS DIRECTED BY THE PROGRAM. 

A PROGRAM MUST MEET TWO PRIMARY REQUIREMENTS 
BEFORE IT CAN BE RUN (HAVE ALL INSTRUCTIONS 
EXECUTED) ON A COMPUTER. 

THE PROGRAM MUST BE SUBMITTED TO THE 
COMPUTER IN A LANGUAGE THAT THE 
COMPUTER RECOGNIZES. 

ALL LANGUAGE INSTRUCTION MUS1 BE 
COMPLETE AND BE PRECISELY STATED. 

END OF FILE 
B 
-OELETE:/A/;* 

ENO OF rILE - REQUEST EXECUTED 
8 
-PRINT;* 

COMPUTER PROGRAMS 

3 TIMF.S 

TELLS A COMPUTER HOW TO ACCOMPLISH A SPECIFIC 
TASK. EACH INSTRUCTION IS PERFORMED IN THE 
SEQUENCE SPECIFIED BY THE PROGRAM. IN THIS WAY, 
THE COMPUTER PROCESSES AND PRODUCES INFORMATION 

BEFORE IT CAN BE RUN (HAVE ALL INSTRUCTIONS 
EXECUTED) ON A COMPUTER. 

THE PROGRAM MUST BE SUBMITTED TO THE 
COMPUTER IN A LANGUAGE THAT THE 
COMPUTER RECOGNIZES. 

ALL LANGUAGE INSTRUCTION MUST BE 
COMPLETE AND BE PRECISELY STATED. 

END OF FILE 

Two special forms of the operand are permissible with the DELETE command to 
identify lines containing specified strings. These forms of the command are referred 
to as "Boolean AND and OR functions." The operand can consist of up to five 
strings connected by plus signs for the AND form and minus signs for the OR form. 
The strings can be in any order; i.e., the fifth string in order of appearance in 
the line may be listed first in the opPrand. 

10-26 DJ 31-00 



For the AND form, the user Lists str·ings and plus signs to imply that the form 
is a Boolean AND--alL of the strings listed must be present to achieve the delete. 
For e~ample, with d representing a delimiter, the format is 

DELETE:dSTRING1d+ •••• +dSTRINGSd 

For the OR form, the user lists strings and minus signs to imply that the form 
is a Boolean OR--on · of the listed strings must be present to achieve the delete. 
For example, with d representing a delimiter, the format is 

DELETE:dSTRING1d- ••• -dSTRING5d 

Note that these two special forms of the operand are equivalent in Line or string 
mode. 

FIND Command 

The FIND command moves the search pointer through the file. FIND may be used 
with or without an operand field. 

If in doubt as to where the search pointer is Located, give the PRINT command 
with no operand field. The resulting printout is the Line pointed to by the search 
pointer. It is advisable, when editing a file in which the specified string may appear 
more than once, to print the Line before changing the file, in order to ensure that 
the change is made in the right place. 

The repeat field can be used with a string field in the FIND command. The search 
and comparison continues until the comparison is made as many times as indicated. 
When execution is completed, the "-"response appears. If the repeat field is used 
without a string field, the search pointer moves forward n number of lines as indicated 
by the repeat field. -

The formats and execution are as follows: 

Command 

FIND 

FIND;n 

FIND:/xxx/ 

FIND:/xxx/;n 

FINDS:/yyy/ 

FINDS:/yyy/;n 

FIND:/xxx/+/yyy/+ ••• 

FIND:/xxx/-/yyy/- ••• 

Execution 

Advance search pointer one Line. 

Advance search pointer ~ Lines. 

Find the Line identified by xxx. 

Find nth line identified by xx x. 

Find the line containing specified string. 

Find the Line containing the nth occurrence of the 
specified string. 

Find the line containing all of the specified strings. 
CA repeat field can be used to find ~or all such 
lines.) 

Find the line containing one of the specified strings. 
(A repeat field can be used to find~ or all such 
Lines.) 

10-27 DJ31-00 



To find a specified string, not at the beginning of the line, use FIND in the 
string mode. 

-FINDS:/SUBM/ 
-PRINT 

THE PROGRAM MUST BE SUBMITTED TO THE 
-BACKUP;4 
-PRINT;* 
A PROGRAM MUST MEET TWO PRIMARY REQUIREMENTS 
BEFORE IT CAN BE RUN (HAVE ALL INSTRUCTIONS 
EXECUTED) ON A COMPUTER. 

THE PROGRAM MUST BE SUBMITTED TO THE 
COMPUTER IN A LANGUAGE THAT THE 
COMPUTER RECOGNIZES. 

END Of FILE 

To find a string past the point where it next occurs, use FIND in the 
string mode with a repeat field. 

-PRINT;6 
COMPUTER PROGRAMS 

A COMPUTER PROGRAM IS A SET OF INSTRUCTIONS THAT 
TELLS A COMPUTER HOW""°TO ACCOMPLISH A SPECIFIC 
TASK. EACH INSTRUCTION IS PERFORMED IN THE 
SEQUEN.CE SPECIFIED BY THE PROGRAM. IN THIS WAY 
-B 
-FINDS:/IS/;3 
-PRINT 
TASK. EACH INSTRUCTION IS PERFORMED IN THE 

To find a specified number of lines, use FIND in line mode with a repeat field. 
The number in the repeat field includes the line at which the search pointer is located 
at the beg inn i n g o t exec u t i on (unless FIND i s used w i thou t a st ring field, i n w h i c·h 
case line 1 is the line following). 

-PRINT;4 
THE TIME-SHARING SYSTEM USES A TECHNIQUE BY 
WHICH PROGRAMS ARE HANDLED IN PARALLEL. A 
SUPERVISORY PROGRAM ACTS AS A CONTROLLER OF 
THESE PROGRAMS, CONTROLLING "STOP" AND "GO" 
-FIND;1 
-PRINT 
SIGNALS TO INPUTS FROM TERMINALS AND 

Two special forms of the operand are permissible with the FIND command to 
identify lines containing specified strings. These forms of the command are referred 
to as the Boolean AND and OR functions. The operand can consist of up to five strings 
connected by plus signs for the AND form and minus signs for the OR form. The strings 
can be in any order; i.e., the fifth string in order of appearance in the line can 
be listed first in the operand. 

10-28 DJ31-00 



For the AND form, the user Lists strings and plus signs to imply that the 
form is a Boolean AND--all of the strinq::: i isled must be present to achieve the> find. 
For example, with d representing a delimiter, the format is 

FIND:dSTRING1d+ •••• +dSTRING5d 

For the OR form, the user lists strings and minus signs to imply that the 
form is a Boolean OR ·-one of the listed strings must be present to achieve the find. 
For example, with d representing a delimiter, the forma~ is 

FIND:dSTRING1d- ••• -dSTRING5d 

Note that these two special forms of the operand are equivalent in line or string 
mode. 

Examples of the use of these forms of the operand are given with the description 
of the PRINT command abuve. 

INSERT Command 

The INSERT command allows the user to insert any number of characters, words, 
o r l i n e s i n t o h i s f i l e • T h e o p e r a n d f i e l d o f t h e I N S E R T c o m m a n d s p e c i f i e s t h t' r o i n t 
after which the insertion 1s to be made and can take one of two forms, dt>pe11dinq 011 

the length ot the text beiny inserted. 

The first list below illustrates the format to be used when the operand field 
cannot be contained on one Line. The system responds to the INSERT command with the 
word ENTER. The text to be inserted is then typed on lines following ENTER. When 
text entry is complete, a carriage return following the asterisk generates the"-" 
response. The second list illustrates the use of INSERT with short strings; the ENTER 
response is not given in this use o1 the command. 

The formats and execution are as follows: 

Command 

INSERT 

INSERT:/xxx/ 

INSERT:/xxx/;n 

INSERTS:/yyy/ 

INSERTS:/yyy/;n 

INSERT:/stl/+ ••• /stn/ 

Execution 

Insert after the line at which the search pointer 
is currently located. 

Insert after the line identified by ~-

Insert after each of the next n lines identified by 
xxx. (*can be used instead of-!:: to insert after all 
such lines.) 

Insert after point yyy. 

Insert after each of n successive occurrences of 
point yyy. (*can be used instead of n to insert after 
all sUCFloccurrences.) 

Insert after line containing all of the specified (a 
maximum of five) strings. <A repeat field can be used 
to insert after.!:: or all such lines.: 

10-29 DJ31-00 



Command Execution 

INSERT:/stl/- ••• /stn/ Insert after line containing any one of the specified 
Ca maximum of five> strings. CA repeat field can be 
used to insert after~ or all such lines.) 

When inserting short strings of text, the following formats can be used. 

NOTE: The command and the entire operand field must be on the same line. This 
format does not accept a carriage return before the final delimiter. 

Command Execution 

INSERT:/xxx/:/bbb/ Insert string bbb after the line identified by 
xx x. 

INSERT:/xxx/;n:/bbb/ Insert string bbb after each of the next n lines 
identified by xxx. (* can be used instead of~ to 
insert after al"'r"such lines.) 

INSERTS:/yyy/:/bbb/ Insert string bbb after point yyy. 

INSERTS:/yyy/;n:/bbb/ Insert string bbb after each of ~ successive 
occurrences of point yyy~ (* can be used instead of 
~ t o i n s e r t a f t er a l 'L'"Su c h o c c u r r e n c e s • ) 

To insert one or more lines, use INSERT in the line mode with or without a string 
field and/or repeat field. If no string field is used, the insertion is made after 
the line where the search pointer is Located. For insertions of more than one line, 
each new line must be followed by a carriage return to prevent it from running 
into the next line. 

-PRINT;6 
QUICKLY AT THE SAME TERMINAL. 
THE PROGRAM CAN BE CORRECTED OR CHANGED BY 
THE USER AS IF HE WERE CONVERSING BY PHONE, 
EXCEPT IN THIS CASE, THE CONVERSATION IS 
TYPED OR DISPLAYED, DEPENDENT UPON THE TYPE 
OF TERMINAL IN USE. 
-B;5 
-INSERT 
ENTER 
*IF THE PROGRAM CONTAINS A MISTAKE, THE 
*COMPUTER INFORMS THE USER. 
*(carriage return) 
-8;3 
-PRINT;* 
QUICKLY AT THE SAME TERMINAL. 
IF THE PROGRAM CONTAINS A MISTAKE, THE 
COMPUTER INFORMS THE USER. 
THE PROGRAM CAN BE CORRECTED OR CHANGED BY 
THE USER AS IF HE WERE CONVERSING BY PHONE, 
EXCEPT IN THIS CASE, THE CONVERSATION IS 
TYPED OR DISPLAYED, DEPENDENT UPON THE TYPE 
OF TERMINAL IN USE. 

END OF FILE 

10-30 DJ31-00 



To insert a string of characters, u~e INSERT in the string mode with a string 
field and w~th or without a repeat field. The string field must identify the point 
after which the insertion is to be made. 

-2RINT;4 
THE TIME-SHARING SYSTEM USES A TECHNIQUE BY 
WHICH PROGRAMS ARE HANDLED IN PARALLEL. 
THUS, TIM:-SHARING PERMITS A USER TO WORK 
DIRECTLY tITH THE COMPUTER, WHETHER IT IS 
-B 
-INSERTS: /LEL. / 
ENTER 
* A 
*SUPERVISORY PROGRAM ACTS AS A CONTROLLER OF 
*THESE PROGRAMS, CONTROLLING "STOP" AND "GO" 
*SIGNALS TO,INPUTS FROM TERMINALS AND 
*PREVENTING DEMANDS OF ONE TERMINAL FROM 
*INTERFERING WITH DEMANDS OF OTHER TERMINALS. 
*(carriage return) 
-B 
-PRINT;9 
THE TIME-SHARING SYSTEM USES A TECHNIQUE BY 
WHICH PROGRAMS ARE HANDLED IN PARALLEL. A 
SUPERVISORY PROGRAM ACTS AS A CONTROLLER OF 
THESE PROGRAMS, CONTROLLING "STOP" AND "GO" 
SIGNALS TO INPUTS FROM TERMINALS AND 
PREVENTING DEMANDS OF ONE TERMINAL FROM 
INTERFERING WITH DEMANDS OF OTHER TERMINALS. 
THUS TIME-SHARING PERMITS A USER TO WORK 
DIRECTLY WITH THE COMPUTER, WHETHER IT IS 
-F:/THE PROGRAM/ 
-PRINT 
THE PROGRAM BE CORRECTED OR CHANGED BY 
-INSERTS:/RAM /:/CAN I 
-p 

THE PROGRAM CAN BE CORRECTED OR CHANGED BY 

To insert at the beginning of the file, use INSERTS in the Line mode with no 
operand fiela. 

-PRINT;3 
A PROGRAM MUST MEET TWO PRIMARY REQUIREMENTS 
BEFORE IT CAN BE RUN (HAVE ALL INSTRUCTIONS 
EXECUTED) ON A COMPUTER. 
-B 
-INSERTS 
ENTER 
*COMPUTER PROGRAMS 
*(blank,carriage return) 
*A COMPUTER PROGRAM IS A SET OF INSTRUCTIONS THAT 
*TELLS A COMPUTER HOW TO ACCOMPLISH A SPECIFIC 
*TASK. EACH INSTRUCTION IS PERFORMED IN THE 
*SEQUENCE SPECIFIED BY THE PROGRAM. IN THIS WAY, 
*THE COMPUTER PROCESSES AND PRODUCES INFORMATION 
*AS DIRECTED BY THE PROGRAM. 
*(carriage return) 
-B 

10-31 DJ31-00 



-PRINT;1'l 
COMPUTER PROGRAM 
A COMPUTER PROGRAM IS A SET OF INSTRUCTIONS THAT 
TELL A COMPUTER HOW TO ACCOMPLISH A SPECIFIC 
TASK. EACH INSTRUCTION IS PERFORMED IN THE 
SEQUENCE SP~CIFIED BY T~E PROGRAM. IN THIS WAY, 
THE COMPUTER PROCESSES AND PRODUCES INFORMATION 
AS DIRECTED BY THE PROGRAM. 
A PROGRAM MUST MEET TWO PRIMARY REQUIREMENTS 
BEFORE IT CAN BE RUN (HAVE ALL INSTRUCTIONS 
EXECUTED) ON A COMPUTER. 

The INSERT command, in conjunction with the #TAPE command, allows the user to 
insert text from paper tape in the file at any point in the file. At the selected 
point (as determined by the operand of the INSERT command), the user activates the 
paper tape reader to read in the tape after the appearance of the ENTER 
response. Upon termination of tape read, the user gives a carriage return in response 
to the asterisk and the - response appears. 

-INSERT <appropriate operand) 
ENTER 
*#TAPE 
READY 

(user activates paper tape reader and 
text is read in from tape.) 

*(carriage return) 

Text may be alternatively inserted from the keyboard and from paper tape. 

-INSERT (appropriate operand) 
ENTER 
*Text entered by user 
*more text 
*last line of text 
*#TAPE 
READY 
<user activates paper tape reader and text 
is read in from tape.) 
*Text entered by user 
*more text 
*last line of text 
*(carriage return) 

The INSERT command, as indicated in the descriptions of the command above, 
provides for insertion of data following the specified line or string. An 
optional operand, the letter B, can be used with the INSERT command to achieve 
insertion before the specified line or string. 

-STRING 
-F 
-p 
THE PROGRAM CAN BE CORRECTED OR CHANGED BY 
-INSERTB:/THE/:/THEREFORE, I 
-P 
THEREFORE, THE PROGRAM CAN BE CORRECTED OR CHANGED BY 

10-32 DJ31-00 



Two special forms of the operand are permissible with the INSERT command to 
identify lines containing specified strings. These forms of the operand are referred 
to as the Boolean AND and OR functions. The operand can consist of up to five separate 
strings connected by plus signs for the AND form and minus signs for the OR form. 
The strings can be in any order; i.e., the fifth string in order of appearance in 
the line may be listed first in the op~rand. 

For the AND form, the user lists strings and plus signs to imply that the form 
is a Boolean AND--al of the strings listed must be present to achieve the insert. 
For example, with d -~presenting a delimiter the format is 

INSERT:dSTRING1d+ •••• +dSTRING5d 

For the OR form, the user lists strings and minus signs to imply that the form 
is a Boolean OR--one of the Listed strings must be present to achieve the insert. 
For example, with d representing a delimiter, the format is 

INSERT:dSTRING1d- ••• -dSTRING5d 

Note that these two special forms of the operand are equivalent in line or string 
mode. 

LIMIT Function 

The LIMIT function allows the user to specify a portion of a Line numbered file 
within which all further verb operations are restricted. 

SAMPLE USAGE: 

-LIMIT:/203/,/506/ or L:/203/,506/ 

This mode establishes a subset of a file wherein the Line numbered 203 is the 
first line and line number 506 is the last line. All future function of verbs are 
executed only within the range specified, i.e., lines which begin with numbers 
between 203 and 506. 

When specifying "LIMIT," if the current line pointer is located outside of the 
range specified, the pointer will be automatically positioned within the Limits 
range. When returning to the normal "NORM" mode, the Line pointer will remain 
pointing at the Last Line accessed while in the "LIMIT" mode. 

It is possible to insert "BEFORE" or "FOLLOWING" within the specified limited 
range. If the line numbers of the line(s) inserted are Less than or greater 
than (respectively) the original Limit range, the specified Limits remain in 
effect. However, if the Line numbers of the Line(s) inserted are encompassed within 
the original limits range, the range is adjusted to include those lines 
inserted. 

NOTE: The LIMIT mode cannot function with Automatic Line Numbering (#AUTO) or 
RESEQUENCE. 

To reset the mode to normal, the user need only type in NORM. 

10-33 DJ31-00 



LINE Command 

T h e l I N E c om m a n d ,c o u n t e r a c t s t h e e ff e c t o f S TR I N G b y p l a c i n g E D I T 0 R i n t h e L i n e 
mode, its normal mode of operation. All commands operate in line mode unless the 
S mode indicator is added to the verb. LINE never has an operand field and is only 
used to nullify the STRING command. 

MARK Command 

Whenever a user types MARK, a search of the file is begun for a line commencing 
with a ".MARK" or ".MARK FILENAME". If a line starting with ".MARK" is located, and 
a file name is specified, the file is accessed and the data on the specified file 
will replace the ".MARK" line. If the line does not contain a file name, the user 
is queried as to the-:flle to be accessed. If a "MARK" line is not found, the user 
is so informed. 

F i l e s a c c e s s e d u t i l i z i n g t h e " • M•A R K F I L E NAM E " s e q u e n c e m a y c o n t a i n em b e d d e d 
".MARK" lines. If the "MARK" command (verb) is followed with a repeat of";*", each 
time a normal end of file condition is reached following a successful access of a 
specified "MARK" file, the current file is searched again to ensure that the accessed 
file did not contain a ".MARK" line. 

Limitations: 

1. MARK operates in a "NOVERIFY'' environment. 

2. The "MARK" command cannot be used in conjunction with the "LIMIT" function 
since "LIMIT" checks to see if the file is line numbered. 

3. Catalog/file strings are not permitted, nor are multiple files; e.g., 
fi le1;fi le2,etc. 

MASK Function 

T h e M A S K f u n c t i c) n a l l o w s t h e u s e r t o m an i p u l a t e a s t r i n g w i t h o u t d i s t u r b i n g t h e 
surrounding characters. For example: 

-MASK # 

-P;2 

(User sets the "MASK" mode using the number 
sign as the delimiter) 

<Print two Lines) 

•••••••••• l>ATANET355 ••••••••••••••••• 
••• •• ••• •••••• •• • DATANET305 •••••••••••••••• 

-8;1 <Back the line pointer up one line) 

IVS:/NET###/:2:/?/ (Insert and verify a question mark 
following the string "NET" followed 
by any three characters, do it twice) 

•••••••••• DAT ANET 355? •••••••••••••• u ••••• 

• • • • • • • • • • • • • • • • • DATANET305? •••••••••••••••• 
L·1mitation: The mask character is only acceptable in the field containing the 

string to be worked on. It is not acceptable in the replacement 
f i e l d a s i'l "rn ;:i s k '' c ha r a c t e r • 

NOMA nullifies the mask function. 

10-34 DJ31-00 



MODE Command 

The MODE command allows the terminal operator to determine previously 
established modes <Verify, String, Line, Case, etc.). The verb "MODE" or short form 
M can be typed to determine which modes have been set. 

OCCURRENCE Function 

The use of the "O" operand allows the user to operate on a specific occurrence 
of a string. The use of the additional repeat field <;n) specifies which 
occurrence. For example: 

Suppose a line contained the following repetitive data: 

D ••••• D ••••• D ••••• D ••••• D ••••• D ••••• D ••••• D •••••. D ••••• D ••••• 

In the above example it would be extremely difficult (if not 
impossible) to access the sixth occurrence of the string "D" 
without replacing the entire Line. 

With the use of the "Occurrence" modifier, replacement of the 
character would be performed as follows: 

-RVO:/D/;6:/X/ {Replace and verify the sixth occur
rence of the character "D" with "X") 

o ••••• D ••••• o ••••• D ••••• D ••••• x ••••• D ••••• D ••••• D ••••• D ••••• 

Suppose the user desired to replace every second occurrence of 
the character "D" with the character "X" and do it three times. 
This would be performed as fo.Llows: 

-RVO:/D/;2;3:/X/ (The first repeat field C;2·) indi
cates which occurrence, the second 
repeat field C;3) performs a~ normal 
and indicates the number of times) 

D ••••• x ••••• D ••••• x ...... D ••••• x ••••• D ••••• D ••••• D ••••• D ••••• 

OCTAL Function 

The "OCTL d" function allows the user to designate a unique character Cd) to 
precede an octal number. For example: 

-OCTL $ (User identifies the dollar sign as the octal 
delimiter to be used) 

-P (Print the current line) 

••••••• on at 9.084. - off at 9.140 on 06/24175 •••••••••••••• 

-RS:/at/;2:/$100/ (Replace the string "at" twice wfth the 
octal character 100 (@)) 

-P (Print the current line) 

••••••• on @ 9.084 - off @ 9.140 on 06/24/75 •••••••••••••• 

10-35 DJ31-00 



The OCTL delimiter is functional within the build mode of the Text Editor 
providing the mode was set prior to entering ~UILD. For example: 

-OCTL % (User defines the percent sign as the octal delimiter) 

-BUILD (User enters the BUILD mode) 

ENTER (Text Editor "ENTER" command) 

• ••••••• on %100 9.084 - off %100 9.140 on 06/24/75 •••••••••••••• 
*cr. (User exits the BUILD mode) 

-FV;* (Position to the Last line of the file and print> 

••••••• on @ 9.084 - off @ 9.140 on 06/24/75 •••••••••••••• 

END OF FIL~ • REQUEST EXECUTED TIMES 

Caution: No tests are made to determine the validity of the octal 
character. 

NOCT nullifies the octal function. 

PASTE Command 

The PASTE command inserts the collected CUT or COPY text into the specified 
location. In order to PASTE the copied text in more than one location, successive 
PASTE instructions must be used. Once a PASTE command has been executed, the next 
COPY or CUT command wipes out the previously accumulated COPY or CUT text. 

Command 

PASTE 

PASTE:/xxx/ 

PASTE:/xxx/;n 

PASTES:/yyy/ 

PASTES:/yyy/;n 

PASTE:/st1/+ ••• /stn/ 

PASTE:/st1/- ••• /stn/ 

Execution 

Insert text after the line at which the search pointer 
is currently located. 

Insert text after the line identified by~· 

Insert text after each of the next n lines identified 
b y x x x • ( * c an b e u s e d t 0 i n s e rt a f t e r a l l s u c h 
lines.) 

Insert text after point 1..1.:t..· 

Insert text after each of n successive occurrences of 
point u:t...· (* can be used to insert after all 
such occurrences.> 

Insert text after all specified Ca maximum of 
five> strings. CA repeat field can be used to insert 
text after line containing~ or all such lines.) 

Insert text after line containing any one of the 
specified (a maximum of five) strings. CA repeat 
field can be used to insert text after~ or all such 
lines.) 

10-36 DJ31-00 



To cut and paste one or more Lines, use CUT in the Line mode, with or without 
a string field and/or repeat field. If both a string field and repeat field are used, 
the indicated number of Lines beginning with the specified string is copied, removed, 
and then inserted by PASTE. If no string field is used with the repeat field, 
the indicated number of Lines is copied and removed, beginning at the location of 
the search pointer. 

-PRINT;* 
TIME-SHARl~G PERMITS A DIALOGUE BETWEEN THE 
COMPUTER AND USER, PERMITTING THE DIALOGUE 
TO BEGIN IMMEDIATELY, WITHOUT WAITING FOR 
THE COMPUTER TO COMPLETE PREVIOUS PROGRAMS. 
DATA IS FED FROM THE TERMINAL DIRECTLY TO 
THE COMPUTER AND ANSWERS ARE RECEIVED 
QUICKLY AT THE SAME TERMINAL. 

IF THE PROGRAM CONTAINS A MISTAKE, THE 
COMPUTER INFORMS THE USER. 
THE PROGRAM CAN BE CORRECTED OR CHANGED BY 
THE USER AS IF HE WERE CONVERSING BY PHONE, 
EXCEPT IN THIS CASE, THE CONVERSATION IS 
TYPED OR DISPLAYED, DEPENDENT UPON THE TYPE 
OF TERMINAL IN USE. 

END OF FILE 
B 
-FIND:/QUICKLY/ 
-FIND;1 
-CUT;3 
-PASTE:/OF/ 
-B 
-PRINT;* 
TIME-SHARING PERMITS A DIALOGUE BETWEEN THE 
COMPUTER AND USER, PERMITTING THE DIALOGUE 
TO BEGIN IMMEDIATELY, WITHOUT WAITING FOR 
THE COMPUTER TO COMPLETE PREVIOUS PROGRAMS. 
DATA IS FED FROM THE TERMINAL DIRECTLY TO 
THE COMPUTER AND ANSWERS ARE RECEIVED 
QUICKLY AT THE SAME TERMINAL. 

THE PROGRAM CAN BE CORRECTED OR CHANGED BY 
THE USER AS IF HE WERE CONVERSING BY PHONE, 
EXCEPT IN THIS CASE, THE CONVERSATION IS 
TYPED OR DISPLAYED, DEPENDENT UPON THE TYPE 
OF TERMINAL IN USE. 

IF THE PROGRAM CONTAINS A MISTAKE, THE 
COMPUTER INFORMS THE USER. 

END OF FILE. 

To paste the same text in several Locations, use CUT or COPY, then successive 
PASTE commands, one for each insertion needed. The example i Llustrates a form letter 
and mailing List contained in the same fi Le. In this case, a continuous PASTE command 
is used, since each insertion is made following a Line beginning with the same 
word. 

10-37 DJ31-00 



-PRINT;* 

WE TAKE GREAT PLEASURE IN ANNOUNCING 

YOURS VERY TRULY, 

COMPANY NAME 
ADDRESS 
CITY,STATE 

MR. A. A. ADAMS 
ADDRESS 
CITY,STATE 

DEAR MR. ADAflllS: 

MR. X. Y. ZILCH 
ADDRESS 
CITY,STATE 

DEAR MR. ZILCH: 

END OF FILE 
B 
-COPY:/ /,/CITY/ 

<The space character betveen the first set of delimiters causes the blank 
line at the beginning of the file to be included with the copied 
text.) 

-PASTE:/DEAR/;* 

END OF FILE - REQUEST EXECUTED 
B 
-FIND:/MR./ 
-PRINT;• 
MR. A. A. ADAMS 
ADDRESS 
CITY,STATE 

DEAR MR. ADAft1S: 

2 TIMES 

WE TAKE GREAT PLEASURE IN ANNOUMCING 

YOURS VERY TRULY, 

COMPANY NAME 
ADDRESS 
CITY,STATE 

10-38 DJ31-00 



DEAR MR. ZILCH: 

WE TAKE GREAT PLEASURE IN ANNOUNCING 

YOURS VER\ TRULY, 

COMPANY NAME 
ADDRESS 
CITY,STATE 

END OF FILE 

Two special forms of the operand are permissible with the PASTE command to 
identify Lines containing specified strings. These forms of the command are referred 
to as the Boolean AND and OR functions. The operand can consist of up to five strings 
connected by plus signs for the AND form and minus signs for the OR form. The strings 
can be in any order; i.e., the fifth string in order of appearance in the Line may 
be Listed first in the operand. 

For the AND form, the user Lists strings and plus signs to imply that the 
form is a Boolean AND--all of the strings Listed must be present to achieve the 
paste. For example, with d representing a delimiter, the format is 

PASTE:dSTRING1d+ •••• +dSTRING5d 

For the OR form, the user Lists strings and minus signs to imply that the form 
is a Boolean OR--one of· the Listed strings must be present to achieve the paste. For 
example, with d representing a delimiter, the format is 

PASTE:dSTRING1d- ••• -dSTRING5d 

Note that these two special forms of the operand are equivalent in Line or string 
mode. 

PRINT Command 

The PRINT command is used when either a selected portion of a file or the entire 
fi Le is to be printed. The user can vary the PRINT command to print any one of the 
following: 

o The entire file 

o Any number of consecutive Lines 

o Any number of Lines containing a given character string or strings 

o From one point to another 

o A single Line 

10-39 DJ31-00 



The formats and execution are as follows: 

Command 

PRINT 

PRINT;n 

PRINT-j;n 

PRINT+j;n 

PRINT;* 

PRINT:/xxx/ 

PRINT:/xxx/;n 

PRINT:/xxx/,/yyy/ 

PR IN.TS: !yyy! 

PRINTS:/yyy/;n 

PRINTS:/yyy/,/zzz/ 

PRINT:/xxx/+/yyy/+ ••• 

PRINT:/xxx/-/yyy/- ••• 

Execution 

Print one line. 

Print n consecutive lines. 

Backup the line pointer i lines and print n lines. 

Move the line point~r forward i lines and print n 
lines. 

Print file from present location of search pointer to 
end-of-file. 

Print the line identified by ~· 

Print the next n lines identified by xxx. (*can be 
used instead ofn to print all such lines.> 

Print the block of lines starting with the line 
identified by xxx through the line identified bY..tU· 
(A repeat fiera--can be used to print n or all such 
lines.> -

Print the line containing the specified string. 

Print n lines containing the specified string. * can 
be used to print all lines containing the specified 
st r i n g • If the st ring o c curs more t ha n once i n a l i n e, 
the line is printed for each occurrenre of the 
string. 

Print from the line containing string u.:t_ to the 
line containing string zzz, inclusive. --o repeat 
field can be used with this form also.> 

Print the line containing all of the specified Ca 
maximum of five) strings. (A repeat field can be used 
to print nor all such lines.) 

Print the line containing any one of the specified <a 
maximum of five) strings. <A repeat field can be used 
to print nor all such lines.) 

To print the complete file, use the PRINT command in line mode with the asterisk 
in the repeat field. Printing begins at the location of the search pointer and 
continues to the end of the file. 

-PRINT;* 
<>PROGRAMMING LANGUAGES 

HUMAN LANGUAGES ARE IMPRACTICAL FOR PREPARIN~ 
COMPUTER PROGRAMS BECAUSE THESE LANGUAGES 
CONTAIN MANY AMBIGUITIES AND REDUNDANCIES; 
THE COMPUTER INTERPRETS LANGUAGE ABSOLUTELY 
LITERALLY. BY THE SAME TOKEN, MACHINE 
LANGUAGES ARE ALSO IMPRACTICAL BECAUSE THEY ARE 
DIFFICULT FOR PEOPLE TO USE. MOST PROGRAMMING 
LANGUA~ES ARE COMPRO~ISES BETWEEN HUMAN AND 
MACHINE LANGUAGES. 

>F.ND OF FILE 

10-40 DJ31-00 



To print a single Line, use the PRINT command in Line mode, with or without a 
string field. If no string field is spec1fied, the line where the search pointer 
is located is printed. 

-PRINT 
A PROGRAM MUST MEET TWO PRIMARY REQUIREMENTS 

When a string f" eld is specified, the Lin·e identified by the string is printed. 
The string field must contain characters unique to the beginning of the Line and only 
one string field can be used. 

-BACKUP 
-PRINT:/HUMAN/ 
HUMAN LANGUAGES ARE IMPRACTICAL FOR PREPARING 

To print any number of consecutive lines, use PRINT in the Line mode with a repeat 
field. Printing begins at the Location of the search pointer. 

-BACKUP 
-PRINT;3 

<>COMPUTER PROGRAMS 

!>~ COMPUTER PROGRAM IS A SET OF INSTRUCTION THAT 

LLine space inserted during build 

To print a specified string, use PRINTS with a string field and with or without 
a repeat field. 

-PRINTS:/SHAR/ 
TIME-SHARING SYSTEM 
-PRINTS:/SHAR/;4 
TIME-SHARING SYSTEM 
THE TTM"E'=SHARING SYSTEM USES A TECHNIQUE BY 
THUS, TIME-SHARING PERMITS A USER TO WORK 
MANY OTHERS--rr-THE SAME TIME SHARE THIS 

To print from point-to-point, use PRINTS and two string fields. 

-PRINTS:/TIME/,/USE./ 
<>TIME-SHARING PERMITS A DIALOGUE BETWEEN THE 

COMPUTER AN~ USER, PERMITTING THE DIALOGUE 
T 0 B E G I N I M M·E D I A T ELY , W IT H 0 UT W A IT I N G F 0 R 
THE COMPUTER TO COMPLETE PREVIOUS PROGRAMS. 
DATA IS FED FROM THE TERMINAL DIRECTLY TO 
THE COMPUTER AND ANSWERS ARE RECEIVED 
QUICKLY AT THE SAME TERMINAL. 

IF THE PROGRAM CONTAINS A MISTAKE, THE 
COMPUTER INFORMS THE USER. 

THE PROGRAM CAN BE CORRECTED OR CHANGED BY 
THE USER AS IF HE WERE CONVERSING BY PHONE, 
EXCEPT IN THIS CASE, THE CONVERSATION IS 
TYPED OR DISPLAYED, DEPENDENT UPON THE TYPE 

>OF TERMINAL IN USE. 

10-41 DJ31-00 



The first string field must contain data unique to the first line printed and 
the second string field must be unique to the last line printed. In the above example, 
if the second string field did not contain the period after USE, only the two lines 
of text, through the line containin~ the word USER, would have been printed. 

Two special forms of the operand are permissible with the PRINT command to 
identify lines containing specified strings. These forms of the operand are referred 
to as Boolean AND and OR functions.· The operand can consist of up to five separate 
strings connected by plus signs for the AND form and minus signs for the OR form. 
The strings can be in any order; i.e., the fifth string in order of appearance in 
the line may be listed first in the operand. 

For the AND form, the user lists strings and plus signs to imply that the f.orm 
is a Boolean AND--all of the strings listed must be present to achieve the print. 
for example, with d representing a delimiter the format is 

PRINT:dSTRING1d+ •••• +dSTRING5d 

For the OR form, the user lists strings and minus signs to imply that the 
form is a Boolean OR--one of the listed strings must be present to achieve the print. 
For example, with d representing a delimiter, the format is 

mode. 

PRINT:dSTRING1d- ••• -dSTRING5d 

Note that these two special forms of the operand are equivalent in line or string 

-PRINT;* 
A COMPUTER PROGRAM IS A SET OF INSTRUCTIONS THAT 
TELLS A COMPUTER HOW TO ACCOMPLISH A SPECIFIC 
TASK. EACH INSTRUCTION IS PERFORMED IN THE 
SEQUENCE SPECIFIED BY THE PROGRAM. IN THIS WAY, 
THE COMPUTER PROCESSES AND PRODUCES INFORMATION 
AS DIRECTED BY THE PROGRAM. 

A PROGRAM MUST MEET TWO PRIMARY REQUIREMENTS 
BEFORE IT CAN BE RUN (HAVE ALL INSTRUCTIONS 
EXECUTED) ON A COMPUTER. 

THE PROGRAM MUST BE SUBMITTED TO THE 
COMPUTER IN A LANGUAGE THAT THE 
COMPUTER RECOGNIZES. 

ALL LANGUAGE INSTRUCTIONS MUST BE 
COMPLETE AND BE PRECISELY STATED. 

END OF FILE 
BACKUP 

-PRINT:/COMPUTER/+/PRODUCES/ 
THE COMPUTER PROCESSES AND PRODUCES INFORMATION 
-BACKUP 
-FIND:/TWO/-/BEFORE/-/RECOGNIZES/ 
-PRINT 
A PROGRAM MUST MEET TWO PRIMARY REQUIREMENTS 

10-42 OJ31•00 



REPLACE Command 

The REPLACE command allows the user to replace any number of characters, words, 
or lines of text with new text of any Length. REPLACE may or may not have an operand 
field. If no operand field is given, the Line where the search pointer is located 
is replaced. 

The operand fie d can take one of two forms, depending on the length of the 
replacement text. Th~ first four of the following formats illustrate the format to 
be used when the operand field cannot be contained in one Line. The remaining formats 
illustrate the use of REPLACE with short strings. 

The formats and execution are as follows: 

Command 

REPLACE 

REPLACE:/xxx/ 

REPLACE:/xxx/;n 

REPLACE:/xxx/,/yyy/ 

REPLACES:/yyy/ 

REPLACES:/yyy/;n 

REPLACES:/yyy/,/zzz/ 

REPLACE:/stl/+ ••• /stn/ 

REPLACE:/stl/~ ••• /stn/ 

Execution 

Replace the Line at which search pointer is currently 
located. CA repeat field can be used with this 
form.) 

Replace the line identified by~· 

Replace the next n lines identified by xxx. (* can 
be used instead of~ to replace all su~Lines.) 

Replace the block of Lines starting with the line 
identified by xxx through the Line identified by 
yyy. 

Replace the specified string. 

Replace n successive occurrences of the specified 
string. -(* can be used instead of~ to replace all 
such occurrences.) 

Replace text between points yyy and zzz, inclusive. 
CA repeat field can be used with th.,.-S-form also.) 

Replace the line containing all of the specified (a 
maximum of five) strings. <A repeat field can be used 
to replace~ or all such lines.) 

Replace the line containing any one of the 
specified (a maximum of five) strings. (A repeat 
field can be used to replace~ or all such lines.) 

Following the REPLACE commands above, the system responds with ENTER. The 
replacement text is then typed in. Following the ENTER response, the replacement 
text must include all desired blanks and carriage returns. Replacement text is typed 
on Lines following ENTER. When text entry is complete, a carriage return in response 
to the asterisk generates the - response. 

10-43 DJ31-00 



In string mode, the carriage return on the Last Line of text is ignored. When 
replacing short strings of text, the formats shown below can be used. 

NOTE: The command and the entire operand field must be on the same Line. 
format does not accept a carriage return before the final delimiter. 
ENTER response is not given with this use of the command. 

This 
The 

Command Execution 

REPLACE:/xxx/:/bbb/ 

REPLACE:/xxx/;n:/bbb/ 

REPLACES:/yyy/;n:/bbb/ 

Replace line identified by ~with the string (line) 
bbb. 

Replace the next n lines identified by xxx with the 
string (line) bbb. (* can be used instead of n to 
replace all su~lines.) 

Replace n successive occurrences of the string YYY 
with str1ng bbb. (* can be used instead of !!_-rO' 
replace all such occurrences.> 

REPLACES:/yyy/,/zzz/:/bbb/ 
Replace text between points yyy and zzz, inclusive, 
w i t h s t r i n g b b b • ( A r e p e a t f i e l d c a n b~ s e d w i t h t h i s 
form also.)--

To replace a string of characters, use REPLACE in the string mode with a string 
field and with or without a repeat field. Replacement begins at the first character 
position specified in the operand string field. If a repeat field is specified, n 
identical replacements are performed (unless end-of-file is encountered first).-

-PRINT 
A PROGRAM MUST MEET TWO PRIMERY REQUIREMENTS 
-REPLACES:/ERY/:/~RY/ 
-PRINT 
A PROGRAM MUST MEET TWO PRIMARY REQUIREMENTS 

To replace a complete line, use REPLACE in the Line mode, with or without a string 
field and/or rer:.ieat field. The string field, when used, must contain the characters 
unique to the beginning of the line. When no string or repeat field is given, 
the Line where the search pointer is Located is replaced. 

Example 

-PRINT 
TIME-SHARING LANGUAGES 
-REPLACE:/TI/:/TIME-SHARING SYSTEM/ 
-PRINT 
TIME-SHARING SYSTEM 

10-44 DJ31-00 



Example 2 

-PRINT 
TIME-SHARING LANGUAGES 
-REPLACE 
ENTER 
*TIME-SHARING SYSTEM 
*(carriage return) 
-PRINT 
TIME-SHARtNG SYSTEM 

When the repeat field is used, the lines 
string are replaced the indicated number of times. 
indicated number of lines is replaced. 

beginning with the specified 
If no string field is given, the 

-PRINT;14 
THE TIME-SHARING SYSTEM USES A TECHNIQUE BY 
WHICH PROGRAMS ARE HANDLED IN PARALLEL. A 
SUPERVISORY PROGRAM ACTS AS A CONTROLLER OF 
THESE PROGRAMS, CONTROLLING "STOP" AND "GO" 
SIGNALS TO INPUTS FROM TERMINALS AND 
PREVENTING DEMANDS OF ONE TERMINAL FROM 
INTERFERING WITH DEMANDS OF OTHER TERMINALS. 
THUS, TIME-SHARING PERMITS A USER TO WORK 
DIRECTLY WITH THE COMPUTER, WHETHER IT IS 
WITHIN HIS SIGHT OR THOUSANDS OF MILES 
AWAY. THE USER BELIEVES THAT HE HAS 
EXCLUSIVE USE OF THE COMPUTER, EVEN THOUGH 
MANY OTHERS AT THE SAME TIME SHARE THIS 
ILLUSION. 
-BACKUP;13 
-REPLACE;2 
ENTER 
*A TIME-SHARING SYSTEM 
*(carriage return) 
-PRINT;S 
A TIME-SHARING SYSTEM 
SUPERVISORY PROGRAM ACTS AS A CONTROLLER OF 
THESE PROGRAMS, CONTROLLING "STOP" AND "GO" 
SIGNALS TO INPUTS FROM TERMINALS AND 
PREVENTING DEMANDS OF ONE TERMINAL FROM 

To replace from point-to-point, use REPLACE in the string mode with two string 
fields. A repeat field can be used if desired. 

-PRINT;* 
TIME-SHARING PERMITS A DIALOGUE BETWEEN THE 
COMPUTER AND USER, PERMITTING THE DIALOGUE 
TO BEGIN IMMEDIATELY, WITHOUT WAITING FOR 
THE COMPUTER TO COMPLETE PREVIOUS PROGRAMS. 
DATA IS FED FROM THE TERMINAL DIRECTLY TO 
THE COMPUTER AND ANSWERS ARE RECEIVED 
QUICKLY AT THE SAME TERMINAL. 

10-45 DJ31-00 



THE PROG~AM CAN BE CORRECTED OR CHANGED BY 
THE USER AS IF HE WERE CONVERSING BY PHONE, 
EXCEPT IN THIS CASE, THE CONVERSATION IS 
TYPED OR DISPLAYED, DEPENDENT UPON THE TYPE OF 
TERMINAL IN USE. 

END OF FILE 
8;13 
-REPLACES:/SAME/,/THE/ 
ENTER 
*SAME TERMINAL. 
*(blank,carriage return) 
*IF THE PROGRAM CONTAINS A MISTAKE, THE 
*COMPUTER INFORMS THE USER. 
*(blank,carriage return) 
*THE 
*(carriage return) 
-8;11 
-PRINT;* 
TIME-SHARING PERMITS A DIALOGUE BETWEEN THE 
COMPUTER AND USER PERMITTING THE DIALOGUE 
TO BEGIN IMMEDIATELY, WITHOUT WAITING FOR 
THE COMPUTER TO COMPLETE PREVIOUS PROGRAMS. 
DATA IS FED FROM THE TERMINAL DIRECTLY TO 
THE COMPUTER AND ANSWERS ARE RECEIVED 
QUICKLY AT THE SAME TERMINAL. 

IF THE PROGRAM CONTAINS A MISTAKE, THE 
COMPUTER INFORMS THE USER. 

THE PROGRAM CAN BE CORRECTED OR CHANGED BY 
THE USER AS IF HE WERE CONVERSING BY PHONE, 
EXCEPT IN THIS CASE, THE CONVERSATION IS 
TYPED OR DISPLAYED, DEPENDENT UPON THE TYPE 
OF TERMINAL IN USE. 

END OF FILE 

Two special forms of the operand are permissible with the REPLACE command to 
identify lines containing specified strings. These forms of the command are referred 
to as the Boolean AND and OR functions. The operand can consist of up to five strings 
connected by plus signs for the AND form and minus signs for the OR form. The strings 
can be in any order; i.e., the fifth string in order of appearance in the line can 
be listed first in the operand. 

For the AND form, the user lists strings and plus signs to imply that the form 
is a Boolean AND--all of the strings listed must be present to achieve the replace. 
For example, with d representing a delimiter, the format is 

REPLACE:dSTRING1d+ ••• +dSTRIMG5d 

For the OR form, the user lists strings and minus signs to imply that the form 
is a Boolean OR--one of the Listed strings must be present to achieve the replace. 
For example, with d representing a delimiter, the format is 

REPLACE:dSTRING1d- ••• -dSTRING5d 

Note that these two special forms of the operand are equivalent in line or string 
mode. 

10-46 DJ31-00 



RUNOFF Command 

The RUNOFF command enables the user to access the RUNOFF subsystem from the 
EDITOR subsystem. When the user gives the RUNOFF command, the RUNOFF subsystem 
generates the "ready" respon.se to indicate its availability to accept a RUNOFF 
subsystem command. After the user has performed desired RUNOFF functions, a DONE 
command re-accesses the EDITOR subsystem. 

STRING Command 

The STRING command causes the commands which follow to be executed in the string 
mode. It is equivalent to adding the S mode indicator to each command typed. 

NOTE: Since the first four characters of STRING and STRIP are equivalent, the 
system command STRIP does not function from within the Text Editor; i.e., 
the string mode is set .instead. 

STRING never takes an operand field; however, if the commands which follow STRING 
do not have a string field included, they operate as if in the line mode. 

-STRING 
-PRINT;6 
A COMPUTER PROGRAM IS A SET OF :NSTRUCTIONS THAT 
TELLS A COMPUTER HOW TO ACCOMPLISH A SPECIFIC 
TASK. EACH INSTRUCTION IS PERFORMED IN THE 
SEQUENCE SPECIFIED BY THE PROGRAM. IN THIS WAY, 
THE COMPUTER PROCESSES AND PRODUCtS INFORMATION 
AS DIRECTED BY THE PROGRAM. 
-BACKUP 
-REPLACE: /TASK/ 
ENTER 
*JOB 
*(carriage return) 
-PRINT:/JOB/ 
JOB. EACH INSTRUCTION IS PERFORMED IN THE 

Line mode action 
String mode action 
String mode action 

TRANSPARENT Command 

The TRANSPARENT (T) command allows the user to search the current file for all 
transparent characters (nonprinting characters octal 000 through 037). The search 
begins at the current line pointer position through to the end of file. Each line 
found containing transparent characters is printed and the character is bracketed 
by asterisks and printed in translated form. For example, a line containing a 
backspa~e would be printed as follows: 

-T 

This line has a backspace *BSP* here. 

10-47 DJ31-00 



VERIFY Command And NOVERIFY Command 

The VERIFY czommand enables the user to set the mode pf the EDITOR subsyste.m so 
as to verify the exec;ution of an EDITOR command. For positioning commands, the VER~FY 
command cat,Jses a printout of the ~ine at which the search pointer is positioned when 
the positi9ning command is finished. For text altering commands in line mode, the 
VERIFY command causes a printout of the line preceding the change, the affected 
change, and the line following the change. Although the line following the change 
is printed, the search pointer remains at the last line affected. 

For text altering commands in string mode, the VERlfY command causes a printout 
of the one or more lines affected by the change. The NOVERIFY command removes the 
VERIFY mode. 

*EDITOR OLD filename 
-VERIFY 
(EDITOR positioning and text altering commands are verified 
by the EDITOR subsystem upon execution. The VERIFY command 
will remain in effect until nullified by a NOVERIFY command.> 

Verification pf a particular EDITOR command is achieved by appending the letter 
V to the command verb. 

-FINDV:/xxx/;n 

(Upon finding the nth occurrence of the specified line, 
the line is printed out.) 

-REPLACEVS:/xxx/:/bbb/ 

(Upon replacement of string xxx by string bbb, the altered line 
is printed out.) 

The appended V affects the command once only; the verification is not repeated 
for subsequent uses of the command. 

WHERE Function 

The WHERE fl!nction provides the user with the current internal block number and 
the location of the current line within the block. For example: 

-WHERE (User types "WHERE" - short form uwu is acceptable) 

OCTL 8LK#qxx (Text Editor identifies the current block number) 

RCW=nnn 

Where: 

<Text Editor identifies the address of the current line) 

xxxx is the current block number (octal> and nnn is the address of the 
~urrent line RCW (record control word) within the current block 

Usage is principally technical, where a user desires to interrogate octal data 
within a file, or to patch data within a file. The octal block number cannot exceed 
7777; otherwise the count will roll over, providing a false block number. 

10-48 DJ31-00 



RUNOFF SUBSYSTEM 

The RUNOFF subsystem allows the user to print a text file in a previously 
determined format. The format is directed by control words entered in the file. The 
RUNOFF control words can be entered during building of the file or inserted later 
during editing of the file. 

In addition to imbedded control words, RUNOFF also uses commands that control 
the way in which thf; file is to be saved or printed. These commands are used after 
entering RUNOFF and are never inserted in the file. 

RUNOFF COMMANDS 

The RUNOFF subsystem permits the use of the following commands:· 

EDITOR 
NOS TOP 
NUMBER 
PRINT 
REFORM 
SKIP n 

EDITOR Command 

The EDITOR command can be used to access the EDITOR subsystem while in RUNOFF 
subsystem without the need to return to the subsystem selection level. Upon being 
given the EDITOR command, the EDITOR subsystem responds with the"-" response. The 
user can then perform desired editing function and return to the RUNOFF subsystem 
by means of the Time Sharing System command DONE. 

A current file must have been created if the EDITOR command is to be used while 
in the RUNOFF subsystem. If the system selected at logon time is RUNOFF and no current 
file exists, the use of the EDITOR command generates the message 

<52> CURRENT FILE NOT DEFINED 

NOSTOP Command 

The NOSTOP command can be used when the terminal is Loaded with continuous paper. 
RUNOFF does not stop after each page is printed. The SKIP n command can be used with 
N 0 S T 0 P • T h e f o rm N 0 S T 0 P n p e r m i t s n c on s e c u t i v e p a g e s t o -b e p r i n t e d b e f o r e a s t o p 
is made at the end of thenth page-:-

PRINT f i lename2 
READY 
SKIP 8 
READY 
NOST OP 
READY 
(carriage return) 
POSITION PAPER NOW 
(carriage return) 
(Printing begins at the ninth page and continues to the end 
of the file unless stopped manually at the terminal.) 

10-49 DJ31-00 



~UMBER Command 

The NUM6ER command indicates the user has a line-numbered file and desires to 
r e f o r m a t t h e f i l e w i t ho u t l i n e n um be r s • T h e u s a g e o f t h e c om m a n d i s t h e s am e a s f o r 
the SKIP and NOSTOP commanqs. 

PRINT command 

The operand of the PRINT command contains only one field--the file name of a 
previously formatted text file. The file name must be the same as the second fie.ld 
of the REFORM command which saved the text. 

PRINT filename2 
READY 

After a REFORM or PRINT command, the system types out READY. The file(s) 
specified are accessed but are yet to be acted upon. At this time, the commands SKIP 
~ and NOSTOP ~ can be entered. 

If printing is to be done, READY may be followed by a carriage return, or one 
or both of two commands--SKIP ~ and NOSTOP n. 

If only a carriage return is used, the formatted t~xt is printed out one page 
at a time, beginning at the first page of the file. After each page is complete, 
RUNOFF stops to allow the paper for the next page to be placed in the terminal. When 
the new paper is positioned, type a carriage return to start printing again. When 
all pages have been printed, RUNOFF COMPLETE is typed out. 

REFORM filename1,,PRINT 
READY 
(carriage return) 
POSITION PAPER NOW 
(carriage return) 

REFORM Command 

The operand of the REFORM command can contain four fields, separated by commas, 
and must contain at least two fields. 

Thf> first field specifies the file name of the data to be formatted. This field 
is required. If the file is a current file accessed by another time sharing subsystem, 
an asterisk can be used in the first field in lieu of the file name. 

The second field spec1t1es the file name under which the formatted data is to 
be saved. This field is optional, but must be present when the third field is not 
used. 

The third field contains the command PRINT. This field is optional, but must 
be present when the second field is not used. 

10-50 DJ31-00 



The fou1~th field contains the expression COUNT n. COUNT produces, ·in tormatti-.'d 
text, the rel.ative Line number of the source file specified in the first f·ietd. n 
indicates the number of spaces set for the Left margin of the formatted text. Th is 
f o u r t h f i e l d i s o p t i o n a L • W h e r e t h e f i e L d P R I N T i s n o t u s e d , t h e C 0 U N T n f 1 e l J c; i.l r1 
replace it. The order of the fields can not be changed. The~ portion of COUNT n 
is optional, with the following actions resulting: 

1. If n is not present and RUNOFF does not encounter a Left margin, six spaces 
areprovic'ed for the Left margin. 

2. If n is not present and RUNOFF does encounter a Left margin setting, 
this margin setting is used. 

3. If n is present and RUNOFF does not encounter a Left margin setting, ~ 
desTgnates the setting. 

4. If n is present and RUNOFF does encounter a Left margin setting, the setting 
is the Larger of the two. 

The following examples i Llustrate the use of the command (COUNT~ can be used 
with any of the example~). 

REFORM filename1,filename2,PRINT 
READY 

This form of the command causes file 1 to be formatted into pages and saved in 
fi Le 2. At the same time, the formatted contents of fi Le 2 are printed out at 
the terminal. 

REFORM fi Lename1,fi Lename2 
READY 

This command formats file 1 into pages a.nd saves the formatted text in file 2, 
to be printed out at a Later time. (file 2 must be a previously defined 
file.) 

REFORM f i lename1 ,,PRINT 
READY 

This command formats file and transmits the formatted text to the 
terminal. (The contents of file 1 saved by EDITOR remain saved in unformatted 
form.) 

SKIP n Command 

The SKIP n command allows the user to obtain partial output of the ti le. Printing 
begins at pag~ n+1. When printing stDps at the end of each page, this command can 
be used. -

PRINT filename2 
READY 
SKIP 8 
READY 
<carriage return) 
POSITION PAPER NOW 
(carriage return) 
(The ninth page is printed out) 
SKIP 3 
READY 
(carriage return) 
Clhe thirteenth page is printed out) 

1 0-51 DJ31-00 



RUNOFF FORMAT CONTROL ~ 

The RU~OFF format control words which can be entered in the text file during 
the building or editing process are Listed below. Each of these can be used in an 
abbreviated form, utilizing the first four Letters Ce.g., .allc) • 

• allcaps n 
.beginpage n 
.boldface n 
.bottommargin n 
.break 
.center n 
.comment 
.doublespace 
• fill 
.footing x,n 
.header x,n 
.ignore x,x 
.indent n 
.justify 
.leftdent n 
.linelength n 
.Literal 
.margin t,b,l,r 
.multispace n 
.nodent 
.nofill 
.no just 
.not ab 
.page x,y,n 
.paperlength n 
.paragraph 
.point n 
.reference Cx ••• x) 
.replace x,x 
.scoreunder n 
.singlespace 
.space n 
.subheading x,n 
.subfooting x,n 
.subparagraph n 
.tabulate t,n,,,n 
.topmargin 
.undent n 

The following rules apply to use of RUNOFF format control words: 

1. Each control word must be preceded by a period and followed by a 
carriage return. Any text material typed on'the same line as the control 
word ts ignored when printing out the formatted text. 

2. Control words can be typed in either uppercase or lowercase. 

3. All legitimate control words are ignored when printing out and do not appear 
in the text. 

10-52 DJ31-00 



4. Control words that are to remain in effect throughout the file can be 
entered once at the beginning of the file and need not be repeated 
unless they are cancelled by an imbedded control word. For example: 

.PAPE 66 

.LINE 60 

.TOPM 6 
• BOTT 6 
.SING 
• FI~ L 
• JU~ T 

5. The control words and values shown in the above example are those 
preset by RUNOFF and need not be entered; they remain in effect unless 
changed by the user. No page numbering occurs unless .PAGE is encountered. 
Care should be exercised in specifying page size parameters. RUNOFF 
formats a full page before printing. The following page matrix formula 
can be used to determine a large page format. Exceeding the results of 
this calculation leads to a memory fault. 

4P + (P-T-B+2)(L+2) = 7000 
where P .paperlength n 

T .topmargin n 
B .bottommargin n 
L .linelength n 

6. Words should not be hyphenated at the end of a line when using .FILL. The 
carriage return following the hyphen is treated as a space character and 
the hyphenated word could appear in the middle of a line of text as 
follows: 

MULTI- PLIED 

A compound, such as "right-hand", is treated as one word by RUNOFF and is 
not split over two lines in order to fill or justify Lines • 

• ALLCAPS n 

, Print next~ Lines in uppercase. If n is not used, only the next line is printed 
in uppercase • 

• BEGINPAGE n 

Place text following control word on a new page. If n is specified, the new 
page is numbered ~ and succeeding pages are referenced by n • 

• BOLDFACE n 

Overprint the next n lines. If n is not used, only the next line is overprinted. 
The use of .BOLDFACE and .SCOREUNDER on the same line(s) results in .SCOREUNDER 
operation only. 

10-53 DJ31-00 



$,pecify the spate fr·om the last line of text output to the bottom of t·he pa;per·. 
n should equal 't·he numbe·r of Lines desired. If this control wotd is not t1s·ed,. R'U'NOFF 
presets the mar9i'n to 6. Page numbers, if requested, are printed within th·e m·argi'h 
space • 

• BREAK 

End previous Lin~ and start a new line, without inserting a blank line~ the 
lines previous itf:'ld followin-g the use of this control word are not joined even though 
.FILL has be~n specified • 

•. CENTER n 

Center the n~xt n lines. When n is not used, only the next tine is tehteted~ 
When centering, do not include any other RUNOFF control words within the lines to 
be centered • 

• COMMENT 

Prevent printing of all lines of text until another RUNOFF control word is 
encountered • 

• DOUBLE SPACE 

Specify text to be printed out double spaced. 

Lengthen short Lines by moving words from the following Line and shorten long 
lines by moving words to the following line. This is preset by RUNOFF and is in effect 
until a .NOFIL is encountered. .FILL does not insert spaces to justify the 
right-hand margin • 

• FOOTING ~ 

Specify the number of lines and the position of the foot line to be printed at 
the bottom of a page. One line space is automatically inserted before the 
footing. 

~ indicates the number of lines. X can be one of the following: 

C - Centered on each page. 
R - Right justified on each page. 
L - left justified on each page. 
A - Alternately right justified on odd numbered pages, 

left justified on even numbered pages. 
E - Left justified on even numb~red pages. 
O - Right justified on odd numbered pages. 

10-54 DJ31•00 



The .FOOTING control word can be entered only at the beginning of the file 
or after .BEGINPAGE within the file if the foot Line is to be changed. Termination 
of foot l i n es i s a cc om p L i shed by use of • F 0 0 TING N 0 or • F 0 0 T I·N G 0 (nu me r i c ) • 

• HEADER x,n 

Specify the nu~ber of lines and the position of the header to be printed on a 
page. One line spacl is automatically inserted after the header. To insert a blank 
line in the header, use a space character before the carriage return. 

N indicates the number of lines. X can be one of the following: 

C - Centered on each page. 
R - Right justified on each page. 
L - Left justified on each page. 
A - Alternately right justified on odd numbered pages, 

left justified on even numbered pages. 
E - Left justified on even numbered pages. 
O - Right justified on odd numbered pages. 

For example: 

*.HEADER R,3 
•TIME-SHARING 
•(space) 
•<space) 

* 

The .HEADER control word can be entered at the beginning of the file and also 
just before or after .BEGINPAGE within the file if the heading is to be changed. 
Termination of header lines is accomplished by use of .HEADER NO or .HEADER 0 
<numeric) • 

• IGNORE x,x, ••••• 

Prevent the symbols listed in the operand from being used as text 
characters. Up to 16 characters may be listed for suppression. Use of the 
characters as text is resumed by .IGNORE NO or .IGNORE O. Numerics are not valid 
symbols for use with .IGNORE • 

• INDENT n 

Indent each following Line of text the number of spaces specified. Indentation 
is preset to zero and is cumulative; that is, subsequent .INDENT control words add 
to the total in~entation until a .NODENT, .LEFTDENT, or .UNDENT is encountered • 

• JUSTIFY 

Insert spaces into the Line between words to justify the right-hand margin to 
the length specified by .LINE. This is preset by RUNOFF and remains in effect until 
a .NOJUST is encountered. 

1 0-55 DJ31-00 



.LEFTDENT n 

In an indented area, subtract n spaces from the total indentation, for all 
following lines until an .INDENT, .NODENT, or .UNDENT is encountered. If.!!. is greater 
than the total indentation, the total is set to zero • 

• LINELENGTH n 

Specify the length of the line, in characters, for filling and justifying. N 
should equal the length in inches multiplied by 10. C6-inch line= 60, 7-inch line 
= 70, etc.) If this control word is not used, RUNOFF presets the line to 60. The 
Left margin position on the paper is determined manually at the terminal • 

• LITERAL 

Print a RUNOFF control word when it appears as part of the text. .LITE can be 
used on the same line, preceding the control word, or on the line before the control 
word as shown below • 

• LITERAL 
.LITE can be used on the same line, 
.LITERAL .PAGE n starts page numbering • 

• MARGIN t,b,l,r 

Set the four margins of a page. The numerics for TCtop) and B(bottom) set the 
line count for the top and bottom margins. Numerics for L(left) and R(right> set 
the character counts for left and right margins. T (top) and B (bottom> margins must 
be specified. Nulling of relative fields will result in a top and bottom margin of 
zero. 

NOTE: The .MARGIN. control word cannot be utilized to change top or bottom 
margins in the middle of a page. To change top or bottom margins on a 
succeeding page, use .MARGIN within the bounds of the page, immediately 
following .BEGINPAGE or the page break • 

• MULTISPACE n 

Soecify text is to be printed out with n line spaces between text lines. This 
c om m a n d o v e r r i d e s a n y • S I N G L E S PA C E o r • D 0 UBL E S PA C E c om m a n d • 

• NODENT 

In an indented area, reset the total indentation to zero. 

Print all lines exactly as they were typed into the file. 

10-56 DJ31-00 



.NOJUST 

Stop justification • 

• NOT AB 

Stop tabulatior and return to th~ previous format instructions • 

• PAGE x,y,n 

Start page numbering. If n is not present, numbering begins with page 1. If 
page numbers are to start with any other number, ~should equal the starting page 
number. 

X and 1.. specify where page numbers are to appear. X and :t.. can take one or more 
of th; following values: 

B - Bottom of page 
T - Top of page 
C - Center 
L - Left-justified 
R - Right-justified 
A - Alternating (odd numbers on the right, even on the Left) 

Page numbers, if requested, are inserted within the specified margin. 

The example below would cause numbering to begin with page 1, numbers to be 
printed on alternate sides of the pages, at the bottom.· 

.PAGE B,A,1 

If n is specified and!. and 1.. are not, page numbers appear centered and at the 
bottom of the page • 

• PAPERLENGTH n 

Specify the total Length of the paper. n should equal the Length in inches 
multiplied by 6. <11-inch paper= 66, 14-inc~paper = 84, etc.) If this control 
word is not used, RUNOFF presets the Length to 66 • 

• PARAGRAPH 

Preset the Line Length to its specification before the previous .SUBP control 
word. In an indented region, the former indentation total regains control. 

10-57 DJ31-00 



.PARAGRAPH n1,n2 

The n1 field causes the left margin to be indented the number of spaces 
specified. The n2 field causes the first line of the paragraph to be indented the 
number of spaces specified • 

• POINT n 

Cause a new page to be formatted. The page number is not incremented, but appears 
with a period followed by 1 Cp.1>. The page incrementing continues behind the period 
until terminated with the control word .BEGIN, when page .,e resumes incrementing. If 
the operand~ is us~d, the 1 following the period is replaced with~· 

.REFERENCE <x •• ~x> 

This causes the text within the parentheses to be printed as a footnote at 
the bottom of the same page. The .. REFE must be preceded by a footnote indicator that 
must also be the first character(s) within the parentheses; i.e., no space is 
permitted between the first parenthesis and the indicator. 

see 
( 1) 

.REFE ((1) This text is a footnote printed at the 
bottom of the page.> below.- - - - - - - - -

When printed by RUNOFF, appears as 

see (1) 
below~ ... - - - -

<1> This text is a footnote printed at the bottom 
of the page • 

• REPLACE x,x •• ~·• 

Cause the symbols listed in the operand to be replaced with space characters. 
The space characters supplied are not used as word string terminators in formatting 
the text. This enables the user to reserve character spaces for special 
character insertion, superscripting, subscripting, etc. Up to 16 symbols can be 
listed for replacement. Use of the symbols as text is resumed by the control word 
.REPLACE NO. Numerics are not permitted as REPLACE characters, such usage may cause 
unpredictable results. 

10-58 DJ31-0.0 



.SCOREUNDER n 

Cause the next input text line or each of the next n input text lines to be 
underscored (underlined) in the formatted text. If n is omitted, underscoring is 
performed only on the next Line of text. The use of-.BOLDFACE and .SCOREUNDER on 
the same Line(s) results in .SCOREUNDER operation only • 

• SINGLESPACE 

Specify text to be printed out single spaced. If this control word is not 
used, and if .DOUBLESPACE is not specified, RUNOFF presets the format to single 
space • 

• SPACE n 

Insert n blank lines spaces. If the end of the page is reached before n (spaces) 
are provided~ spacing stops~ Blank lines are not carried over to the next page • 

• SUBHEADING x,n 

Specify the number of lines to be printed as a subheading to a previously defined 
header. 

N indicates the number of Lines. X can be one of the following: 

C - Centered on each page. 
R - Right justified on each page. 
L - Left justified on each page. 
A - Alternately justified on odd-numbered pages, 

left justified on even-numbered pages. 
E - Left justified on even-numbered pages. 
O - Right justified on odd-numbered pages. 

The • SUBHEADING c o.n t r o l word can be c hanged aft er a • BEGIN PAGE w i t h i n the f i l e • 
Termination of the use of the subheading is accomplished using .SUBHEADING NO or 
.SUBHEADING 0 (numeric) • 

• SUBFOOTING x,n 

Specify the number of lines to be printed as a subfooting to a footing previously 
defined. 

N indicates the number of lines. X can be one of the following: 

C - Centered on each page. 
R - Right-justified on each page. 
l - left-justified on each page. 
A - Alternately right justified on odd-numbered pages, 

left-justified on even-numbered pages. 
E - left-justified on even-numbered pages. 
0 - Right-justified on odd-numbered pages. 

10-59 DJ31-00 



The .SUBFOOTING control word can be entered only at the beginning of the file 
or after a .BEGINPAGE within the file. Termination of the use of the subfooting is 
accomplished using .SUBFOOTING NO or .SUBFOOTING 0 (numeric) • 

• SUBPARAGRAPH n 

Indent the beginning of each line n and subtract n spaces from the end of 
the line. For example, if the line length is 60 and .SUBP 5 is used, the lines 
following are ~O characters long. 

In an indented region, the subparagraphing is affected by the total indentation. 
For example: 

.LINE 60 

.INDENT 5 

.SUBP 5 

results in lines 45 characters long, indented 10 spaces from the left margin • 

• TABULATE t,n, ••• 

Set simulated tabs on the horizontal line locations specified by the values of 
n. When building the file, enter a tabulation character (any keyboard character other 
than a blank, control character, or one being used as a de.limiter) at the 
beginning of each tabulated field, as this character is used by RUNOFF. See the 
following examples • 

• TABU t,10,20,30 
txxxxtyyyytzzzz 
txxxxtyyyytzzzz 

When printing in RUNOFF, the following results: 

<columns) 10 
xx xx 
xx xx 

20 
YYYY 
YYYY 

30 
zzzz 
zzzz 

When using a terminal that has no tab control key, any symbol can be chosen 
as a tabulation character. The symbol is not printed out during RUNOFF but can be 
read when using EDITOR •• TABU operates in a .NOFIL environment • 

• TOPMARGIN n 

Specify the space from the top of the paper to the first line of output. N should 
equal the space desired multiplied by 6. C1-inch margin= 6, etc.) If this control 
word is not used, RUNOFF presets the margin to 6. Page numbers, if requested, are 
printed within the margin space • 

• UNDENT n 

In an indented area, causes~ to be subtracted from the total indentation for 
the next line only. 

10-60 DJ31-00 



RUNOFF EXAMPLES 

Examples are given on the following pages to illustrate the use of RUNOFF. The 
Left-hand page contains the text and instructions in the file. The right-hand page 
shows the same portion of the file as it is formatted by RUNOFF. 

10-61 DJ31-00 



.pape 65 

.line 67 

.page 1 

.topm 6 

.bott 6 

.just 

.repl & 

.header r,l 
Text Editor 
.subheading r,l 
Examples 
.space 4 
.cent 
SECTION I 
.space 2 
.cent 
INTRODUCTION 
.space 4 

This manual describes the Text-Editing Subsystems of the 
Time Sharing System, EDITOR and RUNOFF. Use of these subsystems 
does not require any knowledge of programming; however, the 
following brief descriptions of computer systems and the terms 
used in the manual will be helpful to the terminal operator • 
• space 2 

In this manual, a "computer system" is an information 
processing system. It may be Located many miles from the 
terminal through which information is being entered. The total 
system consists of hardware (printers, card readers and punches, 
permanent magnetic storage devices, processing equipment, etc.) 
and programs <sets of instructions that tell a computer how to 
accomplish a specific task). The Time Sharing System is one of 
many such programs • 
• space 2 

The Time Sharing System is made up of several ~mall 
programs called "subsystems". (See Figure 2 and (1) below.) 
This manual covers two of these subsystems in detai(. Other 
subsystems, not required for text-editing purposes, are covered 
in other manuals • 
• nojust 
.refe ((1) See Text Editor manual, DD18.) 
.begi 

10-62 DJ31-00 



SECTION I 

INTRODUCTION 

Text Editor 
Examples 

This manual describes the Text-Editing Subsystems of the 
Time Sharing System, EDITOR and RUNOFF. Use of these subsystems 
does not require any knowledge of programming; however, the 
following brief descriptitins of comp~ter systems and the terms used 
in the manual will be helpful to the terminal operator. 

In this manual, a "computer system" is an information 
processing system. It may be Located many miles from the terminal 
through which information is being entered. The total system 
consists of hardware (printers, card readers and punches, permanent 
magnetic storage devices, processing equipment, etc.) and programs 
(sets of instructions that tell a computer how to accomplish a 
specific task). The Time Sharing System is one of many such 
programs. 

The Time Sharing System is made up of several small programs 
called "subsystems". (See Figure 2 and (1) below.) This manual 
covers two of these subsystems in detail. Other subsystems, not 
required for text-editing purposes, are covered in other manuals. 

(1) See Text Editor manual, DD18. 

10-63 

o:·· 

DJ31-00 



.pape 65 

.Line 67 

.repl 

.header r,L 
Text Editor 
.subheading r,L 
Examples 
.footing c,l 
Time Sharing System 
.subfooting c,2 
Text 
Editor 
.space 4 
.cent 
PROCESSOR 
.space 3 
.nofil 
.cent 4 
Memory 
Where Programs 
are Stored 
<During Use> 
.space 3 
.tabu z,10,29,44 
z Magnet i c Ta p'e s 
zDisks, and Drums2Input/OutputzPrinters 
zwhere programszControllerszCard Punches 
zare stored whenzzCard Readers 
znot being used 
.not ab 
.justify 
.space 3 
.cent 
TERMINAL($) 
.space 3 
.cent 
Figure 1-1. Information Processing System 
.space 4 

The following verbs may not have an operand field: 
.space 2 
.tabu 5,10,31,50 
tLINE or LtRUNOFFtSTANOARD 
tSTRING or StVERIFY 
tBUILDtNOVERIFY 
.not ab 
• f i l L 
.begi 

10-64 
\ 

OJ31~00 



Magnetic Tapes, 
Disks, and Drums 
where programs 
are stored when 
not being used 

PROCESSOR 

Memory 
Where Programs 

are Stored 
(During Use) 

Input/Output 
Controllers 

TERMINAL(S) 

Printers 
Card Punches 
Card Readers 

Figure 1-1. Information Processing System 

The following verbs may not have an operand field: 

Text Editor 
Examples 

LINE or L 
STRING or S 
BUILD 

RUNOFF 
VERIFY 
NOVERIFY 

STANDARD 

Time Sharing System 
Text 

Editor 

10-65 DJ31-00 



.pape 65 

.line 67 

.repl 

.header r,l 
Text Editor 
.subheading r,l 
Examples 
.space 4 

The use of the verbs and bperands ar~ fully expl~ined 
and illustrated in 
.score 
Editor Commands 
later in this chapter. The restrictions and usage rules 
which apply to the operand field are explained in 
.score 
Operand Field 
below • 
• space 2 
.subp 5 
The editor responds to the commands with messages that 
inform the user when a command has been executed, a mistake 
in command format has been made, or the end of the file has 
been reached. These messages are described in 
.score 
Responses from Edttor • 
• para 
.space 3 
.al leaps 
operand field 
.space 2 

As st~ted above, the operand field can contain one 
or more of the following: 
.space 2 
.indent 10 
.undent 5 
1. Mode Indicators -
" s •• · f o r s t r i n g mode a n d " L " f o r l i n e mod e 
.space 
.undent 5 
2. String field, preceded by a colon 
.space 
.undent 5 
3. Repeat field, preceded by a semicolon 
• leftdent 5 
.space 2 
If more than one of these items is used in a single 
command, the order must be as shown previously • 
• nodent 
.space 3 
.score 
Mode Indicators 
.space 2 

The mode indicators used with the Editor verbs are 
"S" for string' mode and "L" for line. mode .. The mode 
determines the type of operation to be performed and the 
interpretation of the string field. See Figure 3 • 
• ignore no 
.begin 

10-66 [)J31-00 



/ 

Text Edito1 
Ex amp L ,~ ~· 

The use 
illustrated 
restrictions 
explained in 

of the verbs and operands are fully explained 
in Editor Commands later in this chapter. 
and usage rules which apply to the operand field 

Opera1_£ Field below. 

The editor responds to the commands with messages that 
inform the user when a command has been executed, a 
mistake in command format has been made, or the end of 
the file has been reached. These messages are described 
in Responses from Editor. 

OPERAND FIELD 

,,,1,_j 

The 
are 

As stated above, the operand field can contain one or more of 
the following: 

1. Mode Indicators -
"S" for string mode and "L" for line mode 

2. String field, preceded by a colon 

3. Repeat field, preceded by a semicolon 

If more than one of these items is used in a single command, 
the order must be as shown previously. 

Mode Indicators 

The mode indicators used with the Editor verbs are "S" for 
string mode and "L" for line mode. The mode determines the type of 
operation to be performed and the interpretation of the string 
field. See Figure 3. 

10-67 DJ31-00 





SECTION XI 

Time Sharing System FORTRAN 

PROGRAM STATEMENT INPUT 

The system is currently in build-mode;(as indicated by the initial asterisk) 
and is ready to accept FORTRAN program statement input or control commands. ALL Lines 
of input other than control commands are accumulated on the user's current file as 
they are entered into the system. 

Following each Line of non-command language input and the terminating carriage 
return, the system supplies another initial asterisk when the carriage is returned, 
to indicate the system is ready to accept more input. 

Format 

A Line of FORTRAN input can contain: 

1. One or more FORTRAN statements 

2. A partial statement 

3. A continuation of a statement left incomplete in the preceding line of 
input 

4. A comment 

5. A combination of 3 and 1, or 3 and 2, in that order 

6. A combination of and 2 

A line input must begin with a Line-sequence number from one to eight numeric 
characters. The line-sequence number Cline number) enables the programmer to correct 
and modify the source program. 

A line number is distinct from a statement number in that a statement number 
is a part of the FORTRAN language statement itself. 

11-1 DJ31-00 



The line number is always termin~ted with a single control character that can 
be a blank, an ampersand, a number sign, an asterisk, or the letter c. This control 
character merely serves to indicate what type of information follows Ci.e., new 
statement, continuation, or comment> and is not compiled as part of the program. The 
semicolon can be used to indicate the end of one complete FORTRAN statement and the 
beginning of another on the same line of input. A carriage return must be used to 
terminate a complete line of input. This line format is suitable for direct 
processing by the FORTRAN compiler with the options NFORM and LNO. 

The general format of a line of FORTRAN input is 

nnnnnnnncstatement or continuation ;statement ••• ;statement 

or 

nnnnnnnnc comment 

Where: nnn .... n is a numeric line number, the magnitude- of which is less than 
2 (262,144) 

Control Character 

is a control character that can be a blank, an ampersand, an 
asterisk, a number sign, or the letter C, and must imtnediately 
follow the last digit of the line number. 

The control character identifies the type of information that follows it. 

~ (blank> 

<ampersand> 

- If the character position immediately following the 
last digit of the line number contains a blank, and the next 
nonblank character is not an ampersand, then that nonblank 
c h a r a c t e r i s a s s um e d t o b e g i n' a n e w F 0 R T R AN s t a t em e n t • I n 
this case, the next nonblank character may begin a FORTRAN 
statement number (i.e., mm ••• m statement-text>. 

- I f a n a mp e r s a n d i s t h e f i r s t n o n b l a n k c h a r a c t e r f o l l o w i. n g 
the line number, the next significant character is assumed 
to be a continuation of the previous statement in the 
previous line of input. CA blank character is significant 
only as a continuation of the character string from a 
preceding line.> The effect of " " is to suppress the 
previous carriage return as an end-of-statement 
indicator. 

11-2 DJ31-00 



* (asterisk) or C - If the line number is terminated with an asterisk or 
the letter C, the following information is assumed to be 
a comment. The comment itself is terminated by a carriage 
return. 

# (number sign) - If a numeric character is desired in column 1 of the 
card image and line numbers exist in the source file, a 
number sign (#) immediately following the Line number 
causes the character following it to be placed in column 
1. 

A semicolon within a noncomment line indicates both the end of the preceding 
statement and the beginning of a new statement. The new statement can include the 
FORTRAN statement number, mm ••• m. 

The format of a statement that follows a blank control character, is 

••• nn~ 16 ••• ~ mm ••• m FORTRAN-language-text 

(The statement format portion is underlined.) 

Where: 16 ••• 16 are optional blanks 

.mm ••• m is an optional numeric statement number where mm < 99999 

Blanks (Or Spaces) Within A Lin.e Of Input 

Initial, embedded,· or trailing blanks in a Line of input have no significance 
in interpretation; however, blanks are illegal within the Line number and the 
nonnumeric character immediately following the Line number is interpreted as a 
control character. Thus, spacing can be used quite freely within a line of input 
for legibility. Blanks within character constants and nH fields <i.e., 
alphanumeric information) are meaningful and are retained in the object program 
coding. 

NOTE: The line/statement format is completely free-form, or position 
independent with the exception of the control character. 

To this point, the discussion of line format has been oriented to the NFORM format 
described earlier in this document. This is generally the most convenient form to 
use in time sharing, although it is not mandatory. The source file can be bui Lt using 
the Text Editor and can be used without line numbers through the NLNO option. The 
source program can be in "fixed" format (i.e., without line numbers) through the FORM 
option. The full spectrum of Line formats and source file recording modes is 
available to the time sharing user. 

11-3 DJ31-00 



1<1ey:b.oa;r:d 1foi1,put i ·s se·nt to the .c om!put·e r and .written onto the ,u·s.e r '·s c·u·rr•e;nt If 1 :Le 
in :u:nits of .c10111rpl,e:te t::Lnes. A lin:e of t·ermin.al inp·.ut i·s t'.erm·i.nat~e;d :b·.y a .ca·r·r1:ag,,e 
return and n-o:p.a:rt of t'h-.e line is t•r.ans•mitted to th:e :system ·1,i.ntil that ,c .. a:r·ri.age <f'•etur.n 
is given. Hter-efor.e, cor.rectio·ns •Or modificati:ons ca•n 'be d·.01n.e .at \t.,he 1:e;r·mi1na.l ,at 
t~o ~istinct l~v~is: 

1 • Co·r r·e·ct ion ·Of .a l i ne-i n-:pro.g r·e s s ( i..e., a pa rt i ail .l i;r:l,e not y.e t 
ter.mi:rn,ate.d). 

2. Corre:cti.on •0'1' .m.odific.ation of the -so.urce p.r·o~:r .. am ,,(L:e., U1-e .contents of 
the c.-urr:r,ent s.o.u:rce fil·e.> ·b·y t.he repLac.ement or deloetio·n ·.of ·C!J,N'•e;fl1t 1 in.es,, 
or .U1<e in.sert i·on of ne.w l in.es. 

The corN~<.ctio.n of a typing erro·r t·hat is d.etect·ed b:efo,r.e th-e .L .ine ~ s terminated 
can be ~one in o~e of t~o way~: 

NOTE: U.s.e •.of the d·elet.e control c'h.aracter deletes the chara.cter p·receding the 
deleti.on charact-e·r. <The delete control character used is ,dependent 
.U:f»01"1 th-e mak.e of terminal at the site.) 

Example: 

I f # i s t h '.e d el e t i o n c h a r a.ct e r , 

JO.N.S:# 

JONS DA'V·E. Y#'#.#.#### 

.deletes S DAYEY 

.Correcti.01r:i •or modificatio.n of the current sourc.e file is don·e on the basis of 
Lin~ numb•r~ an4 ~r-0c~~~s ac~ordingly. 

Ex am.ple .: 

1 OD RE'A.D C'S, 16) H:RS,RATE ,·NO 
2 00 WR l TrE C6 ,, 1 6 ) HRS , RA TE , 'N 0 
300 16 FOR"-ATH3.2,F4 .• 2,116) 

11-4 DJ31-00 



1. Replacement. A numbered line replaces any identically numbered line that 
was previously typed or contained on the current file. 

Example 

200 WRITE(6,12)PAY 

replaces the current line numbered 200. 

2. Deletion A "line" consisting of only a Line number (i.e., 100) causes 
the deletion of any id~ntically numbered line that was previously typed 
or contained on the current file. 

Example 

100 

deletes line 100 from the source file. 

3. Insertion. A line with a line-number value that falls between the 
line-number values of two pre-existing lines is inserted in the file 
between those two lines. If the line number is less than the first line 
number, it i$ inserted at the beginning of the file; if greater than the 
largest line number, it is inserted at the end of the file. 

Example 

250 12 FORMATC//16HPAY IS EQUAL TO ,F6.2) 

is insert above line 300. 

The new source file now contains 

Input Error Recovery 

200 WRITE(6,12)PAY 
250 12 FORMAT(//16HPAY IS EQUA~ TO ,F6.2) 
300 16 FORMATCF3.2,F4.2,16) 

The decimal input/output routine permits the time sharing user (BCD or ASCII) 
to correct a string of characters in an executing FORTRAN program that was entered 
from a terminal when a character is illegal for the current format conversion (e.g., 
a decimal point is illegal in an "I" field). When the current input line is printed 
on the terminal with a pointer to the illegal character, the correction can be made, 
and the input/output routine resumes with the new string. If the response is a 
carriage return, an error message is printed. 

At any point in the process of entering file building input in 
line-numbered subsystems, the LIST command may be given, which results in a 
clean, up-to-date copy of the current file. In this way, the results of any previous 
corrections ·or modifications can be verified visually. Following the command "OLD 
filename", the LIST command can be used initially to inspect the contents of the 
current source file <i.e., the "old" program). 

11 -5 DJ31-00 



:-D-S/Il IN A FORTRAN TI~E SHARING ENVIRONMENT ·------ -

The use of I-D-S/II in the FORTRAN time sharing environment requires the 
ability to specify FORTRAN source files, I-D-S/II control files, and I-~-S/II data 
base area and key files as well as the desired options from the terminal. The YFORTRAN 
and FORTRAN time sharing systems provide this capability. 

Files Required By I-D-S/II 

I-D-S/II requires control files and data base area files. Data base key 
files and data base· procedure files may also be required. The control files required 
are 

o Schema Fi le - the schema file, a random file produced by the schema 
translation, is the "1*" file unless it has been renamed in the Device Media 
Control Language (DMCL). It has the alternate name "1.". If 1* has been 
renamed in the DMCL, it must have that alternate name. The schema file 
is required in the AFT at execution time. 

o Validated Subschema File - The validated subschema fil~, a rand-0m file 
produced by the subschema translation and validation, has the 
alternate name "6*" and is required in the AFT at compilation time. 

o Subschema Control Structure Unlike the other I-D-S/II files, the 
subschema control structure, a sequential file produced by the subschema 
validation, is not accessed from the AFT. This fi Le, which was referenced 
by the filecode C* during validation, is bound instead with the FORTRAN 
object program at load time. It consists of two object modules, S.xxxx 
and D.xxx*, where xxxx are the first four letters of the subschema 
name. 

Data base area files are required. Data base key fi Les may also be 
required. Both types of files must be placed in the AFT under their alternate 
names Ci .e.,.. the file codes which were specified in the schema DMCL). The following 
r ' p €' ~ o f d .i 1€1 f i l e s r an b e s p e c i f i e d : 

0 

Integrotea with Record Keys 

0 Indexed 

0 Indexed ~ith Record Keys 

11-6 DJ31-00 



If any required data base proceJur0s were not included in the FORTRAN source 
program itself, files containing these procedures must be supplied. Thrse files, 
p r o d u c e d d L; r i n g p r e v i o u s c o m p i L a t i o n s , s u p p l y t h e p r o c e d u r e s s p e c i f i e d i n t h e s c h e m a 
and subs chem.a • These obj e ct uni t s, L i k e t he cont r o L structure, a re bound w i th t he 
FORTRAN object program at load time. 

When the DML opt ion is 
program enables the FORTRAN 
subschema. The sub :chema then 
the User Working Area CUWA). 

specified, an INVOKE statement in the FORTIUIN source 
compiler to read the 6• file and obt..iin t·he 
becomes part of the FORTRAN program and defines 

At run time, the schema file (1*;) and the data base area and key files must be 
in the AFT under the appropriate alternate names. The control structure is used at 
run time to describe the subset of the data base which is accessible to the 
program. 

Comparison Of The FORTRAN And YFORTRAN Time Sharing Systems 

There are two time sharing versions of the FORTRAN compiler. 
is invoked by the call specified below. 

Compiler Version 

Batch based time sharing compiler 
Time sharing based compiler 

Language Call 

YFORTRAN 
FORTRAN 

Each version 

The time sharing based FORTRAN compiler compiles under the time sharinq system 
rather than being spawned as in the case of the batch based time sharing compiler. 
It differs from the batch based compiler because it: 

o Campi Les under the GCOS time sharing system 

o Eliminates the need for configuring batch memory; YFORTRAN compiles 
through DRL TASK 

o Significantly reduces overhead in the FORTRAN time sharing system 

o Does not re qui re the "CORE=" clause for compilations 

o Has identical compilers with the exception of the executive phase (YFXC 
vs YUEX) 

11-7 DJ31-00 



~HE YFORTRAN TIME SHARING SYSTEM RUN COMMAND ----

The YFORTRAN time sharing RUN command can be written as either RUN or RUNH. The 
RUNH form is used to display a heading line on the terminal that gives a date, a time, 
and a SNUMB. Any of the seven following options can be specified with the RUN <or 
RUNH) command: 

RUN (HJ [-nnnJ (fsJ [= fhJ [; fc] [(opt [, ••• )] (ulib)J [#feJ 

-nnn 

f s 

nnn is the maximum processor time (in seconds) the program is allowed 
to run during execution. 

is the set of file descriptors <separated by semicolons) for source 
files in the standard BCD card image format, in compressed card imrlge 
format (COMDK>, or in time sharing ASCII standard system format, and/or 
descriptors for binary card image object files. These files serve as 
inputs to the compiler and/or loader. Concatenation of source files 
is provided by using a separate semicolon between each file 
descriptor. Where a BCD or COMDK source file is supplied (media (Ode 
1 or 2), fs can also include a descriptor for a BCD alter file. ThP 
alter file must begin with a$ UPDATE card and must be in alter numbf-'r 
sequence. If there are many BCD or COMDK source files in the list, the 
alter file updates the first source file. If the FORTRAN pr0gram 
conta,ins 1-D-S/II DML statements, fs should also contain the file 
descriptor for the subschema control structure file. If data base 
procedures are required and are not supplied as part of the FORTRAN 
source program, file descriptors for the procedure object files should 
also be listed here. 

Alternatively, the list fs can consist of a single file descrintor 
that points to a previously generated system loadable (H*) filP .. 

A file descriptor consisting of the single character"*" indicates the 
current file C*SRC). The fs List is optional, and when missing, 
indicates that only the current file (*SRC) is to be compiled. 

fh is a single file descriptor of a random file into which the sy~t~m 
loadable file <H*) produced by the General Loader is saved if the 
c om p i l i'I t i or. i s s u c c es sf u l • Th i s f i l e i s w r i t t en if t1 o fat a l C' r ; \.r· '• 

occur during comµi Lat ion. If the named file does not exist, a perm..:111ent 
random file of 36 blocks Cllinks) is created and added to the user's 
catalog. If the field is missing, the H* file is generated into a 
temoorarv file. The presence of this option is valid only when the 
prograrr. indicated by the list fs, the FORTRAN Library, and the user

library (1f any) is bindable (i.e., no outstanding SYMRtFs>. lf tl1t.' 
General Loader indicates that outstanding SYMREFs exist, an executabl P 

H* file is created, but any reference to an unsatisfied SYMREF c~u~ns 
the program to bf! abnormally terminated. (The General Loader ir1scr 1.s 
a M~E GEBORT at references to unsatisfied SYMREFs. When a ~ME is 
encountered during the execution of a time sharing subsystem, GCOS and 
the Time Sharing Executive simulate an illegal operation fault.' 

11-8 I J '> I -!l ll 



;fc a single file descriptor preceded by a semicolon of a sequential file 
into which the compiler is to place the binary (C*) result of any 
indicated compilation(s). One object module is written to this file 
for each source program in the file(s) given by fs. 

(opt) 

If the named file does not exist, a permanent linked file of three blocks 
( l l i n ks) i s c re ate d and added to the user ' s cat a log • Th i ~. f i l c expands 
as necessary up to a maximum of 20 blocks <llinks), to hold t.he object 
deck(s). In this case, the field fs plus the libraries do not need 
to indicate a complete program (individual or collections of 
sub,·outines can be compiled and saved). When this optional field is 
missing, a C* file is not generated; when present, the DECK option is 
activated for the compilation process. 

a list of options available for time sharing which, when specified, must 
be separated by commas. Some of these options affect the compilation 
process and some affec~ the loading process (the default options are 
underlined). 

DEBUG - The run time debug symbol table is generated. 

NOTE: This debug symbol table is used for debugging in the 
batch mode only. Refer to the General Loader manual 
for use of the debug feature and the debug symbol 
table. 

NDEBUG - The run time debug symbol table is not generated. 

BCD Object character set is BCD. If applicable, this opt~n! 

must be spec i f i e d whenever the Gener al Lo ad er i s to b 1:' ca l .. , ,; . 
This is required for· compile, compile and Load, and toad 
activities; it is not required for execute only rur1s (run H* 
file). The BCD option cannot be specified if the DML option 
is selected. 

ASCII 

FORM 

NF ORM 

LNO 

NLNO 

Object character set is ASCII. 

Source is in "fixed" format (LNO option is not valid with 
FORM). 

Source is in "free" format. 

Source is Line-numbered (default option if FORM is not 
specified). 

Source is not line-numbered (default option if FORM is 
specified). 

11-9 DJ31-00 



OPTZ 

NOPTZ 

NWARN 

- The object module is opl .mi zed. 

- The object module is not optimized. 

- No compilation warning messages are printed, although, fatal 
messages are printed, 

CORE=nn - The compilation activity memory requirement is set to nnKt9K 
or 29K, whichever is l1rger. If not specified; nn is set t~i 
20. 

FDS - The FORTRAN Debugging System CFDS) is enabled. 

NFDS -.-.-
DMI,. 

STAT 

LDEL 

- The FORTRAN Debugging System is not invoked. 

- The Data Manipulation Language CDMU facility of I-O-S/II is 
invoked. If DML is specified, the necessary l-D-S/II tiles 
must also be specified in the RUN command. The BCD option 
cannot be used with the OML option. 

- The I-D-S/11 statistics are printed. If a sequential file 
with the alternate name "P." exist.sin the AFT, the l-D-S/II 
statistics and abort codes are written to that file.· The file 
is written as a BCD file and can be converted to an ASCII f i Le 
for examination from a terminal by the command "CONV f·i LP 
descriptor." If "P." does not exist in the AFT, th" 
statistics and abort codes are specified, and written to the 
terminal. If the STATS option is not specified, th1' 

J ... D-S/II statistics are not printed and the fatal abort codes 
are directed to the terminal. ·A FINISH statement must be 
included in the FORTRAN program in order to receive any 
statistics. STAT is valid only when the DML opti('n is 
specifled. 

- Logical record delete is requested. The default is physic;JI 
record deletion. LDEL is valid only when the DML option is 
specified. 

The remaining options concern the loading process (the default option is 
underlined). 

NOGG 

UL!~ 

NOUB -.-.--· 

The program is loaded and executed at the completic;n r•t 
compilation. 

The program is not r>xecuted at the completion of tf•P 
compilation. If specified, the object program is loaded cir1u 

saved. If no object <H*) save file is specified, only the 
c o m p i l a t i o n i s p e r f o r m e d < G e n e r a l L o a d e r i s n o t c a l 1 f' ri > • 

- File descriptors t>xist at the end of the optionc; fi<>ld lhitt 

a l l. o c at e use r l i bra r i P. s t o be sea r c he d f or m i s s i n q r nu t 1 r',. •, 
p r i o r t o sea r c h i n g f o r· t h em i n t h e s y s t em I i b r t1 r· y • 

- NJ use1 librarie~ 2re to bP used. 

TIKE=nnn• The batch compilation and/or General Loader activity tim~ 
limits are set to nnn seconds; where nnn < 180. If not 
specified, nnn is set to 60. 

U R G C = n n - T h e u r g e n c y f o r t h e b a t c h c om p i l a t i o n a n d I o r G e n e r a I. L o a cl ,, r 

TES 1 

activity is set to nn, where nn < 40. If not specified. nn 
is set to 40. 

- A t e 5 t v er s i on o f t he comp i L e r i s to be use J f r:1 1· t 11 e a c t i 11 i ' y . 
lherf' must be an :iccessed file (in the AFT) with th<> r1ame 
fORfkl\NY. If thesP two conditions art:' m;~t,. U;·n \ii" 

fOR1;\ANi is allocated as file code** in the ac.liv'ity. 

~1-10 DJ.31-00 



u lib 

#fe 

/ 

REMO - All temporary files that are created during compilation and 
loading are removed from the AFT as they are no longer needed. 
This option keeps the number of files in the AFT down to a 
minimum but causes more time to be spent processing each 
RUN command. 

NAME=name - Provides a name for the main I. ink of the saved l~k f i IP. It 
can be used at time of creation of this file and subspquently 
as it is reused. This name is placed in the SAVE/field of 
the $ OPTION card. 

A list of file descriptors (separated by semicolons) pointing 
to random files containing user libraries to be searched before 
the system library. This list must be provided by the user when 
the ULIB option is specified. 

A list of file descriptors (the first preceded by a number 
sign) for files required during execution. Each catalog/file 
description is separated by a semicolon. The file description 
can be in any of the following formats: 

1. filename in the form filename "nn", represents a logical 
file code referenced by the 1/0 statements in the 
program where 01 nn 63. 

2. filedescr specifying a full description. 

a. filename "nn" 

b. filename$password "nn" 

c. userid/catalog$password "nn" 

Filecodes 05, 06, 41, 42, and 43 are implicitly defined for 
terminal directed 1/0 and do not need to be mentioned in the RUN 
command unless 1/0 is to be directed to a file. Other logical 
file codes can be terminal-directed by specifying a descriptor 
of the form filename "nn", where "nn" is the desired 
file code. 

The I-D-S/11 files required for compilation and execution should 
also be specified in the #fe list. #fe should contain the file 
descriptor for the 6* subschema file required for compilation 
with the alternate name "6*"· 

Example: 

FORTY/DML/6STAR"6*" 

#fe should also contain the file descriptors for the I-D-S/lI 
files required for execution that include: 

1. Schema File - This file must have the alternate name "1.". 
If an alternate filecode was specified in the DMCL schema 
entry, it must have that alternate name. 

2. Data Base Area and Key Files - These random files must 
have alternate names which are the same as the fi Lecodes 
defined in the DMCL entry. 

11-11 DJ31-00 



3. Statistics File - If ti«" STAT option is specified a.nd the 
output is to be lo!ritten to a file, the desired file 
descriptor with the alternate name "P." should be entered 
in the #fe list. 

Exa111ple: 

FORTY/DML/SCHEMA"L." 
FORTY/DML/AREA1"A1" 
FORTY/DML/KEY1"K1" 
FORTY/DML/STATUS"P." 

FORTRAN TIME SHARING SYSTEM RUN COMMAND 

The FORTRAN time sharing RUN command can be written as Eit~er PUN, RUNH, FR~, 
or FRNH. The RUNH form is used to display a heading line on the terminal. giving datr> 
and time. Any of the seven following options can be specified with the RUN (or RUNH? 
comm;;ind: 

FRN (HJ (-nnn] [fs] (= fhl E; fcJ ((opt (, ••• ])] [ulibJJ [#fe] 

-nnn 

ts 

the maximum processor time (in seconds) the compiled object program is 
allowed to run during execution. 

the set of file descriptors (separated by semicolons) for sourct: 
files in the standard BCD card image format, in compressed card imagP 
format <COMDK), or in time sharing ASCII standard systf"m format, ~·nd/or 
d e c; ~ r i o t o r s f o r b i n a r y c a r <i i m a g e o b j e c t t i l e s • T h e c; P. f i l e s s e r v ,., .1 c: 

inputc, t0 the compiler and/or th~ time sha1·ing lo.:id::'1. ronc:':f'ti·•: ·nr1 

o f s o u r c e t i l e s i s p r o v i d e d b y u ; i t 1 g a s e p a r a t e s e rn i c 0 l o n t> e t w e .., · i <• .~ r I 1 

file descriptor. 

Vherp a BCD or COMDK source file is supplied (media code 1 or 7), fs 
may also include a descriptor for a BCD alter file. The alter tile must 
begin with a$ UPDATE card and must be in alter number sequenre. If 
there are many BCD or COMDK source files in the I ist, the alte• fi IP 
updates the first source file. 

If the fORTRAN program contains I-D-S/II DML statements, fs should at.so 
c o ·1 ~ "J •. 1 ~ h e f i l e d e s c r i p t o r f o r t h e s u b s c h e m a c o n t r o l s t r u c t u r e t i l e • 
If datJ base procedures are required and are not supplied as part o1 
the FOR1:iAN source program, file descriptors for the procedure object 
files should also be liSted here. The list fs can consist of a sinqle 
file descriptor that points to a previously generated system-lo~d~hle 
(H•) file. 

A file descriptor consisting of the single character *indicates th~ 
current filP. (*SRC). The fs iist is optional,. <"nd when misc;i•••J 
i n di cat es that 0 n l y the r: u r re 11 f i I e (*SR C) i s to b"' c 0 rn r; i l. ,, d . 

fh a sin~le file descriptor of a random file into which the system l.oadablc· 
·f i l e ( H * ) p r o d u c e d b y t h e g e n e r a ~ l c a d e r i s s a v e d ·i f t h e c o m p ~ l ;i t i r:' ri 

is successful. This file is written if no fatal errors occur during 
compilation. If the named file does not exist, a permanent random ti le 
of 36 blocks Cllinks) is created and added to the user's catalog. If 
t h e f i e l d i s m i s s i n g , n o t e m p o r a r y H * f i l e i s c r e a t e d • I f t h i s i c: t h 13 

c a s e , t h e t i m e s h a r i n g l o a d e r c r e ::i t e :; a c om p l e t e b o u n d m em o r y - i m ~ a P ,1 I 
the object execution progr·am, "releases" itself via DRL RELMEM, .rnd 
entPrs the execution riirr?rtly. 

11 - 1 2 i)J31-·00 



If the time sharing Loader indicates that outstanding SYMREFs exist, 
any reference to them during object program execution causes 
abnormal termination via a DRL ABORT. 

;fc a single file descriptor (preceded by a semicolon) of a sequential file 
into which the compiler is to place the binary object CC*) result of 
any indicated compi Lation(s). One object module is written to this file 
for each source program in the file(s) given by fs. 

(opt) 

If the amed file does not exist, a permanent Linked file of three blocks 
Cllinks) is created and added to the user's catalog. This file expands 
as necessary up to a maximum of 20 blocks Cllinks), to hold the object 
deck(s),. When C* is specified, a compiler temporary file (*1 scratch 
file) of 48 blocks Cl links) is defined and its name is placed into the 
AFT. 

a List of comma-separated compiler/Loader options available in the time 
sharing based FORTRAN system. Those options available with the 
YFORTRAN RUN command but not specified here are not currently used with 
the FORTRAN RUN command. They are ignored if specified (default options 
are underlined). 

BCD - The internal character set for object program execution is BCD. 

ASCII 

FORM 

NF ORM 

If applicable, this option must be specified whenever the 
Loader is called. This is required for compile, compile and 
Load, and Load activities; it is not required for execute only 
runs (from the H* save f i Le). The user should not load object 
de c k f i L es comp i L e d u n de r d i f f e rent opt i on s ( f:e. , one u n de r 
BCD and another under ASCII) since execution results would 
be unpredictable. The BCD option cannot be specified if the 
DML option has also been selected. 

Internal character set for the object program execution is 
ASCII. 

Source is in "fixed" format CLNO is not valid with FORM). 

Source is in "free" format. 

LNO Source is line-numbered (default option if FORM is not 
specified). 

NLNO Source is not Line-numbered (default option if FORM is 
specified). 

OPTZ The object module is optimized. 

NOPTZ The object module is not optimized. 

NWARN - No compilation warning messages are printed, although fatal 
messages are printed. 

FDS - Enables the FORTRAN Debugging System (FDS). 

DML - The Data Manipulation Language (DML) facility of I-D-S/II is 
invoked. If DML is specified, the necessary I-D-S/II files 
must also be specified in the RUN command. The BCD option 
cannot be used with the DML option. 

11-13 DJ31-00 



STAT - The I-D-S/II statistics are printed. If a sequential file with 
the alternate name "P." exists in the AFT, the I-D-S/II 
statistics and abort codes are written to that file. The file 
is written as a BCD file and can be converted to an ASCII file 
for examination from a terminal by the command "CONV file 
descriptor". If "P." does not exist in the AFT, the statistics 
and abort codes are written to the terminal. If the STATS 
option is not specified, the I-D-S/II statistics are not 
printed and the fatal abort codes are directed to the terminal. 
A FINISH statement must be included in the FORTRAN program in 
order to receive any statistics. This option is valid only ·if 
the DML option is specified. 

LDEL - Logical record delete is requested. The default is physical 
record deletion. This option is valid only if the DML option 
is specified. 

The following remaining options concern the loading process: 

GO - The program is executed at the successful completion of the 
compile-load process. 

NOGO The program is not executed at the completion of the 
compilation. If specified, the object program is loaded and 
saved. If no object CH*) save file is specified, only the 
compilation is performed (the General Loader is not 
called). 

ULIB - File descriptors (separated by semicolons) exist following the 
end of the options field that allocate user libraries to be 
searched for missing routines prior to searching for them in 

.the system library. 

NOLIB - No user Libraries are to be used. Specification of user 
libraries in this case causes a RUN diagnostic. 

CORE - nn where nn is additional memory (mod 1024) to be added to 
the standard time sharing loader allocation of 25K. This 
should be done if the message" F PROGRAM EXCEEDS STORE SIZE" 
appears. The compiler attempts to estimate the space 
requirements for the load process by accumulating the size of 
the generated memory, .DATA. region, labeled common and blank 
~ommon for each subprogram compiled; then adding a constant 
(11K for the standard library) to arrive at the size of a load 
space requirement. If the message "NOT ENOUGH CORE TO RUN JOB" 
appears, TSS allocation is too small to compile/load this 
program. 

MAP A memory map is produced after loading. 

ulib - a list of file descriptors (separated by semicolons) pointing to random 
fi Les containing user libraries to be searched before the system 
library. This list mus~ be provided by the user when the ULIB option 
is specified. Up to nine user library files can be specified. 

11-14 OJ31-00 



#fe - A list of file descriptors (the first preceded by a number siqn) for 
files required during execution. Each catalog/file description is 
separated by a semicolon. The file description can be in any of the 
following formats: 

1. filename in the form filename "nn", represents a Logical file code 
referenced by the I/O statements in the program where 
01 nn 63. 

2. f Ledescr specifying a full description. 

"nn" 
f i Lename "nn" 
f i Lename$password "nn" 
userid/catalog$password "nn" 

Filecodes 05, 06, 41, 42, and 43 are implicitly defined for 
terminal directed I/O and need not be mentioned in the RUN command 
unless I/O is to be directed to a file. Other Logical file codes 
can be terminal directed by specifying a descriptor of the form 
"nn", where "nn" is the desired filecode. 

The I-D-S/II files required for compilation and execution should 
also be specified in the #fe List. #fe should contain the file 
descriptor for the 6* subschema file required for compilation with 
the alternate name "6*"· 

Example: 

FORTY/DML/6STAR"6*" 

#fe should also contain the file descriptors for thP 1-D-S/II 
files required for execution that include: 

o Schema File - This file must have the alternate name "1.". 
If an alternate filecode was specified in the DMCL schema 
entry, it must have that alternate name. 

o Data Base Area and Key Fi Les - These random fi Les must have 
alternate names which are the same as the fi Lecodes defined 
in the DMCL entry. 

o Statistics File - If the STAT option is specified and the 
output is to be written to a fi Le, the desired fi Le descriptor 
with the alternate name "P." should be entered in the #fe 
List • 

Example: 

FORTY /DML/SCHEMA"L." 
FORTY /OMLI AREA1 "A1" 
FORTY/DML/KEY1"K1" 
FORTY/DML/STATUS"P." 

11-1 5 DJ31-00 



Example: 

1. Create a random file of 50 llinks, with general read permissions to contain 
the user's library with the ACCESS subsystem. ACCESS 
CF,/ULIB1,B/50,50/,R,MODE/R/ 

2. Listing of a deck setup for creating and saving a user library file 
(through JRN or batch). 

$ 
$ 

AS 
$ 

$ 
$ 
$ 
$ 
$ 
$ 

A$ 

$ 
$ 
$ 

8 

I DENT 
USER IO 
FILEOIT 
FILE 
DATA 
SELECTD 
SELECTD 
SELECTD 
ENDEDIT 
ENDCOPY 
PROGRAM 
PRMFL 
FILE 
ENl),JOB 

16 

UMC$PASSWD 
NOSOURCE,OBJECT,INITIALIZE 
R*,F1S,10L 
*C,,COPY 
UMC/OBJDECK1 
UMC/OBJDECK2 
UMC/OBJ DECK3 

RANLIB 
A 4, W, R, UM CI U LIB 1 
R*,F1R,10L 

Alternate Named Files 

For fil.es required during execution, the programmer can designate an alternate 
name by using the following format: 

filedescr ••altname" 

where: altname = nn; attaching the logical file code nn to the specified 
f i le. 

Examples: 

1. RUN#"10" 

If a given file descriptor consists of only a two-digit logical file 
code not ~nclosed within q~otation marks, a temporary file is created 
unless a quick-access permanent file with the same name already exists. 
The PERM command can subsequently be used to make the temporary file 
permanent. Alternatively, such temporary files can be made permanent at 
the time the user logs off. 

2. RUN PROGRAM#10 

If no file exists in the user's catalog with the name 10, a linked 
temporary file is created with that name and I/O that was directed to the 
logical file code 10 is routed to the temporary file. 

11-16 DJ31-00 



The fe List of the RUN command serves two additional functions: the 
creation of a file control block, and the association of the Logical file 
code with some specific file, or the terminal. When this association 
involves a catalog file descriptor, that file is accessed (or created) and 
added to the user's available file table CAFT>; the file is then all.ocated 
to the process. This is analogous to the allocation by the $ PRMFL and 
$ FILE control cards in a batch operation. 

When a file is first referenced by an executing program, a general 
f i Le "ope r '' fun ct i on i s i n v o k e d • At th i s t i me, the f i Le cont r o l b lock 
becomes in1olved in one of three ways: 

1. There is no file control block for the Feferenced file. 

2. The file control block indicates that the terminal is to be used. 

3. The file control block indicates that a file is to be used. 

If there is no file control block, one is automatically generated 
indicating that a file is to be used. When the file control block indicates 
that the terminal is to be used, the device attachment is completed 
and I/O proceeds. When the file control block indicates that a file is 
to be used (cases 1 and 3), the AFT is searched. If a match is found (i.e., 
an allocated file has a two-digit file code/name equivalent to the file 
description in the I/O statement>, attachment is made to that file and I/O 
proceeds. If no match is found (i.e., the.re has been no file allocation 
for the current file designator), a comme~t is displayed on the terminal 
identifying the undefined file designator. 

3. FILE XX NOT IN AFT. ACCESS CALLED 

where: XX is the two-digit fi Le designator being referenced by the running 
program. 

At this point, the ACCESS subsystem is called (as indicated by the above 
message) and displays: 

FUNCTION? 

Commands can now be given to ACCESS. When the dialog is finished, 
ACCESS returns to the user's program. The "open" routine then makes a fresh 
search of the AFT. If a match is now found (indicating some file has been 
accessed), attachment is made to that file and I/O proceeds. If a match 
is not found, the fi Le control block is changed to indicate attachment to 
the terminal and I/O proceeds. 

11-17 DJ31-00 



Consider that PROGRAM contains I/O statements with a file designator of 10 and 
the following dialogue transpires: 

*FORTRAN 
*OLD PROGRAM 
*~ 

FILE 10 NOT IN AFT. ACCESS CALLEO 

FUNCTION? 

If the response is a carriage return, the terminal is used for file 10. If the 
response is 

AF,/MYFILE"10",R,W 

the ACCESS subsystem accesses the file MYFILE of the user's master catalog under the 
alternate name 10 with read and write permissions. ACCESS then repeats the query 
"FUNCTION?". If the user now responds with a carriage return, I/O for file 10 is 
directed to MYFILE. 

One additional option exists for the purpose of collecting the results of a 
compiler abort. If at the time the RUN command is issued there exists a file in the 
AFT of name ABRT, that file is allocated to the compilation activity as file code 
*F. In the event of a compil~r abort, a memory dump and symbolic display of the 
internal tables is written to this file in a form suitable for printing. 

ACCESSING I-0-S/II FILES REQUIRED FOR EXECUTION 

The I-D-S/II files necessary for execution can be accessed by listing them in 
the #fe list of the RUN command as specified above or by the time sharing GET 
command. Another alternative is to use calls to the supplied FORTRAN subroutine 
ATTACH. 

Example: 

CALL ATTACH <1,."FORTY/DML/AREA1""A1"";",1,0,ISTAT,) 

The file is placed in the AFT under the alternate name "A1" which is the file 
code specified in the schema DMCL. The schema file 1* cannot be accessed in this 
way because 1* is necessary for the execution of the INVOKE statement, and INVOKE 
must be the first executable statement. 

11-1 8 DJ31-00 



First Line RUN Command 

The RUN command can be designated as the first line or lines of the source 
program. This is useful when running FORTRAN programs with DML statements because 
the RUN command may require several Lines of input to specify all the I-D-S/11 
files. The following rules apply to the first line of the RUN command. 

1. This feat• re is available on t~me sharing ASCII files only. 

2. The line can be in the curre·nt file (*SRC) or a referenced permanent 
file; however, it must begin with the first line of the first source 
f i Le. 

3. The first two characters following the Line number must be *# with no 
embedded blanks. 

4. Multiple *# lines can appear in a source file, provided the total 
number of characters does not exceed 480 (six 80-character lines). 

5. The lines must conform with the RUN syntax 
line, except the last, must be terminated 
field-separating delimiters: equal sign, 
parenthesis, semicolon, or number sign). 

continuation (i.e., each 
by one of the following 
left parenthesis, right 

6. The line(s) are treated as comment line(s) by the FORTRAN compiler. 

7. The first line contained RUN command can be overridden by indicating 
save files, options, or concatenation on the RUN type-in. 

Example: 

*FORTRAN 
•NEW 
•OfO•#RUN •C20,30)=HSTARCBCD,NOG0) 
•020 PRINT, "HELLO DOLLY ••• " 
*030 STOP; END 
*RUN (Invokes first line syntax) 

DML Example: 

*#RUNH*; FORTY /DML/CSTAR=HSTAR (DMU #FORTY /DML/6STAR"6* 11
; 

2*#FORTY /DML/SCHEMA"1. II; 

3•#FORTY /DML/AREA1 11 A1 II; FORTY /DML/KEY1 11 K1 II 

11-19 DJ31-00 



1. RUN 

The current *SRC FORTRAN source file is compiled and execyt~d. 

2. RUNH-20 FR001=HSTAR; CSTAR1 CULIB) ABC; XYl # 

INPUT 0 01 '' ; OUTPUT "02" 

FORTRAN program file FR001 is to be compiled and executed. The H* is saved 
on file HSTAR and C* on file CSTAR1. For the execution, the random user 
libraries At;3C and XYl are scanned for outstanding SYMREfs in FR001, 
~ogical file codes 01 and 02 have been used as alternate n•mes for the 
quick ... access permanent files INPUT and OUTPUT. A heading line for the date 
and time is displayed and the object program is limited to 20 seconds of 
executipn time. 

3. RUN #''10" 

Tne current *SRC file is compiled and executed and 1/0 t.hrough logical file 
code 10 is directed to/from the terminal. 

4. RUN aCOIOM = CSTAR2 C~CD,NOGO) 

FORTRAN file BCDIOM is compiled and the object deck is saved on file CSTAR2. 
The object file is to be executed in BCD mode. 

5. RUN HSTAR #02 

Ei<ecute a previously bound and saved H* file. The quick-access file "02" 
is accessed by the RUN sµbsystem. If no such file exists, a temporary file 
is cre~ted. 

6. RUN = HSTAR CTIME=60, CORE=22, ULIB) SEARCH 

Compile and execute the current *SRC file, saving the bound H* file on 
random file HSTAR. Limit the compile time to 60 seconds and increase the 
memory limits. The random user library 'SEARCH' is searched to satisfy 
outstanding SYMREFs prior to searching the standard sy$tem library. 

7. RUNH •(10(190); SCRLIBC300,) 

Campi le and ex~cute the program by concatenating the current file Lines 
10 through 190 and file SCRLIB lines 300 through the last line of the 
f i le. 

8. RUN •; £STAR1; CSTAR2. 

Compile and exec;ute the 
previou~.~Y saved C* files: 

current *SRC file 
CSTAR1 and CSTAR2. 

11-20 

and bind it with two 

DJ31-00 



DML TSS Example 

RUN *;FORTY/DML/CSTAR=<DML,STAT)#FORTY/DML/6STAR"6*"; 
FORTY/DML/SCHEMA"1.";FORTY/DML/AREA1"A1"; 
FORTY/DML/KEY1"K1";FORTY/DML/STATUS"P." 

The current *SRC fi°le is compiled using the subschema file "6*" and bound with 
the subschema cont re L structure. The resulting object code is executed using the 
schema file ("1."), one data base area file ("A1"), and one data base key file 
("K1"). The I-D-S/Ii statistics and abort codes are written to the file "P.". 

Batch Activity To Build Time Sharing H* File 

The following sample program illustrates a method of bui Lding a time sharing 
H* file in batch mode. 

8 16 

$ SNUMB 
$ !DENT 
$ LOW LOAD 100 
$ USE .GRBG./36/ 
$ OPTION NOFCB,NOGO,SAVE/object 
$ USE .GTLIT,.TSGF.,.FTSU.,.FXEMA 

A$ FORTY NFORM,NLNO,ASCII 
$ SELECTA source program f i le 

A$ EXECUTE DUMP 
$ PRMFL H*,W,R,Hstar f i le 
$ EN DJ OB 

Time Sharing System RUNL Command For Link/Overlay 

When a bound object program is too Large for execution under time sharing, 
segmentation is achieved by using a special form of the RUN command (RUNL) to 
Link/overlay H* files ~hat are to be constructed. When the RUNL command is used, 
a PSTR printout can be obtained with the YFORTRAN system but not with the FORTRAN 
system. 

Before the RUNL command can be used, a separate RUN command with the NOGO opt ion 
must have been specified to create each of the C* files that will be needed in the 
RUNL command. This command can be written as RUNL or RUNLH where the Latter form 
displays a heading line with the current date and time (and SNUMB if YFORTRAN), with 
the format 

RUNL H [C*file list] C= H*fileJ [(options)] [ulib files] [; Link list] 

C* file list - The set of file descriptors for the binary object files for the 
nonoverlayed main program link. 

H* file - A single file descriptor of a random file into which thi: system 
Loadable file produced by the loader is saved if the Load process 
is successful. If the named file does not exist, a file of 216 
llinks <random temporary) is created. 

11 -21 DJ.31-00 



(options): 

ULIB - Fi le descriptors exist at the end of the options field that 
Locate user libraries to be searched prior to searching the 
system library. The load process for each link involves 
searching the same set of user libraries first. 

CORE = nn - The YFORTRAN memory requirements are set to nn+9K or 
29K, whichever is larger. If not specified, nn is set to 
20K. 

NAME 

MAP 

GO 

The FORTRAN link loader memory requirement is nnK if nn < 
23K or 23K + nnK if nn > 23. 

name - Provides a name for the main Link of the saved H* fi Le; when 
not provided, the name "//////" is used. 

- If the user has previously defined a file with the name 
PSTR, a load map of the link/overlay save file is written 
to that file. Otherwise, a temporary file is created by 
that name and the output is written to that file. This 
feature is currently available only under the YFORTRAN 
system. 

- Allows a user to enter execution directly from the RUNL 
command (the default is NOGO). The user must provide for 
run time file definition and dynamic attaching through 
"CALL ATTACH", etc. If it is necessary to specify through 
RUN the necessary object time fi Les, the user must 
explicitly use the RUN command after creating the 
link/overlay H* file. 

Example: 

RUN HSTAR#INPUT"01";0UTPUT"02" 

Link List - A sequence of link phrases wherein each link phrase is used to 
specify the position at which segmentation is to take place. When 
the Link phrase is encountered in the RUNL command, all object deck 
files for the link being terminated have been copied to the loader 
input file R*. The Link phrase is parsed, resulting in the 
generation of a$ LINK card image and possibly a$ ENTRY card image 
being written to R*. 

Formats 

LINKCname1 ,name2 ) C*file list for name1 

LINK(name1 ,name2,entry ) C*file List for name1 

LINKCname1 ,,entry) C*file List for name1 

Where: name1 (a five- or six-character constant or variable) is a unique 
Terentifier for the new link 

naf'lle2, if present, is the identifier of the previously loaded link 
tobeoverlayed. The new link assumes the origin of the old link. 
All Links to be overlayed are written in system Loadable format 

11-22 DJ31-00 



NOTES: 

,/ 

1. 

entry, if specified, is the name of the desired primary or secondary 
SYMDEF entry point of a subprogram in the current Link 

Subprograms contained in any other link can always reference 
subprograms in the main Link. Only links that reside in memory at 
the same time can reference each other. For example, if I. ink Bis 
Loaded as an overlay of link A (LINK (B,A)), the subprograms of link 
B cannot reference subprograms of Link A. 

To ascertain the size required to allocate a permanent H* save 
file, create a temporary file by means of RUNL. Then use the PERM 
command to create a permanent fi Le. The size of the permanent fi Le 
will automatically be chosen just Large enough to contain the 
"used" Llinks in the temporary file. 

2. Under YFORT, "PSTR" Load map generated by the General Loader in 
batch can be sent to a remote station or central site printer, if 
it is a permanent file. 

3. 

Example: 

PERM PSTR;PS 
SCAN PS 
FORM? LOAD 
000 ERRORS 
EDIT? YES 
?BATCH 
STATION CODE 

$ !DENT 

Make file permanent if temp used 

Print number of errors 

For multiple-blank suppression 

Reply XX or carriage return 

XX = remote station code 
carriage return = central site printer 

Input batch $ !DENT card 

Alternatively, a BMC run in batch can print the file. 

A temporary H* save file cannot be command-Loaded; use the LOOT 
command (not LODX). The YFORTRAN or FORTRAN RUN command should 
be used, since run time files can then be specified. 

4. The name of the main Link is//////, unless NAME=name is used as 
an option. The user must specify the name when Loading the H* save 
f i Le. 

5. Creating a multiple-Line embedded RUNL command is the best way 
to deal with a Long, complex command. 

Example: 

1*#RUNLH MAIN; SUB1;SUB2=HSTAR (ULIB,MAP) 
2*#FY/SDL7LIB,R; 
3*#LINK (A)SUB3;SUB4; 
4*#LINK (B,A,ENTRY5)SUB5;SUB6; 
S*#LINK (C,B)SUB#;SUB8 

Observe rules for Line termination. 

11-23 DJ31-00 



6 • Aft e r t h e L o ad e r bu .i L d s t h e H * s ave f i L e c on t a ·i n i n g t he L i n k s , i t 
i s n e c.e s s a r y t o r e l o ad t h e s e l i n k s i n t h e o r d e r r e q u i r e d t o a c h i e v e 
the program function. Reloading is done by means of a time sharing 
library routine (FTLK) that has two entries, LINK and LLINK. LINK 
is callable from the FORTRAN source to load a particular link and 
transfer control to a predesignated entry within that link. 
This SYMDEF must be specified in the "entry" field of the link 
phrase. LLINK can be called to load a particular link and return 
control to the place in the program at which LLINK has been called. 
The two calls are as follows: 

CALL LINK ("A ") 
CALL LLINK ("B ") 

The link names must be either five or six characters in length 
and blank-filled as needed. 

7. When using FORTRAN random I/O, the CALL RANSIZ statement must be 
placed in the main link. This ensures proper file wra~up by 
forcing the random I/O subroutine FRRD to reside with the main link 
in memory at all times. 

8. The main link in a link/overlay run must contain some input/output 
when the Hstar file is to be executed in the time sharing 
mode. 

9. The RUNL command cannot be used to process octal patch corrections 
under the FORT system. 

Example Of RUNL Inputs And Link H Creation 

Ten subroutines plus a main program are to be executed under time sharing. The 
first overlay (link A), is to have three subroutines; the second overlay Clink B>, 
four subroutines; and the third overlay (link c>, three subroutines. 

1. Compile and save the C* object deck files CCSTAR) for each program. 

RUN MAIN =;CSTAR1(NOGO) 
RUN SUBA;SUBB;SUBC =;CSTAR2CNOGO) 
RUN SUBD;SUBE;SUBF;SUBG =;CSTAR3CNOGO) 
RUN SUBH;SUBI;SUBJ =;CSTAR4CNOGO) 

2. Create a link overlay H* file (HSTAR) using RUNL. 

RUNL CSTAR1 = HSTARCULIB,MAP) ULIB1; 
LINK{A) CSTAR2; LINKCB,A,ENTRYB)CSTAR3;LINK(C,B) CSTAR4 

3. Load and execute the H* save file specifying core limits and run-time 
input/output files. 

RUN HSTAR=(CORE=35K)#INPUT"41";0UTPUT"13" 

. 11-24 DJ31-00 



Example Of LINK/LLINK Usage 

1. Campi le and save the C* object deck fi Les for the main program and the two 
subroutines. 

010 PRINT,"MAIN EXECUTING" 
020 CALL LLINK ("A ") 
030 CALL 5UBA 
040 CALL INK ("B ") 
050 STOP;l:ND 

RUN =;MAIN(NOGO) 
NEW 

010 SUBROUTINE SUSA 
020 PRINT ,"LINKA EXECUTING" 
030 RETURN; END 

RUN=;ALINK(NOGO) 

010 SUBROUTINE SUBS 
020 PRINT, "LINKB EXECUTING" 
030 RETURN; END 

RUN=; BLINK (NOGO) 

2. Create a link overlay H* file using RUNL. 

RUNL MAIN=HSTAR;LINK(A) ALINK;LINK(B,A,SUBB)BLINK 

3. Load and execute the H* file. 

RUN HSTAR 
or 

FRN HSTAR=CCORE=32K) 

Example .Q.!. Loader Input File 

The following control card setup would appear on R* for the example above 
illustrating the use of LINK/LLINK. 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

$ 
A$ 

LOW LOAD 
USE 
USE 
OPTION 
OPTION 
OBJECT 
DKEND 
LINK 
OBJECT 
DKEND 
LINK 
ENTRY 
OBJECT 
DKEND 
EXECUTE 

.GRGB./36/ 

.GTLIT,.TSGF.,.FTSU.,.FXEMA,.FTLK 
NOMAP 
NOGO 

A 
SUSA 
SUSA 
B,A 
SUBS 
SUBS 
SUBS 

11-25 DJ31-00 



Example .Q1. ~ Time Sharing Session 

A comprehensive example of program creation, testing, correction and 
modification follows. Replies to the user from the system are underlined. 
Explanations are enclosed in parentheses and are not part of the printout. 

USER ID - J.P.JONES 
PASSWORD--
4BOBUGI 
*FORTRAN 
*NEW 
*AiJf0x - Center automatic-line-number mode) 
*0010 READ,A,B,C 
*lrn20" X1=A*B/C 
*0030 X2=A**2;B**2 
*0040 ANS=X2/X1 
*0050 PRINT 10,X1,X2, ASN#ANS (typing error correction) 
*0060 10 F0Rt'1AT(1X,"X1=",F6.S#2,"X2=",F7.2,"ANS=", 
*O'OfO F6.2) 
*cfO'BO ST0P 
*0090 END 
*0100 (end automatic mode by carriage return) 
*1'.rn"30 X2=A**2+B**2-C (replacement of line 30) 
*sAVE F0RT01 
DATA SAVED--F0RT01 

(display corrected program) 
READ,A,B,C 
X1=A*B/C 
X2=A**2+B**2-C 
ANS=X2/X1 

*LIST 
0010 
0020 
0030 
0040 
0050 
0060 10 
0070 
0080 
0090 

PRINT 10,X1,X2, ANS 
F0RMATC1X,"X1=",F6.2,"X2=",F7.2,"ANS=", 
F6.2) 
ST0P 
END 

*RUN (run program) 

= 3.2,10.5,2.2 (type input data) 
X1= 15.27X2= 118.29ANS= 7.75 (output - correct, 

but poor format) 

*0060 10 F0RMAT<1X,"X1=" ,F6.2," X2=",F7.2," ANS=", 
<correct format statement) 

*RUN 

= 3.2,10.5,2.2 
Xf= 15.27 X2= 118.29 ANS= 7.75 (improved output format) 
*RESAVE F0RT01 
DAT~_§_~VED--F0RT01 

*BYE (finished) 
**RES0URCES USED $ 2.08, USED T0 DATE $ 263.85= 27% 
**TIME SHARING OFF AT 15.421 ON 07/10/79 

11-26 DJ31-00 



SUPPLYING DIRECT-MODE PROGRAM INPUT 

During program execution, keyboard input may need to be supplied to Sdtisfy one 
or more READ statements in the program. Each time input is required, the equal-sign 
character, "=", is printed at the terminal. The user begins typing the input 
immediately following the equal sign. 

It is also possible to input data from a paper tape. The actual characters 
transmitted to the terminal from a READ statement are: 

o carriage return CCR) 

o Line feed (Lf) 

o equal sign <=> 

o sign-on (X-ON) 

The sign-on character activates the paper tape reader if the reader is in the 
ready state which is achieved by having the paper tape "Loaded" and the reader switch 
set on. Paper tapes which are to be used in this way should end each line with the 
characters: 

o carriage return CCR) 

o line feed (LF) 

o rubout (RO) 

o sign-off (X-OFF or DC3) 

NOTE: The sign-off character, X-OFF, turns off the reader but leaves it in a 
ready state for any'subsequent READs. 

Terminal output from the PUNCH statement automatically appends this control 
information to the end of each line to facilitate the preparation of the tapes. In 
any event, the user must manually begin such tapes with an appropriate leader of RO 
characters. 

LIMITATIONS IMPOSED BY THE AFT ----

The AFT allows a maximum of 20 files. This may restrict the running of FORTRAN 
DML programs in time sharing since a compile-and-execute run requires a source file, 
subschema fi Les (6* and C•>, a schema fi Le (1•), and data base area and key ti Les. 
If the number of data base areas and key files is Large, the run may require more 
files than allowed in the AFT. Note that the collector file SY** is always present 
in the AFT. 

One way to avoid this difficulty is to use a system-Loadable file (H*). The 
source program can be compiled with the subschema file (6*) and bound with the 
control file CC*) to produce the H* file. The AFT can then be cleared. The 
files required for execution can be accessed under their alternate names by the time 
sharing GET command. Data base area and key files can also be accessed by calls to 
ATTACH in the FORTRAN source program. The H* can then be run. 

11-27 DJ31-00 



\ 
\ 

Example: 

'.,,,,,\ RUN D ML TE S T .; F 0 R TY I D M L/ C S T AR = H S TA R C D ft1 L , N 0 G 0 ) # F 0 RT Y I D M L/ 6 S TAR " 6 * " 
"'t•REMC 
':ii" GET FORTY/DML/SCHEMA"1." 
* T FORTYIOML/AREA1"A1" 
*G T FORTY/DMLIKEY1"K1" 
*RUN HSTAR=(STAT) 

MEMORY CONSIDERATIONS 

Under the FORT or FRN system, the maximum memory allowed for compilation is 
the initial memory plus a maximum of 75K. The amount of memory available may be 
limited to less by time sharing itself. If the program is too large to run within 
these limits, a Y1 <X·2> compiler abort occurs. The only way to avoid this situation 
is to reduce the size of the program. 

Under the YFORTRAN system, the maximum memory allowed for compilation is the 
initial memory plus 3K. If this is not enough memory, the "CORE=" option should be 
used. 

RESTRICTIONS ON l-OAD USAGE - -----

It is not possible to ready an area for LOAD in time sharing. The FORTRAN 
DML statement: 

READY(All REALM= realm list ,LOAD) 

is illegal in time sharing. LOAD usage requires special JCL and must be run in batch. 
This special JCL is described in Appendix E of the OM-IV (fORTRAN) 
Program's Reference Manual. 

11-28 DJ31-00 



SECTION XII 

TIME SHARING ERROR MESSAGES EXPLANATION 

Error messages generated by the various time sharing subsystems and by the Time 
Sharing System Executive program fall into two classes (from the viewpoint of 
explanations): 

o Error messages that are considered self-explanatory. 

o Error messages that, due to the need for reasonable conciseness in 
conversational messages, may require further explanation for a given user 
the first few times that the message is encountered. 

All messages falling into the second class are prefixed by a message number, 
usually enclosed by carets <i.e., <nn>, or in some cases <nn<). Further explan.:ition 
of these messages is immediately available at the terminal through the HELP 
subsystem. HELP may be called for either at the subsystem-selection level or at the 
command level under most major subsystems. 

HELP message explanations are Listed below, indexed under the associated error 
message(s). These error messages, in turn, fall into two categoriE's from the 
viewpoint of origin and applicability. 

o E r r o r m e s s .a g e s o r i g i n a t i n g f r om t h e t i m e s h a r i n g E x e c u t i v e , m o s t o f w h i c h 
can be received only by an implementor of a new, not fully debugged, time 
sharing subsystem during its checkout. These messages are numbered 1 
through 49. 

o Error messages originating from the various time sharing subsystems, which 
would be received by a user of the system. These messages indicate faulty 
system usage or system malfunction, and are numbered beginning with 
50. 

NOTE: On some types of terminals, the carets enclosing the error message 
number are reproduced as parentheses. 

In the following descriptions, generated error messages <.ind their 
associated HELP subsystem error message explanations are listed by message 
numbers. 

1 2-1 DJ.51-00 



0U1 - INCORRECT PRIMITIVE 

AN ILLEG.Al,. PRIMITI.VE: HAS OCCURRED IN A COMMAND LIST. CHECK THE COMMAND "-IS.T POINT~R 
IN THE PROGRAM QiSCRIPTOR AND THE COMMAND LIST FORMAT AMD PRIMlTIVES. 

OQ~ ~ location INVALID FILE I/O COMMAND 

IN THE CALLING SEQUENCE OF A DRL FOR DISK I/O, THE SEEK, RE:AO or WRIT~ CQMMANQ IS 
INCORRECT. CHECK THE SUBSYSTEM CODE. 

003 - location INVALID DCW 

IN THE CALL ING SEQUENCE 0 F A DR L F 0 R DISK II 0, A DC W I S INC 0 RR E CT • CHECK THE SUBS Y S. TE M 
CODE. 

004 ~ location INVALID DRL ARGUMENT 

THE ADDRESS OF A. PR!,. ARGUMENT IS OUTSIDE THE RANGE OF THE PRQ.GRA.M. THE NUMBER GIVEN, 
IN THE COMMENT IS THE RETURN FROM THE DERAIL. CHECK THE SUBSYS.TEM CO.l)E FOR IMPROPER 
INITIALIZATION. 

005 - BAD DRL CQPE 

THE ADDRESS OF A DRL CODE IS OUT OF THE RANGE OF USABLE CODES OR ILLEGAL FOR THIS 
SUBSYSTEM. CHECK THE SUBSYSTEM CODE. 

006 - LEVEL OF CONTROL TOO DEEP 

THE MAXIMUM. NUMBER QF CALLS IN THE PR()GRAM STACK OR THE CALLSS STACK HAS BEEN EXCEEDED. 
IN THE CASE Of TH~ PROGRA.M STACI<, HUS MEANS THAT THE SEl.,ECTED SYSTEMS PRIMITIVE LIST 
CONTAINED A CALL~, AND IN TURN, THAT SUBSYSTEMS PRIMITIVE LIST CONTAINED A CALLP, 
ETC. UNTIL THE LE:N(lTH OF THE PROGRAM: STACK WAS EXCEEDED. LIKEWISE, IN TH.E CASE O·F 
THE CAl,LSS SUCK QF SUB.SYSTEMS CALLIN(; OTHER SUBSYSTEMS BY MEANS OF THE DRL CALLSS,, 
THE TABLE LIMIT ~AS EXCEEDED. REVIEW THE SUBSYSTEM AND DEPTH OF CALLS. 

007 - BAD PRO~. PESC-IPTION 

IN THE PROGRAM DESCRIPTOR, THE POINTER TO THE COMMAND LIST IS ZERO OR POINTS TO 
NON-COMMAND LANGU~GE PATA. CHECK THE PROGRAM DESCRIPTOR AND COMMAND LANGUAGE 
LIST. 

008 ~ LOOP IN PRIMITIVES 

A NUMBER OF THE P-RHUHVES ARE EXECUTED ENTIRELY WITHIN THE TSS S.CAN. MODULE. A COUNTER 
IS INITIALIZED AT THE ENTRY TO SCAN AND A COUNT KEPT OF PRIMITIVES EXECUTED. WHEN 
THE COUNT EXCEED.$ A GIVEN MAXIMUM, IT BECOMES OBVIOUS THERE IS A LOOP. CHECK 
THE SEQUENCE ~f THE PRIMITIVES FOR THE SUBSYSTEM. 

009 - SYSTEM UNl~OWN 

THE REQUESTED SUBSYSTEM IS UNKNOWN TO TSS OR IS NOT INCLUDED IN THE SYSTEM FOR THIS 
INSTALLATION. CHECK THE NAME FOR SPELLING TOO. 

12-2 DJ~ 1.., 1J:O 



010 - PROGRAM TOO LARGE TO SWAP 

A SUBSYSTEM IS SO LARGE THAT THE NUMBER OF DCW'S REQUIRED TO LOAD OR SWAP THE PROGRAM 
EXCEED THE MAXIMUM NUMBER OF DCW'S WHICH CAN BE BUILT. CHECK THE SIZE OF THE 
SUBSYSTEM. PERHAPS THE SUBSYSTEM EXPANDS ITS CORE LIMITS WITH A DRL ADDMEM. CHECK 
ALL DRL ADDMEM REQUESTS. SEE.LADCW DEFINED IN COMMUNICATION REGION FOR MAXIMUM NUMBER 
OF DCW'S ALLOWED. 

011 - location INCORRECT CORE FILE USAGE 

A REQUEST TO MOVE CORE FILE SPECIFIES MORE THAN TEN WORDS TO BE MOVED. CHECK ALL 
DRL CORFIL REQUESTS. 

012 - Location PRIVILEGED I/O ATTEMPTED 

PRIVILEGED DISK 110 IS RESERVED FOR SUBSYSTEMS WHICH SPECIFICALLY REQUIRE INFORMATION 
FROM FILES ALLOCATED TO THE TIME SHARING SYSTEM. PLEASE REVIEW THE NEED FOP 
PRIVILEGED DISK I/O AND JUSTIFY IT WITH THE COMPUTING CENTER. 

013 - Location USERID NOT PERMITTED 

THE DRL USER ID CAN BE USED ONLY BY THE LOGON SUBSYSTEM. CHECK THE SUBSYSTEM 
CODE. 

014 - NOT CURRENTLY ASSIGNED. 

015 - Location CANNOT RESET USERID 

THE LOGON SUBSYSTEM IS EXECUTING A DRL USER ID, BUT THE ID OF THE SPECIFIED U.S.T. 
IS NON-ZERO. A TERMINATE MUST BE EXECUTED FOR THAT USER BEFORE THE U.S.T. CAN BE 
REUSED. TRY TO DETERMINE WHY THE TERMINATE WAS BYPASSED, OR WHY NEW SYSTEM WAS 
SELECTED AFTER LOGON. 

016 - Location OVERFLOW FAULT 

THE SUBSYSTEM IN EXECUTION ENCOUNTERED AN OVERFLOW CONDITION AT THE DESIGNATED 
LOCATION AND THE SUBSYSTEM DID NOT SPECIFY A FAULT VECTOR. THE LOCATION IS RELATIVE 
TO ZERO (SEE EDIT MAP) UNLESS IT IS A MASTER SUBSYSTEM. THEN THE LOCATION IS RELATIVE 
TO TSS ZERO AND ONE MUST DETERMINE THE LOAD ADDRESS OF THE SUBSYSTEM TO DETERMINE 
THE FAULT LOCATION IN THE MASTER SUBSYSTEM. REVIEW YOUR PROGRAM INPUT FOR INCORRECT 
DATA BEFORE REQUESTING HELP FROM THE COMPUTING CENTER. 

017 - location ILLEGAL OP CODE 

THE SUBSYSTEM IN EXECUTION ENCOUNTERED AN ILLEGAL (QR ZERO) OP CODE OR A MME 
OPERATION AT THE DESIGNATED LOCATION, AND THE SUBSYSTEM DID NOT SPECIFY A FAULT 
VECTOR. 

THE LOCATION IS RELATIVE TO SUBSYSTEM ZERO (SEE EDIT MAP) UNLESS IT IS A MASTER 
SUBSYSTEM, THEN THE LOCATION IS RELATIVE TO TSS ZERO AND ONE MUST DETERMINE THE LOAD 
ADDRESS OF THE SUBSYSTEM TO DETERMINE THE FAULT LOCATION IN THE MASTER 
SUBSYSTEM. 

REVIEW YOUR PROGRAM CODE AND INPUT FOR INCORRECT DATA BEFORE REQUESTING HELP 
FROM THE COMPUTING CENTER. 

12-3 DJ31-00 



018 - location MEMORY FAULT 

THE SUBSYSTEM IN EXECUTION ENCOUNTERED A MEMORY FAULT AT THE DESIGNATED 
LOCATION, AND THE SUBSYSTEM DID NOT SPECIFY A FAULT VECTOR. 

THE LOCATION IS RELATIVE TO SUBSYSTEM ZERO (SEE EDIT MAP) UNLESS IT IS A MASTER 
SUBSYSTEM, THEN THE LOCATION IS RELATIVE TO TSS ZERO AND ONE MUST DETERMINE THE LOAD 
ADDRESS OF THE SUBSYSTEM TO DETERMINE THE FAULT LOCATION IN THE MASTER 
SUBSYSTEM. 

REVIEW THE PROGRAM CODE AND INITIALIZATION OF ADDRESS OR iNDEX REGISTERS AS WELL 
AS THE PROGRAM INPUT FOR INCORRECT DATA BEFORE REQUESTING HELP FROM THE COMPUTING 
CENTER. 

019 - location FAULT TAG FAULT 

THE SUBSYSTEM IN EXECUTION ENCOUNTERED A FAULT TAG FAULT AT THE DESIGNATED 
LOCATION, AND THE SUBSYSTEM DID NOT SPECIFY A FAULT VECTOR. 

THE LOCATION IS RELATIVE TO SUBSYSTEM ZERO (SEE EDIT MAP) UNLESS IT IS A MASTER 
SUBSYSTEM, THEN THE LOCATION IS RELATIVE TO TSS ZERO AND ONE MUST DETERMINE THE LOAD 
ADDRESS OF THE SUBSYSTEM TO DETERMINE THE FAULT LOCATION IN THE MASTER 
SUBSYSTEM. 

REVIEW THE PROGRAM CODE AND INITIALIZATION OF ADDRESS OR INDEX REGISTERS AS WELL 
AS THE PROGRAM INPUT FOR INCORRECT DATA BEFORE REQUESTING HELP FROM THE COMPUTING 
CENTER. 

020 - location DIVIDE CHECK FAULT 

THE SUBSYSTEM IN EXECUTION ENCOUNTERED A DIVIDE CHECK FAULT AT THE DESIGNATED 
LOCATION, AND THE SUBSYSTEM DID NOT SPECIFY A FAULT VECTOR. 

THE LOCATION IS RELATIVE TO SUBSYSTEM ZERO (SEE EDIT MAP) UNLESS IT IS A MASTER 
SUBSYSTEM, THEN THE LOCATION IS RELATIVE TO TSS ZERO AND ONE MUST DETERMINE THE LOAD 
ADDRESS OF THE SUBSYSTEM TO DETERMINE THE FAULT LOCATION IN THE MASTER 
SUBSYSTEM. 

REVIEW YOUR PROGRAM INPUT FOR INCORRECT DATA BEFORE REQUESTING HELP FROM THE 
COMPUTING CENTER. 

021 - (nnnnnn) BAD STATUS SWAP OUT #S 

A BAD I/O STATUS HAS BEEN RECEIVED ON A WRITE ORUM FILE #S, THE SWAP FILE. TRY AGAIN. 
IF PROBLEM PERSISTS, ALERT OPERATIONS. lHE PARENTHESIZED NUMBER IS THE STATUS 
CODE. 

022 - (nnnnnn) BAO STATUS SWAP IN #S 

A BAO I/O STATUS HAS BEEN RECEIVED ON A READ DRUM FILE #S, THE SWAP FILE. TRY AGAIN. 
!F PROBLEM PERSISTS, ALERT OPERATIONS. THE PARENTHESIZED NUMBER IS THE STATUS 
CODE. 

023 - (nnnnnn) BAO STATUS LOAD #P 

A BAO I/O STATUS HAS BEEN RECEIVED ON A READ ORUM FILE #P, THE TSS FILE. TRY AGAIN. 
IF PROBLEM PERSISTS, ALERT OPERATIONS. THE PARENTHESIZED NUMBER IS THE STATUS 
CODE. 

12-4 OJ31-00 



024 - location MME FAULT 

. THE SUBSYSTEM IN EXECUTION ENCOUNTERED A MME FAULT AT THE DESIGNATED L orf\I T\iN,. 
AND THE SUBSYSTEM DID NOT SPECIFY A FAULT VECTOR. 

TH E L 0 C A Tl 0 N I S R E LA T I V E T 0 S U B S Y S TE M Z E R 0 ( S E E E D I T M A P ) U N L E S S I T I ~; 1\ M A S I Cl~ 
SUBSYSTEM, THEN THE LOCATION IS RELATIV.E TO TSS ZERO AND ONE MUST DETERMINE Ill[ LOAD 
ADDRESS OF THE SUBSYSTEM TO DETERMINE THE FAULT LOCATION IN THE MASTER 
SUBSYSTEM. 

R EV IE W TH E P R 0 G R A M C 0 D E A N D I N I T I A LI Z A T I 0 N 0 F A D D R E S S 0 R I N D E X R E G I S TE R S I\ S \ff l L 
AS THE PROGRAM INPUT FOR INCORRECT DATA BEFORE REQUESTING HELP FROM THE COMPUTING 
CENTER. 

025 - location LOCKUP FAULT 

THE SU 8 SYSTEM IN EXEC UT I 0 N ENC 0 UN TE RED A L 0 CK UP FAULT AT THE D [::,I GM I\ T FI> 
LOCATION, AND THE SUBSYSTEM DID NOT SPECIFY A FAULT VECTOR. 

THE LOCATION IS RELATIVE TO SUBSYSTEM ZERO (SEE EDIT MAP) UNLESS IT rs I\ MAS Tm 
SUBSYSTEM, THEN THE LOCATION IS RELATIVE TO TSS ZERO AND ONE MUST DETERMINE 1 llE LOAD 
ADDRESS OF THE SUBSYSTEM TO DETERMINE THE FAULT LOCATION IN THE MASTER 
SUBSYSTEM. 

REVIEW THE PR 0 GRAM C 0 DE AND IN 11 I A LIZ AT I 0 N 0 F ADDRESS 0 R rN DEX REGIS fE i~ S AS \J L:: LL 
AS THE PROGRAM INPUT FOR INCORRECT DATA BEFORE REQUESTING HELP FROM THE CUMPtlfING 
CENTER. 

026 - location OP-NOT-COMPLETE FAULT 

THE SUBSYSTEM IN EXECUTION ENCOUNTERED AN OP-NOT-COMPLETE FAULT AT THE 
DESIGNATED LOCATION, AND THE SUBSYSTEM DID NOT SPECIFY A FAULT VECTOR. 

THE LOCATION IS RELATIVE TO SUBSYSTEM ZERO (SEE EDIT MAP) UNLESS IT IS A Ml\Slrn 
SUBSYSTEM, THEN THE LOCATION IS RELATIVE TO TSS ZERO AND ONE MUST DETERMINE THE LOAD 
ADDRESS OF THE SUBSYSTEM TO DETERMINE THE FAULT LOCATION IN THE MASTER 
SUBSYSTEM. 

REVIEW THE PROGRAM CODE AND INITIALIZATION OF ADDRESS OR INDEX REGISTERS AS WELL 
AS THE PROGRAM INPUT FOR INCORRECT DATA BEFORE REQUESTING HELP FROM THE COMPUTING 
CENTER. 

027 - location COMMAND FAULT 

THE SUBSYSTEM IN EXECUTION ENCOUNTERED A COMMAND FAULT AT THE DLSlGLIATf:I) 
LOCATION, AND THE SUBSYSTEM DID NOT SPECIFY A FAULT VECTOR. 

TH E L 0 C A T I 0 N I S R E LA Tl V E T 0 S U B S Y S TE M Z E R 0 ( S E E E D IT M A P ) U N L E S S I T I S r, M A S T ER 
SUBSYSTEM, THEN THE LOCATION IS RELATIVE TO TSS ZERO AND ONE MUST DETERMINE THE LOAD 
ADDRESS OF THE SUBSYSTEM TO DETERMINE THE FAULT LOCATION IN THE MASTER 
SUBSYSTEM. 

REV IE~ THE PROGRAM CODE AND INITIALIZATION OF ADDRESS OR INDEX REGISTERS r~s ~JELL 

A S TH E P R 0 G R A M I N PU T F 0 R IN C 0 R R E C T D A T A 8 E F 0 R E R E Q U E S T I N G H E LP F R 0 M TH E C 0 f1 P U T IN G 
CENTER. 

12-5 DJ51-00 



028 - location REWIND ATTEMPTED FOR RANDOM FILE - FILENAME 

A RANDOM FILE CANNOT BE SPACED IN THIS MANNER. USAGE OF THE RANDOM FILE IN THE CORRECl 
MANNER WILL CLEAR UP THE PROBLEM. 

029 - ILLEGAL SYSTEM SELECTION 

SOME SYSTEMS, NAMELY THE MASTER SUBSYSTEMS, HAVE RESTRICTED THEIR AVAILABILITY TO 
CERTAIN USERS. YOU DO NOT HAVE PERMISSION TO USE THE SELECTED SUBSYSTEM. SELECT 
ANOTHER. 

30-49 - NOT CURRENTLY ASSIGNED. 

<SU> FILE filenam~ reason text 

<50> FILE filename reason text 

(The two messages above refer to permanent files.) 

<SU> CURRENT FILE -- reason text 

<50< COLLECTOR FILE -- reason text 

<The two messages above refer to the temporary files *SRC and sv~~, 

respectively.) 

<SO> WORK FILE -- reason-text 

(The message above refers to all other temporary files.) 

ERROR-MESSAGE 50 EXPLANATION: FILE~SYSTEM ERRORS. 

THIS MESSAGE IS ISSUED FOR EITHER ONE OF TWO CASES: (1) THE NAMED PERMANENT FILE 
COULD NOT BE ACCESSED-- <SO>, OR COULD NOT BE CREATEO--<SO< OR (2) A REQUIRED TEMPORARY 
FILE COULD NOT BE OBTAINED OR EXPANDED. REPLY TO THE QUESTlON "GROUP?" AS FOLLOWS 
FOR A FURTHER EXPLANATION: IF YOUR MESSAGE ST/\TES "NO PERMISSION, NONEXISTENl FILE" 
OR "INVALID PASSWORD," REPLY "1". IF "FILE BUSY, NO FILE SPACE" OR "ILLEGAL CHAR.," 
REPLY "2". IF "I/O ERROR, FILE TABLE FULL, DUPLICATE NAME" OR "SYSTEM LOADED," REPLY 
"3". IF IT STl\TF') "STATUS NN" REPLY "4". 

STATUS 01: THE SPECIFIED USER'S-MASTER-CATALOG DOES NOT EXIST. CHECK USER-Ir. 

STATUS 02: I/O ERROR. THE FILE SYSTEM HAS ENCOUNTERED AN UNRECOVERABLE INTERNAL 
IIO ERROR. (THIS DOES NOT IMPLY AN ERROR ON YOUR FILE SPACE.) REPORT THE STATUS 
TO THE CENTRAL COMPUTER SITE. ALSO RETRY. 

STATUS 03: PER~lSSION DENIED. THE NAMED FILE COULD NOT BE ACCESSED BECAUSE YOU HAVE 
NOT BEEN ALLOWED THE PERMlSSION(S) REQUESTED. IF THE FILE IS ALREADY OPEN, lHE 
PERMISSIONS REQUESTED DO NOT MATCH THE PERMISSIONS WITH WHICH THE FILE IS i\LREADY 
OPENED. THIS STATUS IS ALSO RETURNED BY THE FILE SYSTEM WHEN AN ATTEMPT IS MADE 
TO OPEN A "NULL" FILE WITH "READ" PERMISSION ONLY. 

1 ;'. {l I) ,I _.i; 1 -· U l) 



STATUS 04: FILE BUSY. ANOTHER USER HAS ALREADY ACCESSED THIS FILE WITH AN 
ACCES'.)-MODE PERMISSION THAT LOGICALLY EXCLUDES YOUR REQUESTED PERM15SION; I.E., 
A GRANTED WRITE PERMISSION EXCLUDES ANY OTHER CONCURRENT ACCESSES AND A li~ANl LD 
READ PERMISSION EXCLUDES ANY OTHER ACCESS WITH WRITE PERMISSION. THE FILE, 
THEREFORE, IS TEMPORARILY BUSY TO SOME OR ALL OTHER USERS. (MULTIPLE CONCURRENT 
AC.CESSES OF A FILE WITH READ PERMISSION, ONLY, IS ALLOWED.) 

STATUS 05: NONEXISTENT FILE. EITHER THE NAMED FILE DOES NOT EXIST, AT THE CATALOG 
LEVEL IMP LI ED 0 ~ SPEC I FI E.D, 0 R 0 NE 0 R M 0 RE NAMES IN THE CAT AL 0 GI F I LE DES CR I PT I 0 N 
WAS INCORRECTU GIVEN. CHECK ALL CATALOG/FILE NAMES. THE COMMAND CATALOG MAY 
BE USED TO LISl ALL OF YOUR CATALOG AND FILE NAMES. 

STATUS 06: (HE FILE SYSTEM HAS EXHAUSTED IT~. SPACE FOR NEW CATALOGS AND FILE 
DESCRIPTORS. REPORT THE STATUS TO THE CENTRAL COMPUTER SITE, AND TRY AGAIN 
LATER • 

. STATUS 07: DEVICE TYPE UNDEFINED. THE DEVICE TYPE THAT YOU SPECIFIED FOR YOUR FILE 
IS UNDEFINED TO THE SYSTEM. 

STATUS 10: THE SYSTEM HAS TEMPORARILY EXHAUSTED THE AVAILABLE FILE SPACE. TRY AGAIN 
LATER. (ALSO, PURGE ANY UNNEEDED FILES.) 

STATUS 11: NON-UNIQUE NAME. THE NEW NAME THAT YOU HAVE SPECIFIED FOR THE CATALOG 
OR FILE TO BE MODIFIED IS A DUPLICATE OF A CATALOG OR FILE NAME EXISTING AT THE 
SAME LEVEL. 

STATUS 12: MAX. SIZE ERROR. THE NEW MAXIMUM-SIZE SPECIFIED FOR THE FlLE ro BE 
MODIFIED IS LESS THAN ITS CURRENT SIZE. (MAXIMUM SIZE UNCHANGED.) 

STATUS 13: NO FILE SPACE. YOU HAVE USED UP ALL THE PHYSICAL SPACE ALLOTTED TO YOU 
FOR THE CREATION OF FILES. YOU MUST EITHER PURGE ONE OR MORE UNNEEDED FILES, 
OR OBTAIN A LARGER FILE-SPACE ALLOCATION. 

STATUS 14: INVALID PASSWORD. A REQUIRED PASSWORD EITHER HAS BEEN GIVEN INCORRECTLY 
OR NOT AT ALL. THE GENERAL FORM FOR SUPPLYING PASSWORDS IN A CATALOG/FILE 
DESCRIPTION IS: NAME$PASSWORD E.G.: /CAT1$ABC/FIL1$XYZ. 

STATUS 15: FILE IS ABORT LOCKED. 

STATUS 16: FILE WRITE IN BATCH ONLY. 

STATUS 17: SEEK ERROR. 

STATUS 20: FAILURE IN NAME SCAN. 

STATUS 21: UNDEFINED DEVICE. 

STATUS 22: DEVICE LINK TABLE CHECKSUM ERROR. 

STATUS 23: INCONSISTENT FSW BLOCK COUNT. 

STATUS 24: INTERNAL LINK TABLE CHECKSUM ERROR. 

STATUS 25: REQUESTED ENTRY NOT ON LINE. 

12-7 DJ31-00 



STATUS 26: NON-STRUCTURED FILE ENTRY. 

STATUS 27: fILE IN DEfECTIVE STATUS. 

STATUS 3-0: ILLEGAL PACK TYPE. 

STATUS 31: ACCESS GRANTEO TO IDS FILE. 

STATUS 32: COLLECTI-ON FILE ERROR. 

STATUS 33: CATALO~/fILE SECURITY LOCKED 

STATUS 34: ILLEGAL CHAR. YOU HAVE GIVEN A CATALO~ OR FILE NA~E, OR A PASS~-ORD, 
C 01N UdN ING A <>HAR'AC TE R 0 T!H'ER THAN A'.ffol Al PH AN UM ERIC, PE:RlO:O, OR A :DASH, WHICH A'RE 
THE ONLY LEGAL CHARS. FOR IDENTIFIERS. 

STATUS 35: PER~ISSION NOT GRANTED TO LIST OR PURGE REQUESTED CATALOG. 

STATUS 36: FILE TABLE fULL. THE NAMED FILE CANNOT BE ACCESSED BECAUSE YOU PRESENTLY 
HAVE TOO MANY FILES ALREADY ACCESSED (I.E., OPENED). YOU MUST DEACCESS ONE OH 
MORE Of THESE OPENED FILES. USE THE COMMANDS STATUS FILES, AND REMOVE. 

STATUS 37: DUPLICATE NAME. THE FILE NAME SHOWN DUPLICATES A NAME ALREADY IN YOUR 
AVAILABLE-FILE-TABLE, I.E., AN ALREADY ACCESSED FILE. IF APPROPRIATE, ASSIGN 
AN ALTERNATE NAME. 

STATUS 40: SYSTEM LOADED. THE SYSTEM IS CURRENTLY AT PEAK CAPACITY IN SOME RESPECT, 
E.G.: CERTAIN INTERNAL TABLE SPACE EXHAUSTED, ETC. 

STATUS 41 : NO PROTECTION TABLE SPACE AVAIL. 

STATUS 42: INVALID FILE CODE OR PAT POINTER. 

STATUS 43: INVALID CATALOG BLOCK ADDRESS. 

STATUS 44: PERMISSION DENIED - SHARED FILE. 

STATUS 45: INVALID SPACE IDENTIFIER. 

STATUS 46: CATALOGS Btl SY. 

STATUS 47 AND 50: SYSTEM MALFUNCTION. REPORT THE STATUS TO THE CENTRAL CO~PUTER 
SITE, AND RETRY. 

STATUS 51 : CHECKSU~M ERROR ON DEVICE. 

STATUS 52: DEVICE RELEASED. 

STATUS 53: NOT CUR,RENTLY ASSIGNED. 

ST A TUS 54: NOT CURRENTLY ASSIGNED. 

STATUS 5 5: NOT CURRENTLY ASSIGNED. 

12-8 DJ31-00 



STATUS 56: SECURITY PARAMETER - REQUIRED. 

STATUS 57: SECURITY PARAMETER - INVALID. 

STATUS 60: SITE USED STATUS. 

STATUS 61: $FSYS HAS BEEN ENABLED. 

STATUS 62: ILLEGAL 5UBFUNCTION CODE. 

STATUS 63: FILE NOT BEING MONITORED. 

STATUS 64: DEADLOCK ON PAGE REQUEST. 

STATUS 65: PAGE CURRENTLY BUSY. 

STATUS 66: FILE NOT DUPLICATED. 

STATUS 67: TDS MONITOR ALLOC ERROR. 

STATUS 70: ILLEGAL CHECKPOINT REQUEST. 

STATUS 71: ILLEGAL DCW SPECIFIED. 

STATUS 72: IMPROPER PROTECTION OPTION. 

STATUS 73: INVALID ARGLIST PARAMETER NUMBER. 

STATUS 74: SYSTEM JOURNAL NOT CONFIGURED. 

STATUS 75: FILE RESTORE LOCKED. 

STATUS 76: FILE TDS LOCKED. 

STATUS 77: ERR TDS SUBSET PAGES RELEASE. 

<51> FILE filename 

<51< FILE filename 

IIO STATUS IT 

IIO STATUS 1..1.. 

(The two messag~s above refer to permanent files.) 

<51> CURRENT FILE 

<51< CURRENT FILE 

I/O STATUS :a._ 

IIO STATUS IT 

CThe two messages above refer to the *SRC file.) 

<51> COLLECTOR FILE IIO STATUS rr 
<51< COLLECTOR FILE IIO STATUS IT 

<The two messages above refer to the SY** f i Le.> 

<51> WORK FILE I/O STATUS :a... 
<51< WORK FILE I/O STATUS IT 

<The two messages above refer to a LL other temporary f i Les.) 

where yy is the major hardware status returned by !OS. These status codes are 
described in the General Comprehensive Operating Supervisor reference manual. 

12-9 DJ31-00 



ERROR-MESSAGE 51 EXPLANATION: INPUT/OUTPUT ERRORS 

AN UNRECOVERABLE READ OR WRITE ERROR HAS OCCURRED ON THE SPECIFIED FILE. AN ERROR 
IN READING IS INDICATED BY THE MESSAGE NUMBER GIVEN AS <51>; AN ERROR IN WRITING AS 
<51<. REPORT THE I/0 STATUS NUMBER AND THE READ OR WRITE INDICATION TO THE CENTRAL 
COMPUTER SITE. ALSO, IN THE CASE OF "CURRENT FILE" or "WORK FILE", LOG OFF AND TRY 
AGAIN. 

<52> CURRENT FILE NOT DEFINED 

ERROR-~ESSAGE 52 EXPLANATION 

THERE IS NO CURRENT C*SRC) FILE DEFINED IN YOUR FILE TABLE. THIS INDICATES EITHER 
A SYSTEM MALFUNCTION, OR THAT YOU ARRIVED AT THE PRESENT SUBSYSTEM VIA AN ABNORMAL 
PATH. SUGGEST YOU RESELECT YOUR DESIRED SUBSYSTEM, OR LOG OFF AND RETRY FROM 
SCRATCH. 

<53> LINES IGNORED BY EDIT 
•••• lineCs> •••••• 

ERROR-MES>AGE 53 EXPLANATION 

THE LINECS) SHOWN WERE NOT MERGED INTO YOUR CURRENT FILE ~ECAUSE THEY LACKED LINE 
NUMBERS. 

<54> SYSTEM MALFUNCTION--CURRENT FILE ERROR 

ERROR-MESSAGE 54 EXPLANMTION 

THE FORMAT OF YOUR CURRENT FILE WAS FOUND TO BE IN ERROR. REPORT CIRCUMSTANCES TO 
THE CENTRAL COMPUTER SITE. SUGGEST THAT YOU LOG OFF AND RETRY. 

<55> CURRENT FILE T0-0 LARGE 

ERROR-MESSAGE 55 EXPLANATION 

THE COMBINED SIZE OF YOUR SOURCE FILE AND MOST RECENT MODIFICATION- OR ADDITION-INPUT 
IS TOO LARGE TO BE PROCESSED. SUGGEST THAT YOU SPLIT THE TEXT INTO TWO OR MORE FILES, 
WHICH CAN LATER BE ADJOINED. 

<56> NOT CURRENTLY ASSIGNED 

057 - RESTRICTED SUBSYSTEM 

THE CENTRAL COMPUTER SITE HAS RESTRICTED THE USE OF THIS SYSTEM. THIS MAY BE A 
TEMPORARY RESTRICTION BECAUSE OF CURRENT LOAD OR A PERMANENT RESTRICTION. PLEASE 
NOTIFY THE CENTRAL COMPUTER SITE FOR FURTH~R DETAILS. 

<58> ENTRY LOC < 100 

cRROR-MESSAGE 58 EXPLANATION 

THE SUBSYSTEM PROGRAM TO BE EXECUTED DOES NOT HAVE THE INITIAL 100-WORD DATA AREA 
THAT IS REQUIRED OF TSS SUBSYSTEM PROGRAMS. 

12-10 DJ31-00 



<59> FILE filename NOT IN TSS FORMAT 

ERROR-MESSAGE 59 EXPLANATION 

A FORMAT ERROR WAS DETECTED ON THE NAMED FILE. EITHER THE FILE IS NOT A TSS-GENERATED 
FILE, OR A SYSTEM MALFUNCTION HAS OCCURRED. IN THE LATTER CASE, REPORT THE 
CIRCUMSTANCES TO THE CENTRAL COMPUTER SITE, AND RETRY THE COMMAND. 

<60> NO DATA ON FIL filename 

ERROR-MESSAGE 60 eXPLANATION 

THE REQUESTED FILE CONTAINS NO USER'S DATA; THE IMPLICATION IS THAT NO DATA HAS BEEN 
SAVED ON THIS FILE SINCE ITS CREATION. 

061-063 - NOT CURRENTLY ASSIGNED. 

<064> - EXECUTE TIME LIMIT EXCEEDED 

THE PROGRAM TIME LIMIT SPECIFIED BY THE USER AND/OR THE INSTALLATION HAS BEEN EXCEEDED 
BY THE OBJECT PROGRAM. 

<065> - OBJECT PROGRAM SIZE LIMIT EXCEEDED 

THE SIZE OF THE OBJECT PROGRAM HAS EXCEEDED THE INSTALLATION SPECIFIED LIMIT. 

<066> - SPAWN UNSUCCESSFUL -- STATUS N 

A SUBSYSTEM WAS UNABLE TO SPAWN A JOB TO BATCH FOR COMPILATION AND/OR LOADING. THE 
REASON CODE "N" DESCRIBES ONE OF THE FOLLOWING: 

1 - UNDEFINED FILE <FILE NOT IN AFT) 
2 - NO SNUMB 
3 - DUPLICATE SNUMB 
4 - NO PROGRAM NUMBER AVAILABLE 
5 - ACTIVITY NAME UNDEFINED 
6 - ILLEGAL USER LIMITS (TIME, SIZE, ETC.) 
7 - BAD STATUS (R/W J*) 
8 - NO FILE SPACE AVAILABLE FOR PUSH-DOWN FILE 
9 - NO *J FILE PROVIDED 

<067> - (Error message text) 

THE ERROR DESCRIBED IN THE MESSAGE HAS BEEN DETECTED BY TSS WHILE IN COMMAND FILE 
OR DEFERRED PROCESSING MODE. THE MODE HAS BEEN DISCONTINUED DUE TO ITS 
OCCURRENCE. 

068 - NOT CURRENTLY ASSIGNED. 

069 - ERROR-MESSAGE 69 EXPLANATION 

THE ERROR DESCRIBED IN THE MESSAGE HAS BEEN DETECTED BY TEX WHILE IN FILE EXECUTION 
MODE. 

070-133 - NOT CURRENTLY ASSIGNED. 

134 - location INVALID DRL FILACT FUNCTION 

THE DRL FILACT CALLING SEQUENCE CONTAINS AN INVALID FUNCTION NUMBER. 

12-11 DJ31-UO 



135 ~ loc~tion PRIVILEGED DRL FILACT REQUEST 

USER CANNOT ACCESS THE SYSTEM MASTER CATALOG. 

136 - NOT CURRENTLY ASSIGNED. 

137 - NOT CURRENTLY ASSIGNED. 

138 - Location NO TAP* FILE FOR DRL TAPEIN 

THE TAP* FILE IS UNDEFINED FOR TAP~ INPUT. 

139 - ERROR I~ WRITINS TA~* FILE 

AN ERROR OCCURRED WHILE WRITING IN THE TAP* FILE. 

12-12 DJ31-00 



Error 
Code 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
1 2 
13 
1 4 
1 5 
16 
1 7 
1 8 
1 9 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

APPENDIX B 

EXECUTIVE ERROR MESSAGES 

Text 

001-INCORRECT PRIMITIVE 
002-(ddoddd)INVALID FILE I/O COMMAND 
003-(dddddd)INVALID DCW 
004~(dddddd)INVALID DRL ARGUMENT 
005-(dddddd)INVALID DRL CODE 
006-LEVEL OF CONTROL TOO DEEP 
007~BAD PROG. DESC. 
008-LOOP IN PRIMITIVES 
009-SYSTEM UNKNOWN 
010-PROGRAM TOO LARGE TO SWAP 
011-(dddddd)INCORRECT CORE FILE USAGE 
012-(dddddd)PRIVILEGED I/O ATTEMPTED 
013-(dddddd)DRL USERID NOT PERMITTED 
(dddddd)ILLEGAL DRL RELMEM REQUEST 
015-Cdddddd)CANNOT RESET USER ID 
016-(aaaaaa)OVERFLOW FAULT 
017-(aaaaaa)ILLEGAL OP CODE 
018-(aaaaaa)MEMORY FAULT 
019-(aaaaaa)FAULT TAG FAULT 
020-(aaaaaa)DIVIDE CHECK FAULT 
021-(ssssss)BAD STATUS - SWAP OUT 
022-(ssssss)BAD STATUS - SWAP.IN 
023-(ssssss)BAD STATUS - LOAD 
Cdddddd>TALK PERMISSION NOT GRANTED 
(dddddd)WRITE ATTEMPTED ON READ-ONLY FILE - ffffffff 
(dddddd)READ ATTEMPTED ON EXECUTE-ONLY FILE - ffffffff 
024-(aaaaaa)MME FAULT 
028-(dddddd)REWIND ATTEMPTED FOR RANDOM FILE - f ff f ff ff 
029-ILLEGAL SYSTEM SELECTION 
134-(dddddd)INVALID DRL FILACT FUNCTION # 
135-(dddddd)PRIVILEGED DRL FILACT REQUEST 
138-(dddddd)NO TAP* FILE FOR DRL TAPEIN 
139-ERROR IN WRITING TAP* FILE 
(dddddd)DRL ABORT - CANNOT WRITE ABRT FILE 
(dddddd)DRL ABORT - ABRT FILE WRITTEN 
NOT ENOUGH CORE TO RUN JOB 
SORRY-OUT OF SWAP SPACE. TRY AGAIN. 
(dddddd)fILE ADDRESS ERROR 
(dddddd)DRL ABORT - ABRT FILE I/O ERROR 
(dddddd)DRL ABORT - ABRT FILE TOO SMALL 
(ssssss)BAD STATUS FOR DRL SAVE/RESTOR - ffff ffff 
(dddddd)H* FILE NOT IN AFT - ffffffff 
064-EXECUTE TIME LIMIT EXCEEDED 
025-(aaaaaa)LOCKUP FAULT 
065-0BJECT PROGRAM SIZE LIMIT EXCEEDED 
Cdddddd)INCO~RECT ENTRY TO DRL TASK 
(dddddd)H* PROGRAM NAME UNDEFINED - fff ff f ff 
(dddddd)H* FILE CATALOG FULL - ffffffff 
Cdddddd)TALLY OR CHARACTER COUNT INCORRECT 
(dddddd)BAD DRL SAVE DATA LOC 
(dddddd)H* FILE NOT INITIALIZED - ffffffff 

B-1 DJ31-00 



52 Cdddddd)H* FILE MUST BE RANDOM - ffffffff 
53 026-~,~aa~a)O~-~OT-C-O~PLETE FAULT 
54 Cdddddd)H* fILE PROGRAM NAME REQUIRED - ffffffff 
55 027-Caaaaaa) CO'M"AN.D FAULT 
56 Cdddddd)LlN.KED FILE I/O CANNOT SPAN 63 LLINKS - ffffffff 
57 UNASSIGNED 
58 Cdddddd)I~VALID TI~E fOR DRL ~WAKE 
59 UNA~Sl~~fl 
60 Cdd.ddddHNVALID SNUMB F;OR ORL JOUT 
61 Cdddddd)P~IVILEGED DRL 
62 Cdddddd)l~VAL10 ~~L JOUT fUNCTI-0~ j 

63 MEMORY ¥A~ITY ERROR 
64 SY** I/O £RROR 

legend: 

ffffffff - Na•e of the file associated with the e~ror. 
dddddd - Location -0f the derail which caused the error. 
aaaaaa - Address in the subsystem at ~hich the error occurred. 
ssssss - Bad fil~ 110 status rec~ived. 

B-2 OJ31-00 



APPENDIX D 

OCTAL-ASCII CONVERSION EQUIVALENTS 

OCTAL ASCII OCTAL ASCII OCTAL ASCII OCTAL ASCII 
NUMB. CHAR. NUMB. CHAR .• NUMB. CHAR. NUMB. CHAR. 

000 NULL 040 16 100 140 GRA 
001 SOH 041 EXP 101 A 141 a 
002 STX 042 102 B 142 b 
003 ETX 043 # 1 03 c 143 c 
004 EOT 044 $ 1 04 D 144 d 
005 ENQ 045 % 105 E 145 e 
006 ACK 046 1 06 F 146 f 
007 BELL 047 107 G 147 g 

010 BSP 050 ( 11 0 H 150 h 
011 HT 051 ) 111 I 1 51 
012 LF 052 * 11 2 J 152 j 
013 VT 053 + 113 K 153 k 
014 FFD 054 114 L 154 l 
015 CR 055 11 5 M 155 m 
016 so 056 116 N 156 n 
017 SI 057 11 7 0 157 0 

020 DLE 060 0 120 p 160 p 
021 DC1 061 1 1 21 Q 161 q 
022 DC2 062 2 122 R 162 r 
023 DC3 063 3 123 s 163 s 
024 DC4 064 4 124 T 164 t 
025 NAK 065 5 125 u 165 u 
026 SYN 066 6 1 26 v 166 v 
027 ETB 067 7 127 w 167 w 

030 CAN 070 8 130 x 1 70 x 
031 EM 071 9 131 y 1 71 y 
032 SUB 072 132 z 172 z 
033 ESC 073 ; 133 LBK 173 LBR 
034 FS 074 LTN 134 RSL 174 VTL 
035 GS 075 = 135 RBK 175 RBR 
036 RS 076 GTN 136 CFX 176 TLO 
037 us 077 ? 137 177 DEL 

D-1 DJ31-00 



DE F .IN I T I 0 N-,S 

Communications Control 

ACK Acknowledgment 
CAN Cancel 
DC1 Device Control 1 
DC2 Device Control 2 
OC3 Uevite Control 3 
DC4 Device Control 4 
OLE Data Link Escape 
EM End of Medium 
ENQ Enquiry 
EOT End of Transmission 
ESC Escape <Alternate Mode) 
ETB End of Transmission Block 
ETX End of Text 
NAK Negative Acknowledgment 
SOH Start of Heading 
STX Start of Text 
SUB Substitute Character 
SYN Synchronous Idle 

Form Effectors 

BSP Backspace 
CR Carriage Return 
FFD Form Feed 
HT Horizontal Tabulation 
LF Line Feed 
VT Vertical Tabulation 

Item Separators 

FS Fi Le Separator 
GS Group Separator 
RS Record Separator 
US Unit Separator 

Text Material 

BELL 
CFX 
DEL 
EXP 
GRA 
GTN 
LBK 
LBR 
LTN 
NULL 
RBK 
RBR 
RSL 
SI 
so 
SP 
TLD 
VTL 

Bell, or other attention signal 

Delete (Rubout) 

Null 

Shift In 
Shift Out 
Space 

Vertical Line 

0-2 DJ31-00 



# 
APPEND # 9-87 
BACKSPACE # 9-86 
IF END # ----THEN 9-89 
MARGIN # 9-87 
MAT INPUT # 9-82 
MAT PRINT # 9-84 
MAT READ # 9-81 
MAT WRITE # 9-83 
pound sign (#) 4-115 
PRINT # USING 9-79 
READ # 9-75 
RESTORE # 9-85 
WRITE fl 9-77 

#----GOTO 
IF END #----GOTO 9-89 

#---GOTO 
IF MORE #---GOTO 9-90 

#---THEN 
IF MORE #---THEN 9-90 

#AUTO 
#AUTO command 10-3 

#NO 
#NO mode 10-14 

$ 

$ MSOF 13-48 
$ MSON 13-48 
$ PATCH 13-43 
$ USE .GTLIT 8-32 
$ USE .RTYP 4-63 
$ USE RBUG 4-63 

$INFO 
$INFO Section 13-32 

*SRC 
Current Fi le (*SRO 2-1 

----THEN 
IF END # --~-THEN 9-89 

.ALLCAPS 
.ALLCAPS 10-53 

.BEGINPAGE 
.BEGINPAGE 10-53 

INDEX 

i -1 

.BOLDFACE 
.BOLDFACE 10-53 

.BOTTOMMARGIN 
.BOTTOMMARGIN 10-54 

.BREAK 
.BREAK 10-54 

.CENTER 
.CENTER 10-54 

.COMMENT 
.COMMENT 10-54 

.DOUBLESPACE 
.OOUBLESPACE 10-54 

.FILL 
.FILL 10-54 

.FOOTING 
.FOOTING 10-54 

.GETLL 
.GETLL 8-10 

.GTLIT 
$ USE .GTLIT 8-32 

.HEADER 
.HEADER 10-55 

.IGNORE 
.IGNORE 10-55 

.INDENT 
.INDENT 10-55 

.JUSTIFY 
.JUSTIFY 10-55 

.LEFTDENT 
.LEFTDENT 10-56 

.LFLAG 
First Flag Word (.LFLAG) 6-8 

.LFLG2 
Second Flag Word Usage (.LFLG2) 

6-10 

OJ31-00 



.LINHENGTH 
.LINELENGTH 10-56 

.1,.ITERAI,. 
.LITERAL 10-56 

.LLNUE 
.LLNUE 6-58 

.i-IARGIN 
.MARGIN 10-56 

• MUL TISPACf; 
.PIULTISPACE 10-56 

.NODE NT 
.NOD~NT 10-5(> 

.NO FILL 
.NOFILL 10-56 

.NOJUST 
.NOJUST 10-57 

.NO TAB 
.NOT AB 10-57 

.PAGE 
.PAGE 10-57 

.PAPERLENGTH 
.PAPERLENGTH 10-57 

.PARAGRAPH 
.PARAGRAPH 10-57 
.PARAGRAPH n1,n2 10-58 

.POINT 
.POINT 10-58 

.REFERENCE 
.REFERENCE 10-58 

.REPLACE 
.f{EPLACE 10-58 

• RTYP 
$ USE .RTYP 4-63 

.SCOREUNDER 
.SCOREUNDER 10-59 

.SINGLESPACE 
.SINGLESPACE 10~59 

.SPACE 
.SPACE 10-59 

.SS COM 
macro .SSCOM 13-2 

• SUBFOOTING 
.SU8FOOTING 10-59 

.SUBHEADING 
.SUBHEADING 10-59 

.SUBPARAGRAPH 
.SUBPARAGRAPH 10-60 

.TABULATE 
.TABULATE 10-60 

.TASSZ 
.TASSZ 13-41 

• TASTf'1 
.TASTM 13-41 

• TFMAX 
.TFMAX 13-39 

.TMSON 
.TMSON 13-31, 13-46 

.TOPMARGIN 
.TOPMARGIN 10-60 

.TPCOM 
.TPCOM 5-3 

.TSCOM 
.TSCOM 13-37 

.TSFDV 
.TSFDV 13-37 

.TSFS 
.TSFS 13-37 

.TSGRW 
.TSGRW 13-37 

.TSSF 
.TSSF 13-37 

.UNO ENT 
.UN DENT 10-60 

ABC 
ABC command 4-5 

ABNORMAL 
abnormal termination 3-8 

ABORT 
ABORT 7-16 
ABORT command 7-16 
CK ABORT 8-4 
CP ABORT 8-4 
DRL ABORT, Abort 6-18 
DRL ABTJOB, Abort Batch Job 6-18 
I-D-S/II statistics and abort codes 

11-10, 11-14 
NB ABORT 8-4 
SABT (Scan Abort File) Subsystem 

7-7 
SE ABORT 8-4 
TB ABORT 8-4 

ABORT, 
DRL ABORT, Abort 6-18 

ABT JOB, 
DRL ABTJOB, Abort Batch Job 6-18 

i-2 DJ31-00 



ACCE 
ACCE command 4-8 

ACCESS 
ACCESS FILE 4-9, 4-15 
Access type 4-10 
DRL DEFIL, Define and Access a 

Temporary Fi le (Octal 6) 6-22 
FILACT, ACCESS FILE FUNCTION 6-34 
FILACT, ACCESS SU8ROUTINE LIBRARIES 

6-3 7 
FILE ACCESS 9-109 
Unified File Access System CUFAS) 

8-5 

ACCESSING 
ACCESSING I-D-S/II FILES REQUIRED 

FOR EXECUTION 11-18 

ACCOUNT 
ACCOUNT 4-118 

ACCOUNTING 
Accounting Method For User Charges 

A FTLI N 
AFTLIN Command 10-17 

ALC 
ALC verb 4-257 

ALPHANUMERIC 
ALPHANUMERIC DATA AND STRING 

MANIPULATION 9-64 
Alphanumeric Type Fields 9-39 

ALTNAME 
altname 6-88 

APB 
APB command 4-34 
APB verb 4-258 

APPEND 
APPEND # 9-87 

APPEND: 
APPEND: 9-103 

13-27 AR 

ACTIVITIES 
DRL FILACT, Permanent Fi le 

Activities (Octal 36) 6-28 

ACTIVITY 
Batch Activity To Build Time Sharing 

H* File 11-21 
DRL TASK, Sp~wn A Special Batch 

Activity (Octal 63) · 6-72 

ADD 
DRL ADDMEM, Add Memory 6-19 
DRL MORLNK, Add Links To Temporary 

Fi Le (Octal 34) 6-52 

ADDING 
BUILDING OR ADDING TO A FILE 10-2 

ADDMEM, 
DRL ADDMEM, Add Memory 6-19 

ADMINISTRATOR 
SITE ADMINISTRATOR 13-1 

ADMN 
ADMN command 4-31 

ADSC9 
operand ASCII descriptor (ADSC9) 

8-6 

AFT 
AFT command 4-32, 4-192, 13-16 
AFT verb 4-253 
available file table (AFT) 6-56 
AVAILABLE FILE TABLE (AFT) USAGE 

2-4 
DRL PASDES, Pass AFT File Names And 

Descriptions (Octal 44) 6-56 
LIMITATIONS IMPOSED BY THE AFT 

11-27 

i-3 

AR 7-25 

AREA 
Data base Area and Key Files 11-11, 

11-1 5 
FILE CONTROL AREA 8-27 
SUBSYSTEM DATA AREA AND FAULT VECTOR 

6-1 
User Working Area 11-7 

AREAS 
DRL T.CMOV Examine Areas Of Memory 

6-79 

ARG/C 
ARG/c 4-118 

ARGUMENTS 
substitutable arguments 4-115, 

4-117 

ARITHMETIC 
Arithmetic Operations 9-3 

ARN 
ARn 7-25 

ASC 
Function ASC 9-55 

ASCII 
ASCII 8-2, 11-9 
ASCII Data File Input/Output 

Statement Formats 9-72 
ASCII DATA FILES 9-70 
operand ASCII descriptor (ADSC9) 

8-6 

ASIS, 
ASIS, 8-2 

DJ31-00 



ASS I G.NED 
PERMANfHT FILES ASSIGNED SY USER 

2-2 
TEMPORARY USER fllES ASSIGNED BY TSS 

2-1 

ASSIGNING 
ASSIGNIN~ CLASS 8 PRIORITY TO TIME 

SHARING 13-46 

ATR 
ATR verb 4-250 

ATTN 
ATTN or INT key 3-8 

ATTRI, 
DRL ATTRI, Pick Up User's Attributes 

6-19 

ATTRIBUTES 
DRL ATTRI, Pick Up User's Attributes 

6-19 

AUTOMATIC 
AUTOMATIC 4-47 
automatic dimensioning 9-3 
Automatic Paper Tape Input 3-10 
Automatic Terminal Disconnections 

3-7 

AUTOMATICX 
AUTOMATlCX 4-47 

AVAILABLE 
available file table (AFT) 6-56 
AVAILABLE FILE TABLE (AFT) USAGE 

2-4 

AVDIO 
AVDIO 13-44 

AVNOCR 

B 

BA 

AVNOCR 13-44 

ASSIGNING CLASS B PRIORITY TO TIME 
SHARING 13-46 

BA command 7-16 

BACKDOOR 
DRL T.SYOT, Pass Data File to 

Backdoor Sysout (Octal 75) 
6-82 

BACKSPACE 
BACKSPACE # 9-86 

BACKSPACE: 
BACKSPACE: 9-102 

BACKUP 
BACKUP Command 10-18 

i-4 

BASE 
Data bas~ Area and Key files 11-11, 

11-15 
data base procedures 11-7 

BASIC 
A BASIC PROGRAM EXAMPLE 9-24 
BASIC command 4-48 

BATCH 
Batch Activity To Build Ti~e Sharing 

H* File 11-21 
DRL ABTJOB, Abort Batch J~b 6-18 
DRL PASFLR, Pass File To Remot~ 

Baich Processor 6-57 
ORL SPAWN, Pass File To Batch 

Processor <Octal 26) 6-68 
DRL TASK, Spawn A Special Batch 

Activity (Octal 63> 6-72 

BCD 
BCD 11-:-9 

BCDASC 
BCDASC 4-49 

BE FLIN 
BEFLIN Command 10-17 

BINARY 
BINARY FILE INPUT/OUTPUT STATEMENT 

FORMATS 9-93 
BINARY FILES 9-91 

BINDING 
BINDING TRACE PACKAGE 7-14 

BIT 
HOLD/SEND Bit 6-14 
LUCID Command Bit 6-14 
PARITY/~OPARITY Bit 6-15 

BOOLEAN 
Boolean expression 4-87 

BPUNCH 
BPUNCH 4-51 

BREAK 
BREAK key 3-8 
break status faults 6-2 
Enable Control Via Break Key 

BREAKPOINT 
Delete Breakpoint 7-18 
Establish Breakpoint 7-16 

BRN 
BRN 4-53 

BSEQUENCE 
BSEQUENCE 4-55 

BSP 
BSP co~mand 4-56 

7-17 

DJ31-00 

• 



BUFFER 
DRL KOTNOW, Keyboard Output From 

Unfilled Buffer (Octal 56) 
6-50 

BUILD 
Batch Activity To Build Time Sharing 

H* File 11-21 
autLD Command 1C-19 
build mode 5-6 
Build Mode Input 3-6 

BUILDING 
Building A Library of User Programs 

13-41 
Building File from Non-ASCII Paper 

Tape 3-9 
BUILDING OR ADDING TO A FILE 10-2 

BYE 
BYE 4-57 

c 
C command 7-17 

C* 
C* object deck files 11-24 

CALL 
CALL 9-16 
CALL command 7-13 
Call Subsystem 7-18 
DRL CALLSS, Internal Call to Another 

Subsystem 6-20 
DRL T.GOTO, Call From One Subsystem 

To Another (Octal 72) 6-81 

CALLSS 
CALLSS command 7-18 

CALLSS, 
DRL CALLSS, Internal Call to Another 

Subsystem 6-20 

CANCEL 
DRL SYSRET, Cancel Current System 

Selection <Octal 40) 6-70 

CAPABILITY 
VERB capability 4-194, 13-18-

CARDIN 
CARDIN 4-115, 4-122 
CARDIN command 4-58 

CASE 
CASE Command 10-20 
Case Commands 3-18 
Output File Case 4-119 

CATALOG 
CATALOG 4-67 
CATALOG command 4-66, 13-26 
CREATE CATALOG 4-9, 4-11 
FILACT, CREATE CATALOG FUNCTION 

6-32 
LIST CATALOG 4-9, 4-23 
MODIFY CATALOG 4-9, 4-19 

i-5 

CATALOG (cont) 
PURGE CATALOG 4-9, 4-17 
RELEASE CATALOG 4-9, 4-19 

CATALOG/FILE 
FILACT, MODIFY CATALOG/FILE FUNCTION 

6-39 
FILACT, PURGE/RELEASE CATALOG/FILE 

FUNCTION 6-38 

CATALOGS 
Catalogs And Fi Les 2-3 
LISTING PASSWORDS BY USERS' CATALOGS 

AND FILES 13-26 

CFP 
CFP 4-120 

CGROUT, 
DRL CGROUT, Process Line Switch 

6-20 

CHAIN 
CHAIN 9-21 

CHANGE 
CHANGE 9-8, 9-66 
Change Trace 7-34 
DRL T.LINL, Change Terminal Input 

Line Length (Octal 74) 6-81 

CHANGING 
Changing System Initialization 

Tables 13-37 

CHANNEL 
CHANNEL 4-118 

CHARACTER 
Delete Character 4-118 
Substitution-Implying Character 

4-118 

CHARACTER-DELETE 
character-delete control 3-2 

CHARACTERS 
characters per page 13-44 
format control characters 9-13 

CHARGE 
charge number 3-4 

CHARGES 
Accounting Method For User Charges 

13-27 
charges per page 13-44 

CHECK 
divide check 6-2 

CK 
CK ABORT 8-4 

CLASS 
ASSIGNING CLASS B PRIORITY TO TIME 

SHARING 13-46 

DJ31-00 



CLKS 
Function· CLK$ 9-52 

CLOCK 
DRL T.RSCC, Read System Controller 

Clock (Octal 101> 6-83 
Octal Clock Pulses 13-28 

' I 

CLR 
CLR verb 4-260 

CMOD 
CMOD command 4-69 

OIP 
verb CMP 4-247 

COBOL-74 
COBOL-74 ti~e sharing system 4-92 

CODE 
CODE command 4-71 
DRL T.EXEC, Execute Code On Behalf 

Of The Executive 6-80 
Operation Code Trace 7-32 
Own Code Trace 7-35 

CODES 
I-D-S/II statistics and abort codes 

11-10, 11-14 

COLLECTOR 
Collector File (SY**) 2-1 

COLUMN 
Column Function 10-22 

COM DK 
COMDK 8-2 

COMMA 
comma 4-115 
Formatting Output With A Comma Or 

Semicolon 9-33 

COMMAND 
#AUTO command 10-3 
ABC command 4-5 
ABORT command 7-16 
ACCE command 4-8 
ADMN command 4-31 
AFT command 4-32, 4-192, 13-16 
AFTLIN Command 10-17 
APB command 4-34 
BA command 7-16 
BACKUP Command 10-18 
BASIC command 4-4& 
BEFLIN Command 10-17 
BSP command 4-56 
BUILD Command 10-19 
C command 7-17 
CALL command 7-13 
CALLSS command 7-18 
CARDIN command 4-58 
CASE Command 10-20 
CATALOG co•mand 4-66, 13-26 
CMOD command 4-69 
CODE command 4-71 

i-6 

COMMAND (cont) 
command file 4-120 
Command Format 10-9 
Command Language Reference 4-1 
COMMAND LANGUAGE USAGE 7-15 
COMMAND LOADER 7-1 
COMMAND LOADER USAGE 7~2 
CONNECT command 4-73 
CONVERT command 4-75 
COPY Command 10-21 
COUT command 4-86 
CPOS command 4-87 
CPY command 4-84 
CRUN command 4-93 
CUT Comm~nd 10-23 
DABT command 4-102 
dataBASIC command 4-103 
DEC command 7-19 
DECODE command 4-104 
DELETE Command 10-24 
DISPLAY command 4-106, 7-37 
DMIV command 4-112 
DONE command 4-113 
DRL T.CFIO, Command File And 

Deferred Processing Support 
<Octal 77> 6-77 

DRUN command 4-114 
DSTS command 4-123 
E command 7-19 
EDITOR command 4-124, 10-49 
ERASE command 4-125 
EXECUTE command 7-13 
F command 7-19 
FDUMP command 4-126 
FIND command 7-13, 10-27 
First Line Run Command 11-19 
FORM command 4-131 
FORTRAN TIME SHARING SYSTEM RUN 

COMMAND 11-12 
FRN command 4-132, 4-137 
GET command 11-18 
HELP command 4-141 
HOLD command 4-142 
I command 7-39 
IIDS command 4-143 
INSERT Command 10-29 
JDAC Command 4-145 
JRN command 4-156 
L command 7-20 
LCAS command 4-166 
LEADER command 4-166 
LIB command 4-169 
LINE Command 10-34 
LINELENGTH command 4-170 
LIST command 4-171 
LOCATE command 7-13 
LOOS command 4-174 
LOOT command 4-175 
LODX command 4-176 
LUCID command 4-178 
LUCID Command Bit 6-14 
MAST or MAS2 command 4-182 
MDQ command 4-196 
NEWUSER command 4-197 
NFORM command 4-198 
NOPARITY/PARITY command 4-198 
NOPAUSE command 7-41 
NOSTOP Command 10-49 

DJ31-00 



COMMAND (cont) 
NOTRACE command 7-40 
NOVERIFY Command 10-48 
NUMBER Command 10-50 
OCT command 7-22 
OLD command 4-199 
P command 7-22 
PAGE command 4-203 
PASSWORD command ~-204 
PASTE Command 10-3S 
PATCH command 7-13 
PAUSE command 7-40 
PEEK command 13-17 
PERM command 4-205 
PRINT command 4-206, 10-39, 10-50 
PROF command 4-193, 13-17 
PTOF command 4-209 
PTON command 4-209 
PURGE command 4-208 
Q command 7-38 
R command 7-23 
READ command 4-210 
RECOVERY command 4-211 
REFORM Command 10-50 
RELEASE command 4-213 
REMOVE command 4-214 
REPLACE Command 10-43 
RESAVE command 4-215 
RESEQUENCE command 4-216, 10-4 
RESTORE command 7-24 
REW command 4-218 
ROLLBACK command 4-219 
RUN command 11-18, 13-42 
RUNL Command For Link/Overlay 11-21 
RUNOFF command 4-220, 10-47 
S command 7-23 
SAVE command 7-24 
SEND command 4-227 
SEQUENCE command 4-228 
SEQUENCEX command 4-229 
SKIP n Command 10-51 
SMCL command 4-230 
SORT command 4-231 
STANDARD Command 10-20 
STATUS command 4-233 
STRING Command 10-47 
STRIP command 4-234 
SYSTEM command 4-235 
TAPE Command 4-236 
TEMP command 4-238 
TERMINATE command 7-25 
THE YFORTRAN TIME SHARING SYSTEM RUN 

COMMAND 11-8 
TRANSPARENT Command 10-47 
TSAR command 4-240 
TSDA command 4-244 
UCAS command 4-264 
VERIFY Command 10-48 
WRITE command 4-265 

COMMAND-LANGUAGE/PRIMITIVE 
command-Language/primitive lists 

5-3 
Program Descriptor 

Command-Language/Primitive List 
5-2 

i-7 

COMMANDS 
Case Commands 3-18 
COMMANDS FOR VIP TERMINALS 3-18 
COMMANDS RELATED TO TRACING 7-37 
EDITOR COMMANDS 10-17 
JPRINT and JPUNCH commands 4-149 
NON-TRACE COMMANDS 7-16 
RUNOFF COMMANDS 10-49 
TIME SHARING SYSTEM CONTROL COMMANDS 

10-16 

COMMUNICATION 
communication region 13-32, 13-37 

COMPARISON 
Comparison Of The FORTRAN And 

YFORTRAN Time Sharing Systems 
11-7 

CONNECT 
CONNECT command 4-73 

CONSIDERATIONS 
MEMORY CONSIDERATIONS 11-28 

CONTACT 
User's Contact With The File System 

2-4 

CONTROL 
character-delete control 3-2 
Device Media Control Language 
Enable Control Via Break Key 
FILE CONTROL AREA 8-27 

11-6 
7-17 

format control characters 9-13 
interrupt control 3-8 
line-delete control 3-3 
RUNOFF Format Control Words 10-16, 

10-52 
Subschema Control Structure 11-6 
TIME SHARING SYSTEM CONTROL COMMANDS 

10-16 

CO~TROLLER 
DRL T.RSCC, Read System Controller 

Clock (Octal 101) 6-83 

CONVERSION 
Decimal-to-Octal Conversion 7-19 
Octal-ASCII Conversion Equivalents 

D-1 
Octal-to-Decimal Conversion 7-22 
Time Sharing Media Conversion 

Program (TSCONV) 8-1 

CONVERT 
CONVERT command 4-75 

COPY 
COPY Command 10-21 

COQ 
COQ verb 4-250 

CORE 
DRL CORFIL, Data From/to Core File 

6-22 

DJ31-00 



CORE (cont) 
DRL OBJTI.M,., P.r:oce.ssor Tim~ And Core 

Siie Limit (Octal 57) 6-54 

CORE=N.N 
CORE=nn 11-1.0: 

CORF IL, 
DRL CORFIL~ D•ta ~rom/t~ Core File 

6-22 

COUT 
COUT co~mand 4-a6 

CP 
CP ABORT 8-4 

CPOS 
CPOS command 4-87 

CPY 
CPY 4-85 
CPY command 4-84 

CREATE 
CREATE CATALOG 4-9, 4-11 
CREATE FILE 4-9, 4-13 
FILACT, CREATE CATALOG FUNCTION 

6-32 
FILACT, CREATE FILE FUNCTION 6-33 

CRUN 
CRUN command 4-93 

CUR 
CUR verb 4-262 

CURRENT 
current file 7-8 
Current File (*SRC) 2-1 
DRL SYSRET, Cancel Current 

Selection (Octal 40) 
Save Current Program State 

CUT 
CUT Command 10-23 

CWK 
CWK verb 4-262 

DABT 
DABT command 4-102 

DAT$ 
Function DAT$ 9-52 

DATA 

System 
6-70 

7-24 

ALPHANUMERIC DATA AND STRING 
MANIPULATION 9~64 

ASCII Data File Input/Output 
Statement Formats 9-72 

ASCII DATA FILES 9-70 
DATA 9-9, 9-69 
Data base Area and Key Files 11-11, 

11-1 5 
data base procedures 11-7 
Data Display And Transmission 3-13 
data files 11-6 

i-8 

DATA (cont) 
DATA INPUT DURING PROGRAM EXECUTION 

9-43 
Data Mani.pulation Languag·e 11-10 
DRL CORFIL, Data fr~~/to Core File 

6-22 
DRL T.SYOT, Pass Data File to 

Backdoor Sysout <Octal 75> 
6-82 . 

Find Oata Pattern In Memory 7-19 
SUBSYSTEM DATA AREA AND FAULT VECTOR 

6-1 

DATABASIC 
dataBASIC command 4-103 

DATE 
DATE 4-118 
Earliest Session Initiation Date 

4-116 

DAY 
DRL TIME, Obtain Processor Time and 

Time of Day (Octal 21> 6-77 

DEACCESS 
DEACCESS FILE 4-9, 4-17 

DEBUG 
DEBUG 11-9 
Debug Support System (DSS) 6-7 

DEC 
DEC command 7-19 

DECIMAL-TO-OCTAL 
Decimal-to-Octal Conversion 7-19 

DECK 
C* object deck files 11-24 

DECODE 
DECODE command 4-104 

DEF 
DEF 9-6 
MULTIPLE-LINE DEF STATEMENT 9-42 

DEFERRED 
Deferred Processing Queue File 

13-25 
deferred queue file 4-114 
Deferred Session Restart 4-119 
DRL T.CFIO, Command File And 

Deierred Processing Support 
<Octal 77> 6-77 

DE FIL, 
DRL DEFIL, Define and Access a 

Temporary File <Octal 6) 6-22 

DEFINING 
DEFINING FUNCTIONS 9-40 · 

DEFINITION 
STATEMENT DEFINITION 9-1 

DJ31-00 



DELETE 
DELETE 4-105 
Delete Breakpoint 7-18 
Delete Character 4-118 
DELETE Command 10-24 
Logical record delete 11-10, 11-14 

DELIMITER 
EXAMPLES OF LINE DELIMITER USE 4-26 

DELPR 
DELPR 13-45 

DERAILS 
DERAILS 6-15 

DESCRIPTIONS 
DRL PAS DES, Pass AFT Fi le Names And 

Descriptions (Octal 44> 6-56 
Honeywell Subsystem Descriptions 

6-87 
Primitive Descriptions 5-7 
STATEMENT DESCRIPTIONS 9-6 

DESCRIPTOR 
DRL PRGDES, Pass Program Descriptor 

To Subsystem (Octal 65) 6-60 
operand ASCII descriptor (ADSC9) 

8-6 
Primary Portion Of Program 

Descriptor 5-2 
Program Descriptor 5-5 
Program Descriptor 

Command-Language/Primitive List 
5-2 

PROGRAM DESCRIPTOR EXAMPLES 5-10 
Program descriptor format 5-3 
Subsystem Program Descriptor 

Organization 5-1 

DESCRIPTOR, 
file name descriptor, FLNAME 8-6 

DESIGNATING 
Designating Master ID and Passwords 

13-29 

DESIGNATOR 
LOC(file designator) 
LOF(file designator) 

DET 
Function DET 9-51 

DETECTED 

9-92 
9-92 

DRL T.ERR, Error Detected CO~tal 
103) 6-84 

DETERMifHNG 
DETERMINING MAXIMUM NUMBER OF TIME 

SHARING USERS 13-39 

DEVICE 
Device Media Control Language 11-6 

DIM 
DIM 9-10, 9-64 

i-9 

DIMENSIONING 
automatic dimensioning 9-3 

DIO, 
DRL DIO, Do I/O on User's Fi le 

(Octal 1 6-24 

DIRECT 
direct mode 5-6 

DIRECT-MODE 
Supplying Direct-Mode Program Input 

11-27 

DISCONNECT 
DRL DRLDSC, Disconnect Terminal 

6-25 
DRL NEWUSR Logan New User Without 

Disconnect 6-53 

DISCONNECTIONS 
Automatic Terminal Disconnections 

3-7 

DIS CPR 
DISCPR 13-43 

DISPATCH 
TSS Priority Dispatch 13-38 

DISPLAY 
Data Display And Transmission 3-13 
DISPLAY 7-37 
DISPLAY command 4-106, 7-37 
Display Register 7-25 

DISPOSITION 
Output Fi Le User Response 

Disposition 4-119 

DIVIDE 
divide check 6-2 

DMCL 
DMCL 11-6 

DMIV 
DMIV command 4-112 

DML 
DML 11-10, 11-13 
DML TSS Example 11-21 
I-D-S/II OML statements 11-8, 11-12 

OMO 

DO 

DMO verbs 4-260 

DRL DIO, Do I/O on User's File 
(Octal 1 6-24 

DRL PDIO, Do I/O On a System Fi le 
6-59 

DOF 
DOF verb 4-257 

DOLLAR 
dollar sign 4-115 

DJ31-00 



DONE 
DON£ 13-5 
DONE C-OMmand 4-113 

DRL 
DRL ABORT, Abort 6-18 
DRL ABTJ-08, ~bort Batch Job 6-18 
l>RL ADOMEM, Add Memory 6-19 
DRL ATTRI, Pict Up User's Attributes 

6-19 
DRL CALLSS, Internal Call to Another 

Subsystem 6-20 
DRL CGROUT, Process Line Switch 

6-20 
DRL CORF IL, Data From/to Core File 

6-22 
DRL DEF IL, Define and Access a 

Temporary Fi le (Octal 6) 6-22 
ORL DIO, Do 1/0 on User's Fi le 

(Octal 1 6-24 
DRL DRLDSC, Disconnect Terminal 

6-25 
DRL DR LI MT, Sta re Processor Time 

Limit 6-26 
DRL DR LS AV, Save Program on 

Permanent Fi le (Octal 62) 6-26 
DRL FILACT, 'Permanent Fi le 

Activities· (Octal 36) 6-28 
DRL FILSP, Space A Linked Fi le 

(Octal 1 3) 6-43 
DRL GROW, Gro.w A Permanent Or 

Temporary File (Octal 50) 6-43 
DRL GWAKE, Wake Me Later 6-44 
DRL JSTS, Obtain Job Status 6-46 
DRL KIN, Keyboard Input Last Line 

<Octal 4) 6-50 
DRL KOTNOW, Keyboard Output From 

Unfilled Buffer (Octal 56) 
6-50 

DRL KOUT, Keyboard Output (Octal 
6-51 

DRL KOUTN, Keyboard Output Then 
Input (Octal 3) 6-52 

2) 

DRL MORLNK, Add Links To Temporary 
Fi le (Octal 34) 6-52 

DRL NEWUSR Logan New User Without 
Disconnect 6-53 

DRL OBJTIM 13-42 
DRL OBJTIM, Processor Time And Core 

Size Limit <Octal 57) 6-54 
DRL PART~ Partial Release Of 

Temporary File (Octal 47> 6-55 
DRL PASAFT, ¥ass List of Files to 

Subsystem (Octal 22) 6-55 
DRL PASD£S, Pass AFT File Names And 

Descriptions <Octal 44) 6-56 
DRL PASFLR, Pass File To Remote 

Batch Processor 6-57 
DRL PASUST, Pass UST To Subsystem 

6-58 
DRL PDIO, Do 1/0 On a System File 

6-59 
DRL PRGDES, Pass Program Descriptor 

To Subsystem (Octal 65) 6-60 
DRL PSEUDO, Simulated Keyboard Input 

6-60 
DRL RELMEM, Rel~ase Memory (Octal 

15) 6-61 

i-10 

DRL <cont) 
DRL RESTOR, Overlay-load A Subsystem 

6-62 
DRL RETfIL, Return A File (Octal 14) 

6-63 
DRL RETURN, Return to Primitive List 

<Octal S> 6-64 
DRL REW,, REWIND A LINKED FILE 6-64 
DRL REW, Rewind A Linked File (Octal 

DRL 

DRL 

DRL 

12) 6-64 
RSTSWH, Reset Switch Word (Octal 

11) 6-65 
SETLNO, Set Line 

Number/Increment in UST (Octal 
3 7) 6-65 

SETSWH, Set Switch Word (Octal 
10) 6-66 

DRL SNU"B, Obtain Snumb <Octal 20) 
6-66 

DRL SPAWN, Pass File To Batch 
Processor (Octal 26) 6-68 

DRL STOPPT, STOP PAPER TAPE INPUT 
6-69 

DRL STOPPT, Stop Paper Tape Input 
(Octal 61> 6-69 

DRL STPSYS Stop Execution of Master 
Subsystem 6-69 

DRL SWITCH, Switch Temporary File 
Names (Octal 53) 6-70 

DRL SYSRET, Cancel Current System 
Selection (Octal 40) 6-70 

DRL T.CFIO, Command File And 
Deferred Processing Support 
<Octal 77) 6-77 

DRL T.CMOV Examine Areas Of Memory 
6-79 

DRL T.CRYP, Password Encryption 
(Octal 67) 6-85 

DRL T.ERR, Error Detected (Octal 
103) 6-84 

DRL T.EXEC, Execute Code On Behalf 
Of The Executive 6-80 

DRL T.GOTO, Call From One Subsystem 
To Another (Octal 72) 6-81 

DRL T.LINL, Change Terminal Input 
Line Length (Octal 74) 6-81 

DRL T.~AIL, Mail Message Sent (Octal 
102) 6-84 

DRL T.PAGE, Output In Scrolled 
Fashion <Octal 101) 6-83 

DRL T.RSCC, Read System Controller 
Clock (Octal 101) 6-83 

DRL T.SYOT, Pass Data File to 
Backdoor Sysout (Octal 75) 
6-82 

DRL TAPEIN, Start Paper Tape Input 
<Octal 27) 6-71 

DRL TASK, Spawn A Special 'Batch 
Activity (Octal 63) 6-72 

DRL TERM Clean Up UST After User 
Termination (Octal 32) 6-75 

DRL TERMTP, Terminal Type and Line 
Number (Octal 23) 6-75 

DRL TIME, Obtain Processor Time and 
Time of Day (Octal 21) 6-77 

DRL USERID Pass User ID And Priority 
To Executive 6-86 

DRL verb 4-255 

DJ31-00 



DRL <cont) 
Terminate Execution Via DRL RETURN 

7-25 

DRLDSC, 
DRL DRLDSC, Disconnect Terminal 

6-25 

DRLIIH, 
DRL DRLIMT, Store Processor Time 

Limit 6-26 

DRLS 
DRLS 7-37 

DRLSAV, 
DRL DRLSAV, Save Program on 

Permanent Fi le (Octal 62) 6-26 

DRUN 
DRUN ALL 4-119 
DRUN command 4-114 

DSS 
Debug Support Syst~m COSS) 6-7 

DSTS 
DSTS command 4-123 

DUMP 
Dump Procedure 7-7 
SUBSYSTEM DUMP FACILITY 7-7 

DUO 
DUO verb 4-249 

DURING 
DATA INPUT DURING PROGRAM EXECUTION 

9-43 

EARLIEST 
Earliest Session Initiation Date 

4-116 

EDIT 
EDIT 4-124 
TSS EXECUTIVE EDIT LOAD MAP 13-40 

EDITING 
Editing 3-2 

EDITOR 
EDITOR command 4-124, 10-49 
EDITOR COMMANDS 10-17 
EDITOR LANGUAGE 10-9 
Responses from EDITOR 10-14 

ELAPSED 
elapsed time price 13-43 

ELPPR 
ELPPR 13-43 

EMM 
EMM verb 4-263 

ENABLE 
Enable Control Via Break Key 7-17 

i -11 

ENCRYPTED 
Octal Encrypted Form 13-30 

ENCRYPTION 
DRL T.CRYP, Password Encryption 

(Octal 67) 6-85 

END 
END 9-21 
END verb 4-263 
IF END # ----THEN 9-89 
IF END #----GOTO 9-89 

END :----THEN 
IF END:----THEN 9-104 

ENVIRONMENT 
I-D-S/II IN A FORTRAN TIME SHARING 

ENVIRONMENT 11-6 

EQUIVALENTS 
Octal-ASCII Conversion Equivalents 

D-1 

ERASE 
ERASE command 4-125 

ERR 
ERR verb 4-258 

ERROR 
DRL T.ERR, Error Detected (Octal 

103) 6-84 
ERROR MESSAGES 7-41, 12-1 
Executive Error Messages B-1 
Input Error Recovery 11-5 

ESQ 
ESQ verb 4-262 

ESTABLISH 
Establish Breakpoint 7-16 
Establish Offset 7-21 

ETX 
ETX symbol 3-'13 

EXAMINE 
~RL T.CMOV Examine Areas Of Memory 

6-79 

EXAMPLE 
A BASIC PROGRAM EXAMPLE 9-24 
DML TSS Example 11-21 

EXAMPLES 
EXAMPLES OF LINE DELIMITER USE 4-26 
PROGRAM DESCRIPTOR EXAMPLES 5-10 
RUNOFF Examples 10-61 
TSS RUN Examples 11-20 

EXCLUDE 
EXCLUDE 4-119 

EXECUTE 
DRL T.EXEC, Execute Code On Behalf 

Of The Executive 6-80 
EXECUTE command 7-13 

DJ31-00 



EXECUTE (cont) 
Execute Instructions 7-19 

EXECUTING 
SAVING AND EXECUTING OBJECT FILES 

9-107 

EXECUTION 
ACCESSING I-D-S/II FILES REQUIRED 

FOR EXECUTION 11-18 
DATA INPUT DURING PROGRAM EXECUTION 

9-43 
DRL STPSYS Stop Execution of Master 

Subsystem 6-69 
Resume Execution 7-23 
Terminate Execution Via DRL RETURN 

7-25 

EXECUTIVE 
DRL T.EXEC, Execute Code On Behalf 

Of The Executive 6-80 
DRL USERID Pass User ID And Priority 

To Executive 6-86 
Executive Error Messages B-1 
TSS EXECUTIVE EDIT LOAD MAP 13-40 

EXISTING 
USE OF EXISTING SUBSYSTEMS 5-9 

EXPLANATIONS 
HELP message explanations 12-1 

EXPONENTIAL 
Exponential Type Field 9-38 

EXPRESSION 
Boolean expression 4-87 
sign of an expression 9-51 

EXPRESSIONS 
Use Of Expressions 9-4 

F 
F command 7-19 

FACILITY 
SUBSYSTEM DUMP FACILITY 7-7 

FACTOR 
.multiplication factor 13-44 

FAULT 
SUBSYSTEM DATA AREA AND FAULT VECTOR 

6-1 

FAULTS 
break status faults 6-2 

FDS 
FDS 11-10 

FD UMP 
FDUMP 4-130 
FDUMP command 4-126 

FEED 
Form Feed 3-18 

i-12 

FIELD 
Exponential Type Field 9-38 
LITERAL TYPE FIELD 9-40 
Operand Field 10-10 
REPEAT FIELD 10-13 
STRING FIELD 10-12 

FIELDS 
Alphanumeric Type Fields 9-39 

FILACT, 
DRL FILACT, Permanent File 

Activities (Octal 36) 6-28 
FILACT, ACCESS FILE FUNCTION 6-34 
FILACT, ACCESS SUBROUTINE LIBRARIES 

6-37 
FILACT, CREATE CATALOG FUNCTION 

6-32 
FILACT, CREATE FILE FUNCTION 6-33 
FILACT, MODIFY CATALOG/FILE FUNCTION 

6-39 
FILACT, PURGE/RELEASE CATALOG/FILE 

FUNCTION 6-38 

FILE 
ACCESS FILE 4-9, 4-15 
ASCII Data File Input/Output 

Statement Formats 9-72 
available file table (AFT) 6-56 
~VAILABLE FILE TABLE (AFT) USAGE 

2-4 
Batch Activity To Build Time Sharing 

H* File 11-21 
BINARY FILE INPUT/OUTPUT STATEMENT 

FORMATS 9-93 
Building Fi Le from Non-ASCII Paper 

Tape 3-9 
BUILDING OR ADDING TO A FILE 10-2 
Collector File CSY••> 2-1 
command file 4-120 
CREATE FILE 4-9, 4-13 
current file 7-8 
Current file C•SRC) 2-1 
DEACCESS FILE 4-9, 4-17 
Deferred Processing Queue File 

13-25 
deferred queue file 4-114 
DRL CORFIL, Data From/to Core File 

6-22 
DRL DEFIL, Define and Access a 

Temporary File <Octal 6) 6-22 
DRL DIO, Do I/O on User's File 

(Octal 1 6-24 
DRL DRLSAV, Save Program on 

Permanent File (Octal 62) 6-26 
DRL FILACT, Permanent File 

Activities (Octal 36) 6-2B 
DRL FILSP, Space A Linked File 

(Octal 13) 6-43 
DRL GROW, Grow A Permanent Or 

· Temporary File (Octal 50) 6-43 
DRL MORLNK, Add Links To Temporary 

Fi le (Octal 34) 6-52 
DRL PART, Partial Release Of 

Temporary File (Octal 47) 6-55 
DRL PASDES, Pass AFT File Names And 

Descriptions (Octal 44> 6-56 

DJ31-00 



FILE (cont) 
DRL PASFLR, Pass Fi le To Remote 

Batch Processor 6-57 
DRL PDIO, Do I/O On a System Fi le 

6-59 
DRL RETFIL, Return A File (Octal 14) 

6-63 
DRL REW, REWIND A LINKED FILE 6-64 
DRL REW, Rewind A Linked File (Octal 

12) 6-64 
DRL SPAWN, Pass le To Batch 

Processor (Oc.tal 26) 6-68 
DRL SWITCH, Switch Temporary File 

Names (Octal 53) 6-70 
DRL T.CFIO, Command File And 

Deferred Processing Support 
(Octal 77) 6-77 

DRL T.SYOT, Pass Data File to 
Backdoor Sysout (Octal 75) 
6-82 

FILACT, ACCESS FILE FUNCTION 6-34 
FILACT, CREATE FILE FUNCTION 6-33 
FILE ACCESS 9-1Q9 
FILE CONTROL AREA 8-27 
FILE II 0 2-5 
file name descriptor, FLNAME 8-6 
H* file 8-9 
MODIFY FILE 4-9, 4-21 
Output File Case 4-119. 
Output File User Response 

Disposition 4-119 
PATCH section of the !NIT file 

13-34 
PURGE FILE 4-9, 4-18 
Random File Specification 4-13 
RELEASE FILE 4-9, 4-19 
SABT <Scan Abort File) Subsystem 

7-7 
Schema File 11-6, 11-11, 11-15 
SOURCE (SRC) FILE FORMAT 7-8 
Statistics File 11-12, 11-15 
Structure Of The File System 2-2 
TSS INIT FILE 13-31 
Unified File Access System (UFAS) 

8-5 
User's Contact With The File System 

2-4 
Validated Subschema File 11-6 

FILE: 
FILE: 9-94 

FILEDESCR 
filedescr 6-87 
PATCH filedescr 7-4 
SAVE filedescr 7-4 
SAVE filedescr progname 7-4 

FILENAME 
filename 6-87 

FILES 
ACCESSING I-D-S/II FILES REQUIRED 

FOR EXECUTION 11-18 
ASCII DATA FILES 9-70 
BINARY FILES 9-91 
C* object deck files 11-24 
Catalogs And Files 2-3 

i-13 

FILES (cont) 
Data base Area and Key Files 11-11, 

11-1 5 
data files 11-6 
DRL PASAFT, Pass List of Fi Les to 

Subsystem (Octal 22) 6-55 
Fi Les Required By I-D-S/II 11-6 
Line-Numbered Files 3-7 
LISTING PASSWORDS BY USERS' CATALOGS 

AND FILES 13-26 
Permanent Fi Les 2-5 

·PERMANENT FILES ASSIGNED BY USER 
2-2 

PROTECTING FILES 10-6 
SAVING AND EXECUTING OBJECT FILES 

9-107 
SAVING TEMPORARY FILES 9-107 
SYSTEM FILES 13-37 
Temporary Fi Les 2-5 
TEMPORARY USER FILES ASSIGNED BY TSS 

2-1 

FILSP, 
DRL FILSP, Space A Linked File 

(Octal 13> 6-43 

FIND 
FIND command 7-13, 10-27 
Find Data Pattern In Memory 7-19 

FINISH 
FINISH statement 11-10 

FIRST 
First Flag Word (.LFLAG) 6-8 
First Line Run Command 11-19 

FLAG 
First Flag Word ( .LFLAG) 6-8 
Second Flag Word Usage <.LFLG2) 

6-10 
Third Flag Word 6-13 

FLNAME 
file name descriptor, FLNAME 8-6 

FORM 
FORM 11-9 
FORM command 4-131 
Form Feed 3-18 
integer f6rm 9-49 
Octal Encrypted Form 13-30 

FORMAT 
Command Format 10-9 
format control characters 9-13 
Format Of Primitives 5-7 
Program descriptor format 5-3 
RUNOFF Format Control Words 10-16, 

10-52 
SOURCE (SRC) FILE FORMAT 7-8 
zone format 9-33 

FORMATS 
ASCII Data File Input/Output 

Statement. Formats 9-72 
BINARY FILE INPUT/OUTPUT STATEMENT 

FORMATS 9-93 

DJ31-00 



FORMATTED 
formatted line 9-13 

FORMATTING 
Formatting Output With A Comma Or 

Semicolon 9-33 

FORTRAN 
Comparison Of The FORTRAN And 

YFORTRAN Time Sharing Systems 
11-7 

FORTRAN 1:1-7 
FORTRAN TIME SHARING SYSTEM RUN 

COMMAND 11-12 
I-D-S/II IN A FORTRAN TIME SHARING 

ENVIRONMENT 11-6 
Time Sharing System FORTRAN 11-1 

FORTRANY 
FORTRANY 4-132 

FRN 
FRN command 4-132, 4-137 

FULL 
Full Trace 7-34 

FUNCTION 
Column Function 10-22 
FILACT, ACCESS FILE FUNCTION 6-34 
FILACT, CREATE CATALOG FUNCTION 

6-32 
FILACT, CREATE FILE FUNCTION 6-33 
FILACT, MODIFY CATALOG/FILE FUNCTION 

6-39 
FILACT, PURGE/RELEASE CATALOG/FILE 

FUNCTION 6-38 
Function ASC 9-55 
Function CLKS 9-52 
Function DAT$ 9-52 
Function DET 9-51 
Function HPS 9-57 
Function INT 9-49 
Function LEN 9-54 
Function LIN 9-54 
Function NUM 9-53 
Function RND 9-49 
Function SGN(X) 9-51 
Function SPC 9-53 
Function SST 9-53 
Function STR$ 9-56 
Function TAB 9-53 
Function TIM 9-52 
Function TST 9-57 
Function VAL 9-56 
LIMIT Function 10-33 
Octal Function 10-35 
que~tions associated with each 

function 4-10 
Use Of The Master Function 13-3 
WHERE Function 10-48 

FUNCTIONS 
DEFINING FUNCTIONS 9-40 
Functions TAB(X) and SPC(X) 9-35 
GENERAL RULES REGARDING ALL LOADER 

FUNCTIONS 7-6 
MAST Subsystem Functions 13-3 

i-14 

FUNCTIONS (cont) 
Mathematical Functions 9-5 
Miscellaneous Functions 9-6 

GAT 
GAT verb 4-261 

GENERAL 
GENERAL RULES REGARDING ALL LOADER 

FUNCTIONS 7-6 

GET 
GET 4-140 
GET command 11-18 

GFRC 
TIME SHARING GFRC 8-32 

GO 
GO 11-10 

GO SUB 
GOSUB and RETURN 9-18 

GOTO 
GOTO 9-18 

GROW 
DRL GROW, Grow A Permanent Or 

Temporary File (Octal 50) 6-43 

GROW, 
DRL GROW, Grow A Permanent Or 

Temporary Fi le (Octal 5 0) 6-43 

GTFL 
GTFL 8-15 

GWAKE, 
DRL GWAKE, Wake Me Later 6-44 

H* 
Batch Activity To Build Time Sharing 

H* File 11-21 
H* file 8-9 
Link H* Creation 11-24 

HELP 
HELP 4-141 
HELP command 4-141 
HELP message explanations 12-1 
HELP subsystem 12-1 

HIS 
HIS verb 4-261 

HOLD 
HOLD 4-142 
HOLD command 4-142 

HOLD/SEND 
HOLD/SEND Bit 6-14 

HONEYWELL 
Honeywell Subsystem Descriptions 

6..;87 
Honeywell Subsystem Types 6-87 

DJ31-00 



HONEYWELL-SUPPLIED 
HONEYWELL-SUPPLIED SUBSYSTEMS 6-87 

HOUR 
price per hour 13-43 

HPS 
Function HPS 9-57 

I command 7-39 

I-D-S/II 
ACCESSING I-D-S/II FILES REQUIRED 

FOR EXECUTION 11-18 
Files Required By I-D-S/II 11-6 
I-D-S/II DML statements 11-8, 11-12 
I-D-S/II IN A FORTRAN TIME SHARING 

ENVIRONMENT 11-6 
I-D-S/II statistics and abort codes 

11-10, 11-14 

IIO 
DRL DIO, Do I/O on User's File 

(Octal 1 6-24 
DRL PDIO, Do I/O On a System Fi le 

6-59 
FILE I/O 2-5 
keyboard I/O 13-44 

ICI 
ICI verb 4-255 

ID 
Designating Master ID and Passwords 

13-29 
DRL USERID Pass User ID And Priority 

To Executive 6-86 
ID 4-116 

ID? 

IF 

JOB ID? 4-119 

IF END # ----THEN 
IF END #----GOTO 
IF END:----THEN 
IF MORE #---GOTO 
IF MORE #---THEN 
IF MORE:----GOTO 
IF MORE:----THEN 

IF-----GOTO 
IF-----GOTO 9-19 

I F-----THEN 
IF-----THEN 9-19 

IF----GOTO 
IF----GOTO 9-66 

IF----THEN 
IF----THEN 9-66 

IGNORE 

9-89 
9-89 

9-104 
9-90 
9-90 
9-105 
9-105 

IGNORE MODE 10-14 

!IDS 
IIDS command 4-143 

IMAGE 
image statement 9-13 

INCLUDE 
INCLUDE 4-119 

INDEXED 
Indexed 11-6 
·Indexed with Record Keys 11-6 

INDICATOR 
MODE INDICATOR 10-11 

INF 
INF verb 4-245, 4-260 

INF ILE 
INFILE 4-122 

INFORMATION 
VIP (Visual Information Projection) 

3-11 

!NIT 
PATCH section of the !NIT file 

13-34 
TSS !NIT FILE 13-31 

INITIALIZATION 
Changing System Initialization 

Tables 13-37 

INITIALIZE 
Initialize Queues/Frequencies 7-39 

INITIATION 
Earliest Session Initiation Date 

4-116 

INPUT 
Automatic Paper Tape Input 3-10 
Build Mode Inpu~ 3-6 
DATA INPUT DURING PROGRAM EXECUTION 

9-43 
DRL KIN, Keyboard Input Last Line 

(Octal 4) 6-50 
DRL KOUTN, Keyboard Output Then 

Input (Octal 3) 6-52 
DRL PSEUDO, Simulated Keyboard Input 

6-60 
DRL STOPPT, STOP PAPER TAPE I.N PUT 

6-69 
DRL STOPPT, Stop Paper Tape Input 

(Octal 61) 6-69 
DRL T.LINL, Change Terminal Input 

Line Length (Octal 74) 6-81 
DRL TAPEIN, Start Paper Tape Input 

(Octal 27) 6-71 
INPUT 9-10, 9-70 
Input Error Recovery 11-5 
Keyboard input 3-2 
KEYBOARD INPUT MODES 5-6 
MAT INPUT # 9-82 
Paper Tape Input 3-9 
Program Statement Input 11-1 

i-15 DJ31-00 



INPUT (cont) 
Supplying Direct-Mode Program Input 

11-27 

INPUT/OUTPUT 
ASCII Data Fi le Input/Output 

Statement Formats 9-72 
BINARY FILE INPUT/OUTPUT STATEMENT 

FORMATS 9-93 

INSERT 
INSERT 8-2 
INSERT Command 10-29 

INSTRUCTIONS 
Execute Instructions 

INT 
ATTN or INT key 3-8 
Function INT 9-49 

INTEGER 
integer form 9-49 

INTEGRATED 
Integrated 11-6 

7-19 

Integrated with Record Keys 11-6 

INTERFACE 
TSS Terminal/Batch Interface 1-3 

INTERNAL 
DRL CALLSS, Internal Call to Another 

Subsystem 6-20 

INTERRUPT 
interrupt control 3-8 

INVOKE 
INVOKE statement 11-7, 11-18 

IOQ 
IOQ verb 4-253 

JABT 
JABT 4-144 

JDAC 
JDAC Command 4-145 

JOB 
DRL ABTJOB, Abort Batch Job 6-18 
DRL JSTS, Obtain Job Status 6-46 
JOB ID? 4-119 

JOUT 
JOUT 4-148 

JPRINT 

JSTS 
JSTS 4-165 

JSTS, 
DRL JSTS, Obtain Job Status 6-46 

KS 
KS 13-44 

KEY 
ATTN or INT key 3-8 
BREAK key 3-8 
Data base Area and Key Files 11-11, 

11-15 
Enable Control Via Break Key 7-17 

KEYBOARD 
DRL KIN, Keyboard Input Last Line 

(Octal 4) 6-50 
DRL KOTNOW, Keyboard Output From 

Unfilled Buffer (Octal 56) 
6-50 

DRL KOUT, Keyboard Output (Octal 2) 
6-51 

DRL KOUTN, Keyboard Output Then 
Input (Octal 3) 6-52 

DRL PSEUDO, Simulated Keyboard Input 
6-60 

keyboard I/O 13-44 
Keyboard input 3-2 
KEYBOARD INPUT MODES 5-6 
Terminal Keyboard 10-2 

KEYBOARD/DISPLAY 
KEYBOARD/DISPLAY TERMINAL OPERATION 

3-11 
keyboard/display terminals 3-12 

KEYS 
Indexed with Record Keys 11-6 
Integrated with Record Keys 11-6 

KIN, 
DRL KIN, Keyboard Input Last Line 

(Octal 4) 6-50 

KOTNOW, 
DRL KOTNOW, Keyboard Output From 

Unfilled Buffer (Octal 56) 
6-50 

KOUT, 
DRL KOUT, Keyboard Output (Octal 2) 

6-51 

KOUTN, 
DRL KOUTN, Keyboard Output Then 

Input (Octal 3) 6-52 

JPRINT and JPUNCH commands 4-149 L 

JPUNCH 
JPRINT and JPUNCH commands 4-149 

JRN 
JRN command 4-156 

i-16 

L command 7-20 

LAL 
LAL verb 4-257 

LANGUAGE 
Command Language Reference 4-1 
COMMAND LANGUAGE USAGE 7-15 

DJ31-00 



LANGUAGE (cont) 
Data Manipulation Language 11-10 
Device Media Control Language 11-6 
EDITOR LANGUAGE 10-9 

LAST 
DRL KIN, Keyboard Input Last Line 

(Octal 4) 6-50 
Restore Program State From Last Save 

7-24 

LATER 
DRL GWAKE, Wake Me Later 6-44 

LCAS 
LCAS command 4-166 

LDEL 
LDEL 11-10, 11-14 

LEADER 
LEADER command 4-166 

LEADING 
l~ading quote 4-115 

LEFT 
left parenthesis 4-115 

LEN 
Function LEN 9-54 

LENGTH 
DRL T.LINL, Change Terminal Input 

Line Length (Octal 74) 6-81 
LENGTH 4-168 

LET 
LET 9-7, 9-64 

LIB 
LIB 4-169 
LIB command 4-169 

LIBRARIES 
FILAtT, ACCESS SUBROUTINE LIBRARIES 

6-37 

LIBRARY 
Building A Library of User Programs 

13-41 

LIMIT 
DRL DRLIMT, Store Processor Time 

Limit 6-26 
DRL OBJTIM, Processor Time And Core 

Size Limit (Octal 57) 6-54 
LIMIT Function 10-33 
LIMIT SET BY USER 13-42 
Maximum Processor Time Limit 4-117 

LIMITATIONS 
LIMITATIONS IMPOSED BY THE AFT 

11-27 

LIMITS 
LIMITS SET BY SITE 13-41 

LIMITS (cont) 
Setting Processor Time and Memory 

Size Limits 13-41 

LIN 
Function LIN 9-54 

LINE 
DRL CGROUT, Process Line Switch 

6-20 
DRL KIN, Keyboard Input Last Line 

(Octal 4) 6-50 
DRL SETLNO, Set Line 

Number/Increment in UST (Octal 
3 7) 6-65 

DRL T.LINL, Change Terminal Input 
Line Length (Octal 74) 6-81 

DRL TERMTP, Terminal Type and Line 
Number (Octal 23) 6-75 

EXAMPLES OF LINE DELIMITER USE 4-26 
First Line Run·command 11-19 
formatted line 9-13 
LINE Command 10-34 
line number 3-6 
MULTIPLE STATEMENTS WITHIN ONE LINE 

9-107 
Sp a c i n g W i th i n an 0 u t put L i n 1• 9- -~ ':> 

LINE-DELETE 
line-delete control 3-3 

LINE-NUMBERED 
Line-Numbered Files 3-7 

LINELENGTH 
LINELENGTH command 4-170 

LINK 
Link H* Creation 11-24 

LINK/OVERLAY 
RUNL Command For Link/Overlay 11-21 

LINKED 
DRL FILSP, Space A Linked File 

(Octal 13) 6-43 
DRL REW, REWIND A LINKED FILE 6-64 
DRL REW, Rewind A Linked File (Octal 

12) 6-64 

LINKS 
DRL MORLNK, Add Links To Temporary 

File (Octal 34) 6-52 

LIST 
DRL PASAFT, Pass List of Files to 

Subsystem (Octal 22) 6-55 
DRL RETURN, Return to Primitive List 

(Octal 5) 6-64 
LIST 4-172 
List And Table Variables 9-2 
LIST CATALOG 4-9, 4-23 
LIST command 4-171 
LIST SPECIFIC 4-9, 4-25 
Program Descriptor 

Command-Language/Primitive List 
5-2 

Program With A List And Table 9-32 

i-17 DJ31-00 



LISTING 
LISTl~G PASSWORDS 8Y USERS' CATALOGS 

ANI> ,ILES 13-26 

LISlS 
command-language/primitive lists 

5-3 
LISTS AND TABLES 9-62 

LITERAL 
LITERAL TYPE FIELD 9-40' 

LNO 
LNO 11-9 

LOAD 
RESTRICTIONS ON LOAD USAGE 11-28 
TSS EXECUTIVE EDIT LOAD MAP 13-40 

LOADER 
COMMAND LOADER 7-1 
COMMAND LOADER USAGE 7-2 
GENERAL RULES REGARDING ALL LOADER 

FUNCTIONS 7-6 

LOCCFILE 
LOC(file designator) 9-92 

LOCATE 
LOCATE command 7-13 
locate SYMDEF 7-20 

LOOS 
LOOS 7-5 
LOOS command 4-174 

LOOT 
LOOT 7-5, 7-15 
LOOT command 4-175 

LODX 
LODX 7-3, 7-15 
LODX command 4-176 

LOF(FILE 
LOF(file designator) 9-92 

LOGICAL 
Logical record delete 11-10, 11-14 

LOGO FF 
Logof f Procedure 3-8 

LOGON 
DRL NEWUSR Logon New User Without 

Disconnect 6-53 
Logon 3-14 
Logon Procedure 3-3 
Logon Security 13-30 

LOOPS 
LOOPS 9-59 
Program With Loops 9-30 

LOWER 
LOWER 4-119 

L lJC ID 
LUCID command 4-178 
LUCIO Command Bit 6-14 

LVL 
LVL verb 4-257 

MA 
MA 7-.21 

MACRO 
macro .SSCOM 13-2 

MACROS 
SYSTEM MACROS 6-15, C-1 

MAIL 
DRL T.MAIL, Mail Message Sent (Octal 

102) 6-84 

MANIPULATION 
ALPHANUMERIC DATA AND STRING 

MANIPULATION 9-64 
Data Manipulation Language 11-10 

MAP 
MAP 7-37 
Map Trace 7-34 
TSS EXECUTIVE EDIT LOAD MAP 13-40 

MARGIN 
MARGIN # 9-87 

MARN 
MARn 7-21 

MAST 
MAST or MAS2 command 4-182 
MAST Subsystem Functions .13-3 

MASTER 
Designating Master ID and Passwords 

13-29 
DRL STPSYS Stop Execution of Master 

Subsystem 6-69 
Master and Privileged Subsystems 

13-1 
MASTER SUBSYSTEMS 13-2 
Use Of The Master Function 13-3 

MAT 
MAT 9-8 
MAT INPUT # 
MAT PRINT # 
MAT READ # 
MAT WRITE # 
MAT WRilE: 

MATHEMATICAL 

9-82 
9-84 

9-81 
9-83 

9-100 

Mathematical Functions 9-5 
MATHEMATICAL NOTATION AND OPERATIONS 

WITHIN A STATEMENT 9-2 

MATRICES 
MATRICES 9-44 

i -18 DJ31-00 



MAXIMUM 
DETERMINING MAXIMUM NUMBER OF TIME 

SHARING USERS 13-39 
Maximum Processor Time Limit 4-117 

MDQ 
MDQ command 4-196 

MECHANISM 
SECURITY MECHANIS 1 PATCHES 13-46 

MEDIA 
Device Media Control Language 11-6 
Time Sharing Media Conversion 

Program (TSCONV) 8-1 

MEM 
MEM verb 4-261 

MEMORY 
DRL ADDMEM, Add Memory 6-19 
DRL RELMEM, Release Memory (Octal 

15) 6-61 
DRL T.CMOV Examine Areas Of Memory 

6-79 
Find Data Pattern In Memory 7-19 
MEMORY CONSIDERATIONS 11-28 
Patch Memory 7-22 
Setting Processor Time and Memory 

Size Limits 13-41 
Snap Memory 7-23 

MESS 
MESS 13-5 

MESSAGE 
DRL T.MAIL, Mail Message Sent (Octal 

102) 6-84 
HELP message explanations 12-1 

MESSAGES 

MI 

ERROR MESSAGES 7-41, 12-1 
Executive Error Messages B-1 

MI 7-21 

MISCELLANEOUS 
Miscellaneous Functions 9-6 

MODE 
#NO mode 10-14 
build mode 5-6 
Build Mode Input 3-6 
direct mode 5-6 
IGNORE MODE 10-14 
mode 4-10 
MODE INDICATOR 10-11 

MODES 
KEYBOARD INPUT MODES 5-6 

MODIFIER 
Modifier Trace 7-33 

MODIFY 
FILACT, MODIFY CATALOG/FILE FUNCTION 

6-39 

i-19 

MODIFY (cont) 
MODIFY CATALOG 4-9, 4-19 
MODIFY FILE 4-9, 4-21 

MOF 
MOF 13-46 

MON 
MON 13-46 

MONC 
MONC 13-46 

MONITOR 
MONITOR 13-5 

MORE 
IF MORE #---GOTO 9-90 
IF MORE #---THEN 9-90 

MORE:----GOTO 
IF MORE:----GOTO 9-105 

MORE:----THEN 
IF MORE:----THEN 9-105 

MORLNK, 
DRL MORLNK, Add Links To Temporary 

Fi le (Octal 34) 6-52 

MOVE 
MOVE 8-2 

MQ 
MQ 7-21 

MSOF 
$ MSOF 13-48 
MSOF 13-6, 13-30 

MSON 
$ MSON 13-48 
MSON 13-30 

MULTIPLE 
MULTIPLE STATEMENTS WITHIN ONE LINE 

9-107 
Multiple variable replacement 9-7 

MULTIPLE-LINE 
MULTIPLE-LINE DEF STATEMENT 9-42 

MULTIPLICATION 
multiplication factor 13-44 

MµPDATE 
MUPDATE 13-6 

MVT 
MVT 7-30 

MXN 
MXn 7-21 

NAME 
file name descriptor, FLNAME 8-6 

DJ31-00 



NAME=NAME 
NAIWIE=name 11-11 

NAMES 
DRL PAS&ES, Pass AFT File Names And 

Descriptions (Octal 44) 6-56 
DRL SWITCH, Switch Temporary File 

Names COctal 53) 6-70 

NB 
NB ABORT 8-4 

NDEBUG 
NDEBUG 11-9 

NEW 
ORL NEWUSR Log on New User Without 

Disconnect 6-53 
NEW 4-196 

NEWU 
NEWU 4-197 

NEWUSER 
NEWUSER command 4-197 

NEWUSR 
DRL NEWUSR Log on New User Without 

Disconnect 6-53 

NEXT 
FOR and NEXT 9-17 

NF ORM 
NFORM 11-9 
NFORM command 4-198 

NLNO 
NLNO 11-9 

NNNNNN 
RUN nnnnnn 7-5 

NOGO 
NOGO 11-10 

NOLIB 
NOLIB 11-10 

NON-ASCII 
Building File from Non-ASCII Paper 

Tape 3-9 

NON-TRACE 
NON-TRACE COMMANDS 7-16 

NOPARITY/PARITY 
NOPARITY/PARITY command 4-198 

NO PAUSE 
NOPAUSE 7-41 
NOPAUSE command 7-41 

NOPTZ 
NOPTZ 11-10 

NOS TOP 
NOSTOP Command 10-49 

i-20 

NOTATION 
MATHEMATICAL NOTATION AND OPERATIONS 

WITHIN A STATEMENT 9-2 

NOTRACE 
NOTRACE 7-40 
NOT RACE command 7-40 

NOVERIFY 
NOVERIFY Command 10-48 

NUM 
Function NUM 9-53 

NUMBER 
charge number 3-4 
DETERMINING MAXIMUM NUMBER OF TIME 

SHARING USERS 13-39 
DRL TERMTP, Terminal Type and Line 

Number (Octal 23) 6-75 
line number 3-6 
NUMBER Command 10-50 
truncate a number 9-49 

NUMBER/INCREMENT 
DRL SETLNO, Set Line 

Number/Increment in UST (Octal 
37) 6-65 

NUMBERS 
printing of numbers 9-12 
random numbers 9-49 
Use Of Numbers 9-3 

NWARN 
NWARN 11-10 

OBJECT 
C* object deck files 11-24 
SAVING AND EXECUTING OBJECT FILES 

9-107 

OBJ TIM 
DRL OBJTIM 13-42 

OBJ TIM, 
DRL OBJTIM, Processor Time And Core 

Size Limit (Octal 57) 6-54 

OBTAIN 
DRL JSTS, Obtain Job Status 6-46 
DRL SNUMB, Obtain Snumb (Octal 20> 

6-66 
DRL TIME, Obtain Processor Time and 

Time of Day (Octal 21) 6-77 

OCT 
OCT command 7-22 

OCTAL-ASCII 
Octal-ASCII Conversion Equivalents 

0-1 

OCTAL-TO-DECIMAL 
Octal-to-Decimal Conversion 7-22 

OCTL 
OCTL 10-36 

OJ31-00 



OFF 
TRACE OFF 9-22 

OFFSET 
Establish Offset 7-21 

OLD 
OLD 4-201 
OLD command 4-199 

ON-----GOTO 
ON-----GOTO 9-20 

ON..-----THEN 
ON-----THEN 9-20 

OPERAND 
operand ASCII descriptor CADSC9) 

8-6 
Operand Field 10-10 

OPERATING 
Operating Procedure 13-3 

OPERATION 
KEYBOARD/DISPLAY TERMINAL OPERATION 

3-11 
Operation Code Trace 
TELEPRINTER OPERATION 

OPERATIONS 

7-32 
3-1 

Arithmetic Operations 9-3 
MA TH EM AT I C AL N 0 TA T I 0 N AND -0 P E RAT I 0 NS 

WITHIN A STATEMENT 9-2 

OPTIONAL 
Optional parameters 4-116 

OPTIONS 
POST-LOADING OPTIONS 7-3 
Time Sharing System Options 13-43 

OPTZ 
OPTZ 11-10 

ORGANIZATION 
Subsystem Organization 5-1 
Subsystem Program Descriptor 

Organization 5-1 
Subsystem Program Organization 5-1 

OUTPUT 
DRL KOTNOW, Keyboard Output From 

Unfilled Buffer (Octal 56) 
6-50 

DRL KOUT, Keyboard Output (Octal 2) 
6-51 

DRL KOUTN, Keyboard Output Then 
Input (Octal 3) 6-52 

DRL T.PAGE, Output In Scrolled 
Fashion (Octal 101) 6-83 

Formatting Output With A Comma Or 
Semicolon 9-33 

Output File Case 4-119 
Output Fi Le User Response 

Disposition 4-119 
Spacing Within an Output Line 9-35 
Terminating an Output Process 3-8 

i -21 

OVERFLOW 
overflow 6-2 

OVERLAY-LOAD 
DRL RESTOR, Overlay-Load A Subsystem 

6-62 

OWN 
Own Code Trace 7-35 

p 

P command 7-22 

PACKAGE 
BINDING TRACE PACKAGE 7-14 

PAGE 
characters per page 13-44 
charges per page 13-44 
PAGE command 4-203 

PAPER TAPE 
Automatic Paper Tape Input 3-10 
Building File from Non-ASCII Paper 

Tape 3-9 
DRL STOPPT, STOP PAPER TAPE INPUT 

6-69 
DRL STOPPT, Stop Paper Tape 

(Octal 61) 6-69 
DRL TAPE IN, Start Paper Tri pt> 

(Octal 27) 6-71 
Paper Tape 10-5 
Paper Tape Input 3-9 

PARAMETERS 
Optional parameters 4-116 

PARENTHESIS 
Left parenthesis 4-115 

PARITY/NOPARITY 
PARITY/NOPARITY Bit 6-15 

PART, 

Input 

Input 

DRL PART, Partial Release Of 
Temporary File (Octal 47) 6-55 

PARTIAL 
DRL PART, Partial Release Of 

Temporary File (Octal 47) 6-55 

PASAFT, 
DRL PASAFT, Pass List of Files to 

Subsystem (Octal 22) 6-55 

PASDES, 
DRL PASDES, Pass AFT File Names And 

Descriptions (Octal 44) 6-56 

PASFLR, 
DRL PASFLR, Pass File To Remote 

Batch Processor 6-57 

PASS 
DRL PASAFT, Pass List of Files to 

Subsystem (Octal 22) 6-55 
DRL PASDES, Pass AFT File Names And 

Descriptions (Octal 44) 6-56 

DJ31-00 



PASS (cont) 
DRL PASFL~, Pass File To Remote 

Batch P~ocessor 6-57 
DRL PASUST, Pass UST To Subsystem 

6-58 
DRL PR69E$, Pas~ Program Descriptor 

To Subsystem (Octal 65) 6-60 
DRL SPA~N; Pass File To Batch 

Processor (Octal 26) 6-68 
DRL T.SYOl, Pass Data File to 

Backdoor Sysout (Octal 75) 
6-82. 

DRL USERID Pass User ID And Priority 
To Executive 6-86 

PASSWORD 

PERMANENT 
DRL bRLSAV, Save Program on 

Permanent File (Octal 62) 6-26 
DRL FILACT, Permanent File 

Activities (Octal 36) 6-28 
DRL GROW, Grow A Perm~nent Or 

Temporary File (Octal 50) 6-43 
Permanent Files 2-5 
PERMANENT FILES ASSIGNED BY USER 

2-2 

PERMISSIONS 
Permis~ions 2-3, 6-88 

PGD 
PGD verb 4-254 

DRL T.CRYP, Password Encryption 
<Octal 67> 6-85 PICK 

password 3-4 
PASSWORD command 4-204 

PASSWORDS 
Designating Master ID and Passwords 

13-29 
LISTING ~ASS~ORDS BY USERS' CATALOGS 

AND FILE~ 13-26 
Passwords 2-3 · 

PASTE 
PASTE Command 10-36 

PASUST, 
DRL PASUST, Pass UST To Subsystem 

6-58 

PATCH 
$ PATCH 13-43 
PATCH 7-4, 13-7 
PATCH command 7-13 
PATCH filedescr 7-4 
Patch Memory 7-22 
PATCH section of the INIT file 

13-34 

PATCHES 
SECURITY MECHANISM PATCHES 13-46 

PATTERN 
Find Data Pattern In Memory 7-19 

PAUSE 
PAUSE 7-40 
PAUSE command 7-40 

PDIO, 
DRL PDIO, Do LIO On a Syst~m File 

6-59 

PEEK 
PEEK command 13-17 

PERIOD 
reduced rate period 13-45 

PERM 
PERM 4-205 
PERM command 4-205 

i-22 

DRL ATTRI, Pick Up User's Attributes 
6-19 

POINTER 
SEARCH POINTER 10-8 

PORTION 
Primary Portion Of Program 

Descriptor 5-2 

POST-LOADING 
POST-LOADING OPTIONS 7-3 

POUND 
pound sign (#) 4-115 

PPH 
PPH 13-43 

PPP 
PPP 13-44 

PRGDES, 
DRL PRGDES, Pass Program Descriptor 

To Subsystem (Octal 65) 6-60 

PRICE 
elapsed time price 13-43 
price per hour 13-43 

PRIMARY 
Primary Portion Of Program 

Descriptor 5-2 

PRIMITIVE 
DRL RETURN, Return to Primitive List 

(Octal S> 6-64 
Primitive Descriptions 5-7 

PRIMITIVES 
Format Of Primitives 5-7 
PRIMITIVES 5-7 

PRINT 
MAT PRINT # 9-84 
PRINT 4-206, 9-11, 9-69 
PRINT # USING 9-79 
PRINT command 4-206, 10-39, 10-50 
PRINT USING 9-13 

DJ31-00 



PRINTING 
printing of numbers 9-12 

PRIORITY 
ASSIGNING CLASS B PRIORITY TO TIME 

SHARING 13-46 
DRL USERID Pass User ID And Priority 

To Executive 6-86 
PRIORITY 13-7 
TSS Priority Dis •atch 13-38 

PRIVILEGED 
Master and Privileged Subsystems 

1 3-1 
PRIVILEGED SUBSYSTEMS 13-24 

PROCEDURE 
Dump Procedure 7-7 
Logof f Procedure 3-8 
Logon Procedure 3-3 
Operating Procedure 13-3 
STARTUP PROCEDURE 5-9 

PROCEDURES 
data base procedures 11-7 

PROGRAM (cont) 
Program Descriptor 

Command-Language/Primitive List 
5-2 

PROGRAM DESCRIPTOR EXAMPLES 5-10 
Program descriptor format 5-3 
Program Statement Input 11-1 
Program Switch Word (PSW) 4-118 
Program With A List And Table 9-32 
Program With Loops 9-30 
Program With Subroutine 9-31 
Restore Program State From Last Save 

7-24 
Save Current Program State 7-24 
Subsystem Program Descriptor 

Organization 5-1 
Subsystem Program Organization 5-1 
Supplying Direct-Mode Program Input 

11-27 
Time Sharing Media Conversion 

Program (TSCONV) 8-1 

PROGRAMMING 
Programming For the Time Sharing 

System 6-1 

PROCESS PROGRAMS 
DRL CGROUT, Process Line Switch Building A Library of User Programs 

6-20 13-41 
Terminating an Output Process 3-8 

PROJECTION 
PROCESSING VIP (Visual Information Projection) 

Deferred Processing Queue File 3-11 
13-25 

DRL T.CFIO, Command File And 
Deferred Processing Support 
(Octal 77) 6-77 

PROCESSOR 
DRL DRLIMT, Store Processor Time 

Limit 6-26 
DRL OBJTIM, Processor Time And Core 

Size Limit (Octal 57) 6-54 
DRL PASFLR, Pass File To Remote 

Batch Processor 6-57 
DRL SPAWN, Pass Fil~ To Batch 

Processor (Octal 26) 6-68 
DRL TIME, Obtain Pr~cessor Time and 

Time of Day <Octal 21) 6-77 
Maximum Processor Time Limit 4-117 
Setting Processor Time and Memory 

Size Limits 13-41 

PROF 
PROF command 4-193, 13-17 

PROGRAM 
A BASIC PROGRAM EXAMPLE 9-24 
DATA INPUT DURING PROGRAM EXECUTION 

9-43 
DRL DRLSAV, Save Program on 

Permanent File (Octal 62) 6-26 
DRL PRGDES, Pass Program Descriptor 

To Subsystem (Octal 65) 6-60 
Primary Portion Of Program 

Descriptor 5-2 
Program Descriptor 5-5 

i-23 

PROTECTING 
PROTECTING FILES 10-6 

PROTECTION 
SUBSYSTEM PROTECTION 6-1 

PRQ 
verb PRQ 4-249 

PRT 
PRT verb 4-263 

PSEUDO, 
DRL PSEUDO, Simulated Keyboard Input 

6-60 

PSW 
Program Switch Word (PSW) 4-118 

PSWD 
PSWD 13-10 

PTOF 
PTOF command 4-209 

PTON 
PTON command 4-209 

PULSES 
Octal Clock Pulses 13-28 

PURGE 
PURGE CATALOG 4-9, 4-17 
PURGE command 4-208 

DJ31-00 



PURGE (cont) 
PURGE FILE 4-9, 4-18 

PURGE/RELEASE 

Q 

FILACT, PURGE/RELEASE CATALOG/FILE 
FUNCTION 6-38 

Q command 7-38 

QUESTIONS 
QUESTIONS AND RESPONSES 4-10 
questions associated with each 

function 4-10 

QUEUE 
Deferred Processing Queue File 

13-25 
deferred queue file 4-114 
queue trace 7-38, 7-41 
transfer queue 7-38 

QUEUES/FREQUENCIES 
Initialize Queues/Frequencies 7-39 

QUOTE 
Leading quote 4-115 

R 
R command 7-23 

RANDOM 
Random File Specification 4-13 
random numbers 9-49 
random variables 9-49 

RATE 
reduced rate period 13-45 

RBUG 
$ USE RBUG 4-63 

RDRC 
RDRC 8-20 

READ 
DRL T.RSCC, Read System Controller 

Clock (Octal 101) 6-83 
MAT READ # 9-81 
READ 9-14, 9-69, 9-96 
READ # 9-75 
READ command 4-210 

RECORD 
Indexed with Record Keys 11-6 
Integrated with Record Keys 11-6 
Logical record delete 11-10, 11-14 

RECOVERY 
Input Error Recovery 11-5 
RECOVERY command 4-211 

REDUCED 
reduced rate period 13-45 

REFORM 
REFORM Command 10-50 

REG 
REG verb 4-255 

REGARDING 
GENERAL RULES REGARDIN~ ALL LOADER 

FUNCTIONS 7-6 

REGION 
communication region 13-32, 13-37 

REGISTER 
Display Register 7-25 

RELATIONAL 
Relational Symbols 9-3 

RELEASE 
DRL PART, Partial Release Of 

Temporary File (Octal 47> 6-55 
DRL RELMEM, Release Memory (Octal 

15) 6-61 
REL~ASE CATALOG 4-9, 4-19 
RELEASE command 4-213 

. RELEASE FILE 4-9, 4-1.9 

RELMEM, 
DRL RELMEM, Release Memory (Octal 

15) 6-61 

RELOCATION 
relocation 13-34 

REM 
REM 9-23 

REMO 
REMO 11-11 

REMOTE 
DRL PASFLR, Pass File To Remote 

Batch Processor 6-57 

REMOVE 
REMOVE command 4-214 

REPEAT 
REPEAT FIELD 10-13 

REPLACE 
REPLACE Command 10-43 

RESAVE 
RESAVE 4-215 
RESAVE command 4-215 

RESEQUENCE 
RESEQUENCE command 4-216, 10-4 

RESET 
DRL RSTSWH, Reset Switch Word (Octal 

11) 6-65 

RESPONSES 
QUESTIONS NND RESPONSES 4-10 
Responses from EDITOR 10-14 

RESTART 
Deferred Session Restart 4-119 

i-24 DJ31-00 



RES TOR, 
DRL RESTOR, Overlay-load A Subsystem 

6-62 

RESTORE 
RESTORE 7-13, 9-15, 9-70 
RESTORE II 9-85 
RESTORE command 7-24 
Restore Program State From Last Save 

7-24 

RESTORE: 
RESTORE: 9-101 

RETFIL, 
DRL RETFIL, Return A File (Octal 14) 

6-63 

RETURN 
DRL RETFIL, Return A File (Octal 14) 

6-63 
DRL RETURN, Return to Primitive List 

(Octal 5·) 6-64 
GOSUB and RETURN 9-18 
Terminate Execution Via DRL RETURN 

7-25 

RETURN, 
DRL RETURN, Return to Primitive List 

{Octal 5) 6-64 

REW 
REW command 4-218 

REW, 
DRL REW, REWIND A LINKED FILE 6-64 
DRL REW, Rewind A Linked Fi le (Octal 

1 2) 6-64 

REWIND 
DRL REW, REWIND A LINKED FILE 6-64 
DRL REW, Rewind A Linked Fi le (Octal 

1 2) 6-64 

RND 
Function RND 9-49 

ROLLBACK 
ROLLBACK command 4-219 

RR 
RR 13-45 

RRLL 
RRLL 13-45 

RRUP 
RRUP 13-45 

RSTSWH, 
DRL RSTSWH, Reset Switch Word (Octal 

11) 6-65 

RTFL 
RTFL 8-25 

RUN 
First Line Run Command 11-19 

i-25 

RUN (cont) 
FORTRAN TIME SHARING SYSTEM RUN 

COMMAND 11-12 
RUN 7-5 
RUN command 11-18, 13-42 
RUN nnnnnn 7-5 
THE YFORTRAN TIME SHARING SYSTEM RUN 

COMMAND 11-8 
TSS RUN Examples 11-20 

RUNL 
RUNL Command For Link/Overlay 11-21 

RUNOFF 
RUNOFF command 4-220, 10-47 
RUNOFF COMMANDS 10-49 
RUNOFF Examples 10-61 
RUNOFF Format Control Words 10-16, 

10-52 

RWFL 
RWFL 8-26 

s 
S command 7-23 

SABT 
SABT (Scan Abort Fi le) Subsystem 

7-7 

SAVE 
DRL DRLSAV, Save Program on 

Permanent File (Octal 62) 6-26 
Restore Program State From Last Save 

7-24 
SAVE 4-222, 7-4, 7-13 
SAVE command 7-24 
Save Current Program State 7-24 
SAVE filedescr 7-4 
SAVE filedescr progname 7-4 

SAVING 
SAVING AND EXECUTING OBJECT FILES 

9-107 
SAVING TEMPORARY FILES 9-107 

S CAF 
SCAF 8-11 

SCAN 
SABT (Scan Abort Fi le) Subsystem 

7-7 
SCAN 4-226 

SCHEMA 
Schema File 11-6, 11-11, 11-15 

SCRATCH: 
SCRATCH: 9-101 

SCROLLED 
DRL T.PAGE, Output In Scrolled 

Fashion <Octal 101) 6-83 

S DQ 
SDQ verb 4-262 

DJ31-00 



SE 
SE ABORT 8-4 

SEARCH 
SEARCfl POINTER 10-8 

SECOND 
Second Flag Word Usage C.LFLG2) 

6-10 

SECTION 
$INFO Section 13-32 
PATCH s~ction of the INIT file 

13-34 

SECURITY 
Logon Security 13-30 
SE(URITY MECflANISM PATCHES 13-46 

SELECTION 
DRL SYSRET, Cancel Current System 

Selection (Octal 40) 6-70 

SEND 
SEND 4-227 
SEND command 4-227 

SENT 
DRL T.MAIL, Mail Message Sent (Octal 

102) 6-84 

SEQUENCE 
SEQUENCE com~and 4-228 

S E'QUENC E# 
SEQ~ENCE# 4-228 

SEQUENCEX 
SEQUENCEX 4-229 
SEQUENCEX com~and 4-229 

SESSION 
Deferred Session Restart 4-119 
Ea r l i est Se s s i O'n In i t i at i on Date 

4-116 

SET 
DRL SETLNO, Set line 

Number/Increment in UST (Octal 
37) 6-65 

DRL SETSWH, Set Switch Word (Octal 
10) 6-66 

LIMIT SET BY USER 13-42 
LIMITS SET BY SITE 13-41 
SET 9-10.6 

SETLNO, 
DRL SETLN-0# Set Line 

Number/Increment in UST (Octal 
3 7) 6-65 

SETSWH, 
DRL SETSWH, Set Switch Word (Octal 

10) 6-66 

SETTING 
Setting Processor Tim~ and Memory 

Size Limits 13-41 

i-26 

SGN(X) 
Fun~tion SGNCX) 9-51 

SIGN 
dollar sign 4-115 
pound sign (#) 4-115 
sign of an expression 9-51 

SIMULATED 
DRL PSEUDO, Simulated «eyboard Input 

6-60 

SITE 
LI~ITS SET BY SITE 13-41 
SITE ADMINISTRATOR 13-1 

SIZE 
DRL OBJTIM, Processor Time And Core 

Size Limit (-Octal 57) 6-54 
Setting Processor Time and Memory 

Size Limits 13-41 
string size 9-64 

SKIP 
SKIP n tommand 10-51 

SLASH 
slash 4-115 

SMCL 
SMCL 13-10 
SMCL command 4-230 

SMO 
SMO 4-260 

SNAP 
SNAP 13-11 
Snap Memory 7-23 
snap verb 4-260 

SNUMB 
DRL SNUMB, Obtain Snumb (Octal 20> 

6-66 
SNUMB 4-118 

SNUMB, 
DRL SNUMB, Obtain Snumb (Octal 20) 

6-66 

SOF 
SOF verb 4-253 

SORT 
SORT command 4-231 

SPACE 
DRL FILSP, Space A Linked File 

(Octal 13) 6-43 

SPACING 
Spacing Within an Output Line 9-35 

SPAWN 
DRL TASK, Spawn A Special Batch 

Activity <Octal 63) 6-72 

DJ31-00 



SPAWN, 
DRL SPAWN, Pass File To Batch 

Processor CO~tal 26) 6-68 

SPC 
Function SPC 9-53 

SPC(X) 
Functions TAB(X) and SPC(X) 9-35 

SPEC 
SPEC 13-12 

SPECIAL 
DRL TASK, Spawn A Special Batch 

Activity (Octal 63) 6-72 

SPECIFIC 
LIST SPECIFIC 4-9, 4-25 

SPECIFICATION 
Random File Specification 4-13 

SRC 
SOURCE (SRC) FILE FORMAT 7-8 

SSA 
SSA verb 4-257 

SSPATCH 
SSPATCH 13-12 

SST 
Function SST 9-53 

STANDARD 
STANDARD Command 10-20 

START 
DRL TAPEIN, Start Paper Tape Input 

( 0 ct al 27) 6-71 

STARTUP 
STARTUP PROCEDURE 5-9 

STAT 
STAT 11-10, 11-14 

STATEMENT 
ASCII Data Fi le Input/Output 

Statement Formats 9-72 
BINARY FILE INPUT/OUTPUT STATEMENT 

FORMATS 9-93 
FINISH statement 11-10 
image statement 9-13 
INVOKE statement 11-7, 11-18 
MATHEMATICAL NOTATION AND OPERATIONS 

WITHIN A STATEMENT 9-2 
MULTIPLE-LINE DEF STATEMENT 9-42 
Program Statement Input 11-1 
STATEMENT DEFINITION 9-1 
STATEMENT DESCRIPTIONS 9-6 

STATEMENTS 
I-D-S/II DML statements 11-8, 11-12 
MULTIPLE STATEMENTS WITHIN ONE LINE 

9-107 

i-27 

STATISTICS 
I-D-S/II statistics and abort codes 

11-10, 11-14 
Statistics File 11-12, 11-15 

STATUS 
break status faults 6-2 
DRL JSTS, Obtain Job Status 6-46 
STATUS 4-233, 13-13 
STATUS command 4-233 
user status table (UST) 6-58 

STOP 
DRL STOPPT, STOP PAPER TAPE INPUT 

6-69 
DRL STOPPT, Stop Paper Tape Input 

(Octal 61> 6-69 
DRL STPSYS Stop Execution of Master 

Subsystem 6-69 
STOP 9-20 

STOPPT, 
DRL STOPPT, STOP PAPER TAPE INPUT 

6-69 
DRL STOPPT, Stop P·a per Tape Input 

(Octal 61) 6-69 

STORE 
DRL DRLIMT, Store Processor Time 

Limit 6-26 

STPSYS 
DRL STPSYS Stop Execution of Master 

Subsystem 6-69 

STR$ 
Function STR$ 9-56 

STRING 
ALPHANUMERIC DATA AND STRING 

MANIPULATION 9-64 
STRING Command 10-47 
STRING FIELD 10-12 
string size 9-64 
string variables 9-64 

STRIP 
STRIP command 4-234 

STRUCTURE 
Structure Of The Fi le System 2-2 
Subschema Control Structure 11-6 

STS 
STS verb 4-258 

SUBROUTINE 
FILACT, ACCESS SUBROUTINE LIBRARIES 

6-37 
Program With Subroutine 9-31 

SUBROUTINES 
SUBROUTINES 9-58 

SUBSCHEMA 
Subschema Control Structure 11-6 
Validated Subschema File 11-6 

DJ31-00 



SUBSTITUTION-IMPLYING 
Substitution-Implying Character 

4-118 

SUBSYSTEM 
Call Subsystem 7-18 
DRL CALLSS, Internal Call to Another 

Subsystem 6-20 
DRL PASAFT, Pass List of Files to 

Subsystem <Octal 22) 6-55 
DRL PASUST, Pass UST To Subsystem 

6-58 
DRL PRGDES; Pass Program Descriptor 

To Subsystem <Octal 65) 6-60 
DRL RESTOR, Overlay-load A Subsystem 

- 6-62 
DRL STPSYS Stop Execution of Master 

Subsystem 6-69 
DRL T.GOTO, Call From One Subsystem 

To Another (Octal 72> 6-81 
HELP subsystem 12-1 
Honeywell Subsystem Descriptions 

6-87 
Honeywell Subsystem Types 6-87 
MAST Subsystem Functions 13-3 
SABT (Scan Abort Fi le) Subsystem 

7-7 
SUBSYSTEM DATA AREA ANO FAULT VECTOR 

6-1 
SUBSYSTEM DUMP FACILITY 7-7 
Subsystem Organization 5-1 
Subsystem Program Descriptor 

Organization 5-1 
Subsystem Program Organization 5-1 
SUBSYSTEM PROTECTION 6-1 
SUBSYSTEM SWITCH WORD 6-13 
TSAR Subsystem 13-19 
TSRI Subsystem 13-24 

SUBSYSTEMS 
HONEYWELL-SUPPLIED SUBSYSTEMS 6-87 
Master and Privileged Subsystems 

13-1 
MASTER SUBSYSTEMS 13-2 
PRIVILEGED SUBSYSTEMS 13-24 
USE OF EXISTING SUBSYSTEMS 5-9 

SUM 
SUM verb 4-246 

SUPPLYING 
Supplying Direct-Mode Program Input 

11-27 

SUPPORT 
Debug Support System (DSS) 6~7 
DRL T.CFIO, Command File And 

Deferred Processing Support 
(Octal 77) 6-77 

SWF 
SWF verb 4-250 

SWITCH 
ORL CGROUT, Process Line Switch 

6-20 
DRL RSTSWH, Reset Switch Word (Octal 

11> 6-65 

i-28 

SWITCH (cont) 
DRL SETSWH, Set Switch Word (Octal 

10) 6-66 
DRL SWITCH, Switch Temporary Fi le 

Names (Octal 53> 6-70 
Program Switch Word (PSW) 4-118 
SUBSYSTEM SWITCH WORD 6-13 

SWITCH, 
DRL SWITCH, Switch Temporary File 

Names (Octal 53) 6-70 

SY** 
Collector File CSY**) 2-1 

SYMBOL 
ETX symbol 3-13 

SYMBOLS 
Relational Symbols 9-3 

SYMDEF 
Locate SYMDEF 7-20 

SYS OUT 
DRL T.SYOT, Pass Data File to 

Backdoor Sysout (Octal 75) 
6-82 

SYSRET, 
DRL SYSRET, Cancel Current System 

Selection (Octal 40) 6-70 

T.CFIO, 
DRL T.CFIO, Command File And 

Deferred Processing Support 
<Octal 77> 6-77 

T.CMOV 
DRL T.CMOV Examine Areas Of Memory 

6-79 

T.CRYP, 
DRL T.CRYP, Password Encryption 

(Octal 67) 6-85 

T.ERR, 
DRL T.ERR, Error Detected (Octal 

103) 6-84 

T.EXEC, 
DRL T.EXEC, Execute Code On Behalf 

Of The Executive 6-80 

T.GOTO, 
DRL T.GOTO, Call From One Subsystem 

To Another (Octal 72) 6-81 

T.LINL, 
DRL T.LINL, Change Terminal Input 

Line Length (Octal 74) 6-81 

T.MAIL, 
DRL T.MAIL, Mail Message Sent (Octal 

102) 6-84 

DJ31-00 



T.PAGE, 
DRL T.PAGE, Output In Scrolled 

Fashion (Octal 101) 6-83 

T.RSCC, 
DRL T.RSCC, Read System Controller 

Clock (Octal 101) 6-83 

T.SYOT, 
DRL T.SYOT, Pass )ata File to 

Backdoor SysLut (Octal 75) 
6-82 

TAB 
Function TAB 9-53 
TAB 8-2 

TAB(X) 
Functions TABCX) and SPC(X) 9-35 

TALK 
TALK 4-62, 4-64, 13-14 

TAPE IN, 
DRL TAPEIN, Start Paper Tape Input 

(Octal 27) 6-71 

TASK, 

TB 

DRL TASK, Spawn A Special Bate~ 
Activity (Octal 63) 6-72 

TB ABORT 8-4 

TC ALL 
TCALL 13-15 

TELEPRINTER 
TELEPRINTER OPERATION 3~1 

TEMP 
TEMP command 4-238 

TEMPORARY 
DRL DEFIL, Define and Access a 

Temporary File (Octal 6) 6-22 
DRL GROW, Grow A Permanent Or 

Temporary File (Octal 50) 6-43 
DRL MORLNK, Add Links To Temporary 

File (Octal 34) 6-52 
DRL PART, Partial Release Of 

Temporary File (Octal 47) 6-55 
DRL SWITCH, Switch Temporary File 

Names (Octal 53) 6-70 
SAVING TEMPORARY FILES 9-107 
Temporary Files 2-5 
TEMPORARY USER FILES ASSIGNED BY TSS 

2-1 

TERM 
DRL TERM Clean Up UST After User 

Termination (Octal 32) 6-75 

TERMINAL 
Automatic Terminal Disconnections 

3-7 
DRL DRLDSC, Disconnect Terminal 

6-25 

i-29 

TERMINAL (cont) 
DRL T.LINL, Change Terminal Input 

Line Length (Octal 74) 6-81 
DRL TERMTP, Terminal Type and Line 

Number (Octal 23) 6-75 
KEYBOARD/DISPLAY TERMINAL OPERATION 

3-11 
Terminal Keyboard 10-2 

TERMINAL/BATCH 
TSS Terminal/Batch Interface 1-3 

TERMINALS 
COMMANDS FOR VIP TERMINALS 
keyboard/display terminals 
VIP terminals 3-12 

TERMINATE 
TERMINATE command 7-25 

3-18 
3-12 

Terminate Execution Via DRL RETURN 
7-25 

TERMINATING 
Terminating an Output Process 3-8 

TERMINATION 
abnormal termination 3-8 
DRL TERM Clean Up UST After User 

Termination (Octal 32) 6-75 

TERMTP, 
DRL TERMTP, Terminal Type and Line 

Number (Octal 23) 6-75 

TES 
TES 4-239 

TEST 
TEST 11-10 

TFMAX 
TFMAX 13-39 

THIRD 
Third Flag Word 6-13 

TIM 
Function TIM 9-52 

TIME 
ASSIGNING CLASS B PRIORITY TO TIME 

SHARING 13-46 
Batch Activity To Build Time Sharing 

H* File 11-21 
COBOL-74 time sharing system 4-92 
Comparison Of The FORTRAN And 

YFORTRAN Time Sharing Systems 
11-7 

DETERMINING MAXIMUM NUMBER OF TIME 
SHARING USERS 13-39 

DRL DRLIMT, Store Processor Time 
Limit 6-26 . 

DRL OBJTIM, Processor Time And Core 
Size Limit (Octal 57) 6-54 

DRL TIME, Obtain Processor Time and 
Time of Day (Octal 21) 6-77 

elapsed time price 13-43 

DJ31-00 



TIME (cont) 
FORTRAN TlME SHARING SYSTEM RUN 

COMMANl) 11-12 
I-D-S/II IN A FORTRAN TIME SHARING 

ENVIRONMENT 11-6 
Maximum Processor Time Limit 4-117 
Programmip~ For the Time Sharing 

System 6-1 
Setting Processor Time and Memory 

Size Limits 13-41 
THE YFORTRAN TIME SHARING SYSTEM RUN 

COMMAND 11-8 
TIME 4-118, 13-28 
TIME SHARING GFRC 8-32 
Time Sharing Media Conversion 

Program (TSCONV) 8-1 
TIME SHARING SYSTEM CONTROL COMMANDS 

10-16 
Time Sharing System FORTRAN 11 -1 
Time Sharing System Options 13-43 
TIME SHARING UFAS 8-5 

TIME, 
DRL TIME, Obtain Processor Time and 

Time of Day (Octal 21) 6-77 

TIME=NNN 
TIME=nnn 11-10 

TRACE 
BINDING TRACE PACKAGE 7-14 
Change Trace 7-34 
Full Trace 7-34 
Map Trace 7-34 
Modifier Trace 7-33 
Operation Code Trace 7-32 
Own Code Trace 7-35 
queue trace 7-38, 7-41 
TRACE OFF 9-22 
TRACE ON 9-22 
Transfer Trace 7-32 
Use Trace 7-33 

TRACES 
TYPES OF TRACES 7-32 

TRACING 
COMMANDS RELATED TO TRACING 7-37 
TRACING 7-26 

TRANSFER 
transfer queue 7-38 
Transfer Trace 7-32 

TRANSMISSION 
Data Display And Transmission 3-13 

TRANSPARENT 
TRANSPARENT Command 10-47 

TRUNCATE 
truncate a number 9-49 

TSAR 
TSAR command 4-240 
TSAR Subsystem 13-19 

i-30 

TSCONV 
Time Sharing Media Conversion 

Program (TSCONV) 8-1 

TSDA 
TSDA command 4-244 

TSM 
TSM verb 4-262 

TSQ 
TSQ verb 4-259 

TSRI 
TSRI Subsystem 13-24 

TSSA 
TSSA 13-41 

TST 
Function TST 9-57 
TST verb 4-251 

TSTART 
TSTART 13-39 

TYPE 
Access type 4-10 
Alphanumeric Type Fields 9-39 
DRL TERMTP, Terminal Type and Line 

Number (Octal 23) 6-75 
Exponential Type Field 9-38 
LITERAL TYPE FIELD 9-40 

TYPES 
Honeywell Subsystem Types 6-87 
TYPES OF TRACES 7-32 

UAD 
UAD verb 4-256 

UCAS 
UCAS command 4-264 

UFAS 
TIME SHARING UFAS 8-5 
Unified File Access System (UfAS) 

8-5 

ULIB 
ULIB 11-10 

ULL 
ULL 4-116 

UNFILLED 
DRL KOTNOW, Keyboard Output From 

Unfilled Buffer {Octal 56) 
6-50 . 

UNIFIED 
Unified ·File Access System (UFAS) 

8-5 

UOF 
UOF verb 4-249 

DJ31-00 



UPDATE 
UPDATE 13-15 

UPPER 
UPPER 4-119 

URGC=NN 
URGC=nn 11-10 

USAGE 
AVAILABLE FILE TA LE (AFT) USAGE 

2-4 
COMMAND LANGUAGE WSAGE 7-15 
COMMAND LOADER USAGE 7-2 
RESTR~CTIONS ON LOAD USAGE 11-28 
Second Flag Word Usage (.LFLG2) 

6-10 

USE 
$ USE .GTLIT 8-32 
$ USE .RTYP 4-63 
$ USE RBUG 4-63 
EXAMPLES OF LINE DELIMITER USE 4-26 
USE OF EXISTING SUBSYSTEMS 5-9 
Use Of Expressions 9-4 
Use Of Numbers 9-3 
Use Of The Master Function 13-3 
Use Trace 7-33 

USER 
Accounting Method For User Charges 

13-27 
Building A Library of User Programs 

13-41 
DRL NEWUSR Logon New User Without 

Disconnect 6-53 
DRL TERM Clean Up UST After User 

Termination (Octal 32) 6-75 
DRL USERID Pass User ID And Priority 

To Executive 6-86 
LIMIT SET BY USER 13-42 
Output File User Response 

Disposition 4-119 
PERMANENT FILES ASSIGNED BY USER 

2-2 
TEMPORARY USER FILES ASSIGNED BY TSS 

2-1 
user status table (UST) 6-58 
User Working Area 11-7 

USER'S 
DRL ATTRI, Pick Up User's Attributes 

6-19 
DRL DIO, Do I/O on User's Fi le 

<Octal 1 6-24 
User's Contact With The File System 

2-4 

USERID 
DRL USERID Pass User ID And Priority 

To Executive 6-86 
USERID 4-118 

USERS 
DETERMINING MAXIMUM NUMBER OF TIME 

SHARING USERS 13-39 

i-31 

USERS' 
LISTING PASSWORDS BY USERS' CATALOGS 

AND FILES 13-26 

USING 
PRINT # USING 9-79 
PRINT USING 9-13 

UST 
DRL PASUST, Pass UST To Subsystem 

6-58 
DRL SETLNO, Set Line 

Number/Increm~nt in UST (Octal 
37) 6-65 

DRL TERM Clean Up UST After User 
Termination (Octal 32) 6-75 

user status table (UST) 6-58 
UST verb 4-260 

UWA 
UWA 11-7 

VAL 
Function VAL 9-56 

VALIDATED 
Validated Subschema File 11-6 

VARIABLE 
Multiple variable replacement 9-7 
Variable Representation 9-2 

VARIABLES 
List And Table Variables 9-2 
random variables 9-49 
string variables 9-64 

VECTOR 
SUBSYSTEM DATA AREA AND FAULT 

6-1 

VERB 
AFT verb 4-253 
ALC verb 4-257 
APB verb 4-258 
ATR verb 4-250 
CLR verb 4-260 
COQ verb 4-250 
CUR verb 4-262 
CWK verb 4-262 
DOF verb 4-257 
DRL verb 4-255 
DUO verb 4-249 
EMM verb 4-263 
END verb 4-263 
ERR verb 4-258 
ESQ verb 4-262 
GAT verb 4-261 
HIS verb 4-261 
ICI verb 4-255 
INF verb 4-245, 4-260 
IOQ verb 4-253 
LAL verb 4-257 
LVL verb 4-257 
MEM verb 4-261 
PGD verb 4-254 
PRT verb 4-263 
REG verb 4-255 

VECTOR 

DJ31-00 



VERB <cont) 
s ()Q verb 4-262 
snap verb 4-260 
SOF vetb 4 ... 253 
SSA verb 4 ... z57 
STS verb 4 ... 258 
SUM verb 4·246 
SWF verb 4-250 
TSl'I verb 4 ... 262 
TSQ verb 4-259 
TST verb 4 ... 251 
UAD verb 4-256 
UOF verb 4-249 
UST verb 4 ... 260 
VERB ca pa bi lit y 4-194, 13-18 
verb CMP 4•24 7 
verb PRQ 4 ... 249 

VERBS 
OMO verbs 4-260 

VERIFY 
V E R I F y .• .( o mm a. n d 1 0 ... 4 8 

VIP 
COMMANDS FOR VIP TERMINALS 3..-18 
VIP (Visual Information Projection) 

3-11 
VIP terminals 3-12 

VISUAL 
VIP <Visual Information Projection) 

3-11 

WAKE 
DRL GWAKE, ~ake Me Later 6-44 

WHERE 
WKERE Function 10-48 

WHO SON 
WHOSON 13-16 

WORDS 
RUNOFF Format Control Words 10-16, 

10-52 

WR I TE 
MAT WRITE # 9-83 
WRITE II 9 ... 77 
WRITE command 4-265 

WRITE: 
MAT WRITE: 9~100 
WRITE: 9...,9S 

WTRC 
WTRC 8-22 

YFORTRAN 
Comparison Of The FORTRAN And 

YFORTRAN Time Sharing Systems 
11-7 

THE YFORTRAN TIME SHARING SYSTEM RUN 
COMMAND 11-8 

YFORTRAN 11-7 

i-32 

ZONE 
zone format 9-33 

DJ31-00 



w 
z 
_J 

l'.J 
z 

HONEYWELL INFORMATION SYSTEMS 
Technical Publications Remarks Form 

TITLE 
SERIES 60 (LEVEL 66)/6000 TIME SHARING 
SYSTEM REFERENCE MANUAL 

o ERRORS IN PUBLICATION 
_J 

<l'. 
1-
:::i 
u 

L ____ . 
SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

Your comments will be investigated by appropriate technical personnel 
and action will be taken as required. Receipt of all forms will be 
acknowledged; however, if you require a detailed reply, check here. D 

FROM: NAME -----

TITLE ---------

COMPANY------------·------------------- ______ _ 

ADDRESS ___________ _ 

ORDER NO. IDJ31-00 'I 
DATED [~~T~~~~--;;;J 

OATE ____ _ 



PLEASE FO LO AND TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms 

I II II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 39531 WAL THAM, MA02154 

POSTAGE WILL BE PAID BY ADDRESSEE 

HONEYWELL INFORMATION SYSTEMS 
200 SMITH STREET 
WALTHAM, MA 02154 

ATTN: PUBLICATIONS, MS486 

Honeywell 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN rtH 
UNIHU srAIES 

~ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 


