
LEVEL 66
FORTRAN
REFERENCE
MANUAL

SERIES 60 (LEVEL 66)/6000

FORTRAN REFERENCE MANUAL

ADDENDUM A

SUBJECT

Additions and Changes to Series 60 (Level 66)/6000 FORTRAN Reference
Manual

SPECIAL INSTRUCTIONS

This update, Order Number DG75A, is the first addendum to DG75, Rev. 0,
dated July, 1978. The attached pages are to be inserted into the manual as
indicated in the collating instructions on the back of this cover. Change bars
in the page margins indicate technical additions and changes; asterisks indi­
cate deleted material. These changes will be incorporated into the next revi­
sion of the manual.

Note:
This cover should be placed following the manual cover to indicate that
the document has been updated with Addendum A.

SOFI'WARE SUPPORTED

Series 60 (Level 66)/6000 Software Release Fr2.0

ORDER NUMBER

DG75A, Rev. 0

24203
1.5779
Printed in U.S.A.

July 1979

Honeywell

COLLATING INSTRUCTIONS

To update this manual, remove old pages and insert new pages as follows:

Remove Insert

v through viii v through viii
ix, blank ix, blank
2-1 throu'h 2-4 2-1 through 2-4
2-7 through 2-18 2-7 through 2-18
2-21 through 2-26 2-21 through 2-26
2-29 through 2-32 2-29 through 2-32
3-7, 3-8 J-7, 3-8
J-11, 3-12 3-11, 3-12
3-19 through 3-22 3-19 through 3-22
3-27, 3-28 3-27, 3-28
3-33 through 3-36 3-33 through 3-36
3-43, 3-44 3-43, 3-44
3-53, J-54 3-53, 3-54
4-3, 4-4 4-3, 4-4

4-4.1, blank
4-5, 4-6

4-9, 4-10 4-9, 4-10
6-15 through 6-18 6-15 through 6-18
6-21, 6-22 6-21, 6-22
6-35, 6-36 6-35, 6-36
6-45 through 6-48 6-45 through 6-48
6-63,, 6-64 6-63, 6-64
6-69, 6-70 6-69, 6-70
6-73 through 6-78 6-73 through 6-78
B-1 through B-30 B-1 through B-6
B-31, blank B-7, blank

B-7.1, B-8
B-9 through B-36

C-9, blank C-9, blank
i-1 through i-15 i-1 through i-17

The information and specifications in this document are sutUect to change without notice. This
document contains infonnation about Honeywell products or services that may not be available
outside the United States. Consult your Honeywell Marketing Representative.

CS) Honeywell Information Systems Inc., 1979

7/79

File No: 1P23,1723

DG75A

SUBJECT

SERIES 60 (LEVEL 66)/6000

FORTRAN REFERENCE MANUAL

Description of the FORTRAN Programming Language

SOFI'WARE SUPPORTED

Series 60 (Level 66)/6000 Software Release Frl.O

ORDER NUMBER

0075,Rev.0 July 1978

Honeywell

PREFACE

This FORTRAN reference manual assumes that the
FORTRAN programming principles and basic concepts.
and statements are included in this manual.

The information and specifications in this document are subject to change without notice. This
document contains information about Honeywell products or services that may not be available
ouL~ide the United States. Consult your Honeywell Marketing Representative.

© Honeywell Information Systems Inc., 1978 File No.: 1P23, 1723

reader is familiar with
All necessary FORTRAN rules

DG75

FUNCTIONAL LISTING OF PUBLICATIONS
for

SERIES 60 (LEVEL 66) and SERIES 6000 SYSTEMS

FUNCTION

Hardware reference:
Series 60 Level 66 System
Series 6000 System
DATANET 355 Processor
DATANET 6600 Processor

Operating system:
Basic Operating System

Job Control Language
Table Definitions
Table Definitions
I/0 Via MME Gf:INOS
Shared Systems Operation

System initialization:
System Startup
System Operation
Communications System

Communications System
Communications System
DSS180 Subsystem Startup
Program Recovery

Data management:
File System
Integrated Data Store (I-D-S)
Integrated Data Store (I-D-S)
File Processing
File Input/Output
File Input/Output
I-D-S Data Query System
I-D-S Data Query System
Coexistent I-D-S

Program maintenance:
Object Program
System Editing

Test system:
Online Test Program
Test Descriptions

Error Analysis and Logging

Language processors:
Macro Assembly Language
COBOL-68 Language
COBOL-68 Usage
Standard COBOL-68 Language
Standard COBOL-68 Usage
JOVIAL Language
FORTRAN Language
Macro Assembly Language

APPLICABLE REFERENCE MANUAL

TITLE
Series 60 (Level 66)/Series 6000:

Series 60 Level 66 Sununary Description
Series 6000 Summary Description
DATANET 355 Systems Manual
DATANET 6600 Systems Manual

General Comprehensive Operating
Supervisor (GCOS)

Control Cards Reference Manual
System Tables
NPS Tables
I/O Programming
System Operation with Shared Mass

Storage

System Startup
System Operation Techniques
GRTS/355 and GRTS/6600 Startup

Procedures
NPS Startup
NPS Configuration Examples
DSS180 Startup (Series 6000 only)
Program Recovery/Restart

File Management Supervisor
I-D-S/I Programmer's Guide
I-D-S/I User's Guide
Indexed Sequential Processor
File and Record Control
Unified File Access System (UFAS)
I-D-S Data Query System Installation
I-D-S Data Query System User's Guide
Coexistent I-D-S Overview

Source and Object Library Editor
System Library Editor

Total Online Test System (TOLTS)
Total Online Test System (TOLTS)

Test Pages
Honeywell Error Analysis and Logging

Sys~em (HEALS)

Macro Assembler Program (GMl""P)
COBOL Reference Manual
COBOL User's quide
Standard COBOL-68 Reference Manual
Standard COBOL-68 User's Guide
JOVIAL
FORTRAN
DATANET 355/6600 Macro Assembler

Program

iii

ORDER
NO.

DC64
DA48
BS03
DC88

DD19
DD31
DD14
DE34
DB82

DD97

DD33
DD50

DD05
DDSl
DE76
DD34
DC98

DD45
DC52
DC53
DD38
DD07
DC89
DD47
DD46
DE60

DD06
DD30

DD39

DD49

DD44

DDOB
DD25
DD26
DE17
DElB
DD23
DD02

DDOl

DG75

FUNCTION

Generators:
Sorting
Merging

Simulators:
DATANET 355/~600 Simulation

Service and utility routines:
Loader
Utility Programs
Utility Programs
Media Conversion
System Accounting
FORTRAN
FNP Loader
Service Routines
Software Debugging

Time Sharing systems:
Operating System
System Programming
System Programming

BASIC Language
FORTRAN Language
Text Editing
dataBASIC Language
dataBASIC Loading

Remote communications.:
DATANET 30/305/355/6600 FNP
DATANET 355/6600 FNP
DATANET 355/6600 FNP
DATANET 355/6600 FNP
DATANET 700 RNP

Communication facilities:
COBOL-74 Communications

Transaction processing:
User's Procedure.s

Handbooks:
System-operator communication
Error Messages, Abort Codes
NPS Error Messages

Pocket guides:
Control Card Formats
FORTRAN

APPLICABLE REFERENCE MANUAL

TITLE
Series 60 (Level 66)/Series 6000:

Sort/Merge Program
Sort/Merge Program

DATANET 355/6600 Simulator

General Loader
Utility
UTL2 Utility Routine
Bulk Media Conversion
Summary Edit Program
FORTMN Subroutine Libraries
DATANET 355/6600 Relocatable Loader
Service Routines
Debug and Trace Routines

TSS General Information
TSS Terminal/Batch Interface
TSS System Programmer's Reference

Manual
Time Sharing BASIC
FORTRAN
Time Sharing Text Editor
dataBASIC System Language Manual
dataBASIC Load/Unload System

Remote Terminal Supervisor (GRTS)
Network Processing Supervisor (NPS)
N.PS Micro-Ops Programming
Application Guidelines for NPS
RNP/FNP Interface

Message Control System Site Manual

Transaction Processing System User's
Guide

System Console Messages
E.rror Messages and Abort Codes
NPS Error Messages

Control Cards and Abort Codes
FORTRAN Pocket Guide

iv

ORDER
NO.

DD09
DD09

DD32

DDlO
DD12
DC91
DDll
DD24
DD20
DD35
DD42
DD43

DD22
DD21

DD17
DD16
DD02
DD18
DD95
DD96

DD40
DD48
DE35
DE77
DB92

DC99

DD41

DD13
DC97
DE75

DD04
DD82

0075

Section I

Section II

Section III

7/79

CONTENTS

Introduction.
General.
Capabilities

FORTRAN Source Program Characteristics.
Character Set.
Source Program Format.

Source Program File Types
Source Program File Characteristics
Format Rules for Lines.
Symbolic Names.

Data Types
Constants.

Integer Constant.
Octal Constants
Real Constant •
Double Precision Constant •
Complex Constant.
Logical Constant.
Character Constant.

Variables.
Defined Variable.
Referenced Variable •
Scalar Variable
External Variable
Switch Variable
Character Variable.
Array Variable.

Array Element.
Subscripts
Array Element Successor Function •
Array Declarator •
Adjustable Dimensions.

Parameter •
Expressions.

Arithmetic.
Relational.
Logical •
Logical and Relational Constructions.
Typeless Functions.
Evaluation of Expressions
Operator Precedence •
Unary Operators

FORTRAN Statements.
Assignment Statements.

Arithmetic Assignment Statement •
Logical Assignment Statement.
Character Assignment Statement~
Label Assignment Statement.

FORTRAN Keywords
ABNORMAL.
ASSIGN.

v

Page

1-1
1-1
1-1

2-1
2-1
2-4
2-4
2-4
2-6
2-11
2-11
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-22
2-22
2-22
2-23
2-23
2-23
2-23
2-24
2-24
2-25
2-26
2-26
2-27
2-27
2-29
2-29
2-31
2-32
2-32
2-33
2-34

3-1
3-4
3-4
3-5
3-6
3-6
3-9
3-10
3-11

DG75A

Section IV

I

I

7/79

CONTENTS (cont)

BACKSPACE •
BLOCK DATA.
CALL.
CHARACTER •
COMMON.
COMPLEX
CONTINUE.
DATA.
DECODE.
DIMENSION
DO.
DOUBLE PRECISION.
ENCODE.
END
ENDFILE
ENTRY •
EQUIVALENCE
EXTERNAL.
FORMAT.
FUNCTION.
GO TO
IF.
IMPLICIT.
INTEGER •
LOGICAL
NAMELIST.
PARAMETER
PAUSE
PRINT
PUNCH
READ.
REAL.
RETURN.
REWIND.
STOP.
SUBROUTINE.
WRITE

User Interfaces
Batch Mode

Batch Call Card
Sample Batch Deck Setup •
Sample Batch Link/Overlay JCL

Remote Batch Interface •
File System Interface.
Terminal/Batch Interface
ASCII/BCD Considerations
File Formats
Global Optimization.

Memory Conflicts.
Divide Check.

Batch Compilation Listings and Reports
Source Program Listing (LSTIN).
To-Fr·om Transfer Table (XREFS) •
Program Preface Summary (LSTOU)
Storage Map (MAP)
Object Program Listing (LSTOU).
Debug Symbol Table (DEBUG).
Cross Reference List (XREF)
Miscellaneous Oat.a. •·

vi

Page

3-12
3-13
3-15
3-17
3-19
3-21
3-22
3-23
3-26
3-28
3-29
3-33
3-34
3-36
3-37
3-38
3-39
3-42
3-43
3-45
3-48
3-51
3-53
3-55
3-56
3-57
3-58
3-60
3-62
3-64
3-66
3-70
3-71
3-72
3-73
3-74
3-76

4-1
4-1
4-2
4-4
4-4
4-4
4-4
4-4
4-4
4-6
4-6
4-6
4-8
4-9
4-10
4-11
4-11
4-12
4-12
4-13
4-13
4-13

DG75A

Section V

Section VI

7/79

CONTENTS (cont)

Input and Output. • • • • • • •
General Description. • • •

Input/output Statements •
File Reference • • • • • • • •
Format Specifications. • • • • • •

Field Separators. • •
Repeat Specification. •
Scale Factors • • • • • • • • • • •
Multiple Record Fonnats •
Carriage Control •••
Output Device Control • •
Input Data. • • • • • •
Numeric Field Descriptors •
Complex Ntunber Fields • • • • •
Alphanumeric Field Descriptors.

Input.. • • • • • . • • • . • • • •
Output • • • • • • • • •

Logical Field Descriptor ••
Character Positioning Field Descriptors •

X Format Code. • • • • •
T Format Code. • • • • •

Variable Format Specifications.
Namelist Input/output Statements •

Input • • • • • • • • • • •
Output. • • • • • • • • • •

Internal Data Conversion • • •
Multiple Record Processing.
Editing Strings with ENCODE ••••••••••
Conditional Format Selection.

List Specifications. • • • •
Short List I/O. • • • • •
List Directed Formatted

Input/output Statements. • • •••••••
Terminal End-of-File •••••••
Formatted Input/output Statements • •
Unformatted Input/output Statements •
File Properties • • • • • •

Sequential Files • • • •
Random Files • • • • • • • • • • • • •
File Handling Statements • •

Subroutine and Function Statements.
Naming Subroutines • • • • • • •
Arithmetic Statement Functions • • • • • • •

Arithmetic Statement Function Left of Equals ••
Referencing Arithmetic Statement Functions.

Built-in Intrinsic Functions • • • • • • • • • • •
Argwnent Checking and Conversion for
Intrinsic Functions ••••••••••••••

Automatic Typing of Intrinsic Functions •
Typeless Intrinsic Functions •••••
Additional Typeless Functions

Function Subprograms • • • • • •
Defining FUNCTION Subprograms •
Supplied FUNCTION Subprograms • •
-Argwnent Checking and Conversion for

Supplied External Functions •••••••
Automatic Typing of Supplied Mathematical

External Functions • • • • • •
Shift Functions • • • • • • • • • • • • • • • •
Set/Reset Program Switch Word
Execution Mode Determination.

vii

Page

5-1
5-1
5-2
5-3
5-4
5-4
5-4
5-5
5-6
5-7
5-7
5-8
5-8
5-11
5-11
5-11
5-12
5-12
5-12
5-12
5-12
5-13
5-14
5-14
5-17
5-20
5-20
5-21
5-22
5-23
5-24

5-25
5-27
5-27
5-27
5-28
5-28
5-29
5-29

6-1
6-1
6-2
6-3
6-4
6-5

6-9
6-10
6-10
6-12
6-14
6-14
6-15

6-15

6-15
6-19
6-19
6-20

DG75A

Appendix A

Appendix B

Appendix c

Appendix D

Appendix E

7/79

CONTENTS (cont)

Character String Compare.
Random Number Generators. •
Re·ferencing FUNCTION Subprograms.

Subroutine Subprograms •
Defining SUBROUTINE Subprograms
Referencing SUBROUTINE Subprograms.

Return Statement •
Alternate Return Formats.
Multiple Entry Points into a Subprogram •
Dummy Argwnent.

Supplied SUBROUTINE Subprograms.
ATTACH.
CALLSS.
CNSLIO.
CONCAT.
CORFL •
CORSEC •. •
CREATE.
DATIM •
DEFIL •
DETACH.

•

DUMP DUMPA, PDUMP PDUMPA.
DVCHK,OVERFL,FXDVCK
EXIT.
FCLOSE.
FILBSP,FILFSP •
FLGEOF.
FLGERR.
FLGFRC.
FMEDIA.
FPARAM.
FXDVCK (see DVCHK),FXEM.
LINK, LLINK •
MEMSIZ.
NASTRK.
OVERFL (see DVCHK) •
PDUMP,PDUMPA (see DUMP)
PTIME •·
RANSIZ.
SETBUF.
SETFCB.
SETLGT.
SLITE,SLITET.
SORT 1 ISORT.
SORTO, !SORTO.
SSWTCH.
TERMNO.
TERMTM.
TRACE •
USRCOD.
YASTRK.

ASCII/BCD Character Set .
Time Sharing System Description .
Time Sharing Based FORTRAN Error Messages

System Characteristics.

FORTRAN Execution Error Monitor Examples.

viii

Page

6-20
6-20
6-22
6-23
6-23
6-24
6-25
6-26
6-27
6-29
6-30
6-34
6-36
6-37
6-38
6-39
6-40
6-41
6-42
6-43
6-44
6-45
6-46
6-48
6-49
6-50
6-51
6-52
6-53
6-54
6-55
6-56
6-65
6-66
6-67
6-67
6-67
6-68
6-69
6-70
6-71
6-72
6-73
6-74
6-76
6-78
6-79
6-80
6-81
6-82
6-83

A-1

B-1

C-1

D-1

E-1

DG75A

Appendix F

Appendix G

Figure 2-1
Figure 4-1
Figure 5-1
Figure 5-2
Figure E-1
Figure E-2
Figure F-1
Figure F-2
Figure F-3
Figure F-4
Figure F-5

Figure F-6
Figure F-7
Figure F-8

Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 3-1
Table 3-2
Table 3-3
Table 5-1
Table 5-2
Table 6-1
Table 6-2

Table 6-3

Table 6-4
Table 6-5
Table D-1

7/79

CONTENTS (cont)

FORTRAN Debugging System. • • •

FORTRAN Transliteration Table

ILLUSTRATIONS

FORTRAN Coding Sheet and Program.
Compilation Listings and Reports.
Test Program for NAMELIST Output.
NAMELIST Output of Fixed Point and Real Arrays.
FXEM Example in Time Sharing Mode • • • • • • • •
FXEM Example in Batch Mode ••••••••••••
FDS Example in the Batch Mode • • • • • • • • • •
FDS Example in the Batch Mode with Linked Overlays ••
FDS Example in the Time Sharing Mode.
Example of a Symbolic Dump. • • • • • • • • • • • • •
Example of FDS Program and Subroutine

Used with FDUMP. • • • • • • • • • •
Example of FDUMP Output • • • • • • •
Timing Measurement System Parameters. • •
Timing Measurement System in Time Sharing •

TABLES

FORTRAN Character Set
FORTRAN Syntax Punctuation.
Results for x 1+ x2, XJ -x2, x1*x2, or x1/x2 .
Results for x1**x2 ••••
Truth Table Values. • • •
Use of Relational Operators (.GT. I .GE., etc.).
Type Listing of FORTRAN Statements.
Legal Combinations of Assignment Statements
Rules for v = e
Implies Format Conversion
Conversion of a Null Field.
Built-in Intrinsic Functions.
Supplied External FUNCTION Mathematical

Subprograms.
Supplied External FUNCTION Nonmathematical

Subprograms.
Supplied SUBROUTINE Subprograms
Error Codes and Meanings.
Storage Allocation for Object Programs. .

ix

.

. . .

. .

. . .

. . .

Page

F-1

G-1

2-10
4-14
5-18
5-19
E-2
E-3
F-9
F~ll

F-12
F-15

F-16
F-18
F-20
F-21

2-2
2-3
2-27
2-28
2-30
2-31
3-2
3-7
3-8
5-26
5-26
6-6

6-17

6-19
6-31
6-59
D-3

DG75A

SECTION I

INTRODUCTION

GENERAL

The narne PORTRAN was derived from the original reference to a computer
language as a "FORmula TRANslator", and was designed to permit the statement of
a problem in terms that closely resemble mathematical notation. Although
FORTRAN is a s011rc~ language which is primarily used for solving scientific and
engineering problems, it is also highly suitable for business applications. The
FORTRAN statements consist of letters and symbols that provide the programmer
with easy manipulation of large sets of equations and variables.

The FORTRAN language is augmented by Subroutine Libraries that contain
standard arithmetical functions and provide all input/output for the program
(refer to the FORTRAN Subroutine Libraries manual for a description of these
routines). The user has the ability to write any special purpose subroutines
that may be required for a specific application.

CAPABILITIES

The
compiler
use in
sharing
without

FORTRAN compiler services both batch and time sharing, using the same
modules for both erwironments. Programs can be developed for eventual
the batch environment with the convenience of the interactive time

environment, and after debug is complete, submitting them to batch
concern for time sharing/batch language incompatibilities.

FORTRAN programs can be entered in exactly the same form regardless of the
input mediu1!'1 or lO;'.'!ation. The only difference in the input stream during user
interface is the mandatory presence of GCOS control cards for local and remote
batch and the required use of command language in the time sharing environment.
Remote accessed use of GCOS, including both time sharing and remote batch,
contribute significantly to the job load at the Central Computer Site.

1-1 DG75

SECTION II

FORTRAN SOURCE PROGRAM CHARACTERISTICS

The FORTRAN compiler, like other higher-level language compilers such as
COBOL and PL/I, is a processor that translates a FORTRAN program into machine
language (GMAP). The statements and symbols that constitute a FORTRAN program
must conform to certain rules and definitions before the source language can be
translated to machine language for execution with the General Comprehensive
Operating Supervisor {GCOS).

The following conventions are used throughout this manual when illustrating
the syntax form of FORTRAN symbols, statements, and keywords.

1. Uppercase words must be entered as specified.

2. Lowercase words indicate user-specified information.

3. Items enclosed within brackets are optional.

4. Items enclosed within braces represent choices or alternatives.

S. An ellipsis (•••) indicates that the preceding format may be repeated.

CHARACTER SET

FORTRAN utilizes two character sets - ASCII and BCD. The character set and
byte size for the generated object code is controlled by an option on the
$ FORTY and $ FORTRAN control cards; the source program requires no options.
The byte size is 6 bits for BCD and 9 bits for ASCII (refer to Appendix A for
the octal and the punch card representations for each character).

The FORTRAN character set is a subset of the full 128 ASCII character set
and can be coded in the following manner:

7/79

• FORTRAN statements and the keywords do not differentiate between
uppercase and lowercase alphabetic characters.

• No distinction is made between the cases in forming variable,
function, common, etc. names.

• Uppercase and lowercase letters are recognized as different only in
user character data and literals.

• Any character in the ASCII character set is valid as literal data.

2-1 DG75A

••

A source program can be written using the characters and digits in
Table 2-1. Table 2.;.2 gives a brief de~oription of the special characters that
are used for FORTRAN syntax punctuation.

Table 2-1. FORTRAN Character Set l

Upper- Lower- Digits Special
Case Case Characters

A a 0)S (space)
B b 1 =
c c 2 +
D d 3 -
E e. 4 • or I\
F f 5 *
G q 6 &

H h 7 I
I i 8 (
J j 9)
IC k I
L 1 •
M m $
N n '
0 0 1
p p •
Q q
R r
s s
T t
u u
v v
w w
x x
y y
z z

lThe correct collating sequence for the ASCII characters listed is shown in
Appendix A.

2-2 DG75

Table 2-2. FORTRAN Syntax Punctuation

Symbol Function

J6 The space is only meaningful to the compiler in character
constants and can be used freely to enhance the readability of
programs.

n Quotation Marks and apostrophes are used as character constant
' delimiters. The apostrophe also precedes the record number in

random file input/output statements.

$ The currency svru>ol identifies statement numbers which are used
as arguments in a CALL statement. It also serves as a delimiter
of input data for a NAMELIST read.

(Parentheses are used to enclose subexpressions, complex
) constants, equivalence groups, format specifications, argument

lists, and subscripts. They are also used to specify the ranges
of implied DO loops.

+ The plus si51n indicates algebraic addition, printer carriage
controI, or a unary operator.

- The minus si51n indicates algebraic subtraction, or a unary
operator.

'
The comma is used as a separator for data symbols and expressions
for parameter lists, equivalence groups, complex constants and
format specifications.

I The slash is used to indicate algebraic division, as a delimiter
for data lists, labeled common statements, and as a record
terminator in a format statement.

; The semicolon is used as a delimiter when multiple source
statements appear on a single line.

= The equal sign indicates the assignment operator in arithmetic,
character, and logical assignment statements, PARAMETER
statements, DO statements, and implied DO statements in I/O and

I
data lists.

* The asterisk designates a comment line or an alternate return
** argument in a subroutine statement. The asterisk is also used

as the multiplication operator, and a double asterisk is one of
the exponentiation operators. The quantity to the left of the
sign is raised to the power indicated on the right.

. The period is used as a radix point and serves as a delimiter for
logical and relational operators as well as logical constants.

+ The vertical arrow and caret serve as additional exponentiation
operators. They are alterilates to the double asterisk and can be

" used interchangeably.

& The am12ersand serves as one of the continuation line indicators.

7/79 2-3 DG75A

SOURCE PROGRAM FORMAT

Source Prog_ram File Types

Source programs generally originate either as punched cards or as lines
entered into a terminal. They can also be the product of, or output from, the
execution of a program, or they can be compressed in a compilation activity
through the use of the COMDK option. These s.ource programs can be kept in the
form of decks, paper tape, magnetic tape files, or permanent ma.ss storage files.
To be compiled, decks and paper tape media programs ,must initially be copied to
magnetic tape or mass storage. The mass storage file does not need to be
permanent because a normal deck setup produces the compiler input file (S*) on a
temporary file. However, the source program file must be recorded in standard
system format (see the File and Record Control manual). The FORTRAN compiler
will accept magnetic tape oriiiaSS-storage files in standard system format with
any of the following media codes:

0 - BCD print line images, without slew control for the printer (variable
length records)

1 - compressed BCD card images (Comdecks)
2 - BCD card images (each record = 80 columns)
3 - formatted BCD printer line images, with trailing printer slew control

information
6 - ASCII standard system format preceded by one media code 8 record
7 - ASCII print line images, with trailing printer slew control information
8 - TSS information record

Card images are limited to 80 characters, while line images are limited by
the device on which they are prepared. For simplification, wherever "card
images" and "line images" can both be used, this document simply uses the term
"line".

Source Program File Characteristics

A source program file is composed of statements and comments. A statement
is the tool necessary to construct a FORTRAN program, and can be classified as
executable or non-executable. The FORTRAN statement can be a maximum of 20 card
image lines in length. The first line is referred to as the initial line, and
subsequent lines are referred to as continuation lines.

Example

1 67

REAL X,Y,Z,TOTAL
INTEGER L,M,N
READ X,Y,Z
TOTAL = X*2.0 + Y*3.0 + Z*4.0 +

6SQRT (X, y I Z)
TOTAL = TOTAL +

lL + M + N +
2N + 3

.
END

2-4

72

DG75

A conunent is composed of a single line of docwnentary with the letter C in
the first column of the line. These lines are not executed and can be placed
anywhere within the source program.

Example

1 7

C THIS PROGRAM WAS WRITTEN BY C. R. JONES
C ON JULY 1, 1978

80

C IT PRINTS THE DIFFERENCE BETWEEN BIG AND SMALL
C IF BIG IS GREATER THAN SMALL,
C OTHERWISE, THE PROGRAM TERMINATES

READ, BIG, SMALL
IF (SMALL .GT. BIG) GO TO 100
DIFF = BIG - SMALL

C PRINT THE ANSWER

PRINT, BIG, SMALL, DIFF
100 STOP

END

Every program unit (subprogram, main program, etc.) must terminate with an
end line. This line contains an END statement and serves to separate individual
program units. Any subsequent units must begin on a new line.

Example

COMMON/LABEL/A,B,C,Y

STOP
END
SUBROUTINE S
COMMON/LABEL/Q,R,S,T

RETURN
END

When the first line of a program unit is a conunent line, page titles and
object deck labels are extracted from that line as follows:

Characters 2-7 are inserted by the compiler into the label field of the
heading line printed by the compiler. Only characters 2-5
are used by the compiler to construct the edit name of the
compiled module (columns 73-76 of the object deck) which is
used by the Source and Object Library Editor to manipulate
the module.

Characters 8-72 contain the page title for listings.

2-5 DG75

When the first line of a program ~nit is not a comment line, or columns 2
through 5 are blank on the first conunent card, the deck label is the first six
characters of the program unit's name (•••••• is used for a main program); no
page title is generated. Any trailing digits in the object deck label are used
as part of the sequence n~mber field in object decks. To avoid a sequence
number error, large sou1ce programs should avoid a deck label that ends with a
dig it.

Format Rules for Lines

A variety of source line formats can be used ranging from the standard
BO-character fixed format to the standard line formats used with the time
sharing system. Specification of a format is via two options: FORM/NFORM and
LNO/NLNO. These options can appear on the $ FORTY or $ FORTRAN control cards,
or in the option list of the YFORTRAN or FORTRAN RUN command.

Batch mode source files conforming to the FORTRAN in standard line format
defined by ANSI3.9-1966 should be processed using the default option FORM; time
sharing source files should normally use the default option NFORM, and LNO.

Line formats have the following characteristics:

1. Initial lines can begin with a statement label.

2. The statement label can begin anywhere on the line but must be in the
range 1 ~ n ~ 99999.

3. There can be a maximum of 19 continuation lines. The statement text
continues with the first character following the continuation
character.

2-6 DG75

7/79

4. A statement can be terminated by a semicolon.on either an initial line
or ~ continuation line. The information following the semicolon is
processed as an initial line. The new statement can begin with a
statement label and can be continued.

5. The FORM/NFORM options are used to control the following functions:

a. Elimination of line numbers and sequence identification fields
from the lines.

b. Separation of comment lines from statement lines.

c. Distinction between initial statement lines and continuation
lines.

d. Determination of the position numbers of the first and last
characters of the statement text.

6. Because the FORM formatted files cannot contain line numbers, the LNO
option cannot be specified; therefore, the NLNO option is the default.

7. The FORM option has the following characteristics:

a. Only the first 80 characters on a line are processed
additional characters are ignored.

any

b. Comment lines must have a C or an * in the first character
position

Example

1 7

C COMMENT LINE FORMAT #1
* COMMENT LINE FORMAT #2

c. Continuation lines mu~t begin with a nonblank, nonzero character
in the sixth character position. When an ampersand appears as
the first nonblank character anywhere from column 6 on, it will
be interpreted as a continuation line.

Example

1234567

AREA = (X(2)-X(l))/3*Y(l) +SUM
&+4.*Y(2*I)
& -SUM(!) **2

d. Character positions 73-80 of a card image are used for sequence
identification and are not considered part of the statement.

Example

1 7

SUBROUTINE SOLVE
COMMON A, B, XlR
DISC= (B**2)-(4.*A)*XlR

2-7

73 80

SOLVEOOl
SOLVE002
SOLVE003

DG75A

8. Lines in NFORM format with no line nwnbers {NLNO option) have the
following characteristics:

a. Comment lines must have a C or . an * in the first character
position.

b. Continuation lines must be designated with an ampersand as the
first nonblank character of the line.

Example

1234567

B = SQRTF(DISC)
iXlR -B/(2.*A)
iX2R = SQRTF(-DISC)/(2.*A)

c. Character positions 73-80 of a card image can only be used for
sequence identification.

9. Lines in NFORM format with line nwnbers (LNO option) have the
following characteristics:

a. The line number field can begin in character position 1, or can
contain leading blanks but must not extend beyond character
position 8. The magnitude of this line nwnber is treated as
modulo 218 (262,144) •

b. Line nwnbers less than eight characters must be followed by a
nonnumeric character.

Example

12345678

10# READ (6,10) IN,OUT
0010;READ(6,10)A,B,C

10 READ (6,10) RT,$LM

c. Conunent lines must begin with a C or an asterisk as the first
character following the line number.

Example

12345678

lOC COMMENT LINE #1
0020* COMMENT LINE #2

30C COMMENT LINE #3

d. A continuation line must have an ampersand as the first nonblank
character following the line number.

Example

12345678

10& SUM= SUM+ A*2.*(I/K)
0020& SORTS = SUM ** 2

30& XlR = X22/X3R

2-8 DG75

7/79

e. Character positions 73-80 can be used for statement text and will
be processed.

Example

1 7 73 80

10 FORMAT(60HCHARACTER POSITIONS 73 TO 80 WILL BE UTILIZED AS

10. ALTER statements in batch mode which are used in conjunction with the
$ UPDATE control card, have the following characteristics:

a. All alters apply only to the first source program if the
compilation activity contains more than one source program.

b. Alter statements must be in ascending nmnerical order.

c. Source programs must be in media code 1 or 2 (COMDECK or BCD card
image, respectively).

d. The alter file must be media code 2 (BCD card image).

e. The correction card(s) that follow the $ ALTER card(s) must be in
the same format as the source program (i.e., FORM or NFORM).
However, if NFORM is the format used, the correction cards cannot
contain line numbers.

f. When using the NFORM option, the source program sequence nmnber
(not the line nmnber) must be used when specifying the LNO
option.

Example

To change line number 25 for

lOC SAMPLE
20 J = 1
25 PRINT, I
30 STOP~ END

the $ ALTER card would be coded

$ ALTER 3,3
25 PRINT, J

2-9 DG75A

I

(\.)

I
1--'
0

0
G)
.....J
U1

Honeywell
p.-, .. .,

FORTRAN COOING FORM
CX>DER DAT& PAC£

Figure 2-1. FORTRAN Coding Sheet and Program

Symbolic Names

A symbolic name is composed of one to eight alphanumeric characters, the
first of which must be alphabetic. The data type of the variables that are
associated with a symbolic name are defined either implicitly or explicitly.
The implicit associations are determined by the first character of the symbol,
(i.e., if the name begins with the letters I,J,K,L,M, N, the symbolic name is
integer; if it does not, the symbolic name is real. This default implicit
associative rule can be changed by the use of the IMPLICIT statement which
allows implicit association for all data types integer, real,
double precision, complex, logical, or character. An explicit declaration of
type for a symbol always overrides its implicit type.

NOTE: No case distinction is made in forming symbols.
identical in meaning to the symbols abc and Abe.

The symbol ABC is

DATA TYPES

Data type is explicitly associated with a symbol when it appears in one of
the type statements: INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, or
CHARACTER, or when it appears in a FUNCTION statement with a type prefix (e.g.,
REAL FUNCTION MPYM(A,B)).

A symbolic name representing a function, variable, or array has only one
data type association for each program unit. Once it is associated with a
particular data type, a speq;ific name implies that data type for any usage of
the specified symbolic name when it requires a data type association throughout
the program unit in which it is defined.

The mathematical and representational properties for each of the data types
are defined below. The value zero is not considered positive or negative.

7/79

1. An integer datum is always an exact representation of an integer
value. It can assume positive, negative, or zero integral values.
Each integer datum requires one 36-bit word of storage in fixed point
format. The permissible range of values for integer type is -(2) to
(2)-1.

Example

29
- 25

5
+444

- 999999999
9999999999

NOTE: The largest possible integer (i.e., octal constant I
+377777777777) is considered a noise word and is printed. as an
output field filled with blanks.

2. A real datum is a processor approximation to the value of a real
number. It can assume positive, negative, zero and sometimes
fractional values. A real datum requires one 36-bit word of storage
in floating-point format. The permissible range of values for real
type data is approximately 10 to 10 with a precision of eight
digits.

Examples

29.0
- 0004.3

+ .00007
• 1

7.23456
-999999999 •

2-11 DG75A

I

3. A double precision datum is a processor approximation to the value of
a real number. It can assume positive, negative, or zero values. A
double precision datum requires two consecutive 36-bit words of
storage in double precision floating-point format. The permissible
range of values for double-precision type is approximately 10 to

10 , with a precision of 18 digits.

Examples

73.12345
- 187.93

9.2D-2
-999999999.0D7

+.lD4
7D+6

4. A complex datum is a processor approximation to the value of a complex
number. The representation of the approximation is in the form of an
ordered pair of real data. The first datum of the pair represents the
real part, and the second datum represents the imaginary part. Each
part has, accordingly, the same degree of approximation as a real
datum. A complex datum requires two consecutive words of storage,
each in floating-point format. Each part of a complex datum has the
same range of values and precision as a real datum.

Examples

(1., 5.)
(- 7.3, 17.4)

.15E+06, 0.6)
o., -.5)

5. A logical datum is a representation of a logical value of true or
false. The source representation of the logical value true can be
either .TRUE. or .T.; in DATA statements, the single character T can
also be used. The value false can be represented as .FALSE. or .F.,
with F being acceptable in the DATA statement(s). A logical datum
requires one 36-bit word of storage with the value zero representing
false, and nonzero representing true.

NOTE: When the logical values of true or false are specified in a
FORTRAN statement as input data, the single letters T and F
(without the periods) must be used for true and false,
respectively.

Examples

.TRUE. .T •
• FALSE. .F.

6. A character datum is a processor representation of a string of ASCII
or BCD characters. This string can consist of any characters capable
of being represented in the processor. The space character is a valid
and significant character in a character datum. Character strings are
delimited by quotes, apostrophes, or by preceding the string with nH.
The character set (BCD or ASCII) is declared by an option on the
$ FORTY or $ FORTRAN control card.

Examples

ABC
- XYZ

DOG
CAT

12345
#INT#

The term "reference" indicates an identification of a datum, implying that
the current value of the datum will be made available during the execution of
the statement which contains the reference. If the datum is identified but is
not made available, the datum is said to be "named". One case of special
interest in which the datum is named is assigning a value to a datum, which
defines or redefines the datum.

7/79 2-12 DG75A

CONSTANTS

A constant is a value that does not change during program execution. The
three general types of constants are single word, double word, and character.
The single and double word constants are divided as follows:

1. Single Word Constants

a. Integer

b. Octal

c. Real

d. Logical

2. Double Word Constants

a. Double Precision

b. Complex

2-13 DG75

*

*

Integer Constant

An integer constant is a nwneric designation in fixed point binary format.

Syntax

·±integer

Syntax Rules

Integer can consist of one to eleven decimal digits.

General Rules

1. The accuracy of an integer constant is ten digits.

2. Integer can be as large as (2 35)-1 {i.e., rv 3. 4 x lOIO) •

3. If integer is a subscript, an index, or a DO parameter, the maximum
value is c2t8)-l {i.e.,~ 260,000).

Exam;eles

7/79

-7
843517

2-14 DG75A

Octal Constants

An octal constant is the designation of a value in octal format.

Syntax

o ±constant

Syntax Rules

1. Constant is a string of one to twelve octal digits (i.e., Oto 7).

2. Constant must be preceded by the alpha character o, and an optional
sign.

3. Constant can be used in preset data lists only (e.g., the DATA
statement).

General Rule

The optional sign affects only bit 0 of the resulting literal (i.e.,
complementation does not take place).

Examples

DATA A/0-1/ (results in 400000000001)
DATA J/O 377777777777/
DATA S/O 34567/ (results in 000000034567)

2-15 DG75

I

I

I
I

Real .Constant

A real constant is a numeric :representa.tion in floating-po.int binaz:y
format.

Syntax

± integer~l [.[integer-2] J [:E [±] integer-3]

Syntax Rules

1.

2.

3.

·rnteger-.1.integer-.2 can ha.ve a maximum :ox nine s.ignificant decimal
dig.its written with a decimal . point.

.Int..eger·-3 .can .be a one- or two-dig.it inte:g:er .constant.

I:f .the E .integer-3 option is specif·ied, . .integer-'3 cannot .. be blank, but
the value .can be explicitly zero.

4.. When the decimal point is omitted, it is assumed to be immediately to
the r:ight of the -.rightmost digj:t of integer-.1.

5. Either the decimal point .or :,the 'E must be :specified.

General Rules

L A .real constan.t is contained in one .computer word (.i.e., single
prec.ision).

2. A real constant has precision to eight digits.

3. The ·ma,gni tude of the real ,constant must be ~ppr.oximately .between
and l'O '38, or it must be zero .•

io-Js

4. In .some cases, nine significant decimal .dig.its will generate a double
precision constant because the mantissa of the real constant is
greater than or :equal to _228, .or 26843'.5·456 .•

Examples

7/79

75 .•
21.0.83
-J.28

7.0E2
7E-.3

(means 7 .o x 102 or 700 .•)
(means 7 .o x 10..;.3 or .;00:7)

2-16 DG75A

Double Precision Constant

A double precision constant is a numeric designation in floating-point
format.

Syntax

± integer-! [.[integer-2J] (o (± J integer-3]

Syntax Rules

1. Integer-1.integer-2 can have a minimum of ten and maximum of eighteen
significant decimal digits written with a decimal point.

2. Integer-1 can be up to eighteen significant digits written with or
without a decimal point when it is followed by a decimal exponent.

I

I

3. Integer-3 can be a one- or two-digit integer constant. I
4. When the decimal point is omitted, it is assumed to be immediately to

the right of the rightmost digit of integer-1.

s. Integer-3 cannot be blank, but the value can be explicitly zero.

6. Either the decimal point or the D must be specified.

General Rules

1. Double precision constants have precision to eighteen digits.

2. .The magnitude of a double precision constant must lie between io-38
and 10 38, or it must be zero.

3. In some cases, nine significant decimal digits will generate a double
precision constant because the mantissa of the real constant is
greater than or equal to 228, or 268435456.

Examples

7/79

12.34567891
-13.5700

.1234DO
7.0D4 (means 7.0 x 104 or 70000.)
70-3 (means 7.0 x lo-3 or .007)

2-17 DG75A

I

I

Complex Constant

A complex constant is composed of an ordered pair of signed or unsigned
real constantsJ the first pair represents the real portion of the constant, and
the second pair represents the imaginary portion of a complex constant.

Syntax

(±real-1, ± real-2)

Syntax Rules

1. Real-1 represents the real part of the complex nwnber; real-2
represents the imaginary part.

2. The parentheses are required, regardless of the context in which the
complex constant appears.

3. Real-1 and real-2 must be separated by a comma.

Examples

(10.l I 7.03)
(5.41, o.o)
(7. OE4 I 2 0 • 7 6)

means 10.l + 7.03i
means s.41 + o.Oi
means 70000 + 20.76i

where: i is the square root of -1.

2-18 DG75

Logical Constant

A logical constant is the designation of a value as true or false.

Syntax

C
.TRUE.) c·T•)

.FALSE. or .F.

Syntax Rules

1. A logical constant can be represented in a source program in either of
the forms noted above.

2. A logical constant can be represented without periods when performing
input operations (i.e., when used as input data).

General Rule

The logical constants are represented in the machine as

TRUE ~ zero
FALSE zero

Examples

L = .T.
A = L .OR •• TRUE.

2-19 DG75

Character Constant

A character constant is either an ASCII or BCD representation of a
character string (refer to Appendix A for a description of each character set).

Syntax

nHliteral-1
"literal-2"
'literal-3'

Syntax Rule

Literal can be a maximum length of 500 characters for ASCII mode and 511
characters for BCD mode.

General Rules

1. The type (ASCII or BCD) for literal is determined by an option on the
$ FORTY or $ FORTRAN control" card, or the YFORTRAN or FORTRAN RUN
command.

2. Literals can be used

• as arguments to external programs

• as literals in the DATA statement

• as part of a FORMAT statement

• as the display object of the STOP and PAUSE statements

• in a character assignment statement

• in a relational expression

3. If two delimiters are placed directly together, it is considered to be
a single occurrence of the delimiter (i.e., "abc""ef" is interpreted
internally as abc"ef). However, an alternate delimiter type can be
used (e.g., 'abc"ef').

Examples

'CHAR'
'CONSTANT'
CHARACTER*S A/"l.0,6"/
CALL SUB('CHAR',J)
X = "Y+Z"

2-20 DG75

VARIABLES

A variable is any quantity refer~ed to by a symbolic name with a value that
can be changed during the execution of a program. The type of a variable is
specified implicitly by its name, or explicitly by the use of a type statement.

1. Default implicit type association enables the declaration of real and
integer variables and function names according to the following rules:

a. If the first character of the name is I,J,K,L,M, or N, (uppercase
or lowercase) it is an integer variable.

Example

INTG
LIST
NAME

b. If the first character is any other alphabetic character, it is a
real variable.

Example

REALA
ARNO
ZXY

2. The IMPLICIT type statement redefines the default implied typing.

Examples

IMPLICIT INTEGER (A-H)

All program. variables beginning with the letters A through the letter
H, as well as the default letters I through N, will be type integer.

IMPLICIT REAL (I-N)

All program variables beginning with the letters I through N, as well
as the default letters A through H and O through z, will be type real.

IMPLICIT INTEGER (X,Z), REAL (J)

All program variables beginning with the letters X and z, as well as
the default letters I and K through N,• will be type integer1 variables
beginning with J, as well as the default letters A through H and O
through z, will be type real.

3. The explicit type statement assigns a type to a variable or function
subprogram.

Examples

REAL IA,IB,IC
INTEGER X,Y,Z
COMPLEX COMP,DDN

4. Function subprogram names can be typed in the FUNCTION statement by
use of the type prefix.

Examples

INTEGER FUNCTION RAND (NUMBER)
REAL FUNCTION ICUM(FACT)

2-21 DG75

I

Defined Variable

A variable is considered to be defined when it is assigned a value. It can
be assigned a value through a non-executable statement (e.g., a DATA statement)
or an executable statement (e.g., a READ statement). A variable which is a
member of any COMMON block is considered defined, as well as any variable that
appears in the argument list-of a subroutine CALL statement.

Examples

DATA A/10.1/, B/25.4/, C/5.0/
READ A,B,C
CALL SUB(A,B,C)

Referenced Variable

A variable in a source program is considered to be referenced if it is
required to have a value.

Examples

PRINT 3, A, B
CALL SUB(A,B)
SUM = A+B

Scalar Variable

The six types of scalar variables are character, integer, real, logical,
double precision, and complex. A scalar variable can take on any value its
corresponding constant may assume, and occupies the same number of storage
locations as a constant of the same type.

Examples

SCA = 99999999.9
PER = 100.0
COMP = (l.O, 3.4)

External Variable

An external variable is the name of a subprogram that appears as an actual
argument in the calling sequence to some subprogram. It must appear in an
EXTERNAL statement before its first use in the source program.

Examples

EXTERNAL RAND

CALL SUB(RAND)

where RAND is a subprogram name

7/79 2-22 DG75A

Switch Variable

A switch variable is an independent entity derived from a scalar variable
and is associated only with an ASSIGN statement. A switch variable has no
numeric value and must be type INTEGER; but it can have the same symbolic name
as an integer variable.

Examples

ASSIGN 6 TO J
ASSIGN 999 TO R

Character Variable

Character variables can have an implicit type via the IMPLICIT statement or
an explicit type using the CHARACTER statement. Character variables are
left-justified and blank-filled. The maximUll\ length specification is 500
characters per variable in the ASCII mode and 511 characters in the BCD mode.

Examples

CHARACTER*lO ALPHA,NUM*2(2)/'AB','CD','EF'/
CHARACTER DOG
IMPLICIT CHAR*2(A,B,C)

Array Variable

An array is an ordered set of data with one to seven dimensions, which is
referenced by a symbolic name. Identification of the entire ordered set is
achieved by the use of the array name.

Examples

ARR (1,2,1)
LIST (I,J,K,L,M,N)
DAT(I,3)

ARRAY ELEMENT

An array element is one item of data in an array. It is identified by
immediately following the array name with a subscript whose value points .to the
particular element of the array. In some instances the array name can be used
in unsubscripted notation to reference the first element of the array.

7/79 2-23 DG75A

I

SUBSCRIPTS

A variable can be made to represent any element of an array which contains
one to seven dimensions by appending one to seven subscripts to the variable
name. Subscript expressions are separated by commas, and the number of
subscript expressions must correspond with the declared d:i.mensionality (with the
exception of the EQUIVALENCE statement). Following evaluation of all of the
subscript expr.essions, the array element successor function determines the
identified element.

A subscript expression can take the form of any legal FORTRAN aritlunetic
expression. The result of any such expression is truncated (not rounded) to an
integer before it is used. The value of a subscript expression must be greater
than zero and not greater than the corresponding array dimension. The value of
a subscript expression containing real variables is truncated to an integ.er
after evaluation. No check is made to verify that the subscript value is within
the bounds specified in the DIMENSION statement. The execution of a program
containing an error of this nature can cause various abnormal terminations or
may give faulty results with a "normal" termination.

ARRAY ELEMENT SUCCESSOR FUNCTION

The general algorithm to linearize a subscript involving n terms (for an
array of n dimensions) is:

s
n
L: C Ce 1-1> •

i=-1

i-1
Tr dj) + 1

j=O

where each e 1 is a subscript term and each dj an array dimension.

The term do is the "zero-th dimension" .of the array. It reflects the
number of words of memory required for one element. For example: integer,
logical, and real quantities require one word per element (do= l); double
precision and complex quantities require a word pair (do = 2); and character
variables that use the size in bytes notation to provide the number of
characters per element can have a do value of up to 86 in BCD (because this mode
has a maximum of 511 characters) and up to 126 in ASCII (because this mode has a
maximum of 500 characters). The formula for reducing the size in characters to
the size in words is a function of the BCD/ASCII option. Let n be the number of
characters specified, and m be the number of characters per word (.6 for BCD, 4
for ASCII). Then do is computed as:

do = (n+m-1)/m

The following are examples using integer variables and using complex
variables:

INTEGER X(3,2,4)
x (2,2,2) = 1

(Array X has 3 rows, 2 columns, and 4 planes)

2-24 DG75

Expanding the algorithm for the three dimensions:

s = Ce 1-l)*do + Ce2-l>*do*dt + Ce3 -l)*do*dt *d2 +l

s = (2-1)*1 + (2-1)*1*3 + (2-1)*1*3*2 + l

s = l + 3 + 6 + l

s = 11

Looking at the array in storage in sequential order, the elements are:

X(l,1,1), X(2,l,l), X(3,l,l), X(l,2,1), X(2,2,l),

X(3,2,l), X(l,1,2), X(2,l,2), X(3,l,2),

X(l,2,2), X(2,2,2), ••• , X(3,2,4)

X(2,2,2) is the eleventh element of the array, the fifth member of plane two.

COMPLEX X (3,2,4)
X(2,2,2) = (1.0, 0.0)

s = (2-1)*2 + (2-1)*2*3 + (2-1)*2*3*2 + l

s = 21

In this example, the first word of the word pair for this element is the
twenty-first word of the array.

ARRAY DECLARATOR

An array declarator specifies an array used in a program unit. The array
declarator indicates the symbolic name, the number of dimensions (one to seven)
and the size of each dimension. The array declarator form can be in a type
statement, dimension statement, or conunon statement. An array declarator has
the form:

v(i) or v*n(i)

where: v is the symbolic array name n is the size-in-bytes of an element
T is the declarator subscript composed of one to seven

elements separated by conunas1 each element can be an integer I
constant, a parameter symbol, or an integer variable

The appearance of a declarator subscript in a declarator statement informs
the processor that the declarator name is an array name. The number of
subscripts indicates the dimensions of the array. The magnitude of the value
for the subscript expressions indicates the maximum value that the subscript
name can attain in any array element reference.

7/79 2-25 DG75A

I

ADJUSTABLE DIMENSIONS

The name of an array and the constants that are its dimensions can be
passed as arguments to a subprogram. In this way a subprogram can perform
calculations on arrays with sizes that are not determined until the subprogram
is called. The following rules apply to the use of adjustable dimensions:

1. Variables can only be used as dimensions of an array in the array
declarator of a FUNCTION or SUBROUTINE subprogram, and must be
integer. The array name and all the variables used as dimensions must
appear as dummy arguments in at least one FUNCTION, SUBROUTINE, or
ENTRY statement.

2. The adjustable dimensions cannot be altered within the subprogram.

3. The true dimensions of an actual array must be specified in a
DIMENSION, COMMON, or type statement of the calling program.

4. Variable dimension size can be passed through more than one level of
the subprogram. The specific dimensions are passed from the calling
program to the subprogram as actual arguments cannot exceed the true
dimensions of the array.

5. If the variables are not implicitly typed as integer by their initial
letters, an INTEGER type statement must precede the dimension
statement in. which they are used.

6. When an adjustable array name or any of its adjustable dimensions
appears in a dummy argument list of a FUNCTION, SUBROUTINE, or ENTRY
statement, that array name and all its adjustable dimensions must also
appear in the same dummy argument list.

Example

DIMENSION K{4,5),J(2,3)

CALL SETFLG {K,J,4,5,2,3)

Parameter

SUBROUTINE SETFLG(K,J,I,L,M,N)

DIMENSION K{I,L),J(M,N)

DO 20 NO = l,I
DO 20 MO = l,L
K(NO,MO) = 0

20 CONTINUE

A parameter is a constant that is represented as a symbolic name within a
source program. The value of this constant is initialized at the beginning of
the program. Parameters are used to define any constant whose value might
change between compilations {e.g., the pay period ending date for a payroll
system).

7/79 2-26 DG75A

EXPRESSIONS

Arithmetic

An aritlunetic expression is a constant, a variable, a function, or any
combination of these items separated by aritlunetic operation symbols, conunas,
and parentheses, to form a meaningful mathematical notation.

Examples

A*B
{{A+B)/C)**2.5
-(A+B)
{A*B)/(C-D)

The following is a list of arithmetic operation symbols:

+

*

addition or unary addition
subtraction or negation
multiplication

I division

**) ~ exponentiation

The rules for constructing arithmetic expressions are as follows.

1. Constants, variables, and functions that can be combined by the
aritlunetic operators to form arithmetic expressions are illustrated in
Tables 2-3 and 2-4. The intersection of a row and column gives the
type of the result of expressions involving the given operators.
Table 2-3 gives the valid combinations with respect to the arithmetic
operators +,-,*, and /. Table 2-4 gives the valid combinations with
respect to the arithmetic operators **, ! , or A.

~ 1 I R D c T

I I R D c T Legend

R R R D c N c - Complex
D - Double precision

D D D D c N I - Integer
N - Nonvalid

c c c c c N R - Real
T - Typeless

T T N N N T

2-21 DG75

Table 2-4. Results for x1**x 2
,

POWER

~ 1 I R D c T

I I R D N N

B R R R D N N
A
s D D D D N N
E

c c c c c N

T N N N N N

2. Any expression can be enclosed in parentheses.

3. Expressions can be connected by the arithmetic operation symbols to
form other expressions, provided that:

a. No two operators appear in sequence except **, which is a single
operator and denotes exponentiation. For example, X+-Y, or X//Y
is not valid.

b. No operation symbol is assumed to be present.
(X) (Y) is not valid.

For example,

4. Preceding an expression by a plus or minus sign does not affect the
type of the expression.

5. In the hierarchy of operations for arithmetic expressions, parentheses
can be used to specify the order in which operations are to be
computed. Where parentheses are omitted, the order is understood to
be as follows:

a. Function Reference
b. **, • , or /\ Exponentiation
c. + and - Unary Addition and Subtraction
d. * and I Multiplication and Division
e. + and - Addition and Subtraction

This hierarchy is applied first to the expression within the innermost
set of parentheses in the statement; this procedure continues through
the outer parentheses until the entire expression has been evaluated.
For example, in the expression (X-(Y*(2+Z))), (2+Z) is evaluated; then
Y* the result of (2+Z) is evaluated; then x- the result of Y*(2+Z) is
evaluated.

6. Expressions involving the exponentiation operators are evaluated from
right to . left. For example, the expression A**B**C is evaluated as
A**(B**C).

7. Expre~sions involving arithmetic operators on the same level (e.g., +
and -, or * and /) are evaluated left to right. Parentheses can be
used to reorder this sequence if necessary. For example, A/B*C is
evaluated as (A/B)*C.

2-28 DG75

The FORTRAN expression

A*6+Z/Y**(W+(A+B)/X**K)

represents the mathematical expression

l
Relational

A relational expression consists of two arithmetic expressions connected by
a relational operator. Relational expressions always result in a true or false I
evaluation and can be used in a logical assignment statement, a logical IF
statement, a PARAMETER statement, an output list, or as arguments to
functions/subroutines.

The six relational operator symbols are:

S~mbol Definition

.GT. or > Greater than

.GE. Greater than or equal to

.LT. or < Less than

.LE. Less than or equal to

.EQ. Equal to

.NE. Not equal to

NOTE: The preceding and following periods are an integral part of the
relational operator symbols.

Example

A.GT.B has the value .TRUE. if the quantity A is greater than the quantity
B; otherwise, the value is .FALSE.

Logical

A logical expression is a sequence of constants, logical variables,
function references, and relational expressions separated by logical operation
symbols, that always results in a true or false evaluation.

7/79 2-29 DG75A

The logical operation symbols (where a and b are logical expressions) are
described below:

Symbol

.NOT.a

a.AND.b

a.OR.b

Definition

This has the value .TRUE. only if a is .FALSE.; it has the value
.FALSE. only if a is .TRUE.

This has the value .TRUE. only if a and bare both .TRUE.;
has the value .FALSE. if a or b or both are .FALSE.

it

(INCLUSIVE OR) This has the value .TRUE. if either a or b or both
are .TRUE.; it has the value .FALSE. only if both a and b are
.FALSE.

The logical operators NOT, AND, and OR must always be preceded and followed
by a period.

Table 2-5. Truth Table Values

a b a • AND. b a .OR • b

• T. .T. • T • .T •

• T. • F • .F. .T •

• F. • T. .F • .T •

• F • • F • .F • .F.

* Logical expression evaluation stops the evaluation as soon as the
true/false state for the complete expression has been determined. Thus, it is a
distinct possibility that the entire expression may not be evaluated.

Example

IF (RAND (X) .GT. 0 .OR. L) GO TO 100

Assuming that RAND is an external function and L is a logical variable, the
* expression is true when either RAND(X) is greater than zero or L is true. Since

there is no need to evaluate RAND{X) .GT. 0 when L is true, the statement will
be optimized into an equivalent pair of statements:

IF (L) GO TO 100

IF (RAND(X) .GT. 0) GO TO 100

7/79 2-30 DG75A

The significance of this is the fact that function RAND is called only when
L is false. If evaluation of RAND(X) can have side effects, this may be of
consequence. For those applications impacted by this implementation, the
solution would be to make the evaluation of RAND(X) unconditional.

Example

T = RAND(X)

IF(T.GT. 0 .OR. L) GO TO 100

Logical and Relational Constructions

The following rules are used for constructing logical and relational
expressions.

7/79

1. The constants, variables, functions, and arithmetic expressions that
can be combined by the relational operators to form a relational
expression are illustrated in Table 2-6. Y indicates a valid
combination and N indicates an invalid combination. The relational
expression has the value .TRUE. if the condition expressed by the
relational operator is met; otherwise, the relational expression has
the value .FALSE.

Table 2-6. Use of Relational Operators (.GT., .GE., etc.)

~ I R D c L H T Legend
I

I y y y * N y y I = Integer
R = Real

R y y y * N N N D = Double Precision
c = Complex

D y y y * N N N L = Logical
H = Character

c * * * * N N N T = Typeless

L N N N N N N N

H y N N N N y N * = .EQ., .NE. only
y = Valid

T y N N N N N y N = Invalid

2. The numeric relationships that determine the true or false evaluation
of relational expressions are

• For numeric values having unlike signs, the positive value is
considered larger than a negative value, regardless of the
respective magnitude (e.g., +3 >-5 and +5 > -5).

• For numeric values having like signs, the magnitude of the values
determines the relationship (e.g., +3 > +2 and -8 < -4) •

2-31 DG75A

I

3. A logical term is a relational expression, a single logical constant,
a logical variable, or a reference to a logical function. A logical
expression is a series of logical terms or logical expressions
connected by the logical operators .AND., .OR., and .NOT.

4. The logical operator .NOT. must be followed by a logical or relational
expression, and the logical operators .AND. and .OR. must be preceded
and followed by logical or relational expressions.

5. Any logical expression can be enclosed in parentheses.

Typeless Functions

Typeless entities can be combined with an integer or other typeless
entities. If a typeless entity is combined by using an arithmetic operator, the
result is also typeless and is regarded as a special type of integer. If a
typeless entity is combined by using a relational operator, the result is
logical; however, a typeless entity cannot be combined using a logical operator.

Whenever the right side
assignment operation is integer.

R = BOOL (R) +l

of an equal sign yields a typeless result, the
For example, if R is real, the statement

adds one to the least significant bit of the real value of R, using integer-add,
and stores a new value in R, using in~eger-store. This usage is not recommended
but is illustrated here to explain the properties of typeless entities.

The typeless functions are listed below:

FLD
AND
OR
XOR
BOOL
COMPL

Evaluation of Expressions

An expression should only be evaluated when it is necessary to determine
• the value of the expression. When two operands are combined by using an

operator, the order of evaluation of the operands is undefined as the result of
possible reordering during optimization. If the mathematical use of operators
is associative, commutative, or both, the orders of combinations can be revised
if the parenthesized expressions are not changed. The value of an integer
element is the nearest integer whose magnitude does not exceed the magnitude of
the mathematical value represented by that element. The associative and
conunutative laws do not apply in the evaluation of integer terms containing
division; hence, the evaluation of such terms must effectively proceed from left
to right.

7/79 2-32 DG75A

Any use of an array element name requires the evaluation of its subscript.
The evaluation of a function in an expression cannot alter the value of any
other element within the expression, assignment statement, or call statement in
which a function reference or subscript appears. No factor can be evaluated
that requires a negative valued operand to be raised to a real or double
precision expon-ent, or raising a zero valued primary to a zero valued exponent.
An element cannot be evaluated if its value is not mathematically defined.

The evaluation of an arithmetic expression is determined by the following
order of type dominance:

1. Complex

2. Double Precision

3. Real

4. Typeless

5. Integer

When two operands are combined by using any of the arithmetic operators
other than the exponentiation operator, their respective types are examined
according to the stated order of type dominance. The type of the recessive
operand is converted to that of the dominant operand (if necessary) and the
operation is performed.

Operator Precedence

In the hierarchy of operations, parentheses can be used in logical,
relational, and arithmetic expressions to specify the order in which operations
are to be computed. Where parentheses are omitted, the order is understood to
be as follows:

1. Function Reference

2. **,+, or" Exponentiation

3. + and - Unary Addition and Negation

4. * and I Multiplication and Division

s. + and - Addition and Subtraction

6 • • LT. , • LE • 1 • EQ. , • NE • 1 • GT. , • GE •

7. .NOT.

8. .AND.

9. .OR.

This hierarchy is applied first to the expression within the innermost set
of parentheses in the statement and continues through the outermost set of
parentheses until the entire expression has been evaluated.

2-33 DG75

Unary Operators

The unary operators {negative, positive, and logical not) can immediately
precede a constant or a variable in an expression. However, if the placement
causes the unary negative or positive operator to be adjacent to another
operator, it must be enclosed in parentheses with the constant or variable.

Examples

A=+l.6
C=D/{-Z)*W
IF(-3.+T4)1,2,3
Ll=R2. GT. (-2.)
L2=.NOT.Ll
A=B**{-2)

2-34 DG75

SECTION III

FORTRAN STATEMENTS

The basic unit of FORTRAN is the statement which is classified in
accordance with the following uses:

1. Arithmetic statements specifying numeric, character, or logical value
assignment.

2. Control statements governing the order of execution in the object
program.

3. Input/output statements and input/output formats that describe the
form of the data.

4. Subprogram statements enabling the programmer to define and use
subprograms.

5. Specification statements providing information about variables used in
the program, information about storage allocation and data assigned.

6. Compiler control statements direct the compilation activity.

Table 3-1 contains the list of FORTRAN statement types.

Each statement is classified as either executable or non-executable. The
executable statement specifies an activity which is to be accomplished; the
non-executable statement

• Describes the characteristics, arrangement, and initial values of data

• Contains editing information

• Specifies statement functions

• Classifies program units

• Specifies entry points within subprograms

3-1 DG75

Table 3-1. Type Listing of FORTRAN Statements

Type Statement

Arithmetic Assignment statements
Arithmetic statement functions

Control ASSIGN
CONTINUE
DO
GO TO
IF
PAUSE
STOP

Input/Output BACKSPACE
DECODE
ENCODE
ENDFILE
FORMAT
PRINT
PUNCH
READ
REWIND
WRITE

Subprogram BLOCK DATA
CALL
ENTRY
FUNCTION
RETURN
SUBROUTINE

Specification ABNORMAL

Compiler Control

COMMON
DATA
DIMENSION
EQUIVALENCE
EXTERNAL
IMPLICIT
NAMELIST
type

INTEGER
REAL
DOUBLE PRECISION
COMPLEX
LOGICAL
CHARACTER

PARAMETER

END

3-2 DG75

General Format

Most FORTRAN statements, with the exception of the assignment statement,
have the following general format:

1 7

statement-label keyword syntactic-entities

where: statement-label is an unsigned integer constant

keyword is a required FORTRAN word

syntactic-entries are a series of symbols that complete the
statement

The assignment statement has two general formats:

Format 1

1 7

statement-label variable expression

where: statement-label is an unsigned integer constant

variable is a scalar name or an array element name

expression is an arithmetic, logical, or relational expression

3-3 DG75

Format 2

1 7

statement-label-! ASSIGN statement-label-2 TO variable

where: statement-label-1 is an unsigned integer constant

statement-label-2 is an executable statement number

variable is an integer switch variable

The statement label is used to reference specific statements within the
source program. All FORTRAN statements, with the exception of the END
statement, can be labeled. However, only executable and FORMAT statements can
be referenced.

The syntax items can be any combination of the following items:

• Constants

• Variable names

• Statement labels

• Operators

• Punctuation symbols

ASSIGNMENT STATEMENTS

An assignment statement is used to give a value to a designated variable.
There are four types of assignment statements:

• Arithmetic assignment statement

• Logical assignment statement

• Character assignment statement

• Label assignment (ASSIGN) statement

Arithmetic Assignment Statement

An arithmetic assignment statement instructs FORTRAN to compute the value
of an expression on the right of the equal sign and to assign that value to the
variable (or array element) on the left of the equal sign.

3-4 DG75

Format

variable arithmetic expression

Examples

where: Rl and R2 are real variables

Cl and C2 are complex variables

D is a double precision variable

I is an integer variable

Rl = R2

I = R2

Rl I

Rl 3* R2

Rl R2* D+l

(R2 replaces the value of F..: J

(R2 is truncated to an integer and stored in I)

(I is converted to a real variable and stored in Rl)

(3 is converted to a real number, multiplied by R2, and
stored in Rl)

(R2 and D are multiplied using double precision
arithmetic; 1 is converted to double precision and
added to the product. The most significant digits
resulting from the computation are stored in Rl as a
real variable)

Cl C2* (3.7,2.0) (The result of the complex computation is stored in Cl
as a complex number)

C2 R2 (The real. part of C2 is replaced by the value of R2;
the imaginary part of C2 is set to zero)

Logical Assignment Statement

A logical assignment statement determines the truth value of a logical
expression and assigns it to a logical variable or a logical array element.

Format

logical-variable

Examples

Ll = • TRUE.

L2 = A.GT.25.0

logical-expression

(Ll is set to the specified truth valu~)

(L2 is set to .TRUE. if A>25.0; otherwise, L2
is set to .FALSE.)

L3 I.EQ.0 .OR.A.GT.25.0 (L3 is set to .TRUE. if either I=O, or A > 25.0;
otherwise, L3 is set to .FALSE.)

·3-5 DG75

L4 = LS (L4 is set to the current truth value of LS)

where: Ll, L2, L3, L4, and LS are logical variables

Character Assignment Statement

A character assignment statement stores the characters from a character
constant, a variable, a function, or an array element into a declared character
variable name.

Format

character-variable character-expression

General Rules

1. The value of character-expression is stored in character-variable as
left-justified with trailing blanks if they are required.

2. If the declared length of character-variable is less than the declared
length of character-expression, character-expression is truncated and
the leftmost characters are stored in character-variable.

Examples

Cl "ABCD" (The characters ABCD are stored in Cl)

C2 Cl (The characters stored in Cl are assigned to C2)

C3 'AlB2C3D4' (The characters AlB2 are stored in C3)

where: Cl, C2 and C3 are character variables with a declared length of
four characters

Label Assignment Statement

A label assignment statement assigns a statement number to a nonsubscripted
switch variable.

Format

ASSIGN statement-no TO switch-variable

3-6 DG7S

General Rule

Statement-no must reference an executable statement number in the same
program unit in which the ASSIGN statement appears.

Example

ASSIGN 24 to M

GO TO M, (l,22,41,24,36)

The next statement to be executed will be statement number 24.

Table 3-2 presents an abbreviated summary of the legitimate combinations of
expressions and variables in the assignment statements. When the arithmetic
assignment, logical assignment, and character assignment statements are
executed, the evaluation of the expression 'e' and the alteration of 'v' is
performed in accordance with the rules given in Table 3-3.

Table 3-2. Legal Combinations of Assignment Statements

~ Expression
Le~end

I R D c L H T

I I I I I N I I I = Integer
R = Real

R R R R R N R R D = Double Precision
c = Complex

D D D D D N N N L = Logical
H = Character

c c c c c N N N T = Typeless
N = Illegal

L N N N N L N L

H N N N N N H N

7/79 3-7 DG75A

I

I

I

7/79

IF v TYPE IS:

Integer
Integer
Integer

Integer

Integer
Integer
Integer
Real
Real
Real

Real
Real
Real
Real
Double Precision

Double Precision
Double Precision
Double Precision

Double Precision
Double Precision
Double Precision
Complex

Complex

Complex

Complex
Complex
Complex
Complex
Character
Character
Character
Character
Character

Character
Character
Logical
Logical
Logical
Logical
Logical
Logical
Logical

Table 3-3. Rules for v = e

AND e TYPE IS:

Integer
Real
Double Precision

Complex

Character
Typeless
Logical
Integer
Real
Double Precision

Complex
Character
Typeless
Logical
Integer

Real
Double Precision
Complex

Character
Typeless
Logical
Integer

Real

Double Precision

Complex
Character
Typeless
Logical
Integer
Real
Double Precision
Complex
Character

Typeless
Logical
Integer
Real
Double Precision
Complex
Character
Typeless
Logical

3-8

THE ASSIGNMENT RULE IS:

Assign
Fix ,and Assign
Fix 'and Assign the Most

Significant Part
Fix the Real

Part and Assign
Fix and Assign
Assign
Illegal
Float and Assign
Real Assign
Assign the Most Significant

Part as Real
Assign the Real Part
Float and Assign
Assign
Illegal
Float and Assign as

Double Precision
Real Assign as Double Precision
Assign
Assign Real Part as

Double Precision
Illegal
Illegal
Illegal
Float and Assign to the

Real Part and Assign Zero
to the Imaginary Part

Assign to the Real Part,
Assign 0 to Imaginary Part

Assign the Most Significant
Part to the Real Part and
Assign 0 to the Imaginary
Part

Assign
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Assign

Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Assign
Assign

DG75A

NOTES: 1.

Table 3-3 (cont) • Rules for v = e

Assign means transmit the resulting value, without change, to
the entity.

2. Real assign means transmit to the entity as much precision of
the most significant .Part of the resulting value as a real
datum can contain.

3. Fix means truncate any fractional part of the result and
transform that value to the form of an integer datum.

4. Float means transform the value to the form of a real datum.

5. Double precision float means transform the value to the form
of a double precision datum, retaining in the process as -much
of the precision of the value as a double precision datum can
contain.

6. Assi~n with respect to character ~ implies a move
operation. When the receiving van.able' s size is greater than
the size of the sending string, the move is performed filling
the receiving variable with blanks. When the receiving
variable's size is less than that of the sending string,
truncation takes place.

FORTRAN KEYWORDS

A description of each FORTRAN keyword, with its associated restrictions, is
contained on the following pages in alphabetical order.

3-9 DG75

ABNORMAL ABNORMAL

ABNORMAL

The ABNORMAL statement is used to qualify the characteristics of a FUNCTION
subprogram for optimization purposes.

Format

ABNORMAL [function [, function J ... J

Syntax Rule

Function is a FUNCTION subprogram name.

General Rules

1. The references to the FUNCTION subprogram cannot be treated as a
variable or array element reference in an expression. There may be
side effects which could alter the function's arguments or locations
in conunon; it performs I/O or it is capable of returning different
results when the same arguFents are given.

2. Subroutines referenced by CALL statements are always considered
abnormal.

3. This statement applies. only to programs compiled with the OPTZ option.
Otherwise, the presence or absence of ABNORMAL statements is
immaterial.

4. If a program unit has FUNCTION references that are not abnormal, an
ABNORMAL statement with no argument list may be included. This
technique has the effect of setting all functions to 'normal'.

5.

Examples

If the program unit has no
functions are considered
Tables 6-1, 6-2, and 6-3.

ABNORMAL
ABNORMAL
ABNORMAL

SINE
SUB

FUNCTIONS
abnormal

3-10

typed as ABNORMAL, then all
except the supplied functions ir.

DG7

ASSIGN ASSIGN

ASSIGN

The ASSIGN statement assigns the value of a statement label to a switch
variable. A maximum of 125 assignments of labels can be made to the same switch I
variable.

Format

ASSIGN label ~ switch-variable

Syntax Rules

1. Label must be the statement label of an executable statement.

2. Switch-variable must be an integer switch variable.

Example

ASSIGN 17 to J
GO TO J,(S,4,17,2)

The next statement to be executed is statement number 17.

7/79 3-11 DG75A

BACKSPACE BACKSPACE

BACKSPACE

The BACKSPACE statement positions a file to the record which was the
preceding record prior to execution of the backspac.e command.

Format

BACKSPACE file

Syn tax Rule.s

1. File is the two-character file code which specifies the file to be
backspaced.

2. File must be an integer constant, a variable, or an expression.

General Rules

l. If the last READ statement resulted in an end-of-file condition, two
BACKSPACE conunands are required to position the file prior to the last
logical record.

2. If the file is positioned at the initial point, the BACKSPACE
statement has no affect.

3. If the device is tape, one BACKSPACE command following a READ that
resulted in an end-of-file condition will cause the input file to be
set as an output file. Under this condition, the sequence READ,
BACKSPACE, READ, will be illegal.

Examples

BACKSP.ACE 05
BACKSPACE 13

3-12 DG75

BLOCK DATA BLOCK DATA

BLOCK DATA

The BLOCK DATA subprogram is used to enter data into a labeled COMMON block
area during compilation of the source program.

Format

BLOCK DATA

END

Syntax Rules

1. Data cannot be entered into blank COMMON by the BLOCK DATA subprogram.

2. This subprogram can contain only type, EQUIVALENCE,
IMPLICIT, DATA, DIMENSION, and COMMON statements.

PARAMETER,

General Rules

1. The BLOCK DATA subprogram cannot contain any executable statements.

2. The first statement of this subprogram must be the BLOCK OATA
statement. The last statement must be the END statement.

3. All elements of a common block must be listed in the COMMON statement
even though they do not all appear in the DATA statement.

4. Data can be entered into a maximum of 63 common blocks in a single
BLOCK DATA subprogram.

5. BLOCK DATA subprograms must not be compiled with the DEBUG option.

6. BLOCK DATA subprograms cannot reside on the same random library as a
main program referencing its data.

7. If two or more BLOCK DATA subprograms occur for the same application,
the data specified by each of them is entered into the appropriate
common blocks. The data from the last subprogram is retained for any
area of a common block that is referred to more than once.

NOTE: All the variables in a labeled conunon block must be listed even
though they do not receive a value in the DATA statement.

3-13 DG75

BLOCK DATA

Example

BLOC!< DATA
DOUBLE PRECISION Z
COMPLEX C
COMMON/ELN/C,A,B/RNC/Z,Y
DIMENSION B(4}, Z(3)
DATA {B(I} ,I=l,4)/l.l,l.2,2*1.3/,C/{2.4,3. 769/,Z(l)/7.6498085DO/
END

3-14

BLOCK DATA

DG75

CALL CALL

CALL

The CALL statement is used to access a subprogram. Upon execution of a
CALL statement, control is transferred to the subprogram until the return is
made to the calling program.

Fopnat

CALL sub [(arg 1 , arg 2 , ••• , arg n) J

Syntax Rules

1. Sub is the name of the subroutine subprogram.

2. Arg is the actual argument(s) or the alternate return(s), $ n,
where: n is the statement label or switch variable.

3. The arguments must agree in number, order, type, and array size with
the corresponding arguments in the SUBROUTINE or ENTRY statement of
the subprogram being called.

General Rules

1. For purposes of optimization, all subroutine calls are treated as
abnormal function references.

2. The arguments can be any of the following forms:

• constant

• subscripted or nonsubscripted variable

• array name

• arithmetic or logical expression

• FUNCTION or SUBROUTINE subprogram name

• statement number or switch variable preceded by a $ for an
alternate return· (e.g., $5)

3. An argument can be omitted and indicated by a successive comma in the
argument list. Null argument(s) will appear before the alternate
returns in the object code, no matter where they appear in the
argument list.

3-15 DG75

CALL CALL

Example

CALL SUBR (B, J, $30, $5,}

4. Any reference within the called subprogram to a null argument in the
CALL will be considered undefined.

5. The calling arguments generated for the alternate returns in the
object code arc in the reverse order from their appearance in the
argument list in the source program. This reverse order must be
considered if GMAP subroutines are called from FORTRAN programs.

Examples

CALL OUTPUT
CALL ABC(X,B,,C,$5,$200}
CALL QST(9.732,Q/4.536,R-S**2,Xl)
CALL SUB(A,I,$10,$20,)

In the last example, the code generated will be

TSXl SUB
TRA *+6
ZERO .E.L •• ,6
ARG A
ARG I
ARG 0
TRA .S20
TRA • SlO

3-16 DG75

CHARACTER CHARACTER

CHARACTER

The CHARACTER statement declares the variable(s) to be of type character
and defines the maximum character length of each variable.

Format

CHARACTER [*integer-1 J name *integer-2 (dim) [/data/ J [, ... J

Syntax Rules

1. Integer-1 must be an unsigned integer constant which defines the
maximum number of characters of all variables in the statement, unless
they are specified by integer-2 (see #3 below) •

2. Name can be a scalar, an array, or a FUNCTION subprogram name.

3. Integer-2 is an unsigned integer constant whose value determines
maximum number of characters that can be contained within
character variable specified. An adjustable size specification
permitted within a subprogram when both the character variable and
size parameter(s) are included as dummy arguments.

the
the
is

its

4. Dim specifies the dimensions necessary to allocate storage to an
array.

5. Data is the initial data value.

General Rules

1. Adjustable size specifications are not permitted as
specification for a character function.

the size

2. If a comparison is made between character fields of unequal length,
the smallest field will be left-justified and blank-filled to the size
of the larger field. Then a comparison is made.

3. Each CHARACTER variable (scalar or array element) begins on
boundary. For example, CHARACTER*2 A(2) would use two
storage; the first two bytes would be used for each word.

a word
words of

4. The maximum number of characters in a variable or array element is 500
for ASCII and 511 for BCD.

3-17 DG75

CHARACTER

Example

CHARACTER ARRAY*l4(10,10)
CHARACTER A*I(J,4),B*I

NOTE: The length of A and B are variable.

3-18

CHARACTER

. DG75

COMMON COMMON

COMMON

The COMMON statement assigns variables in different program units to the
same memory storage location(s). This can be done in a labeled or blank common
area.

Format

COMMON(/]x[/]array[, •••]

Syntax Rules

1. Connnon x is a symbolic name if it is labeled common, or null if it is
blank common.

2. Array is the non-empty list of scalar names, array names, or array
declarators.

3. If common x is empty, the first two slashes are optional.

4. Labeled and blank common can be included in the same COMMON statement.

General Rules

7/79

1. A double precision or complex data item is allocated as
consecutive storage locations.

two

2. A real, logical, or integer entity is allocated as one storage
location.

3. A character variable is allocated the number of consecutive storage
locations required to contain the specified number of characters.

4. The following rules apply to blank and labeled common blocks with the
same number of storage locations.

a. In all program units giving the same type to a given position
(counted by the number of preceding storage units), references to
that position refer to the same value.

b. A correct reference is made to a particular position assuming a
given type if the most recent value assignment to that position
was of the same type.

3-19 DG75A

I

COMMON

c.

d.

COMMON

Complex and double precision entities are assigned consecutive
storage locations (pairs) such that the first word of the pair
has an even storage address.

The size of a common block must not exceed 131,071 decimal words.

s. All variables specified in a COMMON statement are assigned to storage
in the sequence in which the names appear in the COMMON statement.

Examples

COMMON A,B,C,D
COMMON/X/A,B,C
COMMON A,B,C/Yl/D,E

(assigned to blank common)
(assigned to labeled common)
(A, B, C are assigned to blank common;
D, E are assigned to labeled common block Yl)

3-20 DG75

COMPLEX COMPLEX

COMPLEX

The COMPLEX statement is an explicit type statement which is used to assign
the complex nwneric properties to specific variables.

Format

COMPLEX name(*size](<dim)] [/data/], •••

Syntax Rules

1. Name is a variable, an array, or a FUNCTION subprogram name.

2. Size is an optional size in byte designation and is ignored.

3. Dim supplies the dimensions necessary to allocate storage to arrays.

4. Data represents the initial data values.

Examples

7/79

COMPLEX T,Nl,Dl/(5.o,o.o)/
COMPLEX ARRAY (10,3)/5/

3-21 DG75A

I

CONTINUE CONTINUE

CONTINUE

The CONTINUE statement is a dununy statement most often used as the last
statement in the range of a DO loop. The presence of the CONTINUE statement
enables a continuation of the normal execution sequence.

Format

(la be 1) CONTINUE

Syntax Rule

Label is an unsigned integer constant.

Example

10 DO 12 I = 1, 10
IF (ARG - VAL(I)) 12,13,12

12 CONTINUE

3-22 DG75

DATA DATA

DATA

A DATA statement is used to assign values to variables and arrays at
compilation time.

Format 1

DATA variable/data/[, •••]

Syntax Rules

1. Variable specifies the variables to be initialized and may consist of
scalars, arrays, and/or array elements.

2. Data specifies the data constants which may be signed or unsigned.
Data may also be specified as j*c where j is a repeat modifier which
specifies that constant c is to be used j times. j must be an integer
constant or parameter symbol.

3. Variable cannot specify dummy arguments or names in blank common.

4. Data can specify any constant type. Type checki~g is performed to
verify that a variable is initialized with a constant of the correct
type. However, octal or character constants can be used to initialize
variables of any type.

Format 2

Syntax Rules

1. Format 2 is used to initialize values in an array by the use of an
implied DO statement.

2. Array designates the name of the array to be initialized.

3. I indicates the induction variable to be used.

4. M1 indicates the initial parameter of the implied DO statement.

5. M2 designates the terminal parameter of the implied DO statement.

6. MJ specifies the increment parameter for the implied DO statement; if
not specified, an increment of one is assumed.

NOTE: Refer to the DO statement for an explanation of DO parameters.

3-23 DG75

DATA DATA

General Rules

1. Character variables must be initialized with character constants. If
the sizes of these two elements differ, truncation or blank-filling
will occur.

2. DATA defined variables that are redefined during execution assume
their new values regardless of the DATA statement.

3. When values are to be assigned to an entire array, the name of the
array is specified without any subscript information. The number of
constant values assigned must equal the number of elements in the
array.

4. DATA statements which appear in a BLOCK DATA subprogram can pre-set
data into labeled common storage only. Only 63 common areas can be
pre-set from a single BLOCK DATA subprogram.

5. DATA statements which appear in a program unit that is not a BLOCK
DATA subprogram can pre-set data into local storage locations for that
program unit or into labeled common. The maximum number of conunon
areas in this case is 62.

6. Type statements can also be used to initialize data values, and must
follow the rules specified for the DATA statements.

7. Logical constants can be specified in the data list as T or F, as well
as .T. or .F.

NOTE: This could cause confusion if a variable T or F also appears in
a variable statement, because the compiler will use the
parameter T or F value in the data list.

8. There must be a one-to-one correspondence between the list items and
the data constants. If a non-character type variable is to be
initialized with a character constant, and the constant is more than
one word of storage, the variable must appear as an array element
reference. The constant will be assigned to consecutive locations in
memory which begin with the referenced location specified in the
array.

Examples

DATA A,B,C/14.7,62.l,l.5E-20/
or

DATA A/14.7/,B/62.l/,C/l.5-E20/

initially assigns the value 14.7 to A, 62.1 to B, and l.SE-20 to C

DATA I/3/,J/5/

initially assigns the value 3 to I, and 5 to J

3-24 DG75

DATA DATA

DATA ZERO,(A(I) ,I=l,5) ,A(9)/0.0,5*1.0,100.5/

assigns the value 0.0 to ZERO, 1.0 to the first five elements of A, and
100.5 to the ninth element of A

INTEGER G(5)
DATA G(l)/15HDATA TO BE READ/

NOTE: There is a one-to-one relationship specified (one variable and
one constant}, but locations G(l} through G(3} will be affected
if the mode is BCD because the constant is larger than one word
of storage can accommodate. '

DIMENSION B(25)
DATA A,B,C/24*4.0,3.0,2.0,l.O/

assigns the value 4.0 to A and the first 23 elements of B, 3.0 to B(24),
2.0 to B(25), and 1.0 to c.

3-25 DG75

DECODE DECODE

DECODE

The DECODE statement is used to convert a character string which begins in
a specified location to a specified data type as designated by a format. This
converted character string is then stored in the given list. (Refer to Section
V for additional information on the DECODE statement.)

Format

DECODE .(char, form, err) list

Syntax Rules

1. Char is a character variable that can be a scalar, an array element,
or an array name. It indicates the beginning location of the internal
buffer (i.e., the sending field) • ' ·

2. Form can be a FORMAT statement number, a character scalar, or an array
name. It provides the format specification for decoding.

3. Err is the error transfer option which is designated as ERR=Sl. Sl is
the statement label or switch variable that is to receive control when
an error condition is encountered.

4. List is the receiving field with the s.ame requirements as the list
which is specified for the READ statement.

Gener:al Rule

The format and the list specified should not require more characters than
the number of characters assigned to char. If char is an array, the format
information should not require more characters than the number of characters in
a single element of char.

Examples

CHARACTER*6A(3)
A(1) = "111111 11

A(2) = "222222"
A(3) = "333333"
DECODE (A, 100) 11, 12, 13

100 FORMAT (16/16/16)
DECODE (A,200) J1,J2.,J3

200 FORMAT (316)

3-26 DG75

DECODE DECODE

After execution, Il = 111111, I2 = 222222., I3 = 333333; Jl = 111111, but J2
and J3 are undefined.

A(1) = "J6ldl'l"
DECODE (A,4)I

4 FORMAT (I4)

After execution, the array A is not altered, but the integer variable I has
the value of 1.

10 CHARACTER A*4(4),B*l(l6)
20 DATA A/4*"ABCD"/,B/16*"X"/
30 PRINT 9,B
40 DECODE (A,4,ERR=lOO)B
50 4 FORMAT (4Al/4Al/4Al/4Al)
60 GO TO 11
70 100 PRINT, "ERROR"
80 STOP
90 11 PRINT 9,B
100 9 FORMAT (lX, 16Al)
110 STOP
120 END

*RUN
xxxxxxxxxxxxxxxx
ABCDABCDABCDABCD

The elements of array A have been placed in array B.

The DECODE statement with the ERR= option can be used to scan individual
fields to see, for instance, if a particular field is numeric.

CHARACTER TEXT*35(10)
INTEGER DATA (50)
DECODE (TEXT,10,ERR=20) DATA

10 FORMAT (SI7)

If any elements of the field being decoded contai~ nonnumeric characters,
control will be transferred to statement number 20.

3-27 DG75

I

DIMENSION DIMENSION

DIMENSION

The DIMENSION statement is used to specify the m~ilnum size of an array and
allocate the necessary storage locations for the array. This statement may also
be used to assign initial values to array elements.

Format

DIMENSION array (integer>[/ constant [, •••] I]

Syntax Rules

1. J\rray is the name of an array.

2. Integer is the dimension of the array which is composed
seven unsigned integer constants, integer parameters,
variables.

3. Constant specifies an optionally signed data constant.

of one to
or integer

4. Integer variables can be used as a dimension for an array only when
the DIMENSION statement appears in a subprogram with the dimensions
passed as arguments and the array is not in a COMMON area.

General Rules

1. The DIMENSION statement must precede the first use of the array in an
executable statement.

2. One DIMENSION statement can specify the dimensions for several arrays.

3. If the dimensions for a variable are designated in a DIMENSION
statement, they cannot be designated in any other statement.

4. Dimensions can also be declared in a COMMON or a type statement.

s.

Under these conditions,· all the rules for the DIMENSION statement
apply.

The data constants are optional and apply to the array
inµnediately precedes them in the DIMENSION statement,

that

Examples

7/79

DIMENSION A(SO)
DIMENSION B(l,2,3),C(l0)/10*1./
DIMENSION D(2,2,3,3,4,4,5)

SUBROUTINE SUB (A,B,I,J)
DIMENSION A(I,4,J),B(J)

3-28 DG75A

DO DO

DO

The DO statement is used to execute a section of a program unit repeatedly
with an automatic change in the value of a variable between repetitions.

Format

DO label variable

Syntax Rules

1. Label is the statement label of the terminal statement of the DO loop.

2. Variable is the induction variable and must be a nonsubscripted
integer variable.

3. M1 , m2, and m3 are referred to as induction parameters or control
parameters and can be specified as arithmetic expressions. These
parameters are truncated to integer values before execution of the DO.

4. If m3 is omitted, its value is assumed to be 1.

5. The values of m1 , m2, and m3 must all be non-negative but m3 must not
have a value of zero.

6. M1 cannot be the constant zero, but it can be a variable with the
value of zero. If m2 ~ m1, the loop will be executed once.

General Rules

1. A DO statement is used to define a loop. The action which occurs
during the execution of a DO statement is described in the following
steps.

• Variable is initially assigned the value of
parameter, mi.

the initial

• The instructions, as specified within the range of the DO loop,
are executed m2 - m1 +l times.

m3

• The induction variable is incremented by the value specified by
the step parameter, m3•

3-29 DG75

DO

•

•

•

DO

If the value of the induction variable < the terminal parameter,
m2, the instructions specified within the range of the DO loop
are executed again. If the value is > m2, the DO loop has been
satisfied and control passes to the statement following the
terminal statement of the range of the DO.

If the above situation applied to a nested DO loop which had the
same terminal statement, control would pass to the next outer DO
loop. The induction variable of this DO statement will be
incremented by the corresponding m3• This process continues
until all DO lOops which reference the termination statement are
satisfied.

If the exit from a DO loop occurs through a transfer statement,
the value of the induction variable is equal to the most recent
value assigned which occurred prior to the exit. The DO is said
to be "not satisfied" and the induction variable is defined.

NOTE: If the upper limit of the induction variable
the DO is satisfied, and the induction
undefined.

is reached,
variable is

2. The terminal statement cannot be a GO TO, RETURN, STOP, or DO
statement.

3. The terminal statement can be an arithmetic IF statement with at least
one null field. The null path is a simulated CONTINUE statement which
terminates the DO loop.

4. The range of a DO loop begins with the first executable statement
following the DO and ends with the terminal statement specified in the
DO statement (i.e., label).

5. Another DO statement can be included within the range of a DO loop.
However,· the range of the inner DO loop must be contained within the
range of the outer DO loop. This condition is referred to as a nested
DO loop.

6. The control parameters (i.e., variable , m2 , m3) cannot be redefined
within a loop or within the extended range of a loop.

7. A DO statement has an extended range if both of the following
conditions exist:

• There exists at least one transfer statement inside the range of
a DO which will cause control to pass out of the DO loop, or out
of the nest if the ~o loop is nested.

• There exists at least one transfer statement not in the range of
a DO loor --y a nested DO loop which can cause control to return
into the range of this loop.

3-30 DG75

DO DO

If these conditions exist, the extended range consists of all the
executable statements that can be executed between the two control
statements. The statements which satisfy the first condition are not
included in the extended range; the statements which satisfy the
second condition are in the extended range.

NOTE: The use of extended range DO loops should be minimized,
especially when global' optimization is desired.

8. A transfer statement cannot cause control to pass into the range of a
DO loop unless the transfer statement being executed is part of the
extended range of that particular loop. In addition, the extended
range of a DO loop may not include another DO statement which contains
an extended range, or a DO statement that has the same induction
variable.

9. When a procedure reference occurs in the range of a DO loop, the
actions of that procedure are considered to be temporarily within that
range (i.e., during the execution of that reference).

Examples

Standard DO Statement

DO 6 I=l,10

6 CONTINUE

Nested DO Loop

DO 60 I=l0,20,2
K=I+3
DO 10 J=2,50,10

10 M=J+6
60 CONTINUE

Transfer of Control

[)

[Q)
The following configurations show permitted and nonpermitted transfers.

Permitted Not Permitted

.. [
~)C)

3-31 DG75

DO

Extended Range

DO 20 I=l ,K
DO 20 J=N,M

IF (J-JJ),80,

20 CONTINUE

80 (extended range of a nested

DO loop)
GO TO

Transfer of Control for Extended Range

DO

The following configurations show permitted and nonpermitted transfers for
an extended range.

Permitted Not Permitted

3-32 DG75

DOUBLE PRECISION DOUBLE PRECISION

DOUBLE PRECISION

The DOUBLE PRECISION statement is an explicit type statement which is used
to assign double precision numeric properties to specified variables.

Format

DOUBLE PRECISION variable(*size](Cdim))(/data/] , •••

Syntax Rules

1. Variable is a scalar, an array, or a FUNCTION subprogram name.

2. Size is an optional size in bytes qualification, and it is ignored.

3. Dim gives the dimensions needed to allocate storage for the arrays.

4. Data gives the initial data value(s).

General Rules

Variables that are declared in this statement could also be declared via
the REAL statement with a size qualifier~ 8.

Examples

7/79

DOUBLE PRECISION DENOM,PREF/l.6DO/
DOUBLE PRECISION DB(lO)

3-33 DG75A

I

ENCODE ENCODE

ENCODE

The ENCODE statement is used to convert data under the control of a
specified format and store the encoded data as type character.

Format

ENCODE (char,form,err) list

Syntax Rules

1. Char is a character variable that can be a scalar, an array element,
or an array name. It indicates the starting location of the internal
buffer which is the receiving field for encoding.

2. Form can be a FORMAT statement number, a character scalar, or an array
name that provides the character formatting information of the sending
field for encoding.

3. Err is the error transfer option, designated as ERR=Sl, where Sl is
the statement label or switch variable that is to receive control when
an error condition is encountered.

4. List is the sending field for encoding and has the same requirements
as the list specified for the WRITE statement.

General Rules

1. The number of characters generated by form and list should not exceed
the number of characters designated by char.

2. ENCODE does not blank-fill the word to the word boundary like a READ
statement does.

3. Any numerical variable in the list with a value requiring more space
than specified by form, will be replaced by asterisks in the storage
locations beginning with char (refer to Numeric Field Descriptions in
Section V). If this procedure is necessary, as in the case of
developing leading zeroes for the character form of a numeric data
item, then the CALL NASTRI< and CALL YASTRK statements will be required
to enable the ENCODE statement to function as desired (refer to
Section VI for a list of supplied SUBROUTINE subprograms) •

3-34 DG75

ENCODE

Example

CHARACTER A*4
I=l
ENCODE (A,3,ERR=lOO)I

3 FORMAT (I4)
GO TO 11

100 PRINT, "ERROR"
STOP

11 PRINT 9 ,A
9 FORMAT (1X,A4)

STOP
END

After execution, A will contain

Jd)IJ61

where: ~ indicates a blank.

ENCODE

3-35 DG75

I

END END

The END statement is used to indicate the physical end of the source
program.

Format

General Rules

1. END must be the last statement of every source program unit.

2. END creates no object-program instructions.

Example

STOP
END

Syntax Rules

7/79

1. There cannot be any other non-blank characters in the END statement
(e.g., END 05 is illegal).

2. END; cannot be specified as the first statement of a multi-statement
line.

3-36 DG75A

E~DFILE ENDFILE

ENDFILE

The ENDFILE statement is used to close a sequential file with an
end-of-file record indicator.

Format

ENDFILE file

Syntax Rules

1. File is a two-character file code which references the file to be
closed.

2. File is the file reference for a sequential output file.

3. File must be an integer constant, an integer variable, or an
expression.

General Rules

1. When the ENDFILE statement is encountered, the buffer(s) is flushed
and a file-mark is written for the output file.

2. Executing an ENDFILE on an input file with read only permission will
result in an error message:

11 Impermissible perm-write" in batch
"Write attempted read only file" in TSS

Examples

ENDFILE 5
ENDFILE JPAY

3-37 DG75

ENTRY ENTRY

ENTRY

The ENTRY statement is used to define alternate entry points into a
subroutine or a function subprogram.

Format

ENTRY name [(arg [, • ,. .. J) J

Syntax Rules

1 .. Name is the symbolic name of an entry
function subprogram.. Name must be
characters.

point
unique

into a
within

subroutine or
the first six

2.. Arg is a dummy argument which corresponds to an actual argument in a
CALL statement or a function reference. Entry into a FUNCTION
subprogram must have at least one argument ..

3.. An asterisk can be used as an argument in an ENTRY statement of a
SUBROUTINE subprogram to indicate an alternate return ..

General Rules

Multiple entry points must conform to the following rules:

1.. In a FUNCTION subprogram, only the FUNCTION name can be used as the
variable to return the function value to the using program.. The ENTRY
name cannot be used for this purpose.

2.. An ENTRY name can appear in an EXTERNAL statement in the same manner
as a FUNCTION or SUBROUTINE name.

3.. Entry into a subprogram defines all arguments in the ENTRY statement,
for the entire subprogram, from the argument list of the corresponding
CALL statement or FUNCTION reference.

4. The appearance of an ENTRY statement does not alter the rules for
placing arithmetic statement functions in subroutines.

5.. Arg cannot appear in an EQUIVALENCE or COMMON statement in the same
subprogram.

Examples

ENTRY NAM (A,*, X)
ENTRY SUB2

3-38 DG75

EQUIVALENCE EQUIVALENCE

EQUIVALENCE

An EQU!VALENCE statement is used to assign two or more variables within the
same program unit to the same storage location.

Format

EQUIVALENCE (var 1 ,var 2 (, •••])

Syntax Rule

Var can be either a scalar, an array, or an array element. If var is an
array element, the subscripts must be integer constants or parameter symbols.

General Rules

1. Each pair of parentheses must enclose the names of two or more
variables that are to be assigned the same location during execution
of the object program; any number of equivalences (sets of
parentheses) can be given.

2. When var is an array element, the subscript can be specified in two
ways. D(l,2,1) or D(p) can be used to specify the same element, where
D(p) references the Pi element of the array iR storage (refer to
Section II for a description of the Array Element Successor Function) •

3. Quantities or arrays not specified in an EQUIVALENCE statement are
assigned unique storage locations.

4. Storage locations can only be shared by variables; not by constants.

5. There are six statements in FORTRAN which cause a new value to be
stored in a location (i.e., defined or redefined):

• The execution of an arithmetic assignment statement stores a new
value in the location assigned to the variable which is on the
left side of the equal sign.

• The execution of
input/output list
induction variable.

a DO statement or an implied DO in an
will sometimes store a new value for the

• The execution of a READ or DECODE qtatement stores new values in
the locations which are assigned to the variables in the input
list.

• The execution of an ENCODE statement stores new values in the
character variable or the array location(s) which are named as
the internal buffer (i.e., receiving field).

3-39 DG75

BQUIVALENCE EQUIVALENCE

• The execution of a CALL statement or an abnormal function
reference may assign new values to variables in common or to
arguments which are passed to that subprogram.

• An initial value can be stored in a location via a DATA
statement, or a data clause in a type statement.

6. Variables which are brought into a common block through an EQUIVALENCE
statement can increase the size of the block indicated by the COMMON
statement.

Example

COMMON /X/A,B,C
DIMENSION D (3)
EQUIVALENCE (B,D(l))

The layout of storage indicated by this example (extending from the
lowest location of the block to the highest location of the block) is

A
B, D (1)
C,D(2)

D (3)

7. Because arrays must be stored in consecutive locations, a variable
cannot be made equivalent to an element in an array if it would cause
the array to extend below the beginning of a common block.

8. To make a double-word variable equivalent to a single-word variable,
the following rules apply:

• The effect of the EQUIVALENCE statement(s) must cause
word of any double-word variable to be an even
locations from the beginning of the space allocated
(common or local).

the first
number of
for data

• The effect of the EQUIVALENCE statement must cause the first word
of any double-word variable to be an even number of words from
the beginning of any other double-word variable which is linked
to it through an EQUIVALENCE statement.

9. Two variables in the same corrunon block or two different common blocks
cannot be made equivalent.

10. The EQUIVALENCE statement does not make the data items specified
mathematically equivalent.

11. Var cannot be specified as a dummy argument in a FUNCTION, SUBROUTINE,
or ENTRY statement.

3-40 DG75

EQUIVALENCE

Examples

EQUIVALENCE (A,B,C)
COMMON /X/A,B,C
DIMENSION D (3)
EQUIVALENCE (A,D(l))

The same storage locations will be shared by

A and D (1)
B and D (2)
c and D (3)

DIMENSION B(S) ,C(l0,10) ,D(5,10,15)
EQUIVALENCE (A,B (1) ,C (5 ,4)), (D (1,4, 3) ,E)

The same storage locations will be shared by

A,B, and C(5,4)
D (1, 4 , 3) and E

3-41

EQUIVALENCE

DG75

EXTERNAL EXTERNAL

BXTERNAL

The EXTERNAL statement is used to distinguish a FUNCTION or SUBROUTINE name
from a variable name when it is used as an argument to a subprogram call.

Format

EXTERNAL sub [(ABNORMAL)][, ••• J

Syntax Rules

1. Sub is a subprogram name.

2. If the ABNORMAL option is specified, the subprogram is defined as both
EXTERNAL and ABNORMAL.

General Rules

1. A SYMREF is generated for the subprogram name in the object code.

2. An EXTERNAL statement must be included when a subprogram is used as an
argument in a CALL statement.

Examples

EXTERNAL SUB,SQRT(ABNORMAL)

Main.Pro9ram

EXTERNAL SIN, COS
CALL SUBR (2.0, SIN, RESULT)
WRITE (6, 10) RESULT

10 FORMAT ("O SIN(2.0 = ", Fl0.6)
CALL SUBR (2.0, COS, RESULT)
WRITE (6,20) RESULT

20 FORMAT ("O COS(2.0) = ", Fl0.6)
STOP
END

3-42

SUBROUTINE Subprogram

SUBROUTINE SUBR (X,F,Y)
Y = F (X}
RETURN
END

DG75

FORMAT FORMAT

FORMAT

The FORMAT
information for
statements.

statement is used .to specify the conversion and editing
variable lists in I/O statements, as well as DECODE and ENCODE

Format

(

sl 1 des I sept [, •••])
labe 1 FORMAT (V

if

Syntax Rules

1. Label is
statement
statement.

a unique
that is

statement
referenced

label which identifies each format
by an input/output or ENCODE/DECODE

2. Slt can be a series of slashes to indicate the number of lines or
input records to be skipped.

3. Desi is one or more of the following field descriptors:

nPr D w.d
nPr E w.d
nPr F w.d
nPr G w.d
r Aw

} Numeric and Logical
Field Descriptors

r I w
r L w
r Ow Character
r R w .Field
w H h h ••• h
"h h hw"
'h h ••• hw'

Descriptors

Tt
nX·) Field Positioning

Descriptors

where: P is an optional scale factor designator
r is an optional repeat count
w is the field width expressed in number of characters
d is the number of fractional places (characters) n is a single character
t is a character position where the positions of a line are

numbered 1 through the number indicated
n is a signed integer constant in the range

-s<n<S for nP
-n~l for nX

F,E, and G indicate REAL values
D indicates double precision
o indicates octal conversion is necessary
! indicates an integer value

7/79 3-43 OG75A

I

I

FORMAT

L indicates LOGICAL values
A,R, and H are for character values
X and T indicate text to be skipped

FORMAT

NOTE: H, T, and X do not require a variable in the I/O list,
but all others do.

4. Sepl is a field separator (i.e., a comma, a slash, or a series of
slashes).

5. If the V option is used, the formatted I/O is under list control.
List directed input and output can also be performed by omitting a
FORMAT reference (i.e., "READ", "PRJ;NT", or "PUNCH").

6.' The () option is the same as the (V) option.

General Rule

Examples

The field descriptors are formed in the following ways:

Fw.d
Ew.d
Gw.d

ow.a
Ow

Iw
Lw

Aw

Rw

nH
Tt
nX

= Real mode without an exponent
= Real mode with an exponent

F or E editing code is taken dependent upon the value of the
output item
Double precision mode with an exponent
Field occupies w print positions and is represented as an octal
number of up to 12 digits
Integer mode and field occupies w print positions
Right-most position of field w contains T or F for a logical
variable
Field occupies w print positions with left-justified character
data
field occupies w print positions with right-justified character
data

= Hollerith field which occupies n print positions
= Next operation begins with position t of the record

Field of n characters is blank-filled for output; skipped for
input

10 FORMAT (El7.2,F20.0)

WRITE (6,12)PAY
12 FORMAT (//lSHPAY IS EQUAL TO, F6.2)

14 FORMAT (V)

READ (S,16)HRS,RATE,NO
16 FORMAT (F3.2,F4.2,I6)

3-44 DG75

FUNCTION

FUNCTION

The FUNCTION statement is used to define a FUNCTION subprogram.

Format

REAL
lNTEGER
DOUBLE PRECISION
COM!JLEX
LOGICAL
CHARACTER

Syntax Rules

FUNCTION name (arg(, ••• J)

1. Name is the symbolic name of a single-valued function.

FUNCTION

2. Arg is an argument which can be a non-subscripted variable or array
name, or the dummy name of a SUBROUTINE or FUNCTION statement.

3. Name must be a unique name which does not exceed six characters.

4. The length of a character function can be specified through a type
statement, or calculated within the function subprogram.

Example

General Rules

FUNCTION X(A,B)
CHARACTER X*l2

1. The FUNCTION statement must be the first statement of a FUNCTION
subprogram. At least one argument must be specified.

2. Name must appear at least once in some assignment context so that the
value of the function is returned to the calling program.

3-45 DG75

FUNCTION FUNCTION

3. Arg can be considered as a dummy variable name(s) that is replaced at
the time of execution by the actual arguments which are given in the
function reference in the calling program. The actual arguments must
correspond to the durnmy arguments in number, size, and type.

4. When a dununy argument is an array name, a statement with dimension
information must appear in the FUNCTION subprogram, and the
corresponding actual argument must be a dimensioned array name.

5. A dummy argument cannot appear in an EQUIVALENCE, NAMELIST, or COMMON
statement in the FUNCTION subprogram.

6. The FUNCTION subprogram must be logically terminated by a RETURN
statement and physically terminated by an END statement.

7. The FUNCTION subprogram can contain any FORTRAN statements except
SUBROUTINE, BLOCK DATA, another FUNCTION statement, or a RETURN
statement with an alternate return specified (e.g., RETURN 1).

8. A FUNCTION subprogram is referred to by using its name a~ an operand
in an arithmetic expression and following it with the required actual
arguments enclosed in parentheses.

9. A FUNCTION subprogram cannot call itself, either
indirectly, through some other called subprogram.

directly or

10. The FUNCTION must be assigned a value before the return to the calling
program.

11. The actual arguments given in the function reference can be any of the
following:

• Constant

• Scalar variable or nonsubscripted array name

• Arithmetic or logical expression

e FUNCTION or SUBROUTINE subprogram name

• Omitted or null argument, which is indicated by successive commas
(e.g., FUNCTION CALC (A,,B,,)). References to null arguments
from within the called function are undefined.

NOTE: Refer to Tables 6-2 and. 6-3 for a list of the Supplied FUNCTION
Subprograms.

3-46 DG75

FUNCTION

Examples

FUNCTION ARSIN (RADIAN)
REAL FUNCTION ROOT (A,B,C)
INTEGER FUNCTION CONST (ING,SG)
DOUBLE PRECISION FUNCTION DBLPRE (R,S,T)
COMPLEX FUNCTION CCOT (ABI)
LOGICAL FUNCTION IFTRV (D,E,F)

Calling Program

.
X=Y**2+D*CALC(F,G)

STOP
END

Called Function

FUNCTION CALC (A,B)

.
CALC=A**B/2

RETURN
END

3-47

FUNCTION

DG75

GO TO GO TO

GO TO

The GO TO statement is used to indicate the next statement in the same
program unit to be executed. The GO TO may be expressed as an unconditional, an
assigned, or a computed statement.

Format l

Unconditional

GO TO label-1

Syntax Rules

Label-1 is an executable statement label and will be the next statement to
be executed.

Format 2

Assigned

GO TO var [, (label-2 [, ••• J >]

Syntax Rules

1. Var is a switch variable.

2. Label-2 is a list of one or more executable statement labels.
option is specified, var must have been assigned the value of
the labels in label-2 by the ASSIGN statement.

If this
one of

3. The next statement to be executed will be the one with the statement
label equal to var.

4. If a statement label has been assigned to var that is not in the
label-2 list, a compile time diagnostic is generated.

3-48 DG75

GO TO GO TO

Example

ASSIGN 23 TO I

GO TO I,(12,23,48)

will result in a run-time Q6 abort.

Format 3

Computed

GO TO (label-3 [r•••]) , exp

Syntax Rules

1. Label-3 is the label of an executable statement or a switch variable.

2. Exp is an arithmetic expression which is truncated to an integer value
at the time of execution.

3. The next statement to be executed will be label-3i, where i is the
integer value of exp.

4. In the expression O<i<n, if i is out of the range, a diagnostic is
generated and execution is terminated.

Example

J=3
GO TO (5,4,17,1),J (Statement 17 is executed next)

I = 4
GO TO (5,4,4,1,3) ,I (Statement 1 is executed next)

General Rules

1. Label-1, label-2, and label-3 can be the label of any executable
statement within the same program unit that appears before or after
the GO TO statement, but is subject to the rules for transferring into
and out of DO loops.

2. Control is transferred unconditionally to the statement number.

3-49 DG75

GO TO GO TO

Examples

GO TO 5 (St~tement 5 is executed next)

ASSIGN 17 TO J

GO TO J,(5,4,17,2) (Statement 17 is executed next)

J=2
GO TO (5,4,17,1), (Statement 4 is executed next)

3-50 DG75

IF IF

IF

The IF statement is used to determine a path in the execution sequence. An
arithmetic IF statement causes a change in the execution sequence based upon the
resulting value of an arithmetic expression. A logical IF statement causes a
conditional change in the execution sequence based upon the true or false value
of a logical expression.

Format 1

Arithmetic IF'

IF (exp-1) label-l,label-2,label-3

Syntax Rules

1. Exp-1 is an arithmetic expression.

2. Label-1, label-2, label-3, can be a statement label, switch variable,
or null. If label-1, label-2, and label-3 are null, control will pass
to the first executable statement directly following the IF statement.

3. Execution will branch to

• label-1 if the value of exp-1 < zero

• label-2 if the value of exp-1 zero

• label-3 if the value of exp-1 >zero

4. A maximum of two statement labels can be null.

Format 2

Logical IF

IF (exp-2) state-2

Syntax Rules

1. Exp-2 is a logical or relational expression.

2. State-2 may be any executable
another logical IF statement.

statement except a DO statement or
It is called the truth clause.

3-51 DG75

IF

3.

IF

When the IF statement is executed, exp-2 is evaluated. If the result
is true, state-2 is executed. Otherwise, control passes to the first
executable statement which follows the IF statement.

General Rules

1. If the operator .NE. or .EQ. is contained
and the operands are not type integer
message appears at the end of the source
floating-point arithmetic is not exact
equality or non-equality relation between
meaningful.

in a logical IF expression,
or type character, a warning

program listing. Because
for some fractions, the

the operands may not be

2. If a relational IF expression compares two character strings of
unequal length, the shorter string is left-justified and blank-filled
to equal the length of the longer string before the comparison is
made.

3-52 DG75

IMPLICIT IMPLICIT

IMPLICIT

The IMPLICIT statement is used to redefine the default implied data types
of all variable and function names (with the exception of supplied intrinsic and I
supplied mathematical functions) in the program unit that begin with the letters
specified.

Format

IMPLICIT type* size (arg(' •••]) [' •••]

Syntax Rules

1. Type must be one of the following keywords:

e INTEGER

e REAL

e COMPLEX

e DOUBLE PRECISION

e LOGICAL

e CHARACTER

2. Size is an optional unsigned integer constant that designates the
length of the associated data type for REAL and CHARACTER; this field
is ignored for all other types. When type is REAL, a specified length
of eight or more implies DOUBLE PRECISION. When type is CHARACTER,
the specified length is as defined for the CHARACTER statement.

3. Arg is one or two alphabetic characters. If two characters are
indicated, they are separated by a dash (e.g., A-B).

General Rules

7/79

1. An IMPLICIT statement supersedes all
statements referencing the same letters.

other previous IMPLICIT

2. The IMPLICIT statement must appear before any use of the variable
being typed. However,-rr-does not override explicit type statements.

3. Supplied intrinsic and supplied mathematical functions are
affected by IMPLICIT statements.

3-53

not

DG75A

I

IMPLICIT IMPLICIT

4. The IMPLICIT stateroent will apply to all variable names which begin
with the letters 'indicated, or the' series of letters indicated by the
dash (i.e., A-H will apply to all variable names which begin with the
lette·rs A through H).

Examples

IMPLICIT INTEGER (A-F,X,Y)

Any variable name not typed by an explicit type statement, and first
appearing in the program following this statement, and beginning with the
letters A through F, or x, or Y, is implicitly typed INTEGER. This typing also
applies to variable names beginning with the lowercase letters a through f, x,
and y.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

Any variable name not typed by an explicit type statement, and first
appearing in the program following this statement, and beginning with the
letters A through H, or O through z, is implicitly typed DOUBLE PRECISION. This
typing also applies to variable names beginning with the lowercase letters a
through h , and o through z.

NOTE: If the IMPLICIT statement inunediately follows either a SUBROUTINE or .
FUNCTION statement, the arguments of the subroutine or function are
affected by the IMPLICIT typing. This practice is not reconunended.

Example

SUBROUTINE SUB(J,N)
IMPLICIT REAL(I-N)
B = J*N
RETURN
END

Within the subroutine SUB, the variables J and N would be typed as
REAL. However, if another statement were inserted between the
SUBROUTINE and IMPLICIT statements, J and N would be typed as
INTEGER. This may cause confusion for the progranuner as to the
typing of the variables which are used as arguments.

3-54 DG75

INTEGER INTEGER

INTEGER

The INTEGER statement is an explicit type stat~ment which is used to assign
integer numeric properties to specified variables.

Format

INTEGER var [*size{dim)/data/](i•••]

Syntax Rules

1. Var can be a scalar, an array, or a FUNCTION subprogram name.

2. Size is an optional size in bytes that is ignored.

3. Dim supplies the dimensions to allocate the necessary storage for
arrays.

4. Data gives the initial data value.

Examples

INTEGER I,ABC
INTEGER CALC{lO),J/6/,XYZ

3-55 DG75

LOGICAL LOGICAL

LOGICAL

'l'he LOGICAL statement is an explicit type statement which assigns logical
properties to s.pecified variables.

Format

LOGICAL var [*size (dim) /data/][, ••• J

Syntax Rules

1. Var can be a scalar, an array, or a FUNCTION subprogram name.

2. Size is an optional size in bytes that is ignored.

3. Dim gives the dimensions to allocate the necessary storage for
array(s).

4. Data is the initial data value.

Examples

LOGICAL Al,,K
LOGICAL CALC(25) ,L/.TRUE./

3-56 DG75

NAME LIST NAMELIST

NAMELIST

The NAMELIST statement is used to associate variables and/or arrays for
input/output.

Format

NAMELIST /name/var/[, •••]

Syntax Rules

1. Name must be a unique name consisting of one to eight alphanumeric
characters, and must be unique for the first six characters.

2. Var must be a list of variables and/or array names to be associated
with the corresponding NAMELIST name.

3. Var can belong to one or more namelist names, and can be up to eight
characters but the first six must be unique.

General Rules

1. Name cannot be the same as any other variable name in the source
program.

2. The NAMELIST statement defining namelist names must precede any
reference to the namelist names in the program.

3. Var cannot be a dummy argument in a subprogram.

4. Var cannot be an array name of more than seven dimensions.

Examples

NAMELIST/LIST/R,S,T,U,V

DIMENSION A(lO),I(S,S),L(lO)
NAMELIST/NAM1/A,B,I,J,L/NAM2/A,C,J,K

The arrays A, I, and L, and the variables B and J belong to the NAMELIST
name, NAMl; the array A and the variables c, J, and K belong to the NAMELIST
name, NAM2.

3-57 DG75

PARAMETER PARAMETER

PARAMETER

The PARAMETER statement is used to defihe program constants as the result
of an expression at compilation time.

Format

PARAMETER symbol exp[, •••]

Syntax Rules

1. Symbol is a parameter symbol whose type is dependent on the type of
exp.

2. Exp is an arithmetic expression which contains only constants and
previously defined parameter symbols.

General Rules

1. The value of the parameter symbol cannot be redefined during the
execution of a program.

2. Symbol cannot appear in a FORMAT statement or in any other statement
where a constant cannot appear.

3. The significant difference between symbol
variable that can be initialized with
usage. For example, a parameter symbol
dimensions.

and an ordinary integer
a DATA statement is in the
can be used to specify

4. The appearance of a. parameter symbol in any context is interpreted as
though its equivalent value had appeared instead.

Example

PARAMETER I=5/2,J=I*3 1 K=3.14159,L=.T.,M="06171"

where: I and J are INTEGER
K is REAL
L is LOGICJ\,L
M is CHARACTER

The parameter symbol I is initialized to the value 2, the parameter symbol
J is initialized to 6, and the parameter symbol K is initialized to the real
value 3.14159. L has the value .TRUE., while parameter symbol Mis assigned a
CHARACTER ~alrie.

3-58 DG75

PARAMETER

Example

PARAMETER I=20
PARAMETER J=I*4
DIMENSION A(I,J)

DO 100 II=l,I
DO 100 JJ=l,J

100 A (II,JJ)=O.

PARAMETER

A is not an adjustably dimensioned array. It has constant dimensions of 20
and 80, respectively. The two DO statements have constant terminal parameter
values of 20 and 80, respectively (refer to the DO statement in this section).
I and J are compile time variables, while II and JJ are execute time variables.
The program properties change as the value of the parameter symbol I changes.
To operate on a 10 by 40 array, only the first line needs to be changed.

3-59 DG75

PAUSE PAUSE

PAUSE

The PAUSE statement is used to cause a temporary halt in the execution of a
program until the operator resumes e.xecution.

Format

PAUSE [char J

Syntax Rule

Char can be a positive integer constant < five digits, an integer variable
whose value is < five digits, a character constant, or a character variable. If
char is a character constant, it must consist of a character string enclosed by
apostrophes or quotation marks.

Genei:al Rules

1. When the PAUSE statement is executed, a message is printed on the
operator console or TTY terminal consisting of the word PAUSE and the
value of char. Execution is continued when the operator hits the
carriage return.

2. If char is not specified, or if char is an integer, the snumb and
activity number of the job is printed, unless executing under TSS;
then they are omitted.

Examples

PAUSE
PAUSE "TOO BAD"
PAUSE I
PAUSE 77777

SUBROUTINE PAWS(IDENT,MESSAGE)
CHARACTER MESSAGE*8
IF (IDENT) I 100 I
PAUSE IDENT
RETURN

100 PAUSE MESSAGE
RETURN
END

DG75

PAUSE

A call to the above subroutine

CALL PAWS (77777,0)

might display

PAUSE 77777 SNUMB 1234T-02

A call of the form

CALL PAWS (O, "ERROR 27")

would display

PAUSE ERROR 2 7

PAUSE

3-61 DG75

PRINT PRINT

PRINT

The PRINT statement is used to direct output to the standard system output
device (file code 42).

Format 1

List Directed Output

PRINT, (list]

Syntax Rule

List is the list of variables and/or expressions that is to be directed to
the standard system output device (file code 42).

Format 2

Formatted Output

PRINT form [,list J

1. Form must be a FORMAT statement label, a character scalar, or an array
name.

2. If list is specified, the information will be converted according to
the format specified by form, and directed to the standard system
output device (file code 42).

Format 3

NAMELIST Output

PRINT namelist

Syntax Rule

Namelist must be a name specified in a NAMELIST statement. The output will
be directed to the standard system output device (file code 42) •

3-62 DG75

PRINT

Examples

PRINT,
PRINT, A
PRINT 20
PRINT 20,A
PRINT LIST

(print a blank line)
(list directed output)
(formatted output)
(formatted output)
(namelist output)

3-63

PRINT

DG75

PUNCH PUNCH

PUNCH

The PUNCH statement is used to transmit output to the standard system punch
device (file code 4 3) •

Format 1

List Directed Output

PUNCH, list

Syntax Rule

List is the list of variables and/or expressions that is to be directed to
the standard system punch device (file code 43).

Format 2

Formatted Output

PUNCH form (,list J

Synt.ax Rules

1. Forin must be a FORMAT statement number, a character scalar, or a
character array name.

2. If list is specified, the infortnatiori will be converted ae<;:::ording to
the format specified by form, and directed to the standard system
punch device (file code 43)~

Format 3

NAMELIST Output

PUNCH namelist

3-64 DG75

PUNCH

Syntax Rule

Namelist must be a name specified in a NAMELIST statement.

Examples

PUNCH, A
PUNCH 20,A
PUNCH LIST

(list directed punch output)
(formatted punch output)
(namelist punch output)

3-65

PUNCH

DG75

READ READ

READ

The READ statement is used to direct input data from the standard system
input device (file code 41) to be. utilized by the program unit.

Format 1

List Directed Input

READ, list

Syntax Rule

List is the input information that will be read from the standard system
input device (file code 41).

Format 2

Formatted Input

READ form (,list J

Syntax Rules

1. Form must be a FORMAT statement label, a character scalar, or an array
name.

2. If list is specified, the information will be read from the system
standard input device .<file code 41} and converted to the specified
format.

Format 3

NAMELIST Input

READ narnelist

3-66 DG75

READ READ

Syn tax Rules

1. Namelist must be specified in a NAMELIST statement.

2. Input will be directed to the standard system input device (file code
41) •

Format 4

Formatted with File Reference Input

READ { file,form (,optl,opt2]) list

Syntax Rules

1. File is a file reference which is also the file code that
positive integer constant, an integer variable, or
expression in the range 01 < file < 63. If 5 or 41 is
reference is to the standara system input device.

can be a
an integer
speci.fied,

2. Form must be a FORMAT statement label, a character scalar, or an array
name.

3. The optl option is designated as END=Sl, where Sl is the statement
label or switch variable to be executed when an end-of-file condition
is encountered.

4. The opt2 option is designated as ERR=S2, where
label or switch variable to be executed
encountered.

52
when

is
any

s. The options optl and opt2 can be specified in any order.

6. List is the input file that will be read from the file.

Format 5

Unformatted with File Reference Input

~ (file(,optl,opt2)) list

3-67

the statement
I/O error is

DG75

READ READ

Syntax Rules

1. File is file reference which is also the file code that applies to a
word-oriented serial access file (binary sequential) •

2. Optl, opt2, and list foll.ow the rules specified in Format 4.

Format 6

Random File Input

READ (file'n[,optl,opt2]) list

Syntax Rules

1. File is a file reference which applies to a random binary file.
files.

2. N must be an int;.eger constant, a variable, or an expression that
specifies the sequence nuinher of the logical record to be accessed.

3. Optl, opt2, and list follow the rules specified in Format 4.

Format 7

NAMELIST Input with File Reference

READ (file ,name list [,optl ,opt2 J

Syntax Rules

1. Namelist must be specified in a NAMELlST statement.

2. File, optl, and dpt2 follow the rules specified in Format 4.

General Rule

A READ statement cannot be executed after a WRITE statement if it uses the
same file reference. The sequence, WRITE, REWIND, and then READ is legal.

3-68 DG75

READ

Examples

READ, A
READ 20,A
READ LIST
READ (5,20,END=90,ERR=95)A
READ (S,END=90,ERR=95)A
READ (8' I)A
READ (5,LIST)

(list directed input)
(formatted input)
(namelist input)
(formatted file input)
(unformatted file input)
(random binary file input)
(namelist file input)

3-69

READ

DG75

REAL REAL

REAL

The REAL statement is an explicit type statement which is used to assign
real numeric properties to specified variables.

Format

REAL var [*size (dim) /data/](, ••• J

Syntax Rules

1. Var must be a scalar, an array, or a FUNCTION subprogram name.

2. Size is a size specification and the type is treated as DOUBLE
PRECISION if size is > 7.

3. Dim is the dimension information required to allocate the necessary
storage for arrays.

4. Data is the initial data value.

Examples

REAL J
REAL IARR, MEN

3-70 DG75

RETURN RETURN

RETURN

The RETURN statement is used to denote the logical termination of a
subprogram, and thus, return control to the calling program.

Format

RETURN [integer J

Syntax Rules

1. If present, integer must be a positive integer constant or an integer
variable.

2. Integer indicates the nth alternate return in the CALL statement
argument list, from left to right, of the calling program.

3. Integer cannot be greater than the number of alternate returns in the
argument list of the calling program.

General Rules

1. There can be any number of RETURN statements in a subprogram.

2. If integer has a value of zero, a normal return is executed.

3. Integer cannot be specified in RETURN statements that are used in
FUNCTION subprograms.

Examples

RETURN
RETURN 3

3-71 DG75

REWIND REWIND

REWIND

The REWIND statement is used to position a sequential file to its initial
point.

Format

REWIND file

Syntax Rule

File is a file reference and must be specified as an integer constant or an
integer :variable in the range Ol_:S file <43.

Gener al Rules

1. File must be a sequential file.

2. If file is an output file, an EOF is written on the file before it is
rewound. The file is then closed.

Examples

REWIND 5
REWIND STAT

3-72 DG75

STOP STOP

STOP

The STOP statement is used to halt the execution of an object program unit
and return control to the operating system.

Format

STOP (line J

Syntax Rule

Line must be a positive integer constant < five digits, an integer variable
whose value < five digits, a character constant, or a character variable. If
line is a cnaracter constant, it must consist of a character string enclosed by
apostrophes or quotation marks.

General Rule

1. If line is specified, the standard output device prints

e STOP AT LINE line if line is integer

• STOP line if line is character.

2. If line is not specified, the program simply terminates.

Examples

STOP
STOP 100
STOP STAT
STOP "MESSAGE"

3-73 DG75

SUBROUTINE SUBROUTINE

SUBROUTINE

The SUBROUTINE statement is used.to define a SUBROUTINE subprogram.

Format

SUBROUTINE name ((arg, •••)]

Syntax Rules

1. Name is the symbolic name of the subprogram and must be unique within
the first six characters.

2. Arg is the subprogram argument and can be a dununy variable or array
name, a dununy subprogram name, or a * or $ to indicate an alternate
return.

General Rules

1.

2.

The SUBROUTINE statement must be the first statement
subprogram.

in

One or more of the arguments can be used to
calling program. These arguments must
subprogram in other than a DATA statement.

return values to
be defined within

the

the
the

3. The arguments of the calling program must agree in number, order,
size, and type with the subroutine arguments {sometimes referred to as
dununy arguments) • The arguments can be considered dummy variable
names that are replaced at the time of execution by the actual
arguments supplied in the CALL statement which refers to the
SUBROUTINE subprogram.

4. If arg is an array name, a statement with the appropriate dimension(s)
must appear in the subroutine subprogram; the corresponding argument
in the CALL statement must be a dimensioned array name.

5. Arg cannot be specified in a COMMON, EQUIVALENCE, NAMELIST, or DATA
statement within the subroutine.

6. The SUBROUTINE subprogram must be logically terminated by a RETURN
statement and physically terminated by an END statement.

7. The SUBROUTINE subprogram can contain any FORTRAN statements except
FUNCTION, BLOCK DATA, or another SUBROUTINE statement.

3-74 DG75

SUBROUTINE

Examples

SUBROUTINE COMP (X,Y,*,$,P)
SUBROUTINE QUADEQ (B,A,C,H,ROOT)
SUBROUTINE OUTPUT

SUBROUTINE

3-75 DG75

WRITE WRITE

WRITE

The WRITE statement is used to direct output to an output device.

Format l

Formatted Output

WRITE (file,form[,opt]) list

Syntax Rules

1. File is a file reference that must be a positive integer (i.e., a
constant, a variable, or an expression) of the range 01~ file s b3.

2. Form must be a FORMAT statement label, a character scalar, or a
character array element.

3. The opt option is designated as ERR=Sl where Sl is a statement label,
or a switch variable that is to be executed when an error condition is
encountered, or an end-of-file is found.

4. List contains the output variables whose values are to be directed to
the output device.

Format 2

Unformatted Output

WRITE (file[,opt]> list

Syntax Rules

1. File is a file reference that applies to the output of word-oriented
serial access files (binary sequential} •

2. Opt and list follow the rules specified by Format l.

3-76 DG75

WRITE WRITE

Format 3

Random Output

WRITE (file'n,opt) list

Syntax Rules

1. File is a file reference that applies to a random binary file.

2. N must be a positive integer (i.e., a constant, a variable, or an
expression) that specifies the logical record to be written.

3. Opt and list follow the rules specified in Format 1.

Format 4

Namelist Output

~ (file,namelist,opt)

Syntax Rules

1. Namelist must be specified in a NAMELIST statement.

2. If namelist is specified, character-oriented records will be directed
to the output device.

3. Opt follows the rules specified in Format 1.

General Rule

If file is specified as 6 or 42, the output will be directed to the
standard system output print device; 43 will direct it to the standard system
output punch device.

Examples

WRITE (6,30,ERR=34)A
WRITE (6,ERR=34)A
WRITE (6 ,LIST)
WRITE (8' I)A
WRITE (N,FMT,ERR=lO,END=SOO)A,B,C

(formatted file output)
(unformatted file output)
(namelist file output)
{random binary output)
(formatted output)

3-77 DG75

SECTION IV

USER INTERFACES

Programs are created by entering FORTRAN statements into remote and local
peripheral or terminal devices connected to a computer operating under GCOS.
This procedure is referred to as user interface, with three modes of operation
available to the programmer: local batch, remote batch, and time sharing.

Each mode of operation is unique in

• The I/O device assignments for the system input and output files

• The specification of GCOS communication by way of control cards in
batch, or a command language for time sharing

• The default compiler options for the compilation process.

Part of the user interface procedure between the programmer and the FORTRAN
compiler results in transmitting compilation error messages and run-time
diagnostics to a specified I/O device. These messages enable the programmer to
locate the line in the source program at which the error occurred; the form of
the message defines the type of error that resulted.

BATCH MODE

The system I/O devices for the local batch mode are the card reader, card
punch, and line printer. The user communicates directly with GCOS for system
services via the GCOS control cards and the usable slave mode instructions.
Because the execution of programs submitted via the local batch mode is carried
out directly under GCOS, the program exists under GCOS as a separate batch job.
Input processing is performed by System Input and allocation by the GCOS
allocator.

The remote batch mode is equivalent to the·local batch mode in capability.
However, the system I/O device is assigned to the remote computer as remote
files rather than to the local card reader and local printer/punch.

4-1 DG75

Batch Call Card

The system call card for FORTRAN in batch mode is:

1 8 16

$ FORTY Options
or

$ FORTRAN Options

Operand Field:

The operand field specifies one or more of the following system options
which are available with batch FORTRAN (default options are underlined) :

LSTIN - A listing of source input is prepared by the FORTRAN compiler.

NLSTIN - No listing of the source input is prepared.

LSTOU A listing of the compiled object program output is prepared.

NLSTOU - No listing of the compiled object program output is prepared.

DECK - A binary object program deck is prepared as output.

NDECK - No binary object program deck is prepared.

COMDK A compressed source deck is prepared as output.

NCOMDK - No compressed source deck is prepared as output.

MAP - A storage map of the program labels, variables, and constants is
prepared as output. (Error message 233 is printed for all
unreferenced variables.)

NOMAP - No storage map is prepared.

XREF - A cross-reference
transfer table is
LSTIN report.

report is
generated.

prepared as output. A TO-FROM
The GMAP offset is printed on the

NXREF - No cross-reference report is prepared.

DEBUG - A run time debug symbol table (.SYMT.) is included in the object
program.

NDEBUG - No debug symbol table is prepared.

BCD - The execution time character set is BCD (see Appendix A) •

ASCII - The execution time character set is ASCII (see Appendix A) • Refer
to ASCII/BCD Considerations in Section IV for a description of the
JCL to obtain BCD output.

FORM - The source program is in standard statement format.

NFORM - The source program is "free form".

4-2 DG75

7/79

LNO - The source input records are line numbered beginning in Column 1

NLNO

and terminating with the first nonnumeric character. This option
is only operable with the NFORM option (assumed option for NFORM).

- The source records are not line nwnbered (assumed option for
FORM).

NJREST - This job is not restarted following system interruption.

~ - This job is restarted following system interruption.

NREST - This job is not restarted with current activity following system
interruption.

REST This activity is restarted following system interruption.

OPTZ - A global optimization procedure is performed, so that the object
program produced is highly efficient. It should be noted that
this option slows the compilation rate, though not significantly.

NOPTZ - Global optimization of the object program is not performed.

DUMP - Slave memory dump is given if the compilation activity terminates
abnormally.

Program registers, upper SSA, and slave program prefix is dumped
if the compilation activity terminates abnormally.

NWARN - No compilation warning messages are printed.

FDS - Enables the FORTRAN Debugging System (FDS) (Refer to Appendix F
for an explanation of the FDS) •

DML - Invokes the Data Manipulation Language (DML) facility of I-D-S/II
{ASCII is the only default option when the DML option is
specified). Refer to the Data Management-IV (FORTRAN) Reference
Manual.

DDLST - Generates a listing of the subschema source text when I-D-S/II is
used (ASCII and DML are the default options when the DDLST option
is specified).

NOTES: 1.

2.

Independent of the DUMP/NDUMP option, FORTRAN has
capability of producing a symbolic dump of
internal tables in the event of a compiler abort.
presence of a $ SYSOUT *F control card activates
process.

the
the
The

this

To run a FORTRAN job on a DPS ASCII-only system, the
ASCII option must be explicitly specified on the
$ FORTY control card.

4-3 DG75A

I

Sample Batch Deck Setup

The following.deck setup illustrates the required control cards for the
compilation and .exe·cution of a batch FORTRAN activity. The control· cards are
fully described in the Control ~ Reference Manual.

1

$
$
$
$

8

SNUMB
I DENT
OPTION
FORTY

or

16

FORTRAN
FORTRAN
Options

$ FORTRAN Options

FORTRAN Source Deck(s)

$ EXECUTE Options
$ FILE Card(s)
$ FFILE Card(s)
$ END JOB

Sample Batch Link/Overlay JCL

1

$
$
$
$
$
$
$
$
$

8 16

OPTION FORTRAN,NOGO
SELECT main-object-permf ile
LINK linkl
SELECT suba-object-permf ile
LINK link2,linkl
SELECT subb-object-permf ile
PRMFL H*,W,R,hstar-permfile
EXECUTE
ENDJOB

the main program contains:

CALL LLINK("linkl")
CALL SUBA

.
CALL LLINK("link2"}
CALL SUBB

REMOTE BATCH INTERFACE

Refer to the Network Processing Supervisor (NPS)
Supervisor (GRTS} manuals for descriptions of deck
submitting a batch job from a remote computer.

7/79 4-4

and Remote Terminal
setups required for

DG75A

FILE SYSTEM INTERFACE

The file system provides multiprocessor access to a conunon data base. The
file system allocates permanent file space and controls file access for users in
local and remote batch and time sharing. The file system is fully described in
the File Management Supervisor manual.

TERMINAL/BATCH INTERFACE

The JRN time sharing subsystem allows a batch job to be submitted from a
time sharing terminal. This capability is provided in Appendix B, and is fully
described in the ~ Terminal/Batch Interfac,e Facility reference manual.

ASCII/BCD CONSIDERATIONS

FORTRAN enables the programmer to choose the character set that is most
convenient for the normal mode of execution, or best meets the needs of the
application.

Specification of BCD or ASCII is possible in both batch and time
In batch, the $ FORTY in the $ FORTRAN card provides BCD by default;
sharing, the RUN· connnand provides ASCII by default. The selection is
compile time and need not normally be designated for execute-only runs.

7/79 4-4.·l

sharing.
in time

made at

DG75A

When BCD is selected,

• Internal character data and formats are carried in BCD

• Storage is allocated at a rate of six characters per word

• Library calls are made to the entry names that work with BCD for I/O,
ENCODE, PAUSE, etc.

When ASCII is selected,

• Internal character data and fo:rmats are carried in ASCII

• Storage is allocated at a rate of four characters per word

• Library calls are made to the entJ:Y names that work with ASCII for
I/O, ENCODE, PAUSE, etc.

Therefore, one generally cannot mix object modules of different character
sets because conflicts arise over which routines are to be loaded from the
library, how to index through character arrays, how to analyze FORMAT
statements, etc.

BCD or ASCII programs execute in either batch or time sharing with certain
automatic convenience functions for dealing with the variety of file and device
types accessible to the program. In te:rms of specific problems, automatic file
transliteration and/or reformatting on a logical record basis is provided for
the following:

1. Execution of an ASCII program.

a. Input and output can be directed to the reader, printer, punch,
or SYSOUT.

b. Input files can be BCD (media code O, 2, or 3) or ASCII (media
code 6).

2. Execution of a BCD program. Input files can be ASCII (media code 6).

3. Execution of an ASCII program under time sharing. Input files can be
ASCII (media code 6) or BCD (media code O, 2, or 3).

4. Binary input/output files (media code 1) can be read and/or written
with either character option.

Use of the word "can" in the lists above implies an optional capability.
This is based on the existence of a collection of alternate entry names in the
File and Record Control called from FORTRAN library modules. Specification for
this optional capability in batch is under the programmer's control. The proper
linkage is accomplished when the following control card is presented to the
General Loader:

$ USE .GTLIT

Files not requiring transliteration and/or reformatting are acceptqble as
input. Output files are recorded in the media code relative to the internal
character set of the executing program independent of the environment. BCD
programs output files with media codes O, 2, and 31 ASCII programs output files
with media codes 6 and 7. · · ·

4-5 DG75

FILE FORMATS

All output files generated by FORTRAN, whether formatted or unformatted,
ASCII or BCD, sequential or randomlare in standard system format (as described
in the File~ Record Control reference manual).

Files generated in time sharing in the build-mode or by Text Editor can be
used directly as ASCII input data files for a FORTRAN object program. BCD file
output can be listed (using the SCAN subsystem) at either the user's terminal or
at a high speed online printer (BATCH verb of SCAN).

GLOBAL OPTIMIZATION

Global optimization gives the user some control over the balance between
compilation and object program efficiency. This analysis has been collected
into a single optional compiler phase that is elected by the OPTZ option on the
language processor control card or the RUN command. The analyses performed
include:

1. Common Subexpression Analysis - This analysis provides a determination
of multiple occurrences of the same subexpression within a program
block. The goal is to perform a given computation only one time.

2. Expression Compute Point Analysis This analysis provides a
determination of the optimal place and time for the computation of
some expression in relation to the loop structure of the program and
the redefinition points of the expression's constituent elements.

3. Induction Variable Expression Analysis - This analysis determines the
optimal computation sequence. Its intent is to reduce expressions to
simple operations upon an index register at the loop boundaries.

4.

5.

6.

Loop Collaasing Analysis - This analysis attempts
more neste loops into a single loop.

to reduce two or

Re~ister Management Analysis - This analysis determines how registers
an temporary storage are to be allocated. Priorities are assigned
according to the number of references to an expression and the loop
level of these references. Candidates for global assignment over one
or more program loops are selected.

Induction Variable Mate·rialization Analysis - This analysis determines
the necessity for materializing in memory the current value of a DO
index.

Memory· Conflicts

FORTRAN utilizes the memory designated as open in the slave pref ix by
calling a connnon routine to manage memory (.GCORE). Therefore, conflicts will
arise when another system program (e.g., SORT/MERGE) attempts to use the same
area without calling the ~nrnmon memory management routine. Conflicts with
SORT/MERGE can be avoided by dividing the free area of memory. (Refer to the
SORT/MERGE manual).

1Random files can optionally be treated as nonstandard format. The file format
consists of fixed length records without record control words and block control
words. See Section V, "Unformatted Random File Input/Output Statements".

7/79 4-6 DG75A

The use of global optimization does not always result in a faster running
program; furthermore, there are situations where the object code generated by
global optimization is not an exact functional equivalent of
no-global-optimization generated code using the same source.

Example

If a program contains multiple references to invariant expressions, code
for the evaluation of that expression follows the program prologue. This
placement could result in the unnecessary evaluation of the expressions if
references were from statements conditionally executed (i.e., the conditions can
be such that the expressions are not to be referenced) •

COMMON A,B,C, Ll,L2,L3

IF(Ll) 1,2,l
1 Z=A+B

Y=A+B
2 IF(L2) 3,4,3
3 Z2=(B+C)

Z3= (B+C)

4 IF(L3) 5,6,5
5 Yl=(A+C) + (A+C)**2

Y2= (A+C)
6 CONTINUE

Expressions (A+B) , (B+C) and (A+C) have multiple references under
conditional code, and are pre-calculated following the prolog. However, if
Ll, L2, and L3 were all zero, this evaluation will have been done
unnecessarily.

Another example demonstrates how results can actually be different (OPTZ vs
NOPTZ) • Consider the following example where the programmer is attempting
to avoid a divide check fault (i.e., division by zero).

FUNCTION FX(A,B)

10 IF(B) 1,2,1
1 FX=A/B+(A/B)**2+(A/B)**3

GO TO 3
2 FX=A+A**2+A**3
3 CONTINUE

END

4-7 DG75

Divide Check

The OPTZ generation may produce a divide check even though a test is made
for zero division. If B=01 this is the case in the previous example when (A/B)
is evaluated prior to the zero test for B.

This situation can be avoided in either o~ two ways.

a. The previous example could be rewritten as:

FUNCTION FX(A,B)

10 IF(B.NE.O.)FX=A/B+(A/B)**2+(A/B)**3
IF(B.EQ.O)FX=A+A**2+A**3
CONTINUE

END

The optimization phase is "sensitive" to logical IF statements.
Expressions that a~e only referenced within the truth clause of a
logical IF statement are not removed from such a conditional
setting. ~-

b. The following modification to the original example eliminates the
side effect.

FUNCTION FX(A,B)

10 IF(B) 1,2,l
1 Z=A/B

FX=Z+Z**2+Z**3
GO TO 3

2 FX=A+A**2+A**3
3 CONTINUE

END

Another situation results from using certain outdated library "flag"
routines. For example, if a program uses FLGEOF or FLGERR to set an end-of-file
or error flag, expressions involving these flag variables may appear to the
optimizer as invariant over some range of statements when there actually may be
a redefinition due to input/output.

Example

INTEGER UNT
CALL FLGEOF(UNT,IF)
DO 100 I=l ,N
READ { UNT) V 1, V2
IF{IF.EQ.O)READ{UNT)V3,V4
IF(IF.EQ.O)READ(UNT)V5,V6

100 CONTINUE

4-8 DG75

Since the optimizer does not consider each of the READ statements as a
potential redefinition point for the variable IF, the expression (IF.EQ.O) is
removed from the DO 100 I=l,N loop. Thus, in this case, the EOF is never
sensed; however, the use of the END= clause avoids this problem.

Example

DO 100 I=l,N
READ(UNT,END=l0)Vl,V2

READ(UNT,END=lO)V3,V4

100 READ(UNT ,END=lO) vs I V6

10 PRINT I "END OF FILE ON" I UNT

In summary, global optimization does not guarantee the generation of faster
running programs, and in some instances undesirable faults can be introduced.
However, analysis of this optimization technique has shown that, in general,
significant improvement in the object code usually results.

BATCH COMPILATION LISTINGS AND REPORTS

The following compilation listings and reports produced by the system are
controlled by options on the $ FORTY or $ FORTRAN control card (default options
are underlined) •

Option

LS TIN

LSTOU

XREF

MAP

DEBUG

Listing or Report Produced

Source Program Listing

Source and Object Program Listing with a Program
Preface Summary

Cross Reference Report, TO-FROM Transfer Table,
and GMAP off set on LSTIN report

Storage Map and Program Pref ace Summary

Debug Symbol Table

The following report codes are used for batch compilation:

Report Code

74

75

76

77

Compilation

Print on execution report which includes:
• source program listing
• diagnostic report if NLSTIN option is present
• reports produced by LSTOU,XREF, MAP, and DEBUG options
• compilation statistics report

Punch compressed deck (COMDK option)

Punch object deck (DECK option)

Print alter input list

4-9 DG75

I

Any diagnostics pertinent to the program are included in the LSTIN report
if it is not suppressed. When the NLSTIN option is present, the diagnostics
appear as a free-standin1;r_report.

The Compilation Statistics Report is produced if any other report is
produced or the DECK or COMDK options are utilized.

Figure 4-1 contains an example of a program with all reports. The
following descriptions explain each report in more detail, using Figure 4-1 as a
base for the description.

Source Program Listing (LSTIN)

Each line of this report, (page 1 of Figure 4-1), is divided into three
fields. The leftmost field contains the line or alter number for each source
line. If the source program is line-numbered (NFORM and LNO options specified),
the actual line number is displayed in this field. If the source program is not
line-numbered (FORM or NFORM and NLNO options specified), this field contains
the alter number {relative sequence number of the line).

The second field contains the text of the source statement and is separated
from the first field by six blank characters.

The third field is separated from the second by six blank characters and
contains optional sequence/identification information {columns 73-80) from the
source line.

Diagnostics are recorded immediately following the source line to which
they apply. Diagnostics that do not apply to a particular source line appear at
the end of the source listing. Comment cards may appear between the source line
and the appropriate diagnostic.

Each diagnostic line begins with five asterisks followed by the character W
to indicate a warning, F for a fatal error, or T for a premature termination of
the compilation (refer to Appendix C for a description of the diagnostics
generated by the compiler) •

In Figure 4-1, a warning diagnostic appears after line 5: the correct
object code is generated.

If the XREF option is on, this report then contains four fields with the
GMAP offset printed as the leftmost column of the report. The line or alter
number is then printed as the second field, followed by the text as the third
field, and the optional sequence infonnation as the fourth field. This gives
the relative location in the object QOde of each executable source statement.

7/79 4-10 DG75A

To-From Transfer Table (XREF'S)

The To-From Table (page 2 of Figure 4-1), lists the transfers that exist in
the source program logic. The report is sorted into descending line number
sequence, keying on the originating line number, and displays up to five
transfers on one report line. The destination line number field may indicate
the word EXIT or RETURN if the transfer statement is a STOP or RETURN statement.
For assigned GO TO statements, where the label list is not provided, the label
variable name is displayed. Line 29 contains the transfer statement GO TO 7,
which is indicated as the first entry in the transfer report (NOTE: statement 7
begins on line 10); line 28 contains the transfer statement STOP, which is the
second entry in the report; etc.

If the line numbers of the source file are not sequentially increased by
one, the actual line number is that of the first executable statement whose line
number is less than or equal to the line number printed.

Program Preface Summary (LSTOU)

The Program Preface Sununary (page 3 of Figure 4-1), documents the object
module preface (card) information in a format similar to that printed by GMAP.
The source program memory requirements and blank common size are displayed in
octal and decimal followed by the number of the V count bits as used in the
instructions with special (type 3) relocation.

The SYMDEFs entry denotes, in octal, the relative offset of the internal
location corresponding to that symbol definition. This entry is followed by a
list of labeled common blocks which are referenced by this module. Associated
with each symbol are three octal fields and one decimal field. The first field
gives the global symbol number associated with the common name for this
compilation. This is the number that appears in the V field of any instruction
referencing this labeled common region. The number is justified according to
the V field. Thus, if labeled common SPACE is global symbol 2, and the V ·field
is five bits wide, the display is 020000 (bit zero is the sign bit). If the V
field is six bits wide, the display is 010000. The second field contains the
size, in octal, of the labeled common region. The third decimal field contains
the same size in decimal.

Two labeled common regions, .DATA. and .SYMT., receive special treatment by
the loader. Although they are not actually labeled common names, they are
included in this portion of the Program Preface Summary. .DATA. is allocated
enough space to contain all local data required by the program. This includes
arrays and scalars not appearing in common as arguments, constants, encoded
FORMAT information, NAMELIST lists, temporary storage for intermediate results,
argument pointers, the error linkage pair (E.L ••), etc. .SYMT. is generated
when the DEBUG option is used. This block contains a symbol table for all
program variables and statement numbers and can be used for symbolic debugging.

A list of external symbol references (SYMREFs) is also included with their
associated global symbol number, justified as described above, for labeled
conunon names.

4-11 DG75

Storage Map (MAP)

The Storage Map (page 4 of Figure 4-1) , provides information on the
allocation of storage for identifiable program elements, and generates any error
messages (#2 33) for all the variables that are defined but never referenced in
the program unit. This report is divided into three parts: variables and
arrays, statement numbers, and constants.

The first part of the report which lists all program variables and arrays
in alphabetical order contains four fields:

1. The first field contains the global symbol name relative to which
variable is defined. Local variables and arrays are defined relative
to the origin of the .DA'l'A. space. When a variable or array belongs
to some labeled conunon block, the name of its common is shown; when it
belongs to blank common, the field is empty. Argument variables and
arrays appear as variables of .DATA., and the indicated location is
reserved for a pointer to the actual argument and is initialized on'
entry to the procedure.

2. The two OFFSET fields provide the location of the variable or array
relative to the assigned global name. For arrays, this is the
starting location; subsequent elements of the array are allocated the
higher order locations. The offset is provided in both octal and
decimal for the convenience of the programmer.

3. The MODE field provides the type associated with each identifier.
Switch variables are indica.ted by an empty field.

The second part of the report lists all referenced statement numbers in
numerical order. The four fields to the right of each entry are the same as
defined above. The ORIGIN fields for FORMAT statement numbers are always .DATA.
and the MODE field indicates FORMAT. For executable statement numbers, the MODE
field is always blank. The ORIGIN field is eight dots (••••••••) if this is a
main program, or the first SYMDEF if this is a subprogram. The OFFSET field is
the same as described above.

The third part of this report lists all numeric and character constants
requiring unique storage. All constants are allocated storage relative to the
.DATA. block. The two OFFSET fields and the MODE field are as described for
variables and arrays. Only the first 17 characters are displayed for character
constants.

Object Program Listing (LSTOU)

The Object Program Listing (pages 5-8 of Figure 4-1), gives a full listing
of the generated object program. The original source statement is identified in
the object listing by "SOURCE LINE xxx" and the source line. The individual
instruction line format is similar to that produced by GMAP. The first field is
the location field followed by the compiled machine language instruction, which
is usually divided into address, operation code, and modifier fields. The
location field and machin? language instruction field are in octal. The next
three digits are the relocation bits applicable to the instruction.

4-12 DG75

The symbolic equivalent of the generated instruction is contained in the
next field. This instruction consists of a label field, an operation code
field, and a variable field for address and modifier symbols. Referenced
statement numbers appear in the label field prefixed by the characters ".S".
SYMDEF symbols (such as ENTRY names) also appear in the label field. Operation
code and modifier mnemonics are the same as the standard GMAP mnemonics with the
exception of some of the pseudo-operation codes.

Data initialization, constants, formats, symbol table entries, etc. are
displayed at the end of the report following the source END line. No object END
instruction is produced.

Debug Symbol Table (DEBUG)

A table of all symbols used in the source program is given on page 9 of
Figure 4-1.

Cross-Reference List (XREF)

The Cross~Reference List (page 10 of Figure 4-1) , lists in alphabetical
order all referenced variables, arrays, statement numbers, SYMREFs and SYMDEFs.
Each element results in four or more entries being produced across the line.
The first field is the octal location (offset) of the item relative to its
global symbol. The second field is the item name or symbol. Statement numbers
are shown with a prefix of ".S". The third field is the applicable global
symbol. The fourth field is the line number (alter number) of the first
reference. When there are more references, additional line numbers are
displayed across the line, and where required, additional lines are written.

The second part of the report lists the statement labels; the first part of
the report contains all other information required for cross referencing.

Miscellaneous Data

Additional compilation data is printed at the end of the report listing.
This data consists of the edit date, the software release level of the compiler,
the processor time and compilation speed in terms of source lines per minute,
the number of diagnostics printed, and the. amount of memory space required for
the compilation.

4-13 DG75

JJ1t91 Jl 06-09-78 Ot.:'ilt

LC.CilCAL l.iIOSOiH
CO""ON CIOSURT~PACE/B
~hAkACTER A•72lld01,u•7Z
DATA J/11
ASSl(,N 1 TO c.Of

•••••~ 129J £Of IS uSlO AS A SW1TCH IN ASSIGN STATt"fNT A"O lj NOT TYPtO lNTEGtR
o 1 OC ~ I=l,100
7 RlAC l5, 11,tN0=150l A lll
8 lflACll.Nt."•••~N~•••"l iOTO i
9 11 FORMAT<A72l

10 7 N = I-1
11 GOTC 1J
1l CONTINUE
1l N = 100
1.. 13 i.JIO:::.ORT = .FAL::..:..
15 00 '!0 1=1,N-1
1:> lf(A(l+ll.GL,A<Ill GOTO ~O

ti OIOSORT = , TRuO:..
1; d = ACII
19 Alli :: A<l+ll
ZO ACI+ll ~ 5
ii qa CONTINUE
22 IFILI05CRTl GOTO 13
2 J 7 7 WR l J E I ~ , 1 2 l J , l A l I I , 1 = 1 , N l
z~ J=J+1
25 ,12 FORMATl-1 ALPHAl3t.TIC SORT - Ll:iT .. ,1511<"• ••,AJO))
lo GCi TO C:C•F, <l,1'+91
27 1'+~ 1=1
25 150 lfll .~~. ll STOP -~NO A~PHABlTIC SORTN
t9 ASSI<.N 1'+9 TO tOF; GO TO 7
30 E:NO

Source Program Listing

LABEL

OullOllUll
UllOI01l0
llll0001Z8
aooooua
OOHl1't0

000011150
00Vff161
O.CH.100110
OHOtt80
1iOuCIU19il
OllfctOZOO
00080210
OOHOZZ11
Olili(IU.i:JO
OOH02ltl
fllUiUlSO
OctOOOZ60
QOOOi127a
111H11tt•
OOOOOZ9Q
OotOUID
Gu000.110
IJOOOOJZO
llUOOOJJO
aoooos-.o
00000.JSO
d(IOOO.J&u
00000.J70
00001U80
30000390

Figure 4-1. Compilation Listings and Reports

4-14

l

DG75

U6t9T .u 06-09-78 oe.su LABEL PAGE 2

TllANSFC.R~. •• •

,:.~o" LlNc.f ro LINll Ff\Olt LINE.f TO i.lNEt FRON L1Nt.f TO LlNU

'" 1G za Ull ,6 •
1& 21 11 1• a 1.l

''"'" .. , '" "lht.• FkUN LlNi;.t ru .. 1 .. ~•

lo l1 Zl , ..
1 la

To-From Transfer Table

Figure 4-1 (cont). Compilation Listings and Reports

4-15 DG75

lJct<J r o 1 06-09-78

PRvG.{.\H PR:.t- "Ci;.
P;t0Gi(Al1 BIU. AK
CO~HON LE.NC.rH
v -;ouNT &IT;.

St10EFS

llJ1
1
!"i

L~ 3EL LE.O COo1HON
.OATA. Dl~OUO

• ::.YMT • DlJiJUO
>PACE UlOOOU

SY"1P£FS
.FC()H.
.FCXT.
• FC.t:k~
• Ffll.
.FRTN.
.FCNVC
.FCNVI
.FWR.O,
,fROO.

l).,JQOO
0'.>;.1000
ObOUOC.
07iJOiJU
lJOODO
11 JO(.ll
l~OOliU

1JDOlili
hOOUO

L.t:'.Nl.fTH
l Jilt

'tl
1't

LABEL PAGE 3

Program Prefix Summary

Figure 4-1 (cont). Compilation Listings and Reports

DG75

LABEL PAGE • IJ«ttT ll 06-09-78 11.su

sr llP.aliE """

SYltetOLlC Oi<lGlN Oft-Sc.T UU HO<it. OFF St.TUI

• :.L•• .oara • 1201 OOutJL~ Ubl
A .oara. D CHARACTER D
8 SPACE 0 CH AUi'.: TU 0
OIOSOU 0 LOctlCAL 0
EQ' .uATA. 1201t llolt
I .OAJA. 1205 1Nr£GC:R 22oS
J ouAl A• 1203 lNTlGER iloJ
N oil-' TA. 1213 JNfhEflc ll1S

STaTlHENf Nu"SlR~

1 z l
1 32 ltO
~ l&

11 ·-'"fa• 12011 FORHAT l2111
12 . .,., .. 1217 fOR"AT U01
1J lt2 Sl
9!J 90 120

llti 116 lblt
1S!J Ull 160

CONSTANTS CoOATA 0)

5 1207 lNTEGC:R llQ1 •••£ND••• lZl 0 CHA1UCTt.R l272
121Z CHAf<ACTER llh

6 121t JNTtG.:.R .:.JOll
ENO ALPttAbiT lC so Uh CHAUCTU cJlO

Storage Map

Figure 4-1 (cont). Compilation Listings and Reports

4-17 DG75

LABEL PAGE 5

J34tiT 21 06-09.,-78 li!!,SH

liCC.Gllli ~lJLL
SOL-RCE LINE 1. L 0(1 lL.\L OlOSORT
Sl)URlt Ll~E. C: COH~OH JlOSORTISPACE/8
SCL1H.E .. 1m. 3 CHA~A~T~R A•7Z&1got,e•12
SO<.li(.c. ~ JNE .. u•TA Jill
~vLl<lt ~ lNt. A~SluN 1 TU C.Of

000000 OllQJ;;i iiZOO <.O 010 ;.AXO .s1
100001 OlZZblt 7i. DO 00 030 STXO t:Of

SOt..RC £ dNE 0 1 ""' 1 IsJ.,101
OllC Cul .~1 ;~uLi.

oooooz li\!IJJ:; i (.itlJ r.1 (jt)t) L0f.I 1,L.ot.
0 00 0 c J il12lb> 7~ bO cc 030 STQ l
lOOOQ,. llllillh .. ozG (. 7 ll Oil ttPY 12,0 ..

SOL.l<C.t LINE 7 ~lAU(S,11,END•lSg> AU>
110000; 01Zlo& 7~b0 (j(J 030 iTC.. oOATA.+1ZO&
00000& 1 .. 0 :)Q(i 7010 (IO OJO TSlll .F~OL),

J00007 Oil0i115 710d (.d li10 TRA •+&
J00011J Ollc!bl 000007 030 ZERO .£.Loo ,7
000011 01ZZ&7 ouoo liO 030 A"-Ci o0AU.+l"i17
0Oil01 Z Olll70 OCOO OU OJO ARG .su
oJ 0001.J OiiUOQO iluOO 00 000 ARCi 0
o 011a1:0 oao1b& 11ou 110 ClO TRA .S15ol
J00015 81.Zl6il 1 <:z o lilJ Ula Lll.Ll .OATA.+l:Ct.lo
ilOOOlb ltlO 01 .. 6:!>0 12 OJO t::AA a-12,2
000017 Hu DOD 7&10 DD ii.JO TSlll .FCNVC
2000%0 ilJ011U 0110 07 000 NOP 7Z,OL
JDuo21 1Jil J 0 u 7L1ii- co (lJO TSH .Fl<JN,

::.vURC.t: L lNE G 1Ft~<I1.NE."•••END••••1'GOTO 9
llOOOZZ iJlUoi; Z3bD Oli 11Jll t.CC.:
:.IOO 0 c:J Chl001tt ltOlO 07 000 ltPY 1Z,DL
JOOOZlt OOOtJOO bZ20 Ob 000 i,A)2 0, l.<L
00002) 012Zl2 6~70 co OJO ;,..A'A7 .OATA.•1210
tJOOOZo '+1D01'+ 6<:1 ll lZ 11JO EAH A-1.:,~
J OD027 11.:;b'fO 560Z 01 DOO ~PD 2,1,TNl
ilOOOJO O•JOilOO ZJ!>O 17 liOll LI.Ill 0,1
lOOOJl 0110 ll c 0 11 '.:>0 11 OOil CHPA 0. 1
JOOO.JZ Oil ii 0 OC. &010 oi. !illD TNZ .. ,.h;
0000.sJ Dl.ZZ11t ZJ'50 (ii) 030 LOA .OATA.+1.:lit
001!03'+ oz .. 2 .. 0 i;zoz 01 000 RPT 10,1,TNZ
OOOOH illJOOliO 11~0 11 000 CHPA

"· 1 0000.?0 OJJD .. o bOOD liO 010 T ZE. .. ,
J 00037 o.ioo.. .. 7100 00 610 TRA .59

~Ovlf\,c LINE \I 11 FORttliTU7ZI
SOURC.f. 1.. INf. 1U 7 h .. 1-1

OJOOC.0 .~7 ,.lJLL
ooooi.a ll .. lZb> ZJbO (.0 CIJO .. oa
tl OOhl 0uo11111 17o0 D7 000 SBC. 1,4. ...
ilOJOltl 01Zl7S 7!;>o0 c.o uo STQ N

SOvRCE .. lNl 11 liUTI) h
IOOOltJ uoosz 71C10 (:0 1110 TRA .:,1~

soi." .. £ Llt.c. u ~ t;i.hJ lHv~
000116tlt .~9 NUlL

Object Program Listing

FigQre 4-1 (cont) • Compilation Listings and Reports

4-18 DG75

JJ .. 9T H 06-09-78 Uo,">H LABEL PAGE 6

J CJ a .. :. 0 i .. '!<..:. (Jt 0 co ~JO ... oc. I
l00Clt7 11OflC.i1 Ii 7 bO C7 000 A(JC 1,CIL
J Ou ·l .. o o 1a1 .. !i> 11c0 c 7 Gliu ~Hf'Q 101,0L
JOOOl+7 OGOliu.> t:l. .. fl tO 1110 THI •-.)o

!.lll.1'C c LI Nt. lS h a 100
JOOOSJ l JOl,." lJt.O c., 000 LOO 100,0L
OOiJ051 012275 7 S f:>O C 0 o;;o :iTQ N

SOliRCE l lNf lit 1J CilJhOIU . .FAL:.t.
000057 .s1J "'ULL

o) DO JS.? llilODOll 23bC (:7 llilil d1U OtUL
'JOOOSJ 01111out htO lD li.:'D iTQ u Iu:i.01< r

5<.'l.Rl..t LlNE. 17 C(> 90 J.•l.,N•l
oooos .. 111111~1 .. azo tJ 0 uo LD>.2 12,ou
J 00055 . Jll.?15 2.3t0 DO OJO -.. oa N
JOOOSi> 110G 001 17b0 1)7 0 l.J 0 ssa 1,oL
) Ou() !;,7 lll~Z7b 7~ 60 GO <iJO SH.I ,OATA.•1..:11t
ao~of..J 11llDOu0 SJ JO 00 0110 NE.C.L 0
00110~1 DOCJOO 0 760 G7 000 AOQ O,OL
l 00062 OJo:ioz H1tO llit ODO THl Z,IC
ll0006l d;J0tl01 33f..0 l7 OOIJ LCQ 1rOL
00110& .. 0122i7 75E>O 00 OJO :iTQ oOATAo•1Z1!»

SOul<Ci:. t.INE 16 IFCaCI+l)oG~oAClll 6CHO 90
JO'l0E:7 0100..li H 70 ~~ I.JO :;Ax7 "·" llOuObo 4tl0H4t b£10 1C GJO EAXl A•12,Z
000067 OJloC.0 St.OZ 01 ODD RP(; 12,1,TN2
000070 OllC1HiO 2.35C !7 001) LOA 0,1
0 (ji) 071 ilJG U 0 0 11~0 11 GOO ~HPA 1),1
00007Z 0 :.oD J7" oC.tO c.o 010 TNC ••C:
00007S OOUi<.'0 7100 00 t) 10 TRA • sc;o

SOIJ~CE LIN€ t7 IHOSCllU . .TRu~.
.00001 .. OliOOO 1 2Jt0 V1 000 L(:j£.j 1tCJL
1111075 IJUllllOO 7~60 C.Ci 020 SJQ OHJSORT

SOvRCE LINE u 8 a A(U
080070 It 10011t b270 12 OJO i;u1 A-ll,l
000077 OJlllilJO lid(I 00 (IJI) i.AlCl a
iJOO 10 ii llllOlllitl il11D 07 000 HOE' o,OL
000101 OJ1o00 ScOZ 01 000 RPO u,1
OOlltOZ lltlOiluO cJSO 17 001) LOA 0,1
DOOlliJ 0110000 7:,50 11 000 SU ·G,1

SOURCE L IHE 19 ACU • uuu
00010 .. 010000 liZ70 12 o;;o i.A'A7 A,2
000105 itlillll't t>Hl1 12 030 t.AX1 a-1z,2
D GIJ 1 O& Oll0110D CUD '7 ODO NOP G,OL
D0tl107 u.uouo :1&02 "1 oao RFD 12,1
000110 o.;111100 ZJSD 17 DOD LOA 0,1
ODO 111 11001100 7!>50 11 000 SYA 0,1

SvliRC.c. L 1NE lO •1l•U • 8
i10011Z .i,,uiiGO 6270 co 1130 EAlC7 a
.JOO HJ 01111100 6210 12 OJ.J t.AX1 A,Z
00011 .. IJCO~OD 0110 C7 OOil NOP O,OL
HOlh llJUOO !»&OZ t 1 000 RPO lZ,l
oaouo lhilii111G c~Sli 17 DllO LOA 0,1

Object Program Listing (cont)

Figure 4-1 (cont). Compilation Listings and Reports

4-19 DG75

Uft9T ill 06-09-78 OE.51t
LABEL PA.GB 1

000117 iluilOOli 75~0 11 CO!l .)Tl• u,1
SOuRC.L LlNl ll 90 CuNJlNi.:::

0iiti1Z Ii .3% NlJLL
J001l0 0J001't 0 (.'ii Ill 000 ;\i)LX2 12,ou
000121 012l77 u:- .. il co 03il AO~ .i.IATA. •1,1.::>
OOIJ1ZZ 0000t>5 H10 co 010 TNZ •-t9

.:>~v~lw~ L lNf. a H (ul1.1::.Jf\T t <.IJTO U
3001ZJ U:JJOOO 2.?c. 0 i;c 020 :>ZN OlU::.ll~T
00ill2,. o;;oasz bD10 lill G10 TNZ .Sl.)

SOURC.t. L lNf:. 23 77 NRlftCo, 1Z> J, CAU> ,1•1,tU
0001£5 130000 7010 co 030 T Sl<.1 • FWRIJ.
00012 .. 000~32 7100 00 J10 TRA
il Oil l Z 7 . i11<'..?S1 Ol00l7 030 .,"'.i:.~O .t..L •• ,zJ
000131.1 111Z300 Ii ti OD (10 OJO ARG .OATA.+1"1f.
0001.11 012301 0000 00 030 ARG • :ilZ
000132 JlUtJ 2350 co Olil LOA .J
000133 120 J :J" 7(i10 00 030 TSX1 .FCN'll
00013'< Oilol01 .. 2(:<:0 L3 000 i.OX2 1l,OU
DOll1H u~U.7; ~;)1;J 1..0 C30 LCQ N
0001Jo llOOOOl t>OltO o .. ·-01t1t TIH 2, IC
1100137 ii J Ji) 01 J.)oO C7 000 LCU 1rUL.
0001't0 01227' THO co 030 STQ .OATA.+121!1
0001't1 ftlD 011t b350 12 OJO C.AA A-1ZrZ
OOOtc.l 110000 7010 00 030 TSX1 .FCNllC
aoo1 .. 1 OJOllD 0110 C7 DOU NOP 7 z ,01..
11001 w't 00001'+ 0<:20 113 000 AOLXC: 1z,ou
i) 001i.; il1ZU 1 il!i .. a (jQ OJil 110S .uAT~.+!21!°>
0001 .. 0 00tt11t1 f>OlO 00 010 THZ •·!i
0001 .. 1 cl 70 il 0 D 7Cl0 00 030 r~x1 • Ff 1

SOURC.t L lNt Zit J= .. •1
000150 0.lc:l63 O!iltO 00 il3il i.os J

SOtJ!ltct LI NE z~ 12 Fott"ATC•t AL~A8~11C SORf - 1,;lSl-i l,ff~ •;-uou
~Cv"1C.c. LlNt. Zo C.G Tv ~.>F,U,11t'H

000151 06000t> 0210 Olt 000 t.All1 &,le
DOi115Z 012264 b3'JO ~1 030 C:AA EOF,1
0001'H 0 C4 30 0 520Z 01 000 RPT 2,1,TZt.
00015 .. il Q(i oc. 0 11!i0 11 iliiO C11PA ()' 1
0001 :;; 111711 f>OOO 31 000 'Zf. -1,1•
00015& lltlOllOJ 71~0 c .. 000 TRA 3,lC
000157 OllOOu~ ocoo 00 010 ARG .~1
0Gi11f>8 01101b'+ ODD ti 00 010 ARG • S41t9
000161 ObOOOO 7010 IHI 030 f5X1.· .F6ERR
0 00 1 &Z 0 00 ltlt 7100 110 010 TRA •+z
0901t>3. · 01U61 0060JZ 930 ltRO .t , 26

SOUl\C.E llNE Z1 11t9 1=1
00016 .. .s1 .. 9 MULL

ii GO 1f>lt 000001 23&0 07 "J J L.OC".i lrCL
IOOU1S 111ZZ6S 7~t>O 00 OJO STQ I

SOI.RC.£ l lNE 28 150 lFU oL.io u STOP •lHD ALP"AoETIC ~ORT•
ii 110 lt>f: e;)l~O NULL

00i11&;. a.> .. Jll 2lb0 07 DOD ... u ... l,uL.
HOh7 1HZZbS 11o0 flO '30 ~"f'Q i

Object Program Listing (cont)

Figure 4-1 (cont). Compilation Listings and Reports

4-20 DG75

LABEL PAGE 8

JJ'-9T 01 06-09-78 Ob.Slt

ii oo~ 1 a Ou017b oulu GO (i 10 TN.i: ••b
~001"71 0,011011 7uHI CiO OJO TSU .FcxT.
OOJ17Z .i11~17b 71Cll c.o 010 Tl<ll • •lo
00()17.S 01ZZbl OOOOJ .. OJO .!tRO .c. eL • • ,;,:&
0 0011 .. 01ZJU 0000 OU 030 lli{C. .JATA.+1cl't
00011, OIJ0023 0000 C7 ooa lRG 19,DL

SOl:RCE LINE 29 llSSlGN 1 .. 9 10 f.OF; GO 10 7
DOOt.,6 01101b't c20D 00 OtO t:UO .s11t9
000177 Olllt. .. 1 c uO OJO :)Jl0 c.OF
000200 00011 .. .i 1100 Ii.:! ll1Q TIU .s1

SOlJRCi .. JNE .Jll lNO

OOC'.2tl1 IJRG .OAU.+1C:01
002261 J.;iJJuOJil.,llOil 000 .C. .L • • OCT
OOZZ6Z JJ.U.U.J.JJJH ooa ETC
ODZZ6J 1JilOOJOJ00001 003 .J OEC

aoe:2&1 IJRG .OA 1A • +1207
002267 OuilOOO·J00005 000 OEC s
OOZZ7D JSZ1070Z5SZO 000 .s11 BCl CA72J

OilC27Z \>RG .OAJA.•lclG
a&tt1~ ~ .. ~~~ .. ls~sz .. CIOO !SCI •••fNO
OOZZ7J ; .. ~ .. sc.zozoza 000 c1Cl ...
aozz11t l0illl020t0l0 ouo SCI

IOCJH ORf. .OAJA.•121b
OOZJOO tl01MOUOOt.OO& uoo JH b
ilOZJOl 3S7oilt20tt-.J IDO .su tlCI C,.1 AL
OOlJOl .. 1Jul 1l2<. ~ol 01.0 ac1 Pt1Al?~T

10238J J1cJcuoZ1ocS1 0110 JC I lC SJR
OOcJOot oJiJ,l20.,JJ1 t. 00 .,.:;1 T - LI
OOZJ05 oloJ/b1J3lOS 000 dCI Sl .. ,b
lO.i:JOO 0101J;7e: .. 010 DOD dC. l '''"" OOZJ01 1.J210JtlhSSS 000 dCJ ,•JUJ
Oil.JU 2S't:iZ'tZ0(:1'tJ 1.100 ciCJ l:.NO AL
ll023ll 1t13C21lZc5&3 000 tlCI PttABET
OOZJ1Z J1ZJZOl:l'-t:S1 000 ac1 IC SOI\
OOlJU bJZOZGZ020lO 000 ec1 T

Object Program Listing {cont)

Figure 4-l {cont). Co~pilation Listings and Reports

4-21 DG75

LABEL PAGE 9

13'.CJT l1 06-09-78 06 .:Hfi

(JebUG SYH~OL fAltLc. I• ::i.YHT •)

J 00 0 0 0 JJz;JJe+H333 uoo VT Alff • i:. .L • •, OOUB&.&.
0001101 012lb10U002l OlO
ooaooz l1t31C:&.tZ1tbS1 aao VTABF OlO~ORT 1 LOGl"Ai.
000003 OllOOOOJOii02!; llc!O
llOOGOlt UZ\lt:Ci2Gi:GlQ 0011 VTA&f 6, C.H1'RAC. Tc.R
:JOOO°' 030JOOOOC0l0 OJO
OUOOOb 2121lZOZ:J<.'OZO 000 VTAdF A,ChARACTifi.
000007 01ooooooooza 030
i100010 .. 1zaza.::o,u20 0011 llUBF .J 1 1NTt.bER
0 C.11011 01U6JllOOOZ1 DJO
000012 OlZOZ04D20lll 000 LT•&F .s1
00001) OilOOOZ000011 010
:J 000 lit zs .. b2oC: OC:UZG 000 VTABf i:.OF 1 CHAf(A~T~I\
OC0015 01ll6411ilOOZIJ 030
0011010 J1zozo2:"oza iJ\j.J VTt.6F I, lNTt.ut.R
000011 012ZbSUOOOZ1 030
I) 0 0 Ii 20 11Z:.l2ilt0<::020 ODO .. T t.BF .s9
000021 000lllo~000017 010
:>OOOZZ 1HGl<iOdlt.illO uOO L.TAi>F .s11
0 OOOll U1ZZ70000077 030
ii 01102-. 010;00<:02020 000 ._ T AE.f .:>150
3 00025 OJOlbbOOC077 1110
'1illl02o 07c::02020dl20 000 LTAlif .S7
0011027 IJOOllltOuOG077 010
OOOIJJO .. szozozozozo 0 Oil VTAbF N, lNTt.C.t.R
000031 IJ1227501i0021 030
OOOOJl 010J2D<:0£0Zil DOil LTABF .s13
OODOJJ DllDll5t1JOOC77 010
0 00 0 3 .. l 11lill0Zi1£ ilZO 000 ~UBF .sc;o
OOOIJ3; OJO 1200 000 77 C. lil
ilOODJo il1Dl2020,uZO 000 i.TA&F .s12
G00037 il12JD1000077 (IJO
llOOOl.Q a10..i12ce:ozo 001) L. TABF .s1 .. ~
OOOOltl Oll01&1t01l0077 010

Debug Symbol Table

Figure 4-1 (cont). Compilation Listings and Reports

4-22 DG75

LAo'-L PAGt. 10

;s.:1 .. -u .u 06-09-78 06.Ht.

C1Ulil~ SYHJ1.... l.:. ,,t_n,;.t;,4(£;) b't' i.~Jt.R N.i.-.8.::R

0
11 .FC!'<lllC. ZJ
1l • FC.~11 l ~~ .. .FC.Jl1,

; • FC11T. Zd , .FFIL• ZS
0 .Fc.::R~ lo

l .. • Frc-Jc. 7
1() • f Rlt.. 7
I J ,fM,((.1. ZJ

Z':.1 • f.. - •• •...,.,TA• Ii 1 ZJ Zb ell
0 I\ , [J.11 TA. 1 e. 1t 18 1i "° u

a So>t.Ct: 18 zo
uIC:iOIU 1 .. 17 22

i. z., .. -.OF • u.,. i A. ; 2c. 29
zzo; 1 .011 r A• D a 111 1c: ~, ze
lZol J e"9ATA. ZJ , ..
ltf; H .OAJA. 10 u 15 u

.so ; O"~A T

.s1 ; 0 a .. , .S7 111 29S9 a 1.Z
ll1J .su FORl1AT ,
ZJJl .s1z fl)f(flAf ZJ ,,z .su 11 lit cz

~ .s11
tlO .S9t 1l lt
Iott • s1 .. c; 20 27 zq
lo it .s1so , 2t

Cross Reference List

Figure 4-1 (cont). Compilation Listings and Reports

4-23 DG75

EDIT DATE

ELAPSED TIME

06-09-78

(SEC)

**14.l **

1.05 LINES/MINUTE

THERE WERE 1 DIAGNOSTICS IN ABOVE COMPILATION
30K WORDS WERE USED FOR THIS COMPILATION

Miscellaneous Data

Figure 4-1 {cont). Compilation Listings and Reports

4-24

1704

DG75

SECTION V

INPUT AND OUTPUT

GENERAL DESCRIPTION

FORTRAN input/output (I/O) statements cause the transmission of information
between internal storage and external input/output devices. Each I/O statement
can specify an implicit (NAMELIST) or explicit list of scalars, arrays, and
array elements; output statements can also specify constants and expressions of
all types. The designated data items are assigned values on input and, on
output, have their values transferred to the specified output device. The I/O
statements used in FORTRAN (READ and DECODE for input; WRITE, PRINT, PUNCH, and
ENCODE for output) are briefly described in Section III. This section contains
a more detailed description of the following elements which make up the
input/output statements.

• File reference (file code)

e FORMAT

• NAMELIST name reference

• Internal storage buffer reference for ENCODE and DECODE

• Optional transfer condition

• Input/output list specification

File reference can consist of an integer constant, an integer variable, or
an integer expression that identifies the input/output unit. The value of the
integer will be a two-digit file code, which must be in the range
01 ~ file ~ 63. A file is associated with a specific device by using the $ FILE
and $ FFILE control cards or by using the 'fe' file descriptors of the RUN
conunand described in Appendix B.

FORMAT reference can be an integer constant representing the statement
label of a FORMAT statement, a character scalar, or an array name. If a
statement label is represented, the identified FORMAT statement must appear in
the same program unit as the input/output statement. If a character variable
name is referenced, the variable must contain FORMAT information (see "Variable
Format Specifications" in this section).

NAMELIST input/output is indicated by the presence of a NAMELIST name in
the format reference position of the ~AD, WRITE, and PRINT statements. The
NAMELIST statement(s) and 1its a~sociated list must appear before any
input/output statements that reference the NAMELIST name.

5-1 DG75

Internal storage buffer applies only to the ENCODE and DECODE statements.
While it is ·desirable to use character variables, variable names of any type can
be used.

Optional transfer conditions (end-of..-file and error) are designated as END=
and ERR=, ··respectively. · END= can appear .in sequential. or random file input
statements; ERR= can appear in any input/output statement. A statement label or
switch variable .name can follow the equal sign (=) , and the order of the
transfer conditions is not important. Conditions that can cause an error return
include transmission errors or any of the error conditions described in the File
and Record Control manual. --

I/O list specification information that is transmitted is collected into
records that can be formatted or unformatted. A fonnatted record consists of a
string of permissible characters in the characte.r set. '!'he transfer of such a
record requires that FORMA'l' information be :t7eferenced or implied, to supply the
necessary positioning and conversion specifications. '!'he number of records
transferred by the execution of a formatted I/O statement is determined by the
list and the referenced FORMA'l' statement. A formatted record can be analogous
to a print line or a card image, whereas, an unfonnatted record consists of a
string of words.

'!'here are two kinds of formatted input/output: format directed and list
directed.. L.ist directed formatted input/output can .. be specified by a FORMA'l'
statement of the form FORMA'l'(V) or it can be implied by the form and content of
the input/output statement.

Input/output Statements

Formatted Read/Write Statements 'I'hese statements include a FORMA'l'
reference, the file reference, possibly an end-of-file option, an error
return option, and a list specification. List directed I/O is accomplished
via the FORMA'l' (V). Name.list I/O is accomplished with a NAMELIS'l' name as a
format reference.

Unformatted Read/Write Statements - 'I'hese statements refer to binary word
oriented sequential and random files.

Manipulation Input/output Statements 'I'hese statements are for file
operations ·relating to positioning and file demarcation, and can be used·to
operate on sequential access files only.

FORMA'l' and NAMELIS'l' Statements - These two nonexe.cutable statements are
used with the formatted input/output statements ..•

'!'he FORMA'l' statement specifies the arrangement of data in the input/output
record. If the FORMAT statement is referred to by a READ statement, the input
data must ~et the specifications de.scribed late..r .in this section.

'!'he NAMELIST statement specifies an input/output list of va.riables and/or
arrays. Input/output of the values associa:ted with the list is affected by
reference to the NAMELIS'l' name in a READ, PRINT, o;r WRITE statement. If the
NAMELIST name is referred to by a READ statement, the input data must meet the
specifications .described later in this section.

s~2 DG75

FILE REFERENCE

In the source program, files can be designated by any integer expression,
the value of which must be in the range of 1 ~ file ~ 63. In batch mode, the
equating of a numeric file designation with some actual device is accomplished
via standard GCOS file allocation control cards using a two-digit file code of
the same integer value as the corresponding file designator. Thus, WRITE
(06,100) references file code 06 at run time.

Since the file reference can be any integer expression, the following
statements also reference file code 06.

I = 5
WRITE (I+l, 100)

Five specific file designators are predefined for all FORTRAN programs and
serve as the default assignments in a batch environment:

05 - standard input file (I*)

READ (05,f) list
READ (05 ,x)

06 - standard output file (P*)

WRITE (06,f) list
WRITE (06 ,x)

This output appears in report code 06 of the execution report.

41 - standard input file (I*)

READ, list
READ f, list
READ x
READ(41,f) list
READ (41,x)

42 - standard print output file (P*)

PRINT, list
PRINT f, list
PRINT x
WRITE (42,f) list
WRITE (42 ,x)

This output appears in report code 528 of the execution report.

43 - standard punch output file (P*)

PUNCH x
PUNCH, list
PUNCH f, list
WRITE(43,f) list
WRITE (4 3 ,x)

This output is directed to the card punch. Its report code is 538 •

f = FORMAT REFERENCE
x namelist name

NOTE: These file designators can be ov~rridden by the progranuner.

5-3 DG75

FORMAT SPECIFICATIONS

The FORMAT statement in FORTRAN specifies the physical description
input/output data items. This description can be designated in
different forms, as described in the following paragraphs.

Field Separators

of the
several

The field separator, which is used to separate the field descriptors of a
FORMAT statement, may be a slash, a comma, or a series of slashes. When the
slash is used to separate field descriptors it specifies a demarcation of
formatted records.

Repeat Specification

A field descriptor can be repeated by placing the repetition number before
the field descriptor with the exception of quoted strings, tabulation controls,
nH, and nx.

Example

FORMAT (3El2. 4)

is the repeat specification for

FORMAT (El2.4, El2.4, El2.4}

A group of field descriptors
parentheses and placing the repetition
enables two levels of grouping to
representation.

Example

FORMAT (2(Fl0.6, El0.2)
FORMAT (2{I3,2(F8.4, E8.2)), AlO)

are the repeat specifications for

can be repeated by enclosing the group in
number before the parentheses. This
be permitted, using the same rules for

FORMAT (Fl0.6, El0.2, Fl0.6, El0.2)
FORMAT (I 3 , F 8. 4 , E 8 • 2 , F 8. 4 , E 8. 2 , I 3 , FS • 4 , E 8 • 2 , F 8. 4 , E 8 • 2 , AlO)

5-4 DG75

Scale F acto.r:s

To permit more general use of o-, E-, F-, and G-descriptors a signed
integer constant scale factor followed by the letter P can precede the
specification. The magnitude of the scale factor must be between -8 and +8,
inclusive. The scale factor is defined for input as follows:

-(scale factor)
10 x external quantity internal quantity

For an F-type output, the scale factor is defined as follows:

+(scale factor)
external quantity = internal quantity x 10

For D- and E-type output conversion, the mantissa part of the output is
multiplied by lO**(scale factor) and the exponent is reduced by the scale
factor. A scale factor of lP causes a nonzero numeric to print to the left of
the decimal point, thus providing an extra digit of useful numeric output data
with no net increase in field width as compared to a scale factor of zero.

For G output conversion, if the range of the value is such that the
effective use is an F-conversion, the effect of the scale factor is suspended.
If the effective use of E-conversion is required, the effect is the same as for
E-output.

If input data is in the form xx.xxxx and it is intended for use internally
in the form .xxxxxx, then the FORMAT specification to affect this change is
2PF7.4. For output data, scale factors can be used with o-, E-, F-, and
G-conversion.

Example

The statement FORMAT {I2, 3Fll. 3) might output the following printed line:

But the statement FORMAT {I2,1P3Fll.3) used with the same data would output the
following line:

whereas, the statement FORMAT {I2,-1P3Fll.3) would output the following line:

A scale factor is assumed to be zero if no other value has been given.
However, once a value has been given, it holds for all o-, E-, F-, and
G-conversions following the scale factor within the same FORMAT statement. This
applies to both single-record formats, multiple-record formats, and to repeated
pqrtions of formats • Once the scale factor has been given, a subsequent scale
factor of zero in the same FORMAT statement must be specified by OP. For F-type
conversion, the output of numbers with an absolute value greater than or equal
to 235. after scaling, is output in E-convers ion. Scale factors have no effect
on I- and 0-conv~rsion. ·

5-5 DG75

Multiple Record Formats

When the list of an input or output statement is used to transmit more than
one record with different formats, a slash (/) is used to separate the format
specifications for the different lines. For example, if two records are to be
read with a single READ statement and the first has a five-digit integer and the
second has five real numbers, the FORMAT statement could be:

FORMAT (I5/5El0.3)

It is also possible to specify a special format for the first (one or more)
records and a different form.at for subsequent records. This is done by
enclosing the last record specifications in parentheses. For example, if the
first card in a deck has an integer and a real number and all the following
cards contain two integers and a real number, the FORMAT statement might be:

FORMAT (I6,El0.3/(2I6,El2.3))

If a multiple-line format is desired in which the first two lines are to be
printed according to a special format, and all remaining lines according to
another format, the last line specification should be enclosed in a second pair
of parentheses.

Example

FORMAT (I2,3El2.4/2Fl0.3,3F9.4/(10Fl2.4))

If data items remain to be output after the format specification has been
completely "used", the format repeats from the last previous left parenthesis
that is at level 0 or 1. The various levels of parentheses are illustrated
below. The parentheses labeled 0 are zero level parentheses; those labeled 1
are first level parentheses; and those labeled 2 are second level parentheses.

Example

FORMAT (3E 10. 3, (12, 2(F12. 4, F 10. 3)) , 02 8. 1 7)
0 1 2 21 0

If more items in the list are to be transmitted after the format statement
has been completely used, the FORMAT repeats from the last first-level left
parenthesis (i.e., the parenthesis preceding 12).

NOTE: In the examples above, both the slash
parenthesis of the FORMAT statement are
termination of a record.

5-6

and the
used to

final right
indicate the

DG75

Slashes have the following affect in a format statement:

Location of Slashes
in Format

Blank Lines
Printed

Input Records
Skipped

Beginning
Middle
End
(Format has
slashes only)

Carriage Control

n
n-1
n-1

n

n
n-1
n

n

The WRITE (file, form), PRINT, and PRINT form, statements prepare fields in
edited format for the printer. The first character of each record is examined
to see if it is a control character to regulate the spacing of the printer. If
the first character is recognized as a control character, it is replaced by a
blank in the printed line and the line printed after the proper spacing has been
affected. This control is usually obtained by beginning a FORMAT specification
with lH~ followed by the desired control character.

Output Device Control

In the absence of a NOSLEW option on a $ FFILE control card (batch mode
only), the spacing of the printing on the output device is controlled by the
first character of the line of output. The first character of the print line is
examined to determine if it is a control character to regulate the spacing of
the output device. If the first character is recognized as a control
character, the line is printed after the proper spacing has been affected. The
control character is blank when the line is printed. This control affects
printers, terminals, and displays. When FORMAT (V) is used, either explicitly
or implicitly, a blank character is inserted to advance the printer to the next
line.

The control characLers produce the following effects:

First
Character

0

+

l

&

Any other

Effect

Causes one blank line to be inserted to provide double
spacing.

Causes an overprint. In batch, no advance to the next
line occurs. In time sharing, a carriage return is
obtained but no line feed occurs.

Causes a slew to the top of the next page before
printing (batch mode only) •

Suppresses carriage return and line feed. No fill
characters are inserted (time sharing mode only) •

Causes single line spacing.

NOTE: If a single question mark character or single exclamation point
character is encountered in any position on the print line, these
characters will be interpreted as special printer control characters
(refer to the File and Record Control manual for additional

~~ '

information) •

5-7 DG75

Input Data

When data to be input to the object program is under format control, the
following specifications are required:

• The data must correspond in order, type, and field designation with
the field specifications in the FORMAT statements.

• The data field can be shortened by using commas for delimiters (i.e.,
the input record can contain l,~~2~~3, for the format specification
3I6; the input values will be 1, 2, 3).

• If a negative number is to be indicated, the minus sign must be used;
the plus sign is optional for a positive number.

• Blanks in a numeric field are interpreted as zero.

• Numbers for E- and F- conversion can designate any number of digits;
however, only the high-order eight digits of precision are retained,
and the number is rounded to eight digits of accuracy.

• Numbers for D- conversion can designate any number of digits;
however, only the high-order 18 digits are retained, and the number is
rounded to 18 digits of accuracy.

• Numeric data must be right-justified in the field.

The following procedures are permitted in the preparation of input data:

• Numbers for D- and E-conversion do not need to have four columns
allocated to the exponent field. The beginning of the exponent field
may be marked by a D or an E; if that is omitted, by a plus or minus
sign (but not a blank). For example, E2, E+2, +2, +02, and D+02 are
all permissible exponent fields.

• Numbers for D-, E-, and F-conversion do not need to contain a decimal
point; the format specification is sufficient. For example, the
number -09321+1 with the specification El2.4 is treated as though the
decimal point had been placed between the 0 and the 9. If the decimal
point is included in the field, its position overrides the position
indicated in the format specification.

Numeric Field Descriptors

Six field descriptors are available for numeric data:

Internal Conversion Code

r'loating-point
(double precision) D
Floating-point E
Floating-po~nt F
Floating-point G
Integer I
Integer or Flqating-
point o

External

Real with D exponent
Real with E exponent
Real without exponent
Appropriate type
Decimal Integer

Octal Integer

These numeric field des~riptors ar~ specified in the forms

PrDw.d, PrEw.d, PrFw.d, PrGw.d, riw, rOw,

5-8 DG75

where: D, E, F, G, I, and O represent the type of conversion.

w is an unsigned integer constant representing the field width for
converted data; this field width can be greater than required to
provide spacing between nwnbers.

d is an unsigned integer or zero representing the number of digits
of the field that app~ar to the right of the decimal point. For
double precision numbers d is limited to 18 and for real numbers,
d is limited to 8; d is right-justified in the field for both
double precision and real numbers.

P is optional and represents a scale factor designator.

r is the repeat specification; it is an
constant indicating the number of
field descriptor that follows.

optional nonzero integer
occurrences of the numeric

Example

The statement FORMAT (I2,El2.4,08,Fl0.4,D25.16) might cause the
following line to be printed

27~-0.9321E~0257734276~~~-0.0076~~-0.7878977909500672D~03

w=2 d=4 w=8 d=4 d=l6

w=l2 w=lO w=25
"'-..,J',.. ~~....__________,

12 El2.4 08 Fl0.4 025.16

where: ~ indicates a blank space.

o-, E-, F-, G-, I-, and 0-format conversions must follow these rules:

1. No format specification should be designated if it provides for more
characters (including blanks) than the number permitted for a
particular input/output record, or the capabilities of the relevant
device.

2. Information transmitted with the

• o- conversion must have real or integer names

• G- conversion must have real, double precision, or complex names

• E- conversion must have real, double precision, or complex names

• F- conversion must have real, double precision, or complex names

• I- conversion must have integer names

• D- conversion must have real, double precision, or complex names

5-9 DG75

3. The numeric field descriptor Gw.d indicates that the external field
occupies w positions with d significant digits. The value of the list
item appears, or is to appear, internally as a real datum.

Input processing is the same as the F-conversion with the exception of
sqale processin9.

The method of representation in the external output string is a
function of the magnitude of the real datum being converted. If N is
the magnitude of the internal datum the following tabulation exhibits
a correspondence between N and the equivalent method of conversion
that will be effected:

Magnitude
of Datum

O.lSNSl
lSNSlO

. .
lod-2 s N < lod-1
10d-l SN < lOd
Otherwise,

Equivalent Output Conversion
Effected

F(w-4) .d,4X
F (w- 4) • (d-1) , 4X

F(w-4).l,4X
F(w-4).0,4X
nPEw.d

NOTE: The effect of the scale factor is suspended unless the
magnitude of the datum to be converted is outside of the range
that permits effective use of the F-conversion.

4. The field width w, for D-, E-, F-, and G-conversions, must include a
space for a decimal point and a space for the sign. The D-, E-, and
G-conversions also require space for the exponent. For example, for
D- and E- and G-conversions on output, w > d+6, and for F-conversion,
w > d+2.

5. The exponent, which can be used with D- and E-conversions, is the
power of 10 to which the number must be raised to obtain its true
value. The exponent is written with an E (for E-conversion) or D (for
D-conversion) followed by a minus sign if the exponent is negative or
a plus sign or a blank if the exponent is positive, and then followed
by two numbers that are the exponent.

Example

.002 is equivalent to the number .2E-02.

6. For D-conversion input, up to 19 decimal digits are converted and the
result is stored in a double word. For D-conversion output, the two
storage words representing the double precision quantity are
considered one piece of data and converted as such.

7. If a number to be output requires more spaces than are allowed by the
field width w, the field is filled with asterisks, unless subroutine
NASTRK is invoked (refer to Table 6-4). If the number requires fewer
than w spaces, the leftmost spaces are filled with blanks.

If the field width is
nonfunctional leading zero
will be suppressed and the
number, the minus sign
suppressed zero.)

exceeded solely because the presence of a
to the left of the decimal point, that zero
number will be printed. (For a negative
will occupy the former position of the

5-10 DG75

8. The output field is filled with blanks if the output number is
+377777777777a(noise word), unless octal conversion is used.

9. Specifications for successive fields are separated by commas and/or
slashes (refer to "Multiple Record Formats" in this section).

Complex Number Fields

Since a complex quantity consists of two separate and independent real
numbers, a complex number is transmitted either by two successive real number
specifications or by one real number specification that is repeated (e.g.,
2El0.2 = El0.2,El0.2). The first specification supplies the real part; the
second specification supplies the imaginary part. The following FORMAT
statement transmits an array of six complex numbers.

Example

FORMAT (2El0.2, E8.3, E9.4, El0.2, F8.4, 3(El0.2, F8.2))

Alphanumeric Field Descriptors

Alphanumeric information can be transmitted in two ways that result in the
storing of BCD or ASCII characters (as determined by the compilation option) •

INPUT

1. The specifications rAw and rRw cause character data to be read into or
written from a variable.

2. Alphanumeric information (i.e., character constants) is introduced
into a FORMAT statement by specifying nH, enclosing the string in
quotation marks, or enclosing the string in apostrophes.

If w is equal to or greater than s, the rightmost s characters are taken
from the input field. The I/O pointer is advanced in accordance with the field
width of the format specifier. If w is less than s, then w characters are taken
from the input field. With A conversion, the data appears left-justified with
s-w trailing blanks in the internal representation. For R conversion, the
internal representation is right-justified with s-w leading zeros. ,

where: w is the field width from A or R specification
s is the size specification of a character variable as specified in

the CHARACTER statement.

5-11 DG75

OUTPUT

If w is greater than s, then s characters are transmitted to the output
field preceded by w-s blanks for R conversion, or followed by w-s blanks for A
conversion. If w is less than or equal to s, the output field consists of w
characters from the internal representation. With A conversion the w leftmost
characters are transmitted; with R conversion, the w rightmost characters are
transmitted.

where: w is the field width for A or R specification
s is the size specification of a character variable as specified in

the CHARACTER statement

The R code is equivalent to the A code; however, the characters are
right-justified with leading alphanumeric zeros in the internal representation
of the R code on input.

When the variable associated with an A or R format is not specified as type
CHARACTER, the variable is treated as a character variable with a size of one
word of storage (i.e., 6 characters for BCD; 4 for ASCII).

Logical Field Descriptor

Logical variables can be read or written using the specification Lw, where
L represents the logical type of conversion and w is an integer constant that
represents the data field width.

On input, a value representing either true or false is stored if the first
nonblank character in the field of w characters is a T or an F, respectively.
If all the w characters are blank, a value representing false is stored. On
output, a value of .TRUE. or .FALSE. in storage causes w-1 blanks to be
written followed by a T or an F, respectively.

Character Positioning Field Descriptors

The X and T field descriptors enable a specified number of characters in
the record to be skipped. On output, the X descriptor causes a specified number
of spaces to be inserted in the external output record.

X FORMAT CODE

The field descriptor for space characters is nX. On input, n characters of
the external input record are skipped. On output, n space characters are
inserted in the external output record. If n = O, a value of one is assumed.

T FORMAT CODE

The field descriptor for tabulation is Tt where t is the position in a
FORTRAN record where the transfer of data is to begin. The t is an unsigned
integer constant, which specifies that tabbing can proceed backward as well as
forward. This format code permits input or output to begin at any specified
position.

5-12 DG75

Variable Format Specifications

Any of the formatted input/output statements (including ENCODE and DECODE)
can contain a character scalar or an array name in place of the reference to a
format statement label. At the time a variable is referenced in such a manner,
the first part of the information must be character data that constitutes a
valid format specification, (e.g., (I4)). There is no requirement on the
information following the right parenthesis that ends the format specification.

The format specification (the value of the variable referenced} must have
the same form as that defined for a FORMAT statement, without the word FORMAT.
Thus the character text of the specification begins with a left parenthesis and
ends with a matching right parenthesis.

The format specification can be defined by a data initialization statement,
by a READ statement with an A format, by use of a character replacement
statement, or by ENCODE.

In the following example, A, B, and part of the array C are converted and
stored according to the FORMAT specifications read into the array FMT at
execution time.

DIMENSION FMT (12), C(lO}
1 FORMAT (12A6)

READ (5,1) FMT
READ (5,FMT) A,B, (C(I}, I=l,5}

A similar example follows, using a character scalar for the variable
format.

DIMENSION C(lO)
CHARACTER FMT*72

1 FORMAT (A72)
READ (S,l)FMT
READ (5,FMT) A,B,(C(I),I=l,S)

5-13 DG75

NAMELIST INPUT/OUTPUT STATEMENTS

NAMELIST input/output is indicated by the presence of a NAMELIST name in
the format reference position of the READ, WRITE, and PRINT statements. The
NAMELIST statement and its associated list must appear before any input/output
statement referencing the NAMELIST name.

When a READ statement refers to a NAMELIST name, the designated input
device is made ready and input of data is begun. The first input data record is
searched for a "$" immediately followed by the NAMELIST name, which is followed
by a comma or one or more blank characters. If the search fails, additional
records are examined consecutively until there is a successful match or an
end-of-file. When a successful match is made of the NAMELIST name on a data
record and the NAMELIST name referred to in a READ statement, data items are
converted and placed in storage.

Format l

READ (file,name-l,optl,opt2)

Format 2

READ n azne-2

where: file is the file reference

name-1 and name-2 are namelist names

optl is the error condition transfer

opt2 is the end-of-file condition transfer

NOTE: Format 2 issues a read request to the standard system input
device

Any combination of the four types of data items, which are described below,
can be used in a data record. The data items must be separated by commas, and
empty fields (=,), (~,), or (,,) cause an invalid word to be stored. If more
than one physical record is needed for input data, the last item of each record
must be followed by a comma. The end of a group of data is signaled by a $
following the last item either in the same data record as the NAMELIST name or
anywhere in any succeeding records. The $ can replace the comma following the
last data item. Data is restricted to columns 1 through 72 in card image (media
code 2). The $ that indicates the end of a logical record of input data cannot
appear in column 1 since GCOS input processing will retain it as a pseudo
control card, and delete ~ · ~rom the input data file.

5-14 DG75

Data items can take the form

• Variable name

CON = 17.5
X(6) = 26.4

constant

where the variable name can be
variable name with a maximum of six
integer constants.

an array element name or a simple
characters; subscripts must be

• Array name = set of constants (separated by commas)

x = 1.,2.,3.,5*6~3

where k* constant can be included to represent k constants (k must be
an unsigned integer) • The number of constants must not exceed the
number of elements in the array.

• Subscripted variable = set of constants (separated by commas)

Y(4) = 9.,6.,10*1.8

where k* constant can be included to represent k constants (k must be
an unsigned integer). A data item of this form results in the set of
constants being placed in array elements, starting with the element
designated by the subscripted variable.

The number of constants given cannot exceed the number of elements in
the array that are included between the given element and the last
element in the array, inclusive.

• Variable I/Variable 2 = constant(s)

where Variable 1 is a counter that is set after the data has been
input, indicating the number of constants that have been stored for
Variable 2.

Constants used in the data items can be

• Integers

• Real numbers

• Double precision numbers

• Complex numbers

• Logical constants

• Character data where the character string does not exceed the space
available on the card; this cannot be used with a repeat count.

5-15 DG75

Logical or complex constants should be associated only with logical or
complex variables, respectively; character data can be associated with any type
of variable. The other types of constants can be associated with integer, real,
or double precision variables and are converted in accordance with the type of
variable. With the exception of the character data, blanks must not be embedded
in a constant or repeat count field, but they can be used freely elsewhere
within a data record.

Character data may be delimited by a blank if it
embedded blanks. It can also always be delimited
quotation marks.

does not contain any
by nH, apostrophes, or

Any selected set of variable or array names belonging to the NAMELIST name
that is referred to by the READ statement, can be used as specified in the
preceding description of data items. Names that are made equivalent to these
names cannot be used unless they also belong to the NAMELIST name.

In the following examples, the arrays A, I, and L, and the variables B and
J, belong to the NAMELIST name, NAMl; the array A, and the variables C, J, and
K, belong to the NAMELIST name, NAM2.

and

DIMENSION A(lO) ,I(S,5) ,L(lO)
NAMELIST /NAM1/A,B,I,J,L/NAM2/A,C,J,K

123456

First Data Card $NAM1 I(2,3)=5,J=4.2,B=4,

Second Data Card A(3)=7,6.4,L=2,3,8*4.3$

NOTE: The $ sign in the first data card is not in column one.

If
with

•

•

•

•
•
•
•

•
•

•

this input data is used with the NAMELIST statement illustrated above
a READ statement, the following actions take place.

The input file designated in the READ statement is prepared and the
next record is read.

The record is scanned for a $ immediately followed by the NAMELIST
name, NAMl.

Because the search is successful, data items are converted and placed
in storage.

The integer constant 5 is placed in I(2,3) •

The real constant 4.2 is converted to an integer and placed in J •

The integer constant 4 is converted to real and placed in B •

Since no data items remain in the record, the next input record is
read.

The integer constant 7 is converted to real and placed in A(3) •

The real constant 6.4 is placed in the next consecutive location of
the array, A(4).

Since L is an array n~e not followed by a subscript,
L(lO) are filled with the succeeding constants.
integer constants 2 and 3 are placed in L(l) and L(2),

5-16

L(l) through
Therefore, the
respectively.

DG75

• The real constant 4.3 is converted to an integer and placed in L(3)
thro11gh L(lO).

• The $ signals termination of the input for the READ operation.

Output

When data is output via NAMELIST (e•g., WRITE(6,NAM1)), all variables in
the NAMELIST statement will be output and the output values are labeled with an
appropriate variable name.

Format 1

WRITE (file,name-l,optl,opt2)

Format 2

(PRINT)
PUNCH name-2

where: file is the file reference

name-1 and name-2 are the NAMELIST names

optl is the error condition transfer

opt2 is the end-of-file condition transfer

NOTE: Format 2 directs output to the standard system print/punch output
device.

The format of the output can appear with or without comma separators.
Output directed to file 43 includes commas and, therefore, is in agreement with
the NAMELIST input format. Output can be directed to file 43 by either the
PUNCH statement or a WRITE statement referencing file 43. Output directed to a
file other than 43 does not include comma separators and, therefore, cannot be
processed by NAMELIST input. Figures 5-1 and 5-2 contain a sample program and
sample output from that program in the latter format.

5-17 DG75

~l~F(TS'l'-TIUT'"P""IJl-or rrxED PT ANO RFAL ·~qAyS

'ft .. !L 15T ~ET1

UiT Cl)
1 1
9 9

T \Tr

2
10

1· o.100DOOOOE 01
7 0.26457513E 01

o.14142136E 01
0.2828427tE 01

o.17:P05013E 01
o.Joooooooe 01

E,.O ~AHELJc;T SETl

'U"'E!.. IST
I NT Cl)

1
9

DfX (f)

«;ET2

1
9

2
10

1 o.1ooooooooooooooonoo u1
4 0.2000000000000000000 01
1 o.2645751J1106459o59D 01

io o.J16221166ul6837933D 01
01 0.3141592653589793240 01
~o-s 0~2--~n~.-200-~ o-o rr~-- ----irSAJ"
END ~AHELIST ~ET2

Cf114h isT
<I)

T T T T
r r r r
r r r r r
T T T T T

-~-,-,-,

T T T

r r r
r r r
r r r

0.141421356237309j0511 01
0.2236067977499789701 01
o.20284l71247461901on 01

- ll. :J00000011e 01

T T T T

T T
r r r r

r r ; ::- r

T T T

T ·r l

r r r r r
r r r r r

4 5 6

o.2ooooooof ~1 o.?2J60680E 01 0.24494897r;. o,
0.31622776F 01

4 5

o.11J2U50eU756887729D Ol
0.24494697427F31l~l0U rl
o.Joooooooooooooon~oo 01

T T T l T
T T T T

T T l f

r r r r

> I

T l

I t r
l T T

6

r r r r r
T T T T
T T T T

r
r
T T

r r
r r
T T

Ol. -n.350UOOOOE ~1
01, -n.J500000ttE 01
00, 0.66666600E 00

0.12n1111ilOnE 01. -r.,350u'l0CIOF rJ
u.12nnuonoe 01. -n.J51100060F Gl

n • • 2 on \l n ,. IJ i:: o J • - o • J 5 :i o o u 'Jo= n · o.1?000000.:
0 .12000Cn)OE
0 •. 1:\33330CIE
0.3333JJ0(1E ~a 7 u.666666n11e on

3"76'1
0.3141592~j~~~~)9j~40 01

u • 2 r; o n :1 r o f.1- n 1 1.J.H11·~ 1.11 E a:

OMEL l<:T SC:T3

Figure 5-1. Test Program for NAMELIST Output

5-18 DG75

8

U1
I

I-'
\0

0
(j)
....J
U1

-uifF[fS"r1fO'TlJ"UT" or nxED PT AND RfAL 4QQAYS

tf'ttit!Lt ST ~ET1
fNT (J>

1 1
9 9

T -n-r·
1 o.10000000E 01
7 0.26457513E 01

END ~AMELl~T SE Tl

2
10

0 .14142136E 01
O.t'8284271E 01

~C--Z-l)r--"'llP°!l fST OUTP!JT

·'lla-.e~ lST SET2
1 NT Cl >

3

o.173=>Cl50'3E 01
O.JOOOOOOOE 01

4 5 6

o.20000000F Gl 0.??360~80E Ol
0.31622776F "1

1 l 2 J 4 5 6
Q 9 lCi

·orx < r>
1 o.1oooooooooooooonnoo v1
' 0.2000000000000000000 Ol
1 o.264575131106459059D 01

10 0.31622??660168379330 01
PJ 0.3141592653589793240 01
oso2 n. 2oooooooeor--- ·-- ·-115~
ENO ~AMELl~T ~ET2

ExA14PLE 3

''lfllfE L. lff ~
L~ < l >

0.141421356237309~05~ 31
o.2236067977499789701 01
0.28284l712474619~101 Ol

ti.lOOnOOciilE 01

Q.17J~U~OPU75~887729D Pl
o.24494897427~311~100 ~1

o.Jnoooonoo0000000100 n1

0.(14494897<;. (l,

1 TTTTT TTTTT TTTTT TTTT'!' TTTTT '~~• ~.-rrr rrrrr T T
41 r r r r r • r r • r T r r r r r r r r T r T r r T T T r T r r r r T r r r r r r T T

Bl r r r r r r r r r r r r r • r r r r • r r r r 1 r r 1 r T r T T r r r r r r T r r r r •
121 T r .,. T T r r r r r ~ r r ~ r r • 1 .. r cc --,-1-> ·----·

1 O • 1? O O O o O O.: o J • - n • 3 5 o u n O o o E ·Jl IJ • 12 :i '";lo 11: :• : , - I" . 3 5 nu ri O (l 0 F ' 1 ~ . • ? J ~ u n r IJ ~ 0 1 • - O . J 5 '.l O 0 o 'Jo= 11 ·
4 0 • 12 O 0 Q 0 u 0 E O 1 , - n • 3 5 O 110 O 0 11 E O l 0 • 1 2 r, n u o n o r; ri 1 • - n . 3 5 n 0 t' l1 f, 0 F •. 1

CPX 0.3~333300E 00, 0.666b6600E no
y 0 • 3 3 3 3 J 3 0 ::i e: :J 0 7 \.) . b 6 b fl b h : I , F. 0 n ~ s :i 2 u . ?. r, ll n :. ;- 0 C..'· .'.'I 1 Q ' !'.3 I . 3 .J 'J p ·~ l Jr e \I ·~

il(l'f --~"76~
'" I o . 3 1 41 5 ct 2 6 ~ ~ 5 14 9 7 9 3 l 4 n o 1
£NO ~AMELi~! ~~·3

'3

8

L.---·~--...1

Figure 5-2. NAMELIST Output of Fixed Point And Real Arrays

INTERNAL DATA CONVERSION

The ENCODE and DECODE statements are similar to the formatted WRITE and
READ statements, respectively, although the ENCODE/DECODE statements do not
cause input/output to take place. They cause data conversion and transmission
to take place between an internal buffer area and the element$ specified by a
LIST. The forms of the ENCODE and DECODE statements are:

ENCODE (a,t,opt2)list
DECODE (a,t,opt2)list

where: ~ is the internal buffer

t is the format reference

opt2 is the error condition transfer

list is the input/output specification

NOTE: The internal buffer area "a" is designated by the first operand
within the parentheses and can be designated as

• A character scalar

• A character array element

• An array

When the buffer area is designated as a scalar, it is analogous to a print
line for ENCODE where the print line is as long as the buff er area in
characters. For DECODE, the buffer area is analogous to a card or record image,
where the record size is equal to the size of the buffer in characters.

Multiple Record Processing

An analogy can be drawn between character array elements and records.
Consider the following example that converts character data to integer type:

CHARACTER TEXT*48(10)
INTEGER DATA (50)
DO 100 I=l,50,5

100 DECODE (TEXT(I/5+1) ,101) (DATA(J) ,J=I,I+4)
101 FORMAT (5!7)

Examination of the format and list reveals that 50 items are to be
converted, 5 items per record; hence, 10 records are required. The character
array TEXT has 10 elements that are treated as records, each element being 48
characters long. The format requires 35 characters of each element (5 x 7).
Thus, the first 35 are processed~

5-20 DG75

The same result can be accomplished if the list and format specifications
cover the full 10 records as follows:

CHARAcrER TEXT *48(10}
INTEGER DATA (50)
DECODE (TEXT,10) DATA

10 FORMAT (5!7)

In a BCD mode program (six characters per word), the same result can also
be accomplished with an internal buffer of type INTEGER as follows:

INTEGER TEXT (8,10}, DATA(50)
DECODE (TEXT,10) DATA

10 FORMAT (517)

If the same program is compiled in the ASCII mode, the format specification
describes 35 character records, while the array has provisions for only 32 (8*4)
characters per "record". This word size/byte size p.::oblem is eliminated by the
character data type since

CHARACTER TEXT *48(10)

is valid for both modes. In BCD, the equivalent of an 8 x 10 array is
allocated; in ASCII, the equivalent of a 12 x 10 array is allocated. The source
program is character set independent. For this reason the preferred type of the
internal buffer argument of the ENCODE and DECODE statements is CHARACTER.
Warning diagnostics are posted when this is not the case, as in the third
example.

Editing Strings with ENCODE

With ENCODE, characters not processed are left unchanged.

Example

CHARACTER TEXT*20
TEXT = "WOW IS THE TIME FOR ''
ENCODE (TEXT,10) "NOW"

10 FORMAT (A3)
20 PRINT, TEXT, "ALL GOOD MEN"

STOP;END

The execution of statement 20 causes the following to be printed:

NOW IS THE TIME FOR A~L GOOD MEN

If the editing is intended to be used to skip characters, the T format
should be used rather than the X format (the X format would cause blanks to be
inserted into the string).

Example

10 CHARACTER TEXT*40
20 TEXT = "NOW IS THE TIME FOR ALL GOOD MEN"
30 ENCODE(TEXT,lQ) "PERSONS"
40 10 FORMAT (T30,A7)
50 PRINT, TEXT
60 STOP;END

s-21 DG75

The execution of this program causes the following to be printed:

NOW IS THE TIME FOR ALL GOOD PERSONS

Conditional Format Selection

A problem common in FORTRAN programs arises when the format of the next
record cannot be determined without first reading it. This problem can be
overcome through the capability of the DECODE statement. As an example,
consider that input to a program is in card form, and the cards come in one of
three formats. When card column 1 contains a O, the first format is to be
applied; when it contains a 1 the second; and 2 the third. The following
subroutine could be used:

SUBROUTINE READ (A,I,Z)
CHARACTER CARD*79
READ 101,KOLl,CARD

101 FORMAT(Il,A79)
GO TO (200,300,400) ,KOLl+l

200 DECODE (CARD,201) A,I,Z
201 FORMAT (Tll,Fl2.6,3X,I5,El2.6)

RETURN
300 DECODE (CARD,301) A,Z,I
301 FORMAT (Tll,2Fl2.6,3X,I5)

RETURN
400 DECODE (CARD,40l)I,A,Z
401 FORMAT (T51,I5,2El2.6)

RETURN ; END

Another similar problem has to do with the building of format
specifications at run time for subsequent use in input processing. As an
example, consider that some data file is interspersed with control cards that
specify the amount and format of ensuing data. The first field of the control
card gives the number of data items that is read; the second gives the number of
fields per card (up to 20) or is zero indicating "use the previously developed
format"; the remaining fields on the control card come in pairs and provide "w"
and "d" sizes for "F" Format specifications needed for correct conversion of
each data item; the control card is in free-field format with comma separators.
The following subroutine reads and verifies control cards, builds format
specifications, and reads a set of data:

SUBROUTINE READ (A,I)
DI MENS ION A (I)
INTEGER WD (40)
CHARACTER FORM*SO/" 11

/

READ,N,J, (WD(L) ,L=l, MINO (2*J ,40))
IF (N.GT.I .OR.. N.LT. 1) STOP "ITEM COUNT ERROR"
IF (J.GT.20 .ORo J.LT.O) STOP "FIELD COUNT ERROR"
IF (J.EQ.O .AND .. FORM.EQ. 11 ")STOP "UNFORMED FORMAT ERROR"
IF (J) ,200,
NCOL = 0
DO 50 L=l,2*J,2
IF (WD(L+l) .LT. 0 .OR. WD(L+l) .GT.8)GO TO 300
IF (WD(L) .LT. WD(L+l)+2) GO TO 300

50 NCOL =NCOL + WD(L)
IF (NCOL .GT. 80)STOP "COLUMN COUNT ERROR"
FORM=" II

ENCODE(FORM,101) ("F" ,WD(L) ,WD(L+l) , 11
,

11
,

&L=l,2*J-2,2) , 11 F",WD(2*J-l) ,WD(2*J} 1
11

)
11

10 1 FORMAT (II (" ! 2 0 (Al' I 2 ' II .. II , I2 I Al))

5-22 DG75

200 READ(OS,FORM) (A(L) ,L=l,N)
RETURN

300 PRINT 301, (L+l)/2, WD(L) ,WD(L+l)
301 FORMAT ("l FORMAT SPEC #",I3," IN ERROR. W=",IS, 11 D=",IS)

STOP" FIELD DESCRIPTOR ERROR"
END

The above examples also illustrate the use of a number of other FORTRAN
language features, most notably:

1. Expressions used:

a. as DO parameters

b. in an output list

c. as the index of a computed GO TO

2. The CHARACTER data type and A· format specifiers for long strings

3. Adjustable dimensions

4. The T (tabulation) format specifier

5. Null label fields on an arithmetic IF

6. STOP with display

Note also that the use of CHARACTER scalars of arbitrary size eliminates
program dependency on a character set. The above subroutine will run in ASCII
or BCD mode, without change.

LtST SPECIFICATIONS

When variables are to be transmitted, an ordered list of the quantities to
be transmitted must be included either in the input/output statements or the
referenced NAMELIST statements. The order of the input/output list must be the
same as the order in which the information exists or is to exist on the
input/output medium.

An input/output list is a string of list items separated by commas that can
be:

• An expression (output only)

• An implied DO

• An array name

• A scalar

• A constant (output only)

• An array element

and is processed from left to right. (Parenthesized sublists are permitted only
with implied DO's: redundant parentheses result in a fatal diagnostic.}

5-23 DG75

Examples

The following input/output list utilizing nested implied DO's

A,B{3), (C(I) ,D{I,K) ,I=l,10), {{E(I,J) I I=l,10,2) ,F(J,3) ,J=l,K)

implies that the information in the external input/output medium is arranged as
follows:

A,B(3) ,C(l) ,D(l,K) ,C(2} ,D(2,K) , •••• ,C(lO) ,D(lO,K) I

E(l,l) ,E(3,l) , •••• ,E(9,l) pF{l,3) I

E(l,2) ,E(3,2) , •••• ,E(9,2) ,F(2,3) ,E(l,3) , ,F(K,3)

The result from the execution of an input/output implied DO list is a DO
loop, as though each left parenthesis (except expression and subscripting
parentheses) were a DO statement, with indexing given inunediately before the
matching right parenthesis, and the DO range extending up to that indexing
information. The order of the input/output list above can be considered
equivalent to the following:

A
B (3)
DO 5 I=l,10
C (I)

5 D(I,K)
DO 9 J=l,K
DO 8 I=l,10,2

8 E(I,J)
9 F(J,3)

Any number of quantities can appear in a single list. If more quantities
are in some input record than in the list, only the number of quantities
specified in the list are transmitted and the remaining quantities are ignored.
Conversely, if a list contains more quantities than are given in one input
record, more records are read and/or blanks are supplied, depending on the
FORMAT statement. In this case, blanks are supplied until the FORMAT triggers
the record advance. Thus, given a list of known length and a well defined
FORMAT, it can be accurately predicted how ~any records will be read, regardless
of the record lengths on the file. The following example

CHARACTER A*l (50)
READ (5,100) (A(I) ,I=l,50)

100 FORMAT (50Al)

will read only one record. If less than SO characters are present in that
record, the remaining elements of A will be blank ':illed. By changing the
format to 100 FORMAT(Al) the effect will be to read 50 records using the first
character of each record to fill the array. It is the right parenthesis that
causes the record advance. Alternately, a slash can be used to trigger a record
advance (refer to "Multiple Record Formats" in this section).

Short List I/O

By specifying an array name without subscripts in the list of an
input/output statement or a NAMELIS'r, an entire array can be read or written.
Only the name of the array is given and the indexing information.is omitted.

5-24 DG75

Example

DIMENSION A(S,5)

READ,A

where: the READ statement shown reads the entire array A; the array is
in column order in increasing storage locations, with the
subscript varying most rapidly, and the last subscript varying
rapidly.

List Directed Formatted Input/output Statements

stored
first
least

The following input/output statements enable a user to transmit a list of
quantities without reference to a NAMELIST name or a detailed FORMAT
specification. This is implied FORMAT(V) and the type of each variable in the
list determines the conversion to be used.

In all cases where a format.reference is supplied, the format must be of
the form FORMAT (V). The reference can be a FORMAT statement number, a
character scalar, or an array name. Table 5-1 gives the implied format
conversions that are used for list directed formatted input/output.

READ t, list
PUNCH t, list
PRINT t, list
READ , list
PRINT , list
PUNCH , list
READ (f ,t,optl, opt2) list
WRITE (f ,t,opt2) list

where: t is the statement label of a FORMAT(V) statement, a character
scalar, or an array name.

list is the input information

f is the file reference which is also the file code that can be a
positive integer constant, an integer variable, or an integer
expression of the range 01 ~ f $_ 63.

optl is the statement label or switch variable to be executed when an
end-of-file condition is encountered.

opt2 is the statement label or switch variable to be executed when any
I/O error is encountered.

5-25 DG75

Table 5-1. Implies Format Conversion

TYPE OF VARIABLE INPUT OUTPUT

Real E (or F) w.d OPE 16.8
Integer Iw Il6
Logical Lw L2
Double Precision D w.d OPD 26.18
Complex 2Fw.d OP2El6.8
Character Am Am

m = maximum size

With list directed formatted input, record control is determined solely by
the list. If some record is terminated and the list is not satisfied, another
record is read. This process continues until the list is satisfied.

The input information must satisfy the following rules:

1. Numeric and character input values are separated by commas or blanks.

2. Blanks following exponent indicators E, D, or G are not interpreted as
separators.

3. Quotes (") or apostrophes (') can be used to brdcket a character input
value that contains embedded blanks or commas. In this case, the
quotes are delimiters and should not be followed by a comma unless the
intent is to define a null field after the data.

4. A given input value must be fully contained on one input line.

5. Consecutive commas, an empty line, or the appearance of a comma as the
last character of a line imply null input fields. Conversion of a
null field is a function of the corresponding list item type and is
shown in Table 5-2.

Table 5-2. Conversion of a Null Field

TYPE VALUE

Integer 0
Real o.o
Double Precision O.DO
Complex (0, 0)
Logical F
Character all blanks

With list directed formatted output, record control is determined by the
list and the standard line lengths. With BCD files, the standard line length is
132 characters; with ASCII files, the standard length is 72 characters. A new
line/record is started when the next list item to be transmitted will not fit
entirely on the current line. F'or example, if information has been formatted to
character position 60 of an ASCII output line and the next item in the output
list is an integer (implied Il6 format), a new line is started.

5-26 DG75

Terminal End-of-File

When the input device is a time sharing terminal, an end-of-file condition
may be signaled by transmitting a file separator character (e.g., in Teletype
Models 33 and 35 control shift, L) as the only character of a line.

Formatted Input/output Statements

The formatted input/output statements apply to character-oriented records.
They are intended for use with the standard input/output devices but may also be
used with sequential files and can be expressed in any of the following forms:

Format 1

(
READ }
PRINT
PUNCH

format, list

Format 2

~ (file, format[,optl, opt2]) list

Format 3

WRITE (file, format, opt2) list

where: file is the file reference

format is the format reference

opt! is the end-of-file condition transfer

opt2 is the error condition transfer

list is the input/output specification

The file reference must be an unsigned integer constant with 5 and 41
assigned to the standard system input device; 6, 42, and 43 assigned to the
standard system output devices.

Unformatted Input/output Statement

The unformatted input/output statements apply to sequential files and
random files. The major difference between the unformatted sequential file and
the unformatted random file operation is in the mode of access to the file. To
write a file with the random WRITE statement, the file must be accessed as
random. Any attempt to apply a random READ/WRITE statement to a file accessed
as sequential causes a program to terminate abnormally.

5-27 DG75

File Properties

Sequential Files - A sequential file can contain zero, one or more records
accessed in a sequential manner.

Random Files

File Updating

Record Sizes

SEQUENTIAL FILES

- A random file consists
addressable (i.e., each
repositioning the file).
be of the same length.

of records, each of which is
record can be accessed without

Each record in the random file must

- Input-output routines with random files permit replacement of
individual records in a file. The execution of all random
file WRITE statements is considered a record replacement.

- Random files have records, all of the same length.

The unformatted sequential file input/output statements have the following
formats:

Format 1

~ (file,optl,opt2) list

Format 2

WRITE (f ile,opt2) list

Format 3

(READ) file
WRITE

where: ~ is the file reference

optl is the error condition transfer

opt2 is the end-of-file condition transfer

list is the input/output specification

NOTE: These statements apply to word-oriented serial access files (i.e., binary
sequential files).

5-28 DG75

RANDOM FILES

The unformatted random files created by FORTRAN are normally recorded in
standard system format. The unformatted random file input/output statements
have the following form:

Format

(READ)
WRITE

(file'n,opt2) list

where: file is the file reference

~ is an integer constant, a variable, or an expression that specifies
the sequence number of the logical record to be accessed.

opt2 is the error condition transfer

list is the input/output specification

It is a requirement that FORTRAN random files have a constant record size.
Furthermore, before any random I/O can be performed on any given file, its
record size must be defined. This is accomplished with either a $ FFILE control
card, in batch mode, or with a CALL to the (library) subroutine RANSIZ. Three
arguments may be supplied: the first is a file reference, the second provides
the record size. Each of these arguments can be any integer expression and are
required. The third argument is zero or not supplied when the file is in
standard system format. A nonzero value specifies a pure data file.

Example

CALL RANSIZ(OS,50,0)

This statement specifies that file code 08 has a constant record size of 50
words and is in standard system format.

Linked files can be accessed in a random mode by using a CALL ATTACH and
specifying random mode. Random files can also be written in a "pure data"
format, without block serial numbers or record control words. This can be
accomplished by one of the following:

$ FF ILE
or

CALL

U,NOSRLS,FIXLNG/N (batch mode only)

RANSIZ(U,N,l)

where: u and N are the file reference and logical record size parameters.

FILE HANDLING STATEMENTS

File handling statements provide for the manipulation of input/output
devices for positioning of sequential files and demarcation of sequential files.
The following file handling statements are described in Section III:

REWIND
BACKSPACE
EN OF ILE

5-29 DG75

SECTION VI

SUBROUTINE AND FUNCTION STATEMENTS

The three basic elements of scientific programming languages -- arithmetic,
control, and input/output -- are given added flexibility through subroutines.
Subroutines are program segments executed under the control of another program
and are usually tailored to perform some often-repeated set of operations. A
subroutine is written only once, but can be used again and again; it avoids a
duplication of effort by eliminating the need for rewriting program segments for
use in conunon operations.

There are four classes of subroutines in FORTRAN:

• Arithmetic statement functions (ASF)

• Built-In intrinsic functions

• FUNCTION subprograms

e SUBROUTINE subprograms

The major differences among the four classes are

1. The first three classes can be grouped as functions

2. In the first three classes

• A function has a single value in an expression

• A function is referred to by an expression containing its name; a
subroutine is referenced by a CALL statement

3. The first two classes are open subroutines (i.e, incorporated into the
object program each time there is a reference in the source program).
The latter two classes are closed (i.e., they appear only once in
object form).

NAMING SUBROUTINES

All four classes of subroutines are named in the same manner as a FORTRAN
variable. External subroutine names (i.e., FUNCTION and SUBROUTINE subprograms)
have the additional requirement that they be unique within the first six
characters. The following rules are ap~licable for all four classes:

l. A subroutine name consists of one to eight alphanumeric characters,
the first of which must be alphabetic.

6-1 DG75

2. The type of a function, which determines the type of a result, is
defined as follows:

a. The type of a FUNCTION subprogram can be indicated by the name of
the function or by writing the type (REAL, INTEGER, COMPLEX,
DOUBLE PRECISION, LOGICAL, CHARACTER) preceding the word
FUNCTION. In the latter case, the type implied by its name is
overridden. The type of the FUNCTION subprograms in the
Subroutine Library (the mathematical subroutines) is defined.
Therefore, they do not need to be typed elsewhere.

b. The type of a built-in intrinsic function is indicated within the
FORTRAN compiler and does not need to appear in a type statement.

c. Arithmetic statement functions have no type.

3. The name of a SUBROUTINE subprogram has no type and should not be
defined, since the type of results returned is only dependent upon the
type of the arguments returned by that subroutine.

ARITHMETIC STATEMENT FUNCTIONS

An arithmetic statement function is defined internally to the program unit
in which it is referenced. It is defined by a single statement similar in form
to the arithmetic assignment statement.

NOTE: In a given program unit, all statement function definitions must precede
the first executable statement of that program unit. The name of a
statement function must not appear in EXTERNAL, COMMON, EQUIVALENCE,
NAMELIST, or ABNORMAL statements as a scalar name, or appears as an array
name, in the same program unit.

An arithmetic statement function is defined by the format

function (arg [, •••]) = exp

where: function is the function name

arg is a symbolic name (referred to as a dummy argument)

~~ is an expression

The purpose of the durruny argument is to indicate the order and the number
of arguments. Arg can be actual variable names that appear elsewhere in the
program unit with the following except{ons:

• EXTERNAL names

• ABNORMAL names

• PARAMETER names

• NAMELIST names

• SUBROUTINE, FUNCTION, or ENTRY names

• Arithmetic statement function names

6-2 DG75

Exp can be specified with expressions which may include

• Constants

• Scalar references

• Intrinsic function references

• References to other arithmetic statement functions

• External function references

• Array element references

• Indeterminate references

The last item in the above list, indeterminate references, covers the
where a dummy argument symbol appears in exp as the reference arg (exp).
syntax can imply a function reference or an array element reference.
decision is made each time the arithmetic statement function is referenced,
is determined by the actual argument in the ASF itself.

Example

l DIMENSION P(lO)
2 F(A,B)=A(K)+B(K)
3 X=F(P,SIN)

Expansion of line 3 produces an equivalent assignment statement

3 X = P(K)+SIN(K)

case
This

The
and

NOTE: The first expression term is an array element reference while the
second is a function reference.

Arithmetic Statement Function Left of Equals

An arithmetic statement function can be referenced on the left hand side of
the equal sign in an assignment statement; however, it must expand into a scalar
variable or an array element.

Example

AA (I,J) = J(I)
DIMENSION K(lO)

AA (3,K) 4*X (This expands to K(J)

6-3

4*X)

DG75

Referencing Arithmetic Statement Functions

A statement function is referenced by using its name with a list of actual
arguments in standard function notation in an expression. The actual arguments,
which constitute the argument list, must agree in number with the dummy
arguments in the 1function definition. An ,actual ar%Jument in a statement
function reference can be any expression if the corresponding dummy argument
appeared as a scalar reference. If the corresponding dummy argument appears as
an indeterminate reference, then the actual argument must be an array or
function name.

Execution of a statement function reference results in the association of
actual argument values with the corresponding dummy arguments in the function
definition, and an evaluation of the expression. The resulting value is then
made available to the expression that contained the function reference.

Arithmetic statement functions have ~o type at the time of definition
unless they have been explicitly typnd~ Type is introduced at the time of
reference when the actual arguments are substituted for the dummy arguments.
The arithmetic statement function is typed according to its actual arguments.
If the arithmetic statement function expansion contains a combination of types,
the respective types are examined according to the stated order of type
dominance. The type of the recessive primary is converted to that of the
dominant primary (if necessary) and the operation is performed.

NOTE: An explicitly typed arithmetic statement function retains that type
regardless of its argument type.

Examples

D(I,J) = I + J
PRINT' D (1, 2) 'D (1, 2. 0) I D (1. 0, 2. 0)
STOP; END

results would be: 3, 3.0EOl, 3.0EOl

INTEGER D
D(I,J) = I + J
PRINT, D(l,2), D(l,2.0), D(l.O, 2.0)
STOP; END

results would be: 3,3,3

At time of reference, the actual arguments are substituted for the dummy
argument symbols. Type is introduced at this time and any ambiguities (such as
the indeterminate reference described above) are resolved. References to other
functions are classified as intrinsic, external, or other arithmetic statement
function, at this time al.so. Thus, to reference another arithmetic statement
function, the definition of that function may follow the definition of, but must
precede any references to, this referencing function.

6-4 DG75

Examples

Defined

ROOT (A,B,C)=(-B+SQRT(B**2-4*A*C))/(2*A)

Referenced

ANS ROOT(l6.9,20.5,T+30)

BUILT-IN INTRINSIC FUNCTIONS

All functions in Table 6-1, except FLO, AND, OR, XOR, BOOL, and COMPL, are
the standard FORTRAN intrinsic functions. The forty functions listed in the
table are the built-in intrinsic functions supplied· with FORTRAN. These
intrinsic functions (with the exception of two functions) require only a few
machine instructions and are inserted each time the function is used. To use
these functions, it is necessary to write their names where needed and enter the
desired expression(s) for argurnent(s). The names of the functions are
established in advance and must be written exactly as specified.

6-5 DG75

°' I

°'

0
G)
.....i
U'1

Table 6-1. Built-in Intrinsic Functions

Generic
Name for

Intrinsic Number of Automatic Specific
Function Definition Arguments Typing Name

Type Conversion 1
Conversion to Integer INT

int(a) IFIX
See Note l I DINT

Conversion 1 FLOAT
to Real SNGL
See Note 2 REAL

Conversion 1 DBLE
to Double
See Note 3

Conversion 2 CMPLX
to Complex
See Note 4

Truncation int (a) 1 AIN'I
See Note 1

Obtaining
'~' 1 ABS IABS

Absolute ABS
Value See Note 5 DABS

(~**2+ai**2)**.5 CABS 1

Remaindering al-int(al/~2)*a2 2 MOD MOD
See Note 1 AMOD

DMOD1

lexternal function

T.Y£.e of
Argument Function

Real Integer
Real Integer
Double Integer

Integer Real
Double Real
Complex Real

Real Double

Real Complex

Real Real

Integer Integer
Real Real
Double Double
Complex Real

Integer Integer
Real Real
Double Double

°' I
.....

8
" V1

Intrinsic
Functf on

TransTerring
Sign

Obtaining
Positive
Difference

Choosing
Largest
Value

Choosing
Smallest
Value

Obtaining
Imaginary
Part of
Complex
Argument

·conJugating
Complex
Argument to
Real

Table 6-1 (cont). Built-in Intrinsic Functions

Generic
Name for

Number of Automatic Specific Type of
Definition Arguments Typing Name Argument Function

T!!I if a2 ~ o 2 SIGN I SIGN Integer Integer
-!all if a2 < 0 SIGN Real Real

DSIGN Double Double

al-a2 if al> a2 2 DIM IDIM Integer Integer
-0- if al< a2 DIM Real Real

DDIM Double Double

max (~1 a2, •••) 2 or more MAX MAXO Integer Integer
MAXI Real Integer
AMAXl Real Real
AMAXO Integer Real
DMAXl Double Double

min(!l,,a2, •••) 2 or more MIN MINO Integer Integer
AMINl Real Real
DMINl Double Double

- AMINO Integer Real
- MINl Real Integer

a I 1 - AIMAG Complex Real
see Note 6

(ar ,-ai) 1 - CON JG Complex Complex
See Note 6

O'\
I

co

0
Q
-...J

Intrinsic
Function

Logical "and"

Logical "or"

Logical
"exclusive or"

Ignore Type

Extracting7
Inserting Bit
Field

Logical One's
Complement

Table 6-1 (cont). Built-in Intrinsic Functions

Generic
Name for

Number of Automatic Specific Type of
Definition Arguments Typing Name Argument Function

a1*a2*· .. 2 or more AND Real Typeless
Integer

-...

a1+az+ ..• 2 or more OR Real Typeless
Integer
Typeless

a1~2ffi· • • 2 or more XOR Real Typeless
Integer
Typeless

1 BOOL Any Typeless
except
Logical

Beginning with #1, #2 Typeless
bit a 1of word a.:i Integer

b' - 3 FLD #3 Any extract a 2 its
except
Logical

-a 1 COMPL Real Typeless
Integer

or
Typeless

Notes for Table 6-1:

1. For a of type integer, int(a)=a. For
precision, there are two casis: if a <
is the integer whose magnitude is-the
exceed the magnitude of a and whose sign
For example,

int(-3.7) = -3

~ of type real or double
1, int(a)=O; if a>l, int(a)
largest-integer that does not
is the same as the sign of a.

For a of type complex, int(a) is the value obtained by applying the
above rule to the real part-of a.

For ~ of type real, IFIX(~) is the same as INT(~) •

2. For a type real, REAL(a) is a. For a of type integer or double
precision, REAL (a) is as much precisTon of the significant part of a
as a real datum can contain. For ~ of type complex, RE..\.L (~) is the
real part of ~·

For ~of type integer, FLOAT (~) is the same as REAL (~).

3. For a of type double precision, DBLE (a) is a. For a of type integer
or real, DBLE (a) is as much precision-of the significant part of a as
a double precision datum can contain. For a of type complex, DBLE-(a)
is as much precision of the significant part of the real part of ~ as
a double precision datum can contain.

4. CMPLX (al,a2) is the complex value whose real part is REAL (al) and
whose imaginary part is REAL (a2) •

s. A complex value is expressed as an ordered pair of reals,
where ar is the real part and ai is the imaginary part.

CABS is defined as the absolute value of (ar**2+ai**2)**.5.

Argument Checking and Conversion for Intrinsic Functions

A number of checks on arguments used in the intrinsic functions are made by
the compiler. Due to the inline code expansion, the number of arguments
specified must agree with the number shown in Table 6-1. The argument type must
also agree with the type of the function with the exception of the typeless
intrinsic functions described below. Argument checking and/or conversion is
carried out by the compiler using the following general rules:

1. The hierarchy of argument types considered for conversion is integer,
real, double precision, and complex.

2. A generic intrinsic function call is transformed to the function type
that supports the highest level argument type supplied to it.

3. Arguments to a non-generic form of intrinsic function are converted to
conform with the function type specified. This is within the
constraints of the argument types integer through complex.

6-9 DG75

Automatic Typing of Intrinsic Functions

Use of the generic forms of the mathematical intrinsic functions allows for
the type of the function's value to be determined automatically by the type of
the actual arguments supplied (refer to Table 6-1). The six generic intrinsic
functions are

• Absolute value - ABS

• Remaindering - MOD

• Maximum value - MAX

• Minimum value - MIN

• Positive difference - DIM

• Transfer of sign - SIGN

This means that the inline code generated for DABS(D) and ABS(D) would be
the same assuming that the type of the variable D is double precision.

When arguments of different types are specified (i.e., functions allowing
more than one argument), the type of the function itself is determined by the
same rules that govern mixed mode expressions (refer to Table 4-1).

Typeless Intrinsic Functions

FLD

FLD is a typeless function that is used for bit string manipulation.

Format

FLD (i,k,e)

where: i is an integer expression in the range 0 < i < 35

k is an integer expression in the range 0 < k < 36

~ is any integer, real, or typeless expression; a word of character
data, or any of the typeless functions

This function extracts a field of k bits from a 36-bit string having the
value of e beginning with bit i {counted from left to right where the 0th bit is
the leftmost bit of e). The resulting field is right-justified and the
remaining bits are set to zeroe

6-10 DG75

Example

I = 64
J = FLD (29,1,I)
PRINT, "I = II I I
PRINT I II J = " , J

would result in the printing of

I 64
J 1

This intrinsic function can also appear on the left-hand side of the equal
sign in an assignment statement. When the FLO function is used in this manner,
it must not be the first executable statement of the program or it will be
interpreted as an arithmetic statement function.

Format

FLO (i,j,a) = b

where: i is an

i is an

a is a

b is an

The j rightmost
i.

Example

CHARACTER*4 A,B
A = 11 ABC0 11

B = "1234"
FLD (9,9,A) = B
PRINT, A
PRINT, B

integer expression

integer expression

scalar variable or

expression

bits of b will be

in the range 0 < i < 35

in the range 1 < j < 36

a subscripted variable

inserted into a beginning

Assuming ASCII characters, this would result in the printing of

A4CD
1234

6-11

at bit po;:;ition

0075

Additional Typeless Functions

The other five typeless functions are

Function Usage

AND (el,e2} Bit by bit logical product of el and e2.

OR (el,e2) Bit by bit logical sum of el and e2.

XOR (el,e2) Bit by bit "exclusive or" of el and e2.

The type of e is disregarded. BOOL (e)

COMPL (e) The one's complement of all bits in e are taken. The type
of e is disregarded.

The expressions of e can be of type !nteger, type real, or typeless; e can
also be a Hollerith word, the FLD word, or any of the typeless functions.

Examples:

Ml AND(l,K)

M2 OR(l,K)

M3 XOR(l,K)

M4 BOOL (K)

MS COMPL (K)

If all variables were of type integer, and the values of K were positive
and odd, the following statements would have the same effect as the
preceding examples:

Ml = l; M2 = K; M3 K -1; M4 K; MS -K -1

6-12 DG75

If the receiving variables, Ml through MS, were of type LOGICAL, the values
of the variables would be as follows:

K Ml M2 M3 M4 MS

0 F T T F T

1 T T F T T

2 F T T T T

3 T T T T T

4 F T T T T

5 T T T T T

6 F T T T T

7 T T T T T

8 F T T T T

9 T T T T T

where: T is true
F is false

If the receiving variables were of type REAL, the values are stored in the
locations of the receiving variables without conversion.

Character data type and integer data type operations can be mixed in the
time sharing mode by using the BOOL function. In the next example, two-element
array is employed to bypass the requirement of separating integer and character
variables.

Example:

010 902 FORMAT (lX,I6,lX,A4)
020 INTEGER IX(2)
030 IX(l)=63
040 IX(2)=BOOL("ABCD")
050 IF(IX(2).EQ.BOOL("ABCD")) PRINT, "OK"
060 WRITE(6,902) IX
070 STOP;END

*RUN
OK

63 ABCD

6-13 DG75

FUNCTION SUBPROGRAMS

Defining FUNCTION Subprograms

A FUNCTION subprogram is defined external to the program unit th
references it.

Format

t FUNCTION function (arg[, ••• J)
where: t is INTEGER, RE~~L, DOUBLE PRECISION, COMPLEX, LOGICJl

CHARACTER, or null

function is the symbolic name of the function to be defined

arg is referred to as a dummy argument and is a variable nan
an array name, or an external procedure name

The symbolic name of the function must appear at least once in
subprogram as a variable name in some defining context (e.g., left of the eqt
sign). The value of the variable at the time of execution of any RETl
statement in this subprogram is returned as the value of the function. Howeve
the symbolic name of the function must not appear in any nonexecutable stateme
in this program unit, unless it is the symbolic name of the function in t
FUNCTION statement or in a Type statement.

An abnormal FUNCTION subprogram can define or redefine one or more of
arguments to effectively return results in addition to the value of
function.

The FUNCTION subprogram can contain any statements except BLOCK DA~
SUBROUTINE, another FUNCTION statement, or any statement that directly
indirectly references the function being defined; but it must contain at lee
one RETURN statement.

If the function name appears in any of the following contexts, redef init:
of the function result is affected.

• Left of the equal sign in an assignment statement

• In the list of a READ statement

• In the list of a DECODE statement

• As the buffer name in an ENCODE statement

• As the induction variable of a DO loop

Redefinition can also occur if the function name appears in the argum1

list of a CALL statement or a reference to some abnormal external function.

NOTE: A function cannot be referenced in an input/output list if such
reference causes any input/output operation to be executed.

6-14 D

Supplied FUNCTION Subprograms

The functions listed in Tables 6-2 and 6-3 are the external FUNCTION
subprograms supplied with the FORTRAN compiler. Table 6-2 contains the supplied
mathematical library functions. Table 6-3 contains the supplied nonmathematical
external functions. To use these functions it is necessary to write the name
where it is needed and enter the desired expression(s) for argument(s).

The type of a mathematical library function cannot be changed
typing. However, implicit typing will affect the type of
nonmathematical function. If the type of the function is affected
typing, the function name must be included in an explicit type
obtain the desired results.

by implicit
an external
by implicit
statement to

Example

IMPLICIT INTEGER (P-Z)
REAL RANDT
A=RANDT(lO.O)

Argument Checking and Conversion for Supplied External Functions

A number of checks are made on the arguments used in the mathematical
library functions. The compiler checks the type of the arguments supplied and
makes conversions according to the following rules:

1. The hierarchy of argument types is integer, real, double precision,
complex.

2. If the arguments in a generic function call do not conform as to type,
the function call is transformed to the function type that supports
the highest level of the argument supplied to it.

3. Integer arguments are converted to the type of the function being
called.

4. The arguments of a non-generic form of external function are converted
to conform to the function type specified. This is within the
constraints of the argument hierarchy.

No tests or conversions are performed for
functions outlined in Table 6-3. The number
function call ~ agree with the number and type
Table 6-3.

the external non:mathematical
and type of arguments in the
of arguments specif fed in

Automatic Typing of Supplied Mathexnatic·al EXter·na'l' FUnc·tions

When the mathematical library functions in Table 6-2 are referenced by
their generic names, the function type is determined by the type of the
argurnent{s). This means that the use of ARCOS{D) would generate a call to
DARCOS(D) if the type of the variable D is double precision. The one exception
to this rule is when an integer argument is specified for a generic function.
In this case, the argument is converted from integer to real and the real form
of the function is called.

7/79 6-15 DG75A

The mathematical functions, listed by their generic names, which are
automatically typed are:

ACOS
ARCOS
ACOSH
ASIN
ARSIN
ASINH
ATAN
ATAN2
ATANH

cos
COSH
CBRT
EXP·
EXPlO
EXP2
EXPC
EXPC2
EXPClO

ALOG2
ALOGlO
ALOG
POW
SIN
SINH
SQRT
TAN
TANH

Note that the type of ATAN2 is double precision if at least one of its
arguments is double precision.

6-16 DG75

Table 6-2. Supplied External FUNCTION Mathematical Subprograms

No. of T_yE_e
Function ·Definition Arg. Name Arg.

Arccosinel C()S (a) l Acos2 Real
1 ARCOS Real

DACOS Double
DARCOS Double

Arccosine, Hyperbolic I co sh (a) 1 ACOSH Real
1 DACOSH Double

Arcsine I sin (a) 1 ASIN3 Real
ARSIN Real
DAS IN Double

1 DARSIN Double

Arcsine, Hyperbolic I sinh (a) 1 AS I NH Real
1 DASINH Double

Arctangent I tan (a) 1 ATAN Real
1 DATAN Double

tan (a/b) 2 ATAN24 Real
2 DATAN2 Double

Arctangent, Hyperbolic I tanh (a) 1 ATANH Real
1 DATANH Double

Cosine I cos(a) l cos Real
1 DCOS Double
1 ccos Complex

Cosine, Hyperbolic cosh (a) 1 COSH Real
1 DCOSH Double

Cube Root (a) 1 CBRT Real
1 DCB RT Double

Exponential ea 1 EXP Real
1 DEXP Double
1 CEXP Complex

Exponential 108 1 EXPlO Real
l DEXPlO Double

Exponential 2a 1 EXP2 Real
1 DEXP2 Double

•Arguments expressed in radians.
2Acos and ARCOS are the same function. Either name can be used.

DACOS and DARCOS are the same function. Either name can be used.
3ASIN and ARSIN are the same function. Either name can be used.

DASIN and DARSIN are the same function. Either name can be used.
4The y-axis must be the first argument specified.

7/79 6-17

of
Function

Real
Real
Double
Double

Real
Double

Real
Real
Double
Double

Real
Double

Real
Double

Real
Double

Real
Double

Real
Double
Complex

Real
Double

Real
Double

Real
Double
Complex

Real
Double

Real
Double

DG75A

I

I

Table 6-2 (cont). Supplied External FUNCTION Mathematical Subprograms

No. of Type of
Function Definition Arg. Name Arg. Function

Exponential Complement e 8 -l. 0 1 EXPC Real Real
1 DEXPC Double Double

Exponential Complement 28 -1. 0 1 EXPC2 Real Real
1 DEXPC2 Double Double

Exponential Complement 108 -1. 0 1 EXPClO Real Real
1 DXPClO Double Double

Logarithm, Base 2 log2 (a) 1 ALOG2 Real Real
1 DLOG2 Double Double

Logarithm, Common 10910 (a) l ALOGlO Real Real
1 DLOGlO Double Double

Logarithm, Natural loge(a) l ALOG Real Real
1 DLOG Double Double
1 CLOG Complex Complex

Power ab 2 POW Real Real
2 DPOW Double Double

Sinel sin(a) 1 SIN Real Real
1 DSIN Double Double
l CSIN Complex Complex

Sine, Hyperbolic! sinh(a) 1 SINH Real Real
l DSINH Double Double

Square Root (a) 112 1 SQRT Real Real
1 ·DSQRT Double Double
1 CSQRT Complex Complex

Tangent! tan(a) 1 TAN Real Real
1 DTAN Double Double

Tangent, Hyperbolicl tanh(a) 1 TANH Real Real
1 DTANH Double Double

1Arguments expressed in radians.

6-18 DG75

Table 6-3. Supplied External FUNCTION Nonmathematical Subprograms

No. of T.YE_e of
Function Usage Args. Arg. Function

Left Shift ILS (i,j) 2 Integer Integer

Right Shift IRS (i,j) 2 Integer Integer

Left Rotate ILR (i,j) 2 Integer Integer

Right Logical IRL (i,j) 2 Integer Integer

Set Switch Word ISETSW (i) 1 Typeless Integer

Reset Switch Word IRETSW (i) 1 Typeless Integer

Mode MODE (i} 1 Integer Integer

Compare KOMPCH 5 Character, Integer
(a,n,b ,m, f) Integer

Random Number RAND (range} 1 Real Real
Generator

Random Number RANDT (range} 1 Real Real
Generator

Random Number FLAT (seed) 1 Real Real
Generator

Random Number UNIFM2 (seed), 3 Real Real
Generator mean,width}

Shift Functions

The shift functions shift the contents of the memory location specified by
the integer variable i by j bit positions. (Refer to the Macro Assembler
Program (GMAP) manual for a description of shifting functions.)

Function

ILS(i,j)
IRS (i, j)
ILR(i,j)
IRL(i,j)

where:

Usage

Left shift i by j bit positions.
Right shift i by j bit positions.
Left rotate i by j bit positions.
Right logical i by j bit positions.

i and i are integer arguments

Set/Reset Program Switch Word

(Refer to the General Comprehensive Operating Supervisor (GCOS) manual for
a description of the program switch.word.}

6-19 DG75

Function

ISETSW(i)
IRETSW(i)

Set program switch word.
Reset program switch word.

The binary equivalent of the value of i determines the bit positions to be
set/reset in the program switch word; the function returns the new program
switch word configuration.

NOTE: Bits 0-17 of the program switch word cannot be changed when
operating in the time sharing mode.

Execution Mode Determination

The mode determination is specified by the format

MODE(i)

If i
execution.

1, the function value 0 for batch execution; l for time sharing

If i = 2, the function value
character mode.

0 for BCD character mode; l for ASCII

If i ~ 1 or 2, the function value is always -1.

Character String Compare

The character string comparison is specified by the format

KOMPCH (a,n,b,m,f)

where: a and b are character constants or variables
!1 ~' and ~ are integer expressions

String b, which begins at position m, is compared to string a, which begins
at position n; f characters are compared.

If b a, the function ·value = 0
If b is greater than a, the function value = +l
If b is less than a, the function value = -1

(Refer to Appendix A for BCD and ASCII character collation (sort) values.)

Random Nufnber Generators

There are four separate functions provided for producing a sequence of
random numbers. Each function providep a sequence of random numbers from a
uniform (rectangular) distribution, which means that the probability of any
number in the range occurring in the sequence is the same as any other number.

6-20 DG75

Calling Sequence

A = RAND (range)

where: O <A< range

The range must be a real constant or variable; the seed = 1. The same set
of random nwnbers is generated each time the program unit is executed.

Calling Sequence

A = RANDT (range)

where: O < A < range

I

I

The range must be a real constant or variable; the seed is based on the I
time of day. A different set of random nwnbers is generated each time the
program unit is executed.

Calling Sequence

A = FLAT (seed)

where: O <;A< 1

This version has a constant range but allows the seed to be varied. The
seed must be a real constant or variable.

Calling Sequence

A = UNIFM2 (seed,mean,width)

where: [mean-width/2]<A<[mean+width/2 J ·

This version allows the seed and the range to be varied.

Example

A = UNIFM2 (9 • 9 I 1. 5 '2 • 0)

generates a set of random nwnbers between 0.5 and 2.5 using the value 9.9 for
the seed.

7/79

NOTE: The value of the initial argument (seed) passed to the function at
the time of the first call initializes the algorithm for the
generation of the sequence o~ random numbers. For all subsequent
calls to the function during the execution of the same progr~m unit,
the value of the argument is ignored. All arguments must be real
constants or real variables.

6-21 DG75A

I

I

I

*

Referencing FUNCTION Subprog;rarns

A FUNCTION subprogram is referenced by using its symbolic name with a list
of actual arguments in standard function notation as a primary in an expression.
The actual arguments must agree in order, number, and type with the
corresponding dummy arguments in the FUNCTION subprogram definition. The actual
arguments in the function reference can be

• A variable name

• An array element name

• An array name

• An expression

• The name of an external procedure

• A constant

If an actual argument is an external function name or a subroutine name,
then the corresponding dununy arguments must be used as an external function name
or a subroutine name, respectively. The type of the external function in the
calling routine must match the type specified in the called function. If the
dummy argument is defined or redefined in the referenced subprogram, the
corresponding actual argument must be a scalar name, an array name, or an array
element name.

Execution of a FUNCTION reference results in an association of the actual
arguments with all the dununy arguments in the defining subprogram. Following
these associations, execution of the first executable statement of the defining
subprogram begins.

7/79

• If the actual argument is an expression or a constant, the association
is by value rather than by name.

• If the actual argument is an array element name with variables in the
subscript, it can be replaced by the same argument with a constant
subscript that contains the value(s) that would result from computing
the variable subscript just before the function takes place.

• If the dummy argument is an array name, the corresponding actual
argument must be an array name or an array element name.

• Unless it is a dumrny argument, a FUNCTION subprogram is also
referenced {in that it must be defined) by the appearance of its
symbolic name in an EXTERNAL statement.

NOTE: If a user FUNCTION subprogram is written in a language other than
FORTRAN, it is the user's responsibility to insure that the correct
indicators, as well as valid numeric values, are returned to the
calling program.

6-22 DG75A

Example

Definition of a FUNCTION subprogram

FUNCTION DIAG (A,N)
DIMENSION A (N,N)
DIAG = A(l,l)
IF (N .LE. 1) RETURN
DO 6 I = 2, N

6 DIAG = DIAG * A(I,I)
RETURN
END

Reference to a FUNCTION subprogram

DIMENSION X (8,8)
DET = DIAG (X,8)

SUBROUTINE SUBPROGRAMS

A SUBROUTINE subprogram differs from a FUNCTION subprogram in three ways:

1. A SUBROUTINE has no value associated with its name. All results are
defined in terms of arguments or common, and there may be any number
of results.

2. A SUBROUTINE is not called into action simply by writing its name,
because a value ·is not associated with the name. A CALL statement
which specifies the arguments and stores all output values is used to
bring the SUBROUTINE into operation.

3. The naming of a SUBROUTINE is similar to the FUNCTION subprogram
without any type association.

NOTE: It is the user's responsibility to insure that the number and type
of arguments in the calling program statement corresponds with the
number and type of arguments in the called routine. This applies to
all subroutines and functions (library or other).

Defining SUBROUTINE Subprograms

A SUBROUTINE statement is specified by the format

SUBROUTINE sub [(arg[, •• ·]) J
where: sub is the symbolic name of the SUBROUTINE to be defined

arg is a dummy argument and can be a variable name, an external
procedure name, or an alternate return.

6-23 DG75

The variable names in the dununy argument list cannot appear in an
EQUIVALENCE, COMMON, NAMELIST or DATA statement.

The SUBROUTINE subprogram can define or redefine one or more of its
arguments to effectively return results; it can contain any statements except
BLOCK DATA, FUNCTION, another SUBROUTINE statement, or any statement that
directly or indirectly references the subroutine being defined, and must contain
at least one RET9RN statement.

Referencing SUBROUTINE Subprograms

A SUBROUTINE is referenced by a CALL statement. The actual arguments which
constitute the argument list must agree in order, number, and type with the
corresponding dununy arguments in the defining subprogram. The actual arguments
in the subroutine call can be

• A constant

• A variable name

• An array element name

• An array name

• An expression

• The name of an external procedure

• An alternate return

Execution of a subroutine reference results in an association of the actual
arguments with all the dummy arguments in the defining subprogram. Following
these associations, execution of the first executable statement of the defining
subprogram is undertaken.

• An actual
subscript
subscript
computing
arguments

argument that is an array element name with
can be replaced by the same argument

that contains the same values that would
the variable subscript just before the

takes place.

variables in the
with a constant
be derived by
association of

• If a dununy argument is an array name, the corresponding actual
argument must be an array name or an array element name.

• If a SUBROUTINE r2ference causes a dununy argument in the referenced
subroutine to become associated with another dununy argument in the
same subroutine or with an entity in COMMON, a definition of either
entity within the subprogram is prohibited.

• If an actual argument corresponds to a dununy argument that is defined
or redefined in the referenced subprogram, the actual argument must be
a variable name, an array element, or an array name (e.g., it should
not redefine a constant).

• Unless it is a dummy argument, a SUBROUTINE is also referenced by its
appearance in an EXTERNAL statement.

6-24 DG75

Examples

Definition of a SUBROUTINE Subprogram

SUBROUTINE LARGE (ARRAY,I,BIG,J)
DIMENSION ARRAY (50,50)
BIG=ABS (ARRAY(I,l))
J=l
DO 6 K=2,50
IF (ABS (ARRAY(I,K)) .LE. BIG) GO TO 6
BIG=ABS (ARRAY(I,K))
J=K

6 CONTINUE
RETURN
END

Reference of a SUBROUTINE Subprogram

CALL LARGE (ZE'l'A, N, VAL, NCOL)

RETURN STATEMENT

The RETURN statement is used to tenninate
control to be returned to the calling program. There
statements in a subprogram.

Format

RETURN [i]

all subprograms and causes
may be multiple RETURN

where: i is an integer, constant, or variable whose value denotes the nth
alternate return (* or $) in the argument list of the SUBROUTINE
statement, reading from left to right.

Following the RETURN statement of a subprogram, control passes to the next
executable statement which follows the CALL in the calling program. It is
possible to return to any numbered executable statement in the calling program
by using one of the following formats from the called subprogram. This return
must not violate the transfer rules for DO loops.

NOTE: The function reference may
control returns from the
continues.

be part of an expression, and when
function, evaluation of the expression

6-25 DG75

Alternate Return Formats

Format 1

CALL subr ($alt[, •.. J)
where: £ is used to designate the argument for the alternate return

alt is a statement label or a switch variable that specifies the
alternate return in a subroutine

NOTE: Alternate returns cannot be used with functions.

Fonnat 2

SUBROUTINE subr ((;) alt[, .•. J)
where: * and $ are used to designate the argument in an alternate return

Example

Calling Program Called Subroutine

SUBROUTINE SUB(X,Y,Z,*,*)

10 CALL SUB(A,B,C,$30,$40)
20

100 RETURN N

30 SUM A+C
END

40 PROD SUM**B

END

Execution of statement 10 in the calling program causes entry into the
subprogram SUB. If statement 100 in subprogram SUB is executed, the return to
the calling program will be to statement 20, 30, or 40 if N is zero, one, or
two, respectively.

Alternate returns may best be understood by considering that a CALL
statement that uses the alternate return is equivalent to a CALL and a computed
GO TO statement in sequence.

6-26 DG75

Example

CALL NAME (P,$20,Q,$35,R,$22)

is equivalent to

CALL NAME (P,Q,R,I) IF (I.NE.O) GO TO (20,35,22) 1 I

where: I is set to the value of the integer in the RETURN statement
executed in the called subprogram.

NOTE: Calling arguments for alternate returns are not coded by the
compiler in the same manner as the standard arguments. Therefore,
this will need to be considered for the coding of any GMAP
subroutines.

If the RETURN index is not specified or is zero, a normal (rather than
alternate) return is made to the statement immediately following the CALL. The
intermingling of arguments and alternate returns can be done freely in both the
CALL and SUBROUTINE statements. The compiler separates the combined list into
two separate lists, such that argument n is the nth actual or dummy argument,
and alternate return n is the nth statement number or * or $, reading left to
right. Thus, the following statements are equivalent:

Example

CALL NAME (P,$20,Q,$35,R,$22)
CALL NAME (P,Q,R,$20,$35,$22)
CALL NAME ($20,$35,$22,P,Q,R)

SUBROUTINE NAME (S,*,T,*,U,*)
SUBROUTINE NAME (S,T,U,*,*,*)
SUBROUTINE NAME (*,*,*,S,T,U)

Multiple Entry Points Into a Subprogram

~he normal entry into a SUBROUTINE subprogram from the calling program is
made by a CALL statement that refers to the subprogram name. The normal entry
to a FUNCTION subprogram is made by a function reference in an expression. In
both cases, entry is made at the first executable statement following the
FUNCTION or SUBROUTINE statement.

It is also possible to enter a subprogram at an alternate entry point by a
CALL statement or a function reference that refers to an ENTRY statement in the
subprogram. Entry is made at the first executable statement following the ENTRY
statement.

6-27 DG75

Because ENTRY statements are nonexecutable, they do not affect control
sequencing during normal execution of a subprogram. The order, type, and number
of arguments do not need to agree between the SUBROUTINE or FUNCTION statement
and any ENTRY statement; nor do ENTRY statements have to agree among themselves
in these respects. Each CALL or FUNCTION reference, however, must agree in
order, type, and number of actual arguments with the dummy arguments of the
SUBROUTINE, FUNCTION, or ENTRY statement that it references. No subprogram can
refer to itself directly or through any of its entry points. In addition, it
must not refer to any other subprogram whose RETURN statement has not been
satisfied.

NOTE: A program loop may result if this condition occurs.

Example

Calling Program Called Program

SUBROUTINE SUBl(U,V,W,X,Y,Z)

1 CALL SUBl (A,B,C,D,E,F)
10 u = v

2 CALL SUB2(G,H,P)
GO TO 60

ENTRY SUB2(T,U,V)
GO TO 10

3 CALL SUB3 60

GO TO 90
ENTRY SUB3

END
90 RETURN

END

The execution of statement 1 causes entry into SUBl at the first executable
statement of the subroutine. Execution of statements 2 and 3 also cause entry
into the called program at the first executable statement following the ENTRY
SUB2(T,U,V) and ENTRY SUB3 statements, respectively.

Example

The coding for a multiple-entry FUNCTION subprogram that will execute
properly:

Calling Program

I = ADDl (1)
J = ADD 2 (1 , 1)
STOP; END

Called Program

FUNCTION ADDl (N}
ADDl = N + 1
GO TO 30
ENTRY ADD2 (N,M)
ADDl = N + M + 1

30 CONTINUE
RETURN; END

6-28 DG75

The coding for a multiple-entry FUNCTION subprogram that will not execute
properly:

Calling Program

I = ADDl(l)
J = ADD2(1,l)
STOP; END

Called Program

FUNCTION ADDl(N)
ADDl = N + 1
GO TO 30
ENTRY ADD2(N,M)
ADD2 = N + M + 1

30 CONTINUE
RETURN; END

(must be ADDI)

Within the calling program, one must refer to the entry name specified in
the ENTRY statement at which he wants to enter the function subprogram. Within
the function subprogram, however, with the exception of the entry statements,
the function name must be used as it was specified in the FUNCTION statement.

Dummy Argument

A dummy argument is used to make entities in a calling program available to
the called subprogram, and can be used in the subprogram as a scalar variable,
an array, a subroutine, or a function name.

The dummy argument of a subprogram can be associated with an actual
argument that is

• a scalar variable

• an array

• an array element

• a subroutine

• an external function

• a constant

• an expression

• a statement number to which a special return can be made from a
subroutine program

When dummy arguments are used, they must adhere to the following rules:

1. When a statement number is specified, the use of the * or $ in a dummy
argument position is required if a statement number is associated with
that dummy argument.

6-29 DG75

2. When an external function name
argument is permissible if
with that dummy argument.

is specified, the use of a dummy
an external function name is associated

2. When a variable or array element reference is specified, the use of a
dummy argument is permissible if a value of the same type is made
available through the argument association.

4. When a variable, array, or array element name is specified, the use of
a dummy argument is permissible if a proper association with an actual
argument is made.

SUPPLIED SUBROUTINE SUBPROGRAMS

Table 6-4 contains an alphabetical list of FORTRAN supplied SUBROUTINE
subprograms and descriptions.

6-30 DG75

Subprogram

ATTACH

CALLSS

CNSLIO

CONCAT

CORFL

CO RS EC

CREATE

DAT IM

DEF IL

DETACH

DUMP (BCD)
DUMPA (ASCII)

DVCHK

EXIT

FCLOSE

FILBSP

FILFSP

FLGEOF

FLGERR

FLGFRC

FMEDIA

FPARAM

FXDVCK

Table 6-4. Supplied SUBROUTINE Subprograms

Use

Access existing permanent file.

Call a time sharing subsystem

Console communications.

Move character substring.

Move data from/to 10-word file

Memory allocation x processor
time.

Create temporary mass
storage or terminal file.

Get current date and time.

Create temporary file.

Deaccess current file.

Dump designated area of
memory in specified format,
terminate execution.

Divide check test.

Flush buffers to an external
device and terminate current
activity.

Close file, flush, and
release buffers.

Backspace files on multi­
file tape.

Forward space files on
multifile tape.

End of file processing.

Data error processing.

File and Record Control
I/O error recovery.

output transliteration.

Set or reset I/O parameter.

Divide and check fault test.

6-31

Call

ATTACH (lgu,catfil,iprmis,
mode, istat, buffer)

CALLSS (string,name)

CNSLIO (console,message,
nwords,nreply,nrepws)

CONCAT (a,n,b,m,f)

CORFL (loc,i,j,k)

CORSEC (a)

CREATE (lgu,isize,mode,
istat)

DATIM (d,t)

DEFIL (name,links,mode,
istat)

DETACH (lgu,istat,buffer)

DUMP [DUMPA] (al'bl'i1···>

DVCHK(j)

EXIT

FCLOSE(i)

FI LB SP (lgu,n)

FILFSP (lgu,n)

FLGEOF (i,j)

FLGERR (i,j)

FLGFRC (lgu,return)

FMEDIA (fc, media code)

FPARAM (i,j)

FXDVCK (r ,m)

DG75

Subprogram

FXEM

LINK

LLINK

MEMSIZ

NASTRK

OVERFL

PDUMP (BCD)
PDUMPA(ASCII)

PTIME

RANSIZ

SETBUF

SETFCB

SETLGT

SL I TE

SLIT ET

SORT
I SORT

SORTO
ISORTD

SSWTCH

TERM NO

TERMTM

TRACE

USRCOD

Table 6-4 (cont). Supplied SUBROUTINE Subprograms

Use Call

Plac~ment of error code. ANYERR (v)

Display of error trace. FXEM (code, message,n)

Alter FXEM switch word.

Set alternate error
procedure location.

Alternate error return.

FXALT {SR)

FXALT {$n)

Restore link and transfer LINK (name)
to its entry point.

Restore link and return to next LLINK {name)
statement in calling subroutine.

Memory allocated.

Disable asterisk-fill for field
overflow on formatted output.

Exponent register overflow or
underflow test.

Dump designated area of memory
in specified format, return.

Processor time used for
this activity.

Specify record size of
random file.

Define buffer for file I/O.

Define file control block.

Define logical file table.

Clear all sense lights.
Turn on sense light.

Test and turn off sense lights.

Sort in ascending order.

Sort in descending order.

Test sense switch.

Station code.

Hours of log-on.

Trace and debug.

User identification.

6-32

MEMSIZ {j)

NASTRK

OVERFL {j)

PTIME (a)

RANSIZ (u,m,n)

SETBUF (i,a,b)

SETFCB (a,i,j)

SETLGT (a,i)

SLITE (0)
SL I TE (i)

SLITET { i' j)

SORT [!SORT]
(array,nrec,lrs,key

SORTO [ISORTD]
(array,nrec,lrs,key

SSWTCH (i,j)

TERMNO (a)

TERMTM (a)

TRACE

USRCOD (s)

I • • •)

, ...)

DG75

Table 6-4 (cont) • Supplied SUBROUTINE Subprograms

Subprogram Use Call

YASTRK Re-establish asterisk-fill for YASTRK
field overflow on formatted
output.

ATCALL "'\ ATCALL (subr)

FDEBUG FDEBUG (di,do)

FD UMP Callable portions of the FD UMP

FT ERM FORTRAN Debugging System FT ERM

FTIMER (See Appendix F) FTIMER

NO CALL NOCALL (subr)

NT CALL NTCALL (subr)

6-33 DG75

ATTACH ATTACH

ATTACH

This subroutine is used to access an existing permanent file in batch or
TSS mode.

Calling Sequence

CALL ATTACH (lgu,catfil,iprmis,mode,istat,buffer)

where: ~ is an integer variable or constant and is the usual FORTRAN
file code.

catfil a character constant or variable is the catalog/file descriptor
containing the catalog/file string and must be terminated by a
semicolon. Embedded blanks are ignored. The master catalog
password is not needed; however, subsequent passwords are
required if they are part of the file description. Alternate
names may be required if the file name is longer than eight
characters or when non-FORTRAN subroutines are reading the same
file.

iprmis is an integer variable or constant that gives the desired
permission. Those are ORed with any permission in catfil.

1 READ ONLY
2 WRITE ONLY
3 READ and WRITE
Any other (This is undefined and subject to change.)

mode is an integer variable or constant
0 Get file as defined
1 Get file as random
2 Get terminal

istat an integer variable, contains the octal value of the status
word returned by the File Management Supervisor or contains:

buffer

0 successful (batch mode only)
1 file is currently open
2 terminal requested in batch mode (illegal)
3 additional memory needed, request denied

(time sharing user is terminated)
4 catfil all blanks
otherg-;;-refer to the TSS System Programmer's Reference Manual

Null: Get a work area for the File System.
Not null: Use this array as a work area (at least 380 words).

6-34 DG75

ATTACH ATTACH

Example of a Null Argument

CALL ATTACH (lgu, "catfil1", iprmis,mode,istat,)

Upon successful return from ATTACH in time sharing, an FCB will have been
created, and the file name (or alternate name) is in the FCB -10, -9 (in ASCII).
If the file was in the AFT with a subset of the desired permissions, it is
deaccessed and reaccessed with the new permissions.

6-35 DG75

I

I

I

CALL SS CALL SS

CALLS$

This subroutine calls a time sharing subsystem and returns to the calling
program.

Calling Sequence

CALL CALLSS (string)

or (for some time sharing subsystems)

CALL CALLSS (string,name)

where: ~ is the four-character constant or variable that is the
internal TSS name of the subsystem to be called. If name is
not supplied, the first four characters in string are used
for name. The name used as the argument may be different
than the name used as a system command.

string is the conunand to invoke the subsystem and is a constant or
variable containing a carriage return or a reverse slant as
the terminating character.

Example

CALL CALLSS ("FRN P3 \")

CALLSS ("BRNJ6P2\")

(the FORTRAN subsystem is invoked and
program P3 is executed)

(the BASIC subsystem is invoked
program P2 is executed)

and

CALLSS ("CATALOG FILENAME\") (the specific attributes of the file
FILENAME are printed)

CALLSS ("ABC)5 \")

CALLSS ("FDUMP\ ")

CALLSS ("RUN P4\", "CDIN")

(the ABACUS subsystem is invoked)

(the FDUMP subsystem is invoked)

(the CARDIN subsystem is invoked and file
P4 is executed)

Nesting to more than two levels using CALLSS may produce unpredictable
results. If the called time sharing system is SYSTEM, control is not returned
to the calling program.

7/79 6-36 DG75A

CNSLIO CNS LIO

CNSLIO

This subroutine permits operator-program communication via the console
typewriter. Return is made to the next executable statement in the calling
program. This subroutine is restricted to batch execution; it may not be called
by a FORTRAN program executing in the time sharing mode. It is suggested that
limited use be made of this subroutine since it tends to distract the attention
of the console operator.

Calling Sequence

CALL CNSLIO (console, message,nwords[,nreply ,nrepws])

where: console is defined as CHARACTER*6, or as integer, and is initialized
with

"OOOOT/" for master console
"OOOOT*" for tape console
"OOOO*T" for unit record console
"0000/T" for special purposes

If no initialization is given, "OOOOT/" is assumed.

message is an array containing the CHARACTER message to be printed
on the console

nwords

nreply

nrepws

is an integer variable or constant, representing the number
of words to be printed on the console. Any value greater
than 11 is set to 11 (66 characters) •

is an optional integer variable and is used when a reply is
desired. When present, the operator reply (in BCD) is
stored at location nreply.

is an optional integer variable or constant that is used
when a reply of more than six characters is desired
(maximum of 11 words)• When omitted, a one-word reply is
stored in nreply. When provided, nrepws words (nrepws *6
characters are stored at location nreply). If nreply and
nrepws are not provided, the delimiting commas must also be
omitted from the argument list.

6-37 DG75

CON CAT CON CAT

CON CAT

This subroutine is used to provide the user with the ability to move a
character substring of arbitrary length and position within a string.

Calling Sequence

CALL CONCAT (a,n,b,rn,l)

where: ~ is a character variable whose character string is to be replaced

String
position m;
constants.

Example

0010
0020
00 30
0040
0050
0060

READY

*RUN

~ is the first replaced character of a (n
character)

1 implies first

b is a character constant or variable which is the replacement
character string

m is the leftmost replacement character of b (m
character)

1 implies first

1 is the number of characters to be replaced; if 1 is not given, 1
is assumed

a, beginning at position n, is replaced by string b, beginning at
1 characters are replaced. m, n, and 1 are integer variables or
n through (n + 1-1) of a are replaced with characters (m+l-1) of b.

CHARACTER A*20/"FIFTEEN WERE THERE "/
CHARACTER B*20/"SIXTEEN WERE ABSENT "/
PRINT A,B
CALL CONCAT (A,l,B,1,3)
PRINT,A,B
STOP;END

FIFTEEN WERE THERE SIXTEEN WERE ABSENT
SIXTEEN WERE THERE SIXTEEN WERE ABSENT

6-38 DG75

CORFL CORFL

CORFL

This subroutine enables the time sharing user to move data from or to the
ten-word memory file (see "DRL CORFIL", TSS System Progranuner's Reference
Manual}.

NOTE: This call is ignored in batch.

Calling Sequence

CALL CORFL (loc,i,j,k}

where: loc is the integer array into which or from which the data is to be
moved

i is the number of words to be moved c1s rs 10}

i is the relative location in the ten-word file at which the
transfer is to begin.

k o, data is transferred into the ten-word file
= 1, data is transferred from the ten-word file

i,j,k are integer variables or constants.

6-39 DG75

CO RS EC CO RS EC

CO RS EC

This subroutine provides the means of obtaining the product of a memory
allocation and processor time.

Calling Sequence

CALL CORSEC {a)

where: ~ is a real variable whose returned value is the product of
1024-word blocks currently allocated and processor time in
seconds. This subprogram can also be used as a function.

Example

IF (CORSEC{a).GT.b) ••••

6-40 DG75

CREATE CREATE

CREATE

This subroutine is used to create and access a temporary mass storage or
terminal file.

Calling Sequence

CALL CREATE (lgu,isize,mode,istat)

where: lgu (integer variable or constant) is the usual FORTRAN file
code.

isi.ze (integer variable or constant) is the size, in words, of the
desired file and must be present (not used if mode = 2)

mode is an integer variable or constant
0 for a linked mass storage file
1 for a random mass storage file
2 for a terminal file

istat is an integer variable status return word.
codes apply.

O, successful
1, mode is invalid
2, file is currently open
3, no room in AFT
4, temporary file not available
5, duplicate file name
6, no room in PAT
7, illegal device specified

The following

If the CREATE is successful, a FCB is created and the file code (in
ASCII), is placed in FCB-10, -9.

If a $ FFILE card is used to create a FCB for a specific file code, a CALL
CREATE which specifies that same file code destroys the FCB setup by the $ FFILE
card and creates a new FCB.

6-41 DG75

DAT IM DAT IM

DAT IM

This subroutine is used to obtain the current date and time.

Calling Sequence

CALL DATIM (d,t)

where: d is an eight-character variable that gives the date as mm/dd/yy
(with trailing blanks in BCD mode; e.g., MM/DD/YY~~~~).

t is a real variable that gives the time of day in hours as a
floating-point number.

6-42 DG75

DEF IL DEF IL

DEF IL

This subroutine creates a named temporary file and accesses it in the
user's available file table. The call is applicable only for time sharing
activities.

Calling Sequence

CALL DEFIL (name,links,mode,istat)

where: name is a character constant or a variable containing the ASCII
name of the temporary file to be created; name must consist of
a minimum of five characters and a maximum of eight
characters.

links is the size of the file to be created (in links)
1 link = 3840 words

mode O, sequential file is created
~ O, random file is created

istat is the status indication returned as follows:

0 successful
3 no room in AFT
4 - temporary file not available
5 duplicate file name
6 no room in PAT

6-43 DG75

DETACH DETACH

DETACH

This subroutine is used to close the file, release its buffer, and deaccess
the file. If in TSS mode, the file is removed from the AFT.

Calling Sequence

CALL DETACH (lgu,istat,buffer)

where: lgu

buffer

is tat

is an integer variable or constant and is the FORTRAN file
code.

null argument: get space for FILSYS
not null: use this variable array as buffer space (at
least 380 words)

is an integer variable that is used as a status return
word.

0: successful
= 1: could not get FILSYS buffer (batch only);

time sharing user is terminated.

NOTE: If more memory is required (to deaccess the file) and the request is
denied, the time sharing user is terminated.

6-44 DG75

DUMP
PDUMP

DUMP DUMPA, PDUMP PDUMPA

DUMP
PDUMP

This subroutine subprogram dumps all or designated areas of memory that
have been allocated to selected variables in a specified format. If DUMP is
called, execution is terminated by a call to EXIT. If PDUMP is called, control
is returned to the calling program. (DUMPA and PDUMPA are used for ASCII}.

Calling Sequence

where: a is the beginning variable of the area to be dumped.

b is the ending variable of the area to be dumped.

i is an integer specifying the dump format

= null argument or o, octal
1, Integer

= 2, Real
= 3, Double Precision
= 4, Complex
= s, Logical
= 6, Character

NOTE: If no arguments are supplied, (e.g., CALL PDUMP), all of memory is
dumped in octal.

6-45 DG75

I

DVCHK
OVERFL
FXDVCK

DVCHK
OVERFL
FXDVCK

DVCHK,OVERFL,FXDVCK

These subroutine subprograms check logical fault vector locations in the
slave program pref ix (refer to the General Comprehensive Operating Supervisor
(GCOS) Manual).

• DVCHK determines if a divide check has occurred.

• OVERFL determines if an exponent register overflow or underflow has
occurred.

• FXDVCK allows another value to be returned after a divide check fault.

NOTE: This subroutine must be called prior to the statement that
might cause the fault. FXDVCK is incompatible with MOD.
FXDVCK allows a user-supplied value to be returned as the
quotient, whereas, MOD returns the remainder, not the quotient.

Calling Sequence

7/79

CALL
CALL
CALL

where:

DVCHK(j)
OVERFL (j)
FXDVCK (r [,m]}

i is an integer variable

= 1 : divide check,
exponent register overflow
exponent register underflow

= 2 : no fault vector

r is the double precision number that is to be used after a
floating-point divide check.

m is the integer that is to be used after an integer divide check.

6-46 DG75A

DVCHK
OVERFL
FXDVCK

DVCHK
OVERFL
FXDVCK

The FORTRAN fault processor processes integer and floating-point divide
check faults, and exponent register overflow/underflow faults. A message is
printed on file 06 stating the type of fault and the location at which the fault
occurred. Execution continues with one of the following values returned

~

Divide check (integer)

Divide check
(floating-point)

overflow (integer)

Exponent overflow

Exponent underflow

Value Returned

No change

)
Unless CALL FXDVCK
is used.

A large floating-point value•

No change

A large positive or large negative floating-point
value

Floating-point zero

I

1Allows further computation without another inunediate fault. This value is set
to approximately ± 10** 36. I

7/79 6-47 DG75A

EXIT

EXIT

This subroutine subprogram flushes all
terminates the current activity. Control
Comprehensive Operating Supervisor.

Calling Sequence

CALL EXIT

6-48

EXIT

buffers to output files and
is returned to the General

DG75

FCLOSE FCLOSE

FCLOSE

This subroutine subprogram closes a file without rewinding it and releases
the buffer(s) assigned if it is the standard size (320 words). Return is to the
next executable statement in the calling program.

Calling Sequence

CALL FCLOSB(i)

where: i is an integer variable or constant logical file designator.

6-49 DG75

FILBSP
FILFSP

FILBSP,FILFSP

FILBSP
FILFSP

These subroutines can only be used with tape files. They allow multifile
tapes to space from one file to another.

Calling Sequence

CALL FILBSP (lgu,n) backspace n files

CALL FILFSP (lgu,n) forwardspace n files

where: lgu is an integer variable or constant file code

n is the number of files to be skipped (integer variable or
constant)

To ensure proper positioning, the current file, if output, should be closed
with an ENDFILE statement and counted as one of the files to be backspaced.
Declare the files to be multifile and unlabeled by use of a $ FFILE card.

Example

$ FFILE xx,MLTFIL,NSTDLB

NOTE: On an EOF condition, an additional backspace must be executed to get
past the end-of-file condition.

6-50 DG75

FLGEOF FLGEOF

FLGEOF

This subroutine subprogram provides a signal to request return to the
calling subprogram if an end-of-file condition occurs. Return is to the next
executable statement in the calling program.

Calling Sequence

CALL FLGEOF(i,j)

where: i is the logical file designator, an integer variable, or a
constant.

i is an integer variable used to indicate an end-of-file condition
and should not be used for any other purpose.

If an end-of-file condition could have occurred, j must be tested
for zero. If j ~ O, an end-of-file condition did occur; if j =
O, an end-of-file was not encountered.

NOTE: Use of the END= option in an I/O or ENCODE/DECODE
statement is preferable to calling FLGEOF.

6-51 DG75

FLGERR FLGERR

FLGERR

This subroutine subprogram provides a means of checking data errors.
Return is to the next executable statement in the calling program.

Calling Sequence

CALL FLGERR(i,j)

where: i is the logical file designator, an integer variable, or a
constant.

i is an integer variable used to indicate an input data error (GFRC
error) and should not generally be used for any other purpose.

If an error condition could have occurred, j must be tested for
zero. If j i o, an error condition did occur; if j = O, an error
condition was not encountered.

NOTE: Use of the ERR= option in an I/O or ENCODE/DECODE
statement is preferable to calling FLGLRR.

6-52 DG75

FLGFRC FLGFRC

FLGFRC

This subroutine provides some control of the File and Record Control errors
by setting an error routine address into the file control block (refer to the
File And Record Control manual). This subroutine should be called prior to the
first--r?o for this file.

Calling Sequence

CALL FLGFRC (lgu,ptr)

where: lgu is an integer variable or constant representing the numeric
file code

ptr is the name of the recovery subroutine or an alternate return
to a label in the same program

Any File and Record Control error that would take the "user-supplied
routine" exit will cause transfer of control to.the ptr recovery subroutine or
label after the printing of a message and status code (refer to the File and
Record Control manual for details of the user-supplied routine).

NOTE: Essentially, a GMAP CALL to the routine ptr is generated so that a
FORTRAN subroutine could obtain the status code.

Example

SUBROUTINE RECV(IFC,IERR)
PRINT 200, IERR,IFC

200 FORMAT ("ERROR#" ,I4, ")SOCCURRED ON FILE #" 1 !3)
RETURN
END

Return is to the GFRC routine which detected the error.

6-53 DG75

FM ED IA FMEDIA

FMEDIA

This subroutine allows the user to cause transliteration to occur on files
directed to mass storage or tape.

Calling Sequence

CALL FMEDIA (fc,media)

where: f c

media

is the logical file code (integer variable or constant)
0 for BCD no printer slew control
2 for BCD card images
3 for BCD with printer slew control
6 for standard system ASCII format (no slew)

Other codes are ignored
code (integer variable or constant) specifies the desired
media code

The legal combinations are as follows:

0 to 2 3 to 0
0 to 3 3 to 2
0 to 6 3 to 6
2 to 0 6 to 0
2 to 3 6 to 2
2 to 6 6 to 3

NOTE: CALL FMEDIA should not be used if the batch transliteration routine
(.GXLIT) is being loaded. (Refer to the File and Record Control
manual.}

6-54 DG75

FPARAM FPARAM

FPARAM

This subroutine permits the user to set or reset some of the I/O parameters
of the run-time library. Specifically, it can be used to

1. Set the line length (multiple of four) for formatted output directed
to a terminal; the default setting for this parameter is 72. The
maximum line length is 160 characters.

2. Set the media code for unformatted file output; the default setting of
this parameter is 1.

3. Set the reflexive read characters that are sent to a terminal to
request input; the default setting of this parameter is a string of
four ASCII characters, carriage return, line feed, equal sign, or
X-ON.

Calling Sequence

CALL FPARAM (i,j)

where: i is an integer variable or constant, with a value of 1, 2, or 3
corresponding to one of the three functions above.

i is an integer variable or constant, providing the line length or
media code for i values of 1 and 2, or providing the octal value
of four ASCII characters for an i value of 3.

Examples

DATA J/0015012077077/
CALL FPARAM (3,J)

Reflexive read signature changed to "??"; in which 015 is a carriage
return, 012 is line feed, and the two 077s are question marks.

CALL FPARAM (1,160)

Terminal line length setting to 160 characters.

6-55 DG75

FXDVCK
FXEM

/

FXOVCK (see DVCHK)

FXEM (FORTRAN EXECUTION ERROR MONITOR)

This subroutine performs the following functions:

• Prints a trace of subroutine calls.

• Prints execution error messages.

FXDVCK
FXEM

• Terminates execution with a Q6 abort, continues with execution of the
program, or transfers to an alternate error routine.

• Allows the user to determine if an error has been processed by the
Execution Error Monitor.

These functions are accomplished by the setting/resetting of bits in switch
word groups that control termination, message printing and trace, and alternate
error return for the errors described in Table 6-5 (refer to Appendix E for FXEM
examples).

Calling Sequences

CALL ANYERR(v)

where: v is an integer variable into which the FORTRAN Execution Error
Monitor places the error code (see Table 6-5) if an error occurs;
v should not be used for any other purpose.

NOTE: If an ERR=CLAUSE is included in an I/O operation, the error
is not called. Control is returned to the statement
specified.

6-56

monitor
number

DG75

FXDVCK
FXEM

FXDVCK
FXEM

Calling Sequence

CALL FXEM (ncode (,msg ,n))

where: ncode is the error code expressed as an integer in the range 1 < n
~ 143 (refer to Table 6-5).

msg is the message displayed on file 06 following the error
trace; msg must be a character constant or a variable.

n is the number of worqs to be printed and must be in the range
O~n~20.

NOTE: If only the ncode is specified, only the trace is printed.

Calling Sequence

CALL FXOPT(ncode,il,i2,i3)

where: ncode is the error code generated for which il, i2, i3 are to be
set (refer to Table 6-5).

Examples

il is the switch word setting for termination
=O: abort with a Q6 abort
=l: execution continues

12 is the switch word setting for message printing and trace
=O: print
=l: suppress printing

i3 is the switch word setting for alternate error procedure
=O: use normal return
=l: use alternate error procedure

NOTE: If i3 = 1, il is ignored

CALL FXOPT(32,0,l,O) Abort; no message printed; no alternate return

CALL FXOrT(32,l,O,O) Continue; print message; no alternate return

CALL FXOPT(32,0,0,1) Print message; go to alternate return if error occurs

6-57 DG75

FXDVCK
FXEM

Calling Sequence

CALL FXALT(SR)

FXDVCK
FXEM

where: SR is the alternate error procedure subroutine that is used as the
transfer address for the error monitor.

SR. If the
to FXALT

A RETURN
the next

FUNCTION subprograms and parameters are not allowed for
alternate procedure option for an error code is indicated but no call
has been made, a QS abort occurs if an error condition occurs.
statement in the alternate routine causes execution to be continued at
executable statement following the statement that caused the error.

The alternate error procedure should not invoke the routine in which the
error was found (i.e., the alternate error procedure for a formatted
input/output statement cannot perform formatted input/output operations). The
statement CALL FXALT($n) designates statement n in the calling program as the
alternate error return. Statement n must be in the same program unit in which
the CALL FXALT appears but does not have to be in the same program unit in which
the error occurs.

NOTE: If the same error occurs in the alternate error routine, a loop
results.

The standard setting of bits in the FXSWl switch word groups controls
termination. The execution results are indicated in the second column of Table
6-5. The settings in the second and third switch word groups (trace and
alternate return) are initially zero.

6-58 DG75

°' I
01

""

:J
;)
.J
11

DEFAULT
PROCEDURE

ERROR ABORT/
CODE CONTINUE

0 A

1 c

2 c

3 c

4 c

5 c

6 c

7 c

8 c

9 c

10 ·c

11 c

12 c

13 c

14 c

15 c

16 c

17 c

Table 6-5.

FUNCTION ERROR

Not used

I**J I=0 1 J=0

I**J I=O I J<O

(DA**J)
A**J

(DA=O ,J=O)
A=O,J=O

(A**J)
DA**J

(A=a ,J<O)
DA=a,J<O

B**C B<O

A**B A=O,B=O

A**C A=O,C<O

e**B B>88.a28

LOG(A) A=O

LOG(B) B>O

ARCTAN (A/B) A=O,B=O

(SIN(A)) I A 1>2 27

COS(A)

./B B<O

CA**K CA=O,K=O

CA**J CA=O,J~a

DA**DB DB~a I DA< 0

DA**DB DA=O,DB=O

Error Codes and Meanings

EXCEPTION
RETURN

a-QR

(2**35)-2-QR

O-EAQ

10**38 - EAQ

O-EAQ

C-EAQ

10**38 - EAQ

10**38 - EAQ

- (10 ** 38)-EAQ

a-.t:AQ

O-EAQ

O-EAQ

Js:j!Bt

o-AQ

la**38-AR
a-QR

O-EAQ

O-EAQ

MESSAGE
LINE 1

EXPONENTIATION ERROR
a**a

EXPONENTIATION ERROR
a**(-J)

EXPONENTIATIO~ ERROR
O**a

EXPONENTIATION ERROR
a** (-J)

EXPONENTIATION ERROR
(-B) **C

EXPONENTIATION ERROR
O**O

EXPONENTIATION ERROR
O**(-C)

EXP(B) ,B GRT THAN 88.a28
NOT ALLOWED

LOG(O) NOT ALLOWED

LOG(-B) NOT ALLOWED

ATAN2(0,a) NOT ALLOWED

SIN OR COS ARG GRT TH
2**27 NOT ALLOWED

SQRT(-B) NOT ALLOWED

EXPONENTIATIO~ ERROR
O**a

EXPONENTIATION ERROR
a**(-J)

EXPONENTIATIO~ ERROR
(-DA) **DB

EXPONENTIATIO~ ERROR
O**O

MESSAGE
LINE 2

SET RESULT=a

SET RESULT=2**35-2

SET RESULT=O

SET RESULT=l0**38.

SET RESULT=O

SET RESULT=O

SET RESULT=l0**38

SET RESULT=la**38

SET RESULT-(~0**38)

SET RESULT=O. 0

SET RESULT=O

SET RESULT=a

EVALUATE FOR +B

SET RESULT=O

SET RESULT=(la**38,a.O)

SET RESULT=a

SET RESULT=O

I

I

I
I
I
J

1
I
I

O"I
I

O"I
0

0
G)
-..J
U'1

I
I
I

I

t
r
I

!

l
l
f

I
I

I
I
I

Table 6-5 (cont). Error Codes and Meanings

DEFAULT
PROCEDURE

ERROR ABORT/
CODE CONTINUE

18 c

19 c

20 c

21 c

22 c

23 c

24 c
-

2::i c

26 c

27 c

28 c

30 c

FUNCTION

DA**DB

e**DA

LOG (DA)

LOG(DA)

,/6i..

er~ DA)
COS DA

ARCTAN(DA/DB)

CA/CB

e**CA

e **CA

LOG (CA)

(
SIN (CA))
COS(CA)

{
COS (CA)~)
sr:-< \CA)

-------·----------·--·-
31 c BCD J./C•

32 c BCD i/O

33 A BCD I/O

34 !\ BCD I/O

ERROR

DA=O ,DB< 0

DA> 88. 028

DA=O

DA< 0

DA< 0

I DAI >2 54

DA=O,DB=O

CB=(u,O)

REAL CA>88.028

I HL'\G (CA)I >2'2?

--
CA=(O,O)

EXCEPTION
RETUR..."J

10**3& - :SAQ

10**38 - 2AQ

- (10**38) - EAQ

O--EAQ

~/iDAI

O-EAQ

·o-EAQ

10** 33-AR
10 ** 38 -QR

10** 38-AR
10** 38-QR

O-AR
o-QR

- (10 * * 3 8) - AR
o-:m

I.M.,\G(CA) > 88.028 10**38-AR
10**38-QR

ILLI::G;,L FORNAT
STATEMI:::.;':'

ILLEGAL CHA&~CTER
IN DATA OR BAD
FORMAT

ATTEMPT TO READ
OCTPCT FILE

E~W-OF-F ILE

MESSAGE
LINE 1

EXPONENTIATION ERROR
0**(-DB)

EXP(B),B GRT 88.028,
NOT ALLOWED

DLOG(O) NOT ALLOWED

DLOG(-B) NOT ALLOWED

SQR'.:' (-B) NOT ALLOWED

DSIN OR DCOS ARG GRT
2**54 NOT ALLOWED

DATAN2(0,0) NOT ALLOWED

COMPLEX Z/O NOT ALLOWED

EX? (Z) ,REAL PART GRT
8 8. 0 2 8 NOT ALLOivED

EXP (Z) , l.Y.t1.G PART GRT
2**27 NOT ALLOKED

CLOG(O) i\OT ALLOi--iED

REAL PART ·:.;RT 2**2 i ,:,u~

ALLOWED

MESSAGE
LUE 2

SET RESULT=l0**38

SET RESULT=l0**38

SET RESULT=-(10**38)

SET RESULT=O

EVALCATE FOR +B

SET RESULT=O

SET RESlJLT=O

SET RESULT=(l0**38,
10**38)

SET RESULT=(l0**38,
10**38)

SET RLSULT=(O,O)

SET RESCLT
(- (.!.0**38) ,O.O)

CSI0i OR CCOS li.RG l"il'TE IM SET RESULT=(l0**38,
PART GRT 8 o. 0 2 8 NOT .i.O * * 3 8)
ALLOWED

FORMAT AT LLLLLL,FIRST
\\"ORD EHHHHH IS ILLEGAL

ILLEGAL CHP.R I~ ~ATA

OR Bl>.D FOR:•1AT

PLAD AFTER ~RITE
IS ILLEGT,l.

E:;o OF FILE REJ..DI:,;:.,
FILE CODE FC

TREJ...T AS E:-.iD
OF FOR."1AT

TREAT ILLEGAL
CHAR .l\S ZERO

FC xx

OPTI0:\AL RETCRN
t--iOT REQUESTED

°' I

°' I-'

0
G')
.....i
U1

I
l
r
i

I

DEFAULT
PROCEDURE

ERROR ABORT/
CODE CONTINUE

35 c

36 c

37 A

38 A

39 A

40 c

41 A

42 c

43 c

44 c

45 c

46 c

~ A

I 48 c

49 A

F-UNCTIOi~

REWIND AND
END FILE
PROCESSOR

FFFB

FILE OPE!-<Il:-iG

FILE OPENING

BINARY I/O

BINARY I/O

BINARY I/O

NAMELIST
INPUT

NAMELIST
INPUT

NAME LIST
INPUT

NAMELIST
INPUT

NAMELIST
INPUT

BACKSPACI:
RECORD

NAMELIST
INPCT

BACKSPACE
FILE

Table 6-5 (cont). Error Codes and Meanings

ERROR

ILLEGAL REQUEST

BACKSPACE ERROR

FILE NOT DEFINED

NO SPACE FOR I/O
BUFFERS

ILLEGAL END-
OF-FILE

LIST EXCEEDS
LOGICAL RECORD
LENGTH

SYSOCT/FIXED
LENGTH RECORDS

ILLEGAL HEADING
CARD

ILLEGAL VARIABLE
KA.ME

EXCEPTION
RETURN

ILLEGAL SCBSCRIPT -----
OR ARRAY SIZE
EXCEEDED

ILLEGAL CHARACTER -----
AFTLR RIGHT
PARE:~THESIS

ILLEGAL CHAR I~~ -----
DATA

FILE CAN:\OT BE -----
BACKSPACED

ILLEGAL LOGICAL -----
CO);STA..\T

ERRm.;EOCS -----
END-OF-FILE

MESSAGE
LINE l

REQUEST TO XXXXXX ON FC
l'iAS IGNORED

TAPE POSITIONED AT :sT
FILE

LOG. FILE CODE FC
DOES NOT EXISY

INSUFFICIENT CORE AVAIL-
ABLE FOR BUFFERS

UNEXPECTED EOF

LIST EXCEEDS LOGICAL
RECORD LENGTH

SYSOUT OR FIXED LENGTH
RECORDS MUST

ILLEGAL HEADING CARD
BELOW

ILLEGAL VARIABLE
NAME BELO\v

ILLEGAL SUBSCRIPT BELOW,
OR DATA EXCEEDS VARIABLE

ILLEGAL CHAR IN DATA
BELOl'i

ILLEGAL CHAR D; DATA
BELOW

FILE com: ~~:;, BACKSPACE
REFCSED

ILLEGAL LOGICA:, CO~SThl~T
APPEARS BELO\\ (OR AT
E~D OF PRECEi)I~;G RECORD)

ERRONEOUS END OF FILE
ON BACKSPACE

~lESSAGE

LINE 2

BACKSPACE REQ.
THAN FILE COUNT

LARGER

NO OPTIONAL EXIT
EXECUTION TE.R.111.INATED

NO OPTIONAL EXIT
EXECUTION Tl:.RMINATI:.D

OR BAD FORMAT; FILI:. ;; XX

STORE ZEROS IN
REMAINING LIST ITI:.MS;FC

BE SMALLER THAN BLOCK SIZI:.;
FILE if XX

SCA."l" TERMINATl:..D

SKIPPING TO ~EXT
VARIABL.l:. NA.ML

SKIPPING TO NEXT
VARIABLE (.;AME

ASSUME COMMA PRECEDI:;S
CHAR

TREAT CHAR AS ZERO

FILE IS SYSOCT OR IS NOT
MAG:·,;ETIC TAPE, DISK OR DRliL'1

TREAT ILLLGAL LOGICAL
co:-:sTA:,;7 ;..s F

0\
I

0\
N

0
CJ
-..J
V1

DEFAULT
PROCEDURE

ERROR ABORT/
CODE CONTINUE

50 c

51 c

52 c

53 c

54 A

55 A

56 A

57 c

58 c

59 c

60 c

6'} 62
63
64
65
66

67 c

68 c

69 c

70 c

Table 6-5 (cont). Error Codes and Meanings

FUNCTION

BACKSPACE
FILE

SENSE LIGHT
SIMULATOR

NAMELIST
INPUT

SENSE SWITCH
TEST

FILE OPENING

FXEM

FILE OPENING

BCD I/O

BACKSPACE
RECORD

NAMELIST
INPUT

I**J

ERROR

BLOCK COUNT
OF ZERO

INDEX NOT
0 ~ n ~ 35

ILLEGAL
HOLLERITH FIELD

INDEX NOT
1~n~6

ATTEMPT TO WRITE
I*

NAMELIST INPUT

ATTEMPT TO READ
P*

ILLEGAL CHAR
FOR L CONVERSION

EMPTY HOLLERITH
FIELD

I**J > 2**35
I I I> l ,J > 35

J IS EVEN
I<-l,J>35,
J IS ODD

EXCEPT IO::<
RETURN

(2**35)-2-QR
(2**35)-2-QR

-((2**35)-2)-QR

RESERVED FOR USERS

FAULT EXPONENT UNDERFLOW -----

FAULT INTEGER OVERFLO\-.: -----
FAULT EXPONENT OVERFLOW -----
FAULT INTEGER DIVIDE BY -----

ZERO

MESSAGE
LINE 1

BLOCK COUNT IN FCB
EQUALS ZERO

MESSAGE
LINE 2

REFERENCE TO NON-EXISTENT DECLARED OFF IF
SENSE LIGHT TESTING, IGNORED

IF SETTING

ILLEGAL HOLLERITH SKIPPING TO NEXT
FIELD BELOW VARIABLE NAME

NON-EXISTENT SENSE SWITCH SWITCH DECLARED
TESTED OFF

ILLEGAL WRITE REQUEST NO OPTIONAL EXIT
ON SYSINl EXECUTION TERMINA7ED

ILLEGAL COMPUTED GO TO

ILLEGAL READ REQUEST ON
SYSOUl OR SYSPPl

ILLEGAL CHAR FOR L TREAT ILLEGAL
CONVERSION IN DATA BELOW CHARACTER AS SPACE

FILE NN IS CLOSED BACKSPACE REFUSED

EMPTY HOLLERITH FIELD

EXPONENT OVERFLOW SET RESULT=T
((2**35)-2

EXPONENT UNDERFLOW AT LOCATION XXXXXX

OVERFLOW AT LOCATION XXXXXX

EXPONENT OVERFLOW AT LOCATION XXXXXX

DIVIDE CHECK AT LOCATION XXXXXX

l
;

:
I
i
i

I
i
l

i
;

I

°' I

°' w

0
Gl
-...J
U"I

DEFAULT
PROCEDURE

ERROR ABORT/
CODE CONTINUE FUNCTION

71 c FAULT

72 c RANDOM I/O

73 A RANDOM I/O

74 A RANDOM I/O

75 A RANDOM I/O

76 A RANDCM I/O

77 A RANDOM I/O

78 A RANDOM I/O

79 A RANDOM I/O

80 A RANDOM I/O

81 c FORMAT I/O
ENCODE/DECODE

82 c FORMAT I/O
ENCODE/DECODE

83 c ARCSINE

84 c FORMAT I/O
ENCODE/DECODE

Table 6-5 (cont). Error Codes and Meanings

ERROR

FLOATING POINT
DIVIDE BY ZERO

LIST EXCEEDS LOGICAL
RECORD LENGTH

FILE NOT STANDARD
SYSTEM FORMAT, ZERO
BLOCK COUNT; BSN

EXCEPTION
RETURN

ERROR; ZERO RECORD COUNT

NO DEVICE FOR FILE -----
BAD RECORD REFERENCE -----
RECORD SIZE NOT SPECIFIED -
IN FCB. GIVE VIA $ FFILE -
CARD OR CALL RANSIZ
(FC,SIZE)

RANDOM I/O TO LINKED -----
FILE ILLEGAL

THE RECORD NO. GIVEN IN ---
THE RANDOM READ OR WRITE
STATEMENT IS OUTSIDE THE
FILE LIMITS

LIST EXCEEDS DECLARED -----
RECORD LENGTH

FILE IS NOT LARGE -----
ENOUGH TO CONTAIN
RECORD

LINE EXCEEDS SIZE OF -----
RECEIVING FIELD

FIRST NON-BLANK CHAR- -----
ACTER IS NOT (

IARGI > 1.0

IINTEGERl>2**35-l -----

MESSAGE
LINE 1

DIVIDE CHECK

LIST EXCEEDS LOGICAL
RECORD LENGTH

FILE NOT STANDARD
SYSTEM FORMAT
FILE ;, FC

LOGICAL FILE CODE FC
DOES NOT EXIST

ZERO OR NEGATIVE
REC #

REC SIZE NOT GIVEN
FOR RANDOM FILE;

RANDOM I/O TO
LINKED FILE ILLEGAL

REC # OUT-OF-BOUNDS-

LIST EXCEEDS DECLARED
RECORD LENGTH

FILE SPACE EXHAUSTED-

LINE EXCEEDS SIZE OF
RECEIVING FIELD

FIRST NON-BLANK CHAR-
ACTER IS NOT (

IARGI >LO

IINTEGERI >2**35-1

MESSAGE
LINE 2

AT LOCATION XXXXXX

STORE ZEROS IN
REMAINING LIST ITEMS
FC # XX

NO OPTICNAL EXIT
EXECUTION TERMINATED

FC # XX

FC # XX

FC # XX

FC if XX

FC # XX

FC # XX

TRFAT AS END
OF FORMAT

TREAT AS END
OF FORMAT

EVALUATE FOR
ARG=l. 0

LIMIT TO
2**35-1

.....J
.......
.....J
\D

°' I

°' ~

0
G"l
.....J
Vl
)'

DEFAULT
PROCEDURE

ERROR ABORT/
CODE CONTINUE

85 c

86 A

87 c

88 c

89 c

90 c

91 c

92 c

93 c

94 c

95 c

96-143

Table 6-5 (cont) • Error Codes and Meanings

FUNCTION ERROR

I/O "GFRC" ERROR

FORMAT I/O ENCODE/DECODE-I/O
ENCODE/DECODE MAY NOT BE USED

RECURSIVELY

I/O SPACE/CORE OBTAINED

CALLSS END OF STRING
CHARACTER MISSING

EXP UNDERFLOW
DEXP

TAN ARG TOO LARGE
DTAN

ACOSH ILLEGAL ARG
DACOSH

AT ANH ILLEGAL ARG

BACKSPACE BAD TAPE
FILE STATUS

BCD I/O ILLEGAL
FORMAT

INTERNAL MODULE NOT
CONVERSION SUPPORTED

NOT PRESENTLY USED

NOTATION: I,J,K are integers
A,B,C, are real numbers

EXCEPTION
RETURN

DA,DB,DC are double-precision numbers

MESSAGE
LINE 1

"GFRC" ERROR CODE XXX

ENCODE/DECODE-
I/O MAY

SPACE/CORE OBTAINED
FOR

EXP(TOO LARGE A
NEGATIVE NUMBER)

LARGE ARG (71E4)
TO TAN

ACOSH OF NUMBER .LT.
1.0 NOT ALLOWED

X .GE. 1. 0 TO
ATANH(X)

FILE CODE NN

FORMAT AT XXXXXX HAS
ILLEGAL

INTERNAL CONVERSION
ROUTINE FINC IS NO
LONGER SUPPORTED

CA,CB,CC where CA=X,Y are complex numbers

NOTE: If it is desirable to set up additional error messages, begin with error code 143,
and use the error codes in descending order. (i.e., 143, 142, 141, etc.)

MESSAGE
LINE 2

FC #XX

NOT BE USED
RECURSIVELY

LOG. FILE
CODE #XX

SET RESULT
=O.O

MAY CAUSE LOSS
OF PRECISION

SET RESULT
TO 0.0

SET RESULT TO
+ OR -10**38

BAD STATUS ON
TAPE

CONVERSION;
IGNORE

USE ENCODE/DECODE

LINK
LLINK

LINK, LLINK

LINK
LLINK

The LINK subroutine enables the programmer to call program overlays. The
following call is used to load a link and transfer control to it without
returning to the calling program/overlay.

Calling Sequence

CALL LlNK(name)

where: narr.e designates the variable name of the link as it appears on the
$ LINK control card. (See the General Loader manual for
"Link/Overlay Processing".) Name may be a variable which
currently has a character type value, or it may be a character
constant (e.g., "LINK!") • The link name must be 1-6
characters if using the BCD option, or it must be 5-8
characters if using the ASCII option. Explicit trailing
blanks are included in the character count.

The following statement is used to load a link and return to the next
sequential statement of the calling routine.

CALL LLINK(name)

NOTE: Due to TSS FORTRAN RUN subsystem limitations, it is necessary to
force the loading of input-output library routines with the main
link in a time sharing loadable H* file. This requires the presence
of a PRINT statement or another form of input-output in the main
program.

6-65 DG75

MEMSIZ MEMSIZ

MEMSIZ

This subroutine provides the user with the means of obtaining the amount of
memory allocated for execution of the program.

Calling Sequence

CALL MEMSIZ(j)

where: i an integer variable, is returned as the number of 1024-word
blocks currently allocated for the program in execution.

6-66 DG75

NASTRK
OVERFL
PD UMP

NASTRK

NASTRK
OVERFL

PDUMP

This subroutine may be called to avoid filling an output field with
asterisks when a formatted output value exceeds the field width specified. The
most significant part of the number is truncated to fit the field (see
subroutine YASTRK).

Calling Sequence

CALL NASTRI<

OVERFL (see DVCHK)

PDUMP,PDUMPA (see DUMP)

6-67 DG75

PT I ME PT I ME

PTIME

This subroutine provides the means of obtaining processor time used.

Calling Sequence

CALL PTIME(a)

where: ~ a real variable, is the value returned with the processor time
used in hours.

NOTE: This feature can also be used as a function. The value returned will be
a cumulative time for this job or, if under time sharing, it will be
cumulative since log-on for the current user.

6-68 DG75

RANSIZ RANSIZ

RANSIZ

This subroutine is used to specify the record size for a random binary
file. Normal return is to the next executable statement of the calling program.
If the record size for a given random file is not provided at load time via the
$ FFILE card, a call to this routine before opening the file is mandatory.

Calling Sequence

CALL RANSIZ (u,n(,m])

where: u is the logical file designator of type integer, and can be any
legal arithmetic expression.

n is the record size of type integer and can be any legal
arithmetic expression.

m is a file format indicator of type integer and can be any legal
arithmetic expression.
=O or null: standard system format
~O: block and control records are not to be processed.

NOTE: A call to RANSIZ can also be used to override a $FFILE control
card size specification. However, a call to RANSIZ is the
preferred method of specification because it works in both batch
and time sharing mode.

If m ~ O, all the designated file space is available for data. The records
are not blocked, can begin anywhere in a sector, and may span sector boundaries.

6-69 DG75

I

SETBUF SETBUF

SETBUF

This subroutine is used to assign space in ~torage for use as an
input/output buffer(s) but does not change the buffer size. Because the size of
the buffer(s) must be one greater than the actual record size, the system
standard buffer size is 321 words. Normal return is to the next executable
statement in the calling program.

Calling Sequence

CALL SETBUF(i,a)

CALL SETBUF(i,a [,b])

where: !_, the logical file designator, is an integer variable or a
constant.

a is the array name of the first buffer.

b is the array name of the second buffer for file i, if required.

7/79 6-70 DG75A

SETFCB SETFCB

SETFCB

This subroutine is used to define a file control block (FCB) for use by the
I/O subprograms. Normal return is to the next executable statement of the
calling program unless one of the following error conditions occur

1. Abort with a Q2 abort code if there is no logical file table.

2. Abort with a Ql abort code if there is no space available in the
logical file table for inserting a specified file control block.

Calling Sequence

CALL SETFCB(a,i,j[, •••])

where: ~ is the location of LOCSYM in the user created file control
block •

.!.Li are the logical file designators (integer variables or
constants) that refer to the file control block.

6-71 DG75

SETLGT SETLGT

SETLGT

This subroutine is used to define a logical unit table for use by the I/O
library subprograms. If GLOAD has not set up the LGU, this subroutine must be
called before any input/output is requested (e.g., $OPTION NOFCB). It is
called when the logical file table generated by the General Loader is to be
replaced and the table is to be placed in the user area of memory. The NOFCB
option must be specified in the $ OPTION control card.

NOTE: Normal return is to the next executable statement of the calling program.

Calling Sequence

CALL SETLGT(a,i)

where: ~ is the array name of the logical unit table to be used.

i is an integer variable or constant representing the number of
words in a.

6-72 DG75

SLITE
SLITET

SLITE,SLITET

SLITE
SLITET

This subroutine subprogram
lights. Normal return is to the
program.

simulates the setting and testing of sense
next executable statement in the calling

Calling Sequence

CALL SLITE(O) to clear sense lights 1-35

CALL SLITE(i) to turn on sense light i (l~i~35)

CALL SLITET(i,j) to test and turn off sense light i, if it is currently set

where: ! is an integer variable or constant.

i is an integer variable that cannot be the induction variable of a
currently active DO loop.
=l: i is ON
=2: i is OFF

6-73 DG75

I

I

SORT
I SORT

SORT

SORT
I SORT

This subroutine is used to sort positive integer or character arrays in
ascending order. All comparisons are based on 36-bit integer magnitudes. This
means that data cannot be sorted into an integer algebraic sequence (refer to
Appendix A for the proper collating sequence).

NOTE: Floating-point data cannot be sorted reliably.

I SORT

This subroutine is used to sort integer arrays in ascending order. The
data is sorted into an integer algebraic sequence where negative values are
allowed.

Calling Sequence

7/79

CALL SORT (array,nrec,lrs,key(, •••])
CALL ISORT (array,nrec,lrs,key [, •••]

where: array is the name of the array to be sorted.

nrec

lrs

is an integer variable or constant and is
elements, or logical records, in the array.

the· number of

is an integer variable or
record size, in words,
sorted.

Example

DIMENSION I(5,20)
CALL SORT(I,20,5, •••)

or

CHARACTER *12 I(S,20)
CALL SORT(I,20,15, •••)

or

CHARACTER *12 !(5,20)
CALL SORT (I , 2 0 , 10 , •••)

6-74

constant describing the logical
of the records in the array to be

defines 20 integer
logical record size
word per element = 5

records whose
= 5 elements * 1

in ASCII: each element is 12
characters 3 words
15 words per logical record
5 elements * 3 words per element 15

in BCD, each element is 12
characters 2 words
10 words per logical record
5 elements * 2 words per element 10

DG75A

SORT
ISORr

SORT
I SORT

7/79

is the relative word number of the ith sort key in each
logical record and must be in the range 0< key 5 lrs. Record
comparisons are made starting with key1 ,-and either progress
through keyn, or until a non-equal comparison is made. Any
number of sort keys may be specified1 however, at least one
must always be specified. If key has a value of zero, the
sort will occur on the first word of each array element.

The following example illustrates a two-dimensional array sort.

0010 CHARACTER*S ARR(3,S)
0020 PRINT,"INPUT DATA"
C READ DATA ONE COLUMN AT A TIME
0030 READ(S,lO)ARR
0040 10 FORMAT(3AS)
C THE ARRAY CONTAINS 5 LOGICAL RECORDS CONSISTING OF 3 WORDS EACH
C THAT IS, 5 COLUMNS AND 3 ROWS
0050 CALL SORT(ARR,S,3,0,1,2)
0060 PRINT,"SORTED DATA BY COLUMN"
0070 WRITE(6,10)ARR
0080 STOP1END

ready

INPUT DATA
=ELK FAST l
=COW SLOW 2
=DOG FAST 3
=CAT FAST 4
=ELK FAST 5
SORTED DATA BY COLUMN
CAT FAST 4
COW SLOW 2
DOG FAST 3
ELK FAST 1
ELK FAST 5

6-75 DG75A

SORTO
ISORTD

SORTO

SORTO
!SORTO

I This subroutine is used to sort positive integer or character arrays in a
descending order. All comparisons are based on 36-bit integer magnitudes. This
means that data cannot be sorted into an integer algebraic sequence {refer to
Appendix A for the proper collating sequence).

I

NOTE: Floating-point data {real values) cannot be sorted reliably.

ISORTD

This subroutine is used to sort integer arrays in descending order. The
data is sorted into an integer algebraic sequence where negative values are
allowed.

Calling Sequence

7/79

CALL SORTO (array,nrec,lrs,key[, •••])
CALL ISORTD (array,nrec,lrs,key [, •••]

where: array is the name of the array to be sorted.

is an integer variable or constant that specifies the
of items or logical records in the array.

number

is an
record
sorted ..

integer
size,

variable
in words,

Example

DIMENSION I(S,20)
CALL SORTD(I,20,S, •••)

or

CHARACTER *12 I(5,20)
CALL SORTD(I,20,15, •••)

or

CHARACTER *12 !(5,20)
CALL SORTD{I,20,10, •••)

6-76

constant describing the logical
of the records in the array to be

defines 20 integer records whose
logical record size = 5 elements * 1
word per element = 5

in ASCII; each element is 12
characters 3 words
15 words per logical record
5 elements * 3 words per element = 15

in BCD, each element is 12
characters = 2 words
10 words per logical record
5 elements * 2 words per element = 10

DG75A

SORTO
I SORTO

0005
0010
0020
0040
0042
0043
0050
0060

ready

*RUN
9

19

7/79

SORTO
I SORTO

is an integer variable or constant and is the word number of
the ith sort key in each logical record and must be in the
range O<key ~ lrs. Record comparisons are made starting with
keyl and either progress through to keyn , or until a
non-equal comparison is made. Any number of sort keys may be
specified; however, at least one must always be specified.

INTEGER ARRAY(lO)
DO 10 I=l,10
10 ARRAY(I)=RANOT(20.0)
WRITE(6,200)ARRAY
CALL SORTO(ARRAY,10,1,0)
WRITE(6,200)ARRAY
200 FORMAT(l0(2X,I7))
STOP;ENO

3 0 4 17 11 19 17 12 8
17 17 12 11 9 8 4 3 0

6-77 OG75A

SSWTCH SSWTCH

SSWTCH

This subroutine subprogram tests the GCOS switch word for the status of a
sense switch. Normal return is to the next executable statement in the calling
program.

Calling Sequence

CALL SSWTCH(i,j) to test sense switch i

where: i is an integer variable or constant that must be from 1 to 6.

i is an integer variable that cannot be the induction variable of a
currently active DO loop.
=l: i is ON
=2: i is OFF

Bits 6-11 of the Program Switch Word (described · in the General
Comprehensive Operating Supervisor manual), correspond to sense switches l-6.

6-78 DG75

1'ERMNO TERMNO

TERMNO

This subroutine is used as a means of obtaining station code.

Calling Sequence

CALL TERMNO (a)

where: ~ is a character variable. The value returned is a two-character
station code.

In batch, the call returns two blank characters for the station code.

6-79 DG75

TERMTM TERMTM

TERMTM

This subroutine is used to obtain the elapsed time since log-on. The call
is applicable only for time sharing activities; it is ignored in the batch mode.

Calling Sequence

CALL TERMTM (a)

where: a a real variable, is the value returned for the hours since
log-on.

6-80 DG75

TRACE TRACE

TRACE

This subroutine is called from a FORTRAN object program in the time sharing
mode. It is useful in tracing and debugging an object module (refer to Debug
~~Routines manual).

6-81

\.
\

USRCOD USRCOD

USRCOD

call
mode.

This subroutine is used as a means of obtaining user identification. The
is applicable only for time sharing activities; it is ignored in the batch

Calling Sequence

CALL USRCOD (s)

where: ~ a character variable, is returned as the
12-character user identification.

6-82

value of the

DG75

YASTRK YASTRK

YASTRK

This subroutine may be called to override the affect of the NASTRK
subroutine and to re-establish the default action of filling an output field
with asterisks when a formatted output value exceeds the field width specified
(refer to subroutine NASTRK).

Calling Sequence

CALL YASTRK

6-83 DG75

APPENDIX A

ASCII/BCD CHARACTER SET

Octal MODEL
ASCII Collating BCD 33/35 HOLLERITH
~ Seguence ~ Octal !!'!. CARO Punch MEANING

NULL 000 'CS'P Null or time fill char
SOH 001 'C'A Start of heading
STX 002 'C'B Start of text
ETX 003 •c•c (EOM) Fnd of text
EOT 004 •c•n (EOT) End of transmission
ENQ 005 • c. F. (WRll) Enquiry (who are you)
ACK 006 'C'F (RtT) Acknowledge
BEL 007 'C'G (BFLL) Bell
BS 010 'C'H Backspace
HT 011 'C'I (TAB) Horizontal tabulation
LF 012 LINE FEED Line Feed (New Line)
VT 013 • c. I((VT) Vertical Tabulation
FF 014 'C'L (FORM) Form Feed
CR 015 RETURN Carriage Return
so 016 'C'N Shift Out
SI 017 •c 'flJ Shift In
OLE 020 'C'P Data Link Escape
DCl 021 'C'Q (X-ON) Device Control 1
DC2 022 'C'R (TAPE) Device Control 2
DC3 023 'C'S (X-OFF) Device Control 3
DC4 024 'C'T (TAPE) Device Control 4
NAK 025 •c•u Negative Acknowledge
SYN 026 'C'V Synchronous Idle
ETB 027 'C 'W End of Transmission Blocks
CAN 030 •c•x Cancel
EM 031 'C'Y End of Medium
SS 032 •c•z Special Sequence
ESC 033 'CS'K Escape
FS 034 'CS'L File Separator
GS 035 •cs 'M <;roup Separator
RS 036 'CS'N Record Separator
us 037 'CS'{lS Unit Separator
SP 040 blank 20 SPACE BAR blank Space
! 041 ! 77 'S'l 0-7-8 Fxclamation Point
" 042 n 76 'S'2 0-6-8 Quotation Mark
f 043 t 13 'S'3 3-P Number Sign
$ 044 $ 53 'S'4 11-3-8 Currency Symbol
% 045 % 74 'S'S 0-4-8 Percent

046 32 'S'6 12 Ampersand
047 57 'S'7 11-7-8 Apostrophe

(050 (35 •s•0 12-5-8 Opening Parenthesis
) 051) 55 'S'9 11-5-8 Closing Parenthesis
* 052 * 54 • s. : 11-4-8 Asterisk
+ 053 + 60 • s. 1 12-0 Plus
I 054 73 I 0-3-8 Comma

055 52 11 Hyphen or Minus . 056 . 33 . 12-3-8 Period
I 057 I 61 I 0-1 Slant

A-1 DG75

Octal MODEL
ASCII Collating BCD 33/35 HOLLERITH
CHAR sesuence CHAR Octal KEY CARD Punch MEANING

0 060 0 00 0 0 Zero
1 061 1 01 1 1 One
2 062 2 02 2 2 Two
3 063 3 03 3 3 Three
4 064 4 04 4 4 Four
5 065 5 05 5 5 Five
6 066 6 06 6 6 Six
7 067 7 07 7 7 Seven
8 070 8 10 8 8 Eight
9 071 9 11 9 9 Nine

072 15 5-8 Colon
073 56 i 11-6-8 Semicolon

< 074 < 36 I 8 I I 12-6-8 Less Than
075 75 'S'- 0-5-8 Equal

> 076 > 16 I 8 I• 6-8 Greater Than
? 077 ? 17 'S'/ 7-8 Question Mark
@ 100 @ 14 'S'P 4-8 Conunercial At
A 101 A ·21 A 12-1 Uppercase Letter
B 102 B 22 B 12-2 Uppercase Letter
c 103 c 23 c 12-3 Uppercase Letter
D 104 D 24 D 12~4 Uppercase Letter
E 105 E 25 E 12-5 Uppercase Letter
F 106 F 26 F 12-6 Uppercase Letter
G 107 G 27 G 12-7 Uppercase Letter
H 110 H 30 H 12-8 Uppercase Letter
I 111 I 31 I 12-9 Uppercase Letter
J 112 J 41 J 11-1 Uppercase Letter
K 113 K 42 K 11-2 Uppercase Letter
L 114 L 43 L 11-3 Uppercase Letter
M 115 M 44 M 11-4 Uppercase Letter
N 116 N 45 N 11-5 Uppercase Letter
0 117 ¢ 46 ¢ 11-6 Uppercase Letter
p 120 p 47 p 11-7 Uppercase Letter
Q 121 Q 50 Q 11-8 Uppercase Letter
R 122 R 51 R 11-9 Uppercase Letter
s 123 s 62 s 0-2 Uppercase Letter
T 124 T 63 T 0-3 Uppercase Letter
u 125 u 64 u 0-4 Uppercase Letter
v 126 v 65 v 0-5 Uppercase Letter
w 127 w 66 w 0-6 Uppercase Letter
x 130 x 67 x 0-7 Uppercase Letter
y 131 y 70 y 0-8 Uppercase Letter
z 132 z 71 z 0-9 Uppercase Letter
[133 [12 'S'K 2-8 Opening Bracket
\ 134 \ 37 'S'L 12-7-8 Reverse Slant
] 135] 34 I S'M 12-4-8 Closing Bracket
I\ 136 I\ 40 'S'N 11-0 Circumflex

137 72 'S'¢ 0-2-8 Underline
I 140 Grave Accent
a 141 Lowercase Letter
b 142 Lowercase Letter
c 143 Lowercase Letter
d 144 Lowercase Letter
e 145 Lowercase Letter
f 146 Lowercase Letter
g 147 Lowercase Letter
h 150 Lowercase Letter
i 151 Low~rcase Letter
j 152 Lowercase Letter
k 153 Lowercase Letter
1 154 Lowercase Letter

A-2 DG75

Octal MODFL
ASCII Collating BCD 33/35 HOLLF.RI'T1H
CHAR sesiuence CHJ\R Octal KEY CA.RD Punch MEANING

m 155 Lowercase Letter
n 156 Lowercase Letter
0 157 Lowercase Letter
p 160 Lowercase Letter
q 161 Lowercase Letter
r 162 Lowercase Letter
s 163 Lowercase Letter
t 164 Lowercase Letter
u 165 Lowercase Letter
v 166 Lowercase Letter
w 167 Lowercase Letter
x 170 Lowercase Letter
y 171 Lowercase Letter
z 172 Lowercase Letter
{ 173 Opening Brace
I 174 Vertical Line
) 175 Closing Brace
__, 176 Tilde
DEL 177 RUBOUT 12-7-9 Delete

Legend:

'C' CTRL key
'CS' CTRL and SHIFT keys
'S' SHIFT key

A-3 DG75

APPENDIX B

TIME SHARING SYSTEM DESCRIPTION

The standard means of communication with the GCOS Time Sharing System (TSS)
is via a CRT display terminal, a keyboard/printer terminal, a paper-tape
terminal unit for input/output, or any combination. In any case, the
information transmitted to and from the system is displayed on the
terminal/printer. Keyboard input is used for purposes of description~
instructions for the use of paper tape are given under "Paper Tape Input" in
this section.

The time sharing system is utilized by means of a command language which is
distinct from any of the specialized programming languages that are recognized
by the individual time sharing compilers/processors (e.g., the time sharing
FORTRAN language). The command language is basically the same for any component
of the time sharing system (i.e., FORTRAN, BASIC, Text Editor, etc.). A few of
the commands pertain to only one or another of the component time sharing
systems, but the majority of them are common to all component systems.

The valid time sharing system commands relate to the generation,
modification, and disposition of program and data files, as well as program
compilation and execution requests. The complete time sharing command language
is described in the TSS General Information manual. However, the RUN command
for the YFORTRAN and~RTRAN Time Sharing Systems is described in this appendix.

Once communication with the system has been established, any question or
request from the system must be answered within ten minutes, with the exception
of the initial requests for user identification (user-ID) and sign-on password,
which must be given within one minute. When these time limits are exceeded, the
terminal is disconnected.

Log-on Procedure

Communication with the time sharing system is initialized through the
following steps:

7/79

• Activate the terminal unit

• Dial the site-designated phone nwnber for the time sharing center

• Connect the receiver to the terminal coupler after a high-pitched tone
is heard1 if a busy signal is heard, hang up and try later

• Press the carriage return key

• Begin the log-on procedure

B-1 DG75A

*

*

I

I

NOTE: A carriage return must be given following any complete response,
command, or line of information typed by the user. (In the examples
shown throughout this appendix, the user's response is underlined
for illustration, and a carriage return terminating each separate
response is understood.

Once the terminal has been connected to the computer, the time sharing
system begins the log-on procedure by transmitting the message:

HIS SERIES 60 ON(date)AT(time)CHANNEL(nnnn)

where: time is given in hours and thousandths of hours (hh.hhh)

nnnn is the logical identifier of the line to which the user is
COrmected.

Following the message, the system asks for the user's identification:

USER ID -

The user identification (user-ID) that has been
sharing installation management must be typed on the same
uniquely identifies a particular user already known
purpose of locating user programs and files, and initiates
of the time sharing resources allocated.

Example

USER ID - J.P.JONES

assigned by the time
line. This user-ID
to the sy,stem for the
accounting for usage

I After the proper response, the system asks for the sign-on password that
was assigned with the user-ID.

PASSWORD
DIDIBKBllXl:D

The password must be typed directly on the "strikeover" mask provided below
the PASSWORD request. The password is used by the system as a check on the
legitimacy of the identified user. The "strikeover" mask ensures that the
password, when typed, cannot be read by another person. (In the event that
either the user-ID or password is given twice incorrectly, the user's terminal
is immediately disconnected from the system•) At this point, if the accumulated
charges for the user's past time sharing usage equals or slightly exceeds 100
percent of current resource allocation, the user receiv.es a warning message. If
accumulated charges exceeds 110 percent of current resources, the message

RESOURCES EXHAUSTED - CANNOT ACCEPT YOU

is printed and the
information message
quota has been used.

terminal is immediately disconnected. The following
may be printed if more than 87% of the user's file space

n BLOCKS FILE SPACE AVAILABLE

NOTE: This condition does not affect the log-on procedure.

7/79 B-2 DG75A

Assuming that the user-ID and password ure legitimate, and resources have
not been over-extended, an asterisk is issued indicating readiness to accept
commands and/or build files~ The RUN and RESEQUENCE commands are unacceptable
at this point since it is not known what type of source is to be acted upon.
For example, does RUN mean to compile a BASIC or FORTRAN program, or does it
mean a batch job is to be submitted for processing? The user has two
alternatives available to deal with this ambiquity:

1. The mode is established by simply entering the desired system
selection (i.e., FORTRAN or YFORTRAN, which can be abbreviated as FORT
or YFORT} accompanied by an OLD or NEW request.

Once the system selection has been made, the system remains in effect
until explicitly changed (or cancelled by means of the break key) •
The RUN command can be used once the mode is established.

2. The BRN, FRN, and JRN commands can be issued independent of previous
system selection (if any} and imply RUN for BASIC, FORTRAN, and
CARDIN, respectively. Note that JRN cannot be used as an execution
command for a CARDIN program unless that program follows the CONVERT
subsystem syntax.

The JRN command is not identical to the CARDIN RUN command. Refer to the
TSS Terminal Batch Interf qce manual for details concerning the use of JRN in
C'Oiljunction with he CONVERT subsystem.

The following is an example of a complete log-on procedure, up to the point
where the user is ready to begin building a file or exercising commands:

HIS SERIES 6000 ON 05/26/77 AT 14.568 CHANNEL 0012

USER ID -J.P.JONES
PASSWORD
!!f!XKlf Hti!pJ:X
* - (begin entering input on this line)

Program Statement Input

The system is currently in build-mode (as indicated by the initial
asterisk) and is ready to accept FORTRAN program statement input or control
commands. All lines of input other than control commands are accumulated on the
user's current file as they are entered into the system.

Following each line of noncommand-language input and the terminating
carriage return, the system supplies another initial asterisk when the carriage
is returned, to indicate the system is ready to accept more input.

7/79 B-3 DG75A

*

FORMAT

A line of FORTRAN input can contain:

1. One or more FORTRAN statements
2. A partial statement

3. A continuation of a statement left incomplete in the preceding line of
input

4. A comment

5. A combination of 3 and 1, or 3 and 2 1 in that order

6. A combination of 1 and 2

A line input must begin with a line-sequence number from one to eight
numeric characters. The line-sequence number enables the programmer to correct
and modify the source program. (Hereinafter, the line:.Osequence number is'
referred to simply as the "line number".)

NOTE: A line number is distinct from a statement number in that a
statement number is a part of the FORTRAN language statement itself.

The line number is always terminated with a single control character that
can be a blank, an ampersand, a number sign, an asterisk, or the letter c. This
control character merely serves to indicate what type of information follows
(i.e., new statement, continuation, or comment) and is not compiled as part of
the program. The semicolon can be used to indicate the end of one complete
FORTRAN statement and the beginning of another on the same line of input. A
carriage return must be used to terminate a complete line of input. This line
format is suitable for direct processing by the FORTRAN compiler with the
options NFORM and LNO. ·

7/79

The general format of a line of FORTRAN input is

nnnnnnnncstatement or continuation ;statement ••• ;statement

nnnnnnnnc comment

where: nnn ••• n

c

or

is a nwneric line number, the magnitude of which
than 2 I8 (262 ,144)

is less

is a control character that can be a blank, an ampersand,
an asterisk, a number sign, or the letter c, and must
immediately follow the last digit of the line number.

B-4 DG75A

CONTROL CHARACTER

The control character identifies the type of information that follows it.

)S (blank)

' (ampersand)

- If the character position immediately following the
las.t digit of the line munber contains a blank, and the
next nonblank character is not an ampersand, then that
nonblank character is assumed to begin a new FORTRAN
statement. In this case, the next nonblank character
may begin a FORTRAN statement number (i.e., mm ••• m
st:atement-text).

- If an ampersand is the first nonblank character
following the line number, the next significant
character is assumed to be a continuation of the
previous statement in the previous line of input. (A
blank character is significant only as a continuation
of the character string from a preceding line.) The
effect of "&" is to suppress the previous carriage
return as an end-of-statement indicator.

* (asterisk) or C - If the line number is terminated with an asterisk or
the letter c, the following information is assumed to
be a comment. The comment itself is terminated by a
carriage return.

(pound sign) If a numeric character is desired in column 1 of the
card image and line numbers exist in the source file, a
pound sign (#) immediately following the line number
causes the character following it to be placed in
column 1 .

A semicolon within a noncomment line indicates
preceding statement and the beginning of a new statement.
include the FORTRAN statement number, mm ••• m.

both the end of the
The new statement can

The format of a statement that follows a blank control character, is

••• nnM M··~M mm ••• m FORTRAN-language-text

(The statement format portion is underlined.)

where: M ••• J6 are optional blanks

mm ••• m is an optional numeric statement number where mm< 99999

7/79 B-5 DG75A

BLANKS (OR SPACING) WITHIN A LINE OF INPUT

Initial, embedded, or trailing blanks in a line of input have no
significance in its interpretation; however, blanks are illegal within the line
number and the nonnumeric character immediately following the line number is
interpreted as a control character. Thus, spacing can be used quite freely
within a line of input for legibility. Blanks within character constants and nH
fields (i.e., alphanumeric information are meaningful and are retained in the
object program coding.)

NOTE: The line/statement format is completely free-form, or position
independent with the exception of the control character.

To this point, the discussion of line format has been oriented to the NFORM
format described earlier in this document. This is generally the most
convenient form to use in time sharing, although it is not mandatory. The
source file can be built using the Text Editor and can be used without line
numbers through the NLNO option. The source program can be in "fixed" format
(i.e., without line numbers) through the FORM option. The full spectrum of line
formats and source file recording modes is available to the time sharing user.

Source Program Modification

Keyboard input is sent to the computer and written onto the user's current
file in units of complete lines. A line of terminal input is terminated by a
carriage return and no part of the line is transmitted to the system until that
carriage return is given. Therefore, corrections or modifications can be done
at the terminal at two distinct levels:

1. Correction of a line-in-progress (i.e., a partial line not yet
terminated) •

2. Correction or modification of the source program {i.e., the contents
of the current source file) by the replacement or deletion of current
lines, or the insertion of new lines.

The correction of a typing error that is detected before the line is
terminated can be done in one of two ways.:

• Delete one or more characters from the end of the partial line

• Cancel the incomplete line and begin again

NOTE: Use of the delete control character deletes the character preceding
the deletion character. (The delete control character used is
dependent upon the make of terminal at the site.)

7/79 B-6 DG75A

Example

If # is the deletion character,

JONS#

deletes s

JONS DAVEY#######

deletes S DAVEY

Correction or modification of the current source file is done on the basis
of line numbers and proceeds accordingly.

Example

7/79

The source file contains

100 READ(5,16)HRS,RATE,NO
200 WRITE(6,16)HRS,RATE,NO
300 16 FORMAT(F3.2,F4.2,I6)

1. Replacement. A numbered line replaces any identically numbered line
that was previously typed or contained on the current file.

Example

200 WRITE(6,12)PAY

replaces the current line numbered 200.

2. Deletion. A "line" consisting of only a line number {i.e., 100)
causes the deletion of any identically numbered line that was
previously typed or contained on the current file.

Example

100

deletes line 100 from the source file.

3. Insertion. A line with a line-number value that falls between the
line-number values of two pre-existing lines is inserted in the file
between those two lines. If the line number is less than the first
line number, it is inserted at the beginning of the file; if greater
than the largest line number, it is inserted at the end of the· file.

Example

250 12 FORMAT(//16HPAY IS EQUAL TO ,F6.2)

is inserted above line 300.

The new source file now contains

200 WRITE(6,12)PAY
250 12 FORMAT{//16HPAY IS EQUAL TO ,F6.2)
300 16 FORMAT(F3.2,F4.2,I6)

B-7 DG75A

I
I

Input Error Recovery

The decimal input/output routine permits the time sharing user (BCD or
ASCII) to correct a string of characters in an executing FORTRAN program that
was entered from a terminal when a character is illegal for the current format
conversion (e.g., a decimal point is illegal in an "I" field). When the current
input line is printed on the terminal with a pointer to the illegal character,
the correction can be made, and the input/output routine resumes with the new
string. If the response is a carriage return, an error message is printed.

At any point in the process of entering file building input in
line-numbered subsystems, the LIST command may be given, which results in a
clean, up-to-date copy of the current file. In this way,. the results of any
previous corrections or modifications can be verified visually. (The several
forms of the LIST command are described in detail in the TSS General Information
manual). Following the command "OLD filename", the LIST -COmmand can be used
initially to inspect the contents of the current source file (i.e., the "old"
program).

Automatic Terminal Disconnections

Once communication with the Time Sharing System has been established, any
question or request must be answered within ten minutes. If these time limits
are exceeded, the terminal is disconnected.

7/79 B-7.l DG75A

Log-Off Procedure

To terminate the current session with the Time Sharing System and
disconnect the terminal, the

or

*LOGO FF

command may be given.

A report of the user's time sharing usage charges is given, as illustrated
below, and the terminal is disconnected:

**COST: $ 0.17 TO DATE: $ 206.11=21%
**ON AT 15.000 - OFF AT 15.016 ON 07/19/78

If the BYE command is used, prior to the issuance of the usage charges, the AFT
is scanned, and the user is queried as to the disposition of any temporary
files.

To
conunand
user to
without
is then

terminate the current session without disconnecting the
NEWUSER may be given in place of BYE. This procedure

log-on immediately, or it can be used to change the
going through the log-off/log-on procedure. The current

printed and a new log-on sequence is initiated.

terminal, the
allows another
charge number
log-off report

CAUTION: Failure
result
etc.).
log-off
manually
the talk
heard.

to follow log-off procedures as described above may
in unpredictable problems (lines or files remaining busy,
Certain data sets do not automatically disconnect after

from the terminal. In such cases, it is necessary to
disconnect the data set by lifting the handset, pressing
button, and hanging up the handset when the dial tone is

I-D-S/II in a FORTRAN Time Sharing Environment

The use of I-D-S/II in the FORTRAN time sharing environment requires the
ability to specify FORTRAN source files, I-0-S/II control files, and I-D-S/II
data base area and key files as well as the desired options from the terminal.
The YFORTRAN and FORTRAN time sharing systems provide this capability.

Files Required by I-D-S/II

I-D-S/II requires control files and data base area files.
files and data base procedure files may also be required. The
required are

Data base key
control files

7/79

• Schema File - the schema file, a random file produced by the schema
translation, is the "l*" file unless it has been renamed in the Device
Media Control Language (DMCL). It has the alternate name "l.". If l*
has been renamed in the DMCL, it must have that alternate name. The
schema file is required in the AFT at execution time.

B-8 OG75A

• Validated Subschema File - The validated subschema file, a random file
produced by the subschema translation and validation, has the
alternate name "6*" and is required in the AFT at compilation time.

• Subschema Control Structure - Unlike the other I-D-S/II files, the
subschema control structure, a sequential file produced by the
subschema validation, is not accessed from the AFT. This file, which
was referenced by the filecode C* during validation, is bound instead
with the FORTRAN object program at load time. It consists of two
object modules, s.xxxx and D.xxxx, where xxxx are the first four
letters of the subschema name.

Data base area files are required. Data base key files may also be
required. Both type of files must be placed in the AFT under their alternate
names (i.e., the file codes which were specified in the schema DMCL). The
following types of data files can be specified:

• Integrated
• Integrated with Record Keys
• Indexed
• Indexed with Record Keys

If any required data base procedures were not included in the FORTRAN
source program itself, files contain~ng these procedures must be supplied.
These files, produced during previous compilations, supply the procedures
specified in the schema and subschema. These object units, like the control
structure, are bound with the FORTRAN object program at load time.

When the DML option is specified, an INVOKE statement in the FORTRAN source
program enables the FORTRAN compiler to read the 6* file and obtain the
subschema. The subschema then becomes part of the FORTRAN program and defines
the User Working Area (UWA).

At run time, the schema file (l*) and the data base area and key files must
be in the AFT under the appropriate alternate names. The control structure is
used at run time to desc;ribe the subset of the data base which is accessible to
the program.

Comparison of the FORTRAN and.YFORTRAN Time Sharing Systems

There are two time sharing versions of the FORTRAN compiler. Each version
is invoked by the call specified below.

7/79

Compiler Version

Batch based time sharing compiler
Time sharing based compiler

B-9

Language Call

YFORTRAN
FORTRAN

DG75A

I

The time sharing based FORTRAN compiler compiles under the time sharing
system rather than being spawned as in the case of the batch based time sharing
compiler. It differs from the batch based compiler because it

• Compiles under the GCOS time sharing system

• Eliminates the need for configuring batch memory; YFORTRAN compiles
through DRL TASK (Refer to the TSS System Programmer's Reference
Manual).

• Significantly reduces overhead in the FORTRAN time sharing system

• Does not require the "CORE=" clause for compilations

• Has identical compilers with the exception of the executive phase
(YFXC vs YUEX)

THE YFORTRAN TIME SHARING SYSTEM RUN COMMAND

The YFORTRAN time sharing RUN command can be written as either RUN or RUNH.
The RUNH form is used to display a heading line on the terminal that gives a
date, a time, and a SNUMB. Any of the seven following options can be specified
with the RUN (or RUNH) command:

7/79

RUN [H] [- nnn] [fs] [= [fh] [; fc] (Capt[, •••]>] [ulib]] [#fe]

-nnn

f s

nnn is the maximum processor time (in seconds) the program is
allowed to run during execution.

is the set of file descriptors (separated by semicolons) for source
files in the standard BCD card image format, in compressed card
image format (COMDK) , or in time sharing ASCII standard system
format, and/or descriptors for binary card image object files.
These files serve as inputs to the compiler and/or loader.
Concatenation of source files is provided by using a separate
semicolon between each file descriptor. Where a BCD or COMDK
source file is supplied (media code 1 or 2) , f s can also include a
descriptor for a BCD alter file. The alter file must begin with a
$ UPDATE card and must be in alter number sequence. If there are
many BCD or COMDK source files in the list, the alter file updates
the first source file. If the FORTRAN program contains I-D-S/II
DML statements, fs should also contain the file descriptor for the
subschema control structure file. If data base procedures are
required and are not supplied as part of the FORTRAN source
progr~m, file descriptors for the procedure object files should
also be listed here.

Alternatively, the list fs can consist of a single file descriptor
that points to a previously generated system loadable (H*) file.

A file descriptor consisting of the single character "*" indicates
the current file (*SRC). The fs list is optional, and when
missing, indicates that only the current file (*SRC} is to be
compiled.

B-10 DG75A

7/79

fh is a single file descriptor of a random file into which the system
loadable file (H*) produced by the General Loader is saved if the
compilation is successful. This file is written if no fatal errors
occur during compilation. If the named file does not exist, a
permanent random file of.36 blocks (llinks) is created and added to
the user's catalog. If the field is missing, the H* file is
generated into a temporary file. The presence of this option is
valid only when the program indicated by the list fs, the FORTRAN
library, and the user library (if any) is bindable (i.e., no
outstanding SYMREFs). If the General Loader indicates that
outstanding SYMREFs exist, an executable H* file is created, but
any reference to an unsatisfied SYMREF causes the program to be
abnormally terminated. (The General Loader inserts a MME GEBORT at
references to unsatisfied SYMREFs. When a MME is encountered
during the execution of a time sharing subsystem, GCOS and the Time
Sharing Executive simulate an illegal operation fault.)

;fc

(opt)

is a single file descriptor preceded by a semicolon of a sequential
file into which the compiler is to place the binary (C*) result of
a~y indicated compilation(s). One object module is written to this
file for each source program in the file(s) given by fs. If a
subschema control structure was specified in the fs list, two
object modules, S.xxxx and D.xxxx, are written to this file. Any
data base procedure object units specified in the fs list are also
written to this file.

If the named file does not exist, a permanent linked file of three
blocks (!links) is created and added to the user's catalog. This
file expands as necessary up to a maximum of 20 blocks (!links), to
hold the object deck(s). In this case, the field fs plus the
libraries do not need to indicate a complete program (individual or
collections of subroutines can be compiled and saved) • When this
optional field is missing, a C* file is not generated; when
present, the DECK option is activated for the compilation process.

is a list of options available for time sharing which, when
specified, must be separated by commas. Some of these options
affect the compilation process and some affect the loading process
(the default options are underlined}.

DEBUG - The run time debug symbol table is generated.

NOTE: This debug symbol table is used for debugging in
the batch mode only. Refer to the General Loader
manual for use of the debug feature and the debug
symbol table.

NDEBUG - The run time debug symbol table is not generated.

BCD

~

FORM

NLNO

- Object character set is BCD. If applicable, this option
must be specified whenever the General Loader is to be
called. This is required for compile, compile and . load,
and load activities; it is not required for execute only
runs (run H* file). The BCD option cannot be specified
if the DML option is selected.

- Object character set is ASCII.

- Source is in "fixed" format (LNO option is not valid with
FORM).

- Source is in ·"free" format.

- Source is line numbered (default option if FORM is not
specified) •

Source is not line numbered (default option if FORM is
specified).

B-11 DG75A

I

I

I

I

OPTZ

~

NW.ARN

The object module is optimized.

The object module is not optimized.

- No compilation warning messages are printed, although,
fatal messages are printed.

CORE=nn - The compilation activity memory requirement is set to
nnK+~K or 29K, whichever is larger. If not specified, nn
is set to 20.

FDS

~

DML

STAT

LDEL

- The FORTRAN Debugging System (FDS) is enabled. See
Appendix F.

- The FORTRAN Debugging System is not invoked.

- The Data Manipulation Language (DML) facility of I-D-S/II
is invoked. If DML is specified, the necessary I-D-S/II
files must also be specified in the RUN command. The BCD
option cannot be used with the DML option.

- The I-D-S/II statistics are printed. If a sequential
file with the alternate name "P." exists in the AFT, the
I-D-S/II statistics and abort codes are written to that
file. The file is written as a BCD file and can be
converted to an ASCII file for examination from a
terminal by the command "CONV file descriptor". If "P."
does not exist in the AFT, the statistics and abort codes
are specified, and written to the terminal. If the STATS
option is not specified, the I-D-S/II statistics are not
printed and the fatal abort codes are directed to the
terminal. A FINISH statement must be included in the
FORTRAN program in order to receive any statistics. STAT
is valid only when the DML option is specified.

Logical record delete is
physical record deletion.
DML option is specified.

requested. The default is
LDEL is valid only when the

The remaining options concern the loading process (the default option is
underlined).

7/79

GO

NOGO

ULIB

NOLIB

- The program is loaded and executed at the completion of
compilationo

- The program is not executed at the completion of the
compilation. If specified, the object program is loaded
and saved. If no object (H*) save file is specified,
only the compilation is performed (General Loader is not
called).

- File descriptors exist at the end of the options field
that allocate user libraries to be searched for missing
routines prior to searching for them in the system
library.

- No user libraries are to be used.

TIME=nnn- The batch compilation and/or General Loader activity time
limits are set to nnn seconds; where nnn < 180. If not
specified, nnn is set to 60.

URGC=nn - The urgency for the batch compi],.ation and/or
Loader activity is set to nn, where nn s 40.
specified, nn is set to 40.

B-12

General
If not

OG75A

ulib

#fe

7/79

TEST

REMO

- A test version of the compiler is to be used for the
activity. There must be an accessed file (in the AFT)
with the name FORTRANY. If these two conditions are met,
then file FORTRANY is allocated as file code ** in the
activity.

- All temporary files that are created during compilation
and loading are removed from the AFT as they are no
longer needed. This option keeps the number of files in
the AFT down to a minimum but causes more time to be
spent processing each RUN command.

NAME=name - Provides a name for the main link of the saved H* file.
It can be used at time of creation of this file and
subsequently as it is reused. This name is placed in the
SAVE/field of the $ OPTION card.

A list of file descriptors (separated by semicolons)
pointing to random files containing user libraries to be
searched before the system library. This list must be
provided by the user when the ULIB option is specified.

A list of file descriptors (the first preceded by a number
sign) for files required during execution. Each
catalog/file description is separated by a semicolon {refer
to the TSS General Information manual). The file
description"""Can be in any of the following formats:

1. filename in the form filename "nn", represents a
logical file code referenced by the I/O statements in
the program where 01 S nn S 63.

2. filedescr specifying a full description.

a. filename "nn"

b. filename$password "nn"

c. userid/catalog$password "nn"

Filecodes 05, 06, 41, 42, and 43 are implicitly defined for
terminal directed I/O and do not need to be mentioned in the
RUN command unless I/O is to be directed to a file. Other
logical file codes can be terminal-directed by spt~cifying a
descriptor of the form filename "nn", where "nn" is the
desired filecode.

The I-D-S/II files required for compilation and execution
should also be specified in the #fe list. #fe should
contain the file descriptor for the 6* subschema file
required for compilation with the alternate name "6*".

Example

FORTY/DML/6STAR"6*"

#fe should also contain the file descriptors for the
I-D-S/II files required for execution that include:

1. Schema File - This file must have the alternate name
11 1. 11

• If an alternate filecode was specified in the
DMCL schema entry, it must have that alternate name.

2. Data Base Area and Key Files - These random files must
have alternate names which are the same as the
filecodes defined in the DMCL entry.

B-13 DG75A

I

3. Statistics File - If the STAT option is specified and
the output is to be written to a file, the desired file
descriptor with the alternate name "P." should be
entered in the #fe list.

Example

FORTY/DML/SCHEMA"L."
FORTY/DML/AREAl "Al"
FORTY /DML/KEYl "Kl"
FORTY/DML/STATUS"P."

FORTRAN TIME SHARING SYSTEM RUN COMMAND

The FORTRAN .time sharing RUN command can be written as either RUN, RUNH,
FRN, or FRNH. The RUNH form is used to display a heading line on the terminal
giving date and time. Any of the seven following options can be specified with
the RUN (or RUNH) command:

FRN (HJ . [-nnn] [ts] [= [fh] [; fc] [Copt [, •••] >] [ulib]] [#fe]

7/79

-nnn is the maximum processor time (in seconds) the compiled object
program is allowed to run during execution.

f s is the set of file descriptors (separated by semicolons) for source
files in the standard BCD .card image format, in compressed card
image format (COMDK) , or in time sharing ASCII standard system
format, and/or descriptors for binary card image object files.
These files serve as inputs to the compiler and/or the time sharing
loader. Concatenation of source files is provided by using a
separate semicolon between each file descriptor.

f h

Where a BCD or COMDK source file is supplied (media code 1 or 2),
fs may also include a descriptor for a BCD alter file. The alter
file must begin with a $ UPDATE card and must be in alter number
sequence. If there are many BCD or COMDK source files in the list,
the alter file updates the first source file.

If the FORTRAN program contains I-D-S/II DML statements, fs should
also contain the file descriptor for the subschema control
structure file. If data base procedures are required and are not
supplied as part of the FORTRAN source program, file descriptors
for the procedure object files should also be listed here. The
list fs can consist of a single file descriptor that points to a
previously generated system loadable (H*) file.

A file descriptor consisting of the single character * indicates
the current file {*SRC). The fs list is optional, and when
missing, indicates that only the current file (*SRC) is to be
compiled.

is a single file descriptor of a random file into which the system
loadable file (H*) produced by the general loader is saved if the
compilation ic successful. This file is written if no fatal errors
occur during compilation. If the named file does not exist, a
permanent random file of 36 blocks (llinks) is created and added to
the users' catalog. If the field is missing, no temporary H* file
is created. If this is the case, the time sharing loader creates a
complete bound memory-image of the object execution program,
"releases" itself via DRL RELMEM, and enters the execution
directly.

B-14 DG75A

;fc

(opt)

7/79

If the time sharing loader indicates that outstanding SYMREFs
exist, any reference to them during object program execution causes
abnormal termination via a DRL ABORT.

is a single file descriptor (preceded by a semicolon) of a
sequential file into which the compiler is to place the binary
object (C*) result of any indicated compilation(s). One object
module is written to this file for each source program in the
file(s) given by fs. If a subschema control structure is specified
in the fs list, two object modules, s.xxxx and D.xxxx, are written
to this file. Any data base procedure object units specified in
.the fs list are also written to this file.

If the named file does not exist, a permanent linked file of three
blocks (!links) is created and added to the user's catalog. This
file expands as necessary up to a maximum of 20 blocks (!links), to
hold the object deck(s). When C* is specified, a compiler
temporary file (*l scratch file) of 48 blocks (!links) is defined
and its name is placed into the AFT.

is a list of comma-separated compiler/loader options available in
the time sharing based FORTRAN system. Those options available
with the YFORTRAN RUN conunand but not specified here are not
currently used with the FORTRAN RUN command. They are ignored if
specified (default options are underlined).

BCD The internal character set for object program execution is
BCD. If applicable, this option must be specified whenever
the loader is called. This is required for compile,
compile and load, and load activities1 it is not required
for execute only runs (from the H* save file) • The user
should not load object deck files compiled under different
options-iT.e., one under BCD and another under ASCII) since
execution results would be unpredictable. The BCD option
cannot be specified if the DML option has also been
selected.

~ - Internal character set for the object program execution is
ASCII.

FORM - Source is in "fixed" format (LNO is not valid with FORM).

NFORM - Source is in "free" format.

LNO - Source is line numbered (default option if FORM is not
specified) •

NLNO Source is not line numbered (default option if FORM is
specified) •

OPTZ - The object module is optimized.

NOPTZ - The object module is not optimized.

NWARN - No compilation warning messages are printed, although fatal
messages are printed.

FDS

DML

- Enables the
Appendix F.

FORTRAN Debugging System (FDS) • See

- The Data Manipulation Language (DML) facility of I-D-S/II
is invoked. If DML is specified, the necessary I-D-S/II
files must also be specified in the RUN conunand. The BCD
option cannot be used with the DML option.

B-15 DG75A

I

I

I

I

I

I
I

*

STAT - The I-D-S/II statistics are printed. If a sequential file
with the alternate name "P." exists in the AFT, the
I-D-S/II statistics and abort codes are written to that
file. The file is written as a BCD file and can be
converted to an ASCII file for examination from a terminal
by the command "CONV file descriptor". If "P." does not
exist in the AFT, the statistics and abort codes are
written to the terminal. If the STATS option is not
specified, the I-D-S/II statistics are not printed and the
fatal abort codes are directed to the terminal. A FINISH
statement must be included in the FORTRAN program in order
to receive any statistics. This option is valid only if
the DML option is specified.

LDEL Logical record delete is requested. The default is
physical record deletion. This option is valid only if the
DML option is specified.

The following remaining options concern the loading process:

7/79

GO - The program is executed at the successful completion of the
compile-load process.

NOGO - The program is not executed at the completion of the
compilation. If specified, the object program is loaded
and saved. If no object (H*) save file is specified, only
the compilation is performed (the General Loader is not
called).

ULIB - File descriptors (separated by semicolons) exist following
the end of the options field that allocate user libraries
to be searched for missing routines prior to searching for
them in the system library.

~ - No user libraries are to be used. Specification of user
libraries in this case causes a RUN diagnostic.

CORE = nn where nn is additional memory (mod 1024) to be added to
the standard time sharing loader allocation-of 25K. This
should be done if the message "<F > PROGRAM EXCEEDS STORE
SIZE" appears. The compiler attempts to estimate the space
requirements for the load process by accumulating the size
of the generated memory, .DATA. region, labeled common and
blank common for each subprogram compiled; then adding a
constant (llK for the standard library) to this to arrive
at the size of a load space requirement. If the message
'NOT ENOUGH CORE TO RUN JOB' appears, TSS allocation is too
small to compile/load this program.

MAP - A memory map is produced after loading.

ulib - a list of file descriptors (separated by semicolons) pointing to
random f·iles containing user libraries to be searched before the
system libraryo This list must be provided by the user when the
ULIB option is specified. Up to nine user library files can be
specified.

B-16 DG75A

7/79

#fe - A list of file descriptors (the first preceded by a pound sign) for
files required during execution. Each catalog/file description is
separated by a semicolon (refer to the TSS General Information
manual). The file description can be in any of the following
formats:

1. filename in the form filename "nn", represents a logical file
code referenced by the I/O statements in the program where
01 ~ nn ~ 63.

2. filedescr specifying a full description.

"nn"

Filecodes 05, 06, 41, 42, and 43 are implicitly defined for
terminal directed I/O and need not be mentioned in the RUN
conunand unless I/O is to be directed to a file. Other logical
file codes can be terminal directed by specifying a descriptor
of the form "nn", where "nn" is the desired filecode.

The I-D-S/II files required for compilation and execution
should also be specified in the #fe list. #fe should contain
the file descriptor for the 6* subschema file required for
compilation with the alternate name "6*".

Example

FORTY/DML/6STAR"6*"

#fe should also contain the file descriptors for the I-D-S/II
files required for execution that include:

• Schema File - This file must have the alternate name
11 1. 11 • If an alternate filecode was specified in the DMCL
schema entry, it must have that alternate name.

• Data Ba$e Area and Key Files - These random files must
have alternate names which are the same as the filecodes
defined in the DMCL entry.

• Statistics File - If the STAT option is specified and the
output is to be written to a file, the desired file
descriptor with the alternate name "P." should be entered
in the #fe list.

Example

FORTY/DML/SCHEMA"L."
FORTY/DML/AREAl"Al"
FORTY/DML/KEYl"Kl"
FORTY/DML/STATUS"P."

B-17 DG75A

*

Example

1. Create a random file 9f 50 llinks, with general read permissions to
contain the user's library with the ACCESS subsystem. ACCESS
CF,/ULIBl,B/50,50/,R,MODE/R/

2. Listing of a deck setup for creating and saving a user library file
(through JRN or batch).

1

$
$

A$
$
$
$
$
$
$
$

A$
$
$
$

8

I DENT
USE RID
FILED IT
FILE
DATA
SELECTD
SELECTD
SELECTD
ENDED IT
ENDCOPY
PROGRAM
PRMFL
FILE
ENDJOB

16

UMC$PASSWD
NOSOURCE,OBJECT,INITIALIZE
R*,FlS,lOL
*C, ,COPY
UMC/OBJDECKl
UMC/OBJDECK2
UMC/OBJDECK3

RAN LIB
A4,W,R,UMC/ULIB1
R*,FlR,lOL

Alternate Named Files

For files required during execution, the programmer can designate an
alternate name by using the following format:

f iledescr "altname"

where: altname = nn; attaching the logical file code nn to the specified
fiie.

Example

RUN#"lO"

If a given file descriptor consists of only a two-digit logical file code
not enclosed within quotation marks, a temporary file is created unless a
quick-access permanent file with the same name already exists. The PERM conunand
can subsequently be used to make the temporary file permanent. Alternatively,
such temporary files can be made permanent at the time the user logs off.

Example

RUN PROGRAM#lO

If no file exists in the user's catalog with the name 10, a linked
temporary file is created with that name and I/O that was directed to the
logical file code 10 is routed to the temporary file.

7/79 B-18 DG75A

The fe list of the RUN command serves two additional functions: the
creation of a file control block, and the association of the logical file code
with some specific file, or the terminal. When this association involves a
catalog file descriptor, that file is accessed (or created) and added to the
user's available file table (AFT): the file is then allocated to the process.
This is analogous to the allocation by the $ PRMFL and $ FILE control cards in a
batch operation.

When a file is first referenced by an executing program, a general file
"open" function is invoked. At this time, the file control block comes into
play as one of three possibilities:

1. There is no file control block for the referenced file.

2. The file control block indicates that the terminal is to be used.

3. The file control block indicates that a file is to be used.

If there is no file control block, one is automatically generated
indicating that a file is to be used. When the file control block indicates
that the terminal is to be used, the device attachment is completed and I/O
proceeds. When the file control block indicates that a file is to be used
(cases 1 and 3), the AFT is searched. If a match is found (i.e., an allocated
file has a two-digit file code/name equivalent to the file description in the
I/O statement), attachment is made to that file and I/O proceeds. If no match
is found (i.e., there has been no file allocation for the current file
designator), a conunent is displayed on the terminal identifying the undefined
file designator.

Example

FILE XX NOT IN AFT. ACCESS CALLED

where: ~ is the two-digit file designator being referenced by the running
program.

At this point, the ACCESS subsystem is called (as indicated by the above
message) and displays:

FUNCTION?

Conunands can now be given to ACCESS. When the dialog is finished, ACCESS
returns to the user's program. The "open" routine then makes a fresh search of
the AFT. If a match is now found (indicating some file has been accessed),
attachment is made to that file and I/O proceeds. If a match is not found, the
file control block is changed to indicate attachment to the terminai and I/O
proceeds.

7/79 B-19 DG75A

Example

Consider that PROGRAM contains I/O statements with a file designator of 10
and the following dialogue transpires:

*FORTRAN
*OLD PROGRAM
*RUN

FILE 10 NOT IN AFT. ACCESS CALLED

FUNCTION?

If the. response is a carriage return, the terminal is used for file 10. If
the response is

AF,/MYFILE"lO",R,W

the ACCESS subsystem accesses the file MYFILE of the user's master catalog under
the alternate name 10 with read and write permissions. ACCESS then repeats the
query "FUNCTION?". If the user now responds with a carriage return, I/O for
file 10 is directed to MYFILE.

One additional option exists for the purpose of collecting the results of a
compiler abort. If at the time the RUN command is issued there exists a file in
the AFT of name ABRT, that file is allocated to the compilation activity as file
code *F. In the event of a compiler abort, a memory dump and symbolic display
of the internal tables is written to this file in a form suitable for printing.

Accessing I-D-S/II Files Re9uired for Execution

The I-D-S/II files necessary for execution can be accessed by listing them
in the #fe list of the RUN command as specified above or by the time sharing GET
command. Another alternative is to use calls to the supplied FORTRAN subroutine
ATTACH.

Example

CALL ATTACH (l,"FORTY/DML/AREAl""Al"";",l,O,ISTAT,}

The file is placed in the AFT under the alternate name "Al" which is the
filecode specified in the schema DMCL. The schema file l* cannot be accessed in
this way because l* is necessary for the execution of the INVOKE statement, and
INVOKE must be the first executable statement.

7/79 B-20 DG75A

First Line Run Conunand

The RUN conunand can be designated as the first line or lines of the source I
program. This is useful when running FORTRAN programs with DML statements
because the RUN command may require several lines of input to specify all the
I-D-S/II files. The following rules apply to the first line of the RUN command.

1. This feature is available on time sharing ASCII files only.

2. The line can be in the current file (*SRC) or a referenced permanent
file; however, it must begin with the first line of the first source
file.

3. The first two characters following the line number must be *# with no
embedded blanks.

4. Multiple *# lines can appear in a source file, provided the total
number of characters does not exceed 480 (six SO-character lines) •

5. The lines must conform with the RUN syntax continuation (i.e., each
line, except the last, must be terminated by one of the following
field-separating delimiters: equal sign; left parenthesis; right
parenthesis; semicolon; or pound sign).

6. The line(s) are treated as comment line(s) by the FORTRAN compiler.

7. The first line contained RUN command can be overridden by indicating
save files, options, or concatenation on the RUN type-in.

Example

*FORTRAN
*NEW
Oi"O#RUN *(20,30)=HSTAR(BCD,NOGO)
*020 PRINT, 11 HELLO DOLLY ••• 11

*OJO STOP; END
*~ (Invokes first line syntax)

DML Example

7/79

#RUNH;FORTY/DML/CSTAR=HSTAR(DML)#FORTY/DML/6STAR"6*";
2*#FORTY/DML/SCHEMA"l.";
3*#FORTY/DML/AREAl"Al";FORTY/DML/KEYl"Kl"

B-21 DG75A

I

TSS Run Examples

7/79

The current *SRC FORTRAN source file is compiled and executed.

2. RUNH-20 FROOl=HSTAR; CSTARl {ULIB) ABC; XYZ #

INPUT "01" ; OUTPUT "02"

FORTRAN program file FROOl is to be compiled and executed. The H* is
saved on file HSTAR and C* on file CS.TAR!. For the execution, the
random user libraries ABC and XYZ are scanned for outstanding SYMREFs
in FROOl. Logical file codes 01 and 02 have been used as alternate
names for the quick-access permanent files INPUT and OUTPUT. A
heading line for the date and time is displayed and the object program
is limited to 20 seconds of execution time.

3. RUN #"10"

The current *SRC file is compiled and executed and I/O through logical
file code 10 is directed to/from the terminal.

4. RUN BCDIOM = CSTAR2 (BCD,NOGO)

FORTRAN file BCDIOM is compiled and the object deck is saved on file
CSTAR2. The object file is to be executed in BCD mode.

5. RUN HSTAR #02

Execute a previously bound and saved H* file. The quick-access file
"02" is accessed by the RUN subsystem. If no such file exists, a
temporary file is created.

6. RUN = HSTAR (TIME=60, CORE=22, ULIB) SEARCH

Compile and execute the current *SRC file, saving the bound H* file on
random file HSTAR. Limit the compile time to 60 seconds and increase
the memory limits. The random user library 'SEARCH' is searched to
satisfy outstanding SYMREFs prior to searching the standard system
library.

7. RUNH *{10,190); SCRLIB(300,)

Compile and execute the program by concatenating the current file
lines 10 through 190 and file SCRLIB lines 300 through the last line
of the file.

8. RUN *; CSTARl; CSTAR2

Compile and execute the
previously saved C* files:

current *SRC file
CSTARl and CSTAR2.

B-22

and bind it with two

DG75A

DML TSS Example

RUN *;FORTY/DML/CSTAR={DML,STAT)#FORTY/DML/6STAR"6*";
FORTY/DML/SCHEMA"l.";FORTY/DML/AREAl"Al";
FORTY/DML/KEYl"Kl";FORTY/DML/STATUS"P."

The current *SRC file is compiled using the subschema file "6*" and bound
with the subschema control structure. The resulting object code is executed
using the schema file ("l."), one data base area file ("Al"), and one data base
key file ("Kl"). The I-D-S/II statistics and abort codes are written to the
file "P.".

Batch Activity to Build Time Sharing H* File

The following example program illustrates a method of building a time
sharing H* file in batch mode.

1

$
$
$
$
$
$

A$
$

A$
$
$

8

SNUMB
I DENT
LOWLOAD
USE
OPTION
USE
FORTY
SELECTA
EXECUTE
PRMFL
END JOB

16

100
.GRBG./36/
NOFCB,NOGO,SAVE/object
.GTLIT,.TSGF.,.FTSU.,.FXEMA
NFORM,NLNO,ASCII
source program file
DUMP
H*,W,R,Hstar file

Time Sharing System RUNL Connnand for Link/Overlay

When a bound object program is too large for execution under time sharing,
segmentation is achieved by using a special form of the RUN command (RUNL) to
link/overlay H* files that are to be constructed. When the RUNL command is
used, a PSTR printout can be obtained with the YFORTRAN system but not with the
FORTRAN system.

Before the RUNL command can be used, a separate RUN command with the NOGO
option must have been specified to create each of the C* files that will be
needed in the RUNL connnand. This conunand can be written as RUNL or RUNLH where
the latter form displays a heading line with the current date and time · (and
SNUMB if YFORTRAN), with the format

7/79

RUNL[H] C*file list= H*file[Coptions)] [ulib files]; link list

C* file list - The set of file descriptors for the binary object files for
the nonoverlayed main program link.

H* file - A single file descriptor of a random file into which the
system loadable file produced by the loader is saved if the
load process is successful. If the named file does not
exist, a file of 216 llinks (random temporary) is created.

B-23 OG75A

I

7/79

(options):

ULIB - File descriptors exist at the end of the options field
that locate user libraries to be searched prior to
searching the system library. The load process for
each link involves searching the same set of user
libraries first.

CORE = nn - The· YFORTRAN memory requirements are set to nn+9K or
29K, whichever is larger. If not specified, nn is set
to 20K.

The FORTRAN link loader memory requirement' is nnK if
nn < 23K or 23K+ nnK if nn > 23.

NAME = name - Provides a name for the main link of the saved H* file;
when not provided, the name "//////" is used.

MAP

GO

- If the user has previously defined a file with the name
PSTR, a load map of the link/overlay save file is
written to that file. Otherwise, a temporary file is
created by that name and the output is written to that
file. This feature is currently available only under
the YFORTRAN system.

- Allows a user to enter execution directly from the RUNL
command (the default is NOGO). The user must provide
for run time file definition and dynamic attaching
through "CALL ATTACH", etc. If it is necessary to
specify through RUN the necessary object time files,
the user must explicitly use the RUN command after
creating the link/overlay H* file.

Example

RUN HSTAR#INPUT"Ol";OUTPUT"02"

link list - A sequence of ·link phrases wherein each link phrase is used to
specify the position at which segmentation is to take place.
When the link phrase is encountered in the RUNL command, all
object deck files for the link being terminated have been
copied to the loader input file R*. The link phrase is parsed,
resulting in the generation of a $ LINK card image and possibly
a $ ENTRY card image being written to R*.

Formats

LINK(namel[,name2]) C*file list for namel

LINK(narnel[,name2,entry]) C*file list for namel

LINK(namel[,,entry]) C*file list for namel

where: namel (a five- or six-character constant or variable) is a
unique identifier for the new link

name2, if present, is the identifier of the previously loaded
link to be overlayed. The new link assumes the origin of the
.old link. All links to be overlayed are written in system
lo"adable format

B-24 DG75A

7/79

NOTES: 1.

entry, if specified, is the name of the desired primary or
secondary SYMDEF entry point of a subprogram in the current
link

Subprograms contained in any other link can always reference
subprograms in the main link. Only links that reside in memory
at the same time can reference each other. For example, if
link Bis loaded as an overlay of link A (LINK (B,A)), the
subprograms of link B cannot reference subprograms of link A.

To ascertain the size required to allocate a permanent H* save
file, create a temporary file by means of RUNL. Then use the
PERM command to create a permanent file. The size of the
permanent file will automatically be chosen just large enough
to contain the "used" llinks in the temporary file.

2. Under YFORT, "PSTR" load map generated by the General Loader
in batch can be sent to a remote station or central site
printer, if it is a permanent file.

Example

PERM PSTR;PS
SCAN PS
FORM? LOAD
000 ERRORS
EDIT? YES
?BATCH
STATION CODE

Make file permanent if temp used

Print number of errors

For multiple-blank suppression

Reply XX or carriage return

XX = remote station code
carriage return = central site printer

$!DENT Input batch $!DENT card

Alternatively, a BMC run in batch can print the file.

3. A temporary H* save file cannot be conunand-loaded; use the
LOOT command (not LODX) • The YFORTRAN or FORTRAN RUN command
should be used, since run time files can then be specified.

4. The name of the main link is //////, unless NAME=name is used
as an option. The user must specify the name when loading the
H* save file.

5. Creating a multiple-line embedded RUNL command is the best way
to deal with a long, complex conunand.

Example

l*#RUNLH MAIN; SUBl;SUB2=HSTAR (ULIB,MAP)
2*1FY/SDL7LIB,R;
3* LINK (A)SUBJ;SUB4;
4*#LINK (B A ENTRYS SUBS;SUB6;
5* LINK C,B SUB ;SUBS

Observe rules for line termination.

B-25 DG75A

I

6. After the loader builds the H* save file containing the links,
it i.s necessary to reload these links in the order required to
achieve the program function. Reloading is done by means of a
time sharing library routine (FTLK) that has two entries, LINK
and LLINK. LINK is callable from the FORTRAN source to load a
particular link and transfer control to a predesignated entry
within that link. This SYMDEF must be specified in the
"entry" field of the link phrase. LLINK can be called to load
a particular link and return control to the place in the
program at which LLINK has been called. The two calls are as
follows:

CALL LINK ("A ")
CALL LLINK ("B 11

)

The link names must be either five or six characters in length
· and blank-filled as needed.

7. When using FORTRAN random I/O, the CALL RANSIZ statement must
be placed in the main link. This assures proper file wrapup
by forcing the random I/O subroutine FRRD to reside with the
main link in memory at all times.

8. The main link in a link/overlay run must contain some
input/output when the Hstar file is to be executed in the time
sharing mode.

9. The RUNL conunand cannot be used to process octal patch
corrections under the FORT system.

Example of RUNL Inputs and Link H* Creation

Ten subroutines plus a main program are to be executed under time sharing.
The first overlay (link A), is to have three subroutines; the second overlay
(link B), four subroutines; and the third overlay (link C), three subroutines.

7/79

1. Compile and save the C* object deck files (CSTAR) for each program.

RUN MAIN =;CSTARl(NOGO)
RUN SUBA;SUBB;SUBC =;CSTAR2(NOGO)
RUN SUBD;SUBE;SUBF;SUBG =;CSTAR3(NOGO)
RUN SUBH;SUBI;SUBJ =;CSTAR4(NOGO)

2. Create a link overlay H* file (HSTAR) using RUNL.

RUNL CSTARl = HSTAR(ULIB,MAP) ULIBl;
LINK(A) CSTAR2; LINK(BiA,ENTRYB)CSTAR3;LINK(C,B) CSTAR4

3. Load and execute the H* save file specifying core limits and run-time
input/output files.

RUN HSTAR=(CORE=35K)#INPUT"4l";OUTPUT"l3"

B-26 DG75A

Example of LINK/LLINK Usage

1. Compile and save the C* object deck files for the main program and the
two subroutines.

010 PRINT,"MAIN EXECUTING"
020 CALL LLINK ("A ")
030 CALL SUBA
040 CALL LINK ("B ")
050 STOP;END

RUN =;MAIN(NOGO)
NEW

010 SUBROUTINE SUBA
020 PRINT,"LINKA EXECUTING"
030 RETURN; END

RUN=;ALINK(NOGO)

010 SUBROUTINE SUBB
020 PRINT, "LINKB EXECUTING"
030 RETURN; END

RUN=;BLINK(NOGO)

2. Create a link overlay H* file using RUNL.

RUNL MAIN=HSTAR;LINK(A) ALINK;LINK(B,A,SUBB)BLINK

3. Load and execute the H* file.

RUN HSTAR
or

FRN HSTAR=(CORE=32K)

Example of Loader Input File

The following control card setup would appear on R* for the example above
illustrating the use of LINK/LLINK.

7/79

$
$
$
$
$
$
$
$
$
$
$
$
$
$

A$

LOWLOAD
USE
USE
OPTION
OPTION
OBJECT
DKEND
LINK
OBJECT
DKEND
LINK
ENTRY
OBJECT
DKEND
EXECUTE

.GRGB./36/

.GTLIT,.TSGF.,.FTSU.,.FXEMA,.FTLK
NO MAP
NOGO

A
SUBA
SUBA
B,A
SUBB
SUBB
SUBB

· B-27 DG75A

Example of a Time Sharing Session

A comprehensive example of program creation, testing, correction and
modification follows. Replies to the user from the system are underlined.
Explanations are enclosed in parentheses and are not part of the printout.

USER ID - J.P.JONES
PASSWORD--
J1BDBBR611
*FORTRAN
*NEW
*AUT¢X - (enter automatic-line-number mode)
*0010 READ,A,B,C
*0020 Xl=A*B/C
*0'0'30 X2=A**21B**2
~ ANS=X2/Xl
*00'5'0 PRINT 10,Xl,X2, ASN###ANS {typing error correction)
*0060 10 F¢RMAT{lX,"Xl=",F6.S#2,"X2=",F7 .. 2,"ANS=",
*OO'fO F6.2)
*OOSO ST¢P
*00'9Q END
*o100 (end automatic mode by carriage return)
*'0'030 X2=A**2+B**2-C (replacement of line 30}
*°SAVE F¢RT01
DATA SAVED--F¢RT01

*LIST
0010
0020
0030
0040
0050
0060 10
0070
0080
0090

{display corrected program)
READ,A,B,C
Xl=A*B/C
X2=A**2+B**2-C
ANS=X2/Xl
PRINT l0,Xl,X2, ANS
F¢RMAT(lX,"Xl=",F6o2,"X2=",F7.2,"ANS=",
F6.2)
ST¢P
END

*RUN {run pro gr am)

= 3.2,10.5,2.2 {type input data)
Xl= 15.27X2= 118.29ANS= 7.75 (output - correct,

*0060 10 F¢RMAT(lX,"Xl="

*RUN

= 3.2,10.5,2.2

but poor format)

,F6.2," X2=",F7.2," ANS=",
(correct format statement)

Xl= 15.27 X2= 118.29 ANS= 7.75 (improved output format)
*RESAVE F{iJRTOl
DATA SAVED--F¢RT01

$ 263 .. 85= 27%
9

7/79 B-28 DG75A

Supplying Direct-Mode Program Input

During program execution, keyboard input may need to be supplied to satisfy
one or more READ statements in the program. Each time input is required, the
equal-sign character, "=", is printed at the terminal. The user begins typing
the input immediately following the equal sign.

It is also possible to input data from a paper tape. The actual characters
transmitted to the terminal from a READ statement are

• carriage return (CR)

• line feed (LF)

• equal sign (=)

• sign-on (X-ON)

The sign-on character activates the paper tape reader if the reader is in the
ready state which is achieved by having the paper tape "loaded" and the reader
switch set on. Paper tapes which are to be used in this way should end each
line with the characters

• carriage return (CR)

• line feed (LF)

• rubout (RO)

• sign-off (X-OFF)

NOTE: The sign-off character, X-OFF, turns off the reader but leaves it in
a ready state for any subsequent READs.

Terminal output from the PUNCH statement automatically appends this control
information to the end of each line to facilitate the preparation of the tapes.
In any event, the user must manually begin such tapes with an appropriate leader
of RO characters.

Emergency Termination of Execution

The use of the BREAK key terminates program execution
buffer is flushed. Control returns to the readiness
commands or building files after the use of the break key.

Paper Tape Input

and the terminal
status for entering

In order to supply build-mode input from paper tape, the user gives the
command TAPE. The system responds with READY. At this point, the user should
position the tape in the reader and start the device. Input is terminated when
one of the following conditions occurs:

7/79

• The end-of-tape occurs

• The reader is turned off

• An X-OFF character is read by the paper tape reader

• A jammed tape causes a delay of more than one second between the
transmission of characters

B-29 DG75A

At present a maximum of 80 characters are permitted per line of paper tape
input. Longer lines are truncated at 80 characters with the remaining data
placed in the next line.. A maximum of two disk links (7680 words) of paper tape
input is collected during a single input procedure. All data in excess of two
disk links is lost.

LIMITATIONS IMPOSED BY THE AFT

The AFT allows a maximum of 20 files. This may restrict the running of
FORTRAN DML programs in time sharing since a compile-and-execute run requires a
source file, subschema files (6* and C*), a schema file (l*), and data base area
and key files. If the number of data base areas and key files is large, the run
may require more files than allowed in the AFT. Note that the collector file
sy** is always present in the AFT.

One way to avoid this difficulty is to use a system-loadable file (H*).
The source program can be compiled with the_ subschema file {6*) and bound with
the control file (C*) to produce the H* file. The AFT can then be cleared. The
files required for execution can be accessed under their alternate names by the
time sharing GET command. Data base area and key files can also be accessed by
calls to ATTACH in the FORTRAN source program. The H* can then be run.

Example

RUN DMLTEST;FORTY/DML/CSTAR=HSTAR(DML,NOGO)#FORTY/DML/6STAR"6*"
*REMC
*GET FORTY/DML/SCHEMA"l."
*GET FORTY/DML/AREAl"Al"
*GET FORTY/DML/KEYl"Kl"
*RUN HSTAR=(STAT)

MEMORY CONSIDERATIONS

Under the FORT or FRN system, the maximum memory allowed for compilation is
the initial memory plus a maximum of 75K. The amount of memory available may be
limited to less by time sharing itself. If the program is too large to run
within these limits, a Yl (X2) compiler abort occurs. The only way to avoid
this situation is to reduce the size of the program.

Under the YFORTRAN system, the maximum memory allowed for compilation is
the initial memory plus 3K. If this is not enough memory, the "CORE=" option
should be used.

RESTRICTIONS ON LOAD USAGE

It is not possible to ready an area for LOAD in time sharing. The FORTRAN
DML statement:

READY (ALL I REALM= <realm list > , LOAD)

is illegal in time sharing. LOAD usage requires special JCL and must be run in
batch. This special JCL is described in Appendix E of the DM-IV (FORTRAN)
Program's Reference Manual.

7/79 B-30 DG75A

TIME SHARING SYSTEM DEFINITIONS AND FILE DESCRIPTION

Definitions

Line Numbers

Manual Mode

Automatic Mode

New File

Line numbers are required for line sequencing purposes.
A line number consists of one to eight numeric
characters. (There can be leading blanks, but no
embedded blanks.)

- In manual mode, the line numbers for each line must be
entered.

- In automatic mode, the system provides the line numbers.
They are printed as the'build-mode request for input
(i.e., the asterisk) is issued. The number is written
onto the collector file as a part of the statement.

- A new file is a temporary file created when the
or the response NEW is used. It is assumed
will build a file which then may be saved, thus
an old file. A new file is created
reinitialization of the current file.

command
the user
creating

by a

Old File - An old file is a previously built and saved file which
is selected with the OLD command and the name of the
desired file. The old file is copied onto the current
file where it is available for processing or
modification.

Current File - The current file is an assigned temporary file on which
a new file is built or the selected old file is copied.
Regardless of the intervening commands or subsystem
selections, the current file contains the last NEW or
OLD selection, with whatever modifications that may have
been entered. The modifications are, therefore,
temporary until the file is saved by means of the
command SAVE. The original old file is not altered
until a RESAVE command naming the old file is executed.

Collector File - The collector file is a transparent temporary file
assigned for each log on. All input which is not a
recognizable command is gathered onto this file (e.g.,
numbered statements). Then, depending upon the
subsystem, when the file becomes full or a command is
typed, the collector file is merged with the current
file and the entire current file is edited and sorted if
necessary. For example, when the commands RUN, LIST, or
SAVE are encountered, and data exists in the collector
file, it is merged with the current file in sort order.

Available File Table - An available file table (AFT) is provided for each time
sharing system user at log-on, but ceases to exist after
the user is disconnected from the system. This table
holds a limited number of file names (currently set at
20) which are entered in the AFT when the files are
initially accessed (opened). The AFT is an advantage
because

7/79

• Files requiring passwords or long catalog/file
descriptions may be referenced by file name alone
once they have been entered in the table.

• Files used repeatedly remain
thus re4ucing the overhead
accessing'.the file each time.

B-31

readily available,
time and cost of

DG75A

The following commands place the named permanent files in the AFT:

LIST filename(s)

OLD filename(s)

SA VE/RESA VE filename (s)

GET filename(s)

PRINT filename(s)

PERM tempfile, filename

Because the AFT is of limited length, it can become full. If this happens
and a conunand is given which requires a new filename to be placed in the AFT,
the conunand subsystem will print an error message indicating that the AFT is
full. At this point, any files that are no longer needed must be removed from
the AFT in order to continue. The STATUS FILES conunand produces a listing of
all of the files in the AFT, and the REMOVE command can be used to remove
specified files from the AFT. The files are not purged or altered in any way;
only the name is removed from the AFT and the file is set non-busy.

7/79

NOTE: When compiling and executing programs that contain FORTRAN DML
statements, the following I-D-S/II files can be specified in the #fe
list, but must be in the AFT.

• At compile time:

e The validated subschema file (the 6* file from subschema
validation and translation) under the alternate name "6*"

• At execute time:

• The schema file (the l* file from the schema translation)
under the alternate name "l. ", or under the alternate file
code specified in the schema DMCL

The data base area and key files under the alternate names
specified in the schema DMCL

• If the STAT option is selected, the file code specified
for the statistics must be under the alternate name "P."

B-32 DG75A

Description of Files

FILE SPECIFICATION

When a permanent file is used in the time sharing system, reference to it
must be specified as one of the following formats.

1. filename

2. f iledescr

where the filename only is required

where the full file description may be
used, in any of the following formats:

a. filename

b. f ilename$password

c. userid/catalog$password •••
/catalog$password/f ilename$password

If a required password is stored incorrectly or not given, the system will
explicitly ask for the proper password.

If the file was previously opened (e.g., with a GET), only the filename
needs to be given regardless of its full description. If the requested file is
not already open, it must emanate directly from the master catalog (quick-access
type file) in order for Formats 1 and 2 to be applicable.

Where desired-permissions and/or an alternate-name are applicable, a
specific format must be used.

Format

filedescr("altname"],permissions

where: altname may be a valid file name (one to eight characters), enclosed
in quotation marks.

7/79

permissions may be any one or combination of the following verbs
separated by conunas:

READ (or R)

WRITE (or W)

EXECUTE (or E)

APPEND (or A)

B-33 DG75A

Where a desired permissions specification is required, a null permissions
field implies READ and WRITE permissions (i.e., the default interpretation for
desired permissions is R,W)9

If a file segment specification of the form (i,j), where i and j are line
numbers, is given in addition to desired permissions and/or an alternate name,
it must appear last in the specification string.

Format

filedescr["altname"};eermissions (!_,i>

Examples

OLD

SAVE

LIST

PURGE

GET

FIL1$GOGO,R

/CAT1CAT2$MAYI/FILO$HERE

FILE2$HOHO

FIL3$ARIZ;FIL4;FIL5$SUN

JJONES/DATACAT/BATCHWRLDFIL"INFILE"

Categories of Files

In the time sharing environment, distinctions are made between permanent
files in two separate categories that apply to all files.

• File-access type is a general time sharing,
distinction and is not exclusive to FORTRAN

file-system-usage

• File mode deals primarily with the kinds of files produced under the
FORTRAN system.

FILE-ACCESS TYPES

There are three types of files which are based on the method of creation
and subsequent accessing of the file:

7/79

l~ Quick-access files are permanent files that were automatically created
by the system as a result of using the SAVE filename or PERM tempfile
co:mrnande Quick-access files can also be created under ACCESS if no
intermediate catalog structure is specified. This type of file has
the following characteristics:

a. It can be accessed by its creator simply by the filename form of
command and, in the case of data files (input or output), is
accessed automatically upon execution of a program reference to
it (i.e.t it does not need to be pre-accessed by a command).

b. It can be accessed with the READ permission only by any other
user who can specify the (creator's user ID/filename).

B-34 DG75A

2. Quick-access files with a password attached are permanent files that
were automatically created by the system as a result of the use of a
SAVE filename$password command as the first reference to a particular
file name. This type of file is the same as the simple, quick-access
type described above with the specified password attached. It can be
accessed by its creator either by the filename or the
filename$password form of commands; in the former case, if $password
is omitted, the system explicitly asks for the password. Also, in the
case of data files, it is accessed automatically upon execution of a
program reference to it, but the system explicitly asks for the
password.

3. Nonquick-access files are permanent files that either do not "belong"
to the user (i.e., it was created by another user) or do not emanate
directly from the master catalog. In the latter case, the file is not
completely described by user-id and filename$password and, in general,
use was made of the ACCESS subsystem in explicitly creating some or
all of the catalog/file strings describing the file.

The nonquick-access type of file can be accessed either with the GET
cononand or with similar extended forms of other commands.

NOTES: 1. A quick-access file for user A is by definition not a
quick-access file for any other user.

2. Once a type of file is initially accessed, whether by a GET or
any other conunand, it can then be referred to simply by file
name, unless it is explicitly removed from the AFT.

FILE MODES

Four modes of files can be produced under the FORTRAN system.

Mode

ASCII

BCD

Binary

Random

Characteristics

A linked (sequential) file of
ASCII character code (i.e.,
character strings).

variable-length records in
a file composed of 9-bit

A linked (sequential) file of variable-length records in BCD
character code (i.e., a file composea of 6-bit character
strings).

A linked (sequential) file of variable-length records in
binary.

A random file of fixed-length recor~s in binary.

All files, regardless of the mode, must be explicitly saved by using the
SAVE or PERM commands in order to be retained as permanent files. If the
specified permanent file does not already exist, it is implicitly created with
the correct linked or random characteristic, as required by the file mode.
(Linked is the default type of file created.) If, however, the specified
permanent file was explicitly created (i.e., normally by use of the Create-File
function of the ACCESS subsystem), the user must have been careful to create the
file with the random (R) specification if a random-mode file is to be saved or
made permanent. This is particularly true for the file specified as the
savef ile in the RUN statement on whicn the compiler output is saved. If this is
a pre-existent file, it must have previously been created (either implicitly or
explicitly) as a random file. (Refer to the TSS General Information manual, for
a description of the ACCESS subsystem.) ---

7/79 B-35 DG75A

Time Sharing References

More extensive uses of time sharing are discussed in the following manuals:

7/79

Use

Remote Batch Interface

File System Interface

Terminal/Batch Interface

General Information

Text Editing

Manual

Network Processing Supervisor (NPS)

Remote Terminal Supervisor (GRTS)

~ Management Supervisor

TSS Terminal/Batch Interface Facility

TSS General Information Manual

Text Editor

B-36 DG75A

APPENDIX C

TIME SHARING BASED FORTRAN ERROR MESSAGES

File and Record Control Type Errors

1. GET CODE 5 - File Code

Record size is zero in record control word

2. PUT CODE 4 - File Code

Current logical record larger than buffer

3. CLOSE CODE 3 - File Code

File to be closed is not in chain

4. GET CODE 4 - File Code

Block serial nwnber error

s. FILE SPACE EXHAUSTED - File Code

Attempts to "grow" this file have been denied by the Time Sharing
System.

6. BACK/FORWARDSPACE ERROR - File Code

Bad Status returned on DRL FILSP

Compiler Abort

COMPILER ABORTING

This message is printed at terminal followed by DRL ABORT. The compiler
abort code is stored into slave prefix cell O.

RUN Command Error Messages

61 LAST RUN COMMAND NOT PROCESSED

"RUNq not first three characters of input.

c-1 DG75

CONCATENATION IMPOSSIBLE IF RANDOM

RUN "random file;" random file illegal.

LINE NO. INTERVAL ILLEGAL IF NOT ASCII

Line number interval specified for other than type 5 or 6 ASCII.

NOT IN RECOGNIZABLE FORMAT

The input file specified is not legal as compiler or loader input.

MULTIPLE ALTER FILES NOT PERMITTED

Only one alter file (A*} is permitted.

SAVE FILE(S} CANNOT BE SPECIFIED

"RUN HSTAR =; save file" is illegal.

ILLEGAL DELIMITER IMMEDIATELY FOLLOWING"="

Delimiter is not semicolon, comma, left parenthesis, pound siqn, or
carriage return.

MUST BE RANDOM TO SAVE H*

RUN fs = fh, where fh is not a random file.

MUST BE LINKED TO SAVE C*

RUN fs = fh; fc, where fc is not a linked file.

ILLEGAL OPTION -- xxxx

The compiler/loader option indicated by xxxx is illegal.

ILLEGAL DELIMITER FOLLOWING RUN OPTION "xxxx"

Delimiter must be conuna or right parenthesis.

ILLEGAL NAME = SPECIFICATION

Illegal character in name in NAME option.

USER LIBRARIES EXPECTED

ULIB option specified but no user libraries specified.

USER LIBRARIES NOT EXPECTED

ULIB option not specified but user libraries designated.

C-2 DG75

TOO MANY USER LIBRA~IES SPECIFIED

Maximum of nine user libraries can be specified.

TOO MANY TTY FILE CODES

MaximUM of ten terminal file codes can be specified.

LOGICAL FILE CODE NON-NUMERIC OR >63

FORTRAN File codes·can range from 1-63.

TOO Ml\NY FILES REQ'D FOR EXECUTION

Maximum of 20 files can be specified.

TEST FILE HAS NOT BEEN ACCESSPD

TEST option specified but appropriate
accessed.

** test compiler has not been

066 - SPAWN UNSUCCESSFUL--STATUS n

Unsuccessful status returned from derail TASK, where n is equal to

1 - undefined file
2 - no SNUMB available
3 - duplicate SNUMB
4 - no program number available
5 - activity name undefined
6 - illegal user limit (time,size, etc.)
7 - bad status on *J read or write

Refer to TSS System Programmer's Reference Manual for information on derail
TASK.

CANNOT LOCATE MAIN PROGRAM IN LOAD FILE

The name of the main program cannot be found in the catalog block of the H*
file.

<so> WORK FILE -- FILE TABLE FULL

An attempt to define a temporary work file (B*,R*,*J,etc.) has failed; AFT
is full.

<SO> WORK FILE -- SYSTEM TEMP. LOADED

System refuses to allocate a temporary work file through derail DEFIL.

C-3 DG75

Catalog file string errors - {xxxx = file name) :

ILLEGAL DELIMITER IN FIELD FOLLOWING xxxx DESCRIPTION

ILLEGAL CHARACTER IN FIELD FOLLOWING xxxx DESCRIPTION

STRING ELEMENT TOO LONG IN FIELD FOLLOWING xxx DESCRIPTION

ILLEGAL PERMISSIONS IN FIELD FOLLOWING xxxx DESCRIPTION

ALTNAME ILLEGAL IN FIELD FOLLOWING xxxx DESCRIPTION

FILE DESCRIPTION TOO LONG IN FIELD FOLLOWING xxxx DESCRIPTION

NO DATA IN STRING IN FIELD FOLLOWING xxxx DESCRIPTION

File access errors:

< 50 > FILE xx xx STATUS nn

< 50 > FILE xx xx I/O ERROR

< 50 >FILE xx xx NO PERMISSION

< 50 >FILE xxxx FILE BUSY

<50> FILE xx xx NON-EXISTENT FILE

<50 >FILE xx xx NO FILE SPACE

<50> FILE xxxx INVALID PASSWORD

< 50 >FILE xx xx FILE TABLE FULL

<SO> FILE xx xx SYSTEM LOADED

<50 >FILE xx xx ILLEGAL CHAR

Reading and writing I/O errors:

< 51 >FILE xxxx

< 51 > WORK FILE

I/O STATUS nn

I/O STATUS nn

where nn is status code returned from derail DIO.

RUNL Command Error Messages

FILE NAME MUST BE OBJECT DECK (C*) FILE

The file specified is not an object deck file.

If no C*'s are specified left of the equals sign, the message is:

*SRC MUST BE OBJECT DECK

C-4 DG75

INCORRECT LINK PHRASE IN RUNL COMMAND

For example: Link(,B) or Link(A,)
Link(A,B,) or Link (B,C)
Link(A,,) or Link(,B,)
Link ()

INCORRECT SYNTAX FOR RUNL COMMAND

Generally, an illegal delimiter has been specified.

H* SAVE FILE NOT SPECIFIED

H* save file must be specified to right of equals sign.

ILLEGAL CHAR(S) IN LINK NAME

Characters must be alphabetic, nwneric, and dash.

TOO MANY CHARS IN LINK NAME

More than six characters in link identifier.

028 - READ LINKED FILES ONLY WITH THIS COMMAND

The "PSTR" load map file is random; it must be linked.

SAVE FILE(S) CANNOT BE SPECIFIED

The H* save file appears to the left of the equals sign.

M6 - CALL/RSTR CHECKSUM

The H* save file is not sufficiently large enough (in current size) to
contain the bound link/overlay structure.

ADDRESS OUTSIZE OF FILE LIMITS

The H* save file is not sufficiently large enough (in current size) to
contain the bound link/overlay structure and an attempt is made to "RUN"
the file.

DIAGNOSTIC MESSAGES ISSUED BY TIME SHARING LOADER

All messages are prefixed by either W for warning or F for fatal. The
majority of errors are diagnosed as warnings because the user has the ability to
hit the break key at any time. Thus, the decision is left to the user to
continue or stop.

XXXXXX UNDEFINED

Symbol (XXXXXX) is an undefined SYMREF. DRL ABORT is substituted for all
references.

c-s DG75

XXXXXX LOADED PREVIOUSLY

SYMDEF (XXXXXX) previously defined in load table.

INCONSISTENT PREFACE FIELD (Deck) (Card)

One of two conditions occur on card nwnber (Card) in deck number (Deck) •
The conditions are: (1) .. a SYMREF (type 5) appears with a nonzero size field
(bits 0-17) in the preface card; or, (2) a LABELED COMMON (type 6) appears
with a zero size field (bits 0-17).

LABELED COMMON XXXXXX - SIZE INCONSISTENT

LABELED COMMON (XXXXXX) defined previously with smaller size.
continues using original size.

ILLEGAL CHECKSUM (Deck) (Card)

Loading

The checksum on card number (Card) of deck (Deck) does not compare when
recalculated. Loading continues.

ILLEGAL BINARY CARD (Deck) (Card)

Card nwnber (Card) of deck (Deck) is not either preface (type 4), binary
(type 5), or BCD (type 6). Card is ignored. This message may also appear
where a preface or binary card appears out of expected order.

COMMON SIZE INCONSISTENT (Deck) (Card)

Blank conunon already defined.
larger blank conunon region
continues.

A subsequent deck is encountered having a
specified. The deck is ignored and loading

ILLEGAL LOAD ADDRESS (Deck) (Card)

A calculated storage address falls outside loadable store.
ignored but loading continues.

XXXXXX LOADED PREVIOUSLY, LABELED COMMON ILLEGAL

The deck is

SYMDEF (XXXXXX) already defined. XXXXXX appearing in current pref ace record
is a Labeled Conunon. Deck is ignored.

The following diagnostics are preceded by a printout of the record in error
and are generally associated with OCTAL correction processing.

C-6 DG75

NON-OCTAL DIGIT IN LOCATION FIELD

Self explanatory.

FIELD EXCEEDS 12 DIGITS

Twelve octal digits is maximum allowed in word.

ILLEGAL TERMINATOR

Octal field is eliminated incorrectly. Check syntax rules in the General
Loader manual.

IC MODIFICATION NOT POSSIBLE

Field requested IC modification ($code) •
are allowed. Bits 30-35 of the constructed
found to be nonzero.

XXXXXX UNDEFINED LINK ID IS YYYYYY

In this case no other modifiers
instruction are checked and

Where XXXXXX is an object symbol(SYMDEF) name and YYYYYY is a link
identifier. Meaning is XXXXXX is an unresolved SYMREF within the bounds of
overlay YYYYYY.

XXXXXX UNDEFINED LINK ID

Link identifier XXXXXX is being used to define an origin point for the next
overlay. It has yet been undefined.

XXXXXX NOT LINK ID

Symbol XXXXXX appearing here as a link identifier has been used and entered
into the load table previously as another type symbol.

LINK ID XXXXXX USED PREVIOUSLY

The identifier, XXXXXX, for the upcoming overlay has been previously
entered in the load table as a link identifier.

C-7 DG75

Fatal Diagnostics

EOF READING BINARY (Deck) (Card)

Unexpected EOF while reading binary, identification of last record read is
supplied.

ENTRY NOT FOUND

Primary entry name (•••••• or first primary SYMDEF) was not found in load
table. Diagnostic may also appear when subroutine .SETU. is not found.

H* TOO SMALL, TOTAL BLOCKS NEEDED xxxx

File specified as save file (H*) not large enough to hold program.

REQUEST FOR MORE STORE TO EXPAND LOAD TABLE - DENIED

A request for lK to be added at the upper address end of the load table was
denied by the system. Loading terminates. Suggest user rerun job.

REQUEST FOR MORE STORE TO EXPAND PROGRAM - DENIED

A request to expand memory size for object program denied by the system.
Suggest user rerun job.

ILLEGAL STATUS WHILE READING (File)

Only status accepted other than EOF is ready.

BLOCK SERIAL ERROR READING (File)

Block number in file (File) does not agree with expected number.

LIBRARY SEARCH TABLE EXCEEDED

Table used to collect pointers into random library has been exceeded.
Table size is arbitrarily set at 200.

REQUEST FOR MORE STORE TO EXPAND LOAD TABLE - DENIED

Addmem request denied. Probable need for increasing TSS memory size.

C-8 DG75

FORTRAN Compiler Aborts

NOTE: The abort code Yl is always displayed as the reason code for
any abort. The specific code is contained in the upper 18 bits
of the Q-register, or in cell 0 of the ABRT file when a time
sharing DRL abort occurs. (The reason codes follow the abort
code Yl in parentheses below.)

Yl (Xl) Compiler space management module has unsuccessfully attempted to
allocate contiguous memory block for internal table. Rerun with DUMP
option and $ SYSOUT card for file code *F. Return dump to Honeywell
Field Support.

Yl (X2) Compiler has attempted to execute request for additional memory more
than 10 consecutive times (initial memory plus maximum of 30K).
Increase allocation via $ LIMITS card or via "CORE=" option on TSS
RUN. This error could also be caused by a recursive arithmetic
statement function.

Yl (X3) GCOS has denied compiler request for additional memory for internal
tables. Increase allocation via $ LIMITS card or via "CORE=" option
on TSS RUN.

Yl (P3) Expression being handled has tree structure depth greater than 64.
Expression must be divided.

Yl (P4) Unrecoverable error occurred in code generator; error message prints
following source statement causing abort. Rerun with DUMP option and
$ SYSOUT card for file code *F. Return dump to Honeywell Field
Support.

Yl (X4) The ASCII option was not explicitly specified on the $ FORTRAN or
$ FORTY control card for a DPS all-ASCII system.

Yl (XS) END; cannot be specified as the first statement of a multi-statement
line.

Execution Aborts

7/79

LK No $ ENTRY card for this link.

Ql Logical Unit Table overflow.

Q2 Missing Logical Unit Table, may be caused by a missing or misplaced
$ OPTION control card.

Q3 No space for Logical Unit 6 Buffer.

Q4 Machine error or unexpected error to FORTRAN compiler.

QS FXEM told to take an alternate return but an alternate return name was
not supplied.

Q6 Termination of object program execution via FXEM (FORTRAN Execution
Error Monitor).

C-9 DG75A

I

APPENDIX D

SYSTEM CHARACTERISTICS

The compiler compiles all FORTRAN programs originating from batch or time
sharing, local or remote. A collection of source programs can be compiled, some
through time sharing, some through batch, and the object modules combined for
execution in either environment.

SOURCE COMPATIBILITY

The source files processed by FORTRAN can be any combination of the
following:

1. A BCD card image file, with or without alters.

2. A CO.MOK file, with or without alters.

3. A time sharing ASCII file.

4. A formatted BCD line image file, with or without slew controls.

5. A formatted ASCII line image file, with or without slew controls.

FILE CONTENTS

The source file contents can be in standard source format or in the relaxed
"free-form" format especially suitable in time sharing, with or without line
numbers. Files in any of the accepted file or source formats may be compiled
without conversion, from either batch or time sharing.

COMPILATION of SUBPROGRAMS

Many compilations can be done within one activity provided that the options
are the same for a collection of subprograms. The batch user stacks the source
programs, back to back, behind one compiler call card. The time sharing user
lists a series of source files to be compiled or provides multiple subprograms
in a source file. To the compiler there is one input file, S*, and source
programs are separated by END statements.

For larger programs requiring more memory to compile than that allocated to
an activity, the compiler "grows" in an attempt to satisfy this need. Normally
a satisfactory compilation will result; however, the operating system may deny
more memory to the compiler. The user is warned, in any event, that the
$ LIMITS card should be changed for subsequent recompilations.

D-1 DG75

ERROR DETECTION and DIAGNOSTICS

In batch mode, diagnostics are generated inline as part of the source
listing report (LSTIN) wherever possible, following the line in error. If this
report is being suppressed via the NLSTIN option, lines having no errors are not
printed, but lines for which a diagnostic is being generated are displayed. In
the time sharing mode, the error message is printed along with the source line
location of the error. If the line numbers of the source file are not
sequentially increased by one, the actual line number is that of the first
executable statement whose line number is less than the line number printed.

Format

*****S nnnn text

where: S is a severity
nnnn is an error identification code
teXt is the diagnostic message.

Three severity codes are

Code

w

F

T

Meaning

This is a warning message only.

This is a fatal diagnostic; any subsequent
execution activity is deleted.

This is a termination diagnostic; this compilation
and any subsequent execution activity are deleted.

If only warning diagnostics are printed for a given compilation, these
diagnostics can be suppressed by usin.g the NWARN option.

The correspondence of error codes with the compiler module detecting the error
is

Error Nwnber

1- 199
200- 299
300- 399
400- 499

1000-1499

COMPILER CONSTRUCTION

Compiler Module

Executive
Phase 2
Phase 3
Phase 4
Phase 1

The compiler is written in and generates object modules in "pure
procedure". .DATA. space and instruction space are clearly separated and the
instruction space remains constant over the life of the execution process.

D-2 DG75

ALLOCATION of STORAGE

Storage allocation for the object program is done in two phases of the
compiler. Phase 2 4llocates storage for arrays, equivalenced variables, and all
data that is in blank or labeled conunon. Phase 4 allocates storage for local
scalars, namelists, switch variables, and compiler generated constants and
temporary data. Phase 4 also allocates space and generates code for the
procedure.

All variables (except those in blank or labeled conunon), constants, and
temporary data are allocated to the local data storage area .DATA. which is
treated by the loader as a local labeled common. Figure D-1 shows the storage
layout for two typical low-loaded FORTRAN object programs.

r I' High Addresses
arrays and equivalenced register storage area
variables (allocated
by Phase 2) error linkage

~ .DATA. arrays and
error linkage .DATA. equivalenced variables

(allocated by Phase 2)
all other local
data (allocated all other local
by Phase 4) data (allocated

\. by Phase 4)

procedure procedure

For main programs and
subprograms that do For subprograms that
not use index use index registers
registers

Low Addresses

Figure D-1. Storage Allocation for Object Programs

ASCII Standard System Format Files

This file format is common for batch and ti.me sharing users as are the
library routines that read and write them. This common procedure for batch and
time sharing guarantees symmetry and compatibility. The file format for ASCII
conforms with the File and Record Control rules for "standard system format"
because every line is recorded as a logical record.

D-3 DG75

PERFORMANCE

The performance objective of the FORTRAN compiler is to provide a fast
compiler that can generate fast executing 0bject modules. It is generally
realized that the more analysis done to improve the efficiency of the object
module, the greater the time spent in compilation. Consequently, this analysis
is subdivided l.nto two classes:

1. Local Optimization (LO) - the analysis generally done at the statement
level.

2. Global Optimization (GO) - the analysis done over many statements,
i.e., program blocks as defined by the ANSI FORTRAN standard.

To give the user some control over the balance between compilation and
object efficiency it was decided to ccllect the GO analysis into a unique
compiler phase, callable by option. LO ~nalysis is always performed.

Local Optimization

Following are some of the object efficiency functions done on a local
basis:

1. Logical expressions are sorted so that shorter alternative passages
are executed first, and evaluation ceases as soon as the true/false
state has been determined.

2. Subscript expressions may be register contained, eliminating multiple
computations.

3. Constants may be register contained across statements.

4. Multiplica,tion and division by powers of two are performed using shift
or exponent register operations with the exception of integer
operations.

5. Constant arithmetic is done at compile time.

6. Many special operator/operand relationships
capitalize on the machine instruction set.
I=O, I=I+l, I=I+J.

are recognized to
Examples are I*l, I**l,

7. Where possible, operations involving constants make use of the DU, and
DL modifiers.

8. Where there is no redefinition of a scalar dummy argument within a
subprogram, the value of that argument is stored locally. This
eliminates an indirect cycle for each reference to that argument.

D-4 DG75

Compilation Performance

Compile speed is also a function of the properties of the program being
compiled and directly related to the options selected on the $ FORTY or
$ FORTRAN control card. The Global Optimization compiler phase increases
compile time for most programs by a factor of about twenty percent. For many
programs the specification of LSTOU doubles the compile time. Measured in
statements per minute, the compilation rate improves with larger programs. The
smaller the program the greater the effect of the basic overhead to start
compilation, step through the phases, and terminate. Binary and compressed
decks, source listing, storage maps, cross reference reports, etc. decrease the
compilation rates.

D-5 DG75

APPENDIX E

FORTRAN EXECUTION ERROR MONITOR EXAMPLES

This appendix illustrates the use of the FORTRAN Execution Error Monitor
(FXEM) in both time sharing and batch modes, utilizing CALL FXEM.

Figure E-1 lists a program and its execution in time sharing. The trace
shown indicates that error number 61 (see Table 6-5) occurred in subroutine SUB2
at line 320, that SUB2 had been called from subroutine SUBl at line 210, and
that SUBl had been called from the main program (••••••) at line 110. The
message "Argument O" indicates the reason for aborting the execution of the
program via the call to FXEM.

Figure E-2 lists the program of Figure E-1 but shows its execution in
batch. The trace shown indicates that error number 61 (see Table 6-5) occurred
in Subroutine SUB2 at alter number 3. The octal value of the three arguments
used for CALL FXEM are also shown. The trace also shows that SUB2 had been
called from subroutine SUBl at alter number 2, along with the octal
representation for the floating-point argument (-20). SUBl was called from the
main program (. •••••) at alter number 2 with the same argument. "Argument<O"
indicates the reason for aborting the program via the call to FXEM.

E-1 DG75

100 A = -2.0
110 CA LL ~ U3 I CA)
120 :5 fLJP
130 END
200 SUBHOJUNE 5U::31C8>
210 CALL SU82Cd>
220 HE IUt<N
230 ENO
300 SUDHUu r!NE SU82CC>
31 0 IF C C • GT. 0. > R E IUH N
320 CALL fXEi.l (61, 11 ArWJI~iE1ff < 0",3)
330 STLlt-'
340 END

ready

*a~lJN
***PtWG. L# <Eth~ 1#61 >
SUB2 320
Sud f · 210
• • • • • • I 1 0
ARGW.'16H < 0
abort code U6

*

Figure E-1. FXEM Example in Time Sharing Mode

E-2 DG75

l'!J
I
w

8
....i
U1

2723f 01 02-20-75 13.623 LA38- ••••••
I A = -2.0
2 CALL ::>uB I CA)
3 51Ur'
4 Eim

2723T 01 02-20-75 13.624 LAB 8... SJ:l I
I ~Ut:ittOiHIN l ;;>UBI
2 CALL ::iUB2<3>
3 kl:.fUtW
4 ENU

272JT 01 02-20-75 13.624 LA3EL Sv32
I 5 U£HlU U II N E ~U B2 CC >
2 I F < C • GT. 0 • > RElU RN
3 CALL rXC:M (61 ' 11 AUGUM EN r < 0 11 ,2)
4 51Ut'
~ l:.IW

<•><*><•><•><w><*><*><•><•><•><*><*><*><w><*><•><«><~><*><*><*><*><*><*><•><*><*><•><*><w><*><•><•><•><•><•><*>
ERHO.:t J61; TWACE UF CALLl:> 1N tlEvEuSE OIWEri

CALLI NG IU A85uLu fE
HOUTINE # LOCAflUN
~ua2 3 011130
~Ub I 2 017752

2 017770
At<GUME~T < 0

A1(GU1.~ENT

YI I
00000000001';
003000000000
00300 0000000

At?GU/.'.ENT
112

215127644425

A,,GJ/.:t.:;H
;13

000000000002

AkvUM:;~r
#4

<•> <*>< *> <*><*> <•><*> <* ><*> <•><*><* >< *> <*>< *> <*>< *> <•>< *> <*><•><•><*> <* ><*> <•>< *> <• ><*> <w>< *> <* >< *> <•>< *> <* >< *>

Figure E-2. FXEM Example in Batch Mode

APPENDIX F

FORTRAN DEBUGGING SYSTEM

The FORTRAN debugging system (FDS) is a comprehensive monitoring system
that provides a dynamic interactive debugging facility, a symbolic dump
facility, an automatic subprogram timing measurement system, and post-execution
wrapup procedures.

NOTE: The initial version of this debugging system was developed by Bell
Laboratories.

FDS CAPABILITIES

The FORTRAN debugging system provides the following capabilities:

1. All output data produced by the debugging system uses notation similar
to the FORTRAN source program being debugged. Analysis of this data
requires only the knowledge necessary to prepare the source program.

2. The debugging requests are similar in syntactic construction to the
FORTRAN language that is being debugged.

3. Unless it is invoked, the debugging system does not affect execution
time or memory requirements.

4. All of the debugging aids and measurement tools are available in both
the batch and time sharing environments of the operating system
(GCOS) •

INVOKING THE FORTRAN DEBUGGING SYSTEM

The FDS is an optional feature rather than a default function and is
invoked at the discretion of the user.

Batch Mode

The FORTRAN debugging system is invoked in the batch mode by including the
FDS option in the operand field on the $ FORTY or $ FORTRAN control card.

F-1 DG75

Time Sharing Mode

The FORTRAN debugging system is invoked in the time sharing mode by
including the FDS option with the RUN command on the terminal:

RUN=(FDS)

DYNAMIC DEBUGGING FACILITY

The dynamic debugging module is named FDEBUG.

In the batch mode, FDEBUG is called into execution when:

1. A CALL FDEBUG statement is encountered during the execution of a
FORTRAN source program.

CALL FDEBUG(di,do)

where: di represents the file designator from which the debugging
requests are to be read.

do represents the file designator on which the debugging
output is to be written.

If di is omitted or is not a positive number, the requests are read
from file designator 44. If do is omitted or is not a positive
number, the debugging output data is written to file designator 6.

2. File designator 44 is present in the EXECUTE (or RLHS or PROGRAM)
activity. In this case, the FDEBUG module is entered before the
execution of the main FORTRAN program is initiated; it reads any
debugging requests from file designator 44 until an end-of-file or FDS
RETURN request is encountered, whereupon control returns to the main
program.

3. An FDS PAUSE request (breakpoint) is encountered during the execution
of the program.

NOTE: The FDS PAUSE request is defined below in the Debugging
Requests paragraph; it has no relationship to the FORTRAN
PAUSE statement described in Section III.

In the time sharing mode, FDEBUG is called into execution when:

1. A CALL FDEBUG statement is encountered during the execution of a
FORTRAN source program.

CALL FDEBUG(di,do}

where: di represents the file designator from which the debugging
requests are to be read.

do represents the file designator on which the debugging
output is to be written.

If di is omitted or is not a positive number, the debugging requests
are read from the terminal. If do is omitted or is not a positive
number, the debugging output data is written to the terminal.

F-2 DG75

2.

3.

The FDS option
FDEBUG module
initiated. It
end-of-file or
returns to the

is specified with the RUN command. In this case, the
is entered before the execution of the main program is

reads any debugging requests from the terminal until an
FDS RETURN request is encountered, whereupon control
main program.

An abnormal termination
preventive action has
the wrapup procedures;
appendix.

(abort or break) is encountered and no
been taken. The FDEBUG module is called from

these procedures are described later in this

4. An FDS PAUSE request (breakpoint) is encountered during the execution
of the program.

FDEBUG Entry Messages

In the batch mode, messages that indicate the method by which FDEBUG is
invoked are printed on the execution report. The 'name' used in the messages
designates the name of the program in control when FDEBUG is engaged.

1. If file designator 44 is present, FDEBUG is always entered before the
program is initiated. The message is:

FDEBUG

2. If the method of entry is via a CALL FDEBUG statement in the source
program, the message is:

FDEBUG CALLED FROM name IN LINE lineno

3. If an FDS PAUSE request (breakpoint) is encountered during the
execution of the program, the message is:

FDEBUG: PAUSE IN name AT STMT # n

In the time sharing mode, messages that indicate the method by which FDEBUG
is invoked are printed on the terminal:

l. When the FDS option is used with the RUN command, FDEBUG is entered
before the program is initiated. The message is:

FDEBUG

2. If the method of entry is via a CALL FDEBUG statement in the source
program, the message is:

FDEBUG CALLED FROM name IN LINE lineno

3. If a program terminates abnormally, FDEBUG prints

FDEBUG CALLED FROM name

following the termination message.

4. An interrupt (break) will cause the FDEBUG module to be re-entered and
the following message is printed:

FDEBUG: BREAK IN name

When FDEBUG regains control, it reads the input from the terminal to
obtain the debugging requests.

F-3 DG75

s. If an FDS PAUSE .request (breakpoint) is encountered during the
execution of the program, the message is:

FDEBUG: PAUSE IN name AT STMT # n

Debugging Requests

The following conventions apply to the descriptions of the debugging
requests:

a. The first two characters of the request (underlined) can be used as
the abbreviated form of the request.

b. Whenever the term 'expr' is shown, it represents an expression that is
formed from variables or array elements, constants, and the operators
+ , - , * , /, * * , . EQ. , • NE. , • LE • , • LT • , • GE • , • GT. , • AND. , • OR. , and
.NOT. The exponent following ** must be type INTEGER. No function
references are allowed.

c. If the request is preceded by 'n', that request is inserted (implanted
for interpretation during execution) at the location of the FORTRAN
statement label 'n'.

The names and descriptions of the FDEBUG requests are listed below:

n ~L name(expr,expr, •••)

The CALL request allows user-supplied or system-supplied subroutines
to be called; a maximum of ten arguments can be supplied. Statement
label 'n' is optional. A CALL FDEBUG request cannot be inserted.
Subroutines that are to be called from an inserted CALL request cannot
contain CALL FDEBUG statements in the source program, nor can they
have FDEBUG requests inserted into them. If FORTRAN input-output
statements are contained in the called subroutine, the CALL request
should not be invoked if FDS was entered by pressing the interrupt
(break} key while the FORTRAN program was performing input-output
operations.

If the preceding restrictions are violated and the named subroutine
has previously invoked FDEBUG, the interpretation of the illegal CALI
request causes a RECURSIVE CALL error message to be printed and the
request is ignored. Otherwise, the results of interpreting the CALI
request are unpredictable. The results are usually an abnormaJ
program termination or, in time sharing, a loop that can be resolve(
only by entering a DONE, QUIT, or STOP request. (It may be necessar)
to press the interrupt key to invoke FDEBUG to accept an inpu1
request.}

n fQNTINUE

The CONTINUE request causes all
statement label 'n' to be removed.
the request is ignored.

n DONE

debugging requests inserted a
If statement label 'n' is omitted

Causes the execution of the program to be terminated. Statement labe
'n' is optional.

F-4 oG·

!!!_NCTION name

An identifier request; this request identifies FUNCTION 'name' as the
program unit in which subsequent requests will be interpreted until
another identifier request is encountered. When FDEBUG is invoked,
the default identification in which subsequent requests are
interpreted is that of the FORTRAN program unit currently in control.

n .QQ'l'O label

This request causes an unconditional transfer to the indicated source
statement label to be inserted at statement label 'n'. If statement
label 'n' is omitted, the request is ignored and an error message is
printed.

n !,!(expr) request

MAIN

The logical expression 'expr' is evaluated.
the debugging request will be interpreted.
omitted, the request is ignored.

If the value is .TRUE.,
If statement label 'n' is

An identifier request; this request identifies the main program as the
program unit in which subsequent requests are interpreted until
another identifier request is encountered. When FDEBUG is invoked,
the default identification in which subsequent requests are
interpreted is that of the FORTRAN program unit currently in control.

n PAUSE

The PAUSE request causes a breakpoint to be inserted at statement
label 'n'. Whenever the breakpoint is encountered during program
execution, the FDEBUG module is invoked. If statement label 'n' is
omitted, the request is ignored.

n PRINT expr,expr •••

The PRINT request causes the values of the expressions 'expr' to be
printed in the appropriate format. If a nonsubscripted array name
appears in 'expr', only the value of the first element of the array is
printed. Statement label 'n' is optional.

n QUIT

Causes the execution of the program to be terminated. Statement label
'n' is optional.

~TURN

SHOW

The RETURN request causes the FDEBUG module to return control to the
program that is being executed. Control is always returned to the
point where FDEBUG was entered.

The SHOW request displays the location and text of all currently
inserted requests in all program units.

F-5 DG75

n STOP

Causes the execution of the program to be terminated. Statement label
'n' is optional.

~BROUTINE name

An identifier request; this request identifies SUBROUTINE 'name' as
the program unit in which subsequent requests will be interpreted
until another identifier request is encountered. When FDEBUG is
invoked, the default identification in which subsequent requests are
interpreted is that of the FORTRAN program unit currently in control.

n var=expr

!text

This request causes the value of the scalar variable or array element
'var' to be set to the value of the expression 'expr'. The rules of
allowable assignment apply except that a CHARACTER expression may be
assigned to an INTEGER. Statement label 'n' is optional.

This request causes all text that follows the exclamation point to be
transmitted to the time sharing system as a command to be executed.
Time sharing system commands that are applicable at the system level
are accepted. This request is not available in the batch mode of
operation. If a statement label 'n' is included, a SYNTAX ERROR error
message is printed.

Debugging Request Execution

The execution of debugging requests can be accomplished by two methods:

1. If a debugging request is preceded by statement label 'n', FDEBUG
inserts the request at the indicated executable FORTRAN source
statement. When the program is executed, the FDEBUG requests are
interpreted in the order of insertion before the original source
statement is executed.

2. If a debugging request is not preceded by statement label 'n', FDEBUG
interprets the request immediately.

F-6 DG75

FDEBUG Error Messages

The following error messages are produced by the FDEBUG module:

Error Message

ANSWER PROMPT WITH PROGRAM
INPUT

BREAKPOINT OVERWRITTEN

) CHARACTER SIZE
ILLEGAL

CONSTANT TOO BIG OR TOO SMALL

) - ENTRY NOT FOUND

) - ILLEGAL ADDRESS

ILLEGAL TYPE CONVERSION/
COMBINATION

INTEGER OR REAL TOO LARGE

LABEL NOT ALLOWED

LABEL NOT FOUND

LABEL REQUIRED

NAME NOT FOUND

NESTING LIST OVERWRITTEN

- NOT FOUND

OUT OF SPACE

RECURSIVE CALL

Description

The BREAK key was pressed while data was
being entered at the terminal, or FDEBUG
was called just prior to program input and
a RETURN request is received. Respond
with program input.

An inserted request in object code has
been overwritten.

An adjustable character variable size is
out of range.

A constant contained in an expression that
is used in an FDEBUG request is either too
large or too small.

A CALL request was given to FDEBUG but the
entry point to the subroutine could not be
found.

An attempt was made to reference a dummy
argument that has been passed incorrectly
to a subprogram.

An attempt was made to assign data of
incompatible types or to combine
incompatible data types with an operator.

An integer or
FDEBUG request

real number used in an
was too large to process.

An FDEBUG request has a label 'n', but a
label is not allowed with this request.

A request containing a source program
label was given to FDEBUG but the label
could not be found.

An FDEBUG request requires label 'n' and
the label is missing.

A CALL request to a subroutine was made
and the subroutine name cannot be found.

The nesting list, maintained for traceback
purposes, has been overlayed in such a
manner that the traceback activity cannot
be performed. Usually occurs when FDEBUG
executes a CALL that performs I/O.

An FDEBUG request specified a name that
could not be found.

Insufficient
acconunodate

memory is available to
all inserted FDEBUG requests.

A call to FDEBUG was made but FDEBUG is
already in control.

F-7 DG75

Error Message

STACK OVERFLOW

STATEMENT TOO COMPLEX

SUBPROG NOT FOUND

) - SUBSCRIPT OR
DIMENSION ILLEGAL

SYMBOL TABLE EMPTY OR MISSING

SYMBOL TABLE OVERWRITTEN

SYNTAX ERROR

TOO MANY BREAKPOINTS

UNDERFLOW, OVERFLOW OR DIVIDE
CHECK

WRONG # OF SUBSCRIPTS

Description

Internal stack overflow; indicates that an
expression is too complicated.

An arithmetic expression used in an FDEBUG
request was too complex for the system to
evaluate.

A subprogram referenced by an
request cannot be found.

FDEBUG

A subscript or adjustable dimension
associated with the named variable is out
of range.

Either the' FDS option was not used for the
compilation of the subprogram or no symbol
table could be found for the FDEBUG
requests. Use the MAIN, SUBROUTINE, or
FUNCTION request and the requests will be
processed.

The symbol table could not be found or has
been overlayed. FDEBUG is unable to
process this request.

An FDEBUG request is either misspelled,
incomplete, or not recognized.

Too many FDEBUG
inserted.

requests have been

An expression used in an FDEBUG request
caused an underflow, overflow, or divide
check condition to occur.

An FDEBUG request contained a subscripted
variable, but the number of subscripts
does not match the number of declared
dimensions.

F-8 DG75

FDS Examples

Examples of the use of the FORTRAN debugging system are presented in
Figures F-1, F-2, and F-3. In both the batch mode and the time sharing mode,
FDEBUG prints six periods (••••••) to indicate the main FORTRAN program.

lO##S,J :,8,16,32
20$:IDENT
30$:0PTION:FORTRAN
40$:FORTY:NFORM,NLNO,FDS
5 0 A=l. 0 ; B=l. 0
60 X=2.0; Y=2.0
70 Z=O; ANS=O
80 CALL FDEBUG(44)
90 CALL SUMF(A,B,ANS)
100 WRITE(6,25)A,B,ANS
110 25 FORMAT(3F8.2)
120 CALL FDEBUG(46)
130 STOP;END
140 SUBROUTINE SUMF(ZA,ZB,ZANS)
150 ZANS=ZA+ZB
160 5 2 CONTINUE
170 RETURN;END
175$:EXECUTE
180$:DATA:44
190 MAIN
200 RETURN
210 MAIN
220 CALL SUMF(X,Y,Z)
230 PRINT X,Y,Z
240 SU SUMF
250 52 PR,ZA,ZB,ZANS
260 52 IF(ZANS.EQ.2.0)PR,ZA,ZB
270 SHOW
280 RETURN
290$:DATA:46
300 CALL FDUMP
310 RETURN
320$:ENDJOB

OUTPUT OF RUN ---
1 FDEBUG
2 FDEBUG CALLED FROM •••••• IN LINE 4
3 x =2. ' y =2.' z =4.
4 SUMF
5 52 PR,ZA,ZB,ZANS
6 IF(ZANS .EQ. 2 .O) PR, ZA, ZB
7 ZA = 1., ZB = 1., ZANS = 2.
8 ZA = 1., ZB = 1.
9 1.00 1.00 2.00

10 FDEBUG CALLED FROM •••••• IN LINE 8
11 FDUMP CALLED FROM•••••• IN LINE NUMBER l
12 SUBPROGRAM••••••
13 A l.OOOOOOOE 00
14 B l.OOOOOOOE 00
15 X 2.0000000E 00
16 Y 2.0000000E 00
17 Z 4.0000000E 00
18 ANS 2.0000000E 00
19 FDUMP COMPLETE

Figure F-1. FDS Example in the Batch Mode

F-9 DG75

In the batch mode example described in Figure F-1, file designators 44 and
46 are used for the CALL FDEBUG statements.

The FDEBUG module is entered before program execution. For this reason,
the first two requests"on file 44 are MAIN and RETURN. If desired, additional
FDEBUG requests can also be entered ~t this location.

The next time the FDEBUG module is entered is when the CALL FDEBUG(44)
statement is executed at line 80. On file 44, the FDEBUG CALL request is
demonstrated by calling a user-supplied subroutine and then printing the
variables X, Y, and z.

Two FDEBUG requests, PRINT (PR) and IF, are then inserted in statement
label 52 of the subroutine named SUMF. These two requests will be executed
whenever SUMF is called and can be removed by using a CONTINUE request.

The SHOW request at line 270 causes lines 4, 5, and 6 of the output to be
printed during program execution. Control is then returned to the calling
program. Lines 7 and 8 of the output contain the results of the PRINT and IF
requests inserted in the subroutine SUMF.

The FDEBUG module is next entered when the CALL FDEBUG(46) statement at
line 120 is executed. The only request contained on file 46 is CALL FDUMP.
Lines 11 through 19 of the output contain the results of the FDUMP routine.

Figure F-2 illustrates the procedure for using FDEBUG in the batch mode
with linked overlays.

The FDEBUG module is first entered before program execution but the only
request interpreted on file 44 is the RETURN request.

The only explicit call to the FDEBUG module occurs in line 70. Two IF
requests are inserted at statement label 1 in the subroutine (SU) LODLNK.
Control is then returned to the main program.

NOTE: Refer to "Debugging Linked Overlay Programs" in this appendix for
information concerning the LODLNK subroutine.

When the CALL LLINK("ASUBA") statement is executed, FDEBUG is entered since
the PAUSE request is inserted in the LODLNK subroutine. The SU SUBA instruction
establishes subroutine SUBA as the context for the next two requests. Note that
these two requests are inserted at statement label 40 in subroutine SUBA.

The same procedure is followed for the CALL LINK("BSUBB") statement. The
FDEBUG module is again entered and two FDEBUG requests are inserted at statement
label 45 in subroutine SUBB. The results of inserting these requests in
subroutines SUBA and SUBB are shown in the output printed from the run.

F-10 DG75

lO##S,J :,8,16,32
20$:IDENT
30$:0PTION:FORTRAN
40$:FORTY:NFORM,NLNO,FDS
50 WRITE (6,15)
60 15 FORMAT(l4H THIS IS MAIN)
70 CALL FDEBUG(44)
8 0 CALL LLINK (II ASUBA II)
90 CALL SUBA
100 CALL LINK("BSUBB")
110 STOP;END
120$:LINK:ASUBA
130$:FORTY:NFORM,NLNO,FDS
140 SUBROUTINE SUBA
150 40 WRITE(6,26)
160 41 WRITE(6,26)
170 26 FORMAT(l4H .THIS IS LINKA)
180 27 CONTINUE
190 RETURN;END
200$:LINK:BSUBB,ASUBA
210$:ENTRY:SUBB
220$:FORTY:NFORM,NLNO,FDS
230 SUBROUTINE SUBB
240 45 WRITE(6,28)
250 46 WRITE(6,28)
260 28 FORMAT{l4H THIS IS LINKB)
270 29 CONTINUE
280 RETURN;END
290$:EXECUTE:DUMP
300$:DATA:44
310 MAIN
320 RETURN
330 SU LODLNK
340 l IF(LINK.EQ."ASUBA")PAUSE
350 1 IF(LINK.EQ."BSUBB")PAUSE
360 RETURN
370 SU SUBA
375 40 PRINT, "HI FROM LINKA"
380 40 GOTO 41
390 RETURN
400 SU SUBB
405 45 PRINT,"HI FROM LINKB"
410 45 GOTO 46
420 RETURN
430$:ENDJOB

'
OUTPUT OF ~

FDEBUG
THIS IS MAIN
FOEBUG CALLED FROM•••••• IN LINE 3

FOEBUG: PAUSE IN LODLNK AT STMT # l
"HI FROM LINKA "
THIS IS LINKA

FOEBUG: PAUSE IN LODLNK AT STMT # l
"HI FROM LINKB "
THIS IS LINKB

Figure F-2. FDS Example in the Batch Mode with Linked Overlays

F-11 DG75

010 I=lO
015 CALL FDEBUG(44)
020 PRINT,"HELLO FROM MAIN"
030 CALL SUBA
040 CALL SUBB
050 5 STOP;END
060 SUBROUTINE SUBA
070 PRINT,"HELLO FROM SUBA"
080 ISUB=l
090 10 RETURN;END
100 SUBROUTINE SUBB
110 PRINT,"HELLO FROM SUBB"
120 ISUB=2
130 20 RETURN;END

FRN=(FDS)

1 FDEBUG
2 ?RETURN
3 FDEBUG CALLED FROM •••••• , IN LINE 15
4 I = 10
5 SUBA
6 10 IF(ISUB.EQol)PRI~T,"HI FROM A"
7 HELLO FROM MAIN
8 HELLO FROM SUBA
9 "HI FROM A "

10 HELLO FROM SUBB
11 ISUB = 1000
12 "HI FROM SUBB"

MAIN
PRINT, I
SUBROUTINE SUBA
10 IF(ISUB.EQ.l)PRINT,"HI FROM A"
SHOW
SUBROUTINE SUBB
20 IF(ISUB.EQ.2)ISUB=l000
20 PR !SUB
20 PRINT,"HI FROM SUBB"
RE

Terminal
Input

Output from
Program and
FDEBUG

FDS Requests
on File 44

Figure F-3. FDS Example in the Time Sharing Mode

Figure F-3 illustrates the procedure for using the FORTRAN debugging system
in the time sharing mode.

The FDEBUG module is entered before program execution and control is given
to the terminal. The message FDEBUG is displayed on line 1. Whenever FDEBUG
expects terminal input, a question mark (?) or equal sign (=) is displayed on
the terminal (line 2 of the terminal output). Since no terminal commands are
required, the terminal operator enters a RETURN request following the question
mark.

The FDEBUG module is next entered when the CALL FDEBUG(44) statement is
encountered (line 015 of the terminal input) , and the requests contained on file
44 are then interpreted. Following the PRINT request, one request is inserted
at statement label 10 in subroutine SUBA and three requests are inserted at
statement label 20 in subroutine SUBB. The abbreviated form of the RETURN
request (RE) is used on file 44.

F-12 DG7~

The SHOW request on file 44 causes lines 5 and 6 of the terminal output to
be printed. Lines 9, 11, and 12 of the terminal output contain the results of
interpreting the FDEBUG requests from file 44 in subroutines SUBA and SUBB.

SYMBOLIC DUMP FACILITY

In the batch mode, a symbolic dump can be produced in two ways:

1. A symbolic dump is automatically produced when a program that contains
the FDS option on the $ FORTY or $ FORTRAN control card in the job
control language terminates abnormally.

2. A symbolic dump can be produced after the FDS has been invoked by
specifying the following FORTRAN statement:

CALL FDUMP(n,6)

The symbolic dump will be written on file designator 6 (defaults to
SYSOUT) and will include the 'n' subprograms that were most recently
entered into the nesting list.

In the time sharing mode, a symbolic dump can be produced after the FDS has
been invoked by entering the following FORTRAN statement at the terminal:

CALL FDUMP(n,6)

The symbolic dump is displayed on the terminal and includes the 'n'
subprograms that were most recently entered into the nesting list.

Example

If a main program calls subprogram A, which in turn calls subprogram B, and
subprogram B executes the statement

CALL FDUMP(n,6)

then: If n ~ O, the call is ignored.

If n = 1, a symbolic dump of subprogram B is written to SYSOUT or
displayed on the terminal.

If n = 2, a symbolic dump of subprograms B and A is written to SYSOUT or
displayed on the terminal.

If n ~ 3, a symbolic dump of subprograms B, A, and also the main program
is written to SYSOUT or displayed on the terminal.

If n is omitted, the nesting list will be traced back to the main
program.

The format of the dump output begins with a heading that indicates the
method by which the dump facility was invoked, followed by a symbolic dump of
each subprogram that was contained in the nesting list when the dump was
produced.

F-13 DG75

If the dump facility was invoked using a CALL statement, the heading reads:

FDUMP CALLED FROM name IN LINE NUMBER lineno .

If the dump facility was invoked from the wrapup procedures after the
execution of the program is terminated, the heading reads:

FDUMP CALLED FROM WRAPUP

After printing the heading, the dump process traces the nesting list back
to the main program and prints out the names and values of the variables used in
each subprogram. If the dump facility was invoked with a CALL FDUMP statement
in the source program, the variables of the subprogram that executed the CALL
FDUMP statement appear first in the dump. If the dump is produced as the result
of an abnormal program termination, the FORTRAN subprogram that was in control
when the termination occurred appears first in the dump.

The following subheading is printed at each level of the nesting list:

SUBPROGRAM namel

CALLED FROM name2 IN LINE NUMBER lineno

where: namel is the name of the subprogram whose variables will follow.

name2 is·the name of the subprogram that is calling namel.

lineno is the line number of the CALL namel in subprogram name2.

When the main program level is reached, the second line of the subheading
is omitted.

The subheading is followed by a listing of the nonsubscripted variables and
arrays, together with their associated values. The arrays are printed in column
form; the ellipsis (•••) is used to indicate successive lines of identical
output. The ellipsis is also used to indicate successive columns that are
identical.

The format used for each type of variable is listed below:

Integer
Real
Logical
Complex
Double precision
Character

Symbolic Dump Example

!13
1PE15.7
013
1P2El5.7
1PD26.18
An

An example of a symbolic dump is presented in Figure F-4.

F-14 DG75

FDUMP CALLED FROM WRAPUP
SUBPROGRAM JOE
CALLED FROM •••••• IN LINE NUMBER 170
IS TART 0
NPTRS 78
Ll 623
L2 545
LL2 000735000000
TIME l.3800000E-06

TYPE (*)
1: 60 78 0 0
5: 0 0 0 0

97: 0 0 0 0

SUBPROGRAM
I 30

A (*, 1)
1: 1. OOOOOOOE+OO 2.0000000E+OO 3.0000000E+OO 4.0000000E+OO
5: 5.0000000E+OO 6.0000000E+OO 7.0000000E+OO 8.0000000E+OO
9: o. o. o. o.

25: 2.5000000E+Ol 2.6000000E+Ol 2.7000000E+Ol 2.8000000E+Ol
29: 2.9000000E+Ol 7.0000000E+OO

A (*, 2)
1: o. o. o. o.

29: o. 8.0000000E+OO

* * * *
A (*, 10)

1: o. o. o. o.

29: o. o.
FDUMP COMPLETE

Figure F-4. Example of a Symbolic Dump

Symbolic Dump Messages

The symbolic dump facility provides several error condition messages and a
final termination message.

If a symbol table is not available or has been overwritten, or there is not
enough memory available in which to load the table, the following message is
printed:

SYMBOL TABLE NOT AVAILABLE OR OVERWRITTEN

When a portion of the nesting list has been overwritten in such a manner
that it cannot be traced back to the main program, the dump terminates
prematurely and the following message is printed:

NESTING LIST OVERWRITTEN, DUMP TERMINATED

F-15 DG75

When a program has called other programs recursively, intentionally or not,
the nesting list is caused to loop back on itself. When this condition occurs,
the dump terminates prematurely and the following message is printed:

CIRCULAR CALL DETECTED, DUMP TERMINATED

An example of this condition occurs when subprogram A calls subprogram B,
which in turn calls subprogram c, and subprogram C then calls subprogram A.

The symbolic dump facility will occasionally detect errors in the methods
in which arguments are passed to subprograms. One of the following two messages
is printed:

ERROR IN ACT. ARG. FOR

ERROR IN ADJ. DIM. OR ACT. ARG. FOR

The first message usually occurs for scalar variables and indicates that
the address passed to the subprogram for the actual argument is out of range
(usually zero). The second message occurs for array variables and indicates
that an adjustable dimension has an implausible value.

If no error conditions are encountered during the processing of the dump
and the dump has been successfully completed, the following message is printed:

FDUMP COMPLETE

CALL FDUMP Examples

Figure
referenced
example of
conta~ned
type.

F-5 contains an example of an FDS program and a subroutine
within the program from which the FDUMP feature is called. An

the results produced when the CALL FDUMP statement is executed is
in Figure F-6. Each variable and array in Figure F-6 is displayed by

FDS Program

1 INTEGER IARR(S,5)
2 DIMENSION ARR(3,3)
3 DO 10 I=l,3
4 DO 20 J=i,3
5 ARR(I,J)=I*J
6 20 CONTINUE
7 10 CONTINUE
8 DO 30 I=l,5
9 DO 40 J=l,5

10 IARR(I,J)=I+J
11 40 CONTINUE
12 30 CONTINUE
13 A=l.3;B=2.3
14 CALL CALC(A,B,RESU)
15 PRINT,A,B,RESU
16 C=A*B;R=RESU**2
17 55 CONTINUE
18 KINDX=KINDX+l
19 IF (KINDX.LT.5)GO TO 55
20 STOP;END

Figure F-5. Example of FDS Program and Subroutine used with FDUMP

F-16 DG75

Subroutine Referenced in Line 14

l SUBROUTINE CALC(X,Y,ANSW)
2 X=X*Y+X
3 ANSW=Y+Y*X
4 INDX=INDX+l
5 CALL FDUMP
6 RETURN;END

Figure F-5 (cont). Example of FDS Program and Subroutine used with FDUMP

F-17 DG75

FDUMP CALLED FROM CALC IN LINE NUMBER 5

SUBPROGRAM CALC
CALLED FROM•••••• IN LINE NUMBER 14

INDX 1
x 4.2900000E 00
y 2.3000000E 00
ANSW 1. 2167000E 01

SUBPROGRAM
I 5
J 5
KIN DX 0
A 4.2900000E 00
B 2.3000000E 00
RESU 1. 2167000E 01
c o.
R o.

!ARR (*, 1)
1: 2 3 4 5 6

IARR (*, 2)
1: 3 4 5 6 7

IARR (., 3)
1: 4 5 6 7 8

IARR (*, 4)
1: 5 6 7 8 9

IARR (*, 5)
1: 6 7 8 9 10

ARR (*' 1)
1: l.OOOOOOOE 00 2.0000000E 00 3.0000000E 00

ARR (*, 2)
1: 2.0000000E 00 4 .. 0000000E 00 6.0000000E 00

ARR (*, 3)
1: 3.0000000E 00 6.0000000E 00 9.0000000E 00

FDUMP COMPLETE

Figure F-6. Example of FDUMP Output

F-18 DG75

SUBPROGRAM TIMING MEASUREMENT SYSTEM

The FORTRAN debugging system provides an option that allows the performance
of subprograms to be measured in terms of the amount of processor time required
to execute those subprograms. This option is called the subprogram timing
measurement system. The measurements are given only for those subprograms
compiled with the FDS option.

In the batch mode, the timing measurement system is invoked either by
including a CALL FTIMER statement in the main program or by including the name
FTIMER in the variable field on a $ USE card.

In the time sharing mode, the timing measurement system
including a CALL FTIMER statement in the main program.
statement cannot be inserted from the FDEBUG module.

is invoked by
The CALL FTIMER

The timing measurement system determines the following information for each
executed subprogram:

1. The number of times the subprogram was called.

2. Global timing, including the processor time used by all called
subsidiary subprograms:

a. Total processor time

b. Percentage of processor time used

c. Average processor time per call

3. Local timing, excluding the processor time used by timed subsidiary
subprograms:

a. Total processor time

b. Percentage of processor time used

c. Average processor time per call

All times are reported in milliseconds.

Timing Measurement System Examples

Figure F-7 contains an example of the listing that is printed when the
subprogram timing measurement system is invoked. Figure F-8 contains an example
of the execution of a time sharing program using a CALL FTIMER statement.

NOTE: When the total amount of global time is the same as the total amount
of local time, the subprogram has no subsidiaries.

F-19 DG75

NO. OF TOT. MS. GLOBAL % AVG. MS. TOT. MS. LOCAL % AVG. MS.
CALLS GLOBAL OF RUN PER CALL LOCAL OF RUN PER CALL

1 885.59 100.00 885.59 17.89 2.02 17.89
TESTS 1 867.70 97.98 867 .70 54.61 6.17 54.61
RED UN l 150.20 16.96 150.20 137.38 15.51 137.38
SBSCR4 1 135.97 15.35 135.97 0.19 0.02 0.19
SUB4 1 135.78 15.33 135.78 129.05 14.57 129.05
SBSCRl l 93.38 10.54 93.38 0.16 0.02 0.16
SBSCR3 1 93.27 10.53 93.27 0.17 0.02 0.17
SUBl' 1 93.22 10.53 93.22 88.94 10.04 88.94
SUB3 1 93.09 10.51 93.09 88.95 10.04 88.95
SBSCRI 1 62 .11 7.01 62 .11 0 .13 0.01 0.13
SUB 1 61. 98 7.00 61. 98 57.17 6.46 57.17
SBSCR2 1 57.06 6.44 57.06 0.17 0.02 0.17
SUB2 1 56.89 6.42 56.89 52.64 5.94 52.64
COMP 290 56.86 6.42 0.20 56.86 6.42 0.20
SUBZZA l 49.84 5.63 49.84 0.25 0.03 0.25
SUBZZZ 1 49.59 5.60 49.59 41. 48 4.68 41. 48
SPEC 1 43.00 4.86 43.00 28.47 3.21 28.47
LEXI CA 1 41. 48 4.68 41.48 38.48 4.35 38.48
CONST 1 27.45 3.10 27.45 24.36 2.75 24.36
DOIF l 25.00 2.82 25.00 22.88 2.58 22.88
ONE SB 1 15.28 1. 73 15.28 13.98 1. 58 13.98
COMMON 1 12.58 1.42 12.58 11. 83 1. 34 11. 83
CON 1 8.98 1.01 8.98 8.42 0.95 8.42
COMPLX 1 5.13 0.58 5.13 4.56 0.52 4.56
ASFL 1 4.75 0.54 4.75 4.00 0.45 4.00
CLEA RA 26 2.30 0.26 0.09 2.30 0.26 0.09
EOS 1 0.19 0.02 0.19 0.19 0.02 0.19
RDDN 2 0.05 0.01 0.02 o.os 0.01 0.02
I DO IF 2 0.05 0.01 0.02 0.05 0.01 0.02
TOTAL ELAPSED TIME 2361.56
TOTAL MEASURED TIME 885.59
TI MER OVERHEAD 1475.97

Figure F-7. Timing Measurement System Parameters

F-20 DG75

0010 CALL FTIMER
0020 DO 100 I=l,5
0030 CALL SUBAl
0040 CALL SUBA2
0050 PRINT,"BACK TO MAIN"
0060 100 CONTINUE
0070 STOP;END
0080 SUBROUTINE SUBAl
0090 PRINT,"WE ARE IN
0100 DO 200 J=l,1000
0110 200 K=K+J
0120 RETURN;END
0130 SUBROUTINE SUBA2
0140 PRINT, "WE ARE IN
0150 CALL SUBB2
0160 RETURN;END
0170 SUBROUTINE SUBB2
0180 PRINT I "WE ARE IN
0190 RETURN;END

*LINELENGTH 81
*RUN=(FDS)
WE ARE IN SUBAl
WE ARE IN SUBA2
WE ARE IN SUBB2
BACK TO MAIN
WE ARE IN SUBAl
WE ARE IN SUBA2
WE ARE IN SUBB2
BACK TO MAIN
WE ARE IN SUBAl
WE ARE IN SUBA2
WE ARE IN SUBB2
BACK TO MAIN
WE ARE IN SUBAl
WE ARE IN SUBA2
WE ARE IN SUBB2
BACK TO MAIN
WE ARE IN SUBAl
WE ARE IN SUBA2
WE ARE IN SUBB2
BACK TO MAIN

SUBAl"

SUBA2"

SUBB2"

NO. OF
CALLS

TOT. MS.

SUBAl
SUBA2
SUBB2

1
5
5
5

TOTAL ELAPSED TIME
TOTAL MEASURED TIME
TIMER OVERHEAD

GLOBAL

153.72
89.52
43.69
19.13

GLOBAL % AVG. MS. TOT. MS. LOCAL %
OF RUN PER CALL LOCAL OF RUN

100.00 153.72 20.52 13.35
58.23 17.90 89.52 58.23
28.42 8.74 24.56 15.98
12.44 3.82 19.13 12.44

230.50
153. 72

76.78

Figure F-8. Timing Measurement System in Time Sharing

F-21

AVG. MS.
PER CALL

20.52
17.90

4.91
3.82

DG75

WRAPUP PROCEDURES

The FORTRAN debugging system provides a mechanism called a wrapup list that
allows a user to designate one or more subprograms to be called when a program
terminates. The user can also add subprograms to the wrapup list to allow
post-execution diagnostic activities or additional functions to be performed.
For example, complex data structures such as symbol tables may be analyzed and
printed in a readable format.

The wrapup list is maintained dynamically by the FDS in a
first-in/first-out sequence; the first subprogram that is entered into the list
will be called first.

In the batch mode, the wrapup list is inspected whenever a program
terminates abnormally or is terminated by the execution of a FORTRAN STOP
statement. When a program terminates abnormally, the first entry in the wrapup
list is FDUMP and a symbolic dump is automatically produced.

In the time sharing mode, the wrapup list is inspected whenever a program
terminates abnormally with an interrupt (break) or is terminated by the
execution of a FORTRAN STOP statement. When a program terminates abnormally,
the first entry in the wrapup list is FDEBUG and the dynamic debugging module is
entered.

Adding Wrapup Subprograms

An external subprogram can be added to the wrapup list by including the
following statements in the source program:

EXTERNAL subr
CALL ATCALL(subr)
CALL NTCALL(subr)

If an external subprogram is added to the wrapup list by including the CALL
ATCALL statement, it is called whenever the program terminates abnormally.

If an external subprogram is added to the wrapup list by including the CALL
NTCALL statement, it is called whenever the program terminates in a normal
manner.

If a CALL NOCALL(subr) statement is included and executed, all occurrences
of 'subr' are deleted from the wrapup list.

The FDS option is not required to process the CALL ATCALL, CALL NTCALL, or
CALL NOCALL statements, but the subroutine name must be declared EXTERNAL or
else an op code fault is generated.

F-22 DG75

Example

The following statements are used to remove FDUMP from the wrapup list and
to insert FDEBUG in its place:

EXTERNAL FDUMP,FDEBUG
CALL NOCALL(FDUMP)
CALL ATCALL(FDEBUG)

In this example, FDEBUG is called if the program terminates abnormally.

NOTE: In the batch mode, the desired debugging requests must be present on
file 44 and must begin with a RETURN request to enable them to be
read by FDEBUG when it is called at program termination. A CALL
NOCALL (subr) statement cannot be inserted as a debugging request.

I

Excluding Wrapup Subprograms

The wrapup mechanism provides a method to avoid calling any of the
subprograms contained in the wrapup list. The list is not inspected or called
when a CALL FTERM statement is executed.

NOTE: The execution of a CALL FTERM
termination of the program. A
inserted as a debugging request.

OPTIONAL DEBUGGING FEATURES

Special Printing Formats

statement causes the immediate
CALL FTERM statement cannot be

If the values of variables or arrays are to be printed in a format other
than the default format, subroutines similar to the following may be included in
a program:

SUBROUTINE PR(A,N,FORMAT)
INTEGER A(N),FORMAT(l)
WRITE(6,FORMAT)A
RETURN
END

An FDEBUG request such as

CALL PR(ARRAY,3,"(1X,3A6)")

can then be used to print data under a special fonnat. In this example, the
first three elements of ARRAY are printed with the A6 fonnat.

F-23 DG75

Debugging Linked Overlay Programs

If linked overlay programs are to be debugged, a subroutine supplied by the
FDS can be used to assist in this process. This subroutine is called by the
LINK/LLINK overlay subroutine immediately after a link is loaded; it consists of
the following statements:

SUBROUTINE LODLNK(LINK)
CHARACTER*6 LINK

1 RETURN
END

To allow control to pass to FDEBUG after a certain link has been loaded,
the following FDEBUG requests may be inserted:

SUBROUTINE LODLNK
1 IF(LINK .EQ. "linkname")PAUSE

where: "linkname" represents the name of a link having six characters or less.

This coding inserts a request that causes FDEBUG to be entered irrunediately
after "linkname" is loaded. Any FDEBUG requests previously inserted into the
overlay area are ignored. (The SHOW request can be used to determine if any
previous requests are still present in the program.)

Since a CALL LINK statement can cause the currently executing link to be
overlayed, thereby eliminating the subroutine nesting list and possibly LODLNK,
control is passed directly to the link entry point by LINK without calling
LODLNK. In this case, control cannot be passed to FDEBUG, and it is recommended
that LLINK be used instead. In addition, when LLINK is used, the program is
more easily moved to other environments by supplying a dummy subroutine named
LLINK.

Refer to Figure F-2 for an example of FDEBUG requests that are inserted
into linked overlay structures.

Debugging Optimized Programs

When optimized programs
complicated by the fact that the
registers rather than in memory.
DO loop indices in loops that
loop index cannot be printed (it
cannot be used in other ways.

are to be debugged, the procedure may be
values of certain variables are often stored in
This condition is particularly applicable to

exit only from the bottom. The value of the DO
appears to remain constant), and the value

F-24 DG75

FDS Programming Techniques

The following information is provided to assist in the most effective use
of the FORTRAN debugging system:

1. The FDEBUG requests represent a language of considerable complexity
since:

a. Conditional requests can be used.

b. The inserted FDEBUG requests can be dynamically modified.

c. The GOTO request, particularly when used with the IF request, can
significantly change the executed logical flow of the
subprogram(s) being debugged from the logical flow specified in
the source coding.

FDEBUG output data can be difficult to interpret unless strongly
supported by using the SHOW request. It is generally helpful to
provide a SHOW request prior to each RETURN request (except, perhaps,
at the initial invocation of the FDEBUG module). When debugging a
complex loop, it is also helpful to create a display of all inserted
requests prior to each pass through the loop.

2. Since the FDEBUG module is always entered prior to program execution
in the batch mode when file 44 is present, a program that is being
processed in the batch mode should contain a RETURN request as the
first instruction on file 44 unless FDEBUG requests are to be
interpreted or inserted before the program is executed.

3. When the first CALL FDEBUG (fc) statement in a program is executed,
the FDEBUG module processes debugging requests beginning with the
first request contained on file 'fc'. If another CALL FDEBUG (fc)
statement is encountered during the execution of the program, FDEBUG
begins to process requests immediately following the most recently
processed RETURN request. A CALL FCLOSE (fc) statement does not force
file 'fc' to be rewound.

4. If an attempt is made to call or otherwise invoke the FDEBUG module
and FDEBUG is already currently in control, a RECURSIVE CALL error
message is printed and the call or invocation is ignored.

5. Files containing FDEBUG requests cannot be line numbered.

6. A GOTO request cannot be used to transfer from the FDEBUG module to a
statement label of a user's program because the GOTO request is always
inserted at statement label 'n'; it does not affect FDEBUG control
logic. Control is always returned to the next instruction following
the CALL FDEBUG statement. (It is possible to circumvent the control
return mechanism by issuing a DONE, QUIT, or STOP request; however,
these requests terminate the program.)

7. More than one debugging request may be inserted at a statement label
in the user's program. All requests that have been inserted at a
given statement label can be removed by providing one CONTINUE request
at that statement label.

a. If FDUMP or FDEBUG is invoked for
symbols or statement labels, a
OVERWRITTEN' message is printed.

F-25

a subroutine
'SYMBOL TABLE

that
NOT

contains
AVAILABLE

no
OR

DG75

9. The FDEBUG module does not operate in a correct manner when FTIMER has
been invoked.

10. The timing measurement system .cannot be called from within the FDEBUG
module. To obtain timing data for time sharing programs, a CALL
FTIMER statement must be present in the source program during the
compilation phase. In the batch mode, as an alternative, the name
FTIMER may be included in the variable field on a $ USE card.

11. In the time sharing mode, the FDEBUG module is entered before program
execution and the message FDEBUG is displayed on the terminal. A
prompting question mark (?} is printed as the first character on the
next line, indicating that data is expected; FDEBUG requests can be
inserted into the program at this time. The program begins to execute
when a RETURN request is entered at the terminal.

12. If a carriage return is the initial response when FDEBUG is entered in
the time sharing mode, a traceback is printed. A carriage return
following a new identifier request also produces a traceback.

13. When the wrapup list is inspected, a traceback includes the FDS WRAPUP
routine.

14. If the !text request is issued when operating in the time sharing
mode, the FDEBUG module may lose control. For example, FDEBUG loses
control if the time sharing conunand !RUN=PROG is entered at the
terminal, since the program named PROG would then be executed.

15. If FDUMP is called as the result of a "SYSOUT LIMITS EXCEEDED" error
message, it is not possible for FDUMP to produce a symbolic dump.

F-26 DG75

APPENDIX G

FORTRAN TRANSLITERATION TABLE

IBM (IBMF) Character Set to Level 66 (BCD) Character Set

Card BCD Series 6000
IBMF Image Octal BCD
Character Punch Value Character

0 0 0 0
1 1 1 l
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7 7
8 8 10 8
9 9 11 9

none 8-2 12 [
8-3 13 #
8-4 14 @

none 8-5 15
none 8-6 16 >
none 8-7 17 ?
blank blank 20 blank

A 12-1 21 A
B 12-2 22 B
c 12-3 23 c
D 12-4 24 D
E 12-5 25 E
F 12-6 26 F
G 12-7 27 G
H 12-8 30 H
I 12-9 31 I
+ 12 32 &

12-8-3 33
12-8-4 34]

none 12-8-5 35 (
none 12-8-6 36 <
none 12-8-7 37 \
none 11-0 40 ' J 11-1 41 J

K 11-2 42 K
L 11-3 43 L
M 11-4 44 M
N 11-5 45 N
0 11-6 46 0
p 11-7 47 p

0 11-8 50 Q

R 11-9 51 R
11 52

$ 11-8-3 53 $

* 11-8-4 54 *
none 11-8-5 55

G-1 DG75

Card BCD Series 6000
IBMF Image Octal BCD
Character Punch ~ Character

none 11-8-6 56
none 11-8-7 57
none 12-0 60 +

I 0-1 61 I
s 0-2 62 s
T 0-3 63 T
u 0-4 64 u
v 0-5 65 v
w 0-6 66 w
x 0-7 67 x
y 0-8 70 y

z 0-9 71 z
none 0-8-2 72 -0-8-3 73 ,

0-8-4 74 %
none 0-8-5 75
none 0-8-6 76 II

none 0-8-7 77

G-2 DG75

INDEX

$ UPDATE
$ UPDATE 2-9

ABNORMAL
ABNORMAL 3-10
abnormal function 3-15
ABNORMAL option 3-42

ABORT
Compiler Aborts C-9
Execution Aborts C-9
I-D-S/II statistics and abort codes

B-12, B-16

ACCESSING
Accessing I-D-S/II Files Required

for Execution B-20

ACTIVITY
Batch Activity to Build Time Sharing

H* File B-23

ADJUSTABLE
ADJUSTABLE DIMENSIONS 2-26
Adjustable size specifications 3-17

AFT
LIMITATIONS IMPOSED BY THE AFT B-30

ALLOCATION
ALLOCATION of STORAGE D-3

ALTERNATE
Alternate· returns 6-26

AMPERSAND
ampersand 2-3

ANALYSIS
Common Subexpression Analysis 4-6
Expression Compute Point Analysis

4-6
Induction Variable Expression

Analysis 4-6
Induction Variable Materialization

Analysis 4-6
Loop Collapsing Analysis 4-6
Register Management Analysis 4-6

AN YE RR
CALL ANYERR 6-56

7/79 i-1

AREA
Data Base Area and Key Files B-13,

B-17
User Working Area B-9

ARGUMENT
Argument Checking and Conversion for

Supplied External Functions
6-15

Dummy Argument 6-29
hierarchy of argument types 6-15

ARITHMETIC
arithmetic assignment 3-7
Arithmetic assignment statement 3-4
arithmetic expression 2-24
arithmetic expressions 2-29
arithmetic IF. statement 3-51
arithmetic operation symbols 2-27,

2-28
arithmetic operators 2-27
ARITHMETIC STATEMENT FUNCTIONS 6-2
Arithmetic statements 3-1
floating-point arithmetic 3-52

ARRAY
ARRAY DECLARATOR 2-25
ARRAY ELEMENT 2-23
ARRAY ELEMENT SUCCESSOR FUNCTION

2-24
Array Variable 2-23

ARROW
vertical arrow 2-3

ASCII/BCD
ASCII 2-24, 4-2, 4-5, B-11
ASCII/BCD CHARACTER SET A-1
ASCII/BCD CONSIDERATIONS 4-4.1
DPS ASCII-only system 4-3

ASSIGN
ASSIGN 2-23, 3-11
ASSIGN statement 3-7
Label assignment {ASSIGN) statement

3-4

ASSIGNMENT
arithmetic assignment 3-7
Arithmetic assignment statement 3-4
assignment statement 3-4
ASSIGNMENT STATEMENTS 3-4
character assignment 3-7

DG75A

ASSIGNMENT (cont)
Character assignment statement 3-4,

3-6
Label assignment (ASSIGN) statement

3-4
Label Assignment Statement 3-6
logical assignment 3-7
Logical assignment statement 3-4,

3-5

ASTERISK
asterisk 2-3

AT CALL
CALL ATCALL F-22

ATTACH
ATTACH 6-34

AUTOMATIC
Automatic Terminal Disconnections

B-7.1
Automatic Typing of Supplied

Mathematical External Functions
6-15

BACKSPACE
BACKSPACE 3-12

BASE
Data Base Area and Key Files B-13,

B-17
data base procedures B-9

BATCH
Batch Activity to Build Time Sharing

H* File B-23
Batch Call Card 4-2
BATCH COMPILATION LISTINGS AND

REPORTS 4-9
BATCH MODE 4-1
REMOTE BATCH INTERFACE 4-4
Sample Batch Deck Setup 4-4
Sample Batch Link/Overlay JCL 4-4

BCD
BCD 2-24, 4-2, 4-5, B-11

BINARY
floating-point binary 2-16

BLOCK
BLOCK DATA 3-13, 3-46
BLOCK DATA subprogram 3-24
COMMON block 3-13

BOOL
BOOL 6-8

BUILD
Batch Activity to Build Time Sharing

H* File B-23

BUILT-IN
BUILT-IN INTRINSIC FUNCTIONS 6-5

CALL
Batch Call Card 4~2

7/79 i-2

CALL (cont)
CALL 2-3, 2-22, 3-15
CALL ANYERR 6-56
CALL ATCALL F-22
CALL CALLSS 6-36
CALL CNSLIO 6-37
CALL CONCAT 6-38
CALL CORFL 6-39
CALL CORSEC 6-40
CALL CREATE 6-41
CALL DATIM 6-42
CALL DEFIL 6-43
CALL DETACH 6-44
CALL DUMP 6-45
CALL EXIT 6-48
CALL FCLOSE 6-49
CALL FDEBUG F-2
CALL FDUMP F-13
CALL FDUMP Examples F-16
CALL FILBSP 6-50
CALL FILFSP 6-50
CALL FLGEOF 6-51
CALL FLGERR 6-52
CALL FLGFRC 6-53
CALL FMEDIA 6-54
CALL FPARAM 6-55
CALL FTERM F-23
CALL FTIMER F-19
CALL FXALT 6-58
CALL FXEM 6-57
CALL FXOPT 6-57
CALL LINK 6-65
CALL LLINK 6-65
CALL MEMSIZ 6-66
CALL NASTRK 3-34, 6-67
CALL NOCALL F-22
CALL NTCALL F-22
CALL PDUMP 6-45
CALL PTIME 6-68
CALL RANSIZ 6-69
CALL SETBUF 6-70
CALL SETFCB 6-71
CALL SETLGT 6-72
CALL SLITE 6-73
CALL SLITET 6-73
CALL SORT 6-74
CALL SORTO 6-76
CALL SSWTCH 6-78
CALL statement 3-38, 3-40, 3-42
CALL statements 3-10
CALL TERMNO ·6-79
CALL TERMTM 6-80
CALL USRCOD 6-82
CALL YASTRK 3-34, 6-83

CALLSS
CALL CALLSS 6-36
CALLSS 6-31, 6-36

CARD
Batch Call Card 4-2
control cards 4-4

CARET
caret 2-3

CARRIAGE
Carriage Control ·S-7

DG75A

CHARACTER
ASCII/BCD CHARACTER SET A-1
character 2-11, 2-22, 2-23, 2-31,

3-17, 3-53
character assignment 3-7
Character assignment statement 3-4,

3-6
Character Constant 2-20
character datum 2-12
Character Positioning Field

Descriptors 5-12
character set 2-1, 2-2, 4-2
Character String Compare 6-20
Character Variable 2-23
octal or character constants 3-23
Source Program File Characteristics

2-4

CHECKING
Argument Checking and Conversion for

Supplied External Functions
6-15

CNSLIO
CALL CNSLIO 6-37
CNSLIO 6-37

CODE
I-D-S/II statistics and abort codes

B-12, B-16
media codes 2-4
T FORMAT CODE 5-12
X FORMAT CODE 5-12

COLLAPSING
Loop Collapsing Analysis 4-6

COMDK
COMDK 4-2

COMMA
cormna 2-3

COMMAND
First Line Run Cormnand B-21
FORTRAN TIME SHARING SYSTEM RUN

COMMAND B-14
GET cormnand B-20
REMOVE command B-32
RUN command B-20
RUN Command Error Messages C-1
RUNL Command Error Messages C-4
RUNL Command for Link/Overlay B-23
STATUS FILES command B-32
THE YFORTRAN TIME SHARING SYSTEM RUN

COMMAND B-10

COMMENT
comment 2-5, 2-6

COMMON
COMMON 2-22, 2-26, 3-13, 3-19, 3-.46,

3-74
COMMON block 3-13
COMMON or a type statement 3-28
COMMON statement 3-38, 3-40
Commori Subexpression Analysis 4-6

7/79 i-3

COMPARE
Character String Compare 6-20
Compa~e 6-19

COMPARISON
Comparison of the FORTRAN and

YFORTRAN Time Sharing Systems
B-9

COMPATIBILITY
SOURCE COMPATIBILITY D-1

COMPILATION
BATCH COMPILATION LISTINGS AND

REPORTS 4-9
COMPILATION of SUBPROGRAMS D-1
Compilation Performance D-5

COMPILER
Compiler Aborts C-9
COMPILER CONSTRUCTION D-2
Compiler control statements 3-1

COMPL
COMPL 6-8

COMPLEX
A complex datum 2-12
complex 2-11, 2-13, 2-22, 2-27,

2-33, 3-19, 3-21, 3-53
Complex Constant 2-18
Complex Number Fields 5-11

COMPUTE
Expression Compute Point Analysis

4-6

CONCAT
CALL CONCAT 6-38
CONCAT 6-31, 6-38

CONDITIONAL
Conditional Format Selection 5-22

CONFLICTS
Memory Conflicts 4-6

CONSTANT
Character Constant 2-20
Complex Constant 2-18
CONSTANTS 2-13, 4-13
Double Precision Constant 2-17'
Integer Constant 2-14
Logical Constant 2-19
Logical constants 3-24
Octal Constants 2-15
octal or character constants 3-23
Real Constant 2-16

CONSTRUCTION
COMPILER CONSTRUCTION D-2
Logical and Relational Constructions

2-31

CONTENTS
FILE CONTENTS D-1

DG75A

CONTINUATION
continuation 2-6

CONTINUE
CONTINUE 3-22

CONTROL
Carriage Control 5-7
Compiler control statements 3-1
control cards 4-4
control parameters 3-30
Control statements 3-1
Device Med.ia Control Language B-8
File and Record Control Type Errors

C-1
Output Device Control 5-7
Subschema Control Structure B-9,

B-15
Transfer of Control 3-31
Transfer of Control for Extended

Range 3-32

CONVERSION
Argument Checking and Conversion for

Supplied External Functions
6-15

INTERNAL DATA CONVERSION 5-20

CORE=NN
CORE=nn B-12

CORFL
CALL CORFL 6-39
CORFL 6-31, 6-39

CO RS EC
CALL CORSEC 6-40
CORSEC 6-31, 6-40

CREATE
CALL CREATE 6-41
CREATE 6-41

CROSS-REFERENCE
Cross-Reference List {XREF) 4-13
cross-reference report 4-2

CURRENCY SYMBOL
currency symbol 2-3

DATA
A complex datum 2-12
BLOCK DATA 3-13, 3-46
BLOCK DATA subprogram 3-24
character datum 2-12
DATA 3-13, 3-23
Data Base Area and Key Files B-13,

B-17
data
data
Data
Data
DATA

base procedures B-9
files B-9
initialization 4-13
Manipulation Language B-12 ·

statement 2-22, 3-24, 3-40,
3-74

DATA TYPES 2-11
double precision datum 2-12
integer datum 2-11
INTERNAL DATA CONVERSION 5-20

7/79 i-4

DATA (cont)
logical datum 2-12
real datum 2-11

DAT IM
CALL DATIM 6-42
DATIM 6-31, 6-42

DEBUG
DEBUG 4-2, 4-9, B-11
DEBUG option 3-13
Debug Symbol Table (DEBUG) 4-13
Debugging Linked Overlay Programs

F-24
Debugging Optimized Programs F-24
Debugging Request Execution F-6
Debugging Requests F-4
DYNAMIC DEBUGGING FACILITY F-2
FORTRAN DEBUGGING SYSTEM F-1

DECK
DECK 4-2
Sample Batch Deck Setup 4-4

DECLARATOR
ARRAY DECLARATOR 2-25
declarator statement 2-25
declarator subscript 2-25

DECODE
DECODE 3-26, 3-39, 5-20

DEFIL
CALL DEFIL 6-43
DEFIL 6-31, 6-43

DEFINED
Defined Variable 2-22
Defining FUNCTION Subprograms 6-14
Defining SUBROUTINE Subprograms

6-23

DELETE
Logical record delete B-12, B-16

DELIMITERS
delimiters 2-20

DESCRIPTION
Description of Files B-33
GENERAL DESCRIPTION 5-1

DESCRIPTOR
Alphanumeric Field Descriptors 5-11
Character Positioning Field

Descriptors 5-12
Logical Field Descriptor 5-12
Nwneric Field Descriptors 5-8

DETACH
CALL DETACH 6-44

DETACH 6-44

DETECTION
ERROR DETECTION and DIAGNOSTICS D-2

DETERMINATION
Execution Mode Determination 6-20

DG75A

DEVICE
Device Media Control Language B-8
Output Device Control 5-7

DIAGNOSTICS
ERROR DETECTION and DIAGNOSTICS D-2
Fatal Diagnostics C-8

DIMENSION
ADJUSTABLE DIMENSIONS 2-26
DIMENSION 2-24, 2-26, 3-13, 3-28

DIRECT-MODE
Supplying Direct-Mode Program Input

B-29

DIRECTED
List directed formatted input/output

5-2
List Directed Formatted Input/output

Statements 5-25

DISCONNECTIONS
Automatic Terminal Disconnections

B-7.1

DMCL
DMCL B-8

DML
DML B-12, B-15
DML TSS Example B-23
I-D-S/II DML statements B-10, B-14

DO
DO 3-29
DO loop 3-22
DO loops 2-3, 3-49
DO Statement 3-31, 3-39
implied DO 5-23
Nested DO Loop 3-31
nested implied DO's 5-24

DOUBLE PRECISION
double precision

2-27, 2-31,
3-53

2-11, 2-13, 2-22,
2-33, 3-19, 3-33,

Double Precision
double precision

DPS

Constant 2-17
datum 2-1~

DPS ASCII-only system 4-3

DUMP
CALL DUMP 6-45
DUMP 4-3
DUMP DUMPA, PD UMP PDUMPA 6-45

DUMP A
DUMP DUMPA, PD UMP PDUMPA 6-45

DVCHK,OVERFL,FXDVCK
DVCHK,OVERFL,FXDVCK 6-46

DYNAMIC
DYNAMIC DEBUGGING FACILITY F-2

7/79 i-5

EDITING
Editing Strings with ENCODE 5-21

ELEMENT
ARRAY ELEMENT 2-23
ARRAY ELEMENT SUCCESSOR FUNCTION

2-24

ENCODE
Editing Strings with ENCODE 5-21
ENCODE 3-34, 5-20
ENCODE statement 3-39

END
END 3-36
END statement 2-5

END-OF-FILE
end-of-file condition 3-12, 3-67
EOF 3-72

ENDFILE
ENDFILE 3-37

ENTRY
ENTRY 2-26, 3-38
ENTRY statement 3-40, 6-27
FDEBUG Entry Messages F-3
Multiple Entry Points Into a

Subprogram 6-27
SUBROUTINE or ENTRY statement 3-15
symbol table entries 4-13

ENVIRONMENT
I-D-S/II in a FORTRAN Time Sharing

Environment B-8

EQUAL SIGN
equal sign 2-3

EQUIVALENCE
EQUIVALENCE 2-24, 3-13, 3-38, 3-39,

3-46, 3-74
EQUIVALENCE statement 3-39

ERROR
error condition 3-76
ERROR DETECTION and DIAGNOSTICS D-2
error transfer option 3-26, 3-34
FDEBUG Error Messages F-7
File and Record Control Type Errors

c-1
FORTRAN EXECUTION ERROR MONITOR

·6-56
I/O error is encountered 3-67
Input Error Recovery B-7.l
RUN Command Error Messages C-1
RUNL Command Error Messages C-4
TIME SHARING BASED FORTRAN ERROR

MESSAGES C-1

EVALUATION
Evaluation of Expressions 2-32

EXAMPLES
CALL FDUMP Examples F-16
DML TSS Example B-23
FDS Examples F-9 ·

DG75A

EXAMPLES (cont)
Symbolic Dump Example F-14
Timing Measurement System Examples

F-19
TSS Run Examples B-22

EXCLUDING
Excluding Wrapup Subprograms F-23

EXECUTION
Accessing I-D-S/II Files Required

for Execution B-20
Debugging Request Execution F-6
Emergency Termination of ·Execution

B-29
Execution Aborts C-9
Execution Mode Determination 6-20
FORTRAN EXECUTION ERROR MONITOR

6-56

EXIT
CALL EXIT 6-48
EXIT 6-48

EXPLICIT
explicit type 3-21, 6-15
explicit type statement 3-55, 3-56,

3-70

EXPONENTIATION
exponentiation 2-3

EXPRESSIONS
arithmetic expression 2-24
arithmetic expressions 2-29
Evaluation of Expressions 2-32
expression 3-10
Expression Compute Point Analysis

4-6
EXPRESSIONS 2-27
Induction Variable Expression

Analysis 4-6
logical expression 2-29, 3-5
relational expression 2-29

EXTENDED
extended range 3-30, 3-32
Transfer of Control for Extended

Range 3-32

EXTERNAL
Argument Checking and Conversion for

Supplied External Functions
6-15

Automatic Typing of Supplied
Mathematical External Functions

6-15
EXTERNAL 2-22, 3-42
EXTERNAL statement 3-38
External Variable 2-22
Supplied External FUNCTION

Mathematical Subprograms 6-17
Supplied External FUNCTION

Nonmathematical Subprograms
6-19

FACILITY
DYNAMIC DEBUGGING FACILITY F-2

7/79 i-6

FACILITY (cont)
SYMBOLIC DUMP FACILITY F-13

FACTORS
Scale Factors 5-5

FATAL
Fatal Diagnostics C-8

FCLOSE
CALL FCLOSE 6-49
FCLOSE 6-49

FDEBUG
CALL FDEBUG F-2
FDEBUG Entry Messages F-3
FDEBUG Error Messages F-7

FDS
FDS B-12
FDS Examples F-9
FDS Programming Techniques F-25

FD UMP
CALL FDUMP F-13
CALL FDUMP Examples F-16

FIELD
Alphanumeric Field Descriptors 5-11
Character Positioning Field

Descriptors 5-12
Complex Number Fields 5-11
Logical Field Descriptor 5-12
Numeric Field Descriptors 5-8

FILBSP
CALL FILBSP 6-50
FILBSP 6-31

FILBSP,FILFSP
FILBSP,FILFSP 6-50

FILE
Accessing I-D-S/II Files Required

for Execution B-20
Batch Activity to Build Time Sharing

H* File B-23
Data Base Area and Key Files B-13,

B-17
data files B-9
Description of Files B-33
File and Record Control Type Errors

C-1
FILE CONTENTS D-1
FILE FORMATS 4-6
FILE HANDLING STATEMENTS 5-29
FILE MODES B-35
File Properties 5-28
FILE REFERENCE 5-3
FILE SPECIFICATION B-33
FILE SYSTEM INTERFACE 4-4.1
File Updating 5-28
Files Required by I-D-S/II B-8
Random Files 5-28
Schema File B-8, B-13, B-17
Sequential Files 5-28
Source Program File Characteristics

2-4

DG75A

FILE (cont)
Source Program File Types 2-4
Statistics File B-14, B-17
STATUS FILES command B-32
Validated Subschema File B-9

FILFSP
CALL FILFSP 6-50
FILFSP 6-31

FINISH
FINISH statement B-12

FIRST
First Line Run Conunand B-21

FIXED
fixed format 2-6

FLAT
FLAT 6-19

FLO
FLD 6-8

FLGEOF
CALL FLGEOF 6-51
FLGEOF 4-8, 6-51

FL GE RR
CALL FLGERR 6-52
FLGERR 4-8, 6-52

FLGFRC
CALL FLGFRC 6-53
FLGFRC 6-31, 6-53

FLOATING-POINT
floating-point 2-17
floating-point arithmetic 3-52
floating-point binary 2-16

FMEDIA
CALL FMEDIA 6-54
FMEDIA 6-54

FORM/NFORM
FORM 2-9, 4-2, 4-10, B-11
FORM/NFORM 2-6

FORMAT
Conditional Format Selection 5-22
FILE FORMATS 4-6
fixed format 2-6
FORMAT 3-43
FORMAT and NAMELIST Statements 5-2
FORMAT SPECIFICATIONS 5-4
FORMAT statement 3-26, 3-34, 3-62,

3-64, 3-66, 5-2
formats 4-13
Formatted Read/Write Statements 5-2
line formats 2-6
List directed formatted input/output

5-2
List Directed Formatted Input/output

Statements 5-25
Multiple Record Formats 5-6
SOURCE PROGRAM FORMAT 2-4

7/79 i-7

FORMAT (cont)
T FORMAT CODE 5-12
Variable Format Specifications 5-13
X FORMAT CODE 5-12

FORMAT(V
FORMAT(V) 5-2

FORTRAN
Comparison of the FORTRAN and

YFORTRAN Time Sharing Systems
B-9

FORTRAN B-9
FORTRAN DEBUGGING SYSTEM F-1
FORTRAN EXECUTION ERROR MONITOR

6-56
FORTRAN KEYWORDS 3-9
FORTRAN TIME SHARING SYSTEM RUN

COMMAND B-14
I-D-S/II in a FORTRAN Time Sharing

Environment B-8
TIME SHARING BASED FORTRAN ERROR

MESSAGES C-1

FORTY
$ FORTY 2-1
FORTY 4-2

FPARAM
CALL FPARAM 6-55
FPARAM 6-55

FTERM
CALL FTERM F-23

FTIMER
CALL FTIMER F-19

FUNCTION
abnormal function 3-15
Additional Typeless Functions 6-12
Argument Checking and Conversion for

Supplied External Functions
6-15

ARITHMETIC STATEMENT FUNCTIONS 6-2
ARRAY ELEMENT SUCCESSOR FUNCTION

2-24
Automatic Typing of Supplied

Mathematical External Functions
6-15

BUILT-IN INTRINSIC FUNCTIONS 6-5
Defining FUNCTION Subprograms 6-14
FUNCTION 2-11, 2-21, 2-26, 3-40,

3-42, 3-45
FUNCTION subprogram 3-21, 3-33,

3-38, 3-55
FUNCTION subprogram name 3-10
FUNCTION SUBPROGRAMS 6-14
generic function 6-15
mathematical library function 6-15
Referencing FUNCTION Subprograms

6-22
Shift Functions 6-19
SUBROUTINE AND FUNCTION STATEMENTS

6-1
Supplied External FUNCTION

Mathematical Subprograms 6-17

DG75A

FUNCTION (cont)
Supplied External FUNCTION

Nonmathematical Subprograms
6-19

Supplied FUNCTION Subprograms 6-15
Typeless Functions 2-32

FXALT
CALL FXALT 6-58

FXDVCK
FXDVCK 6-56

FXEM
CALL FXEM 6-57
FXEM 6-56

FXOPT
CALL FXOPT 6-57

GENERATORS
Random Number Generators 6-20

GENERIC
generic function 6-15

GET
GET conunand B-20

GLOBAL
GLOBAL OPTIMIZATION 4-6, 4-9

GMAP
GMAP offset 4-10

GO TO

H*

GO B-12
GO TO 3-48

Batch Activity to Build Time Sharing
H* File B-23

HANDLING
FILE HANDLING STATEMENTS 5-29

HIERARCHY
hierarchy of argument types 6-15

I-D-S/II
Accessing I-D-S/II Files Required

for Execution B-20
Files Required by I-D-S/II B-8
I-D-S/II DML statements B-10, B-14
I-D-S/II in a FORTRAN Time Sharing

Environment B-8
I-D-S/II statistics and abort codes

B-12, B-16

I/O

IF

I/O error is encountered 3-67

arithmetic IF statement 3-51
IF 3-51, 4-8
logical IF statement 3-51

7/79

ILR
ILR 6-19

ILS
ILS 6-19

IMPLICIT
IMPLICIT 3-13, 3-53
IMPLICIT statement 2-11
implicit typing 6-15

IMPLIED
implied DO 5-23
nested implied DO's 5-24

IMPOSED
LIMITATIONS IMPOSED BY THE AFT B-30

INDEXED
Indexed B-9
Indexed with Record Keys B-9

INDUCTION
Induction Variable Expression

Analysis 4-6
Induction Variable Materialization

Analysis 4-6

INITIALIZATION
Data initialization 4-13

INPUT/OUTPUT
Input 5-14
INPUT AND OUTPUT 5-1
Input Error Recovery B-7.1
Input/output statements 3-1
Keyboard input B-1
List directed formatted input/output

5-2
List Directed Formatted Input/output

Statements 5-25
Manipulation Input/output Statements

5-2
Paper Tape Input B-29
Program Statement Input B-3
Supplying Direct-Mode Program Input

B-29

INTEGER
Integer 2-13, 2-22, 2-27, 2-31,

2-33, 3-19, 3-53, 3-55
Integer Constant 2-14
integer datum 2-11

INTEGRATED
Integrated B-9
Integrated with Record Keys B-9

INTERFACES
FILE SYSTEM INTERFACE 4-4.l
REMOTE BATCH INTERFACE 4-4
TERMINAL/BATCH INTERFACE 4-4.l
USER INTERFACES 4-1

INTERNAL
INTERNAL DATA CONVERSION 5-20

i-8 DG75A

INTRINSIC
BUILT-IN INTRINSIC FUNCTIONS 6-5

INVOKE
INVOKE statement B-9, B-20

IRETSW
IRETSW 6-19

IRL
IRL 6-19

IRS
IRS 6-19

I SET SW
ISETSW 6-19

JCL
Sample Batch Link/Overlay JCL 4-4

JREST
JREST 4-3

KEY
Data Base Area and Key Files B-13,

B-17
Indexed with Record Keys B-9
Integrated with Record Keys B-9

KEYWORDS
FORTRAN KEYWORDS 3-9

KOMPCH
KOMPCH 6-19

LABEL
Label assignment (ASSIGN) statement

3-4
Label Assignment Statement 3-6

LANGUAGE
Data Manipulation Language B-12
Device Media Control Language B-8

LDEL
L~EL B-12, B-16

LEFT
Left Rotate 6-19
Left Shift 6-19

LIBRARY
mathematical library function 6-15

LIMITATIONS
LIMITATIONS IMPOSED BY THE AFT B-30

LINE
"line" 2-4
First Line Run Conunand B-21
line formats 2-6

LINK
CALL LINK 6-65
Debugging Linked Overlay Programs

F-24
LINK, LLINK 6-65

7/79

LINK/OVERLAY
RUNL Command for Link/Overlay B-23
Sample Batch Link/Overlay JCL 4-4

LIST
Cross-Reference List (XREF) 4-13
List directed formatted input/output

5-2
List Directed Formatted Input/output

Statements 5-25
LIST SPECIFICATIONS 5-23
wrapup list F-22

LISTING
BATCH COMPILATION LISTINGS AND

REPORTS 4 .. 9
Object Program Listing (LSTOU) 4-12
Source Program Listing (LSTIN) 4-10

LL INK
CALL LLINK 6-65
LINK, LLINK 6-65

LNO/NLNO
LNO 4-3, 4-10, B-11
LNO/NLNO 2-6

LOAD
RESTRICTIONS ON LOAD USAGE B-30

LOCAL
Local Optimization D-4

LOG-OFF
Log-Off Procedure B-8

LOG-ON
Log-on Procedure B-1

LOGICAL
logical 2-11, 2-13, 2-22, 2-29,

2-31, 3-19, 3-53, 3-56
Logical and Relational Constructions

2-31
logical assignment 3-7
Logical assignment statement 3-4,

3-5
Logical Constant 2-19
Logical constants 3-24
logical datum 2-12
logical expression 2-29, 3-5
Logical Field Descriptor 5-12.
logical IF statement 3-51
logical operators 2-30
Logical record delete B-12, B-16
logical variable 3-5
Right Logical 1 6-19

LOOP
DO loop 3-22
DO loops 3-49 .
Loop Collapsing Analysis 4-6
Nested DO Loop 3-31

LS TIN
LSTIN 4-2, 4-9
Source Program Listing (LSTIN) 4-10

i-9 DG75A

LSTOU
LSTOU 4-2, 4-9
Object Program Listing (LSTOU) 4-12
Program Pref ace Swmnary (LSTOU)

4-11

MANIPULATION
Data Manipulation Language B-12
Manipulation Input/output Statements

5-2

MANTISSA
mantissa 2-17

MAP
MAP 4-2, 4-9
Storage Map (MAP) 4-12

MATERIALIZATION
Induction Variable Materialization

Analysis 4-6

MATHEMATICAL
Automatic Typing of Supplied

Mathematical External Functions
6-15

mathematical library function 6-15
Supplied External FUNCTION

Mathematical Subprograms 6-17
Supplied External FUNCTION

Nonmathematical Subprograms
6-19

MEDIA CODE
Device Media Control Language B-8
media code 2-9
media codes 2-4

MEMORY
Memory Conflicts 4-6
MEMORY CONSIDERATIONS B-30

MEMSIZ
CALL MEMSIZ 6-66
MEMSIZ 6-32, 6-66

MESSAGES
FDEBUG Entry Messages F-3
FDEBUG Error Messages F-7
RUN Conunand Error Messages C-1
RUNL Conunand Error Messages C-4
Symbolic Dump Messages F-15
TIME SHARING BASED FORTRAN ERROR

MESSAGES C-1

MINUS SIGN
minus sign 2-3

MOD
MOD 6-46

MODE
BATCH MODE 4-1
Execution Mode Determination 6-20
FILE MODES B-35
MODE 6-19

7/79 i-10

K>NITOR
FORTRAN EXECUTION ERROR MONITOR

6-56

MULTIPLE
Multiple Entry Points Into a

Subprogram 6-27
Multiple Record Formats 5-6
Multiple Record Processing 5-20

NAME
FUNCTION subprogram name 3-10
NAME=name B-13
symbolic name 2-11, 2-21
Symbolic Names 2-11

NAMELIST
FORMAT and NAMELIST Statements 5-2
NAMELIST 2-3, 3-46, 3-57, 3-74
NAMELIST statement 3-62, 3-65, 3-67,

3 77, 5-2

NASTRI<
CALL NASTRI< 6-67
NASTRK 6-67

NCOMDK
NCOMDK 4-2

NDEBUG
NDEBUG 4-2, B-11

NDECK
NDECK 4-2

ND UMP
NDUMP 4-3

NESTED
Nested DO Loop 3-31
nested implied DO's 5-24

NFORM
NFORM 2-9, 4-2, 4-10, B-11

NJREST'
NJREST 4-3

NLNO
NLNO 4-3, 4-10, B-11

NLSTIN
NLSTIN 4-2

NLSTOU
NLSTOU 4-2

NOCALL
CALL NOC ALL F-22

NOGO
NOGO B-12

NO LIB
NOLIB B-12

NOMAP
NO MAP 4-2

DG75A

NONVALID
Nonvalid 2-27

NOPTZ
NOPTZ 4-3, 4-7,

NREST
NREST 4-3

NTCALL
CALL NTCALL F-22

NUMBER

B-12

Complex Number Fields 5-11
Random Number 6-19
Random Number Generators 6-20

NUMERIC
Numeric Field Descriptors 5-8

NWARN
NWARN 4-3, B-12
NWARN option D-2

NXREF
NXREF 4-2

OBJECT
Object Program Listing (LSTOU) 4-12

OCTAL
Octal 2-13
Octal Constants 2-15
octal or character constants 3-23

OFFSET
GMAP off set 4-10

OPERATION
arithmetic operation symbols 2-27,

2-28

OPERATORS
arithmetic operators 2-27
logical operators 2-30
Operator Precedence 2-33
Unary Operators 2-34

OPTIMIZATION
Debugging Optimized
GLOBAL OPTIMIZATION
Local Optimization
optimization 3-10,

OPTION

Programs
4-6 ,, 4-9

D-4
3-15

ABNORMAL option 3-42
DEBUG option 3-13

F-24

error transfer option 3-26, 3-34
NWARN option D-2
OPTZ option 3-10

OPTZ

OR

OPTZ 4-3, 4-6, 4-7, B-12
OPTZ option 3-10

OR (cont)
OR 6-8
SUBROUTINE or ENTRY statement 3-15

OUTPUT
INPUT AND OUTPUT 5-1
Output 5-17
Output Device Control 5-7

OVERLAY
Debugging Linked Overlay Programs

F-24

PAPER
paper tape B-1
Paper Tape Input B-29

PARAMETER
control parameters 3-30
Parameter 2-26, 2-29, 3-13, 3-58
step parameter 3-29

PARENTHESES
Parentheses 2-3, 2-28

PAUSE
PAUSE 2-20, 3-60

PDUMP
CALL PD UMP 6-45
DUMP DUMPA, PDUMP PDUMPA 6-45

PDUMPA
DUMP DUMPA, PDUMP PDUMPA 6-45

PERFORMANCE
Compilation Performance D-5

PERIOD
period 2-3

PLUS SIGN
plus sign 2-3

POINTS
Expression Compute Point Analysis

4-6
Multiple Entry Points Into a

Subprogram 6-27

POSITIONING
Character Positioning Field

Descriptors 5-12

PRECEDENCE
Operator Precedence 2-33

PRECISION
Double precision 2-27, 2-31, 2-33,

3-19, 3-33, 3-53
double precision datum 2-12

PREFACE
Program P=eface Summary (LSTOU)

4-11

COMMON or a type statement 3-28 PRINT
octal or character constants 3-23 PRINT 3-62

7 /79 i-11 DG75A

PROCEDURE
data base procedures B-9
Log-Off Procedure B-8
Log-on Procedure B-1
WRAPUP PROCEDURES F-22

PROCESSING
Multiple Record Processing 5-20

PROGRAM
Debugging Linked Overlay Programs

F-24
Debugging Optimized Programs F-24
FDS Programming Techniques F-25
Object Program Listing (LSTOU) 4-12
Program Pref ace Summary (LSTOU)

4-11
Program Statement Input B-3
Set/Reset Program Switch Word 6-19
Source Program File Characteristics

2-4
Source Program File Types 2-4
SOURCE PROGRAM FORMAT 2-4
Source Program Listing {LSTIN) 4-10
Supplying Direct-Mode Program Input

B-29

PROPERTIES
File Properties 5-28

PT I ME
CALL PTIME 6-68
PTI.ME 6-68

PUNCH
PUNCH 3-64

PUNCTUATION
punctuation 2-2
Syntax Punctuation 2-3

QUOTATION MARKS
Quotation Marks 2-3

RAND
RAND 6-19

RANDOM
Random Files 5-28
Random Number 6-19
Random Number Generators 6-20

RANDT
RANDT

RANGE

6-19

extended range 3-30, 3-32
Transfer of Control for Extended

Range 3-32

RANSIZ
CALL RANSIZ 6-69
RANSIZ 6-69

READ/WRITE
Formatted Read/Write Statements 5-2
READ 3-39, 3-66
READ statement 2-22, 3-12, 3-26

7/79 i-12

READ/WRITE {cont)
Unformatted Read/Write Statements

5-2

REAL
Real 2-13, 2-22, 2-27, 2-31, 2-33,

3-19, 3-53, 3-70
Real Constant 2-16
real datum 2-11
REAL statement 3-33

RECORD
File and Record Control Type Errors

C-1
Indexed with Record ~eys B-9
Integrated with Record Keys B-9
Logical record delete B-12, B-16
Multiple Record Formats 5-6
Multiple Record Processing 5-20
Record Sizes 5-28

RECOVERY
Input Error Recovery B-7.1

REFERENCE
FILE REFERENCE 5-3
Referenced Variable 2-22
Referencing FUNCTION Su~programs

6-22
Referencing SUBROUTINE Subprograms

6-24

REGISTER
Register Management Analysis 4-6

RELATIONAL
Logical and Relational Constructions

2-31
relational expression 2-29

REMO
REMO B-13

REMOTE
REMOTE BATCH INTERFACE 4-4

REMOVE
REMOVE command B-32

REPORTS
BATCH COMPILATION LISTINGS AND

REPORTS 4-9
cross-reference report 4-2

REQUESTS
Debugging Request Execution F-6
Debugging Requests F-4

REQUIRED
Accessing I-D-S/II Files Required

for Execution B-20
Files Required by I-D-S/II B-8

RESET
Reset Switch Word 6-19

REST
REST 4;..3

DG75A

\

RESTRICTIONS
RESTRICTIONS ON LOAD USAGE B-30

RETURN
Alternate returns 6-26
RETURN 3-71
RETURN statement 3-46, 6-25

REWIND
REWIND 3-68, 3-72

RIGHT
Right Logical 6-19
Right Shift 6-19

ROTATE
Left Rotate 6-19

RULES
Rules for v = e 3-8

RUN
First Line Run Connnand B-21
FORTRAN TIME SHARING SYSTEM RUN

COMMAND B-14
RUN command B-20
RUN Command Error Messages C-l
THE YFORTRAN TIME SHARING SYSTEM RUN

COMMAND B-10
TSS Run Examples B-22

RUNL
RUNL Connnand Error Messages C-4
RUNL Connnand for Link/Overlay B-23

SAMPLE
Sample Batch Deck Setup 4-4
Sample Batch Link/Overlay JCL 4-4

SCALAR
Scalar Variable 2-22

SCALE
Scale Factors 5-5

SCHEMA
Schema File B-8, B-13, B-17

SELECTION
Condit~onal Format Selection 5-22

SEMICOLON
semicolon 2-3, 2-7

SEQUENTIAL
Sequential Files 5-28

SET/RESET
Set/Reset Program Switch Word 6-19

SETBUF
CALL SETBUF 6-70
SETBUF 6-70

SETFCB
CALL SETFCB 6-71
SETFCB 6-71

7/79 i-13

SETLGT
CALL SETLGT 6-72
SETLGT 6-72

SETUP
Sample Batch Deck Setup 4-4

SHIFT
Left Shift 6-19
Right Shift 6-19
Shift Functions 6-19

SIZE
Adjustable size specifications 3-17
Record Sizes 5-28

SLASH
slash 2-3

SLITE,SLITET
SLITE,SLITET 6-73

SORT
CALL SORT 6-74
SORT 6-32, 6-74

SORTO
CALL SORTO 6-76
SORTO 6-32, 6-76

SOURCE
SOURCE COMPATIBILITY D-1
Source Program File Characteristics

2-4
Source Program File Types 2-4

SOURCE PROGRAM FORMAT 2-4
Source Program Listing (LSTIN) 4-10

SPACE
space 2-3

SPECIFICATIONS
Adjustable size specifications 3-17
FILE SPECIFICATION B-33
FORMAT SPECIFICATIONS 5-4
LIST SPECIFICATIONS 5-23
Specification statements 3-1
Variable Format Specifications 5-13

SSWTCH
CALL SSWTCH 6-78
SSWTCH 6-78

STAT
STAT B-12, B-16

STATEMENTS
Arithmetic assignment statement 3-4
arithmetic IF statement 3-51
ARITHMETIC STATEMENT FUNCTIONS 6-2
Arithmetic statements 3-1
ASSIGN statement 3-7
assignment statement 3-4
ASSIGNMEN~.STATEMENTS 3-4
CALL statement 3-38, 3-40, 3-42
CALL statements 3-10
Character assignment statement 3-4,

3-6

DG75A

STATEMENTS (cont)
COMMON or a type statement 3-28
COMMON statement 3-38, 3-40
Compiler control statements 3-1
Control statements 3-1
DATA statement 2-22, 3-24, 3-40,

3~74
declarator statement 2-25
DO Statement 3-31, 3-39
ENCODE statement 3-39
END statement 2-5
ENTRY statement 3-40, 6-27
EQUIVALENCE statement 3-39
explicit type statement 3-55, 3-56,

3-70
EXTERNAL statement 3-38
FILE HANDLING STATEMENTS 5-29
FINISH,statement B-12
FORMAT and NAMELIST Statements 5-2
FORMAT statement 3-26, 3-34, 3-62,

3-64, 3-66, 5-2
Formatted Read/Write Statements 5-2
I-D-S/II DML statements B-10, B-14
IMPLICIT statement 2-11
Input/output statements 3-1
INVOKE statement B-9, B-20
Label assignment (ASSIGN) statement

3-4
Label Assignment Statement 3-6
List Directed Formatted Input/output

Statements 5-25
Logical assignment statement 3-4,

3-5
logical IF statement 3-51
Manipulation Input/output Statements

5-2
NAMELIST statement 3-62, 3-65, 3-67,

3-77, 5-2
Program Statement Input B-3
READ statement 2-22, 3-12, 3-26
REAL statement 3-33
RETURN statement 3-46, 6-25
Specification statements 3-1
statement label 2-6
Subprogram statements 3-1
SUBROUTINE AND FUNCTION STATEMENTS

6-1
SUBROUTINE or ENTRY statement 3-15
terminal statement 3-30
transfer statement 3-31
Type statements 3-24
Unformatted Read/Write Statements

5-2
WRITE statement 3-34

STATISTICS
I-D-S/II statistics and abort codes

B-12, B-16
Statistics File B-14, B-17

STATUS
STATUS FILES command B-32

STEP
step parameter 3-29

STOP
STOP 2-20, 3-73

7/79 i-14

STORAGE
ALLOCATION of STORAGE D-3
Storage Map {MAP) 4-12

STRING
Character String Compare 6-20
Editing Strings with ENCODE 5-21

STRUCTURE
Subschema Control Structure B-9,

B-15

SUBEXPRESSION
Common Subexpression Analysis 4-6

SUBPROGRAM
Adding Wrapup Subprograms F-22
BLOCK DATA subprogram 3-24
COMPILATION of SUBPROGRAMS D-1
Defining FUNCTION Subprograms 6-14
Defining SUBROUTINE Subprograms

6-23
Excluding Wrapup Subprograms F-23
FUNCTION subprogram 3-21, 3-33,

3-38, 3-55
FUNCTION subprogram name 3-10
FUNCTION SUBPROGRAMS 6-14
Multiple Entry Points Into a

Subprogram 6-27
Referencing FUNCTION Subprograms

6-22
Referencing SUBROUTINE Subprograms

6-24
Subprogram statements 3-1
SUBPROGRAM TIMING MEASUREMENT SYSTEM

F-19
SUBROUTINE SUBPROGRAMS 6-23
Supplied External FUNCTION

Mathematical Subprograms 6-17
Supplied External FUNCTION

Nonmathematical Subprograms
6-19

Supplied FUNCTION Subprograms 6-15
SUPPLIED SUBROUTINE SUBPROGRAMS

6-30

SUBROUTINE
Defining SUBROUTINE Subprograms

6-23
NAMING SUBROUTINES 6-1
Referencing SUBROUTINE Subprograms

6-24
SUBROUTINE 2-26, 3-38, 3-40, 3-42,

3-74
SUBROUTINE AND FUNCTION STATEMENTS

6-1
SUBROUTINE or ENTRY statement 3-15
SUBROUTINE SUBPROGRAMS 6-23
SUPPLIED SUBROUTINE SUBPROGRAMS

6-30

SUBSCHEMA
Subschema Control Structure B-9,

B-15
Validated Subschema File B-9

SUBSCRIPT
declarator subscript 2-25

DG75A

SUBSCRIPT (cont)
SUBSCRIPTS 2-24

SUCCESSOR
ARRAY ELEMENT SUCCESSOR FUNCTION

2-24

SUMMARY
Program Pref ace Summary (LSTOU)

4-11

SUPPLIED
Argument Che~king and Conversion for

Supplied External Functions
6-15

Automatic Typing of Supplied
Mathematical External Functions

6-15
Supplied External FUNCTION

Mathematical Subprograms 6-17
Supplied External FUNCTION

Norunathematical Subprograms
6-19

Supplied FUNCTION Subprograms 6-15
SUPPLIED SUBROUTINE SUBPROGRAMS

6-30
Supplying Direct-Mode Program Input

B-29

SWITCH
Reset Switch Word 6-19
Set Switch Word 6-19
Set/Reset Program Switch Word 6-19
Switch Variable 2-23

SYMBOL
arithmetic operation symbols 2-27,

2-28
Debug Symbol Table (DEBUG) 4-13
symbol table entries 4-13

SYMBOLIC
Symbolic Dump Example F-14
SYMBOLIC DUMP FACILITY F-13
Symbolic Dump Messages F-15
symbolic name 2-11, 2-21
Symbolic Names 2-11

Symbolic Names 2-11

SYMREF
SYMREF 3-42

SYNTAX
Syntax Punctuation 2-3

SYSTEM
Comparison of the FORTRAN and

YFORTRAN Time Sharing Systems
B-9

DPS ASCII-only system 4-3
FILE SYSTEM INTERFACE 4-4.l
FORTRAN DEBUGGING SYSTEM F-1
FORTRAN TIME SHARING SYSTEM RUN

COMMAND B-14
SUBPROGRAM TIMING MEASUREMENT SYSTEM

. F-19

7/79 i-15

SYSTEM (cont.)

T

THE YFORTRAN TIME SHARING SYSTEM RUN
COMMAND B-10

Timing Measurement System Examples
F-19

T FORMAT CODE 5-12

TABLE
Debug Symbol Table (DEBUG) 4-13
symbol table entries 4-13
To-From Transfer Table (XREFS} 4-11

TAPE
p·aper tape B-1
Paper Tape Input B-29

TECHNIQUES
FDS Programming Techniques F-25

TERMINAL
Automatic Terminal Disconnections

B-7.1
terminal statement 3-30

TERMINAL/BATCH
TERMINAL/BATCH INTERFACE 4-4.1

TERMINATION
Emergency Termination of Execution

B-29

TERMNO
CALL TERMNO 6-79
TERMNO 6-32, 6-79

TERMTM
CALL TERMTM 6-80
TERMTM 6-32, 6-80

TEST
TEST B-13

TIME
TIME=nnn B-12

TIME SHARING
Batch Activity to Build Time Sharing

H* File B-23
Comparison of the FORTRAN and

YFORTRAN Time Sharing Systems
B-9 .

FORTRAN TIME SHARING SYSTEM RUN
COMMAND B-14

I-D-S/II in a FORTRAN Time Sharing
Environment B-8

THE YFORTRAN TIME SHARING SYSTEM RUN
COMMAND B-10

TIME SHARING BASED FORTRAN ERROR
MESSAGES C-1

TIMING MEASUREMENT
SUBPROGRAM TIMING MEASUREMENT SYSTEM

F-19
Timing Measurement System Examples

F-19

DG75A

To-From Transfer Table (XREFS) 4-11

TRACE
TRACE 6-32, 6-81

TRANSFER
error transfer option 3-26, 3-34
To-From Transfer Table (XREFS) 4-11
Transfer of Control 3-31 ·
Transfer of Control for Extended

Range 3-32
transfer statement 3-31

TRUTH TABLE VALUES
Truth Table Values 2-30

TSS
DML TSS Example B-23
TSS 3-60
TSS Run Examples B-22

TYPE
COMMON or a type statement 3-28
DATA TYPES 2-11
explicit type 3-21, 6-15
explicit type statement 3-55, 3-56,

3-70
File and Record Control Type Errors

C-1
hierarchy of argument types 6-15
Source Program File Types 2-4
Type statements 3-24

TYPELESS
Additional Typeless Functions 6-12
Typeless 2-27, 2-31, 2-33
Typeless Functions 2-32

TYPING
Automatic Typing of Supplied

Mathematical External Functions
6-15

implicit typing 6-15

ULIB
ULIB B-12

UNARY
Unary Operators 2-34

UNFORMATTED
Unformatted Read/Write Statements

5-2

UNIFM2
UNIFM2 6-19

UPDATING
File Updating 5-28

URGC=NN
URGC=nn B-12

USAGE
RESTRICTIONS ON LOAD USAGE B-30

USER
USER INTERFACES 4-1

USER (cont)
User Working Area B-9

USRCOD
CALL USRCOD 6-82
USRCOD 6-32, 6-82

UWA
UWA B-9

VALIDATED
Validated Subschema File B-9

VARIABLE
Array Variable 2-23
Character Variable 2-23
Defined Variable 2-22
External Variable 2-22
Induction Variable Expression

Analysis 4-6
Induction Variable Materialization

Analysis 4-6.
logical variable 3-5
Referenced Variable 2-22
Scalar Variable 2-22
Switch Variable 2-23
Variable Format Specifications 5-13
VARIABLES 2-21

VERTICAL
vertical arrow 2-3

WORD
noise word 5-11
Reset Switch Word 6-19
Set Switch Word 6-19
Set/Reset Program Switch Word 6-19

WORKING
User Working Area B-9

WRAP UP
Adding Wrapup Subprograms F-22
Excluding Wrapup Subprograms F-23
wrapup list F-22
WRAPUP PROCEDURES F-22

WRITE
WRITE 3-76
WRITE statement 3-34

x
X FORMAT CODE 5-12

XOR
XOR 6-8

XREF
Cross-Reference List (XREF) 4-13
To-From Transfer Table (XREFS) 4-11
XREF 4-2, 4-9, 4-10

YASTRK
CALL YASTRK 6-83
YASTRK 6-83

7/79 i-16 DG75A

YFORTRAN
Comparison of the FORTRAN and

YFORTRAN Time Sharing Systems
B-9

THE YFORTRAN TIME SHARING SYSTEM RUN
COMMAND B-10

YFORTRAN B-9

7/79 i-17 DG75A

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE
SERIES 60 (LEVEL 66)/6000
FORTRAN REFERENCE MANUAL
ADDENDUM A

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

ORDER N0.1 DG75A, REV. 0 I
DATED I JULY 19 79 I

Your comments will be promptly investigated by appropriate technical personnel D
and action will be taken as required. If you require a written reply, check here
and furnish complete mailing address below.

FROM: NAME~~~~~~~~~~---~~~~~~~~~~~

TITLE ~~~~~~~~~----'~~--'-.--~~~~~~~~

COMPANY~~~~~~~~~~~~~~~~~~~~~

ADDRESS~~~~~~~~~~~~~~~~~~~~~

PLEASE FO LO ANO TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WAL THAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE SERIES 60 (LEVEL 66) / 6000 FORTRAN REFERENCE
MANUAL

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

ORDER NO. , DG7 5, REV. 0

DATEO I JULY 1978

r\. Your comments will be promptly investigated by appropriate technical personnel. and action will be taken D L{' as required. If you require a written reply, check here and furnish complete mailing address below.

FROM: NAME-.~~~~~~~--------------~~--------------------

TITLE ~--~----------~----~-~~
COMPANV _________________________________ ~----------------

ADDRESS~---

PLEASE FOLD AND TAPE -
NOTE: U.S. Postal Service will not deliver stapled forms

ATTENTION: PUBLICATIONS, MS 486

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WAL THAM, MA 02154

Honeywell

FIRST CLASS
PERMIT NO. 395:
WALTHAM, MA
02154

