LEVEL 66

FORTRAN

REFERENCE

MANUAL

SERIES 60 (LEVEL 66)/6000
FORTRAN REFERENCE MANUAL

ADDENDUM A
SUBJECT
Additions and Changes to Series 60 (Level 66)/6000 FORTRAN Reference
Manual
SPECIAL INSTRUCTIONS

This update, Order Number DG75A, is the first addendum to DG75, Rev. 0,
dated July, 1978. The attached pages are to be inserted into the manual as
indicated in the collating instructions on the back of this cover. Change bars
in the page margins indicate technical additions and changes; asterisks indi-
cate deleted material. These changes will be incorporated into the next revi-
sion of the manual.

Note:

This cover should be placed following the manual cover to indicate that
the document has been updated with Addendum A.

SOFTWARE SUPPORTED
Series 60 (Level 66)/6000 Software Release FT2.0

ORDER NUMBER
DG75A, Rev. 0 July 1979
24203
1.5779
Printed in U.S.A.

Honeywell

COLLATING INSTRUCTIONS

.

To update this manual, remove old pages and insert new pages as follows:

The inforr

"

and sp

Remove

v through viii
ix,blank

2-1 through 2-4
2-7 through 2-18
2-21 through 2-26
2-29 through 2-32
3-7, 3-8

3-11, 3-12

3-19 through 3-22
3-27, 3-28

3-33 through 3-36
3-43, 3-44

3-53, 3-54

4-3, 4-4

4"9 r} 4—10
6-15 through 6-18
6-21, 6-22
6-35, 6-36

6-45 through 6-48

6-63, 6-64

6~69, 6-70

6-73 through 6~78
B-1 through B-30
B-31, blank

C-9, blank
i-1 through i-15

Insert

v through viii
ix,blank

2-1 through 2-4
2-7 through 2-18
2-21 through 2-26
2-29 through 2-32
3-7, 3-8

3-11, 3-12

3-19 through 3-22
3-27, 3-28

3-33 through 3-36

3-43, 3-44

3-53, 3-54

4-3, 4-4

4-4.1, blank

4-5, 4-6

4-9, 4-10

6-15 through 6-18
6-21, 6-22

6-35, 6-36

6~45 through 6-48
6-63, 6-64

6-69, 6-70

6-73 through 6-78
B-1 through B-6
B-7, blank

B-7.1, B-8

B-9 through B-36
C-9, blank

i-1 through i-17

ificati in this document are subject to change without notice. This

document contains information about Honeywell products or services that may not be available
outside the United States. Consult your Honeywell Marketing Representative.

C) Honeywell Information Systems Inc., 1979

7/79

File No:

1pP23,1723

DG75A

SERIES 60 (LEVEL 66)/6000
FORTRAN REFERENCE MANUAL

SUBJECT
Description of the FORTRAN Programming Language

SOFTWARE SUPPORTED
Series 60 (Level 66)/6000 Software Release FT1.0

ORDER NUMBER
DG75, Rev. 0 July 1978

Honeywell

PREFACE

This FORTRAN reference manual assumes that the reader
FORTRAN programming principles and basic concepts.
and statements are included in this manual.

is familiar with
All necessary FORTRAN rules

The information and specifications in this document are subject to change without notice. This
document contains information about Honeywell products or services that may not be available
outside the United States. Consult your Honeywell Marketing Representative.

© Honeywell Information Systems Ine., 1978 File No.: 1P23,1723 DG75

FUNCTIONAL LISTING OF PUBLICATIONS

for

SERIES 60 (LEVEL 66) and SERIES 6000 SYSTEMS

FUNCTION

Hardware reference:

Series 60 Level 66 System
Series 6000 System
DATANET 355 Processor
DATANET 6600 Processor

Operating system:

Basic Operating System

Job Control Language
Table Definitions

Table Definitions

1/0 Via MME G:INOS
Shared Systems Operation

System initialization:

System Startup
System Operation
Communications System

Communications System
Communications System
DSS180 Subsystem Startup
Program Recovery

Data management:

File System

Integrated Data Store (I-D=S)
Integrated Data Store (I-D-S)
File Processing

File Input/Output

File Input/Output

I-D-S Data Query System
I-D~-S Data Query System
Coexistent I-D-S

Program maintenance:

Object Program
System Editing

Test system:

Online Test Program
Test Descriptions

Error Analysis and Logging

Language processors:

Macro Assembly Language
COBOL-68 Language

COBOL-68 Usage

Standard COBOL-68 Language
Standard COBOL-68 Usage
JOVIAL Language

FORTRAN Language

Macro Assembly Language

APPLICABLE REFERENCE MANUAL
ORDER
TITLE NO.
Series 60 (Level 66)/Series 6000:

Series 60 Level 66 Summary Description DC64

Series 6000 Summary Description DA48
DATANET 355 Systems Manual BSO03
DATANET 6600 Systems Manual DC88

General Comprehensive Operating

Supervisor (GCOS) DD19
Control Cards Reference Manual DD31
System Tables DD14
NPS Tables DE34
I1/0 Programming DB82
System Operation with Shared Mass

Storage DD97
System Startup DD33
System Operation Techniques DD50
GRTS/355 and GRTS/6600 Startup

Procedures DDOS
NPS Startup DD51
NPS Configuration Examples DE76
DSS180 Startup (Series 6000 only) DD34
Program Recovery/Restart DC98
File Management Supervisor DD45
I-D-S/I Programmer's Guide DC52
I-D-S/I User's Guide DC53
Indexed Sequential Processor DD38
File and Record Control DDO07
Unified File Access System (UFAS) DC89
I-D-S Data Query System Installation DD47
I-D-S Data Query System User's Guide DD46
Coexistent I-D-S Overview ‘ DE60
Source and Object Library Editor DD06
System Library Editor DD30
Total Online Test System (TOLTS) DD39
Total Online Test System (TOLTS)

Test Pages DD49
Honeywell Error Analysis and Logging

System (HEALS) DD44
Macro Assembler Program (GMAP) DDO8
COBOL Reference Manual DD25
COBOL User's Guide DD26
Standard COBOL-~-68 Reference Manual DE17
Standard COBOL-68 User's Guide DE18
JOVIAL . DD23
FORTRAN DD02
DATANET 355/6600 Macro Assembler

Program DDO1 .

iii . DG75

FUNCTION

Generators:
Sorting
Merging

Simulators:
DATANET 355/6600 Simulation

Service and utility routines:
Loader
Utility Programs
Utility Programs
Media Conversion
System Accounting
FORTRAN
FNP Loader
Service Routines
Software Debugging

Time Sharing systems:
Operating System
System Programming
System Programming

BASIC Language
FORTRAN Language
Text Editing
dataBASIC Language
dataBASIC Loading

Remote communications:
DATANET 30/305/355/6600 FNP
DATANET 355/6600 FNP
DATANET 355/6600 FNP
DATANET 355/6600 FNP
DATANET 700 RNP

Communication facilities:
COBOL-74 Communications

Transaction processing:
User's Procedures

Handbooks:
System-operator communication
Error Messages, Abort Codes
NPS Error Messages

Pocket guides:
Control Card Formats
FORTRAN

APPLICABLE RBREFERENCE MANUAL

ORDER

TITLE NO.
Series 60 (Level 66)/Series 6000:
Sort/Merge Program DDO09
Sort/Merge Program DD09
DATANET 355/6600 Simulator DD32
Genefal Loader DD10
Utility DD12
UTL2 Utility Routine DC91
Bulk Media Conversion DD11
Summary Edit Program DD24
FORTRAN Subroutine Libraries DD20
DATANET 355/6600 Relocatable Loader DD 35
Service Routines DD42
Debug and Trace Routines DD43
TSS General Information DD22
TSS Terminal/Batch Interface DD21
TSS System Programmer's Reference

Manual DD17
Time Sharing BASIC DD16
FORTRAN DD02
Time Sharing Text Editor DD18
dataBASIC System Language Manual DD95
dataBASIC Load/Unload System DD96
Remote Terminal Supervisor (GRTS) DD40
Network Processing Supervisor (NPS) DD48
NPS Micro~Ops Programming DE35
Application Guidelines for NPS DE77
RNP/FNP Interface DB92
Message Control System Site Manual DC99
Transaction Processing System User's

Guide DD41
System Console Messages DD13
Exrror Messages and Abort Codes DC97
NPS Error Messages DE75
Control Cards and Abort Codes DD04
FORTRAN Pocket Guide DD82

iv DG75

CONTENTS

Section I Introduction. . « « o o o o o
General. . ¢« « ¢« o « o o

Capabilities « « o« « « o

Section II
Character Set. « « « « «
Source Program Format. . .

Source Program File Types .

Source Program File Characteristic

Format Rules for Lines.
Symbolic Names. . . .
Data Types . . « « . .
Constants. « « « « o &
Integer Constant. .
Octal Constants . .
Real Constant . . .
Double Precision Con

ot

e o o s e Be (De o s s o o s s 0 o s 0 e Qe e o o o

o}

cchoOo.aoooooooccov-ao-oouﬁ'oof..u

Complex Constant.
Logical Constant.
Character Constant.
Variables. . « « « + &
Defined Variable. .
Referenced Variable
Scalar Variable . .
External Variable .
Switch Variable . .
Character Variable.
Array Variable. . .
Array Element. .
_ Subscripts
Array Element Succe
‘Array Declarator .
Adjustable Dimensio
Parameter .
Expressions. .
Arithmetic.
Relational. e e s .
Logical &« o« o o o o o«
Logical and Relational C
Typeless Functions. . .
Evaluation of Expression
Operator Precedence . .
Unary Operators

e o & o & & 8 5 s o o s (N e s e o o

]

S

FORTRAN StatementS. . . « o &
Assignment Statements. . .
Arithmetic Assignment St

Section IIIX

.

a

n

® o e & o 8 o6 e s 6 e & o o 0 & * o o &

e o o o [l e o o o s s o

o

¢« o o o M e o o o o o o
[«

.

20 o o o o 2 o o s 8 e s s e e o s s s 0

]
=]

temen

Logical Assignment Statement. .
Character Assignment Statement.
Label Assignment Statement.

FORTRAN Keywords . . . « .
ABNORMAL. « « o o o o &
ASSIGN. . ¢ ¢ o o o o =«

- 7/79 v

e o o o (N e o ¢ .06 o o ¢ (o o &6 s & ¢ e.06 0 & & 6 s 0 ¢ ¢ 0o ¢ o

t

FORTRAN Source Program Characteristics.

.

tio

.
.
.
.
.
.
.
.
.
i
.
.
.
.
.
i
.
.
.
.

O

e o o ¢ e e o o 0 e ¢ He s o s s s s s s e 8 e s s e s s 0 s s e Ne s e 0

e o o o o 2 e o o

® 6 5 o ® o 8 e & * 0 s & o s e o

‘e e @ & e 6 6 e & 6 o & 6 o o & o * 0+ e e o

e & o o o o o o

@ 8 @& © & ¢ & 8 5 0 & 8 % o K & ° 6 B O B 3 6 B 0 & & o b o 9 6 o & 0 o+ * ¢ o

e & o ¢ o o s o @

@ 8 8 & & e ° 8 6 ° 9 8 0 ° s 6 e O & & ° 6 * e & + 6 2 6 & © ° & @ o s s s o

® & 9 6 8 2 & e 8 ¢ e @ @ B 6 e 0 8 e 6 T S o e 6 0 e e & e ° 6 0 4 o e + o o

® ¢ o s & & o s

@ 8 o 6 s 8 0 ¢ 6 5 e O & 6 8 4 & S O Bt 6 2 " O & s s 0 8 O e e 6 o & & o

s ¢ o e o o o o o

® o o © % ¢ o o o

e & 8 8 e e 8 & 0 0 9 & & ¢ B ° 0 & O+ & 0 O 0 8 ® ° o+ 2 e s 6 o v s ° ° 8 o @

e
o
Q
L]

I

]
v 1
=

NI NIBI NN
H O &

3-1

1 1
=00V S

= o

wwwwcr»uuw

DG75A

CONTENTS (cont)

Page

BACKSPACE

e o

BLOCK DATA.

CALL.

.

CHARACTER .
COMMON.

COMPLEX

. e
s e

CONTINUE.
DATA.

DECODE.

DIMENSION .

DO.

DOUBLE PRECISION.
ENCODE.
END .

.

ENDFILE
ENTRY .

EQUIVALENCE . . .
EXTERNAL.

FORMAT.

o o

FUNCTION.

GO TO

IF.

IMPLICIT.

INTEGER .

LOGICAL .
* NAMELIST.

 PARAMETER .

SUBROUTINE. . . .

STOP.

~r
(L

LU IS

User Interfaces

Section IV

e o o

Batch Mode .

o

NI ST OOO0N

* e e s s s e o
e o o & & 0 o
« o 8 s o 2 o o
L I I I I)
e e] e s 0 s o

Q
e ey o o o s .
* e Dy e o o o
i}
Cirt o o o o o
" 5%
P Y QY
O 2 (S =]
cNO W ¢eWO o
NOOwW-A
oMM OO N .
VOeHmoOoOwo

WO MHHD N .

HOHROMNEOQ

] HOHT o

oL ad A

ooHGg.o W0 -

PP HOE

~gag.o POn

gAMOE”O P

(8] < oM]

eeat/Dm

CEYSEEEE

tmmeSn/F

o o oA

Bssoem_l_e

m.l O ~
@Y A
S T <

L
. .
L] .
. .
L] .
. .
* .
. .
g n
oL
O
-
0~
S8
(o]
£8
4
0 D>y
©3
%8
Q=
(¢}
~
U
-

Divide Check.
Batch Compilation Listings and Reports .

.

L]

Source Program Listing (LSTIN).
To-From Transfer Table (XREFS).

i
~
[

-

~
)
!

e &

Program Preface Summary (LSTOU)

Storage Map (MAP)
Object Program Listing (LSTOU).

«~
~t
[

4-12
4-13
4-13
4-13

¢ e o o * o
¢ o o

e o e & o

e o o o o

Cross Reference List (XREF)

Debug Symbol Table (DEBUG).
Miscellaneous Data.

o

.

DG75A

vi

7/79

Section V

Section VI

7/79

Input and Output.
General Description. . . .

File Reference . « « « .
Format Specifications. .

n
Namelist Input/output Statements
Internal Data Conversion

List Specifications. . .« « . . .

Function Subprograms

CONTENTS (cont)

Input/6utput Statements

Field Separators. . . .
Repeat Specification. .
Scale Factors
Multiple Record Formats .
Carriage Control.
Output Device Control . .
Input Data. « « o « o & .
Numeric Field Descriptors .
Complex Number Fields . . .
Alphanumeric Field Descriptors
d

s & o
* & & ¢ & & & ¢ o 0 o o

Input., ¢« ¢« ¢« o o ¢ o &

Output « « « ¢« ¢« ¢« o &
Logical Field Descriptor.
Character Positioning Fiel

X
D

escript

2]

e o 9 8 o & o ¢ o o o o [N e o o & o & B 6 * 0 0 8 6 & o s o

X Format Code. . « « « &
T Format Code. « « « .«
Variable Format Specifications

INPUt &« ¢ ¢ o ¢ o o o o o
Ooutput. . +« ¢ ¢ ¢ o ¢ o o

Multiple Record Processing.
Editing Strings with ENCODE
Conditional Format Selection.

e 8 ¢ o 6 s s 6 o o s o [Ne s s 4 e . 0 e s 6 0 0 0 s 0 0 0
............H............'...'.
¢ & o & o s 0 ¢ 0 o o o T e s s & s s 0 s e e 0 s e e &t s o
® * 0 o o s o o 0 0 s s O s e s s s 0 0 s 0 0 s 2 s s 0 ¢ 0
® o ° o & s & & o " & & o O * & * 5 ° @ O " & 3 O ° s+ & & *» O

Short List I/0. o« o o o o« o &
List Directed Formatted
Input/output Statements.
Terminal End-of-File.
Formatted Input/output Statements .
Unformatted Input/output Statements
File Properties . « ¢« « o o o o o »
Sequential Files . + « . .
Random Files . « « « & .
F11e Handllng Statements .

e & o o & o o o
o o o o o o v o
e o * 8 o o * o

Subroutinevand Function Statements.
Naming Subroutines . « « « o o o o o o o o o«
Arithmetic Statement Functions . . . « « « « &

Arithmetic Statement Function Left of Equals

® & @ @ ¢ o 6 6 & ° 0 * o 9 6 e & 3 8 ° S T o 0 8 S 8 8 b s o

s & & s o o o+ o

Referencing Arithmetic Statement Functions.

Built-in Intrinsic Functions . « « ¢ « « o &

Argument Checking and Conversion for
Intrinsic Functions. . . « « ¢ o o & &«
Automatic Typing of Intrinsic Functions
Typeless Intrinsic Functions.
Additional Typeless Functions

Defining FUNCTION Subprograms
Supplied FUNCTION Subprograms .
Argument Checking and Conversion for
Supplied External Functions.
Automatic Typing of Supplied Mathemat1ca1
External Functions . . ¢« « ¢ ¢ « « o« o &«
Shift Functions . . « &« « & « &
Set/Reset Program Switch Word .
Execution Mode Determination. .

® o o ¢ o o o

.
.
. o
.

e o o . .
e e o o
e o e o o

vii

¢ 0 8 8 & 8 S 2 0 5 0 0 0 5 P 6 6 % 6 0 ¥ " * 9 " % 0 0 8 o

LI S)

® 6 & & 8 % 8 0 & & 5 B 8 6 & & & & & % 6 6 & & ° 6 o & 8 ¢ o

® & o o o o & e o o o o o e o o o & o o o

OlO\O\OI\O\O\

o
o
Q
o

[}
0000 J0 U W

[
-

-
NN

5-12
5-12
5-13
5-14
5-14
5-17
5-20
5~20
5-21
5-22
5-23
5-24

5-25
5-27
5-27
5-27

LS S S V)
O O ™

1
HHWO UL W

DG75A

Appendix
Appendix
Appendix
Appendix

Appendix

7/79

M O Q w »

CONTENTS (cont)

Character String Compare. « . . «
Random Number Generators.
Referencing FUNCTION Subprograms. .
Subroutine Subprograms . . . o o o o
Defining SUBROUTINE Subprograms o .
Referencing SUBROUTINE Subprograms.
Return Statement . « ¢« &+ ¢ ¢ ¢ o ¢ o &«
Alternate Return Formats. . . « .

Multiple Entry Points into a Subprog

Dummy Argument. . .
Supplied SUBROUTINE Subprograms.
ATTAC H o . . L] L]
CALLSS.
CNSLIO.
CONCAT.
CORFL .
CORSEC.
CREATE.
DATIM .
DEFIL .
DETACH.

e e o o o

e @ o & o o 0
e & @& ¢ o ¢ o @

.
*
.
.
.
L}
.
.
.
L3

[] - . L] .. . L] [] L]
¢ o o o s o 0 s »
e 5 o o o 0 o s »

DUMP DUMPA, PDUMP
DVCHK,OVERFL ,FXDVC

* 8 5 0 o 0 s 0o WiJe o 6 s o 6 o s o
=]

e ¢ o b 0 0o o 2 s Cle o s 0 0 0 0 0 o

® e 8 2 0 o s 0 s Eo e 8 s o o s o o
>

EXIT L] - - - . L] L] - L] L] - .
FCI‘OSE L] - ® . L] L] * - Ld L] . L]
FILBSP,FILFSP . . e e o o o
FLGEOF * o - . L] - - - - . - L]
E'I‘GERR. . L] - - - - L3 L - . .
FLGFRC L] - o . Ll Ld - . - - - L]
FMEDIA. . . « « o e o o o o
FPARAM . - - - L] L L] L] - - L3 .
FXDVCK (see DVCHK) ,FXEM . . . « « &
LINK, LLINK . L] - L] . £ . . L L] . .
tEMsIZ L] L] L] . . L3 L L] L] . L] - . L] L]
NASTRK e o o o o e o o o o ¢ o o o
OVERFL (see DW CHK). « s o s o o e o
PDUMP,PDUMPA (see DUMP)
PTIME .‘ . L] L) L] L] L] L] L] . . . L L] L]
RANSIZ. « ¢« o o ¢ o o o ¢ ¢ o o o o
SETBUF e o o o o e o o e o & s s e o
SETFCB s o o @ e o ® o e ¢ o e o o o
SETLGT - . L] L3 L] . - . - - - - *
SLITE,SLITET. e o o 8 s o o o o o
SORT ISORT L3 Ll . . . L . L3
SORTD,ISORTD: o o o o o o o o o o
SSWTCHQ . - £ d L] . L] . - L] L d
TERMO - . . Ld . - - - . L - . L . .
TERMTM. ¢ « o o o o o s o o o o o o
TRACE ® e © e ® o e @ ® e e o o+ o o
USRCOD . Ad L] L L3 . L] . L] L L] - . - -
YASTRK . L] - - i d - . - L] L] L] . - Ll -

ASCII/BCD Character Set .« « « o o o o o «
Time Sharing‘System Description
Time Sharing Based FORTRAN Error Messages
System Characteristics. . + &+ o ¢« ¢ o o &

FORTRAN Execution Error Monitor Examples.

viii

e & ¢ & 5 & 0 0 o ° 8 6 " ¢ b O B o o ® & o & & 5 6 ¢ & ¢ * &+ & T S > 0 o O+ o+ o H. ® 9 6 ° o * o

a

n.o.l.t.‘loul.’ono.00000.00..0000000.00000s..oo...o

® & 8 9 8 6 O & o ° o & & & 6 & o O S B 6 9 G 0 0 0 O b * O & 0 S 6 6 % 0 6 & O O 2 8 0 4 P B 0 e

e 0 60 0 & ¢ ¥ @ & 8 & P P ® ¢ B e * O B S % S B 6 ° 0 O G 0 9 O & O 0 O 2 o 8 O 0 P 6 B e 4 e 0 o e

8 8 6 & B & ¢ & e & & & S O 0 6 & ¢ & 0 0 0 % 0 O 4 . 6 0 * O 0 s 8 e & 0 2 ¢ & 0 @t & % 0 0 e 0 8 0

® 8 ® o & 5 6 & 0 ® ° * 2 O 0 0 ° s B & ¢ o »

e 6 @ o 8 & * e & 0 ¢ B ° B 5 5 & 6 0 & 8 e+ 0 s s s

Page

6-20
6-20
6-22
6-23
6-23
6~24
6-25
6-26
6-27
6-29
6-30
6-34
6-36
6-37
6-38
6-39
6-40
6-41
6-42
6-43
6-44
6-45
6-46
6-48
6-49
6-50
6-51
6-52
6-53
6-54
6-55
6-56
6-65
6-66
6-67
6-67
6-67
6-68
6-69
6-70
6-71
6-72
6-73
6-74
6-76
6-78
6-79
6~-80
6-81
6-82
6-83

A-1
B~-1
c-1

D-1

DG75A

Appendix F
Appendix G
Figure 2-1
Figure 4-1
Figure 5-1
Figure 5-2
Figure E-1
Figure E-2
Figure F-1
Figure F-2
Figure F-3
Figure F-4
Figure F-5
Figure F-6
Figure F-7
Figure F-8
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 3-1
Table 3-2
Table 3-3
Table 5-1
Table 5-2
Table 6-1
Table 6-2
Table 6-3
Table 6-4
Table 6-5
D-1

Table

7/79

CONTENTS {(cont)

FORTRAN Debugging System. . o« o o ¢« o o o+ &

FORTRAN Transliteration Table « « « ¢ o o »

ILLUSTRATIONS

FORTRAN Coding Sheet and Program.
Compilation Listings and Reports.
Test Program for NAMELIST Output.
NAMELIST Output of Fixed Point and Real Ar
FXEM Example in Time Sharing Mode . « . .
FXEM Example in Batch Mode. . o « « o o o«
FDS Example in the Batch Mode . . « « « &
FDS Example in the Batch Mode with Linked
FDS Example in the Time Sharing Mode. . .
Example of a Symbolic Dump. .« « « « « o =«
Example of FDS Program and Subroutlne

Used with FDUMP. + &« « ¢« o « o o o o o o &
Example of FDUMP Output « « o« o o o o o o »
Timing Measurement System Parameters. . . .
Timing Measurement System in Time Sharing .

e o Qe e o H e o o

TABLES

FORTRAN Character Set « « « o ¢ o o o o o
FORTRAN Syntax Punctuation. . . « « « + &
Results for xj+xj, X]-X2, X1*x3, or x1/x)
Results for X(**xX9. « « ¢ & ¢ o o ¢ ¢ « &
Truth Table ValuesS. . ¢« « ¢ o« ¢ ¢ o o o o &«
Use of Relational Operators (.GT., .GE., etc
Type Listing of FORTRAN Statements. . « .
Legal Combinations of Assignment Statements
Rules fOr v = € ¢« v ¢ o o o o o o«
Implies Format Conversion . . « « « « « &
Conversion of a Null Field. . v « « « « «
Built-in Intrinsic Functions.« .
Supplied External FUNCTION Mathematical

e e o o o

.
.
3

Subprograms. . . .
Supplied External FUNCTION Nonmathematical
Subprograms. . . e o o o s o

Supplied SUBROUTINE Subprograms c o o o o
Error Codes and Meanings. . . . « « « o o«
Storage Allocation for Object Programs. .

o o Me o o ko o o

® o pde 3 e 9 o o

e o o 0

* 5 o

e & o o o o o 6 o s o o

e o ke o & o o o »

e e ® & & s e ¢ S 2 o o

® e o o o e o o o o

e o o

¢ o 9 & ® 8 o & 8 o s »

Page
F-1

G-1

2-10
4-14
5-18
5-19

E-3
F-9
F-11
F-12
F-15

F-16
F-18
F-20
F-21

1 LU I T I I |
HOWN

U
ANNOINWWNNWN
[W)}

[\ ¢ =2} O\U‘U"wkiJWNNNNNN

DG75A

SECTION I

INTRODUCTION

SENERAL

The name FORTRAN was derived from the original reference to a computer
language asz a "FORmula TRANslator", and was designed to permit the statement of
a problem in terms that closely resemble mathematical notation. Although
FORTRAN is a source language which is primarily used for solving scientific and
engineering prollems, it is also highly suitable for business applications. The
FORTRAN statements consist of letters and symbols that provide the programmer
with easy manipulation of large sets of equations and variables.

The FORTRAN language 1is augmented by Subroutine Libraries that contain
standard arithmetical functions and provide all input/output for the program
(refer to the FORTRAN Subroutine Libraries manual for a description of these
routines). The user has the ability to write any special purpose subroutines
that may be required for a specific application.

CAPABILITIES

The FORTRAN compiler services both batch and time sharing, using the same
compiler modules for both environments. Programs can be developed for eventual
use 1in the batch environment with the convenience of the interactive time
sharing environment, and after debug is complete, submitting them to batch
without concern for time sharing/batch language incompatibilities.

FORTRAN programs can be entered in exactly the same form regardless of the
input medium or lozation. The only difference in the input stream during user
interface 1is the mandatory presence of GCOS control cards for local and remote
batch and the required use of command language in the time sharing environment.
Remote accessed use of GCOS, including both time sharing and remote batch,
contribute significantly to the job load at the Central Computer Site.

1-1 DG75

SECTION II

FORTRAN SOURCE PROGRAM CHARACTERISTICS

The FORTRAN compiler, like other higher-level language compilers such as
COBOL and PL/I, is a processor that translates a FORTRAN program into machine
language (GMAP). The statements and symbols that constitute a FORTRAN program
must conform to certain rules and definitions before the source language can be
translated to machine language for execution with the General Comprehensive
Operating Supervisor {GCOS).

The following conventions are used throughout this manual when illustrating
the syntax form of FORTRAN symbols, statements, and keywords.

1. Uppercase words must be entered as specified.

2. Lowercase words indicate user-specified information.

3. Items enclosed within brackets are optional.

4. Items enclosed within braces represent choices or élternatives.

5. An ellipsis (...) indicates that the preceding format may be repeated.

CHARACTER SET

FORTRAN utilizes two character sets - ASCII and BCD. The character set and
byte size for the generated object code is controlled by an option on the
$ FORTY and $ FORTRAN control cards; the source program requires no options.
The byte size 1is 6 bits for BCD and 9 bits for ASCII (refer to Appendix A for
the octal and the punch card representations for each character).

The FORTRAN character set is a subset of the full 128 ASCII character set
and can be coded in the following manner:

) FORTRAN statements and the keywords do not differentiate between
uppercase and lowercase alphabetic characters.

® No distinction is made between the cases in forming variable,
function, common, etc. names.

) Uppercase and lowercase letters are recognized as different only in
user character data and literals.

® Any character in the ASCII character set is valid as literal data.

7/79 2-1 DG75A

A source program can be written using the characters and digits in
Table 2~1. Table 2-2 gives a brief description of the special characters that
are used for FORTRAN syntax punctuation.

Table 2-1. FORTRAN Character Set !

Upper= Lower= Digits Special
Case Case Characters

¥ (space)

+

‘OI’.‘A
*

VO NEWNNHHO
B adNe & N\ P

NHKESCHNIONOZRHNARAGHEQAYHOOW Y
N XE4dSctanrQTOS H AWK HOo QU W

lThe correct collating sequence for the ASCII characters listed is shown in
Appendix A.

2-2 DG75

Table 2-2, FORTRAN Syntax Punctuation

Symbol Function

¥ The space is only meaningful to the compiler in character
constants and can be used freely to enhance the readability of
programs.

" Quotation Marks and apostrophes are used as character constant

' delimiters. The apostrophe also precedes the record number in
random file input/output statements.

$ The currency symbol identifies statement numbers which are used
as arguments i1n a CALL statement. It also serves as a delimiter
of input data for a NAMELIST read.

(Parentheses are used to enclose subexpressions, complex

) constants, equivalence groups, format specifications, argument
lists, and subscripts. They are also used to specify the ranges
of implied DO loops.

+ The plus sign indicates algebraic addition, printer carriage
control, or a unary operator.

- The minus sign indicates algebraic subtraction, or a wunary
operator.

’ The comma is used as a separator for data symbols and expressions
for parameter lists, equivalence groups, complex constants and
format specifications.

/ The slash is used to indicate algebraic division, as a delimiter

for “data lists, labeled common statements, and as a record
terminator in a format statement. '

~

The semicolon is wused as a delimiter when multiple source
statements appear on a single line.

The equal sign indicates the assignment operator in arithmetic,
character, and logical assignment statements, PARAMETER
statements, DO statements, and implied DO statements in I/O and
data lists.

The asterisk designates a comment line or an alternate return
argument 1n a subroutine statement. The asterisk is also used
as the multiplication operator, and a double asterisk is one of
the exponentiation operators. The quantity to the 1left of the
sign 1s raised to the power indicated on the right. :

The period is used as a radix point and serves as a delimiter for
logical and relational operators as well as logical constants.

The vertical arrow and caret serve as additional exponentiation
operators. They are alternates to the double asterisk and can be
used interchangeably.

The ampersand serves as one of the continuation line indicators.

7/79

2-3 DG75A

SOURCE PROGRAM FORMAT

Source Program File Types

Source programs generally originate either as punched cards or as lines
entered into a terminal. They can also be the product of, or output from, the
execution of a program, or they can be compressed in a compilation activity
through the use of the COMDK option, These source programs can be kept in the
form of decks, paper tape, magnetic tape files, or permanent mass storage files.
To be compiled, decks and paper tape media programs must initially be copied to
magnetic tape or mass storage. The mass storage file does not need to be
permanent because a normal deck setup produces the compiler input file (S*) on a
temporary file. However, the source program file must be recorded in standard
system format (see the File and Record Control manual), The FORTRAN compiler
will accept magnetic tape oY mass storage files in standard system format with
any of the following media codes:

- BCD print line images, without slew control for the printer (variable
length records)

- compressed BCD card images (Comdecks)

- BCD card images (each record = 80 columns)

formatted BCD printer line images, with trailing printer slew control
information

- ASCITI standard system format preceded by one media code 8 record

- ASCII print line images, with trailing printer slew control information
- TSS information record

[+ IS) w N - o
!

Card images are limited to 80 characters, while line images are limited by
the device on which they are prepared. For simplification, wherever "card
images" and "line images" can both be used, this document simply uses the term
"line".

Source Program File Characteristics

A source program file is composed of statements and comments. A statement
is the tool necessary to construct a FORTRAN program, and can be classgified as
executable or non-executable. The FORTRAN statement can be a maximum of 20 card
image lines in length. The first line is referred to as the initial 1line, and
subsequent lines are referred to as continuation lines.

Example

1 67 72

REAL X,Y,Z,TOTAL
INTEGER L,M,N

READ X,Y,Z

TOTAL = X*2.0 + Y*3.0 + 2*4,0 +
&SQRT (X,Y,Z)

TOTAL = TOTAL +

1L + M+ N +

2N + 3

=1
2
e o

2-4 DG75

A comment is composed of a single line of documentary with the letter C in
the first column of the line., These lines are not executed and can be placed
anywhere within the source program.

Example

1 7 80
C THIS PROGRAM WAS WRITTEN BY C. R. JONES

C ON JULY 1, 1978

C IT PRINTS THE DIFFERENCE BETWEEN BIG AND SMALL
C 1IF BIG IS GREATER THAN SMALL,

C OTHERWISE, THE PROGRAM TERMINATES

READ, BIG, SMALL
IF (SMALL .GT. BIG) GO TO 100
DIFF = BIG - SMALL

C PRINT THE ANSWER

PRINT, BIG, SMALL, DIFF
100 STOP

END

Every program unit (subprogram, main program, etc.) must terminate with an
end line. This line contains an END statement and serves to separate individual
program units. Any subsequent units must begin on a new line.

Example

COMMON/LABEL/A,B,C,Y

STOP

END

SUBROUTINE S
COMMON/LABEL/Q,R,S,T

RETURN
END

When the first line of a program unit is a comment line, page titles and
object deck labels are extracted from that line as follows:

Characters 2-7 are inserted by the compiler into the label field of the
, heading line printed by the compiler. Only characters 2=5
are used by the compiler to construct the edit name of the
compiled module (columns 73-76 of the object deck) which is
used by the Source and Object Library Editor to manipulate
the module.

Characters 8-72 contain the page title for listings.

2=5 DG75

When the first line of a program unit is not a comment line, or columns 2
through 5 are blank on the first comment card, the deck label is the first six
characters of the program unit's name (...... is used for a main program); no
page title is generated. Any trailing digits in the object deck label are used
as part of the sequence nrmber field in object decks. To avoid a sequence
number error, large source programs should avoid a deck label that ends with a
digit.

Format Rules for Lines

A variety of source line formats can be wused ranging from the standard
80-character fixed format to the standard 1line formats used with the time
sharing system. Specification of a format is via two options: FORM/NFORM and
LNO/NLNO. These options can appear on the $ FORTY or $ FORTRAN control cards,
or in the option list of the YFORTRAN or FORTRAN RUN command.

Batch mode source files conforming to the FORTRAN in standard 1line format
defined by ANSI3.9-1966 should be processed using the default option FORM; time
sharing source files should normally use the default option NFORM, and LNO.

Line formats have the following characteristics:

1. Initial lines can begin with a statement label.

2. The statement label can begin anywhere on the line but must be in the
range 1 £ n < 99999,

3. There can be a maximum of 19 continuation lines. The statement text

continues with the first character R following the continuation
character.

2-6 DG75

7/79

4.

A statement can be terminated by a semicolon on either an initial line

or a continuation line. The information following the semicolon is

processed as an initial 1line. The new statement can begin with a

statement label and can be continued.

The FORM/NFORM options are used to control the following functions:

a. Elimination of line numbers and sequence identification fields
from the lines.

b. Separation of comment lines from statement lines.

c. Distinction between initial statement 1lines and continuation
lines.

d. Determination of the position numbers of the first and last
characters of the statement text. :

Because the FORM formatted files cannot contain line numbers, the LNO
option cannot be specified; therefore, the NLNO option is the default.

The FORM option has the following characteristics:

a. Only the first 80 characters on a 1line are processed - any
‘ additional characters are ignored.

b. Comment lines must have a C or an * in the first character

position
Examgle.
1 7
C COMMENT LINE FORMAT #1
* COMMENT LINE FORMAT #2

c. Continuation lines must begin with a nonblank, nonzero character
in the sixth character position. When an ampersand appears as
the first nonblank character anywhere from column 6 on, it will
be interpreted as a continuation line.

Example
1234567

AREA = (X(2)-X(1))/3*Y(l) + SUM
&+4,*Y(2*I)
& -SUM(T) **2

d. Character positions 73-80 of a card image are used for sequence
identification and are not considered part of the statement.

Example
1 7 73 80
SUBROUTINE SOLVE SOLVE(QO1l
COMMON A, B, X1R SOLVE002
DISC = (B**2)-(4.*A)*X1R SOLVE003
2-7 DG75A

Lines in NFORM format with no line numbers (NLNO option) have the
following characteristics:

Comment lines must have a C or 'an * in the first character

a.
position.
b. Continuation lines must be designated with an ampersand as the
first nonblank character of the line.
Example
1234567
B = SQRTF (DISC)
&X1R = ~B/(2.*A)
&X2R = SQRTF (~-DISC)/(2.*A)
c. Character positions 73-80 of a card image can only be wused for

sequence identification.

Lines in NFORM format with 1line numbers (LNO option) have the
following characteristics:

Ae.

b.

The line number field can begin in character position 1, or can
contain leading blanks but must not extend beyond character
position 8. The magnitude of this 1line number is treated as
modulo 218 (262,144)"

Line numbers less than eight characters must be followed by a
nonnumeric character.

Example

C.

12345678

1l0# READ (6,10) IN,OUT
0010;READ(6,10)A,B,C
10 READ (6,10) RT,SLM

Comment lines must begin with a C or an asterisk as the first
character following the line number.

Example

d.

12345678

10C COMMENT LINE #1
0020* COMMENT LINE #2
30C COMMENT LINE #3

A continuation line must have an ampersand as the first nonblank
character following the line number.

Example

12345678

10& SUM = SUM + A*2,*(I/K)
0020& SQRTS = SUM ** 2
30& X1R = X22/X3R

2-8 DG75

7/79

10.

e. Character positions 73-80 can be used for statement text and will
be processed.

Example
1 7 : 73 80
10 FORMAT (60HCHARACTER POSITIONS 73 TO 80 WILL BE UTILIZED AS

ALTER statements in batch mode which are used in conjunction with the
$ UPDATE control card, have the following characteristics:

a. All alters apply only to the £first source program if the
compilation activity contains more than one source program,

b. Alter statements must be in ascending numerical order.

c. Source programs must be in media code 1 or 2 (COMDECK or BCD card
image, respectively).

d. The alter file must be media code 2 (BCD card image) .

e. The correction card(s) that follow the $ ALTER card(s) must be in
the same format as the source program (i.e., FORM or NFORM).
However, if NFORM is the format used, the correction cards cannot
contain line numbers.

f. When using the NFORM option, the source program sequence number
(not the 1line number) must be wused when specifying the LNO
option.

Example
To change line number 25 for
10C SAMPLE
20 J =1

25 PRINT, I
30 STOP; END

the $ ALTER card would be coded

$ ALTER 3,3
25 PRINT, J

2-9 DG7SA

0T~2

PROBL B

Honeywell FORTRAN CODING FORM

CODER DATE PraAGE

KK - comments

Tariment FORTRAN STATEMENT IDENTIFICATION

Numsta

1 I lm[”J”J”l"["["l"l"]"l’%"]"I”l"]“" liv]r.P'L”lltI)rPquIxs]uI:)I)il;'Iw[u]ulnl T"[“r];‘F'H"I”I"l:]}q"}’]"l"I”I"l"["l“l"l"l"l"l"l"’["f" 7)[7‘17:‘[70["{"["”'
eiSIMA TSy (1,5, (AN (EXANPILEL (B F) A SITIMMPLE (FRRTIRAN PIRGIGRAN | 44 1 I L (L DENT LN
Clisa THhE PEXT (CARD LS AM LB SITTIALEMEMT 1 4 vy v i1 e s it a1y [LGATLoON

2)lol!

.

a2 WEAD (T L8 ENDERLO0 A B 0 L L L b L L b a1k 1 [FIOR (S0UR
Cl, L ITHa MENT (CaRDy 1 LS 1A ARILTHMETLO STIANEMAEMT 1 4 4 41 41t 13 oty ety 168 CARDS
- LEMP=B*B - AN, 1y v 1 0L s bttt a ittt aa sttt [WLGMORED
Clo 7'./'/;5. WWEXT, CiAeioy (LS A COMTREL STATEMEMT v 3 10 4 Lttt s sty di g WM COMPULL
bt (75/'7'0'1171-101)@1”117@1f’-x11lexLlLlLl||||Ax|1111111t|1|||11|1|1111111) Lm T N10M)
L X.11 (845007 GhaEMANAGR .- AL) X2 s (1-18- 1SLQn'€ATx(1714/‘ZLPJ)J/L(H1-l*mn)l)l Lav bt by b vy

* L ITAE MEXT, AR 1S AM /G SITTATEMEMT 3 10 1 v b L bt

[L4t
1a1 B I T E (6 4) A G X X o Lt Lt i bbb bbby
Al i 1x71ﬂ1|11L1LLL|tnl;leLlillLLlLLlil|ILJLLLLllleltlLl111111111l1111 | W S |
=2 e:/rLflﬁélulJé)n/qllﬂ.Lcn111LllxnllLlllllljx P S W U U W B O | 1.4 13 J I I U U W S | 11 N U ST
i 7.//.511/'@4.1.;2,4_41,/1/.61|7.H._£_;£|E| .Cﬁ,’ﬁo.s, 1S1 MBI M |7|H|£, .I.N.P|U|7|[;@Ul71PwL711/191/?1/‘71&7111111111111 L1d 1 gy
I mnl2 M aA1 7S, 1AL e/ W 111 L NS EENEEE NS RSN
146 F,Qﬁ,ﬂ.ﬂ,ﬂ(,1|/7‘“,3,F|1é,.é{,,, £,0,5|T|S| 1AL R E) ,I|/7|9|6!11/VL/)1A€.Y1 RN TN N TS N NN N
aad 8| FORMAT(2F AL ol oy b t s b b bbb bt et s ety
T | Gg||7'ol.11|lllllllllllllllll‘lLJL[;JlllLlllLlLllllllllllllLllllLJAllll IS
WOl S TBA s e e b b st bbbt b b ey
141 MO 4 s st L bbb e bbbt by b b b bbbt bt bbby b by Lol b 4l
TN g4 o4t by bbb d oy bbb b by Loy o g p bbb r b bt by bt b oy bbb o boptop gy
Y NS WS W0 WY NS 100 WA U0 W VNN TN VY VRIS WOUN W N WO N N S N W VOO WY 0 TG T N 50 0 U O A5 W U U U U NS O A U O T U N T T W U O O O B O O O I T |
121 lIllllllllLlllxllLllllllllLllllLlillLLllllllllLJlllll]LLl‘llllllll | I A |
| ot d v ity e oy v bbb e bbb p e bt e ey kbbb b b ot 1o b bbbty [E N A
11 e TS N I N T N S N TN NS |

i

[WS WS S B N A |

bbbt e b R

bR

SLHDa

Figure 2-1. FORTRAN Coding Sheet and Program

Symbolic Names

A symbolic name is composed of one to eight alphanumeric characters, the
first of which must be alphabetic. The data type of the variables that are
associated with a symbolic name are defined either implicitly or explicitly.
The implicit associations are determined by the first character of the symbol,
(i.e., if the name begins with the letters I1,J,K,L,M, N, the symbolic name is
integer; if it does not, +the symbolic name is real. This default implicit
associative rule can be changed by the use of the IMPLICIT statement which
allows implicit association for all data types - integer, real,
double precision, complex, logical, or character. An explicit declaration of
type for a symbol always overrides its implicit type.

NOTE: No case distinction is made in forming symbols. The symbol ABC is
identical in meaning to the symbols abc and Abc.

DATA TYPES

Data type is explicitly associated with a symbol when it appears in one of
the type statements: INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, or
CHARACTER, or when it appears in a FUNCTION statement with a type prefix (e.g.,
REAL FUNCTION MPYM(A,B)).

A symbolic name representing a function, variable, or array has only one
data type association for each program unit. Once it is associated with a
particular data type, a speaific name implies that data type for any usage of
the specified symbolic name when it requires a data type association throughout
the program unit in which it is defined.

The mathematical and representational properties for each of the data types
are defined below. The value zero is not considered positive or negative.

1. An integer datum is always an exact representation of an integer
value. It can assume positive, negative, or zero integral values.
Each integer datum requires one 36-~bit word of storage in fixed point
format. The permissible range of values for integer type is =-(2) to

(2)-1.
Example
29 5 - 999999999
- 25 +444 9999999999
NOTE: The largest possible integer (i.e., octai constant

+377777777777) 1is considered a noise word and is printed as an
output field filled with blanks.

2. A real datum is a processor approximation to the wvalue of a real
number. It can assume positive, negative, 2zero and sometimes
fractional values. A real datum requires one 36-bit word of storage
in floating-point format. The permissible range of values for real
type data is approximately 10 to 10 with a precision of eight

digits.
Examgles
29.0 + .00007 7.23456
- 0004.3 .1 , -999999999,

7/79 2-11 DG75A

3. A double precision datum is a processor approximation to the value of
a real number. It can assume positive, negative, or zero values. A
double precision datum requires two consecutive 36-bit words of
storage in double precision floating-point format. The permissible

range of values for double- precision type is approximately 10 to
10 With a precision of 18 digits.
Examples
73.12345 9,.2D-2 +.1D4
- 187.93 -999999999.0D7 7D+6

4, A complex datum is a processor approximation to the value of a complex
number. The representation of the approximation is in the form of an
ordered pair of real data. The first datum of the pair represents the
real part, and the second datum represents the imaginary part. Each
part has, accordingly, the same degree of approximation as a real
datum. A complex datum requires two consecutive words of storage,
each in floating-point format. Each part of a complex datum has the
same range of values and precision as a real datum.

Examples
(1., 5.) (.15E+06, 0.6)
(- 7.3, 17.4) (0., -.5)

5. A logical datum is a representation of a logical wvalue of true or
false. The source representation of the logical value true can be
either ,TRUE. or .T.; in DATA statements, the single character T can
also be wused. The value false can be represented as .FALSE. or .F.,
with F being acceptable in the DATA statement(s). A logical datum
requires one 36-bit word of storage with the value zero representing
false, and nonzero representing true.

NOTE: When the logical values of true or false are specified in a
FORTRAN statement as input data, the single letters T and F
(without the periods) must be vused for true and false,

respectively.
Examples
.TRUE. .T.
.FALSE. .F.

6. A character datum is a processor representation of a string of ASCII
or BCD characters. This string can consist of any characters capable
of being represented in the processor. The space character is a valid
and significant character in a character datum. Character strings are
delimited by quotes, apostrophes, or by preceding the string with nH.
The character set (BCD or ASCII) is declared by an option on the
$ FORTY or $ FORTRAN control card.

Examgles
ABC DOG 12345
- XYZ SCATS ' $INT#H

The term "reference" indicates an identification of a datum, implying that
the current value of the datum will be made available during the execution of
the statement which contains the reference. If the datum is identified but is
not made available, the datum is said to be "named". One case of special
interest in which the datum is named is assigning a value +to a datum, which
defines or redefines the datum.

7/79 2-12 DG75A

CONSTANTS

A constant
three general types of constants are single word, double word,
The single and double word constants are divided as follows:

l.

Single Word Constants
a. Integer

b. Octal

C. Real

d. Logical

Double Word Constants
a. Double Precision

b. Complex

2=-13

is a value that does not change during program execution. The

and character.

DG75

Integer Constant

An integer constant is a numeric designation in fixed point binary

Syntax

+ integer

Syntax Rules

Integer can consist of one to eleven decimal digits.

General Rules

1.
2.
3.

Examgles

7/79

The accuracy of an integer constant is ten digits.
Integer can be as large as (235)-1 (i.e., = 3.4 x 1010).

If integer is a subscript, an index, or a DO parameter, the
value is (2!18)-1 (i.e., = 260,000). ~

-7
843517

2-14

format.

maximum

DG75A

Octal Constants

An octal constant is the designation of a value in octal format,

Syntax

O * constant

Syntax Rules

1. Constant is a string of one to twelve octal digits (i.e., 0 to 7).

2. Cdnstant must be preceded by the alpha character O, and an optional
sign.

3. Constant can be used in preset data 1lists only (e.g., the DATA
statement) .

General Rule

The optional sign affects only bit 0 of the resulting literal (i.e.,
complementation does not take place).

Examples

DATA A/0-1/ (results in 400000000001)
DATA J/0 3777777717777/
DATA S/0 34567/ (results in 000000034567)

2-15 DG75

Real .Constant

A real constant is a numeric representation in floating-point binary

format.

Syntax

+integer-1 [.[integer-2]] [E [#] ,int‘eéer-?:ﬂ]

Syntax Rules

1. Integer-l.integer-2 can have a maximum of nine significant decimal
digits ‘written with a decimal point.

2. Integer-3 can.be a one- or two-digit integer :constant.

3. If the 'E .integer-3 option is specified, integer-3 cannot .be blank, but
the value .can be ‘explicitly zero.

4. When ‘the decimal point .is-omitted, it is assumed to be immediately to
the right of ‘the rightmost digit of :integer-1.

5. Either ‘the decimal point .or :the :E must be :specified.

General Rules

1. A real constant is contained 'in one .computer word ‘(i.e., single
_precision) .

2, A real constant has precision to eight digits.

3. Thetma%nitude“of the real .constant must be approximately between 10-38
and 10 8,‘or it must be .zero.

4. ‘In :some cases, nine significant decimal .digits will generate a double
precision constant becauge +the mantissa -0f the real constant is
greater‘than~or;equal'to.228, or 268435456.

Examples

75..

21.083

-3.28

7.0E2 (means 7.0 x 102 or 700.)
7E-3 (means 7.0 x 10-3 or .007)

1/79

2-16 -DG75A

Double Precision Constant

A double precision constant is a numeric designation in floating-point

format.

Syntax

* integer-1 [.[integer-2]) [pD C*3] integer-3]

Syntax Rules

1. Integer-1l.integer-2 can have a minimum of ten and maximum of eighteen
significant decimal digits written with a decimal point.

2. Integer-1l can be up to eighteen significant digits written with or
without a decimal point when it is followed by a decimal exponent.

3. Integer-3 can be a one- or two-digit integer constant.

4, When the decimal point is omitted, it is assumed to be immediately to
the right of the rightmost digit of integer-1.

S. Integer-3 cannot be blank, but the value can be explicitly zero.

6. Either the decimal point or the D must be specified.

General Rules

1. Double precision constants have precision to eighteen digits.

2. .The magnitude of a double precision constant must 1lie between 10-38
and 10 38, or it must be zero.

3. In some cases, nine significant decimal digits will generate a double
precision constant because the mantissa of the real constant is
greater than or equal to 228, or 268435456.

Examples
12.34567891
-13.57D0
.1234D0

7/79

7.0D4 (means 7.0 x 104 or 70000.)
7D-3 (means 7.0 x 10-3 or .007)

2-17 DG75A

Comglex Constant

composed of an ordered pair of signed or unsigned

A complex constant is
and

real constants; the first pair represents the real portion of the constant,
the second pair represents the imaginary portion of a complex constant.

Syntax

(*real-l, *real-2)

Syntax Rules

1. Real-l represents the real part of the complex number; real-2
represents the imaginary part.

The parentheses are required, regardless of the context in which the
complex,constant appears.

3. Real-l1l and real-2 must be separated by a comma.

Examples
(lo.1 , 7.03) means 10.1 + 7.03i
(5.41, 0.0) means 5.41 + 0.0i
(7.0E4, 20.76) means 70000 + 20.76i

where: i is the square root of ~1.

DG75

Logical Constant

A logical constant is the designation of a value as true or false.

Syntax
.TRUE, .T.
or
.FALSE. .F.

Syntax Rules

1. A logical constant can be represented in a source program in either of
the forms noted above.

2. A logical constant can be represented without periods when performing
input operations (i.e., when used as input data).

General Rule

The logical constants are represented in the machine as

TRUE # zero

FALSE = zerxo
Examples

L= ,T.

A =1L .OR. .TRUE.

2-19 DG75

Character Constant

A character constant is either an ASCII or BCD representation of a
character string (refer to Appendix A for a description of each character set).

Syntax
nHliteral-1l
"literal=-2"
'literal-=3"

Syntax Rule

Literal - can be a maximum length of 500 characters for ASCII mode and 511
characters for BCD mode.

General Rules

1. The type (ASCII or BCD) for literal is determined by an option on the
$ FORTY or $ FORTRAN control card, or the YFORTRAN or FORTRAN RUN
command.,

2. Literals can be used
® as arguments to external programs
° as literals in the DATA statement
® as part of a FORMAT statement
) as the display object of the STOP and PAUSE statements
® in a character assignment statement
) in a relational expression

3. If two delimiters are placed directly together, it is considered to be
a single occurrence of the delimiter (i.e., "abc""ef" is interpreted

internally as abc"ef). However, an alternate delimiter type can be
used (e.g., 'abc"ef').

Examples

'CHAR'

' CONSTANT'

CHARACTER*5 A/"1.0,6"/
CALL SUB('CHAR',J)

X = "Y+2"

2-20 DG75

VARIABLES

A variable is any quantity referred to by a symbolic name with a value that
can be changed during the execution of a program. The type of a variable is
specified implicitly by its name, or explicitly by the use of a type statement.

1. Default implicit type association enables the declaration of real and
integer variables and function names according to the following rules:

a. If the first character of the name is I1,J,K,L,M, or N, (uppercase
or lowercase) it is an integer variable.

ExamEle

INTG
LIST
NAME

b. If the first character is any other alphabetic character, it is a
real variable.

Example

REALA
ARND
ZXY

2, The IMPLICIT type statement redefines the default implied typing.

Examples
IMPLICIT INTEGER (A-H)

All program variables beginning with the letters A through the letter
H, as well as the default letters I through N, will be type integer.

IMPLICIT REAL (I-N)

All program variables beginning with the letters I through N, as well
as the default letters A through H and O through %, will be type real.

IMPLICIT INTEGER (X,2), REAL (J)

All program variables beginning with the letters X and Z, as well as
the default letters I and K through N, will be type integer; variables
beginning with J, as well as the default letters A through H and O
through 2, will be type real.

3. The explicit type statement assigns a type to a variable or function
subprogram. ‘

Examples

REAL IA,IB,IC
INTEGER X,Y,2
COMPLEX COMP,DDN -

4. Function subprogram names can be typed in the FUNCTION statement by
use of the type prefix.

Examgles

INTEGER FUNCTION RAND (NUMBER)
REAL FUNCTION ICUM(FACT)

2-21 DG75

Defined Variable

A variable is considered to be defined when it is assigned a value. It can
be assigned a value through a non-executable statement (e.g., a DATA statement)
or an executable statement (e.g., a READ statement). A variable which is a
member of any COMMON block is considered defined, as well as any variable that
appears in the argument list of a subroutine CALL statement.

Examples
DATA A/10.1/, B/25.4/, C/5.0/

READ A,B,C
CALL SuB{(A,B,C)

Referenced Variable

A variable in a source program is considered to be referenced if it is
required to have a value.

Examples
PRINT 3, A, B

CALL SUB(A,B)
SUM = A+B :

Scalar Variable

The six types of scalar variables are character, integer, real, 1logical,
double precision, and complex. A scalar variable can take on any value its
corresponding constant may assume, and occupies the same number of storage
locations as a constant of the same type.

Examples
SCA = 99999999.9
PER = 100.0

COMP = (1.0, 3.4)

External Variable

An external variable is the name of a subprogram that appears as an actual
argument in the calling sequence to some subprogram. It must appear in an
EXTERNAL statement before its first use in the source program.

Examples
EXTERNAL RAND

CALL SUB (RAND)

.
-

where RAND is a subprogram name

7/79 2-22 DG75A

Switch Variable

A switch variable is an independent entity derived from a scalar variable
and is associated only with an ASSIGN statement. A switch variable has no
numeric value and must be type INTEGER; but it can have the same symbolic name
as an integer variable.

Examples

ASSIGN 6 TO J
ASSIGN 999 TO R

Character Variable

Character variables can have an implicit type via the IMPLICIT statement or
an explicit type wusing the CHARACTER statement. Character variables are
left-justified and blank~-filled. The maximum length specification is 500
characters per variable in the ASCII mode and 511 characters in the BCD mode.

Examples

CHARACTER*10 ALPHA,NUM*2(2)/'AB','CD','EF'/
CHARACTER DOG
IMPLICIT CHAR*2(A,B,C)

Array Variable

An array is an ordered set of data with one to seven dimensions, which is
referenced by a symbolic name. Identification of the entire ordered set is
achieved by the use of the array name.

Examples

ARR (1,2,1)
LisT (I1,J,K,L,M,N)
DAT (I, 3)

ARRAY ELEMENT

An array element is one item of data in an array. It is identified by
immediately following the array name with a subscript whose value points to the
particular element of the array. In some instances the array name can be used
in unsubscripted notation to reference the first element of the array.

7/79 2-23 DG75A

SUBSCRIPTS

A variable can be made to represent any element of an array which contains
one to seven dimensions by appending one to seven subscripts to the variable
name. Subscript expressions are separated by .commas, and the number of
subscript expressions must correspond with the declared dimensionality (with the
exception of the EQUIVALENCE statement). Following evaluation of all of the
subscript expressions, the array element successor function determines the
identified element. ‘

A subscript expression can take the form of any legal FORTRAN arithmetic
expression. The result of any such expression is truncated (not rounded) to an
integer before it is used. The value of a subscript expression must be greater
than zero and not greater than the corresponding array dimension. The value of
a subscript expression containing real variables is truncated to an integer
after evaluation., No check is made to verify that the subscript value is within
the bounds specified in the DIMENSION statement. The execution of a program
containing an error of this nature can cause various abnormal terminations or
may give faulty results with a "normal" termination.

ARRAY ELEMENT SUCCESSOR FUNCTION

The general algorithm to linearize a subscript involving n terms (for an
array of n dimensions) is:

n i-1
S = Z ((e*i"'l) . ™ dj) + 1

where each e; is a subscript term and each dj an array dimension.

The term dg 1is the "zero-th dimension" of the array. It reflects the
number of words of memory required for one element., For example: integer,
logical, and real quantities require one word per element (dy = 1); double
precision and complex quantities require a word pair (dg = 2); and character
variables that use the size in bytes notation to provide the number of
characters per element can have a dg value of up to 86 in BCD (because this mode
has a maximum of 511 characters) and up to 126 in ASCII (because this mode has a
maximum of 500 characters). The formula for reducing the size in characters to
the size in words is a function of the BCD/ASCII option. Let n be the number of
characters specified, and m be the number of characters per word (6 for BCD, 4
for ASCII). Then dg is computed as:

dg = (n+tm-1)/m

The following are examples using integer variables and using complex
variables:

INTEGER X(3,2,4) (Array X has 3 rows, 2 columns, and 4 planes)
X (2,2,2) =1

2-24 ' DG75

Expanding the algorithm for the three dimensions:

(ej-1)*dg + (e;-1)*dg*d; + (e3-1)*dg*d; *dy +1

1]

(2=-1)*1 + (2=-1)*1*3 + (2-1)*1%*3*2 + 1
1 +3+6+1"

n n n un
1]

11

Looking at the array in storage in sequential order, the elements are:

x(1,1,1), x(2,1,1), x(3,1,1), x(1,2,1), X(2,2,1),
x(3,2,1), x(1,1,2), x(2,1,2), x(3,1,2),
X(1,2,2), X(2,2,2), ..., X(3,2,9)
X(2,2,2) is the eleventh glement of the array, the fifth member of plane two.

COMPLEX X (3,2,4)
x(2,2,2) = (1.0, 0.0)

s

(2-1)*2 + (2-1)*2*3 + (2-1)*2*3*2 + 1

S 21

In this example, the first word of the word pair for this element is the
twenty-first word of the array.

ARRAY DECLARATOR

An array declarator specifies an array used in a program unit. The array
declarator indicates the symbolic name, the number of dimensions (one to seven)
and the size of each dimension. The array declarator form can be in a type
statement, dimension statement, or common statement. An array declarator has
the form:

v(i) or v*n(i)

where: v is the symbolic array name
n is the size-in-bytes of an element
E is the declarator subscript composed of one to seven

elements separated by commas; each element can be an integer
constant, a parameter symbol, or an integer variable

The appearance of a declarator subscript in a declarator statement informs
the processor that the declarator name 1is an array name. The number of
subscripts indicates the dimensions of the array. The magnitude of the value
for the subscript expressions indicates the maximum value that the subscript
name can attain in any array element reference.

7/79 2-25 DG75A

ADJUSTABLE DIMENSIONS

The name of an array and the constants that are its dimensions can be
passed as arguments to a subprogram. In this way a subprogram can perform
calculations on arrays with sizes that are not determined until the subprogram
is called. The following rules apply to the use of adjustable dimensions:

1. Variables can only be used as dimensions of an array in the array
declarator of a FUNCTION or SUBROUTINE subprogram, and must be
integer. The array name and all the variables used as dimensions must
appear as dummy arguments in at least one FUNCTION, SUBROUTINE, or
ENTRY statement.

2. The adjustable dimensions cannot be altered within the subprogram.

3. The true dimensions of an actual array must be specified in a
DIMENSION, COMMON, or type statement of the calling program.

4. Variable dimension size can be passed through more than one level of
the subprogram. The specific dimensions are passed from the calling
program to the subprogram as actual arguments cannot exceed the true
dimensions of the array.

5. If the variables are not implicitly typed as integer by their init;al
letters, an INTEGER type statement must precede the dimension
statement in which they are used.

6. When an adjustable array name or any of its adjustable dimensions
appears in a dummy argument list of a FUNCTION, SUBROUTINE, or ENTRY
statement, that array name and all its adjustable dimensions must alsc
appear in the same dummy argument list.

Example
DIMENSION K(4,5),J3(2,3) SUBROUTINE SETFLG(X,J,I,L,M,N)
. DIMENSION K(I,L),J(M,N)
CALL SETFLG (K,J,4,5,2,3)) .
. DO 20 NO = 1,1
. DO 20 MO = 1,L
K(NO,MO) = 0
20 CONTINUE
Parameter

A parameter is a constant that is represented as a symbolic name within a
source - program. The value of this constant is initialized at the beginning of
the program. Parameters are used to define any constant whose value might
change between compilations (e.g., the pay period ending date for a payroll
system) .

7/79 2-26 DG75A

EXPRESSION

S

Arithmetic

An ar
combinatio
and parent

Examples

A*B

((A+B
-(A+B
(A*B)

The £

ad
su
mu
di

4*}

The r

N\ % 1 +

1.

ithmetic expression is a constant, a variable, a function, or any
n of these items separated by arithmetic operation symbols, commas,
heses, to form a meaningful mathematical notation.

)/C)**2,5
)
/ (C=D)

ollowing is a list of arithmetic operation symbols:

dition or unary addition
btraction or negation
ltiplication

vision

exponentiation
ules for constructing arithmetic expressions are as follows.

Constants, variables, and functions that c¢an be combined by the
arithmetic operators to form arithmetic expressions are illustrated in
Tables 2-3 and 2-4. The intersection of a row and column gives the
type of the result of expressions involving the given operators.
Table 2-3 gives the valid combinations with respect to the arithmetic
operators +,-,*, and /. Table 2-4 gives the valid combinations with
respect to the arithmetic operators **,‘ y OY A,

Table 2-3. Results for x;+x;, X=Xz, X1*X; , Or X;/X,

X2

L]
H

Legend

- Complex

- Double precision
- Integer

Nonvalid

- Real

- Typeless

2 0 U = »®|x
HZHOO
)

H 0 o' =W
4 Q0 U w
2 0O U U U |o
2 o o o ajo
H 2 2 2 3|3

2-27 DG75

Table 2-4. Results for x;**x, .

POWER
X2
Xy I R D o T
I I R D N N
B R R R D N N
a
S D D D D N N
E
c c c o c N
T N N N N N

Any expression can be enclosed in parentheses.

Expressions can be connected by the arithmetic operation symbols to
form other expressions, provided that:

a. No two operators appear in sequence except **, which is a single
operator and denotes exponentiation. For example, X+-Y, or X//Y
is not valid.

b. No operation symbol is assumed to be present. For example,
(X) (Y) is not valid.

Preceding an expression by a plus or minus sign does not affect the
type of the expression.

In the hierarchy of operations for arithmetic expressions, parentheses
can be wused to specify the order in which operations are to be
computed. Where parentheses are omitted, the order is understood to
be as follows:

a. Function Reference
b. **, 4, ora Exponentiation

c. + and - " Unary Addition and Subtraction
d. * and / Multiplication and Division
e. + and - Addition and Subtraction

This hierarchy is applied first to the expression within the innermost
set of parentheses in the statement; this procedure continues through
the outer parentheses until the entire expression has been evaluated.
For example, in the expression (X=-(Y*(2+2))), (2+2Z2) is evaluated; then
Y* the result of (2+Z) is evaluated; then X- the result of Y*(2+Z) is
evaluated.

Expressions involving the exponentiation operators are evaluated from

right to left. For example, the expression A**B**C is evaluated as
Akx* (B**C) .

Expressions involving arithmetic operators on the same level (e.g., +
and -, or * and /) are evaluated left to right. Parentheses can be
used to reorder this sequence if necessary. For example, A/B*C 1is
evaluated as (A/B) *C.

2-28 DG75

The FORTRAN expression
A*6+Z/Y** (W+ (A+B) /X**K)

represents the mathematical expression

2
6A+
(W + (A+B))
v (&)
Relational

A relational expression consists of two arithmetic expressions connected by
a relational operator. Relational expressions always result in a true or false
evaluation and can be wused in a logical assignment statement, a logical IF
statement, a PARAMETER statement, an output 1list, or as arguments to
functions/subroutines.

The six relational operator symbols are:

Symbol Definition
.GT. or > Greater than
.GE, " Greater than or equal to

LT, or < Less than

.LE. Less than or equal to
.EQ. Equal to
.NE, Not equal to

NOTE: The preceding and following periods are an integral part of the
relational operator symbols.

Example

A.GT.B has the value .TRUE. if the quantity A is greater than the quantlty
B; otherwise, the value is .FALSE.

Logical

A logical expression is a sequence of constants, logical variables,
function references, and relational expressions separated by logical operation
symbols, that always results in a true or false evaluation.

7/79 2-29 DG75A

The logical operation symbols (where a and b are logical expressions) are
described below:

Symbol

Definition

.NOT.a

a.AND.b

a.OR.b

This has the value .TRUE. only if a is .FALSE.; it has the value
.FALSE, only if a is .TRUE.

This has the value .TRUE. only if a and b are both .TRUE.:; it
has the value .FALSE. if a or b or both are .FALSE.

(INCLUSIVE OR) This has the value .TRUE. if either a or b or both
are L.TRUE.; it has the value .FALSE. only if both a and b are
.FALSE.

The logical operators NOT, AND, and OR must always be preceded and followed

by a period.

Table 2-5. Truth Table Values

a b a .AND. b a .OR. b
.T. .T. .T. .T.
.T. .F. .F. .T.
.F. .Te .F. .T.
.F. .F. .F. .F.

Logical expression evaluation stops the evaluation 'as soon as the
true/false state for the complete expression has been determined. Thus, it is a
distinct possibility that the entire expression may not be evaluated.

Example

IF (RAND (X) .GT. 0 .OR. L) GO TO 100

Assuming that RAND is an external function and L is a logical variable, the
expression is true when either RAND(X) is greater than zero or L is true. Since
there is no need to evaluate RAND(X) .GT. 0 when L is true, the statement will
be optimized into an equivalent pair of statements: .

IF (L) GO TO 100

IF (RAND(X) .GT. 0) GO TO 100

7/79

2-30 ‘ DG75A

The significance of this is the fact that function RAND is called only when
L is false. If evaluation of RAND(X) can have side effects, this may be of
consequence, For those applications impacted by this implementation, the
solution would be to make the evaluation of RAND(X) unconditional.

Example

T = RAND(X)

IF(T.GT. 0 .OR. L) GO TO 100

Logical and Relational Constructions

The following rules are used for constructing logical and relational
expressions.

1. The constants, variables, functions, and arithmetic expressions that
can be combined by the relational operators to form a relational
expression are illustrated in Table 2-6. Y indicates a wvalid
combination and N indicates an invalid combination. The relational
expression has the value .TRUE. if the condition expressed by the
relational operator is met; otherwise, the relational expression has
the value .FALSE.

Table 2~6. Use of Relational Operators (.GT., .GE., etc.)

*2
I R D C L H T Legend
*1

I Y Y ¥ * N Y Y I = Integer
R = Real

R Y ¥ Y * N N N D = Double Precision
C = Complex

D Y ¥ ¥ * N N N L = Logical

: H = Character

C * % % * N N N T = Typeless

L N N N N N N N

H Y N N N N Y N * = ,EQ.,.NE. only
Y = Valid

T Y N N N N N Y N = Invalid

2. The numeric relationships that determine the true or false evaluation

7/79

of relational expressions are

) For numeric values having unlike signs, the positive value is
considered larger than a negative value, regardless of the
respective magnitude (e.g., +3>-5 and +5>=5).

® For numeric values having like signs, the magnitude of the values
determines the relationship (e.g., +3>+2 and -8<-4).

2-31 DG75A

3. A logical term is a relational expression, a single logical constant,
a logical variable, or a reference to a logical function. A logical
expression is a series of logical terms or logical expressions
connected by the logical operators .AND., .OR., and .NOT.

4, The logical operator .NOT. must be followed by a logical or relational
expression, and the logical operators .AND. and .OR. must be preceded
and followed by logical or relational expressions.

5. Any logical expression can be enclosed in parentheses.

Typeless Functions

Typeless entities can be combined with an integer or other typeless
entities., If a typeless entity is combined by using an arithmetic operator, the
result is also typeless and 1is regarded as a special type of integer. If a
typeless entity is combined by using a relational operator, the result is
logical; however, a typeless entity cannot be combined using a logical operator.

Whenever the right side of an equal sign yields a typeless result, the
assignment operation is integer. For example, if R is real, the statement

R = BOOL (R) +1

adds one to the least significant bit of the real value of R, using integer-add,
and stores a new value in R, using integer-store. This usage is not recommended
but is illustrated here to explain the properties of typeless entities.

The typeless functions are listed below:

FLD
AND
OR
XOR
BOOL
COMPL

Evaluation of Expressions

An expression should only be evaluated when it is necessary to determine
the value of the expression. When two operands are combined by using an
operator, the order of evaluation of the operands is undefined as the result of
possible reordering during optimization. If the mathematical use of operators
is associative, commutative, or both, the orders of combinations can be revised
if the parenthesized expressions are not changed. The value of an integer
element is the nearest integer whose magnitude does not exceed the magnitude of
the mathematical value represented by that element. The associative and
commutative laws do not apply in the evaluation of integer terms containing
division; hence, the evaluation of such terms must effectively proceed from left
to right.

7/79 2-32 DG75A

Any use of an array element name requires the evaluation of its subscript.
The evaluation of a function in an expression cannot alter the value of any
other element within the expression, assignment statement, or call statement in
which a function reference or subscript appears. No factor can be evaluated
that requires a negative valued operand to be raised to a real or double
precision exponent, or raising a zero valued primary to a zero valued exponent,
An element cannot be evaluated if its value is not mathematically defined.

The evaluation of an arithmetic expression is determined by the following
order of type dominance:

l. Complex

2. Double Precision

3. Real

4. Typeless

5. Integer

When two operands are combined by using any of the arithmetic operators
other than the exponentiation operator, their respective types are examined
according to the stated order of type dominance. The type of the recessive

operand is converted to that of the dominant operand (if necessary) and the
operation is performed.

Operator Precedence

In the hierarchy of operations, parentheses can be used in logical,
relational, and arithmetic expressions to specify the order in which operations
are to be computed. Where parentheses are omitted, the order is understood to
be as follows:

1. Function Reference

2. **,‘, or A Exponentiation

3. + and - Unary Addition and Negation
4, * and / Multiplication and Division
5. + and - Addition and Subtraction

6. .L7., .LE., .EQ., .NE., .GT., .GE.

7. .NOT.
8. «AND.
9‘ .ORC

This hierarchy is applied first to the expression within the innermost set
of parentheses in the statement and continues through the outermost set of
parentheses until the entire expression has been evaluated.

2-33 DG75

Unary Operators

The unary operators (negative, positive, and logical not) can immediately
precede a constant or a variable in an expression. However, if the placement
causes the unary negative or positive operator to be adjacent to another
operator, it must be enclosed in parentheses with the constant or variable.

Examples

A=+1.6
C=D/(=2)*W
IF(-3.+T4)1,2,3
L1=R2.GT. (-2.)
L2=.NOT.L1
A=B** (-2)

2-34 ‘ DG75

SECTION III

FORTRAN STATEMENTS

The basic unit of FORTRAN is the statement which 1is classified 1in
accordance with the following uses:

1.

6.

Arithmetic statements specifying numeric, character, or logical value
assignment.

Control statements governing the order of execution in the object
program,

Input/output statements and input/output formats that describe the
form of the data.

Subprogram statements = enabling the programmer to define and use
subprograms.

Specification statements providing information about variables used in
the program, information about storage allocation and data assigned.

Compiler control statements direct the compilation activity.

Table 3-1 contains the list of FORTRAN statement types.

Each statement is classified as either executable or non-executable. The

executable

statement specifies an activity which is to be accomplished; the

non-executable statement

Describes the characteristics, arrangement, and initial values of data
Contains editing information

Specifies statement functions

Classifies program units

Specifies entry points within subprograms

3-1 DG75

Table 3-1,

Type Listing of FORTRAN Statements

Type

Statement

Arithmetic

Assignment statements
Arithmetic statement functions

Control

ASSIGN
CONTINUE
DO

GO TO

IF
PAUSE
STOP

Input/Output

BACKSPACE
DECODE
ENCODE
ENDFILE
FORMAT
PRINT
PUNCH
READ
REWIND
WRITE

Subprogram

BLOCK DATA
CALL

ENTRY
FUNCTION
RETURN

- SUBROUTINE

Specification

ABNORMAL
COMMON
DATA
DIMENSION
EQUIVALENCE
EXTERNAL
IMPLICIT
NAMELIST
type
INTEGER
REAL
DOUBLE PRECISION
COMPLEX
LOGICAL
CHARACTER
PARAMETER

Compiler Control

END

DG75

General Format

Most FORTRAN statements, with the exception of the

assignment statement,
have the following general format:

1 7

statement-label keyword syntactic-entities

where: statement-label is an unsigned integer constant

keyword is a required FORTRAN word

syntactic-entries are a series of
statement

symbols that complete

The assignment statement has two general formats:

Format 1

1 7

statement-1label variable = expression

where: statement-label is an unsigned integer constant

variable is a scalar name or an array element name

expression is an arithmetic, logical, or relational expression

the

DG75

Format 2

1 7

statement-label-1 ASSIGN statement-label-2 TQO variable

where: statement-label-l is an unsigned integer constant

statement—~label=-2 is an executable statement number

variable is an integer switch variable

The statement label is used to reference specific statements within the
source program. All TORTRAN statements, with the exception of the END
statement, can be labeled. However, only executable and FORMAT statements can
be referenced.

The syntax items can be any combination of the following items:

° Constants

) Variable names

e Statement labels

® Operators

) Punctuation symbols

ASSIGNMENT STATEMENTS

An assignment statement is used to give a value to a designated variable.
There are four types of assignment statements:

° Arithmetic assignment statement

® Logical assignment statement

® Character assignment statement

® Label assignment (ASSIGN) statement

Arithmetic Assignment Statement

An arithmetic assignment statement instructs FORTRAN to compute the value
of an expression on the right of the equal sign and to assign that value to the
variable (or array element) on the left of the equal sign.

3-4 DG75

Format

variable = arithmetic expression

Examples

where: Rl and R2 are real variables
Cl and C2 arevcomplex variables
D is a double precision variable

I is an integer variable

Rl = R2 (R2 replaces the value of E!}

I = R2 (R2 is truncated to an integer and stored in I)

Rl =1 (I is converted to a real variable and stored in R1)

R1 = 3* R2 (3 is converted to a recal number, multiplied by R2, and
stored in R1l)

Rl = R2* D+1 (R2 and D are multiplied using double precision
arithmetic; 1 is converted to double precision and
added to the product. The most significant digits
resulting from the computation are stored in Rl as a
real variable)

Cl = Cc2* (3.7,2.0) (The result of the complex computation is stored in C1
as a complex number)

C2 = R2 (The real part of C2 is replaced by the value of R2;

the imaginary part of C2 is set to zero)

Logical Assignment Statement

A logical assignment statement determines the truth value of a logical
expression and assigns it to a logical variable or a logical array element.

Format

logical~variable = logical-expression

Examples
Ll = .TRUE. : (L1 is set to the specified truth value)
L2 = A.GT.25.0 (L2 is set to .TRUE. if A >25.0; otherwise, L2
is set to .FALSE.)
L3 = I.EQ.0 .OR.A.GT.25.0 (L3 is set to .TRUE. if either I=0, or A > 25.0;

otherwise, L3 is set to .FALSE.)

'3=5 DG75

L4 = LS (L4 is set to the current truth value of L5)

where: L1, L2, L3, L4, and L5 are logical variables

Character Assignment Statement

A character assignment statement stores the characters from a character
constant, a variable, a function, or an array element into a declared character
variable name.

Format

character-variable = character—-expression

General Rules

1. The value of character-expression is stored in character-variable as
left-justified with trailing blanks if they are required.

2. If the declared length of character-variable is less than the declared
length of character-expression, character-expression is truncated and
the leftmost characters are stored in character-variable.

Examples
Cl = "ABCD" (The characters ABCD are stored in Cl)
c2 =Cl (The characters stored in Cl are assigned to C2)
C3 = 'AlB2C3D4' (The characters AlB2 are stored in C3)

where: Cl, C2 and C3 are character variables with a declared 1length of
four characters

Label Assignnent Statement

A label assignment statement assigns a statement number to a nonsubscripted
switch variable.

Format

ASSIGN statement-no TO switch-variable

3-6 DG75

General Rule

Statement-no must reference an executable statement number in the same
program unit in which the ASSIGN statement appears.

Exanple

ASSIGN 24 to M

GO TO M, (1,22,41,24,36)
The next statement to be executed will be statement number 24.

Table 3-2 presents an abbreviated summary of the legitimate combinations of
expressions and variables in the assignment statements. When the arithmetic
assignment, logical assignment, and character assignment statements are
executed, the evaluation of +the expression 'e' and the alteration of 'v' is
performed in accordance with the rules given in Table 3-3.

Table 3-2. Legal Combinations of Assignment Statements

Expression
Variable Legend
I R D C L H T
I I I I I N I I I = Integer
R = Real
R R R R R N R R D = Double Precision
C = Complex
D D DD DN N N L = Logical
H = Character
Cc cC ¢ C C N N N T = Typeless
N = Illegal
L N N N N L N L
H N N N N N H N

7/79 3=7 " DG75A

Table 3-3.

Rules for v = e

IF v TYPE IS:

AND e TYPE IS:

THE ASSIGNMENT RULE IS:

Integer
Integer
Integer

Integer

Integer
Integer
Integer
Real
Real
Real

Real
Real
Real
Real
Double Precision

Double Precision
Double Precision
Double Precision

Double Precision
Double Precision
Double Precision
Complex

Complex

Complex

Complex
Complex
Complex
Complex
Character
Character
Character
Character
Character

Character
Character
Logical
Logical
Logical
Logical
Logical
Logical
Logical

Integer
Real
Double Precision

Complex

Character
Typeless

Logical

Integer

Real

Double Precision

Complex
Character
Typeless
Logical
Integer

Real
Double Precision
Complex

Character
Typeless
Logical
Integer

Real

Double Precision

Complex
Character
Typeless

Logical

Integer

Real

Double Precision
Complex
Character

Typeless

Logical

Integer

Real

Double Precision
Complex
Character
Typeless

Logical

Assign

Fix and Assign

Fix and Assign the Most
Significant Part

Fix the Real
Part and Assign

Fix and Assign

Assign

Illegal

Float and Assign

Real Assign

Assign the Most Significant
Part as Real

- Assign the Real Part

Float and Assign

Assign

Illegal

Float and Assign as
Double Precision

Real Assign as Double Precision

Assign

Assign Real Part as
Double Precision

Illegal

Illegal

Illegal

Float and Assign to the
Real Part and Assign Zero
to the Imaginary Part

Assign to the Real Part,
Assign 0 to Imaginary Part

Assign the Most Significant
Part to the Real Part and
Assign 0 to the Imaginary
Part

Assign

Illegal

Illegal

Illegal

Illegal

Illegal

Illegal

Illegal

Assign

Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Assign

Assign

DG75A

Table 3-3 (cont). Rules for v = e

NOTES: 1. Assign means transmit the resulting value, without change, to
the entity.

2. Real assign means transmit to the entity as much precision of
the most significant part of the resulting value as a real
datum can contain. '

3. Fix means truncate any fractional part of the result and
transform that value to the form of an integer datum.

4, Float means transform the value to the form of a real datum.

5. Double precision float means transform the value to the form
of a double precision datum, retaining in the process as much
of the precision of the value as a double precision datum can
contain,

6. Assign with respect to character ¢type implies a move
operation. When the receiving variable's size is greater than
the size of the sending string, the move is performed filling
the receiving variable with blanks. When the receiving
variable's size is less than that of the sending string,
truncation takes place.

FORTRAN KEYWORDS

A description of each FORTRAN keyword, with its associated restrictions, is
contained on the following pages in alphabetical order.

3-9 : DG75

ABNORMAL

ABNORMAL

ABNORMAL

The ABNORMAL statement is used to qualify the characteristics of a FUNCTION
subprogram for optimization purposes.

Format

ABNORMAL [function [,function] ...

v

Syntax Rule

Function is a FUNCTION subprogram name.

General Rules

1.

Examples

The references to the FUNCTION subprogram cannot be treated as a
variable or array element reference in an expression. There may be
side effects which could alter the function's arguments or locations
in common; it performs I/0 or it is capable of returning different
results when the same arguments are given,

Subroutines referenced by CALL statements are always considered
abnormal.

This statement applies. only to programs compiled with the OPTZ option.
Otherwise, the presence or absence of ABNORMAL statements is
immaterial.

If a program unit has FUNCTION references that are not abnormal, an
ABNORMAL statement with no argument 1list may be included. This
technique has the effect of setting all functions to 'normal'.

If the program unit has no FUNCTIONs typed as -ABNORMAL, then all
functions are considered abnormal except the supplied functions irn
Tables 6~1, 6-~2, and 6-3.

ABNORMAL SINE
ABNORMAL SUB
ABNORMAL

3-10 - DG7

ASSIGN ASSIGN

ASSIGN

The ASSIGN statement assigns the value of a statement 1label to a switch
variable. A maximum of 125 assignments of labels can be made to the same switch
variable.

Format

ASSIGN label TO switch-variable

Syntax Rules

1. Label must be the statement label of an executable statement.

2. Switch-variable must be an integer switch variable.

Example

ASSIGN 17 to J
Go T™ J,(5,4,17,2)

The next statement to be executed is statement number 17.

7/79 3-11 DG75A

‘BACKSPACE BACKSPACE

BACKSPACE

The BACKSPACE statement positions a file to the record which was the
preceding record prior to execution of the backspace command.

Format

BACKSPACE file

Syntax Rules

1. File is the two-character file code which specifies the file to be
backspaced.

2. File must be an integer constant, a variable, or an expression.

General Rules

1. If the last READ statement resulted in an end-of-file condition, two
BACKSPACE commands are required to position the file prior to the last
logical record.

2. If the file is positioned at the initial point, the BACKSPACE
statement has no affect.

3. If the device is tape, one BACKSPACE command following a READ that
resulted in an end-of-file condition will cause the input file to be

set as an output file. Under this condition, the sequence READ,
BACKSPACE, READ, will be illegal.

Examples

BACKSPACE 05
BACKSPACE 13

3-12 DG75

BLOCK DATA BLOCK DATA

BLOCK DATA

The BLOCK DATA subprogram is used to enter data into a labeled COMMON block
area during compilation of the source program.

Format

BLOCK DATA

Syntax Rules

1. Data cannot be entered into blank COMMON by the BLOCK DATA subprogram,

2. This subprogram can contain only type, EQUIVALENCE, PARAMETER,
IMPLICIT, DATA, DIMENSION, and COMMON statements.

General Rules

1. The BLOCK DATA subprogram cannot contain any executable statements.

2, The first statement of this subprogram must be the BLOCK DATA
statement. The last statement must be the END statement.

3. All elements of a common block must be listed in the COMMON statement
even though they do not all appear in the DATA statement.

4. Data can be entered into a maximum of 63 common blocks in a single
BLOCK DATA subprogram.

5. BLOCK DATA subprograms must not be compiled with the DEBUG option.

6. BLOCK DATA subprograms cannot reside on the same random library as a
main program referencing its data.

7. If two or more BLOCK DATA subprograms occur for the same application,

the data specified by each of them is entered into the appropriate
common blocks. The data from the last subprogram is retained for any
area of a common block that is referred to more than once.

NOTE: All the variables in a labeled common block must be listed even
though they do not receive a value in the DATA statement.

3-13 DG75

BLOCK DATA BLOCK DATA

Example

BLOCK DATA

DOUBLE PRECISION 2

COMPLEX C

COMMON /ELN/C,A,B/RNC/Z,Y

DIMENSION B(4), Z(3)

DATA (B(I),I=1,4)/1.1,1.2,2*1.3/,C/(2.4,3.769/,2(1)/7.6498085D0/
END

3-14 DG75

CALL

The

CALL

CALL statement is used to access a subprogram. Upon execution of a

CALL statement, control is transferred to the subprogram until the return is
made to the calling program.

Format

CALL

sub [(argl, arg,, ee.y argn)]

Syntax Rules

1. Sub is the name of the subroutine subprogram.

2. Arg is the actual argument(s) or the alternate return(s), $ n,
where: n is the statement label or switch variable.

3. The arguments must agree in number, order, type, and array size with
the corresponding arguments in the SUBROUTINE or ENTRY statement of
the subprogram being called.

General Rules

1. For purposes of optimization, all subroutine calls are treated as
abnormal function references.

2. The arguments can be any of the following forms:

[constant

o subscripted or nonsubscripted variable

° array name

° arithmetic or logical expression

° FUNCTION or SUBROUTINE subprogram name

e statement number or switch variable preceded by a $ for an
alternate return (e.g., $5)

3. An argument can be omitted and indicated by a successive comma in the

argument list. Null argument(s) will appear before the alternate
returns in the object code, no matter where they appear in the
argument list.

3-15 DG75

. CALL

Examples

CALL
CALL
CALL
CALL

CALL

Example
CALL SUBR (B, J, $30, $5,)

Any reference within the called subprogram to a null argument in the
CALL will be considered undefined.

The calling arguments generated for the alternate returns in the
object code are 1in the reverse order from their appearance in the
argument list in the source program. This reverse order must be
considered if GMAP subroutines are called from FORTRAN programs.

OUTPUT
ABC(X,B,,C,$5,$200)
QST(9.732,0/4.536 ,R-S**2,X1)
SUB(A,I,$10,$20,)

In the last example, the code generated will be

TSX1
TRA
ZERO
ARG
ARG
ARG
TRA
TRA

SUB

*+6
«E.L..,6
A

I

0

.520
.S10

3-16 DG75

CHARACTER

CHARACTER

The

CHARACTER

CHARACTER statement declares the variable(s) to be of type character

and defines the maximum character length of each variable.

Format

CHARACTER [*integer—l:] name *integer-2(dim) [/data/] [,...]

Syntax Rules

1.

Integer-1 must be an unsigned integer constant which defines the
maximum number of characters of all variables in the statement, unless
they are specified by integer-2 (see #3 below).

Name can be a scalar, an array, or a FUNCTION subprogram name.

Integer-2 is an unsigned integer constant whose value determines the
maximum number of characters that can be contained within the
character variable specified. An adjustable size specification 1is
permitted within a subprogram when both the character variable and its
size parameter(s) are included as dummy arguments.

Dim specifies the dimensions necessary to allocate storage to an
array.

Data is the initial data value. -

General Rules

Adjustable size specifications are not permitted as the size
specification for a character function.

If a comparison is made between character fields of unequal length,
the smallest field will be left-justified and blank-filled to the size
of the larger field. Then a comparison is made.

Each CHARACTER variable (scalar or array element) begins on a word
boundary. For example, CHARACTER*2 A(2) would use two words of
storage; the first two bytes would be used for each word.

The maximum number of characters in a variable or array element is 500
for ASCII and 511 for BCD.

3-17 DG75

CHARACTER CHARACTER

Example
CHARACTER ARRAY*14(10,10)
CHARACTER A*I(J,4),B*I

NOTE: The length of A and B are variable.

3-18 . DG75

COMMON COMMON

COMMON

The COMMON statement assigns variables in different program wunits to the
same memory storage location(s). This can be done in a labeled or blank common
area.

Format

COMMON[/]x[/]array[,...]

Syntax Rules

1. Common x is a symbolic name if it is labeled common, or null if it is
blank common.

2. Array is the non~empty list of scalar names, array names, Or array
declarators.

3. If common x is empty, the first two slashes are optional.

4. Labeled and blank common can be included in the same COMMON statement.

General Rules

1. A double precision or complex data item is allocated as two
consecutive storage locations.

2. A real, logical, or integer entity is allocated as one storage
location.

3. A character variable is allocated the number of consecutive storage
locations required to contain the specified number of characters.

4. The following rules apply to blank and labeled common blocks with the
same number of storage locations.

a. In all program units giving the same type to a given position
(counted by the number of preceding storage units), references to
that position refer to the same value.

b. A correct reference is made to a particular position assuming a

given type if the most recent value assignment to that position
was of the same type.

7/79 3-19) DG75A

COMMON COMMON

c. Complex and double precision entities are assigned consecutive
storage locations (pairs) such that the first word of the pair
has an even storage address.

d. The size of a common block must not exceed 131,071 decimal words.

5. All variables specified in a COMMON statement are assigned to storage
in the sequence in which the names appear in the COMMON statement.

Examples
COMMON A,B,C,D (assigned to blank common)
COMMON/X/A,B,C (assigned to labeled common)

COMMON A,B,C/Y1/D,E (A, B, C are assigned to blank common;
D, E are assigned to labeled common block Y1)

3-20 DG75

COMPLEX

COMPLEX

COMPLEX

The COMPLEX statement is an explicit type statement which is used to assign
the complex numeric properties to specific variables.

Format

COMPLEX name [*size][(dim)][/data/] rese

Syntax Rules

1.
2.
3.

4.

Examples

Name is a variable, an array, or a FUNCTION subprogram name.
Size is an optional size in byte designation and is ignored.
Dim supplies the dimensions necessary to allocate storage to

Data represents the initial data values.

COMPLEX T,N1,D1/(5.0,0.0)/
COMPLEX ARRAY (10,3)/5/

7/79

3=21

arrays.

DG75A

CONTINUE CONTINUE

CONTINUE

The CONTINUE statement is a dummy statement most often used as the last
statement in the range of a.-DO loop. The presence of the CONTINUE statement
enables a continuation of the normal execution sequence.

Format

[label] CONTINUE |

Syntax Rule

Label is an unsigned integer constant.

Example

10 Do 12 1= 1,10
IF (ARG - VAL(I)) 12,13,12
12 CONTINUE

3-22 DG75

DATA

DATA

DATA

A DATA statement is used to assign values to variables and arrays at
compilation time.

Format 1

DATA variable/data/[,...]

Syntax Rules

1.

Format 2

Variable specifies the variables to be initialized and may consist of
scalars, arrays, and/or array elements.

Data specifies the data constants which may be signed or unsigned.
Data may also be specified as j*c where j is a repeat modifier which
specifies that constant ¢ is to be used j times. 3j must be an integer
constant or parameter symbol.

Variable cannot specify dummy arguments or names in blank common.

Data can specify any constant type. Type checking is performed to
verify that a variable is initialized with a constant of the correct
type. However, octal or character constants can be used to initialize
variables of any type.

DATA (array k(i),i=m1,m2,m3)/data/

Syntax Rules

1.

2'
3.

4.

Format 2 is used to initialize values in an array by the use of an
implied DO statement.

Array designates the name of the array to be initialized.

I indicates the induction variable to be used.

M; indicates the initial parameter of the implied DO statement.
My designates the terminal parameter of the implied DO statement.

M4 specifies the increment parameter for the implied DO statement; if
not specified, an increment of one is assumed.

NOTE: Refer to the DO statement for an explanation of DO parameters.

3-23 DG75

DATA

General

DATA

Rules

1.

Examples

Character variables must be initialized with character constants. If
the sizes of these two elements differ, truncation or blank-~filling
will occur.

DATA defined variables that are redefined during execution assume
their new values regardless of the DATA statement.

When values are to be assigned to an éntire array, the name of the
array 1s specified without any subscript information. The number of
constant values assigned must equal the number of elements in the
array.

DATA statements which appear in a BLOCK DATA subprogram can pre-set
data into 1labeled common storage only. Only 63 common areas can be
pre-set from a single BLOCK DATA subprogram.

DATA statements which appear in a program unit that is not a BLOCK
DATA subprogram can pre-set data into local storage locations for that
program unit or into 1labeled common. The maximum number of common
areas in this case is 62. ‘ :

Type statements can also be used to initialize data values, and must
follow the rules specified for the DATA statements.

Logical constants can be specified in the data list as T or F, as well
as .T. or .F.

NOTE: This could cause confusion if a variable T or F also appears in
a variable statement, because the compiler will use the
parameter T or F value in the data 1list.

There must be a one-to-one correspondence between the list items and
the data constants. If a non-character type variable is to be
initialized with a character constant, and the constant is more than
one word of storage, the variable must appear as an array element
reference. The constant will be assigned to consecutive locations in
memory which begin with the referenced location specified in the
array.

DATA A,B,C/14.7,62.1,1.5E-20/
or
DATA A/14.7/,B/62.1/,C/1.5-E20/

initially assigns the value 14.7 to A, 62.1 to B, and 1l.5E-20 to C

DATA 1/3/,3/5/

initially assigns the value 3 to I, and 5 to J

3-24 DG75

DATA DATA

DATA ZERO, (A(I),I=1,5),A(9)/0.0,5*1.0,100.5/

assigns the value 0.0 to ZERO, 1.0 to the first five elements of A, and
100.5 to the ninth element of A

INTEGER G(5)
DATA G(1)/15HDATA TO BE READ/

NOTE: There is a one-to-one relationship specified (one variable and
one constant), but locations G(1l) through G(3) will be affected
if the mode is BCD because the constant is larger than one word
of storage can accommodate.

DIMENSION B (25)
DATA A,B,C/24%*4.0,3.0,2.0,1.0/

assigns the value 4.0 to A and the first 23 elements of B, 3.0 to B(24),
2.0 to B(25), and 1.0 to C.

3-25 , DG75

DECODE DECODE

DECODE

The DECODE statement is used to convert a character string which begins in
a specified 1location to a specified data type as designated by a format. This
converted character .string is then stored in the given list. (Refer to Section
V for additional information on the DECODE statement.)

Format

DECODE (char,form,err) list

Syntax Rules

1. Char is a character variable that can be a scalar, an array element,
or an array name. It indicates the beginning location of the internal
buffer (i.e., the sending field). ’ '

2. Form can be a FORMAT statement number, a character scalar, or an array
name. It provides the format specification for decoding.

3. Err is the error transfer option which is designated as ERR=S1l. S1 is
the statement label or switch variable that is to receive control when
an error condition is encountered.

4, List is the receiving field with the same reguirements as the 1list
which is specified for the READ statement.

General Rule

The format and the list specified should not require more characters than
the number of characters assigned to char. If char is an array, the format
information should not require more characters than the number of characters in
a single element of char.

Examples
CHARACTER*6A(3)
A(l) = "111111"

A(2) = "222222"

A(3) = "333333"

DECODE (A,100) Il, I2, I3
100 FORMAT (I6/16/16)

DECODE (A,200) J1,J2,J3
200 FORMAT (316)

3-26 DG75

DECODE

DECODE

After execution, Il = 111111, I2 = 222222, I3 = 333333; J1 = 111111, but J2
and J3 are undefined.

A(l) = "pppl"
DECODE (A,4)I

4 F

ORMAT (I4)

After execution, the array A is not altered, but the integer variable I has
the value of 1.

10 CHARACTER A*4(4) ,B*1(16)
20 DATA A/4*"ABCD"/,B/16*"X"/
30 PRINT 9,B

40 DECODE (A,4,ERR=100)B

50 4 FORMAT (4Al1/4A1/4A1/4A1)
60 GO TO 11

70 100 PRINT, "ERROR"

80 STOP

90 11 PRINT 9,B

100 9 FORMAT (1X,16Al)

110 STOP

120 END

*RUN

XAXAX XXX XX XXXXXX

ABCDABCDABCDABCD

The elements of array A have been placed in array B.

The

DECODE statement with the ERR= option can be used to

fields to see, for instance, if a particular field is numeric.

10

CHARACTER TEXT*35(10)
INTEGER DATA (50)

DECODE (TEXT,10,ERR=20) DATA
FORMAT (517)

scan

individual

If any elements of the field being decoded contain nonnumeric characters,
control will be transferred to statement number 20.

3-27

DG75

DIMENSION DIMENSION

DIMENSION

The DIMENSION statement is used to specify the maximum size of an array and
allocate the necessary storage locations for the array. This statement may also
be used to assign initial values to array elements.

Format

DIMENSION array (integer)[/ constant [,...] /]

Syntax Rules

1. Array is the name of an array.

2, Integer is the dimension of the array which is composed of one to
seven unsigned integer constants, integer parameters, or integer
variables.

3. Constant specifies an optionally signed data constant.

4. Integer variables can be used as a dimension for an array only when

the DIMENSION statement appears in a subprogram with the dimensions
passed as arguments and the array is not in a COMMON area. :

General Rules

1. The DIMENSION statement must precede the first use of the array in an
executable statement.

2. One DIMENSION statement can specify the dimensions for several arrays.

3. If the dimensions for a variable are designated in a DIMENSION
statement, they cannot be designated in any other statement.

4. Dimensions can also be declared in a COMMON or a type statement.
Under these conditions, all the rules for the DIMENSION statement
apply.

5. The data constants are optional and apply to the array that
immediately precedes them in the DIMENSION statement,

Examples

DIMENSION A({(50)
DIMENSION B(1,2,3),C(10)/10*1./
DIMENSION D(2,2,3,3,4,4,5)

SUBROUTINE SUB (A,B,I,J)
DIMENSION A(I,4,J),B(J)

7/79 3-28 : DG75A

DO

The DO statement is used to execute a section of a program unit repeatedly
with an automatic change in the value of a variable between repetitions.

Format

DO label variable = m,,m,,mq

Syntax Rules

General

Label is the statement label of the terminal statement of the DO loop.

Variable is the induction variable and must be a nonsubscripted
integer variable.

M;, m,, and m; are referred to as induction parameters or control
parameters and can be specified as arithmetic expressions. These
parameters are truncated to integer values before execution of the DO.

If mqy is omitted, its value is assumed to be 1.

The values of m;, m,, and mg must all be non-negative but mj must not
have a value of zero.

M, cannot be the constant zero, but it can be a variable with the
value of zero. If m, < m;, the loop will be executed once.

Rules

1.

A DO statement is used to define a 1loop. The action which occurs
during the execution of a DO statement is described in the following
steps.

° Variable is initially assigned the value of the initial
parameter, mj.

° The instructions, as specified within the range of the DO loop,
are executed my; - my +1 times.

msy

® The induction variable is incremented by the value specified by
the step parameter, mj.

3-29 DG75

| 8 |

DO

e If the value of the induction variable < the terminal parameter,
my, the instructions specified within the range of the DO loop
are executed again., If the value is > mjy, the DO loop has been
satisfied and control passes to the statement following the
terminal statement of the range of the DO.

) If the above situation applied to a nested DO loop which had the
same terminal statement, control would pass to the next outer DO
loop. The induction variable of this DO statement will be
incremented by the corresponding msg. This process continues
until all DO loops which reference the termination statement are
satisfied.

) If the exit from a DO loop occurs through a transfer statement,
the wvalue of the induction variable is equal to the most recent
value assigned which occurred prior to the exit. The DO is said
to be "not satisfied" and the induction variable is defined.

NOTE: If the upper limit of the induction variable 1is reached,
the DO 1is satisfied, and the induction variable is
undefined.

The terminal statement cannot be a GO TO, RETURN, STOP, or DO
statement.

The terminal statement can be an arithmetic IF statement with at least
one null field., The null path is a simulated CONTINUE statement which
terminates the DO loop.

The range of a DO loop begins with the first executable statement
following the DO and ends with the terminal statement specified in the
DO statement (i.e., label).

Another DO statement can be included within the range of a DO loop.
However, the range of the inner DO loop must be contained within the
range of the outer DO loop. This condition is referred to as a nested
DO loop.

The control parameters (i.e., variable , my, m3) cannot be redefined
within ‘a loop or within the extended range of a loop.

A DO statement has an extended range if both of the following
conditions exist:

) There exists at least one transfer statement inside the range of
a DO which will cause control to pass out of the DO loop, or out
of the nest if the DO loop is nested.

) There exists at least one transfer statement not in the range of

a DO loor ~r a nested DO loop which can cause control to return
into the range of this loop.

3-30 DG75

| 8 |

Examples

DO

If these conditions exist, the extended range consists of all the
executable statements that can be executed between the two control
statements. The statements which satisfy the first condition are not
included in the extended range; the statements which satisfy the
second condition are in the extended range.

NOTE: The use of extended range DO loops should be minimized,
especially when global’ optimization is desired.

A transfer statement cannot cause control to pass into the range of a
DO 1loop unless the transfer statement being executed is part of the
extended range of that particular loop. In addition, the extended
range of a DO loop may not include another DO statement which contains
an extended range, or a DO statement that has the same induction
variable.

When a procedure reference occurs in the range of a DO loop, the
actions of that procedure are considered to be temporarily within that
range (i.e., during the execution of that reference).

Standard DO Statement

DO 6 I=1,10

6 CONTINUE

Nested DO Loop

DO 60 I=10,20,2
K=I+3
DO 10 J=2,50,10
10 M=J+6
60 CONTINUE —

Transfer of Control

The following configurations show permitted and nonpermitted transfers.

Permitted Not Permitted

> [

3-31 DG75

DO

Extended Range

-

DO 20 I=1,K
DO 20 J=N,M

.

IF (J-JJ),80,

20 CONTINUE

80

DO

(extended range of a nested

DO loop)

GO TO 6

Transfer of Control for Extended Range

The following configurations show permitted and nonpermitted transfers for
an extended range.

Permitted

—)

* -

Not Permitted

. “—I‘,,

¢ s~ o

3-32 . DG75

DOUBLE PRECISION DOUBLE PRECISION

DOUBLE PRECISION

The DOUBLE PRECISION statement is an explicit type statement which is used
to assign double precision numeric properties to specified variables.

Format

DOUBLE ‘PRECISION variable[*size][(dim)][/data/] ,...

Syntax Rules

1.
2.
3.
4.

Variable is a scalar, an array, or a FUNCTION subprogram name.
Size is an optional size in bytes qualification, and it is ignored.
Dim gives the dimensions needed to allocate storage for the arrays.

Data gives the initial data value(s). .

General Rules

Variables that are declared in this statement could also be declared via
the REAL statement with a size qualifier > 8.

Examples

DOUBLE PRECISION DENOM,PREF/1.6D0/
DOUBLE PRECISION DB(10)

/79

3-33 DG75A

ENCODE : ENCODE

ENCODE

The ENCODE statement is used to convert data under the control of a
specified format and store the encoded data as type character.

Format

ENCODE (char,form,err) list

Syntax Rules

1. Char is a character variable that can be a scalar, an array element,
or an array name. It indicates the starting location of the internal
buffer which is the receiving field for encoding.

2. Form can be a FORMAT statement number; a character scalar, or an array
name that provides the character formatting information of the sending
field for encoding.

3. Err is the error transfer option, designated as ERR=S1, where Sl is
the statement label or switch variable that is to receive control when
an error condition is encountered.

4. List is the sending field for encoding and has the same requirements
as the list specified for the WRITE statement.

General Rules

1. The number of characters generated by form and list should not exceed
the number of characters designated by char.

2. ENCODE does not blank-fill the word to the word boundary like a READ
statement does.

3. Any numerical variable in the list with a value requiring more space
than specified by form, will be replaced by asterisks in the storage
locations beginning with char (refer to Numeric Field Descriptions in
Section V). If this procedure is necessary, as in the case of
developing leading zeroes for the character form of a numeric data
item, then the CALL NASTRK and CALL YASTRK statements will be required
to enable the ENCODE statement to function as desired (refer to
Section VI for a list of supplied SUBROUTINE subprograms).

3-34 DG75

ENCODE ENCODE

Example

CHARACTER A*4

I=1

ENCODE (A, 3,ERR=100)1I
3 FORMAT (I4)

GO TO 11
100 PRINT, "ERROR"
STOP

11 PRINT 9,A

9 FORMAT (1X,A4)
STOP
END

After execution, A will contain

¥ep1

where: } indicates a blank.

3-35 DG75

END END

END

The END statement is used to indicate the physical end of the source
program.

Format

END

General Rules

1. END must be the last statement of every source program unit.

2. END creates no object-program instructions.

Example

STOP
END

Syntax Rules

1. There cannot be any other non-blank characters in the END statement
(e.g., END 05 is illegal).

2. END; cannot be specified as the first statement of a multi-statement
line.

7/79 3-36 DG75A

ENDFILE

ENDFILE

The

ENDFILE

ENDFILE statement is wused to <close a sequential file with an

end-of-file record indicator.

Format

ENDFILE file

Syntax Rules

1. File is a two-character file code which references the file to be
closed.
2. File is the file reference for a sequential output file.
3. File must be an integer constant, an integer variable, or an
expression.
General Rules
1. When the ENDFILE statement is encountered, the buffer(s) is flushed
and a file-mark is written for the output file.
2. Executing an ENDFILE on an input file with read only permission will
result in an error message:
“Impermissible perm-write" in batch
"Write attempted read only file" in TSS
Examples
ENDFILE 5

ENDFILE JPAY

3-37 , ' DG75

ENTRY

ENTRY

The

ENTRY

ENTRY statement 1is wused to define alternate entry points into a

subroutine or a function subprogram,

Format

ENTRY name [(arg[,...])]

Syntax Rules

1.

Name is the symbolic name of an entry point into a subroutine or
function subprogram. Name must be unique within the first six
characters.

Arg is a dummy argument which corresponds to an actual argument in a
CALL statement or a function reference. Entry into a FUNCTION
subprogram must have at least one argument.

An asterisk can be used as an argument in an ENTRY statement of a
SUBROUTINE subprogram to indicate an alternate return.

General Rules

Multiple entry points must conform to the following rules:

1.

Examples

In a FUNCTION subprogram, only the FUNCTION name can be used as the
variable to return the function value to the using program. The ENTRY
name cannot be used for this purpose.

An ENTRY name can appear in an EXTERNAL statement in the same manner
as a FUNCTION or SUBROUTINE name.

Entry into a subprogram defines all arguments in the ENTRY statement,
for the entire subprogram, from the argument list of the corresponding
CALL statement or FUNCTION reference. :

The appearance of an ENTRY statement does not alter the rules for
placing arithmetic statement functions in subroutines.

Arg cannot appear in an EQUIVALENCE or COMMON statement in the same
subprogram.

ENTRY NAM(A,*,X)
ENTRY SUB2

3-38 ‘ DG75

EQUIVALENCE EQUIVALENCE

EQUIVALENCE

An EQUIVALENCE statement is used to assign two or more variables within the
same program unit to the same storage location.

Format

EQUIVALENCE (vary,var, [,...])

Syntax Rule

Var

can be either a scalar, an array, or an array element, If var is an

array element, the subscripts must be integer constants or parameter symbols.

General

Rules

1.

Each pair of parentheses must enclose the names of two or more
variables that are to be assigned the same location during execution
of the object program; any number of equivalences (sets of
parentheses) can be given.

When var is an array element, the subscript can be specified in two
ways. D(1,2,1) or D(p) can be used to specify the same element, where
D(p) references the p; element of the array im storage (refer to
Section II for a description of the Array Element Successor Function).

Quantities or arrays not specified in an EQUIVALENCE statement are
assigned unique storage locations.

Storage locations can only be shared by variables; not by constants.

There are six statements in FORTRAN which cause a new value to be
stored in a location (i.e., defined or redefined):

° The execution of an arithmetic assignment statement stores a new
value in the 1location assigned to the variable which is on the
left side of the equal sign.

) The execution of a DO statement or an implied DO in an
input/output 1list will sometimes store a new value for the
induction variable.

) The execution of a READ or DECODE statement stores new values in
the locations which are assigned to the variables in the input
list, . ;

(] The execution of an ENCODE statement stores new values in the

character variable or the array location(s) which are named as
the internal buffer (i.e., receiving field).

3-39 DG75

EQUIVALENCE EQUIVALENCE

10.

11.

) The execution of a CALL statement or an abnormal function
reference may assign new values to variables in common or to
arguments which are passed to that subprogram,

° An initial value can be stored in a location via a DATA
statement, or a data clause in a type statement.

Variables which are brought into a common block through an EQUIVALENCE
statement can increase the size of the block indicated by the COMMON
statement. i

Example

COMMON /X/A,B,C
DIMENSION D(3)
EQUIVALENCE (B,D(1))

The layout of storage indicated by this example (extending from the
lowest 1location of the block to the highest location of the block) is

A
B,D(1)
C,D(2)

D(3)

Because arrays must be stored in consecutive locations, a variable
cannot be made equivalent to an element in an array if it would cause
the array to extend below the beginning of a common block.

To make a double-word variable equivalent to a single-word variable,
the following rules apply:

° The effect of the EQUIVALENCE statement(s) must cause the first
word of any double-word variable to be an even number of
locations from the beginning of the space allocated for data
(common or local).

) The effect of the EQUIVALENCE statement must cause the first word
of any double-word variable to be an even number of words from
the beginning of any other double-word variable which 1is 1linked
to it through an EQUIVALENCE statement.

Two variables in the same common block or two different common blocks
cannot be made equivalent.

The EQUIVALENCE statement does not make the data items specified
mathematically equivalent.

Var cannot be specified as a dummy argument in a FUNCTION, SUBROUTINE,
or ENTRY statement.

3-40 DG75

EQUIVALENCE

Examples

EQUIVALENCE (A,B,C)
COMMON /X/A,B,C
DIMENSION D(3)
EQUIVALENCE (A,D(1))

The same storage locations will be shared by

A and D(1)

B and D(2)

C and D(3)

DIMENSION B(5),C(10,10),D(5,10,15)
EQUIVALENCE (A,B(1),C(5,4)),(D(1,4,3),E)

The same storage locations will be shared by

A,B, and C(5,4)
D(1,4,3) and E

3-41

EQUIVALENCE

DG75

EXTERNAL

EXTERNAL

EXTERNAL

The EXTERNAL statement is used to distinguish a FUNCTION or SUBROUTINE name
from a variable name when it is used as an argument to a subprogram call.

Format

EXTERNAL sub [(ABNORMAL)](,...]

Syntax Rules

If the ABNORMAL option is specified, the subprogram is defined as both

A SYMREF is generated for the subprogram name in the object code.

An EXTERNAL statement must be included when a subprogram is used as an

1. Sub is a subprogram name.
20
EXTERNAL and ABNORMAL.,
General Rules
1.
2.
argument in a CALL statement.
Examples

EXTERNAL SUB,SQRT (ABNORMAL)

Main Program

10

20

EXTERNAL SIN, COS

CALL SUBR (2.0, SIN, RESULT)
WRITE (6, 10) RESULT

FORMAT ("0 SIN(2.0 = ", F10.6)
CALL SUBR (2.0, COS, RESULT)
WRITE (6,20) RESULT ;
FORMAT ("0 COS(2.0) = ", F10.6)
STOP

END

3-42

SUBROUTINE Subprogram

SUBROUTINE SUBR (X,F,Y)
Y = F(X)

RETURN

END

DG75

FORMAT

FORMAT

The FORMAT

statements.

Format

label FORMAT({:§

Syntax Rules

1. Label is

FORMAT

statement is wused to specify the conversion and editing
information for variable lists in I/0 statements, as well as DECODE and ENCODE

sl; des; sepi[,...] }

a unique statement 1label which identifies each format
statement that is referenced by an input/output or ENCODE/DECODE

statement.
2. S1; can be a series of slashes to indicate the number of lines or
input records to be skipped.
3. Des; is one or more of the following field descriptors:
nPr D w.d
nPr E w.d Numeric and Logical
nPr F w.d Field Descriptors
nPr G w.d
raAw
rIiIw
rLw
r Ow Character
rRw -Field
wHhh ... h Descriptors
"h h ... hyg" :
'h h ... hw'
Tt } Field Positioning
nX - Descriptors
where: P is an optional scale factor designator
r is an optional repeat count
w is the field width expressed in number of characters
d is the number of fractional places (characters)
B is a single character
t is a character position where the positions of a 1line are
numbered 1 through the number indicated
n is a signed integer constant in the range
-8<n<8 for nP
n<l for nX
F,E, and G indicate REAL values
D indicates double precision
O indicates octal conversion is necessary
I indicates an integer value
7/79 3-43 DG75A

FORMAT

FORMAT

L indicates LOGICAL values ‘
A,R, and H are for character values
X and T indicate text to be skipped

NOTE: H, T, and X do not require a variable in the I/0 list,
but all others do.

4. Sep; is a field separator (i.e., a comma, a slash, or a series of
slashes).

5. If the V option is used, the formatted I/0 is under 1list control.
List directed input and output can also be performed by omitting a
FORMAT reference (i.e., "READ", "PRINT", or "PUNCH").

6. The () option is the same as the (V) option.

General Rule

The field descriptors are formed in the following ways:

Fw.d = Real mode without an exponent

Ew.d = Real mode with an exponent

Gw.d = F or E editing code is taken dependent upon the value of the
output item :

Dw.d = Double precision mode with an exponent

ow = Field occupies w print positions and is represented as an octal
number of up to 12 digits

Iw = Integer mode and field occupies w print positions

Lw = Right-most position of field w contains T or F for a logical
variable

Aw = Field occupies w print positions with left-justified character
data

Rw = Field occupies w print positions with right-justified character
data

nH = Hollerith field which occupies n print positions

Tt = Next operation begins with position t of the record

nX = Field of n characters is blank-filled for output; skipped for
input

Examples
10 FORMAT (El17.2,F20.0)

12

14

16

WRITE (6,12)PAY .
FORMAT (//15HPAY IS EQUAL TO, F6.2)

FORMAT (V)

READ (5,16)HRS,RATE,NO
FORMAT (F3.2,F4.2,16)

3-44 DG75

FUNCTION

FUNCTION

FUNCTION

The FUNCTION statement is used to define a FUNCTION subprogram.

Format

REAL

INTEGER

DOUBLE_PRECISION FUNCTION name (arg[,...])
COMPLEX

LOGICAL

CHARACTER

Syntax Rules

1.

2.

3.
4.

General

Name is the symbolic name of a single-valued function.

Arg is an argument which can be a non-subscripted variable or array
name, or the dummy name of a SUBROUTINE or FUNCTION statement.

Name must be a unique name which does not exceed six characters.

The length of a character function can be specified through a type
statement, or calculated within the function subprogram.

Example

FUNCTION X(A,B)
CHARACTER X*12

Rules

The FUNCTION statement must be the first statement of a FUNCTION
subprogram, At least one argument must be specified.

Name must appear at least once in some assignment context so that the
value of the function is returned to the calling program.

3-45 DG75

FUNCTION

10.

llo

FUNCTION

Arg can be considered as a dummy variable name(s) that is replaced at
the time of execution by the actual arguments which are given in the
function reference in the calling program. The actual arguments must
correspond to the dummy arguments in number, size, and type.

When a dummy argument is an array name, a statement with dimension
information must appear in the FUNCTION subprogram, and the
corresponding actual argument must be a dimensioned array name.

A dummy argument cannot appear in an EQUIVALENCE, NAMELIST, or COMMON
statement in the FUNCTION subprogram.

The FUNCTION subprogram must be logically terminated by a RETURN
statement and physically terminated by an END statement.

The FUNCTION subprogram can contain any FORTRAN statements except
SUBROUTINE, BLOCK DATA, another FUNCTION statement, or a RETURN
statement with an alternate return specified (e.g., RETURN 1).

A FUNCTION subprogram is referred to by using its name as an operand
in an arithmetic expression and following it with the required actual
arguments enclosed in parentheses.

A FUNCTION subprogram cannot call itself, either directly or
indirectly, through some other called subprogram,

The FUNCTION must be assigned a value before the return to the calling
program.

The actual arguments given in the function reference can be any of the
following:

[Constant

') Scalar’variable or nonsubscripted array name

° Arithmetic or logical expression

) FUNCTION or SUBROUTINE subprogram name

® Omitted or null argument, which is indicated by successive commas

(e.g., FUNCTION CALC (A,,B,,)). References to null arguments
from within the called function are undefined.

NOTE: Refer to Tables 6~2 and 6-3 for a list of the Supplied FUNCTION
Subprograms.

3-46 DG75

FUNCTION FUNCTION

Examples

FUNCTION ARSIN (RADIAN)

REAL FUNCTION ROOT (A,B,C)

INTEGER FUNCTION CONST (ING,SG)

DOUBLE PRECISION FUNCTION DBLPRE (R,S,T)
COMPLEYX FUNCTION CCOT (ABI)

LOGICAL FUNCTION IFTRV (D,E,F)

Calling Program Called Function

FUNCTION CALC (A,B)

X=Y**2+D*CALC (F,G) .
. CALC=A**B /2
STOP .
END .
RETURN
END

3-47 DG75

GO TO GO TO

GO TO

The GO TO statement is used to indicate the next statement in the same
program unit to be executed. The GO TO may be expressed as an unconditional, an
assigned, or a computed statement.

Format 1

Unconditional

GO TO label-1

Syntax Rules

Label-1 is an executable statement label and will be the next statement to
be executed.

Format 2
Assigned

GO TO var [,(label-2 [,...])]

Syntax Rules

1. Var is a switch variable.

2. Label-2 is a list of one or more executable statement labels. If this
option is specified, var must have been assigned the value of one of
the labels in label~2 by the ASSIGN statement.

3. The next statement to be executed will be the one with the statement
label equal to var.

4, If a statement label has been assigned to var that is not in the
label-2 list, a compile time diagnostic is generated.

3-48 DG75

GO TO

GO TO

Exanple

ASSIGN 23 TO I

GO TO I,(12,23,48)

will result in a run-time Q6 abort.

Format 3

Computed

GO TO (label-3 [,...]), exp

Syntax Rules

1. Label-3 is the label of an executable statement or a switch variable.
2, Exp is an arithmetic expression which is truncated to an integer value
at the time of execution.
3. The next statement to be executed will be label-3;, where 1 is the
integer value of exp.
4, In the expression 0<i<n, if i is out of the range, a diagnostic is
generated and execution is terminated.
Example
J=3
GO TO (5,4,17,1),3 (Statement 17 is executed next)
I=4
GO TO (5,4,4,1,3),1 (Statement 1 is executed next)
General Rules
1. Label-1, label-2, and label-3 can be the 1label of any executable
statement within the same program unit that appears before or after
the GO TO statement, but is subject to the rules for transferring into
and out of DO loops.
2. Control is transferred unconditionally to the statement number.

3-49 DG75

GO TO

E amEles

GO TO 5

ASSIGN 17 TO J

Go TO J,(5,4,17,2)

J=2
GO TO (5,4,17,1),

(Statement 5 is executed next)

(Statement 17 is executed next)

(Statement 4 is executed next)

3-50

GO TO

DG75

IF IF

The IF statement is used to determine a path in the execution sequence. An
arithmetic IF statement causes a change in the execution sequence based upon the
resulting value of an arithmetic expression. A logical IF statement causes a
conditional change in the execution sequence based upon the true or false value
of a logical expression.

Format 1
Arithmetic IF

IF (exp-1) label-1,label-2,label-3

Syntax Rules

1. Exp~1l is an arithmetic expression.

2. Label-1, label-2, label-3, can be a statement label, switch variable,
or null., If label-l, label-2, and label-3 are null, control will pass
to the first executable statement directly following the IF statement.

3. Execution will branch to
) label-1 if the value of exp-l < zero
® label-2 if the value of exp-l = zero
) label-3 if the value of exp-l1l > zero

4. A maximum of two statement labels can be null.

Format 2
Logical IF

IF (exp-2) state-2

Syntax Rules

1. Exp-2 is a logical or relational expression.

2. State-2 may be any executable statement except a DO statement or
another logical IF statement. It is called the truth clause.

3-51 DG75

IF

IFr
3.
General
1.
2.

When the IF statement is executed, exp-~2 is evaluated. If the result
is true, state-2 is executed. Otherwise, control passes to the first
executable statement which follows the IF statement.
Rules

If the operator .NE. or .EQ. is contained in a logical IF expression,
"and the operands are not type integer or type character, a warning
message appears at the end of the source program listing. Because
floating-point arithmetic is not exact for some fractions, the
equality or non-equality relation between the operands may not be
meaningful.

If a relational IF expression compares two character strings of

unequal length, the shorter string is left-justified and blank-filled
to equal the length of the longer string before the comparison is
made.

3=-52 DG75

IMPLICIT ' IMPLICIT

IMPLICIT

The IMPLICIT statement is used to redefine the default implied data types
of all variable and function names (with the exception of supplied intrinsic and
supplied mathematical functions) in the program unit that begin with the letters
specified.

Format

IMPLICIT type*size (arg[,...]) [/...]

Syntax Rules

1. Type must be one of the following keywords:

® INTEGER
[] REAL
® COMPLEX
® DOUBLE PRECISION
® LOGICAL
[) CHARACTER

2. Size is an optional unsigned integer constant that designates the
length of the associated data type for REAL and CHARACTER; this field
is ignored for all other types. When type is REAL, a specified length
of eight or more implies DOUBLE PRECISION. When type 1is CHARACTER,
the specified length is as defined for the CHARACTER statement.

3. Arg is one or two alphabetic characters. If +two characters are
indicated, they are separated by a dash (e.g., A-B),.

General Rules

1. An IMPLICIT statement supersedes all other previous IMPLICIT
statements referencing the same letters.

2, The IMPLICIT statement must appear before any use of the variable
being typed. However, it does not override explicit type statements.

3. Supplied intrinsic and supplied mathematical functions are not
affected by IMPLICIT statements.

7/79 3-53 - DG75A

IMPLICIT IMPLICIT

4. The IMPLICIT statement will apply to all variable names which begin
with the letters ‘indicated, or the series of letters indicated by the
dash (i.e., A-H will apply to all variable names which begin with the
letters A through H).

Examples

IMPLICIT INTEGER (A-F,X,Y)

Any variable name not typed by an explicit type statement, and first
appearing in the program following this statement, and beginning with the
letters A through F, or X, or Y, is implicitly typed INTEGER. This typing also
applies to variable names beginning with the lowercase letters a through £, x,
and y.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

Any variable name not +typed by an explicit type statement, and first
appearing in the program following this statement, and beginning with the
letters A through H, or O through 2, is implicitly typed DOUBLE PRECISION. This
typing also applies to variable names beginning with the lowercase letters a
through h, and o through z.

NOTE: 1If the IMPLICIT statement immediately follows either a SUBROUTINE or .
FUNCTION statement, the arguments of the subroutine or function are
affected by the IMPLICIT typing. This practice is not recommended.

Example

SUBROUTINE SUB(J,N)
IMPLICIT REAL(I-N
B = J*N ~
RETURN

END

Within the subroutine SUB, the variables J and N would be typed as
REAL. However, if another statement were inserted between the
SUBROUTINE and IMPLICIT statements, J and N would be typed as
INTEGER. This may cause confusion for the programmer as to the
typing of the variables which are used as arguments.

3-54 DG75

INTEGER INTEGER

INTEGER

The INTEGER statement is an explicit type statement which is used to assign
integer numeric properties to specified variables.

Format

INTEGER var [*size(dim)/data/](,...)

Syntax Rules

1. Var can be a scalar, an array, or a FUNCTION subprogram name.
2, Size is an optional size in bytes that is ignored.

3. Dim supplies the dimensions to allocate the necessary storage for
arrays.

4. Data gives the initial data value.

Examples

INTEGER I,ABC
INTEGER CALC(10),J/6/,XYZ

3-55 DG75

LOGICAL LOGICAL

LOGICAL

The LOGICAL statement is an explicit type statement which assigns logical
properties to specified variables.

‘Format

LOGICAL var [*size(dim)/data/](,...]

Syntax Rules

1. Var can be a scalar, an array, or a FUNCTION subprogram name.
2. Size is an optional size in bytes that is ignored.

3. Dim gives the dimensions to allocate the necessary storage for
array(s).

4. Data is the initial data value.

Examples

LOGICAL Al,K
LOGICAL CALC(25),L/.TRUE./

3-56 DG75

NAMELIST NAMELIST

NAMELIST

.

The NAMELIST statement is wused to associate variables and/or arrays for
input/output.

Format

NAMELIST /name/var/ [,...]

Syntax Rules

1. Name must be a unique name consisting of one to eight alphanumeric
characters, and must be unique for the first six characters.

2. Var must be a list of variables and/or array names to be associated
with the corresponding NAMELIST name.

3. Var can belong to one or more namelist names, and can be up to eight
characters but the first six must be unique.

General Rules

1. Name cannot be the same as any other variable name in the source
program, :

2. The NAMELIST statement defining namelist names must precede any
reference to the namelist names in the program.

3. Var cannot be a dummy argument in a subprogram.

4, Var cannot be an array name of more than seven dimensions.

Examples

NAMELIST/LIST/R,S,T,U,V
DIMENSION A(10),I(5,5),L(10)
NAMELIST/NAM1/A,B,I,J,L/NAM2/A,C,J,K

The arrays A, I, and L, and the variables B and J belong to the NAMELIST
name, NAM1l; the array A and the variables C, J, and K belong to the NAMELIST
name, NAM2.

3-57 DG75

PARAMETER

PARAMETER

The

PARAMETER

PARAMETER statement is used to define program constants as the result

of an expression at compilation time.

Format

PARAMETER symbol = exp (,...]

Syntax Rules

1.

Symbol is a parameter symbol whose type is dependent on the type of
exp.

Exp is an arithmetic expression which contains only constants and
previously defined parameter symbols,

General Rules

Example

The value of the parameter symbol cannot be redefined during the
execution of a program,

Symbol cannot appear in a FORMAT statement or in any other statement
where a constant cannot appear.

The significant difference between symbol and an ordinary integer
variable that can be initialized with a DATA statement is in the
usage. For example, a parameter symbol can be used to specify
dimensions.

The appearance of a parameter symbol in any context is interpreted as
though its equivalent value had appeared instead.

PARAMETER I=5/2,J=I*3,K=3.14159,L=.T.,M="0617lf

where: I and J are INTEGER

The

K 1s REAL
is LOGICAL

L
M is CHARACTER

parameter symbol I is initialized to the value 2, the parameter symbol

J is initialized to 6, and the parameter symbol K is initialized to the real
value 3.14159. L has the value .TRUE., while parameter symbol M is assigned a

CHARACTER

value.

3-58 DG75

PARAMETER PARAMETER

Example

PARAMETER I=20
PARAMETER J=1%*4
DIMENSION A(I,J)

DO 100 II=1,I
DO 100 JJ=1,J
100 A (1I1,3J)=0.

A is not an adjustably dimensioned array. It has constant dimensions of 20
and 80, respectively. The two DO statements have constant terminal parameter
values of 20 and 80, respectively (refer to the DO statement in this section).
I and J are compile time variables, while II and JJ are execute time variables.
The program properties change as the value of the parameter symbol I changes.
To operate on a 10 by 40 array, only the first line needs to be changed.

3-59 DG75

PAUSE PAUSE

PAUSE

The PAUSE statement is used to cause a temporary halt in the execution of a
program until the operator resumes execution.

Format

PAUSE [char]

Syntax Rule

Char can be a positive integer constant < five digits, an integer variable
whose value is < five digits, a character constant, or a character variable. If
char is a character constant, it must consist of a character string enclosed by
apostrophes or quotation marks.

Genexal Rules

1. When the PAUSE statement is executed, a message 1is printed on the
operator console or TTY terminal consisting of the word PAUSE and the
value of char. Execution is continued when the operator hits the
carriage return.

2. If char is not specified, or if char is an integer, the snumb and
activity number of the job is printed, unless executing under TSS;
then they are omitted.

Examples
PAUSE ;
PAUSE "TOO BAD"
PAUSE I

PAUSE 77777

SUBROUTINE PAWS (IDENT,MESSAGE)
CHARACTER MESSAGE*8
IF (IDENT),100,
PAUSE IDENT
RETURN
100 PAUSE MESSAGE
RETURN
END

3-60 DG75

PAUSE

A call to the above subroutine
CALL PAWS (77777,0)
might display
PAUSE 77777 SNUMB 1234T-02
A call of the form
CALL PAWS (0,"ERROR 27")
would display

PAUSE ERROR 27

3-61

PAUSE

DG75

PRINT PRINT

PRINT

The PRINT statement is used to direct output to the standard system output
device (file code 42).

Format 1
List Directed Output

PRINT, [list]

Syntax Rule

List is the list of variables and/or expressions that is to be directed to
the standard system output device (file code 42).

Format 2
Formatted Output

PRINT form [,list)

1. Form must be a FORMAT statement label, a character scalar, or an array
name.

2. If list is specified, the information will be converted according to
the format specified by form, and directed to the standard system
output device (file code 42).

Format 3
NAMELIST Output

PRINT namelist

Syntax Rule

Namelist must be a name specified in a NAMELIST statement, The output will
be directed to the standard system output device (file code 42).

3-62 DG75

PRINT PRINT

Examples
PRINT, (print a blank line)
PRINT, A (list directed output)
PRINT 20 (formatted output)
PRINT 20,A (formatted output)
PRINT LIST (namelist output)

3-63 DG75

PUNCH PUNCH

PUNCH

The PUNCH statement is used to transmit output to the standard system punch
device (file code 43). C

Format 1
List Directed Output

PUNCH, 1list

Syntax Rule

List is the list of variables and/or expressions that is to be directed to
the standard system punch device (file code 43).

Format 2
Formatted Output

PUNCH form [,list)

Syntax Rules

1. Form must be a FORMAT statement number, a character scalar, or a
character array name.

2. If list is specified, fhe information will be converted according to
the format specified by form, and directed to the standard system
punch device (file code 43).

Format 3
NAMELIST Output

PUNCH namelist

3-64 DG75

PUNCH PUNCH

Syntax Rule

Namelist must be a name specified in a NAMELIST statement.

Examples
PUNCH, A (list directed punch output)
PUNCH 20,A (formatted punch output)
PUNCH LIST (namelist punch output)

3-65 _ DG75

READ READ

READ

The READ statement is used to direct input data from the standard system
input device (file code 41) to be utilized by the program unit.

Format 1
List Directed Input

READ, list

Syntax Rule

List 1is the input information that will be read from the standard system
input device (file code 41).

Format 2
Formatted Input

READ form [,list]

Syntax Rules

1. Form must be a FORMAT statement label, a character scalar, or an array
name. .

2, If list is specified, the information will be read from the system
standard input device (file code 41) and converted to the specified
format.

Format 3
NAMELIST Input

READ namelist

3-66 DG75

READ

Syntax Rules

l.

2.

Format 4

Namelist must be specified in a NAMELIST statement.

Input will be directed to the standard system input device (file code
41) .

Formatted with File Reference Input

READ (file,form [,optl,optZJ) list

Syntax Rules

l.

Format 5

File is a file reference which is also the file code that can be a
positive integer constant, an integer variable, or an integerx
expression in the range 01 < file < 63. If 5 or 41 is specified,
reference is to the standard system input device.

Form must be a FORMAT statement label, a character scalar, or an array
name.

The optl option is designated as END=S1l, where S1 is the statement
label or switch variable to be executed when an end-of-file condition
is encountered.

The opt2 option is designated as ERR=S2, where S2 is the statement
label or switch variable to be executed when any 1I/0 error is
encountered. .

The options optl and opt2 can be specified in any order.

List is the input file that will be read from the file.

Unformatted with File Reference Input

READ (file(,optl,opt2]) list

3-67 ' DG75

READ READ

Syntax Rules

1. File is file reference which is also the filé\cddé‘that‘épplies to a
word-oriented serial access file (binary sequential).

2. Optl, opt2, and list follow the rules specified in Format 4.

Format 6
Random File Input

READ (file'n[,optl,opt2]) list

Syntax Rules

1. File is a file reference which appliés to a random binary file.
files.

2. N must be an integer constant, a variable, or an expression that
specifies the sequence number of the logical record to be accessed.

3. Optl, opt2, and list follow the rules specified in Format 4.

Format 7
NAMELIST Input with File Reference

READ (file,namelist(,optl,opt2])

Syntax Rules

1. Namelist must be sSpecified in a NAMELIST statement.

2. File, optl, and opt2 follow the rules specified in Format 4.

General Rule

A READ statement cannot be executed after a WRITE statement if it uses the
same file reference. The sequence, WRITE, REWIND, and then READ is legal.

3-68 DG75

READ

Examples

READ, A

READ
READ
READ
READ
READ
READ

20,A

LIST
(5,20,END=90,ERR=95) A
(5,END=90 ,ERR=95) A
(8'I)A

(5,LIST)

READ

(list directed input)
(formatted input)
(namelist input)
(formatted file input)
(unformatted file input)
(random binary file input)
(namelist file input)

3-69 DG75

REAL REAL

REAL

The REAL statement is an explicit type statement which is used to assign
real numeric properties to specified variables.

Format

REAL var [*size(dim)/data/][,..;]

Syntax Rules

1. Var must be a scalar, an array, or a FUNCTION subprogram name.

2, Size is a size specification and the type is treated as DOUBLE
PRECISION if size is > 7.

3. Dim is the dimension information required to allocate the necessary
storage for arrays.

4. Data is the initial data value.
Examples
REAL J

REAL IARR, MEN

3-70 DG75

RETURN RETURN

RETURN

The RETURN statement is used to denote the logical termination of a
subprogram, and thus, return control to the calling program.

Format

RETURN [integer]

Syntax Rules

1. If present, integer must be a positive integer constant or an integer
variable.
2. Integer indicates the nth alternate return in the CALL statement

argument list, from left to right, of the calling program.

3. Integer cannot be greater than the number of alternate returns in the
argument list of the calling program.

General Rules

1. There can be any number of RETURN statements in a subprogram.
2, If integer has a value of zero, a normal return is executed.

3. Integer cannot be specified in RETURN statements that are used in
FUNCTION subprograms.

Examples

RETURN
RETURN 3

3-71 ' DG75

-REWIND REWIND

REWIND

The REWIND statement is used to position a sequential file to its initial
point. :

Format

REWIND file

Syntax Rule

File is a file reference and must be specified as an integer constant or an
integer variable in the range 01< file <43.

General Rules

1. File must be a sequential file.

2, If file is an output file, an EOF is written on the file before it is
rewound. The file is then closed.

Examples

REWIND 5
REWIND STAT

3-72 DG75

STOP STOP

STOP

The STOP statement is used to halt the execution of an object program unit
and return control to the operating system.

Format

STOP [line)

Syntax Rule

Line must be a positive integer constant < five digits, an integer variable
whose value < five digits, a character constant, or a character variable. If
line is a character constant, it must consist of a character string enclosed by
apostrophes or quotation marks.

General Rule

1. If line is specified, the standard output device prints

) STOP AT LINE line if line is integer

° STOP line if line is character.

2. If line is not specified, the program simply terminates.

Examples

STOP

STOP 100

STOP STAT
STOP "MESSAGE"

3-73 DG75

SUBROUTINE SUBROUTINE

SUBROUTINE

The SUBROUTINE statement is used to define a SUBROUTINE subprogram.

Format

SUBROUTINE name [(arg,...)]

syntax Rules

1.

General

Rules

Name is the symbolic name of the subprogram and must be unique within
the first six characters.

Arg is the subprogram argument and can be a dummy variable or array
name, a dummy subprogram name, or a * or $§ to indicate an alternate
return.

The SUBROUTINE statement must be the first statement in the
subprogram.

One or more of the arguments can be wused to return wvalues to the
calling program. These arguments must be defined within the
subprogram in other than a DATA statement.

The arguments of the calling program must agree in number, order,
size, and type with the subroutine arguments (sometimes referred to as
dummy arguments). The arguments can be considered dqummy variable
names that are replaced at the time of execution by the actual
arguments supplied in the CALL statement which refers to the
SUBROUTINE subprogram,

If arg is an array name, a statement with the appropriate dimension(s)
must appear in the subroutine subprogram; the corresponding argument
in the CALL statement must be a dimensioned array name.

Arg cannot be specified in a COMMON, EQUIVALENCE, NAMELIST, or DATA
statement within the subroutine.

The SUBROUTINE subprogram must be logically terminated by a RETURN
statement and physically terminated by an END statement.

The SUBROUTINE subprogram can contain any FORTRAN statements except

FUNCTION, BLOCK DATA, or another SUBROUTINE statement.

3-74 DG75

SUBROUTINE SUBROUTINE

Examples

SUBROUTINE COMP (X,Y,*,$,P)
SUBROUTINE QUADEQ (B,A,C,H,ROOT)
SUBROUTINE OUTPUT

3-75 DG75

WRITE WRITE

WRITE

The WRITE statement is used to direct output to an output device.

Format 1
Formatted Output

WRITE (file,form[,opt]) list

Syntax Rules

1. File is a file reference that must be a positive integer (i.e., a
constant, a variable, or an expression) of the range 01< file < 63,

2. Form must be a FORMAT statemént; label, a character scalar, or a
character array element.

3. The opt option is designated as ERR=S1 where S1 is a statement 1label,
or a switch variable that is to be executed when an error condition is
encountered, or an end-of-file is found.

4, List contains the output variables whose values are to be directed to
the output device.

Format 2
Unformatted Output

WRITE (file[,opt]) list

Syntax Rules

1. File is a file reference that applies to the output of word-oriented
serial access files (binary sequential).

2. Opt and list follow the rules specified by Format 1.

3-76 DG75

WRITE WRITE

Format 3
Random Output

WRITE (file'n,opt) list

Syntax Rules

1. File is a file reference that applies to a random binary file.

2. N must be a positive integer (i.e., a constant, a variable, or an
expression) that specifies the logical record to be written.

3. Opt and list follow the rules specified in Format 1.

Format 4
Namelist Output

WRITE (file,namelist,opt)

Syntax Rules

1. Namelist must be specified in a NAMELIST statement.

2. If namelist is specified, character-oriented records will be directed
to the output device.

3. Opt follows the rules specified in Format 1.

General Rule

If file is specified as 6 or 42, the output will be directed to the
standard system output print device; 43 will direct it to the standard system
output punch device.

Examples
WRITE (6,30,ERR=34)A (formatted file output)
WRITE (6,ERR=34)A (unformatted file output)
WRITE (6,LIST) (namelist file output)
WRITE (8'I)A (random binary output)

WRITE (N,FMT,ERR=L0,END=500)A,B,C (formatted output)

3-77 DG75

SECTION IV

USER INTERFACES

Programs are created by entering FORTRAN statements into remote and local
peripheral or terminal devices connected to a computer operating under GCOS.
This procedure is referred to as user interface, with three modes of operation
available to the programmer: local batch, remote batch, and time sharing.

Each mode of operation is unique in

° The I/0 device assignments for the system input and output files

e The specification of GCOS communication by way of control cards in
batch, or a command language for time sharing

° The default compiler options for the compilation process.

Part of the user interface procedure between the programmer and the FORTRAN
compiler results in transmitting compilation error messages and run-time
diagnostics to a specified I/O device. These messages enable the programmer to
locate the 1line in the source program at which the error occurred; the form of
the message defines the type of error that resulted.

BATCH MODE

The system I/0 devices for the local batch mode are the card reader, card
punch, and 1line printer. The user communicates directly with GCOS for system
services via the GCOS control cards and the usable slave mode instructions.
Because the execution of programs submitted via the local batch mode is carried
out directly under GCOS, the program exists under GCOS as a separate batch job.
Input processing is performed by System Input and allocation by the GCOS
allocator.

The remote batch mode is equivalent to the "local batch mode in capability.
However, the system I/O device is assigned to the remote computer as remote
files rather than to the local card reader and local printer/punch.

4-1 DG75

Batch Call Card

The system call card for FORTRAN in batch mode is:

1 8 16

S FORTY Options
or

$ FORTRAN Options

Operand Field:

The operand field specifies one or more of the following system options
which are available with batch FORTRAN (default options are underlined):

LSTIN
NLSTIN
LSTOU
NLSTOU
DECK
NDECK

COMDK

NCOMDK

MAP

NOMAP

XREF

NXREF

DEBUG

NDEBUG
BCD

ASCII

FORM

NFORM

A listing of source input is prepared by the FORTRAN compiler.
No listing of the source input is prepared.
A listing of the compiled object program output is prepared.
No listing of the compiled objec£ program output is prepared.
A binary object program deck is prepared as output.
No binary object program deck is prepared.
A compressed source deck is prepared as output.
No compreséed source deck is prepared as output.
A storage map of the program labels, variables, and constants 1is
prepared as output. (Exrror message 233 1is printed for all
unreferenced variables.)
No storage map is prepared.
A cross-reference report 1is prepared as output. A TO~-FROM
transfer table 1is generated. The GMAP offset is printed on the
LSTIN report. g

No cross-reference report is prepared.

A run time debug symbol table (.SYMT.) is included in the object
program,

No debug symbol table is prepéred.

The execution time character set is BCD (see Appendix A).

The execution time character set is ASCII (see Appendix A). Refer
to ASCII/BCD Considerations in Section IV for a description of the
JCL to obtain BCD output.

The source program is in standard statement format.

The source program is "free form".

4-2 DG75

7/79

LNO

NLNO

NJREST
JREST

NREST
REST
OPTZ
NOPTZ
DUMP

NDUMP

NWARN

FDS

DML

DDLST

The source input records are line numbered beginning in Column 1
and terminating with the first nonnumeric character. This option
is only operable with the NFORM option (assumed option for NFORM).

The source records are not line numbered (assumed option for
FORM) . .

This job is not restarted following system interruption.
This job is restarted following system interruption.

This job is not restarted with current activity following system
interruption.

This activity is restarted following system interruption.

A global optimization procedure is performed, so that the object
program produced is highly efficient. It should be noted that
this option slows the compilation rate, though not significantly.

Global optimization of the object program is not performed.

Slave memory dump is given if the compilation activity terminates
abnormally.

Program registers, upper SSA, and slave program prefix is dumped
if the compilation activity terminates abnormally.

No compilation warning messages are printed.

Enables the FORTRAN Debugging System (FDS) (Refer +to Appendix F
for an explanation of the FDS),

Invokes the Data Manipulation Language (DML) facility of I-D-S/II
(ASCII is the only default option when the DML option is
specified). Refer to the Data Management-IV (FORTRAN) Reference
Manual.

Generates a listing of the subschema source text when I-D-S/II is
used (ASCII and DML are the default options when the DDLST option
is specified).

NOTES: 1. Independent of the DUMP/NDUMP option, FORTRAN has the
o capability of producing a symbolic dump of the
internal tables in the event of a compiler abort. The
presence of a § SYSOUT *F control card activates this

process.

2. To run a FORTRAN job on a DPS ASCII-only system, the

ASCII option must be explicitly specified on the
$ FORTY control card.

4-3 DG75A

Sample Batch Deck Setup

The following:.deck setup illustrates the required control cards for the
The control cards are

compilation and ‘execution of a batch FORTRAN activity.
fully described in the Control Cards Reference Manual.

8 16

SNUMB cesces
IDENT FORTRAN
OPTION FORTRAN
FORTY Options
or
FORTRAN Options

.

. FORTRAN Source Deck (s)

wv wnnnn Ll

EXECUTE Options
FILE Card(s)
FFILE Card(s)
ENDJOB

N

Sample Batch Link/Overlay JCL

1 8 16

$ OPTION FORTRAN,NOGO

$ SELECT main-object-permfile
$ LINK linkl

$ SELECT suba-object-permfile
$ LINK link2,1linkl

$ SELECT = subb-object-permfile
$ PRMFL, H* ,W,R,hstar-permfile
$ EXECUTE

$ ENDJOB

the main program contains:

CALL LLINK("1link1l")
CALL SUBA

CALL LLINK("1link2")
CALL SUBB

REMOTE BATCH INTERFACE

Refer to the Network ©Processing Supervisor (NPS)

Supervisor (GRTS) manuals for descriptions of deck
submitting a batch job from a remote computer.

7/79 4-4

and Remote

Texrminal

setups

required

for

DG75A

FILE SYSTEM INTERFACE

The file system provides multiprocessor access to a common data base. The
file system allocates permanent file space and controls file access for users in
local and remote batch and time sharing. The file system is fully described in
the File Management Supervisor manual.

TERMINAL/BATCH INTERFACE

The JRN time sharing subsystem allows a batch job to be submitted from a
time sharing terminal. This capability is provided in Appendix B, and is fully
described in the TSS Terminal/Batch‘Interface'Facility reference manual.

ASCII/BCD CONSIDERATIONS

FORTRAN enables the programmer to choose the character set that is most
convenient for the normal mode of execution, or best meets the needs of the
application.

Specification of BCD or ASCII is possible in both batch and time sharing.
In batch, the § FORTY in the $ FORTRAN card provides BCD by default; in time
sharing, the RUN command provides ASCII by default. The selection is made at
compile time and need not normally be designated for execute-only runs.

7/79 4-4.1 ’ DG75A

When BCD is selected,

) Internal character data and formats are carried in BCD

° Storage is allocated at a rate of six characters per word

) Library calls are made to the entry names that work with BCD for 1I/0,
ENCODE, PAUSE, etc.

When ASCII is selected,

° Internal character data and formats are carried in ASCII
® Storage is allocated at a rate of four characters per word
° Library calls are made to the entry names that work with ASCII for

I/0, ENCODE, PAUSE, etc.

Therefore, one generally cannot mix object modules of different character
sets because conflicts arise over which routines are to be loaded from the
library, how to index through character arrays, how to analyze FORMAT
statements, etc.

BCD or ASCII programs execute in either batch or time sharing with certain
automatic convenience functions for dealing with the variety of file and device
types accessible to the program. In terms of specific problems, automatic file
transliteration and/or reformatting on a logical record basis is provided for
the following:

1. Execution of an ASCII program.

a. Input and output can be directed to the reader, printer, punch,
or SYSOUT.

b. Input files can be BCD (media code 0, 2, or 3) or ASCII (media
code 6).

2, Execution of a BCD program. Input files can be ASCII (media code 6).

3. Execution of an ASCII program under time sharing. Input files can be
ASCII (media code 6) or BCD (media code 0, 2, or 3).

4, Binary input/output‘files (media code 1) can be read and/or written
with either character option.

Use of the word "can" in the lists above implies an optional capability.
This is based on the existence of a collection of alternate entry names in the
File and Record Control called from FORTRAN library modules. Specification for
this optional capability in batch is under the programmer's control. The proper
linkage is accomplished when the following control card is presented to the
General Loader:

$ USE ..GTLIT

Files not requiring transliteration and/or reformatting are acceptable as
input, Output files are recorded in the media code relative to the internal
character set of the executing program independent of the environment. BCD
programs output files with media codes 0, 2, and 3; ASCII programs output files
with media codes 6 and 7. ' ‘ '

4-5 DG75

FILE FORMATS

All output files denerated by FORTRAN, whether formatted or unformatted,
ASCII or BCD, sequential or randomlare in standard system format (as described
in the File and Record Control reference manual).

Files generated in time sharing in the build-mode or by Text Editor can be
used directly as ASCII input data files for a FORTRAN object program. BCD file
output can be listed (using the SCAN subsystem) at either the user's terminal or
at a high speed online printer (BATCH verb of SCAN).

GLOBAL OPTIMIZATION

Global optimization gives the user some control over the balance between
compilation and object program efficiency. This analysis has been collected
into a single optional compiler phase that is elected by the OPTZ option on the
language processor control card or the RUN command. The analyses performed
include:

1. Common Subexpression Analysis - This analysis provides a determination
of multiple occurrences of the same subexpression within a program
block. The goal is to perform a given computation only one time.

2. Expression Compute Point Analysis - This analysis provides a
determination of the optimal place and time for the computation of
some expression in relation to the loop structure of the program and
the redefinition points of the expression's constituent elements.

3. Induction Variable Expression Analysis - This analysis determines the
optimal computation sequence. Its intent is to reduce expressions to
simple operations upon an index register at the loop boundaries.

4, Loop Collapsing Analysis - This analysis attempts to reduce two or
more nested loops 1into a single loop.

5. Register Management Analysis - This analysis determines how registers
and temporary storage are to be allocated. Priorities are assigned
according to the number of references to an expression and the 1loop
level of these references. Candidates for global assignment over one
or more program loops are selected.

6. Induction Variable Materialization Analysis - This analysis determines
the necessity for materializing in memory the current value of a DO
index. ;

Memory Conflicts

FORTRAN utilizes the memory designated as open in the slave prefix by
calling a common routine to manage memory (.GCORE). Therefore, conflicts will
arise when another system program (e.g., SORT/MERGE) attempts to use the same
area without calling the «~ommon memory management routine. Conflicts with
SORT/MERGE can be avoided by dividing the free area of memory. (Refer to the
SORT/MERGE manual) . :

lRandom files can optionally be treated as nonstandard format. The file format
consists of fixed length records without record control words and block control
words. See Section V, "Unformatted Random File Input/Output Statements".

7/79 4-6 DG75A

The use of global optimization does not always result in a faster running
program; furthermore, there are situations where the object code generated by
global optimization is not an exact functional equivalent of
no-global-optimization generated code using the same source.

Example

If a program contains multiple references to invariant expressions, code
for the evaluation of that expression follows the program prologue. This
placement could result in the unnecessary evaluation of the expressions if
references were from statements conditionally executed (i.e., the conditions can
be such that the expressions are not to be referenced).

COMMON A,B,C, L1,L2,L3
IF(Ll) 1,2,1

1 Z=A+B

Y=A+B

IF(L2) 3,4,3

22=(B+C)

23=(B+C)

IF(L3) 5,6,5

Y1l=(A+C) + (A+C)**2

w N

Ut o

Y2=(A+C)
6 CONTINUE

Expressions (A+B), (B+C) and (A+C) have multiple references under
conditional code, and are pre-calculated following the prolog. However, if
L1, L2, and L3 were all =zero, this evaluation will have been done
unnecessarily.

Another example demonstrates how results can actually be different (OPTZ vs
NOPTZ) . Consider the following example where the programmer is attempting
to avoid a divide check fault (i.e., division by zero).

FUNCTION FX(A,B)
10 IF(B) 1,2,1
1 FX=A/B+(A/B) **2+ (A/B) **3
GO TO 3
FX=A+A**24+p**3
CONTINUE

wN

ee s 0

END

4-7 DG75

Divide Check

The OPTZ generation may produce ‘a divide check even though a test is made
for zero division. If B=0, this is the case in the previous example when (A/B)
is evaluated prior to the zero test for B. '

This situation can be avoided in either of two ways.

a. The previous exaniple could be rewritten as:

FUNCTION FX(A,B)

10 IF(B.NE.O.)FX=A/B+(A/B) **2+ (A/B)**3
IF(B.EQ.O) FX=A+A**2+A%*3
CONTINUE

e e eee o

END

The optimization phase is "sensitive" to logical IF statements.
Expressions that are only referenced within the truth clause of a
logical IF statement are not removed from such a conditional
setting. -

b. The following modification to the original example eliminates the
side effect.

FUNCTION FX(A,B)
10 IF(B) 1,2,1
1 2Z=A/B
FX=Z24+2%%247%%3
GO TO 3
2 FX=A+A**2+A**3
3 CONTINUE

®e e o000

END

Another situation results from using certain outdated 1library "flag”
routines. For example, if a program uses FLGEOF or FLGERR to set an end-of-file
or error flag, expressions involving these flag variables may appear to the
optimizer as invariant over some range of statements when there actually may be
a redefinition due to input/output.

Example

INTEGER UNT
CALL FLGEOF (UNT,IF)
DO 100 I=1,N
READ (UNT)V1,V2
IF (IF.EQ.0) READ (UNT)V3,V4
IF (IF.EQ.0) READ (UNT) V5 ,V6
100 CONTINUE

4-8 DG75

Since the optimizer does not consider each of the READ statements as a
potential redefinition point for the variable IF, the expression (IF.EQ.0) is
removed from the DO 100 I=1,N loop. Thus, in this case, the EOF is never
sensed; however, the use of the END= clause avoids this problem.

Example

DO 100 I=1,N

READ (UNT,END=10) V1,V2

READ (UNT,END=10) V3, V4
100 READ(UNT,END=10)V5,V6

CRCRC R SR)

10 PRINT,"END OF FILE ON",UNT

In summary, global optimization does not guarantee the generation of faster
running programs, and in some instances undesirable faults can be introduced.
However, analysis of this optimization technique has shown that, in general,
significant improvement in the object code usually results,

BATCH COMPILATION LISTINGS AND REPORTS

The following compilation listings and reports produced by the system are
controlled by options on the $ FORTY or $ FORTRAN control card (default options
are underlined).

Option Listing or Report Produced

LSTIN Source Program Listing

LSTOU Source and Object Program Listing with a Program
Preface Summary

XREF Cross Reference Report, TO-FROM Transfer Table,
and GMAP offset on LSTIN report

MAP Storage Map and Program Preface Summary

DEBUG Debug Symbol Table

The following report codes are used for batch compilation:

Report Code Compilation
74 Print on execution report which includes:
° source program listing

° diagnostic report if NLSTIN option is present
® reports produced by LSTOU,XREF, MAP, and DEBUG options
® compilation statistics report

75 Punch compressed deck (COMDK option)
76 Punch object deck (DECK option)
77 Print alter input list

4-9 DG75

Any diagnostics pertinent to the program are included in the LSTIN report
if it is not suppressed. When the NLSTIN option is present, the diagnostics
appear as a free-standing report.: ‘

The Compilation Statistics Report is produced if any other report is
produced or the DECK or COMDK options are utilized.

Figure 4-1 contains an example of a program with all reports. The
following descriptions explain each report in more detail, using Figure 4-1 as a
base for the description.

Source Program Listing (LSTIN)

Each line of this report, (page 1 of Figure 4-1), is divided into three
fields. The leftmost field contains the line or alter number for each source
line. If the source program is line-numbered (NFORM and LNO options specified),
the actual line number is displayed in this field. 1If the source program is not
line-numbered (FORM or NFORM and NLNO options specified), this field contains
the alter number (relative sequence number of the line).

The second field contains the text of the source statement and is separated
from the first field by six blank characters.

The third field is separated from the second by six blank characters and
contains optional sequence/identification information (columns 73-80) £from the
source line.

Diagnostics are recorded immediately following the source line to which
they apply. Diagnostics that do not apply to a particular source line appear at
the end of the source listing. Comment cards may appear between the source line
and the appropriate diagnostic.

Each diagnostic line begins with five asterisks followed by the character W
to indicate a warning, F for a fatal error, or T for a premature termination of
the compilation (refer to Appendix C for a description of the diagnostics
generated by the compiler).

In Figure 4-1, a warning diagnostic appears after 1line 5; the correct
object code is generated.

If the XREF option is on, this report then contains four fields with the
GMAP offset printed as the leftmost column of the report. The 1line or alter
number is then printed as the second field; followed by the text as the third
field, and the optional sequence information as the fourth field. This gives
the relative location in the object code of each executable source statement.

/79 4-10 DG75A

To-From Transfer Table (XREFS)

The To-From Table (page 2 of Figure 4-1), lists the transfers that exist in
the source program logic. The report is sorted into descending line number
sequence, keying on the originating 1line number, and displays up to five
transfers on one report line. The destination line number field may indicate
the word EXIT or RETURN if the transfer statement is a STOP or RETURN statement.
For assigned GO TO statements, where the label list is not provided, the label
variable name is displayed. Line 29 contains the transfer statement GO TO 7,
which is indicated as the first entry in the transfer report (NOTE: statement 7
begins on line 10); line 28 contains the transfer statement STOP, which is the
second entry in the report; etc.

If the 1line numbers of the source file are not sequentially increased by
one, the actual line number is that of the first executable statement whose line
numpber is less than or equal to the line number printed.

Program Preface Summary (LSTOU)

The Program Preface Summary (page 3 of Figure 4~1), documents the object
module preface (card) information in a format similar to that printed by GMAP.
The source program memory requirements and blank common size are displayed in
octal and decimal followed by ‘the number of the V count bits as used in the
instructions with special (type 3) relocation.

The SYMDEFs entry denotes, in octal, the relative offset of the internal
location corresponding to that symbol definition. This entry is followed by a
list of labeled common blocks which are referenced by this 'module. Associated
with each symbol are three octal fields and one decimal field. The first field
gives the global symbol number associated with the common name for this
compilation. This is the number that appears in the V field of any instruction
referencing this labeled common region. The number is justified according to
the V field. Thus, if labeled common SPACE is global symbol 2, and the V field
is five bits wide, the display is 020000 (bit zero is the sign bit). If the V
field is six bits wide, the display is 010000. The second field contains the
size, in octal, of the labeled common region. The third decimal field contains
the same size in decimal.

Two labeled common regions, .DATA, and .SYMT., receive special treatment by
the 1loader. Although they are not actually labeled common names, they are
included in this portion of the Program Preface Summary. .DATA. 1is allocated
enough space to contain all local data required by the program. This includes
arrays and scalars not appearing in common as arguments, constants, encoded
FORMAT information, NAMELIST lists, temporary storage for intermediate results,
argument pointers, the error linkage pair (E.L..), etc. .SYMT. 1is generated
when the DEBUG option is wused. This block contains a symbol table for all
program variables and statement numbers and can be used for symbolic debugging.

A 1list of external symbol references (SYMREFS) is also included with their
associated global symbol number, justified as described above, for labeled
common names.

4-11 DG75

Storage Map (MAP)

The Storage Map (page 4 of Figure 4-1), provides information on the
allocation of storage for identifiable program elements, and generates any error
messages (#233) for all the variables that are defined but never referenced in
the program unit. This report is divided into three parts: variables and
arrays, statement numbers, and constants.

The first part of the report which lists all program varlables and arrays
in alphabetical order contains four fields:

1. The first field contains the global symbol name relative to which
variable 1is defined. Local variables and arrays are defined relative
to the origin of the .DATA. space. When a variable or array belongs
to some labeled common block, the name of its common is shown; when it
belongs to blank common, the field is empty. Argument variables and
arrays appear as variables of .DATA., and the indicated location 1is
resexrved for a pointer to the actual argument and is initialized on’
entry to the procedure.

2. The two OFFSET fields provide the location of the variable or array
relative to the assigned global name. For arrays, this is the
starting location; subsequent elements of the array are allocated the
higher oxrder locations. The offset is provided in both octal and
decimal for the convenience of the programmer.

3. The MODE field provides the type associated with each identifier.
Switch variables are indicated by an empty field.

The second part of the report lists all referenced statement numbers in
numerical order. The four fields to the right of each entry are the same as
defined above. The ORIGIN fields for FORMAT statement numbers are always .DATA.
and the MODE field indicates FORMAT. For executable statement numbers, the MODE
field is always blank. The ORIGIN field is eight dots (...e....) if this is a
main program, or the first SYMDEF if this is a subprogram. The OFFSET field is
the same as described above.

The third part of this report lists all numeric and character constants
requiring unique storage. All constants are allocated storage relative to the
.DATA. block. The two OFFSET fields and the MODE field are as described for
variables and arrays. Only the first 17 characters are displayed for character
constants.

.Object Program Listing (LSTOU)

The Object Program Listing (pages 5-8 of Figure 4-1), gives a full listing
of the generated object program. The original source statement is identified in
the object listing by "SOURCE LINE xxx" and the source line. The individual
instruction line format is similar to that produced by GMAP. The first field is
the location field followed by the compiled machine language instruction, which
is usually divided into address, operation code, and modifier fields. The
location field and machine language instruction field are in octal. The next
three digits are the relocation bits applicable to the instruction.

4-12 DG75

The symbolic equivalent of the generated instruction is contained in the
next field. This instruction consists of a label field, an operation code
field, and a variable field for address and modifier symbols. Referenced
statement numbers appear in the label field prefixed by the characters ".S".
SYMDEF symbols (such as ENTRY names) also appear in the label field. Operation
code and modifier mnemonics are the same as the standard GMAP mnemonics with the
exception of some of the pseudo-~operation codes.

Data initialization, constants, formats, symbol table entries, etc. are
displayed at the end of the report following the source END line. No object END
instruction is produced.

Debug Symbol Table (DEBUG)

A table of all symbols used in the source program is given on page 9 of
Figure 4-1.

Cross—-Reference List (XREF)

The Cross-Reference List (page 10 of Figure 4-1), lists in alphabetical
order all referenced variables, arrays, statement numbers, SYMREFs and SYMDEFs.
Each element results in four or more entries being produced across the line.
The first field is the octal location (offset) of the item relative to its
global symbol. The second field is the item name or symbol. Statement numbers
are shown with a prefix of ".S". The third field 1is the applicable global
symbol. The fourth field is the 1line number (alter number) of the first
reference. When there are more references, additional 1line numbers are
displayed across the line, and where required, additional lines are written.

The second part of the report lists the statement labels; the first part of
the report contains all other information required for cross referencing.

Miscellaneous Data

Additional compilation data is printed at the end of the report listing.
This data consists of the edit date, the software release level of the compiler,
the processor time and compilation speed in terms of source lines per minute,
the number of diagnostics printed, and the amount of memory space required for
the compilation. '

4-13 DG75

LABEL cesane PAGE 1
33491 J1 06~09-78 Or.51t

1 LGG1CAL GIOSORT dau0010
2 COMMON C IO SURT 7SPACE/SB 0y000110
3 CHARACTER A®72(100),65%72 yu000120
“ JaTa y/717 00000130
3 ASSIGN 1 'TO OF 00000140
®sssey 1293 EOF IS USED AS A SWiTCH IN ASSIGN STATLMENT aND 13 NOT TYPeD INTEGER

) 1 0C 5 I=1,100 00000150
14 REAC(5,11,ER0=150) A(I) 00008160
8 IF(ACL) JNE"**BiN¥%8™) GOTO § 00000170
9 11 FORMAT (A72) 90000180
10 7 N = I-1 LOLBU19d
11 GUTC 13 0u000208
12 9 CONTINUE 00090210
13 N = 100 00080220
14 13 LIGSORT = FALdc. 0uGouz30
15 00 20 I=1,N-1 00080240
15 IF(A(I+1).6c,ACI2) GOTO 30 00600250
L7 UIDSORT = .TRUZ. 00080260
13 o = ALI) 90003279
19 acl) = AL+ 26889288
20 A(I+1) = S 00300299
21 32 CONTINUE . 00800360
22 IF(LIDSCRT) GOTO 13 66000310
23 7 WRITE (D120 Jy (ACL) 4 121,N) 40000320
2+ NENLSY 40000339
25 a2 FORMAT (1 ALPHABETIC SORT - LIST™,IS5//7(* *,A300) 000003%0
20 66 TO cOF, (1,149 00000350
27 149 I=1 9000036V
28 150 IF(Li «€L. 1) STOP “END ALPHABETIC SORT*™ 00000370
29 ASSIGN 149 TO tOFj GO VO 7 0000030610
30 END 30000390

Source Program Listing

Figure 4-1. Compilation Listings and Reports

4-14 DG75

33697 31 06-09-78 08.51€ LABEL PAGE 2

TRANSFER3 a0 e
F0M LINce® TO LINEO FROM LINE® TO LINE® FROM LINc® TO LINES
cd 0 23 EXIT <d ° .
16 21 11 1w L] 12
Fuum caned TU LIMce FRUM CINce TO oINS
o 27 22 1e
7 28

To-From Transfer Table

Figure 4-1 (cont). Compilation Listings and Reports

4-15 ' DG75

LABEL tecene PAGE 3
334971 01 06-09-78 08.516

PROGRAM PRzF ACC
PROGRAM BRc AK 201

COMMON LENGTH 1
V COUNT BITo 5
STMOEFS
seseen 0
LASELLED COMHON LENGTH
WDATA, 01v0U0 231s
« SYMT, 02J30u0 we
SPACE u3800y 1
SYMREFS
+FCOM. d«9000
«FCxT, 0>90060
«FOERR 0b0U0G
«FFIL. 07a00¢
«FRTN. 100000
«FCNVC 119009
«FCNVI 200u0
«FURO, 1300006
«FROD . 140000

Program Prefix Summary

Figure 4-1 (cont). Compilation Listings and Reports

4-16 » DG75

33697 31 06-09-78 08.S1¢
STORAGE Nad

SYMBOLIC OAIGIN OFFSET(18)

eZelas .0ATA, 1201

. «OATA. 0

8 SPACE o

010S0RT e

€0F «ATA, 1204

1 +OATA, 1205

J cuhlA, 1203

9 JOATA, 1213

STATENENT NUMBLRS

1 eecseene 2

7T ceevenes 32

I creenene 36

11 .0ala. 1208

12 .0ata, 1217

13 42

93 80

143 116

159 118

CONSTANTS (,DATA,)

5 1207

evegnpees 1210

1212

6 121¢

ENO ALPAABETIC SO 1226

MO0k

oousBL:
CHARACTER
CHARACTER
LOGICAL

INTEGER
INTEGER
INTEGER

FORMAT
FORMATY

INTEGER
CHARACTER
CHARACTER
INTEG:R
CHARACTER

(XX XYY

OFFSET(8)

2201
]
[]
]
<204
2205
203
2215

0
e
2274
¢301

120
104
1686

2267
2272
227«
<300
<310

Figure 4-1 (cont).

Storage Map

Compilation Listings and Reports

4-17

DG75

33437 31 06-09-78 Ge.51¢
(RS a 1]
SULRCE LINE
SOUR(E LINE
SCURCE CINE
SOLRLe CINE
SULRCE 1IN
300000 000J)i¢ 6200 GO Oi0
000001 0122v4 7400 00 030
SOURCE ~INE
Qu(tu2
300002 wuddui Jiew €7 GoU
0000C3 912205 7¢60 CC 030
10000+ OV0J1e w02C L7 000
SOLRLE LINME
300005 012206 7560 GO 030
000006 14030C 7010 €0 O30
J00007 040015 71060 (U0 G0
400010 012261 000007 030
000011 012267 0000 GO 030
000012 012270 0CO0 00 030
000013 0GU000 Qu00 GO 000
00U01s 030166 7100 GO C10
J00015 912260 7c¢20 GU U3
000030 41061+ 6X50 12 030
300017 1:0000 7010 00 230
300020 Q3011v 0110 07 000
J0ud21 14GI0u 701d CO 030
SUURCE LINE
300022 d12¢05 2360 06 w30
100023 600018 4020 €7 000
20002« 000u00 6220 06 000
00002> 012272 6270 €0 030
000026 410016 6¢1CG 12 630
400027 Je5b40 5602 01 000
300030 040300 2350 27 GOO
300031 000UGO 1150 11 009
J00032 0J2004 6010 64 GUO
000033 01227« 2350 G0 030
90003« 024240 5202 01 o000
000035 Q00000 1150 11 €00
600026 033040 6000 CO 010
J00037 0u0Gww 7100 00 010
S0URCE L INE
SOURCE CINE
030060
000060 0.,2205 2360 (O 030
200041 QubuGl 1720 07 000
d03062 012275 %00 (0 0390
SOURCE 1Nt
000045 900052 7160 €0 010

30uacE LINe
000064

NULL

=AXx0
$Tx0

W31 Wb
L0G
STQ
NPY .

376
ISxt
TRA
ZERO
ARG
ARG
ARG
TRA
[Y94
EAR
FSxi
NOP
TsSxi

vCQ
NPy
iax2
“AX?
EAX1
WPe
Lba
CHPA
TNZ
LDA
RPT
CHPA
T2Z¢
TRA
9
1
7 NULL
«0Q
38G
SYQ

TRA

NULL

LABEL PAGE

LOGICAL DIDSORT
COMHON JIDSORT/SPACE/B
CHARACTCR A®T2(1u0),8°72
LATA JrL/
ASSIoN 1 TY <OF

«S1

EO0F

1 UL 2 I=L1,100

1yL0
1

12 40)
REAU(S,11,END=150) A(D)
+DATA.+1206
+FROU,
%eb
sleloey?
«OATA. #2207
+S11
[
«5153
«DATA.+1200
A-12,2
«FCNVC
72,06L
oFKIN,
IF (A(I) o NEL“®®*END***™)" GUTO 9
I
12,0L
0, W
+DATA.+1210
A-1c,ye
2y1,TNZ
0,7
0,1
“yil
+0ATA.#2c12
10,1,7TN2
Oy
“eg
«S9
11 FORMAT (A7)
r N = -1

1
1yl
N

GuUTO 1o
*>19
9 CUNTING:

Figure 4-1 (cont).

Object Program Listing

Compilation Listings and

Reports

4-18

DG75

33497 91 06-09-78 Ud.51¢
ICI06Y 0322¢5 24€0 €O 03D “0G
30003 020631 G760 €7 000 AUG
JOuileo 0)31e% t1ed €7 GOU CHPQ
380047 000uus cl4G €0 w10 ™I
SULRCE CINE 1]
J000SY J)01ss &3¢0 L7 GOO L0Q
000051 012275 7560 (0 030 s1Q
SOURCE LINE 14
000052 «313 NULL
000352 000000 236C €7 03 w0
700053 000Ul 7560 L0 G20 516G
SCLRLE LINE 15
00005« QdUOUae 2220 3 0UO L0x2
300055 © J12275 23¢D 00 030 -w0a
J00056 006002 1760 07 0490 s6Q
306057 012276 7560 60 0630 sTQ
J0U0ed 0008060 5330 03 o0vO NEGL
800061 00C300 0760 G7 000 ADQ
300062 020302 €L40 0¢ 000 ™1
400063 9u0001 33¢0 €7 000 [X+]+]
00306+ 012277 7560 00 030 sT1Q
SOURCe L INE 16
J0J0€5 010006 €270 22 L30 ax?
J0u065 410214 6210 1Z G630 €axi
000067 031040 5¢02 01 000 RPU
000079 00CQU0 235C 7 QOO Loa
060071 0J5u00 1150 11 GO0 CHPA
000072 0v0J74 ole0 U0 010 TNC
000073 000il0 7100 00 V10 TRA
SOURCE LINE 17
-00007+ 0G0003 23c0 67 000 [q]]
980075 (UUR00 7560 OG 020 s1Q
SOURCE L INE 18
003070 «1001% 6270 12 030 EAX?
000077 030600 6c10 00 030 cAX1
800400 0490000 ¥110 07 000 NOF
000108 031000 5c02 01 000 RPD
000102 Q390300 2350 17 00 L0a
000163 0320000 7550 11 Q00 sta
SOURCE LIME 19
00010« 010000 6270 12 030 CAX?
000105 &1dJd1e vétd 12 030 EAXL
000106 000000 C110 C7 000 NOP
000107 V21000 5602 ©3 030 RFO
000110 0Jud00 23%0 17 o000 L0A
000112 000000 7550 11 000 ita
SUURCe LINE 20
000112 Jovu60 6270 CO 030 €axz
300113 010000 6210 12 O3 LAX1
00012 0C0J00 0110 €7 002 NOP
300115 031500 5602 C1 000 RPD
0001156 0u0UIW0 2356 17 Q00 L0A

1
1,00
101,00
*-J0
N x 100
100,00
N

19 UIDSORT = FALME.

0y UL
OIudOKt
CU 90 l=a,N=-1
12,0u
N
1,0L
+DATA.¢2c1b
0
0,0L
2y1C
1,0t
+DATA,+1215
IF(atlel) Ge.ACL)) GOTO 90
A,z
A-12,2
12914TNZ
0,7
Urd
e g
«590
D10SORY = .TRuk,
1,00
U10SORT
6 = all)
A-12,2
8

0,0L
12,1
0,7

‘094

ALL) = AcCIed)
Ay2
A=12y2
0,0L
1251
0,7
0t
atled) = 8
8
Ay2
0,00L
12,1
0,7

eessss

PAGE 6

Object Program Listing (cont)

Figure 4-1 (cont).

Compilation Listings and Reports

4-19

DG75

33697 31 06-09-78 0E.Sit LABEL secsen PAGE

000117 Oud0Ov 7550 11 CO9 aTh [' PR
SOURCE LINE 21 90 CUNTINLE
006126 +360 NuCL
100120 Q0001w 0ccd U3 GOO ADLXZ 12,00
00012F 012277 G>40 €0 033 a0s «UATA.+vaca>
060122 000005 €C10 €0 010 TNZ *-29
SCURLE CINE 22 1F (LiudIRT) GUTO 13
300123 U000 22«0 CC 020 SIN OIUBORT
00012« 050352 6010 GG C10 TNZ «S13 .
SOURCE LINE 23 (44 WRITE(0,22) Jy(ALL) pI21,N)
000125 130000 7010 €O 030 TSX1 «FWRU.
000120 Q00232 7100 68 J10 TRA ey
200127 .01c2et 000027 030 JERD osEeleey2d
000139 ¢12300 GGOO CO 030 ARG «DATA. 1216
000131 012301 0000 00 030 ARG «312
000132 Jt22¢3 2350 €0 &3 LDA J
000133 120093 7610 00 030 TSX1 +FCNVI
000134« 00014 2220 L3 000 L0x2 12,0V
080135 5i¢273 a3cd L0 030 Lca N
000130 000002 6040 O4 —000 Tnl 2,1C
300137 040001 3300 €7 Q00 LCGu tyuL
000140 012277 7%€0 CO 030 STQ «DATA,+1215
0001641 410014 6350 12 030 cAA A-12,2
000142 110000 7010 00 030 TSX1 JFCNVC
J00143 0J0110 0110 C? 0Ou NOP 72,00
000144 000014 0220 U3 000 apLXZ 12,0V
300165 012277 9540 GO 030 n0sS «UATA, ¢ 215
006140 000141 6010 00 010 T™Z 5
000147 970000 7Ci0 00 030 TSXT oFFles
SOURCE LIN: 26 Jsurd
000150 012263 0540 00 330 40s J .
SOURCE LINE 25 12 FORMATC*1 ALPHABLTIC SORT = CIST“515/7¢" k483
SCuRCe LING 20 60 TO cOF,y (1,269
000151 00000 ©210 04 000 EAXL 6,1C
000152 012264 6350 1 030 cha EOF,I
000153 0C4300 5202 01 000 RPT 2y3,T2e
00015 00G0GO 1150 11 Q06 CHPA 0,1
800155 777777 000 31 008 1y43 “1,1*
000156 0J0u03 71u0 C& 000 TRA 3,1C
000157 0Ou00ul 0CC0 €0 010 ARG St
000168 0UDi6% 000G 00 010 ARG «Sik9
800161 960000 7010 66 030 TSX1- JFOERR
000162 (001c4 71006 6O 010 TRA *e2
008163 - 012261 006032 €630 ZERD otslvey26
SOURCE LINE 27 149 1=1
000164 5149 NULL
000164 0000601 2360 07 .12 (W]) 1,00
800165 012265 7900 00 630 sTQ I
: SOLRCE LINE 238 1580 LF(I «cQs 1) STOP “END ALPHAGETIC SORT™
.d0016¢ »3150 NULL
000165 JJudli 2360 G7 000 T 1,00
300167 912205 1160 GO (30 CHFQ 1

Object Program Listing (cont)

Figure 4-1 (cont). Compilation Listings and Reports

4-20 DG75

33497 01

300372
900171
003172
000173
00317«
[1.13%4]

000176
000177
goazoe

002261
002262
002263

002267
002270

002272 —59995425452%

002273
00227«

002300
302301
002302
802303
002304
802305
02305
0g230?
002310
002314
002312
002313

06-09-78

06.51¢

000170 ouiu GO 010 TNG
0200980 7v1d (O 030 TsSxg
Jdii17e 71C0 GO G1d Tka

012261 00003« 030 LERO
022310 0000 00 030 ARG
000023 0000 C7 008 ARG
SOURCE LINE 29
gu0iey c200 00 010 cAXO
01226« 74uC 0 030 >Tx0
00Gg«d 7100 GO J10 TRA
SOURCE o INE 3

00¢2o1 ORG
40930200600 000 ocebee oc?t
333333333333 (11 £TC
00003060001 03 v JEC
802267 URG
0U0000200005 000 0€C
352107025520 000 .S11 -]
0decare JRG

900 3C1I

549456202020 000 all
202020202020 000 3C1
60z300 ORG
d0Uv0u00LEDG voo JEC
357001202163 000 .512 oCl
27302122:503 060 acl
3123¢d024c51 ¢uo 3l
035922204331 600 acl
020376732105 000 aCl
6101337¢4070 000 acl
732103905555 000 8Cl
254524202163 woo oCl
«73021222563 000 8C1
312320624€51 0go acl
632020202020 000 ecl

LABEL

.Qb
«FCXT.
L X1
etolee,y2B
«UATA 1224
19,00
ASSIGN 149 T0 EOF;
«S169
eOF
«S7

60 10 7

ENO

«DATA. #1202

1

«0ATA. #1207
5

(A72)

JGATA, #1216
sosEND
LER]

«OATA.»1210
1)

(™1 aL
PhHABET
IC SOR
T -1
sT, 1%
2
1A30))
END AL
PHABET
IC SOR
T

PAGE 8

Object Program Listing (cont)

Figure 4-1 (cont).

Compilation Listings and Reports

4-21

DG75

33497 31 06-09-78

UELUG SYM20L TABLc (.>YHT.)

06.516

300000 332533432333 uoo
00000t 012261000023 03¢
000002 243124E2L651 000
000003 000000105025 Geo
900606 2229206230£0620 000
300003 030300000020 630
000006 212020297020 000
000007 010000000023 030
900010 «12320¢0c020 9oy
060011 012263000021 030
000012 01202002020 000
000013 000002000077 010
300016 254626¢0c020C oo
6C0015 012264000020 03¢0
000016 34202029:020 060
000017 012265000022 630
900620 112220204020 000
000021 000043000877 10
300022 0iG120cdc020 Goo
000023 012270000077 030
20302+ 010500c02020 000
300025 0J016600C077 410
J30620 07¢02020.020 0090
00v027 ULOOVLOGOGO77 s10
000030 +52020202020 009
000031 912275000021 030
000032 010320202028 609
000033 0000520800077 010
00003 110020202020 000
000035 090120000077 019
00003> 010220202920 000
306037 012301000877 030
000060 31041120020 [TT]
000001 0UO16&L0UO0O077 010

LABEL

VTAYF
VTABF
VTABF
VTAGF
VTABF
LThWBF
VTABF
VY hGF
TABF
LTAGF
LTAEF
LTABF
VTALF
LTABF
+TABF
TABF

LTABF

cesens PAGE 9

etoloeeyO0UBLL
OIOSORT yLOGIVAL
69 CHARACTER
A,CHARALTCR
vy INTEGER

«S51

cOF ,CHARACTER
I, INTEuER

«S9

«S11

+5150

57

Ny INTEGER
«513

«590

+S12

¢S1wy

Figure 4-1 (cont).

Debug Symbol Table

Compilation Listings and

Reports

DG75

3337 21

GRIGIN SYM3LLIC

06-09-78

06.51¢

SEFEREWCED bY ulTrk NuMBZR

LAoeL

sseces

PAGE

10

0 eovreies sessonns 3
11 LFONVC ? 23
12 JFCuvl)
@ +FCOM,
5 JFCxl. 23
7 JFFIL. 23
o FGIRR 20
1% JFRIC. 7
19 JFRIN. 7
13 .FwRC. 23
2231 sEooue couTa, b 7 23 26 FT}
0 A .0ata, 4 R 1¢ 18 19 <0 23
32 SPLCE 18 20
0 UICSOKI 14 17 22
i22+ :0F cLuih, 3 2¢ 29
2205 1 «0ATA, ° 8) 1c el 28
2203 J «vava, - 23 ok
2273 W JORTA, 10 13 15 23
2 .50 FORMAT
2 .51 5 ° c6
) .S7 V] 29
6 oS9 8 12
227) .s511 FORMAT ?
23)1 .S12 FORMAT 23
22 .513 113 14 <2
3 o577
120 .59¢ 1¢ 21
10% <S169S 20 27 2%
tos .S150 14 2¢
Cross Reference List

Figure 4-1 (cont).

Compilation Listings and Reports

DG75

EDIT DATE 06-09-78 *k14,1 **
ELAPSED TIME (SEC) 1.05 LINES/MINUTE 1704

THERE WERE 1 DIAGNOSTICS IN ABOVE COMPILATION
30K WORDS WERE USED FOR THIS COMPILATION

Miscellaneous Data

Figure 4-1 {(cont). Compilation Listings and Reports

DG75

SECTION V

INPUT AND OUTPUT

GENERAL DESCRIPTION

FORTRAN input/output (I/0O) statements cause the transmission of information
between internal storage and external input/output devices. Each I/0 statement
can specify an implicit (NAMELIST) or explicit list of scalars, arrays, and
array elements; output statements can also specify constants and expressions of
all types. The designated data items are assigned values on input and, on
output, have their values transferred to the specified output device. The I/0
statements used in FORTRAN (READ and DECODE for input; WRITE, PRINT, PUNCH, and
ENCODE for output) are briefly described in Section III. This section contains
a more detailed description of the following elements which make up the
input/output statements.

) File reference (file code)

[FORMAT

) NAMELIST name reference

® Internal storage buffer reference for ENCODE and DECODE

° Optional transfer condition

° Input/output list specification

File reference can consist of an integer constant, an integer variable, or
an integer expression that identifies the input/output unit. The value of the
integer will be a two-digit file code, which must be in the range
01 < file £ 63. A file is associated with a specific device by using the § FILE

and § FFILE control cards or by using the 'fe' file descriptors of the RUN
command described in Appendix B.

FORMAT reference can be an integer constant representing the statement
label of a FORMAT statement, a character scalar, or an array name. If a
statement label is represented, the identified FORMAT statement must appear in
the same program unit as the input/output statement. If a character variable
name is referenced, the variable must contain FORMAT information (see "Variable
Format Specifications" in this section).

NAMELIST input/output .is indicated by the presence of a NAMELIST name in
the format reference position of the READ, WRITE, and PRINT statements. The
NAMELIST statement (s) and ‘its associated 1list must appear before any
input/output statements that reference the NAMELIST name.

5-1 DG75

Internal storage buffer applieé only to the ENCODE and DECODE statements.
While it i1s desirable to use character variables, variable names of any type can
be used. ‘ : :

Optional transfer conditions (end-of-file and error) are designated as END=
and ERR=, respectively. ~ END= can appear in sequential or random file input
statements; ERR= can appear in any input/output statement. ‘A statement label or
switch variable name can follow the equal sign (=), and the order of the
transfer conditions is not important. - Conditions that can cause an error return
include transmission errors or any of the error conditions described in the File
and Record Control manual.

I/0 list specification information that is transmitted is collected into
records that can be formatted or unformatted. A formatted record consists of a
string of permissible characters in the character set. The transfer of such a
record requires that FORMAT information be referenced or implied, to supply the
necessary positioning and conversion specifications. The number of records
transferred by the execution of a formatted I/O statement is determined by the
list and the referenced FORMAT statement. A formatted record can be analogous
to a print line or a card image, whereas, an unformatted record consists of a
string of words.

There are two kinds of formatted input/output: format directed and list
directed. List directed formatted input/output can be specified by a FORMAT
statement of the form FORMAT(V) or it can be implied by the form and content of
the input/output statement.

Input/output Statements

Formatted Read/Write Statements -~ These statements include a FORMAT
reference, the file reference, possibly an end-of-file option, an error
return option, and a list specification. List directed I/0 is accomplished
via the FORMAT (V). Namelist I/O is accomplished with a NAMELIST name as a
format reference.

Unformatted Read/Write Statements - These statements refer to binary word
oriented sequential and random files.

Manipulation Input/output Statements ~ These statements are for file
operations relating to positioning and file demarcation, and can be used to
operate on sequential access files only.

FORMAT and NAMELIST Statements - These two nonexecutable statements are
used with the formatted input/output statements.

The FORMAT statement specifies the arrangement of data in the input/output
record. If the FORMAT statement is referred to by a READ statement, the input
data must meet the specifications described later in this section.

The NAMELIST statement specifies an input/output list of variables and/or
arrays. Input/output of the values associated with the 1list is affected by
reference to the NAMELIST name in a READ, PRINT, or WRITE statement. If the
NAMELIST name is referred to by a READ statement, the input data must meet the
specifications described later in this section.

5~2 DG75

FILE REFERENCE

In the source program, files can be designated by any integer expression,
the value of which must be in the range of 1 £ file £63. In batch mode, the
equating of a numeric file designation with some actual device is accomplished
via standard GCOS file allogcation control cards using a two-digit file code of
the same integer value as the corresponding file designator. Thus, WRITE
(06,100) references file code 06 at run time.

Since the file reference can be any integer expression, the following
statements also reference file code 06.

I=5
WRITE (I+1, 100)

Five specific file designators are predefined for all FORTRAN programs and
serve as the default assignments in a batch environment:

05 - standard input file (I*)

READ (05,f) list
READ (05,x)

06 -~ standard output file (P¥*)

WRITE (06,f) list
WRITE (06,x)

This output appears in report code 06 of the execution report.
41 - standard input file (I¥*)

READ, list

READ f, list
READ x
READ(41,f) 1list
READ (41,x)

42 - standard print output file (P¥*)

PRINT, list
PRINT f, list
PRINT x

WRITE (42,f) list
WRITE (42,x)

This output appears in report code 523 of the execution report.
43 - standard punch output file (P*)

PUNCH x
PUNCH, list
PUNCH £, list
WRITE (43,f) list
WRITE (43,x)

This output is directed to the card punch. Its report code is 53g.

FORMAT REFERENCE
namelist name

»x
[}

NOTE: These file designators can be overridden by the programmer.

5-3 ‘ DG75

FORMAT SPECIFICATIONS

The FORMAT statement in FORTRAN specifies the physical description of the
input/output data items, This description can be designated in several
different forms, as described in the following paragraphs.

Field Separators

The field separator, which is used to separate the field descriptors of a
FORMAT statement, may be a slash, a comma, or a series of slashes. When the
slash is used to separate field descriptors it specifies a demarcation of
formatted records.

Repeat Specification

A field descriptor can be repeated by placing the repetition number before
the field descriptor with the exception of quoted strings, tabulation controls,
nH, and nX.

Example

FORMAT (3E12.4)
is the repeat specification for

FORMAT (El2.4, El2.4, El12.4)

A group of field descriptors can be repeated by enclosing the group in
parentheses and placing the repetition number before the parentheses. This

enables two 1levels of grouping to be permitted, using the same rules for
representation.

Example

FORMAT (2(F10.6, E10.2)
FORMAT (2(13,2(F8.4, E8.2)), Al0)

are the repeat specifications for

FORMAT (F10.6, E10.2, F10.6, E10.2) _
FORMAT (I3, F8.4, E8.2, F8.4, E8.2, I3, F8.4, E8.2, F8.4, E8.2, Al0)

5-4 DG75

Scale Factors

To permit more general use of D-, E-, F-, and G-descriptors a signed
integer constant scale factor followed by the letter P can precede the
specification., The magnitude of the scale factor must be between -8 and +8,
inclusive., The scale factor is defined for input as follows:

- (scale factor)
10 X external quantity = internal quantity

For an F-type output, the scale factor is defined as follows:

+(scale factor)
external quantity = internal quantity x 10

For D- and E-type output conversion, the mantissa part of the output is
multiplied by 10**(scale factor) and the exponent 1is reduced by the scale
factor. A scale factor of 1P causes a nonzero numeric to print to the left of
the decimal point, thus providing an extra digit of useful numeric output data
with no net increase in field width as compared to a scale factor of zero.

For G output conversion, if the range of the value is such that the
effective use is an F-conversion, the effect of the scale factor is suspended.
If the effective use of E-conversion is required, the effect is the same as for
E-output.

If input data is in the form xx.xxxx and it is intended for use internally
in the form .xxxxxx, then the FORMAT specification to affect this change is
2PF7.4. For output data, scale factors can be used with D-, E-, F-, and
G~conversion.

Example

The statement FORMAT (I2,3F11.3) might output the following printed line:

27PBR¥B~9 3. 20 9 pKBKEE-0 . 00 8BKBKEKIKO0 . 554

But the statement FORMAT (I2,1P3Fll.3) used with the same data would output the
following line:

27BBY-932.094pBYKEEB~-0 . 0 76 BBBEYKS . 536
whereas, the statement FORMAT (I2,-1P3F1ll.3) would output the following line:

27pBYPIB-9 . 32 1ppPBPK-0 .00 1BBBEEEO0 . 055

_ A scale factor is assumed to be zero if no other value has been given.
However, once a value has been given, it holds for all D-, E-, F-, and
G-conversions following the scale factor within the same FORMAT statement. This
applies to both single-record formats, multiple-record formats, and to repeated
portions of formats . Once the scale factor has been given, a subsequent scale
factor of zero in the same FORMAT statement must be specified by OP. For F-type
conversion, the output of numbers with an absolute value greater than or equal
to 235 after scaling, is output in E-conversion. Scale factors have no effect
on I- and O-conversion. o

5-5 DG75

Multiple Record Formats

When the list of an input or output statement is used to transmit more than
one record with different formats, a slash (/) is used to separate the format
specifications for the different lines. For example, if two records are to be
read with a single READ statement and the first has a five-digit integer and the
second has five real numbers, the FORMAT statement could be:

FORMAT (I5/5E10.3)

It is also possible to specify a special format for the first (one or more)
records and a different format for subsequent records. This is done by
enclosing the last record specifications in parentheses. For example, if the
first card in a deck has an integer and a real number and all the following
cards contain two integers and a real number, the FORMAT statement might be:

FORMAT (16,E10.3/(216,E12.3))

If a multiple-line format is desired in which the first two lines are to be
printed according to a special format, and all remaining 1lines according to
another format, the last line specification should be enclosed in a second pair
of parentheses.

Example:

FORMAT (I12,3E12.4/2F10.3,3F9.4/(10F12.4))

If data items remain to be output after the format specification has been
completely "used", the format repeats from the last previous left parenthesis
that is at level 0 or 1. The various 1levels of parentheses are illustrated
below. The parentheses labeled 0 are zero level parentheses; those labeled 1
are first level parentheses; and those labeled 2 are second 1level parentheses,

Example

FORMAT (3E10.3,(12,2(F12.4,F10.3)),D28.17)
0 1 2 21 0

If more items in the list are to be transmitted after the format statement
has been completely used, the FORMAT repeats from the 1last first-level 1left
parenthesis (i.e., the parenthesis preceding 12).

NOTE: In the examples above, both the slash and the final right

parenthesis of the FORMAT statement are used to indicate the
termination of a record.

5-6 DG75

Slashes have the following affect in a format statement:

Location of Slashes Blank Lines Input Records
in Format Printed Skipped

Beginning n n

Middle n-1 n-1

End n-1 n

(Format has

slashes only) n n

Carriage Control

The WRITE (file, form), PRINT, and PRINT form, statements prepare fields in
edited format for the printer. The first character of each record is examined
to see if it is a control character to regulate the spacing of the printer. If
the first character is recognized as a control character, it is replaced by a
blank in the printed line and the line printed after the proper spacing has been
affected. This control is usually obtained by beginning a FORMAT specification
with 1HP followed by the desired control character.

Output Device Control

In the absence of a NOSLEW option on a $ FFILE control card (batch mode
only), the spacing of the printing on the output device is controlled by the
first character of the line of output. The first character of the print line is
examined to determine if it is a control character to regulate the spacing of
the output device. If the first character is recognized as a control
character, the line is printed after the proper spacing has been affected. The
control character is blank when the 1line is printed. This control affects
printers, terminals, and displays. When FORMAT (V) is used, either explicitly
or implicitly, a blank character is inserted to advance the printer to the next
line.

The control characters produce the following effects:

First
Character Effect

0 Causes one blank line to be inserted to provide double
spacing.

+ Causes an overprint. In batch, no advance to the next
line occurs. In time sharing, a carriage return is
obtained but no line feed occurs.

1 Causes a slew to the top of the next page before
printing (batch mode only).

& Suppresses carriage return and line feed. No fill
characters are inserted (time sharing mode only).

Any other Causes single line spacing.

NOTE: If a single question mark character or single exclamation point
character is encountered in any position on the print line, these
characters will be interpreted as special printer control characters
(refer to the File and Record Control manual for additional
information) .

5-7 DG75

Input Data

When
following

data to be input to the object program is under format contrcl, the
specifications are required:

The data must correspord in order, type, and field designation with
the field specifications in the FORMAT statements.

The data field can be shortened by using commas for delimiters (i.e.,
the input record can contain 1,PpPPE2PEY3, for the format specification

- 3I6; the input values will be 1, 2, 3).

If a negative number is to be indicated, the minus sign must be used;
the plus sign is optional for a positive number.

Blanks in a numeric field are interpreted as zero.

Numbers for E- and F- conversion can designate any number of digits;
however, only the high-order eight digits of precision are retained,
and the number is rounded to eight digits of accuracy.

Numbers for D- conversion can designate any number of digits;
however, only the high-order 18 digits are retained, and the number is
rounded to 18 digits of accuracy.

Numeric data must be right-justified in the field.

The following procedures are permitted in the preparation of input data:

Numbers for D- and E-conversion do not need to have four columns
allocated to the exponent field. The beginning of the exponent field
may be marked by a D or an E; if that is omitted, by a plus or minus
sign (but not a blank). For example, E2, E+2, +2, +02, and D+02 are
all permissible exponent fields. :

Numbers for D~, E-, and F-conversion do not need to contain a decimal
point; the format specification 1is sufficient. For example, the
number -09321+1 with the specification El2.4 is treated as though the
decimal point had been placed between the 0 and the 9. If the decimal
point is included in the field, its position overrides the position
indicated in the format specification.

Numeric Field Descriptors

Six field descriptors are available for numeric data:

Internal Conversion Code External

Floating-point

(double precision) D Real with D exponent
Floating-point E Real with E exponent
Floating-point F Real without exponent
Floating-point G Appropriate type
Integer I Decimal Integer
Integer or Floating-

point 0 Octal Integer

These numeric field descriptors are specified in the forms

PrDw.d, PrEw.d, PrFw.d, PxGw.d, riw, rOw,

5-8 DG75

where:

where:

D-,

1.

D, E, F, G, I, and O represent the type of conversion.

w is an unsigned integer constant representing the field width for
converted data; this field width can be greater than required to
provide spacing between numbers.

d is an unsigned integer or zero representing the number of digits
of the field that appear to the right of the decimal point. For
double precision numbers d is limited to 18 and for real numbers,
d is limited to 8; d is right-justified in the field for both
double precision and real numbers.

P is optional and represents a scale factor designator.

r is the repeat specification; it is an optional nonzero integer
constant indicating the number of occurrences of the numeric
field descriptor that follows.

Example

The statement FORMAT (I2,E12.4,08,F10.4,D25.16) might cause the

following line to be printed

27¥~0.9321EB0257734276p}6~0.0076)}6-0.78789779095006 72DJ03
]

L t ! 1 L L
i
w=2 d=4 w=8 =4 d=16
w=12 w=10 w=25
. A e\ I\ ~ J
12 El12.4 08 F10.4 D25.16

E indicates a blank space.

E~, F~, G-, I-, and O~format conversions must follow these rules:

No format specification should be designated if it provides for more

characters (including blanks) than the number permitted for a
particular input/output record, or the capabilities of the relevant
device.

Information transmitted with the

O~ conversion must have real or integer names

G- conversion must have real, double precision, or complex names
E- conversion must have real, double precision, or complex names
F- conversion must have real, double precision, or complex names
I- conversion must have integer names

D- conversion must have real, double precision, or complex names

5-9 DG75

The numeric field descriptor Gw.d indicates that the external field
occupies w positions with d significant digits. The value of the list
item appears, or is to appear, internally as a real datum.

Input processing is the same as the F-conversion with the exception of
scale processing.

The method of representation in the external output string is a
function of the magnitude of the real datum being converted. . If N 1is
the magnitude of the internal datum the following tabulation exhibits
a correspondence between N and the equivalent method of conversion
that will be effected:

Magnitude Equivalent Output Conversion
of Datum Effected

0.15NZ1) F(w-4).d,4x

1ENZL10 F(w—-4).(d-1),4X

104-2 <y < 104-1 F(w-4).1,4X

109-1 <N < 104 F(w-4) .0 ,4X

Otherwise, nPEw.d

NOTE: The effect of the scale factor 1is suspended unless the
magnitude of the datum to be converted is outside of the range
that permits effective use of the F-conversion.

The field width w, for D-, E~, F-, and G-conversions, must include a
space for a decimal point and a space for the sign. The D-, E-, and
G-conversions also require space for the exponent. For example, for
D- and E- and G-conversions on output, w > d+6, and for F-conversion,
w > d+2.

The exponent, which can be used with D- and E-conversions, is the
power of 10 to which the number must be raised to obtain its true
value. The exponent is written with an E (for E-conversion) or D (for
D-conversion) followed by a minus sign if the exponent is negative or
a plus sign or a blank if the exponent is positive, and then followed
by two numbers that are the exponent.

Example
.002 is equivalent to the number .2E-02.

For D-conversion input, up to 19 decimal digits are converted and the
result is stored in a double word. For D-conversion output, the two
storage words representing the double precision quantity are
considered one piece of data and converted as such.

If a number to be output requires more spaces than are allowed by the
field width w, the field is filled with asterisks, unless subroutine
NASTRK is invoked (refer to Table 6~4). If the number requires fewer
than w spaces, the leftmost spaces are filled with blanks.

If the field width is exceeded solely because the presence of a
nonfunctional leading zero to the left of the decimal point, that zero
will be suppressed and the number will be printed. (For a negative
number, the minus sign will occupy the former position of the
suppressed zero.)

5-10 DG75

8. The output field is filled with blanks if the output number is
+377777777777g(noise word), unless octal conversion is used.

9. Specifications for successive fields are separated by commas and/orxr
slashes (refer to "Multiple Record Formats" in this section).

Complex Number Fields

Since a complex quantity consists of two separate and independent real
numbers, a complex number is transmitted either by two successive real number
specifications or by one real number specification that is repeated (e.g.,
2E10.2 = E10.2,E10.2). The first specification supplies the real part; the
second specification supplies the imaginary part. The following FORMAT
statement transmits an array of six complex numbers.

Example

FORMAT (2E10.2, E8.3, E9.4, E10.2, F8.4, 3(E10.2, F8.2))

Alphanumeric Field Descriptors

Alphanumeric information can be transmitted in two ways that result in the
storing of BCD or ASCII characters (as determined by the compilation option).

1. The specifications rAw and rRw cause character data to be read into or
written from a variable.

2. Alphanumeric information (i.e., character constants) is introduced
into a FORMAT statement by specifying nH, enclosing the string in
quotation marks, or enclosing the string in apostrophes.

INPUT

If w is equal to or greater than s, the rightmost s characters are taken
from the input field. The I/0 pointer is advanced in accordance with the field
width of the format specifier. If w is less than s, then w characters are taken
from the input field. With A conversion, the data appears left~justified with
s-w trailing blanks in the internal representation. For R conversion, the
internal representation is right-justified with s~w leading zeros.

where: is the field width from A or R specification
is the size specification of a character variable as specified in

w
5
the CHARACTER statement.

5-11 DG75

OUTPUT

If w is greater than s, then s characters are transmitted to the output
field preceded by w-s blanks for R conversion, or followed by w-s blanks for A
conversion. If w is less than or equal to s, the output field consists of w
characters from the internal representation. With A conversion the w leftmost
characters are transmitted; with R conversion, the w rightmost characters are
transmitted. :

where: is the field width for A or R specification
is the size specification of a character variable as specified in
the CHARACTER statement

w
s

The R code is equivalent to the A code; however, the characters are
right-justified with leading alphanumeric zeros in the internal representation
of the R code on input.

When the variable associated with an A or R format is not specified as type
CHARACTER, the variable 1is treated as a character variable with a size of one
word of storage (i.e., 6 characters for BCD; 4 for ASCII).

Logical Field Descriptor

Logical variables can be read or written using the specification Lw, where
L represents the logical type of conversion and w is an integer constant that
represents the data field width.

On input, a value representing either true or false is stored if the first
nonblank character in the field of w characters is a T or an F, respectively.
If all the w characters are blank, a value representing false is stored. On
output, a value of .TRUE. or .FALSE. in storage causes w-1l blanks to be
written followed by a T or an F, respectively.

Character Positioning Field Descriptors

The X and T field descriptors enable a specified number of characters in
the record to be skipped. On output, the X descriptor causes a specified number
of spaces to be inserted in the external output record.

X FORMAT CODE

The field descriptor for space characters is nX. On input, n characters of
the external input record are skipped. On output, n space characters are
inserted in the external output record. If n = 0, a value of one is assumed.

T FORMAT CODE

The field descriptor for tabulation is Tt where t 1is the position in a
FORTRAN record where the +transfer of data is to begin. The t is an unsigned
integer constant, which specifies that tabbing can proceed backward as well as
forward. This format code permits input or output to begin at any specified
position.

5-12 DG75

Variable Format Specifications

Any of the formatted input/output statements (including ENCODE and DECODE)
can contain a character scalar or an array name in place of the reference to a
format statement label. At the time a variable is referenced in such a manner,
the first part of the information must be character data that constitutes a
valid format specification, (e.g., (I4)). There is no requirement on the
information following the right parenthesis that ends the format specification.

The format specification (the value of the variable referenced} must have
the same form as that defined for a FORMAT statement, without the word FORMAT.
Thus the character text of the specification begins with a left parenthesis and
ends with a matching right parenthesis,

The format specification can be defined by a data initialization statement,
by a READ statement with an A format, by use of a character replacement
statement, or by ENCODE.

In the following example, A, B, and part of the array C are converted and
stored according to the FORMAT specifications read into the array FMT at
execution time.

DIMENSION FMT (12), C(10)
1 FORMAT (12A6)
READ (5,1) FMT
READ (5,FMT) A,B, (C(I), I=1,5)

A similar example follows, using a character scalar for the variable
format.

DIMENSION C(10)
CHARACTER FMT*72
1 FORMAT (A72)
READ (5,1)FMT
READ (5,FMT) A,B,(C(I),I=1,5)

5-13 DG75

NAMELIST INPUT/OUTPUT STATEMENTS

NAMELIST input/output is indicated by the presence of a NAMELIST name in
the format reference position of the READ, WRITE, and PRINT statements. The
NAMELIST statement and its associated list must appear before any input/output
statement referencing the NAMELIST name,

InEut

When a READ statement refers to a NAMELIST name, the designated input
device is made ready and input of data is begun., The first input data record is
searched for a "$" immediately followed by the NAMELIST name, which is followed
by a comma or one or more blank characters. If the search fails, additional
records are examined consecutively until there 1is a successful match or an
end-of-file. When a successful match is made of the NAMELIST name on a data
record and the NAMELIST name referred to in a READ statement, data items are
converted and placed in storage.

Format 1

READ (file,name-1,o0ptl,opt2)
Format 2

READ name-2

where: file is the file reference

name-1 and name-2 are namelist names

optl is the exror condition transfer

opt2 is the end-of-file condition transfer

NOTE: Format 2 issues a read request to the standard system input
device

Any combination of the four types of data items, which are described below,
can be used in a data record. The data items must be separated by commas, and
empty fields (=,), (B,), or (,,) cause an invalid word to be stored. If more
than one physical record is needed for input data, the last item of each record
must be followed by a comma. The end of a group of data is signaled by a $
following the last item either in the same data recoxrd as the NAMELIST name or
anywhere in any succeeding records. The $ can replace the comma following the
last data item. Data is restricted to columns 1 through 72 in card image (media
code 2). The $ that indicates the end of a logical record of input data cannot
appear in column 1 since GCOS input processing will retain it as a pseudo
control card, and delete {° from the input data file.

5-14 DG75

Data items can take the form

® Variable name = constant
CON = 17.5
X(6) = 26.4

where the variable name can be an array element name or a simple
variable name with a maximum of six characters; subscripts must be
integer constants.

® Array name = set of constants (separated by commas)
X=1.,2.,3.,5%6.3
where k* constant can be included to represent k constants (k must be
an unsigned integer). The number of constants must not exceed the
nunber of elements in the array.

) Subscripted variable = set of constants (separated by commas)
Y(4) = 9.,6.,,10*1,.8
where k* constant can be included to represent k constants (k must be
an unsigned integer). A data item of this form results in the set of
constants being placed in array elements, starting with the element
designated by the subscripted variable.
The number of constants given cannot exceed the number of elements in
the array that are included between the given element and the last
element in the array, inclusive.

® Variable 1/Variable 2 = constant (s)
where Variabie 1 is a counter that is set after the data has been

input, indicating the number of constants that have been stored for
Variable 2.

Constants used in the data items can be

° Integers

® Real numbers

° Double precision numbers

) Compiéx numbers

® Logical constants

° Character data where the character string does not exceed the space

available on the card; this cannot be used with a repeat count.

5-15 DG75

Logical or complex constants should be associated only with logical or
complex variables, respectively; character data can be associated with any type
of variable. The other types of constants can be associated with integer, real,
or double precision variables and are converted in accordance with the type of
variable. With the exception of the character data, blanks must not be embedded
in a constant or repeat count field, but they can be used freely elsewhere
within a data record.

Character data may be delimited by a blank if it does not contain any
embedded blanks. It can also always be delimited by nH, apostrophes, or
qguotation marks.

Any selected set of variable or array names belonging to the NAMELIST name
that 1is referred to by the READ statement, can be used as specified in the
preceding description of data items. Names that are made equivalent to these
names cannot be used unless they also belong to the NAMELIST name.

In the following examples, the arrays A, I, and L, and the variables B and
J, belong to the NAMELIST name, NAMl; the array A, and the variables C, J, and
K, belong to the NAMELIST name, NAM2.

DIMENSION A(10),I(5,5),L(10)
NAMELIST /NAM1/A,B,I,J,L/NAM2/A,C,J,K

123456
First Data Card $NAM1 I(2,3)=5,0=4.2,B=4,
Second Data Card A(3)=7,6.4,L=2,3,8%4.3$

NOTE: The $ sign in the first data card is not in column one.

If this input data is used with the NAMELIST statement illustrated above
and with a READ statement, the following actions take place.

® The input file designated in the READ statement is prepared and the
next record is read.

® The record is scanned for a § immediately followed by the NAMELIST
name, NAMI1,

® Because the search is successful, data items are converted and placed
in storage.

® The integer constant 5 is placed in I(2,3).

° The real constant 4.2 is converted to an integer and placed in J.

® The integer constant 4 is converted to real and placed in B.

® Since no data items remain in the record, the next input record is
read. '

® The integer constant 7 is converted to real and placed in A(3).

° The real constant 6.4 is placed in the next consecutive location of

the array, A(4).
® Since L is an array name not followed by a subscript, L(1) through

L(10) are filled with the succeeding constants. Therefore, the
integer constants 2 and 3 are placed in L (1) and L(2), respectively.

5~-16 ; DG75

° The real constant 4.3 is converted to an integer and placed in L(3)
through L(10).

° The $ signals termination of the input for the READ operation.

Output

When data is output via NAMELIST (e.g., WRITE(6,NAM1)), all variables in
the NAMELIST statement will be output and the output values are labeled with an
appropriate variable name.

Format 1
WRITE (file,name-1,o0ptl,opt2)
Format 2

PRINT
PUNCH name=-2

where: file is the file reference

name-~1 and name-2 are the NAMELIST names

optl is the error condition transfer

opt2 is the end-of-file condition transfer

NOTE: Format 2 directs output to the standard system print/punch output
device.

The format of the output can appear with or without comma separators.
Output directed to file 43 includes commas and, therefore, is in agreement with
the NAMELIST input format. Output can be directed to file 43 by either the
PUNCH statement or a WRITE statement referencing file 43. Output directed to a
file other than 43 does not include comma separators and, therefore, cannot be
processed by NAMELIST input., Figures 5-1 and 5-2 contain a sample program and
sample output from that program in the latter format.

5-17 DG75

"WANFUISY NUTPUY OF FIxED PY AND

NAMEL1SY <ET1
INT th
1 1 2 /
9 9 10
X XTIV
1. 0.10000000E 01 0.14142136E 01
7 0.26457513E 01 0.2B284271E 01
END NAMELISY SET1
EYR®PLE 2 OF WAPELIST OQUTPUT
NAMELUIST SET2
INT ()
1 b 2
9 9 10
DEX (5]
1 0.100000000000000000D U1
4 0.2000000000000000606D 01
7 0.2064575131106459059D 01
10 0.316227766016837933D 01
oy 0.314159265358979324D 01
0502 . 200000008 0F "~ hsad
END NAMELISTY SET2
EXAUBLE '3
q‘“ELlS' TETS
Lt th
1 TYT Ty rTYT YT TOY TY YT
4T F F F F F FFFFEFf TT 1777
81 FFFFF F FFeF FFFC
121 r vyt £ FFFF FFF =
o (1 T
1 6.12000000 6. ~n.350U0000F 01
4 0.12000090€ 01, =n.350N000UE 01
cPX 0.33333300€E 00, 0.66666600F 00
Y 0.33333300F u0 7
(L 32768
B 0.314159265358979324n 01
END NAMEL [T SETS

0.141421356237309505n 01
0.223606797749978%970) 01
0.282842712474619010n 01

U.656866660N0FE 0N

REAL ANRAYS

0.20000000F (1 0.22360680€ 01

0.31622776F n1

9.17320508E 01
0.30000000E 01

0.173205080756887729D n1
0.24494897427631/810D r1
6.3000000009000000000 n1

“0.30000000E oOF

T TTtYToT TTY OTOY F e st F FFF
T TTTOTOY Tr1r o TrTYyToY L
F FFFF ¥ TrTT 1T TTYTOYT TrT
F £ FFFF TEFFE F L FFF
0.1200400NE B1, -G, 35000000F 1 0.120900¢0FE 01,
0.1260Y0N0E 01, ~0,35700000F 1

2822 0.2600000C- 01 RS0 3

- -

0.24494897F 0,

- - N

]
- M.
- N
«nmn
nn

-0.35200090= a°

AR BEIIDE BIN- N

Figure 5-1.

Test Program for NAMELIST Output

DG75

6T-S

SLDa

TWAYF[TSY NUYPUY OF FIXED PT AND REAL ARQAYS

NAMELIST RETL
INT (B8]
1 1 2) 3
L 9 10
Y Iy
1 0.10000000E 01
7 0.26457513€ 01
END NAMEL [ST SET1

0.173206508€ 01
0.30000000E 01

0.14142136€ 01
N.28284271F 01

EYANPLE 2 DF NAFELIST QUTPYT
‘NAMELISY SET2

INT (D
1 1 2 $
? 9 16
‘DBYX (88
1 0.100000000000000MPNOD C1 0.1414213562373095050 21
4 0.200000000000000000D 01 0.22360679774997897a0 01
7 0.264575131106459059D 01 0.282842712474619010° 01
10 0.316227766316837933D 01
L2 0.314159265358979324D 01
0S02 0. 20000000 01 ~ ~~ "Nsald A.300000800E 01
END NAMELIST SET2
Examp E 3
NANELIST TETY
tL 1
1 v rTrY Yy TT TTYTY TTTTYTY
41 F FF F F £ F FFF TTTTY TTTOYTOY
81 FF e F ¥ c FFEF FFFTF FFF & F
121 T T rrTY FFFFF FFF 7 F FFFTF
cc (R ’
1 0.12000000~% 03, ~n.350UNQU0E 01
4 0.12000000€ 01, -n.3500000uE 01
cex 0.33333300€ 00, N.66666600E N0
\ 0.33333300¢ uo 7 U.566A6617F 0N
%] 32768
D] 0.314159265558979324N 01
END NAMEL]cT SEY3

0.20000000F 1

0,22360580F 01 0.24494897F 0.

0.31622776F n1t

LR R R

0,120 :00NE Nt ~0.35n07000F 7
0.12nrN0y0NOE N1, =-Nn.350000G0F 1

3§32 v.26000

0.17320508075¢6887729D 1
0.24494897427£31/7510D r1
0.300000n0002000007)0D p1

r T Tt (S T o F F F F F FFFFF
TTToT vt oTor TTYTCTT FFFr ¥
TT T 7 T Y YT TTYToY T T
T F F ¥ ¢t F o F

£, 2096000NF 0. -0.35300090F 0

oG- M R3CY 1.3)902)8 91

it
o

Figure 5-2.

NAMELIST Output of Fixed Point And Real Arrays

INTERNAL DATA CONVERSION

The ENCODE and DECODE statements are similar to the formatted WRITE and
READ statements, respectively, although the ENCODE/DECODE statements do not
cause input/output to take place. They cause data conversion and transmission
to take place between an internal buffer area and the elements specified by a
LIST. The forms of the ENCODE and DECODE statements are:

ENCODE (a,t,opt2)list
DECODE (a,t,opt2)list
where: a is the internal buffer
t is the format reference
opt2 is the error condition transfer
list is the input/output specification

NOTE: The internal buffer area "a" is designated by the first operand
within the parentheses and can be designated as

® A character scalar
® A character array element
® An array

When the buffer area is designated as a scalar, it is analogous to a print
line for ENCODE where the print 1line 1is as 1long as the buffer area in
characters. For DECODE, the buffer area is analogous to a card or record image,
where the record size is equal to the size of the buffer in characters.

Multiple Record Processing

An analogy can be drawn between character array elements and records.
Consider the following example that converts character data to integer type:

CHARACTER TEXT*48(10)

INTEGER DATA (50)

DO 100 I=1,50,5
100 DECODE (TEXT(I/5+1),101) (DATA(J) ,J=I,I+4)
101 FORMAT (517)

Examination of the format and list reveals that 50 items are to be
converted, 5 items per record; hence, 10 records are required. The character
array TEXT has 10 elements that are treated as records, each element being 48
characters long. The format requires 35 characters of each element (5 x 7).
Thus, the first 35 are processed.

5-20 DG75

The same result can be accomplished if the list and format specifications
cover the full 10 records as follows:

CHARACTER TEXT *48(10)

INTEGER DATA (50)

DECODE (TEXT,10) DATA
10 FORMAT (517)

In a BCD mode program (six characters per word), the same result can also
be accomplished with an internal buffer of type INTEGER as follows:

INTEGER TEXT (8,10), DATA(50)
DECODE (TEXT,10) DATA
10 FORMAT (517)

If the same program is compiled in the ASCII mode, the format specification
describes 35 character records, while the array has provisions for only 32 (8%*4)
characters per "record". This word size/byte size psoblem is eliminated by the
character data type since

CHARACTER TEXT *48(10)

is wvalid for both modes. In BCD, the equivalent of an 8 x 10 array is
allocated; in ASCII, the equivalent of a 12 x 10 array is allocated. The source
program is character set independent. For this reason the preferred type of the
internal buffer argument of the ENCODE and DECODE statements is CHARACTER.
Warning diagnostics are posted when this is not the case, as in the thixd
example,

Editing Strings with ENCODE

With ENCODE, characters not processed are left unchanged.

Example

CHARACTER TEXT*20
TEXT = "WOW IS THE TIME FOR "
ENCODE (TEXT,10) "NOW"

10 FORMAT (A3)

20 PRINT, TEXT, "ALL GOOD MEN"
STOP ; END

The execution of statement 20 causes the following to be printed:

NOW IS THE TIME FOR ALL GOOD MEN

If the editing is intended to be used to skip characters, the T format
should be used rather than the X format (the X format would cause blanks to be
inserted into the string).

Example

10 CHARACTER TEXT*40

20 TEXT = "NOW IS THE TIME FOR ALL GOOD MEN"
30 ENCODE (TEXT,10) "PERSONS"

40 10 FORMAT (T30,A7)

50 PRINT, TEXT

60 STOP ;END

5-21 ' DG75

The execution of this program causes the following to be printed:

NOW IS THE TIME FOR ALL GOOD PERSONS

Conditional Format Selection

A problem common in FORTRAN programs arises when the format of the next
record cannot be determined without first reading it. This problem can be
overcome through the capability of the DECODE statement. As an example,
consider that input to a program is in card form, and the cards come in one of
three formats. When card column 1 contains a 0, the first format is to be
applied; when it contains a 1 the second; and 2 the third. The following
subroutine could be used:

SUBROUTINE READ (A,I,Z)
CHARACTER CARD*79
READ 101,KOL1,CARD
101 FORMAT(I1,A79)
GO TO (200,300,400) ,KOL1+1
200 DECODE (CARD,201) A,I,%
201 FORMAT (T11,F12.6,3X,I5,E12.6)
RETURN
300 DECODE (CARD,301) A,Z,I
301 FORMAT (T11,2F12.6,3X,I5)
RETURN
400 DECODE (CARD,401)I,A,Z
401 FORMAT (T51,I5,2E12.6)
RETURN ; END

Another similar problem has to do with the building of format
specifications at run time for subsequent use in input processing. As an
example, consider that some data file is interspersed with control cards that
specify the amount and format of ensuing data. The first field of the control
card gives the number of data items that is read; the second gives the number of
fields per card (up to 20) or is zero indicating "use the previously developed
format"; the remaining fields on the control card come in pairs and provide "w"
and "d" sizes for "F" Format specifications needed for correct conversion of
each data item; the control card is in free-field format with comma separators.
The following subroutine reads and verifies control cards, builds format
specifications, and reads a set of data:

SUBROUTINE READ (A,I)
DIMENSION A(I)
INTEGER WD({40)
CHARACTER FORM*80/" "/
READ,N,J, (WD(L) ,L=1, MINO(2*J,40)) :
IF (N.GT.I .OR. N,LT. 1) STOP "ITEM COUNT ERROR"
iF (J.GT.20 .OR., J.LT.Q) STOP "FIELD COUNT ERROR"
IF (J.EQ.0 .AND.FORM.EQ." ")STOP Y“UNFORMED FORMAT ERROR"
IF (J),200,
NCOL = 0
DO 50 L=1,2%*J,2
IF (WD(L+1) .LT. 0 .OR. WD(L+1).GT.8)GO TO 300
IF (WD(L) .LT. WD(L+1)+2) GO TO 300
50 NCOL =NCOL + WD(L)
IF (NCOL .GT. 80)STOP "COLUMN COUNT ERROR"
FORM=“ "
ENCODE (FORM,101) ("F",WwD(L) ,WD(L+1) ,",",
&L=1,2*%J3-2,2) ,"F",WD(2*J~1) ,WwD(2%J) ,")"
101 FORMAT(™(",20(Al,I2,".",12,Al))

5=-22 DG75

200 READ(05,FORM) (A(L) ,L=1,N)
RETURN

300 PRINT 301, (L+1)/2, WD(L) ,WD(L+1)

301 FORMAT ("1 FORMAT SPEC #",I3," IN ERROR. W=",I5," D=",I5)
STOP" FIELD DESCRIPTOR ERROR"
END

The above examples also 1illustrate the use of a number of other FORTRAN

language features, most notably:

1. Expressions used:
a. as DO parameters
b. in an output list
c. as the index of a computed GO TO
2. The CHARACTER data type and A format specifiers for long strings
3. Adjustable dimensions
4. The T (tabulation) format specifier
5. Null label fields on an arithmetic IF

6. STOP with display

Note also that the use of CHARACTER scalars of arbitrary size eliminates
program dependency on a character set. The above subroutine will run in ASCII

or BCD mode, without change.

LIST SPECIFICATIONS

When variables are to be transmitted, an ordered list of the quantities
be transmitted must be included either in the input/output statements or
referenced NAMELIST statements. The order of the input/output list must be
same as the order in which the information exists or is to exist on
input/output medium.

An input/output list is a string of list items separated by commas that
be:

) An expression (output only)

°® An implied DO

® An array name

[A scalar

° A constant (output only)
) An array element

to
the
the
the

can

and is processed from left to right. (Parenthesized sublists are permitted only

with implied DO's; redundant parentheses result in a fatal diagnostic.)

5-23 DG75

Examples

The following input/output list utilizing nested implied DO's
A,B(3),(c(I),D(I,K),I=1,10), ((E(1,J), I=1,10,2),F(J,3),J=1,K)

implies that the information in the external input/output medium is arranged as
follows:

A,B(3),C(1),D(1,K),C(2),D(2,K),+...,C(10),D(10,K),
E(1,1) ,E(3,1) ,.4..,E(9,1) ,F(1,3),
E(1,2),E(3,2),.+0.,E(9,2),F(2,3),E(1,3),...,F(K,3)

The result from the execution of an input/output implied DO list is a DO
loop, as though each left parenthesis (except expression and subscripting
parentheses) were a DO statement, with indexing given immediately before the
matching right parenthesis, and the DO range extending up to that indexing
information. The order of the input/output 1list above can be considered
equivalent to the following:

A
B (3)
DO 5 I=1,10
c(1)

5 D(I,K)
DO 9 J=1,K
DO 8 I=1,10,2

8 E(I,J)

9 F(J,3)

Any number of quantities can appear in a single list. If more quantities
are in some input record than in the 1list, only the number of quantities
specified in the list are transmitted and the remaining quantities are ignored.
Conversely, if a 1list contains more quantities than are given in one input
record, more records are read and/or blanks are supplied, depending on the
FORMAT statement. In this case, blanks are supplied until the FORMAT triggers
the record advance. Thus, given a list of known 1length and a well defined
FORMAT, it can be accurately predicted how many records will be read, regardless
of the record lengths on the file. The following example

CHARACTER A*1 (50)
READ (5,100) (A(T),I=1,50)
100 FORMAT (50Al)

will read only one record. If less than 30 characters are present in that
record, the remaining elements of A will be blank filled. By changing the
format to 100 FORMAT(Al) the effect will be to read 50 records using the first
character of each record to fill the array. It is the right parenthesis that
causes the record advance. Alternately, a slash can be used to trigger a record
advance (refer to "Multiple Record Formats" in this section).

Short List I/0

By specifying an array name without subscripts in the 1list of an
input/output statement or a NAMELIST, an entire array can be read or written.
Only the name of the array is given and the indexing information is omitted.

5-24 DG75

Example
DIMENSION A(5,5)

READ,A

where: the READ statement shown reads the entire array A; the array is stored
in column order in increasing storage locations, with the first
subscript varying most rapidly, and the last subscript varying least
rapidly.

List Directed Formatted Input/output Statements

The following input/output statements enable a user to transmit a list of
quantities without reference to a NAMELIST name oOr a detailed FORMAT
specification. This is implied FORMAT (V) and the type of each variable in the
list determines the conversion to be used.

In all cases where a. format reference is supplied, the format must be of
the form FORMAT - (V). The reference can be a FORMAT statement number, a
character scalar, or an array name. Table 5-1 gives the implied format
conversions that are used for list directed formatted input/output.

READ t, list

PUNCH t, list

PRINT t, list

READ s list

PRINT , list

PUNCH , list

READ (f,t,optl, opt2) list
WRITE (f,t,opt2) list

where: t is the statement label of a FORMAT(V) statement, a character
scalar, or an array name.
list is the input information

is the file reference which is also the file code that can be a

positive integer constant, an integer variable, or an integer
expression of the range 01 < f < 63.

jHh

optl is the statement label or switch variable to be executed when an
end~of-file condition is encountered.

opt2 is the statement label or switch variable to be executed when any
I/0 error is encountered.

5-25 DG75

Table 5-1. Implies Format Conversion

TYPE OF VARIABLE INPUT OuTPUT
Real E (or F) w.d OPE 16.8
Integer Iw I16
Logical Lw L2

Double Precision D w.d 0PD 26.18
Complex 2Fw.d OP2El6.8
Character Am Am

m = maximum size

With list directed formatted input, record control is determined solely by
the list. If some record is terminated and the list is not satisfied, another
record is read. This process continues until the list is satisfied.

The input information must satisfy the following rules:

1. Numeric and character input values are separated by commas or blanks.

2. Blanks following exponent indicators E, D, or G are not interpreted as
separators.

3. Quotes (") or apostrophes (') can be used to bracket a character input
value that contains embedded blanks or commas. In this case, the
quotes are delimiters and should not be followed by a comma unless the
intent is to define a null field after the data.

4, A given input value must be fully contained on one input line.
5. Consecutive commas, an empty line, or the appearance of a comma as the
last character of a line imply null input fields. Conversion of a

null field is a function of the corresponding list item type and is
shown in Table 5-2.

Table 5-2. Conversion of a Null Field

TYPE VALUE
Integer 0

Real 0.0

Double Precision 0.DO
Complex (0,0)
Logical F
Character all blanks

With list directed formatted output, record control is determined by the
list and the standard line lengths. With BCD files, the standard line length is
132 characters; with ASCII files, the standard length is 72 characters. A new
line/record is started when the next list item to be transmitted will not fit
entirely on the current line. For example, if information has been formatted to
character position 60 of an ASCII output line and the next item in the output
list is an integer (implied Il6 format), a new line is started.

5-26 DG75

Terminal End-of~-File

When the input device is a time sharing terminal, an end-of-file condition
may be signaled by transmitting a file separator character (e.g., in Teletype
Models 33 and 35 control shift, L) as the only character of a line.

Formatted Input/output Statements

The formatted input/output statements apply to character-oriented records.
They are intended for use with the standard input/output devices but may also be
used with sequential files and can be expressed in any of the following forms:

Format 1

READ
PRINT format, list
PUNCH

Format 2

READ (file, format[,optl, opt2]) list
Format 3
WRITE (file, format, opt2) list

where: file is the file reference
format is the format reference
optl is the end-of-file condition transfer
opt2 is the error condition transfer
list is the input/output specification
The file reference must be an unsigned integer constant with 5 and 41

assigned to the standard system input device; 6, 42, and 43 assigned to the
standard system output devices.

Unformatted Input/output Statement

The unformatted input/output statements apply to sequential files and
random files. The major difference between the unformatted sequential file and
the unformatted random file operation is in the mode of access to the file. To
write a file with the random WRITE statement, the file must be accessed as
random. Any attempt to apply a random READ/WRITE statement to a file accessed
as sequential causes a program to terminate abnormally.

5-27 DG75

File Properties

Sequential Files - A sequential file can contain zero, one or more records
accessed in a sequential manner.

Random Files - A random file consists of records, each of which is
addressable (i.e., each record can be accessed without
repositioning the file). Each record in the random file must
be of the same length. :

File Updating - Input-output routines with random files permit replacement of
individual records in a file. The execution of all random
file WRITE statements is considered a record replacement.

Record Sizes - Random files have records, all of the same length.

SEQUENTIAL FILES

The unformatted sequential file input/output statements have the following
formats:

Format 1

READ (file,optl,opt2) list
Format 2

WRITE (file,opt2) list
Format 3

READ file
(tWRITE

where: file is the file reference

optl is the error condition transfer
opt2 is the end-of-file condition transfer

list is the input/output specification

NOTE: These statements apply to word-oriented serial access files (i.e., binary
sequential files).

5-28 DG75

RANDOM FILES

The unformatted random files created by FORTRAN are normally recorded in
standard system format. The unformatted random file input/output statements
have the following form:

Format

{READ (file'n,opt2) list
WRITE
where: file is the file reference

is an integer constant, a variable, or an expression that specifies
the sequence number of the logical record to be accessed.

=

opt2 is the error condition transfer

list is the input/output specification

It is a requirement that FORTRAN random files have a constant record size,
Furthermore, before any random I/O can be performed on any given file, its
record size must be defined. This is accomplished with either a $ FFILE control
card, in batch mode, or with a CALL to the (library) subroutine RANSIZ. Three
arguments may be supplied: the first is a file reference, the second provides
the record size. Each of these arguments can be any integer expression and are
required. The third argument is zero or not supplied when the file is in
standard system format. A nonzero value specifies a pure data file.

Example
CALL RANSIZ(08,50,0)

This statement specifies that file code 08 has a constant record size of 50
words and is in standard system format.

Linked files can be accessed in a random mode by using a CALL ATTACH and
specifying random mode. Random files <can also be written in a "pure data"
format, without block serial numbers or record control words. This can be
accomplished by one of the following:

$ FFILE U,NOSRLS ,FIXLNG/N (batch mode only)
or

CALL RANSIZ (U,N,1)

where: U and N are the file reference and logical record size parameters.

FILE HANDLING STATEMENTS

File handling statements provide for the manipulation of input/output
devices for positioning of sequential files and demarcation of sequential files.
The following file handling statements are described in Section III:

REWIND

BACKSPACE

ENDFILE
Lo

5-29 DG75

SECTION VI

SUBROUTINE AND FUNCTION STATEMENTS

The three basic elements of scientific programming languages -- arithmetic,
control, and input/output -- are given added flexibility through subroutines.
Subroutines are program segments executed under the control of another program
and are usually tailored to perform some often-repeated set of operations. A
subroutine 1is written only once, but can be used again and again; it avoids a
duplication of effort by eliminating the need for rewriting program segments for
use in common operations.

There are four classes of subroutines in FORTRAN:

® Arithmetic statement functions (ASF)
® Built~In intrinsic functions
® FUNCTION subprograms

® SUBROUTINE subprograms

The major differences among the four classes are

1. The first three classes can be grouped as functions

2. In the first three classes
° A function has a single value in an expression
° A function is referred to by an expression containing its name; a

subroutine is referenced by a CALL statement

3. The first two classes are open subroutines (i.e, incorporated into the
object program each time there is a reference in the source program).
The latter two classes are closed (i.e., they appear only once in
object form).

NAMING SUBROUTINES

All four classes of subroutines are named in the same manner as a FORTRAN
variable. External subroutine names (i.e., FUNCTION and SUBROUTINE subprograms)
have the additional requirement that they be unique within the first six
characters. The following rules are applicable for all four classes:

1. A subroutine name consists of one to eight alphanumeric characters,
the first of which must be alphabetic.

6-1 DG75

The type of a function, which determines the type of a result, 1is
defined as follows:

a. The type of a FUNCTION subprogram can be indicated by the name of
the function or by writing the type (REAL, INTEGER, COMPLEX,
DOUBLE PRECISION, LOGICAL, CHARACTER) preceding the word
FUNCTION. In the 1latter case, the type implied by its name is
overridden. The type of the FUNCTION subprograms in the
Subroutine Library (the mathematical subroutines) is defined.
Therefore, they do not need to be typed elsewhere.

b. The type of a built-in intrinsic function is indicated within the
FORTRAN compiler and does not need to appear in a type statement.

c. Arithmetic statement functions have no type.
The name of a SUBROUTINE subprogram has no type and should not be

defined, since the type of results returned is only dependent upon the
type of the arguments returned by that subroutine.

ARITHMETIC STATEMENT FUNCTIONS

An arithmetic statement function is defined internally to the program unit

in which it is referenced. It is defined by a single statement similar in form
to the arithmetic assignment statement.

NOTE:

In a given program unit, all statement function definitions must precede
the first executable statement of that program unit. The name of a
statement function must not appear in EXTERNAL, COMMON, EQUIVALENCE,
NAMELIST, or ABNORMAL statements as a scalar name, Or appears as an array
name, in the same program unit.

An arithmetic statement function is defined by the format

functioh (arg[,.‘.]) = exp

where: function is the function name

arg is a symbolic name (referred to as a dummy argument)

exp is an expression

The purpose of the dummy argument is to indicate the order and the number

of arguments. Arg can be actual variable names that appear elsewhere in the
program unit with the following exceptions:

EXTERNAL names
ABNORMAL names
PARAMETER names
NAMELIST names
SUBROUTINE, FUNCTION, or ENTRY names

Arithmetic statement function names

6-2 DG75

Exp can be specified with expressions which may include

® Constants

° Scalar references

e Intrinsic function references

® References to other arithmetic statement functions
° External function references

) Array element references

° Indeterminate references

The last item in the above list, indeterminate references, covers the case
where a dummy argument symbol appears in exp as the reference arg (exp). This
syntax can imply a function reference or an array element reference. The
decision is made each time the arithmetic statement function is referenced, and
is determined by the actual argument in the ASF itself.

Example

1 DIMENSION P(10) -
2 F(A,B)=A(K)+B(K)
3 X=F(P,SIN)

Expansion of line 3 produces an equivalent assignment statement
3 X = P(K)+SIN(K)

NOTE: The first expression term is an array element reference while the
second is a function reference.

Arithmetic Statement Function Left of Equals

An arithmetic statement function can be referenced on the left hand side of
the equal sign in an assignment statement; however, it must expand into a scalar
variable or an array element.

Example

AA (I,J) = J(I)
DIMENSION K(10)

AA (3,K) = 4*X (This expands to K(3) = 4*X)

6-3 DG75

Referencing Arithmetic Statement Functions

A 'statement function is referenced by using its name with a list of actual
arguments in standard function notation in an expression. The actual arguments,
which constitute the argument 1list, must agree in number with the dummy
arguments in the ‘function definition. An .actual argument in a statement
function reference can be any expression if the corresponding dummy argument
appeared as a scalar reference. If the corresponding dummy argument appears as
an indeterminate reference, then the actual argument must be an array or
function name.

Execution of a statement function reference results in the association of
actual argument values with the corresponding dummy arguments in the function
definition, and an evaluation of the expression. The resulting value is then
made available to the expression that contained the function reference.

Arithmetic statement functions have no type at the time of definition
unless they have been explicitly typed. Type is introduced at the time of
reference when the actual arguments are substituted for the dummy arguments.
The arithmetic statement function is typed according to its actual arguments.
If the arithmetic statement function expansion contains a combination of types,
the respective types are examined according to the stated order of type
dominance. The type of the recessive primary is converted to that of the
dominant primary (if necessary) and the operation is performed.

NOTE: An explicitly typed arithmetic statement function retains that type
regardless of its argument type.

Examples

D(I,J) =1+ J
PRINT, D(1,2),D(1,2.0), D(1.0, 2.0)
STOP; END

results would be: 3, 3.0E01, 3.0E0Q01l

INTEGER D

D(I,J) =1 + J

PRINT, D(1,2), D(1,2.0), D(1.0, 2.0)
STOP; END

results would be: 3,3,3

At time of reference, the actual arguments are substituted for the dummy
argument symbols. Type is introduced at this time and any ambiguities (such as
the indeterminate reference described above) are resolved. References to other
functions are classified as intrinsic, external, or other arithmetic statement
function, at this time also. Thus, to reference another arithmetic statement
function, the definition of that function may follow the definition of, but must
precede any references to, this referencing function.

6-4 bG75

Examples

Defined

ROOT (A,B,C)=(~B+SQRT (B**2-4*A*C))/(2*3a)

Referenced

ANS = ROOT(16.9,20.5,T+30)

BUILT-IN INTRINSIC FUNCTIONS

All functions in Table 6-1, except FLD, AND, OR, XOR, BOOL, and COMPL, are
the standard FORTRAN intrinsic functions. The forty functions listed in the
table are the built~in intrinsic functions supplied with FORTRAN. These
intrinsic functions (with the exception of two functions) require only a few
machine instructions and are inserted each time the function is used. To use
these functions, it is necessary to write their names where needed and enter the
desired expression(s) for argument(s). The names of the functions are
established in advance and must be written exactly as specified.

6-5 DG75

SLOa

Table 6-1.

Built-in Intrinsic Functions

Generic
Name for
Intrinsic Number of Automatic Specific Type of
Function Definition Arguments Typing Name Argument Function
Type Conversion 1
Conversion to Integer INT Real Integer
int (a) IFIX Real Integer
See Note 1 IDINT Double Integer
Conversion 1 FLOAT Integer Real
to Real SNGL Double Real
See Note 2 REAL Complex Real
Conversion 1 DBLE Real Double
to Double
See Note 3
Conversion 2 CMPLX Real Complex
to Complex
See Note 4
Truncation int(a) 1 AINT Real Real
See Note 1
Obtaining EY 1 ABS IABS Integer Integer
Absolute ABS Real Real
Value See Note 5 DABS Double Double
(ar**2+ai**2) ** 5 caBs! Complex Real
Remaindering | al-int(al/a2)*a2| 2 MOD MOD Integer Integer
See Note 1 AMOD Real Real
pMop1 Double Double

1

external function

SL5d

Table 6-1 (cont).

Built-in Intrinsic Functions

Generic
Name for

Intrinsic Number of Automatic Specific Type of
Function Definition Arguments Typing Name Argument Function
Transferring lal] if a2 > 0 2 SIGN ISIGN Integer Integer
Sign —-jal| if a2 < 0 SIGN Real Real

DSIGN Double Double
| Obtaining al-a2 if al> a2 2 DIM IDIM Integer Integer
Positive 0 if al<a2 DIM Real Real
Difference DDIM Double Double
Choosing max(al,a2,...) 2 or more MAX MAXO0 Integer Integer
Largest MAX1 Real Integer
Value AMAX1 Real Real

AMAXO Integer Real

DMAX1 Double Double
Choosing min(al,a2,...) 2 or more | MIN MIND Integer Integer
Smallest AMIN1 Real Real
Value DMIN1 Double Double

- AMINO Integer Real
- MIN1 Real Integer

Obtaining ai 1 - AIMAG Complex Real
Imaginary See Note 6
Part of
Complex
Argument
Conjugating (ar,-ai) 1 - CONJG Complex Complex
Complex See Note 6
Argument to
Real

Table 6-1 (cont).

Built-in Intrinsic Functions

8-9

Generic
Name for
Intrinsic Number of Automatic Specific Type of
Function Definition Arguments Typing Name Argument Function
Logical "and" arj*as*... 2 or more AND Real Typeless
Integer
Logical "or" ajtagst... 2 Or more OR Real Typeless
Integer
Typeless
Logical
"exclusive or" aﬁ:hga... 2 or more XOR Real Typeless
Integer
Typeless
Ignore Type 1 BOOL Any Typeless
except
Logical
Extracting/ Beginning with ¥1, #2 Typeless
Inserting Bit bit ajof word a Integer
Field extract a,bits 3 FLD #3 Any
except
Logical
Logical One's -a 1 COMPL Real Typeless
Complement Integer
or
Typeless

LOa

2

Notes for Table 6-1:

1. For a of type integer, int(a)=a. For a of type real or double
precision, there are two cases: if a < 1, int(a)=0; if a>1, int(a)
is the integer whose magnitude is the largest integer that does not
exceed the magnitude of a and whose sign is the same as the sign of a.
For example,

int(-3.7) = -3

For a of type complex, int(a) is the value obtained by applying the

above rule to the real part of a.
For a of type real, IFIX(a) is the same as INT(a).

2. For a type real, REAL(a) is a. For a of type integer or double
precision, REAL (a) is as much precision of the significant part of a
as a real datum can contain. For a of type complex, REAL (a) is the
real part of a. -

For a of type integer, FLOAT (a) is the same as REAL (a).

3. For a of type double precision, DBLE (a) is a. For a of type integer
or real, DBLE (a) is as much precision “of the significant part of a as
a double precision datum can contain. For a of type complex, DBLE (a)
is as much precision of the significant part of the real part of a as
a double precision datum can contain.

4, CMPLX (al,a2) is the complex value whose real part is REAL (al) and
whose imaginary part is REAL (a2).

5. A complex value is expressed as an ordered pair of reals, (ar,ai),
where ar is the real part and ai is the imaginary part.

CABS is defined as the absolute value of (ar**2+ai*#*2)** 5,

Argument Checking and Conversion for Intrinsic Functions

A number of checks on arguments used in the intrinsic functions are made by
the compiler. Due to the inline code expansion, the number of arguments
specified must agree with the number shown in Table 6~1. The argument type must
also agree with the type of the function with the exception of the typeless
intrinsic functions described below. Argument checking and/or conversion is
carried out by the compiler using the following general rules:

1. The hierarchy of argument types considered for conversion is integer,
real, double precision, and complex.

2. A generic intrinsic function call is transformed to the function type
that supports the highest level argument type supplied to it.

3. Arguments to a non-generic form of intrinsic function are converted to

conform with the function type specified. This is within the
constraints of the argument types integer through complex.

6=9 . DG75

Automatic Typing of Intrinsic Functions

Use of the generic forms of the mathematical intrinsic functions allows for
the type of the function's value to be determined automatically by the type of
the actual arguments supplied (refer to Table 6-1). The six generic intrinsic
functions are

® Absolute value ~ ABS
e Remaindering - MOD
® Maximum value - MaX
) Minimum value - MIN
® Positive difference ~ DIM
® Transfer of sign - SIGN

This means that the inline code generated for DABS(D) and ABS(D) would be
the same assuming that the type of the variable D is double precision.

When arguments of different types are specified (i.e., functions allowing
more than one argument), the type of the function itself is determined by the
same rules that govern mixed mode expressions (refer to Table 4-1).

Typeless Intrinsic Functions

FLD

FLD is a typeless function that is used for bit string manipulation.

Format

FLD (i,k,e)

IA
IN

where: i is an integer expression in the range 0 i 35

is an integer expression in the rangé 0 < k £ 36

=

is any integer, real, or typeless expression; a word of character
data, or any of the typeless functions

o

This function extracts a field of k bits from a 36-bit string having the
value of e beginning with bit i (counted from left to right where the Oth bit is
the leftmost bit of e). The resulting field is right-justified and the
remaining bits are set to zero.

6-10 DG75

Example

I

= 64
J = FLD (29,1,I)
PRINT, "I = ",I
PRINT, "J = ",J

would result in the printing of

I
J

64
1

This intrinsic function can also appear on the left-hand side of the equal
sign in an assignment statement. When the FLD function is used in this manner,
it must not be the first executable statement of the program or it will be
interpreted as an arithmetic statement function.

Format

FLD (i,j,a) = b

IA

where: i is an integer expression in the range 0 £ i 35

IA

J is an integer expression in the range 1 j < 36
a is a scalar variable or a subscripted variable
b is an expression

The j rightmost bits of b will be inserted into a beginning at bit position
i. :

Example

CHARACTER*4 A,B
A = "ABCD"

B = "1234"

FLD (9,9,A) = B
PRINT, A

PRINT, B

Assuming ASCII characters, this would result in the printing of

A4CD
1234

6-11 DG75

Additional Typeless Functions

The other five typeless functions are

Function Usage

AND (el,e2) Bit by bit logical product of el and e2.

OR (el,e2) Bit by bit logical sum of el and e2.

XOR (el,e2) Bit by bit "exclusive or" of el and e2.

BOOL (e) The type of e is disregarded.

COMPL (e) The one's complement of all bits in e are taken. The type

of e is disregarded.

The expressions of e can be of type ‘nteger, type real, or typeless; e can
also be a Hollerith word, the FLD word, or any of the typeless functions.
Examples:

M1 = AND(1,K)

M3 = XOR(1l,K)

M4 = BOOL (K)

M5 = COMPL (K)

If all variables were of type integer, and the values of K were positive

and odd, the following statements would have the same effect as the

preceding examples:

Ml = 1; M2 = K; M3 = K -1; M4 = K; M5 = -K -1

6-12 DG75

If the receiving variables, M1 through M5, were of type LOGICAL, the values
of the variables would be as follows:

K M1 M2 M3 M4 M5

0 F T T F

T

T
2 F T T T T
3 T T T T T
4 F T T T T
5 T T T T T
6 F T T T T
7 T T T T T
8 F T T T T
9 T T T T T

where: T is true

F is false

If the receiving variables were of type REAL, the values are stored in the
locations of the receiving variables without conversion,

Character data type and integer data type operations can be mixed in the
time sharing mode by using the BOOL function. In the next example, two-element
array is employed to bypass the requirement of separating integer and character
variables.

Example:

010 902 FORMAT (1X,16,1X,Ad4)

020 INTEGER IX(2)
030 IX(1)=63
040 IX(2)=BOOL("ABCD")
050 IF(IX(2) .EQ.BOOL("ABCD")) PRINT, "OK"
060 WRITE(6,902) IX
070 STOP; END
*RUN
OK
63 ABCD

6-13 ' DG75

FUNCTION SUBPROGRAMS

Defining FUNCTION Subprograms

A FUNCTION subprogram is defined external to the program unit th
references it.

Format

t FUNCTION function (arg(,...])

where: t is INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGIC2
CHARACTER, or null

function is the symbolic name of the function to be defined

arg is referred to as a dummy argument and is a variable nan
an array name, or an external procedure name

The symbolic name of the function must appear at least once in t
subprogram as a variable name in some defining context (e.g., left of the equ
sign). The value of the variable at the time of execution of any RETLU
statement in this subprogram is returned as the value of the function. Howeve
the symbolic name of the function must not appear in any nonexecutable stateme
in this program unit, unless it is the symbolic name of the function in t
FUNCTION statement or in a Type statement.

An abnormal FUNCTION subprogram can define or redefine one or more of i
arguments to effectively return results in addition to the value of 1t
function.

The FUNCTION subprogram can contain any statements except BLOCK DA"
SUBROUTINE, another FUNCTION statement, or any statement that directly
indirectly references the function being defined; but it must contain at le:
one RETURN statement.

If the function name appears in any of the following contexts, redefinit:
of the function result is affected.

® Left of the equal sign in an assignment statement
® In the list of a READ statement

) In the list of a DECODE statement

] As the buffer name in an ENCODE statement

® As the induction variable of a DO loop

Redefinition can also occur if the function name appears in the argum
list of a CALL statement or a reference to some abnormal external function.

NOTE: A function canhot be referenced in an input/output list if such
reference causes any input/output operation to be executed.

6-14 D

Supplied FUNCTION Subprograms

The functions listed in Tables 6~2 and 6~3 are the external FUNCTION
subprograms supplied with the FORTRAN compiler. Table 6~2 contains the supplied
mathematical library functions. Table 6-3 contains the supplied nonmathematical
external functions. To use these functions it is necessary to write the name
where it is needed and enter the desired expression(s) for argument(s).

" The type of a mathematical library function cannot be changed by implicit
typing. However, implicit typing will affect the +type of an external
nonmathematical function. If the type of the function is affected by implicit
typing, the function name must be included in an explicit type statement to
obtain the desired results.

Example

IMPLICIT INTEGER (P-2)
REAL RANDT
A=RANDT (10.0)

Argument Checking and Conversion for Supplied External Functions

A number of checks are made on the arguments used in the mathematical
library functions. The compiler checks the type of the arguments supplied and
makes conversions according to the following rules:

1. The hierarchy of argument types is integer, real, double precision,
complex.

2. If the arguments in a generic function call do not conform as to type,
the function call is transformed to the function type that supports
the highest level of the argument supplied to it.

3. Integer argumeﬁts are converted to the type of the function being
called.

4, The arguments of a non-generic form of external function are converted
to conform to the function type specified. This is within the
constraints of the argument hierarchy.

No tests or conversions are performed for the external nommathematical
functions outlined in Table 6-3. The number and type of arguments in the
function call must agree with the number and type of arguments specified in
Table 6-3.

When the mathematical 1library functions in Table 6-2 are referenced by
their generic names, the function type 1is determined by the type of the
argument (s) . This means that the wuse of ARCOS(D) would generate a call to
DARCOS (D) if the type of the variable D is double precision. The one exception
to this rule is when an integer argument is specified for a generic function.
In this case, the argument is converted from integer to real and the real form
of the function is called.

7/79‘ 6-15 DG75A

The mathematical functions, 1listed by their generic names, which are
automatically typed are:

ACOS cos ALOG2
ARCOS COSH ALOG10
ACOSH CBRT ALOG
ASIN . EXP. POW'
ARSIN EXP10 . SIN
ASINH EXP2 SINH
ATAN EXPC SQRT
ATAN2 EXPC2 TAN
ATANH ~ EXPCl0 TANH

Note that the type of ATAN2 is double precision if at least one of its
arguments is double precision.

6-16 DG75

Table 6-2. Supplied External FUNCTION Mathematical Subprograms

No. of Type of
Function Definition Arg. Name Arqg. Function
Arccosine! cos (a) 1 acos? Real Real
1 ARCOS Real Real
DACOS Double Double
DARCOS Double Double
Arccosine, Hyperbolic' cosh (a) 1 ACOSH Real Real
1 DACOSH Double Double
Arcsinel sin (a) 1 AsIN3 Real Real
ARSIN Real Real
DASIN Double Double
1 DARSIN Double Double
Arcsine, Hyperbolicl sinh (a) 1 ASINH Real Real
1 DASINH Double Double
Arctangent1 tan (a) 1 ATAN Real Real
1 DATAN Double Double
tan (a/b) 2 ATAN24 Real Real
2 DATAN2 Double Double
Arctangent, Hyperbolicl tanh (a) 1 ATANH Real Real
1 DATANH Double Double
Cosinel cos (a) 1 cos Real Real
1 DCOS Double Double
1 CCOS Complex Complex
Cosine, Hyperbolic cosh (a) 1 COSH Real Real
1 DCOSH Double Double
Cube Root (a) 1 CBRT Real Real
1 DCBRT Double Double
Exponential e? 1 EXP Real Real
1 DEXP Double Double
1 CEXP Complex Complex
Exponential 102 1 EXP10 Real Real
1 DEXP10 Double Double
Exponential 23 1 EXP2 Real Real
1 DEXP2 Double Double

lArguments expressed in radians.

2Ac0S and ARCOS are the same function. Either name can be used.
DACOS and DARCOS are the same function. Either name can be used.
3ASIN and ARSIN are the same function. Either name can be used.
DASIN and DARSIN are the same function. Either name can be used.
The y-axis must be the first argument specified.

7/79 6-17

DG75A

Table 6~2 (cont).

Supplied External FUNCTION Mathematical Subprograms

No. of Type of
Function Definition Arg. Name Arg. Function
Exponential Complement e2-1.0 1 EXPC Real. Real
1 DEXPC Double Double
Exponential Complement 28-1.0 1 EXPC2 Real Real
1 DEXPC2 Double Double
Exponential Complement 10%-1.0 1 EXPC10 Real Real
1l DXPC10 Double Double
Logarithm, Base 2 logz(a) 1 ALOG2 Real Real
1 DLOG2 Double Double
Logarithm, Common logig (a) 1 ALOG10 Real Real
1 DLOG10 Double Double
Logarithm, Natural logg(a) 1 ALOG Real Real
1 DLOG Dbouble Double
1 CLOG Complex Complex
Power ab 2 POW Real Real
2 DPOW Double Double
Sinel sin(a) 1 SIN Real Real
1 DSIN Double Double
1 CSIN Complex Complex
Sine, Hyperbolic1 sinh (a) 1l SINH Real Real
1 DSINH Double Double
Square Root (afh 1 SQRT Real Real
1 ‘DSQRT Double Double
1l CSQRT Complex Complex
Tangent! tan(a) 1l TAN Real Real
1 DTAN Double Double
Tangent, Hyperbolic! tanh(a) 1 TANH Real Real
1 DTANH Double Double

1Arguments expressed in radians.

6-18

DG75

Table 6-3. Supplied External FUNCTION Nonmathematical Subprograms
‘ No. of Type of
Function Usage Args. Arg. Function
Left Shift ILS (i,3) 2 Integer Integer
Right Shift IRS (i,3) 2 Integer Integer
Left Rotate ILR (i,3) 2 Integer Integer
Right Logical IRL (i,3) 2 Integer Integer
Set Switch Word ISETSW (i) 1 Typeless Integer
Reset Switch Word IRETSW (i) 1 Typeless Integer
Mode MODE (i) 1 Integer Integer
Compare KOMPCH 5 Character, | Integer
(a,n,b,m,f) Integer
Random Number RAND (range) 1 Real Real
Generator
Random Number RANDT (range) 1 Real Real
Generator
Random Number FLAT (seed) 1 Real Real
Generator
Random Number UNIFM2 (seed), 3 Real Real

Generator

mean,width)

Shift Functions

The shift functions shift the contents of the memory location specified by

the integer

variable i by j

bit positions.

(Refer to the Macro Assembler

Program (GMAP) manual for a description of shifting functions.)

Function

ILS(i,3)
IRS(1i,3)
ILR(i,])
IRL(i,3)

where:

Usage

i and j are integer arguments

Set/Reset Program Switch Word

Left shift i by j bit positions.
Right shift i by j bit positions.
Left rotate i by j bit positions.
Right logical i by j bit positions.

(Refer to the General Comprehensive Operating Supervisor (GCOS) manual for

a description of the program switch word.)

6-19

DG75

Function Usage

ISETSW(i) Set program switch word.
IRETSW(i) Reset program switch word.

The binary equivalent of the value of i determines the bit positions to be
set/reset in the program switch word; the function returns the new program
switch word configuration.

NOTE: Bits 0-17 of the program switch word cannot be changed when
operating in the time sharing mode.

Execution Mode Determination

The mode determination is specified by the format

MODE (i)

If i = 1, the function value = 0 for batch execution; 1 for time sharing
execution.

If i = 2, the function value = 0 for BCD character mode; 1 for ASCII
character mode.

If i # 1 or 2, the function value is always = -1,

Character String Compare

The character string comparison is specified by the format
KOMPCH (a,n,b,m,f)

where: and b are character constants or variables

a
f, m, and n are integer expressions

String b, which begins at position m, is compared to string a, which begins
at position n; f characters are compared.
If b = a, the function wvalue = 0

If b is greater than a, the function value = +1
If b is less than a, the function value = -1

(Refer to Appendix A for BCD and ASCII character collation (sort) values.)

Random Nuluber Generators

There are four separate functions provided for producing a sequence of
random numbers. Each function provides a sequence of random numbers from a
uniform (rectangular) distribution, which means that the probability of any
number in the range occurring in the sequence is the same as any other number.

6-20 DG75

Calling Sequence

where:

A = RAND (range)

0 < A <range

The range must be a real constant or variable; the seed = 1. The same set
of random numbers is generated each time the program unit is executed.

Calling Sequence

where:

The
time of day.

A = RANDT (range)

0 < A< range

range must be a real constant or variable; the seed is based on the

A different set of random numbers is generated each time the

- program unit is executed.

"Calling Sequence

where:

This

A = FLAT (seed)

0<AK1

version has a constant range but allows the seed to be varied. The

seed must be a real constant or variable.

Calling Sequence

A = UNIFM2 (seed,mean,width)

where: [mean—width/z]<A<[mean+width/2]~

This version allows the seed and the rangé to be varied.

Example

A = UNIFM2 (9.9,1.5,2.0)

generates a set of random numbers between 0.5 and 2.5 using the value 9.9 for
the seed.

7/79

NOTE:

The value of the initial argument (seed) passed to the function at
the time of the first c¢all initializes the algorithm for the
generation of the sequence of random numbers. For all subsequent
calls to the function during the execution of the same program unit,
the value o0f the argument is ignored. All arguments must be real
constants or real variables.

6-21 DG75A

Referencing FUNCTION Subprograms

A FUNCTION subprogram is referenced by using its symbolic name with a 1list
of actual arguments in standard function notation as a primary in an expression.
The actual arguments must agree in order, number, and type with the
corresponding dummy arguments in the FUNCTION subprogram definition. The actual
arguments in the function reference can be

° A variable name

° An array element name

® An array name

) An expression

[The name of an external procedure
[] A constant

If an actual argument is an external function name or a subroutine name,
then the corresponding dummy arguments must be used as an external function name
or a subroutine name, respectively. The type of the external function in the
calling routine must match the type specified in the called function. If the
dummy argument is defined or redefined in the referenced subprogram, the
corresponding actual argument must be a scalar name, an array name, Or an array
element name.

Execution of a FUNCTION reference results in an association of the actual
arguments with all the dummy arguments in the defining subprogram. Following
these associations, execution of the first executable statement of the defining
subprogram begins.

Y If the actual argument is an expression or a constant, the association
is by value rather than by name,

) If the actual argument is an array element name with variables in the
subscript, it can be replaced by the same argument with a constant
subscript that contains the value(s) that would result from computing
the variable subscript just before the function takes place.

® If the dummy argument is an array name, the corresponding actual
argument must be an array name or an array element name.

® Unless it is a dummy argument, a FUNCTION subprogram is also
referenced (in that it must be defined) by the appearance of its
symbolic name in an EXTERNAL statement.

NOTE: If a user FUNCTION subprogram is written in a language other than
FORTRAN, it is the user's responsibility to insure that the correct
indicators, as well as valid numeric values, are returned to the
calling program.

7/79 6-22 '~ DG75A

Example

Definition of a FUNCTION subprogram

FUNCTION DIAG (A,N)
DIMENSION A (N,N)

DIAG
IF (N

= A(1,1)

.LE. 1) RETURN

DO 6 I =2, N

6 DIAG

= DIAG * A(I,I)

RETURN

END

Reference to a

FUNCTION subprogram

DIMENSION X (8,8)

DET =

DIAG (X,8)

SUBROUTINE SUBPROGRAMS

A SUBROUTINE subprogram differs from a FUNCTION subprogram in three ways:

1.

NOTE:

A SUBROUTINE has no value associated with its name. All results are
defined in terms of arguments or common, and there may be any number
of results.

A SUBROUTINE is not called into action simply by writing its name,
because a value 'is not associated with the name. A CALL statement
which specifies the arguments and stores all output values is used to
bring the SUBROUTINE into operation.

The naming of a SUBROUTINE 1is similar to the FUNCTION subprogram
without any type association.

It is the user's responsibility to insure that the number and type
of arguments in the calling program statement corresponds with the
number and type of arguments in the called routine. This applies to
all subroutines and functions (library or other).

Defining SUBROUTINE Subprograms

A SUBROUTINE statement is specified by the format

SUBROUTINE sub [(argf,...])]

where: sub is the symbolic name of the SUBROUTINE to be defined

arg is a dummy argument and can be a variable name, an external
procedure name, or an alternate return.

6-23 DG75

The variable names in the dummy argument 1list cannot appear 1in an
EQUIVALENCE, COMMON, NAMELIST or DATA statement.

The SUBROUTINE subprogram can define or redefine one or more of its
arguments to effectively return results; it can contain any statements except
BLOCK DATA, FUNCTION, another SUBROUTINE statement, or any statement that
directly or indirectly references the subroutine being defined, and must contain
at least one RETURN statement.

Referencing SUBROUTINE Subprograms

A SUBROUTINE is referenced by a CALL statement. The actual arguments which
constitute the argument 1list must agree in order, number, and type with the
corresponding dummy arguments in the defining subprogram. The actual arguments
in the subroutine call can be

® A constant

° A variable name

® An array element name

® An array name

® An expression

® The name of an external procedure
® An alternate return

Execution of a subroutine reference results in an association of the actual
arguments with all the dummy arguments in the defining subprogram. Following
these associations, execution of the first executable statement of the defining
subprogram is undertaken.

® An actual argument that is an array element name with variables in the
‘ subscript can be replaced by the same argument with a constant
subscript that contains the same values that would be derived by
computing the variable subscript just before the association of
arguments takes place.

® If a dummy argument 1is an array name, the corresponding actual
argument must be an array name or an array element name.

® If a SUBROUTINE rcference causes a dummy argument in the referenced
subroutine to become associated with another dummy argument in the
same subroutine or with an entity in COMMON, a definition of either
entity within the subprogram is prohibited.

e If an actual argument corresponds to a dummy argument that is defined
or redefined in the referenced subprogram, the actual argument must be
a variable name, an array element, or an array name (e.g., it should
not redefine a constant).

) Unless it is a dummy argument, a SUBROUTINE is also referenced by its
appearance in an EXTERNAL statement.

6-24 DG75

Examples

Definition of a SUBROUTINE Subprogram

SUBROUTINE LARGE (ARRAY,I,BIG,J)
DIMENSION ARRAY (50,50)
BIG=ABS (ARRAY (I, 1))
J=1
DO 6 K=2,50
IF (ABS (ARRAY(I,K)) .LE. BIG) GO TO 6
BIG=ABS (ARRAY (I,K))
J=K
6 CONTINUE
RETURN
END

Reference of a SUBROUTINE Subprogram

CALL LARGE (ZETA,N,VAL,NCOL)

RETURN STATEMENT

The RETURN statement is wused to terminate all subprograms and causes
control to be returned to the calling program. There may be multiple RETURN
statements in a subprogram.

Format
RETURN [i]

where: 1 is an integer, constant, or variable whose value denotes the nth
alternate return (* or §$) in the argument list of the SUBROUTINE
statement, reading from left to right.

Following the RETURN statement of a subprogram, control passes to the next
executable statement which follows the CALL in the calling program. It is
possible to return to any numbered executable statement in the calling program
by using one of the following formats from the called subprogram. This return
must not violate the transfer rules for DO loops.

NOTE: The function reference may be part of an expression, and when
control returns from the function, evaluation of the expression
continues. :

6-25 DG75

Alternate Return Formats

Format 1

CALL subr ($alt[,...])
where: § is used to designate the argument for the alternate return

alt is a statement label or a switch variable that specifies the
alternate return in a subroutine ’

NOTE: Alternate returns cannot be used with functions.
Format 2

*
SUBROUTINE subr ((s) alt{,...])

where: * and $ are used to designate the argument in an alternate return

Example
Calling Program Called Subroutine
. SUBROUTINE SUB(X,Y,2,*,*)
10 CALL SUB(A,B,C,$30,%40) .
20
. 100 RETURN N
30 SUM = A+C .
. END

40 PROD = SUM**B

END

Execution of statement 10 in the calling program causes entry into the
subprogram SUB. If statement 100 in subprogram SUB is executed, the return to
the calling program will be to statement 20, 30, or 40 if N is zero, one, or
two, respectively.

Alternate returns may best be understood byi considering that a CALL
statement that uses the alternate return is equivalent to a CALL and a computed
GO TO statement in sequence.

6-26 DG75

Example

CALL NAME (P,$20,Q,535,R,$22)

is equivalent to

CALL NAME (P,Q,R,I) IF (I.NE.O) GO TO (20,35,22), I

where: I is set to the value of the integer in the RETURN statement
executed in the called subprogram.

NOTE: Calling arguments for alternate returns are not coded by the
compiler in the same manner as the standard arguments. Therefore,
this will need to be considered for the coding of any GMAP
subroutines.

If the RETURN index is not specified or is zero, a normal (rather than
alternate) return is made to the statement immediately following the CALL. The
intermingling of arguments and alternate returns can be done freely in both the
CALL and SUBROUTINE statements. The compiler separates the combined 1list into
two separate lists, such that argument n is the nth actual or dummy argument,
and alternate return n is the nth statement number or * or $, reading left to
right. Thus, the following statements are equivalent:

Example

CALL NAME (P,$20,0,$35,R,$22)
CALL NAME (P,Q,R,$20,$35,$22)
CALL NAME ($20,$35,$22,P,Q,R)

SUBROUTINE NAME (S,*,T,*,U,*)
SUBROUTINE NAME (S,T,U,*,*,*)
SUBRQUTINE NAME (*,*,*,s,T,U)

Multiple Entry Points Into a Subprogram

The normal entry into a SUBROUTINE subprogram from the calling program is
made by a CALL statement that refers to the subprogram name. The normal entry
to a FUNCTION subprogram is made by a function reference in an expression. In
both cases, entry is made at the first executable statement following the
FUNCTION or SUBROUTINE statement.

It is also possible to enter a subprogram at an alternate entry point by a
CALL statement or a function reference that refers to an ENTRY statement in the

subprogram., Entry is made at the first executable statement following the ENTRY
statement.

6-27 DG75

Because ENTRY statements are nonexecutable, they do not affect control
sequencing during normal execution of a subprogram. The order, type, and number
of arguments do not need to agree between the SUBROUTINE or FUNCTION statement
and any ENTRY statement; nor do ENTRY statements have to agree among themselves
in these respects. Each CALL or FUNCTION reference, however, must agree in
order, type, and number of actual arguments with the dummy arguments of the
SUBROUTINE, FUNCTION, or ENTRY statement that it references. No subprogram. can
refer to itself directly or through any of its entry points. In addition, it
must not refer to any other subprogram whose RETURN statement has not been
satisfied. ‘ ' .

NOTE: A program loop may result if this condition occurs.

Example
Calling Program Called Program
. SUBROUTINE SUB1(U,V,W,X,Y,2)
1 CALL SuBl (A,B,C,D,E,F) .
. 10 U =V
2 CALL SUB2(G,H,P) .
. GO TO 60

ENTRY SUB2(T,U,V)

GO TO 10
3 CALL SUB3 60
. GO TO 90
. ENTRY SUB3
END .
90 RETURN
END

The execution of statement 1 causes entry into SUBl at the first executable
statement of the subroutine. Execution of statements 2 and 3 also cause entry
into the called program at the first executable statement following the ENTRY
SUB2 (T,U,V) and ENTRY SUB3 statements, respectively.

Example

The coding for a multiple-entry FUNCTION subprogram that will execute
properly:

Calling Program Called Program
. FUNCTION ADD1(N)
. ADD1l = N + 1
. GO TO 30
I = ADD1(1) ENTRY ADD2 (N,M)
J = ADD2(1,1) ADDL = N + M + 1
STOP; END 30 CONTINUE

RETURN; END

.6-28 DG75

The coding for a multiple-entry FUNCTION subprogram that will not execute
properly:

Calling Program Called Program
o FUNCTION ADD1(N)
. ADDl1 = N + 1
. GO TO 30
I = ADD1(1) ENTRY ADD2 (N, M)
J = ADD2(1,1) ADD2 = N+ M + 1 (must be ADDI1)
STOP; END 30 CONTINUE

RETURN; END

Within the calling program, one must refer to the entry name specified in
the ENTRY statement at which he wants to enter the function subprogram. Within
the function subprogram, however, with the exception of the entry statements,
the function name must be used as it was specified in the FUNCTION statement.

Dummy Argument

A dummy argument is used to make entities in a calling program available to
the called subprogram, and can be used in the subprogram as a scalar variable,
an array, a subroutine, or a function name.

The dummy argument of a subprogram can be associated with an actual
argument that is

® a scalar variable

° an array

® an array element

° a subroutine

® an external function

) a constant

] an expression

) a statement number to which a special return can be made from a

subroutine program

When dummy arguments are used, they must adhere to the following rules:
1. When a statement number is specified, the use of the * or $ in a dummy

argument position is required if a statement number is associated with
that dummy argument.

6-29 DG75

When an external function name is specified, the use of a dummy
argument is permissible 1if an external function name is associated
with that dummy argument.

When a variable or array element reference is specified, the use of a
dummy argument 1is permissible if a value of the same type is made
available through the argument association.

When a variable, array, or array element name is specified, the use of

a dummy argument is permissible . if a proper association with an actual
argument is made.

SUPPLIED SUBROUTINE SUBPROGRAMS

Table 6-4 contains an alphabetical 1list of FORTRAN supplied SUBROUTINE
subprograms and descriptions.

6-30 ‘ DG75

Table 6-4.

Supplied SUBROUTINE Subprograms

Subprogram Use Call
ATTACH Access existing permanent file. ATTACH (lgu,catfil,iprmis,
mode, istat, buffer)
CALLSS Call a time sharing subsystem CALLSS (string,name)
CNSLIO Console communications. CNSLIO (console,message,
nwords ,nreply,nrepws)
CONCAT Move character substring. CONCAT (a,n,b,m,f)
CORFL Move data from/to 10-word file CORFL (loc,i,j,k)
CORSEC Memory allocation x processor CORSEC (a)
time.
CREATE Create temporary mass CREATE (lgu,isize,mode,
storage or terminal file. istat)
DATIM Get current date and time. DATIM (d,t)
DEFIL Create temporary file. DEFIL (name,links,mode,
istat)
DETACH Deaccess current file. DETACH (lgu,istat,buffer)
DUMP (BCD) Dump designated area of DUMP [DUMPA] (a;,bysije.s)

DUMPA (ASCII)

DVCHK

EXIT

FCLOSE

FILBSP

FILFSP

FLGEOF
FLGERR

FLGFRC

FMEDIA
FPARAM

FXDVCK

memory in specified format,
terminate execution.

Divide check test.
Flush buffers to an external

device and terminate current
activity.

Close file, flush, and
release buffers.

Backspace files on multi-
file tape.

Forward space files on
multifile tape.

End of file processing.
Data error processing.

File and Record Control
I/0 error recovery.

Output transliteration.
Set or reset I/0O parameter.

Divide and check fault test,

DVCHK (3)
EXIT
FCLOSE (i)

FILBSP (lgu,n)
FILFSP (lgu,n)

FLGEOF (i,3)
FLGERR (i,3)

FLGFRC (lgu,return)

FMEDIA (fc, media code)
FPARAM (i,3)

FXDVCK (r,m)

6-31

DG75

Table 6-4 (cont).

Supplied SUBROUTINE Subprograms

Subprogram Use Call
FXEM Placement of error code. ANYERR (v)
Display of error trace. FXEM (code, message,n)
Alter FXEM switch word. FXOPT (code, iy,i,,ij)
Set alternate error
procedure location. FXALT (SR)
Alternate error return. FXALT ($n)
LINK Restore link and transfer LINK (name)
to its entry point.
LLINK Restore link and return to next LLINK (name)
statement in calling subroutine.
MEMSIZ Memory allocated. MEMSIZ (j)
NASTRK Disable asterisk~fill for field NASTRK
overflow on formatted output.
OVERFL Exponent register overflow or OVERFL (3j)
underflow test.
PDUMP (BCD) Dump designated area of memory PDUMP [PDUMPA] (al'bl'il"')
PDUMPA (ASCII) in specified format, return.
PTIME Processor time used for PTIME (a)
this activity.
RANS1IZ Specify record size of RANSIZ (u,m,n}
random file.
SETBUF Define buffer for file I/0. SETBUF (i,a,b)
SETFCB Define file control block. SETFCB (a,i,j)
SETLGT Define logical file table. SETLGT (a,i)
SLITE Clear all sense lights. SLITE (0)
Turn on sense light. SLITE (i)
SLITET Test and turn off sense lights. SLITET (i,3)
SORT Sort in ascending order. SORT [ISORT]
ISORT (array,nrec,lrs,key ,...)
SORTD Sort in descending order. SORTD [ISORTD]
ISORTD (array,nrec,lrs,key ,...)
SSWTCH Test sense switch. SSWTCH (i,3)
TERMNO Station code. TERMNO (a)
TERMTM Hours of log-on. TERMTM (a)
TRACE Trace and debug. TRACE
USRCOD User identification. USRCOD (s)

6-32

DG75

Table 6-4 (cont). Supplied SUBROUTINE Subprograms

Subprogram Use Call
YASTRK Re-establish asterisk-fill for YASTRK

field overflow on formatted

output.
ATCALL A ATCALL (subr)
FDEBUG FDEBUG (di,do)
FDUMP Callable portions of the FDUMP
FTERM > FORTRAN Debugging System FTERM
FTIMER (See Appendix F) FTIMER
NOCALI: NOCALL (subr)
NTCALL NTCALL (subr)

6-33

DG75

ATTACH

ATTACH

ATTACH

This subroutine is used to access an existing permanent file in batch or

TSS mode.

Calling Sequence

CALL ATTACH
where: 1lgu

catfil

iprmis

mode

istat

buffe:

(lgu,catfil ,iprmis,mode,istat,buffer)

is an integer variable or constant and 1is the usual FORTRAN
file code.

a character constant or variable is the catalog/file descriptor
containing the catalog/file string and must be terminated by a
semicolon. Embedded blanks are ignored. The master catalog
password is not needed; however, subsequent passwords are
required if they are part of the file description. Alternate
names may be required if the file name is longer than eight
characters or when non-FORTRAN subroutines are reading the same
file.

is an integer variable or constant that gives the desired
permission. Those are ORed with any permission in catfil.

1 READ ONLY

2 WRITE ONLY

3 READ and WRITE

Any other (This is undefined and subject to change.)

oo

is an integer variable or constant
= 0 Get file as defined

= 1 Get file as random

= 2 Get terminal

an integer variable, contains the octal value of the status
word returned by the File Management Supervisor or contains:

successful (batch mode only)

file is currently open

terminal requested in batch mode (illegal)

additional memory needed, request denied

(time sharing user is terminated)

4 = catfil all blanks

others = refer to the TSS System Programmer's Reference Manual

wN=O
wononu

Null: Get a work area for the File System.
Not null: Use this array as a work area (at least 380 words).

Won

6-34 DG75

ATTACH ATTACH

Example of a Null Argument

CALL ATTACH (lgu, "catfil;", iprmis,mode,istat,)

Upon successful return from ATTACH in time sharing, an FCB will have been
created, and the file name (or alternate name) is in the FCB ~10, -9 (in ASCII).
If the file was in the AFT with a subset of the desired permissions, it is
deaccessed and reaccessed with the new permissions.

6-35 DG75

CALLSS

CALLSS

program.

Calling Sequence

CALLSS

This subroutine calls a time sharing subsystem and returns to the calling

CALL CALLSS (string)

or (for some time sharing subsystems)

CALL CALLSS (string,name)

where: name

string

is the four-character constant or variable that is the
internal TSS name of the subsystem to be called. If name is
not supplied, the first four characters in string are used
for name. The name used as the argument may be different
than the name used as a system command.

is the command to invoke the subsystem and is a constant or
variable containing a carriage return or a reverse slant as
the terminating character.

Example
CALL CALLSS ("FRN P3\") (the FORTRAN subsystem is invoked and
program P3 is executed)
CALLSS ("BRNPP2\") (the BASIC subsystem is invoked and

program P2 is executed)

CALLSS ("CATALOG FILENAME\") (the specific attributes of the file

FILENAME are printed)

CALLSS ("ABCPY\") (the ABACUS subsystem is invoked)
CALLSS ("FDUMP\") ‘ (the FDUMP subsystem is invoked)
CALLSS ("RUN P4\ ","CDIN") (the CARDIN subsystem is invoked and file

P4 is executed)

Nesting to more than two levels using CALLSS may produce unpredictable
results. If the called time sharing system is SYSTEM, control is not returned
to the calling program., ’

7/79

6-36 DG75A

CNSLIO CNSLIO

CNSLIO

This subroutine permits operator-program communication via the console
typewriter. Return is made to the next executable statement in the calling
program. This subroutine is restricted to batch execution; it may not be called
by a FORTRAN program executing in the time sharing mode. It is suggested that
limited use be made of this subroutine since it tends to distract the attention
of the console operator.

Calling Sequence

CALL CNSLIO(console, message,nwords[,nreply,nrepws])

where: console is defined as CHARACTER*6, or as integer, and is initialized
with

"0000T/" for master console
"0000T*" for tape console
"0000*T" for unit record console
"0000/T" for special purposes

If no initialization is given, "0000T/" is assumed.

message is an array containing the CHARACTER message to be printed
on the console

nwords 1is an integer variable or constant, representing the number
of words to be printed on the console. Any value greater
than 11 is set to 11 (66 characters).

nreply is an optional integer variable and is used when a reply is
desired. When present, the operator reply (in BCD) 1is
stored at location nreply.

nrepws 1is an optional integer variable or constant that is used
when a reply of more than six characters is desired
(maximum of 11 words). When omitted, a one-word reply is
stored in nreply. When provided, nrepws words (nrepws *6
characters are stored at location nreply). If nreply and
nrepws are not provided, the delimiting commas must also be
omitted from the argument list.

6-37 DG75

CONCAT

CONCAT

This
character s

CONCAT

subroutine is wused to provide the user with the ability to move a
ubstring of arbitrary length and position within a string.

Calling Sequence

CALL CONCAT (a,n,b,m,1)

where:

String
position m;
constants.

Example

0010
0020
0030
0040
0050
0060

READY

*RUN

a is a character variable whose character string is to be replaced

n is the first replaced character of a (n = 1 implies first
character)

b is a character constant or variable which 1is the replacement
character string

E]

is the leftmost replacement character of b (m = 1 implies first
character)

J=

is the number of characters to be replaced; if 1 is not given, 1
is assumed

a, beginning at position n, is replaced by string b, beginning at
1 characters are replaced. m, n, and 1 are integer variables or
n through (n + 1-1) of a are replaced with characters (m+l-1) of b.

CHARACTER A*20/"FIFTEEN WERE THERE "/
CHARACTER B*20/"SIXTEEN WERE ABSENT "/
PRINT A,B

CALL CONCAT (A,1,B,1,3)

PRINT,A,B

STOP ; END

FIFTEEN WERE THERE SIXTEEN WERE ABSENT
SIXTEEN WERE THERE SIXTEEN WERE ABSENT

6-38 DG75

CORFL CORFL

CORFL

This subroutine enables the time sharing user to move data from or to the

ten-word memory file (see "DRL CORFIL", TSS System Programmer's Reference
Manual) .

NOTE: This call is ignored in batch.

Calling Sequence

CALL CORFL (loc,i,j,k)

where: loc is the integer array into which or from which the data is to be
moved

T

is the number of words to be moved (1< I< 10)

j is the relative location in the ten-word file at which the
transfer is to begin.

= 0, data is transferred into the ten-word file
1, data is transferred from the ten-word file

|~

i,j,k are integer variables or constants.

6-39 ' DG75

CORSEC CORSEC

CORSEC

This subroutine provides the means of obtaining the product of a memory
allocation and processor time.

Calling Sequence

CALL CORSEC (a)

where: a is a real variable whose returned value 1is the product of

1024-word blocks currently allocated and processor time in
seconds. This subprogram can also be used as a function.

Example

IF (CORSEC(a).GT.b)....

6-40 DG75

CREATE CREATE

CREATE

This subroutine is used to create and access a temporary mass storage or

terminal file.

Calling Sequence

CALL CREATE (lgu,isize,mode,istat)

where: lgu (integer variable or constant) is the usual FORTRAN file
code.

isize (integer variable or constant) is the size, in words, of the
desired file and must be present (not used if mode = 2)

mode 1s an integer variable or constant
0 for a linked mass storage file
1l for a random mass storage file
2 for a terminal file

istat is an integer variable status return word. The following
codes apply.

0, successful

1, mode is invalid

2, file is currently open

3, no room in AFT

temporary file not available
5, duplicate file name

6, no room in PAT

7, illegal device specified

L | | A T | I 1 A
o
-

If +the CREATE is successful, a FCB 1is created and the file code (in
ASCII), is placed in FCB-10, -9.

If a $§ FFILE card is used to create a FCB for a specific file code, a CALL
CREATE which specifies that same file code destroys the FCB setup by the $ FFILE
card and creates a new FCB.

6-41 DG75

DATIM DATIM

DATIM

This subroutine is used to obtain the current date and time.

Calling Seguence

CALL DATIM (d,t)

where: d is an eight-character variable that gives the date as mm/dd/yy
(with trailing blanks in BCD mode; e.g., MM/DD/YYBPKY) .

Jct

is a real variable that gives the time of day in hours as a
floating-point number.

6-42 DG75

DEFIL DEFIL

DEFIL

This subroutine creates a named temporary file and accesses it in the
user's available file table. The call is applicable only for time sharing
activities.

Calling Sequence

CALL DEFIL (name,links,mode,istat)

where: name is a character constant or a variable containing the ASCII
name of the temporary file to be created; name must consist of
a minimum of five characters and a maximum of eight
characters.

links is the size of the file to be created (in links)
1 link = 3840 words

mode = 0, sequential file is created
0, random file is created

istat is the status indication returned as follows:

successful

no room in AFT

temporary file not available
duplicate file name

no room in PAT

AU WO
oo

6-43 DG75

DETACH

DETACH

DETACH

This subroutine is used to close the file, release its buffer, and deaccess
the file. If in TSS mode, the file is removed from the AFT.

Calling Sequence

CALL DETACH (1lgu,

where: 1lgu

buffer =

istat

istat,buffer)

is an integer variable or constant and is the FORTRAN file
code.

null argument: get space for FILSYS
not null: use this variable array as buffer space (at
least 380 words)

is an integer variable that is used as a status return
word.
0: successful
1: could not get FILSYS buffer (batch only);
time sharing user is terminated.

Wu

NOTE: If more memory is required (to deaccess the file) and the request is
denied, the time sharing user is terminated.

6-44 DG75

DUMP DUMP
PDUMP PDUMP

DUMP DUMPA, PDUMP PDUMPA

This subroutine subprogram dumps all or designated areas of memory that
have been allocated to selected variables in a specified format. If DUMP is
called, execution is terminated by a call to EXIT. If PDUMP is called, control
is returned to the calling program. (DUMPA and PDUMPA are used for ASCII).

Calling Sequence

CALL ;DUMP \(&a,,b;,31s¢¢+san,bpsin)
(B e B tnsb

CALL (ggUMPAyaz,bzljz,o L 'am'bn,jn)

where: a is the beginning variable of the area to be dumped.

o

is the ending variable of the area to be dumped.

is an integer specifying the dump format

e

null argument or 0, octal
1, Integer

2, Real

Double Precision

4, Complex

5, Logical

6, Character

o umnau
w
-

NOTE: If no arguments are supplied, (e.g., CALL PDUMP), all of memory is
dumped in octal.

6-45 ' DG75

DVCHK DVCHK

OVERFL OVERFL
FXDVCK FXDVCK
DVCHK, OVERFL, FXDVCK

These subroutine subprograms check logical fault vector locations in the

slave program prefix (refer to the General Comprehensive Operating Supervisor

(GCOS) Manual).

° DVCHK determines if a divide check has occurred.

° OVERFL determines if an exponent register overflow or underflow has
occurred.

® FXDVCK allows another value to be returned after a divide check fault.

NOTE: This subroutine must be called prior to the statement that
might cause the fault. FXDVCK 1is incompatible with MOD.
FXDVCK allows a user-supplied value to be returned as the
quotient, whereas, MOD returns the remainder, not the quotient.

Calling Seguence

CALL DVCHK(j)
CALL OVERFL (j)
CALL FXDVCK (r[,m])

where: 3j is an integer variable

= 1 : divide check,
exponent register overflow
exponent register underflow
= 2 : no fault vector

is the double precision number that is to be wused after a
floating~point divide check.

R

is the integer that is to be used after an integer divide check.

18

7/79 6-46 DG75A

DVCHK DVCHK
OVERFL OVERFL
FXDVCK FXDVCK

The FORTRAN fault processor processes integer and floating-point divide
check faults, and exponent register overflow/underflow faults. A message is
printed on file 06 stating the type of fault and the location at which the fault
occurred. Execution continues with one of the following values returned

Fault Value Returned
Divide check (integer) No change
Unless CALL FXDVCK
Divide check is used.
(floating-point) A large floating-point value
Overflow (integer) No change
Exponent overflow A large positive or large negative floating-point
value
Exponent underflow Floating-point zero

lAllows further computation without another immediate fault. This value is set
to approximately * 10**36.

7/79 6-47 DG75A

EXIT ' EXIT

EXIT

This subroutine subprogram flushes all buffers to output files and
terminates the current ‘activity. Control is returned to the General
Comprehensive Operating Supervisor. ‘

Calling Sequence

CALL EXIT

6-48 DG75

FCLOSE FCLOSE

FCLOSE

This subroutine subprogram closes a file without rewinding it and releases
the buffer(s) assigned if it is the standard size (320 words). Return is to the
next executable statement in the calling program.

Calling Sequence

CALL FCLOSFE (i)

where: i is an integer variable or constant logical file designator.

6-49 DG75

FILBSP FILBSP
FILFSP FILFSP

FILBSP,FILFSP

These sSubroutines can only be used with tape files. They allow multifile
tapes to space from one file to another.

Calling Sequence

CALL FILBSP (lgu,n) backspace n files

CALL FILFSP (lgu,n) forwardspace n files

where: lgu is an integer variable or constant file code

n is the number of files to be skipped (integer variable or

~ constant) -

To ensure proper positioning, the current file, if output, should be closed
with an ENDFILE statement and counted as one of the files to be backspaced.
Declare the files to be multifile and unlabeled by use of a $ FFILE card.

Example

$ FFILE xx,MLTFIL,NSTDLB

NOTE: On an EOF condition, an additional backspace must be executed to get
past the end-of-file condition.

6-50 DG75

FLGEOF

FLGEOF

FLGEOF

This subroutine subprogram provides a signal to request return to the
calling subprogram if an end-of-file condition occurs. Return is to the next
executable statement in the calling program.

Calling Sequence

CALL FLGEOF (i,j)

where:

i

i

is the logical file designator, an integer variable, or a
constant.

is an integer variable used to indicate an end-of-file condition
and should not be used for any other purpose.

If an end-of-file condition could have occurred, j must be tested
for zero. If j # 0, an end-of-file condition did occur; if j =
0, an end-of-file was not encountered.

NOTE: Use of the END= option in an I/0 or ENCODE/DECODE
statement is preferable to calling FLGEOF.

6=51 _ DG75

FLGERR

FLGERR

FLGERR

This subroutine subprogram provides a means of checking data crrors.

Return is to the next executable statement in the calling program.

Calling Sequence

CALL FLGERR(i,3j)

where: i is the logical file designator, an integer variable,

constant.

or a

J is an integer variable used to indicate an input data error (GFRC
error) and should not generally be used for any other purpose.

If an error condition could have occurred, j must be tested for

zero. If j # 0, an error condition did occur; if j
condition was not encountered.

NOTE: Use of the ERR= option in an I/0O or
statement is preferable to calling FLGERR.

an error

ENCODE/DECODE

DG75

FLGFRC FLGFRC

FLGFRC

This subroutine provides some control of the File and Record Control errors
by setting an error routine address into the file control block (refer to the
File And Record Control manual). This subroutine should be called prior to the
first I/0 for this file.

Calling Sequence

CALL FLGFRC (lgu,ptr)

where: 1lgu is an integer variable or constant representing the numeric
file code

ptr is the name of the recovery subroutine or an alternate return
to a label in the same program

Any File and Record Control error that would take the "user-supplied
routine" exit will cause transfer of control to the ptr recovery subroutine or
label after the printing of a message and status code (refer to the File and
Record Control manual for details of the user-supplied routine).

NOTE: Essentially, a GMAP CALL to the routine ptr is generated so that a
FORTRAN subroutine could obtain the status code.

Example

SUBROUTINE RECV(IFC,IERR)
PRINT 200, IERR,IFC
200 FORMAT ("ERROR#",I4, "POCCURRED ON FILE #", I3)
RETURN
END

Return is to the GFRC routine which detected the error.

6-53 - DG75

FMEDIA

FMEDIA

FMEDIA

This subrpoutine allows the user to cause transliteration to occur on files
directed to mass storage or tape. ‘

Calling Sequence

CALL FMEDIA (fc,media)

where:

media

fc

is the logical file code (integer variable or constant)

0 for BCD no printer slew control

2 for BCD card images

3 for BCD with printer slew control

6 for standard system ASCII format (no slew)

Other codes are ignored

code (integer variable or constant) specifies the desired
media code

W np

The legal combinations are as follows:

to
to
to
to
to
to

NMMNOOO

AWwWoohwN

3 to 0
3 to 2
3 to 6
6 to 0
6 to 2
6 to 3

NOTE: CALL FMEDIA should not be used if the batch transliteration routine
(.GXLIT) is being 1loaded. (Refer to the File and Record Control
manual.)

6-54 DG75

FPARAM

FPARAM

FPARAM

This subroutine permits the user to set or reset some of the I/O parameters
of the run-time library. Specifically, it can be used to

l.

Set the line length (multiple of four) for formatted output directed
to a terminal; the default setting for this parameter is 72. The
maximum line length is 160 characters.

Set the media code for unformatted file output; the default setting of
this parameter is 1.

Set the reflexive read characters that are sent to a terminal to
request input; the default setting of this parameter is a string of
four ASCII characters, carriage return, line feed, equal sign, or
X~ON.

Calling Sequence

CALL FPARAM (i,j)

where: 1 is an integer variable or constant, with a value of 1, 2, or 3

Examples

corresponding to one of the three functions above.

j is an integer variable or constant, providing the line length or
media code for i values of 1 and 2, or providing the octal value
of four ASCII characters for an i value of 3.

DATA J/0015012077077/
CALL FPARAM (3,J)

Reflexive read signature changed to "??"; in which 015 is a carriage

return, 012 is line feed, and the two 077s are question marks.

CALL FPARAM (1,160)

Terminal line length setting to 160 characters.

6-55 DG75

FXDVCK FXDVCK
FXEM FXEM
FXDVCK (see DVCHK)
FXEM (FORTRAN EXECUTION ERROR MONITOR)

This subroutine performs the following functions:

° Prints a trace of subroutine calls. -

° Prints execution error messages.

® Terminates execution with a Q6 abort, continues with execution of the

program, or transfers to an alternate error routine.

° Allows the user to determine if an error has

Execution Error Monitor.

processed by

the

These functions are accomplished by the setting/resetting of bits in switch
word groups that control termination, message printing and trace, and alternate
error return for the errors described in Table 6-5 (refer to Appendix E for FXEM

examples) .

Calling Sequences

CALL ANYERR(vV)

where: v is an integer variable into which the FORTRAN Execution Error

NOTE:

Monitor places the error code (see Table 6-5) if an error occurs;
v should not be used for any other purpose.

If an ERR=CLAUSE is included in an I/O operation, the error monitor
is not called. Control is returned to the statement number
specified.

6-56 DG75

FXDVCK ‘ FXDVCK
FXEM FXEM

Calling Segquence

CALL FXEM(ncode [,msg,n])
where: ncode is the error code expressed as an integer in the range 1 < n
< 143 (refer to Table 6-5).

msg is the message displayed on file 06 following the error
trace; msg must be a character constant or a variable.

n ii:tq$ number of words to be printed and must be in the range
0S<nS20.

NOTE: If only the ncode is specified, only the trace is printed.

Calling Sequence

CALL FXOPT(ncode,il,i2,i3)
where: ncode is the error code generated for which il, i2, i3 are to be
set (refer to Table 6-5).
il is the switch word setting for termination
=0: abort with a Q6 abort
=1: execution continues
i2 is the switch word setting for message printing and trace
=0: print
=1: suppress printing
i3 is the switch word setting for alternate error procedure
=0: use normal return

=1: use alternate error procedure

NOTE: If i3 = 1, il is ignored

Examples

CALL FXOPT(32,0,1,0) Abort; no message printed; no alternate return
CALL FXOrr(32,1,0,0) Continue; print message; no alternate return

CALL FXOPT(32,0,0,1) Print message; go to alternate return if error occurs

6-57 DG75

FXDVCK FXDVCK
FXEM FXEM

Calling Sequence

CALL FXALT(SR)

where: SR is the alternate error procedure subroutine that is used as the
: transfer address for the error monitor.

FUNCTION subprograms and parameters are not allowed for SR. If the
alternate procedure option for an error code is indicated but no call to FXALT
has been made, a Q5 abort occurs if an error condition occurs. A RETURN
statement in the alternate routine causes execution to be continued at the next
executable statement following the statement that caused the error.

The alternate error procedure should not invoke the routine in which the
error was found (i.e., the alternate error procedure for a formatted
input/output statement cannot perform formatted input/output operations). The
statement CALL FXALT ($n) designates statement n in the calling program as the
alternate error return. Statement n must be in the same program unit in which
the CALL FXALT appears but does not have to be in the same program unit in which
the error occurs.

NOTE: If the same error occurs in the alternate error routine, a loop
results,

The standard setting of bits in the FXSW1l switch word groups controls
termination. The execution results are indicated in the second column of Table
6-5. The settings in the second and third switch word groups (trace and
alternate return) are initially zero.

6-58 DG75

66-9

BLDU

Table 6-5.

Error Codes and Meanings

DEFAULT
PROCEDURE
ERROR ABORT/ EXCEPTION MESSAGE MESSAGE
CODE CONTINUE FUNCTION ERROR RETURN LINE 1 LINE 2
0 A Not used
1 c I**J3 1=0,J=0 0=0QR EXPONENT IATION ERROR SET RESULT=0
0**0
2 c I**3 1=0,5<0 (2%*35)-2=QR EXPONENTIATION ERROR SET RESULT=2%*35-2
0%**(-J)
3 c (DA**J) {DA=0,J=0 0=EAQ EXPONENTIATION ERROR SET RESULT=0
A**g A=0,J=0 0%%Q
4 c (A**J A=0,3<0 10**38 = EAQ EXPONENTIATION ERROR SET RESULT=10%**38"
DAX*J DA=0,J<0 0** (~J)
5 c B**C B<O 0*=EAQ EXPONENTIATION ERROR SET RESULT=0
(=B) **C
6 c A**B A=0,B=0 ¢=EAQ EXPONENTIATION ERROR SET RESULT=0
0**Q
7 c A**C 2=0,C<0 10%*38 = EAQ EXPONENTIATION ERROR SET RESULT=10%*38
0** (-C)
8 c e**B B>88.028 10**38 = EAQ EXP (B) ,B GRT THAN 88.028 SET RESULT=10**38
NOT ALLOWED
9 c LOG (A) A=0 -(10**38)=EAQ LOG(0) NOT ALLOWED SET RESULT- (10**38)
10 C LOG (B} BE>0 0-=EAQ LOG (~B) NOT ALLOWED SET RESULT=0,0
11 c ARCTAN (A/B) A=0,B=0 0=EAQ ATAN2(0,0) NOT ALLOWED SET RESULT=0
12 c (SIN(A) far2? 0 = EAQ SIN OR COS ARG GRT TH SET RESULT=0
€OoS (A) 2%*27 NOT ALLOWED
13 c /B B<O JB=/1BI SORT (-B) NOT ALLOWED EVALUATE FOR +B
14 c CA**K CA=0,K=0 C=aQ EXPONENTIATION ERROR SET RESULT=0
0**Q
15 c CA**J CA=0,J<0 10**38mAR EXPONENTIATION ERROR SET RESULT=(10**38,0.0)
0+=QR Q**(-J)
16 c DA**DB DB#0,DA< 0 0=EAQ EXPONENTIATION ERROR SET RESULT=0
(~DA) **DB
17 c DA**DB DA=0,DB=0 0+=EAQ EXPONENTIATION ERROR SET RESULT=0

0**Q

09-9

YA

DEFAULT
PROCEDURE

Table 6-5 {(cont).

Error Codes and Meanings

FILE CODE FC

ERROR ABORT/ EXCEPTION MESSAGE MESSAGE
CODE CONTINUE FUNCTION ERROR RETURN LINE 1 LINE 2
18 c DA**DB DA=0,DB < 0 10%*35 = TAQ EXPONENTIATION ERROR SET RESULT=10%**38
0** (~DB)
19 c e**DA DA > 88,028 10%*38 = LAQ EXP (B) ,B GRT 88.028, SET RESULT=10**38
NOT ALLOWED
20 o LOG (DA) DA=0 -(10**38) = EAG DLOG(0) NOT ALLOWED SET RESULT=-(10%*38)
21 c LOG (DA) DA< 0 0-=EAQ DLOG (~B) NOT ALLOWED SET RESULT=0
P22 c NS DA < 0 J/Da= DAl SQRT (-B) NOT ALLOWED EVALUATE FOR +B
boas c SIN DA I DA >25% 0+ EAQ DSIN OR DCOS ARG GRT SET RESULT=0
COS DA 2*%*54 NOT ALLOWED
24 c ARCTAN (DA/DB) DA=0,DB=0 "0 = EAQ DATAN2(0,0) NOT ALLOWED SET RESULT=0
25 c CA/CB CB=(G,0) 10**38+=AR COMPLEX Z/0 NOT ALLOWED SET RESULT=(10**38,
10**38 »QR 10%*38)
26 c e**CA REAL CA>88.028 10** 38 =AR EXP(2) ,REAL PART GRT SET RESULT=(10**38,
10**38 =QR 86.028 NOT ALLOWED 10**38)
27 c e**Ca 11MAG (ca) >27 0= AR EXP (Z) ,1MAG PART GRT SET RESULT=(0,0)
0= QR 2**27 NOT ALLOWED
28 c LOG (Ch) CA=(0,0) - (10%*38) =2aR CLOG (0) NCT ALLOWED SET RESULT
0= 2R (- (10%*38),0.0)
29 c SIN(CA)> |REAL (Ca)| > 277 0= 20 CSIN OR CCUS ARG WITH SET RESULT=0
Cos (Ca) REAL PART GRT 2**27 NOT
ALLOWED
30 c COS (CA) ~ IMAG(CA) > 88,028 10%*38 =AR CSIN OR CCOS ARG WITE IM SET RESULT=(10%%38,
STN(Ca)) 10%%38 = QR PART GRT 856.028 NOT L0**38)
ALLOWED
31 C BCD 1/0 ILLEGAL FORMAT -==-= FORMAT AT LLLLLL,FIRST TREAT AS END
STATEMENT WORD HHHHEH IS ILLEGAL CF FORMAT
32 c BCD /0 ILLEGAL CHARACTER ———n- ILLEGAL CHAR IN DATA TREAT ILLEGAL
IN DATA OR BAD OR BAD FORMAT CHAR AS ZERO
\ FORMAT
i 33 n BCD 1/0 ATTEMPT TO READ =---- READ AFTER WRITE FC = XX
| OUTPUT FILE 1S ILLEGAL
l i .
L34 A BCD I/0 END=OF-FILE ~ -=——=- END OF FILE READING OPTIONAL RETURN

NOT REQUESTED

T9-9

SL9d

Table 6-5 (cont). Error Codes and Meanings

DEFAULT
PROCEDURE
ERROR ABORT/ EXCEPTION MESSAGE MESSAGE
CODE CONTINUE FUNCTION ERROR RETURN LINE 1 LINE 2
35 c REWIND AND ILLEGAL REQUEST —-—-- REQUEST TO XXXXXX ON FC ====-
END FILE WAS IGNORED
PROCESSOR
36 c FFFB BACKSPACE ERROR ~---- TAPE POSITIONED AT iST BACKSPACE REQ. LARGER
FILE THAN FILE COUNT
37 A FILE OPENING FILE NOT DEFINED =~===- LOG. FILE CODE FC NO OPTIONAL EXIT
DCES NOT EXIST EXECUTION TERMINATED
38 A FILE OPENING NO SPACE FOR I/O =----- INSUFFICIENT CORE AVAIL- NO OPTIONAL EXIT
BUFFERS ABLE FOR BUFFERS EXECUTION TERMINATLD
39 A BINARY 1/0 ILLEGAL END- ==--~ UNEXPECTED EOF OR BAD FORMAT; FILL % XX
' OF-FILE
40 c BINARY I/0 LIST EXCEEDS ——— LIST EXCEEDS LOGICAL STORE ZEROS IN
LOGICAL RECORD RECORD LENGTH REMAINING LIST ITEMS;FC
LENGTH
41 a BINARY I/0 SYSOUT/FIXED ===-=- SYSOUT OR FIXED LENGTH BE SMALLER THAN BLOCK SIZL;
LENGTH RECORDS RECORDS MUST FILE # XX
42 c NAMELIST ILLEGAL HEADING ----- ILLEGAL HEADING CARD SCAN TERMINATLD
INPUT CARD BELOW
43 o NAMELIST ILLEGAL VARIABLE =-=--- ILLEGAL VARIABLE SKIPPING TO NEXT
INPUT NAME NAME BELOW VARIABLE NAME
44 c NAMELIST ILLEGAL SUBSCRIPT ----- ILLEGAL SUBSCRIPT BELOW, SKIPPING TO NEXT
INPUT OR ARRAY SIZE OR DATA EXCEEDS VARIABLE VARIABLE NAME
EXCEEDED
] o NAMELIST ILLEGAL CHARACTER =<-=- ILLEGAL CHAR IN DATA ASSUME COMMA PRECEDES
g INPUT AFTLR RIGHT BELOW CHAR
; PARENTHESIS
| 46 c NAMELIST ILLEGAL CHAR IN —----- 'ILLEGAL CHAR IN DATA TREAT CHAR AS ZERO
INPUT DATA BELOW
47 A BACKSPACE FILE CANNOT BE ----- FILE CODE XN, BACKSPACE FILE IS SYSOUT OR IS NOT
RECORD BACKSPACED REFUSED MAGNETIC TAPE, DISK OR DRUM
48 c NAMELIST ILLEGAL LOGICAL —-==-- ILLEGAL LOGICAL CONSTANT TREAT ILLEGAL LOGICAL
INPUT CONSTANT APPEARS BELOW (OR AT CONSTANT AS F
ENXD OF PRECEDING RECORD)
49 A BACKSPACE ERRONEOUS - ERRONEOUS END OF FILE
FILE END-OF-FILE ON BACKSPACE

29-9

SL9da

Table 6-5 (cont).

Error Codes and Meanings

DEFAULT
PROCEDURE
ERROR ABORT/ EXCEPTION MESSAGE MESSAGE
CODE CONTINUE FUNCTION ERROR RETURN LINE 1 LINE 2
50 c BACKSPACE BLOCK COUNT = =-=--- BLOCK COUNT IN FCB]
FILE OF ZERO EQUALS ZERO
51 [SENSE LIGHT INDEX NOT = =—===- REFERENCE TO NON-EXISTENT DECLARED OFF IF
SIMULATOR 0<n<35 SENSE LIGHT TESTING, IGNORED
IF SETTING
52 C NAMELIST ILLEGAL m———— ILLEGAL HOLLERITH SKIPPING TO NEXT
INPUT HOLLERITH FIELD FIELD BELOW VARIABLE NAME
53 c SENSE SWITCH INDEX NOT =—=--- NON-EXISTENT SENSE SWITCH SWITCH DECLARED
TEST 1<n<6 TESTED OFF
54 A FILE OPENING ATTEMPT TO WRITE ----- ILLEGAL WRITE REQUEST NO OPTIONAL EXIT
I* ON SYSINL1 EXECUTION TERMINATED
- -
55 A FXEM NAMELIST INPUT =—=-== ILLEGAL COMPUTED GO TO
56 A FILE OPENING ATTEMPT TO READ ~---- ILLEGAL READ REQUEST ON
p* SYSOUl OR SYSPP1
57 o BCD 1/0 ILLEGAL CHAR ==—-- ILLEGAL CHAR FOR L TREAT ILLEGAL
FOR L CONVERSION CONVERSION IN DATA BELOW CHARACTER AS SPACE
58 c BACKSPACE ~ ----- —— FILE NN IS CLOSED BACKSPACE REFUSED :
RECORD
59 C NAMELIST EMPTY HOLLERITH - ===—=- EMPTY HOLLERITH FIELD |
INPUT FIELD
60 C I**J I**J > 2%%35 (2*%*35)-2=QR EXPONENT OVERFLOW SET RESULT=+
111>1,3 >35 (2**35) =2 =QR ((2%*35)-2
J 1S EVEN
I<-1,3>35, —{(2**35)-2) = QR
J 1S ODD
61
62
63 RESERVED FOR USERS
64
65
66
67 C FAULT EXPONENT UNDERFLOW =----- EXPONENT UNDERFLOW AT LOCATION XXXXXX
68 C FAULT INTEGER OVERFLOW ~—=-- OVERFLOW AT LOCATION XXXXXX
69 c FAULT EXPONENT OVERFLOW =--~--- EXPONENT OVERFLOW AT LOCATION XXXXXX
70 c FAULT INTEGER DIVIDE BY ----- DIVIDE CHECK AT LOCATION XXXXXX

ZERO

€9-9

SL9a

Table 6-5 (cont).

Error Codes and Meanings

DEFAULT
PROCEDURE
ERROR ABORT/ EXCEPTION MESSAGE MESSAGE
CODE CONTINUE FUNCTION ERROR RETURN LINE 1 LINE 2
71 (o FAULT FLOATING POINT ———— DIVIDE CHECK AT LOCATION XXXXXX
DIVIDE BY ZERO
72 C RANDOM 1/0 LIST EXCEEDS LOGICAL =~=== LIST EXCEEDS LOGICAL STORE ZEROS IN
RECORD LENGTH RECORD LENGTH REMAINING LIST ITEMS
FC # XX
73 A RANDOM I/0 FILE NOT STANDARD = ~=~-==~ FILE NOT STANDARD
SYSTEM FORMAT, ZERO SYSTEM FORMAT
BLOCK COUNT; BSN FILE » FC
ERROR; ZERO RECORD COUNT
74 A RANDOM 1/0 NO DEVICE‘FOR FILE ===-- LOGICAL FILE CODE FC NO OPTIQNAL EXIT
DOES NOT EXIST EXECUTION TERMINATED
75 A RANDOM I/0 . BAD RECORD REFERENCE =====- ZERO OR NEGATIVE FC # XX
REC #
76 A RANDOM I/0 RECORD SIZE NOT SPECIFIED - REC SIZE NOT GIVEN FC # XX
IN FCB. GIVE VIA $ FFILE - FOR RANDOM FILE
CARD OR CALL RANSIZ
(FC,SIZE)
77 a RANDOM 1,0 'RANDOM I/0 TO LINKED ==——- " RANDOM I/0 TO FC # XX
FILE ILLEGAL LINKED FILE ILLEGAL
78 A RANDOM I/O THE RECORD NO. GIVEN IN --- REC # OUT-OF-BOUNDS- FC # XX
THE RANDOM READ OR WRITE
STATEMENT IS OUTSIDE THE
FILE LIMITS
79 A RANDOM I/0 LIST EXCEEDS DECLARED ===-- LIST EXCEEDS DECLARED FC # XX
RECORD LENGTH RECORD LENGTH
80 A RANDOM I/O FILE IS NOT LARGE ————— FILE SPACE EXHAUSTED- FC # XX
ENOUGH TO CONTAIN
RECORD
81 (o] FORMAT I/0 LINE EXCEEDS SIZE OF -—=-=- LINE EXCEEDS SIZE OF TREAT AS END
ENCODE/DECODE RECEIVING FIELD RECEIVING FIELD OF FORMAT
82 C FORMAT I/O FIRST NON-BLANK CHAR- =-===- FIRST NON-BLANK CHAR- TREAT AS END
ENCODE/DECODE ACTER IS NOT (ACTER IS NOT (OF FORMAT
83 C ARCSINE tARGI > 1.0 |ARGI>1.0 EVALUATE FOR
: ARG=1.0
84 [of FORMAT 1/0 IINTEGERI>D2#**35~1 ————— {INTEGERI>2%**35~1 LIMIT TO
ENCODE/DECODE 2%%35-1

6L/L

¥9-9

¥sL0a

Table 6-5 (cont).

Error Codes and Meanings

DEFAULT
PROCEDURE
ERROR ABORT/ EXCEPTION MESSAGE MESSAGE
CODE CONTINUE FUNCTION ERROR RETURN LINE 1 LINE 2
85 C 1/0 "GFRC" ERROR = = ====- "GFRC" ERROR CODE XXX FC #XX
86 A FORMAT 1/0 ENCODE/DECODE-I/0 = ===w- ENCODE/DECODE- NOT BE USED
ENCODE/DECODE MAY NOT BE USED 1/0 MAY RECURSIVELY
RECURSIVELY
87 C I/0 SPACE/CORE OBTAINED ===== SPACE/CORE OBTAINED LOG. FILE
FOR CODE #XX
88 C CALLSS END OF STRING
CHARACTER MISSING ~—===-
89 C EXP UNDERFLOW = ==ee- EXP(TOO LARGE A SET RESULT
DEXP NEGATIVE NUMBER) =0.,0
90 Cc TAN ARG TOO LARGE = = ===== LARGE ARG(71E4) MAY CAUSE LOSS
DTAN TO TAN OF PRECISION
91 C ACOSH ILLEGAL ARG = = ====- ACOSH OF NUMBER .LT. SET RESULT
DACOSH 1.0 NOT ALLOWED TO 0.0
92 C ATANH ILLEGAL ARG = ====- X .GE. 1.0 TO SET RESULT TO
ATANH (X) + OR -10**38
93 C BACKSPACE BAD TAPE = ====- FILE CODE NN BAD STATUS ON
FILE STATUS TAPE -
94 C BCD 1/0 ILLEGAL ee=e- FORMAT AT XXXXXX HAS CONVERSION;
FORMAT ILLEGAL IGNORE
95 C INTERNAL MODULE NOT = = — ===—- INTERNAL CONVERSION USE ENCODE/DECODE
CONVERSION SUPPORTED ROUTINE FINC IS NO
LONGER SUPPORTED
96-143 NOT PRESENTLY USED
NOTATION: I,J,K are integers
A,B,C, are real numbers
DA,DB,DC are double-precision numbers
CA,CB,CC where CA=X,Y are complex numbers
NOTE: If it is desirable to set up additional error messades, begin with error code 143,

and use the error codes in descending order.

(i.e., 143, 142, 141, etc.)

LINK LINK
LLINK LLINK

LINK, LLINK

The LINK subroutine enables the programmer to call program overlays. The
following call is used to load a 1link and transfer control to it without
returning to the calling program/overlay.

Calling Sequence

CALL L1INK(name)

where: name designates the variable name of the link as it appears on the
$ LINK control card. (See the General Loader manual for
"Link/Overlay Processing”.) Name may be a variable which
currently has a character type value, or it may be a character
constant (e.g., "LINK1"). The 1link name must be 1-6
characters if wusing the BCD option, or it must be 5-8
characters if wusing the ASCII option. Explicit trailing
blanks are included in the character count.

The following statement is used to load a 1link and return to the next
sequential statement of the calling routine.

CALL LLINK (name)

NOTE: Due to TSS FORTRAN RUN subsystem limitations, it 1is necessary to
force the 1loading of input-output library routines with the main
link in a time sharing loadable H* file. This requires the presence
of a PRINT statement or another form of input-output in the main
program,

6-65 DG75

MEMSI17Z MEMSI1Z

MEMSIZ

This subroutine provides the user with the means of obtaining the amount of
memory allocated for execution of the program.

Calling Sequence

CALL MEMSIZ(j)

where: j an integer variable, is returned as the number of 1024-word
blocks currently allocated for the program in execution.

6-66 DG75

NASTRK NASTRK

OVERFL OVERFL
PDUMP PDUMP
NASTRK

This subroutine may be c¢alled to avoid £filling an output field with
asterisks when a formatted output value exceeds the field width specified. The
most significant part of the number is truncated to fit the field (see
subroutine YASTRK).

Calling Sequence

CALL NASTRK
OVERFIL, (see DVCHK)

PDUMP ,PDUMPA (see DUMP)

6-67 DG75

PTIME PTIME

PTIME

This subroutine provides the means of obtaining processor time used.

Calling Sequence

CALL PTIME (a)

where: a a real variable, is the value returned with the processor time
used in hours.

NOTE: This feature can also be used as a function. The value returned will be

a cumulative time for this job or, if under time sharing, it will be
cumulative since log-on for the current user.

6-68 DG75

RANSIZ

RANSIZ

RANSIZ

This subroutine is used to specify the record size for a random binary
file. Normal return is to the next executable statement of the calling program.
If the record size for a given random file is not provided at load time via the
$ FFILE card, a call to this routine before opening the file is mandatory.

Calling Sequence

CALL RANSIZ (u,n(,m])

where:

NOTE:

u

i

18

is the logical file designator of type integer, and can be any
legal arithmetic expression.

is the record size of +type integer and can be any legal
arithmetic expression.

is a file format indicator of type integer and can be any legal
arithmetic expression.

=0 or null: standard system format

#0: block and control records are not to be processed.

A call to RANSIZ can also be used to override a S$FFILE control
card size specification. However, a call to RANSIZ is the
preferred method of specification because it works in both batch
and time sharing mode.

If m # 0, all the designated file space is available for data. The records
are not blocked, can begin anywhere in a sector, and may span sector boundaries.

6-69 DG75

SETBUF ' SETBUF

SETBUF

This subroutine is wused to assign space in storage for use as an
input/output buffer (s) but does not change the buffer size. Because the size of
the buffer(s) must be one greater than the actual record size, the system
standard buffer size is 321 words. Normal return is to the next executable
statement in the calling program.

Calling Sequence

CALL SETBUF (i,a)

CALL SETBUF (i,a [,b])

where: i, the logical file designator, is an integer variable or a
constant.

is the array name of the first buffer.

1o

is the array name of the second buffer for file i, if required.

1o

7/79 6-70 DG75A

SETFCB SETFCB

SETFCB

This subroutine is used to define a file control block (FCB) for use by the
I/0 subprograms. Normal return 1is to the next executable statement of the
calling program unless one of the following error conditions occur

1. Abort with a Q2 abort code if there is no logical file table.

2, Abort with a Q1 abort code if there is no space available 1in the
logical file table for inserting a specified file control block.

Calling Segquence

CALL SETFCB(a,i,3(s...))

where: a is the location of LOCSYM in the user created file control
block.
i,3 are the 1logical file designators (integer variables or

constants) that refer to the file control block.

6-71 : DG75

SETLGT ' SETLGT

5

v
i

SETLGT

This subroutine is used to define a logical unit table for use by the I/O
library subprograms. If GLOAD has not set up the LGU, this subroutine must be
called before any input/output is requested (e.g., $ OPTION NOFCB). It is
called when the 1logical file table generated by the General Loader is to be
replaced and the table is to be placed in the user area of memory. The NOFCB
option must be specified in the $§ OPTION control card.

NOTE: Normal return is to the next executable statement of the calling program.

Calling Sequence

CALL SETLGT(a,i)
where: a is the array name of the logical unit table to be used.

i is an integer variable or constant representing the number of
words in a.

6-72 DG75

SLITE
SLITET

SLITE,SLITET

This subroutine subprogram
lights, Normal return is to the
program,

Calling Sequence

simulates the
next executable

CALL SLITE(0) to clear sense lights 1-35

SLITE
SLITET

setting and testing of sense

statement

CALL SLITE(i) to turn on sense light i (1<i<35)

in

the

calling

CALL SLITET(i,j) to test and turn off sense light i, if it is currently set

where: i is an integer variable or constant.

] is an integer variable that cannot be the induction variable of a
currently active DO loop.

=1l: i is ON
=2: i is OFF

6-73

DG75

SORT SORT
ISORT » ISORT

SORT

| This subroutine is used to sort positive integer or character arrays in
ascending order. All comparisons are based on 36-bit integer magnitudes. This
means that data cannot be sorted into an integer algebraic sequence (refer to
Appendix A for the proper collating sequence).

NOTE: Floating-point data cannot be sorted reliably.

ISORT

I This subroutine is wused to sort integer arrays in ascending order. The
data is sorted into an integer algebraic sequence where negative values are
allowed.

Calling Sequence

CALL SORT (array,nrec,lrs,key[,...])
CALL ISORT (array,nrec,lrs,key [,.%.])

where: array is the name of the array to be sorted.

nrec 1is an integer variable or constant and 1is the - number of
elements, or logical records, in the array.

lrs is an integer variable or constant describing the logical
record size, in words, of the records in the array to be

sorted.
Example
DIMENSION I(5,20) defines 20 integer records whose
CALL SORT(I,20,5,...) logical record size = 5 elements * 1
word per element = 5
or
CHARACTER *12 I(5,20) in ASCII; each element is 12

CALL SORT(I,20,15,...) characters = 3 words
15 words per logical record
5 elements * 3 words per element = 15
or

CHARACTER *12 I(5,20) in BCD, each element is 12
CALL SORT (I,20,10,...) characters = 2 words

10 words per logical record

5 elements * 2 words per element = 10

7/79 6-74 DG75A

SORT
ISORT

g

SORT
ISORT

is the relative word number of the ith sort key in each
logical record and must be in the range 0< key < lrs. Record
comparisons are made starting with keyj, and either progress
through key,, or until a non-equal comparison is made. Any
number of sort keys may be specified; however, at least one
must always be specified. If key has a value of zero, the
sort will occur on the first word of each array element.

The following example illustrates a two-dimensional array sort.

0010 CHARACTER*5 ARR(3,5)

0020 PRINT,"INPUT DATA"

C READ DATA ONE COLUMN AT A TIME

0030 READ(5,10)ARR

0040 10 FORMAT (3A5)

C THE ARRAY CONTAINS 5 LOGICAL RECORDS CONSISTING OF 3 WORDS EACH

C THAT IS,

5 COLUMNS AND 3 ROWS

0050 CALL SORT (ARR,5,3,0,1,2)

0060 PRINT,"SORTED DATA BY COLUMN"
0070 WRITE(6,10)ARR

0080 STOP;END

ready

INPUT DATA
=ELK FAST 1
=COW SLOW 2
=DOG FAST 3
=CAT FAST 4
=ELK FAST 5

SORTED DATA BY COLUMN

CAT FAST
COW SLOW
DOG FAST
ELK FAST
ELK FAST

Ut = W N

7/79

6-75 DG75A

SORTD SORTD
ISORTD ISORTD

SORTD

This subroutine is used to sort positive integer or character arrays in a
descending order. All comparisons are based on 36-bit integer magnitudes. This
means that data cannot be sorted into an integer algebraic sequence (refer to
Appendix A for the proper collating sequence).

NOTE: Floating-point data (real values) cannot be sorted reliably.

ISORTD

This subroutine is wused to sort integer arrays in descending order. The
data is sorted into an integer algebraic sequence where negative values are
allowed.

Calling Sequence

CALL SORTD (array,nrec,lrs,key[,...])
CALL ISORTD (array,nrec,lrs,key [,.%.])

where: array is the name of the array to be sorted.

nrec is an integer variable or constant that specifies the number
of items or logical records in the array.

1lrs is an integer variable constant describing the logical
record size, in words, of the records in the array to be
sorted.

Example

DIMENSION I(5,20) defines 20 integer records whose
CALL SORTD(I,20,5,...) logical record size = 5 elements * .1
word per element = 5
or

CHARACTER *12 I(5,20) in ASCII; each element is 12
CALL SORTD(I,20,15,...) characters = 3 words
15 words per logical record
5 elements * 3 words per element = 15
or

CHARACTER *12 I(5,20) in BCD, each element is 12
CALL SORTD(1,20,10,...) characters = 2 words

10 words per logical record

5 elements * 2 words per element = 10

7/79 6-76 DG75A

SORTD
ISORT

D

7/79

SORTD
ISORTD

key is an integer variable or constant and is the word number of
the ith sort key in each logical record and must be in the
range O<key < lrs. Record comparisons are made starting with
key1 and either progress

non-equal comparison is made.

through to key, .
Any number of sort keys may be

until a

specified; however, at least one must always be specified.

INTEGER ARRAY(10)

DO 10 I=1,10

10 ARRAY (I)=RANDT (20.0)
WRITE (6,200) ARRAY

CALL SORTD (ARRAY,10,1,0)
WRITE (6,200) ARRAY

200 FORMAT(10(2X,I7))
STOP; END

3 0 4 17 11 19

6-77

DG75A

SSWTCH SSWTCH

SSWTCH

This subroutine subprogram tests the GCOS switch word for the status of a
sense switch. Normal return is to the next executable statement in the calling

program.

Calling Sequence

CALL SSWTCH(i,Jj) to test sense switch i
where: i is an integer variable or constant that must be from 1 to 6.

J is an integer variable that cannot be the induction variable of a
currently active DO loop.
=1l: 1 is ON
=2: i is OFF

Bits 6~11 of the Program Switch Word (described in the General
Comprehensive Operating Supervisor manual), correspond to sense switches 1-6.

6-78 DG75

TERMNO TIERMNO

TERMNO

This subroutine is used as a means of obtaining station code.

Calling Sequence

CALL TERMNO (a)
where: a is a character variable. The value returned is a two-character

station code.

In batch, the call returns two blank characters for the station code.

6-79 ' DG75

TERMTM TERMTM

TERMTM

This subroutine is used to obtain the elapsed time since log-on. The call
is applicable only for time sharing activities; it is ignored in the batch mode.

Calling Sequence

CALL TERMTM (a)

where: a a real variable, is the value returned for the hours since
log-on.

6-80 DG75

TRACE TRACE

TRACE

This subroutine is called from a FORTRAN object program in the time sharing
mode. It is wuseful in tracing and debugging an object module (refer to Debug
and Trace Routines manual).

6-81

USRCOD

USRCOD

This subroutine is used as a means of obtaining user

mode.

Calling Sequence

CALL USRCOD (s)

where: s a character

variable,

is

returned

l2-character user identification.

6-82

as

USRCOD

identification.
call 1is applicable only for time sharing activities; it is ignored in the batch

the

value

of

The

the

DG75

YASTRK YASTRK

YASTRK

This subroutine may be called to override the affect of the NASTRK
subroutine and to re-establish the default action of filling an output field
with asterisks when a formatted output value exceeds the field width specified
(refer to subroutine NASTRK) .

Calling Sequence

CALL YASTRK

6-83 DG75

APPENDIX A

ASCII/BCD CHARACTER SET

Octal MODEL
ASCII Collating BCD 33/35 HOLLERITH
CHAR Sequence CHAR Octal KEY CARND Punch MEANING
NULL 000 -— —_— '‘cs'p —-— Null or time fill char
SOH 00l —-— -— 'c'a —-— Start of heading
STX 002 —— —-—— 'C'B — Start of text
ETX 003 —— —_— 'Cc'C (EOM) —-—— Fnd of text
EOT 004 - —_— 'c'n (gOT) —-—— Fnd of transmission
ENQ 005 —-— — 'C'E (WRU) —-—— Enquiry (who are you)
ACK 006 — —— 'C'F (RU) ——— Acknowledge
BEL 007 —-— —— 'C'G (BFLL) - Bell
BS 0lo0 -— —— 'C'H —-_— Backspace
HT 011 —-— —_—— 'c't (TAB) —_— Horizontal tabulation
LF 012 —— —-——— LINE FEED —_—— Line Feed (New Line)
VT 013 — -—- 'C'K (VT) —— Vertical Tabulation
FF 014 -— —— 'C'L, (FORM) ——— Form Feed
CR’ 015 — - RETURN -— Carriage Return
SO 0l6 —— - 'C'N —-—— Shift Out
SI 017 —— — 'c'g —— Sshift In
DLE 020 —— — 'c'p — Data Link Escape
DC1l 021 — —_— 'c'Q (X-ON) —-—— Device Control 1
DC2 022 —-——— - 'C'R (TAPE) —-— Device Control 2
DC3 023 —-——— —-_— 'C'S (X-OFF) —_—— Device Control 3
DC4 024 — — 'C'T (TAPE) — Device Control 4
NAK 025 —-_— —_— '‘c'u — Negative Acknowledge
SYN 026 —-— -—— 'c'v —-—— Synchronous Idle
ETB 027 —— —-— 'c'w —-— End of Transmission Blocks
CAN 030 —-— —-—— 'c'X — Cancel
EM 031 —— - 'c'y —-— End of Medium
ss 032 — -— 'c'z —-— Special Sequence
ESC 033 — —-— 'CS'K —— Fscape
FS 034 ——— —— 'CsS'L ——— File Separator
GS 035 — —_— 'CS'M —— Group Separator
RS 036 —-— —-——— ‘CS'N — Record Separator
us 037 —_—— - 'cs'g —— Unit Separator
SP 040 blank 20 SPACF BAR blank Space
H 041 : 77 's'1 0-7-8 Fxclamation Point
" 042 " 76 's'2 0-6-8 Quotation Mark
4 043 # 13 's'3 3-8 Number Sign
$ 044 $ 53 's'4 11-3-8 Currency Symbol
3 045 2 74 's's 0-4-8 Percent

046 32 's'se 12 Ampersand
' 047 ' 57 's'7 11-7-8 Apostrophe
(050 (35 's's 12-5-8 Opening Parenthesis
) 051) 55 's'o 11-5-8 Closing Parenthesis
* 052 * 54 'S': 11-4-8 Asterisk
+ 053 + 60 's'; 12-0 Plus
’ 054 ’ 73 N 0-3-8 Comma
- 055 - 52 - 11 Hyphen or Minus
. 056 . 33 . 12-3-8 Period
/ 057 / 61 / 0-1 Slant

A-1 : : ' DG78

Octal MODEL

ASCII Collating BCD 33/35 HOLLERITH

CHAR Segquence CHAR Octal KEY CARD Punch MEANING

0 060 0 00 0 0 Zero

1 061l 1 01 1 1 One

2 062 2 02 2 2 Two

3 063 3 03 3 3 Three

4 064 4 04 4 4 Four

5 065 5 05 5 5 Five

6 066 6 06 6 6 Six

7 067 7 07 7 7 Seven

8 070 8 10 8 8 Eight

9 071 9 11 9 9 Nine

: 072 : 15 : 5-8 Colon

; 073 ; 56 ; 1l1-6-8 Semicolon

< 074 < 36 's', 12~-6-8 Less Than

= 075 = 75 'St- 0-5~8 Equal

> 076 > 16 's', 6-8 ‘ Greater Than

? 077 ? 17 st/ 7-8 Question Mark

@ 100 @ 14 's'p 4-8 Commercial At

A 101 A 21 A 12-1 Uppercase Letter
B 102 B 22 B 12-2 Uppercase Letter
C 103 C 23 C 12-3 Uppercase Letter
D 104 D 24 D 12-4 Uppercase Letter
E 105 E 25 E 12-5 Uppercase Letter
F 106 F 26 F 12-6 Uppercase Letter
G 107 G 27 G 12-7 Uppercase Letter
H 110 H 30 H 12-8 Uppercase Letter
I 111 I 31 I 12-9 Uppercase Letter
J 112 J 41 J 11-1 Uppercase Letter
K 113 K 42 K 11-2 Uppercase Letter
L 114 L 43 L 11-3 Uppercase Letter
M 115 M 44 M 11-4 Uppercase Letter
N 116 N 45 N 11-5 Uppercase Letter
0 117 7] 46 7] 11-6 Uppercase Letter
P 120 P 47 P 11-7 Uppercase Letter
Q 121 Q 50 Q 11-8 Uppercase Letter
R 122 R 51 R 1i-9 Uppercase Letter
S 123 S 62 S 0-2 Uppercase Letter
T 124 T 63 T 0-3 Uppercase Letter
U 125 U 64 U 0-4 Uppercase Letter
v 126 v 65 v 0-5 Uppercase Letter
1 127 W 66 W 0-6 Uppercase Letter
X 130 X 67 X 0-7 Uppercase Letter
Y 131 Y 70 Y 0-8 Uppercase Letter
Z 132 Z 71 Z 0-9 Uppercase Letter
C 133 C 12 'S'K 2-8 Opening Bracket

\ 134 \ 37 'St 12-7-8 Reverse Slant

] 135 i) 34 's'™M 12-4-8 Closing Bracket

A 136 ; A 40 'S'N 11-0 Circumflex

_ 137 . 72 's'g 0-2-8 Underline

[140 —-—— —-— e —— Grave Accent

a 141 —— - ——— — Lowercase Letter
b 142 ——— - - —— Lowercase Letter
c 143 —-— —-—— ——— —--—- Lowercase Letter
d 144 - ——— —— ——— Lowercase Letter
e 145 ———— —— —— ———— Lowercase Letter
£ 146 - —— —-——— —— Lowercase Letter
g 147 —— - ——— - Lowercase Letter
h 150 ———— ——— — —— Lowercase Letter
i 151 - ——— = ——— - Lowercase Letter
3j 152 —— —-— —-—— ——— Lowercase Letter
k 153 - ——— —— - Lowercase Letter
1 154 ——— — —— —— Lowercase Letter

A-2 DG75

Octal

ASCII Collating
CHAR Sequence

MODFL
33/35
KEY

155
156
157
160
l6l
162
163
164
165
166
167
170
171
172
173
174
175
176
L 177

gev‘AN‘<X£<CHWHJJ’UODB

Legend:

lcl
lCSI
ls'

o

CTRL key

RUBOUT

CTRL and SHIFT keys

SHIFT key

HOLLERITH

CARD Punch MEANING

Lowercase
Lowercase
Lowercase
LLowercase
Lowercase
Lowercase
Lowercase
Lowercase
Lowercase
Lowercase
Lowercase
Lowercase
Lowercase
Lowercase

Letter
Letter
Letter
Letter
Letter
Letter
Letter
Letter
Letter
Letter
Letter
Letter
Letter
Letter

Opening Brace
Vertical Line
Closing Brace

Tilde
Delete

DG75

APPENDIX B

TIME SHARING SYSTEM DESCRIPTION

The standard means of communication with the GCOS Time Sharing System (TSS)
is via a CRT display terminal, a keyboard/printer terminal, a paper-tape
terminal unit for input/output, or any combination, In any case, the
information transmitted to and from the system is displayed on the
terminal/printer. Keyboard input is used for purposes of description;
instructions for the use of paper tape are given under "Paper Tape Input" in
this section.

The time sharing system is utilized by means of a command language which is
distinct from any of the specialized programming languages that are recognized
by the individual time sharing compilers/processors (e.g., the time sharing
FORTRAN language). The command language is basically the same for any component
of the time sharing system (i.e., FORTRAN, BASIC, Text Editor, etc.). A few of
the commands pertain to only one or another of the component time sharing
systems, but the majority of them are common to all component systems.

The valid time sharing system commands relate to the generation,
modification, and disposition of program and data files, as well as program
compilation and execution requests. The complete time sharing command language
is described in the TSS General Information manual. However, the RUN command

for the YFORTRAN and FORTRAN Time Sharing Systems is described in this appendix.

Once communication with the system has been established, any question or
request from the system must be answered within ten minutes, with the exception
of the initial requests for user identification (user~ID) and sign-on password,
which must be given within one minute. When these time limits are exceeded, the
terminal is disconnected.

Log-on Procedure

Communication with the time sharing system is initialized through the
following steps: '

) Activate the terminal unit

) Dial the site-designated phone number for the time sharing center

) Connect the receiver to the terminal coupler after a high-pitched tone
is heard; if a busy signal is heard, hang up and try later

) Press the carriage return key

) Begin the log-on procedure

7/79 B-1 DG75A

NOTE: A carriage return must be given following any complete response,
command, or line of information typed by the user. (In the examples
shown throughout this appendix, the user's response is underlined
for illustration, and a carriage return terminating each separate
response is understood.

Once the terminal has been connected to the computer, the time sharing
system begins the log-on procedure by transmitting the message:

HIS SERIES 60 ON(date)AT (time)CHANNEL(nnnn)

where: time is given in hours and thousandths of hours (hh.hhh)

nnnn is the logical identifier of the 1line to which the user is
connected. ’ '

Following the message, the system asks for the user's identification:

USER ID -

The user identification (user-ID) that has been assigned by the time
sharing installation management must be typed on the same 1line. This user-ID
uniquely identifies a particular user already known to the system for the
purpose of locating user programs and files, and initiates accounting for usage
of the time sharing resources allocated.

Example

USER ID -~ J.P.JONES

After the proper response, the system asks for the sign-on password that
was assigned with the user-ID.

PASSWORD
KREREEREHNXXKE

The password must be typed directly on the "strikeover" mask provided below
the PASSWORD request. The password is used by the system as a check on the
legitimacy of the identified user. The "strikeover" mask ensures that the
password, when typed, cannot be read by another person. (In the event that
either the wuser-ID or password is given twice incorrectly, the user's terminal
is immediately disconnected from the system.) At this point, if the accumulated
charges for the wuser's past time sharing usage equals or slightly exceeds 100
percent of current resource allocation, the user receives a warning message. If
accumulated charges exceeds 110 percent of current resources, the message

RESOURCES EXHAUSTED -~ CANNOT ACCEPT YOU
is printed and the terminal is immediately disconnected. The following

information message may be printed if more than 87% of the user's file space
quota has been used.

n BLOCKS FILE SPACE AVAILABLE

NOTE: This condition does not affect the log-on procedure.

7/79 B-2 DG75A

Assuming that the user=-ID and password are legitimate, and resources have
not been over-extended, an asterisk is issued indicating readiness to accept
commands and/or build files. The RUN and RESEQUENCE commands are unacceptable
at this point since it is not known what type of source is to be acted upon.
For example, does RUN mean to compile a BASIC or FORTRAN program, or does it
mean a batch 3job is to be submitted for processing? The user has two
alternatives available to deal with this ambiquity:

1. The mode is established by simply entering the desired system
selection (i.e., FORTRAN or YFORTRAN, which can be abbreviated as FORT
or YFORT) accompanied by an OLD or NEW request.

Once the system selection has been made, the system remains in effect
until explicitly changed (or cancelled by means of the break key).
The RUN command can be used once the mode is established.

2. The BRN, FRN, and JRN commands can be issued independent of previous
system selection (if any) and imply RUN for BASIC, FORTRAN, and
CARDIN, respectively. Note that JRN cannot be used as an execution
command for a CARDIN program unless that program follows the CONVERT
subsystem syntax. .

The JRN command is not identical to the CARDIN RUN command. Refer to the
TSS Terminal/Batch Interface manual for details concerning the use of JRN in
conjunction with the CONVERT subsystem.

The following is an example of a complete log-on procedure, up to the point
where the user is ready to begin building a file or exercising commands:

HIS SERIES 6000 ON 05/26/77 AT 14.568 CHANNEL 0012

USER ID -J.P.JONES
PASSWORD

ANBXKENXAHIK

* - (begin entering input on this line)

Program Statement Input

The system is currently in build-mode (as indicated by the initial
asterisk) and 1is ready to accept FORTRAN program statement input or control
commands. All lines of input other than control commands are accumulated on the
user's current file as they are entered into the system.

Following each 1line of noncommand-language input and the terminating
carriage return, the system supplies another initial asterisk when the carriage
is returned, to indicate the system is ready to accept more input.

7/79 B-3 DG75A

FORMAT
A line of FORTRAN input can contain:

1. One or more FORTRAN statements
2. A partial statement

3. A continuation of a statement left incomplete in the preceding line of
input

4. A comment
5. A combination of 3 and 1, or 3 and 2, in that order

6. A combination of 1 and 2

A line input must begin with a 1line~sequence number from one to eight
numeric characters. The line-sequence number enables the programmer to correct
and modify the source program. (Hereinafter, the line-sequence number is
referred to simply as the "line number".)

NOTE: A line number is distinct from a statement number in that a
statement number is a part of the FORTRAN language statement itself.

The 1line number is always terminated with a single control character that
can be a blank, an ampersand, a number sign, an asterisk, or the letter C. This
control character merely serves to indicate what type of information follows
(i.e., new statement, continuation, or comment) and is not compiled as part of
the program. The semicolon can be used to indicate the end of one complete
FORTRAN statement and the beginning of another on the same line of input. A
carriage return must be used to terminate a complete line of input. This 1line
format is suitable for direct processing by the FORTRAN compiler with the
options NFORM and LNO. '

The general format of a line of FORTRAN input is

nnnnnnnncstatement or continuation ;statement...;statement
or
nnnnnnnnc comment
where: nnn...n iﬁ a n%?eric line number, the magnitude of which 1is less
an 219 (262,144)
¢ 1is a control character that can be a blank, an ampérsand,

an asterisk, a number sign, or the letter C, and must
immediately follow the last digit of the line number.

7/79) B~4 DG75A

CONTROL CHARACTER

The control character identifies the type of information that follows it.

¥ (blank)

& (ampersand)

* (asterisk) or C

(pound sign)

If the character position immediately following the
last digit of the line number contains a blank, and the
next nonblank character is not an ampersand, then that
nonblank character is assumed to begin a new FORTRAN
statement, In this case, the next nonblank character
may begin a FORTRAN statement number (i.e., mm...m
statement-text).

If an ampersand is the first nonblank character
following the line number, the next significant
character is assumed to be a continuation of the
previous statement in the previous line of input. (A
blank character is significant only as a continuation
of the character string from a preceding line.) The
effect of "§" is to suppress the previous carriage
return as an end-of-statement indicator.

If the line number is terminated with an asterisk or
the letter C, the following information is assumed to
be a comment. The comment itself is terminated by a
carriage return.

If a numeric character is desired in column 1 of the
card image and line numbers exist in the source file, a
pound sign (#) immediately following the line number
causes the character following it to be placed in
column 1 ,

A semicolon within a noncomment 1line indicates both the end of the
preceding statement and the beginning of a new statement. The new statement can
include the FORTRAN statement number, mm...m.

The format of a statement that follows a blank control character, is

eoonNP P.o..d mm.,..m FORTRAN-language-text

(The statement format portion is uhderlined.)

7/79

where:

mm, , .M

are optional blanks

is an optional numeric statement number where mm < 99999

B~5 DG75A

BLANKS (OR SPACING) WITHIN A LINE OF INPUT

Initial, embedded, or +trailing blanks in a 1line of input have no
significance in its interpretation; however, blanks are illegal within the line
number and the nonnumeric character immediately following the line number is
interpreted as a control character. Thus, spacing can be used quite freely
within a line of input for legibility. Blanks within character constants and nH
fields (i.e., alphanumeric information are meaningful and are retained in the
object program coding.)

NOTE: The line/statement format is completely free-form, or position
independent with the exception of the control character.

To this point, the discussion of line format has been oriented to the NFORM
format described earlier in this document. This 1is generally the most
convenient form to use in time sharing, although it is not mandatory. The
source file can be built using the Text Editor and can be used without line
numbers through the NLNO option. The source program can be in "fixed" format
(i.e., without line numbers) through the FORM option. The full spectrum of line
formats and source file recording modes is available to the time sharing user.

Source Program Modification

Keyboard input is sent to the computer and written onto the user's current
file in units of complete lines. A line of terminal input is terminated by a
carriage return and no part of the line is transmitted to the system until that
carriage return is given. Therefore, corrections or modifications can be done
at the terminal at two distinct levels:

1. Correction of a line~in-progress b(i.e., a partial 1line not yet
terminated) .
2, Correction or modification of the source program (i.e., the contents

of the current source file) by the replacement or deletion of current
lines, or the insertion of new lines.

The correction of a typing error that is detected before the line is
terminated can be done in one of two ways:

® Delete one or more characters from the end of the partial line

) Cancel the incomplete line and begin again !

NOTE: Use of the delete control character deletes the character precedipg
the deletion character. (The delete control character used is
dependent upon the make of terminal at the site.)

7/79 B-6 DG75A

Example

deletes S

If # is the deletion character,

JONS#

JONS DAVEY#######

deletes S DAVEY

Example

7/79

Correction or modification of the current source file is done on the basis
of line numbers and proceeds accordingly.

The source file contains

100
200

READ(5,16)HRS,RATE,NO
WRITE (6,16)HRS,RATE,NO

300 16 FORMAT(F3.2,F4.2,I6)

1.

Replacement. A numbered line replaces any identically numbered line
that was previously typed or contained on the current file.

Example
200 WRITE(6,12)PAY
replaces the current line numbered 200.
Deletion. A "line" consisting of only a 1line number (i.e.,k 100)

causes the deletion of any identically numbered 1line that was
previously typed or contained on the current file.

Example
100
deletes line 100 from the source file.
Insertion. A line with a line-number value that falls between the
line-number values of two pre-existing lines is inserted in the file
between those two lines. If the line number is less than the first

line number, it is inserted at the beginning of the file; if greater
than the largest line number, it is inserted at the end of the file.

Example
250 12 FORMAT(//16HPAY IS EQUAL TO ,F6.2)
is inserted above line 300. |
The new source file now contains
200 WRITE (6,12)PAY

250 12 FORMAT(//16HPAY IS EQUAL TO ,F6.2)
300 16 FORMAT(F3.2,F4.2,16)

B-7 ' DG75A

Input Error Recovery

The decimal input/output routine permits the time sharing user (BCD orx
ASCII) to correct a string of characters in an executing FORTRAN program that
was entered from a terminal when a character is illegal for the current format
conversion (e.g., a decimal point is illegal in an "I" field). When the current
input line is printed on the terminal with a pointer to the illegal character,
the correction can be made, and the input/output routine resumes with the new
string. If the response is a carriage return, an error message is printed.

At any point in the process of entering file building input in
line-numbered subsystems, the LIST command may be given, which results in a
clean, up-to-date copy of the current file., 1In this way, the results of any
previous corrections or modifications can be verified visually. (The several
forms of the LIST command are described in detail in the TSS General Information
manual). Following the command "OLD filename", the LIST command can be used
initially to inspect the contents of the current source file (i.e., the "old"
program) .

Automatic Terminal Disconnections

Once communication with the Time Sharing System has been established, any
question or request must be answered within ten minutes. If these time limits
are exceeded, the terminal is disconnected.

7/79 B-7.1 DG75A

Log-Off Procedure

To terminate the current session with the Time Sharing System and
disconnect the terminal, the

*BYE
or
*TOGOFF

command may be given.

A report of the user's time sharing usage charges is given, as illustrated
below, and the terminal is disconnected:

**COST: § 0.17 TO DATE: $ 206.11=21%
**ON AT 15.000 - OFF AT 15.016 ON 07/19/78

If the BYE command is used, prior to the issuance of the usage charges, the AFT
is scanned, and the user 1is queried as to the disposition of any temporary
files.

To terminate the current session without disconnecting the terminal, the
command NEWUSER may be given in place of BYE. This procedure allows another
user to log-on immediately, or it can be wused to change the charge number
without going through the log-off/log-on procedure. The current log-off report
is then printed and a new log~-on sequence is initiated.

CAUTION: Failure to follow log-off procedures as described above may
result in unpredictable problems (lines or files remaining busy,
etc.). Certain data sets do not automatically disconnect after
log-off from the terminal. In such cases, it is necessary to
manually disconnect the data set by lifting the handset, pressing
the talk button, and hanging up the handset when the dial tone is
heard.

I-D-S/II in a FORTRAN Time Sharing Environment

The use of I-D-S/II in the FORTRAN time sharing environment requires the
ability +to specify FORTRAN source files, I-D-S/II control files, and I-D-S/II
data base area and key files as well as the desired options from the terminal.
The YFORTRAN and FORTRAN time sharing systems provide this capability.

Files Required by I-D-S/II

I-D-S/I1 requires control files and data base area files. Data base key
files and data base procedure files may also be required. The control files
required are

°® Schema File - the schema file, a random file produced by the schema
translation, is the "1*" file unless it has been renamed in the Device
Media Control Language (DMCL). It has the alternate name "1.". If 1%*
has been renamed in the DMCL, it must have that alternate name. The
schema file is required in the AFT at execution time.

7/79 B-8 DG75A

° validated Subschema File -~ The validated subschema file, a random file
produced by the subschema translation and validation, has the
alternate name "6*" and is required in the AFT at compilation time.

° Subschema Control Structure - Unlike the other I-D-S/II files, the
subschema control structure, a sequential file produced by the
subschema validation, is not accessed from the AFT. This file, which
was referenced by the filecode C* during validation, is bound instead
with the FORTRAN object program at load time. It consists of two
object modules, S.xxxx and D.xxxx, where xxxx are the first four
letters of the subschema name.

Data base area files are required. Data base key files may also be
required. Both type of files must be placed in the AFT under their alternate
names (i.e., the file codes which were specified in the schema DMCL). The
following types of data files can be specified:

Integrated

Integrated with Record Keys
Indexed

Indexed with Record Keys

If any required data base procedures were not included in the FORTRAN
source program itself, files containing these procedures must be supplied.
These files, produced during previous compilations, supply the procedures
specified in the schema and subschema. These object units, 1like the control
structure, are bound with the FORTRAN object program at load time.

When the DML option is specified, an INVOKE statement in the FORTRAN source
program enables the FORTRAN compiler to read the 6* file and obtain the
subschema. The subschema then becomes part of the FORTRAN program and defines
the User Working Area (UWA).

At run time, the schema file (1*) and the data base area and key files must
be in the AFT under the appropriate alternate names. The control structure is
used at run time to describe the subset of the data base which is accessible to
the program.

Comparison of the FORTRAN and YFORTRAN Time Sharing Systems

There are two time sharing versions of the FORTRAN compiler. Each version
is invoked by the call specified below.

Compiler Version Language Call
Batch based time sharing compiler YFORTRAN
Time sharing based compiler FORTRAN

7/79 ’ B-9 DG75A

compiler.

The time sharing based FORTRAN compiler compiles under the time sharing
system

rather than being spawned as in the case of the batch based time sharing
It differs from the batch based compiler because it

Compiles under the GCOS time sharing system
Eliminates the need for configuring batch memory; YFORTRAN compiles

through DRL TASK (Refer to the TSS System Programmer's Reference
Manual) . ;

Significantly reduces overhead in the FORTRAN time sharing system
Does not require the "CORE=" clause for compilations

Has identical compilers with the exception of the executive phase
(YFXC vs YUEX)

THE YFORTRAN TIME SHARING SYSTEM RUN COMMAND

The

date, a time,

The YFORTRAN time sharing RUN command can be written as either RUN or RUNH.
RUNH form is used to display a heading line on the terminal that gives a

and a SNUMB. Any of the seven following options can be specified

with the RUN (or RUNH) command:

7/79

RUN [H] [- nnn] [fs] [= [fh] [; fc] [(opt [,...])] ;[ulib]] [#fe]

-nnn

fs

nnn is the maximum processor time (in seconds) the program is
allowed to run during execution.

is the set of file descriptors (separated by semicolons) for source
files in the standard BCD card image format, in compressed card
image format (COMDK), or in time sharing ASCII standard system
format, and/or descriptors for binary card image object files.
These files serve as inputs to the compiler and/or loader.
Concatenation of source files 1is provided by using a separate
semicolon between each file descriptor. Where a BCD or COMDK
source file is supplied (media code 1 or 2), fs can also include a
descriptor for a BCD alter file. The alter file must begin with a
$ UPDATE card and must be in alter number sequence. If there are
many BCD or COMDK source files in the list, the alter file updates
the first source file. If the FORTRAN program contains I-D-S/II
DML statements, fs should also contain the file descriptor for the
subschema control structure file, If data base procedures are
required and are not supplied as part of the FORTRAN source
program, file descriptors for the procedure object files should
also be listed here.

Alternatively, the list fs can consist of a single file descriptor
that points to a previously generated system loadable (H*) file.

A file descriptor consisting of the single character "*" indicates
the current file (*SRC). The fs 1list 1is optional, and when
missing, indicates that only the current file (*SRC) is to be
compiled.

B-10) DG75a

7/79

fh

(opt)

is a single file descriptor of a random file into which the system
loadable file (H*) produced by the General Loader is saved if the
compilation is successful. This file is written if no fatal errors
occur during compilation. If the named file does not exist, a
permanent random file of. 36 blocks (llinks) is created and added to
the user's catalog. If the field is missing, the H* file is
generated into a temporary file. The presence of this option is
valid only when the program indicated by the list fs, the FORTRAN
library, and the user library (if any) is bindable (i.e., no
outstanding SYMREFs) . If the General Loader indicates that
outstanding SYMREFs exist, an executable H* file is created, but
any reference to an unsatisfied SYMREF causes the program to be
abnormally terminated. (The General Loader inserts a MME GEBORT at
references to unsatisfied SYMREFs. When a MME 1is encountered
during the execution of a time sharing subsystem, GCOS and the Time
Sharing Executive simulate an illegal operation fault.)

is a single file descriptor preceded by a semicolon of a sequential
file into which the compiler is to place the binary (C*) result of
any indicated compilation(s). One object module is written to this
file for each source program in the file(s) given by fs. If a
subschema control structure was specified in the fs list, two
object modules, S.xxxx and D.xxxx, are written to this file. Any
data base procedure object units specified in the fs list are also
written to this file.

If the named file does not exist, a permanent linked file of three
blocks (1llinks) is created and added to the user's catalog. This
file expands as necessary up to a maximum of 20 blocks (llinks), to
hold the object deck(s). In this case, the field fs plus the
libraries do not need to indicate a complete program (individual or
collections of subroutines can be compiled and saved). When this
optional field is missing, a C* file is not generated; when
present, the DECK option is activated for the compilation process.

is a list of options available for time sharing which, when
specified, must be separated by commas. Some of these options
affect the compilation process and some affect the loading process
(the default options are underlined).

DEBUG - The run time debug symbol table is generated.

NOTE: This debug symbol table is used for debugging in
the batch mode only. Refer to the General Loader
manual for use of the debug feature and the debug
symbol table.

NDEBUG =~ The run time debug symbol table is not generated.

BCD - Object character set is BCD. If applicable, this option
must be specified whenever the General Loader is to be
called. This is required for compile, compile and . load,
and load activities; it is not required for execute only
runs (run H* file). The BCD option cannot be specified
if the DML option is selected. v

ASCII - Object character set is ASCII.

FORM - Source is in "fixed" format (LNO option is not valid with
FORM) .

NFORM - Source is in "free" format.

LNO - Source is line numbered (default option if FORM 1is not
specified).

NLNO - Source is not line numbered (default option if FORM is
specified). .

B-11 DG75A

OPTZ -
NOPTZ -
NWARN -
CORE=nn -
FDS -
NFDS -
DML -
STAT -
LDEL -

- The object module is optimized.

The object module is not optimized.

No compilation warning messages are printed, although,
fatal messages are printed. .

The compilation activity memory requirement is set to
nnK+9K or 29K, whichever is larger. If not specified, nn
is set to 20. ’

The FORTRAN Debugging System <(FDS) is enabled. See
Appendix F.

The FORTRAN Debugging System is not invoked.

The Data Manipulation Language (DML) facility of I-D-S/II
is invoked. If DML is specified, the necessary I-D-S/II
files must alsc be specified in the RUN command. The BCD
option cannot be used with the DML option.

The I-D-S/II statistics are printed. If a sequential
file with the alternate name "P." exists in the AFT, the
I-D~S/II statistics and abort codes are written to that
file. The file is written as a BCD file and can be
converted to an ASCII file for examination from a
terminal by the command "CONV file descriptor". If "P."
does not exist in the AFT, the statistics and abort codes
are specified, and written to the terminal. If the STATS
option is not specified, the I-D-S/II statistics are not
printed and the fatal abort codes are directed to the
terminal. A FINISH statement must be included in the
FORTRAN program in order to receive any statistics. STAT
is valid only when the DML option is specified.

Logical record delete 1is requested. The default is
physical record deletion, LDEL is valid only when the
DML option is specified.

The remaining options concern the loading process (the default option is

underlined).

GO -

NOGO -

ULIB

NOLIB

TIME=nnn-

URGC=nn -

7/79

The program is loaded and executed at the completion of
compilation.:

The program is not executed at the completion of the
compilation, If specified, the object program is loaded
and saved. If no object (H*) save file is specified,
only the compilation is performed (General Loader is not
called).

File descriptors exist at the end of the options field
that allocate user libraries to be searched for missing
routines prior to sSearching for them in the system
library.

No user libraries are to be used.

The batch compilation and/or General Loader activity time
limits are set to nnn seconds; where nnn < 180, If not
specified, nnn is set to 60.

The urgency for the batch compilation and/or General

Loader activity is set to nn, where nn < 40. If not
specified, nn is set to 40.

B-12 DG75A

7/79

ulib

#fe

TEST

REMO

- A test version of the compiler is to be used for the
activity. There must be an accessed file (in the AFT)
with the name FORTRANY. If these two conditions are met,
then file FORTRANY is allocated as file code ** in the
activity.

- All temporary files that are created during compilation
and 1loading are removed from the AFT as they are no
longer needed. This option keeps the number of files in
the AFT down to a minimum but causes more time to be
spent processing each RUN command.

NAME=name - Provides a name for the main link of the saved H* file.

It can be used at time of creation of this file and
subsequently as it is reused. This name is placed in the
SAVE/field of the $ OPTION card.

A list of file descriptors (separated by semicolons)
pointing to random files containing user libraries to be
searched before the system library. This 1list must be
provided by the user when the ULIB option is specified.

A list of file descriptors (the first preceded by a number
sign) for files required during execution. Each
catalog/file description is separated by a semicolon (refer
to the TSS General Information manual). The file
description can be in any of the following formats:

1. filename in the form filename "nn", represents a
Togical file code referenced by the I/O statements in
the program where 01 < nn < 63. '

2. filedescr specifying a full description.

a. filename "nn"

b. filenameSpassword "nn"

c. userid/catalog$password "nn"

Filecodes 05, 06, 41, 42, and 43 are implicitly defined for
terminal directed I/0 and do not need to be mentioned in the
RUN command unless I/0 is to be directed to a file. Other
logical file codes can be terminal-directed by specifying a
descriptor of the form filename "nn", where "nn" is the
desired filecode.

The I-D-S/II files required for compilation and execution
should also be specified in the #fe 1list. #fe should
contain the file descriptor for the 6* subschema file
required for compilation with the alternate name "6*".

Example
FORTY/DML/6STAR"6*"

#fe should also contain the file descriptors for the
I-D-S/I1 files required for execution that include:

1. Schema File -~ This file must have the alternate name
e I an alternate filecode was specified in the
DMCL schema entry, it must have that alternate name.

2. Data Base Area and Key Files - These random files must
have alternate names which are the same as the
filecodes defined in the DMCL entry.

B-13 DG75A

3. Statistics File - If the STAT option is specified and
the output is to be written to a file, the desired file
descriptor with the alternate name "P." should be
entered in the #fe list.

Example

FORTY/DML/SCHEMA"L."
FORTY/DML/AREAL1"ALl"
FORTY/DML/KEY1"K1"
FORTY/DML/STATUS"P."

FORTRAN TIME SHARING SYSTEM RUN COMMAND

FRN,

The FORTRAN time sharing RUN command can be written as either RUN, RUNH,

or

FRNH. The RUNH form is used to display a heading line on the terminal

giving date and time. Any of the seven following options can be specified with
the RUN (or RUNH) command:

FRN [H]

7/79

-nnn

fs

fh

.[—nnn] [fs] [= [fh] [; fc] [(opt [,...])] [ulib]] [#fe]

is the maximum processor time (in seconds) the compiled object
program is allowed to run during execution.

is the set of file descriptors (separated by semicolons) for source
files in the standard BCD card image format, in compressed card
image format (COMDK), or in +time sharing ASCII standard system
format, and/or descriptors for binary card image object files.
These files serve as inputs to the compiler and/or the time sharing
loader. Concatenation of source files 1is provided by wusing a
separate semicolon between each file descriptor.

Where a BCD or COMDK scurce file is supplied (media code 1 or 2),
fs may also include a descriptor for a BCD alter file. The alter
file must begin with a $ UPDATE card and must be in alter number
sequence. If there are many BCD or COMDK source files in the list,
the alter file updates the first source file.

If the FORTRAN program contains I-D-S/II DML statements, fs should
also contain the file descriptor for the subschema control
structure file. If data base procedures are required and are not
supplied as part of the FORTRAN source program, file descriptors
for the procedure object files should also be 1listed here. The
list fs can consist of a single file descriptor that points to a
previously generated system loadable (H*) file.

A file descriptor consisting of the single character * indicates
the current file (*SRC). The fs 1list is optional, and when
missing, indicates that only the current £file (*SRC) is to be
compiled.

is a single file descriptor of a random file into which the system
loadable file (H*) produced by the general loader is saved if the
compilation i< successful. This file is written if no fatal errors
occur during compilation. If the named file does not exist, a
permanent random file of 36 blocks (llinks) is created and added to
the wusers' catalog. If the field is missing, no temporary H* file
is created. If this is the case, the time sharing loader creates a
complete bound memory-image of the object execution program,
"releases" itself wvia DRL RELMEM, and enters the execution
directly. -

B-14 DG75A

7/79

(opt)

If the time sharing loader indicates that outstanding SYMREFs
exist, any reference to them during object program execution causes
abnormal termination via a DRL ABORT.

is a single file descriptor (preceded by a semicolon) of a
sequential file into which the compiler is to place the binary
object (C*) result of any indicated compilation(s). One object
module is written to this file for each source program in the
file(s) given by fs. If a subschema control structure is specified
in the fs list, two object modules, S.xxxx and D.xxxx, are written
to this file, Any data base procedure object units specified in

the fs list are also written to this file.

If the named file does not exist, a permanent linked file of three
blocks (llinks) is created and added to the user's catalog. This
file expands as necessary up to a maximum of 20 blocks (llinks), to
hold the object deck(s). When C* is specified, a compiler
temporary file (*1 scratch file) of 48 blocks (llinks) is defined
and its name is placed into the AFT.

is a list of comma-separated compiler/loader options available in
the time sharing based FORTRAN system. Those options available
with the YFORTRAN RUN command but not specified here are not
currently used with the FORTRAN RUN command. They are ignored if
specified (default options are underlined).

BCD - The internal character set for object program execution is
BCD. If applicable, this option must be specified whenever
the loader is called. This is required for compile,
compile and load, and load activities; it is not required
for execute only runs (from the H* save file). The user
should not load object deck files compiled under different
options” (i.e., one under BCD and another under ASCII) since
execution results would be unpredictable. The BCD option
cannot be specified if the DML option has also been
selected.

ASCII - Internal character set for the object program execution is
ASCII.

FORM -~ Source is in "fixed" format (LNO is not valid with FORM).
NFORM - Source is in "free" format.

LNO - Source is line numbered (default option if FORM 1is not
specified). :

NLNO - Source is not line numbered (default option if FORM is
specified).

OPTZ - The object module is optimized.
NOPTZ -~ The object module is not optimized.

NWARN - No compilation warning messages are printed, although fatal
messages are printed.

FDS - Enables the FORTRAN Debugging System (FDS) . See
Appendix F.

DML - The Data Manipulation Language (DML) facility of I-D-S/II
is invoked. If DML is specified, the necessary I-D-S/II
files must also be specified in the RUN command. The BCD
option cannot be used with the DML option.

B-15 DG75A

STAT

LDEL

The I-D-S/IX statistics are printed. If a sequential file
with the alternate name "P." exists in the AFT, the
I-D-S/II statistics and abort codes are written to that
file. The file is written as a BCD file and can be
converted to an ASCII file for examination from a terminal
by the command "CONV file descriptor". If "P." does not
exist in the AFT, the statistics and abort codes are
written to the terminal. If the STATS option is not
specified, the I-D-S/II statistics are not printed and the
fatal abort codes are directed to the terminal. A FINISH
statement must be included in the FORTRAN program in order
to receive any statistics., This option is valid only if
the DML option is specified.

Logical record delete is requested. The default is
physical record deletion. This option is valid only if the
DML option is specified.

The following remaining options concern the loading process:

7/79

ulib

GO

NOGO

ULIB

NOLIB

CORE

MAP

The program is executed at the successful completion of the
compile~load process.

The program is not executed at the completion of the
compilation, If specified, the object program is loaded
and saved. If no object (H*) save file is specified, only
the compilation is performed (the General Loader is not
called).

File descriptors (separated by semicolons) exist £following
the end of the options field that allocate user libraries
to be searched for missing routines prior to searching for
them in the system library.

No usexr libraries are to be used. Specification of user
libraries in this case causes a RUN diagnostic.

nn where nn is additional memory (mod 1024) to be added to
the standard time sharing loader allocation - of 25K. This
should be done if the message "<F> PROGRAM EXCEEDS STORE
SIZE" appears. The compiler attempts to estimate the space
requirements for the load process by accumulating the size
of the generated memory, .DATA. region, labeled common and
blank common for each subprogram compiled; then adding a
constant (11K for the standard library) to this to arrive
at the size of a load space requirement. If the message
'NOT ENOUGH CORE TO RUN JOB' appears, TSS allocation is too
small to compile/load this program.

A memory map is produced after loading.

a list of file descriptors (separated by semicolons) pointing to
random files containing user libraries to be searched before the
system library. This list must be provided by the user when the
option 1is specified. Up to nine user library files can be
specified.

ULIB

B-16 DG75A

#fe

-~ A list of file descriptors (the first preceded by a pound sign) for

files required during execution. Each catalog/file description is
separated by a semicolon (refer to the TSS General Information
manual). The file description can be in any of the following
formats:

1. filename in the form filename "nn", represents a logical file
code referenced by the I/O statements in the program where
01 < nn < 63.

2. filedescr specifying'a full description.

” nn "

filename "nn"
filename$password "nn"
userid/catalogépassword "nn"

Filecodes 05, 06, 41, 42, and 43 are implicitly defined for
terminal directed I/0 and need not be mentioned in the RUN
command unless I/0 is to be directed to a file. Other logical
file codes can be terminal directed by specifying a descriptor
of the form "nn", where "nn" is the desired filecode.

The I-D-S/II files required for compilation and execution
should also be specified in the #fe list. #fe should contain
the file descriptor for the 6* subschema file required for
compilation with the alternate name "6*",

Example
FORTY/DML/6STAR" 6*"

#fe should also contain the file descriptors for the I-D-S/II
files required for execution that include:

° Schema File - This file must have the alternate name
"I.". 1If an alternate filecode was specified in the DMCL
schema entry, it must have that alternate name.

° Data Base Area and Key Files ~ These random files must
have alternate names which are the same as the filecodes
defined in the DMCL entry.

° Statistics File - If the STAT option is specified and the
output 1s to be written to a file, the desired file
descriptor with the alternate name "P." should be entered
in the #fe list.

Example

FORTY/DML/SCHEMA"L."
FORTY/DML/AREA1"Al"
FORTY/DML/KEY1"K1"
FORTY/DML/STATUS"P."

B-17 DG75A

Example

1. Create a random file of 50 1llinks, with general read permissions to
contain the wuser's library with the ACCESS subsystem. ACCESS
CF,/ULIB1,B/50,50/,R,MODE/R/

2. Listing of a deck setup for creating and saving a user 1library file
(through JRN or batch).

1 8 16
$ IDENT cecas
$ USERID UMCSPASSWD
AS FILEDIT NOSOURCE,OBJECT,INITIALIZE
$ FILE R*,F1S,10L
$ DATA *C, ,COPY
$ SELECTD UMC/OBJDECK1
$ SELECTD UMC/OBJDECK2
$ SELECTD UMC/OBJDECK3
$ ENDEDIT
$ ENDCOPY
AS PROGRAM RANLIB
$ PRMFL A4,W,R,UMC/ULIB1
$ FILE R*,F1R,10L
$ ENDJOB

Alternate Named Files

For files required during execution, the programmer can designate an
alternate name by using the following format:

filedescr "altname"

where: altname = nn; attaching the logical file code nn to the specified
ile.

Example

RUN#"10"

If a given file descriptor consists of only a two~digit logical file code
not enclosed within quotation marks, a temporary file is created unless a
quick~-access permanent file with the same name already exists. The PERM command
can subsequently be used to make the temporary file permanent. Alternatively,
such temporary files can be made permanent at the time the user logs off.

Example

RUN PROGR2M#10

If no file exists in the user‘'s catalog with the name 10, a 1linked
temporary file is created with that name and I/0 that was directed to the
logical file code 10 is routed to the temporary file.

7/79 B-18 DG75A

The fe list of the RUN conmand serves two additional functions: the
creation of a file control block, and the association of the logical file code
with some specific file, or the terminal. When this association involves a
catalog file descriptor, that file is accessed (or created) and added to the
user's available file table (AFT); the file is then allocated to the process.
This is analogous to the allocation by the $ PRMFL and $ FILE control cards in a
batch operation.

When a file is first referenced by an executing program, a general file
"open" function is invoked. At this time, the fil control block comes into
play as one of three possibilities: ‘

1. There is no file control block for the referenced file.
2. The file control block indicates that the terminal is to be used.

3. The file control block indicates that a file is to be used.

If there is no file control block, one 1is automatically generated
indicating that a file is to be used. When the file ' control block indicates
that the terminal is to be used, the device attachment is completed and 1/0
proceeds. When the file control block indicates that a file is to be used
(cases 1 and 3), the AFPT is searched. If a match is found (i.e., an allocated
file has a two-digit file code/name equivalent to the file description in the
I/0 statement), attachment is made to that file and I/O proceeds. If no match
is found (i.e., there has been no file allocation for the current file
designator), a comment is displayed on the terminal identifying the undefined
file designator.

Example

FILE XX NOT IN AFT. ACCESS CALLED

where: XX is the two-digit file designator being referenced by the running
program.

At this point, the ACCESS subsystem is called (as indicated by the above
message) and displays:

FUNCTION?

Commands can now be given to ACCESS. When the dialog is finished, ACCESS
returns to the user's program. The "open" routine then makes a fresh search of
the AFT. If a match 1is now found (indicating some file has been accessed),
attachment is made to that file and I/0 proceeds. If a match is not found, the
file control block is changed to indicate attachment to the terminal and I/0
proceeds.

7/79 B-19 DG75A

Example

Consider that PROGRAM contains I/0 statements with a file designator of 10
and the following dialogue transpires:

*FORTRAN

*OLD PROGRAM

*RUN

FILE 10 NOT IN AFT. ACCESS CALLED

FUNCTION?

If the response is a carriage return, the terminal is used for file 10. 1If

the response is ‘

AF,/MYFILE"10",R,W

the ACCESS subsystem accesses the file MYFILE of the user's master catalog under
the alternate name 10 with read and write permissions. ACCESS then repeats the
query "FUNCTION?". If the user now responds with a carriage return, I/0 for
file 10 is directed to MYFILE.

One additional option exists for the purpose of collecting the results cf a
compiler abort. If at the time the RUN command is issued there exists a file in
the AFT of name ABRT, that file is allocated to the compilation activity as file
code *F, In the event of a compiler abort, a memory dump and symbolic display
of the internal tables is written to this file in a form suitable for printing.

Accessing I-D~-S/II Files Required for Execution

The I-D-S/II files necessary for execution can be accessed by listing them
in the #fe list of the RUN command as specified above or by the time sharing GET
command. Another alternative is to use calls to the supplied FORTRAN subroutine
ATTACH.

Example

CALL ATTACH (1,"FORTY/DML/AREA1""Al"";" 6 1,0,ISTAT,)

The file is placed in the AFT under the alternate name "Al" which 1is the
filecode specified in the schema DMCL. The schema file 1* cannot be accessed in
this way because 1* is necessary for the execution of the INVOKE statement, and
INVOKE must be the first executable statement.

7/79 B-20 : DG75A

First Line Run Command

The RUN command can be designated as the first line or lines of the source
program. This is wuseful when running FORTRAN programs with DML statements
because the RUN command may require several lines of input to specify all the
I-D-S/II files. The following rules apply to the first line of the RUN command.

1. This feature is available on time sharing ASCII files only.

2. The line can be in the current file (*SRC) or a referenced permanent
file; however, it must begin with the first line of the first source
file.

3. The first two characters following the line number must be *# with no
embedded blanks.

4, Multiple *# lines can appear in a source file, provided the total
number of characters does not exceed 480 (six 80-character lines).

5. The lines must conform with the RUN syntax continuation (i.e., each
line, except the 1last, must be terminated by one of the following
field-separating delimiters: equal sign; left parenthesis; right
parenthesis; semicolon; or pound sign).

6. The line(s) are treated as comment line(s) by the FORTRAN compiler.

7. The first line contained RUN command can be overridden by indicating
save files, options, or concatenation on the RUN type-in.

Example

* FORTRAN
*NEW

0L0#RUN _ * (20, 30) =HSTAR (BCD, NOGO)
*020 PRINT, "HELLO DOLLY..."

*030 STOP; END

*RUN {Invokes first line syntax)

DML Example

* #RUNH* ; FORTY/DML/CSTAR=HSTAR (DML) # FORTY/DML/6STAR" 6*";
2*#FORTY/DML/SCHEMA"1.";
3*#FORTY/DML/AREA1"Al" ; FORTY/DML/KEY1"K1"

7/79 B-21 DG75A

TSS Run Examples

7/79

1.

RUN
The current *SRC FORTRAN source file is compiled and executed.

RUNH-20 FROO1=HSTAR; CSTARl (ULIB) ABC; XYZ #

INPUT "01" ; OUTPUT "02"

FORTRAN program file FR001l is to be compiled and executed. The H* is
saved on file HSTAR and C* on file CSTARl. For the execution, the
random user libraries ABC and XY¥Z are scanned for outstanding SYMREFs
in FROO1. Logical file codes 01 and 02 have been used as alternate
names for the quick-access permanent files INPUT and OUTPUT. A
heading line for thé date and time is displayed and the object program
is limited to 20 seconds of execution time.

RUN #"10"

The current *SRC file is compiled and executed and 1I/0 through logical
file code 10 is directed to/from the terminal.

RUN BCDIOM = CSTAR2 (BCD,NOGO)

FORTRAN file BCDIOM is compiled and the object deck is saved on file
CSTAR2, The object file is to be executed in BCD mode.

RUN HSTAR #02

Execute a previously bound and saved H* file. The quick-~access file
"02" 1is accessed by the RUN subsystem. If no such file exists, a
temporary file is created.

RUN = HSTAR (TIME=60, CORE=22, ULIB) SEARCH

Compile and execute the current *SRC file, saving the bound H* file on
random file HSTAR. Limit the compile time to 60 seconds and increase
the memory limits. The random user library 'SEARCH' is searched to
satisfy outstanding SYMREFs prior to searching the standard system
library.

RUNH *(10,190); SCRLIB(300,)

Compile and execute the program by concatenating the current file
lines 10 through 190 and file SCRLIB lines 300 through the last line
of the file.

RUN *; CSTAR1l; CSTAR2

Compile and execute the current *SRC file and bind it with two
previously saved C* files: CSTARl and CSTAR2.

B-22 DG75A

DML TSS Example

RUN *;FORTY/DML/CSTAR= (DML,STAT) #FORTY/DML/6STAR"6*" ;
FORTY/DML/SCHEMA"1. " ; FORTY/DML/AREA1"Al";
FORTY/DML/KEY1"K1"; FORTY/DML/STATUS"P. "

The current *SRC file is compiled using the subschema file "6*" and bound
with the subschema control structure. The resulting object code is executed
using the schema file ("1."), one data base area file ("Al"), and one data base
?ey file ("K1"). The I-D-S/II statistics and abort codes are written to the

ile "P.". v ; '

Batch Activity to Build Time Sharing H* File

The following example program illustrates a method of building a time
sharing H* file in batch mode.

1 8 16

$ SNUMB L O I)

$ IDENT ceese

$ LOWLOAD 100

$ USE .GRBG./36/

$ OPTION NOFCB,NOGO,SAVE/object

$ USE .GTLIT,.TSGF., .FTSU., .FXEMA
A$ FORTY NFORM,NLNO,ASCII

$ SELECTA source program file
AS EXECUTE DUMP

$ PRMFL H*,W,R,Hstar file

$ ENDJOB

Time Sharing System RUNL Command for Link/Overlay

When a bound object program is too large for execution under time sharing,
segmentation is achieved by using a special form of the RUN command (RUNL) to
link/overlay H* files that are to be constructed. When the RUNL command is
used, a PSTR printout can be obtained with the YFORTRAN system but not with the
FORTRAN system. '

Before the RUNL command can be used, a separate RUN command with the NOGO
option must have been specified to create each of the C* files that will be
needed in the RUNL command. This command can be written as RUNL or RUNLH where
the latter form displays a heading line with the current date and time (and
SNUMB if YFORTRAN), with the format

RUNL[H] C*file list = H*file[(options)][ulib files]; link 1list

C* file list = The set of file descriptors for the binary object files for
the nonoverlayed main program link.

H* file - A single file descriptor of a random file into which the
system loadable file produced by the loader is saved if the
load process is successful. If the named file does not
exist, a file of 216 1llinks (random temporary) is created.

7/79 _ B-23 , DG75A

7/79

(options):

ULIB

CORE

NAME

- File descriptors exist at the end of the options field
that locate wuser libraries to be searched prior to
searching the system library. The load process for
each 1link involves . searching the same set of user
libraries first. C

nn - The YFORTRAN memory requirements are set to nn+9K or
29K, whichever is larger. If not specified, nn is set

- to 20K,

The FORTRAN link loader memory requirement is nnK if
nn < 23K or 23K+ nnK if nn > 23.

name ~ Provides a name for the main link of the saved H* file;
when not provided, the name "//////" is used.

- If the user has previously defined a file with the name
PSTR, a load map of the 1link/overlay save file is
written to that file. Otherwise, a temporary file 1is
created by that name and the output is written to that
file. This feature is currently available only under
the YFORTRAN system,

- Allows a user to enter execution directly from the RUNL
command (the default is NOGO). The user must provide
for run time file definition and dynamic attaching
through "CALL ATTACH", etc. If it is necessary to
specify through RUN the necessary object time files,
the user must explicitly use the RUN command after
creating the link/overlay H* file.

Example
RUN HSTAR#INPUT"O1l";OUTPUT"02"

link 1list - A sequence of link phrases wherein each link phrase is used to

where:

specify the position at which segmentation is to take place.
When the link phrase is encountered in the RUNL command, all
object deck files for +the 1link being terminated have been
copied to the loader input file R*. The link phrase is parsed,
resulting in the generation of a $ LINK card image and possibly
a $ ENTRY card image being written to R¥*.

Formats

LINK(namel[,nameZ}) C*file list for namel
LINK(namel[,nameZ,entry]) C*file list for namel
LINK(namel[,,entry]) c*file list for namel

namel (a five- or six-character constant or variable) is a
m———pwo— . . . s
unique identifier for the new link

name2, if present, is the identifier of the previously loaded
link to be overlayed. The new link assumes the origin of the
old 1link. All 1links to be overlayed are written in system
loadable format :

B-24 DG75A

7/79

NOTES:

1.

entry, if specified, is the name of the desired primary or
secondary SYMDEF entry point of a subprogram in the current
link

Subprograms contained in any other link can always reference
subprograms in the main link. Only links that reside in memory
at the same time can reference each other. For example, if
link B is loaded as an overlay of 1link A (LINK (B,A)), the
subprograms of 1link B cannot reference subprograms of link A.

To ascertain the size required to allocate a permanent H* save
file, create a temporary file by means of RUNL. Then use the
PERM command to create a permanent file. The size of the
permanent file will automatically be chosen just large enough
to contain the "used" 1llinks in the temporary file.

Under YFORT, "PSTR" load map generated by the General Loader
in batch can be sent to a remote station or central site
printer, if it is a permanent file.

Example .
PERM PSTR;PS Make file permanent if temp used
SCAN PS ;
FORM? LOAD Print number of errors
000 ERRORS
EDIT? YES For multiple-blank suppression
?BATCH
STATION CODE Reply XX or carriage return
XX = remote station code

» carriage return = central site printer

$ IDENT Input batch $ IDENT card

Alternatively, a BMC run in batch can print the file.

A temporary H* save file cannot be command-loaded; wuse the
LODT command (not LODX). The YFORTRAN or FORTRAN RUN command
should be used, since run time files can then be specified.

The name of the main link is //////, unless NAME=name is used
as an option. The user must specify the name when loading the
H* save file,

Creating a multiple-line embedded RUNL command is the best way
to deal with a long, complex command.

Examéle |

l*_RUNLH MAIN; SUBl;SUB2=HSTAR (ULIB,MAP)
§:'£§N§Dﬁﬁ§é%é%%SUB4;

4*¥LINK (B,A, ENTRY5)SUBS;SUB6;
5+*¥LINK_(C,B) SUB¥;5UB

Observe rules for line termination.

B-25 DG75A

After the loader builds the H* save file containing the links,
it is necessary to reload these links in the order required to
achieve the program function. Reloading is done by means of a
time sharing library routine (FTLK) that has two entries, LINK
and LLINK. LINK is callable from the FORTRAN source to load a
particular 1link and transfer control to a predesignated entry
within that link. This SYMDEF must be specified in the
"entry" field of the link phrase. LLINK can be called to load
a particular 1link and return control to the place in the

- program at which LLINK has been called. The two calls are as

follows:

CALL LINK ("A ")
CALL LLINK ("B ")

The link names must be either five or six characters in length

"and blank-filled as needed.

When using FORTRAN random I/0O, the CALL RANSIZ statement must
be placed in the main link. This assures proper file wrapup
by forcing the random I/0 subroutine FRRD to reside with the
main link in memory at all times.

The main 1link in a 1link/overlay run must contain some
input/output when the Hstar file is to be executed in the time

sharing mode.

9. The RUNL command cannot be used to process octal patch

corrections under the FORT system,

Example of RUNL Inputs and Link H* Creation

Ten

(link B),

1.

7/79

subroutines plus a main program are to be executed under time sharing.
The first overlay (link A), is to have three subroutines; the second overlay
four subroutines; and the third overlay (link C), three subroutines.

Compile and save the C* object deck files (CSTAR) for each program.

RUN MATI CSTARl(NOGO)
RUN SUBA; SUBB SUBC = CSTAR2 (NOGO)
RUN SUBD;SUBE; SUBF; SUBG =; CSTARS (NOGO)

RUN SUBH; SUBL;SUBJ =;CSTAR4 (NOGO)

Create a link overlay H* file (HSTAR) using RUNL.

RUNL CSTAR1l = HSTAR(ULIB,MAP) ULIB1;
LINK (A) CSTARZ; LINK(B,A,ENTRYB)CSTAR3;LINK(C,B) CSTAR4

Load and execute the H* save file specifying core limits and run-time
input/output files.
RUN HSTAR= (CORE=35K) # INPUT"41"; OUTPUT" 13"

B-26 DG75A

Example of LINK/LLINK Usage

1. Compile and save the C* object deck files for the main program and the
two subroutines.

010 PRINT,"MAIN EXECUTING"
020 CALL LLINK ("A ")
030 CALL SUBA .

040 CALL LINK ("B ")
050 STOP;END

RUN_=;MAIN (NOGO)
NEW

010 SUBROUTINE SUBA
020 PRINT,"LINKA EXECUTING"
030 RETURN; END

RUN=; ALINK (NOGO)

010 SUBROUTINE SUBB
020 PRINT, "LINKB EXECUTING"
030 RETURN; END

RUN=; BLINK (NOGO)

2. Create a link overlay H* file using RUNL.

RUNL MAIN=HSTAR;LINK(A) ALINK;LINK(B,A,SUBB)BLINK

3. Load and execute the H* file.

RUN HSTAR
or
FRN HSTAR= (CORE=32K)

Example of Loader Input File

The following control card setup would appear on R* for the example above
illustrating the use of LINK/LLINK.

$ LOWLOAD
$ USE .GRGB./36/
$ USE +GTLIT, .TSGF., .FTSU.,.FXEMA, . FTLK
$. OPTION NOMAP
$ OPTION NOGO
S OBJECT
$ DKEND
$ LINK A
$ OBJECT SUBA i
$ DKEND SUBA ‘
$ LINK B,A
$ ENTRY SUBB
$ OBJECT SUBB
$ DKEND SUBB
AS EXECUTE

7/79 © B=27 DG75A

Example of a Time Sharing Session

A comprehensive example of program creation, testing, correction and
modification follows. Replies to the user from the system are underlined.
Explanations are enclosed in parentheses and are not part of the printout.

USER ID - J.P.JONES

PASSWORD~--

BEDHERGH

*FORTRAN

*NEW

FAUT@X - (enter automatic-line~number mode)

¥0010 READ,A,B,C

%0020 X1=A*B/C

*0030 X2=A**2,;B**2

*0040 ANS=X2/X1

*0050 PRINT 10,X1,X2, ASN###ANS (typing error correction)
*0060 10 F@RMAT (1X,"X1=",F6.S#2,"X2=",F7.2,"ANS=",
*0070 F6.2)

*0080 ST@P

*0090 END

*0100 (end automatic mode by carriage return)
*0030 X2=A**24B**2-C (replacement of line 30)
*SAVE F@RTO1

DATA SAVED--~-F@RTO1

*LIST (display corrected program)

0010 READ,A,B,C

0020 X1=A*B/C

0030 " X2=A**24B**2-C

0040 ANS=X2/X1

0050 PRINT 10,X1,X2, ANS

0060 10 F@RMAT(1X,"X1=",F6.2,"%X2=",F7.2,"ANS=",

0070 F6.2)

0080 ST@P

0090 END

*RUN (run program)

= 3.2,10.5,2.2 (type input data)

Xl= 15,27X2= 118,29ANS= 7.75 (output - correct,

but poor format)

*0060 10 F@RMAT(1X,"X1=" ,F6.2," X2=",F7.2," ANS=",
(correct format statement)

*RUN

= 3.2,10.5,2.2

X1l= 15.27 X2= 118.29 ANS= 7.75 (improved output format)
*RESAVE F@RTOL
DATA SAVED--F@RTO1

*BYE (finished)
F*RESBURCES USED $ 2.08, USED T@ DATE $ 263.85= 27%
TIME SHARING OFF AT 15,421 ON 07/10/79

7/79 B-28 DG75A

Supplying Direct-Mode Program Input

During program execution, keyboard input may need to be supplied to satisfy
one or more READ statements in the program. Each time input is required, the
equal-sign character, "=", is printed at the terminal. The user begins typing
the input immediately following the equal sign.

It is also possible to input data from a paper tape. The actual characters
transmitted to the terminal from a READ statement are

° carriage return (CR)

) line feed (LF)

° equal sign (=)

° sign-on (X-ON)
The sign-on character activates the paper tape reader if the reader is in the
ready state which is achieved by having the paper tape "loaded" and the reader
switch set on. Paper tapes which are to be used in this way should end each
line with the characters

) carriage return (CR)

° line feed (LF)

* rubout (RO)

™ sign-off (X-OFF)

NOTE: The sign-off character, X-OFF, turns off the reader but leaves it in
a ready state for any subsequent READs.

Terminal output from the PUNCH statement automatically appends this control
information to the end of each line to facilitate the preparation of the tapes.
In any event, the user must manually begin such tapes with an appropriate leader
of RO characters.

Emergency Termination of Execution

The use of the BREAK key terminates program execution and the terminal
buffer is flushed. Control returns to the readiness status for entering
commands or building files after the use of the break key.

Paper Tape Input

In order to supply build-mode input from paper tape, the user gives the
command TAPE. The system responds with READY. At this point, the user should
position the tape in the reader and start the device. Input is terminated when
one of the following conditions occurs:

® The end-of-tape occurs

) The reader is turned off

) An X-OFF character is read'by the paper tape reader

) A jammed tape causes a delay of more than one second between the

transmission of characters

7/79 B-29 DG75A

At present a maximum of 80 characters are permitted per line of paper tape
input. Longer 1lines are truncated at 80 characters with the remaining data
placed in the next line. A maximum of two disk links (7680 words) of paper tape
input is collected durlng a single input procedure. All data in excess of two
disk links is lost.

LIMITATIONS IMPOSED BY THE AFT

The AFT allows a maximum of 20 files. This may restrict the running of
FORTRAN DML prodgrams in time sharing since a compile-and-execute run requires a
source file, subschema files (6* and C*), a schema file (1*), and data base area
and key files. If the number of data base areas and key files is large, the run
may require more files than allowed in the AFT. Note that the collector file
sy** is always present in the AFT.

One way to avoid this difficulty is to use a system-loadable file (H*).
The source program can be compiled with the, subschema file (6*) and bound with
the control file (C*) to produce the H* file. The AFT can then be cleared. The
files required for execution can be accessed under their alternate names by the
time sharing GET command. Data base area and key files can also be accessed by
calls to ATTACH in the FORTRAN source program, The H* can then be run.

Example

RUN DMLTEST ; FORTY/DML/CSTAR=HSTAR (DML, NOGO) # FORTY/DML/6STAR" 6* "
*REMC

*GET FORTY/DML/SCHEMA"1."

*GET FORTY/DML/AREA1"AL1"

*GET FORTY/DML/KEY1"K1"

*RUN HSTAR= (STAT)

MEMORY CONSIDERATIONS

Under the FORT or FRN system, the maximum memory allowed for compilation is
the initial memory plus a maximum of 75K. The amount of memory available may be
limited to less by time sharing itself. If the program is too large to run
within these 1limits, a Y1 (X2) compiler abort occurs. The only way to avoid
this situation is to reduce the size of the program.

Under the YFORTRAN system, the maximum memory allowed for compilation is
the initial memory plus 3K. If this is not enough memory, the "CORE=" option
should be used.

RESTRICTIONS ON LOAD USAGE

It is not possible to ready an area for LOAD in time sharing. The FORTRAN
DML statement:

READY (ALL|REALM= < realm list > ,LOAD)
is illegal in time sharing. LOAD usage requires special JCL and must be run in

batch. This special JCL is described in Appendlx E of the DM-IV (FORTRAN)
Program's Reference Manual.

7/79 B-30 DG75A

TIME SHARING SYSTEM DEFINITIONS AND FILE DESCRIPTION

Definitions

Line Numbers Line numbers are required for line sequencing purposes.
A line number consists of one to eight numeric
characters. (There can be leading blanks, but no

embedded blanks.)

Manual Mode - In manual mode, the line numbers for each line must be
entered.

Automatic Mode

In automatic mode, the system provides the line numbers.
They are printed as the build-mode request for input
(i.e., the asterisk) is issued. The number is written
onto the collector file as a part of the statement.

New File

A new file is a temporary file created when the command
or the response NEW is used. It is assumed the user
will build a file which then may be saved, thus creating
an old file. A new file is created by a
reinitialization of the current file.

014 File An old file is a previously built and saved file which
is selected with the OLD command and the name of the
desired file. The old file is copied onto the current
file where it is available for processing or

modification.

Current File - The current file is an assigned temporary file on which
a new file is built or the selected old file is copied.
Regardless of the intervening commands or subsystem
selections, the current file contains the last NEW or
OLD selection, with whatever modifications that may have
been entered. The modifications are, therefore,
temporary until the file 1is saved by means of the
command SAVE. The original old file is not altered
until a RESAVE command naming the old file is executed.

Collector File - The collector file is a transparent temporary file
assigned for each 1log on. All input which is not a
recognizable command is gathered onto this file (e.g.,
numbered statements). Then, depending upon the
subsystem, when the file becomes full or a command is
typed, the collector file is merged with the current
file and the entire current file is edited and sorted if
necessary. For example, when the commands RUN, LIST, or
SAVE are encountered, and data exists in the collector
file, it is merged with the current file in sort order.

Available File Table - An available file table (AFT) is provided for each time
sharing system user at log-on, but ceases to exist after
the user is disconnected from the system. This table
holds a limited number of file names (currently set at
20) which are entered in the AFT when the files are
initially accessed (opened). The AFT 1is an advantage
because

) Files requiring passwords or 1long catalog/file
descriptions may be referenced by file name alone
once they have been entered in the table.

° Files used repeatedly remain readily available,

thus reducing the overhead time and cost of
accessing:the file each time. ‘

7/79 B-31 DG75A

The following commands place the named permanent files in the AFT:

LIST filename (s)
OLD filename (s)

SAVE/RESAVE filename (s)

GET - filename {s)
PRINT filename (s) v
PERM tempfile, filename

Because the AFT is of limited length, it can become full. If this happens
and a command is given which requires a new filename to be placed in the AFT,
the command subsystem will print an error messadge indicating that the AFT is
full. At this point, any files that are no longer needed must be removed from
the AFT in order to continue. The STATUS FILES command produces a listing of
all 'of the files in the AFT, and the REMOVE command can be used to remove
specified files from the AFT. The files are not purged or altered in any way;
only the name is removed from the AFT and the file is set non-busy.

NOTE: When compiling and executing programs that contain FORTRAN DML
statements, the following I-D-S/II files can be specified in the #fe
list, but must be in the AFT.

) At compile time:

@ The validated subschema file (the 6* file from subschema
validation and translation) under the alternate name "6*"

® At execute time:
® The schema file (the 1* file from the schema translation)
under the alternate name "1.", or under the alternate file
code specified in the schema DMCL

® The data base area and key files under the alternate names
specified in the schema DMCL

e If the STAT option is selected, the file code specified
for the statistics must be under the alternate name "P."

7/79 B-32 DG75A

Description of Files

FILE SPECIFICATION

When a permanent file is used in the time sharing system, reference to it
must be specified as one of the following formats. :

1. filename where the filename only is required
2. filedescr where the full file description may be

used, in any of the following formats:
a. filename

b. filename$password

c. userid/catalog$password...

/catalogSpassword/filename$password

If a required password is stored incorrectly or not given, the system will
explicitly ask for the proper password.

If the file was previously opened (e.g., with a GET), only the filename
needs to be given regardless of its full description. If the requested file is
not already open, it must emanate directly from the master catalog (quick-access
type file) in order for Formats 1 and 2 to be applicable.

Where desired-permissions and/or an alternate-name are applicable, a
specific format must be used.

Format

filedescr["altname"], permissions

where: altname may be a valid file name (one to eight characters), enclosed
in quotation marks.

permissions may be any one or combination of the following verbs
separated by commas:

READ (or R)
WRITE (or W)
EXECUTE (or E)

APPEND (or A)

7/79 ' B-33 k DG75A

Where a desired permissions specification is required, a null permissions
field implies READ and WRITE permissions (i.e., the default interpretation for
desired permissions is R,W).

If

a file segment specification of the form (i,j), where i and j are line

numbers, is given in addition to desired permissions and/or an alternate name,
it must appear last in the specification string.

Format

filedescr[“altname"],permissions(i,i)
Examples

OLD FIL1$GOGO,R

SAVE /CAT1CAT2SMAYI/FILOSHERE

LIST FILE2$HOHO

PURGE FIL3SARIZ;FIL4;FIL5$SUN

GET JJIONES/DATACAT/BATCHWRLDFIL"INFILE"

Categories of Files

In

the time sharing environment, distinctions are made between permanent

files in two separate categories that apply to all files.

File-access type 1is a general time sharing, file-system—-usage
distinction and is not exclusive to FORTRAN

File mode deals primarily with the kinds of files produced under the
FORTRAN system.

FILE-ACCESS TYPES

7/79

There are three types of files which are based on the method of creation
and subsequent accessing of the file:

1.

Quick-access files are permanent files that were automatically created
by the system as a result of using the SAVE filename or PERM tempfile
command. Quick-access files can also be created under ACCESS if no
intermediate catalog structure is specified. This type of file has
the following characteristics:

a. It can be accessed by its creator simply by the filename form of
command and, in the case of data files (input or output), is
accessed automatically upon execution of a program reference to
it (i.e., it does not need to be pre-accessed by a command).

b. It can be accessed with the READ permission only by any other
user who can specify the (creator's user ID/filename).

B-34 . DG75A

2. Quick-access files with a password attached are permanent files that
were automatically created by the system as a result of the use of a
SAVE filenameS$password command as the first reference to a particular
file name. This type of file is the same as the simple, quick-access
type described above with the specified password attached. It can be
accessed by its creator either by the filename or the
filename$password form of commands; in the former case, if $password
is omitted, the system explicitly asks for the password. Also, in the
case of data files, it is accessed automatically upon execution of a
program reference to it, but the system explicitly asks for the
password.

3. Nonquick-access files are permanent files that either do not "belong"
to the wuser (i.e., it was created by another user) or do not emanate
directly from the master catalog. In the latter case, the file is not
completely described by user-id and filename$password and, in general,
use was made of the ACCESS subsystem in explicitly creating some or
all of the catalog/file strings describing the file.

The nonquick-access type of file can be accessed either with the GET
command or with similar extended forms of other commands.

NOTES: 1. A quick-access file for user A is by definition not a
quick-access file for any other user.

2. Once a type of file is initially accessed, whether by a GET or
any other command, it can then be referred to simply by file
name, unless it is explicitly removed from the AFT.

FILE MODES

Four modes of files can be produced under the FORTRAN system.

Mode Characteristics
ASCII A linked (sequential) file of variable-length records in

ASCII character code (i.e., a file composed of 9-bit
character strings).

BCD A linked (sequential) file of variable-length records in BCD
character code (i.e., a file composed of 6~bit character
strings), ‘

Binary A linked (sequential) file of variable-~length records in
binary. '

Random A random file of fixed-length records in binary.

All files, regardless of the mode, must be explicitly saved by using the
SAVE or PERM commands in order to be retained as permanent files. If the
specified permanent file does not already exist, it 1is implicitly created with
the correct linked or random characteristic, as required by the file mode.
(Linked is the default type of file created.) If, however, the specified
permanent file was explicitly created (i.e., normally by use of the Create~File
function of the ACCESS subsystem), the user must have been careful to create the
file with the random (R) specification if a random-mode file is to be saved or
made permanent. This is particularly true for the file specified as the
savefile in the RUN statement on which the compiler output is saved. If this is
a pre-existent file, it must have previously been created (either implicitly or
explicitly) as a random file., (Refer to the TSS General Information manual, for
a description of the ACCESS subsystem.)

7/79 B-35 DG75A

Time Sharing References

7/79

More extensive uses of time sharing are discussed in the following manuals:

‘Use

Remote Batch Interface

File System Interface
Terminal/Batch Interface
General Information

Text Editing

Manual

Network Processing Supervisor (NPS)

Remote Terminal Supervisor (GRTS)

File Management Supervisor

TSS Terminal/Batch Interface Facility

TSS General Information Manual

Text Editor

B-36

DG75A

APPENDIX C

TIME SHARING BASED FORTRAN ERROR MESSAGES

File and Record Control Type Errors

1. GET CODE 5 - File Code

Record size is zero in record control word
2, PUT CODE 4 - File Code

Current logical record larger than buffer
3. CLOSE CODE 3 - File Code

File to be closed is not in chain
4. GET CODE 4 - File Code

Block serial number error

5. FILE SPACE EXHAUSTED - File Code

Attempts to "grow" this file have been denied by

System.
6. BACK/FORWARDSPACE ERROR - File Code

Bad Status returned on DRL FILSP

Compiler Abort

COMPILER ABORTING

This message 1is printed at terminal followed by DRL ABORT.

abort code is stored into slave prefix cell 0.

RUN Command Error Messages

61

LAST RUN COMMAND NOT PROCESSED

"RUN" not first three characters of input.

Cc-1

the

Time Sharing

The compiler

DG75

CONCATENATION IMPOSSIBLE IF RANDOM

RUN "random file;" random file illegal.

LINE NO. INTERVAL ILLEGAL IF NOT ASCII

Line number interval specified for other than type 5 or 6 ASCII.

NOT IN RECOGNIZABLE FORMAT

The input file specified is not legal as compiler or loader input.

MULTIPLE ALTER FILES NOT PERMITTED

Only one alter file (A*) is permitted.

SAVE FILE(S) CANNOT BE SPECIFIED

"RUN HSTAR =; save file" is illegal.

ILLEGAL DELIMITER IMMEDIATELY FOLLOWING"="

Delimiter is not semicolon, comma, left parenthesis, pound
carriage return.

MUST BE RANDOM TO SAVE H¥*

RUN fs = fh, where fh is not a random file.

MUST BE LINKED TO SAVE C*

RUN fs = fh; fc, where fc is not a linked file.

ILLEGAL OPTION -~- XXXX

The compiler/loader option indicated by xxxx is illegal.

ILLEGAL DELIMITER FOLLOWING RUN OPTION "xxxx"

Delimiter must be comma or right parenthesis.

ILLEGAL NAME = SPECIFICATION

Illegal character in name in NAME = option.

USER LIBRARIES EXPECTED

ULIB option specified but no user libraries specified.

USER LIBRARIES NOT EXPECTED

ULIB option not specified but user libraries designated.

sian, or

DG75

TOO MANY USER LIBRARIES SPECIFIED

Maximum of nine user libraries can be specified.

TOO MANY TTY FILE CODES

Maximum of ten terminal file codes can be specified.

LOGICAL FILE CODE NOMN-NUMERIC OR>63

FORTRAN File codes-can range from 1-63,

TOO MANY FILES REQ'D FOR EXECUTION

Maximum of 20 files can be specified.

TEST FILE HAS NOT BEEN ACCESSFED

TEST option specified but appropriate ** test compiler has not been
accessed.

066 - SPAWN UNSUCCESSFUL=--STATUS n
Unsuccessful status returned from derail TASK, where n is egual to

~ undefined file

- no SNUMB available

- duplicate SNUMB

no program number available

- activity name undefined

- illegal user limit (time,size, etc.)
- bad status on *J read or write

N who e
[}

Refer to TSS System Programmer's Reference Manual for information on derail
TASK.

CANNOT LOCATE MAIN PROGRAM IN LOAD FILE

The name of the main program cannot be found in the catalog block of the H*
file.

<50> WORK FILE -- FILE TABLE FULL
An attempt to define a temporary work file (B*,R*,*J,etc.) has failed; AFT

is full.

<50> WORK FILE -~ SYSTEM TEMP. LOADED

System refuses to allocate a temporary work file through derail DEFIL.

c-3 DG75

Catalog file string errors -
ILLEGAL DELIMITER IN FIELD FOLLOWING xxxx DESCRIPTION
ILLEGAL CHARACTER IN FIELD FOLLOWING xxxx DESCRIPTION
STRING ELEMENT TOO LONG IN FIELD FOLLOWING xxx DESCRIPTION
- ILLEGAL PERMISSIONS IN FIELD FOLLOWING xxxx DESCRIPTION
ALTNAME ILLEGAL IN FIELD FOLLOWING xxxx DESCRIPTION
FILE DESCRIPTION TOO LONG IN FIELD FOLLOWING xxxx DESCRIPTION

NO DATA IN STRING IN FIELD FOLLOWING xxxx DESCRIPTION

File access errors:

<50> FILE
<50> FILE
<50 > FILE
<50 > FILE
{50> FILE
<50 > FILE
<50> FILE
<50 > FILE
<50> FILE

<50> FILE

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

STATUS nn
1/0 ERROR
NO PERMISSION

FILE BUSY

(xxxx = file name) :

NON-EXISTENT FILE

NO FILE SPACE
INVALID PASSWORD
FILE TABLE FULL
SYSTEM LOADED

ILLEGAL CHAR

Reading and writing I/0O errors:

<51> FILE xxxx -- I/0 STATUS nn

<51> WORK FILE -- I/0 STATUS nn

where nn is status code returned from derail DIO.

RUNL Command Error Messages

FILE NAME MUST BE OBJECT DECK (C*) FILE

The file specified is not an object deck file.

If no C*'s are specified left of the equals sign, the message is:

*SRC MUST BE OBJECT DECK

DG75

INCORRECT LINK PHRASE IN RUNL COMMAND

For example: Link(,B) or Link(A,)
Link(A,B,) or Link (B,C)
Link(A,,) or Link(,B,)
Link ()

INCORRECT SYNTAX FOR RUNL COMMAND

Generally, an illegal delimiter has been specified.

H* SAVE FILE NOT SPECIFIED

H* save file must be specified to right of equals sign.

ILLEGAL CHAR(S) IN LINK NAME

Characters must be alphabetic, numeric, and dash.

TOO MANY CHARS IN LINK NAME

More than six characters in link identifier.

028 - READ LINKED FILES ONLY WITH THIS COMMAND

The "PSTR" load map file is random; it must be linked.

SAVE FILE(S) CANNOT BE SPECIFIED

The H* save file appears to the left of the equals sign.

M6 - CALL/RSTR CHECKSUM

.The H* save file is not sufficiently large enough (in current size) to
contain the bound link/overlay structure.

ADDRESS OUTSIZE OF FILE LIMITS

The H* save file 1is not sufficiently large enough (in current size) to
contain the bound link/overlay structure and an attempt is made to "RUN"
the file.

DIAGNOSTIC MESSAGES ISSUED BY TIME SHARING LOADER

All messages are prefixed by either W for warning or F for fatal. The
majority of errors are diagnosed as warnings because the user has the ability to
hit the break key at any time. Thus, the decision is left to the wuser to
continue or stop.

XXXXXX UNDEFINED -

Symbol (XXXXXX) is an undefined SYMREF. DRL ABORT is substituted for all
references. :

C-5 DG75

XXXXXX LOADED PREVIOUSLY
SYMDEF (XXXXXX) previously defined in load table.
INCONSISTENT PREFACE FIELD (Deck) (Card)

One of two conditions occur on card number (Card) in deck number (Deck).
The conditions are: (1) a SYMREF (type 5) appears with a nonzero size field
(bits 0-17) in the preface card; or, (2) a LABELED COMMON (type 6) appears
with a zero size field (bits 0-17).

LABELED COMMON XXXXXX - SIZE INCONSISTENT

LABELED COMMON (XXXXXX) defined previously with smaller size. Loading
continues using original size.

ILLEGAL CHECKSUM (Deck) (Card)

The checksum on card number (Card) of deck (Deck) does not compare when
recalculated. Loading continues.

ILLEGAL BINARY CARD (Deck) (Card)

Card number (Card) of deck (Deck) is not either preface (type 4), binary
(type 5), or BCD (type 6). Card is ignored. This message may also appear
where a preface or binary card appears out of expected order.

COMMON SIZE INCONSISTENT (Deck) (Card)

Blank common already defined. A subsequent deck is encountered having a
larger blank common region specified. The deck is ignored and loading
continues.

ILLEGAL LOAD ADDRESS (Deck) (Card)

A calculated storage address falls outside loadable store. The deck 1is
ignored but loading continues.

XXXXXX LOADED PREVIOUSLY, LABELED COMMON ILLEGAL

SYMDEF (XXXXXX) already defined. XXXXXX appearing in current preface record
is a Labeled Common. Deck is ignored.

The following diagnostics are preceded by a printout of the record in error
and are generally associated with OCTAL correction processing.

C-6 DG75

NON-OCTAL DIGIT IN LOCATION FIELD

Self explanatory.
FIELD EXCEEDS 12 DIGITS

Twelve octal digits is maximum allowed in word.
ILLEGAL TERMINATOR

Octal field is eliminated incorrectly. Check syntax rules in the General
Loader manual.

IC MODIFICATION NOT POSSIBLE

Field requested IC modification ($code). 1In this case no other modifiers
are allowed. Bits 30-35 of the constructed instruction are checked and
found to be nonzero.

XXXXXX UNDEFINED LINK ID IS YYYYYY

Where XXXXXX 1is an object symbol(SYMDEF) name and YYYYYY is a link
identifier., Meaning is XXXXXX is an unresolved SYMREF within the bounds of
overlay YYYYYY,

XXXXXX UNDEFINED LINK ID

Link identifier XXXXXX is being used to define an origin point for the next
overlay. It has yet been undefined.

XXXXXX NOT LINK ID

Symbol XXXXXX appearing here as a link identifier has been used and entered
into the load table previously as another type symbol.

LINK ID XXXXXX USED PREVIOUSLY

The identifier, XXXXXX, for the upcoming overlay has been previously
entered in the load table as a link identifier.

c-7 DG75

Fatal Diagnostics

EOF READING BINARY (Deck) (Card)

Unexpected EOF while reading binary, identification of last record read is
supplied.

ENTRY NOT FOUND

Primary entry name (...... or first primary SYMDEF) was not found in 1load
table. Diagnostic may also appear when subroutine .SETU. is not found.

H* TOO SMALL, TOTAL BLOCKS NEEDED xxxx
File specified as save file (H*) not large enough to hold program,
REQUEST FOR MORE STORE TO EXPAND LOAD TABLE - DENIED

A request for 1K to be added at the upper address end of the load table was
denied by the system. Loading terminates. Suggest user rerun job.

REQUEST FOR MORE STORE TO EXPAND PROGRAM - DENIED

A request to expand memory size for object program denied by the system,
Suggest user rerun job.

ILLEGAL STATUS WHILE READING (File)

Only status accepted other ﬁhan EOF is ready.
BLOCK SERIAL ERROR READING (File)

Block number in file (File) does not agree with expected number.
LIBRARY SEARCH TABLE EXCEEDED

Table used to collect pointers into random library has been exceeded.
Table size is arbitrarily set at 200.

REQUEST FOR MORE STORE TO EXPAND LOAD TABLE - DENIED

Addmem request denied. Probable need for increasing TSS memory size.

Cc-8 DG75

FORTRAN Compiler Aborts

Yl

Y1l

Yl

Y1l

Y1

Y1l

Yl

Execution

(x1)

(x2)

(x3)

(P3)

(P4)

(x4)

(X5)

NOTE: The abort code Yl is always displayed as the reason code for
any abort. The specific code is contained in the upper 18 bits
of the Q-register, or in cell 0 of the ABRT file when a time
sharing DRL abort occurs. (The reason codes follow the abort
code Y1 in parentheses below.)

Compiler space management module has unsuccessfully attempted to
allocate contiguous memory block for internal table. Rerun with DUMP
option and $ SYSOUT card for file code *F. Return dump to Honeywell
Field Support. .

Compiler has attempted to execute request for additional memory more
than 10 consecutive times (initial memory plus maximum of 30K).
Increase allocation via $ LIMITS card or via "CORE=" option on TSS
RUN. This error could also be caused by a recursive arithmetic
statement function.

GCOS has denied compiler request for additional memory for internal
tables. Increase allocation via $ LIMITS card or via "CORE=" option
on TSS RUN.

Expression being handled has tree structure depth greater than 64.
Expression must be divided.

Unrecoverable error occurred in code generator; error message prints
following source statement causing abort. Rerun with DUMP option and
$ SYSOUT card for file code *F. Return dump to Honeywell Field
Support.

The ASCII option was not explicitly specified on the §$§ FORTRAN or
$ FORTY control card for a DPS all-ASCII system.

END; cannot be specified as the first statement of a multi-statement
line.

Aborts

7/79

LK
Q1
Q2

Q3
Q4
Q5

Q6.

No $ ENTRY card for this link.
Logical Unit Table overflow.

Missing Logical Unit Table, may be caused by a missing or misplaced
$ OPTION control card.

No space for Logical Unit 6 Buffer.
Machine error or unexpected error to FORTRAN compiler.

FXEM told to take an alternate return but an alternate return name was
not supplied.

Termination of object program execution via FXEM (FORTRAN Execution
Exrror Monitor).

c-9 DG75A

APPENDIX D
SYSTEM CHARACTERISTICS
The compiler compiles all FORTRAN programs originating from batch or time
sharing, local or remote. A collection of source programs can be compiled, some

through time sharing, some through batch, and the object modules combined for
execution in either environment.

SOURCE COMPATIBILITY

The source files processed by FORTRAN can be any combination of the
following:

1. A BCD card image file, with or without alters.

2, A COMDK file, with dr without alters.

3. A time sharing ASCII file.

4, A formatted BCD line image file, with or without slew controls.
5

. A formatted ASCII line image file, with or without slew controls.

FILE CONTENTS

The source file contents can be in standard source format or in the relaxed
"free-form" format especially suitable in time sharing, with or without line
nunmbers. Files in any of the accepted file or source formats may be compiled
without conversion, from either batch or time sharing.

COMPILATION of SUBPROGRAMS

Many compilations can be done within one activity provided that the options
are the same for a collection of subprograms. The batch user stacks the source
programs, back to back, behind one compiler call card. The time sharing user
lists a series of source files to be compiled or provides multiple subprograms
in a source file. To the compiler there is one input file, S*, and source
programs are separated by END statements.

For larger programs requiring more memory to compile than that allocated to
an activity, the compiler "grows" in an attempt to satisfy this need. Normally
a satisfactory compilation will result; however, the operating system may deny
more memory to the compiler. The user is warned, in any event, that the
$ LIMITS card should be changed for subsequent recompilations.

D-1 DG75

ERROR DETECTION and DIAGNOSTICS

In batch mode, diagnostics are generated 1inline as part of the source
listing report (LSTIN) wherever possible, following the line in error. If this
report is being suppressed via the NLSTIN option, lines having no errors are not

printed, but lines for which a diagnostic is being generated are displayed. In
the time sharing mode, the error message is printed along with the source line
location of the error. If the 1line numbers of the source file are not

sequentially increased by one, the actual 1line number is that of the first
executable statement whose line number is less than the line number printed.

Format
kxkkkg nnnn text
where: S is a severity

nnnn is an error identification code
text is the diagnostic message.

Three severity codes are

Code Meaning
W This is a warning message only.
F This is a fatal diagnostic; any subsequent

execution activity is deleted.
T This is a termination diagnostic; this compilation

and any subsequent execution activity are deleted.

If only warning diagnostics are printed for a given compilation, these
diagnostics can be suppressed by using the NWARN option.

The correspondence of error codes with the compiler module detecting the error
is

Error Number Compiler Module
1- 199 Executive
200~ 299 Phase 2
300~ 399 Phase 3
400~ 499 Phase 4
1000-1499 Phase 1

COMPILER CONSTRUCTION

The compiler is written in and generates object modules in "pure
procedure"”. .DATA. space and instruction space are clearly separated and the
instruction space remains constant over the life of the execution process.

D-2 DG75

ALLOCATION of STORAGE

Storage allocation for the object program is done in
Phase 2 .allocates storage for arrays, equivalenced variables, and all
Phase 4 allocates storage for local

compiler.

data that is

scalars, namelists, switch
temporary data. Phase 4

procedure.

All variables (except those in blank or
allocated to the local data storage area .DATA.
Figure D-1 shows

temporary data
treated by the loader as a local labeled common.

are

in blank or labeled common.
variables,
also

and
allocates

layout for two typical low-loaded FORTRAN object programs.

.DATAﬁ

arrays and equivalenced
variables (allocated
by Phase 2)

error linkage

ASCII Standard System Format Files

all other local
data (allocated
by Phase 4)

procedure

For main programs and
subprograms that do
not use index
registers

Figure D-1.

This

time

file format is

common
- library routines that read and write them.
sharing guarantees symmetry and compatibility.
conforms with the File and Record Control rules

.DATA%

two phases

compiler generated
space
labeled common),

register storage area

error linkage

arrays and
equivalenced variables
(allocated by Phase 2)

all other local
data (allocated
by Phase 4)

procedure

For subprograms that
use index registers

Storage Allocation for Object Programs

of the

constants and

and generates code for the

constants, and
which is

the storage

High Addresses

Low Addresses

for batch and time sharing users as are the

This common procedure for batch and

for "standard

because every line is recorded as a logical record.

The file format for ASCII

system format"

DG75

PERFORMANCE

The performance objective of the FORTRAN compiler is to provide a fast
compiler that can generate fast executing object modules. It 1is generally
realized that the more analysis done to improve the efficiency of the object
module, the greater the time spent in compilation. Consequently, this analysis
is subdivided into two classes:

1. Local Optimization (LO) - the analysis generally done at the statement
level.
2. Global Optimization (GO) ~ the analysis done over many statements,

i.e., program blocks as defined by the ANSI FORTRAN standard.

To give the user some control over the balance between compilation and
object efficiency it was decided to ccllect the GO analysis into a unique
compiler phase, callable by option. LO analysis is always performed.

Local Optimization

Following are some of the object efficiency functions done on a local
basis:

1. Logical expressions are sorted so that shorter alternative passages
are executed first, and evaluation ceases as soon as the true/false
state has been determined.

2. Subscript expressions may be register contained, eliminating multiple
computations.

3. Constants may be register contained across statements.

4, Multiplication and division by powers of two are performed using shift
or exponent register operations with the exception of integer
operations.

5. Constant arithmetic is done at compile time.

6. Many special operator/operand relationships are recognized to
capitalize on the machine instruction set. Examples are I*1l, I**1,
I=0, I=I+1, I=I+J. i

7. Where possible, operations involving constants make use of the DU, and
DL modifiers.

8. Where there is no redefinition of a scalar -dummy argument within a

subprogram, the value of that argument 1is stored locally. This
eliminates an indirect cycle for each reference to that argument.

D-4 DG75

Compilation Performance

Compile speed is also a function of the properties of the program being
compiled and directly related to the options selected on the $ FORTY or
$ FORTRAN control card. The Global Optimization compiler phase increases
compile time for most programs by a factor of about twenty percent. For many
programs the specification of LSTOU doubles the compile time. Measured in
statements per minute, the compilation rate improves with larger programs. The
smaller the program the greater the effect of the basic overhead to start
compilation, step through the phases, and terminate. Binary and compressed
decks, source listing, storage maps, cross reference reports, etc. decrease the
compilation rates.

D=5 DG75

APPENDIX E

FORTRAN EXECUTION ERROR MONITOR EXAMPLES

This appendix illustrates the use of the FORTRAN Execution Error Monitor
(FXEM) in both time sharing and batch modes, utilizing CALL FXEM.

Figure E-1 1lists a program and its execution in time sharing. The trace
shown indicates that error number 61 (see Table 6-~5) occurred in subroutine SUB2
at line 320, that SUB2 had been called from subroutine SUBl1 at line 210, and
that SUB1 had been called from the main program (......) at line 110. The
message "Argument O" indicates the reason for aborting the execution of the
program via the call to FXEM.

Figure E-2 1lists the program of Figure E-1 but shows its execution in
batch. The trace shown indicates that error number 61 (see Table 6-5) occurred
in Subroutine SUB2 at alter number 3. The octal value of the three arguments
used for CALL FXEM are also shown. The trace also shows that SUB2 had been
called from subroutine SUBl1 at alter number 2, along with the octal
representation for the floating-point argument (-20). SUBl was called from the
main program (......) at alter number 2 with the same argument. "Argument <0"
indicates the reason for aborting the program via the call to FXEM.

E-1 DG75

100 A =-2.0

110 CALL SUBI1(A)

120 Siup

130 END

200 SUBROUITNE SUB1(B)

210 CALL 5UB2(8)

220 RE [URN

230 END

300 SUBROUTINE SUB2(C).

310 IF (C .GT. O.) RETU&aN
320 CALL rFXEw (61, "WAKGUMENT < 0O%,3)
330 "STuUp '
340 END

ready

*RUN

*xxpPRJG, L# (ERh #61)

suB2 320

Susl - 210

o oa e Ilo

ARGUMENT < O

abort code wé

*x

Figure E-1. FXEM Example in Time Sharing Mode

E-2 DG75

SLOa

2723T 0l 02-20-75 13.623 LASBHEH. ceccee

| A =-2.0
2 CALL 3UBI(A)
3 siup
4 END
2723T 01 02-20-75 13.624 LASEL Su3l
| SUBROUJTINE 5UB1(B)
2 CALL 5UB2(3)
3 HEIURN
4 END
2723T 01 02-20-75 13.624 LABEL Sus2
| SUBROUTINE SUB2(C)

2 IF ¢ C .GT. 0.) RETURN

3 CALL FXEM (61, “AKGUMENL < O",2)
4 S1up

5 Lilu

CAPCAICHICADCRICAICAICAICAICRICAICAICKAICHICAI CAICAD CADPC AP KADCADCAICADCRICAI CAIKHDICADICRICRIC KD KK DCAICAICAD CRDIC KD

ERROn #61% TRACE UF CALLS IN REVE«SE ORDER

CALLING Iv ABSULVIE AGURENT ARGUKENT AcGURERT AnGUATHT
ROUTIHE # LOCAIION 1) #2 #3 #4
Sus2 3 017730 000000000075 215127644425 0000000C0002

SUbl 2 017752 003000000000

ceesee 2 017770 003000000000

ARGUMENT < O
CAPCAICEICAICRICHICAD CHICRI CRDICADCHDICAI CHDILHAD I DCAI CAIL AP CADCADCADCAI CADICAD AP KD CHDICAI LRI DR DICHD CADCAD CADC D>

Figure E-2. FXEM Example in Batch Mode

APPENDIX F
FORTRAN DEBUGGING SYSTEM
The FORTRAN debugging system (FDS) is a comprehensive monitoring system
that provides a dynamic interactive debugging facility, a symbolic dump

facility, an automatic subprogram timing measurement system, and post-execution
wrapup procedures.

NOTE: The initial version of this debugging system was developed by Bell
Laboratories.

FDS CAPABILITIES

The FORTRAN debugging system provides the following capabilities:

1. All output data produced by the debugging system uses notation similar
to the FORTRAN source program being debugged. Analysis of this data
requires only the knowledge necessary to prepare the source program.

2. The debugging requests are similar in syntactic construction to the
FORTRAN language that is being debugged.

3. Unless it is invoked, the debugging system does not affect execution
time or memory requirements.

4. All of the debugging aids and measurement tools are available in both

the batch and time sharing environments of the operating system
(GCoSs) .

INVOKING THE FORTRAN DEBUGGING SYSTEM

The FDS is an optional feature rather than a default function and is
invoked at the discretion of the user.

Batch Mode

The FORTRAN debugging system is invoked in the batch mode by including the
FDS option in the operand field on the $ FORTY or $ FORTRAN control card.

F-1 DG75

Time Sharing Mode

The FORTRAN debugging system is invoked in the time sharing mode by
including the FDS option with the RUN command on the terminal:

RUN= (FDS)

DYNAMIC DEBUGGING FACILITY

The dynamic debugging module is named FDEBUG.

In the batch mode, FDEBUG is called into execution when:

1.

In

A CALL FDEBUG statement is encountered during the execution of a
FORTRAN source program,

CALL FDEBUG (di,do)

where: di represents the file designator from which the debugging
requests are to be read.

do represents the file designator on which the debugging
output is to be written.

If di is omitted or is not a positive number, the requests are read
from file designator 44. If do 1is omitted or is not a positive
number, the debugging output data is written to file designator 6.

File designator 44 is present in the EXECUTE (or RLHS or PROGRAM)
activity. In this case, the FDEBUG module is entered before the
execution of the main FORTRAN program is initiated; it reads any
debugging requests from file designator 44 until an end-of-file or FDS
RETURN request is encountered, whereupon control returns to the main
program,

An FDS PAUSE request (breakpoint) is encountered during the execution
of the program.

NOTE: The FDS PAUSE request is defined below in the Debugging
Requests paragraph; it has no relationship to the FORTRAN
PAUSE statement described in Section III.

the time sharing mode, FDEBUG is called into execution when:

A CALL FDEBUG statement is encountered during the execution of a
FORTRAN source program.

CALL FDEBUG (di,do)

where: di represents the file designator from which the debugging
requests are to be read.

do represents the file designator on which the debugging
output is to be written. :

If di is omitted or is not a positive number, the debugging requests

are read from the terminal. If do is omitted or is not a positive
number, the debugging output data is written to the terminal.

F-2 DG75

2. The FDS option is specified with the RUN command. In this case, the
FDEBUG module is entered before the execution of the main program is
initiated. It reads any debugging requests from the terminal until an
end-of-file or FDS RETURN request is encountered, whereupon control
returns to the main program.

3. An abnormal termination (abort or break) is encountered and no
preventive action has been taken. The FDEBUG module is called from
the wrapup procedures; these procedures are described later in this
appendix.

4, An FDS PAUSE request (breakpoint) is encountered during the execution
of the program.

FDEBUG Entry Messages

In the batch mode, messages that indicate the method by which FDEBUG is
invoked are printed on the execution report. The 'name' used in the messages
designates the name of the program in control when FDEBUG is engaged.

1. If file designator 44 is present, FDEBUG is always entered before the
program is initiated. The message is:
FDEBUG

2, If the method of entry is via a CALL FDEBUG statement in the source
program, the message is:

FDEBUG CALLED FROM name 1IN LINE 1lineno

3. If an FDS PAUSE request (breakpoint) is encountered during the
execution of the program, the message is:

FDEBUG: PAUSE IN name AT STMT # n

In the time sharing mode, messages that indicate the method by which FDEBUG
is invoked are printed on the terminal:

1. When the FDS option is used with the RUN command, FDEBUG is entered
before the program is initiated. The message is:
FDEBUG

2, If the method of entry is via a CALL FDEBUG statement in the source
program, the. message is:

FDEBUG CALLED FROM name IN LINE 1lineno
3. If a program terminates abnormally, FDEBUG prints
FDEBUG CALLED FROM name
following the termination message.

4, An interrupt (break) will cause the FDEBUG module to be re-entered and
the following message is printed:

FDEBUG: BREAK 1IN name

When FDEBUG regains control, it reads the input from the terminal to
obtain the debugging requests.

F-3 DG75

Debugging

If an FDS PAUSE request (breakpoint) is encountered during the
execution of the program, the message is:

FDEBUG: PAUSE 1IN name AT STMT # n

Requests

The
requests:

following conventions apply to the descriptions of the debugging

The first two characters of the request (underlined) can be used as
the abbreviated form of the request.

Whenever the term 'expr' is shown, it represents an expression that is
formed from variables or array elements, constants, and the operators
+, = *' /(**' .EQ.' oNEa' .LE.' .LT.' oGE., -GT-, .AND., .OR.' and
.NOT. . The exponent following ** must be type INTEGER. No function
references are allowed.

If the request is preceded by 'n', that request is inserted (implanted
for interpretation during execution) at the location of the FORTRAN
statement label 'n',

The names and descriptions of the FDEBUG requests are listed below:

n

CALL name (eXpr,expr,...)

The CALL request allows user-supplied or system-supplied subroutines
to be called; a maximum of ten arguments can be supplied. Statement
label 'n' 1is optional, A CALL FDEBUG request cannot be inserted.
Subroutines that are to be called from an inserted CALL reguest cannot
contain CALL FDEBUG statements in the source program, nor can they
have FDEBUG requests inserted into them. If FORTRAN input-output
statements are contained in the called subroutine, the CALL request
should not be invoked if FDS was entered by pressing the interrupt
(break) key while the FORTRAN program was performing input-output
operations.

If the preceding restrictions are violated and the named subroutine
has previously invoked FDEBUG, the interpretation of the illegal CALL
request causes a RECURSIVE CALL error message to be printed and the
request is ignored. Otherwise, the results of interpreting the CALI
request are unpredictable. The results are usually an abnormal
program termination or, in time sharing, a loop that can be resolvec
only by entering a DONE, QUIT, or STOP request. (It may be necessar
to press the interrupt key to invoke FDEBUG to accept an inpuf
request.)

CONTINUE
The CONTINUE request causes all debugging requests inserted a

statement label 'n' to be removed. If statement label 'n' is omitted
the request is ignored.

DONE

Causes the execution of the program to be terminated. Statement labe
'n' is optional.

FUNCTION name

An identifier request; this request identifies FUNCTION 'name' as the
program unit in which subsequent requests will be interpreted until
another identifier request is encountered. When FDEBUG is invoked,
the default identification in which subsequent requests are
interpreted is that of the FORTRAN program unit currently in control.

n GOTO label

This request causes an unconditional transfer to the indicated source
statement label to be inserted at statement label ‘'n'. If statement
label 'n' is omitted, the request is ignored and an error messade is
printed.

n IF(expr) request

The logical expression ‘'expr' is evaluated. If the value 1is .TRUE.,
the debugging request will be interpreted. 1If statement label 'n' is
omitted, the request is ignored.

MAIN

An identifier request; this request identifies the main program as the
program unit in which subsequent requests are interpreted until
another identifier request is encountered. When FDEBUG is invoked,
the default identification in which subsequent requests are
interpreted is that of the FORTRAN program unit currently in control.

n PAUSE
The PAUSE request causes a breakpoint to be inserted at statement
label 'n°'. Whenever the breakpoint is encountered during program
execution, the FDEBUG module is invoked. If statement 1label 'n' |is
omitted, the request is ignored.

n PRINT expr,expr...
The PRINT request causes the values of the expressions 'expr' to be
printed in the appropriate format. If a nonsubscripted array name
appears in 'expr', only the value of the first element of the array is
printed. Statement label 'n' is optional.

n QuUIT
Causes the execution of the program to be terminated. Statement label
'n' is optional.

RETURN
The RETURN request causes the FDEBUG module to return control to the

~ program that is being executed. Control is always returned to the
point where FDEBUG was entered.

SHOW

The SHOW request displays the location and text of all currently
inserted requests in all program units.

F-5 DG75

sTOP

Causes the execution of the program to be terminated. Statement label
'n' is opt10nal

SUBROUTINE name

An identifier request; this request identifies SUBROUTINE 'name' as
the program unit in which subsequent requests will be interpreted
until another identifier request is encountered. When FDEBUG is
invoked, the default identification in which subsequent requests are
interpreted is that of the FORTRAN program unit currently in control.

var=expr

This request causes the value of the scalar variable or array element
'var' to be set to the value of the expression ‘'expr'. The rules of
allowable assignment apply except that a CHARACTER expression may be
assigned to an INTEGER. Statement label 'n' is optional.

'text

This request causes all text that follows the exclamation point to be
transmitted to the time sharing system as a command to be executed.
Time sharing system commands that are applicable at the system level
are accepted. This request is not available in the batch mode of
operation. If a statement label 'n' is included, a SYNTAX ERROR error
message is printed.

Debugging Request Execution

The execution of debugging requests can be accomplished by two methods:

1.

If a debugging request is preceded by statement 1label 'n', FDEBUG
inserts the request at the indicated executable FORTRAN source
statement. When the program is executed, the FDEBUG requests are
interpreted in the order of insertion before the original source
statement is executed.

If a debugging request is not preceded by statement label 'n', FDEBUG
interprets the request immediately.

F-6 DG75

FDEBUG Error Messages

The following error messages are produced by the FDEBUG module:

Error Message

ANSWER PROMPT WITH PROGRAM
INPUT

BREAKPOINT OVERWRITTEN

() = CHARACTER SIZE

ILLEGAL

CONSTANT TOO BIG OR TOO SMALL

() - ENTRY NOT FOUND

() - ILLEGAL ADDRESS

ILLEGAL TYPE CONVERSION/
COMBINATION

INTEGER OR REAL TOO LARGE
LABEL NOT ALLOWED

LABEL NOT FOUND

LABEL REQUIRED
NAME NOT FOUND

NESTING LIST OVERWRITTEN

(-) - NOT FOUND
OUT OF SPACE

RECURSIVE CALL

Description

The BREAK key was pressed while data was
being entered at the terminal, or FDEBUG
was called just prior to program input and
a RETURN request is received. Respond
with program input.

An inserted request in object code has
been overwritten.

An adjustable character variable size is
out of range.

A constant contained in an expression that
is used in an FDEBUG request is either too
large or too small,

A CALL request was given to FDEBUG but the
entry point to the subroutine could not be
found.

An attempt was made to reference a dummy
argument that has been passed incorrectly
to a subprogram.

An attempt was made to assign data of
incompatible types or to combine
incompatible data types with an operator.

An integer or real number used in an
FDEBUG request was too large to process.

An FDEBUG request has a label 'n', but a
label is not allowed with this request.

A request containing a source program
label was given to FDEBUG but the label
could not be found.

An FDEBUG request requires label 'n' and
the label is missing.

A CALL request to a subroutine was made
and the subroutine name cannot be found.

The nesting list, maintained for traceback
purposes, has been overlayed in such a
manner that the traceback activity cannot
be performed. Usually occurs when FDEBUG
executes a CALL that performs I/0.

An FDEBUG request specified a name that
could not be found.

Insufficient memory is available to
accommodate all inserted FDEBUG requests.

A call to FDEBUG was made but FDEBUG is
already in control.

P-7 i DG75

Error Message

STACK OVERFLOW

STATEMENT TOO COMPLEX

SUBPROG NOT FOUND

() - SUBSCRIPT OR
DIMENSION ILLEGAL

SYMBOL TABLE EMPTY OR MISSING

SYMBOL TABLE OVERWRITTEN

SYNTAX ERROR

TOO MANY BREAKPOINTS

UNDERFLOW, OVERFLOW OR DIVIDE
CHECK

WRONG # OF SUBSCRIPTS

Description

Internal stack overflow; indicates that an
expression is too complicated. - :

An arithmetic expression used in an FDEBUG
request was too complex for the system to
evaluate.

A subprogram referenced by an FDEBUG
request cannot be found.
A subscript or adjustable dimension

associated with the named variable is out
of range.

Cither the FDS option was not used for the
compilation of the subprogram or no symbol

table could be found for the FDEBUG
requests. Use the MAIN, SUBROUTINE, or
FUNCTION request and the requests will be
processed.

The symbol table could not be found or has
been overlayed. FDEBUG 1is unable to
process this request.

An FDEBUG request is either
incomplete, or not recognized.

misspelled,

Too many FDEBUG
inserted.

requests have been

An expression used in an FDEBUG
caused an underflow, overflow, or
check condition to occur.

request
divide

An FDEBUG request contained a
variable, but the number
does not match the number
dimensions.

subscripted
of subscripts
of declared

F-8 DG75

FDS Examples

Examples of the use of the FORTRAN debugging system are ;
In both the batch mode and the time sharing mode,
FDEBUG prints six periods (......) to indicate the main FORTRAN program.

Figures

F-1, F=-2,

and F-3.

10##s,J :,8,16,32

205:

IDENT

30$:0PTION : FORTRAN
40$: FORTY :NFORM,NLNO, FDS

A=1.0; B=1.0
X=2,0; ¥Y=2,0
Z=0; ANS=0
CALL FDEBUG(44)
CALL SUMF(A,B,ANS)

100 WRITE(6,25)A,B,ANS
110 25 FORMAT(3F8.2)

120 CALL FDEBUG(46)
130 STOP;END
140 SUBROUTINE SUMF (ZA,Z2B,ZANS)
150 ZANS=ZA+ZB
160 52 CONTINUE
170 RETURN;END
175$:EXECUTE
180$:DATA: 44
190 MAIN
200 RETURN
210 MAIN
220 CALL SUMF(X,Y,Z)
230 PRINT X,Y,Z
240 SU SUMF
250 52 PR, ZA,ZB,ZANS
260 52 IF(ZANS.EQ.2.0)PR,ZA,ZB
270 SHOW
280 RETURN
290$:DATA:46
300 CALL FDUMP
310 RETURN
320$:ENDJOB
OUTPUT OF RUN
1 FDEBUG
2 FDEBUG CALLED FROM IN LINE 4
3 X =2., Y =2., Z =4.
4 SUMF
5 52 PR,ZA, ZB,ZANS
6 IF(ZANS.EQ.2.0)PR,2A,%ZB
7 ZA=1., 2B = 1., ZANS = 2.
8 zA=1., 2B = 1.
9 1.00 1.00 2.00
10 FDEBUG CALLED FROM IN LINE 8
11 FDUMP CALLED FROM IN LINE NUMBER 1
12 SUBPROGRAM
13 A 1.0000000E 00
14 B 1.0000000E 00
15 X 2.0000000E 00
16 Y 2.0000000E 00
17 z 4.0000000E 00
18 ANS 2.0000000E 00
19 FDUMP COMPLETE

Figure F-1.

FDS Example in the Batch Mode

presented

in

DG75

In the batch mode example described in Figure F-1, file designators 44 and
46 are used for the CALL FDEBUG statements.

The FDEBUG module 'is entered before”program execution, For this reason,
the first two requests on file 44 are MAIN and RETURN. If desired, additional
FDEBUG requests can also be entered at this location.

The next time the FDEBUG module is entered is when the CALL FDEBUG(44)
statement is executed at 1line 80. Oon file 44, the FDEBUG CALL request is
demonstrated by calling a user-supplied subroutine and then printing the
variables X, ¥, and Z.

Two FDEBUG requests, PRINT (PR) and IF, are then inserted in statement
label 52 of the subroutine named SUMF. These two requests will be . executed
whenever SUMF is called and can be removed by using a CONTINUE request.

The SHOW request at line 270 causes lines 4, 5, and 6 of the output to be
printed during program execution. Control is then returned to the calling
program. Lines 7 and 8 of the output contain the results of the PRINT and IF
requests inserted in the subroutine SUMF.

The FDEBUG module is next entered when the CALL FDEBUG(46) statement at
line 120 is executed. The only request contained on file 46 is CALL FDUMP.
Lines 11l through 19 of the output contain the results of the FDUMP routine.

Figure F-2 illustrates the procedure for using FDEBUG in the batch mode
with linked overlays.

The FDEBUG module is first entered before program execution but the only
request interpreted on file 44 is the RETURN request.

The only explicit call to the FDEBUG module occurs in 1line 70. Two 1IF
requests are inserted at statement 1label 1 in the subroutine (SU) LODLNK.
Control is then returned to the main program.

NOTE: Refer to "Debugging Linked Overlay Programs" in this appendix for
information concerning the LODLNK subroutine.

When the CALL LLINK ("ASUBA") statement is executed, FDEBUG is entered since
the PAUSE request is inserted in the LODLNK subroutine. The SU SUBA instruction
establishes subroutine SUBA as the context for the next two requests. Note that
these two requests are inserted at statement label 40 in subroutine SUBA.

The same procedure is followed for the CALL LINK("BSUBB") statement. The
FDEBUG module is again entered and two FDEBUG requests are inserted at statement
label 45 in subroutine SUBB. The results of inserting these requests in
subroutines SUBA and SUBB are shown in the output printed from the run.

F-10 . DG75

lo##s,J :,8,16,32
20$:IDENT
30$:0OPTION :FORTRAN
40$:FORTY :NFORM,NLNO,FDS
50 WRITE (6,15)
60 15 FORMAT(14H THIS IS MAIN)
70 CALL FDEBUG (44)
80 CALL LLINK("ASUBA")
90 CALL SUBA
100 CALL LINK("BSUBB")
110 STOP;END
120$:LINK:ASUBA
130$:FORTY:NFORM,NLNO,FDS
140 SUBROUTINE SUBA
150 40 WRITE(6,26)
160 41 WRITE(6,26) .
170 26 FORMAT (14H THIS IS LINKA)
180 27 CONTINUE
190 RETURN;END
200$:LINK:BSUBB,ASUBA
210$:ENTRY : SUBB
2208 :FORTY :NFORM,NLNO, FDS
230 SUBROUTINE SUBB
240 45 WRITE(6,28)
250 46 WRITE(6,28)
260 28 FORMAT(14H THIS IS LINKB)
270 29 CONTINUE
280 RETURN;END
290$:EXECUTE : DUMP
300$:DATA:44
310 MAIN
320 RETURN
330 SU LODLNK
340 1 IF(LINK.EQ."ASUBA")PAUSE
350 1 IF(LINK.EQ."BSUBB")PAUSE
360 RETURN
370 SU SUBA
375 40 PRINT, "HI FROM LINKA"
380 40 GOTO 41
390 RETURN
400 SU SUBB
405 45 PRINT,"HI FROM LINKB"
410 45 GOTO 46
420 RETURN
430$:ENDJOB
1]

£

OUTPUT OF RUN

FDEBUG
THIS IS MAIN
FDEBUG CALLED FROM IN LINE 3

FDEBUG: PAUSE IN LODLNK AT STMT # 1
"HI FROM LINKA "

THIS IS LINKA

FDEBUG: PAUSE IN LODLNK AT STMT # 1

"HI FROM LINKB "
THIS IS LINKB

Figure F-2, FDS Example in the Batch Mode with Linked Overlays

F-11 DG75

010 1I=10

015 CALL FDEBUG(44)

020 PRINT,"HELLO FROM MAIN"
030 CALL SUBA

040 CALL SUBB

050 5 STOP;END

060 SUBROUTINE SUBA

070 PRINT,"HELLO FROM SUBA"
080 ISUB=1

090 10 RETURN;END

100 SUBROUTINE SUBB

110 PRINT,"HELLO FROM SUBB"
120 ISUB=2

130 20 RETURN;END

J

FRN= (FDS)

1 FDEBUG

2 ?RETURN

3 FDEBUG CALLED FROM ..,.... IN LINE 15

4 I =10

5 SUBA i

6 10 IF(ISUB.EQ.1l)PRINT,"HI FROM A"

7 HELLO FROM MAIN ;

8 HELLO FROM SUBA !

9 "HI FROM A "

10 HELLO FROM SUBB
11 ISuB = 1000
12 "HI FROM SUBB"

MAIN

PRINT, I

SUBROUTINE SUBA

10 IF(ISUB.EQ.1)PRINT,"HI FROM A"
SHOW

SUBROUTINE SUBB

20 IF(ISUB.EQ.2)ISUB=1000

20 PR ISUB

20 PRINT,"HI FROM SUBB"

RE

Figure F-3.

Terminal
> Input

Output from
Program and
P FDEBUG

FDS Requests
> on File 44

J

FDS Example in the Time Sharing Mode

Figure F-3 illustrates the procedure for using the FORTRAN debugging system

in the time sharing mode.

The FDEBUG module is entered before program execution and control is
The message FDEBUG is displayed on line 1,

expects terminal input, a question mark (?) or equal sign (=) 1is
2 of the terminal output).

to the terminal.

the terminal (line

given
Whenever FDEBUG

displayed on
Since no terminal commands are

required, the terminal operator enters a RETURN request following the question

mark.

The FDEBUG module 1is

44 are then interpreted.
at statement label 10 in

request (RE) is used on file 44.

F=12

next entered when the CALL FDEBUG(44) statement is
encountered (line 015 of the terminal input),
Following the PRINT
subroutine SUBA
statement label 20 in subroutine SUBB. The

and the requests contained on file
request, one request 1is inserted
and three requests are inserted at
abbreviated form of the RETURN

DG7E

The SHOW request on file 44 causes lines 5 and 6 of the terminal output to
be printed. Lines 9, 11, and 12 of the terminal output contain the results of
interpreting the FDEBUG requests from file 44 in subroutines SUBA and SUBB.

SYMBOLIC DUMP FACILITY

In the batch mode, a symbolic dump can be produced in two ways:

1. A symbolic dump is automatically produced when a program that contains
the FDS option on the $ FORTY or $ FORTRAN control card in the job
control language terminates abnormally.

2. A symbolic dump can be produced after the FDS has been invoked by
specifying the following FORTRAN statement:

CALL FDUMP(n,6)
The symbolic dump will be written on file designator 6 (defaults to

SYSOUT) and will include the 'n' subprograms that were most recently
entered into the nesting list.

In the time sharing mode, a symbolic dump can be produced after the FDS has
been invoked by entering the following FORTRAN statement at the terminal:
CALL FDUMP(n,6)

The symbolic dump is displayed on the terminal and includes the 'n’
subprograms that were most recently entered into the nesting list.

Example

If a main program calls subprogram A, which in turn calls subprogram B, and
subprogram B executes the statement

CALL FDUMP(n,6)
then: If n < 0, the call is ignored.

If n = 1, a symbolic dump of subprogram B is written to SYSOUT or
displayed on the terminal.

If n = 2, a symbolic dump of subprograms B and A is written to SYSOUT or
displayed on the terminal.

If n 2 3, a symbolic dump of subprograms B, A, and also the main program
is written to SYSOUT or displayed on the terminal.

If n is omitted, the nesting 1list will be traced back to the main
program,

The format of the dump output begins with a heading that indicates the
method by which the dump facility was invoked, followed by a symbolic dump of
each subprogram that was contained in the nesting 1list when the dump was
produced.

F-13 DG75

If the dump facility was invoked using a CALL statement, the heading reads:

FDUMP CALLED FROM name IN LINE NUMBER lineno

If the Adump facility was invoked from the wrapup procedures after the
execution of the program is terminated, the heading reads:

FDUMP CALLED FROM WRAPUP

After printing the heading, the dump process traces the nesting 1list back
to the main program and prints out the names and values of the variables used in
each subprogram, If the dump facility was invoked with a CALL FDUMP statement
in the source program, the variables of the subprogram that executed the CALL
FDUMP statement appear first in the dump. If the dump is produced as the result
of an abnormal program termination, the FORTRAN subprogram that was in control
when the termination occurred appears first in the dump.

The following subheading is printed at each level of the nesting list:
SUBPROGRAM namel
CALLED FROM name2 IN LINE NUMBER 1lineno
where: namel is the name of the subprogram whose variables will follow.
name2 is.the name of the subprogram that is calling namel.
lineno is the line number of the CALL namel in subprogram name2.

When the main program level is reached, the second line of the subheading
is omitted.

The subheading is followed by a listing of the nonsubscripted variables and
arrays, together with their associated values. The arrays are printed in column
form; the ellipsis (...) 1s used +to indicate successive lines of identical
output. The ellipsis is also used to indicate successive columns that are
identical.

The format used for each type of variable is listed below:

Integer I13

Real 1PE15.7
Logical 013
Complex 1P2E15.7
Double precision 1PD26,18
Character An

Symbolic Dump Example

An example of a symbolic dump is presented in Figure F-4.

F-14 DG75

FDUMP CALLED FROM WRAPUP
SUBPROGRAM JOE
CALLED FROM IN LINE NUMBER 170

ISTART 0
NPTRS 78
Ll 623
L2 545
LL2 000735000000
TIME 1.3800000E-06
TYPE (*)
1: 60 78 0 0
5 0 0 0 0
971 0 0 0 0
SUBPROGRAM
I 30
A (*, 1)
: 1.0000000E+00 2.0000000E+00 3.0000000E+00 4.0000000E+00
: 5.0000000E+00 6.0000000E+00 7.0000000E+00 8.0000000E+00
9: 0. 0. 0. 0.
251 2.5000000E+01 2.6000000E+01 2.7000000E+01 2.8000000E+01
29 2.9000000E+01 7.0000000E+00
A (*, 2)
1: 0. 0. 0. 0.
29 0. 8.0000000E+00
* % % %
A (*, 10)
1: 0. 0. 0. 0.
29 0. 0.

FDUMP COMPLETE

Figure F-4. Example of a Symbolic Dump

Symbolic Dump Messages

The symbolic dump facility provides several error condition messages and a
final termination message.

If a symbol table is not available or has been overwritten, or there is not
enough memory available in which to load the table, the following message is
printed: '

SYMBOL TABLE NOT AVAILABLE OR OVERWRITTEN

When a portion of the nesting list has been overwritten in such a manner
that it cannot be traced back to the main program, the dump terminates
prematurely and the following message is printed:

NESTING LIST OVERWRITTEN, DUMP TERMINATED

F-15 DG75

When a program has called other programs recursively, intentionally or not,
the nesting list is caused to loop back on itself. When this condition occurs,
the dump terminates prematurely and the following message is printed:

CIRCULAR CALL DETECTED, DUMP TERMINATED

An example of this condition occurs when subprogram A calls subprogram B,
which in turn calls subprogram C, and subprogram C then calls subprogram A.

The symbolic dump facility will occasionally detect errors in the methods
in which arguments are passed to subprograms. One of the following two messages
is printed:

ERROR IN ACT. ARG. FOR ()

ERROR IN ADJ. DIM. OR ACT. ARG. FOR ()
The first message wusually occurs for scalar variables and indicates that
the address passed to the subprogram for the actual argument is out of range

(usually zero). The second message occurs for array variables and indicates
that an adjustable dimension has an implausible value.

If no error conditions are encountered during the processing of the dump
and the dump has been successfully completed, the following message is printed:

FDUMP COMPLETE

CALL FDUMP Examples

Figure F-5 contains an example of an FDS program and a subroutine
referenced within the program from which the FDUMP feature is called. An
example of the results produced when the CALL FDUMP statement 1is executed is
contained in Figure F-6. Each variable and array in Figure F-6 is displayed by
type.

FDS Program
1 INTEGER IARR(5,5)
2 DIMENSION ARR(3, 3)
3 DO 10 I=1,3
4 DO 20 J=1,3
5 ARR(I,J)=I*J
6 20 CONTINUE
7 10 CONTINUE
8 Do 30 I=1,5
9 DO 40 J=1,5
10 IARR(I,J)=I+J
11 40 CONTINUE
12 30 CONTINUE
13 A=1.3;B=2.3
14 CALL CALC(A,B,RESU)
15 PRINT,A,B,RESU
16 C=A*B; R=RESU**2
17 55 CONTINUE
18 KINDX=KINDX+1
19 IF (KINDX.LT.5)GO TO 55
20 STOP; END

Figure F-5. Example of FDS Program and Subroutine used with FDUMP

F-16 DG75

Subroutine Referenced in Line 14

1 SUBROUTINE CALC(X,Y,ANSW)
2 X=X*Y+X

3 ANSW=Y+Y*X

4 INDX=INDX+1

5 CALL FDUMP

6 RETURN ; END

Figure F-5 (cont). Example of FDS Program and Subroutine used with FDUMP

F-17 DG75

FDUMP CALLED FROM CALC

SUBPROGRAM CALC

CALLED FROM IN LINE NUMBER

INDX 1

X 4.2900000E 00
Y 2.3000000E 00
ANSW 1.2167000E 0l

SUBPROGRAM

I 5
J 5
KINDX 0
A 4.2900000E 00
B 2.3000000E 00
RESU 1.2167000E 01
c 0.
R 0.
IARR (*, 1)

1l: 2
IARR (*, 2)

1: 3
IARR (*, 3)

1: 4
IARR (*, 4)

1l: 5
IARR (*, 5)

1l: 6
ARR (*, 1)

1: 1.0000000E 00
ARR (*, 2)

1: 2.0000000E 00
ARR (*, 3)

1: 3.0000000E 00

FDUMP COMPLETE

Figure F=-6,

IN LINE NUMBER 5

14

2.0000000E 00 3.0000000E 00

4.0000000E 00 6.0000000E 00

6.0000000E 00 9.0000000E 00

Example of FDUMP Output

F-18

10

DG75

SUBPROGRAM TIMING MEASUREMENT SYSTEM

The FORTRAN debugging system provides an option that allows the performance
of subprograms to be measured in terms of the amount of processor time required
to execute those subprograms. This option is called the subprogram timing
measurement system. The measurements are given only for those subprograms
compiled with the FDS option.

In the batch mode, the timing measurement system is invoked either by
including a CALL FTIMER statement in the main program or by including the name
FTIMER in the variable field on a $ USE card.

In the time sharing mode, the timing measurement system 1is invoked by
including a CALL FTIMER statement in the main program. The CALL FTIMER
statement cannot be inserted from the FDEBUG module.

The timing measurement system determines the following information for each
executed subprogram:
1. The number of times the subprogram was called.

2. Global timing, including the proéessor time used by all called
subsidiary subprograms:

a. Total processor time
b. Percentage of processor time used
c. Average processor time per call

3. Local timing, excluding the processor time used by timed subsidiary
subprograms:

a. Total processor time
b. Percentage of processor time used

c. Average processor time per call

All times are reported in milliseconds.

Timing Measurement System Examples

Figure F-~7 contains an example of the listing that is printed when the
subprogram timing measurement system is invoked. Figure F-8 contains an example
of the execution of a time sharing program using a CALL FTIMER statement.

NOTE: When the total amount of global time is the same as the total amount
of local time, the subprogram has no subsidiaries.

F-19 ‘ DG75

TESTS
REDUN
SBSCR4
SUB4
SBSCR1
SBSCR3
SUBl:
SUB3
SBSCRI
SUB
SBSCR2
SUB2
COMP
SUBZZA
SUBZ27
SPEC
LEXICA
CONST
DOIF
ONESB
COMMON
CON
COMPLX
ASFL
CLEARA
EOS
RDDN
IDOIF

NO., OF TOT. MS.
CALLS GLOBAL

885.59
867.70
'150.20
135.97
135.78
93.38
93.27
93.22

62.11
61.98
57.06
56.89
56.86
49.84
49.59
43.00
41.48
27.45
25,00
15.28
12.58
8.98
5.13
4.75
2,30
0.19
0.05
0.05

TN
O

DN O b b e o b e b b et b O b b b b 0 e b e e

TOTAL ELAPSED TIME
TOTAL MEASURED TIME
TIMER OVERHEAD

Figure F=7.

93.09

GLOBAL
OF RUN

100.00
97.98
16.96
15.35
15.33
10.54
10.53
10.53
10.51

7.01
7.00
6.44
6.42
"6.42
5.63
5.60
4.86
4,68
3.10
2.82
1.73
1.42
1.01
0.58
0.54
0.26
0.02
0.01
0.01
2361.56
885.59
1475.97

$ AVG. MS.
PER CALL

885.59
867.70
150.20

- 135.97

135.78
93.38
93.27
93.22
93.09
62.11
61.98
57.06
56.89

0.20
49.84
49.59
43.00
41.48
27.45
25.00
15.28
12.58

8.98

5.13

4.75

0.09

0.19

0.02

0.02

TOT. MS.
LOCAL

17.89
54.61
137.38
- 0.19
129.05
0.16
0.17
88.94
88.95
0.13
57.17
0.17
52.64
56.86
0.25
41.48
28.47
38.48
24.36
22.88
13.98
11.83
8.42
4.56
4.00
2.30
0.19
0.05
0.05

LOCAL %
OF RUN

2.02
6.17
15.51
0.02
14.57
0.02
0.02
10.04
10.04
0.01
6.46
0.02
5.94
6.42
0.03
4.68
3.21
4.35
2.75
2.58
1.58
1.34
0.95
0.52
0.45
0.26
0.02
0.01
0.01

Timing Measurement System Parameters

F-20

AVG. MS.
PER CALL

17.89
54.61
137.38
0.19
129.05
0.16
0.17
88.94
88.95
0.13
57.17
0.17
52.64
0.20
0.25
41.48
28.47
38.48
24.36
22.88
13.98
11.83
8.42
4,56
4,00
0.09
0.19
0.02
0.02

DG75

0010 CALL FTIMER

0020 DO 100 I=1,5

0030 CALL SUBAl
0040 CALL SUBA2

0050 PRINT,"BACK TO MAIN"

0060 100 CONTINUE

0070 STOP;END

0080 SUBROUTINE SUBAl
0090 PRINT,"WE ARE IN SUBAl"

0100 DO 200 J=1,1000

0110 200 K=K+J
0120 RETURN;END

0130 SUBROUTINE SUBA2
0140 PRINT,"WE ARE IN SUBA2"

0150 CALL SUBB2
0160 RETURN;END

0170 SUBROUTINE SUBB2
0180 PRINT,"WE ARE IN SUBB2"

0190 RETURN;END

*LINELENGTH 81
*RUN= (FDS)

WE ARE IN SUBAl
WE ARE IN SUBA2
WE ARE IN SUBB2
BACK TO MAIN
WE ARE IN SUBAl
WE ARE IN SUBA2
WE ARE IN SUBB2
BACK TO MAIN

WE ARE IN SUBAl
WE ARE IN SUBA2
WE ARE IN SUBB2
BACK TO MAIN

WE ARE IN SUBAl
WE ARE IN SUBA2
WE ARE IN SUBB2
BACK TO MAIN

WE ARE IN SUBAl
WE ARE IN SUBA2
WE ARE IN SUBB2
BACK TO MAIN

NO. OF
CALLS
cecens 1
SUBAL 5
SUBA2 5
SUBB2 5

TOTAL ELAPSED TIME
TOTAL MEASURED TIME

TIMER OVERHEAD

Figure F-8. Timing Measurement System in

TOT. MS.
GLOBAL

153.72
89.52
43.69
19.13

GLOBAL

%

OF RUN

100.00
58.23
28.42
12.44

230.50
153,72
76.78

F=-21

AVG. MS.
PER CALL

153.72
17.90
8.74
3.82

TOT. MS.
LOCAL

20.52
89.52
24.56
19.13

LOCAL %
OF RUN

13.35
58.23
15.98
12,44

Time Sharing

AVG. MS.
PER CALL

20.52
17.90
4.91
3.82

DG75

WRAPUP PROCEDURES

The FORTRAN debugging system provides a mechanism called a wrapup list that
allows a user to designate one or more subprograms to be called when a program
terminates. The user can also add subprograms to the wrapup list to allow
post-execution diagnostic activities or additional functions to be performed.
For example, complex data structures such as symbol tables may be analyzed and
printed in a readable format.

The wrapup list is maintained dynamically by the FDS in a
first-in/first-out sequence; the first subprogram that is entered into the list
will be called first.

In the batch mode, the wrapup 1list is inspected whenever a program
terminates abnormally or 1is terminated by the execution of a FORTRAN STOP
statement. When a program terminates abnormally, the first entry in the wrapup
list is FDUMP and a symbolic dump is automatically produced.

In the time sharing mode, the wrapup list is inspected whenever a program
terminates abnormally with an interrupt (break) or is terminated by the
execution of a FORTRAN STOP statement. When a program terminates abnormally,
the first entry in the wrapup list is FDEBUG and the dynamic debugging module is
entered.

Adding Wrapup Subprograms

An external subprogram can be added to the wrapup list by including the
following statements in the source program:

EXTERNAL subr
CALL ATCALL (subr)
CALL NTCALL (subr)

If an external subprogram is added to the wrapup list by including the CALL
ATCALL statement, it is called whenever the program terminates abnormally.

If an external subprogram is added to the wrapup list by including the CALL
NTCALL statement, it is «called whenever the program terminates in a normal
manner.

If a CALL NOCALL(subr) statement is included and executed, all occurrences
of 'subr' are deleted from the wrapup list.

The FDS option is not required to process the CALL ATCALL, CALL NTCALL, or
CALL NOCALL statements, but the subroutine name must be declared EXTERNAL or
else an op code fault is generated.

F=-22 DG75

ExamEle

The following statements are used to remove FDUMP from the wrapup list and
to insert FDEBUG in its place:

EXTERNAL FDUMP,FDEBUG
CALL NOCALL (FDUMP)
CALL ATCALL (FDEBUG)

In this example, FDEBUG is called if the program terminates abnormally.

NOTE: In the batch mode, the desired debugging requests must be present on
file 44 and must begin with a RETURN request to enable them to be
read by FDEBUG when it is called at program termination. A CALL
NOCALL (subr) statement cannot be inserted as a debugging request.

1
Excluding Wrapup Subprograms

The wrapup mechanism provides a method to avoid calling any of the
subprograms contained 1in the wrapup list. The list is not inspected or called
when a CALL FTERM statement is executed.

NOTE: The execution of a CALL FTERM statement causes the immediate

termination of the program. A CALL FTERM statement cannot be
inserted as a debugging request.

OPTIONAL DEBUGGING FEATURES

Special Printing Formats

If the values of variables or arrays are to be printed in a format other
than the default format, subroutines similar to the following may be included in
a program:

SUBROUTINE PR(A,N,FORMAT)
INTEGER A(N) ,FORMAT (1)
WRITE (6 ,FORMAT) A

RETURN

END

An FDEBUG request such as
CALL PR(ARRAY,3,"(1X,3A6)")

can then be used to print data under a special format. In this example, the
first three elements of ARRAY are printed with the A6 format.

F-23 DG75

Debugging Linked Overlay Programs

If linked overlay programs are to be debugged, a subroutine supplied by the
FDS can be used to assist in this process. This subroutine 1is <called by the
LINK/LLINK overlay subroutine immediately after a link is loaded; it consists of
the following statements:

SUBROUTINE LODLNK (LINK)
CHARACTER*6 LINK

1 RETURN
END

To allow control to pass to FDEBUG after a certain link has been loaded,
the following FDEBUG requests may be inserted:

SUBROUTINE LODLNK
1 IF(LINK .EQ. "linkname")PAUSE

where: "linkname" represents the name of a link having six characters or less.

This coding inserts a request that causes FDEBUG to be entered immediately
after "linkname" is loaded. Any FDEBUG requests previously inserted into the
overlay area are ignored. (The SHOW request can be used to determine if any
previous requests are still present in the program.)

Since a CALL LINK statement can cause the currently executing link to be
overlayed, thereby eliminating the subroutine nesting list and possibly LODLNK,
control 1is passed directly to the 1link entry point by LINK without calling
LODLNK. In this case, control cannot be passed to FDEBUG, and it is recommended
that LLINK be used instead. 1In addition, when LLINK is wused, the program is

more easily moved to other environments by supplying a dummy subroutine named
LLINK.

Refer to Figure F~2 for an example of FDEBUG requests that are inserted
into linked overlay structures.

Debugging Optimized Programs

When optimized programs are to be debugged, the procedure may be
complicated by the fact that the values of certain variables are often stored in
registers rather than in memory. This condition is particularly applicable to
DO loop indices in loops that exit only from the bottom. The value of the DO
loop index cannot be printed (it appears to remain constant), and the value
cannot be used in other ways.

- F-24 DG75

FDS Programming Techniques

The following information is provided to assist in the most effective use
of the FORTRAN debugging system: '

1.

The FDEBUG requests represent a language of considerable complexity
since:

a. Conditional requests can be used.
b. The inserted FDEBUG requests can be dynamically modified.

c. The GOTO request, particularly when used with the IF request, can
significantly change the executed logical flow of the
subprogram(s) being debugged from the logical flow specified in
the source coding.

FDEBUG output data can be difficult to interpret unless strongly
supported by using the SHOW request. It is generally helpful to
provide a SHOW request prior to each RETURN request (except, perhaps,
at the initial invocation of the FDEBUG module). When debugging a
complex 1loop, it is also helpful to create a display of all inserted
requests prior to each pass through the loop.

Since the FDEBUG module is always entered prior to program execution
in the batch mode when file 44 is present, a program that is being
processed in the batch mode should contain a RETURN request as the
first instruction on file 44 unless FDEBUG requests are to be
interpreted or inserted before the program is executed.

When the first CALL FDEBUG (fc) statement in a program is executed,
the FDEBUG module processes debugging requests beginning with the
first request contained on file 'fc¢'. If another CALL FDEBUG (£fc)
statement 1is encountered during the execution of the program, FDEBUG
begins to process requests immediately following the most recently
processed RETURN request. A CALL FCLOSE (fc) statement does not force
file 'f¢' to be rewound.

If an attempt is made to call or otherwise invoke the FDEBUG module
and FDEBUG is already currently in control, a RECURSIVE CALL error
message is printed and the call or invocation is ignored.

Files containing FDEBUG requests cannot be line numbered.

A GOTO request cannot be used to transfer from the FDEBUG module to a
statement label of a user's program because the GOTO request is always
inserted at statement label 'n'; it does not affect FDEBUG control
logic. Control is always returned to the next instruction following
the CALL FDEBUG statement. (It is possible to circumvent the control
return mechanism by issuing a DONE, QUIT, or STOP request; however,
these requests terminate the program.)

More than one debugging request may be inserted at a statement label
in the wuser's program. All requests that have been inserted at a
given statement label can be removed by providing one CONTINUE request
at that statement label.

If FDUMP or FDEBUG is 1invoked for a subroutine that contains no

symbols or statement labels, a 'SYMBOL TABLE NOT AVAILABLE OR
OVERWRITTEN' message is printed.

F-25 , DG75

10.

11.

12.

13.

14.

15.

The FDEBUG module does not operate in a correct manner when FTIMER has
been invoked.

The timing measurement system cannot be called from within the FDEBUG
module, To obtain timing data for time sharing programs, a CALL
FTIMER statement must be present in the source program during the
compilation phase. In the batch mode, as an alternative, the name
FTIMER may be included in the variable field on a $ USE card.

In the time sharing mode, the FDEBUG module is entered before program
execution and the message FDEBUG is displayed on the terminal. A
prompting question mark (?) 1is printed as the first character on the
next 1line, indicating that data is expected; FDEBUG requests can be
inserted into the program at this time. The program begins to execute
when a RETURN request is entered at the terminal.

If a carriage return is the initial response when FDEBUG is entered in
the time sharing mode, a traceback is printed. A carriage return
following a new identifier request also produces a traceback.

When the wrapup list is inspected, a traceback includes the FDS WRAPUP
routine.

If the !text request is issued when operating in the time sharing
mode, the FDEBUG module may lose control. For example, FDEBUG loses
control if the time sharing command !RUN=PROG is entered at the
terminal, since the program named PROG would then be executed.

If FDUMP is called as the result of a "SYSOUT LIMITS EXCEEDED" error
message, it is not possible for FDUMP to produce a symbolic dump.

F-26 DG75

APPENDIX G

FORTRAN TRANSLITERATION TABLE

IBM (IBMF) Character Set to Level 66 (BCD) Character Set

Card BCD Series 6000
IBMF Image Octal BCD
Character Punch Value Character
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7 7
8 8 10 8
9 9 11 9
none 8-2 12 C
= 8-3 13 #
! 8-4 14 @
none 8~5 15 :
none 8-6 16 >
none 8-7 17 ?
blank blank 20 blank
A 12-1 21 A
B 12-2 22 B
o] 12-3 23 C
D 12-4 24 D
E 12-5 25 E
F 12-6 26 F
G 12-7 27 G
H 12-8 30 H
1 12-9 31 I
+ 12 32 &
. 12-8-3 33 .
) 12-8-4 34 J
none 12-8-5 35 (
none 12-8-6 36 <
none 12-8-7 37 \
none 11-0 40)
J 11-1 41 J
K 11-2 42 K
L 11-3 43 L
M 11-4 44 M
N 11-5 45 N
(o]} 11-6 46 0]
P 11-7 47 P
Q 11-8 50 Q
R 11-9 51 R
- 11 52 -
$ 11-8-3 53 $
* 11-8-4 54 *
none : 11-8-5 55)

G-1 DG75

Card BCD Series 6000

IBMF Image Octal BCD
Character Punch vValue Character

none 11-8~6 56 ;
none 11-8-7 57 !
none 12-0 60 +
/ 0-1 61 /

S 0-2 62 S

T 0-3 63 T

§) 0~4 64 4]

\Y/ 0-5 65 v

W 0-6 66 17

X 0-7 67 X

Y 0-8 70 Y

Z 0-9 71 Z
none 0-8~2 72 -

, 0-8-3 73 '

(0-8-4 74 %
none 0-8-5 75 =
none 0-8-6 76 "
none 0-8-7 77 !

G-2 DG75

INDEX

$ UPDATE
$ UPDATE 2-9
ABNORMAL
ABNORMAL 3-10

abnormal function 3-15
ABNORMAL option 3-42

ABORT
Compiler Aborts C-9
Execution Aborts C-9
I-D-S/II statistics and abort codes
B-12, B-16

ACCESSING
Accessing I-D-S/II Files Required

for Execution B-20
ACTIVITY
Batch Activity to Build Time Sharing
H* File B-23
ADJUSTABLE

ADJUSTABLE DIMENSIONS 2-26
Adjustable size specifications 3-17
AFT

LIMITATIONS IMPOSED BY THE AFT B-30

ALLOCATION
ALLOCATION of STORAGE D-3

ALTERNATE
Alternate returns 6-26
AMPERSAND
anpersand 2-3

ANALYSIS

Common Subexpression Analysis 4-6

Expression Compute Point Analysis
4-6

Induction Variable Expression
Analysis 4-6

Induction Variable Materialization
Analysis 4-6

Loop Collapsing Analysis 4-6

Register Management Analysis 4-6

ANYERR
CALL ANYERR 6-56

7/79

AREA
Data Base Area and Key Files
B~-17
User Working Area B-9

B"'l3'

ARGUMENT
Argument Checking and Conversion for
Supplied External Functions
6-15
Dummy Argument 6-29
hierarchy of argument types 6-15
ARITHMETIC
arithmetic assignment 3-7
Arithmetic assignment statement 3-4
arithmetic expression 2-24
arithmetic expressions 2-29
arithmetic IF statement 3-51
arithmetic operation symbols
2-28
arithmetic operators 2-27
ARITHMETIC STATEMENT FUNCTIONS 6-2
Arithmetic statements 3-1
floating-point arithmetic

2=-27,

3-52

ARRAY
ARRAY DECLARATOR 2-25
ARRAY ELEMENT 2-23
ARRAY ELEMENT SUCCESSOR FUNCTION
2-24

Array Variable 2-23
ARROW

vertical arrow 2-3
ASCII/BCD

ASCII 2-24, 4-2, 4-5, B-1l1

ASCII/BCD CHARACTER SET A-1
ASCII/BCD CONSIDERATIONS 4-4.1
DPS ASCII-only system 4-3

ASSIGN
ASSIGN 2-23, 3-11
ASSIGN statement 3-7
Label assignment (ASSIGN) statement
3-4

ASSIGNMENT
arithmetic assignment 3-7
Arithmetic assignment statement 3-4
assignment statement 3-4
ASSIGNMENT STATEMENTS 3-4
character assignment 3-7

DG75A

ASSIGNMENT (cont)

Character assignment statement 3-4,
3-6

Label assignment (ASSIGN) statement
3-4 ’

Label Assignment Statement 3-6

logical assignment 3-7

Logical assignment statement 3-4,

ASTERISK
asterisk 2-3

ATCALL :
CALL ATCALL F-22

ATTACH
ATTACH 6-34

AUTOMATIC
Automatic Terminal Disconnections
B-7.1
Automatic Typing of Supplied -
Mathematical External Functions

6-15
BACKSPACE
BACKSPACE 3-12
BASE
Data Base Area and Key Files B-13,

B=-17
data base procedures B-9
BATCH
Batch Activity to Build Time Sharing
H* File B-23
Batch Call Card 4-2
BATCH COMPILATION LISTINGS AND
REPORTS 4-9
BATCH MODE 4-1
REMOTE BATCH INTERFACE 4-4
Sample Batch Deck Setup 4-4

Sample Batch Link/Overlay JCL 4-4
BCD
BCD 2-24, 4-2, 4-5, B-11
BINARY
floating-point binary 2-16
BLOCK)
BLOCK DATA 3-13, 3-46
BLOCK DATA subprogram 3-24
COMMON block 3-13
BOOL
BOOL 6-8
BUILD
Batch Activity to Build Time Sharing
H* File B-23
BUILT-IN

BUILT-IN INTRINSIC FUNCTIONS 6-5

CALL

Batch Call Card 4-2°

7/79

CALL (cont)

CcALL 2-3, 2-22, 3-15
CALL ANYERR 6-56
CALL ATCALL F=-22
CALL CALLSS 6-36
CALL CNSLIO 6-37
CALL CONCAT 6-38
CALL CORFL 6-39
CALL CORSEC 6-40
CALL CREATE 6-41
CALL DATIM 6-42
CALL DEFIL 6-43
CALL DETACH 6-44
CALL DUMP 6-45
CALL EXIT 6-48
CALL FCLOSE 6-49
CALL FDEBUG F-2
CALL FDUMP F-13
CALL FDUMP Examples F-16
CALL FILBSP 6-50
CALL FILFSP 6-50
CALL FLGEOF 6-51
CALL FLGERR 6-52
CALL FLGFRC 6-53
CALL FMEDIA 6-54
CALIL FPARAM 6-55
CALL FTERM F-23
CALL FTIMER F-19
CALL FXALT 6-58
CALL FXEM 6-57
CALL FXOPT 6-57
CALL LINK 6-65
CALL LLINK 6-65
CALL MEMSIZ 6-66
CALL NASTRK 3-34, 6-67
CALL NOCALL F-22
CALL NTCALL F-22
CALL PDUMP 6-45
CALL PTIME 6-68
CALL RANSIZ 6-69
CALL SETBUF 6-70
CALL SETFCB 6-71
CALL SETLGT 6-72
CALL SLITE 6-73
CALL SLITET 6-73
CALL SORT 6-74
CALL SORTD 6-76
CALL SSWTCH 6-78
CALL statement 3-38, 3-40,
CALL statements 3-10
CALL TERMNO 6-79
CALL TERMTM 6-80
CALL USRCOD 6-82
CALL YASTRK 3-34, 6~83
CALLSS
CALL CALLSS 6-36
CALLSS 6-31, 6-36
CARD
Batch Call Card 4-2
control cards 4-4
CARET
caret 2-3
CARRIAGE
Carriage Control 5-7

3-42

DG75A

CHARACTER
ASCII/BCD CHARACTER SET A-1

character 2-11, 2-22, 2-23, 2-31,
3-17, 3-53

character assignment 3-7

Character assignment statement 3-4,
3-6

Character Constant 2-20
character datum 2-12
Character Positioning Field
Descriptors 5-12
character set 2-1, 2-2,
Character String Compare
Character Variable 2-23
octal or character constants 3-23
Source Program File Characteristics
2-4

4-2
6-20

CHECKING
Argument Checking and Conversion for
Supplied External Functions
6-15

CNSLIO
CALL CNSLIO 6-37
CNSLIO 6-37

CODE
I-D-S/II statistics and abort codes
B-12, B-16
media codes 2-4
T FORMAT CODE 5-12
X FORMAT CODE 5-12

COLLAPSING
Loop Collapsing Analysis 4-6
COMDK
COMDK 4-2
COMMA
comma 2~3
COMMAND

First Line Run Command B-21

FORTRAN TIME SHARING SYSTEM RUN
COMMAND B-14

GET command B-20

REMOVE command B-32

RUN command B-20

RUN Command Error Messages C-1

RUNL Command Error Messages C-4

RUNL Command for Link/Overlay B=-23

STATUS FILES command B-32

THE YFORTRAN TIME SHARING SYSTEM RUN
COMMAND B-10

COMMENT
comment 2-5, 2-6
COMMON _
COMMON 2-22, 2-26, 3-13, 3-19, 3-46,
3-74

COMMON block 3-13
COMMON or a type statement 3-28
COMMON statement 3~38, 3-40

Common Subexpression Analysis 4-6

7/79

i-3

COMPARE
Character String Compare 6-20
Compare 6-19

COMPARISON

Comparison of the FORTRAN and
YFORTRAN Time Sharing Systems

B~-9
COMPATIBILITY
SOURCE COMPATIBILITY D-1
COMPILATION
BATCH COMPILATION LISTINGS AND
REPORTS 4-9

COMPILATION of SUBPROGRAMS D-1
Compilation Performance D-5

COMPILER
Compiler Aborts C-9
COMPILER CONSTRUCTION D=2

Compiler control statements 3-1
COMPL

COMPL 6-8
COMPLEX

A complex datum 2-12

complex 2-11, 2-13, 2-22, 2-27,

2-33, 3-19, 3-21, 3-53

Complex Constant 2-18

Complex Number Fields 5-11
COMPUTE

Expression Compute Point Analysis

4-6

CONCAT

CALL CONCAT 6-38

CONCAT 6-31, 6-38
CONDITIONAL

Conditional Format Selection 5-22
CONFLICTS

Memory Conflicts 4-6
CONSTANT

Character Constant 2-20

Complex Constant 2-18

CONSTANTS 2-13, 4-13

Double Precision Constant 2-17

Integer Constant 2-14

Logical Constant 2-19

Logical constants 3-24

Octal Constants 2-15

octal or character constants 3-23

Real Constant 2-16
CONSTRUCTION
COMPILER CONSTRUCTION D=2
Logical and Relational Constructions
2-31

CONTENTS
FILE CONTENTS D-1

DG75A

CONTINUATION
continuation 2-6

CONTINUE
CONTINUE 3-22
CONTROL

Carriage Control 5-7

Compiler control statements 3-1
control cards 4-4

control parameters 3~-30

Control statements 3-1

Device Media Control Language B-8

File and Record Control Type Errors
c-1

Output Device Control 5~7

Subschema Control Structure B-9,
B-15 _

Transfer of Control 3-31

Transfer of Control for Extended
Range 3-32

CONVERSION
Argument Checking and Conversion for
Supplied External Functions
6~-15
INTERNAL DATA CONVERSION 5-20

CORE=NN
CORE=nn B-12

CORFL
CALL CORFL
CORFL 6-31,

6-39
6-39

CORSEC
CALL CORSEC
CORSEC 6-31,

6-40
6-40

CREATE
CALL CREATE
CREATE 6-41

6-41

CROSS~-REFERENCE
Cross—-Reference List (XREF)
cross-reference report 4-2

4-13

CURRENCY SYMBOL
currency symbol 2-3
DATA
A complex datum 2-12
BLOCK DATA 3-13, 3-46
BLOCK DATA subprogram 3~24
character datum 2-12
DATA 3-13, 3-23
Data Base Area and Key Files
B-17
base procedures
files B-9
initialization 4-13
Manipulation Language
statement 2-22, 3-24,
3-74
DATA TYPES 2-11
double precision datum 2-12
integer datum 2-11
INTERNAL DATA CONVERSION 5-20

B-l3,

data
data
Data
Data
DATA

B-9

B-12-
3-40,

7/79

DATA (cont)
logical datum 2-12
real datum . 2=11

DATIM
CALL DATIM 6-42
DATIM ‘6-31, 6-42

DEBUG

DEBUG 4-2, 4-9, B-1l

DEBUG option 3-13

Debug Symbol Table (DEBUG) 4-13

Debugging Linked Overlay Programs
F-24 '

Debugging Optimized Programs

Debugging Request Execution

Debugging Requests F-4

DYNAMIC DEBUGGING FACILITY F-2

FORTRAN DEBUGGING SYSTEM F-1

F-24
F-6

DECK
DECK 4-2
Sample Batch Deck Setup 4-4

DECLARATOR
ARRAY DECLARATOR 2-25
declarator statement 2-25
declarator subscript 2-25

DECODE

DECODE 3-26, 3-39, 5-20
DEFIL
CALL DEFIL 6-43

DEFIL 6-31, 6-43

DEFINED
Defined variable 2-22
Defining FUNCTION Subprograms
Defining SUBROUTINE Subprograms

6-14

6-23

DELETE

Logical record delete B-12, B-16
DELIMITERS

delimiters 2-20
DESCRIPTION

Description of Files B-33

GENERAL DESCRIPTION 5-1

DESCRIPTOR
Alphanumeric Field Descriptors
Character Positioning Field
Descriptors 5-12

Logical Field Descriptor 5-12

Numeric Field Descriptors 5-8
DETACH

CALL DETACH 6-44

DETACH 6-44

DETECTION

ERROR DETECTION and DIAGNOSTICS D-2
DETERMINATION

Execution Mode Determination 6=-20

DG75A

DEVICE
Device Media Control Language B-8
Output Device Control 5-7

DIAGNOSTICS
ERROR DETECTION and DIAGNOSTICS D-2
Fatal Diagnostics C-8

DIMENSION
ADJUSTABLE DIMENSIONS 2-26
DIMENSION 2-24, 2-26, 3-13, 3-28

DIRECT-MODE
Supplying Direct-Mode Program Input

B-29
DIRECTED
List directed formatted input/output
5~2
List Directed Formatted Input/output
Statements 5-25
DISCONNECTIONS
Automatic Terminal Disconnections
B-7.1
DMCL
DMCL, B-8
DML
DML B-12, B-15
DML TSS Example B=-23

I-D~S/II DML statements B-10, B-14
DO
DO 3-29
DO loop 3-22
DO loops 2-3, 3-49
DO Statement 3-31, 3-39
implied DO 5-23
Nested DO Loop 3-31
nested implied DO's 5-24
DOUBLE PRECISION
double precision 2-11, 2-13, 2-22,
2-27, 2-31, 2-33, 3-19, 3-33,
3-53

Double Precision Constant 2-17
double precision datum 2-12

DPS
DPS ASCII-only system 4«3

DUMP
CALL DUMP
DUMP 4-3
DUMP DUMPA, PDUMP PDUMPA 6~45

6-45

DUMPA

DUMP DUMPA, PDUMP PDUMPA 6-45
DVCHK, OVERFL,FXDVCK

DVCHK,OVERFL,FXDVCK 6-46
DYNAMIC

DYNAMIC DEBUGGING FACILITY F-2

7/79

i-5

EDITING
Editing Strings with ENCODE 5-21

ELEMENT
ARRAY ELEMENT 2-23
ARRAY ELEMENT SUCCESSOR FUNCTION
2-24

ENCODE
Editing Strings with ENCODE 5-21
ENCODE 3-34, 5-20
ENCODE statement 3-39

END
END 3-36
END statement 2-5

END-OF-FILE
end-of-file condition
EOF 3-72

3-12, 3-67

ENDFILE
ENDFILE 3-37

ENTRY
ENTRY - 2-26, 3-38
ENTRY statement 3-40, 6-27
FDEBUG Entry Messages F-3
Multiple Entry Points Into a

Subprogram 6-27

SUBROUTINE or ENTRY statement 3-~15
symbol table entries 4-13

ENVIRONMENT
I-D~-S/II in a FORTRAN Time Sharing
Environment B-8

EQUAL SIGN
equal sign 2-3
EQUIVALENCE
EQUIVALENCE 2-24, 3-13, 3-38, 3-39,
3-46, 3-74

EQUIVALENCE statement 3-39

ERROR

error condition 3-76

ERROR DETECTION and DIAGNOSTICS D=2

error transfer option 3-26, 3-34

FDEBUG Error Messages F-7

File and Record Control Type Errors
c-1 :

FORTRAN EXECUTION ERROR MONITOR
6-56

I/0 error is encountered 3-67

Input Error Recovery B-7.1

RUN Command Error Messages C-1

RUNL Command Error Messages C-4

TIME SHARING BASED FORTRAN ERROR
MESSAGES C-1

EVALUATION
Evaluation of Expressions 2-32
EXAMPLES
CALL FDUMP Examples
DML TSS Example B-23
FDS Examples F-9 -

F-16

DG75A

EXAMPLES (cont)
Symbolic Dump Example F-14
Timing Measurement System Examples
F-19
TSS Run Examples B-22
EXCLUDING
Excluding Wrapup Subprograms F-23
EXECUTION
Accessing I-D-S/1I Files Required
for Execution B-20
Debugging Request Execution F-6
Emergency Termination of Execution
B-29
Execution Aborts C-9
Execution Mode Determination 6~20
FORTRAN EXECUTION ERROR MONITOR
6-56

EXIT
CALL EXIT 6-48
EXIT 6-48

EXPLICIT
explicit type 3-21, 6-15
explicit type statement 3-55, 3-56,

3-70
EXPONENTIATION
exponentiation 2-3
EXPRESSIONS
arithmetic expression 2-24
arithmetic expressions 2-29
Evaluation of Expressions 2-32
expression 3-10
Expression Compute Point Analysis
4-6
EXPRESSIONS 2-27
Induction Variable Expression
Analysis 4-6
logical expression 2-29, 3-5
relational expression 2-29
EXTENDED
extended range 3-30, 3-32

Transfer of Control for Extended
Range 3-32

EXTERNAL .
Argument Checking and Conversion for
Supplied External Functions
6-15
Automatic Typing of Supplied
Mathematical External Functions

6-15
EXTERNAL 2-22, 3-42
EXTERNAL statement 3-38
External Variable 2-22

Supplied External FUNCTION
Mathematical Subprograms

Supplied External FUNCTION
Nonmathematical Subprograms
6-19

6-17

FACILITY
DYNAMIC DEBUGGING FACILITY F-2

7/79

FACILITY (cont)
SYMBOLIC DUMP FACILITY F-13

FACTORS
Scale Factors 5-5
FATAL .
Fatal Diagnostics C-8
FCLOSE
CALL FCLOSE 6-49
FCLOSE 6-49

FDEBUG
CALL FDEBUG F-2

FDEBUG Entry Messages F-3

FDEBUG Error Messages F-7
FDS

FDS B-12

FDS Examples F-9
FDS Programming Techniques F-25
FDUMP
CALL FDUMP F-13
CALL FDUMP Examples F-16
FIELD
Alphanumeric Field Descriptors
Character Positioning Field
Descriptors 5-12
Complex Number Fields

5-11

5-11

Logical Field Descriptor 5-12
Numeric Field Descriptors 5-8
FILBSP
CALL FILBSP 6-50
FILBSP 6-31
FILBSP,FILFSP
FILBSP,FILFSP 6-50
FILE

Accessing I-D-S/II Files Required
for Execution B-20

Batch Activity to Build Time Sharing
H* File B=23

Data Base Area and Key Files
B~17

data files B-9

Description of Files

B-l3'

B-33

File and Record Control Type Errors
c-1

FILE CONTENTS D-1

FILE FORMATS 4-6

FILE HANDLING STATEMENTS 5-29

FILE MODES B-35

File Properties 5-28

FILE REFERENCE 5-3

FILE SPECIFICATION B-33

FILE SYSTEM INTERFACE 4-4.1

File Updating 5-28

Files Required by I-D-S/II

Random Files 5-28

Schema File B-8, B-13,

Sequential Files 5-28

Source Program File Characteristics
2-4

B-8.

B~-17

DG75A

FILE (cont) :
Source Program File Types
Statistics File B-14, B-17
STATUS FILES command B-32
Validated Subschema File B-9

2-4

FILFSP

CALL FILFSP 6-50

FILFSP 6-31
FINISH

FINISH statement B-12
FIRST

First Line Run Command B-21
FIXED

fixed format 2-6
FLAT

FLAT 6-19
FLD

FLD 6-8
FLGEOF

CALL FLGEOF 6-51

FLGEOF 4-8, 6-51
FLGERR

CALL FLGERR 6-52

FLGERR 4-8, 6-52
FLGFRC

CALL FLGFRC 6-53

FLGFRC 6-~31, 6-53

FLOATING-POINT
floating-point 2-17
floating=-point arithmetic
floating-pecint binary 2-16

3-52

FMEDIA
CALL FMEDIA 6-54
FMEDIA 6-54

FORM/NFORM
FORM 2-9, 4-2, 4-10, B-11
FORM/NFORM 2-6

FORMAT
Conditional Format Selection 5-22
FILE FORMATS 4-6
fixed format 2-6

FORMAT - 3-43

FORMAT and NAMELIST Statements

FORMAT SPECIFICATIONS 5-4

FORMAT statement 3-26, 3-34,
3-64, 3-66, 5-2

formats 4-13

Formatted Read/Write Statements

line formats 2-6

List directed formatted input/output

5-2

List Directed Formatted Input/output
Statements A 5-25

Multiple Record Formats 5-6

SOURCE PROGRAM FORMAT 2-4

5-2

3—62 ’

5-2

7/79

i-7

FORMAT (cont)
T FORMAT CODE 5-12
Variable Format Specifications
X FORMAT CODE 5-12

5-13

FORMAT (V
FORMAT (V) 5-2
FORTRAN
Comparison of the FORTRAN and
YFORTRAN Time Sharing Systems
B-9
FORTRAN B-9
FORTRAN DEBUGGING SYSTEM F-1
FORTRAN EXECUTION ERROR MONITOR
6~56
FORTRAN KEYWORDS 3-9
FORTRAN TIME SHARING SYSTEM RUN
COMMAND B-14
I-D-S/II in a FORTRAN Time Sharing
Environment B-8
TIME SHARING BASED FORTRAN ERROR
MESSAGES C-1

FORTY
$ FORTY 2-1
FORTY 4-2

FPARAM

CALL FPARAM 6-55
FPARAM 6-55

FTERM
CALL FTERM F-23

FTIMER
CALL FTIMER PF-19

FUNCTION

abnormal function 3-15

Additional Typeless Functions 6-12

Argument Checking and Conversion for
Supplied External Functions
6-15

ARITHMETIC STATEMENT FUNCTIONS 6-2

ARRAY ELEMENT SUCCESSOR FUNCTION
2-24

Automatic Typing of Supplied
Mathematical External Functions

6-15

BUILT-IN INTRINSIC FUNCTIONS 6-=5

Defining FUNCTION Subprograms 6-14

FUNCTION 2-11, 2-21, 2-26, 3-40,
3-42, 3-45

FUNCTION subprogram 3-21, 3-33,
3-38, 3-55

FUNCTION subprogram name 3-10

FUNCTION SUBPROGRAMS 6-14

generic function 6-15

mathematical library function 6-15

Referencing FUNCTION Subp

rograms

6-22 :

Shift Functions 6-19

SUBROUTINE AND FUNCTION STATEMENTS
6-1

Supplied External FUNCTION

Mathematical Subprograms 6=-17

DG75A

FUNCTION (cont)
Supplied External FUNCTION
Nonmathematical Subprograms
6-19 '

Supplied FUNCTION Subprograms 6-15
Typeless Functions 2-32
FXALT
CALL FXALT 6-58
FXDVCK
FXDVCK 6-56
FXEM
CALL FXEM 6-57
FXEM 6-56 -
FXOPT
CALL FXOPT 6-57
GENERATORS
Random Number Generators 6-20
GENERIC
generic function 6-15
GET
GET command B-20
GLOBAL
GLOBAL OPTIMIZATION 4-6, 4-9
GMAP
GMAP offset 4-10
GO TO
GO B-12
GO TO 3-48
H*
Batch Activity to Build Time Sharing
H* Pile B-23
HANDLING
FILE HANDLING STATEMENTS 5-29
HIERARCHY
hierarchy of argument types 6-15

I-D-S/II

Accessing I-D-S/II Files Required
for Execution B-20

Files Required by I-D-S/II B-8

I-D-S/11I DML statements B-10, B-14

I-D-S/II in a FORTRAN Time Sharing
Environment B-8

I-D-S/II statistics and abort codes

B-12, B-16
I/0
I/0 error is encountered 3-67
IF
arithmetic IF statement 3-51
IF 3-51, 4-8

logical IF statement 3-51

7/79

ILR

ILR 6-19
ILS

ILsS 6-19
IMPLICIT

IMPLICIT 3-13, 3-53
IMPLICIT statement 2-11
implicit typing 6-15

IMPLIED
implied DO 5-23 :
nested implied DO's 5-24
IMPOSED
LIMITATIONS IMPOSED BY THE AFT B-30
INDEXED
Indexed B-9
Indexed with Record Keys B-9
INDUCTION
Induction Variable Expression
Analysis 4-6
Induction Variable Materialization
Analysis 4-6
INITIALIZATION)
Data initialization 4-13
INPUT/OUTPUT
Input 5-14

INPUT AND OUTPUT 5-1
Input Error Recovery B-7.1
Input/output statements 3-1
Keyboard input B-1
List directed formatted input/output
5-2
List Directed Formatted Input/output
Statements 5~25
Manipulation Input/output Statements
5~-2
Paper Tape Input B-29
Program Statement Input B-3
Supplying Direct-Mode Program Input
B-29

INTEGER
Integer 2-13, 2-22,
2-33, 3-19, 3-53,
Integer Constant 2-14
integer datum 2-11

2-27, 2-31,

3-55

INTEGRATED
Integrated B-9
Integrated with Record Keys B-9
INTERFACES
FILE SYSTEM INTERFACE
REMOTE BATCH INTERFACE
TERMINAL/BATCH INTERFACE
USER INTERFACES 4-1

4-4.1
4-4
4-4,1

INTERNAL
"INTERNAL DATA CONVERSION 5-20

DG75A

INTRINSIC
BUILT-IN INTRINSIC FUNCTIONS 6-5
INVOKE
INVOKE statement B-9, B-20
IRETSW
IRETSW 6-19
IRL
IRL 6-19
IRS
IRS 6-19
ISETSW
ISETSW 6-19
JCL
Sample Batch Link/Overlay JCL 4-4
JREST
JREST 4-3
KEY
Data Base Area and Key Files B-13,
B-17
Indexed with Record Keys B-9
Integrated with Record Keys B-9
KEYWORDS
FORTRAN KEYWORDS 3-9
KOMPCH
KOMPCH 6-19
LABEL
Label assignment (ASSIGN) statement

3-4
Label Assignment Statement 3-6

LANGUAGE
Data Manipulation Language B-12
Device Media Control Language B=~8

LDEL
LDEL B-12, B-16

LEFT
Left Rotate 6-19
Left Shift 6-19

LIBRARY

mathematical library function 6-15
LIMITATIONS

LIMITATIONS IMPOSED BY THE AFT B-30

LINE
"line" 2-4
First Line Run Command B-21
line formats 2-6

LINK
CALL LINK 6-65
Debugging Linked Overlay Programs
=24
LINK, LLINK 6-65

7/79

i-9

LINK/OVERLAY
RUNL Command for Link/Overlay B-23
Sample Batch Link/Overlay JCL 4-4

LIST
Cross—-Reference List (XREF) 4-13
List directed formatted input/output

5=2
List Directed Formatted Input/output
Statements 5-25

LIST SPECIFICATIONS 5-23
wrapup list F=22

LISTING
BATCH COMPILATION LISTINGS AND
REPORTS 4-9
Object Program Listing (LSTOU)
Source Program Listing (LSTIN)

4-12
4-10

LLINK
CALL LLINK 6-65
LINK, LLINK 6-65

LNO/NLNO
LNO 4-3,
LNO/NLNO

4-10, B-11
2-6

LOAD

RESTRICTIONS ON LOAD USAGE B-30
LOCAL

Local Optimization D-4

LOG-OFF
Log-Off Procedure B-8

LOG~-ON
Log-on Procedure B-1l

LOGICAL .

logical 2-11, 2-13, 2-22, 2-29,
2-31, 3-19, 3-53, 3-56

Logical and Relational Constructions
2-31

logical assignment 3-7

Logical assignment statement 3-4,
-5 .

Logical

Logical

logical

logical

Logical

logical

logical

Constant 2-19
constants 3-24
datum 2-12
expression 2-29,
Field Descriptor
IF statement 3-51
operators 2-30
Logical record delete
logical variable 3-5
Right Logical '6-19

3-5
5-12.

B-12, B-1l6

LOOP
DO loop 3-22
DO loops 3-49

Loop Collapsing Analysis 4-6

Nested DO Loop 3-31
LSTIN
LSTIN 4-2, 4-9
Source Program Listing (LSTIN) 4-10
DG75A

LSTOU
LSTOU 4-2, 4-9
Object Program Listing (LSTOU)
Program Preface Summary (LSTOU)
4-11

4-12

MANIPULATION
Data Manipulation Language B-12
Manipulation Input/output Statements
5-2

MANTISSA
mantissa 2-17
MAP
MAP 4-2, 4-9
Storage Map (MAP) 4-12
MATERIALIZATION
Induction Variable Materialization
Analysis 4-6

MATHEMATICAL
Automatic Typing of Supplied
Mathematical External Functions
6-15
mathematical library function 6-15
Supplied External FUNCTION
Mathematical Subprograms
Supplied External FUNCTION
Nonmathematical Subprograms
6-19

6-17

MEDIA CODE
Device Media Control Language B-8
media code 2-9
media codes 2-~4

MEMORY
Memory Conflicts 4-6
MEMORY CONSIDERATIONS B-30

MEMSIZ
CALL MEMSIZ
MEMSIZ 6-32,

6-66
6-66

MESSAGES
FDEBUG Entry Messages F-3
FDEBUG Error Messages F-7
RUN Command Error Messages
RUNL Command Error Messages
Symbolic Dump Messages F-15
TIME SHARING BASED FORTRAN ERROR
MESSAGES C~-1

c-1
Cc-4

MINUS SIGN
minus sign 2-3
MOD
MOD 6-46
MODE
BATCH MODE 4-1
Execution Mode Détermination 6-20
FILE MODES B-35
MODE 6~19
7/79

i-10

MONITOR
FORTRAN EXECUTION ERROR MONITOR
6-56
MULTIPLE

Multiple Entry Points Into a
Subprogram 6-27

Multiple Record Formats 5-6

Multiple Record Processing 5-20

NAME
FUNCTION subprogram name
NAME=name B-13
symbolic name 2-11, 2-21
Symbolic Names 2-11

3-10

NAMELIST
FORMAT and NAMELIST Statements
NAMELIST 2-3, 3-46, 3-57, 3-74
NAMELIST statement 3-62, 3-65,
3-77, 5-2

NASTRK
CALL NASTRK 6-67
NASTRK 6-67

NCOMDK
NCOMDK 4-2
NDEBUG
NDEBUG 4-2, B-11

NDECK
NDECK 4-2

NDUMP
NDUMP 4-3

NESTED
Nested
nested

DO Loop 3-31
implied DO's 5-24
NFORM

NFORM 2-9, 4-2, 4-10, B-11
NJREST

NJREST 4-3

NLNO

NLNO 4-3, 4-10, B-11

NLSTIN
NLSTIN 4-2

NLSTOU
NLSTOU 4-2

NOCALL
CALL NOCALL F-22

NOGO
NOGO B-12

NOLIB
NOLIB B-12

NOMAP

NOMAP 4-2

5-2

3-67,

DG75A

NONVALID
Nonvalid 2-27

NOPTZ

NREST
NREST 4-3

NTCALL
CALL NTCALL F-22

NUMBER
Complex Number Fields
Random Number 6~19
Random Number Generators 6-20

5-11

NUMERIC
Numeric Field Descriptors 5-8

NWARN
NWARN 4-3, B-12
NWARN option D-2

'NXREF
NXREF 4-2

OBJECT

Object Program Listing (LSTOU) 4-12
OCTAL

Octal 2-13

Octal Constants 2-15

octal or character constants 3-23
OFFSET

GMAP offset 4-10

OPERATION
arithmetic operation symbols
2-28

2-27,

OPERATORS
arithmetic operators 2-27
logical operators 2-30
Operator Precedence 2-33
Unary Operators 2-34

OPTIMIZATION
Debugging Optimized Programs
GLOBAL OPTIMIZATION 4-6, 4-9
Local Optimization D-4
optimization 3-10, 3-15

F-24

OPTION
ABNORMAL option 3-42
DEBUG option 3-13
error transfer option
NWARN option D=2
OPTZ option 3~10

3-26, 3-34

OPTZ
opTz 4-3, 4-6, 4-7, B-12
OPTZ option 3-10

OR
COMMON or a type statement 3-28
octal or character constants 3-23

7/79

OR (cont)
OR 6-8
SUBROUTINE or ENTRY statement 3-15

OUTPUT
INPUT AND OUTPUT 5-1
Output 5-17
Output Device Control 5-7

OVERLAY
Debugging Linked Overlay Programs
F-24

PAPER
paper tape B-1l
Paper Tape Input B-29

PARAMETER
control parameters 3-30
Parameter 2-26, 2-29, 3-13, 3-58
step parameter 3-29
PARENTHESES
Parentheses 2-3, 2~28
PAUSE
PAUSE 2-20, 3-60
PDUMP
CALL PDUMP 6-45
DUMP DUMPA, PDUMP PDUMPA 6-45
PDUMPA
DUMP DUMPA, PDUMP PDUMPA 6-45
PERFORMANCE
Compilation Performance D-5
PERIOD
period 2-3
PLUS SIGN
plus sign 2-3
POINTS :
Expression Compute Point Analysis
4-6

Multiple Entry Points Into a
Subprogram 6-27

POSITIONING
Character Positioning Field
Descriptors 5-12

PRECEDENCE
Operator Precedence 2-33
PRECISION
Double precision 2-27, 2-31, 2-33,
3-19, 3-33, 3-53
double precision datum 2-12
PREFACE
Program Preface Summary (LSTOU)
4-11
PRINT

PRINT 3-62

DG75A

PROCEDURE
data base procedures B-9
Log-0Off Procedure B-8
Log-on Procedure B-1
WRAPUP PROCEDURES F=-22

PROCESSING
Multiple Record Processing 5-20
PROGRAM)
Debugging Linked Overlay Programs
F-24
Debugging Optimized Programs F-24
FDS Programming Techniques F-25
Object Program Listing (LSTOU) 4-12

Program Preface Summary (LSTOU)
4-11

Program Statement Input B-3

Set/Reset Program Switch Word 6-19

Source Program File Characteristics
2-4

Source Program File Types 2-4

SOURCE PROGRAM FORMAT 2-4

Source Program Listing (LSTIN) 4-1i0

Supplying Direct-Mode Program Input
B-29

PROPERTIES
File Properties 5-28
PTIME
CALL PTIME
PTIME 6-68

6-68

PUNCH
PUNCH 3-64

PUNCTUATION
punctuation 2-2
Syntax Punctuation 2-3

QUOTATION MARKS
Quotation Marks 2-3

RAND
RAND 6-19

RANDOM
Random Files 5-28
Random Number 6-19

Random Number Generators 6-20
RANDT

RANDT 6~19
RANGE

extended range 3-30, 3-32

Transfer of Control for Extended

Range 3-32
RANSIZ
CALL RANSIZ 6-69
RANSIZ 6-69
READ /WRITE

Formatted Read/Write Statements 5-2
READ 3-39, 3-66
READ statement 2-22, 3-12, 3-26

1/79

i-12

READ/WRITE (cont)
Unformatted Read/Write Statements
5-2

REAL
Real 2-13, 2-22, 2-27, 2-31, 2-33,

3-19, 3-53, 3-70

Real Constant 2-16

real datum 2-11

REAL statement 3-33

RECORD

File and Record Control Type Errors
Cc-1

Indexed with Record Keys B-9
Integrated with Record Keys B-9
Logical record delete B-12, B-16
Multiple Record Formats 5-6
Multiple Record Processing
Record Sizes 5-28

5-20

RECOVERY .
Input Error Recovery B-7.1

REFERENCE
FILE REFERENCE 5-3
Referenced Variable 2-22
Referencing FUNCTION Subprograms
6-22
Referencing SUBROUTINE Subprograms
6-24

REGISTER
Register Management Analysis 4-6

RELATIONAL
Logical and Relational Constructions
2-31
relational expression 2-29
REMO
REMO B-13

REMOTE
REMOTE BATCH INTERFACE 4-4

REMOVE
REMOVE command B-32

REPORTS
BATCH COMPILATION LISTINGS AND
REPORTS 4-9 '
cross-reference report 4-2

REQUESTS
Debugging Request Execution F-6
Debugging Requests F-4

REQUIRED
Accessing I-D-S/II Files Required
for Execution B-20

Files Required by I-D-S/II B-8
RESET
Reset Switch Word 6-19
REST
REST 4~3
DG75A

RESTRICTIONS
RESTRICTIONS ON LOAD USAGE B-30

RETURN
Alternate returns 6-26
RETURN 3-71
RETURN statement 3-46, 6-25
REWIND
REWIND 3-68, 3-72
RIGHT

Right Logical 6-~19
Right Shift 6-19

ROTATE

Left Rotate 6-19
RULES

Rules for v = e 3-8

RUN
First Line Run Command B-21
FORTRAN TIME SHARING SYSTEM RUN
COMMAND B-14
RUN command B-20
RUN Command Error Messages C-1
THE YFORTRAN TIME SHARING SYSTEM RUN
COMMAND B-10
TSS Run Examples B-22
RUNL
RUNL Command Error Messages C-4
-RUNL Command for Link/Overlay B=-23

SAMPLE
Sample Batch Deck Setup 4-4
Sample Batch Link/Overlay JCL 4-4

SCALAR
1 Scalar Variable 2-22
SCALE

Scale Factors 5-=5

SCHEMA
Schema File B-8, B-13, B-17
SELECTION
Conditional Format Selection 5-22

SEMICOLON
semicolon 2-3, 2-7

SEQUENTIAL
Sequential Files 5-28

SET/RESET
Set/Reset Program Switch Word 6-19

SETBUF
CALL SETBUF 6-70
SETBUF 6-70

SETFCB
CALL SETFCB 6-71
SETFCB 6-71

7/79

i-13

SETLGT
CALL SETLGT
SETLGT 6-72

6-72

SETUP
Sample Batch Deck Setup 4-4

SHIFT
Left Shift 6-19
Right Shift 6-19
Shift Functions 6-19
SIZE
Adjustable size specifications
Record Sizes 5-28

3-17

SLASH
slash 2-3

SLITE,SLITET
SLITE,SLITET 6-73

SORT
CALL SORT - 6-74
SORT 6-32, 6-74

SORTD
CALL SORTD 6-76
SORTD 6-32, 6-76

SOURCE
SOURCE COMPATIBILITY D-1
Source Program File Characteristics
2-4
Source Program File Types 2-4
SOURCE PROGRAM FORMAT 2-4
Source Program Listing (LSTIN) 4-10
SPACE
space 2-3

SPECIFICATIONS
Adjustable size specifications
- FILE SPECIFICATION B-33
FORMAT SPECIFICATIONS 5-4
LIST SPECIFICATIONS 5-23
Specification statements 3-1
Variable Format Specifications

3-17

5-13

SSWTCH
CALL SSWTCH 6-78
SSWICH 6-78

STAT .
STAT B-12, B-16

STATEMENTS
Arithmetic assignment statement 3-4
arithmetic IF statement 3-51
ARITHMETIC STATEMENT FUNCTIONS 6-~2
Arithmetic statements 3-1
ASSIGN statement 3-7
assignment statement 3-4
ASSIGNMENT STATEMENTS 3-4

CALL statement 3-38, 3-40, 3-42
CALL statements 3-10
Character assignment statement 3-4,
3-6
DG75A

STATEMENTS (cont)

COMMON or a type statement 3-28

COMMON statement 3-38, 3-40

Compiler control statements

Control statements 3-1 .

DATA statement 2-22, 3-24, 3-40,
3-74

declarator statement 2-25

DO Statement 3-31, 3-39

ENCODE statement 3-39

END statement 2-5

ENTRY statement 3-40, 6-27

EQUIVALENCE statement 3-39

explicit type statement 3-55, 3-56
3-70

EXTERNAL statement 3~38

FILE HANDLING STATEMENTS

FINISH statement B-12

FORMAT and NAMELIST Statements

FORMAT statement 3-26, 3-34,
3-64, 3-66, 5-2

Formatted Read/Write Statements

I-D-S/II DML statements

IMPLICIT statement 2-11

Input/output statements 3-1

INVOKE statement B-9, B-20

Label assignment (ASSIGN) statement
3-4

Label Assignment Statement 3-6

3-1

5-29

5-2
3-62,

5-
B-10, B-14

List Directed Formatted Input/outpu
Statements 5-25

Logical assignment statement 3-4,
3-5

logical IF statement 3-51
Manipulation Input/output Statement
5-2
NAMELIST statement
3~-77, 5-2
Program Statement Input B-3
READ statement 2-22, 3~12,
REAL statement 3-33
RETURN statement 3-46,

3-62, 3-65, 3-6

3-26

6-25

Specification statements 3-1
statement label 2-6
Subprogram statements 3-1

SUBROUTINE AND FUNCTION STATEMENTS
6-1

SUBROUTINE or ENTRY statement 3-15
terminal statement 3-30

transfer statement 3-31

Type statements 3-24

Unformatted Read/Write Statements
5~2
WRITE statement 3-34
STATISTICS
I-D-S/II statistics and abort codes
B-12, B-16
Statistics File B-14, B-17
STATUS
STATUS FILES command B=-~32

STEP

step parameter 3-29

STOP

sTOP 2-20, 3-73

7/79

14

2

t

S

7,

i-14

STORAGE

ALLOCATION of STORAGE D=3
Storage Map (MAP) 4-12

STRING

Character String Compare 6-20
Editing Strings with ENCODE 5-21

STRUCTURE

Subschema Control Structure

B-9,
B-15)

SUBEXPRESSION

Common Subexpression Analysis 4-6

SUBPROGRAM

Adding Wrapup Subprograms F-22

BLOCK DATA subprogram 3-24

COMPILATION of SUBPROGRAMS D=1

Defining FUNCTION Subprograms

Defining SUBROUTINE Subprograms
6-23

Excluding Wrapup Subprograms F-23

FUNCTION subprogram 3-21, 3-33,
3-38, 3-55

FUNCTION subprogram name

FUNCTION SUBPROGRAMS 6-14

Multiple Entry Points Into a
Subprogram 6-27

Referencing FUNCTION Subprograms
6~22

Referencing SUBROUTINE Subprograms
6-24

Subprogram statements 3-1

SUBPROGRAM TIMING MEASUREMENT SYSTEM
F-19

SUBROUTINE SUBPROGRAMS 6-23

Supplied External FUNCTION
Mathematical Subprograms

Supplied External FUNCTION
Nonmathematical Subprograms
6-19

Supplied FUNCTION Subprograms

SUPPLIED SUBROUTINE SUBPROGRAMS
6-30

6-14

3-10

6-17

6-15

SUBROUTINE

Defining SUBROUTINE Subprograms
6-23

NAMING SUBROUTINES 6-1

Referencing SUBROUTINE Subprograms

6-24 .

SUBROUTINE 2~26, 3-38, 3-40, 3-42,
3-74

SUBROUTINE AND FUNCTION STATEMENTS
6-~1

SUBROUTINE or ENTRY statement 3-15

SUBROUTINE SUBPROGRAMS 6-23

SUPPLIED SUBROUTINE SUBPROGRAMS
6-30

SUBSCHEMA
Subschema Control Structure B-9,

B~15

Validated Subschema File B-9

SUBSCRIPT

declarator subscript 2-25

DG75A

SUBSCRIPT (cont)
SUBSCRIPTS 2-24

SUCCESSOR
ARRAY ELEMENT SUCCESSOR FUNCTION
2-24

SUMMARY
Program Preface Summary (LSTOU)
4-11

SUPPLIED

Argument Checking and Conversion for
Supplied External Functions
6-15

Automatic Typing of Supplied
Mathematical External Functions

6-15

Supplied External FUNCTION
Mathematical Subprograms

Supplied External FUNCTION
Nonmathematical Subprograms
6-19

Supplied FUNCTION Subprograms

SUPPLIED SUBROUTINE SUBPROGRAMS
6-30

Supplying Direct-Mode Program Input
B-29

6-17

6-15

SWITCH
Reset Switch Word 6-19
Set Switch Word 6-19
Set/Reset Program Switch Word
Switch Variable 2-23

6-19

SYMBOL -
arithmetic operation symbols
2~-28
Debug Symbol Table (DEBUG)

2-27,
4-13

symbol table entries 4-13
SYMBOLIC
Symbolic Dump Example F-14

SYMBOLIC DUMP FACILITY F-13

Symbolic Dump Messages F-15

symbolic name 2-11, 2-21

Symbolic Names 2-11
Symbolic Names 2-11
SYMREF

SYMREF 3-42

SYNTAX
Syntax Punctuation 2-3

SYSTEM

Comparison of the FORTRAN and
YFORTRAN Time Sharing Systems
B-9

DPS ASCII-only system 4-3

FILE SYSTEM INTERFACE 4-4.1

FORTRAN DEBUGGING SYSTEM F-1

FORTRAN TIME SHARING SYSTEM RUN
COMMAND B-14

SUBPROGRAM TIMING MEASUREMENT SYSTEM
.F=19

7/79

i-15

SYSTEM (cont)
THE YFORTRAN TIME SHARING SYSTEM RUN
COMMAND B-10
Timing Measurement System Examples
F-19

T
T FORMAT CODE 5-12

TABLE

Debug Symbol Table (DEBUG) 4-13

symbol table entries 4-13
To-From Transfer Table (XREFS) 4-11
TAPE
paper tape B-1l
Paper Tape Input B-29
TECHNIQUES
FDS Programming Techniques F-25
TERMINAL
Automatic Terminal Disconnections
B-7.1)
terminal statement 3-30
TERMINAL/BATCH
TERMINAL/BATCH INTERFACE 4-4.1
TERMINATION
Emergency Termination of Execution
B-29
TERMNO

CALL TERMNO 6-79
TERMNO 6-32, 6-79

TERMTM
CALL TERMTM 6-80
TERMTM 6-32, 6-80

TEST

TEST B-13
TIME

TIME=nnn B-12

TIME SHARING

Batch Activity to Build Time Sharing
H* File B-23

Comparison of the FORTRAN and
YFORTRAN Time Sharing Systems
B-9

FORTRAN TIME SHARING SYSTEM RUN
COMMAND B-14

I-D-S/II in a FORTRAN Time Sharing
Environment B-8

THE YFORTRAN TIME SHARING SYSTEM RUN
COMMAND B-~10

TIME SHARING BASED FORTRAN ERROR
MESSAGES C-1

TIMING MEASUREMENT
SUBPROGRAM TIMING MEASUREMENT SYSTEM
F-19
Timing Measurement System Examples
F-19

DG75A

To-From Transfer Table (XREFS) 4-11
TRACE

TRACE 6-32, 6-81
TRANSFER

error transfer option 3-26, 3-34

To-From Transfer Table (XREFS) 4-11

Transfer of Control 3-31

Transfer of Control for Extended
Range 3-32

transfer statement 3-31

TRUTH TABLE VALUES

Truth Table Values 2-30
TSS

DML TSS Example B-23

TSS 3-60

TSS Run Examples B-22

TYPE

COMMON or a type statement

DATA TYPES 2-11

explicit type -3-21, 6-15

explicit type statement
3-70

File and Record Control Type Errors
c-1

hierarchy of argument types 6-=15

Source Program File Types 2-4

Type statements 3-24

3-28

3-55, 3-56,

TYPELESS
Additional Typeless Functions
Typeless 2~-27, 2-31, 2-33
Typeless Functions 2-32

6-12

TYPING
Automatic Typing of Supplied
Mathematical External Functions
6-15
implicit typing 6-15
ULIB
ULIB B-12

UNARY
Unary Operators 2-34
UNFORMATTED
Unformatted Read/Write Statements
5-2

UNIFM2
UNIFM2 6-19

UPDATING
File Updating 5-28

URGC=NN
URGC=nn B-12

USAGE

RESTRICTIONS ON LOAD USAGE B-30

USER
USER INTERFACES 4-1

7/79

USER (cont)
User Working Area B-9

USRCOD
CALL USRCOD 6-82
USRCOD 6-32, 6-82

UWA
UwA B-9

VALIDATED
Validated Subschema File B-9

VARIABLE

Array Variable 2-23

Character Variable 2-23
Defined Variable 2-22
External Variable 2-22

Induction Variable Expression
Analysis 4-6

Induction Variable Materialization
Analysis 4-6.

logical variable 3-5

Referenced Variable 2-22
Scalar Variable 2-22
Switch Variable 2-23

Variable Format Specifications 5-13

VARIABLES 2-21

VERTICAL
vertical arrow 2-3

WORD
noise word 5-11
Reset Switch Word 6-19
Set Switch Word 6-19
Set/Reset Program Switch Word 6-~19

WORKING
User Working Area B-9

WRAPUP
Adding Wrapup Subprograms
Excluding Wrapup Subprograms
wrapup list F-22
WRAPUP PROCEDURES F-22

F-22
F-23

WRITE
WRITE 3-76
WRITE statement 3-34

X
X FORMAT CODE 5-12

XOR
XOR 6-8

XREF

Cross—-Reference List (XREF) 4-13

To-From Transfer Table (XREFS) 4-11
XREF 4-2, 4-9, 4-10
YASTRK
CALL YASTRK 6-83
YASTRK 6-83
DG75A

YFORTRAN
Comparison of the FORTRAN and
YFORTRAN Time Sharing Systems
B-9
THE YFORTRAN TIME SHARING SYSTEM RUN
COMMAND B-10
YFORTRAN B-9

7/79 i=-17 DG75A

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE

SERIES 60 (LEVEL 66)/6000
FORTRAN REFERENCE MANUAL
ADDENDUM A

ERRORS IN PUBLICATION

ORDERNO. | DG75A, REV.

0

DATED | JULY 1979

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Y

FROM:

Your comments will be promptly investigated by appropriate technical personnel
and action will be taken as required. If you require a written reply, check here D

and furnish complete mailing address below.

NAME

TITLE

COMPANY
ADDRESS

DATE

PLEASE FOLD AND TAPE—
NOTE: U. S. Postal Service will not deliver stapled forms

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

HONEYWELL INFORMATION SYSTEMS

Technical Publications Remarks Form

ORDER NO.
TITLE | SERIES 60 (LEVEL 66)/6000 FORTRAN REFERENCE DG75, REV. 0
- DATED | JULY 1978
ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be promptly investigated by appropriate technical personnel and action will be taken D
as required. If you require a written reply, check here and furnish complete mailing address below.

FROM: NAME. DATE

TITLE
COMPANY

ADDRESS

PLEASE FOLD AND TAPE —

NOTE: U. S. Postal Service will not deliver stapled forms

FIRST CLASS
PERMIT NO. 395
WALTHAM, MA
02154

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

ATTENTION: PUBLICATIONS, MS 486

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

{iLi

Honeywell

