
Honeywell

LEVEL 66
SOFTWARE

USS Engineers and Consultants, Inc . .
a Subsidiary of United States Steel Corporation

COBOl
REFERENCE MANUAL

COBOL REFERENCE MANUAL
ADDENDUM A

SERIES 60 (LEVEL 66)/6000

SOFTWARE

SUBJECT:

Additions and Changes to the Series 60 (Level 66)/6000 COBOL Reference
Manual.

SPECIAL INSTRUCTIONS:

This update, Order Number DD25A, is the first addendum to DD25, Rev. O,
dated June 1975. The attached pages are to be inserted into the manual
as indicated in the collating instructions on the back of this cover.
Change bars in the page margins indicate technical additions and
changes; asterisks indicate deleted material. These changes will be
incorporated into the next revision of the manual.

For this software release, the syntax construct 6000 WITH EIS
(SOURCE-COMPUTER and OBJECT-COMPUTER paragraphs) may also be specified
as 6000-EIS. The USAGE COMP-3 PACKED SYNC construct may also be
specified as USAGE COMP-4. This release also includes a new OPTIMIZE
COMPUTATIONAL option in the SPECIAL-NAMES paragraph.

NOTE: This cover should be inserted following the manual cover to
indicate that the document has been updated with Addendum A.

SOFTWARE SUPPORTED:

DATE:

Series 60 Level 66 Software Release 3
Series 6000 Software Release I

February 1977

ORDER NUMBER:

DD25A, Rev. 0

20445
2478
Printed in U.S.A.

COLLATING INSTRUCTIONS

To update this manual, remove old pages and insert new pages as follows:

Remove Insert

3-1, 3-2 3-1, 3-2
3-5, 3-6 3-5, 3-6
3-9, 3-10 3-9, 3-10
3-17, 3-18 3-17, 3-18
3-21, blank 3-21, blank
5-3 through 5-12 5-3 through 5-10

5-10.1, blank
5-11, blank
5-11.1, 5-12

5-19 through 5-26 5-19 through 5-24
5-25, blank
5-25.1, 5-26

5-27, plank 5-27, blank
6-5, 6-6 6-.S, 6-6
6-13 through 6-16 6-13 through 6-16
6-31 'through 6-34 6-31 through 6-34
6-47, 6-48 6-47, 6-48
6-67, 6-68 6-67, 6-68
6-73 through 6-76 6-73 through 6-76
7-21 through 7-24 7-21 through 7-24
7-27 through 7-30 7-27 through 7-30
7-33, 7~34 7-33, 7-34
7-37 through 7-40 7-37, 7-38

7-38.1, blank
7-39, 7-40

7-45, 7-46 7-45, 7-46
7-49, 7-50 7-49, 7-50
7-61 through 7-66 7-61 through 7-66
7-69, 7-70 7-69, 7-70
7-75, 7-76 7-75, 7-76
7-85 through 7-88 7-85 through 7-88
7-93 through 7-96 7-93 through 7-96
7-99, 7-100 7-99, 7-100
7-107, 7-108 7-107, 7-108

7-1.09' blank
A-1 through A-4 A-1 through A-4

@1977, Honeywell Information Systems Inc. File No.: 1723,1P23

2/77 DD25A

SUBJECT

SERIES 60 (LEVEL 66)/6000

SOFTWARE

COBOL REFERENCE MANUAL

Complete Description of COmmon ~usiness Oriented Language (COBOL)
Implemented Specifically for the Series 60 (Level 66) and Series 6000
Information Systems

SPECIAL INSTRUCTIONS

This manual replaces COBOL Reference Manual, Order Number BSOS, for
Series 6000 system users. Order Number BS08 must be used by Series 600
system users and by Series 6000 system users who are on prior software
releases.

Those COBOL features implemented for the Series 60 (Level 66) and 6000
systems that are nonstandard or unique to the Series 60 (Level 66)/6000
systems are indicated by shading. In addition, those features of COBOL
1968 presented in this manual that have not been implemented are
indicated as such by delta symbols (~) in the margins of those pages on
which these features are presented.

SOFTWARE SUPPORTED

Series 60 (Level 66) Software Release 2
Series 6000 Software Release H

ORDER NUMBER

DD25, Rev. 0 June 1975

Honeywell

PREFACE

This COBOL Reference Manual and a companion manual, the COBOL User's Guide,
have been prepared for Series 60 and Series 6000 users.

This manual is organized in a format similar to that used in the Conference
on Data Systems Languages (CODASYL) COBOL Journal of Development (JOD). It is
intended to be strictly a language reference document containing the formats,
syntax rules, general rules, and special considerations required.to construct a
COBOL source program. The contents of the manual reflect (a) Series 60/6000
COBOL as it relates to the Series 60/6000 operating system; (b) implemented
elements of CODASYL COBOL as published in the JOD; and (c) American National
Standard COBOL (X3.23-1968). The highest level of American National Standard
implementation is presented for all modules, with some minor .except.ions
indicated by delta (A) symbols.

As a supplement to the COBOL Reference Manual, the COBOL User's Guide
provides information concerning COBOL concepts, Series 60/6000 implecientation
techniques, internal compiler characteristics, and efficiency considerations. In
addition, sample deck setups and job control data are provided to assist the
user in interfacing with the operating system.

The following language elements, defined in previous versions of the COBOL
specifications, haye been deleted from CODASYL COBOL and are not· included in
American National Standard COBOL; however, they are still supported by Series
60/6000 COBOL in the current state of implementation:

• Figurative constants: HIGH-BOUNDS and LOW-BOUNDS

• PREPARED option

• Constant Section

• CLASS clause

• Editing clauses

e FILE CONTAINS clause

• POINT LOCATION clause

• RANGE clause

e SEQUENCED clause

© 1975, Honeywell Information Systems Inc. File No.: 1723,1P23

DD25

e SIGNED clause

• SIZE clause

• Conditional statement IF ••• OTHERWISE ••. THEN •••

As a continuing policy of conforming to COBOL standards and encouraging
program transferability, documentation of the above language elements has been
deleted from this manual. For a detailed description of the obsolete language
elements, refer to Section XVII of the COBOL User's Guide.

Series 60 Level 66 is hereafter referred to as Series 60. The technical
information contained in this manual refers to both the Series 6000 and Series
60 systems, unless otherwise specifically stated.

iii DD25

ACKNOWLEDGMENT

This acknowledgment has been reproduced from the "Journal of
1968" as requested in that publication, prepared and published by

Development,
the CODASYL

COBOL Pro·gramming Language Cornmi ttee. ·

"Any organization interested in reproducing the COBOL report and
specifications in whole or in part, using ideas from this report as
the basis for an instruction manual or for any other purpose is free
to do so. However, all such organizations are requested to reproduce
the following acknowledgment paragraphs in their entirety as part of
the preface to any such publication. Any organization using a short
passage from this document, such as in a book review, is requested to
mention COBOL in acknowledgment of the source, but need not quote the
acknowledgment.

COBOL is an industry language and is not the property of any
company or group of companies, or of any organization or group
of organizations.

No warranty, expressed or implied, is made by any contributor
or by the COBOL Committee as to the accuracy ..tnd functioning
of the programming system and language. Moreover, no
responsibi1ity is assumed by any contributor, c..ir by the
committee,, in connection therewith.

The authors and copyright holders of the copyrigh~ed material
used herein

FLOW-~ATIC (Trademark of Sperry Rand Corporation),
Programming for the Univac (R) I and II, Data
Automation Systems copyrighted 1958, 1959, by Sperry
Rand Corporation; IBM Commercial Translator Form No. F
28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis
Honeywell

have specifically authorized the use of this material in whole
or in part, in the COBOL specifications. Such authorization
extends to the reproduction and use of COBOL specifications in
programming manuals or similar publications."

iv DD25

FUNCTIONAL LISTING OF PUBLICATIONS
for

SERIES 60 (LEVEL 66) and SERIES 6000 SYSTEMS

FUNCTION APPLICABLE REFERENCE MANUAL
ORDER

TITLE NO.

Hardware reference:
Series 60 Level 66 System
Series 6000 System
DATANET 355 Processor
DATANET 6600 Processo

Operating system:
Basic Operating f~~tem

Job Contr~ J . .l.nguage
Table Defj . .i tions
I/0 Vid MME GEINOS

System initialization:
System Startup
System Operation
Communications System

Communications System
DSS180 Subsystem Startup

Data management:
File System
Integrated Data Store (I-D-S)
Integrated Data Store (I-D-S)
File Processing
File Input/Output
File Input/Output

I-D-S Data Query System
I-D-S Data Query System

Program maintenance:
Object Program
System Editing

Test system:
Online Test Program
Test Descriptions

Error Analysis and Logging

Language processors:
Macro Assembly Language
COBOL-68 Language
COBOL-68 Usage
JOVIAL Language
FORTRAN Language

Generators:
Sorting
Merging

Series 60 (Level 66)/Series 6000:

Series 60 Level 66 Summary Description
Series 6000 Summary Description
DATANET 355 Systems Manual
DATANET 6600 Systems Manual

General Comprehensive Operating
Supervisor (GCOS)

Control Cards Reference Manual
System Tables
I/O Programming

System Startup
System Operation Techniques
GRTS/355 and GRTS/6600 Startup

Procedures
NPS Startup
DSS180 Startup

File Management Supervisor
I-D-S/I Programmer's Guide
I-D-S/I User's Guide
Indexed Sequential Processor
File and Record Control
Unified File Access System (UFAS)

(Series 60 only)
I-D-S Data Query System Installation
I-D-S Data Query System User's Guide

Source and Object Library Editor
System Library Editor

Total Online Test System (TOLTS)
Total Online Test System (TOLTS)

Test Pages
Honeywell Error Analysis and Logging

System (HEALS)

Macro Assembler Program
COBOL
COBOL User's Guide
JOVIAL
FORTRAN

Sort/Merge Program
Sort/Merge Program

v

DC64
DA48
BS03
DC88

DD19
DD31
DD14
DB82

DD33
DD50

DD05
DD51
DD34

DD45
DC52
DC53
DD38
DD07
DC89

DD47
DD46

DD06
DD30

DD39

DD49

DD44

DD08
DD25
DD26
DD23
DD02

DD09
DD09

DD25

FUNCTION

Simulators:
DATANET 355/6600 Simulation

Service and utility routines:
Loader
Utility Programs
Utility Programs
Media Conversion
System Accounting
FORTRAN
FNP Loader
Service Routines
Software Debugging

Time Sharing systems:
Operating System
System Programming
System Programming

BASIC Language
FORTRAN Language
Text Editing ·

Remote communications:
DATANET 30/305/355/6600 FNP
DATANET 355/6600 FNP
DATANET 700 RNP

Transaction processing:
User's Procedur~s

Handbooks:
System-operator communication

Pocket guides:
Control Card Formats
FORTRAN

Rev. 7 412

APPLICABLE REFERENCE MANUAL

TITLE
Series 60 (Level 66)/Series 6000:

DATANET 355/6600 Simulator

General Loader
Utility
UTL2 Utility Routine (Series 60 only)
Bulk Media Conversion
Summary Edit Program
FORTRAN Subroutine Libraries
DATANET 355/6600 Relocatable Loader
Service Routines
Debug and Trace Routines

~SS General InformR~ion
TSS Terminal/Batch Interface
TSS System Prog:rrL 1er' s Reference

Manual
Time Sharing BASIC
FORTRAN
Time Sharing Text Editor

Remote Terminal Supervisor (GRTS)
Network Processing Supervisor (NPS)
RNP/FNP Interface

Transaction Processing System User's
Guide

System Console Messages

Control Cards and Abort Codes
FORTRAN Pocket Guide

vi

ORDER
NO.

DD32

DDlO
DD12
DC91
DDll
DD24
DD20
DD35
DD42
DD43

DD22
DD21

DD17
DD16
DD02
DD18

DD40
DD48
DB92

DD41

DD13

DD04
DD82

DD25

Section I

Section II

Section III

CONTENTS

Introduction. • • •

Functional Concepts •
General Description of COBOL •
COBOL Functional Concepts ••
Record Ordering.

Sorting • • •
Merging • • • •

Report Writing •
· Table Handling • . • • • •

Table Definition. • • •••
Initial Values of Tables ••
Reference to Table Items.
Subscripting •••••••
Indexing •••••••••.

Mass Storage • • • • • • • • • • . • . .
Access and Processing Techniques ••.
Sequential Access with Sequential Processing .•
Random Access with Sequential Processing ••

Segmentation • • • • • • • . • • • .
Terminology • • • • • . • . •
Program Segments. • • • • • •
Fixed Portion • • • •
Independent Segments ••••••.

Modularization • • • • •
Using a COBOL Library ••
Transaction Processing •

Transaction Processing System •
Transaction Processing Applications Programs ••

Language Concepts • • • •
Language Relationships •
User-Created Symbols • •

Words • • • • • • • • • • •
Data-Names • • • •
Condition-Names.
Procedure-Names ••
Mnemonic-Names •

Literals •••••••
Nonnumeric Literals.
Numeric Literals ••

PICTURE Character-Strings
Other COBOL Symbols •••

Figurative Constants •••

vii

Page

1-1

2-1
2-1
2-1
2-3
2-4
2-4
2-5
2-6
2-6
2-7
2-8
2-8
2-9
2-11
2-11
2-11
2-12
2-13
2-13
2-13
2-14
2-14
2-15
2-15
2-16
2-16
2-16

3-1
3-1
3-1
3-2
3-2
3-2
3-2
3-3
3-3
3-3
3-3
3-3
3-4
3-4

0025

Section III (cont)

Section IV

CONTENTS (cont)

Special Registers
Tally Register
Line-Counter
Page-Counter •

Editing Symbols •••
Punctuation Symbols • •
Relation Symbols •••••••.
Arithmetic Operation Symbols ••
Reserved Words ••••••••

Concept of Computer-Independent Data Description •
Physical Aspects of a File •••
Conceptual Characteristics of a File ••
Record Concepts • • • • • • •
Concept of Levels • • • • • .
Concept of Classes of Data.
Algebraic Signs . • • • •
Standard Alignment Rules.

Uniqueness of Reference ••
Qualification
Subscripting.
Indexing. . • • • . . • . •
Identifier. • • . . .••.••.
Restrictions on Qualification, Subscripting,

and Indexing • • . • • • . • . .
Reference Format • . . . • • . . .

Reference Format Representation .
Sequence Numbers • • • • . .
Continuation of Lines•
Blank Lines. • • • • • . . • • •••

Division, Section, and Paragraph Formats ••
Division Header. • • • • . . •..•••
Section Header • • • . . • . •
Paragraph Header, Paragraph-Name, and

Paragraph • • • •
Data Division Entries •
Declaratives ••.•..
Comment Lines • . • • •

Format Conventions Used in this Manual .
Definition of a General Format ..
Words • • • •
Periods • • • • • • •
Level-Numbers •
Brackets and Braces •
The Ellipsis (•••) • •
Format Punctuation. •
Special Characters ••
Shading • • • • • • • • • •
Deltas ••••••

Identification Division •
Description of the Identification Division

Organization of the Identification Division
Structure of the Identification Division ••

PROGRAM-ID Paragraph •
AUTHOR Paragraph • • • . • • • • • . • •
INSTALLATION Paragraph •
DATE-WRITTEN Paragraph • •
DATE-COMPILED Paragraph. •
SECURITY Paragraph • • • • • .
REMARKS Paragraph. • • •

viii

. . .

Page

3-5
3-5
3-5
3-5
3-6
3-6
3-7
3-7
3-7
3-7
3-7
3-8
3-8
3-8
3-9
3-10

·3-10
3-11
3-11
3-12
3-12
3-13

3-14
3-14
3-14
3-15
3-15
3-15
3-16
3-16
3-16

3-16
3-17
3-17
3-18
3-19
3~19

3-19
3-20
3-20
3-20
3-20
3-21
3-21
3-21
3-21

4-1
4-1
4-1
4-1
4-3
4-4
4-5
·1-6
4-7
4-8
4-9

DD25

Section V

Section VI

CONTENTS (cont)

Environment Division. • • • • • • • • • • • • • •
Description of the Environment Division. • • •

Organization of the Environment Division ••••
Structure of the Environment Division

Configuration Section in the Environment Division.
SOURCE-COMPUTER Paragraph • • • • • • • • • • .
OBJECT-COMPUTER Paragraph • • • • • • • • • • •
SPECIAL-NAMES Paragraph • • • • • • • • . • • .

Input-Output Section in the Environment Division •
FILE-CONTROL Paragraph. • • • • • .
I-0-CONTROL Paragraph • • ·• • •

Data Division . • • • • • • • • • • • •
Description of the Data Division • •

Organization of the Data Division • •
Structure of the Data Division. • •••

Structure of a Record Description ••
File Section in the Data Division ••
Working-Storage Section in the Data Division

Noncontiguous Working-Storage • • •
Working-Storage Records • • • • • • . . •

Report Section in the Data Division ••.••
File Description - Complete Entry Skeleton ••.
Sort-Merge File Description - Complete Entry
Skeleton

Report Description - Complete Entry Skeleton ••
Data Description - Complete Entry Skeleton. • •
Report Group Description - Complete Entry
Skeleton . • • • • • • • . • •

Data Division Clause Descriptions ••
BLANK WHEN ZERO . . • • .
BLOCK CONTAINS. • • • • • • ••••
CODE. • . • • • • • • • • • •
COLUMN NUMBER • • • •
CONTROL . • . • • • • •
COPY. • • • • • • • • •
data-name/FILLER.
DATA RECORDS •••
GROUP INDICATE ••
JUSTIFIED • •
LABEL RECORDS
level-number. •
LINE NUMBER
NEXT GROUP. •
OCCURS. • •
PAGE LIMIT •.•
PICTURE • •
RECORD CONTAINS •
RECORDING MODE.
REDEFINES •
RENAMES
REPORT. • •
RESET •
SOURCE, SUM, VALUE ••
SYNCHRONIZED.
TYPE.
USAGE
VALUE
VALUE OF.

ix

Page

5-1
5-1
5-1
5-2
5-2
5-3
5-5
5-8
5-16
5-17
5-23

6-1
6-1
6-1
6-1
6-2
6-2
6-3
6-3
6-4
6-4
6-6

6-8
6-io
6-12

6-16
6-20
6-21
6-22
6-24
6-25
6-26
6-27
6-28
6-29
6-30
6-31
6-32
6-34
6-35
6-37
6-38
6-42
6-46
6-55
6-56
6-57
6-59
6-61
6-62
6-63
6-66
6-68
6-73
6-76
6-79

DD25

Section VII

CONTENTS (cont)

Procedure Division. • • • • • • • • . • •
Description of a Procedure Division.
Declaratives • • • • • • • • • •
Procedures • • • • • • • • • • •
Structure of the Procedure Division. •

Procedure Division Header •
Procedure Division Body • •
Procedure Division Segments •

Statements and Sentences • • • • •
Conditional Statements and Sentences ••
Compiler~Directing Statements and Sentences • •
Imperative-Statements and Sentences • • • •

Sentence Execution • • • • • • • • • • • •
Conditional Sentence Execution •••••
Compiler-Directing Sentence Execution • •
Imperative Sentence Execution • • • •
Control Relationship Between Procedures

Conditions •••••••••
Simple Conditions ••

Relation Condition •
Sign Condition •••
Class Condition. • • • • •
Condition-Name Condition •
Switch-Status Condition •••

Compound Conditions •••••
Abbreviated Combined Relation Conditions.
Use of the NOT Operator • • • • • • • • • • .. •
Evaluation Rules for Conditions • • ••••

Arithmetic-Expressions • • • • • • •
Arithmetic Operators •••••••
Formation and Evaluation Rules for

Arithmetic-Expressions ••••••
Common Options in Statement Formats.

ROUNDED Option. ~ • • • • • •
SIZE ERROR Option • •
CORRESPONDING Option. • • • •
Arithmetic Statements ••••••
Overlapping Operands. • •••.
Multiple Results in Arithmetic Statements •

Categories of Verbs ••••••. • ••••••
Specific Statement Formats • • • •

ACCEPT •• ·• • • • • •••
ADD • • • • • • • • • • • • • • •
ALTER • • • • • • • • •
CALL. • • • • • • • •
CLOSE • • • • • • • • • •
COMPUTE • • • •. • • • • • • • •
COPY. • • • • • • • • • •
DISPLAY • • • • • • • •
DIVIDE. • • • • •
ENTER • •
EXAMINE
EXIT. • • •
GENERATE.
GO TO ••
IF. • • • .
INITIATE ••
MERGE • • •
MOVE ••••
MULTIPLY ••

x

Page

7-1
7-1
7-1
7-1
7-2
7-2
7-2
7-3
7-3
7-4
7-4
7-5
7-5
7-6
7-6
7-6
7-7
7-7
7-7
7-8
7-9
7-10
7-10
7-10
7-11
7-13
7-14
7-14
7-14
7-14

7-15
7-16
7-16
7-17
7-17
7-18
7-19
7-19
7-19
7-20
7-21
7-25
7-27
7-28
7-30
7-34
7-35
7-37
7-41
7-44
7-53
7-55
7-57
7-59
7-61
7-62
7-63
7-67
7-71

DD25

)ection VII (cont)

)ection VIII

l\ppendix A

rndex

CONTENTS (cont)

NOTE.
OPEN.
PERFORM
READ.
RELEASE
RETURN.
SEARCH.
SEEK.
SET
SORT.
STOP.
SUBTRACT.
TERMINATE
USE
WRITE

The COBOL Library
Description of the COBOL Library
COPY Clause.
COPY Statement

Reserved Words.

xi

Page

7-73
7-74
7-76
7-84
7-87
7-88
7-89
7-93
7-94
7-96
7-100
7-101
7-103
7-104
7-107

8-1
8-1
8-1
8-5

A-1

i-1

DD25

SECTION I

INTRODUCTION

COBOL is an acronym for the phrase common Business Oriented Language. The
COBOL system, which includes a compiler (Or language processor) in- addition to
the COBOL language, is used to state all the facets of a business-oriented
problem and to convert the statements into a form usable by a computer. The
following sections of this manual describe the COBOL language. The COBOL
compiler is not described since the purpose of this manual is to give the user
an insight into using the language to state the problem most efficiently. A
description of the components of the compiler or how the compiler converts the
stat(nt of the problem into the ones and zeros a computer uses is not germane
to u~ing the COBOL language. This mantial, therefore, is for those who understand
business-oriented problems and the concepts of data processing.

A business-oriented data processing problem can be broken down into four
distinct groups of logically related information. •rhe first is the
identification of the problem such as, is it an inventory control problem, a
personnel accounting problem, a payroll problem, or a billing problem? Also
included in this group is information such as the assignment to solve the
problem, when, and where. The second group of logically related information is
the data processing environment in which the problem is to be solved. That is,
what computer will be used to compile the program and run the job? What
peripheral equipment is necessary to run the job? What other programs (or
software) are necessary? The information in this group is also useful when a
program has been written for one computer environment and it is desired to run
it in another computer environment. The third group of logically related
information is that in which the data to be processed and the processed data is
descr~bed. Each file, both input and output, is described in terms of its
records. Each unique type of record in a file is described in terms of its
unique data items. In addition to this, the organization of the files must be
described and the processing mode to be used must be stated. These three groups
of logically related information; the identification of the problem, .the
.information related to the data processing environment, and the description of
the data, can be considered as the problem statement. The fourth group of
logically related information can be considered as the procedure(s) by which the
data is to be processed to solve the problem. In this group of information, the
user states in a step-by-step manner exactly what is to be done to the data to
produce new or additional data.

The COBOL language is structured to accommodate the four groups of
logically related information in four named divisions. These divisions are the
Identification Division, the Environment Division, the Data Division, and the
Procedure Division. Every COBOL program contains these four divisions in the
above order. The Identification Division is used to identify by name the source
program (that which the user writes) and the outputs of a compilation. Other
information that can be included in the Identification Division is the name of
the programmer, the name of the installation at which the program was written,
the date the program was written, the date of compilation, and any other desired

1-1 DD25

information such as a brief statement of the purpose of the program. The
Environment Division is that part of the program in which the computer(s) to be
used for compiling and running the program is described. In the Environment
Division, names may be -assigned to peripheral equipment and the features of the
files directly related to the hardware may be described. In the Data Division,
the files of data the program processes or creates and the unique individual
records of these files are described. Data is written according to a standard
data format rather than an equipment-oriented format. In the Procedure Division,
a step-by-step logical process is written to instruct the computer to process
the. input d·ata.

In the Identification Division, the problem is identified by name, which
may or may not reflect the type of problem. For instance, the problem may be
named INVCON (for Inventory Control) but the type of inventory control problem
may be a combination of updating a master inventory file and producing records
from which new parts can be ordered. COBOL, being a business problem oriented
language, incorporates features that make it possible to accomplish a particular
job without programming the job in detail. The COBOL language allows the user to
perform arithmetic calculations, edit data, sort data, m@tge d~#~j(and produce
reports. A single COBOL program can perform one or any combination of these
functions.

1-2 DD25

SECTION II

FUNCTIONAL CONCEPTS

GENERAL DESCRIPTION OF COBOL

COBOL is a programming language used throughout the world for programming
business data processing applications. The COBOL language was developed by a
group of computer users and manufacturers, and first documentation was
distributed in April, 1960. Since then it has undergone many changes and
extensions resulting from manufacturer experience with COBOL implementation and
user experience with COBOL programming for computers of many· sizes and
configurations. The improvements are embodied in this version of the language
termed COBOL-68.

COBOL allows computers to be programmed in a language that is similar to
the English language. English paragraphs, sentences, and phrases are written,
following the conventions of a standard reference format, to describe the data
to be processed and to specify the required procedures. The resulting text is
called a COBOL 'source program'. ·

The source program text consists of lines containing a maximum of 80
characters and is often keypunched on 80-column cards. The source program is
submitted as input to the computer under the control of a special program known

. as a compiler. As output, the compiler produces an object program on punched
cards, magnetic tape, or other suitable storage media. The object program is the
actual sequence of machine instructions required to accomplish the functions
specified in the source program. In addition, the compiler produces an edited
listing, which includes an annotated printout of the source program in the
reference format. Another important function of the compiler is to analyze the
source program for correct COBOL syntax, and to print error comments for any
syntax errors that are detected. The computer's operation under control of the
compiler is called compilation.

COBOL FUNCTIONAL CONCEPTS

The Procedure Division in COBOL corresponds to the overall program in some
other programming languages. In COBOL, however, the Data Division also plays a
central role. ProGedural statements are formed by combining COBOL reserved
words, literals, and data-names.

The COBOL object program typically processes one or
records, and the user exercises considerable control over
format of each record. A record can contain a few or many
data; the respective items within a record may have quite
may be related to each other. in complex ways. A file
distinct record types.

2-1

more files of data
the actual physical
individual items of

different formats, and
can contain several

DD25

In the File Section of the Data Division, the user provides a description
of each file, including:

• The types of data records in the file.

• The various data items of which each record is composed.

• The detailed format of each item.

The user assigns a name (data-name) to each file, record, and data item, to
permit references elsewhere in the source program.

The concept of records is extended to working-storage data items that do
not belong to files. Records in working-storage are described in exactly the
same manner as records belonging to files, .and can have equal complexity. It is
also possible to describe independent Working-St.crag<= Section data items that
are not structured into records.

In the Procedure Division, many different types of statements may be
utilized, to accomplish such functions as the following:

• Reading a record from an input file.

• Writing a record on an output file.

• Moving data to or from the current record of an input or output file,
or to or from a working-storage data item. The unit of data moved can
be the entire c9ntents of a record or the contents of a data item
within a record.

• Using the ~alues of various items, calculating a new value
arithmetically through addition, subtraction, multiplication, or
division, and storing the new value in a specified item.

• Comparing the values of data items, and executing alternative sets of
statements depending upon the outcome of the comparison.

• Transferring control, so that execution continues in another
the program. A transfer of control may include provision for
to be returned when a specified point is reached, or the
provision may be omitted.

• Generating a line (or set of lines) for a report.

part of
control
return

• Sorting @\#~':•'.tt'i*P.9 a collection of records. Procedural statements may
present the records one by one as sorting q~ ni~r-<Jiµ:gy takes place or an
entire file may be submitted, with input housekeeping implicitly
provided. Similarly, an output file may be produced implicitly, or
procedural statements may receive the records one by one as their
final order is established.

2-2 DD25

• Obtaining special information, such as current date and time of day,
from GCOS; or accomplishing low-volume data transmission.

• Beginning and concluding processing of each file.

• Beginning and concluding presentation of each report.

• Setting procedural switches; in effect, changing the destinations of
GO TO statements during execution of the object program.

• ',~¢·¢~1?~~n9I'~n.•.··£#I?ut · trans aQ~•:t;.qlj•••••·.•~t9m•.••••a.•.,••··t'~ro9te'•••·•·4~vtee•.···• ·t1ie:tw*;t~l.J

• •• ,.~J¥9rt',~~ij~~($~;~~m. ll!Ei~~Mes on cme or more·

• Manipulating an item character by character, changing or counting
certain character values.

• Concluding execution of the object program.

• Causing user-supplied procedures to
implementation of certain otherwise
reporting functions.

receive control during
automatic input-output

• Enhancing source program documentation with explanatory notes.

the
and

• Accomplishing special functions that are not defined in the COBOL
language specifications but are available in other languages. For
example, transferring control to another separately compiled or
assembled program, or executing an arbitrary sequence of GMAP
instructions.

• Explicitly defining control exit points,
convenience.

enhancing programming

In addition to the preceding Procedure Division functions, COBOL contains
sorting, :m@:g§il,pg:!t report writing, table handling, mass storage, and segmentation
features.

RECORD ORDERING

The ability to arrange records into a particular order
common requirement of a data processing user. The sort and
COBOL provide facilities to meet this requirement. ·

or sequence is a
ltl(:lrge features of

While both of these features are concerned with record ordering, the
functions and capabilities of the SORT e.@•Ma:R<.;g statements are different in a
number of respects. The sort will produce an ordered file from one or more files
t:hat:.1t1ay. b~ .. 70.ml'~et~~y l1I1C>rder:~, .~n. t:.~.: .~or.~ ~eq1lE;nce. iJ!:h~ merg~,. ·. h?W'~'V~pL <'''7

procedure, but both the SORT Ci!;bd~ll.GSstatements are provided with optional
output procedures.

2-3 DD25

Sorting

Sorting constitutes a significant percentage of the workload in a business
data processing operation. Therefore, an efficient sort program is required in
any business software system.

In many sort functions, it is necessary to apply special processing to the
contents of a sort file. This processing may consist of adding, deleting,
creating, altering, editing, or other modification of the individual records in
the file. It may be necessary to apply the special processing before or after
the records are reordered by the sort, or the processing may possibly be
required in both cases. The COBOL sort feature allows the user to express these
procedures in the COBOL language and to specify at which point, before or after
the sort, they are to be executed. A COBOL program may contain any number of
sorts, and each of them may have independent special procedures. The sort
feature automatically causes these procedures to be executed at the specified
point in such a way that extra passes over the sort file are not required.

The normal organization of a COBOL program containing a sort is such that
the input file is read and operated upon by an input procedure. Within this
input procedure, the RELEASE statement is used to create the sort file. That is,
at the conclusion of the input procedure, the sort file is composed of those
records that have been output by using the RELEASE statement rather than the
WRITE statement, and this file is available only to the SORT statement. The
execution of the SORT statement arranges the entire set of records in the sort
file according to the keys specified in the SORT statement. The sorted records
are made available from the sort file using the RETURN statement during the
output procedure.

The sort file has no label procedures which the user can control; the rules
for blocking and for allocation of internal storage are peculiar to the SORT
statement. The RELEASE and RETURN statements imply nothing with respect to
buffer areas, blocks, or reels. A sort file, then, may be considered as an
internal file which is created from the input file (RELEASE), processed (SOR1') ,
and then made available to the output file (RETURN). The sort file itself is
referred to and accessed only by the SORT statement.

For additional information concerning the sort process, refer to Section IX
of the COBOL User's Guide.

::::::;::::::::::::::::::::::::::::::::;:::::::::::~::::::::::~::~~~~~~~~:~~~~::::~~:~~~:~~~:;~~~~:~:~:~:::~::::::;::::::·::::;:·:·::: .

2-4

tile contents of two. or more
apply. special Pt'QCe$$i.pg to .. the
consist C>f add.;ing, P,elet;ng,

file.

0025

!lll"ll~11Lifil8!~~~~:. !~6~a~i~:e~£r!~t~~!!~ ;~~~~;;r ai:"···=~~~t!r ~ i~!
,~~~~: ~t9't.~'m~~~~. r,p~~ ~f'tJRN statement implies nothing . 1fiith respect to buffer
··~i~~ff~~/~+<?9*~' op>r~~ls. A merge file; then, may be considered as an internal
#;+~· !f~;i.9b J.$ CX'~~~~.d from input files by combining them {MERGE) as the file is
~~9~ ;;y~ilable (RE'l'URN) to the output file. The merge file itself is referred to

. ~~~ %99~~s~g 9t1J.¥.9¥ the MERGE statement, A merge file description is considered
~i~ B ~"#~~7:1t~t' .. ~,i';l{~ o; Lile description. That is, a merge file, like any file,

··::±.s:.u:a s:et•.•····•of'••• .. l;eoord:s··· · ·

;,~l~~iii~~~~;[;~~~~.1~~T:!:on concerning the merge process, refer to Section

REPORT WRITING

The production of reports has always placed a heavy burden in terms of
machine time and programmer time on the business data processing user. The
Report Writer feature is available to specify and pro3uce reports quickly and
accurately in COBOL. The Report Writer allows the user to describe reports
pictorially in the Data Division, thereby minimizing the amount of Procedure
Division coding necessary. In the Report Writer feature, the physical aspects of
the report format must be distinguished from the conceptual characteristics of
the data in the report.

When describing the physical aspects of the report, consideration must
given to the hardware device on which the report is to be written and to
structure and format of the individual page. Facilities for specifying
information are included in the Report Writer entries.

be
the

this

The concept of a hierarchy of levels is used in defining the logical
organization of the report. Each report is divided into report groups which in
turn are divided into sequences of items. The use of a level structure permits
the user to refer to :._ entire report-name, major or minor report groups,
elementary items within report groups, etc.

In creating the report, the user must define necessary report groups. A
report. group may be of any of the following; HEADING group, FOOTING group,
CONTROL group, or DETAIL PRINT group. A report group may extend over several
actual lines on the page.

The report description entry contains information pertinent to the overall
format of the named report and uses the level indicator RD. The characteristics
of the report page are outlined by describing the number of physical lines per
page and specifying the limits for presentation of headings, footings, and
detail lines. Data items that act as format controls for a report are specified
in the RD entry. Each report associated with an output file must be defined by
an RD entry.

A report group is a set of data that is composed of several print lines
consisting of many data items or one print line containing only one data item. A
report group description entry contains, in addition to other information, a
level-number and a TYPE description. The level-number indicates the relative
position in the data hierarchy of the report groups, and the TYPE clause
describes the purpose of the report group in terms of its presentation within
the report.

DD25

Specifically, the report group description entry defines the
characteristics for a report group, whether this group is a line, a
lines, or an elementary item. The relative placement of items within
group, the level of a particular report group within the hierarchy
groups, the format of all items, and any control factors associated
group are defined in this entry.

format and
series of

a report
of report
with the

Schematically, a report group is a line or a series of lines. The length of
a line is determined by the compiler from environmental specifications.
Initially, the lines consist of all spaces. Within a report, the order of the
indivldual report groups is not significant. Within a report group, the user
describes the elements consecutively from left to right and then from top to
bottom. The description of a report group is analogous to the description of a
data record except that in the report group spaces are assumed where no specific
entry is indicated for presentation, while in the data record every character
position must be explicitly defined, regardless of its data content. Report
Writing is discussed in more detail in Section VIII of the COBOL User's Guide.

TABLE HANDLING

Tables of data are common components of business data processing problems.
Although the items that make up a table could be des~ribed as contiguous data
items, there are two reasons why this approach is not satisfactory. First, from
a documentation standpoint, the underlying homogeneity of the items would not be
readily apparent; and second, it would be difficult to make an individual
element of such a table available if a decision is required to make one of these
elements available at object program execution.

Tables composed of contiguous data items are defined in COBOL by including
the OCCURS clause in their data description entries. This clause specifies that
the item is to be repeated as many times as stated. The item is considered to be
a table element and its name and description apply to each repetition or
occurrence. Since each occurrence of a table element· does not have a unique
data-name assigned to it, reference to a desired occurrence may be made only by
specifying the data-name of the table element together with the occurrence
number of the desired table element. The occurrence number is known as a
subscript, and the technique of specifying individual table elements is called
subscripting.

The number of occurrences of a table element may be specified as fixed or
variable. If the occurrence number is given in the source program as fixed, the
actual data that is entered into the table at object program execution may still
be composed of a variable number of occurrences of the table elements. 1rhus, not
every table element must contain valid data.

To manipulate specific items and provide table searching, a
called indexing is also available. Both subscripting and indexing are
below.

Table Definition

technique
described

To define a one-dimensional table, an OCCURS clause is used as part of the
data description of the table element, but the OCCURS clause must not appear in
the descr.iption of group items which contain the table e .. lement. Example 1 shows
a.one-dimensional table defined by the item TABLE-ELEMENY

\

2-6 DD25

Example 1: ·

02 TABLE-1.

03 TA.BLE--ELEMENT; OCCURS 20 'l'IMES.

04 DOG;

04 FOX;

In the preceding exa1nple, the complete set of occurrences of TABLE-ELEMENT
has been assigned the name TABLE-1. However, it is not necessary to assign a
group name to the table unless it is desired to refer to the complete table as a
group item.

Defining a one-dimensional table within each occurrence of an element of
another one-dimensional table produces a two-dimensional table. To define a
two-dimensional table, then, an OCCURS clause must appear in the data
description 'f the element of the table, and in the description of only one
group item which contains that element. Thus, in Example 2 below, DOG is an
elemE::-, of a two-dimensional table; it occurs five times within each element of
the item BAKER which itself occurs 20 times. BAKER is an element of a
one-dimensional table.

Example 2:

02 BAKER; OCCURS 20 TIMES; •••

03 CHARLIE; •••

03 DOG; OCCURS 5 TIMES; .••

In the general case, to define an n-dimensional table, the OCCURS clause
should appear in the data description of the element of the table and in the
descriptions of (n-1) group items that contain the element. In COBOL, tables of
up to three dimensions are permitted; n cannot exceed three in the foregoing
definition.

Initial Values of Tables

In the Working-Storage Section, initial values of elements within tables
are specified in one of the following ways:

• The table may be described as a record by a set of contiguous data
description entries, each of which specifies the VALUE of an element,
or part of an element, of the table. In defining the record and its
elements, any data description clause (USAGE, PICTURE, etc.) may be
used to complete the definition where required. This form is required
when the elements of the table need separate handling due to
synchronization, usage, etc. The hierarchical structure of the table
is then shown by using the REDEFINES entry and its associated
subordinate entries. The subordinate entries (following the REDEFINES
entry), which are repeated due to OCCURS clauses, must not contain
VALUE clauses.

2-7 DD25

• When the elements of the table do not require separate
VALUE of the entire table may be given in the entry
entire table. The lower level entries will show Lhe
structure of the table; lower level entries 111ust not.
clauses.

Reference to Table Items

handling, the
defining the
hierarchical

contajn VJ\Ltrn

Whenever the user refers to a table element or, if the table element is a
group item, to the items within it, or to a condition-name associated with the
element or with items contained within the element, the reference must indicate
which occurrence of the element is intended. For access to a one-dimensional
table, the occurrence number of the desired element provides complete
information. For tables of more than one dimension, an occurrence number must be
supplied for each dimension of the table. In Example 2 then, a reference to the
4th BAKER or the 4th CHARLIE would be complete, whereas a reference to the 4th
DOG would not. To refer to DOG, which is an element of a t.·10-dimensional table,
the user must refer to, for example, the 4th DOG in the Stli. Hl\.KER.

Subscripting

One method by which occurrence numbers may be specified is to append one or
more subscripts to the data-name. A subscript is an integer whose value
specifies the occurrence number of an element within the group item that has the
next lower level-number. The subscript can be represented either by a literal
which is an integer or by a data-name which is defined elsewhere as a numeric
elementary item with no character positions to the right of the assumed decimal
point. In either case, the subscript, enclosed in parentheses, is written
immediately following the name of the table element. A table element must
include as many subscripts as there are dimensions in the table whose element is
being referred to. That is, there must be a subscript for each OCCURS clause in
the hierarchy containing the data-name, including the data-name itself.

Example 3:

02 Bl\KER; OCCURS 20 ·TIMES; ...

0 3 CHARLIE; •••

03 DOG; OCCURS 5 TIMES

04 EASY; •••

88 .MAX; VALUE IS •••

04 FOX;

05 GEORGE; OCCURS 10 TIMES; •.•

06 Hl\RRY; ·• ••

06 JIM; •••

In Example 3, references to BAKER and CHARLIL require only one subscript;
references to DOG, EASY, MAX, and FOX require two; and references to GEORGE,
HARRY, and JIM require three.

2-8 DD25

When more than one subscript is required, the subscripts are written in the
order corresponding to the occurrence numbers in successively less inclusive
dimensions of the data organization. If a multidimensional table is thought of
as a series of nested tables and the most inclusive or outermost table in the
nest is considered to be the major table with the innermost or least inclusive
table being the minor table, then the subscripts are written from left to right
in the order major, intermediate, and minor. Thus, in Example 3, a refeL :nee to
HARRY (18 2 7) means the HARRY in the 7th GEORGE, in the 2nd DOG, ill the 18th
BAKER.

A reference to an item must not be subscripted if the item is not a table
element or an item or condition-name within a table element.

The lowest permissible subscript value is one (1). The highest permissible
subscript value in any particular case is the maximum number of occurrences of
the item as specified in the OCCURS clause.

When a data-name is used as a subscript, it may be used to refer to items
within many different tables. These tables need not have elements of the same
size. The data-name may also appear as the only subscript with one item and as
one of two or thre~ subscripts with another item. It is also permissible to mix
literal and data-name subscripts; for example, HARRY (12 NEWKEY 2).

Indexing

Another method of referring to items in a table is indexing. To use this
technique, one or more index-names are assigned to an item whose data
descriotion contains an OCCURS clause. The INDEXED BY phrase, by which the
index-i1ame is identified and associated with its table, is an optional part of
the OCCURS clause. There is no separate entry to describe the index-name since
its definition is provided by the compiler and it is not considered data per se.
At object program execution, the contents of the index-name will correspond to
an occurrence number for that specific dimension of the table to which the
index-name was assigned. The initial value of an index-name at object program
execution is not determinable and the index-name must be initialized by the SET
statement before use.

Example 4:

02 BAKER; OCCURS 20 TIM.ES; INDEXED BY IX-1; •.•

03 DOG; OCCURS 5 TIMES; INDEXED BY IX-2; .••

05 GEORGE; OCCURS 10 TIM.ES; INDEXED BY IX-3; PIC XXXX; ...

In Example 4, references to BAKER require one subscript or the one
IX-1; references to DOG require two subscripts or the two indexes I.X-1,
and references to GEORGE require three subscripts or the three indexes
Ix-2, IX~3.

2-9

index,
IX-2;
IX-1,

DD25

An index-name may be used as an operand only by the SET, SEARCH, or PERFORM
statements, or by the word IF in a relation condition. An index-name cannot be
described as data within a COBOL program. Data items described by the USAGE IS
INDEX clause permit storage of the values of index-names as data without
conversion. Such data items are called index data items.

When a reference is made to a table element, or to an item within a table
element, and the name of the item is followed. by its related index-name(s) in
parentheses, then each occurrence number required to complete the reference will
be obtained from the respective index-name. The index-name thus acts as a
subscript whose value is used in any table reference that specifies indexing.

When a reference requires more than one occur.Lenee number for completeness,
a data-name subscript must not be used to indicate one occurrence number and an
index-name to indicate another. Therefore, if indexing is to be used, each
OCCURS clause within the hierarchy (each dimension of the table) must contain an
INDEXED BY phrase. The user may, however, mix literals and index-names within
one reference, just as literals and data-name subscripts may be mixed.

When a statement that refers to an indexed table element is executed, the
value of the index-name associated with the table element must not correspond to
a value less than 1 nor to a value greater than the highest permissible
subscript value for the table element.

The use of subscripting in a reference to a table element, or to an item
within a table element, will not cause alteration of any index-names associated
with that table.

Relative indexing is an additional option for making references to a table
element br to an item within a table element. When the name of the table element
is followed by an index in the form (index-name + integer-!), the occurrence
number required to complete the reference will be the same as if integer-1 wore
added to the occurrence number to which the current setting of the index-name
corresponds at object program execution. Similarly, when the form (index-name
integer-2) is used, the occurrence number obtained will be the same as if
integer-2 were subtracted from the occurrence number to which the current
setting of the index-name corresponds.

Relative indexing will not cause the object program to altc the value of
the index-name.

A reference to an item must not be indexed by an index-name that is not
associated (using the INDEXED BY phrase) with the table of which this item is an
element.

Data that has been arranged in the form of a table is very often searched.
In COBOL, the SEARCH statement provides facilities, through its two options, for
producing serial and nonserial (i.e., binary} searches. In the SEARCH statem"nt,
the user may vary an associated index-name or an associated data-name. This
statement also provides facilities for executing imperative-statements when
certain conditions are true and an AT END phrase is included.

For additional information concerning table handling, refer to Section XIII
of the COBOL User's Guide.

2-10 DD25

MASS STORAGE

The operational characteristics and the processing requirements of mass
storage devices differ significantly from those of magnetic tape,, punched paper
tape, and punched cards. Tape and card files are normally organized in a
sequential manner; the Data and Procedure Divisions of COBOL, prior to the
inclusion of the mass storage facility, reflected these characteristics.

Mass storage media can be used to store sequentially organized files
this technique has been provided; more significantly, mass storage devices
been designed to provide nonsequential storage and access capabilities.

and
have

The mass storage feature of COBOL provides for the effective use of mass
storage devices. Mass storage phrases are included in the Environment Division
to describe the characteristics of mass storage files. The Procedure Division
statement, SEEK, together with extensions to the OPEN, READ, WRITE, and CLOSE
statements, provide facilities for efficiently processing mass storage files.

Access and Processing Techniques

The usual technique for applications using magnetic tape is sequential
access to the data file and sequential processing of data records. This
sequential-sequential technique is available for mass storage applications.
Another technique for mass storage applications is called random access and
sequential processing or the random-sequential technique. Either of these
techniques may be specified by the user as the manner in which a particular mass
storage file is to be processed.

A Mass Storage Control System provides the mechanism for control of these
techniques.

Sequential Access with Sequential Processing

Although the sequential-access technique is similar in concept to the
technique commonly used in processing magnetic tape files, a substantial
difference exists between the physical environment of magnetic tape storage and
the physical environment of mass storage.

In processing magnetic tape files, the execution of a READ statement
implies the possibility of physical movement of the tape reel and proper
positioning of the reel for subsequent READ statement executions. This
positioning is done without regard for execution of WRITE statements that
reproduce the updated input record onto a physically different output file. In
processing mass storage files, READ statements may refer to the same physical
file as the associated WRITE statements. That is, mass storage files are usually
used for input and output at the same time. The usual file maintenance method
is to read a record, process the record, and return it to its previous location
by means of a WRITE statement. Thus, once a record is located and read from a
mass storage file, the record location may be retained and, when the record is
returned to the file by the execution of a WRITE statement, the execution time
for the WRITE statement may be reduced.

2-11 DD25

An ACTUAL KEY phrase, which specifies the actual hardware location of a
specific mass storage record, is not required for the sequential-sequential
technique. However, if the ACTUAL KEY phrase is specified, varying the contents
of the data item specified in the ACTUAL KEY phrase (actual key) will not result
in any variation in processing order. In the sequential-sequential mode, the
actual key is updated automatically by the Mass Storage Control System to
reflect the location of the mass storage record currently being processed.
Between the execution of the READ and WRITE statements for a particular file,
the contents of the actual key are static.

The execution of a READ statement followed logically by the execution of a
WRITE statement for the same input-output file results in an automatic updating
of the actual key immediately after the execution of the WRITE statement.
SiMilarly, the execution of a WRITE statement followed logically by the
execution of another WRITE statement for the same file results in an automatic
updating of the actual key after the execution of each WRITE statement. However,
the execution of a READ statement followed logically by the execution of another
READ statement from the same file, without the intervening execution of a WRITE
statement, results in the automatic updating of the actual key only immediately
prior to the execution of the second READ statement. Following the execution of
a WRITE statement, the contents of the actual key reflect the actual location of
the next mass storage record capable of being processed. In terms of COBOL
logic, this is the location of the current mass storage record. Since the
automatic updating of the contents of the actual key is the function of the Hass
Storage Control System and since the ACTUAL KEY phrase is never referred to or
required by the Mass Storage Control System, any changes the user makes to the
actual key do not affect the processing of the mass storage file.

The imperative-statement in the AT END phrase associated with the next READ
statement in order of execution is executed when the logical end of the mass
storage file is detected. For WRITE statements, the detection of the logical end
of a mass storage file before the execution of the CLOSE statement causes the
contents of the actual key to reflect a location outside the environmental
limits of the file. Since this value represents an erroneous location in the
file, the INVALID KEY phrase associated with a particular WRITE statement is
executed when that WRITE statement is executed.

Random Access with Sequential Processing

In the sequential-sequential technique, the data records in a mass storage
file are read, processed, and written in an order based on the source program.
The random-sequential technique differs only in that references are made to
records in the file in a random manner. The sequential processing of randomly
accessed records has all of the processing characteristics and file
.characteristics of the sequential-sequential method.

To permit direct access to any data record in a file, the user must specify
a key to the precise identification of the particular record desired. Wbts
Imlln:ff:~:£:;:9@t;:~en::Mntli:tB:::a~::':·,~1?8:9%¥~@s:. ~§ :~·•···., .• ·.·~•#nw+~±i~~9J..~·;¥?f1 •·•e;f1~rr•.· r'·.···j;~.~e<l~t"'•., ,·.·,.<•w$~g2
H±.f.llifflJD@:::::: Since, in this technique, the control of an actual key is the
re~~6risibility of the user, there are no implicit updating functions for an
actual key.

2-12 DD25

In some computer systems, the introduction of the random-access approach to
a mass storage file requires the definition of an input-output statement (SEEK)
to operate in conjunction with the READ and WRITE statements. Since locating
records is always necessary in the random-sequential technique, the function of
the SEEK statement is performed implicitly by a READ or WRITE statement when the
SEEK statement is not specified. The contents of the actual key are used by the
Mass Storage Control System as the desired record's location identifier at the
time the implicit SEEK statement is executed.

The SEEK statement, then, locates a record for subsequent reading or
writing. On the oomputer it is not possible to separate physical seek times from
the operations of reading or writing. Therefore, the SEEK statement is treated
as a comment and no overlapping of other procedure.s is possible by its use prior
to a READ or WRITE.

If the user has specified random access for a mass storage file, there is
no logical end to the file. Thus, the AT END phrase of the READ statement is
meaningless and the INVALID KEY phrase must be specified for both the READ and
WRITE statements. If, during execution of either a READ or a WRITE statement,
the contents of the actual key reflect an actual location outside the
environmental limits for a file (as defined on system file control cards), the
imperative-statement in the INVALID KEY phrase is executed.

For additional information concerning file processing, refer to Section V
of the COBOL User's Guide.

SEG~ENTATION

COBOL segmentation allows the user to communicate with the compiler to
specify object program overlay requirements. Segmentation is concerned only with
the segmentation of procedures. Therefore, only the Environment and Procedure
Divisions are considered when determining segmentation. requirements for an
object program.

Termino~

With the advent of a standard concept of segmentation as an extension to
COBOL, it has become necessary to revise terminology. Previously, .the terms
'segmentation' and 'segments' were used to denote capabilities associated with
the operating system. Where these words are used now, they will apply only to
the standard COBOL concept of segmentation as discussed in this manual. The term
modularization will replace the previous usage of the term segmentation and the
term module will replace the term segment.

Program Segments

The segmentation feature permits the user to subdivide the Procedure
Division of a COBOL object program. All source paragraphs which contain the same
priority-number in their section headers are considered to be one segment at
object program execution. Since priority-numbers can range from 00 through 99,
it is possible to subdivide any object program into a maximum of 100 segments.

2-13 DD25

The Procedure Division for a source program is usually written as a
consecutive group of sections, each of which is composed of a series of closely
related operations that are designed to collectively perform a particular
function. When segmentation is used, the entire Procedure Division must be in
sections. Each section must also be classified (using a priority-number) as
belonging either to the fixed portion or to one of the independent segments of
the object program. Segmentation in no way affects the need for qua1ification of
procedure-names to ensure uniqueness.

Fix~~d Portion

The fixed portion is defined as that part of the object program which is
logically treated as if it were always in ~emory. This portion of the program is
composed of two types of segments: fixed permanent segments and fixed
overlayable segments.

A fixed permanent segment is a segment in the fixed portion which cannot be
overlayed by any other part of the program. A fixed overlayable segment is a
segment in the fixed portion which, although logically treated as if it were
always in memory, can be overlayed by another segment to optimize memory
utilization. A fixed overlayable segment, if called for by the program, ls
always made available in its last used state.

Variation of the number of fixed permanent segments in the fixed portion
can be accomplished by using a special facility called the SEGMEN'I'-LIMIT phra.se
in the OBJECT-COMPUTER paragraph of the Environment Division. Unless the
SEGMENT-LIMIT phrase is used, all segments numbered 00 through 49 are fixed
permanent segments. However, if the user requires fixed overlayable segments,
they a.re numbered from a user-specified value (01 through 49). The user
indicate~ the lowest numbered segment which is to be fixed overlayable in the
SEGlIBNT-LIMIT phras~. Therefore, the more fixed overlayable segments there are,
the fewer fixed permanent segments there can be. Segment 00 is always fixed.

The logical relationship between all segments numbered 00 through 49 is
always the same, regardless of SEGMENT-LIMIT. For .example, an altered GO TO
statement which appears in a segment numbered 27 will remain altered, whether
the segment is fixed permanent or fixed overlayable, until the execution of
another ALTER statement; intervening overlays of the segment will not result in
initialization of the segment. Therefore, COBOL paragraphs numbered 00 through
49 can be written as if all such paragraphs were always fixed in memory, and
subsequent changes in SEG~ENT-LIMIT will have no effect on program logic.

Independent Segments

An independent segment is defined as part of the object program which can
overlay, and can be overlayed by, either a fixed overlayable segment or another
independent segment. An independent segment is effectively in its initial state
each time the segment is made available to the prog~am. Independent segments are
numbered 50 through 99.

For additional information concerning segmentation, refer to Section XV of
the COBOL User's Guide.

2-14 DD25

Modules .iu:e .·. programs that are compiled and tested independently and
7U.g~~ciue~~:ty ~oa:~ed together and executed as a total program. Thus, a user may

·.9:J~p:~g~ t;g bl;~.~k up a large complex program into several parts or module$; write
:.:,~~9~ (JP~ ·(lS <3-. sel?arate S()urce program, and compile and test each module

IIllFZll~i~~i~i:~j:~Zti!~::~~:~;:~:~~~~1;~:~~~~~Ii!~i~ri ·~~~::~e~)e ~~
of COBOL program modularization are:

i)~;~:.~.~$t pi;actical sepaiati9ri of a data pi;Qcessing program into

!(~itl~iji!!li~~11.s~.111~f::t i::::1::m:j\~• 1:::~:::: as separate coooL source
\lll~tJt"~~\i]:i ll~t~::t t:::g::s c::P::e:i::::::e::e a::j::: ::o:::g:::d::~arately •

USING .A. COBOL LIBRARY

called
amount

way
Ref er

as

A COBOL library containing source program text that is available at
compilation may be created. By creating a library file, the user can avoid
lengthy repetitions of data descriptions and/or procedures in programs using
common data descriptions and/or procedures. The effect of the compilation of
library text is the same as if the text were actually written as part of the
source program. The library may contain text for the Environment Division, the
Datc:l l)~.~~si()1;r ~!l~ th7 Pr()?~>dl1l'."7 l)~y~~i()I1· . ';Ph~ · B~~iler . ~s .. directed to the

:.:]:::1@:\?,1;@~:?4t.:@:~~g;::B@ P.+tt¢r¥>9Pt'-d,.p.p, 9# .pt,!~. ¢PlI¥.· .• nP.t;i,pn on·.·.tl\~·<$ COBOL card. The text
is made available by using the COPY clause in the Environment and Data Divisions
and by using the COPY statement in the Procedure Division.

For a description of the COPY function, refer to Section VIII, the COBOL
Library and to Section XIV of the COBOL User.' s Guide.

2-15 DD25

system {TPS) gives a remote terminal user the

2-16

computer. The
in the minute~by-minute

Operating

process
selecting

to process

(TPAPs) are
transactions to
precise needs

user-supplied
be processed
of the user

file system and
submitted to the

from a remote terminal, the TPAP · may
at the terminal and execute the

TPS
be used
further

DD25

SECTION III

LANGUAGE CONCEPTS

LANGUAGE RELATIONSHIPS

The English language is a natural language; that is, it is constantly
changing and its rules describe current usage. COBOL is a mechanical language.
Its rules have been predefined and are rigid, which means that the rules of
COBOL must be changed before the use of COBOL can change.

As a mechanical language, COBOL is described as a higher level language.
This means that COBOL is problem oriented, which has to do with the way data
structures are defined. In lower level mechanical languages, the user must know
the addressing structure of the computer as well as the way the computer
structures data. In COBOL, knowledge of the computer's addressing structure is
not required; data structures are defined according to the rules of.COBOL rather
than to the computer's rules. Because of this, COBOL is said to be a machine
independent language.

Machine independence means that COBOL can be translated into many machine
languages. A machine language is the terminology that a computer can recognize.
The COBOL described in this manual is translated into the Series 60/6000
computer (machine) language.

Any language, natural or mechanical, is concerned with syntax and I
semantics. Syntax is the relationship between the symbols of the· language. The
semantics of a language are the relationships between the symbols of the
.language and their meanings. These relationships (and certain other
considerations) make up the rules of the language. The remainder of this
section describes the semantics of COBOL.

USER-CREATED SYMBOLS

The first part of this section is concerned with user-created COBOL
symbols. Only three types of COBOL symbols can be created; words, literals, and
PICTURE character-strings. All symbols created by the user are called
character-strings. A character-string is defined as a contiguous set of
characters taken from the COBOL character set that forms a word, a literal, or a
PICTURE character-string. A character-string can be as short as one character
in length o·r may have as many as 132 characters. A character is an element of
the COBOL alphabet, which is known as the standard character set. The elements
(characters) of the COBOL alphabet (character set) are:

A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z

o 1 2 3 4 s 6 7 a 9 + - ~ I = $ ' . " () > < and

the blank or space.

2/77 3-1 DD25A

I

There are 51 characters in the character set and only these characters can
be used in character-strings.

Words

A COBOL word is a character-string of from one to 30 characters taken from
the following subset of the COBOL character set:

A through Z

0 through 9

the special character '-' (hyphen)

When a COBOL word is formed, the special character '-' cannot be used as
the £irst or last character of the word. A single COBOL word is often formed
from two or more English language words. For example, COST-ANALYSIS is a single
13-character COBOL word and 6-AT-7-VAC-TUBE is a 15-character COBOL word. COBOL
words are created by the user to name or identify something; COBOL names that
can be created are data-names, condition-names, procedure-names, and
mnemonic-names.

DATA-NAMES

The user creates a data-name to identify by name each data item described
in the Data Division of the program or to identify by name the area that
contains the data referred to in the Procedure Division. A data item can be an
elementary item, a named group of elementary items within a record, or a record.
An identifier is composed of a data-name, followed as required by a combination
of qualifiers, subscripts, and/or indexes to make the identifier reference a
Uhique data item in the program.

CONDITION-NAMES

A condition-name is a word that names one or more of the values a data item
can have when the object program is being executed. A data item that can have
more than one value while the object progra,m is being executed is called a
variable. A conditional variable is a data item whose value, sets of values, or
range of values have names. Condition-names are used in the Procedure Division
in conditional statements; i.e., in statements beginning with the word IF.
Condition-names can be defined in the Data Division in level 88 entries or under
SPECIAL-NAMES in the Environment Division. Each condition-name created by the
user must be unique or be made unique through qualification.

PROCEDURE-NAMES

Procedure-names are words used to name paragraphs or sections in the
Procedure Division of the program. Procedure-names enable the user to make
references from one paragraph or section to another. This facility allows the
user to write a procedure once and then refer to it as often as necessary. When
a procedure-·name is composed of digits such as 00345, a reference to that
procedure-name must contain the leading zeros. That is, 345 is not the same as
00345.

2/77 3-2 DD25A

MNEMONIC-NAMES

A mnemonic-name is a user-created COBOL word that is assigned to special
names. ~~nemonic-names are defined in the SPECIAL-NAMES paragraph of the
Environment Division. The special names are names assigned by the computer
system to certain input-output functions. Mnemonic-names do not have data
descriptions in the Data Division.

Literals

The COBOL symbol type known as a literal is a user-created data item. That
is, a literal is not a reference to data such as a data-name or identifier, but
is the actual data to be operated on. A literal is a constant since its value
never changes. The value of a literal is the characters that compose the
literal. Two types of literals may be created, nonnumeric iiterals and numeric
literals.

NONNUMERIC LITERALS

A nonnumeric literal can be \:.'\'-·~:il~@:;\,\\\~~-~$.. :~~pba@~¢ \·9¥ class alphanumeric
and can be used only as a display Ite'In .. : ,,. 'ifhis .· mearis that . nonnumeric 1i terals
cannot be used in computations; a nonnumeric literal cannot be added to some
data item. A nonnumeric literal is defined as a string of characters in the
Series 60/6000 character ~et, excludin~ the quotation mark character, bounded by
quotation marks. The user cah create a nonnumeric literal that has only one
character or has as many as 132 characters, not counting the. quotation marks
that delimit it.

NUMERIC LITERALS

A numeric literal must be class numeric but, unlike nonnumeric literals, a
numeric literal can be used as a computational item as well as a display item.
To create a numeric literal, only the digits (O through 9), the + sign, the
sign, and the decimal point may be used. No other characters are allowed in the
construction of a numeric literal. When either the + or the - sign is used (only
one of these can be used in each numeric literal), it must be the leftmost

·character of the literal. When neither sign is used, the literal is assumed to
be positive. When the decimal point is used, it can appear in any character
position of the literal except in the rightmost character position. If the
decimal point is not used, the literal is an integer. Numeric literals may
contain up to 18 digits and must contain at least one digit. The signs (+ and -)
and the decimal point are not' counted when applying this rule.

PICTURE Character-Strings

A PICTURE character-string is a special type of user-created COBOL symbol.
The PICTURE character-strings that can be created are described in detail in the
description of the PICTURE. clause in the Data Division.

3-3 DD25

OTHER COBOL SYMBOLS

This paragraph is concerned with COBOL symbols that are used ·by
created by the progranuner. These symbols are Figurative· Constants,
Special Registers, Editing Symbols, Punctuation Symbols, Relatibn
Arithmetic Operation Symbols, and Reserved Words.

but not
Names of

Symbols,

Figurative Constants

A constant is a data item whose value remains fixed. Certain constants have
been assigned fixed data-names, and are called f:igurative co·nstants. A
·figurative constant may be used any place in the source program that a literal
can be used except that wherever a numeric literal is required, the only
figurative constant that can be employed is ZERO (or ZEROS or ZEROES). Although
figurative constants may be specified in place of nonnumeric literals, this does
.not mean that figurative constants are delimited by quotation marks; they are
not. Figurative constants are COBOL-defined symbols and are recognized as such
·by the compiler. Therefore, if a figurative constant is delimited by quotation
•marks, the result is a nonnumeric literal whose value is the word itself and not
'-the value that the word implies. Th.e figurative constants and their meanings
are:

ZERO ZEROS ZEROES: -- --- ----

SPACE SPACES:

1:::11!!:!!·!s!!:11111::11:!!!!!!tll!!!1~1 :

HIGH-VALUE HIGH-VALUES:

LOW-VALUE LOW-VALUES:

Q.UOTE QUOTES:

ALL literal:

Represents the value 0 or one or
character O, depending on the context
appears.

more of
in which

the
it

Represents one or more blanks or spaces.

Represents one or more of the character
character is used as a high delimiter in
data.

Represents one or more of the character
character is used as a low delimiter in
data.

Represents one or more of the character
character has the highest value in the
collating sequence.

Represents one or more of the character
character has the lowest value in the
collating sequence.

Z. The Z
processing

0. The 0
processing

The
computer's

O. The 0
computer's

Represents one or more of the character". Note that
this figurative constant cannot be used to de'ITmrt"a
nonilumeric literal. - -~

Represents one or more of the string of characters
composing the literal. The literal must be either a
nonnumeric literal or any other figurative constant.
When the word ALL is followed by a figurative
constant, the word ALL is redundant and is included
in the source program only for readability.

3-4 DD25

The singular and plural forms of the figurative constants are equivalent
and, therefore, may be used interchangeably. A figurative constant represents a
string of characters. The number of characters in the string is determined by
the compiler as follows:

1. When a figurative constant is associated with another data item, such
as when the figurative constant is moved to or compared with another
data item, the string of characters that the figurative constant
represents is repeated character by character until the number of
characters in the resulting string is equal to the number of
characters specified as the size of the associated data item.

2. When a figurative constant is not associated with another data item,
such as when the figurative constant appears in a DISPLAY, EXAMINE, or
STOP statement, the length of the string is one character.

3. The ALL literal figurative constant cannot be used with the DISPLAY,
EXAMINE, or STOP statements.

Special Registers

Special registers are compiler-generated memory areas. They are used to
store information that is produced when specific· COBOL features are used.

TALLY REGISTER

The primary use of the TALLY register is to temporarily store the
information produced by the EXAMINE statement when the TALLYING option
associated with it is used. The TALLY register generated is just large enough

i~ii~:~~i~~i!~~::u~~~:!~~~:~~~r ~~~::~~~p~:t~£:r~~~~~:;f :~~ I
LINE-COUNTER

~~~t~!~~~~~:~!:;:~~~~~i~h:~;i;~~ ~~A~~~:~~~a~~~~~~~~~i~~~~~~:~i~~I~ I 
each report description entry. These report groups are used by the compiler to 
control the placement of headings and footings on the pages of the report(s) 
being generated. Although the LINE-COUNTER is generated by the compiler, its 
maximum value may be controlled ·using the PAGE LIMIT clause. 

PAGE-COUNTER 

The purpose of the PAGE-COUNTER is to supply page numbers for the pages 
within a report group. The initial value of the PAGE-COUNTER is one, but this 

1 value can be modified by the user immediately after an INITIATE ·statement has 
been executed. 

2/77 3-5 DD25A 



Editing Symbols 

The editing rules are described in Section VI under the PICTURE clause. 
This paragraph lists those characters of the COBOL character set that are 
editing symbols when used in an editing context. The symbols and their meanings 
are: 

Symbol 

B 
0 
+ 

CR 
DB 
z 
* 
$ 

Punctuation Symbols 

Meaning 

Space 
Zero 
Plus 
Minus 
Credit 
Debit 
Zero Suppress 
Check Protect 
Currency Sign 
Comma 
Period (Decimal Point) 

The punctuation symbols are used to delimit character-strings to make 
source coding more readable and, in certain instances, to conform to the 
requirements of the language. For example, the compiler normally expects to 
encounter a period followed by a space after a section-name. If the period or 
the space or both do not appear immediately after a section-name, an error 
condition res"ul ts. Fo~ the most part, however, punctuation symbols are optional 
in the formats.,. When p:unotuation symbols are used, however, the following rules 
must be observed: 

1. When used to delimit a character-string, the period, comma, or 
semicolon must be followed immediately by a space. 

2. Whenever a space is used as a punctuation symbol, as many as desired 
may be used. 

3. The left parenthesis may be immediately followed by a space and the 
right parenthesis may be immediately preceded by a space. 

The punctuation symbols and their meanings are: 

Symbol 

( 
) 

II 

Meaning 

Comma 
Semicolon 
Period 
Left Parenthesis 
Right Parenthesis 
Space 
Quotation Mark 

3-6 0025 



Relation Symbols 

Special symbols may be used in conditional statements 
Division to express a relationship (in value} between two 
symbols used for.this purpose and their meanings are: 

Symbol 

> 
< 

.A.ri thmetic Operation Symbols 

Meaning 

Greater Than 
Less Than 
Equal To 

in the 
data 

Procedure 
i terns . 'l'he 

The following symbols may be used to perform arithmetic operations in the 
Procedure Division: 

Symbol 

+ 

* 
I 
** 

Reserved Words 

Meaning· 

Addition 
Subtraction 
Multiplication 
Division 
Exponentiation 

Appendix A of this manual contains a list of words reserved for the 
exclusive use of COBOL •. That is, each of these words is a COBOL symbol with a 
predefined meaning and must not appear as a user-defined word. Since the user 
can define data-names, condition-names, procedure-names, mnemonic-names, 
literals, and PICTURE character-strings, none of the reserved words can be used 
for any of these representations. 

CONCEPT OF CO~.PUTER-INDEPENDENT DATA DESCRIPTION 

The Data Division is that area of the source program in which the user 
describes the data that the object program is to produce or process. To make 
data as computer independent as possible, the attributes (characteristics or 
properties) of the data are described in relation to a standard data format 
rather than in relation to an equipment-oriented format. The data contained in a 
file is described according to the physical aspects ·of the file and the 
conceptual (or logical) characteristics of the data in the file. 

Physical Aspects of a File 

The physical attributes of a file describe the data as it appears on the 
input or output device. Some of the physical attributes of a file are: 

1. The recording mode. 

3-7 DD25 



2. The grouping (or blocking) of logical records within the physical 
limitations of the device. 

3. The means by which the file i~ identified. 

These file attributes are described or defined in the Data Division of the 
source program. 

Conceptual Characteristics of a File 

The logical attributes of a file are an explicit definition of each logical 
entity in the file and are described or defined in the Data Division. In COBOL, 
a logical record is a group of related information that is uniquely identifiable 
and treated as a unit. A physical record, on the other hand, is a physical unit 
of information whose size and recording mode is convenient for a particular 
computer for the storage of data on an input or output device. The size of a 
physical record is hardware dependent and need bear no direct relationship to 
the size of the file of information on a device. For example, a single logical 
record may be contained in a single physical record; several logical records may 
be contained in a single physical record; or a single logical record may 
require several physical records to contain it. In COBOL, the input and output 
statements refer to one logical record. The idea of a logical record is not 
confined to data contained in files. Data in the Working-Storage Section can 
also be grouped into logical record~. 

Record Concepts 

Each unique logical record is defined lJy a record description entry in the 
Data Division. Reco~d description entries consist of data description entries 
that describe the attributes of a particular logical record. Each data 
description entry in a record description entry consists of a level-number which 
is followed by a data-name and by a series of independent clauses as required 
for the entry. 

Concept of Levels 

The structure of a logical record is based on levels so that subdivisions 
of the record can be named or identified for data reference. After a subdivision 
has been named, it can be further subdivided. The most basic subdivision of a 
record (that which is not further subdivided) is an elementary item. To refer to 
a set of elementary items, the items are combined into named groups. A group 
consists of a named sequence of one or more elementary items. Groups may also be 
combined into a sequence of two or more groups. An elementary item can, 
therefore, belong to more than one group. Note that if a logical record is not 
subdivided, it is an elementary item. 

3-8 0025 



COBOL employs a system of level-numbers to show the hierarchical structure 
of logical records. Since a logical record is the most inclusive data item, 
level-numbers for records start at 01. Less inclusive data items (i.e., group 
items and elementary items) are assigned higher (but not necessarily successive) 
level-numbers not exceeding 49 in value. A group includes all group and 
elementary items following it until a level-number less than or equal to the 
level-number of that group is encountered. The level-number of an item (either 
an elementary item or a group item) which i:mmediately follows the last 
elementary item of a preceding group must be the same as one of the groups to 
which the preceding elementary item belongs. In other words, level-numbers may 
not be assigried after a group structure has alr~ady been established by specific 
level-numbers. · 

The special level-numbers 66, 77, and 88 are exceptions to the rule 
level-numbers cannot exceed 49 in value. These special level-numbers are 
associated with describing the hierarchical structure of a logical record 
instead, are used to specify: 

1. Elementary items or groups introduced by a RENAMES clause. 

2. Noncontiguous working-storage data items and constants. 

3. Condition-names. 

Entries that describe items through a RENAMES clause (to regroup 
items) use the level-number 66. Entries specifying noncontiguous data 
(which are not subdivided and are not subdivisions of other items) use 
level-number .77. Entries specifying condition-names (to be associated 
particular values of a conditional variable) use the level-number 88. 

Concept of Classes of Data 

that 
not 

but, 

data 
items 

the 
with 

The five categories of data items (refer to the PICTURE clause) are grouped 
into three classes; alphabetic, numeric, and alphanumeric. For alphabetic and 
numeric, the classes and categories are synonymous. The alphanumeric class 
includes the categories of alphanumeric edited, numeric edited, and alphanumeric 
(without editing). Every elementary item belongs to one of the three classes and 
also to one of the categories. At object program execution, the class of a group 
item is treated as alphanumeric regardless of the class of elementary items 
subordinate to that group item. The following chart displays the relationship of 
the class and categories of data items. 

LEVEL OF ITEM CLASS CATEGORY 

Alphabetic Alphabetic 

Elementary Numeric Numeric 

Numeric Edited 
Alphanumeric Alphanumeric Edited 

Alphanumeric 

Alphabetic 
None.lemen tary Numeric 

(Group) Alphanumeric Numeric Edited 
Alphanumeric Edited 
Alphanumeric 

3-9 DD25 



The size of an elementary data item or a group item is the number of 
characters in standard data format of the item. Synchronization and usage may 
cause a difference between this size and the character positions required for 
the internal representation of the data. 

Algebraic Signs 

Algebraic signs are used to indicate whether the value of· a data item is 
positive or negative; two kinds of signs are employed: 

1. An operational sign is used to show the value of an item in an 
operation. 

2. An editing sign is used to identify the value of an item on an 
external, edited report. 

The operational sign must be included in the last digit of a numeric item 
unless the data description entry specifies USAGE COMPUTATIONAL-4. In this 
case, the operational sign must be a separate four-bit digit immediately 
following the last digit of the numeric data item. If signs other than 
operational signs are used on input data, special handling will be required in 
the Procedure Division statements. Editing signs are not operational signs; 
they are inserted into a data item using, the sign control symbols of ·the PICTURE 
clause. 

Standard Alignment Hules 

The standard rule:s,. for positioning data within an elementary i tern depend on 
the category of the receiving item. These rules are: 

1. If the receiving data item is described as numeric: 

a. The data is aligned by decimal point and is moved to the 
receiving character positions with zero-fill or truncation on 
either end as required. 

b. When a decimal point is not explicitly specified, the data item 
is treated as if it had an assumed decimal point immediately 
following its rightmost character with zero-fill or truncation to 
the left, as required. 

2. If the receiving data item is a numeric edited data item, the data 
moved to the edited data item is aligned by decimal poin::t with 
zero-fill or truncation at either end as required within the re·cn~iving 
character positions of the data item, except where editing 
requirements cause replacement of the leading zeros. 

3. If the receiving data item is alphanumeric {other than a numeric 
edited data item), alphanumeric edited, or alphabetic,. the sending 
data is moved to the receiving character positions and aligned at the 
leftmost character position in the data item with space-fill or 
truncation to the right, as required. 

If the JUSTIFIED clause is specified for the receiving item, these standard 
rul.es are modified as described in the JUSTIFIED clause. 

2/77 3~10 DD25A 



UNIQUENESS OF REFERENCE 

Qualification 

Every user-specified name that defines an element in a COBOL source program 
must be unique, either because no other name has the identical spelling and 
hyphenation, or because the name exists within a hierarchy of names such that 
references to the name can be made unique by mentioning one or more of the 
higher levels of the hierarchy. The higher levels are called qualifiers and the 
process that specifies uniqueness is called qualification. Enough qualification 
must be mentioned to make the name unique; however, it may not be necessary to 
mention all levels of the hierarchy. Within the Data Division, all data-names 
used for qualification must be associated with a level indicator or a 
level-number. Therefore, two identical data-names must not appear as entries 
subordinate to a group item unless they are capable of being made unique through 
qualification. In the Procedure Division, two identical paragraph-names ;nust not 
appear in the same section. 

In the hierarchy of qualification, names associated with a level indicator 
are the most significant; then those names associated with level-number 01; then 
names associated with level-number 02, .•. , 49. A section-name is the highest 
(and the only) qualifier available for a paragraph-name. Thus, the most 
significant name in the hierarchy must be unique and cannot be qualified. 
Subscripted or indexed data-names and conditional variables, as well as 
procedure-names and data-names, may be made unique by qualification. The name of 
a conditional variable can be used as a qualifier for any of its 
condition-names. Regardless of the available qualification, no name can be both 
a data-name and a procedure-name. 

Qualification is performed by following a data-name or a paragraph-name by 
one or more phrases composed of a qualifier preceded by IN or OF. IN and OF are 
logically equivalent. 

The general formats for qualification are: 

·Format 1: 

{
data-name-1 } [ {OINF} data-name- 2 ]· • • 
condition-name 

Format 2: 

paragraph-name [ G:} section-name] 

The rules for qualification are as follows: 

1. Each qualifier must be of a successively higher level and within the 
same hierarchy as the name it qualifies. 

2. The same name must not appear at two levels in a hierarchy. 

3. If a data-name or a condition-name is assigned to more than one data 
item in a source program, the data-name or condition-name must be 
qualified each time it is referred to in the Environment, Data, and 
Procedure Divisions (except REDEFINES where, by definition, 
qualification is unneces~ary). 

3-11 DD25 



4. A paragraph-name must not be duplicated within a section. When a 
paragraph-name is qualified by a section-name, the word SECTION must 
not appear. P.. paragraph-name need not be qualified when referred to 
from within the same section. 

5. A data-name cannot be subscripted when it is being used as a 
qualifier. 

6. A name can be qualified even though it does not need qualification; if 
there is more than one combination of qualifiers that ensures 
uniqueness, then any such set can be used. 

Subscripting 

Subscripts can be used only when reference is made to an individual element 
within a list or table of like elements that have not been assigned individual 
data-names. (Refer to the OCCURS clause in Section VI and Table Handling in 
Section II. ) 

The subscript can be represented either by a numeric literal that is an 
integer or by a data-name. The data-name must be a numeric elementary item that 
represents an integer. When the subscript is represented by a data-name, the 
data-name may be qualified but not subscripted. 

The subscript may contain a plus sign. The lowest possible subscript value 
is one (l); this value points to the first element of the table. The next 
sequential elements of the table are pointed to by subscripts whose values are 
2, 3, • • • • The high.est permissible subscript value in any particular case is 
the maximum number of occurrences of the item as specified in the OCCURS clause. 

The subscript, o~ set of subscripts, that identifies the table element is 
enclosed in parentheses immediately following the terminal space 
element data-name. The table element data-name appended with a 
called a subscripted data-name. Although not required, a comma 
subscripts in a series. 

The format is: 

data-name (subscript ~ subscript] ••• ) 

Some examples of writing subscripts are: 

Indexing 

MOVE RATE (REGION, STATE, CITY) TO LISTINGS. 
IF HEIGHT (10) IS GREATER THAN ••. 
MULTIPLY PRICE (STOCK-NO) BY INVENTORY (STOCK-NO) • 
EXAMINE TRACT (REGION) REPLACING • • . 

of the table 
subscript is 
may separate 

References can be made to individual elements within a table of like 
elements by specifying indexing for that reference. An index is assigned to that 
level of the table by using the INDEXED BY phrase in the definition of a table. 
A name given in the INDEXED BY phrase is known as an index-name and is .used to 
refer to the assigned index. An index-name must be initialized by a SET 
statement before it is used as a table reference (refer to the SET statement, 
Section VII) • 

3-12 DD25 



Direct indexing of a table element is specified by using an index-name in 
the form of a subscript. Relative indexing is specified when the index-name is 
followed by the operator + or , followed by an unsigned integral numeric 
literal all enclosed in the set of parentheses that begins immediately after the 
terminal space of the data-name. 

The general format for indexing is: 

data-name ( index-name [ {:}integer] 

[· index-name [ { : } integer J ] ... ) 

Identifier 

An identifier is a term used to reflect that a data-name (if not unique in 
a program) must be followed by a syntactically correct combination of 
qualifiers, subscripts, or indexes necessary to ensure uniqueness~ 

The general formats for identifiers are: 

Format 1: 

data-name-1 [ {::} data-name-2 J . . . [ (subscript-1 

[. subscript-2 [ , subscript-3] J )] 

Format 2: 

data-name-1 [ {:: } data-name-2 J ... 

[ (index-name-1 [ {:} integer] 

[ index-name-2 [ {:} integer J 

[ , index-name-3 [ {:} integer ]]] ) J 

3-13 · DD25 



Restrictions on Qualification, Subscripting, and Indexing 

The restrictions on qualification, s.ubscripting, and indexing follow: 

1. The commas shown in the general formats are not required. 

2. A data-name must not itself be subscripted nor indexed when that 
data-name is being used as an index, subscript, or qualifier. 

3. Indexing is not permitted where subscripting is not permitted. 

4. An index may be modified only by the SET, SEARCH, and PERFORM 
statements. Data items described by the USAGE IS INDEX clause permit 
storage of the values associated with inde~-names as data. Such data 
items are called index data items. 

5. If indexing is to be used, each OCCURS clause within the hierarchy 
(each dimension of the table) must contain an INDEXED BY phrase. 

6. When a reference requires more than one occurrence number for 
completeness, a data-name subscript must not be used to indicate one 
occurrence number when an index-name is used for another. 

7. Literals and index-names may be mixed within one reference just as 
literals and data-name subscripts may be mixed. 

REFERENCE FORMAT 

The reference format, which provides a standard method for describing COBOL 
source programs, is expressed in terms of character positions in a line on the 
input-out-put devic.e:. The COBOL compiler accepts source programs written in 
reference format an,d produces an output listing in reference format. 

The rules for spacing given in the discussion of the reference format . take 
precedence over all other rules for spacing. 

The divisions of a source program must be ordered as follows: the 
Identification Division, the Environment Division, the Data Division, and the 
Procedure Division. Each division must be written according to the rules for the 
reference format. 

Reference Format Representation 

The reference format for a line is represented as follows: 

l"'argin 
L 

Margin 
c 

Margin 
A 

1 I 2 I 3 I 4 s I 6 · 1 s I 9 I 10 

----Y.' v 
Sequence Number _J---"- Area A 

Area r , .... , .. ,. ,. , ..... '.\ 
Continuation/Comment,XP.IB.ttl: 
Line Indicator Area ···· ·· 

3-14 

.Margin 

11 
J 

B 

I 

12 I 13 I 
Area B 

I 
Margin 

R 

72 73 

DD25 



Margin L designates the leftmost character position of a line, position 1. 

~.11argin c designates the seventh character position relative to L •. 

Margin A designates the eighth character position relative to L. 

Margin B designates the twelfth character position relative to L. 

Margin R designates the rightmost character position of a line and is 
character position 72 relative to Margin L. 

The sequence number area occupies the six character positions beginning at 
Margin L, positions 1 through 6. 

The continuation/comment/rl$a.U;Q.line indicator area is the seventh character 
position of the line. 

Area A occupies four character positions beginning at Margin A, positions 8 
through 11. 

Area B occupies sixty-one character positions beginning at Margin B, 
positions 12 through 72. 

SEQUENCE NUMBERS 

A sequence number, consisting of six digits in the sequence number area, 
may be used to label a source program line. 

CONTINUATION OF LINES 

Any sentence or entry that requires more than one 
starting subsequent line(s) in Area B. These subsequent 
continuation line(s). The line being continued is called 
word or literal may be broken in such a way that part 
continuation line. 

line is continued by 
lines are called the 
the continued line. Any 
of it appears on a 

A hyphen in the continuation area of a line indicates that the first 
nonblank character in Area B of the current line is the successor of the last 
nonblank character of the preceding line with no intervening space. However, if 
the continued line contains a nonnumeric literal without a closing quotation 
mark, the first nonblank character in Area B of the continuation line must be a 
quotation mark, and the continuation starts with the character immediately after 
that quotation mark. All spaces at the end of the continued line are considered 
part of the li~eral. Area A of a continuation line must be blank. 

If no hyphen is contained in the continuation area of a line, it is assumed 
that the last character in the preceding line is followed by a space. 

BLANK LINES 

A blank line is one that is blank from Margin C to Margin R, inclusive. A 
blank line can appear anywhere in the source program except: 

a. Immediately preceding a continuation line. 

3-15 0025 



b. 

c. 

Division, Section, and Paragraph Formats 

DIVISION HEADER 

The division header must start in Ar~a A. After the division header, no 
text may appear before the following section header or paragraph header or 
paragraph-name, except that the keyword DECLARATIVES followed by a period may be 
present after the Procedure Division header. 

SECTION HEADER 

The section header must start in Area A. 

A section consists of paragraphs in the Environment, Data, and Procec.1re 
Divisions~ In the Environment and Data Divisions, no text may appear before the 
following paragraph header or paragraph-name. 

In the Procedure Division, a section header is composed of a section-name, 
followed by the rese:i;:-ved word SECTION, followed by a priority-number (optional), 
followed by a period and a space. 

PARAGRAPH HEADER, ·PARAGRAPH-NAME, AND PARAGRAPH 

A paragraph consists of a paragraph-name followed by ~e#t>t one, or more 
sentences, or a paragraph header followed by one or more ~rifiies. A paragraph 
header starts in Area A of any line following the first line of a division or a 
section. 

The name of a paragraph starts in Area A of any line following the first 
line of a division or a section and ends with a period followed by a space. 

The first sentence or entry in a paragraph begins either on the same line 
as the paragraph-name or in Area B of the next nonblank line that is not a 
comment line. Successive sentences or entries either begin in Area B of the same 
line as the preceding sentence or entry or in Area B of the next nonblank line 
that is not a comment line. 

A sentence consists of one or more statements; an entry consists of one or 
more clauses; all sentences and entries must be followed by a period followed by 
a space. 

When the sentences or entries of a paragraph require more than one line, 
they may be continued as described in the Continuation of Lines paragraph above. 

3-16 DD25 



Data Division Entries 

Each Data Division entry begins with a level indicator or a level-number, 
followed by a space, followed by the name of a data item (except in the Report 
Section) , followed by a sequence of independent clauses describing the data 
item. Each clause, except the last clause of an entry, may be terminated by a 
semicolon followed by a space. The last clause is always terminated by a period 
followed by a space. There are two types of Data Division entries; those which 
begin with a level indic~tor and those which begin with a level-number. 

A level indicator is any of the following: file description (FD), 
sort-f:M:tl@: file description (SD) , or report description (RD). See Section VI. 

In Data Division entries that begin with a level indicator, the level 
indicator begins in Area A followed in Area B by its associated data-name and 
appropriate descriptive information. 

Data Division entries that begin with level-numbers are called data 
description entries. 

In data description entries that begin with a level-number 01 or 77, the 
level-number begins in Area A followed by a space and its associated record-name 
or item name and appropriate descriptive information. 

A level-number may be one cif the following set: 01 through 49, 66, 77, 88. 
Single digit level-numbers are written either as a digit or as a zero followed 
by a digit. At least one space must separate a level-number from the word 
following the level-number. 

Successive data description entries may have the same format as the first 
or may be indented according to level-number. The entries in the output listing 
are indented only if the input is indented. Indentation does not affect the 
magnitude of a level-number. 

When level-numbers are to be indented, each new level-number may begin any 
number of spaces to the right of r.11argin A. The extent . of indentation to the 
right is determined only by the width of the physical medium. 

Declaratives 

The keyword DECLARATIVES and the keywords END DECLARATIVES that precede and 
follow, respectively, the declarative portion of the Procedure Division must 
appear on a line by themselves. Each must begin in Area A and be followed by a 
period and a space. After the keywords END DECLARATIVES, no text may appear 
before the following section header. 

3-17 DD25 



2/77 

asterisk in the continuation area of the 
line in a source program, excluding: 

following a section header in a segmented 

COPY statement. 

from the computer's character set may be 
a comment line. The asterisk and the 

serve 
of comment lines are provided: 

word EJECT in columns 8-12 causes 
corronent .. 

prior to printing the 

8-12 causes suppression 

by LS'I'ON causes termination of the . 
by *LSTOF •. 

identifi~d as such by a single digit (0~9) in 
·When statements are identified a.s debugging· 

3-18 

option of the SPECIAL-NAMES 
those statements with a digit 

DD2-5A 



FORMAT CONVENTIONS USED IN THIS MANUAL 

Definition of a General Format 

A general format is the specific arrangement of the elements of a clause or 
a statement (which consist of elements as defined below). In this manual, a 
format is shown adjacent to information which defines a clause or statement. If 
more than one specific arrangement is permitted, the general format is separated 
into numbered formats. Clauses must be written in the sequencP given in the 
general formats. (If used, optional clauses must appear in the sequence shown.) 
In certain cases, stated explicitly in the rules associated with a given format, 
clauses may appear in sequences other than those shown. Applications, 
requirements, or restrictions are presented as rules: 

• A syntax rule amplifies or restricts the usage of the elements within 
a general format. 

• A general rule amplifies or restricts functions attributed to a 
general format or to its constituent elements. 

Elements which make up a clause or a statement consist of uppercase 
lowercase words, level-numbers, brackets, braces, connectives, and 
characters. 

words, 
special 

Words 

All underlined uppercase words are called keywords and are required 
the functions of which they are a part are used. Uppercase words which are 
underlined are optional and may be written in the source program at 
discretion of the user. Uppercase words, whether underlined or not, must 
spelled correctly and must appear in the source program exactly as shown in 
formats. 

when 
not 
the 

be 
the 

In a general format, lowercase words are generic terms used to represent 
COBOL words that must be supplied by the user. Lowercase words which occur in a 
general format are replaced by COBOL words in an actual program, except for the 
following list of words: 

• Statements (Section VII) 

• Imperative-statements (Section VII) 

• Arithmetic-expressions (Section VII} 

• Character-strings (Section VI} 

• Comment-entries (Section IV} 

• Conditions (Section VII) 

• Literals (Section III} 

The above exceptions represent combinations of COBOL words constructed in 
accordance with the definitions given in the sections noted. 

3-19 DD25 



When generic terms are repeated in a general format, a number or letter 
appended to the term serves to identify that term for subsequent explanation. 

Periods 

When a period is shown in a format, it must appear in the same position 
whenever the statement is used in the source program. A period must always be 
followed by at least one space (unless it is the last character of a line). 

Level-Numbers 

When specific level-numbers appear in data description entry formats, those 
specific level-numbers are required when such entries are used in a COBOL 
program. 

~rackets and Braces 

When a portion of a general format is enclosed in brackets[ ], that 
portion may be included or omitted at the user's choice. Braces( )enclosing a 

· portion of a general format indicate that one of the options contained within 
the braces must be selected. In both cases, the possible choices are stacked 
vertically in the format; When brackets or braces enclose a portion of a format 
but only one possibility is shown, the function of the brackets or braces is to 
delimit that portion of the format to which a following ellipsis applies (see 
next paragraph). If an option within braces does not contain a key word, that 
option is ~ default ~p~ion (iwplicitly selected unless explicitly overridden). 

The Ellipsis ( .•• ) 

The ellipsis may show the omission of a portion of a source program. The 
meaning becomes apparent in context. 

In the general format, the ellipsis represents the position at which 
repetition may occur at the user's option. The portion of the format that may be 
repeated is determined as follows: 

In a clause or statement format in ~hich the ellipsis ( •.• ) appears, scan 
from right to left to determine the ] or } delimiter immediately to the 
left of the .•. ; continue scanning from right to left and determ.±ne the 
logically matching [ or l delimiter; the ••• applies. to the words between 
the pair of delimiters. 

3-20 DD25 



Format Punctuation 

The punctuation characters comma, and semicolon are shown in some formats. 
However, a semicolon must not appear immediately preceding the first clause of 
an entry or a paragraph. These punctuation characters are used in each major 
COBOL division as explained below. 

• Identification Division - Although not expressly shown in the formats 
in this division, the comma and semicolon may be used within the 
comment-entries. The paragraph itself .must terminate with a period 
followed by a space. 

• Environment Division - When either a comma or a semicolon is shown in 
the formats, it is optional and may be included or omitted. The entry 
itself must terminate with a period followed by a space. 

• Data Division - When either a comma or a semicolon is shown in the 
formats, it is optional and may be included or omitted. The entry 
itself must terminate with a period followed by a space. 

• Procedure Division - When a comma is shown in the formats, the comma 
is optional and may be included or omitted. If desired, a semicolon 
may be used between statements. 

Special Characters 

When the characters · '+', ' - ', ' < ', ' > ', and '=' appear in formats, they 
are required when such formats are used, even though they are not underlined. 

Shading 

In this manual, the shaded areas represent the implementation of a feature 
specified in the CODASYL COBOL Journal of Development but not specified in 
American National Standard COBOL-1968, the implementation of a feature defined 
in earlier versions of the COBOL language specifications but subsequently 
deleted by CODASYL, or the implementation of a feature that may be unique to the 
Series 60/6000 compiler. Some of these features are now contained in American 
National Standard COBOL-1974. 

For additional information regarding obsolete language elements, refer to 
Section XVII of the COBOL User's Guide. 

For information concerning the flagging of obsolete language elements and I 
Series 60/6000 language extensions, refer to Appendix C of the COBOL User's 

~-

Deltas 

A delta A in the margin adjacent to the text indicates that the particular 
feature being described has not been implemented. The A may appear adjacent to 
a feature not implemented or adjacent to a feature which is not available for 
use with the Software Release associated with this revision of the manual. 

2/77 3-21 DD25A 





SECTION IV 

IDENTIFICATION DIVISION 

DESCRIPTION OF THE IDENTIFICATION DIVISION 

Each COBOL source program must begin with the Identification 
which is used to identify the source program and its resultant output 
The user may also include the date on which the program is written, the 
source program compilation, and other desired information as shown 
paragraph structure of the general format below. 

Organization of the Identification Division 

Division, 
listing. 
date of 

in the 

Fixed paragraph-names specify the type of information contained in 
paragraph. The name of the program may be given in the first paragraph, 
PROGRAM-ID paragraph. The other paragr~phs are optional and may be included 
the·discretion of the user, in any-order. 

each 
the 
at 

Structure of the Identification Division 

The structure of the Identification Division is presented below. 

General Format: 

IDENTIFICATION DIVISION. 

PROGRAM-ID. program-name. 

[AUTHOR. [comment-entry·] ••• ] 

( INSTALLATION. (comment-entry] ••• ] 

[ DATE-WRITTEN. (comment-entry ] ••• ] 

[DATE-COMPILED. (comment-entry] ••• J 
( SECURITY. (coltlment•entry ] .•• J 
[ REMARKS. [comment-entry ] ••• ] 

4-1 DD25 



Syntax Rule: 

1. The Identification Division must begin with the reserved words 
IDENTIFICATION DIVISION followed by a period and a space. 

General Rule: 

1. A comment-entry may 
computer's charadter 
paragraph format. 

be any combination 
set, organized to 

of characters from 
conform to sentence 

the 
and 

DD25 



PROGRAM-ID PROGRAM-ID 

PROGRAM-ID PARAGRAPH 

The PROGRAM-ID paragraph is required and may be the f irs·t paragraph in the 
Identification Division. 

General Format: 

PROGRAM-ID. program-name. 

Syntax Rules: 

1. The PP.OGRAM-ID paragraph must begin with the paragraph-name PROGRAM-ID 
which must be followed by a period and a space. It must appear in 
every program. 

2. ··*b.e pr69r~~n&t\~ . ~~ppli~d eap..be 60mpo$~~ only of letters and . digits< 
WP~ pt9gri$1l~li,att\e stiollld qot·exceed ·six .characters and must contain .·.at 
+~as-t: <me letter.. Wh.~ first character of the program~name may not he a 
~·~~· The program-ll,a1ne (:2ll'>;l1()t be any of. the COBOL reserved words. It 
$hould als.o be different; •. £+om any user-defined data-name. If the 
P+'.()g'.r4m-~aine exceed.~ si)t.q~(ilracters, it will be truncated. Any invalici 
pharacters will be ;eplaced py a period. 

3. The program-name must be followed by a period and a space. 

4. The fitst·four chara.ct:.ersof program-name must not be LOIN. 

s. tfo>I.'lo<program-nameis SP.e~ified, the compilet will supp:J.y the word 
~qtl~>a\s a substitut;e Pl.:'99'~~...,name. 

General Rules: 

1. The first three characters are used as the Transaction Processing 
Applications Program (TPAP) identifier (ID) when the program is to be 
used in the Transaction Processing System; therefore, they must be 
unique within that system (refer to the COBOL User's Guide). 

2. When the program is to be loaded into the same overlay as other COBOL 
programs, the first four characters of each program-na~e must be 
unique within the overlay. 

3., The program-name will appe~x on the program listing. 

4-3 DD25 



AUTHOR AUTHOR 

AUTHOR PARAGRAPH 

The AUTHOR paragraph is used to supply the name of or otherwise identify 
the author of the program. 

General Format: 

AUTHOR. [comment-entry J •• • 

.Syntax Rul~s: 

1. The AUTHOR paragraph must begin with the paragraph-name AUTHOR which 
must be followed by a period and a space. 

2. The comment-entry can be one or more sentences, including any 
combination of characters from the computer's character set, organized 
to conform to sentence and paragraph format. 

General Rules: 

1. The paragraph is optional. 

2. If the AUTHOR paragraph is included in the source program, the 
information supplied will appear on the program listing. 

4-4 DD25 



INSTALLATION INSTALLATION 

INSTALLATION PARAGRAPH 

The INSTALLATION paragraph is used to supply the name of or otherwise 
identify the installation at which the source program was written. 

General Format: 

INSTALLATION. (cormnent-entry] ••• 

Syntax Rules: 

1. The INSTALLATION paragraph must begin with the paragraph-name 
INSTALLATION which must be followed by a period and a space. 

2. The conunent-entry can be one or more sentences, including any 
combination of characters from the computer's character set, organized 
to conform to sentence and paragraph format. 

General Rules: 

1. The paragraph is optional. 

2. If the INSTALLATION paragraph is included in the source program, the 
information supplied will appear on the program listing. 

4-5 0025 



DATE-WRITTEN DATE-WRITTEN 

DATE-WRITTEN PARAGRAPH 

The DATE-WRITTEN paragraph is used to supply the date on which the. program 
was written. 

General Format: 

DATE-WRITTEN. [cormnent-entry] .•. 

Syntax Rules: 

1. The DATE-W~ITTEN paragraph must begin with the para9raph-narne 
DATE-WRITTEN which must be followed by a period and a space. 

2. The comment-entry can be one or more sentences, including any 
combination of characters from the computer's character set, organized 
to conform to sentence and paragraph format. 

General Rules: 

1. The paragraph is optional. 

2. If the DATE-WRITTEN paragraph is included in the source program, the 
information supplied will appear on the program listing. 

4-6 DD25 



DATE-COMPILED DATE-COM.PILED 

DATE-COMP !LED PARAGRl'..PH 

The DATE-COMPILED paragraph is used to supply the date on which the program 
was compiled. 

General Format: 

DATE-COMPILED. [comment-entry] ••• 

Syntax Rules: 

1. The DATE-COMPILED paragraph must begin with the paragraph-name 
DATE-COMPILED which must be followed.by a period and a space. 

2. The comment-entry may 
computer's character 
paragraph format. 

General Rules: 

be any combination 
set, organized to 

1. The paragraph is optional. 

of characters from 
conform to ~entence 

the 
and 

2. If the DATE-COMPILED paragraph is included in the source program, it 
is replaced during compilation with a paragraph of the form: 

. DATE-COMPILED. current-elate • 

4-7 DD25 



SECURITY SECURITY 

SECURITY PARAGRAPH 

The SECURITY paragraph is used to supply the level of security attached to 
ethe program by the installation or user. 

General Format: 

SECURITY. [comment-entry] ••• 

'.:S,yntax Rules: 

1. The SECURITY paragraph must begin with the paragraph-name SECURITY 
which must be followed by a period and a space. 

2. The comment-entry may be any combination 
computer's character set, organized to 
paragraph format. 

Gener al Rule~s : 

1. The paragraph is optional. 

of characters from 
conform to sentence 

the 
and 

2. If the SECURITY paragraph is included in the source program, the 
in:formation supplied will appear on the program listing. 

4•8 DD25 



REMARKS REMARKS 

REMARKS PARAGRAPH 

The REMARKS paragraph is used to supply any information about the program 
that is not contained in the other paragraph headings in the Identification 
Division. 

General Format: 

REMARKS. [ ~omment-entry J 

Syntax Rules: 

1. The REMARKS paragraph must begin with the paragraph-name REMARKS which 
must be followed by a period and a space. 

2. The information supplied can be one or more sentences, including any 
combination of characters from the computer's character set,· organized 
to conform to sentence and paragraph format. 

3. All lines of comment-entry are restricted to Area B of the reference 
format. 

General Rules: 

1. The paragraph is optional. 

2. If the REMARKS paragraph is included in the source program, the 
information 9upplied will appear on the program listing. 

4-9 DD25 





SECTION V 

ENVIRONMENT DIVISION 

DESCRIPTION OF THE ENVIRONMENT DIVISION 

The Environment Division must be included in every COBOL source program and 
is the second division of a COBOL program. This division provides a standard 
method of expressing the aspects of a data processing problem that depend upon 
the physical characteristics of any given computer. It is used to identify the 
compiling computer and the computer on which the object program is to be run. 
Data concerning input-output control, specific hardware characteristics, and 
control techniques can also be pres~nted in this division. 

Organization of the Environment Division 

The Environment Division is divided into two sections, the Configuration 
Section and the Input-Output Section. The Configuration Section is required and 
the Input-Output Section is optional. The Configuration Section is subdivided 
into the following three paragraphs: 

• SOURCE-COMPUTER paragraph, which identifies the computer on which the 
source program is to be compiled. 

• OBJECT-COMPUTER paragraph, which identifies the computer on which the 
object program produced by the compiler is to be exe·cuted. 

• SPECIAL-NAMES paragraph, which associates the names of hardwar~ and· 
operating system ~eat\lres used by the compiler with the mnemonic-names 
used in the source program. 

The Input-Output Section is subdivided into the following two paragraphs: 

• FILE-CONTROL paragraph, which names all files used in the program and 
associates them with external media. 

• I-0-CONTROL paragraph, which defines spec'ial control techniques to be 
used in the object program. 

5-1 DD25 



Structure of the Environment Division 

. The genera:;!. outline of the sections and paragraphs in · the .Environment 
Division and the order of presentation in the source program is given below. 

General Format: 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 

[SOURCE-COMPUTER. [source-computer-entry J] 
[OBJECT-COMPUTER. [object-computer-entry J] 
[SPECIAL-NAMES. special-names-entry] 

[INPUT-OUTPUT SECTION. 

FILE-CONTROL. ( file-control-entry 

f I-O-CONTROL. input-output-control-entry J J 

Syntax Rules: 

l, The Environment Division must be included, must follow the 
Identification Division, and must begin with the reserved words 
ENVIRONMENT DIVISION which must be followed by a period and a space. 

2. The Configuration Section should be included, follow the Environment 
Division header, and begin with the section-name CONFIGURATION SECTION 
which must be followed by a period and a space. 

CONFIGURATION SECTION IN THE ENVIRONMENT DIVISION 

The Configuration Section provides program documentation for the hardware 
characteristics of the computer used for compilation and of the computer-used to 
execute the object program. Provisions are included in this section for 
assigning definitions to all mnemonic-names to be used in the body of the 
program, for defining condition-names for the status of switches, and for 
defining specific compiler-directing phrases. 

DD25 



SOURCE-COMPUTER 

SOURCE-COMPUTER Paragraph 

The SOURCE-COMPUTER paragraph 
program is to be compiled. The 
following two formats. 

identifies 
paragraph 

Format 1: 

[SOURCE-COMPUTER, COPY 

[REPLACING word-1 

library-name 

{
word-2 } 

BY li teral-1 
~ identif ier-1 

SOURCE-COMPUTER 

the computer upon which the 
can be written in either of the 

[, word-3 BY {~~~~;;1:2 } J ... J . J 
identif ier-2 

Format 2:. 

[SOURCE-COMPUTER. [

6000 ] 

6000-EIS 

2/77 5-3 DD25A 

I 



SOURCE-COMPUTER SOURCE-COMPUTER 

Syntax Rules: 

1. ~he SOURCE-COMPUTER paragraph must begin with the paragraph-name 
SOURCE-COMPUTER which must be followed by a period and a space. 

2. When Format 1 is used, the COPY library-name phrase is required. The 
library-name must be identical.to the name associated with the desired 
text on the library. 

3. In Format 1, a word is any COBOL word. 

4. 

s. 

6. 

7. 

When Format 2 is used, the computer-name specified should be 6000 or 
6000-EIS. Series 60 users should specify 6000-EIS. 

General Rules: 

1. For a description of the COPY function, see Section VIII, the COBOL 
Library. 

2. This paragraph provides program documentation only and has no effect 
on compilation. 

Special Considerations: 

2/77 

1. For a program that might be used in an installation with different 
.computers, the SOURCE-COMPUTER paragraph can supply valuable 
information for modifying the program for the different environment. 

5-4 DD25A 



OBJECT-COMPUTER OBJECT-COMPUTER 

OSJECT-COMPUTER Paragraph 

The OBJECT-COMPUTER paragraph identifies the computer on which the program 
is to be executed. The paragraph can be written in either of the following two 
formats. 

Format 1: 

[OBJECT-COMPUTER. COPY 

~REPLACING word-1 BY 

library-name 

{

word-2 } 
literal-1 · 
identif ier-1 

word-3 
{ 

word-4 } 
BY literal-2 
~ identifier-2 J .. ·] . J 

Format 2: 

[OBJECT-COMPUTER •. [::::_EIS] 

{

WORDS } 
CfiA'RACTE RS 
MODULES 

, MEMORY SIZE 

;[r SEGMENT-LIMIT IS priority-number] J 
2/77 s-s DD25A 

I 



I 

I 

OBJECT-COMPUTER OBJECT-COMPUTER 

Syntax Rules:' 

2/77 

1. The OBJECT-COMPUTER paragraph must begin with the paragraph-name 
OBJECT-COMPUTER which must be followed by a period and a space. 

2. When Format 1 is used, the COPY library-name phrase is required. The 
library-name must be identical to the name associated with the desired 
text on the library •. 

3. In Format 1, a word is any COBOL word. 

4. When Format 2 is used, the computer-name specified should be 6000 or 
6000-EIS. Series 60 users should specify 6000-EIS. 

5 
• r11•••~l'n111111~~::qpi,~~lJ~l. 

6. 

7. 

The MEMORY SIZE phrase is optional. When used, the word MEMORY is 
required. If the memory size is given as an integer, the integer 
specifies the number of WORDS, CHARACTERS, or MODULES the object 
program requires. Therefore, one of these three words is required 
'VlheJ'l th~ rn~rn?ry ~ize is gi"en as an int~ger. If tl).~ . m~l'f\Qry ~ize is 

~$1.L'llJii~~l~~~=~;~~M~th:~e ()f r:~~~:rsk~:~~~ 

CARP IU!APER {S) ·-·"""""' .................. 
~¥F::¢wa:t't$R< s) 

lll~il&liili;:;a~~ ~~jI~~~++Y is ~~quired may be specified. 

8. When the SEGMENT-LIMIT IS phrase .is used, the priority-number must be 
an integer in the range 1-49. The words SEGMENT-LIMIT IS are 
required. 

9. When the SEGMENT-LIMIT phrase is specified, only those segments having 
priority-numbers from 0 up to, but not including, the priority-number 
designated as the SEGMENT-LIMIT, are considered as permanent segments 
of the object program. 

10. Those segments having priority-numbers from the SEGMENT-LIMIT through 
49 are considered as fixed overlayable segments. 

11. When the SEGMENT-LIMIT phrase· is omitted, all segments having 
priority-numbers from O through 49 are considered as permanent 
segments of the object program. 

5-6 DD25A 



OBJECT-COMPUTER OBJECT-COMPUTER 

General Rules: 

1. For a des6ription of the COPY function, see Section VIII, the COBOL 
Library. 

2. If the EISF or NEISF options are specified on the $ COBOL card, these 
options will take precedence over the OBJECT-COMPUTER paragraph. A 
warning message will be given when EISF has been specified on the 
$ COBOL card and the following is encountered in the source progra~: 

OBJECT-COMPUTER. 6000. 

The object program will utilize EIS code. 

A warning message will be given when NEISF has been specified on the 
$ COBOL card and the following is encountered in the source program: 

OBJECT-COMPUTER. 6000-EIS. 

The object program will not utilize EIS code. 

If the OBJECT-COMPUTER paragraph is not present or a syntax error on 
computer-name (none present or illegal name) is detected, the compiler 
will determine whether or not .EISF or NEISF was specified on the 
$ COBOL card before the default determination of processor type is 
made. If neither EISF nor NEISF were specified on the $ COBOL card, 
the object.program will be prepared for the type of processor upon 
which the program is being compiled and a warning message will be 
issued. 

Special Considerations: 

1. The 6000-EIS phrase causes coding that utilizes the Extended 
Instruction Set (EIS)l to be produced unless overridden by the NEISF 
option on the $ COBOL card. An object program that includes EIS can 
only be executed on an EIS processor. 

2. Programs in the same run unit should either all be compiled in the EIS 
mode or all be compiled in the NEIS mode; otherwise, unpredictable 
results (including abnormal terminations) may occur during object 
program execution. 

3. For a program that might be used in an installation with different 
computers, the OBJECT-COMPUTER paragraph can supply valuable 
information for modifying the program for the different environment. 

I 

I 

!Extended Instruction Set (EIS) refers to an extension to the original Series I 
6000 instruction set. EIS is the standard instruction repertoire for models 
6025, 6040, 6060, and 6080 of the Series 6000 system and all models of the 
Series 60 system. 

2/77 5-7 DD25A 



J. I'. 

SPECIAL-NAMES SPECIAL-NAMES 

SPECIAL-NAMES Paragraph 

The SPECIAL-NAMES paragraph is optional. It provides a method by which 
mnemonic-names used in the Data and Procedure Divisions, condition-names for the 
status of switches, and certain compiler-directing phrases can be specified. 
The paragraph can be written in either of the following two formats. 

COPY library-name 

word-1 BY c~~~~;;l-1 ) 
identifier-1 

[• word-3 BY c~~~~~;l~2 ) J .. ·] ·] identif ier-3 

·Format 2: 

[
SPECIAL-NAMES. 

[literal-3 IS mnemonic-name-1J 

[literal-4 IS mnemonic-name-2] 

2/77 

[GIN IS mnemonic-name-3J 

[sYSOUT IS mnemonic-name-{) 

[coMMUNICATION-DEVICE IS mnemonic-name-~ 

[REMOTE IS mnemonic-name-6] 

[GLAPS IS mnemonic-name-7] 

[GTIME IS mnemonic-name-8 1l!~l;J 
[coNSOLE IS mnemonic-name-9] 

[TYPEWRITER IS mnemonic-name-10] 

[TOP IS mnemonic-name-11] 

[SWITCH integer-I IS mnemonic-name-12 

{ 

, ON STATUS .!.§_ condi tion-name-1 U>FF STATUS !§. condi tion-name-2Jy ••• 

, ~ STATUS IS condition-name-2 [oN STATUS IS condi tion-name-1] ~ 

5-8 DD25A 



SPECIAL-NAMES SPECIAL-NAMES 

Syntax Rules: 

1. The SPECIAL-NAMES paragraph must begin with the paragraph-name 
SPECIAL-NAMES which must be followed by a period and a space. 

2. When Format l is used, the COPY library-name phrase is required. The 
'library-name' must be identical to the name associated with the 
desired text on the library. 

3. In Format 1, a word is any COBOL word. 

4. When used as a report code, li teral-3 or .li teral-4 must be a 
single-character nonnumeric literal whose value is a letter or a 
digit. 

5. Mnemonic-names and condition-names may contain up to 30 characters, 
one of which must be a letter. 

6. If mnemonic-names, condition-names, or compiler-directing phrases are 
used, the SPECIAL-NAMES paragraph must be included in the program. 

7. 

General Rules: 

2/77 

1. For a description of the COPY function, see Section VIII, the COBOL 
Library. 

5-9 DD25A 

* 
I 

I 

I 



SPECIAT-'-NAMES SPECIAL-NAMES 

2/77 

2. The literal IS mnemonic-name option is used to define report codes. 
This option is required when more than one report is to be generated 
by the. program. The literal specified is the code appended to the 
report-name defined in the report description entry for the report. 
(Refer to the CODE clause.) 

3. The 'special names' peculiar to the operating system (GIN, SYSOUT, 
COMMUNICATION-DEVICE, REMOTE, GLAPS, GTIME, CONSOLE, and TYPEWRITER) 
may be assigned mnemonic-names for use with the ACCEPT and DISPLAY 
statements. The mnemonic-names assigned these 'special names' may be 
referenced by the ACCEPT and DISPLAY statements as follows: 

4. 

5. 

6. 

ACCEPT 
Statement 

GIN 
COMMUNICATION-DEVICE 
REMOTE 
GLAPS 
GTIME 
CONSOLE 
TYPEWRITER 

DISPLAY 
Statement 

SYS OUT 
COMMUNICATION-DEVICE 
REMOTE 
CONSOLE 
TYPEWRITER 

Although CONSOLE and TYPEWRITER are the same physical 'device, the 
effect of the ACCEPT and DISPLAY statements using these names is 
different. Refer to Section VI in the COBOL User's Guide. 

The mnemonic-name assigned to the special name 'TOP' may be referenced 
in a WR!TE ••• ADVANCING statement to cause a listing to be advanced to 
the top of the next page. 

The SWITCH option is used to associate user-specified mnemonic-names 
with the operating system's Program Switch Word switch numbers. When 
this option is used, at least one of the two possible states of the 
switch (ON or OFF) must be assigned a condition-name. The 
mnemonic-names associated with the software switches can be referenced 
only by using the ACCEPT and DISPLAY statements. The condition-names 
associated with the status of switches can be referenced only in 
sentences that contain either the IF or PERFORM statement. · When the 
SWITCH option is used, the words SWITCH and IS are required as are 
either of the status names ON or OFF followed by IS. 

5-10 DD25A 



SPECIAL-NAMES 

7. ~ 

::::::::::::::::::.::::::::::::::::::::;:::::::::::::::;:::;:::::::::::::::::::;::::::::::::::::::::::: .::.•.•.t.::.·.·.~.==.•.\.· .. ::.·.• .•.:= .. •.•.>.;:,:· .... :.•.:: .. ::.:: .. •.: .. ~.·.·.•.:: .. ~.:.::.~.:~.·.• .•. ~.:.~.::.: .. •.:::.: .. : .. :· .. : .• •.•.•.: .. ·.·.•.•.==.·.•.• .• ::.·.··· .. •.•.•.•.:: .... ·.•.:: .. •.•.:: .. • .. :: .•.. •.:: .. ),:~:.·:.\.:;,:~.:~t=::::::::::·::::{::.:::; .<·>: 
~fi~~j~:~~~~]1~!~~j~~~~~][~~i]~i[~~~i;~~ij:;:~~;~~~~~~~~:];~::::~::::;:;:;::;·:;::::;::::::;::::::::;:; 

2/77 s-10.1 

SPECIAL-NAMES 

.th\ 
t:h6< 

DD25A 





SPECIAL-NAMES 

8. 

9. 

10. 

11. 

12. 

2/77 

The CURRENCY SIGN IS literal option is a 
that substitutes the specified literal for 
character-strings i4.id.{l//:($)):,::i\R\j:eqt;. 
specified must be a single character 
following: 

a. Digits 0 through 9; 

b. 

c. 

Alphabetic characters A, B, C, D, 
the space; 

'+', '-', 

5-11 

I I 
I I 

I I . , 

SPECIAL-NAMES 

phrase 
PICTURE 

P , R, S , V, X, Z ; or 

I II I I • I 
I I 

I ( I I I ) I I 

DD25A 

I 

I 

I 





SPECIAL-NAMES SPECIAL-NAMES 

13. I 

2/77 5-11.1 DD.25A 



SPECIAL-NAMES SPECIAL-NAMES 

I 14. 

I ls. 

2/77 5-12 DD25A 



SPECIAL-NAMES SPECIAL-NAMES 

''[!::il{~fJU:&:e Ji>:na!~!e :~;~~:io!f t~!P~!~~in~e~~i~~~:r ~~~~!~=~~~ 
•tb+:ough the abort routine of the operatinq system. 

reading the 

· . ... d'our:na.1i~e >ert'QtS. If the error occurred while t'.eading the 
· ·· · (.)ri.g-ip.al iJiput/ continue processing.. If the error was a 
... · .. bl..ock .. serial number error while readinq a col:tation file, 

· :terJ,U;ina't;ce pro~~~sinq through the abort routine of the 
opetatin9 systeni. 

~ Journalize err.ors. If the error was a block serial number 
error while reading the original input, terminate processing 
through the abort routine of the operating system. If the 
error occurred while reading a collation file, terminate 

til.FP\l9h the abort routine of the operating 

block serial number 
the original input or a collation 
through the abort routine of the 

allow the user to 
collation file errors. allow 
for general read 

5-13 

the 
the 
is 

records during a sort 

DD25 



SPECIAL-NAMES . SPECIAL-NAMES 

Assi9nment Control 

into an even or 

borrow tapes for collation files • 

... i;phe n represents a numeric value from one to 13. The sort 
proc~ss borrows up to n tapes for collation files during 

OPEN 
Rewind 

Yes 
Yes 
Yes 
Yes 
Yes 

No 
No 
No 

tapes are released following the final 

control 

specify handling of the input file while 
The user is responsible for selecting 
on file control cards. Acceptable values 

CLOSE 
Rewind Lock 

Yes No 
Yes Yes 

No No 
Yes No 
Yes No 
Yes Yes 

No No 
Yes No 

5-14 DD25 



SPECIAL-NAMES SPECIAL-NAMES 

;::~i~!~l~~~jcpnff~ols the use of the output file as a collation file 
gpt:'.~n<f ~: ~9~~il't9: p):ocess •. Normally, the . output file is so used • 

. ij9!t~¥~f:i ~~ t:.~~ ou-teut file is nqt a tape device, tbis parameter must 
··b.e>'U:sed :,:.9 '.j.p;rt!t.pit> it.s use as a. co:U.ation file. Acceptable values are: 

·········••:•:••:••:•••:•••······•·8········~~·· fiuadi. ·~: t1~e ·.t.b.e<output g).e aei a ¢onation working file. 

•·· 5 l!lj:!j~ >·~ ~l/~t·u$~.•.••the .6u~put:•·fi~~·.a$· a collation wor~i~g ·file. 

•iiiil~~!~) ~:~t ~;t:e• R~si!~~nin~:~ontrol 

!W~t$, of •t}te values ·S, 6 1 or 7 will prevent collation upon the output 
filie~\!f one of these values is used and Field-7 is not one (1) ., this 
<:ipt~pnw:iil override Field-7 and an error message will be printed. 

Field .... 9: Borrow .Memory Control 

¢}},~~ par:.afueter allows the dynamic allocation of free memory to a sort 
pfq¢e~s at p:r::ogram execution. The free memory area is used for control 
t.able$and buffers in addition to the area allocated by the $LIMITS 
card.·· 
Thi.s parameter is meaningful only in a $ LOWLOAD environment (see the 
Control Cards manual}. Acceptable parameter values are: 

No memory is borrowed for the sort process. 

- The n represents a numeric value of 1 to 262,144 memory 
locations. The sort process borrows n words of memory (or 
any available portion of n) at program execution. Memory is 
borrowed in 1024-word modules. All borrowed memory is 
released to the· operating system .following the final 
collation phase. 

5-15 DD25 



SPECIAL-NAMES SPECIAL-NAMES 

are 
sort 
the 
not 

><> l\ .. ~l~~i :::: ·ii=· / ::,· ··.··· ···,=···········,· >•······.·····:. 

· ··•=•·•••=•••l•riu++ ....• i•••·••i$~l~·••••=•"Po.rmal proc,~$·s_ing,« 
:··.::::~:::::):~:~::~:~:;~::::\) 

);l'' 2 ~p.~~gEf=specia.l FLR processing. If this option is used, the 
~A~~~~<i'Pl:'Ogrammust he set up as it would be for a FLR 

,,,, ,,, .. , eB%~¥ 'Jl'lie, s()rt :i.nput_, >ltlust. be specified through a USING 
· ,,= 19+-~~~V Neither the input file, nor the sort file, nor the 

·· · ·. ·.· ·= 9:g1:,pµ~= file may be described with the phrases •APPLY SYSTEM 
pT~J:)AROt or 'APPLY VLR' in the I-0-CONTROL paragraph. None 
p~ the files may contain different sized multiple record 
q~~o;-:i.ption$. All of tije record descriptions must be started 

· wl..t.h.?the item FILLER PIC X(6). This entry allows for the 
existence of the record control word which appears on each 
log;i.cal record,. The comparison coding which the compiler 
9~1;).&.fates is thereby properly aligned with the described key 

·•·• f$e1ds .. 

Fi~lfrl~ll.; Mu.ltiele Reel File Control (OJ?tional) 

Tfi~s p~r.amete~ forces automatic 
un,+a.bel~d_ .. inl'ut . files. If used, 
end79f'-ree1 :f:Ol'.'both sort and merge 
be i.ndi9at~<ip~lythrough operator 
t;i;~f Aqpept .. aJ::>:te parameters are: 

oor 
null' - As.siline normal processing. 

reel switching for labeled or 
reel switching is forced at 

input files. The end-of-input can 
intervention at reel switching 

l - Assume input is on multiple reel unlabeled files . 
:•::2 ;:::~: A.s$µirte input is on multiple reel labeled files . 

,·· .·. · .. :·.·.«:·:: .. :::_:··.-::.:_::.::··:··.···. 

li'.t~i49$~f No· Option curre~tly Imflemented 

INPUT-OUTPUT SECTION IN THE ENVIRONMENT DIVISION 

The Input-Output Section in the Environment Division is optional. This 
section is subdivided into two paragraphs; the FILE-CONTROL paragraph and the 
I-0-CONTROL paragraph. If the Input-Output Section is included in a source 
program, the FILE-CONTROL paragraph header is required and the I-0-CONTROL 
paragraph is optional. 

5-16 DD25 



FILE-CONTROL FILE-CONTROL 

FILE-CONTROL Paragraph 

The FILE-CONTROL paragraph names each file used in the program and 
identifies the type of peripheral device on which each file is stored. In 
addition, each file may be assigned to a particular input or output peripheral 
device. The paragraph can be written in any of the following three formats. 

Format l: 

FILE-CONTROL. COPY library-name 

[ REPLACING word-1 BY { ~~~~;=1-1 } 
~ identif ier-1 

[ , word-3 BY { r~~~;!l-2 }J· .. ] . 
identif ier-2 

Format 2: 

FILE-CONTROL. 

{ SELECT [ OPTIONAL] 1!!!1~1 file-name-1 t~N'~~~R ~~~~=;~~J 
ASSIGN TO [ integer-1 J f ile-code-1 [ , f ile-code-2 ] ••• 

MULTIPLE 

[RESERVE { :: teger-
2 

} ALTERNATE 

5-17 DD25 



FILE-CONTROL 

[ {

FILE-LIMIT IS } 

I FILE-LIMITS ARE { 

data-name-1} 

literal-I {

THRU } 

THROUGH . 

FILE-CONTROL 

{
data.-.· name-2} 

literal-2 

[
' { data-name-3} 

literal-3 { 
THRU } 

.THROUGH {
data-name-4} ] •. ·] 

literal-4 

[· { SEQUENTIAL}] ACCESS MODE IS 
RANDOM 

[, PROCESSING MODE IS SEQUENTIAL] 

[, ACTUAL KEY IS data-name-5 J . } ... 
.. 

Format 3: 

FILE-CONTROL. 

{SELECT f ile-name-1 

ASSIGN TO [ integer-1 J 

Syntax Rules: 

f ile-code-1 [ , file-code-2 J . } ... 

1. The FILE-CONTROL paragraph is required when the INPUT-OUTPUT SECTION 
header is present. 

2. The FILE-CONTROL paragraph must begin with the paragraph-name 
FILE-CONTROL which must be followed by a period and a space. 

3. When Format l is used, the COPY library-name phrase is required. The 
'library-name' must be identical with the name of the desired te~t on 
the library. 

4. In Format 1, a word is any COBOL word. 

5. The OPTIONAL phrase is allowed only for input files accessed in a 
sequential manner. It is required for sequential input files that are 
not necessarily present each time the object program is executed. 

6. Each file described in the Data Division must be named once and only 
once as a file-name in the FILE-CONTROL paragraph following the 
keyword SELECT. 

7. In Format 2, each selected file must have a f~le description entry in 
the Data Division. 

5-18 DD25 



FILE-CON'rROL FILE-CONTROL 

2/77 

8. In Format 3, each selected file must have a sort~N:~t79$ file 
description entry in the Data Division. Sort files ormerge files1 
those whose data descriptions begin with SD entries in the Data 
Division, must be named and assigned using Format 3. 

9. Integer-1 and integer-2 must be unsigned nonzero integers. 

10. Integer-1 is treated as documentation only since multiple devices are 
assigned using system control cards. 

11. Integer-! may not be specified when file-code-2, file-code-3, ••• , is 
also specified in the ASSIGN phrase. 

12. Multiple file-codes in the ASSIGN phrase are treated as documentation 
only. 

13. File-code-1, ••• ,must be a two-character word consisting either of 
two letters (A through R, T through Z) or of one letter and one digit 
(0 through 9). File-codes beginning with the letter S should not be 
used in programs that utilize the sort o:r metge<process. These 
file-codes, which include Sl, S2, ••• , SA, SB, ••• , SZ, have a special 
meaning in the sort §.l;>itle#ge/operation. The code specified must not 
be a COBOL reserved word. The file-codes for each file named in a 
SELECT sentence must be unique within the program. When the object 
program is submitted for execution, it is accompanied by peripheral 
assignment cards which are used to specify the peripheral device for 
each file. The file-code in the peripheral assignment card must be 
the same as that assigned in the source program. Each of the object 
program's files is associated with the designated peripheral device 
when the operating system matches the file-codes. 

14. The MULTIPLE REEL option must be specified whenever the number of 
magnetic tape devices might be less than the nilmber of reels in the 
file. 

15. The MULTIPLE UNIT option is treated as documentation only. 

16. The RESERVE phrase allows the user to modify the number of 
input-output areas allocated by the compiler. The RESERVE integer 
ALTERNATE AREAS phrase indicates that the specified number of buffer 
areas are to be allocated in addition to the main buffer area reserved 
by the COBOL compiler. The value of integer-2 must be less than 256. 
If the RESERVE NO ALTERNATE AREAS phrase is specified, one buffer area 
is allocated. If the RESERVE phrase is omitted, the compiler 
automatically allocates one alternate buffer area in addition to the 
main buffer area for input-output. 

17. The FILE-LIMIT(S) phrase is treated 
FILE-LIMITS are determined by the 
allocated to a particular file. 

as documentation only. The 
amount of file space actually 

18. The ACCESS MODE and PROCESSING MODE phrases must be given for mass· 
storage files. 

5-19 DD25A 

I 



FILE-CONTROL FILE-CONTROL 

General Rules: 

1. For a description of the COPY function, see Section VIII, the COBOL 
Library. 

2. \\!~g#-\~\~~I~ ~~~n F() in9r~. tha~ .one program, .the OVERLAY phrase is used 
:' #;(:) ·4pq~9~~e ~~a.~{ ~b.e Qont;r9J.; info,rma.tion for ,the file is to .be used in 
~~>~~~~~~¥,mllX~PAl\ll\ent. The9verlay.area is constructed so that the 
:B#:±~,E~P. R7 A\f~r+~yed an.d t:.bep· be .. re~erred to as it was pr,ior to bein9 

> f?)t:~et~¥~~~ J[9~r.elFaxnPle, a. ,fil~ can b~ opened, then overlayed, and then 
. :t;<~.;!Jtm~'i eA/'WithqQt first closing it and then .· opening it again. To 
~g$;>,~P++,~ ~bis · .. overlaying feature, . the . OVERLAY phrase must be 

· ~P:~'F~t~m4 lp. a SELECT sentence for each pro gr am in which this file is 
9g~p.f ~;l{Q~~t for that program that initially references . the file. 
Npt~<~b:a.;t. ~n. 1 overlay flle • cjoes not generate a 'normal' file control 
9;9C1f. t{~th~t' the locatiotr syplbol {or symbolic address of . the file 
c9n,tp9l. in,fonnation) is po~.~tioned within the correct Labeled Common 
Sto():t'~g7<;re.::1. by th,e com}?iler. The file properties (including any RERUN 
,p:t);~N~~e~) of· ~:J.l files usin<1, this feature must be identical. 

3. The file-name supplied as file-name-1 in each SELECT sentence must be 
exactly the same as the file-name that appears in the file description 
entry or sort.;..merge file description entry in the Data Division, 
e)tc;~JP.~~l)en, the RENAMING phrase is used. When RENAMING is used, the 
AP.'~fi7~q~tgtion entry. associated with file-name-2 is app.lied to the 
·;*le7t'l~,Xl\e. ~pecified as fil.E:l-name-1 in this SELECT sentence. The data 
<;11.~sc~i~tiqn entry associated . with file-name-2 includes its file 
desc;.ipt.ion entry and associated record description entries. Because 
of this; the file-name specified as file-name-1 must not be described 
i~ ~E:l File Sec;tion of the Data Division. The file description for the 
!:'~P.~rtied file must not be the last file description in the File 
S~pt;:*()?l•Also, the SELECT sentence for the file-name specified as 
file ... naine-2 must not contain a RENAMING phrase. The renamed file must 
;t()t hay~a sort-merge file description. The use of the RENAMING phrase 
d()'S ll.Pt.·im.1;>].Y the use of the SAME AREA phrase of the I-0-CONTROL 
p~;a,,,-7~J;>l1. J:!f.\<;h file nam~d. in each SELECT sentence must have a unique 
l'l~~~ ~~~ t};).~ ~~A?UN~>ph~ase is used, the COPY option on the $ COBOL 

> R~~f.,:.m,~~M e±~P })e tt4'~ii·a~<l, ~he LIBCPY option must not be used. 

4. Each file named in a SELECT sentence must be assigned to a peripheral 
device using the ASSIGN TO phrase. 

5. ~9~rn~l.~~; $~,be .ls allocated in the Labeled Common storage area for 
¥~1?9-t,nf.>,}l-tP~~ p,p.:f~~r areas. However, if the FOR BLANK COMMON phrase is 
'~~c:fF~,a; ·711.~ bp..~f7r space for the file is allocated within Blank 
&P~91l ~¥AX'~S:~ r~t,)l~.r thaniri.Labeled Common storage. This feature is 
'~~fY,tjW'b.e~ l.~a.Ci;i,p;~ ~a;-ge ()bject proqrams when a limited amount. of 
mem9p)' .ts<ay~.l-3..<U?lc=y In this.case, the.Blank Common area can be shared 
~.i.¥P. ·j.llfil· +9~~'f: P¥,,Jncludin9 the variable-field option on a $. LOWLOAD 

.. P~~g.~ tt '1;9~ >~ .~9W~R~D o:f>tion is used, . the maximum . size of Blank 
\'S9~~ ~t;tst. ,~~ ~P:filctfied on the $. LOWLOAO ·card. The octal length of 
#P.~, ~l'-'J:).lc. ·c9~(;m. J3'tpt>age area is. printed on the preface page of each 
·$~ ~i. .. ~t~gt·~~g?;- to ,"the description of the $ LOWLOAD. card in the 

. :,G.en•~•J. .iOa.4.e~,·lf@f~;p•nP~ •.. zn~ual. 

5-20 DD25 



FILE-CONTROL FILE-CONTROL 

~be ~()~ ~~.J<. COMMON phrase cannot be used in any prog;t"a.Il\ that 
·+:@eq.ii~~I: s~~~ntation. 

-~li'i\:~~.(tio~ ... ~~!l'lie can. be .use(j · ,_,it~ ... iruiependent programs 

1•1n~ .• ~!!~i~~;~!=:~~~~~::n;m=~j;:~: ~~trq o=~ 
-;~9 B~9 9; inox-~·progr:~~<·~~ to be assiqnedto Bl().nl<. Conunon storage, the 
~·+±f;l.= #'tµ~M P~>·sP..<~~sf9n'-~· ;~ ~~c::h p:.:<:>q;~ .~n wp.,;911 +t ·. }~ .. common. An 

•••••111•1•1••11111•1,~~~~p~ is 

6. The ACCESS MODE IS phrase should not be used for non-mass-storage 
files but is required for mass storage files. When ACCESS MODE IS 
SEQUENTIAL is specified, the mass storage logical records are read or 
written sequentially. The user need not specify the actual key 
(through the ACTUAL KEY IS phrase) when the access mode of a mass 
storage file is sequential. When ACCESS MODE IS RANDOM is specified, 
the actual key must be specified in the ACTUAL KEY IS phrase. When the 
access mode is random, the mass storage logical records are read and 
written randomly using the data-name contents of the actual key to 
locate or place the records. 

7.. The PROCESSING MODE IS phrase has no meaning for non-mass-storage 
files but is required for mass storage files. When PROCESSING MODE IS 
SEQUENTIAL is specified, the mass storage logical. records are 
processed in the order in which they are accessed. Thus, if logical 
records are accessed randomly, the records are processed in the order 
of access. 

8. The ACTUAL KEY IS phrase has no meaning for hon-mass-storage files. 
For mass storage files, the ACTUAL KEY phrase is optional if access is 
sequential and is required if access is random. The ACTUAL KEY, given 
as data-name-5, must.l:>e ~ ~;ingle-precision binary integer with usage 
described as USAGE COMP~l. Furthermore, the ACTUAL KEY must be 
described in the Data Division as either a level 01 or level 77 entry 
in the Working-Storage Section. When the access mode is random, the 
user can obtain records sequentially by incrementing by one the value 
of the data-name associated with ACTUAL KEY. 

5-21 DD25 



FILE-CONTROL FILE-CONTROL 

Special Considerations: 

I: 
1. 

I 

I 

2/77 5-22 DD25A 



I-0-CONTROL I-0-CONTROL 

I-0-CONTROL Paragraph 

The I-0-CONTROL paragraph defines special control techniques to be used in 
the object program. Input-output techniques, the points at which rerun is to be 
established, the memory area that is to be shared by different files, and the 
location of files on a multiple file reel can be specified in the I-0-CONTROL 
paragraph. The paragraph can be written in either of the following two formats~ 

Format l: 

I-0-CONTROL. COPY library-name 

[REPLACING word-1 BY lword-2 l 
literal-1 
identif ier-1 

[. word-3 BY lword-4 l J literal-2 · 
identifier-2 . 

... ] . 
Format 2: 

file-na!lle-2] ••• ] 

f ile-name.-s 

5-23 DD25 



I-0-CONTROL I-0-CONTROL 

[sAME [{rQ1$::)J AREA FOR file-name-9, file-name-10 

[, file-name-11, file-name-12] ••• J 
[MULTIPLE FILE TAPE CONTAINS file-name-13 [POSITION integer-2] 

[, file-name-14 [POSITION integer-3 J ... ] J 
Syntax Rules: 

2/77 

1. The I-0-CONTROL paragraph is optional. If present, it must begin with 
the paragraph-name I-0-CONTROL which must be followed by a period and 
a space. 

2. When Format 1 is used, the COPY library-name phrase is required. The 
'library-name' must be identical to the name associated with the 
desired text on the library. 

3. In Format 1, a. word is any COBOL word. 

4. ,:l\I~+..¥ PA#A$~$ may be separated by a semicolon. 

5. A file-name that represents a sort file ,OJ:.' l1lerge file cannot appear in 
a RERUN phrase or a MULTIPLE FILE phrase. 

6. In . the SAME AREA phrase, SORT and :;$02,T~MERGE are equivalent. 

7. A file-name that represents a sort file pr met~e fil¢ must not appear 
in the SAME sentence unless the SORT, SQRW ... ~RGE, or RECORD option is 
used. 

8. The four forms of the SAME phrase (SAME AREA, SAME RECORD AREA, SAME 
SORT AREA, :$~, :$QRTHBall':.:,:~RlUil are considered separately in the 
following: 

More than one SAME sentence may be included in a program. However: 

a. A file-name must not appear in more than one SAME AREA phrase. 

b. A file-name must not appear in more than one SAME RECORD AREA 
phrase. 

c. 

5-24 DD25A 



I-0-CONTROL I-0-CONTROL 

d. 

e. 

If one or more file-names of a SAME AREA phrase appear in a SAME 
RECORD AREA phrase, all of the file-names in that SAME AREA 
phrase must appear in that SAME RECORD AREA phrase. However, 
additional file-names not appearing in that SAME AREA phrase may 
also appear in that SAME RECORD AREA phrase. The rule that only 
one of the files mentioned in a SAME AREA phrase can be.open at 
any given time takes precedence over the rule that all files 
mentioned in a SAME RECORD AREA phrase can be open at any given 
time. 

If a file-name file 

or 

9. Each file specified in the MULTIPLE FILE phrase must be named in a 
SELECT sentence. 

General Rules: 

2/77 

1. For a description of the COPY function, see Section VIII, the COBOL 
Library. 

2. 

3. 

5-25 DD25A 





I-0-CONTROL I-0-CONTROL 

4. 1it1i;}!ll=~l~a1~:; ==i~t~r~~:v~~e: f:i:. se~!~~ 
•:•1111:111·:~11:1111 •:i:i.: 1•1111111•·•••:••i•~~i1~4••••·····~~~~~~········1~11::•.•11:~~~~·~·~4.·•J••············· ... ··.······•·%···· 

··1:!l:!l!l:~!•i•![! li•i··•!i•i••!l,ll.ll!il!!!l~~·~······:~£~.~·~·:••••••~·£·~·~··••:!•~i'.~·~········~·~·········~~·~·····(·~d~ds· <·t·9·2·.o a.c·b chiira·cters·) . 

:ili;l:ilflilii~Bili~~~~!~Sjfu:~f~~s~n~:~ 

2/77 5-25.1 DD25A 



I-0-CONTROL 

>a'~./ :·::,··\mft.~i\·.::t~~~~4~bs·mo~@Tw111 he a1N.Att~·. Ht®.· oENsrrx. 

••:•::·•···~::~:·••• :···•·1·:1:•:1~~~·~······•:1~!gl~~1:~·:•••··~i~•t••······be·· STANDARD'• 

I-0-CONTROL 

'.ii~~~\'! ~~~~)!\~i~~·M . STANt>AaD FORMAT phrase is not used, these 
~ta~A,l:fi' mal'hEil ~pecified in the appropriate clause(s) in the FD 
E!l'lt.~g fp:t: ·tp~ fif:ta~ .·If the APPLY SYSTEM STANDARD FORMAT phrase is used 
an,~ -pl).e- 'RECO~DIN(; MODE, BLOCK CONTAINS' RECORD CONTAINS , .. or LABEL 
?l.a\ls~~ :are ~l.s9 ~pecified. in the FD entry for the file, there must be 
:tio<d~viation from the system standard format in the FD entry clauses. 

5. When.the APPLY VLR FORMAT phrase is specified, the logical records of 
the file are preceded in the buffer by a record control word that 
cont.a.ins the record size (in words) and other control information. 
Also, the APPLY VLR phrase implicitly specifies that the recording 
mqde is binary. Depending on what is specified in the BLOCK CONTAINS, 
·RE:CORP CONTAINS, and LABEL clauses of the FD entry for the file, the 
]\PPLY}vLR FORMAT>specification may or may not apply to a file that 
conforms to.the system standard format. 

6. The RERUN phrase is used to cause checkpoint memory dumps to be 
written. If roN file•name-7' is specified, the output device allocated 
.to file-name ... 7 receives the checkpoint dump; otherwise, the output 
devj.cEf allocated to file•name-8 receives the checkpoint dump. If 'ON 
'£;$+e##();Ine-7• is specified, file-name-8 may be either an input or an 
outt#:l.'t. .fi.le •. The 'number of records specified by integer-1 may not 
e*cEHi)d 25:0.,D'OO. The output device must be opened as an output file at 
eyery >poin·t in the program where a READ or a WRITE statement 
references ;f;ile-name-8 so that the output device can receive the 
C:p.eekpoint dump. 

7. The SAME AREA phrase specifies that two or more files that are not 
sort files or merge files are to use the same memory area during 
processing. The area to be shared includes all storage areas (and 
alternate areas) assigned to the files specified. It is not valid, 
therefore, to have more than one of the files open at the same time. A 
file-name must not be used in more than one SAME AREA phrase. 

8. The SPME RECORD AREA phrase specifies that two or more files are to 
use the same memory area for processing the current logical record. If 
the files named in the SA.ME RECORD AREA phrase are not also named in a 
SAME AREA phrase, then all the files named in the SAME RECORD AREA 
phrase can be open at the same time. A logical record that is 
processed in the 'Same Record Area' is considered to be a .logical 
record of each opened output file that is named in this SAME RECORD 
AREA phrase. In addition, a logical record that is processed in the 
'Same Record Area' is considered to be a logical record of the most 
recently read input file that is named in this SAME RECORD AREA 
phrase. A file may be specified in only one SAME RECORD AREA phrase. 

9. If the SAME SORT AREA phrase or the SAME SORT-MERGE AREA phrase is 
~:s~~L a.t least one of the file-names must represent a sort file or 
Jl\~rg~· ~tie~ Files that do not represent sort files or merge files may 
also be named in the phrase. Storage is shared as follows: 

The Sl\.ME SORT AREA or SAME SORT-MERGE AREA phrase specifies a memory 
area which will be made available for use in sorting .or merging each 
sort file or merge file named. Thus, any memory area allocated for the 
sorting·or J1'erqirig of a sort or merge file is available for reuse in 
sorting o,t' merging any of the other sort or merge files. 

DD25 



I-0-CONTROL I-0-CONTROL 

In ·addition, memory areas assigned to files that do not represent sort 
files p:if :!tl\~i'JJ~ :f~Jr~S> rn'1~ ~.e> (lllocated as needed for sorting or. merging 
t}'i.e ~()rt: f~les 9~: m¢:;!::'<J$: tJ;;'1f!$ named in the SAME SORT AREA or . SAME 

<:$QRWs~R.GS A~l\ phrase. 

Files other than sort files or merge files do not share the same 
memory area with each other. If a user wishes these files to share 
the same memory area with each other, a SAME AREA or SAME RECORD AREA 
phrase naming these files must also be included in the program. 

During the execution of a SORT Ot'<·MER¢.E.: statement that refers to a 
sort file p~ mt:1tg~ fUe/ named in the SAME SORT AREA or> SAME· SO,R'!'~MERG:S 
\~Mi:/phrases, any non-sort ..... ~et(je files named in these phrases must not 
be open. 

10. The MULTIPLE FILE phrase is required when two or more files share the 
same reel of tape. Only those files on a multiple file tape that are 
referenced elsewhere in the source program need be named in a MULTIPLE 
FILE phrase. If all file-names on the tape are listed consecutively, 
the POSITION option may be omitted. If any file in the sequence of 
files on the tape is not included in the MULTIPLE FILE phrase, then 
the position relative to the beginning of the tape of each file named 
in the phrase must be given. 

~+, ~~>.files on a multiple file tape mµst either have labels present 
:gr,: baV:e ·labels omitted. Each MULTIPLE FILE phrase describes one 
multiple file tape. There can be any number of multiple file input or 
output tapes (each having a corresponding MULTIPLE FILE phrase); 
however, all files listed for each tape must be contained on a single 
reel. Qnly one file of a multiple file tap€!. can be open (it anx> giveil 
1::.~rne. ~p~~ .. ~fl~ip9J?Tl:Q?lA.I.;. t~l.~~l. ('t.}lo~~ sf>:~9ified C1s .. supp; i11 ~ S~:[J~C'l' 

Special Considerations: 

2/77 

1. lrtl•r~~~•ffl~i1~~~1~~,11~wt;~~r::~: h~:~0~);q~;~;1: 
20 11••l!l•!:Rltd~~i~l~~i~~ff~t ~M~£:s and 

3. At program execution, the unique file-codes associated with the files 
listed in a given MULTIPLE FILE phrase must be equated to the same 
logical unit designator using the appropriate $ TAPE file control 
cards. 

5-27 DD25A 

* I 





SECTION VI 

DATA DIVISION 

DESCRIPTION OF THE DATA DIVISION 

The third division of a COBOL source program is the Data Division and it is 
required. It is used. to describe data that the object program is (1) to· accept 
as input, (2) to manipulate, (3) to create, or (4} to produce as output. Data to 
be processed can be that which is contained in files and enters or leaves the 
internal memory of the computer from a specified area or areas, data which is 
developed internally and placed into intermediate storage or working-storage or 
placed into specific format for output reporting purposes, or constants which 
are defined by the user. 

Organization of the Data Division 

The Data Division is subdivided into three sections~ the File Section, the 
Working-Storage Section, and the Report Section. 

The File Section is used to define the contents of data files stored on 
external media. Each file is defined by a file description entry followed by a 
record description or a series of record descriptions. 

The Working-Storage Section is used to describe records and noncontiguous 
data items which are not part of external data files but are developed and 
processed internally. It also describes data items whose values are assigned in 
the source program and do not change during the execution of the object program. 

The Report Section is used to describe the content and format of reports 
that are to be generated. 

Structure of the Data Division 

The Data Division is prepared in accordance with the reference format 
described in Section III. The Data Division is identified by and.must begin with 
the division header DATA DIVISION followed by a period and a space. The sections 
of the Data Division are optional only if the functions filled by each are not 
required to describe the data for the object program. The general format of the 
Data Div1sion is given below. 

6-1 DD25 



General Format: 

DATA DIVISION. 

FILE SECTION. 

WORKING-STORAGE SECTION. 

REPORT SECTION. 

The names of the sections in the Data Division are fixed and their required 
order of appearance is as shown. The section header for the File Section is 
followed by one or more sets of entries composed of file description entries or 
sort-rnel;'gE§ file description entries which are followed by associated record 
description entries. The section header for the Report Section is followed by 
one or more sets of entries composed of report description entries which are 
followed by associated report group description entries. The Working-Storage 
Section header is followed by data description entries for noncontiguous items, 
if any, followed by record description entries. 

STRUCTURE OF A RECORD DESCRIPTION 

A record description consists of a set of data description entries that 
describe the characteristics of a particular record. Each data description entry 
consists of a level-number followed by a data-name (if required), followed by a 
series of independent clauses as required. A record description has a 
hierarchical structure; therefore, the clauses used with an entry may vary 
considerably, depending on whether or not the entry is followed by subordinate 
entries. The record description structure is further defined in the Concept of 
Levels paragraph in Section III. The elements allowed in a record description 
are ·shown in the data description skeleton which follows in this section. 

FILE SECTION IN THE DATA DIVISION 

Th~ !ile Section contains file descriptions (FD entries) , sort file or 
m$l:'g$ filei descriptions (SD entries), and record descriptions (level-number 
entries) for both label and data records in files and for data records in sort 
files. Label records and data records are defined in the same manner but fixed 

. ~~~e > .·p~Vj~ 9~7H.< ~~~\9.?'.\~d. to o~i;tClin label record . items to permit the 

. ~pJ?#;t;799;t::..P\it <9Y~~}~ll1: tq .perf9rI11 special operations on certain items of label 
{#:~:¢~:##Jli~¥ All record description entries pertaining to label records and data 
records of a file must inunediately follow the FD entry for the file. The FD and 
SD entries represent the highest level of organization in the File Section. 

The File Section header is followed by a file description entry or a 
sort+:~i¢:g~: file description entry. A file description entry consists of a level 
indicator (FD) , followed by a data-name (the name of the file) and a series of 
independent clauses. The clauses specify: 

• <wn~ m®#~t £ii wl).~c~ 4at.a ts recorded on the f il.e~ 

• The size of the logical and physical records. 

• The names of the label records contained in the file and values of 
label items. 

6-2 0025 



• The names of the data records of which the file is composed. 

The entry is terminated with a period. 

For sort or merge file descriptions, the level indicator SD is followed by 
a data-name (the name of the file) and a series of independent clauses. The 
clauses specify the name, size, and null\ber of data records in the sort or merge 
file. Note that a sort file is a set of records to be sorted or merged ·using a 
SORT or MERGE statement (in the Procedure Division). Therefore, no label 
procedures are under the control of the user and the rules for blocking and 
internal storage are peculiar to the SORT or MERGE statement. 

WORKING-STORAGE SECTION IN THE DATA DIVISION 

Working-storage is that part of memory set aside for the 
processing of data. The difference between working-storage and file 
that working-storage concerns the memory requi+ements for the 
intermediate data results while file storage concerns the memory 
for the storage of each record of the file, 

intermediate 
storage is 
storage of 

requirements 

The Working-Storage Section consists of the section header, followed by 
data description entries for noncontiguous working-storage data items and record 
description entries, in that order. Each Working-Storage Section record-name and 
each noncontiguous item name must be unique since they cannot be qualified. 
Subordinate data-names need not be unique if they can be made unique through 
qualification. 

The initial value of any data item in the Working-Storage Section except an 
index data item is specified by using the VALUE clause with the data item. VALUE 
can be specified only in terms of homogeneous characters (characters having the 
same usage). Therefore, VALUE cannot be specified in a group item containing 
elementary items that hav.e different usages. All of the rules for the expression 
of literals and figurative constants apply and the use of the VALUE clause 
cannot contravene these rules. The size of a literal used to specify an initial 
value.of an alphabetic or alphanumeric item can be equal to or less than the 
size specified in the PICTURE clause of the associated data entry, but the size 
of the literal cannot be greater than that. When the size of the literal is 
less, the normal rules for a MOVE statement for the literal apply. The size of a 
literal used to specify an initial value of a numeric item may be greater than 
the size specified in the PICTURE clause of the associated data entry, but the 
literal must not have a value that would require the truncation of nonzero 
digits. The initiai value of index data items in working-storage cannot be 
predicted. 

Noncontiguous Working-Storage 

Items and constants in working-storage that are not related to one another 
in a hierarchy need not be grouped in records if they . require no further 
subdivision. Instead, in working-storage, they are classified (and defined by 
the user) as noncontiguous eleme.r' <~L.J. items. Each noncontiguous elementary item 
is defined in a separate da~d description that begins with the special 
level-number, 77. For each level 77 data description entry, the data-name of the 
item must be speoified and a PICTURE clause must be supplied. Other data 
description clauses are optional and can be used to complete the description of 
the item if necessary. Howeve'r, the OCCURS clause is not meaningful in level 77 
entries and will cause a compilation error if used. 

6-3 0025 



Working-Storage Records 

Data elements and constants in working-storage that are related to 
another in a hierarchy must be grouped into records according to the rules 
the formation of record descriptions (data description entries) • All of 
clauses used in a data description entry including REDEFINES, OCCURS, and 
may be used in a working-storage record description. The skeletal format of 
Working-Stor~ge Section is given below. 

WORKING-STORAGE SECTION. 

77 data-descripti6n entry 
88 condition-name-I 

77 data-description entry 
01 data-description entry 

02 data-description entry 

66 data-name-n RENAMES data-name-m 
01 data-description entry 

02 data-description entry 
03 data-description entry 

88 condition-name-2 

REPORT SECTION IN THE DATA DIVISION 

ohe 
for 
the 

COPY 
the 

A report represents. a pictorial organization of data. To present a report, 
the physical aspects of the report format must be differentiated from the 
conceptual characteristics of the data to be included in the report. In defining 
the physical aspects of the report format, consideration must be given to the 
width and length of the report medium, to individual page structure, and to the 
type of hardwaie device on which the report is to b~ written. Structure controls 
are established to ensure that the report format is maintained. 

To define the conceptual characteristics of the data (the logical organi
zation of the report itself), the concept of level structure is used. Each 
report may be divided into respective report groups which, in turn, are 
subdivided into a sequence of items. Level structure permits the user to re~er 
to an entire report-name, a major report group, a minor report group, an 
elementary item within a report group, etc. 

To create the report, the approach taken is to define the types of report 
groups that must be considered in presenting data in a formal manner. Types ~ay 

be defined as HEADING groups, FOOTING groups, CONTROL groups, or DETAIL print 
groups. A report grotip describes a set of data that is to be considered as an 
individual unit, regardless of its physical format structure. The unit may be 
the presentation of a data record, a set of constant report headings, or a 
series of variable control totals. The description of the report group is a 
separate entity. The report group may extend over several actual lines of a page 
and may be of any type described above which is necessary to produce the desired 
output report format. 

6-4 DD25 



The Report Section consists of two types of entries for each report; one 
describes the physical a·spects of the report format, and the other describes 
conceptual characteristics of the items which make up the report and their 
relation to the report format. These are: 

• Report description entry {RD). 

• Report group description entries. 

6-5 DD25 



* 

FD SKELETON FD SKELETON 

File Description - Complete Entry Skeleton 

The file description specifies information concerning the physical struc
ture identification, and record-names that apply to a given file. The general 
formats of the FD entry, syntax rules for the complete entry, and special 
considerations for the entry follow. The individual clauses are described later 
in this section. 

Format 1.: 

FD file-name COPY library-name 

[REPLACING word-1 { 

word-2 } 
BY literal-1 

identif ier-1 

word-3 BY { ~~~~;!1-2 } J ... J . 
· identif ier-2 

Format 2: 

2/77 

FD file-name 

[BLOCK CONTAINS [integer-1 TO J integer-2 (
RECORDS }] 

CHARACTERS 

[
DATA (RECORD IS } data-name-1 [, data-name-2] • • • J 

RECORDS ARE 

C 
RECORD IS . } {STANDARD 

~ OMITTED 
RECORDS ARE ~~R~±j'l).~~j'~L_i 

[RECORD CONTAINS [integer-3 TO J integer-4 CHARACTERS J 

[{

REPORT IS } 

REPORTS ARE 
report-name-! [, report-narne-2 J ... J 

6-6 DD25A 



FD SKELETON FD SKELETON 

[vALUE ~ data-narne-5 IS { 

literal-1 } 

data-name-6• 

[ , data-narne-7 IS 
{

literal-2 } J 
data-name-a• ] 

Syntax Rules: 

1. The level indicator FD identifies the beginning of a file description 
and must precede the file-name. 

2.. The clauses following the file-name in Format 2, except for the LABEL 
RECORD(S) clause, are optional and the order of entry is not 
significant. 

3. The FD entry must be terminated by a period. 

4. The DATA RECORD{S) clause and the REPORT(S) clause must not both 
appear in the same file description entry. 

General Rules: 

1. For a description of the COPY function, see Section VIII, the COBOL 
Library. 

2. Format 1 is used when the COBOL library contains the file description 
entry; otherwise, Format 2 is used. 

6-7 0025 



SD SKELETON SD SKELETON 

Sort+~~:g~::\ File Description - Complete Entry Skeleton 

The sortiP.lit§:~ file description specifies information concerning the 
physical structure, identification, and record-names of the file to be sorted::ot: 
:m~::¢:q~;(J;~ The general formats of the SD entry, syntax rules for the complete ·entry, and special considerations for the entry follow. The individual clauses 
are described later in this section~ 

Format 1: 

SD file-name COPY library-name 

[REPLACING 

[ . word-3 BY { ~~~~;!1-2 } ] 
identif ier-2 · 

Format 2: 

SD file-name 

[ . DATA 
{

RECORD IS } 
data-name-1[ 

-- . RECo'RDS ARE 

]. 

data-hame-2] ••• J 

[.RECORD CONTAINS [integer-! TO ] integer-2 CHARACTERS 

Syntax Rules: 

]. 

1. The level indicator SD identifies the beginning of the sort-merge file 
description and must precede the file-name. 

2. The clauses following file-name in Format 2 are optional and their 
order of entry is at the discretion of the user. 

3. The SD entry must be terminated by a period. 

6-8 DD25 



SD SKELETON SD SKELETON 

General Rules: 

1. For a description of the COPY function, see Section VIII, the COBOL 
Library. 

2. Format 1 is used when the COBOL library contains the sort-merge file 
description entry; otherwise, Format 2 is used. 

3. The file-name used in an SD entry can be referenced only in SORT, 
M6::tiG!!i and RETURN statements of the Procedure Division, except when it 
is used as a qualifier. 

6-9 DD25 



RD SKELETON RD SKELETON 

Report Description - Complete Entry Skeleton 

The report description entry contains information pertaining to the overall 
format of a report named in the File Section and is uniquely identified in the 
Report Section by the level indicator RD. The characteristics of the report page 
are provided by describing the number of physical lines per page and the limits 
for presenting specified headings, footings, and details within a page 
structure. Data items which act as control factors during presentation of the 
report are specified in the RD entry. Each report named in an FD entry in the 
File Section must be defined by an ~D entry. The general formats of the RD entry 
and syntax rules follow. The individual clauses are described later in this 
section. 

Format l: 

RD report-name [ CODE mnemonic-name J COPY library-name 

[REPLACING word-1 
{

word-2 } 
BY literal-! 
~ identifier-I 

[, word-3 BY 
{

word-4 } ] ] literal-2 ••• . 
identif ier-2 

Format 2: -----
RD report-name 

[ ~ mnemonic-name-I] 

[ {

CONTROL IS } 

CONTROLS ARE {

FINAL 
identifier-I [, identif ier-2] ••• 
~' identifier-I [ , identifier-2] 

PAGE 
[ {

LIMIT IS } 
integer-1 ~-

{
LINE } 

-~ LIMITS ARE LINES ---
[ , HEADING integer-2] 

[ , FIRST DETAIL integer-3] 

[ , LAST DETAIL integer-4] 

[ ' FOOTING integer-s] ] • 

6-10 

. ..}] 

DD25 



RD SKELETON 

Syntax Rules: 

1. The level indicator RD identifies the beginning of 
description entry and must precede the report-name. 

RD SKELETON 

a report 

2. The report-name must appear in at least one FD entry REPORT(S) clause. 

3. The clauses following the report-name, except for the COPY clause in 
Format 1, are optional. The clauses may be defined in any order e~oept 
tf>P/~l)~ ·:p~p~ _clal;l$e:wq:LcP.J\':~;/$p~¢,\~¢•a, >must· illln\ediately follow the 
~~p-tjp1;±»••~~ . . . 

4. The RD entry must be terminated by a period. 

General Rules: 

1. For a description of the COPY function, see Section VIII, the COBOL 
Library. 

2. Format 1 is used when the COBOL library contains the report 
description entry; otherwise, Format 2 is used. If the library-name is 
not unique, it may be qualified. 

3. . The reserved words LINE-COUNTER and PAGE-COUNTER are automatically 
generated by the Report Writer based on specific entries and are not 
data clauses. Refer to the PAGE LIMIT(S) clause for additional 
information. 

6-11 DD25 



DATA DESCRIPTION 
SKELETON 

DATA DESCRIPTION 
SKELETON 

Data Description - Complete Entry Skeleton 

The data description entry is used to provide information concerning the 
characteristics of a particular item of data~ A detailed data description 
consists of a set of ~ntries. Each entry defines the characteristics of a 
particular unit of data. With minor exceptions, each entry is capable of 
completely defining a unit of data. Because detailed data descriptions in COBOL 
involve a hierarchical structure, the contents of an entry may vary 
considerably, depending on whether or not the entry is followed by subordinate 
entries. In defining the lowest level o.:r: subdivision of data, the ·following 
information may be required: 

1. A level-number showing the relationship between this and other units 
of data. 

2. A data-name. 

3. The predominant usage of the item (COMPUTATIONAL or DISPLAY). 

4. The number of consecutive occurrences of elements in a table. 

5. The type of data item being described (alphabetic, numeric, or 
alphanumeric). 

6. The presence of an operational sign (+ or -) . 

7. The location of an actual or assumed decimal point. 

8. The location .of editing symbols (such as $ and , ) . 

9. Justification and synchronization of the data. 

10. Special editing requirements such as zero suppression. 

11. The initial value of an item or fixed value of a constant in 
working-storage. 

An entry defining a unit of data must not be contradicted by a 
entry. For example, after USAGE is defined, it applies to all 
entries and heed not be respecified in the subordinate entries. 

subordinate 
subordinate 

The general formats of the detailed data description entry and syntax rules 
follow •. The individual clauses, are described later in this section. 

6-12 DD25 



DATA DESCRIPTION 
SKELETON 

Format 1: 

01 data-name COPY library-name 

[REPLACING word-1 

[, word-3 BY 

BY cr~~~~;l-1 ) 
identif ier-1 

C ~~~~;!1-2 ) J .. ·] . 
identif ier-2 

Format 2: 

Format 3: 

( 
data-n. ame-1} 

level-number 
FILLER 

[ REDEFINES data-na~e-2 ] 

[ ( :TURE} IS character-string] 

2/77 6-13 

DATA DESCRIPTION 
SKELETON 

DD25A 

I 

* 



DATA DESCRIPTION 
SKELETON 

DATA DESCRIPTION 
SKELETON 

[ 
. {in tege.r-1. 

OCCURS 
integer-2 

TO integer-2 TIMES [DEPENDING ON data-name-3] } 

TIMES 

[{
ASCENDING } KEY IS data-name-4 [ , data-name-5 J ... ] ... 
DESCENDING 

[INDEXED BY index-name-1 [ , index-name-2 J ... J] 

[{
SYNCHRONIZED.} 
SYNC 

[{

JUSTIFIED} 

JUST 

[
LEFT J] RIGHT 

RIGHT] 

[~ WHEN ~ ] 

[vALUE IS l.i teral-1 J . 

Format 4: 

66 data-name-1 RENAMES data-name-2 

[{::::UGH } data-name-3 ] 

Format 5: 

{

VALUE IS } 
88 condition-name literal-! 

VALUES ARE 

[{ 
THRU } litera1-2] 
THROUGH 

[, literal-3 
[ { 

THRU } 1i teral-4 ] l 
THROUGH 

6-14 DD25 



DATA DESCRIPTION 
SKELETON 

DATA DESCRIPTION 
SKELETON 

Syntax Rules: 

1. A data description entry must be terminated by a period. 

2. In Format 3, the level-number can be any numher in the range 01-49 or 
it can be 77. 

3. The clauses Qan be written in any order except that: 

a. The data-name-1 or FILLER clause must immediately follow the 
level-number. 

b. The REDEFINES clause, when used, must immediately follow the 
data-name-! clause. 

4. The PICTURE clause must be specified for every ·~lernentary data item 
except an index data item, in which case use of this clause is 
prohibited. 

5. The words THRU and THROUGH are equivalent. 

General Rules: 

2/77 

1. For a description of the COPY function (Formats 1 and 2), see Section 
VIII, the COBOL Library. 

2. The SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO clauses must 
only be· specified for elementary data items. 

3. Format 5 is used for each condition-name. Each condition-name 
requires a separate level-number 88 entry. Format 5 specifies the 
name of the condition and the value, values, or range of values 
associated with the condition-name. The condition-name entries for a 
particular conditional variable must follow the entry describing the 
item with which the condition-name is associated. A condition-name 
can be associated with any dita description entry th~t contains a 
level-number except for the following: 

a. Another condition-name. 

b. A level 66 item. 

c. A group containing items with descriptions including JUSTIFIED, 
SYNCHRONIZED, or USAGE (other than USAGE DISPLAY). 

d. An index data item. · 

6-15 DD25A 

* 



REPORT GROUP 
SKELETON 

Report Group Description - Complete Entry Skeleton 

REPORT GROUP 
SKELETON 

A report group may be as complex as a set of data made up of several print 
lines with many data items or as simple as one print line with one data item. A 
description of a set of data becomes a report group by the presence of a 
level-number 01 and a TYPE description. The level-number gives the depth of the 
group and the TYPE describes the purpose of the report group presentation. At 
object program execution, report groups are created as a result of Report Writer 
GENERATE statements in the Procedure Division. 

This entry defines the characteristics for a report group, whether a line, 
a series of lines, or an elementary item. The placement of an item in relation 
to the entire report group, the hierarchy of a particular report group, the 
format description of all items, and any control factors associated with the 
group are all defined in the entry. The system of level-numbers is employed here 
to indicate elementary items and group items of data. 

Conceptually, a report group is a line, or a series of lines, initially 
consisting of all SPACES; its length is determined by the compiler based on 
environmental considerations. Within the framework of a report, the order of 
report groups specified is not significant. Within the framework of the report 
group, the presented elements are described line by line from left to right and 
then from top to bottom. The description of a report group, analogous to the 
data record, consists of a set of entries defining the characteristics of the 
included elements. Howev.er, in the report group, SPACES are assumed except where 
a specific entry is indicated for presentation, whereas in the data record, 
every character position must be defined. 

The general formats of the report group description entry and syntax rules 
follow. The individual clauses are described later in this section. 

Format 1: 

01 [data-name J COPY library-name 

[ REPLl\.CING word-1 BY {~~~~;;1-1 } 
identif ier-1 

[• word-3 BY {~~~~;!1-2 } J. . .. ] 
identif ier-2 

6-16 DD25 



REPORT GROUP 
SKELETON 

Format 2: 

01 [ data-name-1 J 

[~ N~ER IS 

TYPE IS 

{ 

integer-1 } ] 
~ integer-2 
NEXT PAGE ---

{ 

integer-3 }] 
~ integer-4 
NEXT PAGE -----
REPORT HEADING 
RH 
PAGE HEADING 
Pi!'" 
OVlt~:LOW>ffE:ADING 
¢1-:.· >> >···· .... 

{~NTROL HEADING} 

DETAIL 
DE 

{~NTROL FOOTING} 

ove~~w·. vooTIN 
o'fi 
PAGE FOOTING 
pp--
REPORT FOOTING 
RF 

{:::::.i} ] 

6-17 

{ 
identifier-1} 
FINAL ---

{ 
identifier-2} 
FINAL 

REPORT GROUP 
SKELETON 

DD25 



REPORT GROUP 
SKELETON 

Format 3: 

level-number [ data-name-1] 

Format 4: 

[coLUMN NUMBER IS integer-1] 

[~ WHEN ZERO ] 

[~INDICATE ] 

[ { ;:::IFIED } RIGHT] 

[~ NUMBER IS { ~~~~g~~~;ger-3}] 
NEXT PAGE . ----

[ { :TURE} 

[RESET ON { 

IS character-string ] 

identifier-!} ] 

FINAL ---

{

SOURCE IS ( SELS:CT$PJ identifier-2 
SUM identifier-~ [, identifier-4] 
VALUE IS literal-1 

[ } ] 

6-18 

REPORT GROUP 
SKELETON 

[ ~ data-name-2 J} 

DD25 



REPORT GROUP 
SKELETON 

Syntax Rules: 

REPORT GROUP 
SKELETON 

1. The clauses in Format l must be presented in the order shown. Except 
for the data-name clause, which must immediately follow the 
level-number when present, the clauses in Formats 2 and 3 may be 
written in any order. 

2. A report group must have a data-name in order to be referred to by a 
Procedure Division statement. 

3. If the COLUMN NUMBER clause is present in the data description of an 
elementary data item, the data description must also contain the 
PICTURE clause and one of the SOURCE, SUM, or VALUE clauses. 

4. The report group description entry must be terminated by a period. 

5. In Format 3 ~d ~p,f.JJ\~F··i~--~- level-number may be any number from 0 l to 
49. 

General Rules: 

l. For a description of the COPY function (Formats l and 4), see Section 
VIII, the COBOL Library. 

2. Format 2 is used to indicate a report group: the report group extends 
from this entry to the next report group level 01 entry. 

3. When LINE NUMBER is specified in Format 
report line within the report group are 
line. 

2, entries 
presented on 

for· the first 
the specified 

4. Format 3 is used to indicate an elementary item or group item within a 
report group. 

5. If a report group is an elementary entry, Format 3 may include the 
TYPE and NEXT GROuP clauses to specify the report group and elementary 
item in the same entry. 

6. When LINE NUMBER is specified for Format 3, sequential entries with 
the same level-number in the report group are implicitly presented on 
the same line. 

7. A LINE NUMBER at a subordinate level must not contradict a line number 
at a group level. 

8. The NEXT GROUP clause, when specified, refers to the 
object program execution) between the last line of this 
and the first line of the next report group. 

spacing (at 
report group 

9 • •:::.:1n•i:B•l!·i~~l!~1;t.• ::.,:~~~~-·-·•·•~•¥•••··•:e9~•·•·:·~~···••·•.~~-~·~~~~•:_•··•~n:••:••··~~~·•• .~!P9#£:•·• $•P:#~P:P..•~-:-·-······ 

6-19 DD25 



DATA DIVISION CLAUSE DESCRIPTIONS 

Descriptions of the Data Division claus'es are contained on the following 
pages. 

6-20 DD25 



BLANK WHEN ZERO BLANK WHEN ZERO 

The BLANK WHEN ZERO clause is used to enable the blanking of an item when· 
that item's value is zero. The clause is optional. 

General Format: 

BLANK WHEN ZERO 

Syntax Rules: 

1. The BLANK WHEN ZERO clause may be used only for an elementary item 
whose PICTURE is specified as numeric or numeric edited. 

2. This clause cannot be used for variable-length items. 

General Rules: 

1. When this clause is used, the item contains only spaces when the value 
of the item is zero. 

2. When used for an item whose PICTURE is numeric, the category of the 
item is considered to be numeric edited. 

6-21 DD25 



BLOCK CONTAINS BLOCK CONTAINS 

The BLOCK c9~'1'.l\.It-lf:>. c:lause .. il'l, C1I1 ,:E'D ~ntry is l1sed to. specify the size of a 
fhX~.ic(ll. rec~r~~ ~P.*~.J~t.~}l~te i.~ 9r;>'t;?:o~1 •. ~PA ~~~ qe proiti:,ed when the f i+~ hai( · 
<ttff@•·.·····~tertdfl:~6h•·Ph.Y"·'-¢c?lld.:i~@qp)::d .. ·.·.$4f:,@:•:9#i'•••·~•~Q>:.¢.9W.P9:~*iX'•··•···~9fde.~ . 

General Format: 

~ CONTAINS {integer-1 TO J integer-2 
{

RECORDS } 

CH~RACTERS 

Syntax Rule: 

1. Integer-1 :(when used) and integer-2 must be unsigned nonzero integers. 

General Rules: 

1. For mass storage files, the size of a physical record may be given in 
terms of records only if one of the following conditions does not 
exist. The CHARACTERS option must be specified if any of the following 
conditions exist. 

2. 

a. Logical records extend across physical records. 

b. The physical record contains padding (area not contained in a 
logical record). 

c. Logical records are grouped so that an inaccurate physical record 
size would be implied. 

···j•lllllii~l;•i·l~i~iJ:~·~~,~·~·~\l~i~~~·£~8•a7~~·~•cd~~ut~·~.a~.~~j~·rs 
3. When the CHARACTERS option is used, the physical record size is 

specified in terms of the number of standard characters contained in 
the physical record, regardless of the types of characters used to 
represent the items within the physical record. 

4. If only integer-2 is shown, it represents the exact size of the 
physical record. If both integer-1 and integer-2 are given, they refer 
to the minimum and maximum size of the ·physical record, respectively. 

··•.•t..PJ.m:dtn~;t;• ••O.~$~\.i,'\.•.P}·i:i~91$Sl.:•••·iii~·•·•···;9#t gqqtiftt•nt.at,tbn. · .. pu~pos~.s•·· .• ·.on+.y••••• 
5. The use of the word CHARACTERS in the clause is optional. Whenever the 

keyword RECORDS is not specifically written in the clause, integer-1 
(if used) and integer-2 represent the number of characters in the • ;.~(mi.~~e:lllllll!ll~IP.~~~·· c.a#P.C).~ .. q~··••·.µ~.~µ.·······•f:()t•· .... a.· ..••. ;i+~ 

6-22 DD25 



BLOCK CONTAINS BLOCK CONTAINS 

6. When the RECORDS phrase is used with · variable.-length. records, the 
block size is equal to the maximum record size (in computer words) 
multiplied by the number of records plus one. 

7. For mass storage files in the RANDOM ACCESS mode, the physical record 
size associated with the CHARACTERS option is considered identical 
with ~he logical record size. Depending on the mass storage device 
normally intended for the file, the physical record size may be 
adjusted for efficiency by using this clause with the CHARACTERS 
option. Integer-2 may range from 384 to 24,570 characters (which 
results in record sizes in the range 64 to 4095 words). A· size that is 
not modulo .384 characters will result in wasted space. 

6-23 0025 



CODE CODE 

The CODE clause of the RD entry is used to affix a unique character to each 
report group generated in the report. The unique character identifies each print 
line as belonging to a specific report. 

General Format: 

CODE mn~monic-name-1 

General Rules: 

1. CODE mnemonic-name-1 indicates a unique character(s) which is 
automatically affixed to and identifies each line of the report. More 
than one report may then be produced simultaneously onto one output 
device for later individual report selection. 

2. The mnemonic-name must be identified with a unique character in the 
SPECIAL-NAMES paragraph of the Environment Division. Unique character 
assignment must be assured when the program is to produce more than 
one report. 

3. As snowrt *tt<·t.9~ .t;omplete en try skeleton for the. .·report descript~on, 
-tb~· co.Oi1 ¢1~p.1~~, when used' must immediately follow. the repprt""'nal'll~· 

6-24 DD25 



CO:J:.,UMN NUMBER 

The COLUMN. NUMBER clause in a report group description entry 
indicate the absolute column number on the printed page of 
character of the elementary item (the first print position of the 
line). 

General Format: 

COLUMN NUMBER IS integer-I 

Syntax Rules: 

COLUMN NUMBER 

is 
the 
item 

used to 
leftmost 
on the 

1. The COLUMN NUMBER clause is used only at the elementary level within a 
report group. 

2. Integer-I must be an unsigned and nonzero integer. The first position 
of the print line is considered to be COLUMN NUMBER 1. 

3. For any given LINE NUMBER specification within a report group, COLUMN 
NUMBER entries must be indicated from left to right. 

General Rule: 

1. The COLUMN NUMBER clause indicates that the associated elementary item 
is presented in the output report group. If COLUMN NUMBER is not 
specified for an elementary item, that elementary i:tem is included in 
the description of the report group for control purposes but is not 
presented when the report group is produced at ·object program 
execution. 

6-25 DD25 



CONTROL CONTROL 

The CONTROL(S) clause in the report 
indicate the identifiers which specify 
breaks) for this report. 

description 
the control 

(RD) entry 
hierarchy 

is used to 
(the co"ntrol 

General Format: 

{ 

CONTROL IS } 

CONTROLS ARE 

Syntax Rules: 

identifier-1 , identifier-2 ••. 
{

FINAL [ J 
~' identifier-1 [ , identifier-2] .J 

1. The identifiers specify the control hierarchy for this report and are 
listed in order from major to minor. FINAL is the highest control, 
identifier-1 is the major control, identifier-2 is the intermediate 
control, etc. The last identifier specified is the minor control. 

2. The identifiers used in the CONTROL clause must be defined in the File 
Section or Working-Storage Section of the Data Division. 

General Rules: 

1. FINAL is a reserved word that indicates the highest control for this 
report. A TYPE CONTROL HEADING FINAL report group is only produced 
once, at the beginning of the report, when the first GENERATE 
statement is executed. Similarly, a TYPE CONTROL FOOTING FINAL report 
group is produced only once, at the end of a report, when the 
TERMINATE statement is executed. 

2. The CONTROL clause is required when CONTROL HEADING or CONTROL FOOTING 
report groups are specified. 

3. The identifiers specified in the CONTROL clause are the 
identifiers referred to by the RESET and TYPE clauses of a 
group description entry for this report. An identifier used 
CONTROL clause cannot be referred to by more than one TYPE 
HEADING report group and one TYPE CONTROL FOOTING report group. 

6-26 

only 
report 

in the 
CONTROL 

DD25 



COPY COPY 

The COPY clause is used in association with a file or data-name in-FD, SD, 
RD, record description, and report group description entries. The COPi clause is 
used to direct the compiler to duplicate text from the .source· program or a 
library into the source program. 

Format 1: 

COPY library-name 

[REPLACING BY 
{ 

word-2 } 
identif.ier-1 . 

· literal-! 

[ , word-3 BY 
{

word-4 } 
identif ier-2 
literal-2 

] ... ] 
Format 2: 

data-name-2 [. FROM LIBRARY ]·. 

Syntax Rules: 

1. In Format 1, when the COPY.clause is specified, the 
required. The library-name must be identical to the 
with. the desired text on the library. 

library-name is 
name associated 

2. In Format 1, a word is any COBOL word and may be one of the following: 

• Condition-name 

• Data-name 

• File-name 

• -Mnemonic-name 

3. In Format 1, the COPY clause may.be specified only at the-01 level in 
data description entries and report group description entries. 

General Rules: 

1. Format 1 of the COPY clause represents the American National Standard 
COPY function. lformat 2 represents the HIS COPY function. 

·2. tor a detailed description of the COPY clause, see Section VIII, the 
C_OBOL Library, and Section- XIV of the COBOL User's Guide. 

6-27 DD25 



data-name/FILLER data-name/FILLER 

The data-name clause is used to specify the 
described. The FILLER cl~~se is used to specify an 
logical record that cannot be referred to directly. 

name of the 
elementary 

data being 
item of the 

General Format: 

{
. d. ata-name} 

level-number . 
FILLER 

Syntax Rules: 

1. In the File Section and Working-Storage Section, a data-name or the 
keyword FILLER must be the first word following the level-number in 
each data description entry. 

2. In the Report Section, a data-name need not appear in a data 
description entry and the word.FILLER cannot be used. 

General Rules: 

1. The keyword FILLER can be used to name an elementary item in a record, 
but that item then cannot be referred to directly under any 
circumstances. 

2. A data-name must be supplied in the Report Section when: 

a. The data-name represents a report group to be referred to by a 
GENERATE or a USE statement in the Procedure Division. 

b. Reference is to be made to the SUM counter in the Procedure 
Division or in the Report Section. 

c. '!'h~ SElJf,:CTED option is included with the SOURCE clause 
hi9}1.erlevel .to indicate that at this . lower leyel the 
(i~ta-name$ which are to be used are elementary items. 

6-28 

at. a 
SOURCE 

DD25 



DATA RECORDS DATA RECORDS 

The DATA RECORDS clause is used to provide documentation for the names of 
data records.within their associated fil~s (SD or FD entries). 

General Format: 

DATA. { RECORD IS } data-name-1 [, data-name-2 ] 
RECORDS ARE 

Syntax Rule: 

1. Data-name-1 and data-name-2 are the names of data records. They must 
have level-number 01 data descriptions (with the same names) 
associated with them. 

General Rules: 

1. The presence of more than one data-name indicates that the file 
contains more than one type of data record. If record sizes (in words) 
are not equal, the file is assigned the variable-length record format 
and its recording mode must be binary. The records of the file need 
not have the same description. The order in which they occur as 01 
entries is not significant except for sort file.s. For a sort file with 
mpre. than one size . data record description, the first .record 
d~scription entry after the SD entry is assumed to be the dominant 
tf:$)e; its size is considered to be the most common in the sort . ·. file. 
Sort optimization is based on this assumption. !'herefore ,. a careful 
c~otce i11 ordering record description entries for a sort file enhances 
obj.act program efficiency. · 

2. Conceptually, all data records in a file share the same area. 
concept is not altered by the presence of more than one type of 
record in a file. 

6-29 

This 
data 

DD25 



GROUP INDICATE GROUP INDICATE 

The GROUP INDICATE clause in a report group description entry is used to 
indicate that the elementary item with which it is associated is to be produced 
only on the first occurrence of the item after any CONTROL or PAGE break. 

General Format: 

GROUP INDICATE 

General Rules: 

1. The GROUP INDICATE clause must be specified only at the elementary 
item level within a TYPE DETAIL report group. 

2. When an elementary item within a TYPE DETAIL report group is specified 
as GROUP INDICATE, it is presented in the first DETAIL report group 
that contains it aft~r a CONTROL break and it is presented in the 
first DETAIL report group containing it on a new page even though a 
CONTROL break did riot occur. 

6-30 DD25 



JUSTIFIED JUSTIFIED 

The JUSTIFIED clause in a data description entry is used to specify 
nonstandard positioning of data within a receiving data item. 

General Format: 

{ 

JUSTIFIED } 
RIGHT. 

JUST 

Syntax Rules: 

1. The JUSTIFIED clause can be specified only at the elementary item 
level. 

2. JUST is an abbreviation for JUSTIFIED. 

General Rules: 

1. The JUSTIFIED clause cannot be specified for an item that has any of 
the following properties: 

a. Class numeric or numeric edited, 

. . b. USAGE other.than DISPLAY • 
·.·.··.·.·:··.. · .. :. ·::::·.:·:.::..:::<: :. >.·· 

c. 
....... ······.·· .· .·· ·.·.;· 

i\ictl.1~1 or> ~s$\lme·a decimal point. 

2. If the receiving data item is alphanumeric (other than a numeric 
edited.data item) or alphabetic and the JUSTIFIED clause is not 
specified, the sending data item is moved to the receiving character 
positions and aligned at the leftmost character position in the data 
item with space-fill or truncation to the right. 

3. When the receiving data item is described with the JUSTIFIED clause 
and the sending data item is larger than the receiving data item, the 

. leftmost characters are truncated. When the receiving data item is 
described with the JUSTIFIED clause and the sending data item is 
smaller than the receiving data item, the data is aligned at the 
rightmost character position in the data· item with space-fill on the. 
left. 

6-31 DD25 



* 

I 

LABEL RECORDS LABEL RECORDS 

The LABEL RECORD(S) clause in the FD entry is used to state whether or not 
label records are present and to identify them if they are present. 

General Format: 

{
RECORD IS } 

LABEL 
RECORDS ARE 

{

STANDARD 
OMITTED 
lahe.!""il)iµrte~l [ ·' 

Syntax Rules: 

1.. The :LABEL RECORD(S) clause is required in every file description 
entry. 

2. l:~.C:.W!a ().t" mq+e label-nalfi~~ are· specified, only the four fixed 
label"":names li~'ted in.geher~l +ule s may be used .. 

General Rules: 

2/77 

1. LABEL RECORD (S) '.S~TANDARD indicates that logical labels that conform to 
. the Series 60/ffff{):"O label format specifications are considered to exist 
for the file even though they may not be recorded on some of the 
physical devices to which the file may be assigned. (For example, 
label records associated with mass storage files are not physically 
recorded on the external storage device. In this case, USE procedures 
associated with the file will act upon dummy label space. If 
identifying information is to be placed on the external storage 
device, the information must be written as if it were a data record.) 
The STANDARD option must be used whenever system standard format has 
been explicitly or implicitly specified for the file. 

2. LABEL RECORD(S) OMITTED indicates that no logical labels are 
considered to exist for a file. The OMITTED option must not be used 
if system standard format has been explicitly or implicitly specified 
for the file.· 

3. 

4. 

6-32 DD25A 



LABEL RECORDS LABEL RECORDS 

2/77 

5 • .: ~: •. :~~~'~m~Mi~· mµ~1f. b~ BP~t 9.£< the· .. four .:··fixed .la.bel~names •. ···at$SO~iat~d····Wi th 
·-:,;.~~ .: $~~$~~<··· ~Qz.~.O?.<l si=,~~~a~if<. :}.abel fonnilt .• ··spec:ificat.~pns ••••..•.•. ·.•·•·-·'rhese 
l~g@.)it,ri,~~~< 4nQ. · 1jij(itb:; associeJied Series.·. 60/600.0 .. standard l~b¢l. records ·: are a:e.s.or:tb.ed ·. below: 

(:~;1~ l,·i~ii1~::j~~t!j=~~' q~~~a);~i~~:Y ~~0.~~~in: ~~!~atl6ri0!~!~f 
the>-flle. · · 

b~ -~E.~lN~lNG-T.A,P!1~l,tABE'P; Appears at the physical beginning of each 
... f'.~~*i wi~~ttiie. ~:ltoeptip.~ ·P~_-·the first reel on the file, preceding 

· i:l.l.rt· other ·.tnf'ormation, and contains information about the reel. 
:::: .:. f).\. :.:: . : \}/ :: :;:> : .. j:~ :· :':·.-:::_: y: :: .. ·;=- .· ,• 

c~ ENOl:NG.4.FILE~LAl3$.L: Appears only once for a file, following. the 
~~~'t. . 9-~t.~ 'p~t;~t<l 9t1 t.h13 last reel of a file, and contains 
,inti@matl;t>n about•.•· .•the.··· file·.

;&~;j,, .j,i~i~~+T1'!';.,t;Al}JU;: ~I>•ar$ at the physical end of a . reel, with
·<t;~~. \~~(Jegt~ol1 / 9f th~ ~a.st reel of the. file,. fqllowing the last

· · · da.#~ tecorCit and contains information abo'llt the. reel.
.::.:· ... , .. .;.·.·.·· .. · ... ·.::.·· · ·.;:.; ..

. ••sI~~~<~h~;W>fix~d label-names .. are associated with. the Series 60/6000
~~~~9:#..~9 lti.l:)~l descr:i..Pt.iops, .... their formats are inferred by the 

· 91;>~¥!~.l-~:t; . ~p.~ ~t i~ not neqesaa.rY to . define · . them within the file 
4'-•~9Jt4P't\tpp;~ If they ar.e explicitly described in the source program, 
the specified record format will be used. 

6. Conceptually, all label records within the file share the same label 
buffer area in memory. If more than one :J.;ab~:L-name is specified, it 
is an implicit redefinition of the same label are~. 

7. Refer to the description of the LABEL RECORD (S) ·clause in Section III 
of the COBOL User's Guide for additional information. 

6-33 DD25A 



level-number level-number 

The level-number entries show the hierarchy of data within a logical record 
or report group. Level-number entries are also used to identify entries for 
condition-names, working.:..storage items, noncontiguous data items, and the 
RENAMES clause. 

The concepts of hierarchy of . data and the use of level-numbers are 
described in Section III. 

General Format: 

level-number 

Syntax Rules: 

1. A level-number is required as the. first element in each data 
description entry. 

2. Data description entries that are subordinate to FD or SD entries may 
use level-numbers with values in the range 01 (or 1) through 49, or 
level•number 66, or level-number 88. 

3. Data description entries that are subordinate to an RD entry may only 
use leve:l ... numbers whose values· are in the range 01 through 49. 

4. Multiple level 01 entries that are subordinate to a level indicator 
(FD, SD,. or RD), represent implicit redefinitions of the same area. In 
other words, the first occurrence defines an area, and all subsequent 
occurrences redefine the same area. 

General Rules: 

1. A. lev~l 01 entry must be used to identify the first entry in each 
record description and in each report group description. 

·2. When no real concept of level exists, the special level-numbers 66, 
77, and 88 are assigned as follows: 

a. Level-number 66 is used in a data description entry to identify a 
RENAMES entry. Format 4 of the data description skeleton must be 
used. 

b. Level-number 77 entries may be used in the Working-Storage 
Section to identify noncontiguous data items. Format 3 of the 
data description skeleton must be used. 

c.. Level-number 8 8 entries are used to define condition-names 
associated with conditional variables and may be used in the File 
Section ~nd the Working-Storage Section. Format 5 of the data 
description skeleton must be used. 

6-34 DD25 



LINE NUMBER LINE NUMBER 

The LINE NUMBER clause is used to indicate the line number of this entry. 
The line number may be absolute or relative and may refer either to the page or 
to the previous entry. 

General Format: 

{ 

integer-1 } 
~NUMBER IS ~ integer-2 ·. 

NEXT PAGE ----

Syntax Rules: 

1. Integer-1 and integer-2 must be unsigned nonzero integers. Integer-1 
must be within the range specified in the PAGE LIMITS clause in the 
associated RD entry. · 

2. The LINE NUMBER clause must be given for each report line of a report 
group. For the first line of a report group, the LINE NUMBER clause 
must be specified at the report group level, or at a group level 
subordinate to the report group level but prior to the first 
elementary item in the line, or as a part of the entry which describes 
the first elementary item in the line. 

For report lines other than the first line in a report group, the LINE 
NUMBER clause must be specified at a group level subordinate to the 
report group level but prior to the first elementary item in the line, 
or as a part of the entry which describes the first elementary item in 
the line. 

General Rules: 

1. Integer-1 indicates an absolute line number. The LINE-COUNTER is set 
to the value of integer-1 for printing the item in this entry (and 
following entries in the report group) until a different v.alue for the 
LINE-COUNTER is specified in another LINE NUMBER clause. 

2. Integer-2 indicates a relative line number. This number increments the 
LINE-COUNTER for printing the item in this entry (and following 
entries in the report group) until a different value for the 
LINE-COUNTER is specified in another LINE NUMBER clause. 

3. If the LINE NUMBER clause is specified at the report group level, 
entries for the· first report line within the report group are 
presented on the specif· e.1 U .. ne number. If the LINE NUMBER clause is 
specified for an e1.t:.ry on other than the report group level, 
sequential entries following that entry within the report group that 
have the same level-.number are presented on the same line. A line 
number at a subordinate level cannot contradict a line number at a 
group level. 

6-35 DD25 



LINE NUMBER LINE NUMBER 

4. Within a report group description entry, an absolute line number 
cannot be preceded by a relative line number and absolute line numbers 
must be given in ascending order. 

5. The NEXT PAGE phrase is used to indicate an automatic skip to the next 
page before the first li~e9~.the current report group is presented. 
Appropriate TYPE PAGE/Q\q1;~$0W;.<.<FQOTINGS and TYPE PAGE/O~m'LOW 
m:tl\P$NG$ wi 11 be produced as specified. 

6-36 DD25 



NEXT GROUP NEXT GROUP 

The NEXT GROUP clause in a report group description entry is used to 
indicate the spacing that is to follow the laE?t line of the report group. 

General Format:. 

NEXT GROUP IS -----

Syntax Rule: 

{ 

integer-1 } 
P. LUS integer-2 
NEXT PAGE ----

1. Integer-l and integer-2 must be unsigned nonzero integers. When used, 
integer-! cannot exceed the maximum number of lines specified per 
report page in the PAGE LIMITS clause of the associated RD entry. 

Gener.al Rules: 

l. Integer-1 indicates an absolute line number that sets the LINE-COUNTER 
to this value after producing the last line of the current report 
group. 

2. Integer-2 indicates a relative line number that increments the 
LINE-COUNTER by the value of integer-2. Integer-2, therefore, 
represents the number of lines to be skipped following the last line 
of the current report group. Further spacing is specified by the LINE 
NUMBER clause of the next report group produced. 

3. The NEXT PAGE phrase, when used, indicates an automatic 
next page following the generation of the last line of 
report group. Appropriate PAGE/OVERFLOW FOOTINGS and 
!lEADINGS>> wi 11 be produced as specified. 

skip to the 
the current 

PAGE/OVERFLOW 

4. The NEXT GROUP clause may appear only in a level 01 entry that defines 
the report group. When specified for a CONTROL FOOTING/HEADING report 
group, the NEXT GROUP clause results in automatic line spacing only 
when a control break occurs on the level for which that control is 
specified. 

6-37 DD25 



'bCCURS OCCURS 

The OCCURS clause in a data description entry is used to define tables of 
-repeated items. Use of this clause eliminates the ·need for separate entries for 
crepeated data and supplies information needed for the application .of subscripts 
or indexes. · 

Fo:rmat 1: 

OCCURS integer-2 TIMES 

[{
ASCENDING } KEY IS data-name-2 [, data-name•3 ] ·••• ] ••• 
DESCENDING 

[ n1:rmXED BY index-name-! [ , index-name-2 ] ••• ] 

:;f;<;lrmat 2: 

OCCURS integer-1 TO· integer-2 TIMES [ DEPENDING ON data-name-1 J 

[{

ASCENDING } 
· · -...... '·.ii{EY IS data-name-2 [ , 

DESCENDING 
data-name-3 ] ••• J ... 

[ INDEXED BY index-name-! [ , index-name-2 ] ••• ] 

.:syntax Rules: 

1. Integer-! and integer-2 must be positi~e integers. Where both are ~3ed 
(in Format 2) , the value of integer-1 must be less than the value of 
integer-2. The value of integer-! may be zero but integer-2 must not 
be zero. 

2. Data-name-1 (in the DEPENDING phrase) must describe a positive .. integer 
:yt@.\~~::::$1$1?fE fJQ~m:1.~· 

3. Data-names used in the OCCURS clause m_ay be qualified. 

4. Data-name-2 must either be the name of the entry containing the OCCURS 
clause or the name of an entry subordinate to the entry containing the 
OCCURS clause. 

s. When used, data-name-3, etc. I mu~t be the name of an entry" subordinate 
to the group item that is the subject of this data description entry. 

DD25 



OCCURS 

6. 

OCCURS 

The INDEXED BY phrase is required when the subject of this data 
description entry (or an entry subordinate to this entry if it is a 
group item) is to be referred to by indexing. The index-names 
identified in the OCCURS clause are not defined elsewhere since the 
allocation and format of these index-names is hardware dependent. Not 
being data, these index-names cannot ·be associated with any data 
hierarchy. 

7. The DEPENDING ON phrase is required only when the end of the 
occurrences of the item cannot otherwise be determined. 

8. The OCCURS clause may not be specified in a data description entry 
that has a level-number 01, 66, 77, 88, or i:ri an entry that describes 
an item whose size is variable. An item is considered to be variable 
in size if its data description, or the description of any item 
subordinate to it, if· it is a group item, uses Format 2 of the OCCURS 
clause. 

9. I>a~(#_.-paffi~'°"1 .. C..tn the DEPENDING phrase) must be an entry in the same 
'record as the a·ur.rent data description entry, and the level-number 
entry for data-name-1 must occur prior to the level-number entry 
containing the OCCURS clause in which data-name•l is used. 

10. Any entry.that contains, or has a subordinate entry 
Format 2 of the OCCURS clause, cannot be the object 
clause. 

that ·contains, 
of a REDEFINES 

11. If data-name-2 in the KEY phrase is not the subject of this entry, 
then: 

a. All of the items identified by the data-names used in the KEY 
phrase must be contained in the group item that is the subject of 
this entry. 

b. The items identified by the data-names in the KEY phrase may not 
be described by an entry that contains an OCCURS clause or be 
subordinate to an entry containing an OCCURS clause. 

12. Index-name-!, index-name~2, ••• , must be unique words within the 
program •. 

General Rules: 

1. The OCCURS clause is used to define tables and other homogeneous sets 
of repeated data. The data-name that is the subject of this data 
description entry must either be subscripted or indexed whenever it is 
referred to in a Procedure Division statement other than the SEARCH 
statement. In addition, if the subject of this data description entry 
is the name of a group item, all of the data-names belonging to the 
group must be subscripted or indexed whenever they are used as 
operands. 

2. All data description entry clauses except the OCCURS 
associated with an item whose description includes an 
apply to each occurrence of the item described. 

6-39 

clause 
OCCURS 

itself 
clause 

DD25 



OC~URS 

3. 

4. 

5. 

6. 

OCCURS 

In Format 1, the value of integer-2 represents the exact number of 
occurrences. In Format 2, the value of integer-2 represents the 
maximum number of occurrences and the value of integer-! represents 
the minimum number of occurrences. Thus, Format 2 specifies a variable 
number of occurrences of the item but does not imply that the length 
of the item is variable. 

The value of data-name-1 is the count of the number of occurrences of 
the subject and this value must not exceed integer-2. Reducing the 
value of data-name-! makes the contents of those occurrences of the 
data items, whose occurrence numbers are in excess of the value of the 
data item referenced by data-name-1, unpredictable. 

When a referenced group item has a subordinate entry that specifies 
Format 2 of the OCCURS clause, only that part of the table area that 
is specified by the value of data-name-1 will be us.ed in the 
operation. 

The results of OCCURS ••• DEPENDING generally differ from one computer 
to another. In Series 60/6000 COBOL, the results are as follows: 

a. The DEPENDING phrase · may not be specified in the 
descriptions of a sort file or a merge file. 

record 

b. In the File Section, OCCURS .•• DEPENDING results in suppressing 
table residue on the peripheral device, as described below, when 
the following criteria are met: 

• Data-name-1 is described as COMP-1. 

• Data-name-1 is subordinate to the same record description 
entry. 

• Data-name-1 precedes the data description entry containing 
the OCCURS ••• DEPENDING clause. 

When compression is to take place, the compiler will 
automatically generate a process area for the file, whether or 
not the APJ?L¥.g39¢ES$ AR$}\ phrase is specified in the I-0-CONTROL 
paragraph. 

c. When a WRITE statement references a record which may be 
compressed, the object program examines the output record for 
opportunities for residue suppression. Such opportunities are 
rejected unless two or more machine words can be suppressed. In 
the latter case, suppression proceeds on a machine word basis; 
the whole-word portion of the residue of each table is replaced 
by a single control word. Each variable-length table in the 
record presents an opportunity for residue suppression. Actual 
suppression takes place in an implicit move from the process area 
to the output buffer. 

6-40 DD25 



OCCURS 

d. 

e. 

OCCURS 

When a READ statement references a file containing records that 
may be compressed, the record is {mplicitly moved from the input 
buffer to the process area and expanded to the format it had in 
memory prior to residue suppression. 

When OCCURS ••• DEPENDING is used with any record of a file that 
may be compressed, the data format is affected in several ways. 

• The variable-length record (VLR) format is automatically 
applied. 

• In addition to any residue suppression control words needed, 
each record on the peripheral device begins with a control 
word required for reconstruction. 

• The recording mode 
implicitly) • 

must be binary (explicitly or 

7• The KEY phrase is used to indicate that the repeated data is arranged 
in ascending or descending order according to the values contained in 
data-name-2, data-name-3, etc. The data-names are listed in their 
descending order of significance, from most significant to least 
significant. 

6-41 DD25 



PAGE LIMIT PAGE LIMIT 

The PAGE LIMIT(S) ciause in a report description entry is used to indicate 
the specific line control to be maintained within the logical presentation of a 
page. 

General Format: 

{LIMIT IS } eINE} PAGE . . integer-1 
LIMITS ARE ~· 

[, ' HEADING integer-2 ] [, FIRST DETAIL integer-3] 

[, LAST DETAIL integer-4] [, FOOTING integer-5 J 

Syntax Rules: 

1. Integer-1 through integer-5 must be unsigned nonzero integers. 

2. Integer-2 through integer-5 each must either be less than or equal to 
integer-!. 

3. Ori-ly one PAGE-LIMIT clause may be specified in each report description 
entry. 

4. A PAGE LIMIT (·S) clause need not be included in the RD entry when an 
association between report groups and the physical format of a page is 
not required. 

General Rules: 

1. The fixed data-names PAGE-COUNTER and LINE-COUNTER are automatically 
generated by the Report Writer when the PAGE LIMIT(S) clause is 
included in the RD entry. 

2. The PAGE LIMIT integer-! LINES clause is required to specify the depth 
of the report page; the depth of the report page may or may not be 
equal to the physical perforated continuous form often associated with 
the page length in a report. 

3. LINE~COUNTER must be capable of containing the value specified by 
integer-!. 

4. If absolute line spacing is indicated for all the report group(s), 
none of the integer-2 through integer-5 controls need to be specified. 

6-42 DD25 



PAGE LIMIT PAGE LIMIT 

5. If relative spacing is indicated for individual TYPE DETAIL report 
group description entries, some or all of the above limits must be 
defined, dependent on the type of report groups within the report, so 
that the Report Writer can maintain control of page format. 

• HEADING integer-2: the first line number of the first heading 
print group. No print group will start preceding integer-2. 

• FIRST DET,~.IL iriteger-3: the first line number of the 
normal pr~nt group, that is, body; no DETAIL or CONTROL 
group will start before integer-3. 

LAST DETAIL integer-4: the last line number cf the last 
print group, that is, body; no DETAIL or CONTROL HEADING 
group will extend beyond integer-4. 

first 
print 

normal 
print 

e FOOTING integer-5: the last line number of the last CONTROL 
FOOTING print group; no CONTROL FOOTING print group will start 
before integer-3 nor extend beyond integer-5. TYPE PAGE FOOTING 
or TYPE OVERFLOW FOO~l:NG print groups will follow integer-5. 

When relative line numbers are specified for report 
LIMITS integer-1 is specified and some or all of 
integer-2, FIRST DETAIL integer-3, LAST DETAIL integer-4, 
integer-5 phrases are omitted, the following implicit 
as·sumed for the omitted specifications: 

groups, PAGE 
the HEADING 
or FOOTING 
control is 

a. If HEADING integer-2 is omitted, integer-2 is considered to be 
equivalent to the value one (1), that is, line number one. 

b. If FIRST DETAIL integer-3 is omitted, integer-3 is considered to 
be equivalent to the value of integer-2. 

c. If LAST DETAIL 1nteger~4 is omitted, integer-4 is considered to 
be equivalent to the value of integer-5. 

d. If FOOTING integer-5 is omitted, integer-5 is considered to be 
equivalent to the value of integer-4. 

e. If both LAST DETAIL integer-4 and fOOTING integer-5 are omitted, 
integer-4 and integer-5 are both considered to be equivalent to 
the value of ·integer-1. 

6-43 DD25 



PAGE LIMIT PAGE LIMIT 

7. The following.chart represents page format report group control when 
the PAGE LIMIT clause is specified. 

REPORT PAGE/ DETAIL/ CONTROL PAGE/ 
HEADING/ OVll!RFLOW CONTROL fOOTING OVERFLOW 
fOOTING. aEADING HEADING FOOTING 

integer-2 I integer-3 

I I integer-4 

integer-5 

I integer-1 

8. Absolute LINE NUMBER or absolute NEXT GROUP spacing (see report group 
description entry) must be consistent with controls speci£ied in the 
PAGE LIMIT clause. 

PAGE-COTJNTER Rules: 

1. PAGE-COUNTER is a fixed data-name used to reference a counter 
generated by the Report Writer to·be used as a SOURCE data item in 
order to automatically present consecutive .Page numbers. 

2. One PAGE-COUNTER is supplied for each report described in the Report 
Section. 

3. If more than one PAGE-COUNTER is given as a SOURCE data item within a 
given report, the number of numeric characters indicated by the 
PICTURE clauses must be identical. The size must indicate sufficient 
numeric character positions to prevent overflow. 

4. If more than one report description entry exists in the Report 
Section, PAGE-COUNTER must be qualified by the report-name. 
PAGE-COUNTER may be referred to in Data Division clauses and in 
Procedure Division statements. 

5. PAGE-COUNTER is initially set to one by the Report Writer; if a 
starting value for PAGE-COUNTER other ·than one is desired, the user 
may change the contents of the PAGE-COUNTER by a Procedure Division 
statement after an INITIATE statement has been executed. 

6. PAGE-COUNTER is incremented by one each time a page 
recognized by the Report Writer, after the production of any 
:9~~~~W,FOOTING report group but before production of any 

~ ... O\f$~tJ:)N HEADING report group. 

6-44 

break 
PAGE 
PAGE 

is 
O;t 
or 

DD25 



PAGE LIMIT PAGE LIMIT 

LINE-COUNTER Rules: 

1. LINE-COUNTER is a fixed data-name used to reference a counter utilized 
by the Report Writer to determine when a PAGE/OVERFLOW HEADING and/or 
a PAGE/QVERFLOW FOOTING report group is to be presented. If a PAGE 
LIMIT(S) clause is written in the report description entry, a 
LINE-COUNTER is supplied for that report. 

2. If more than one report description entry exists in the Report 
Section, LINE-COUNTER must be qualified by the report-name. 
LINE-COUNTER may be referred to in Data Division clauses and in 
Procedure Division statements. 

3. Changing the LINE-COUNTER by Procedure Division statements may cause 
page format control in the Report Writer to become unpredictable. 

4. LINE-COUNTER is tested and incremented by the Report Writer based on 
control specifications in ·the PAGE LIMIT(S) clause and values 
specified in the LINE NUMBER and NEXT GROUP clauses. 

5. LINE-COUNTER is initially set to zero by the Report Writer; likewise, 
LINE-COUNTER is automatically reset to zero when the PAGE ~!MIT 
integer-1 LINES entry is exceeded during execution. 

6. When a relative LINE NUMBER indication or relative NEXT GROUP 
indication exceeds the LAST DETAIL PAGE LIMIT specification during 
object program execution, a page break occurs and LINE-COUNTER is 
reset to zero. No additional setting based on the relative LINE NUMBER 
indication or NEXT GROUP indication that forced the page break takes 
place. 

1·. If an absolute LINE NUMBER indication or an absolute NEXT GROUP 
indication is equal to, or less than, the contents of the LINE-COUNTER 
during object program execution, the LINE-COUNTER is set to the 
absolute LINE NUMBER indication or the absolute NEXT GROUP indication 
following the implicit generation of any specified report groups. 

8. The value of the LINE-COUNTER during any Procedure Division test 
statement represents the number of the last line used by the printing 
generated by the previous report group, or represents the number of 
the last line skipped by a previous NEXT. GROUP specification. 

6-45· DD25 . 



PICTURE PICTURE 

The PICTURE clause is used to describe the general characteristics and 
editing requirements of an elementary item. 

General Format: 

{ .. 
PICTURE} 

IS character~string 
PIC 

Syntax Rules: 

1. A PICTURE clause may be specified only at the elementary item level. 

2. A .character-string consists of certain allowable combinations of 
characters in the COBOL character set used as symbols. The allowable 
combinations determine the category of the elementary item. 

3. The maximum number of symbols allowed in the character-string is 30. 

4. The PICTURE clause must be specified for every elementary 
except an index data item, in which case use of this 
prohibited. 

data item 
clause is 

5. PIC is an abbreviation for PICTURE. 

6. BLANK 

General Rules: 

1. Five categories of data may be described with a PICTURE 
alphabetic, numeric, alphanumeric, alphanumeric edited, and 
edited. 

• To define an item as alphabetic: 

clause; 
numer c 

a. Its PICTURE character-string may only contain the symbol 
'A': and 

b. Its contents when represented in standard data format must 
be any combination of the twenty-six (26) letters of the 
Roman alphabet and the space from the COBOL character set. 

• To define an item as numeric: 

a. Its PICTURE character-string can only contain the symbols 
I 9 I I I p I I I S I I and I VI i and 

b. Its contents when represented in standard data format must 
be a combination of the Arabic numerals '0' , 'l' , '2' , '3' , 
'4', '5', '6', '7', '8', and '9', and the item may include 
an operational sign. 

6-46 DD25 



>ICTURE 

• 

PICTURE 

To define an it~m as alphanumeric: 

a. Its PICTURE character-string is restricted to certain 
combinations of the symbols 'A' , ' fat•]>• K' , 'X' , '9' , and the 
item is treated as if the character-string contained all 
'X's. A PIC:~Y~ ,~~Circict~:r--~t.ring y.rhich contains ,all 'A's or 
all ' 9 ' s , w¥tt::9 pr: W:it,h()ut, 't;.b~ s~ols .. 'J' or 'K • 1 does no·t 
define an alphanumeric item; and 

b. Its contents when represented in standard data format are 
allowable characters in the computer's character set. 

• To define an item as alphanumeric edited: 

a. Its PICTURE character-string is· restricted to certain 
combinations of the following symbols: 'A', 'X', '9', 'B', 
and '0'; and 

(1) The character-string must contain at least one 'X' and 
at least one 'B' or '0' (zero); or 

(2) The character-string must contain at least one 'O' 
(zero) and at least one 'A'; and 

b. Its contents when represented in standard data format are 
allowable characters in the computer's character set. 

• To define an item as numeric edited: 

a. Its PICTURE character-string is restricted to certain 
combinations of. the symbols 'B' , 'P' , · 'V' , 'z' , '0' , '9' , 
, ' , ' • ' , ' * ' , '+' , ' - ' , 'CR' , ' DB' , and the currency 

symbol. The maximum number of digit positions that may be 
represented in the character-string is 18; and 

b. The contents of the character positions of those symbols 
allowed to represent a digit in standard data format must be 
one of the numerals. 

2. The size of an elementary item, where size means the number of 
character positions occupied by the elementary item in standard data 
format, is determined by the number of allowable symbols that 
represent character positions. An unsigned nonzero integer which is 
enclosed in parentheses following the symbols 'A' , ' , ' , 'X' , '9', 'P' , 
'Z', '*', 'B', 'O', '+', '-',or the currency symbol indicates the 
number of consecutive occurrences of. the symbol. The following symbols 
may appear only once in a given PICTURE: 'S', 'V', '.', 'CR', and 
'DB'. 

3. The functions of the symbols used to describe an elementary item are 
explained as follows: 

A Each 'A' in the character-string represents a character 
position which can contain only a letter of the alphabet or 
a space. 

B Each 'B' in the character-string represents a cha.racter 
position into which the space character will be inserted. 

6-47 0025 



PICTURE 

I. 

2/77 

PICTURE 

>$it< :. < $@ri@$ .. ~O/~O()O .C0130L ~o~e.pts J .. a.nd K as eq~j.valen.t to x. 
:nr · ~P\ll:E!Y~*'"< t;b.e ·.· ·4nitial yalue. <of a wo:rking~storage .item is 
:t l . tap~m:lsr. if PIG'fUJ~.E opnt.ili:n.s a .. J. and .. ·. no .. VALUE clause is 

.: .. >: :. ·::. 9'~'\~et> •. 't)\;is,>f~~tµp:~ ·~i"'pl~f;L~s .•......... ·conversion. from certain 
::.::!+ : [ :.·: · J;g~'llti,ID'$1:~;$1~A(t 4~ .. t\P\t>me.a~t a$ a general substitute 

p 

s 

The 'P' indicates an assumed decimal scaling position and is 
used to specify the l~cation of an assumed decimal point 
when the point is not within the .number that appears in the 
data item. The scaling position character 'P' is not 
counted in the size of the data item. Scaling position 
characters are counted in determining the maximum number of 
digit positions (18) in numeric edited items or numeric 
items which appear as operands in arithmetic statements. (P 
cannot be used with COMPUTATIONAL or COMPUTA'l1lONA1i .... n items .. ) 
The scaling position character 'P' can appear only to the 
left or right as a continuous string of 'P's within a 
PICTURE description. Since the scaling position character 
'P' implies an assumed decimal point (to the left of 'P's if 
'P's are leftmost PICTURE characters and to the right of 
'P's if 'P's are rightmost PICTURE characters), the assumed 
decimal point symbol 'V' is redundant as either the leftmost 
or rightmost character within such a PICTURE description. 

The letter 'S' is used in a character-string to indicate the 
presence of an operational sign and must be written as the 
leftmost character in the PICTURE character-string. The 'S' 
is not counted in determining the size of the elementary 
item unless the PICTURE . cla.use is ac.oompanied by a USAGE 
C(.)MP·74 <:tla1rse. In· ~P,i~ ca~e, th,e .. · '~ • . is .· .. ·· ooUAteO. as a 
$~P~+~-t;~· qp~;itp,qt~.:i; . .i.n· tP~ <si~e o;f .. the.~:i~ment.~ry item. 
Refer to the USAGE clause for additional information. 

V The 'V' is used in a character-string to indicate the 
location of the assumed decimal point and may only appear 
once in a character-string. The 'V' does not represent a 
character position and therefore is not counted in the size 
of the elementary item. When the assumed decimal point is 
to the right of the rightmost symbol in the string, the 'V' 
is redundant. 

X Each 'X' in the character-string is used to represent a 
character position which contains any allowable character 
from the computer's character set. If a PICTURE 

i~illllllllllBlllllili~~~;~~~~~~~i=t~1 :~ 
Z Each 'Z' in a character-string may only be used to represent 

the leftmost leading numeric character positions which will 
be replaced by a space character when the contents of that 
character position are zero. Each 'Z' is counted in the 
size of the item. 

9 Each '9' in the character-string represents a character 
position which contains a numeral and is counted in the size 
of the item. 

DD25A 



PICTURE 

0 

PICTURE 

Each IO I (zero) in the character-string represents a 
character position into which the numeral zero will be 
inserted. The IQ I is counted in the size of the item. 

Each I I (conuna) in the character-string represents a ' character position into which the character I I will be 
' inserted. This character position is counted in the size of 

the item. 

When the character '.' (period) appears in the 
character-string, it is an editing symbol which represents 
the decimal point for alignment purposes and, in addition, 
represents a character position into which the character'.' 
will be inserted. The character '.' is counted in the size 
of the item. The symbols 'V' and '.' are mutually exclusive. 
For a given program, the functions of the period and comma 
·are exchanged if the ·phrase DECIMAL-POINT IS COMMA is 
specified in the SPECIAL-NAMES paragraph. In this exchang.e, 
the rules for the period apply to the comma and the rules 
for the comma apply to the period wherever they appear in a 
PICTURE clause. {If insertion character ' ' is the last 
S!f~Ol _in the PICTURE character-string, it must be 
*:tmnediately followed by a semicolon or the period to end the 
·4~ta. description entry.) · 

+,-,CR,DB These symbols are used as editing sign control symbols. 
used, they represent the character position into which 
editing sign control symbol will be placed. The symbols 
mutually exclusive in any one charact~r-string and 
character used in.the symbol is counted in determining 
size of the data item. 

When 
the 
are 

each 
the 

Editing Rules: 

* Each '*' (asterisk) in the character-string represents a 
leading numeric character position into which an asterisk 
will be placed when 'the contents of that position are zero. 
Each '*' is counted in the size of the item. 

$ The '$' (currency symbol) in the character-string represents 
a character position into which a currency symbol is to be 
placed. The currency symbol in a character-string is. 
represented by either the $ or by the single character 
specified in the CURRENCY SIGN phrase in the SPECIAL-NAMES 
paragraph. The currency symbol is counted in the size of the 
item. 

1. Two general methods are used to perform editing in the PICTURE clause, 
either by insertion or by suppression and replacement. The four types 
of insertion editing are: 

a. Sil"'ple insertion. 

b. Special insertion. 

c. Fixed insertion. 

d. Floating irisertion. 

6-49 DD25 



PICTURE PICTURE 

The two types of suppression and replacement editing are: 

a. Zero suppression and replacement with spaces. 

b. Zero suppression and replacement with asterisks. 

2. The type of editing which may be performed upon an item depends on the 
category to which the item belongs. The following list indicates which 
type of editing may be performed upon a given category: 

Category 

Alphabetic 
Numeric 
Alphanumeric 
Alphanumeric Edited 
Numeric Edited 

Any Variable
Length Item 

Type of Editing 

None 
None 
None 
Simple insertion, '0' and 'B' 
All, subject to the restrictions of 

Rule 3 below 
None 

3. Floating insertion editing and editing by zero suppression and 
replacement are mutually exclusive in a PICTURE clause. Only one type 
of replacement may be used with zero suppression in a PICTURE clause. 

4. Simple Ins·ertion Edi ting. 

The ',' (comma), 'B' (space), and 'O' (zero) are used as the insertion 
characters. 'The insertion characters are counted in the size of the 
item and represent the position in the item into which the character 
will be inserted. 

5. Special Insertion Editing. 

The ' ' {period) is used as the insertion character and also 
represents the decimal point for alignment purposes. The insertion 
character used for the actual decimal point is counted in the size of 
the item. The use of the assumed decimal point, represented by the 
symbol 'V', and the actual decimal point, represented by the insertion 
character, in the same PICTURE character.;..string is not allowed. Lf the 
·~~~~#~ffib.p qp~racter is the last symbol in.·· the . cjhar~cte:r .. s·~:ring and 
:;:~q.p.~:~pp~~+ plauses . . . f c;>llO\'/ ..... , the ...... character-st).".ing-, .. ·... then . . t,he 
' 9P.~~~Rt7~)'~~%'+Il9 >mllst . be ... 1mm~4iat~:L:y. ~olloweca. by t.he . semicolon 
}P:PPiA#~~#t-tg~t 9h,a.t;f19't~r., .. fo].10W1~d ~Y Gi ~p~ce •. If. th.;. J?J;~'f~~. ,.f.:.~au~fil .. < ,is 
NP:-~ :+a,·~'f;. «rl..FlJ.~e<•· of'·•••· . i;h~t ·Pt:t~(l.,,; .• Divi~iotl . ~n~~¥f <·~ryd , '~hT .. ~nse7'.t:i:f>~ 
y~~t=~Br~+< is th~·l~s.t ~ynlbgl. in' the .•... c::nair,c:ter .... s't;.J:'ingr }t}l~ ~)l$~t~~9P. 
·?A~.-¢~Qtf.!)t'' •Jl\USt.. •·•·}j~· .imn\~d.iat~ly· f9l~9w~~< .. by <a'·•·•p~;-~9fl.·<~~l'lctu~;ipl1 
q~~#~P'R$fr f9llqwecl .. by. ··a ···•·~)?a9e. · ThJ.s··· ·~~~1tilt.s. in/ ~~g qpp;sequtive · 
P~t@99~ §ppearing•i;n ·the data deacription.~~~·ry. The result of special 
insertion editing is the appearance of the insertion character in the 
it~m in the same.position as shown in the character-stringe 

6. Fixed Insertion Editing. 

The currency symbol and the editing sign control symbols '+', '-', 
'CR', 'DB' are the insertion characters. Only one currency symbol and 
only one of the editing sign control sYmbols can be used in a given 

6-50 DD25 



PICTURE PICTURE 

PICTURE character-string. When the symbols 'CR' or 'DB' are used, they 
represent two character positions in determining the size of the item 
and they must represent the rightmost character positions that are 
counted in the size of the item. The symbol '+' or '-', when used, 
must be the leftmost or rightmost character position to be counted in 
the size of the i tern. The ·currency symbol must be the leftmost 
character position to be counted in the size of the item except that 
it may be preceded by either a '+' or a '-' symbol. Fixed insertion 
editing results in the insertion character occupying the same 
character position in the edited item as it occupied in the PICTURE 
character-string. Editing sign control symbols produce the following 
results depending upon the value of the data item. 

RESULT 

Editing Symbol in 
PICTURE Data Item Data Item 

Character-String Positive or Zero Negative 

+ + -
- space -
CR 2 spaces CR 
DB 2 spaces DB 

7. Floating Insertion Editing. 

The currency symbol and editing sign control symbols '+' or 
the insertion characters and they are mutually exclusive as 
insertion characters in a given PICTURE character-string. 

'-' are 
floating 

Floating insertion editing is indicated in a P.ICTURE character-string 
by using a string of at least two of the allowable insertion 
characters to represent the leftmost numeric character positions into 
which the insertion characters can be floated. Any of the simple 
insertion characters embedded in the string of floating insertion 
characters or to the immediate .right of this string are part of the 
floating string. 

In a PICTURE character-string, there are only two ways of representing 
floating insertion editing. One is to represent any or all of the 
leading numeric character positions on the left of the decimal point 
b~ the insertion character. The other is to represent all of the 
numeric character positions in the PICTURE character-string by the 
insertion character. 

If the insertion ch4racters are only to the left of the decimal point 
in the PICTURE character-string, the result is that a single insertion 
c=?.C1:r~c=t=r ... \Vil.l .·be . plac~~ ... into ei~p~t <•• "t:h~·<· ... gll.a.,;~~e,AA ..... J?.p·$~:tf~P:tt 

~llllii~~f~i~;:~~~~~!fr~i~~~:t~~~~~~;:~:~~~~!!~MJ1~1!~ ·· 
' Iiisettion · symbol string, whichever is farther to the left in the· 
PICTURE character-string. The character positions preceding the 
insertion character are filled with spaces. 

6-51 DD25 



PICTURE PICTURE 

If all numeric character positions in the PICTURE character-string are 
represented by the insertion character, the result depends upon the 
value of the data. If the value is zero, the entire data item will 
contain spaces. If the value is not zero, the result is the same as 
when the insertion character is only to the left of the decimal point 
in the PICTURE character-string. 

To avoid truncation, the minimum size of the PICTURE character-string 
for the receiving data item must be the number of characters in the 
sending data item, plus the number of fixed insertion ::::haracters being 
edited into the receiving data item, plus one for the floating 
insertion character. 

8. Z~ro Suppression Editing. 

The suppression of leading zeros in numeric character positions is 
indicated by the use of the alphabetic charucter 'Z' or the character 
'*' (asterisk) as suppression symbols in a PICTURE character-string. 
These symbols are mutually exclusive in a given PICTURE 
character-string. Each suppression symbol is counted in determining 
the size of the item. If 'Z' is used, the replac~ment character will 
be the space; if the asterisk is used, the replacement character will 
be I* I• 

Zero suppression and replacement is indicated in a PICTURE 
character-string by using a string of one or more of the allowable 
symbols to represent leading numeric character positions which are to 
be replaced when the associated character position in the data 
contains a zero;, Any of the simple insertion characters embedded in 
the string of symbols or to the immediate right of this string are 
part of the string~ 

In a PICTURE character-string, there are only two ways of representing 
zero suppression. One is to represent any or all of the leading 
numeric character positions to the left of the decimal point by 
suppression symbols. The other is to represent all of the numeric 
character positions in the PICTURE character-string by suppression 
symbols. 

If the suppression symbols appear only to the left of the decimal 
point, any leading zero in the data which corresponds to a suppression 
symbol in the string is replaced by the replacement character. 
Suppression terminates at the first nonzero digit in the data 
represented by the suppression symbol string or at the decimal point, 
whichever is encountered first. 

If all numeric character positions in. the PICTURE character~string are 
represented by suppression symbols and the value of the data is not 
zero, the result is the same as if the suppression characters were 
only to the left of the decimal point. If the value is zero, the 
entire data item will be spaces if the suppression symbol is 'Z' or 
all '*', except for the actual decimal point, if the suppression 
symbo 1 .;i. s ' * ' . 

9. The symbols '+', '-', '*', 'Z', and the currency symbol, when used as 
floating replacement characters, are mu~- ually exclusive within a given 
character-string. 

6-52 DD25 



PICTURE PICTURE 

Precedence Rules: 

The following chart shows the order of precedence when using characters as 
symbols in a character-string. An 'X' at an intersection indicates that the 
symbol(s) at the top of the column may precede, in a given character-string, the 
symbol(s) at the left of the -row. Arguments appearing in indicate that the 
symbols ·are mutually exclusive. The currency symbol is indicated by 'cs'. 

In cases where the General Rules above and this chart conflict, the stated 
rules have precedence. 

~First Fixed Insertion Other Symbols 
Symbol 

Second -~ {:} (:} {CR1 A {~} {~} {:} {:} Symbol B 0 I . DBJ cs x p p s v 9 cs cs 
F 
i B x x x x x x x x x x x x x x x x 
x 0 x x x x x x x x x x x x x x x x x 
e I x x x x x x x x x x x x x x x 
d . x x x x x x x x x x 

I I] x 
n 
s {] e x x x x. x x x x x x x x 
r 
t CR 
i x x x x x x x x x x x x 
0 DB 
n cs x x x 

A x x x x x 
p x x x 
p x x x x x x x x x x x x x 
s 

0 v x x x x x x x x x x x 
t z 
h x x x x x x 
e * 
r z 

x x x x x x x x x x 
s * 
y 9 x x x x x x x x x x x x x x 
m + 
b x x x x x 
0 -
1 1+ s l- x x x x x x x x x 

cs x x x x x 
cs x X. x x x x x x x 

6-:53 DD25 



PICTURE PICTURE 

At least one of the symbols 'A' , 'X' , 'z' , '9' , or '*' , or at least two of 
the symbols '+', 1

-
1

, or 'cs' must be present in a PICTURE string. 

Fixed insertion symbols '+' and'-', and other symbol 'P' appear twice. The 
first occurrence represents their use to the left of the PICTURE's numeric 
character positions and the second their use to the right of the PICTURE's 
numeric character positions. Other symbols 'Z', '*', 'cs', '+', and '-' appear 
twice. The first occurrence· represents the use before the decimal point 
position; the secortd the use after the decimal·point position. 

6-54 DD25 



RECORD CONTAINS RECORD CONTAINS 

The RECORD CONTAINS clause in an FD or SD entry is used to specify the size 
of data records. 

General Format: 

RECORD CONTAINS [ integer-1 TO] integer-2 CHARACTERS 

Syntax Rule: 

1. Integer-1 and integer-2 must be unsigned nonzero integers. 

General Rules: 

1. The size of each data record is completely defined in the record 
description (data description) entry; therefore, this clause is never 
required. When the RECORD CONTAINS clause is used, however, the 
following rules apply: 

a. Integer-2 may not be used by itself unless all of the data 
records in the file are the same size. In this -case, integer-2 
represents the exact number of characters in the data record. 
When both integer-! and integer-2 are given, they refer to the 
minimum number of characters in the smallest data record and the 
maximum number of characters in the largest data record, 
respectively. 

b. The size of the data record is specified in terms of the number 
of characters in the standard data format contained in the 
logical record, regardless of the type of characters used to 
represent the items within the logical record. The size of the 
record is determined by adding the number of characters in all 
the fixed-length elementary items to the sum of the maximum 
number of characters in all variable-length items subordinate to 
the record. This sum may be different from the actual size of the 
record. Refer to the SYNCHRONIZED and USAGE clauses. 

6-55 DD25 



RECORDING MODE RECORDING MODE 

·•·.! .. !:.! .•. • .• ·.•.·.•••.·.1;;i;r .. !:•·.••,·.""'.··.1;···.··.•·.·.:.· •. ·.·.••.! !.~~$ ~q<?~'I~(.; t100JJ! clause in a file des er iptio~ entry is used to specify ·•'"'n~ fpruJ; ·~·;' pJ'~~nh.(ltion of qata on ~agnetic tape. 

General Format: 

Syntax Rule: 

1. •:•••••••~~~Pl~i~••••••••~·•••••·•~J?J?n¥·•••····$¥$m~~·•••••:sw~•p~f{ti· .. ··••I?n;t•~Re••·•••••.~n•••••:••p~~·••·••••·;•79+ootiw~$· .P~ra9~:iiPh 

General Rules: 

1. .~F ~~~ ~;A'.t:·a"tt~ti\9r···r~p9;t_<i.tem··.•aas()o~ated..·with a f~lei~s<of ·any us~ge 
Q~@:t· ~·•~ .t.1:5).AQll:. Dl:SP:µA}'.' 1 :t;;he BCQ. option must not.be.µ$ed. 

2. ~~ ;~ ~q~~tN~ ~PE pla~~eis .omittE!d; the file·w1l.l ~~ assumed ·to 
JP~: #'.•c:<:>+de(f ~A t.n~· piJ;t~+Y ·pi9h density mode. ·. · 

3. !\jw.;;.\~il.•••.•~. ~r·····••·.r•~.········~•.r·.···~·.•·.~·r·····•. J~. h·········.~.;AP.·.·.·.·.•i~.~f.·.·······••••• .. • .. •.~·~.·~ .... :r ..• ·AL·· ...•..•..••..••••. \,·P,·h·< .. r ....•. ·~·"·$·· ... e· .•••. o .•• ·.•.r ....•.•.•. · .. •·.1;h·~····. 2\l?l?LX ¥~5 l?h:r~§e··iµ the \:~.m1m:¢9:N&RoI;; t;i.~t~9't~Pl'l· ;~. $p~.¢.J.tt~a .. ~.o;t: , .. 'f:tl~, •• ~ii ~qi.·9t?~*.en ™r4~R ~Qt· 
:::1.::m~:.:::m~ii~.~:: .. :./t>>············· ·········.·.·.·.······.·.··.·.··.······.···················· ······ ·······.·.·· .. ···. ·· ·· ·· · · ··· · ·· ··· · ··· · 

6-56 DD25 



REDEFINES REDEFINES 

The REDEFINES clause is used to describe the same memory area by different 
data description entries. This is accomplished in either the File Section or 
Working-Storage Section; it allows the same memory area to contain different 
data items. · 

General Pormat: 

level-number data-name-1 REDEFINES data-name-2 

NOTE: Level-number and data-name;..l are not part of the REDEFINES clause; 
they are shown only for clarity. 

Syntax Rules: 

1. The REDEFINES clause must immediately follow data-name-1. 

2. The level-numbers of data-name-1 and data-name-2 must be identical but 
cannot be 66 or 88. 

3. The REDEFINES clause cannot be used with level 01 data-names in the 
File Section. Implicit redefinition is provided by the DATA RECORDS 
clause in the file description entry. 

General Rules: 

1. Redefinition begins at data-name-2 and continues until a level-number 
less than or equal to that of data-name-2 is encountered. 

2. When the level-number of data-name-1 is other than 01, then 
data-name-1 must specify a memory area of the same size as 
data-name-2. The REDEFINES clause specifies only the redefinition of a 
memory area, not of the data items that occupy the area. 

3. The same memory area may be redefined as many times as required. The 
entries giving the new descriptions of the memory area must follow the 
entries defining the area being redefined, without entries defining 
new memory areas int~rvening. Multiple redefinitions of the same 
memory area must all use as data-name-2 the data-name of the entry 
that originally defined the area. 

4. The data description entry for data-name-2 cannot contain an OCCURS 
clause nor can data-name-2 be subordinate to an entry containing an 
OCCURS clause. Neither the original definition nor any subsequent 
redefinitions of the area can include an item whose size is variable 
as defined for the OCCURS clause. 

5. The entries giving the new description of the memory area must not 
contain VALUE clauses, except in condition-name entries. 

6-57 DD25 



REDEFINES REDEFINES 

6. Use caution when specifying.REDEFINES of a noncontiguous data item 
(level 77) since such data items are implicitly synchronized bas~d on 
the class. 

7. When the REDEFINES clause is specified in the Working-Storage Section 
and more than fifty noncontiguous data items (level 77} are defined, 
the REDEFINES clause and the item it redefines must be included in the 
same group of fifty items; that is, in the first fifty level 77 items, 
or the second fifty level 77 items, etc. 

6-58 DD25 



RENAMES RENAMES 

The RENAMES clause is a level 66 data description entry that .permits 
alternative, possibly overlapping, groupings of elementary items. 

General Format: 

66 data-name-1 REN/I.MES data-name-2 
[{

THRU } · ] .-- · data-name-3 • 
THROUGH 

NOTE: Level-number 66 and data"."'name-1 are not part of the RENAMES clause; 
Lhey·are shown only for clarity. 

Syntax Rules: 

1. All RENAMES entries associated with a given logical record must 
immediately follow that record's last data description entry. 

2. Data-name-2 and data-name-3 must be names of 
groups of elementary items in the associated 
cannot, however, be the same data-name. 

elementary items or 
logical record. They 

3. A level 66 entry may not be used to rename another level 66 entry nor 
may it be used to rename a level 01, 77, or 88 entry. 

' 4. Data-name-1 may not be used as a qualifier, and may only be qualified 

s. 

6. 

7. 

8. 

by the names of the level 01, FD, qjr $.J;l entries. 

Neither data-name-2 nor data-name-3 may have an OCCURS clause 
data description entry nor be subordinate to an item having an 
clause in its data description entry. 

Data-name-2 and data-name-3 may be qualified. 

The words THRU and THROUGH are equivalent. 

ii.,,·,1.,•.''.1 .• ,1.·.,i •. '.i •.. ,l.,:1.,.1:~.;.....~.':l·!.,• .. '.~.'.:·!.'• .. :e.=.,, .. e,:.::·:·:,:.,·.o.A•.i\ .. i .. '~ .. 'a····!··.·,i,·.,,·.·.,:.a.·.::···'·'' .•.. : •. ·:··::· .. :l.::·s:i.:~.:.:····'·:···'.:n.,:.::i.'·::.· •. ··:·····.·. •;:w ~ ~ ~ ?/) :::\/t\;\:\\~~~\/Y>~~~y:::::-: :-:-: .·. 

6-59 

in its 
OCCURS 

DD25 



RENAMES RENAMES 

Gener al Rule.s : 

1. One or more RENAMES entries may be written for a logical record. 

2. When data-name-3 is specified, data-name-1 is a group item that 
incl~des all the elementary items starting with data-name-2 (if 
data-name-2 is an elementary item) or starting with the first 
elementary item in data-name-2 (if data-name-2 is a group item) and 
concluding with data-narne-3 (if data-narne-3 is an elementary item) or 
concluding wiith the last elementary item in data-name-3 (if 
data-name-3 is a group item). 

3. When data-name-3 is not specified, data-narne-2 can be either a group 
or an elementary item. When data-name-2 is a group item, data-name-1 
is treated as a group item. When data-name-2 is an elementary item, 
data-name-1 is treated as an elementary item. 

4. Wh~n< ida.t~.,.~9m~-3 is sp~oifi~d, none of the elementary 
;x:-~ng~, <*99;t;.ggiq.g dat~ .... r:tame-2 and. data:-name.-3, cG,\n 
J.~1)9)~.{< • • . . 

6-60 DD25 



REPORT 

The REPORT(S) clause in a file description entry is used 
reference the report description entries with their associated file 
entries. 

General Format: 

· report-name-1 
{

REPORT IS } 

REPORTS ARE . 
[, report-name-2] 

Syntax Rule: 

REPORT 

to cross
descr iption 

1. Each report-name listed in a file description entry must be the 
subject of a report .description entry in the Report Section. 

General Rules: 

1.. The REPORT clause is required in the file description entry if the 
file being described is an output report file or is to contain output 
report records. 

2. The presence of more than one report-name indicates that the file 
contains more than one report. These reports may be of different 
sizes, formats, etc. The order in which the report-names are listed is 
not s;i.gnificant. 

6-61 DD25 



RESET RESET 

The RESET clause in a report group description entry refers to. the 
iidentif ier used in. the CONTROL clause of the associated RD entry that causes the 
SUM counter in the elementary item entry to be reset to zero on a control break. 

General ·Format: 

{ 

identifier-1} 
RESET ON 
--- . . FINAL 

S"yntax Rules: 

1. Identifier-! must be one of the identifiers described in the CONTROL 
clause in the report descri~tion entry. Identifier-1 must be a higher 
level CONTROL clause identifier than the CONTROL clause identifier 
associated with the CONTROL FOOTING report group in which the SUM and 
RESET clauses appear. 

2. The RESET clause may be used only in conjunction with a SUM clause at 
the elementary level. 

General Rules: 

1. After presentation of the TYPE CONTROL FOOTING report group, the 
counters associated with the report group are reset to zero unless an 
explicit RESET clause is given specifying reset based on a higher 
level control than the associated control for the report group. 

2. The RESET clause may be used for progressive totaling of identifiers 
where subtotals of identifiers are desired without automatic reset ing 
upon producing the report group. 

3. When FINAL is specified, .the SUM counter is not reset to zero until 
the final control footing is produced at TERMINATE time. 

6-62 DD25 



SOURCE, SUM, VALUE SOURCE, SUM, VALUE 

The SOURCE, SUM, and VALUE clauses in a report group description entry are 
used to define the purpose of the report item within the report group. 

General Format: 

l :::R::e::if :::~:7:] 
~ IS literal-! 

Syntax Rules: 

identif ier-1 

identifier-3] • • • [ UPON data-name-1] l 
1. Each identifier must indicate an item appearing in the File Section or 

Working-Storage Section or must be the name of a SUM counter in the 
Report Section. 

2. SOURCE {Without SELECTED), SUM, and VALUE clauses can be used only at 
the elementary level. The SOURCE IS SELECTED clause can be used. only 
at the g'rcnip level • 

3. When the SELECTED. phrase is used, identif ier-1 represents .a group 
item. The identifiers described at the elementary level in the source 
reco.rd then become SOURCE entries in the associated report group. The 
$$+.ECTEJl)elementary level identifiers must be unique data-names. 

4. Literal-! may be numeric, nonnumeric, or a figurative constant. 

SOURCE Rules: 

1. The SOURCE clause indicates a data item which is to be used as the 
source for this report item. This data item is called a SOURCE data 
item or a SOURCE item. The item is presented according to the. PICTURE 
clause in the associated elementary report group description entry. 

2. · Wf1~b.>tij~·.SELECTED phrase is specified, the elementary level items 
w;i:tliil144~ntifier-l are matched against the data-names specified at 
the ele~ntary level within the report group. Matching data-names are 
s-elepted>.as SOURCE i tern entries to be included and presented within 

. t.P,~:.*'e~Plf't;: .~;oup,. according to the. PICTURE ·.and USAGE spe~ificat.ione; 
9+:v~~:W.4¥:);J. .. ~P,~ data-name in the report group description en.try. 

6-63 DD25 



SOURCE / SUM'· VA.LUE SOURCE, SUM, VALUE 

SUM Rules: 

1. A SUM clause may only appear in a TYPE CONTROL FOOTING report group. 

2. If a SUM counter is referred to by a Procedure Division statement or 
Report Section entry, a data-name must be specified with the SUM 
clause entry. The data-name then represents the summation counter 
automatically generated by the Report Write.r to total the operands 
specified immediately following the SUM. If a summation counter is 
never referred to, the counter need not be named explicitly by a 
data-name entry. A SUM counter is only algebraically increment~d just 
before presentation of the TYPE DETAIL report group in which the item 
being summed appears as a SOURCE item. 

3. Whether the SUM clause names the summation counter or not, the PICTURE 
clause must be specified for each SUM counter. Editing characters or 
editing clauses may be included in the description of a SUM counter. 
Editing of a SUM counter only occurs upon the presentation of that SUM 
counter. At all other times, the SUM counter is treated as a numeric 
data item. The SUM counter must be large enough to accommodate the 
summed quantity without truncation of integral digits. 

4,. Eacn item being summed, that is, identifier-2, identifier-3, etc., 
must appear as a SOURCE i tern in a TYPE DETAIL report group or:·be names 
of SUM counters in a TYPE CONTROL FOOTING report group at an equal or 
lower position in the control hierarchy. Although the items must be 
explicitly written in a TYPE DETAIL report group, they may actually be 
suppressed at presentation time. In this manner, direct association 
without aml:ri.g.U:ity can be .made from the current data available by a 
GENERATE sta.t.ement to the data i terns to be presented within the Report 
Section. 

5. If higher level report groups are indicated in the CONTROL 
counter updating procedures, commonly called 'rolling 
forward', take place prior to the reset operation. 

hierarchy, 
counters 

6. The summation of data items .defined as SUM counters in TYPE CONTROL 
FOOTING report groups is accomplished explicitly or implicitly with 
the Report Writer automatically handling the updating function. If a 
SUM CONTROL of a data item is not desired for presentation at a lower 
level but is desired for presentation at a higher level, the lower 
level SUM specification may be omitted. In this case, the same results 
are obtained as if the lower level SUM counter were specified. 

7. The UPON data-name-1 phrase is required to obtain selective summation 
for a particular data item which is named as a SOURCE item in two or 
more TYPE DETAIL report groups. Identifier-2 and identifier-3 must be 
SOURCE data items in data-name-1. Data-name-1 must be the name of a 
TYPE DETAIL report group. If the UPON data-name-1 phrase is not used, 
identifier-2, identifier-3, etc., respectively, are added to the SUM 
counter at each execution of a GENEAATE statement. This statement 
generates a TYPE DETAIL report group that contains the SUM operands at 
the elementary level. 

For further explanation, refer to the ADD statement. 

6-64 DD25 



SOURCE, SUM, VALUE SOURCE, SUM, VALUE 

VALUE Rule: 

1. The VALUE clause causes the report data item to assume the specified 
value each time its report group is presented. 

6-65 0025 



SYNCHRONIZED SYNCHRONIZED 

The SYNCHRONIZED clause in a data description. entry is used to specify the 
alignment of an elementary item with a computer word or words. 

General Format: 

{

SYNCH RONI ZED} 

SYNC [

LEFT ] 

~· 

Syntax Rules: 

1. The SYNCHRONIZED clause can be used only with an elementary item. 

2. SYNC is an abbreviation for SYNCHRONIZED. 

General Rules: 

1. This clause indicates that the COBOL compiler, in 
internal format of this item, must place the item in 
number of computer words that can contain the item, with 
any other item sharing those words. 

creating the 
the minimum 
no part of 

2. The computer word, or words, containing the synchronized item may also 
have to contain some unused character positions in order to fill the 
computer word, or words. When SYNCHRONIZED LEFT is specified, these 
unused character positions (if any) will occupy the. least significant 
portion of the last word of the data item. When SYNCHRONIZED RIGHT is 
specified, the unused positions (if any) will occupy the most 
significant portion of the first word of the data item. The unused 
character positions must not be described with FILLER items. 

3. All unused character positions resulting from the SYNCHRONIZED clause 
appear in the external format. 

4. Whenever a synchronized item is referenced in the source program, the 
original size of the item as shown in the PICTURE clause is used in 
determining any action which depends. on size, such as justification or 
truncation. The REDEFINES clause, however, leads to a redefinition of 
a memory ~, not just of the data items occupying the area. If 
SYNCHRONIZED clauses resulted in un\l!:>E!.d. c.~aracter .· posi tioI1s > iI1 'tl'l.E! 
or~g.iI1ci.1. c.l;f~nit~ori of the area, o#h~r .than. to the lef# (>f : ~:q~ f:±#~t; 

.:@;:#ip*:iP~:~P:$>~rr~fl.~~4,~4, the new definition must account for all· such ·an:aractet pdsft1.6ns. If the first item in the original definition is 
SYNCHRONIZED RIGHT, the area being redefined begins in the leftmost 
character of the first word allocated to the original item. If the 
last .item of the original definition is SYNCHRONIZED LEFT, the area 
being redefined extends to the rightmost character of the last word 
allocated to the original item. 

6-66 DD25 



SYNCHRONIZED SYNCHRONIZED 

2/77 

5. When SYNCHRONIZED is specified for an item within the scope of an 
OCCURS clause, each occurrence of the item will be synchronized. 

6. Data items described with USAGE COMPUTATIONAL or COMPUTATIONAL-n are 
automatically synchronized. Data items described with USAGE 
:¢9.~0tf.~q.'ION~L.;..4< are automatically synchronized ori word and half-word 
boundaries. All other COMPUTATIONAL or COMl?UTATIONAL-n data items are 
automatically synchronized on word boundaries. 

7. If neither LEFT nor RIGHT is specified in the SYNCHRONIZED clause, the 
data items are implicitly synchronized as follows: 

8. 

a. Alphabetic and alphanumeric data items are SYNCHRONIZED LEFT. 

b. Numeric, numeric edited, and alphanumeric edited data items are 
SYNCHRONIZED RIGHT. 

Unless otherwise specified in an 
clause, noncontiguous data items 
impiicitly synchronized as .follows: 

explicitly stated SYNCHRONIZED 
(level 77) in working-storage are 

a. Alphabetic and alphanumeric data items are SYNCHRONIZED LEFT. 

b. Numeric, numeric edited, and. alphanumeric edited data items are 
SYNCHRONIZED RIGHT. 

9. If the data description of an item contains the SYNCHRONIZED clause 
and an operational sign, the sign of the item will appear in the least 
significant character of the data item, regardless of whether the item 
is SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT •.. 

6-67 DD25A 

I 



TYPE TYPE 

The TYPE clause in a report group description entry is used to spec,i.fy the 
particular type of report group that ~s described by this entry and to indicate 
the time at wqich the report group is to be -generated. 

General Format: 

TYPE IS 

Sy.ntax Rule: 

REPORT HEADING 
.RH 
PAGE HEADING 
rn-
-~·~LQW.· H~ADlNG 
OH 

{~NTROL HEADING} 

DETAIL 
DE 

{~NTROL FOOTING} 

OVE!{:F~OW FOOTlNG ov .. 
PAGE FOOTING 
w-
REPOR·Tr FOOTING 
RF 

{
identifier-n} 
FINAL · 

{
identifier-n} 
FINAL 

1. RH is an abbreviation for REPORT HEADING; 
PH is an abbreviation for PAGE HEADING; 
Ol.t is an abbreviation for O~RFLOW HEADING; 
CH is an abbreviation for CONTROL HEADING; 
DE is an abbreviation for DETAIL; 
CF is an abbreviation for CONTROL FOOTING; 
OV;'H;i.$ ~ abbrev.i..at;i.on for OWRFLOW . FOOTING; 
PF i.s an abbreviation for PAGE FOOTING; 
RF is an abbreviation for REPORT FOOTING. 

Geperal. Rules: 

L The level-number 01 identifies a particular report group to be 
generated as output and the TYPE clause in this entry indicates . the 
tim~ for generation of this report group. If the report group is 
described as. other than TYPE DETAIL, its generation is an automatic 
Report Writer function. If the report group is described with the TYPE 
DE!I'AIL clause, the Procedure Division statement GENERATE data-name 
directs the Report Writer to produce the named report group. 

6-68 DD25 



TYPE TYPE 

2. The REPORT HEADING entry indicates a report group that is produced 
only once at the beginning of a report during the execution of the 
first GENERATE statement. There can be only one report group of this 
type in a report. SOURCE clauses used in TYPE RH report groups refer 
to the values of data items at. the time the first GENERATE statement 
is executed. 

3. The PAGE HEADING entry indicates a report group that is produced at 
the beginning of each page according to PAGE and OVERFLOW condition 
rules as specified in Rule 19. There can be only one report group of 
this type in a report. 

4. ~*'Q~~J4~f;lEADIN(;entry indicates a report group that is produc~d 
· · ~t ~3~ ~g:l~ning . of · a· page following an OVERFLOW . condit~on . according 
<<t9 l'~q:e; iipcjl ()V'.E:RFLO!J rules as specified in Rule 19. There can he only 
on~ ~PQJ:''l;/SJ'.;oup of<this type in a report. 

s. The CONTROL HEADING entry indicates a report group that is produced at 
the beginning of a control group for a designated identifier or, in 
the case of FINAL, is produced once before the first control group at 
the initiation of a report during the execution of the first GENERATE 
statement. There can be only one report group of this · type for each 
identifier and for the FINAL entry specified in a report. To produce 
CONTROL HEADING report groups, a control break must occur. SOURCE 
clauses used in TYPE CONTROL HEADING FINAL report groups ref er to the 
values of the items at the time the first GENERATE statement is 
executed. 

6. The DETAIL entry indicates a report group that is produced for each 
GENERATE statement in the Procedure Division. Each DETAIL report group 
must have a unique data-name at the 01 level in a report. 

7. The CONTROL FOOTING entry indicates a report group that is produced at 
the end of a control group for a designated identifier or is produced 
once at the termination of a report ending a FINAL control group. 
There can be only one report group of this type for each identifier 
and for the FINAL entry specified in a report. To produce CONTROL 
FOOTING report groups, a control break must occur. SOURCE clauses used 
in TYPE CONTROL FOOTING FINAL report groups ref er to the values of the 
items at the time the TERMINATE statement is executed. 

8. TheO'VE:RFLOW FOOTING entry indicates a report group that is produced 
at the bottom of a page following an OVERFLOW condition according. to 
I>Jt..G:S ~cl· ()\t:f;::fWLOW rules as specified .in Rule 19. There can be only one 
lt~'}?9;tt~· ~~pl,lFJ( .. of this type in a r$port. 

9. The PAGE FOOTING entry indicates a report group that is produced at 
the bottom of each page according to PAGE and OVERFLOW condition rules 
as specified in Rule 19. There can be only one report group of this 
type in a report. 

10. The REPORT FOOTING entry indicates a report group that is produced 
only once at the termination of a report. There can be only one report 
group of this type in a report. SOURCE clauses used in TYPE REPORT 
FOOTING report groups refer to the values of the items at the time the 
TERMINATE statement is executed. 

11. Identifiers, as well as FINAL, must be one of the. identifiers 
described in the CONTROL(S) clause in ·the report description entry. 

6-69 DD25 



TYPE TYPE. 

12. A FINAL type control break may be designated only once for CONTROL 
HEADING or CONTROL FOOTING entries within a report. 

13. Nothing precedes a REPORT HEADING entry and nothing follows a REPORT 
FOOTING entry within a report. 

14. The HEADING or FOOTING report groups occur in the following Report 
Writer sequence, if all exist for a given report: 

15. 

REPORT HEADING (one occurrence only-first page) 
PAGE HEADING Qli:: P~M+IPtrU::gAP+NG 

CONTROL HEADING 
DETAIL 
CONTROL FOOTING 

PAGE FOOTING <:>rOVERFLOW<FOOTING 
REPORT FOOTING (one occurrence only-last page) 

CONTROL HEADING report 
hierarchical arrangement: 

Final Control Heading 
Major Control Heading 

. 
Minor control Heading 

CONTROL FOOTING report 
hierarchical arrangement: 

Minor Control Footing 

Major Control Footing 
Final Control Footing 

groups are presented in 

groups are presented in 

the following 

the following 

16. CONTROL HEADING report groups appear with the current values of any 
indicated SOURCE data items before the DETAIL report groups of the 
CONTROL group are produced. CONTROL FOOTING report groups appear with 
the previous values of any indicated CONTROL SOURCE data items just 
after the DETAIL report groups of that CONTROL group have been 
produced. The USE procedures specified for a CONTROL FOOTING report 
group that refer to: a) SOURCE data items specified in the CONTROL(S) 
clause affect the previous value of the items; b) SOURCE data items 
not specified in the CONTROL(S) clause affect the current value of the 
items. These report groups appear whenever a control break is noted. 
LINE NUMBER determines the absolute or relative position of the 
CONTROL report groups exclusive of the other HEADING and FOOTING 
report groups. 

6-70 OD25 



TYPE TYPE 

17. •'l'il~ cop:C:~pt of.the OVERFLOW condition in a Report Writer is based on 
the. l(;)gi.G:a,,l definition.of a page format relative to the presentation 
of a cont;plete control group. For purposes of the OVERFLOW condition, a 
complete control group depends on the change of a data item value 

... '\tl'l.-t.hj.;ti>~ Q.e.siqnated order o.f specific data items. If the change is a 
m$~P;' <#?~#Fe>~. group break, the. complete control group includes the 
~~o;r;RN .l)ET}\IL, and FOOTING report groups associated with the minor 

· c;9##;+0:J. >specification. If the change is a major control group break, 
.1;~~ gq~p~~te. pon.trol group includes the HEADING, DETAIL, and FOOTING 
r:~}?.qti;c <1;oups associated with . tne minor, intermediate, and major 
cqn.tro;.~t>eci:(ications. Thus, during process time, if a page format 
d;pe.s npt ~llo"{ a complete control group to be presented within the 
it•f.in~~Jpn of the page, an OVERFLOW condition is said to exist from 
"t;rt• *'~'t:. DETJ\:;Lreport group printed in the control group on one page 
rf>• rl'f~ ~~7~"1;<.~eport group p.r.inted in the control group on the next 
piiVJ1:ef.· ~~'f::Ween. th!e points. of from and to described above, OVERFLOW 
r(}()'l'IN~~l ~nc1 OVERFLOW HE~D!NG .. report groups may be produced, if 
srpecif'~~d~ ~f. a cqmplete QOnt;rol group, as described above, and none 
9t i;hep~>t~ cg~-t;rol groups can be presented within the definition of 
the pa9e1 .:l .PAGE condition is said to exist from the last DETAIL 
rrJ?9¥'t 9:t::Pt1P .;µ').<:],., therefore, PAGE FOOTING and PAGE HEADING report 
g;:qµps a;~pro(luced, if specified. 

18. PAGE HEADING. and OVERFLOW . HEADING, and PAGE FOOTING and OVERFLOW 
FOOTING phrases, if specified in a report, are mutually exclusive for 
apy one page •. The absence of a TYPE OVERFLOW HEADING clause indicates 
that TYPE PAGE HEADING report groups, if specified, are produced at 
th.e beginning of each page regardless of the condition that prompted 
the new page. Likewise, the absence of a TYPE OVERFLOW FOOTING clause 
indicates that TYPE ·PAGE FOOTING report groups, if specified, are 
p.;roduced at the bottom of each page regardless of the condition that 
ended the current page. 

19. To recpgnize the OVERFLOW condition within the Report Writer and to 
determine the difference between an OVERFLOW condition and a PAGE 
condition, the PA.GE LIMIT(S) clause must be given, including an 
e.xplicit LAST DETAIL phrase. If both TYPE PAGE HEADING and OVERFLOW 
HEADING or TYPE PAGE FOOTING and OVERFLOW FOOTING report groups are 
$pecifiedin.the same report and if the LINE-COUNTER will exceed the 
{J\ST P~'J.1,A.IL limit for generation of the current report group, the 
fq,llowingrules apply: 

a.. Without an explicit PAGE LIMIT(S) FOOTING clause, if the current 
report group is not the first report group of a new control 
gtoup, an OVERFLOW condition exists from this position on the 
page to the position on the next page where the FIRST DETAIL 
report group can be presented. If the current report group is the 
fir~.t report group of a new control group, a PAGE condition 
exists. TYPE CONTROL FOOTING report groups are considered part of 
th.e l(:lst control group. 'rYPE CONTROL HEADING report groups are 
99p$;c1.~red part of th.e nex.t or current control ~roup 

6-71 DD25 



TYPE TYPE 

6-72 DD25 



USAGE USAGE 

The USAGE clause in a data description entry is used to indicate the I 
dominant use of a data item or the manner in which a data item is represented in 
memory. 

General Format: 

[~rs] 

COMPUTATIONAL 
COMP 
~trtA't'l.ONAL~l 
bOMP+t .· .. ·.·. 
•coM.iTJ"ATlONAL~ 2 
·cQMJ?~2 ). 
CQMlfoUWA,W:CONA.L-3 

E!;¥~w~~ 
DISPLAY 
0$$~$~¥%1 
D-~S1114\WRi 
INDEX 

/ 

Syntax Rules: 

1. COMP is an abbreviation for COMPUTATIONAL. COMP""n is an abbreviation 
~9$-A ¢P~uw,~_;;p~9~~~¥n·~ 

~. The PICTURE character-string for a COMPUTATIONAL or COMPUTATIONAL ... n 
data item must only contain '9's, the operational sign •s•, and the 
assumed decimal point •v•. 

J. lb@=n!P$AC¥! QPM?'U'l\~WIOW~...,4 is. s~<::ifi$cl, th~ ob}¢ct compµte; must be 
:::@1 •• £.~~$@,l.y•·•.• §#;;•• ••• ;@np+;~.c,il.:tl.y· •. ·6QOO .... a:t$.'o. 

4. The only usage that can be specified for a report group description 
entry is USAGE DISPLAY. 

General Rules: 

2/77 

1. If the usage of a data item is not specified, it is assumed to be 
USAGE DISPLAY. 

2. The USAGE clause may be specified at any level of a hierarchical 
.structure. If this clause is specified at a group level, it applies 
to all of the subordinate elementary items in the group and no 
subordinate item may specify a different usage. 

3. The external format of a data item (as it is stored on a peripheral 
device) and its internal format (as it is stored in memory) are always 
the same. 

6-73 DD25A 

I 

* 



USAGE 

2/77 

USAGE 

4. When the USAGE clause is specified, the internal format invoked for a 
computational item must not conflict with the data characteristics 
Specified for the item in the PICTURE clause. The USAGE clause 
permits a choice of the following internal formats for computationa.:i 
data items: 

a. COMPUTATIONAL represents decimal-precision binary. The data item 
is stored as a synchronized signed floating-point binary number. 
The PICTURE clause description must c~nf orm to the rules for 
numeric items. If the PICTURE clause specifies eight or less 
digits, the item is stored as a single-precision floating-point 
number; otherwise, it is stored as a double-precision 
floating-point number. 'To preserve fractional accuracy, each 
item is treated with a span multiplier as described· in Section II 
of the COBOL User's Guide~ 

I 

The data. item is 
The 

to the. 
clause 
as a 
as a 

The data item 

5. When the USAGE DISPLAY clause is specified, the data items are ·stored 
as standard data format characters. The USAGE clause permits a choice 
of the following internal formats for display data items: 

a. DISPLAY represents character-oriented data. The data item is 
stored in the native (Series 60/6000) six-bit character set. The 
PICTURE clause description may imply alphabetic, numeric, 
alphanumeric, or numeric edited data items. 

·6-74 



USAGE 

2/77 

USAGE 

pI9¥&J\.YT'J. :tet>J:'.e$emts editec:l floating-point.. . The .··. ti~7a __ .. itexn. is 
: />: /~~P-'l\~4 ·. iJJ.···•··'t;}').~>··· nat.~ve .. ·.•·· >$*x..,bi t ··-character set•< . 'J)b~ .<<;lass;. 9£ <~~~ 

>< .l;~~m .As .µt\P:l~?itly · alph.~P.~;~~(?~. a.nd it is . f:ormatt7(J.. ~;s iii ~um~J:'-i.O .< 

> ~~pre$~p.1;a~ipn,_ .set.·. :3 ... 9ba:t:aqt.e:r~stripg .. __ as> ~pe¢~•t~~<i •. >itl > <1::!'1r·< 
) . · ~~~49an_ National StandarP. .... · .. for the Repres~~t.?td.qn.of N~er;i.c 

\!\;.\\. : · Y~i·~4~-l~is) :haracter · $tpings · for Information ··: Intel7qb~~ge 

Y\\~4/ ··· Di$~LA¥:;~ repr.esents cha;racter .... oriented data. The data it:.em is 
stqre.~. ;J.p .. ~ nonnative six""'bit. character set. The .c~araciter set 
j.s ;P.e. (!Ommercial collating character set described in Appendix P 

> <:>:f the C!OBOL user's Guide .. 

~Pr PfC:Ttl~ clause description must imply a class 0£ alphabetic 
or alphanumeric for the data item. 

~:tt;hough .. ·a DISPLAY-2 
ha_yitlg (lny ot.h~r USAGE; 
j7igurative·constants .. 

data 
it 

item may not be compareQ. to an item 
may be compared to literals and 

l)I$PLAY-2 .da.ta .. items must be explicitly moved to USAGE DISPLAY 
it~ms if they ct're to appear on punched cards,. f?rinte.r listings, 
9:t; ~im~laF ~?Cte.:rnal media. This function canriot b¢ accomplished 
with a REDEFXNES ·.·ala use. 

6. An elementary item described with the USAGE INDEX clause is called an 
index data item; the external and internal format of an index data 
item is single-precision binary integer. The elementary item 
described with the USAGE INDEX clause contains a value that must 
correspond to an occurrence number of a table element and must not be 
a conditional variable. It is assigned a single word of memory. 

An index data item can be referenced directly only in a SEARCH 
statement, a SET statement, or in a relation condition. An index data 
item can be part of a group that is referenced in a MOVE statement or 
an input-output statement, in which case no conversion takes place. 

The BLANK WHEN ZERO, JUSTIFIED, PICTURE, SYNCHRONIZED, and VALUE 
clauses must not be used to describe group items or elementary items 
described with the USAGE INDEX clause. If a group item is described 
with the USAGE INDEX clause, the elementary items in the group are all 
index data items. The group item itself is not an index data item and 
must not be used in SEARCH statements, SET statements, or in a 
relation condition. 

7. Although the USAGE clause does not itself limit the use of the data 
item being described, some statements in the Procedure Division may 
restrict the USAGE clauses that may be applied to their operands. 
However, the USAGE clause may affect the decimal point or internal 
representa~ion of the data item being described. 

6-75 DDiSA 



VALUE VALUE 

The VALUE clause in a data description entry is used to define the 
value of working-storage data items, or the values associated 
condition-name. 

initial 
with a 

Format 1: 

VALUE IS literal-! 

Format 2: 

88 condition-name-! {
VALUE IS } 

~SARE literal-! 

[{
THRU } 1i teral-2] 
THROUGH . 

[· literal-3 
[ {

THRU } literal-4]] 
THROUGH 

NOTE: Level-number 88 and condition-name-! are not part of the VALUE 
clause; they are shown only for clarity. 

Syntax Rules: 

1. The words THRU and THROUGH are equivalent. 

2. A signed numeric literal must be associated with a signed numeric 
PICTURE character-string~ 

General Rules: 

1. The VALUE clause cannot be stated for any item whose size, explicitly 
or implicitly, is variable. 

2. The VALUE clause must not conflict with other clauses in the 
description of the item or in the data description within 
hierarchy of the item. If the category of an elementary item 
specified as numeric or alphabetic, it does not contradict 
alphanumeric category of group items. The following rules apply: 

data 
the 
is 

the 

a. If the category of the item is numeric, all literals in the VALUE 
clause must be numeric literals. If the literal defines the value 
of a working-storage data item, the literal is aligned according 
to the alignment rules except that the literal must not have a 
value that would require truncation of nonzero digits. A negative 
numeric literal must be associated with a signed numeric {S9) 
PICTURE character-string. 

6-76 DD25 



VALUE 

b. 

c. 

d. 

VALUE 

If the category of the item is alphabetic, alphanumeric, 
alphanumeric edited, or numeric edited, all literals in the VALUE 
clause must be nonnumeric literals. The literal is aligned in the 
data item according to the alignment rules (refer to the 
JUSTIFIED clause) , except that the number of characters in the 
literal must not exceed the size of the item. 

All numeric literals in a VALUE clause of an item must have a 
value which is within the range of values indicated by the 
PICTURE clause: for example, for PICTURE PPP99, the literal must 
be within the range .00000 through .00099. 

The function of the BLANK WHEN ZERO clause or any editing 
characters in a PICTURE clause has no effect on the 
initialization of an item. The VALUE clause is the only clause 
that may (depending on its usage) provide initialization. Editing 
characters are included, however, in determining the size of the 
item. Therefore, the VALUE for an edited item must be presented 
in an edited form. 

3. A figurative constant may be substituted in both Format 1 and Format 2 
wherever a literal is specified. 

4. The VALUE clause cannot be used for items whose USAGE IS INDEX. 

Condition-Name Rules: 

1. Each condition-name requires a separate entry with level 88. This 
entry contains the name of the condition and the value, values, or 

· range of values associated with the condition-name. The condition-name 
entries for a particular conditional variable must follow the entry 
describing the item with which the condition-name is associated. A 
condition-name may be associated with any elementary or group item, 
except the following: 

a. Another condition-name. 

b. A level 66 item. 

c. A group containing items requiring separate handling due to 
synchronization, usage, etc. 

2. In a condition-name entry, the VALUE clause is required. The VALUE 
clause and the condition-name itself are the only two clauses 
permitted in the entry. The characteristics of a condition-name are 
implicitly those of its conditional variable. 

J. Format 2 can be used only in connection with condition-names. Whenever 
the THRU phrase is used, literal-1 must be less than literal-2, 
literci~ ... ~ .. 1.e~s. tha~. literal •M4 I etc. No J\\()te ~ha.n ·24 .l'~l'l~~1/ 0£ v~+µ~$ 

: .:::.:~!t~!iiM~a~.,~~~J . ~~¥ };)~ .. spec:if ied. Jn .a .. ·· c'?ru:l,j_i;~91.1'71'l~ ~!i.rf¥:r····• 

6-77 DD25 



VALUE 

An example of condition-name entries follows: 

03 GRADE PIC 9(2). 

88 PRIMARY VALUE IS 1. 
88 SECOND VALUE IS 2. 

88 GRADE-SCHOOL VALUES ARE 1 THRO 6. 
88 JUNIOR-HIGH VALUES ARE 7 THRU 9. 
88 HIGH-SCHOOL VALUES ARE 10 THRU 12. 
88 GRADE-ERROR VALUES ARE O, 13 THRU 99. 

Data Description Entries Other Than Condition-Names: 

VALUE 

1. Rules governing the use of the VALUE clause differ with the respective 
sections of the Data Division: 

a. In the File Section, the VALUE clause may be used only in 
condition-name entries. 

b. In the Working-Storage Section, the VALUE clause may be used in 
condition-name entries, and it may also be used to specify the 
initial value of any other data item; in which case, the clause 
causes the item.to assume the specified value at the start of 
object pro.gram execution. If the VALUE clause is not used. in an 
item's description, the initial value is undefined. 

c. In the Report Section, the VALUE clause causes the report data 
item to assume the specified value each time its report group is 
presented. This clause may be used only at the elementary level 
in the Report Section. 

2. The VALUE clause must not be stated in a data description entry that 
contains an OCCURS cl~use, or in an entry that is subordinate tc an 
entry containing an OCCURS clause. This rule does not appl~ to 
condition-name entries. 

3. The VALUE clause must not be stated in a data description entry that 
contains a REDEFINES clause, or in an entry that is subordinate to an 
entry containing a REDEFINES clause. This rule does not apply to 
condition-name entries. 

4. If the VALUE clause is used in an entry at the group level, the 
literal must be a figurative constant or a nonnumeric literal, and the 
group area is initialized without consideration for the individual 
elementary or· group items contained within this group. The VALUE 
clause cannot be stated at the subordinate levels within this group. 

5. The VALUE clause must not be written for a group containing items with 
descriptions including the JUSTI;FIED, SYNCHRONIZED, or USAGE clauses 
(other than USAGE IS DISPLAY). 

6. Within a given record description, the VALUE clause must not be stated 
in a data description entry that is subsequent to a data description 
entry in which an OCCURS clause with a DEPENDING ON phrase appears. 

6-78 DD25 



VALUE OF VALUE OF 

The VALUE OF clause in a file description entry is used to particularize 
the description of an item in the label records associated with a file. 

General Format: 

VALUE OF data-name-1 IS {

literal-! } 

data-name-2 A 

[• data-name- 3 IS { 
li teral-2 } ] 

data-name-4A •·· 

Syntax Rule: 

1. Data-name-1, data-name-2, data-name-3, etc., should be qualified when 
necessary, but cannot be subscripted or indexed, nor can they be items 
described with the USAGE IS INDEX clause. 

General Rules: 

1. Each data-name-1, data-name-3, etc., must 
records; A data-name-2, A data-name-4, 
Working-Storage Section. For an: 

be in 
etc., 

one of 
must be 

the label 
in the 

a. Input File: The appropriate label routine checks to see if the 
value of data-name-1 is equal to the value of literal-1, or of .A 
data-name-2, whichever has been specified. 

b. Output File: At the apprqpriate time, the value .of data-name-1 is 
made equal to the value· of literal-1, or of A data-name-2, 
whichever has been specified. 

2. A figurative constant may be substituted wherever a literal is 
specified. 

3. If label records are standard (see LABEL RECORDS clause), then 
data-name-1, data-name-3, etc., must be one of the following: 

IDENTIFICATION or ID 
RETENTION-PERIOD 

a. When ID or IDENTIFICATION is used, a nonnumeric literal or a 
data-name that has a class of alphanumeric and size of no more 
than 12 characters must be associated with the fixed data-name. 

b. When RETENTION-PERIOD is used, a numeric literal not 
999 must .be specified. The value 999 signifies 
retention. 

6-79 

exceeding 
permanent 

DD25. 



VALUE OE' VALUE. OF 

4. ~9; ~~~~ ~t;.9pa9~ fUes I the VALUE OF IDENTIFICATION clause is ignored 
~~ni~~ ~ lab~J.\.rec;:qrd is not .present on the external. device.. However, 
~i~ ~~·al)Q;;).l:!P label 'QSE procedures are engaged at QPEN and CLOSE for 

.••L:@~Pbd·~·~·1~$.·~•••i , .. · 

6-80 0025 



SECTION VII 

PROCEDURE DIVISION 

DESCRIPTION OF THE PROCEDURE DIVISION 

The Procedure Division contains the procedures required to solve a given 
problem. Procedures are written as sentences, combined to form paragraphs, which 
in turn may be combined to form sections. COBOL procedures are expressed in a 
manner similar to (but not identical with) ordinary English. The basic unit of 
procedure formation is a sentence or a group of successive sentences. 

DECLARATIVES 

Declarative sections must be grouped at the beginning of 
Division preceded by the keyword DECLARATIVES and followed by the 
DECLARATIVES. The USE statement is called a declarative statement. 

the Procedure 
keywords · END 

PROCEDURES 

A procedure is composed of a paragraph, or group of successive paragraphs; 
or a section, or group of successive sections within the Procedure Division. If 
one paragraph is in a section, then all paragraphs must be in sections. A 
procedure-name is a word used to refer to a paragraph or section in the source 
program in which it occurs. It consists of a paragraph-name (which may be 
qualified) or a section-name. 

The end of the Procedure Division and the physical end of the 
that physical position in a COBOL source program after which 
procedures appear. 

program is 
no further 

A section consists of a section header followed by zero, one, or more 
successive paragraphs. A section header consists of a section-name followed by 
the required word SECTION, a priority-number if desired, and a period. A section 
ends immediately before the next section; at the end of the Procedure Division; 
or, in the declarative portion of the Procedure Division, at the keywords END 
DECLARATIVES. 

A paragraph consists of a paragraph-name followed by zero, one, or more 
successive sentences. A paragraph ends immediately before the next 
paragraph-name or section-name; at the end of the Procedure Division; or, in the 
declaratives portion of the Procedure Division, at the keywords· END 
DECLARATIVES. 

7-1 DD25 



A .sentence consists of one or more state~ents and is terminated by a period 
followed by a space. 

A statement is a syntactically valid combination of words and symbols 
beginning with a COBOL verb. 

The term identifier is defined as the word or words necessary to make 
unique reference to a data item. 

Execution begins with the first statement of the Procedure Division, 
excludi'ng declaratives, or at an entry point. Statements are then executed in· 
the order in which they are presented for compilation, except where the rules in 
this section indicate a different order. 

STRUCTURE OF THE PROCEDURE DIVISION 

Procedure Division Header 

The Procedure Division is identified by and must begin with the following 
header: 

PROCEDURE DIVISION. 

Procedure Division Bod¥ 

The body of the P.rocedure Division must conform to one of the following 
formats: 

Format 1: 

[ DECLARATIVES • 

{section-name SECTION. declarative sentence 

{paragraph-name. {sentence } .•• } ••• } •.. 

END DECLARATIVES. ] 

{section-name SECTION [priority-number] 

{paragraph-name. {sentence} •.• } ••• } 

7-2 DD25 



Format 2: 

{paragraph-name. { sentence} ••• } 

.Procedure Division Segments 

Priority-numbers may be used on section headers to provide for segmentation 
of an object program. They identify the fixed -and independent segments of the 
program. 

General Format: 

section-name SECTION [ priority-number J . 

Syntax Rules: 

1. The priority-number must be an integer ranging in value rrom 0 through 
99. 

2. If the priority-number is omitted from the section header, the 
priority is assumed to be o. 

General Rules: 

1. All sections which have the same priority-number constitute a program 
segment with that priority. 

2. Segments with a priority-number of 0 through 49 belong to the .fixed 
portion of the object program. 

3. Segments with a priority-number of 50 through 99 are independent 
segments. 

4. Sections in the declarative portion must not contain priority-numbers 
in their section headings. These sections are defined t6 have a 
priority of 0. 

STATEMENTS AND SENTENCES 

A statement is a syntactically valid combination. of words and symbols 
beginning with a COBOL verb. The three types of statements are conditional 
statements, compiler-directing statements, and imperative-statements. 

A sentence consists of a sequence of one or more statements, 
which is terminated by a period. The three types of sentences are 
sentences, compiler-directing sentences, and imperative sentences. 

7-3 

the last of 
conditional 

DD25 



Conditional Statements and Sentences 

A conditional statement specifies that the truth value of a condition is to 
be determined and that the subsequent action of the object program is dependent 
on this truth value. A conditional statement is an IF, READ, SEARCH, or RETURN 
statement; a WRITE statement that specifies an INVALID KEY phrase; an arithmetic 
statement {ADD, COMPUTE, DIVIDE, MULTIPLY, SUBTRACT) that specifies the SIZE 
ERROR phrase: ·9# ~n· ~gg~w: g~~,ltG!!<:sta:t:.~ment that specifies :the NO DAT.A phrase. 

A conditional sentence is a conditional statement terminated by a period 
followed by a space. The conditional statement may be optionally preceded by an 
imperative-statement. 

Compiler-Directing Statements and Sentences 

A compiler-directing statement consists of a compiler-directing verb and 
its operands. The compiler-directing verbs are COPY, ENTER, and USE. A 
compiler-directing statement causes the compiler to take a specific action 
during compilation. 

A compiler-directing statement terminated 
compiler-directing sentence. For example: 

USE AFTER ERROR PROCEDURE ON MASTER-FILE. 

with a period is a 

! [i:!!i : ~~7 k~~o#~~ $ND. PROGRAM ·br END OF PROGIW1 may be considere4 as special 
:q(;)mg:t;i.e:,:r-.~i~~pping statements. The END PROGRAM statement may be used to indicate 
.~b~:/~ljysic;,a.t. end of' the·, source program. (A STOP RUN statement is used to 
:~ner~c.a.te tKe loqical e·nd:: of the program.) Use of the END PROGRAM statement is 
+f:i!<f9xnroend•d to :faoili tat·e the orderly completion of compilation of source 
'p+:9<]r2l,ms that end with NO'l?E statements or conunent lines. If specified, the END 
:.R~9~~M .::>°t.().1:.~rn!l:J.t must begin in. character position 8 (margin A of the reference 
#PP-me~).~: ±'9<ffiP.~'t->a.l539;:be te;rminated by a period (.). 

7-4. DD25 



Imperative-Statements and Sentences 

An imperative-statement indicates a specific action to be taken by the 
object program. The imperative-statement is any statement that is neither a 
conditional statement nor a compiler-directing statement. An 
imperative-statement may consist of a sequence of imperative-statements, each 
possibly separated from the next by a separator. The imperative verbs are: 

1\CCEPT3 
l\DD1 
ALTER 
¢111¥ 
CLOSE 
COMPUTE1 
DISPLAY 
DIVIDE1 

EXAMINE 
EXIT 
GENERATE 
GO TO 
INITIATE 
::m:111 
MOVE 
MULTIPLY1 
OPEN 

PERFORM 
RELEASE 
SEEK 
SET 
SORT 
STOP 
SUBTRACTl 
TERMINATE 
WRITE2 

Whenever the term 'imperative-statement' appears in the general format of 
statements described in this section, the 'imperative-statement' refers to that 
sequence of consecutive imperative-statements ended by a period, or an ELSE 
associated with a previous IF verb, or a WHEN associated with a previous SEARCH 
verb. 

An imperative-statement terminated by a period is an imperative sentence. 
For example: 

MOVE A TO B. 
MOVE A TO B7 ADD C TO D. 

An imperative sentence may contain either a GO TO statement or a STOP RUN 
statement, which (if present) must be the last statement in the sentence. For 
example: 

MOVE A TO B7·ADD .C TOD GO TO START. 

SENTENCE EXECUTION 

In the following discussion, 'execution of a sentence or a statement within 
a sentence' means 'execution of object coding compiled from a sentence, or from 
a statement within a sentence which has been written in COBOL'. 'Transfer of 
control' means 'transfer of control in the object program by transferring 
(GOing) from one place to another place out· of the written sequence'. 'Passing 
of control' means 'passing of control in the object program by passing from one 
place to the next place in the written sequence'. 

Whenever a GO TO statement is encountered during the execution of a 
sentence or statement, there is an unconditional transfer of control to the 
first procedural sentence of the paragraph or section referenced by the GO TO 
statement. 

Without the optional phrase SIZE ERROR. 
2without the optional phrase INVALID KEY. 
3 W:1k$.i9li# :t.:b~H 9P%$.9A~4 pbti!~e/NO Pl\T$¥~ 

7-5 DD25 



Conditio~ai Sentence Execution 

The general format of the conditional sentence is: 

. . { statement-1 } 
IF condition 

~ SENTENCE { 

ELSE 

[ELSE 

statement-2 } 

NEXT SENTENCE] 

In the conditional sentence, the condition is an expres~ion which is true 
or false. If the condition is true; then statement-1 is executed and control-rs 
trari'Sferred to the next sentence:-rf the condition is false, statement-2 is. 
executed and control is passed to the next sentence. 

~l~\I \.~l;sll\ll~~~lll~~;~~~~N~~Ci;~ ·. ~=~e;~:t:~~d;~;on!!a!~~!~me~~e sh~~~.~·i~~0~!~ 
seri tence could have . the form: . 

IF condition-! imperative-statement-1 IF condition-2 
statement-3 ELSE statement~4 ELSE statement-2 

If condition-! is true, imperative-statement-1 is executed; then, if 
condition-2 is true, statement-3 is executed and control is transferred to the 
next sentence. If condition-2 is false, then statement-4 is executed and control 
is transferred to the next sentence. If condition-1 is false, statement-2 is 
executed and control is passed to the next sentence. 

Statement-3 can in turn be either imperative or conditional and, if 
conditional, can in turn contain conditional statements .in arbitrary depth. In 
an identical manner, statement-4 can be either imperative or conditional, as can 
statement-2. 

The execution of the ·phrase 'ELSE NEXT SENTENCE' causes a transfer of 
control to the next sentence as written, except when it appears in the last 
sentence of a procedure being performed, in which case control is passed to the 
return mechanism. 

Compiler-Directing Sentence Execution 

Compiler-directing sentences direct a COBOL 
compilation time, rather than specifying action 
program. 

Imperative Sentence Execution 

compiler to 
to be taken 

take 
by 

action at 
the object 

An imperative sentence is executed in its entirety and control is passed to 
the next procedural sentence. 

7-6 DD25 



Control Relationship Between Procedures 

In COBOL, imperative and conditional sentences describe the procedure that 
is to be accomplished. The sentences are written successively, according to the 
rules of the reference format, to establish the sequence in which the object 
program is to execute the procedure. 

Execution begins with the first statement after END DECLARATIVES if a 
declarative section is present. Statements are then executed in the order in 
which they are presented for compilation, except where the rules indicate some 
other order. 

In executing procedures, control is transferred only to the beginning of a 
paragraph or section. Control is passed to a sentence within a paragraph only 
from the sentence written immediately preceding it. If a procedure is named, 
control can be passed to it from the sentence immediately .preceding it, or can 
be transferred to it from any sentence which contains q. GO TO or PERFORM 
followed by the name of the procedure to which control is to be transferred. 

CONDITIONS 

A condition enables the object program to select between alternate paths of 
control, depending upon the truth value of a test. A condition is one of the 
following:· · 

• Relation condition 

• Sign condition 

• Class condition 

• Condition-name condition 

• Switch-status condition 

• NOT condition 

• condition {:D} condition [f : 0
}conditiQn ] • ; .• 

Any condition may be enclosed in parentheses. The truth value of a 
parenthesized condition is determined from the evaluation of the truth values of 
its constituents. A parenthesized condition is a condition in the sense of the 
last two items of the preceding list. 

Simple Conditions 

There are five types of simple condition tests. These tests and the 
acceptable formats for stating them are described beiow. {The word IF is not 
part of the condition, but is showh inthe formats to improve readability.) 

7-7 DD25 



RELATION CONDITION 

A relation condition involves a comparison of two operands, each of which 
may be the data item referenced by an identifier, a literal, or the value 
resulting from an arithmetic-expression. The comparison of two literals is not 
p~rmitted. Comparison of numeric operands is permitted regardless of their 
individual usages. All other comparisons :i:-equire that the USAGE of the operands 
being compared is the same. If either of the operands is a group item, the 
nonnumeric comparison rules apply. The format for a relation condition is: 

IF lidentifier-1 I 
literal-! 
arithmetic

expression-1 

IS [NOTJ > 
IS [NOTJ < 
IS [NOTJ 

IS [NOT] GREATER THAN 
IS [NOTJ LESS THAN 
IS [NOTJ EQUAL TO 

•111 
lidentif ier-2 I 
literal-2 
arithmetic

expression-2 

In the preceding format, the first operand {identifier-!, literal-I, 
arithmetic-expression-I) is called the subject. The second operand 
(identifier-2, literal-2, arithmetic-expression-2) is called the object. The 
s~bject and.the obje9t cannot both be literals. 

a. Comparison; <?:~· ~umeric Operands 

For numeric op@:Xands, a comparison results in the determination that 
the algebraic value of one of the operands is less than, equal to, or 
greater than the other. The operand length, in terms of the number of 
digits, is not significant. Zero is considered to represent a unique 
value regardless of the length, sign, or implied decimal point 
location. 

Comparison of these operands is permitted regardless of the manner in 
which their usage is described. Unsigned numeric operands are 
considered to be positive for comparison purposes. 

b. Comparison of Nonnumeric Operands 

For two nonnumeric operands, or one numeric (excluding the operational 
sign) and one nonnumeric operand, a comparison results in the 
determination that one of the oper~nds is less than, equal to, or 
greater than the other with respect to an ordered character set. ·.·+£<'' 

, 99~ :9# P9'~: :g~~#~P.9~ ia .s:pE)gi';ied as numer.i.c, it must . ?~ · ~n int.~9~t 
: q~#A:. ·~i?~~m Q:f:' ."~p .tJ;iteq~l:' l.itei;al •. Numeric and nonnumeric operands may 

be compared only when their usage is the same, explicitly or 
~Il\.~~~.<?i~~¥.·. ;m~p~lPi; ~h~!)... ufl.AGE of .. the op~rands . i~ .PI~~;~'¥rt1 .... Nn~ ' 

liiTlr•;l~iE~~;~~~;[~~~t:1::~:;!:~~:t q~!:~!~~~11~1•i!!1 11 
COBOL User's Guide. . 

7-8 DD25 



If the operands are of equal size, characters in corresponding 
character positions are compared starting from the high-order end and 
continuing until either a pair of unequal characters is encountered or 
the low-order end of the item is reached, whichever comes first. The 
items are determined to be equal when the low-order end is reached. 

The first encountere~ pair of unequal characters is 
relative location in the collating sequence. The 
contains that character which is positioned higher in 
sequence is determined to be the greater operand. 

compared for 
operand which 
the collating 

If the operands are of unequal size, comparison proceeds as though the 
shorter operand were extended on the right by sufficient spaces to 
meK~ ..... !:~7 ...... operands . of equal size. If this process exhausts the 
qq~~·;i.~q*'~J:~ .o;f ~~ qpe;and of lesser size, then the operand of lesser 
~.;.~. ;i)# :f~$ll.$ t;pan ·t.p~ operand e>.f larger . size unless the remainder of 
~@: Pir~~~~9. pf 1~f'$t~; siz~ con$ists sol~ly of spaces, in which case 
:~~ pY,q ·QJ>~;"~p.Aill·· •ff-t~< ~qual .. 

c. Comparisons ·Involving Index-Names and/or Index Data Items 

Full relation tests may be made between: 

(1) Two index-names. The result is the same as if the corresponding 
occurrence numbers are compared. 

(2) An index-name and a data item (other than an index data item) or 
a literal. The occurrence number that corresponds to the value of 
the index-name is compared to the data item or literal. 

(3) An index data item and an index-name or another index data item. 
The actual values are compared without conversion. 

The result of the comparison of an index data item with any data item 
or literal nbt specified in 1, 2, or 3 above is undefined. 

SIGN CONDITION 

The sign condition determines whether or not the algebraic value of an 
elementary numeric data item or an arithmetic-expression is less than, equal to, 
or greater than zero. The general format for a sign condition is: 

IF 
\

identifier I IS [~] 
arithmetic-expression I POS.ITIVE l 

NEGATIVE 
ZERO 

An operand is POSITIVE only if its value is greater than zero, NEGATIVE if 
its value is less than zero, and ZERO if its value is equal to zero. An operand 
whose value is zero is NOT POSITIVE and an operand whose value is zero is NOT 
NEGATIVE; the value zero is considered neither positive nor negative. 

7-9 DD25 



CLASS CONDITION 

The class of any item can be tested as follows: 

IF identifier IS [NOT] l NUMERIC I 
ALPHABETIC 

The usage of identifier must. be explicitly or implicitJy DISPLAY. The 
ALPHABETIC test cannot be used with an item whose data description describes the 
item as numeric. The item being tested is determined to be alphabetic only if 
the contents consist of any combination of the alphabetic characters 'A' through 
•z• and the space. 

The NUMERIC test cannot be used with an item whose data description 
describes the item as alphabetic or as a group item composed of elementary items 
whose data description indicates the presence of operational sign(s). If the 
data description of the item being tested does not indicate the presence of. an 
operational sign, the. i tern being tested is determ.1 ned to be numeric only if the 
contents are numeric and an operational sign is not present. 

CONDITION-NAME CONDITION 

In a condition-name condition, a conditional variable is tested to 
determine whether or not its value is equal to one of the values associated with 
a condition-name in the Data Division. The general format for the condition-name 
condition is: 

IF '[NoTJ condition-name 

If the condition-name is associated with a range or ranges of values (that 
is, the VALUES ARE clause contains at least one 'literal THRU literal' phrase), 
then the conditional variable is tested to determine whether or hot its value 
falls in this range, including the end values. 

The rules for comparing a conditional variable with a condition-name value 
are the same as those specified for relation conditions. 

The result of the test is true if one of the values correspqnding to the 
condition-name equals the value of its associated conditional variable. 

SWITCH-STATUS CONDITION 

In the SPECIAL-NAMES paragraph of the Environment Division, a 
condition-name may be associated with the ON or OFF status of a software switch. 
The switch is ON when its value is one, OFF when its value is zero. The status 
of such a switch may then be tested with a statement using the following forma~: 

IF [NOT] condition-name 

7-10 DD25 



The results of this test are determined using the following table: 

Test 

SPECIAL-NAMES Switch 
Phrase Status IF condition-name IF NOT condition-name - - --

••• ON STATUS OFF False True 

IS condition- ON True False 
name 

••. OFF STATUS OFF True False 

IS condition- ON False True 
name 

Compound Conditions 

Simple conditions can be combined with logical operators according to 
specified rules to form compound conditions. The logical operators AND, OR, and 
NOT must be preceded by a space and followed by a space. The meaning of the 
logical operators follows: 

OR Logical Inclusive Or 

AND Logical Conjunction 

NOT Logical Negation 

The general format.of a compound condition is: 

IF condition-1 
[

ANDI . OR condi tion-·2 [ [:D \ condition-n J 

The word IF is shown to improve readability. Each condition can be either a 
relation condition, a sign condition, a class condition, a condition-name 
condition, or a switch-status condition. 

7-11 DD25 



Letting A and B represent simple conditions, the following table defines 
the interpretation of AND, OR, and NOT in compound conditions: 

Condition Condition and Value 

A B NOT A A AND B A ORB 

True True False True True 
False True True False True 
True False False False True 
False False True False False 

Thus, if A is true and B is false, the expression A AND B is false, while 
the expression A OR B is true. 

The following table indicates the methods in which conditions· and logical 
operators may be combined: 

FIRST SYMBOL SECOND SYMBOL 

Condition OR AND NOT ( ) 

Condition - p p - - p 

OR p - - p p -
AND p - - p p -
NOT pl - - - p -
( p - - p p -
) - p p - - p 

'P' indicates that the pair is permissible and '-' indicates that the 
is not permissible. Thus, the pair 'OR NOT' is permissible, while the pair 
OR' is not permissible. 

pair 
'NOT 

The rules for determining the logical value (true or false) of a 
condition are as follows: 

compound 

1 

1. If AND is the only logical connective 
condition is true if and only if each of 
true. 

used, then 
the simple 

the compound 
conditions is 

2. If OR is the only logical connective used, then the compound condition 
is true if and only if one or more of the simple conditions is true. 

Permissible only if the condition itself does not contain a NOT. 

7-12 DD25 



_3. If both AND and OR appear, then there are two cases to .consider, 
depending on whether or not parentheses are used. 

a. Parentheses can be used to indicate grouping. They must always be 
paired, as in algebra, and the expressions within the parentheses 
will be evaluated first~ The precedence of nested parenthetical 
expressions is the same as in. algebra. That is, the innermost 
parenthetical expressions are evaluated first. 

b. If parentheses are not used, then the conditions are grouped 
first according to AND, proceeding from left to right, and then 
by OR, proceeding from left to right. That is, the logical 
operator AND has precedence over the logical operator OR in the 
same sense that the arithmetic operator * (multiplication) has 
precedence over the arithmetic operator + (addition). 

4. When NOT precedes a parenthesized condition, it reverses the logical 
value of the parenthesized condition; that is, NOT (condition) is true 
when (condition) is false. For example, NOT (A A..~D B) is true if 
either A or B is false. Thus, NOT (A AND B) is equivalent to NOT A OR 
NOT B, and is true when A and Bare not both true (i.e., when either 
is false or both are false). Similarly, NOT (A ORB) is equivalent to 
NOT A AND NOT B, and is true only when A and B are both false. 

Abbreviated Combined Relation Conditions 

Only conditions involving full relation tests have three terms (a subject, 
a relation, and an object). To simplify writing lengthy expressions, COBOL 
allows the omission of some of these terms in certain forms of compound 
conditions. 

When relation conditions are· written in a consecutive sequence, any 
relation condition except the first may be abbreviated by: 

1. Omitting the subject of the relation condition, or 

2. omitting the subject and relational operator of 
condition. 

the relation. 

Within a sequence of relation conditions, both forms of abbreviations may 
be used. The effect of using them is as if the omitted subject were replaced by 
the last preceding stated subject or the omitted relational operator were 
replaced by the last preceding stated relational operator. 

Ambiguity may result from using 'NOT' in conjunction with abbreviations. In 
this event, NOT is interpreted as a logical operator rather than as part of a 
relational operation. Thus: 

a > b AND NOT > c OR d 

is equivalent to: 

a > b AND NOT a > c OR a > d or 

a > b AND (NOT a > c) . ·OR a > d 

7-13 DD25 



Use of the NOT Operator 

Simple IF sentences may be preferred when making a conditional test to 
avoid the possibility of misusing the NOT logical operator and to interpret the 
source language more clearly. When the NOT logical operator is used in IF 
sentences, it must precede a left.parenth~sis or a simple condition which does 
not contain a ~NOT'. 

Evaluation Rules for Conditions 

The evaluation rules for conditions are similar to those given for 
arithmetic-expressions except that the following hierarchy applies: 

• Arithmetic-expression 

• All relationai operators 

• NOT 

• AND 

• OR 

ARITHMETIC-EXPRESSIONS 

An arithmetic-expression can be an identifier described as a numeric 
elementary item; a numeric literal; such identifiers and literals separated by 
arithmetic operators; two arithmetic-expressions separated by an arithmetic 
operator; or an arithmetic-expression enclosed by parentheses. Any 
arithmetic-expression may be preceded by a unary operator. The permissible 
combinations of variables, numeric literals, arithmetic operators, and 
parentheses are presented in the table contained in the Formation and Evaluation 
Rules paragraph below. 

Identifiers and literals appearing in an 
represent either numeric elementary items or 
arithmetic may be performed. 

Arithmetic Operators 

arithmetic-expression 
numeric literals on 

must 
which 

Five binary arithmetic operators and two unary arithmetic operators may be 
used in arithmetic-expressions. They are represented by specific characters 
which must be preceded by a space and followed by a space. 

Binary 
Arithmetic Operator 

+ 

* 
I 
** 

Meaning 

Addition 
Subtraction 
Multiplication 
Division 
Exponentiation 

7-14 DD25 



Unary 
Arithmetic Operator Meaning 

The effect of multiplication by the 
numeric literal +l 
The effect of multiplication by the 
numeric literal -1 

Formation and Evaluation Rules for Arithmetic-Expressions 

The formation and evaluation rules for arith~etic-expressions are presented 
below. 

1. Parentheses may be used in arithmetic-expressions to specify the order 
in which elements are to be evaluated. When parentheses are used, a 
space is allowed between the left parenthesis and the leftmost element 
and between the right parenthesis and the rightmost element, if 
desired. Expressions within parentheses are evaluated first and, 
within nested parentheses, evaluation proceeds from the least 
inclusive set to the most inclusive set. When parentheses are not 
used, or parenthesized expressions are at the same level of 
inclusiveness, the following hierarchical order of execution is 
implied: 

• Unary Pl~s and Minus 

• Exponentiation 

• Multiplication and Division 

• Addition and Subtraction 

2. Parentheses are employed either to eliminate ambiguities in logic 
where consecutive operations of the same hierarchical level appear, or 
to modify the normal hierarchical sequence of execution in expressions 
where some deviation from the normal precedence is required. 

When the sequence of execution is not specified by parentheses, the 
order of execution of consecutive operations of the same hierarchical 
level is from left to right. Thus, expressions ordinarily considered 
to be ambiguous, such as A/B*C and A/B/C, are permitted in COBOL. They 
are interpreted as if. they were written (A/B)*C and (A/B)/C, 
respectively. 

An arithmetic-expression containing a double exponentiation 
cannot be written in the form (A**B**C); it must be written 
{A**B)**C or A**(B**C), whichever is intended. 

c 
(~ ) 

either 

The following usages of exponentiation are not allowed and may produce 
unpredictable results: 

• The value zero exponentiated by the value zero. 

• The value zero exponentiated by a negative value. 

• A negative value exponentiated by a nonintegral value. 

7-15 · DD25 



3. The methods in which operators, variables, and parentheses may be 
combined in an arithmetic-expression are summarized in the following 
table. 

FIRST 
SYMBOL 

VARIABLE 

*,/,**,+,-

VARIABLE 

p 

p 

p 

SECOND SYMBOL 

*,/, 
**,+,-

p 

p 

Unary 
+-.·or -

p 

p 

p 

p 

p 

p 

p 

e The letter 'P' indicates a permissible pair of symbols. 

• The character '-' represents an invalid pair. 

• 'VARIABLE' represents an identifier or literal. 

4. An arithmetic-expression may begin only with the symbol ' (' , '+' , ' - ' , 
or a variable, and may end only with a ')' or a variable. There must 
be a one-to-one correspondence between left and right parentheses of 
an arithmetic-expression so that each left parenthesis is to the left 
of its corresponding right parenthesis. 

5. Arithmetic-expressions allow the user to combine arithmetic operations 
without the restrictions on composite of operands and/or receiving 
data items. (See Arithmetic Statements.) 

COMMON OPTIONS IN STATEMENT FORMATS 

In the statement descriptions of the Procedure Division, several options 
appear frequently: the ROUNDED option, the SIZE ERROR option, and the 
CORRESPONDING option. 

In the discussion below, a resultant-identifier is that identifier 
associated with a result of an arithmetic operation. 

ROUNDED. Option 

If, after decimal point alignment, the number of places in the fraction of 
the result of an arithmetic operation is greater than the number of places 
provided for the fraction of the resultant-identifier, truncation is relative to 
the size provided for the resultant-identifier. When rounding is requested, the 
absolute value of the resultant-identifier is increased by one (1) whenever the 
most significant digit of the excess is greater than or equal to five (5). 

7-16 DD25 



The following shows the effect of specifying the ROUNDED option. 

Result of 
Arithmetic 
Operation 

3.14 
3.15 

-3.14 
-3.15 

PICTURE of 
Resultant
Identifier 

S9V9 
S9V9 
S9V9 
S9V9 

Values Stored 
in Resultant
Identif ier 

3.1 
3.2 

-3.1 
-3.2 

When the low-order integer positions in a resultant-identifier are repre
sented by the character 'P' in the PICTURE for that resultant~identifier, 
rounding or truncation occurs relative to the rightmost integer position for 
which storage is allocated. 

SIZE ERROR Option 

If, after decimal point alignment, the value of the result exceeds the 
largest value that can be contained in the associated resultant-identifier, a 
size error condition exists. Division by zero always causes a size error 
condition. The size error condition applies only to the final results of an 
arithmetic operation and not to intermediate results; except in the MULTIPLY and 
DIVIDE statements, in which case the size error condition applies to the 
intermediate results as well. If the ROUNDED option is specified, rounding takes 
place before checking for size error. When such a size error condition occurs, 
the subsequent action depends on whether or not the SIZE ERROR option is 
specified. 

1. If the SIZE ERROR option is not specified and a size error condition 
occurs, the value of those resultant-identifier(s) affected is 
undefined. Values of resultant-identifier(s) for which no size error 
condition occurs are unaffected by size errors that occur for other 
resultant-identifier(s) during execution of this operation. 

2. If the SIZE ERROR option is specified and a size error condition 
occurs, then the prior values ·of resultant-identifier(s) affected by 
the size errors are not ·altered. Values of resultant-identifier(s) for· 
which no size error condition occurs are unaffected by size errors 
that occur for other resultant-identifier(s) during execution of this 
operation. After completion of the execution of this operation, the 
imperative-statement in the SIZE ERROR option is executed. 

For ADD and SUBTRACT CORRESPONDING, if any of the individual 
operations produce a size error conqition, the imperative-statement in 
the SIZE ERROR phrase is not executed until all of the individual 
additions. or subtractions are completed. 

CORRESPONDING Option 

For the purpose of this discussion,· dl and d2 
refer to group items. A pair of data items, one 
correspond if the following conditions exist: 

represent identifiers · that 
from dl and one from d2, 

1. A data item in dl and a data item in d2 have the same name and the 
same qualification up to, but not including, dl and d2. 

7-17 DD25 



2. At least one of the data items is an elementary data item in the case 
of a MOVE statement with the CORRESPONDING option; or both of the data 
items are elementary numeric data items in the case of the ADD or 
SUBTRACT statements with the CORRESPONDING option. 

3. Neither dl nor d2 may be data items with level-number 66, 77, or 88 
nor be described with the USAGE IS INDEX clause. 

4. A data item that is subordinate to dl or d2 and contains a REDEFINES, 
RENAf.11..ES, OCCURS, or USAGE IS INDEX clause is ignored, as well as those 
data items subordinate to the data item that contains the REDEFINES, 
:RENAMES, OCCURS, or USAGE IS INPEX clause. However, dl and d2 may have 
REDEFINES or OCCURS clauses or be subordinate to data items with 
REDEFINES or OCCURS clauses. 

Arithmetic Statements 

The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY, and 
SUBTRACT statements. They have several .common rules. 

1. All literals used in arithmetic statements must be numeric. 

2. The data description of each identifier used as ·an operand must be 
that of an elementary numeric item. 

3. The data descriptions of the operands need not be 
necessary conversion, format transformation, and/or 
alignment is supplied throughout the calculation. 

the same; any 
decimal point 

4. The maximum size of each operand is 18 decimal digits. The composite 
of operands (a hypothetical data item resulting from the 
superimposition of specified operands in a given statement, aligned on 
their decimal points) must not contain more than 18 digits. The 
compiler ensures that enough places are carried so that significant 
digits are not lost quring the calculation of intermediate results. 

5. Editing symbols must not be specified in the descriptions of any 
operand, except in a resultant item that only receives the calculated 
result but is not used in the computation itself. 

The resultant item of a COMPUTE statement may be an edited item. The 
resultant of an ADD, SUBTRACT, MULTIPLY, or DIVIDE statement may be an 
edited item only when the GIVING option is specified. Operands in a 
computation must not be edited items in any other circumstances. 

6. When the number of decimal places in a result is greater than the 
number of decimal places associated with the resultant-identifier, 
truncation occurs. However, when the ROUNDED option is specified for a 
resultant-identifier, the least significant digit of the 
resultant-identifier is increased by l when the most significant digit 
of the truncated excess is equal to or greater than 5. 

7. A size error occurs when the magnitude of the calculated result 
exceeds the largest magnitude that can be contained in the 
resultant-identifier. When a size error occurs and the ON SIZE ERROR 
option is specified, the value 0£ the resultant-identifier is not 
altered and the imperative-statement is executed. 

7-18 0025 



Overlapping Operands 

When a sending and a receiving item in an arithmetic statement or 
EXAMINE, MOVE, or SET.statement share a part of their storage areas, the 
of the execution of such a statement is undefined. 

~i1ultiple Results in l\rithmetic Statements 

in an 
result 

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements may have 
multiple results. Such st~tements behave as though they had been written as: 

1. Statements which perform all arithmetic necessary to arrive at the 
result to be stored in the receiving items, and store that result in a 
temporary storage location. 

2. A sequence of statements transferring or combining the value of this 
t •porary location with a single result. These statements are 
c i.sidered to be written in the same left-to-right sequence in which 
the multiple results are listed. 

The result of the statement 

ADD a, b, c TO c, d (c), e 

is equivalent to: 

ADD a, b, c GIVING temp 
ADD temp TO c 
ADD temp TO d (c) 
ADD temp TO e 

where 'temp' is an intermediate result item provided by the compiler. 

CATEGORIES OF VERBS 

Verbs available 1n Series 60/6000 COBOL are listed below within their 
functional categories. 

Category 

Arithmetic 

Compiler-Directing 

Verb 

COMPUTE 
DIVIDE !
ADD 

EXAMINE (TALLYING) 
MULTIPLY 
SUBTRACT 

I COPY 
ENTER 
USE 

7-19 DD25. 



Category 

Conditional 

Data Movement 

Ending 

Input-output 

Inter-Program 
Communicating 

Procedure Branching 

Report Writing 

Ordering 

Table Handling 

Verb· 

ADD (SIZE ERROR) 
AQ~g'r· M$S$~$P; > :JNO<DATA) 
COMPUTE (SIZE ERROR) 
DIVIDE (SIZE ERROR) 
GO TO (DEPENDING) 
IF 
MULTIPLY (SIZE ERROR) 
READ (END or INVALID KEY) 
RETURN (END)· 
SEARCH 
SUBTRACT (SIZE ERROR) 
WRITE (INVALID KEY) 

{
EXAMINE (REPLACING) 
MOVE 

{STOP 

ACCEPT 
~¢Ql?T.M;E!S$AGE 
CLOSE 
DISPLAY 
OPEN 
READ 
SEEK 
STOP (literal) 
WRITE 

{CALL 

rA .. LTE .. R CALL 

lEXIT 
GO TO 
PERFORM 

{

GENERATE 
INITIATE 
TERMINATE 

{

Ml!:RGE 
RELEA. SE 
RETURN 
SORT 

{
SEARCH 
SET 

NOTE: IF is a verb only in the COBOL sense; it is recognized that it is 
not an English verb. 

SPECIFIC STATEMENT FORMATS 

The specific s1:;.atement formats, with associated restrictions and 
limitations, are contained on the following pages in alphabetic sequence. 

7-20 DD25 



ACCEPT ACCEPT 

The· ACCEPT statement is used to cause low-volume data to be made available 
to the specified identifier from sources ·described in the SPECIAL-NAMES 
paragraph. 

Format 1: 

ACCEPT identifier [FROM mnemonic-name] 

Format 2: 

11~11~~1::11111:-1$.x(j .. :::~~~~:~~~~~~ *t«lti ~ml~±!r~~~< , 

Syntax Rules: 

1. The mnemonic-name must be associated with one of the options defined 
in the SPECIAL-NAMES paragraph. 

2. The identifier must be a level 01 or a level 
working-storage. 

77 item in 

General Rules: 

Format 1: 

1. An ACCEPT statement may be used to obtain input data from any of the 
following sources: 

a. GIN (the system input feature of the operating system) • 

b. REMOTE (a terminal not operating under the control of the 
Transaction Processing System). 

c. G~APS °(an operating system feature that provides accumulated 
processor time for the current run unit). 

d. GTIME (an operating system feature that provides the system 
and the system .clock time. If the ~?>9PPJ..bn is specified, 
time is given in hours, minutes, and seconds). 

e. CONSOLE and TYPEWRITER (the system operator interface). 

date 
the 

f. SWITCH (a portion of the program s~itch word, a special software 
feature provided by the operating system). 

When the FROM mnemonic-name phrase is not used, the input source is 
considered to be system input (GIN). The FROM phrase must be specified 
for any other input source, and the mnemonic-name must be a 
user-supplied word associated with an input source by a phrase in the 
SPECIAL-NAMES paragraph. . 

. 7-21 0025 



ACCEPT ACCEPT 

I t•lllli¥il~~l,iii;11·~~~~~~~~e~~~~ ~~~=~~in:': 

2/77 

2. When utilizing the system input file (GIN) via ACCEPT statements, the 
user may either omit the FROM phrase or associate a mnemonic-name with 
GIN in the SPECIAL-NAMES paragraph. The data item referenced in the 
ACCEPT statement must be described with USAGE DISPLAY, explicitly or 
implicitly. Each record of the system input file is assumed to be a 
Hollerith card image in which the data occupies the leftmost character 
positions. No automatic format check or conversion is provided, so it 
is recommended that the user employ IF statements to assure that the 
input card contents satisfy the receiving item's description. 
Similarly, no automatic end-of-file provision is available, so the 
user must provide an end-of-file test if the volume of system input 
data can vary. However, each ACCEPT statement executed after the 
system input is exhausted obtains all spaces, as if a blank card had 
been read. 

3 . qJP~ ~e~%$~~tf~en Pt J\.SB~~w /~t,a-FE!~~11ts tb;?t r~cffi ve data from G~N . in > a 
~~'ill:~ ~Y'~t'~'~ >~nY*:P?:ntl\(1~1:;. Inµs-t;. }:)e .. q~r~f-µ;t.l,Y<Planned to. ayoid ·p<)$SipJ_e 
gy;~J;ji4,~ ·· ;i<?:~~~fig. 9~ t9£? > ()t · ~~ ..... •P0!3()+. $91?:.J:'()4tine .·that. oontrofs> inpl,lt 

1illli,lll~'~'f3i!lli18i;i~i~~:'S%~~:~~~~~~[li~ev!~ 
4. Each ACCEPT statement whose mnemonic-name is associated with REMOTE 

will cause a single interaction with the remote terminal. The 
terminal operator is notified of the need for a response by a carriage 
return followed by the display of the character '?' and the ringing of 
the terminal's bell, if the terminal is so equipped. The input 
characters, if any, are converted to Hollerith, USAGE DISPLAY 
characters and are moved into the data item referenced in the ACCEPT 
statement. The referenced data item should be described, explicitly 
or implicitly, with USAGE DISPLAY. No automatic format check or radix 
conversion is performed. 

If a remote terminal is represented by a mnemonic-name in the ACCEPT 
and DISPLAY statements, connections must be made to the appropriate 
device at object program execution. A connec.tion may be obtained: 

a. By using a 'talk' mode in the time sharing environment. Refer to 
the TSS Terminal/Batch Interface manual and the TSS System 
Programmers* Reference Manual. 

b. By obtaining a connection through an external communications 
system. Refer to the Network Processing Su ervisor (NPS) manual 
or to the Remote Terminal Supervisor GRTS manual. 

c. By requesting a line switch from the Transaction Processing 
~xecutive (TPE). 

7-22 DD25A 



ACCEPT ACCEPT 

2/77 

5. Each ACCEPT statement whose mnemonic-name is associated with GLAPS 
will cause the identifier to receive the processor time accumulated by 
the current run unit. Time resolution is given in units of 1/64 
millisecond. The receiving identifier data item must be a 
working-storage data item whose description is equivalent to the 
following: 

77 data-name PICTURE 9 (10) ·USAGE CQMfUTJVl'IONAL;,.,>j• 

6. Each ACCEPT statement whose mnemonic-name is associated with GTIME, 
without the HMS option, will cause the identifier to receive the 
current system date and system clock time. Time resolution is given 
in units of 1/64 millisecond. The· receiving identifier must be a 
working-storage data item whose description is equivalent to the 
following: 

01 data-name. 
02 MONTH PICTURE 
02 DAY-OF-MONTH 
02 YEAR PICTURE 
02 TYME PICTURE 

99. 
PICTURE 

99. 
9(10) 

99. 

USAGE CO~[UTATJ;ONAL..,. 3 • · 

7. If the :ff~$:&,p#\$tjti, is specified in the GTIME phrase to obtain time 
resolution in terms of hours, minutes, and seconds, the receiving 
identifier must be described with USAGE DISPLAY (explicitly or 
implicitly). For example, the receiving identifier could be described 
as: 

01 data-name. 
02 MONTH PICTURE 99. 
02 DAY-OF-MONTH PICTURE 99. 
02 YEAR PICTURE 99. 
02 TYME PICTURE 9(6). 

NOTE: The data-names used in these examples are for illustration 
only. 

B. -~1&Dilillili~1 ·· 
9. Each ACCEPT statement whose innemonic-name is associated with CONSOLE 

will cause a single interaction with the operator's console. The 
system operator is notified that.a response is expected by the display 
of a message. The message will have one of the following .forms: 

a. If. a DISPLAY statement associated with CONSOLE has been executed, 
the message will be the text of the last line associated with the 
latest prior DISPLAY statement associated with CONSOLE. The 
message will be followed by the characters '???'. 

b. If no prior DISPLAY statement associated with CONSOLE has been 
executed, the message will be 'TYPEINEXPECTED ••• •. 

7-23 DD25A 

I 



ACCEPT 

I 10. 

I 11. 

I 12. 

Format 2: 

1. 

2. 

3. 

4. 

5 • 

. 2/77 

ACCEPT 

The input characters, if any, are treated as Hollerith, USAGE DISPLAY 
characters and are moved into the data item referenced by the ACCEPT 
statement. The referenced data item should be described, explicitly 
or implicitly, with USAGE DISPLAY. No automatic format check or radix 
conversion is performed. 

Each ACCEPT statement whose mnemonic-name is associated with 
TYPEWRITER will cause a single interaction with the operator's 
console. The system operator is notified that a response is expected 
by a carriage return followed by the message 'TYPEIN EXPECTED ••• '. 
The input characters, if any, are treated as Hollerith, USAGE DISPLAY 
characters and are moved into the data item referenced in the ACCEPT 
statement. The referenced data item should be described, explicitly 
or implicitly, with USAGE DISPLAY. No automatic format check or radix 
conversion is performed. System console input-output is not 
recommended unless very unusual circumstances exist. 

If a mnemonic-name associated with SWITCH is specified, the ACCEPT 
statement causes the value of the identifier to be set to 1 if the 
switch is ON, or set to 0 if the switch is OFF. The identifier must 
be a data item in the Working-Storage Section whose description is 
equivalent to the following: 

77 data-name PICTURE 9 ¢O~l?tlTATl:ONAL~1~ 

Refer to Section VI of the COBOL User's Guide for additional 
information. 

7-24 DD25A 



ADD ADD 

The ADD statement is used to sum two or more numeric op~rands and store the 
result. 

Format 1: 

ADD lliteral-1 I 
identifier-! [: literal-2 ] 

identif ier-2 
TO identifier-m [ROUNDED] 

Format 2: 

ADD 

Format 3: 

[• identifier-n jfoUNDEDJ J 
[oN SIZE ERROR ----- imperative-statement] 

jliteral-1 I l' literal-2 I 
lidentifier-1 , identifier-2 

GIVING identif ier-m [ROUNDED] 

· E~u> iden'tifier-n CROI)NP~OJ] ••• 

[

', literal-3 ] 

identif ier-3 

[oN ~ ERROR imperative-statement] 

ADD If~ I identifier-1 TO identifier-2 [ROUNDED] 
CORRESPONDING 

[oN ~ ~ imperative~statement] 

Syn tax· Rules: 

1. When Format 1 or Format 2 is used, each identifier must refer to an 
elementary numeric item, except that in Format 2 the identifier 
following the word GIVING must refer either to an elementary numeric 
item or to an elementary numeric edited item. 

2. Each literal must be a numeric literal. 

7-25 DD25 



ADD 

3. 

4. 

ADD 

No literal or identifier may exceed 18 decimal digits in size. The 
composite of operands (the hypothetical data item resulting from the 
superimposition of all operands of a given statement, excluding the 
data items that follow the word GIVING, aligned on their decimal 
points) must not contain more than 18 digits. 

CORR is an abpreviation for CORRESPONDING. 

General Rules: 

1. When Format l is used, the values of the operands preceding the word 
TO are added together. That sum is then added to the current value of 
each identifier-m, identifier-n, ••• ,and the result is stored in each 
resultant-identifier: identifier-m, identifier-n, ••• , respectively. 

2. When Format 2 is used, the values of the operands preceding the word 
GIVING are added together. That sum is then stored as the new value of 
each identifier-m, i¢1Et,ntf£j.~t~n,' • P , which are the 
resultant-identifiers. 

3. When Format 3 is used, the data items in identifier-! are added to and 
stored in corresponding data items in identifier-2. 

4. Refer to the Common Options in Statement Formats paragraph in this 
section for an explanation of the uses of ROUNDED, SIZE ERROR, 
CORRESPONDING, and multiple results in arithmetic statements. 

7-26 DD25 



ALTER ALTER 

The ALTER statement. is used to change the destination of a GO TO statement 
from one procedure-name to another. 

General Format: 

ALTER procedure-name-1 TO [PROCEED To] procedure-name-2 

[• procedure-name-3 TO [PROCEED To] procedure-name-4 J 

Syntax Rules: 

1. Each procedure-name-1, procedure-name-3, etc., is the name of a 
paragraph containing a single sentence consisting of a GO TO statement 
without the DEPENDING option. 

2. Each procedure-name-2, procedure-name-4, etc., is the name of a 
paragraph or_ section in the Procedure Division. 

General Rules: 

1. When the ALTER statement is executed, the GO TO statement in the 
paragraph named procedure-name-1, proqedure-name-3, etc., is modified 
so that subsequent executions of the GO TO statement cause a transfer 
of control to the paragraphs or sections named procedure-name-2, 
procedure-name-4, etc., respectively. 

2. A GO TO statement in a section whose priority-number is equal to or 
greater than 50 must not be referred to by an ALTER statement in a 
section having a different priority-number. All other uses of the 
ALTER statement are valid and are performed, even if the GO TO 
statement to which the ALTER statement refers is a fixed overlayable 
segment. Refer to Segmentation in Section II. 

1-21 DD25 



CALL 

General Format: 

Syntax Rules: 

1. 

2. 

<I ,., 

3. 

General Rules: 

1. 

2. 

2/77 

CALL 

must be a nonnume:dc literal. 

7-28 

program and may assume one of the 

independently compiled COBOL 
PROGRAM-ID. 

in an 

has been developed via another 
or 

results in 
Routine-name 

of which is 

.DD25A 



CALL CALL 

2/77 

3 • ~~ <pl&j>~<?f program produced by tl1e C()BPL . c.~in,Piler can be called as a 
li?#P:stt:~~ .from other object progralrt$. · .. coap;i object progrClJt\S may also 
~ifl.¥:~1tt1l.,];t..iple entry points which can be.called and executed from other 

4. 

5. 

9PO~Pr >Plf?9f~ttls • ·.Normally,. ~uch pro<Jl8a.ms ~1'9uld no-t co.n.t~in .. ·· a STOP 
~~ < .~7~Y~~nt,. . .. The prpg:raxn• •qr· .. ··• ~1'.~P¥ .PQ;int proce~ur-~s· .. should b~. 
~~~"t"t~~ <tq ~-Bpw o.ontrol to<~ventt.t~:t1r P>~~~. <"to . an apprppfi~J:.~ eX.f.~ 
~~'9#' < _An .·.)E:XlT .. Paragrapl'r. .. 'lllU$:l: :be ~~~4 A-~ a. prog.t;am has alt~rnat,i.ve
iJ:PRF-e~ t9 ·-th~exit ·P()int.• · .. ·~.~····.• .. lea.S,~<· ?P.e :tpU:T entry-nf,Ulle must be
$.P:~<?.ifti.~P for each.E'.N'l'R¥' l?OlN.r;r .. pJ:1r~a~ .. 4;n 4•P:t::'<:>gram.. ·

~ 6~i~~~ program ~~;·c~tL obhe.r .. COBdL ~zj8grams by either explicit or
.t.m~+~S:~t ent;ry point•> Howevex-, ca'llt.i()n·.m'll~t be exercised to avoid a
P~P: ~PSB ~ .:p;pgrciD,\ .wpiq)t h.~~ any preyi9µs Cl-9~i ve. CALL . still .. current.
<~(~~R~JE~~ m.acy<not .. ca.1;t··.· ~ts own PROG~~lP·· p.t'.()gram•name or ent:ry•names
.·wit.hJ:in·····itsel.f• .•

:~~/~~ii~ ;~l~e is ~1;iJ;~:e~ito specify. an argument list for the
p;r9gram peing called. . The USING arguments are not valid when a CALL
r~f~ren.97~ a C()BOL progrzun. ·by its PROGRAM-ID. program-name. They are
MA-~iP<.~h,en referencing explicit entry points within a program .. The
(;);rq(ar a_np descriptions of the arguments must.· conform to . the called
pa::-ograni•~ requirements. At most, ten arguments may be specified.

6. The tist:NG phrase specifies input and output .arguments to the called
~#ogram.. USING identifiers must be defined working-storage data items
with level-numbers of 01 or 77, or items in files for which a
P.l{QCESS AREA is specified. A USING argument may be a file-name, in
which ·• case the object program argument will be a File control Block
pointe.r. File-names are ·not valid. arguments when calling a COBOL
p,rogram; they are restricted to called programs developed in another
language.

7. '!'he number of USING arguments specified in a CALL to an ENTRY POINT
Ul;l.,l~t . 90J:'respond exactly withthe number of USING and GIVING arguments
SiP~cif~ed in its ENTRY POINT phrase and the data descriptions for each
p~i~ o:f ~orresponding arguxne.nts must be identical.

8. '~a~ QA.&+,{ $tat;.·ement may appear- anywh7re within a segmented program.
~fi.$p ¢l qAiiL statement.a.pp~CJ,rs. in a .section with a p:riority•number
'iPfj~.t~p $h.iin pr equal to. 59t that segment is in its last . used state
;~~7~ .. ~7 ~0t~ ~~q~~ .~P~'t.~~l)t. ;:n>tl1e. Qal).~4.p:rogr~· r~t.ti;rns. ·control .:it.P ,, t.n@:: :c.1m4.tn<J P~o9tam.·. · · ····· · ·

7-29 DD25A

I

--·-
CLOSE CLOSE

The CLOSE statement is used to terminate the processing of reels, units,
and files with optional rewind and/or lock where applicable.

General Format:

CLOSE file-name-1 ~ REEL] [wi:TH rO REWIND\]
•UNIT LOCK

[REEL] [WITH l NO REWIND\] l
•UNIT LOCK ·

f ile-name-2

Syntax Rules:

1. Each file-name is the name of a file upon which th~ GLOS.E statement is
to operate; it must not be the name of a sort file ,9~ mei~b,3'e fil.e.

2. The REEL and WITH NO REWIND options apply only to files stored on tape
devices and other devices to which these terms are applicable. The•
UNIT option is applicable only to mass storage files in the•
sequential-access mode.

General Hules:

In the discussion below, the term 'unit' applies to all
devices; the term 'reel' applies to tape devices. Treatment of
devices in the sequential-access mode is logically equivalent to
of a file on tape or analogous media.

input-output
mass storage

the treatment

1. For the purpose of showing the effect of various CLOSE
applied to various storage media, all input, output, and
files are divided into the following categories:

options as
input-output

a. Non-reel. A file whose input or output medium is such that the
concepts of rewinding and reels have no meaning.

b. Sequential single-reel/unit. A sequential file that is entirely
contained on one unit.

c. Sequential multi-reel. A sequential file that is contained on
more than one reel.

d. Random single-unit. A file in the random-access mode that is
entirely contained on a single mass storage unit.

7-30 DD25

CLOSE

2.

CLOSE

The results of executing each CLOSE option for each type of file are
summarized in the following table; symbol definitions are given after
the summary. If the definition depends on whether the file is an input
or an output file, alternate definitions are given; otherwise, the one
definition applies to input, output, and input-output files.

File Type

CLOSE
Option Sequential Sequential Random

Non- Single- Multi- Single-
Reel Reel/Unit Reel Unit

CLOSE c C,G C,G,A c

CLOSE WITH C,E C,G,E C,G,E,A C,E
LOCK

CLOSE WITH x C,B C,B,A x
NO REWIND

CLOSE REEL x x F,G x

CLOSE REEL x x F,D x
WITH LOCK

CLOSE REEL x x F,B x
WITH NO
REWIND

NOTE: The letters in the table are explained below.

A Previous Reels Unaffected

Input files and input-output files: All reels in the file prior to
the current reel are processed according to the standard reel swap
procedure, except those reels controlled by a prior CLOSE REEL
statement. If the current reel is not the last in the file, the
reels in the file following the current one are not processed in
any way.

Output files: All reels in the file prior to the current reel are
processed according to the standard reel swap procedure, except
those reels controlled by a prior CLOSE REEL statement.

7-31 DD25

CLOSE CLOSE

B = No Rewind of Current Reel

The current reel is left in its current position.

C Standard Close File

In ut files and in ut-out mode) : If
t e i e is posi ione a i s en an is specified
for the file, the label is processed the standard
label convention. The behavior of the CLOSE statement when a label
record is specified but not present, or when a label record is no~
specified but is present, is undefined. If specified by the USE
statement, a user's label procedure is executed. The order of
execution of these two processes is specified by the USE
statement. If the file is positioned at its end and label records
are not specified for the file, label processing does not take
place but other closing operations are executed. If the file is
positioned other than at its end, the closing operations are
executed, but there is no ending label processing. An input file,
or an input-output file, is considered to be at the end of the
file if the imperative-statement in the AT END phrase of the READ
statement has been executed and no CLOSE statement has been
executed.

Input files and input-output files (random-access mode) and output
files (random- or sefuential-access mode) : If a label record is
specified for the fi e, the label is processed according to the
standard label convention. The behavior of the CLOSE statement
when a label record is specified but not present, or when a label
record is not specified but is present, is undefined. If specified
by the USE statement, a user's label procedure is executed. The
order of execution of these two processes is specified by the USE
statement. In addition, other closing operations are executed. If
label records are not specified for the file, label processing
does not take place but other closing operations are executed.

D = Standard Reel Lock

An appropriate technique is supplied to ensure that the current
reel cannot be proces·sed again as a part of this file during this
execution of this object program. (The current reel is rewound.)

E Standard File Lock

An appropriate technique is supplied to ensure
cannot be opened again during this execution
program.

F Standard Close Reel

that this file
of this object

Input files: The following operations are executed:

• A reel swap.

7-32 DD25

CLOSE

2/77

• ·The standard beginning reel label procedure and
beginning reel label procedure (if specified
statement). The order of execution of these two
is specified by the USE statement.

CLOSE

the user's
by the USE
procedures

;t'~~ l'.le:Xt e~ecut:ed · ... RE~D statement makes availMle tp~ next. .. d~t;a
;t:'~qor§ dn the> next reel.

Output files and input-output files: The following operations are
executed:

• (For output files only.) The standard ending reel label
procedure and the user's ending reel label procedure (if
specified by the USE statement). The order of execution of
these two procedures is specified by the USE statement.

o A reel swap.

• The standard beginning reel label procedure and
beginning reel label procedure (if specified
statement). The order of execution of these two
is specified by the USE statement.

G Rewind

the user's
by the USE
procedures

The current reel or analogous device is positioned at the physical
beginning of its content.

X Illegal

X indicates an illegal combination of a CLOSE option and a file
type. If any such combination is used, the results at object
program execution are unpredictable.

3. All files that have been opened must be closed prior to the execution
of a STOP RUN statement.

4. If the file has been specified with the OPTIONAL phrase in the
FILE-CONTROL paragraph and is not present, the standard end-of-file
processing is not performed~

5. If a CLOSE statement without the REEL option has been executed for a
file, a READ, WRrrE, or SEEK statement for that file must not be
executed unless an intervening OPEN statement for that file is
executed.

6.

7-33 DD25A

I

COMPUTE COMPUTE

The COMPUTE statement is used to assign the value of a numeric data item, a
literal, or an arithmetic-expression to a data item.

General Format:

COMPUTE identifier-! [ROUNDED]

!identifier-2
1i teral-1
arithmetic-expression l

[oN SIZE ERROR ----- imperative-statement]

Syntax Rules:

l~ Literal-1 must be a numeric literal.

2. Each identifier must refer to an elementary numeric item. However,
identifier-1 is not used as an operand and therefore may, if
necessary, describe numeric data items containing editing symbols.

3. The maximum size of each operand is 18 decimal digits.

4. The arithmetic-expression, if used, permits any meaningful combination
of identifiers, numeric literals, and arithmetic operators,
parenthesized as required.

5. the
for

General Rules:

1. Identifier-! is assigned the value computed from the
arithmetic-expression, or the value of identifier-2, or of literal-!.
The identifier-2 and literal-! options provide alternative methods for
setting the value of identifier-1 equal to the value of identifier-2
or li teral-1.

2~ The COMPUTE statement allows the user to combine arithmetic operations
without the restrictions on composite of operands and/or receiving
data items imposed by the arithmetic statements ADD, SUBTRACT,
MULTIPLY, or DIVIDE.

3. Refer to the Common Options in Statement Formats paragraph for an
explanation of the uses of the ROUNDED and SIZE ERROR options. For
COMPUTE usage, refer to the COBOL User's Guide.

7-34 DD25

COPY COPY

The COPY statement is used in the Procedure Division to incorporate
paragraph procedures from a library into the source program.

Format 1:

!
paragraph-name. I
section-name SECTION [priority-number J ..

COPY library-name

[REPLACING

[• word-3

word-1 BY literal-! I word-2 I
~ identif ier-1

BY l word-4 I
literal-2
identif ier-2] .. · l

Format 2:

NOTE: Paragraph-name and section-name are not part of the COPY statement;
they are shown only for clarity.

Syntax Rules:

l. When the COPY statement is specified, the
The library-name must be identical to the
desired text on the library.

library-name is required.
name associated with the

2. In Format 1, a word is any COBOL word and may be one of the following:

• Condition-name

• Data-name

• File-name .
• Mnemonic-name

• Procedure-name

3. When the COPY statement is used, it must be the first statement in the
paragraph or section.

7-35 DD25

COPY COPY

Gen:eral Rules:

1. Format l of the COPY statement represents the American National
standard COPY function. :~9i'mt!i"'i.~:·p@pre{ll'°pt$ ~$>~ls COPY funct:i.ori.

2. For a detailed description of the COPY statement, see Section VIII,
the COBOL. Library,· and Section XIV of the COBOL User's Guide.

7-·36 DD25

DISPLAY DISPLAY

The. DISPLAY statement is used to transmit low-volume data to a special
output device.

Format 1:

{

literal-1 }
DISPLAY
~~~. identifier-1 [ {

li teral-2 } J · 
' · identifier-2 •.• 

[UPON mnemonic-name] 

Format 2: 

{

literal-! } 
DISPI.1A¥: 

•·· > < / . identifier-l [ ,

, li teral-2 J 
identif ier-2 [ 

{ END-OF-SEGMENT\.. l 
ES! :f 
END-OF-MESSAGE} 

{ili_-oF-TRANSACTION} 

.. UPON. mne;monic ... name 
.··:--·~·· 

Syntax Rules: 

1. 

2. 

3. 

4. 

The mnemonic-name is associated with an I-0 device 
SPECIAL-NAMES paragraph of the Environment Division. 

Each literal may be any figurative constant except ALL. 

in the 

::~~~ ~Q~(;?:J?:~~$~A,GJ.L phrase itil a~:sumed if no option is specified and the 
mnemoti1:a~tiame. is assodiated . with COMMUNICATION-DEVICE. 

wi•t ~l,~1li~'l'tabbreviations apply: 

av i!r·:1~ .. t ~·~ an aob.revia.t:ion f:OrEN:l>-OF-SEGMEN'l' indicator. 

\\jj] '. :1~; ±$ an abbreviation for END,..Of'w,MBSSAGE indicator• 

l.::.9~, \j'.i:il::::::i~\j ~.$ <@n -~?teviatie>.n :~a#: lll>--o1'~1:twt$~XON indic~i;qr. 

7-37 DD25 



I 

I 

I 

DISPLAY DISPLAY 

General Rules: 

Format 1: 

2/77 

1. A DISPLAY statement may be used to transmit output data to any of the 
following destinations: 

2. 

a. SYSOUT (the low-volume system output feature of the operating 
system) • 

b. REMOTE (a terminal not operating under the control of the 
Transaction Processing System). 

c. CONSOLE and TYPEWRITER (the system operator interface). 

d. SWITCH (a portion of the program switch word, a special software 
feature provided by the operating system) • 

When the UPON mnemonic-name phrase is not used, the output destination 
is considered to be system output (SYSOUT). The UPON phrase must be 
specified for any other output destination, and the mnemonic-name must 
be a user-supplied word associated with an output destination by a 
phrase in the SPECIAL-NAMES paragraph. 

A O!Sl?LAY statement may not be executed, in an a,t:,t~1t1pb tptrp.ns~~t 
q~.t;.~ #P') 9Y~~·etn output (SYSOUTJ, as a. J?~~t, of a label procedµ:r:e 

· ~P~~:zj;n9' in thel Cieolarat.:ive pprtiqn of ·a· program .. 

The following rules apply to all DISPLAY statements: 

a. When the DISPLAY statement specifies multiple operands, the data 
characters associated with each operand are concatenated in the 
order of the occurrence of the operands. Opt.ll:)~J);Qi$ are no.t 
~P:-WPJ9~.#:L.cal1y .. s~pa;'ate¢t l)y<spa¢es·~ 

b. The first character of the first operand is positioned in the 
f~~~.t ~.h~.~ac.~.e •. ~ •. P('.)S~~i9~ ()f .···a lin.e, subjeHt t9 .. tM¢f'fe9~s of an.y 
lior:izontal and<vert±cal· tabulation control·· characters> elnliedded ··in ::·lb• a~#~U( ·························.·.·.·· .. ··········.·.································•·.·.·.·.···········.·.· .. · ·.·.··.·.························ .······.·. ·.·· .... ·.······. · ... <•···· ·• .. · •.... · ... ·.· .. · .. ·· .. ·· .. ·.·· •· ·•·· .. · .. · · 

c. Identifier-1, identifier-2, ••• , must be described with USAGE 
DISPLAY (explicitly or implicitly) /.P;J;:' 1'.)W$.J?f,~'¥hl{.,. 

d. Literal-1, literal-2, ••• , may be figurative constants, in which 
case only a single occurrence of the figurative constant is 

·displayed. 

3. When.utilizing the system output file (SYSOUT) via DISPLAY statements, 
the user may either omit the UPON phrase, or associate a mnemonic-name 
with SYSOUT in the SPECIAL-NAMES paragraph. This type of output is 
assumed to be directed to a printer, each line of which is· considered 
to contain 132 character positions. The DISPLAY statement may produce 
more than one line of printing to SYSOUT if the cumulative size of the 
referenced operands exceeds a total of 132 characters. 

7-38 DD25A 



DISPLAY DISPLAY 

2/77 

4. The utilization of DISPLAY statements that transmit data to SYSOUT in 
a · module overlay environment must be carefully planned to avoid 
PB~sib~e ovef'laY loading on top of the COBOL subroutine that controls 
·~'tf.-tf>l.l;~< for S-y'SOUT displays. One method that may be use<J. to avoid such 
e~ ~)rf!+lay, i& to place at least one DISPLAY statement in the main 
~9iJJ.~P~ t~at will never be overlayed. That statement need not actually· 
»~ '~J¢~¢uted,. · 

7-38.1 DD25A 





DISPLAY 

s. Each DISPLAY statement whose 
will cause from one to four 
terminal, depending upon the 
line will contain at most 72 
size of the referenced items 

DISPLAY 

mnemonic-name is associated with REMOTE 
lines to be displayed on the remote 
size of the referenced data items. Each 
characters, thereby limiting the total 
to 288 characters. 

6. Each DISPLAY statement whose mnemonic-name is associated with CONSOLE 
will allow from one to four lines to be displayed on the system 
console, depending on the size of the referenced data items. Each line 
will contain at most 72 characters, thereby limiting the total size of 
the referenced items to 288 characters. The output line (or, if more 
than one line results from the statement, the last output line) is 
held in a buffer until the next execution of an ACCEPT statement 
associated with CONSOLE. At that time, the line will be used to inform 
the operator of a pending need for a response. 

The ACCEPT and DISPLAY statements need not appear together in the 
source program, provided that the DISPLAY statement is executed first. 
Should no ACCEPT statement be executed after the DISPLAY statement, 
the output data is not displayed. Two DISPLAY statements of this kind 
with no intervening ACCEPT statement would result in the suppression 
of the output from the first DISPLAY statement. If more than one line 
results from an execution of a DISPLAY statement associated with 
CONSOLE, all lines except the last line are emitted at once and, in a 
multiprogramming environment, there is no assurance that any of the 
lines will be juxtaposed on the console display. 

7. Each DISPLAY statement whose mnemonic-name is associated with 
TYPEWRITER will cause from one to four lines to be displayed on the 
system console, depending on the size of the referenced data items. 
Each line will contain at most 72 characters, thereby limiting the 
total size of the referenced items to 288 characters. If more than one 
line is emitted for a given DISPLAY statement, there is no assurance, 
in a multiprogramming environment, that the lines will be juxtaposed 
on the console dispiay. System console output is not recommended 
unless very unusual circumstances exist. 

8. If a mnemonic-name associated with SWITCH is specified, only 
operand (data-name, literal, or the figurative constant ZERO) may 
given. If the value of the operand is 1, the switch will be set ON; 
the value is O, the switch will be set OFF. If a literal is used, 
must be an integer that has a value of 1 or O. If a data-name 
specified, it must be a >¢<>•.~At:riOtt~Fl.:Y data item in 
Working-Storage Section, with a size not exceeding eight digits. 
following data description is recommended: 

one 
be 
if 
it 
is 

the 
The 

If the value of the item exceeds one (1), the value modulo 2 
determines the switch setting. 

9. Refer to Section VI of the COBOL Use.r's Guide for additional 
information. 

7-39 DD25 



DISPLAY 

Format 2: 

1. 

2. 

3. 

4. 

s. 

I 

I 
6. 

2/77 7-40 

DISPLAY 

be associated with 
paragraph. The DISPLAY 

transaction processing 

· limits of the 

intercom the 

DD25A 



DIVIDE DIVIDE 

The DIVIDE statement is used to divide one numeric data item into another 
and to set the value of a data item equal to the result. 

Format 1: 

{

identifier-1 }. 
DIVIDE INTO 

literal-1 ~~ 
identif ier-2 [ROUNDED] 

[oN SIZE ERROR imperative-statement] 

Format 2: 

{

identifier-1} {identifier-2 } 
DIVIDE INTO GIVING 
--- literal-! -- literal-2 

identifier-3 [ROUNDED] [, identifier-4 [ROUNDED J] .... 

[oN ~ ~ imperative-statement] 

Format 3: 

DIVIDE {identifier-!}· BY {identifie. r-2 } GIVING 

literal-1 ~ literal-2 

identif ier-3 [ROUNDED J •E••••j···········;.·~-#~•:·~~~%'~.4 [••RO.UNPED .• ]•······1••······ ~········· 
[oN ~ ~- imperative-statement] 

7-41 DD25 



DIVIDE 

Format 4: 

DIVIDE INTO GIVING 
{

identifier-1 }· {identifier-2} 

literal-1 ~~ literal-2 

identifier-3 [ROUNDED] REMAINDER identifier-4 

[oN SIZE ERROR imperative-statement] 

Format 5: 

DIVIDE {i~entifier-1} BY 

literal-1 { 

identifier-2} 

literal-2 
GIVING 

identifier-3 [ROUNDED] REMAINDER identifier-4 

[oN SIZE ERROR imperative-statement] 

Format 6: 

>J?#V~Blt ;Ldemt:if ier··"l !?!. identif ier .. z 

Syntax Rules: 

DIVIDE 

1. Each identifier must refer to an elementary numeric item, except that 
any identifier associated with the GIVING or REMAINDER phrase must 
refer to either an elementary numeric item or an elementary numeric 
edited item. 

2. Each literal must be a numeric literal. 

3. The maximum size of each operand is 18 decimal digits. The composite 
of operands (the hypothetical data item resulting from the 
superimposition of all operands of a given statement, excluding the 
REMAINDER data item, aligned on their decim.al points) must not contain 
more than eighteen digits. 

7-42 D.025 



DIVIDE DIVIDE 

General Rules: 

1. When Format 1 is used, the value of identifier-! or 
divided into the .value of identifier-2. The value of 
(identifier-2) is replaced by the quotient. This process 
foridentifier-1 or literal-1 and ident.ifier-3, etc. 

literal-1 is 
the. dividend 
also occurs 

2. When Format 2 is used, the value of identifier-I or literal-1 is 
divided into identifier-2 or literal-2 and the quotient is stored in 
identifier-3, idehtifier~~, etc. 

3. When For:,1at 3 is used, the value of identifier-1 or literal-1 is 
divi 1 ed by the value of identifier-2 or literal-2 and the quotient is 
r: .~d in identif ier-3, id¢ntifier-4, etc. 

4. Formats 4 and 5 are used when a remainder from the division operation 
is desired, namely identifier-4. The remainder in COBOL is defined as 
the result of subtracting the product of the quotient (identifier-3) 
and the divisor from the dividend. If ROUNDED is used, the quotient 
used to calculate the remainder is an intermediate field which 
contains the quotient of the DIVIDE statement, truncated rather than 
rounded. 

5. In Formats 4 and 5, the accuracy of the REMAINDER data item 
(identif ier-4) is defined by the calculation described above. 
Appropriate decimal alignment and truncation (not rounding) will be 
performed for the contents of the data item referenced by 
identifier-4, as needed. 

6. ~eti fh.e ON ~IZ$ ERg()~ ph.:ra(se is used in Formats 4 and 5, and a size 
~Pl::Qr oCQ~PS .O.t); 'bf+~ GI'\19't:,ie.nt, .the contents of identifier-3 will not be 
9~~9ed but the resµlt of the divide wlll be used in computing the 
remainder. 

If the .size error occurs on the remainder, the contents of the data 
it.em r~ferenced by identifier-4 will remain unchanged. However, as 
with other instances of multiple results of arithmetic statements, 
~aly$iS must be performed to determine which situation has occurred. 

7. :tnFormat 6, the initial value of the dividend (identifier-I) will be 
replaced by the computed value of the quotient obtained from the 
d:lvi$1on. This nonstandard format is not recommended. 

8. Refer to the Common Options in Statement Formats paragraph 
section for uses o:t; the ROUNDED and SIZE ERROR options apd 

::::e§1:11:i::;::• 

7-43 

in this 
ll\Ultiple 

DD25 



ENTER ENTER 

The ENTER statement is used to co!lserve time or space in the execution of 
'ifti.i!§p::Jl§'t p;@gj;~. ()X' to include specific 'statements' in the source program 
that:. are not defined in the COBOL language. 

Format 1: 

Format 2: 

Format 3: 

ENTER COBOL. ------

ENTER GMAP. 

- -}GMAP coding 
ENTER COBOL. 

data ... name. 

{

(SIZE OF J data-name }] 

... 
[W'f IAL . CH. A. RACTER OF J data-name 

PROCEDURE procedure-name 

7- 4 DD25 



ENTER 

Format 4: 

Syn tax Rules: 

1. 

2. 

3. 

data-name-2] ••• J 
data-name-(} ... J J 

3, integer must be a six-digit numeric literal. 

ENTER 

Format 3, literal-1 must be a nonnumeric literal, consisting of one 
six characters which satisfy the GMAP rules for symbol formation. 

Section 
but not· 

General Rules: 

1. ENTER statements in a source program written for a computer other than 
the one on which the current source program is being compiled must be 
changed. 

Format 1: 

1. 

2/77 7-45 DD25A 

I 
I 



I 

ENTER 

2. 

3. 

Format 2: 

L 

2. 

ENTER 

fti}\~.rt6tfualm6de1s TIME ... SAVl:NG .. The SPACE-SAVING mode applies to all 
~~~fi~~.ti#S ·· ... fpllowing ~NT:ER SPACE-SAVING until ENTER TIME-SAVING is 
.e~g<?~p;i;.~~~Clf. at whicih poJ.nt the compiler reswnes the normal
.T:tMS.~$AVING .mode.

l•it~l1all11ill~it~r:;0~0~~~~;:~v~~

The ENTER GMAP statement must not contain a comment; a comment will
cause GMAP flags to be appended to the generated code. The GMAP
coding following an ENTER GMAP statement must be terminated by an
ENTER COBOL statement which must begin on a new line. The ENTER COBOL
statement must not contain a paragraph-name. The lines between the
ENTER GMAP and ENTER COBOL statements must consist of GMAP coding.

The first GMAP line following the ENTER GMAP statement should be
either an executable GMAP instruction or a NULL pseudo-operation. If
the COBOL statement immediately preceding the ENTER GMAP statement
implies a 'next sentence', a symbol will be generated and assigned to
the first GMAP line. If the first GMAP line is a line for which a
symbol is not allowed, the generated symbol will be undefined. If it
is inconvenient to ensure that the first GMAP line is an executable
instruction, the user should:

.a. Place a pa:tagraph-name immediately preceding the ENTER GMAP
statement, or

b. Ensure that the COBOL statement immediately preceding the ENTER
GMAP statement does not imply a 'next sentence', or

c. Follow the ENTER GMAP statement with a NULL pseudo-operation.·

3a The special format used for the GMAP coding is the standard GMAP.
format shifted six places to the right.

2/77

Columns

1-6
7-12
13
14-19
20-21
22-72
73-80

Interpretation

COBOL sequence number
Location field
Even/odd subfield
Operation field
Blank
Variable field
Program identification

Information appearing to the right of column 72 is not interpreted as
part of the variable field. As in ordinary GMAP coding, comments must
be separated from variable field information by at least one blank.
The quotation mark character (") should not be used in the ~ariable
field because it has a special meaning in COBOL; the word QUOTE
should be used instead.

7-46 DD25A

.ENTER ENTER

4. GMAP symbols defined in the location field must not conflict with
reserved system·symbols. They must follow the GMAP rules for symbol.
formation. Symbols reserved for compiler use which must not be defined
in the location field of GMAP statements include:

a. Symbols. in the form lnnnnn, where 'l' is any letter and 'nnnnn'
is any string of five digits.

b. Symbols having any file-code specified in the
Division as their leftmost two characters.

Environment

c. Symbols of the form VfcEOF, where 'fc' is any file-code specified
in the Environment Division.

d. The PROGRAM-ID program-name defined in
Division.

e. The symbol ENTER.

the Identification

f. Symbols having either '.C' or 'C.' as their leftmost two
characters.

g. The special symbols ZINBUF, ZOTHDR, ZOUTBl, ZOUTB2, COMMI, COMMO.

h. Any symbol starting in column 7 with the first character numeric
(such a symbol is treated as an optional debug statement) .

5. COBOL data-names and procedure-names are not directly accessible .to
G~~AP coding; a special provision (see Format 3) permits GMAP symbols
to be applied to COBOL procedures and data items. The 'locsym' of each
File Control Block is the two-character file-code assigned in a SELECT
sentence in the Environment Division followed by the characters
'FICB'. (Refer to the File and Record Control reference manual.)

For a file with an explicit or implicit process area, the beginning
location of the process area has the symbol fcRECD where 'fc' is the
file-code assigned. For any other file, a current record location
pointer is available (provided the file is OPEN) in the address field
(bits 0-17) of the File Control Block ~ord with symbol fcFICB, where
'fc' is the file-code assigned. Data must be addressed relative to the
current record location pointer for such a file.

References to File Control Blocks make a program sensitive to changes
in input-output software and are therefore strongly deprecated.

6. All GMAP rules must be observed in the GMAP coding. Pseudo-operations
that alter the location counter may cause unpredictable results at
object program execution. Their use presupposes a thorough
understanding of the location counter conventions followed by the
COBOL compiler in generating coding.

7-47 DD25

ENTER ENTER

7. The user must ensure that the contents of the EIS address registers
are intact or reinitialized after every ENTER GMAP/ENTER COBOL
sequence. The compiler implicitly optimizes the use of the EIS address
registers across paragraphs. A given register will not be
reinitialized as long as the compiler can determine from the source
statements ~hat the register data is intact. Coding following the
ENTER GMAP statement is not analyzed by the compiler; thus, when
coding following the ENTER GMAP statement is used either to CALL a
subroutine or to modify code generated from COBOL source statements,
the user must either protect all index and address registers having
GMAP coding or indicate to the compiler that the registers are to be
reinitialized. This is accomplished by immediately following the ENTER
COBOL statement with a new paragraph and including at least one 'ENTRY
POINT IS entry-name' phrase in the program.

Format 3:

1.

2.

3.

4.

5.

l~oation .. ~yml:>.o:J.~ . ·.to be
their proper.ttes) and

W~e ID~ S~~Ei ph~~~~ a.~lows/>I•D-S/COBOL programs to specify the size of
~ dC!l;t..~,..na.f(\~ tor .i.Q.i:~:t'tial checking purposes. It has no ef feet · other
than tq ~royide a warning message on the listing when such a check
f(iils. Normally,. it isi a statement produced by the I-D-S translator.
!pteger must be given· as exactly six characters.

A SYMBOL phras.e that references a data-name using the SIZE option
ca1J!;es the comp,iler to equate the symbol to an appropriate number that
indicates the number of BCD character positions required to contain
the data-name.

A SYMBOLphx-ase that references a data-name using the INITIAL option
causes the compiler to equate the symbol to an appropriate number (0
through5 for BCD fields or either 0 through 7 or 4 through 7 for
packed decimal fields) indicating the first character position
occ\).pied by the.data item within the (first) computer word. For BCD
fields, the leftmost position is indicated by O; the rightmost by 5.
For packed decirnal.fields, the leftmost position is indicated by O or
4.and.ther;ightlt\ost position is indicated by 3 or 7, depending on
whether the data item begins on the word or half-word boundary.

AS'YMBOLph:r:ase that references a data-name or a procedure-name only
causes theoompiler to equate the given GMAP symbol {literal-1) to the
first memory location of the specified data area or procedural
instructions. A level 01 data area described in the File section may
not be.equated to a symbol (literal-!) unless a process area will be
pxe~~nt fo;i:: the file and the compiler symbol (fcRECD) is used instead·
of <the sou.roe>. data•name.

7-48 0025

. ENTER ENTER

Format 4:

2/77

1. CALL permits transfer of control to a separately compiled program or
entry point within a program with a standard return mechanism
provided,. {The generated coding employs the GMAP CALL
pseudo-operation.) CALL may al$O be used without the ENTER LINKAGE
statement. (Refer to the CALL statement~) The following conventions
govern the use of CALL: ·

If the program being called is an independently compiled COBOL
program, routine-name must be its PROGRAM-ID.

in an

or

7-49 DD25A

I

ENTER

2.

·1

*

2/77 7-50

ENTER

explicit

points into a
PROGRAM-ID
statement.

than six
the first of

as the
location

in the

phrase

DD25A

ENTER

h.

ENTER

The GIVING option is used to specify· an output argument list for
an ENTRY POINT phrase. The GIVING data-names must be level 77 or
01 items specified in the Working-Storage Section. When a CALL
references an.entry point with GIVING arguments, the compiler
generates word moves for each argument, which will be executed on
an EXIT entry-naxne for the referenced ENTRY POINT phrase.

The GIVING option uses the corresponding indirect address
specified in the CALL as a receiving field and the corresponding
data-name froxn the GIVING argument list for the entry point as a
sending field.

i. The user must assure a one-to-one correspondence between the CALL
USING arguments and the ENTRY POINT USING/GIVING arguments. The
data formats for the corresponding arguments must be identical.
Arguments may not be larger than 256 words.

j. USING/GIVING data-names roust not be subscripted.

k. An entry-name must not be used on a $ ENTRY card.

3. The POPUP option perxnits extended use of PERFORM statements. Each
e~ecuted PERFORM statement causes an exit link to enter a pushdown
stack which services all PERFORM.s. The stack is arranged so that only
the exit mechanism for the latest PERFORM executed may be engaged. If
control passes to any other exit mechanism, even if a relevant PERFORM
is active, control is passed to the next statement in the written
sequence. When the exit mechanism of the latest executed PERFORM is
reached, the exit link is removed and the stack is 'popped up' before
control is returned. This stack structure permits recursive performs,
nested performs wit~ crossing ranges, and multiple active performs
with a comm.on exit point. (If such extended capabilities are employed,
the user must supply moves as necessary to avoid unintended overlaying
of data with new values.) The pushdown stack approach inherently
requires that all 'popups' eventually occur in an orderly manner. This
means that control must eventually reach the exit mechanism of any
active PERFORM; and for nested performs control must pass to the exit
n\echanisms in the logical order 'innermost to outermost'. POPUP
permits this inherent control to be circumvented. When the control
sequence is prepared in such a way that not all exit mechanisms will
be operated in the required order, POPUP must be employed to remove
the unused exit links from the stack. The simplest example of such a
situation is a GO TO statement transferring control outside of a
PERFORM range without a subsequent return to the range.

7-51 0025

ENTER

J?tooec:t:ure~na.n\e must be the name of the last paragraph or
l;~(therange of a currently active PERFORM.

ENTER

section

b~ POl?t.lP .remov~s c;tll exit links from the stack up to and including
those associated with the exit .mechanism following the
•procedure-n.ame• paragraph or section. POPUP does not return
control for any exit link; it merely passes control to the
statement following it in the source program after its action on
the stack.

c. If control permanently leaves a PERFORM range, the memory area
allocated for the stack will eventual;Ly over£low if the PERFORM
is repeatedlyexeouted unless POPUP is used. Stack overflow
aborts the object program.

d. lf the exit mechanism of an active PERFORM is deliberately
bypassed, the exit mechanisms for prior PERFORM statements which
are still active cannot return control unless POPUP is used.

e~ POl?UP must not reference an entry-name specified by the ENTRY
POINT phrase.

7-52 DD25

EXAMINE EXAMINE

The EXAMINE statement is used to replace and/or count the number of
occurrences of a given character in a data item.

Format 1:

EXAMINE identifier TALLYING ALL { UNTIL~} li teral-1
LEADING

[REPLACING ~ literal-2]

Format ~=

EXAMINE. identifier REPLACING LEADING literal-3
{

ALL }

[~]~

BY li teral-4

Syntax Rules:

1. The description of 'identifier' must be such that its usage is DISPLAY
(explicitly or implicitly).

2. Each literal must consist of a single character belonging to a class
consistent with that of 'identifier'. In addition, each literal may be
any figur~tive constant except ALL.

3. A signed numeric literal is not permitted in the EXAMINE statement.

General Rules:

1. Examination proceeds as follows:

a. For nonnumeric data items, examination starts at the
character and proceeds to the right. Each character in
item specified by the identifier is examined in turn.

leftmost
the data

b. If a data item referred to by the EXAMINE statement is numeric,
it must consist of numeric characters and may possess an
operational sign. Examination starts at the leftmost character
and proceeds to the right. Each character is examined in turn. If
the letter 'S' is used in the PICTURE character-string of the
data item description to indicate the presence of an operational
sign, the sign is completely ignored by the.EXAMINE statement.

7-53 DD25

EXAMINE

2.

EXAMINE

The TALLYING phrase creates an integral count which replaces the value
of a special register called TALLY. The count represents the number
of:

a. Occurrences of literal-1 when the ALL option is used.

b. Occurrences of literal-I prior to encountering a character other
than literal-1 when the LEADING option is used.

c. Characters not equal to·literal-1 encountered before the first
occurrence of literal-! when the UNTIL FIRST option is used.

3. When any of the options in the REPLACING phrase are used, the
replacement rules are as follows, subject to the qualifications stated
in General Rule 2:

a. When the ALL option is used, then literal-2 or literal-4 is
substituted for each occurrence of literal-1 or literal-3.

b. When the LEADING option is used, the substitution of literal-2 or
literal-4 terminates as soon as a character other than literal-1
or literal-3 or the right-hand boundary of the data item is
encountered.

c. When the UNTIL FIRST option is used,
literal-2 or literal-4 terminates as
literal-3 or the right-hand boundary
encountered.

the substitution
soon as literal-I
of the data item

of
or
is

d. When the FIRST option is used, the first occurrence of literal-1
or literal-3 is replaced by literal-2 or literal-4.

7-54 DD25

EXIT EXIT

The EXIT statement is used to define the exit point for a series of
procedures p~f tp q~·fi.ne the exit point fQr the logical end of a called program.

Gener al F'orma t :

paragraph-name.

EXIT
[{

PROGRAM }]

. • entry-name

Syntax Rules:

1. The EXIT statement must appear in a sentence by itself.

2. The EXIT sentence must be preceded by a paragraph-name and must be the
only sentence in the paragraph.

General Rules:

1. It is sometimes necessary to transfer control to the end point of a
series of procedures. This is usually accomplished by transferring
control to the next paragraph or section, but in some cases this does
not have the required effect. (For example, the point to which control
is to be transferred may be at the end of a range of procedures
governed by a PERFORM, a SORT, a MERGE, or could be at the end of a
declarative section.) The EXIT statement is provided to enable a
procedure-name to be associated with such a point. If such a procedure
has only a single control path to the exit point, the EXIT statement
is not required. If the procedure has alternative paths to the exit
point, an EXIT paragraph should be employed, and the various paths
should then transfer control to the EXIT paragraph.

2. The PERFORM statement, the SORT statement's INPUT PROCEDURE and
OUTPUT PROCEDURE phrases, and the MERGE statement's OUTPUT PROCEDURE
pfl:#ji:j~>require procedure-names referenced as follows:

••• procedure-name-1 [THRU procedure.;.name-2 J
The end of procedure-name-'2 is the 'exit point' if the THRU option is
used; otherwise the end of procedure-name-1 is the exit point. The
preserice of intervening EXIT paragraphs does not affect this rule. If
an EXIT paragraph is needed, it must be placed at the proper exit
point.

7-55 DD25

EXIT

3.

4.

EXIT

If control reaches an EXIT statement without the PROGRAM or entry-name
()ption and no associated PERFORM, SORT, MERGE, or USE statement is
active or if control reaches an EXIT PROGRAM statement and no CALL
$t.aternent is active, control falls through the EXIT point to the first
sentence of the next paragraph.

If control reaches an EXIT PROGRAM statement while the p:r;ogram is
being>executed as the result of a CALL statement, control retu:r;ns to
the pcii:nt in the calling program immedia,.tely followinq the CALL
statement.

5. The EXl?Jt PROGRAM or EXIT ent;ry-name statement must not be used. in the
decil.~±ativ~·$ectiqn.,

6.

7.

The EX:('l1 entry-name option defines an exit point for
~nt.X'Y"".ni;une which Is given in the associated ENTRY POINT
~ptJ:y~p(lll\e must he defined by the ENTRY POINT phrase
ptog:ea,m as the EX:tT entry-name •

.MP:rE:l>than one exit point may be specified for any given
but there must be at least one EXIT entry-name for each
fipe¢ified ..

a specific
pQ;rase. The

in the same

entry
entry

point,
point

8. If control reaches an EXIT entry-name statement, a check is made to
determine if the entry-name corresponds to the currently active entry
po.±:rrt •. If they correspond, the exit mechanism passes the GIVING
(:l.r9'\;llrie11ts specified for the entry point, restores all registers, and
~~ttj;rtnscop.trol to the point immediately following the CALL statement
t9t' t{h.~giy.er;i entry-name. If the EXIT does not. corr~sp6nd t.o <~~
-r?t7y"":qF~~t 99r;it;;-ol w+11 pass th.rough .~he EXIT f,mtry.~na~~ ~~~1?~~p'I;. pp
th~· :f;i.1:$t .. s~n .. ~~p.ce of the next para9ra.ph.. · · · · ·

7-56 0025

GENERATE GENERATE

The GENERATE statement is used to present a report entry based on Procedure
Division control.

General Format:

GENERATE identifier

Syntax Rule:

1. Identifier represents a TYPE DETAIL report group or an RD entry.

General Rules:

1. If identifier represents the name of a TYPE DETAIL
GENERATE performs all the relevant automatic operations
an actual output DETAIL report group (detail reporting) •

report group,
and produces

2. If identifier is the name of an RD entry, GENERATE performs all the
relevant automatic operations and updates the FOOTING report · group(s)
within the report without producing an actual DETAIL report group
associated with the report. Thus it increments all SUM counters
associated with the report description (summary reporting). If the
report includes more than one TYPE DETAIL report group, all SUM
counters are incremented each time such a GENERATE is executed.

3. GENERATE produces the following automatic operations (as needed):

a. S~~ps ~nd tests the LINE-COUNTER to. produce appropriate PAGE c>r.
QW•WW FOOTING and/or PAGE or OVERFLOW HEADING report groups.
Increments PAGE-COUNTER when a PAGE or OVERFLOW condition is
determined.

b. Recognizes any specified CONTROL breaks to produce appropriate
CONTROL FOOTING and/or CONTROL HEADING report groups.

c. Accumulates all specified identifiers into the SUM
Resets the SUM counters on an associated control break.
an updating procedure between control break levels for
of SUM counters.

counters.
Performs

each set

d. Executes any specified routines defined by the BEFORE REPORTING
phrase of a USE statement before producing the associated report
group {s).

7-57 DD25

GENERATE GENERATE

4. During the e:xecution of the first GENERATE statement referring to a
report or to a DETAIL report group within a report, all CONTROL
HEADING report groups specified for the report are produced in the
order major ••• minor, immediately followed by any DETAIL report gro.up
specified in the statement. If an identifier control break is
recognized when a GENERATE statement is executed (other than the first
one executed for a report) , all CONTROL FOOTING report groups
specified for the report are produced from the minor report group up
to and including the report group specified for the identifier which
caused the control break. The CONTROL HEADING report group(s)
specified for the report, from the report group specified for the
identifier which caused the control break down to the minor report
group, are then produced in that order. The DETAIL report group
specified in the GENERATE statement is then produced.

5. When data.is implicitly moved to a report group description entry, it
is edited according to the rules described under the MOVE statement.

7-58 DD25

GO TO GO TO

The GO TO statement is used to transfer · control from one pait of the
Procedure Division to another~

Format 1:

GO TO [procedure-na ·le-1 J

Format 2:

GO TO procedure-name-1 [, procedure-name-2]

procedure-name-n DEPENDING ON identifier

Syntax Pules:

1. Each procedure-name must be the name of a paragraph or section in the
Procedure Division.

2. Identifier is the name of a numeric elementary item described with no
positions to the right of the assumed decimal point.

3. A GO TO ••• DEPENDING
procedure-name.

ON statement requires more than one

General Rules:

1. When a Format 1 GO TO statement is executed, control is transferred to
procedure-name-! or to another procedure-name if the GO TO statement
was modified by an ALTER statement.

2. If procedure-name-1 in Format 1 is not specified, an ALTER statement.
that refers to this GO TO statement must be executed prior to the
execution of this GO TO statement.

3. When the Format 1 GO TO statement is referred
statement, the following rules apply whether or not
is specified:

to by an ALTER
procedure~name-1

a. The GO TO statement must have an associated paragraph-name.

b. The GO TO statement must be the only statement in the paragraph.

7-59. DD25

GO TO GO TO

4. When a Format 2 GO TO statement is executed, control is transferred to
procedure-name-1, procedure-name-2, ••• , procedure-name-n, depending on
the value of the identifier being 1, 2, ••• , n. If the value of
identifier is anything other than the positive· or unsigned integers 1,
2, ••• , n, then a transfer does not occur and control passes to the
next statement in. the normal sequence for execution.

7-60 0025

IF IF

An IF statement causes a condition to be evaluated. The subsequent action
of the object program depends on whether the value of the condition is true or
false.

General Format:

statement-2
IF condition

{

statement-1 } { ELSE

NEXT SENTENCE. [ELSE NEXT SENTENCE] }

Syntax Rules:

1. Statement-1 and statement-2 represent either a
or an imperative-statement, and either may
conditional statement.

conditional statement
be followed by a

2. The 'ELSE NEXT SENTENCE' phrase may be omitted only if it immediately
precedes the final period of the sentence.

3. 'Conditions' are described at the beginning of this section.

General Rules:

1. When an IF statement is executed, the following action takes place:

a. If the condition is true, the statements immediately following
the condition (represented by statement-1) are executed and
control then passes implicitly to the next sentence.

b. If the condition is false, either the statements following ELSE
are executed or, if the ELSE phrase is omitted, the next sentence
is executed.

2. When an IF statement is executed and the NEXT SENTENCE phrase is
present, control passes explicitly to the next sentence depending on
the truth value of the condition and the placement of the NEXT
SENTENCE phrase in the statement.

3. Statement-1 and statement-2 may contain an IF statement. In this case,
the IF statement is said to be nested.

IF state~ents within IF statements may be considered as paired IF and
ELSE combinations, proceeding from left to right. Thus, any ELSE
encountered is considered to apply to the immediately preceding IF
that has not been already paired with an ELSE.

4. When control is transferred to the next sentence, either implicitly or
explicitly, control passes to the next sentence as written or to a
return mechanism of a PERFORM or a USE statement.

7-61 DD25

I

I

INITIATE INITIATE

The INITIATE statement is used to begin processing a report.

General Format:

(.....

r. e. po. rt-name-1
INITIATE

:~~L

, report-name-2

Syntax Rule:

1. Each report-name specified in an INITI~TE statement must be defined by
a report description entry in the Data Division.

General Rules:

2/77

1. INITIATE resets to zero all data-name entries associated with this
report which contain SUM clauses (SUM counters).

The PAGE-COUNTER, if specified, is initially set to
the execution of an INITIATE statement for a
contents of PAGE-COUNTER for that report may be
Procedure Division statement.

one (1). After
given report, the
changed using a

3. The LINE-COUNTER, if specified, is automatically set to zero {O) by
the INITIATE statement.

4. A report can be reinitiated after it has been terminated.

5. ~~ t,b.~ ·~J:tL · J?A:t'~se i.$ ~~~o~tf~di ~4;).. > ~~pprts defined in the Report
?@tjt;;~@n ¢.~ ttie·Pata •. ·Pivi$.ion a;;~ /¢pi~~~ted ••

6. INITIATE does not open the file with which the report is associated.
An OPEN statement for the file must be executed before the· INITIATE
statement.

7-62 DD25A

·MERGE

General Format:

Syntax Rules:

1.

2.

3.

4.

s.

2/77 7-63

MERGE

identically sequenced files on a
makes records available, in merged ·
file.

[{ ~ }· section-nama-21}
THROUGH j .

DD25A

*

*

I

MERGE MERGE

* 6. file reel can appear in the ·

7. MERGE statement.,

8.

General Rules:

I 1.

2.

3.

2/77 7-64 DD25A

MERGE

4.

5.

6.

2/77 7-65

MERGE

of control to

or MERGE statements.

during

be applied to
the following

DD25A

I

I

I

MERGE MERGE

7. :~~::·N~~: ?J:~l~~ ~pr~s~/is· -.~~~ql~ied•, all of />the me:rge(l record.a on

··•••ll~~i~N~~~~~·al#~····••••·f:~*'~t~~~~~·~~~ .•••.... af~~!~:~-t~ri······£1•1e-·name-s a.s the implied

a. In the case of an equal qompare, according to the rules forO()Jl\Parison
o.r ... ~l?~~~J.'l'd~ .~):t.a ·-~~~~t*9I1 .. (j()nd~ti9X}, on theccmtents .?f i:.9~ ?~M. items
;~~G~~¥~¥~9 ~¥ ~w:t i;:.~'(!(~'¥: ~~riil.'f na~~S .. b~tween · x~eordS :Erottl two pr . more

.. ~~~01-¥ .*~-ft!~ .. ~t~·l.rf:P.'~'74t ~~l.~-naine.wJ '·•• .. file ... na.me-4 1 ..• ~ ... J ,-.. ·t.il~_ ;e_oor~~
·~71~~-~r~t~rn·gp %~tr0~~7?9 P+ .. re<f:."17n7a .. ;t.q __ .the .out~µ;. !f>;ipe>9~d\lr~,

Special Considerations:

2/77

1. it{~y·dat<ii ;kt.em$ must not be described with USAGE COMPUTATIONAL-4.

2. ~p~ i9\f5()pnat;Lon concerning the merging of records described with an
gy¥'Q'R?y .. ·.,p;E:p.~NDING ... el~lJ.$17.(. JSfer to . the Variable-Length Records

.. JP:;;"~&'o/,Ph ;l'l. "t:be MltR(lE pg?;t,$pµ<9f Section IX in the COBOL User's
<·~~~~~F .

7-66 DD25A

MOVE MOVE

The MOVE statement is used to transfer data to one or more data areas in
accordance with the rules for editing.

Format 1:

{

identifier-!}
MOVE

literal
TO identifier-2 [, identifier-3 J ...

Format 2:

MOVE { c
1

m } identifier-! ·ro identifier-2 (, identifier-3 J
C()RRESPONDING

Syntax Rules:

1. Identifier-! and literal represent the sending area; identifier-2,
identifier-3, ••• , represent the receiving area.

2. CORR is an abbreviation for CORRESPONDING.

3. When the CORRESPONDING phrase is used, all identifiers must be group
items.

4. An index data item cannot appear as an operand of a MOVE statement.

General Rules:

1. Additional receiving areas may be given following identifier-2. The
data designated by the literal or identifier-! will be moved first to
identifier-2, then to identifier-3, etc. The rules referencing
identifier-2 also apply to the other receiving areas.

2. Rules 2 through 4 refer to a MOVE without the CORRESPONDING option.

a. Any MOVE in which the sending and receiving items are both
elementary items is an elementary MOVE.

In the following discussion, PICTURE is used for clarity;
however, every elementary item belongs to one of the categories
listed below whether or not the PICTURE is used in its
description:

N - Numeric. This includes any item whose PICTURE
solely of characters from the set 9; s, V, and P.
includes the figurative constant ZERO and any
literal.

7-67

consists
It also
numeric

DD25

MOVE MOVE

NE - Numeric Edited. An item has at least one of the following:

• An editing clause (e.g. I BLANK WHEN ZERO).

• A PICTURE containing any of the numeric editing
characters z * $ + - CR and DB. I .

• A PICTURE containing at least one of the insertion
character B, and not containing any As or Xs.

AE - Alphanumeric Edited. An item whose PICTURE contains at least
one of the insertion character B, and at least one X.

AN - Alphanumeric. An item whose PICTURE contains only characters
from the set A, X, 9 treated as if all were Xs. It also
includes nonnumeric literals and the figurative constants
except for ZERO and SPACES.

AB - Alphabetic. An item whose PICTURE consists entirely of As.
It also includes the figurative constant SPACES.

b. The following rules apply to an elementary MOVE between the
categories defined above:

• It is illegal to move an NE, AE, the figurative constant
SPACE, or an AB item to an Nor NE item.

• It is illegal to MOVE an N, the figurative constant ZERO, or
an NE item to an AB item.

• It is illegal to MOVE an N item whose implicit decimal point
is not immediately to the right of the least significant
digit to an AN or AE item.

e A DISPLAY-2 item can be moved only to a DISPLAY or DISPLAY-2
item. When a DISPLAY-2 item is a receiving item, the sending
item must be described with USAGE DISPLAY or DISPLAY-2 or be
a literal or figurative constant.

• All other elementary moves are legal and are performed
according to the procedures given in Rule 3 below.

3. Any necessary conversion of data from one form of internal
representation to another takes place during legal elementary moves,
along with any editing specified for the receiving data item:

a. When an alphanumeric edited or alphanumeric item is a receiving
item, alignment and any necessary space-filling takes place as
defined under the JUSTIFIED clause and the Standard Alignment
Rules. If the size of the sending item is greater than the size
of the receiving item, the excess characters are truncated on the
right after the receiving item is filled. If the sending item is
described as being signed numeric, the operational sign will not
be moved.

7-68 DD25

MOVE

2/77

b.

MOVE

When a numeric or numeric edited item is the receiving item,
alignment by decimal point and any necessary zero-filling takes
place as defined under the Standard Alignment Rules, except where
zeros are replaced because of editing requirements.

•

•

When a signed numeric USAGE DISPLAY or USAGE CQMS4,4 data
item is the receiving item, the sign of the sending item is
placed in the receiving item. Conversion of the
representation of the sign takes place as necessary. If the
sending item is unsigned, a positive sign is generated for
the receiving item.

When a USAGE COMPUTATIONAL or a USAGE CQ.Ml?~l,., . . c6~m+21 >tfa:f
:]§9,lmie:l:f data item is the receiving item, the sign of the
sending item is placed in the implicitly signed receiving
item. If the sending item is unsigned, the receiving item
will be positive.

• When an unsigned numeric item is the receiving item, the
absolute value of the sending item is moved and no
operational sign is generated for the receiving item.

• When a data item described as alphanumeric is the sending
item, data is moved as if the sending item were described as
an unsigned numeric integer.

c. When a receiving field is described as alphabetic, justification
and any necessary space-filling takes place as defined under the
JUSTIFIED clause and the Standard Alignment Rules. If the size
of the sending item is greater than the size of the receiving
item, the excess characters are truncated on the right after the
receiving item is filled.

4. Any MOVE that is not an elementary move is treated exactly as if it
were an alphanumeric-to-alphanumeric elementary move, except that
there is no conversion ·of data from one form of internal
representation to another. In such a move, the receiving area will be
filled without consideration for the individual elementary or group
items contained within either the sending or receiving area, ex¢~pt~$:

:::1ei'='@::::::::)tp·! ::11.1,:·: . .fafa~;JJ~§:: ':®9~ H#li@'P¢·¢W~ 9~~4~~~
5. If the CORRESPONDING option is used, selected items within

identifier-! are moved, with any required editing, to selected items
within identifier-2. Items are selected by matching the data-names of
items defined within identifier-1 with like data-names of items
d~fined within identifier-2 according t6 the following rules:

a. At least one of the items must be an elementary item.

b. The respective
qualifications
identifier-2.

data-names are
up to but not

the same
including

including
identif ier-1

all
and

c. A MOVE CORRESPONDING statement must not reference items having
level-numbers 66, 77, or 88, or items described with the USAGE IS
INDEX clause.

d. Any data-names which are subordinate to identif ier-1. or
identif ier-2 and which have REDEFINES I RENAMES, OCCURS,:)q>:~.!:0$~$.~]
,;Ji§:::rn:11111 Clauses are ignored I aS Well as any data-names Wrlfoh are.
subordinate to the data-names that contain REDEFINES I ·RENAMES I

OCCURS, :::::g:;::::11•1::.:::l$=·:'$Nll®.i clauses.

7-:69 DD25A

I

I

MOVE

2/77

MOVE

This restriction does not prevent identif ier-1 or identif ier-2
from having REDEFINES or OCCURS clauses or from being subordinate
to data-names having REDEFINES or OCCURS clauses.

In the execution of 'MOVE CORRESPONDING ABLE TO BAKER', where the
respective data descriptions are as follows:

03 ABLE
04 p
04 Q
04 R REDEFINES Q
05 s

03 BAKER
04 p
04 Q
04 R
05 s

P and Q will be moved, but R will not be moved (it is a
REDEFINES), nor will S be moved (it is subordinate to a
REDEFINES) ; the same applies if the REDEFINES had been in BAKER.

Each CORRESPONDING source item is moved in conformity with the
description of the receiving area. The results are the same as
if the user had referenced each pair of CORRESPONDING data·-names
in separate MOVE statements.

6. The following chart presents the relationship between the legality of
a MOVE and the General Rules (above) which affect the given category.

I
Category of Receiving Data Item

Category of Sending
Data Items

Alphanumeric Numeric Integer
Alphabetic Edited Num. Noninteger

Alphanumeric Numeric Edited

Alphabetic· Legal/3c Legal/3a Illegal/2a

Alphanumeric Legal/3c Legal/3a Legal/3b

Alphanumeric Edited Legal/3c Legal/3a Illegal/2a

Integer Illegal/2b Legal/3a Legal/3b
Numeric

Noninteger Illegal/2b Illegal/2b Legal/3b

Numeric Edited Illegal/2b Legal/3a Illegal/2a

7. When a sending and a receiving item in a MOVE statement share a part
of their memory areas, the result of the execution of such a statement
is undefined.

7-70 DD25A

MULTIPLY MULTIPLY

The MULTIPLY statement is used to multiply numeric data items and to set
the values of data items equal to the results.

Format 1:

{
identifier-·l} B. Y

MULTIPLY identifier~2
li teral-1

[ROUNDED]

[, identifier-3 [ROUNDED]] •••

[oN ~ ~ i~perative-statement]

Format 2:

MULTIPLY { i~e.ntifier-1} .BY { i~entifier-2}
literal-! literal•2

GIVING identifier-3 [ROUNDED J

[oN SIZE ERROR imperative-statement]

Syntax Rules:

1. Each identifier must refer to a numeric elementary item, except that
those identifiers appearing to the right of the word GIVING (Format 2)
can refer to data items containing editing symbols.

2. All literals used must be numeric literals.

3. The maximum size of each operand is 18 decimal
of operands (the hypothetical data item
superimposition of all receiving data items
aligned on their decimal points) , must not
digits.

7-71

digits. The composite
resulting from the

of a given statement,
contain more than 18

DD25

MULTIPLY MULTIPLY

General Rules:

1. When Format l is used, the value of identifier-! or literal-! is
mul tipliea by the value of idel'l~t,~ .. i.~r'"7f·" .. t'hr Ye!H~>Of iden.tifier"".'.2. is
then replaced .by the product. S:tmtl.a+: :*¢tipn pgq\J;#;~\ '#,.qi;,·\ i.::::::~~~yi#,:¥,l~~~~t·~j;:
::e~·l.:+M:l!i~i:+7~:·:,~11·:·'.¥?i~n!i:%.14:1~:m·~:~::~~9·.~x···.··. ·.· · ···· ·· ··· ··· ···· · ·· ··· · · ·····

2. When Format 2 is used, the value of identifier-! or
multiplied by the value of ~d~p~if.~~f.;2, or literal-2 and
is stored in identifier-3, ~§~~~~1$~\t-:~41 etc.

literal-1 is
the product

3. Refer to the Common Options in Statement Formats paragraph in this
section for uses of the ROUNDED and SIZE ERROR options @nQ. ip.'1.1¥~~,~~
·:te.:~nJ.::.t.:re.:•:w

7-72 DD25

NOTE NOTE

The NOTE sentence is used in the Procedure Division to include explanatory
information which is produced on the output listing but not compiled.

General Format:

NOTE character-string.

Rules:

1. Any combination of characters from the allowable
follow the word NOTE as long as the COBOL rules
word a.tld literal formation are observed.

character set
of punctuation

may
and

2. If a NOTE sentence is the first sentence of a paragraph, the entire
paragraph is considered to be a note. The format rules for paragraph
structure must be observed.

3. If a NOTE sentence appears as other than the first sentence of a
paragraph, the explanatory information of which the note is composed
must end with a period followed by a space.

4. Notes are produced on the reference listing but have no effect on the
object program.

5. The word NOTE can appear only as the first word of a COBOL sentence.

7-73 DD25

OPEN OPEN

-·-

· The OPEN statement is used .to initiate the processing of files. A'n OPEN
statement also causes label checking/writing and other input.,.output functions to
be performed.

General Format:

INPUT f ile-name-1 [wITH NO REWIND]

[· f ile-name-2 [wITH NO REWIND] J
OPEN OUTPUT file-name-3 [wITH NO REWIND]

[. f ile-narne-4 [wITH NO .REWIND J]
I-0 f ile-name-5 [, file-name-6]

Syntax Rules:

1. Each of the format choices (INPUT I OUTPUT, I-0) may be specified only
once in an OPEN statement.

2. The I-0 phrase :Pertains to mass storage files only.

3. .The WITH NO REWIND phrase does not apply to mass storage processing.

General Rules:

1. The OPEN statement must not be applied to sort files or merge files,
but must be applied to all other files. The OPEN statement for a file
must be executed prior to the first READ, WRITE, or SEEK statement for
that file.

2. A second OPEN statement for a file cannot be executed prior to the
execution of a CLOSE statement for that file.

3. The OPEN statement does not obtain or release the first data record. A
READ or WRITE statement must be executed to obtain or release,
respectively, the first data record. Data cannot be moved to an input
record area, nor can the input record area be tested or referenced .in
an:y way until the first READ statement has been executed for the file,
unles.s an APPLY PROCESS A:REA phrase has been specified for that input
f::lle.

7-74 0025

OPEN

2/77

4.

·OPEN

If a label record is specified for the file, the label is processed
according to the standard beginning label convention. The behavior of
the OPEN statement when a label record is specified but not present,
or when a label record is not specified but is present, is undefined.
If specified by the USE statement, a user's label procedure is
executed. The order of execution of these two processes is specified
by the USE statement. If label records are indicated as present by a
LABEL RECORDS clause, the user's beginning label procedure (if
specified by a USE statement) is executed before , or ~fter (as
indicated) checking but subseq~ent to writing the first label.

5. The NO REWIND phrase can be used only with a sequential single
reel/unit. (Refer to the CLOSE statement.)

6. If the external medium for the file permits rewinding, the following
rules apply:

a. When the NO REWIND phrase is not specified, execution of the OPEN
statement causes the file to be positioned at its beginning.

b. When the NO REWIND phrase is specified, execution of the OPEN
statement does not cause the file to be repositioned. Therefore,
when the NO REWIND phrase is specified, the file must have been
positioned at its beginning.

7. If an input file is designated with the OPTIONAL phrase in the
FILE-CONTROL paragraph of the Environment Division, the object program
causes an interrogation for the presence or absence of this file. If
the file is not present, the first READ statement for this file causes
the imperative-statement in the AT END phrase to be executed.

8. The I-0 option permits the opening of a mass storage file for both
input and output operations. Since this option implies the existence
of the file, it cannot be used if the mass storage file is being
initially created.

9. When I-0 is specified and the LABEL RECORDS clause indicates label
records are present, the execution of the OPEN statement includes the
followin~ steps:

10.

11.

a. The label (if it exists) is checked in accordance with the
standard conventions for input-output label checking.

b. The user's beginning label procedure, if one is specified by the
USE statement, is executed.

c. The new label is written in accordance with the standard ·
conventions for input-output label writing.

When processing mass storage files for which the access mode is
sequential, the Oi?EN statement supplies the initial address of the
first record to be accessed.

DD25A

*

I

PERFORM PERFORM

The PERFORM statement is used to depart from the normal sequence of
procedures to execute one or more procedures a specified number of times, or
until a condition is satisfied; and then return to the normal sequence.

Format 1:

PERFORM procedure-name-1
[{

THRU } procedure-name-2]
THROUGH

Format 2:

PERFORM procedure-name-1 [{ THRU } procedure-na. me-2]
THROUGH

Format· 3:

{

. identifier-1}
TIMES

integer-1

PERFORM procedure-name-1 [{
. THRU } procedure-name-2]
THROUGH

UNTIL condition-1

Format 4:

PERFORM procedure-name-! [{ :!'.!!!£ } procedure-name-2]
THROUGH

{
identif. 1.· er-1 } {identifie.r-2}

VARYING FROM index-name-2
index-name-1 ~~ literal-!

7-76 DD25

PERFORM

BY

[~
BY

{

identifier-3}
UNTIL

literal-2 ~---
condition-!

{

identifier-4} . {identifier-5}
FROM index-name-4

index-name-3 ~~ literal-3

{

identifier-6 }
UNTIL

literal-4 ~~-
condition-2

[{

identifier-7 }
AFTER

index-name-5

FROM

Syntax Rules:

{

identifier-8 }. BY
index-name-6
literal-5 {

identif ier-9}

literal-6

PERFORM

UNTIL condition-3]]

1. Each procedure-name is the name of a section or paragraph in the
Procedure Division.

2. Each identifier represents a numeric elementary item described in the
Data Division. In Format 2 and in Format 4 with the AFTER option, each
identifier represents a numeric item with no positions to the right of
the assumed decimal point.

3. Each literal represents a numeric literal.

4. The words THRU and THROUGH are equivalent.

General Rules:

1. The range of a PERFORM starts with the first executable statement in
procedure~name-1 and continues in logical sequence through the· last
executable statement of:

a. Procedure-name-2 if specified, or

b. Procedure-name-L if procedure-name-2 is not specified.

7-77 DD25

PERFORM

·2.

·PERFORM

When the PERFORM statement is executed, control is transferred to the
first statement of the procedure named procedure-name-1. An automatic
return to the statement following the PERFORM statement is established
as follows:

a. If procedure-name-1 is a paragraph-name and procedure-name-2 is
not specified, then the return occurs after the last statement of
the procedure-name-I paragraph.

b. If procedure-name-I is a section-name and procedure-name-2 is not
specified, then the return occurs after the last statement of the·
last paragraph of the procedure-name-1 section.

c. If procedure-name-2 is specified and is a
the return occurs after the last
procedure-name-2 paragraph.

paragraph-name,
statement of

then
the

d. If procedure-name-2 is specified and is a section-name, then the
return occurs after the last statement of the last paragraph of
the procedure-name-2 section.

The 'last statement' performed in all Qf the above cases must allow
control to pass to the return mechanism. There is no necessary
relationship between procedure-name-1 and procedure-name-2 except that
a consecutive sequence of operations is to be executed beginning at
the procedure named procedure-name-1 and ending with the execution of
the procedure named procedure-name-2. In particular, GO TO and PERFORM
statements may occ\~r between procedure-name-1 and the end of
procedure-name-2, provided control eventually passes to the return
mechanism of procedure-name-2. If it is desired to have two or more
logical paths to the return mechanism, then.procedure-name-2 must be
the name of a paragraph consisting of the EXIT statement, to which all
of these paths must lead.

3. When control passes to these procedures by means other than an
implicit or explicit PERFORM statement and no related PERFORM is in
progress, sequence of control will pass through the 'last statement'
to the following statement as if no PERFORM statement mentioning these
procedures existed. ·

4. The PERFOR}'t. statement for Formats 1 through 4 operates as follows,
with Rule 3 above applying to all formats:

a. Format 1 is the basic PERFORM statement. A return to the
statement following the PERFORM is inserted after the 'last
statement' as defined in Rule 2, and sequence control is se.nt to
procedure-name-! for execution once.

b. Format 2 is the TIMES option. The specified number of times must
be an intege~. The integer may be negative or zero, in which case
control passes to the next statement. The PERFORM mechanism sets
up a counter and tests it against the specified value before each
transfer to procedure-name-!. The return mechanism after the
'last statement' steps the counter and then sends control to the
test. The test cycles control to procedure-name-1 the specified
number of times, and after the last time sends control to the
statement following the PERFORM.

7-78 DD25

PERFORM PERFORM

During execution of the PERFORM statement, reference to
identifier-1 cannot alter the number of times the procedures are
to be executed from that which was indicated by the initial value
of identifier-1.

c. Format 3 is the UNTIL option. This option is similar to the TIMES
option, except that an evaluation of a condition takes the place
of counting and testing against a specified integer. The
condition may be any simple or compound condition, as described
under the Conditions paragraph in this section. When the
condition is satisfied {true), control is transferred to the next
statement after the PERFORM statement. If the condition is true
when the PERFORM is entered, no transfer to procedure-name-1
takes place and control is passed to the next statement after the
PERFORM statement.

d. Format 4 is the VARYING option. This option is used to augment
the value of one or more identifiers or index-names in an orderly
fashion during the execution of a PERFORM statement. In the
following discussion, every reference to identifier as the object
of the VARYING and FROM (starting value) phrases also refers to
index-names. When index-names are used, the FROM and BY phrases
ha_ve the same effect as in a SET statement.

In Format 4, when one identifier is varied, identifier-1 is set
to its starting value {the value of identifier-2 or literal-1) at
the point of initial execution of the PERFORM statement; then, if
the condition of the UNTIL phrase is false, the sequence of
procedures, procedure-name-1 through procedure-name-2, is
executed once. The value of identifier-1 is augmented by the
specified increment or decrement value {the value of identifier-3
or literal-2) and condition-1 is evaluated again. The cycle
continues until this condition is true, at which point control
passes to the statement following the PERFORM statement. If
condition-1 is true at the beginning of execution of the PERFORM
statement, control passes diz-ectly to the statement following the
PERFORM statement.

ENTRANCE

Set identif ier-1 equal
to initial value (FROM)

True

Execute procedure-name-1
[THRO procedure-name-2 J

..__~~~~~Augment identifier-1 with
its BY value

Flowchart for the Varying Option of a PERFORM Statement ~aving One Condition

7-79 DD25

PERFORM PERFORM

In Format 4, when two identifiers are varied, identifier-1 and
identifier-4 are set to their initial values (the values of
identifier-2 and identifier-5, respectively). During execution,
these initial values must be positive. After initializing the
identifiers, condition-1 is evaluated; if true, control is passed
to the statement following the PERFORM statement; if false,
condition-2 is evaluated. If condition-2 is false,
procedure-name-! through procedure-name-2 is executed once, then
identifier-4 is augmented by identifier-6 or literal-4 and
condition-2 is evaluated again. This cycle of evaluation and
augmentation continues until condition-2 is true. When
condition-2 is true, identifier-4 is set to its initial value
(the value of identifier-5 or literal-3), identifier-! is
augmented by identifier-3 and condition-1 is re-evaluated. The
PERFORM statement is completed if condition-1 is true; if not,
the cycles continue until condition-! is true. Identifier-3 and
identifier-6 must not be zero. During execution of the PERFORM
statement, reference to index-names or identifiers of the FROM
phrase has no effect in altering the number of times the
procedures are to be executed. Changing a value of index-names or
identifiers of the VARYING .phrase or identifiers of the BY
phrase, however, will change the number of times procedures are

.executed.

ENTRANCE

Set identifier-1 and
identif ier-4 to

initial values (FROM)

True

True

Execute procedure-name-1
[THRU procedure-name-2]

Augment identifier-4
with its BY value

Set identif ier-4 to
its initial value (FROM)

Augment identif ier-1
with its BY value

Flow Chart for the Varying Option of a PERFORM Statement Having Two Conditions
(Format 4)

7-80 DD25

PERFORM· PERFORM

At the termination of the PERFORM statement, identifier-4
contains its initial value, while identifier-1 has a value that
exceeds the last used setting by an increment or decrement value,
unless condition-! was true when the PERFORM statement was
entered, in which case identifier-! and identifier-4 contain
their initial values. When two identifiers are . varied,
identifier-4 goes through a complete cycle (FROM, BY, UNTIL) each
time identifier-1 is varied. For three identifiers, the mechanism
is the same as for two identifiers, except that identifier-? goes
through a complete cycle each time that identif ier-4 is augmented
by identifier-6 or literal-4, and identifier-4· in turn goes
through a complete cycle each time identifier-1 is varied. The
following flow chart illustrates the logic of the PERFORM
statement when three identifiers are varied.

ENTRANCE

Set identifier-!,
identifier-4, and
identifier-? to

initial values (FROM)

True

True

True

Execute
procedure-name-I

[~HRU procedure-~ame-2]

Augment
identifier-7
with its BY

value

Set
identifier-7

to its initial
value (FROM)

Augment
identifier-4
with its BY

value

Set
identifier-4

to its initial
value (FROM)

Augment
identif ier-1
with its BY

value

Flow Chart for the Varying Option of a PERFORM Statement Having Three Conditions

7-81 DD25

PEP.FORM

5.

PERFORM

After the completion of the PERFORM s~atement, identifier-4 and
identifier-7 coniain their initial values, while identifier-I has
a value that exceeds its last used setting by one increment or
decrement value, unless condition-1 is true when the PERFORM
state~ent is entered, in which case identifier-I, identifier-4,
and identifier-7 all contain their initial values.

~n g~p~J;~J.;< pr()ce.~ure~.tialJ\e•l should not be the next
t.he ~ER~(JRM,< If• it is , the result is that the loop
~{)l;':~ t*m~ tll.~nwas. probably intended; since, after
~~:~.i.>s~4~~, <> control passes to procedure-name-1
qpntinp;f*"t:,d;on of the sequence.

statement after
is executed one
the PERFORM is

in the normal

6. If a sequence of statements referenced by a PERFORM includes another
PERFORM statement, the sequence associated with the· included PERFORM
J;lll.l~t it,s~l#>~4therbe totally included in, or totally excluded from,
the +9g.iqa,l s;equenoe refe+e.noed by the first PERFORM.

~or e:Jt~.P:te, the following usages are correct:

....

x
a
d
f
j
m

PERFORM

PERFORM

a THRO m

f THRU 'j

Tb~ :Ep~Itoq±n~ usage is inco~reot:

x J?E::!U'ORM a
a
d\PERFORM f
f

x PERFORM
a
d PERFORM
h
m
f
j

a TRRU m

f THRO j

Alls S:~q~~poe of procedures as$.ociated with a PERFORM statement may
.. QVeflap ,or .. d.ntersect the sequence associated with another PERFORM,
p:r9vid.ed that neither . sequence includes the PERFORM statement
associatedwith the 9ther sequence •

.. -::·:.·:·:-:···· ·.. :: ·:::. :.:

>~pfu".·• e~a.ntP:la{

O<'trec~ ·Usage

x J.?ERF.ORM a THRO m
a
:f
m

••<~ l?E:RFQ~<>f 'r112t.J j

7-82

Incorrect ·.usage

x PERFORM a THRU m
a
d PERFORM f THRU j
f
m _____~~~-+--------
j

DD25

PERFOffirT

7.

PERFORM

A PERFOID" statement that appears in a section whose priority-number is
less than the SEGl~NT-LIMIT, can have within its range only the
following:

a. Sections, each of which has a priority-number less than 50, or

b •. Sections wholly contained in a
priority-number is greater than 49.

single segment whose

8. A PERFORJvT statE-.nei:·t that appears in a section whose priority-number is
equal to or greater than the SEGMENT-LIMIT, can have within its range
only the fo~lowing:

a. c ..:cti(.3, each of which has the same priori ty-nurnber as that
;ontaining the PERFORM statement, or

b. Sections having a priority-number less than the SEGMENT-LIMIT.

9. When a procedure-name in a segment with a priority-number greater than
49 is referred to by a PERFORM statement contained in a segment with a
different priority-number, the segment referred to is made available
in its initial state for each execution of the PERFORM statement.

7-83 DD25

READ READ

For sequential-access file processing, the READ statement makes available
the next logical record from an input or input-output file and allows
performance of a specified imperative-statement when end-of-file is detected.

For random-access· file processing, the READ statement makes available a
specified record from a mass storage file and allows performance of a specified
imperative-statement if the contents of the associated ACTUAL KEY data item are
found to be invalid.

Format l (Sequential~Access Files) :

READ file-name RECORD [~identifier]

AT END imperative-statement

Format 2 (Random-Access Files):

READ file-name RECORD [~ identifier]

INVALID KEY imperative-statement

Syntax Rules:

1. The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record descriptions.
The storage area associated with 'identifier' and the storage area
which is the record area associated with the file-name must not be the
e.~It\E?>storage area. File-name must not represent a sort file or a merge
fil;Eh.

2. Format 1 is used only for non-mass-storage files and for mass storage
files in the sequential-access mode.

3. Format 2 is used for mass storage files in the random-access mode.

General Rules:

1. An OPEN statement must be executed for a file prior to the execution
of the first READ statement for that file.

7-84 DD25

READ

2.

3.

4.

s.

READ

If after reading the last logical record of a file another READ
statement is initiated for that file, that last logical record is no
longer available in its record area and the READ statement is
completed by the execution of the AT END phrase. Attempts to access
the record area after the AT END phrase has been executed will cause
unpr~dictable results. After the AT END condition has been recognized
for a file, a READ statement for that file must not be given without
prior execution of a CLOSE statement and an OPEN statement for that
file. (Refer to Section V of the COBOL User's Guide.)

When the logical records of a file are described with more than one
record description, these records automatically share the same storage
area; this is equivalent to an implicit redefinition of the area. Only
the information that is present in the current record is accessible.

If the INTO phrase is specified, the current record is moved from the
input area to the area specified by identifier according to the rules
specified for the MOVE statement without the CORRESPONDING phrase. Any
subscripting or indexing associated-with identifier is evaluated after
the record has been read and immediately before it is moved to the
data item.

When the INTO phrase is used, the record being read
both the input record area and the data area
identifier.

is available in
associated with

6. If a file described with the OPTIONAL phrase is not present, the
imperative-statement in the AT END phrase is executed on the first
READ. The standard end-of-file procedures are not performed. (See the
OPEN and USE statements, and the FILE-CONTROL paragraph in the
Environment Division.)

7. If the end of a tape reel is recognized during execution of a READ
statement, and the logical end of the file has not been reached, the
following operations are accomplished:

a. The standard ending reel label procedure and the user's ending
reel label procedure, if specified by the USE statement. The
order of execution of these two procedures is specified by the
USE statement.

b. A reel swap.

c. The standard beginning reel label procedure and the user's
beginning reel label procedure, if specified. The order of
execution is again specified by the USE statement.

d. The first data record of the new reel is made available. ·

7-85 DD25

·READ

*

2/77

8.

READ

.Format 2 is used for mass storage files in the random-access mode.
The READ statement implicitly performs the function of the SEEK
statement for a specific mass storage file. If such files are
accessed for a specified mass storage record and the contents of the
associated ACTUAL KEY data item are invalid, the INVALID KEY phrase is
executed.

9. Regardless of the method used to overlap access time with processing
time, the concept of the READ statement is unchanged in that a recqrd
is available prior to the execution of any statement following the
READ statement •

10.
.
:
•. ·,·.•.=····.=·=:···.=·.• .. =·.=·.•.'..',• ... 'A.,.:~:;··.•.·,•,•.·.:,.:·.·,l.•' .•. ·.'.··,•·,M.·~.·.:··.=.,.··,···,•.·.'.·.··,··.···:.·,:,•,Ma·.·,,::····.·.·,'•.=.·,··,';.>.\·.=.··,·.·,·.··:•:.::":·.· .•. ·;:·.:·:.·.··.·.·.··:·'·.,:·:~.·.•.:•·.·.'·.•·.•·.:.•.'·.····=,····,'.:.=.··,·.a=,···,'··,···:··.'·.=,.•: .•. ',.• .• ,lt ' .• ::".·.·.·::'.·., .•.• ,=.•,"."'·e .•.. •.·.·.'·.···.=·.•.m:·.···:·:·.· .• ,=.',·=·.·.=.' .. ,•.',!:.=.·=,·.'.,.·,····.•·.··"=.•.n.~.= :.· .• ·.• .. = ...•. • t..• •. ·.·.=.:·:··.··,· .•. · .. '.·.,· .• ,·,,: m¥\MiP.PB <P~ 8-¥~P"tlt:~9 as a P~:t't of ~~~·~ ~=~"'"'~ "'~J= 9~9~~;t;~J:,~y§ P.Pf:~i:@ft &£<a p~p(Jtam.

a label procedure

7-86 DD25A

RELEASE RELEASE

The RELEASE statement is used to transfer records to the initial phase of a
sort operation.

General Format:

RET...EASE ·record-name [FROM identifier J

Syntax Rules:

1. The r~C::9:r~t-name must be the name of a logical record in an associated
sortf:mi~=gg' file description entry and may be qualified.

2. The identifier and the record area associated with record-name must
not be associated with the same storage area.

3. The RELEASE statement can be used only within the range of an input
procedure associated with a SORT statement for a file whose sort-merge
file description contains record-name. lf the RELEASE statement is
'~~~~~*~~~ ixi an.y othei~ CJ.PPli.<::~t;j.pp; 1i.P.&>phj~ot· program will terminate
AP(l<:i:it:m9itLJ..y • . . .

General Rules:

2/77

1. If the FROM phrase is specified, the contents of the identifier data
area are moved to record-name and the contents of record-name are then
transferred to the initial phase of the sort process. Moving takes
place in accordance with the rules for the MOVE statement without the
CORRESPONDING phrase. The information in the record area is no longer
available but the information in the identifier area is available.

2. After the RELEASE statement is executed, the contents,. of record-name
are no longer available.

3. When control passes from the input procedure, the sort file then
consists of those records that were placed in it by the execution of
RELEASE statements.

7-87 DD25A

I

RETURN RETURN

The RETURN statement is used to obtain ordered records from the final phase
of a sort. 'i@®i;)!!iiil.U'll.~i' operation.

General Format:

RETURN file-name RECORD [.!!IT.Q. iden~if ier J

AT END imperative-statement

Syntax Rules:

1. The file-name must be described in a sort.fmg\Pgf! file description entry
in the Data Division.

2. The identifier and the record area associated with file-name must not
be associated with the same storage area.

3. The INTO phrase may be used only when the ordered file contains just
one type of record.

4. The RETURN statement can be used only within the range of an output
procedure as .. so.ciated with a SORT or MEl~.GE statement for a file whose
SOJ'.:'"t~~±ge ~g~ ... descrip~i()?l .conta+11s .. file.-name. . If · .. the·.·. RETUR}S
~1;:.~t~~~ ~~>·~i~~9~tj_~q <.in.>a~y qthe;t: applip?tion,· t;l)e ... opjec-t,·P~Qgl;'an\
m4~4· M~~ni'.#g ~.~~.1+Y+ ·

General Rules:

2/77.

1. When successive RETURN statements are executed, the records are
delivered in the order specified by the KEY data-names described in
the SORT §i#MJl1f{Qg\statement. The next record becomes available for
processing in the record area associated with file-name.

2.

3.

If the INTO phrase is specified, the
input area to the area specified by
rules for the MOVE statement without

1:i!lll~illi~ll~~~la~·~···•••.•tt•$~q.J.•.·•••·•·•····$•~i~·+~•ame

current record is moved from the
identifier in accordance with the
t,he .. ·.CORRESPONDING .·phrase~ .•.When
.RECORD' is still available.·.in the

After the AT END imperative-statement is executed, a RETURN statement
must not be executed within· the current output procedure.

7-88 DD25A

SEARCH SEARCH

The SEARCH statement is used to search a table for a table element that
satisfies the specified condition and to adjust the associated index~name to
indicate that table element.

Format 1:

SEARCH identifier-1 [VARYING {index-name-l}]·
identif ier-2

Format 2:

[AT END imperative-·statement-1 J

{

imperative-statement-2}
WHEN condition-1

NEXT SENTENCE ·

[{

imperati.· ve-statement-3 }·]
.WHEN condition-2

NEXT SENTENCE

SEARCH ALL identif ier-1 [AT ~ irnperative-statement-1]

WHEN condition-1
{

imperative;..statement-2 }

NEXT SENTENCE

Syntax Hules:

1. In both Formats 1 and 2, identifier-! must not be
indexed, but its description must contain an OCCURS
INDEXED BY phrase. The description of identifier-1 in
also contain the KEY IS option in its OCCURS clause.

subscripted or
clause and an
Format ·2 must

2. Identifier-2, when specified, must be described with USAGE INDEX or as
a numeric elementary item with no positions to the right of the
assumed decimal point. Identifier-2 is incremented by the same amount
as, and at the same time as, the occurrence number represented by the
index-name associated with identifier-! is incremented.

3. In Format 1, condition-1, condition-2, etc., may be any condition as
described previously in this section under Conditions.

7-89 DD25

. SEARCH

4.

SEARCH

In Format 2, condition-! may consist of a r~lation condition
incorporating the relation EQUALS or EQUAL TO or equal sign, or a
condition-name condition, where the VALUE clause that describes the
condition-name contains only a single literal. Alternatively,
condition-1 may be a compound condition formed from simple conditions
of the type just mentioned, with AND as the only connective. Any
data-name that appears in the KEY phrase of identif ier-1 may appear as
the subject or object of a test or be the name of the conditional
variable with which the tested condition-name is associated; however,
all preceding data-names in the KEY phrase must also be included
within condition-1. No other tests may appear within condition-1.

General Rules:

l. If Format 1 of SEARCH is used, a serial type of search operation takes
place, starting with the current index setting. If the VARYING phrase
speqlfying index-name-l is used and index-name-1 occurs in the INDEXED
SY ph:r:ase associated with identifier-!, index-name-I specifies the
index which controls the execution of the SEARCH statement. If the
VARYING phrase is not used or does not specify an index-name-1 which
occur>s in the INDEXED BY phrase associated with identifier-I, the
index which controls the execution of the SEARCH statement is
specified by the first index-name that appears in the INDEXED BY
phrase associated with identifier-1.

a. If, at the start of execution of the SEARCH statement,
index-name associated with identifier-! contains a value
corresponds to an occurrence number that is greater than
highest permissible occurrence number for identifier-!,
SEARCH is terminated immediately. Then, if the AT END phrase
specified; imperative-statement-I is executed; if the AT
phrase is not specified, control passes to the next sentence.

the
that
the
the
is

END

b. If, at the start of execution of the SEARCH statement, the
index-name associated with identifier-1 contains a value that
corresponds to an occurrence number that is not greater than the
highest permissible occurrence number for identifier-!, the
SEARCH statement operates by evaluating the conditions in the
order that they are written, making use of the index settings,
wherever specified, to determine the occurrence of those items to
be tested. If none of the conditions are satisfied, the
index-name for identif ier-1 is incremented to obtain reference to
the next occurrence. The process is then repeated using the new
index-name settings unless the new value of the index-name
settings for identif ier-1 corresponds to a table element which
exceeds the last element of the table by one or more occurrences,
in which case the search terminates as indicated in a. above. If
one of the conditions is satisfied upon its evaluation, the
search terminates immediately and the imperative-statement
associated with that condition is executed; the index-name
r~mains set at the occurrence which caused the condition to be
satisfied.

7-90 DD25

SEAR.CH

2.

3.

4.

SEARCH

If Format 2 of SEARCH is used, a nonserial type of search operation
takes place, in which case the initial setting of the index-name for
identifier-1 is ignored and its setting is varied during the search
operation in a manner which allows a 'binary' search operation to be
executed, with the restriction that at no time is it set to a value
that exceeds the value which corresponds to the last element of the
table, or that is less than the value that corresponds to the first
element of the table. The index that controls the execution of the
SEARCH statement is specified by the first index-name that appears in
the INDEXED BY phrase associated with identifier-!. If condi tion-1
cannot be satisfied for any setting of the index within this permitted
range, dontrol is passed to imperative-statement-1 when the AT END
phrase appears, or to the next sentence when the AT END phrase does
not appear; in either case the final setting of the index is not
predictable. If condition-1 can be satisfied, the index indicates an
occurrence that allows condition-1 to be satisfied, and control passes
to imperative-statement-2.

After execution of imperative-statement-1, imperative-statement-2, or
imperative-statement-3 that does not terminate with a GO TO statement,
control passes to the next sentence.

In the VARYING index-name-1 phrase, if index-name-1 appears in the
INDEXED BY phrase of another table entry, the occurrence number
represented by index-name-1 is incremented by the same amount as, and
at the same time as, the occurrence number represented by the
index-name associated with identifier-! is incremented.

5. If identifier-1 is a data item subordinate to a data item that
contains an OCCURS clause (providing for a two- or three-dimensional
table), an index-name must be associated with each dimension of the
table through the INDEXED BY phrase of the OCCURS clause. Only the
setting of the index-name associated with identifier-1 (and the data
item identifier-2 or index-name-1, if present) is modified by the
execution of the SEARCH statement. To search an entire two- or
three-dimensional table, it is necessary to execute a SEARCH statement
several times. Prior to each execution of a _SEARCH statement, SET
statements must be executed whenever index-names must be adjusted to
appropriate settings.

7-91 DD25

SEARCH SEARCH

A diagram of the Format 1 SEARCH operation containing two WHEN phrases
follows:

Index setting: 1
highest permissible ~>~ __ A __ T~E_N_o __________ _
occurrence number

~--True --·---------

·1

Increment
index-name for
identifier-1
(index-narne-l
if applicable)

Increment
index-name-1 (for
a different table)
or identifier-2

1

·1

imperative
statemen t-1

imperative-
statement-2

imperative-
statement-3 11

..
2

...

1 These operations are options included only when specified in the
SEARCH statement.

2Each of these control transfers is to the next sentence unless the
imperative-statement ends with a GO TO statement.

7-92 0025

srEK SEEK

The SEEK statement is used to initiate the accessing of a mass storage data
record for subsequent reading or writing.

General Format:

SEEK file-name RECORD

General ~ules:

1. The SEEK statement pertains only to mass storage files in the
random-access mode and may be present prior to the execution of each
PEAD and WP-ITE statement. However, due to the requirements of the
operating system, the SEEK statement has no effect on the access of a
record.

2. Two SEEK statements for the same mass storage file may logically
follow each other.

7-93 DD25

SET SET

The SET statement is used to establish reference points for table-handling
operations by setting index-names associated with table elements.

Format 1:

SET

Format 2:

l

index-name-1

identif ier-1

[, index-name-2]

[, identifier-2]
.. · 1
... TO I index-name-3 l

identifier-3
literal-],.

SE~:~ index-name-4 [, index-name-5] • • • I UP BY l
DOWN BY lidentifier-4 l

literal-2

Syntax Rule:

1. All references to index-name-1, identifier-!, and index-name-4 apply
equally to index-name-2, identifier-2, .and index-name-5, respectively.

General Rules:

1. All identifiers must name either index data items or elementary items
described as an integer, except that identifier-4 in Format 2 must not
name an index data item. When a literal is used, it must be a positive
integer. Index-names are considered related to a given table and are
uniquely defined by being specified in the INDEXED BY phrase of the
OCCURS clause.

2. In Format 1, the following action occurs:

a. Index-name-1 is set to a value causing it to refer to the table
element that corresponds in occurrence number to the table
element referred to by index-name-3, identifier-3, or literal-1.
If identifier-3 is an index data item, or if index-name-3 is
related to the same table as index-name-1, no conversion takes
place. If the value contained in an index data item does not
correspond to an occurrence number of an element in the table
;indexed by index-name-1, the result is undefined.

b. If identifier-! is an index data item, it may be set equal to
either the contents of index-name-3 or identifier...:3, where
identifier-3 is also an index data item. Literal-1 cannot be used
in this case.

c. If identifier-! is not an index data item, it may be set only to
an occurrence number that corresponds to the value of
index-name-3. Neither identifier-3 nor literal-! can be used in
this case.

7-94 DD25

SET

4.

2/77

d.

SET

The process is repeated for index-name-2, identifier-2, etc., if
specified. Each time, the value of index-name-3 or identifier-3
is used as it was at the beginning of the e~ecution of the
statement. Any subscripting or indexing associated with
identifier-I, etc., is evaluated immediately before the value of
the respective data item is changed.

In Format 2, the contents of index-name-4 are incremented (UP BY) or
decremented (DOWN BY) by a value that corresponds to the number of
occurrences represented by the value of lite~al-2 or identifier-4;
thereafter, the process is repeated for index-name-5, etc. Each time,
the value of identifier-4 is used as it was at the beginning of the
execution of the statement.

7-95 · DD25A

I

SORT SORT

The SORT statement is used to create a sort file by executing input
procedures or by transferring records from another file; to sort the records in
the sort file on a set of specified keys; and, in the final phase of the sort
operatie>n, to make available each record from the sort file, in sorted order, to
some output proce~ures or to an output file.

General Format:

SORT f ile-name-1 ON KEY data-name-1 I DESCENDING I
ASCENDING

[, data-name-2] •••

l DESCENDING I
KEY data-name-3

ASCENDING

INPUT PROCEDURE IS section-name-1

USING f ile-name-2 -·

OUTPUT PROCEDURE IS section-name-3

GIVING f ile-name-3

Syntax Rules:

[, data-name-4] •••] •••

[l THRU l secti.on-name-2]
THROUGH

[I THRU l section-name-4 J
THROUGH

1. File-name-1 must be described in a sort-merge file description entry
in the Data Division. Each data-name must represent data items
described in records associated with file-name-1.

2. Section-name-1 represents the name of an input procedure.
Section-name-3 represents the name of an output procedure.

3. File-name-2 and file-name-3 must be described in a file description
entry (not in a sort-merge file description entry) in the Data
Division. The actual size of the logical record(s) described for
file-name-2 and file-name-3 must be equal to the actual size of the
logical record(s) described for file-name-1. If the data descriptions
of the elementary items that make up these records are not identical,
the corresponding records must be described in such a·manner to cause
equal amounts of memory to be allocated for the corresponding records.

7-96 DD25

SORT SORT

4. The data-names may be qualified.

s. The words THRU and T.HROUGH are equivalent.

General Rules:

1. The KEY data-names are listed from left to right in the SORT statement
in order of decreasing significance without regard to how they are
divided into KEY phrases. In the format, data-name-1 is the major key
and data-name-2 is the next most significant key.

a. When an ASCENDING.phrase is used, the sorted sequence will be
from the lowest to the highest value of KEY according to the
rules for comparison of operands in a Relation condition.

b. When a DESCENDING phrase is used,, the sorted sequence will be
from the highest to the lowest value of KEY according to the
rules for comparison of operands in a Relation condition.

2. When more than one record description entry appears in a sort file
description, the key data items need be described only in one of the
record description entries. Each key data item must occur in every
data record of the sort file and must have the same relative position
and actual format in all records. The PICTURE and USAGE of a given key
data item must be the same for all records in the sort file. If a key
data item is synchronized or justified, it must be identically
synchronized or justified in all records in the sort file. The key
data item descriptions must not contain an OCCURS· clause or be
subordinate to entries containing an OCCURS clause. Keys must be data
items that do not require subscripting or indexing. The dominant
record size is set equal to the size of the first record described in
the sort file description entry (SD) in the Data Division. (See File
Ordering - Sort and Merge in the COBOL User's Guide.)

3. If INPUT PROCEDURE is specified, control is passed to the input
procedure before file-name-1 is sequenced by the SORT statement. The
compiler inserts a return mechanism at the end of the last section in
the input procedure; when control passes from the last statement in
the input procedure, the records that have been released to
file-name-1 will be sorted.

4. The input procedure, if present, must consist of one or more sections
which must be written consecutively, and do not form a part of any
output procedure. The input procedure must include at least one
RELEASE statement in order to transfer records to the sort file.
Control must not be passed to the input procedure except when a
related SORT statement is being executed. The input procedure can
include any procedures required to select, create, or modify records .•
Three restrictions apply to procedural statements within the inpu_t
procedure:

a. !,}'i~ .. ~n:p\l~ procedure must contain no SORT statements or MERGl::
i:§~i.~~m~rt'ts •

7-97 DD25

SORT

b.

c.

SORT

The input procedure must contain no transfers of control to
points outside the input procedure. That is, ALTER,. GO TO, and
PERFORM statements in the input procedure are not permitted to
refer to procedure-names outside the input procedure. COBOL
statements that cause an implied transfer of control to USE
procedures are allowed.

The remainder of the Procedure Division must contain no transfers
of control to points inside the input procedure. That is, ALTER,
GO TO, and PERFORM statements in the remainder of the Procedure
Division are not permitted to refer to procedure-names within the
input procedure.

5. If the USING phrase is specified, all the records in file-name-2 are
transferred automatically to f ile-name-1. When the SORT statement is
executed, file-name-2 must not be open. The SORT statement will
automatically perform the necessary OPEN, FEAD, and CLOSE functions
for file-name-2. File-name-2 must have a file description entry (not a
sort•merqe file description entry) in the Data Division and must have
the same file properties. The data records of file-name~2 and their
descriptions must be identical to those of file-name-1.

6. If OUTPUT PROCEDURE is specified, control passes to the output
procedure of the sort after file-name-1 has been sequenced by the SORT
statement. The compiler inserts a return mechanism at the end of the
last section in the output procedure. When control passes from the
last statement in the output procedure, the return mechanism provides
for· termination of the sort and then sends control to the next
statement after the SORT statement. Before entering the output
procedure, the sort can select the next record in sorted order when
requested. The RETURN statements in the output procedure are the
requests for the next record.

7., The output procedure, if present, must consist of one or more sections
which must be written consecutively, and do not form a part of any
input procedure. The output procedure must include at least one· RETURN
statement in order to make sorted records available for processing.
Control must not be passed to the output procedure except when a
related SORT statement is being executed. The output procedure can
consist of any procedures required to select, modify, or copy the
records which are being returned, one at a time in sorted order, from
the sort file. Three restrictions apply to procedural statements
within the output procedure:

a. The output procedure must contain no SORT statements or MERGE
statements.

b. The output procedure must
points outside the output
PERFOIDA statements in the
ref er to procedure-names
statements that cause an
procedures are allowed.

contain no transfers of control to
procedure. That is, ALTER, GO TO, and
output procedure are not permitted to
outside the output procedure. COBOL
implied transfer of control to USE

c. The remainder of the Procedure Division must contain no transfers
of control to points inside the output procedure. That is, ALTER,
GO TO, and PERFORM statements in the remainder of the· Procedure
Division are not permitted to refer to procedure-names within the
output procedure.

7-98 DD25

SORT

8.

9.

SORT

If the GIVING phrase is specified, all the sorted records in
f ile-name-1 are automatically transferred to f ile-name~3 as the
implied output procedure for this SORT statement. When the SORT
statement is executed, file-name-3 must not be open. File-name-3 is
automatically opened before transferring the records and . a CLOSE
f ile-name-3 is executed automatically after the last record in the
sort file is·. :r_-e.tti.rned. File-narne-3 must have a file description entry
(not a sort"""m•~ge file description entry) in the Data Division, with
the same file properties. The data records of file-name-3 and their
descriptions must be identical to those of file-name-1.

Segmentation, as defined in the COBOL User's Guide, can be applied to
programs containing the SORT statement. However, the following
restrictions apply:

a. If a SORT statement appears in a section that is not
independent segment, then any input procedures or
procedures referenced by that SORT statement must appear:

1. Totally within nonindependent segments, or

2. Wholly contained in a single independent segment.

in an
output

b. If a SORT statement appears in an independent segment, then any
input procedures or output procedures referenced by that SORT
statement must be contained:

1. Totally within nonindependent segments, or

2. Wholly within the same independent segment.

Special Considerations:

1. :::·,·~~:z··:·:4.~:#i $#g~:. mY.~.~ *1ol:;i~~I·l~§q.lf$~4•w.t#h:·•.usAGi· .··•co~utATX9NA14~•·•.~

2.

2/77 7-99 _DD25A

I

STOP STOP

The STOP statement is used to halt the execution of the run unit either
temporarily or permanently.

General Format:

STOP J literall

l RUN

Syntax Rule:

1. The literal may be numeric, nonnumeric, or any ·figurative constant
except ALL.

General Rules:

1. If the RUN option is used, the standard termination procedure is
instituted for the current run unit.

2. If the STOP literal option is used, the literal is displayed upon the
console display mechanism. Whe.n the operator acknowledges the message,
continuation of the object program begins with the execution of the
next statement in sequence. The literal used must conform to the rules
for operands given for the DISPLAY statement. This option is not
recommended except in unusual circumstances and should never be used
to terminate the execution of the program.

3" If a STOP RUN statement appears in an imperative
appear as .the only or last statement in
imperative-statements.

7-100

sentence, it
a sequence

must
of

DD25

SUBTRACT SUBTRACT

The SUBTRACT statement is used to subtract one, or the sum of two or more,
numeric data items from one or more items, and set the values of one or more
items equal to the results.

Format 1:

SUBTRACT

Format 2:

SUBTRACT

Format 3:

l literal-1 I
identifier-1 [

' literal-2 J ...
, identif ier-2

FROM identifier-m (ROUNDED)

~ identifier~n (ROUNDED]]

[ON· SIZE ~imperative-statement]

l li teral-1 l
identif ier-1 [

' literal-2 J
, identif ier-2

FROM lliteral-m l
identif ier-m

GIVING identifier-n [ROUNDED] ii;! j;~~nti.#*G\'49 ,''{~~+'l
[oN SIZE ~ imperative-statemen~

SUBTFACT J ~ .· l identifier-!
· \ CORRESPONDING

FRm" identifier-2 [ROUNDED]

[ON SIZE ERROR imperative-statement]

7...;101 DD25

SUBTRACT SUBTRACT.

Syntax Rules:·

1. Each identifier must refer to a numeric elementary item except:

a. In Format 2, where the identifiers that appear orily to the right
of the word GIVING may refer to a data item that contains editing
symbols.

b. In Format 3, where each identifier must refer to a group item.

2. The maximum size of each operand is 18 decimal digits. The composite
of operands (the hypothetical data item resulting from the
superimposition of all operands of a given statement, excluding the
data items that follow the word GIVING, aligned on their decimal
points) must not contain more than eighteen digits.

3. CORR is an abbreviation for CORRESPONDING.

General Rules:

1. In Format 1, all literals or identifiers preceding the word FRO.M are
added together and this total is subtracted from identifier-m,
identifier-n, etc., and the differences are stored as the new values
of identifier-m, identifier-n, etc.

2. In Format 2, all literals or identifiers preceding the word FROM are
added togethe:r ,, the sum is subtracted from literal-m or identifier-m,
and the result of the subtraction is stored as the new value of
identifier-n, ideri.tifier-o, etc.

3. If Format 3 is used, data items in identifier-! are subtracted from
and stored into corresponding data items in identifier-2.

4. Refer to the Corunon Options in Statement Formats
section for the uses of the ROUNDED, SIZE ERROR,
options, and multiple results.

7-102

paragraph in this
and CORRESPONDING

DD25

TERMINATE TERMINATE

The ~rERMINATE statement is used to terminate the processing of a report.

General Format:

l
report-name-1

TERMINATE . ~
[, report-name-2]

Syntax Rule:

1. Each report-name specified in a TERMINATE statement must be defined by
a report description entry in the Data Division.

General Rules:

I I

1. TERMINATE produces all the control footings associated with this
report as if a control break had just occurred at the highest level,
i.e., FINAL control break, and completes the Report Writer functions
for the named reports. The TERMINATE statement also produces the last
PAGE FOOTING and/or REPORT FOOTING report groups for the named
reports.

2. Appropriate PAGE and OVERFLOW HEADING and/or FOOTING report groups are
prepared in their respective order for the report description entry.

3. A second TERMINATE for a particular report may not be executed unless
a second INITIATE statement has been executed for the report-name. If
a TERMINATE statement has been executed for a report, a GENERATE
statement for that report must not be executed unless an intervening
INITIATE statement for the report is executed.

4. If the ALL phrase is specified, all reports defined in the Report
Section of the Data Division that were initiated are terminated.

5. TERMINATE does not close the file with which the report is associated.
A CLOSE statement for the file must be executed after the TERMINATE
statement has been executed. The TERMINATE statement performs Report
Writer functions for individually described report programs analogous
to the input-output functions performed by the CLOSE statement for
individually described files.

6. SOURGE clauses in TYPE CONTROL FOOTING FINAL or TYPE REPORT FOOTING
report groups refer to the values of the items during execution of the
TERMINATE statement.

7-103 DD25

USE USE

The USE statement specifies procedures for input-output label and error
handling that are in addition to the standard procedures provided by the
input-output system. It is also used to specify Procedure Division statements
that a:re executed just before a report group named in the Report Section of the
Data Division is produced.

Format 1:

USE AFTER STANDARD ERROR PROCEDURE ON -----

Format 2:

ITSE {:::1 [

BEGINNING]
STANDARD

ENDING

!
file-name-1 .
[,. file-name-2]
INPUT .
OUT'i?UT
I-0

[
REEL J FYLE

A UNIT

LABEL PROCEDURE ON
[., file-name-2]
INPUT !
file-name-1

O'iYfPUT l I-0

Forma.t 3: ---·--

USE BEFORE REPORTING identif ier-1

Syntax Rules:

1. A USE statement, when present, must immediately follow a section
header in the declarative portion of the Procedure Division and must
be followed by a period followed by a space. The remainder of the
section must consist of one or more procedural paragraphs that define
the procedures to be used.

2. If the file-name phrase is used as a part of Format 2, the file
description entry for each file-name must not specify a LABEL RECORDS
ARE OMITTED clause.

7-104 DD25

USE

3.

USE

In Format 3, identifier-! represents a nondetail report group named in
the Report Section of the Data Division. An identifier must not appear
in more than one USE statement.

No Report Writer statement (GENERATE, INITIATE, or TERMINATE)
written in a procedural paragraph or paragraphs following
sentence in the declarative portion.

may be
the USE

4. The USE statement itself is never executed; rather, it defines the
conditions calling for the execution of the USE procedures.

s. If the words BEGINNING or ENDING are not included. in Format
designated procedures are executed for both beginning and
labels.

2, the
ending

If neither A UNIT, REEL, nor FILE is included, the designated
procedures are executed for both REEL and FILE labels. The REEL phrase
is not applicable to mass storage files.

6. The same file-name can appear in a different specific arrangement of a
format. However, the appearance of a file-name in a USE statement must
not cause the simultaneous request for execution of more than one USE
declarative.

7. No file-name may represent a sort file or merge file.

General Rules:

1. The designated procedures are executed by the input-output system at
the appropriate time as follows:

a. In Format 1, after completing the standard input-output error
routine.

b. In Format 2, before or after a beginning or ending input label
~heck procedure is executed.

Before a beginning or ending output label is created.

After a beginning or ending output label is created, but before
it is written.

Before or after a beginning or ending input-output label check
procedure is executed.

None of the Format 2 procedures will be performed for files
are being actively used as the USING or GIVING file in a
statement or a MERGE statement.

that
SORT

2. In Format 2, within the procedures of a USE declarative in which the
USE statement specifies a phrase other than the file-name-1 phrase,
references to common label items need not be qualified by a file-name.
A common label item is an elementary data item that appears in every
label record of the program, but at the same time does not appear in
any data record of this program. Furthermore, a common label item must
have the same name, description, and relative position in every label
record.

7-105 DD25

USE USE

If the INPUT, OUTPUT, or I-0 option is specified, the USE procedures
do not apply, respectively, to input, output, or input..;.output files
that are described with the Ll\BEL RECORDS ARE OMITTED clause.

3. In Format 3, the designated procedures are executed by the Report
Writer just before the named report group is produced, regardless of
page; overflow, or control break associations with report groups. The
report group may be any type except DETAIL.

4. Within a USE procedure, there must be no reference to nondeclarative
procedures. Conversely, in the nondeclarative portion, there must be
no reference to procedure-names that appear in the declarative
portion, except that PERFORM statements may refer to a USE declarative
having Formats 1, 2, or 3, or to the procedures associated with such a
USE declarative.

7-106 DD25

WRITE WRITE

The WRITE statement is used to place a logical record on an output file.
For mass storage files, the WRITE statement allows a specified
imperative-statement to be executed if the contents of the associated actual key
data item are found to be invalid.

Format 1:

~~ record-name [~ identifier-!]

[{

BEFORE} ADVANCING
AFTER {:.:.:

.•....

:
J.···::····:·d·····.::· ...• e:.::.::····:··n:·.· ·····t······i·· ·:··.f·:·.·: .. ··::J_··.·.:·.: •.• e::· .. · .. ·.r··:•.••.:•.:.-....•. : .. :.:··2···.:··:·:·:·:.· ..••.. :·.L·:······I.· .. · NES }]
integer LINES
TO dl'O~ 0'.E' J?AGE
·mnemonic-name

Format 2~

WRI'J'E record-name [~ identifier-! J

INVALID KEY imperative-statement

Syntax Rt tles:

1. The record-name must not represent a sort file or amerg151.file.

2. The record-name is the name of a loqical record in the File Section of
the Data Division and may be qualified.

3. Identifier-! and the record area associated with record-name must not
be associated with the same storage area.

4. Whe:g> >'t:A§:: ~PV:f\NCINGp~rase is specified, the file must be assigned with
the~F-O~ij$$TING.phrase in the SELECT sentence.

5. When identifier-2 is used in the ADVANCING phrase, it must be the name
of a numeric elementary item described with no positions to the right
of the assumed decimal point.

6. When integer is used in the ADVANCING phrase, it must have a positive
or a zero value.

7. When mnemonic-name is used in the ADVANCING phrase, any mnemonic-name
defined in the SPECIAL-NAMES paragraph is acceptable, although the
mnemonic•name associated with the TOP IS phrase is preferred.

General Rules:

2/77

1. An OPEN statement must be executed for a file prior to the execution
of the first WRITE statement for that file.

7-107 DD25A

WRITE

2.

3.

4 •.

WRITE

·The logical record released by th~ eJ<:e~~tio?l o~ the W:R~.'l.'E. s;t.ateme11t is
I\o._ ... ~<:>ng~.r CiY<i~l~p~e.>l1n~.es~ ..• ·'ii.r~~l:' a :prop~ss: ~~~(;).· h,~s.· beEin exp(1Ai~¢Jd#~Y-·

::::::@w::!::'!!-~+,:~:9~~+wri:::~pp).ii$~(;1;:::,:9l)::;ye,~e:::;%±J;e, or the associated file is named in
·a. · SAME · · RECORD AREA phrase. The logical record is also available to

. the program as a record of other files that are contained in the same
SAME RECORD AREA phrase as the associated output,file.

If the FROM phrase is specified, the value of identifier-1 is
implicitly moved to record-name (the current output record area).
Moving takes place in accordance with the rules for the MOVE statement
without the CORRESPONDING phrase. After the WRITE statement is
executed, the information in the identif ier-1 area is available but
the information in the record-name area is not available.

Format 1 (Serial Files):

2/77

1. For serial files assigned to magnetic tape, or for serial files that
utilize the device independence feature of linked mass storage file
space, the WRITE statement performs the following operations after
recognizing an end-of-reel condition:

a. The standard ending re~l label procedures, and the user's ending
reel label procedures, if specified by the USE statement. The·
order of execution of these procedures is determined by the USE
statement.

b. A reel swap. (Reel swap includes rewinding the completed reel
and returning it to the standby condition.)

c. The standard beginning reel label procedures, and the user's
beginning reel label procedures, if specified by the USE
statement. The order of execution of these procedures is
dete~mined by the USE statement.

7-108 DD25A

WRITE WRITE.

2. The ADVANCING phrase provides control of the vertical positioning of
eac~ .re~()r~ <~.~ne) ... ~~ .a .J?.7~?l~~d pag: ()f <~~~ 1 isting ~ . Th~~ .Pf:tl':aSl~ muS.1:.
:·:,~¥.:~~!!fB~f:~·i:~~9~h~·~;;·li~·~·a~~:~;·~~:~~~1I~c17~.:· .. ·•··~~~~~=·~·;_ ~0~·:~~~~~rn;1·a~~i·i
J?.roduce single spacing when the file is assigned with the r<?R J4ISTtNG

'.i!il,B,§:~@j} in the SELECT sentence. If the ADVANCING phrase is .. specified,
the.automatic advancing is overridden as follows:

a. If identifier-2 is used, the listing is advanced the number of
lines equal to the current value associated with identifier-2.

b.

c.

d.

If integer is used, the value of integer determines the number of
lines t~e listing will be advanced.

j//ii)i;llll l!>i~!k~~~~~~~~as~ $~ µ~~4i f.lt~. '.J.~~t;ng J .. $ a4yjpq~g to the ·

If the mnemonic-name associated with the TOP IS phrase in the
SPECIAL-NAMES paragraph is used, the listing is advanced to the
top of the next page. ·

Format 2 (Mass Storage Files):

2/77

1. For files processed in the sequential-access mode, the
imperative-statement in the INVALID KEY phrase is executed when the
end of the file is reached and an attempt is made to execute a WRITE
statement for that file. The end of the file is defined as being the
physical end of the allocated mass storage unit.

2. For files processed in the random-access mode, the WRITE statement
implicitly performs the function of the SEEK statement for a specific
mass storage record. The· imperative-statement in the INVALID KEY
phrase is executed when the contents of the actual key being used to
locate the mass storage record are found to be invalid. When an
INVALID KEY condition exists, no writing takes place and the
information in the record area is available for additional processing.

7-109 DD25A

SECTION VIII

THE COBOL LIBRARY

DESCRIPTION OF THE COBOL LIBRARY

The library function provides
be copied from a library file. The
to a source program at compilation
library text is the same as if the
source program.

the capability for specifying text that is to
COBOL library contains text that is available

time. The effect of the compilation of
text were actually written as part of the

An entry in the COBOL library may contain source pr·ogram text for the
Environment Division, the Data Division, and the Procedure Division. The library
is accessed using the COPY clause· or the COPY statement.

COBOL library text is placed on the COBOL library as a function independent
of the COBOL program.

COPY Clause

The COPY clause is used in association with a file-name or data-name in FD,
SD, RD, record description, and report group description entries. The COPY
clause is used ~.<?,.:.c:g;.~.g~ ~t'-~ ~o~E?i.1~;: t:o duplic:ate text .from a library into the

;~~Iii :~i~~i;:i:_;ill~l~ll~l~~~i;:~ .• ~0~~S~~~e3:::h~£!±si:xfrthe Data . Division

Format 1:

COPY library•name

[REPLACING word-1 BY lword-2 I
identifier-I ·
literal-I

~ word-3 BY I word-4 l] identifier-2. .
literal-2

...] .
Format 2:

•.1·. ····1.·· evel il\4ioator1· ·
level ... number .

data-name-1 COPY data-name-2 (FROM LIBRARY]

8-1 DD25

Syntax Rules:

Format 1:

When the COPY clause is specified, the library-name is required.
library-name I!\Ust be identical with the name associated with
desired text on the library.

The
the

2. In Format 1, a word is any COBOL word and may be one of the following:

• Condition-name

e· Data-name

• File-name

• Mnemonic-name

3. In Format 1, the COPY clause may be specified only at the 01 level in
~ata description entries· and r~port group description entries.

Format 2:

1. .When the information to be duplicated is on the library, the FROM
I.iIBRARY phrase must be included.

2. When the FROM LIBRARY phrase is used, the name of the level 01 library
entry must be included in the qualification of data-name-2 unless
data-name-2 is itself a level 01 entry. This is required even if the
level 01 libJ:'ary entry name is not necessary to make the reference·
unique,.

General Rules:

Format 1:

1. Format 1 of the COPY clause represents the American National Standard
COPY function and is engaged by including the LIBCPY option in the
varia)::)le field of the $ COBOL card, The LIBCPY option may appear in
any order in relation to other control card options.

2. The library text is copied from the library and the
compilation is the same as if the text were actually
source program.

result
a part

of
of

the
the

3. The COPY clause is printed on the annotated source program listing
preceding the library text to which it refers.

4. The text contained on the libra~y must not contain a COPY clause.

5. The COPY clause may appear:

a. In any of the paragraphs of the Environment Division.

b. In any level indicator entries or in an 01 level-number entry in
the Data Division.

8-2 DD25

6. No other clause may appear in the same entry as the COPY clause with
the exception of the Report Writer CODE clause which, if specified,
must precede the COPY clause when a report description (RD) entry is
to be copied.

7. The copying process is terminated by the end of the library text.

8. If format or syntax errors are encountered in source lines copied from
a library, the compilation results are unpredictable. If the copied
text contains source errors, the line number references given with the
total errors message that follows the last source line in the
compilation listing may not agree with the alter numbers in the
compilation listing.

9. If the REPLACING phrase is used, each occurrence
etc., in the text being copied from the library
word, identifier, or literal associated with
phrase.

of word-1, word-3,
is replaced . by the

it in the REPLACING

10. Use of the REPLACING phrase does not alter the text as it appears on
the library.

11. The COPY clause is written in any of the following forms:

Format 2:

1.

2.

a. Environment Division -

SOURCE-COMPUTER. copy-clause.
OBJECT-COMPUTER. copy-clause.
SPECIAL-Nl\MES. copy-clause.
FILE-CO~TROL. copy-clause.
I-0-CONTROL. copy-clause.

b. Data Division, File Section -

FD file-name copy-clause.
SD sort-file-name copy-clause.
or data-name copy-clause.

c. Data Division, Working-Storage Section -

01 data-name copy-clause.

d. Data Division, Report Section -

RD f ile.:name
01 data-name

[coDE mnemonic-name]
copy-clause.

copy-clause.

Format2 of the COPY clause represents the HIS COPY function and
engaged by including the COPY option in the variable field of
$ COBOL card. The COPY option may appear in any order in relation
other control card options.

UIS COPY feature provides two options:

is
the
to

Iriternal copy that permits duplication of text within . the Data
Division.

b. ~*brary copy, which is invoked by the FROM LIBRARY phrase,
p$rn'lits text to be copied from a library into the Data Division
o:f .a. source program.

8-3 . DD25

3. illl11iilf~~~l~~~: r.~~~~+#~~~~G~.·~0m.~~~!~~~~~.~!
:9:~~$'~~~1::.~9Pf proc;:ess then . inserts, . follpwiryg >the d~ta~p;a;~---1 ~l'ltry, ~+l
t~~Q=#:(;t (;ie~cription entries that. are subora:tnat~=.= tC) .· .. the · data naxtt~~2
~~~f.!Ml tJi.a;t: is, up to but excluding the appearance of an . entry· .. whC).se 
fi~Y7:=±s~~e:t: is equal to or less than the level•nuzriber of the 
~~'t'#l');ame-2 entry, or whos.e level-number is 66. 

·.·.·, ··.· .·. 

~f' ~h:.e;r~are entries subordinate to data-name-1, it is the user's 
77~J?C)J:l$ibility to ensure that.the resulting hierarchical structure is 
<?9rf~P'l:.• =I=f the level•nwnber of data-name-1 is 77, data-name-2 must be 
~·~:L~m~ntary item. 

4. l:f the level-numbers of data-name-1 and data-name-2 are both 01, any 
level 66 entries associated with the data-name-2 record description 
Ci;c-e.iP,$ert.ed by the duplication process • 

. ·.·.··.·.·· .. ·. . 

5. P~#~Hii~e---2may be qucilified but not subs.cripted. 

6. Whe :ft'.tS:COl?Y clause can be written in any of the following forms: 

a... Pata: Division, File Section -

FD file-name copy-clause. 
SD sort-file-name copy-clause. 
Ie'vel-number data-name copy-clause. 

pa.ta Division, Workin.g-Storage Section ... 

level-number data-name copy-clause. 

Data Division, Report Section -

RD report .. name [CODE mnemonic-name] .copy-clause. 
Ievel-nurober data::niilte copy-clause. 

7. i:J:'h~ =P9J?¥:inq pJtocess is terminated by the appearance of the Procedure 
Pivi:sion header. 

NOTE: Refer to the COBOL User's Guide for information on the use of the 
COPY clause with compressed source deck options. 

8-4 DD25 



COPY Statement 

The COPY statement is used in the Procedure Division of a COBOL source 
program to incorporate paragraph procedures from the library into the source 
program with the capability for word substitution as text is copied~ 

Format 1: 

I paragraph-name. 

section-name SECTION 

COPY library-name 

word-1 BY 

[priority-number] . I 

lword-2 I 
literal-1 
identifier-1 

word-3 BY lword-4 I 
literal-2 
identifier-2 

] . . . ] . 
Format 2: 

NOTE: Paragraph-name and section-name are not part of the statement 
syntax; they are shown only for clarity. 

Syntax Rules: 

Format 1: 

1. When the COPY statement is specified, the 
The library-name must be identical to the 
desired text on the library. 

library-name is 
name associated 

required. 
with the 

2. In Format 1, a word is any COBOL word and may be one of the following: 

• Condi tic;:m-name 

• Data-name . 

• File-name 

• ~.nemonic-name 

• Procedure-name 

8-5 DD25 



3. When the COPY ~tatement is used, it must be the first statement in the 
paragraph or section. 

F-ormat 2: 

L •till,~n :\;:.he inform~tion to be duplicated is on the library, the FROM 
Ll:B~Y phrase must be included. 

2. -~~#~9;-~]?h-na.mes·definect in the HIS COPY library must be unique. 

General Rules: 

Format 1: 

i,· Format 1 of the COPY statement represents the American National 
~~a~cl<:lfd. GOPY fun.c~io.n and is engaged by including the LIBCPY option 
~:po ~p~ variable fi~ld of.· the $ COBOL card. The LI:SCPY option may 
~pptaa;J:' in anYorde):' i:n relation to other control card options. 

2. The library text is copied from the library and the 
compilation is the same as if the text were actually 
source program. 

result 
a part 

of 
of 

the 
the 

3. The COPY statement is printed on the annotated source program listing 
preceding the library text to which it refers. 

4. The text contained on the library must not contain a COPY statement. 

5. The COPY statement may appear only in the Procedure Division. 

6. No other stat~~g:nt may appear in the same entry as the COPY statement. 

7. The copying pro~.~ss is terminated by the end of the library text. 

8. If format or syntax errors are encountered in source lines copied from 
a library, the compilation results are unpredictable. If the copied 
t~~~ippp:baips source errors, i;he line nwnber references given with the 
'¥g;t;~)t. i3~~()l;$ ... l\t~$lfia'd'e >that tollows the last source line in the 
9gmp~li~#~9:!Jl~s~ijl'ljrnay not agree with the ·alter numbers in· the 
·¢~m~~+~ij~J>9<·listtn.9. 

9. If the REPLACING phrase is used, each occurrence of 
etc., in the text being copied from the library is 
word, identifier, or literal associated with it 
phrase. 

word-1, word-3, 
replaced by the 

in the REPLACING 

10. Use of the REPLACING phrase does not alter the' text as it appears on 
the library. 

11. The COPY statement cannot be used to duplicate section-names. 

8-6 DD25 



12. The COPY statement is written in the following form: 

Procedure Division -

!
paragraph-name. 

section-name SECTION [priority-number] . J copy-stateme:i.·:. ~ 

Format 2: 

1. Fci;dnat 2 of the COPY statement represents the HIS COPY function and is 
eriga9edby including the COPY option in the variable field of the 
$ COBOL card. The COPY option may appear in any ·order in relation to 
Other control card options .. 

2. In ·the HIS COPY function, library copy, which.is invo]Sed by the FROM 
LI!!RARY phra$e.of t,he COP:Y statement, permit?.tex~.to<pe copied from a 
library into the Procedure Division of a sour.ca program• 

3. The HIS COPY statement is written in the 

NOTE: 

Procedure Division -
... 

l?~t'&.sr:t:~Pll#xt.ajne • • <?91?¥"'.'.~-;~p~~pt; ~ > 

Refer to the COBOL User's Guide for information on the use of the 
COPY statement with compressed source deck options. 

8-7 DD25 





APPENDIX A 

RESERVED WORDS 

Reserved words are words that may be used in COBOL source programs but may 
not appE.ar as user-defined words. The ·two types of reserved words are: 

1. Keywords 

A keyword is one whose presence is required when the format in which 
the word appears is used in a source program. Within the formats shown 
in this manual, keywords are uppercase and underlined. The three types 
of keywords are: 

a. Verbs, such as ADD, READ, and ENTER. 

b. Required words, which appear in statement and entry formats. 

c. Words having a specific functional meaning, such as· NEGATIVE, 
SECTION, TALLY, etc. 

2. Optional Words 

Within each format, uppercase words that are not underlined are 
optional words. The presence or absence of optional words within a 
format does not alter the compiler's translation. Misspelling of an 
optional word, or using another word in its· place, however, is not 
allowed. 

The following list contains the COBOL reserved words; shading indicates 
nonstandard (American National Standard) reserved words. 

A-1 DD25 



I 

I 

2/77 

;:111111:::@ 
ACCEPT. 

i111Rllfflllllli::;:: 
ACCESS 
ACTUAL 
ADD 
ADDRESS 
ADVANCING 
AFTER 
ALL 
ALPHABETIC 
mwllllt1:D.B . 
;~ 
AL'1'ERNATE 

t:n:::r::i: 
AND 

rn~11:::::J 
ARE 
AREA(S) 
ASCENDING 

:{~~~;~:~~: 
·AT 
AU~Z'HOR 

COMPUTE 
CONFIGURATION 

-CONTROL(S) 
COPY 
CORR 
CORRESPONDING 

:::::::::~~-~:by 

A-2 DD25A 



INSTALLATION 
INTO 
INVALID 
IS 

JUST 
JUSTIFIED 

KEY (S) 

LABEL 

-LAST 
LEADING 

:::::::::1111~111:::::::: 
LEFT 

.:::::::m.11m:::::r 
LESS 

t\\\l\lllBlll\\: 
LIMIT(S) 

liiiijlilllllliiiiiiiii': 
LINE(S) 
LINE-COUNTER ., 
LOCK 

:1:::11•11IMl.ll!l1I 
LOW-VALUE(S) 

t:$.QW:l&+SP.&mmS.:)f 

:•:::•::•mw:;;::;::,: 
MEMORY 

-MODE 
MODULES 
MOVE· 
MULTIPLE 

:1::::::•lllllll!I::. 

2/77 

MULTIPLY 

NEGATIVE 
NEXT 
NO 
NOT 
NOTE 
NUMBER 
NUMERIC 

::llll*IBlmlllllli 
OBJECT-COMPUTER 

:::::::fil:RB#~B.11111' 
OCCURS 
OF 
OFF 

t'QJU?f! 
OMITTED 
ON 

:::i:&.11i1::::::::: 

t::!iiiim.;11::: 

OPTIONAL 
\':,•:l§lllBll~: 

OR 

·1::1.11 .. ll~:li\:\\\i 
OUTPUT ra; 

::''t!,lllalJi 
PAGE 
PAGE-COUNTER 
PERFORM 
PF 
PH 

:t::1a11.:~f:t: 
PIC 
PICTURE 

1;:1:1·11111:t.!/~::1: 
PLUS 

i•i' 
POSITION 
POSITIVE 

II. 
PROCEED ······ 
::~IQQi[§§·J . 
PROCESSING 

•:':::J?:MG.Mtb' 
PROGRAM-ID 

-\::\::\:QDD,:{\{{•• 
QUOTE(S) 

RANDOM 
'tmftlUl 

RD 
READ 

·111:::•11:::. 
.. ~CORD(S) 

:1111::111111111:1: 
REDEFINES 
REEL 

-RELEASE 
l!!-:tl.IPIB• 

REMARKS 

!\\i!\\llfd\1
1\\\ 

RENAMES 
::::::::1au+w1:::t. 

REPLACING 

REPORT(S) 
.REPORTING 
RERUN 
RESERVE 
RESET 

::::1111111t1•e111111r 
RETURN 
REVERSED 
REWIND 
.gD$BY 
RF 
RH 
RIGHT 
ROUNDED 
RUN 

Isl:} 
SAME 
SD 
SEARCH 
SECTION 
SECURITY 
SEEK 
sl18-1Sm> 
SEGMENT-LIMIT 
SELECT 

: §Bl~WP:~I/: 
'$.END'•>•;''\'\f? 
SENTENCE 

~-SEQUENTIAL 
si:li:tA.tF> 
SET 
SIGN 
'sXGN!n 
SIZE 
SORT 
<$Q~~BMllP.lr 
. SOURCE 

SOURCE-COMPUTER 
:$pt}ft¢$~:ijp 
SPACE(S) 
: sJi~gFf$:~Vt):li$•.· 
SPECIAL-NAMES 
srset> 
STANDARD 

i~lll.llll!i/•1 
STATUS 
::~;~p{lfJ.!:: 

.\llllllllll.llil 
SUBTRACT 
SUM 

Ill 
SYNC 
SYNCHRONIZED 

l)\:1.1•·1:11 

DD25A 

I 



,:\\\\\\'.l8fil\\:::,::::~ 
TALLY 
TALLYING 
TAPE 

:::I:waD.x1a::::: 
TERMINATE 

::::;::mm){~:;:::: 
THAN 

i}i!f»llt;.y 
THROUGH 
THRU 

::11111;1~~~1-~:: 
TO 

· 11:11:1r•~11~111 1 

TYPE 
::'DJ¥\li?$W:i1¢~3.,\(~l 

'i\llB:gua:rn,, 
UNIT 

11::111:1~11~11 
UNTIL 
UP 
UPON 

\/U~?mlet\QUNR ($J 
USAGE 
USE 
USING 

: VfM:l 
VALUE(S) 
VARYING 
WHEN 
WITH 

·WORDS 
WORKING-STORAGE 
WRITE 

2/77 

ZERO (S) 
ZEROES 

+ 

* 
I 
** 
> 
< 

A-4 DD25A 



$ COBOL 
$ COBOL 

$ LOWLOAD 
$ LOWLOAD 

6000 WITH EIS 
6000 WITH EIS 
6000 WITH EIS 
6000 WITH EIS 

ABBREVIATIONS 
abbreviations 

ABORT ROUTINE 
abort routine 

ABSOLUTE 
absolute line number 

ACCEPT 
ACCEPT 
ACCEPT 
ACCEPT MESSAGE 
ACCEPT statement 

ACCESS 
Access and Processing Techniques 

INDEX 

Random Access with Sequential Proces$ing 
Sequential Access with Sequential Processing 

ACCESS MODE 
ACCESS MODE IS RANDOM 
ACCESS MODE IS SEQUENTIAL 

ACTUAL KEY 
ACTUAL KEY 
ACTUAL KEY 
ACTUAL KEY IS phrase 

ADD 
ADD statement 

ADDRESS 
ADDRESS 
ADDRESS 

ADVANCING 
ADVANCING phrase 

i-1 

5-7 

5-20 

6-73 
5-6 
5-4 

7-13 

5-13 

6-35 

7-39 
5-10 
7-24 
7-21 

2-11 
2-12 
2-11 

5-21 
5-2i" 

2-12 
7-84 
5-21 

7-25 

5-4 
5-6 

7-107 

DD25 



ALIGNMENT 
alignment 

ALL 

Standard Alignment ·Rules . 
Standard Alignment Rules 

ALL literal 
ALL option 
ALL phrase· 
ALL phrase 
SEARCH ALL 

ALPHABETIC 
ALPHABETIC 
Alphabetic 
Alphabetic 
alphabetic 
class alphabetic 

ALPHANUMERIC 
Alphanumeric 
Alphanumeric 
alphanuxn~ric 
class alphanumeric 

ALPHANUMERIC EDITED 
Alphanumeric Edited 
Alphanumeric Edited 
alphanumeric edited 

ALTER 
ALTER 
ALTER 
ALTER statement 

ALTERNATE AREAS 
ALTERNATE AREAS phrase 

APPLY 
APPLY BLOCK SERIAL NUM$ER ON phrase 
APPLY PROCESS AREA ON phrase 
APPLY SYSTEM STANDARD FORMAT ON phrase 
APPLY VLR FORMAT phrase 

A~ 
SAME AREA phrase 
SAME RECORD AREA 
SAME RECORD AREA phrase 
SAME SORT AREA phrase 
SAME SORT-MERGE AREA phrase 

ARITHMETIC 
Arithmetic Operation Symbols 
Arithmetic Operators 
Arithmetic Statements 
Multiple Results .in Arithmetic Statements 

ARITHMETIC-EXPRESSIONS 
ARITHMETIC-EXPRESSIONS 
Formation and Evaluation Rules for Arithmetic-Expressions 

ASCENDING 
ASCENDING 
ASCENDING phrase 
ASCENDING phrase . 

i-2 

6-66 
3-10 
7-68 

3-4 
7-54 
7-103 
7-62 
7-89 

7-10 
3-9· 
7-68 
6-46 
3-3 

3-9 
7-68 
6-47 
3-3 

3-9 
7-68 
6-47 

7-59 
7-98 
7-27 

5-19 

5-25 
5-25 
5-25 
5-26 

5-26 
7-107 
5-26 
5-26 
5-26 

3-7 
7-14 
7-18 
7-19 

7-14 
7-15 

6-38 
7-97 
7-64 

DD25 



ASSIGN 
ASSIGN phrase 

AT END 
AT END 
AT END 
AT END phrase 
AT END phrase 

AUTHOR 
AUTHOR PARAGRAPH 

BCD 
BCD option 

BEFORE REPORTING 
BEFORE REPORTING 
BEFORE REPORTING 

BEGINNING-FILE-LABEL 
BEGINNING-FILE-LABEL 

BEGINNING-TAPE-LABEL 
BEGINNING-TAPE-LABEL 

BINARY 
binary high density 

BLANK COMMON 
BLANK COMMON phrase 

BLANK WHEN ZERO 
BLANK WHEN ZERO clause 

BLOCK 
BLOCK option 

BLOCK CONTAINS 
BLOCK CONTAINS clause 

BLOCK SERIAL NUMBER 
APPLY BLOCK SERIAL NUMBER ON phrase 

BORROW MEMORY 
Borrow Memory Control 

BORROW TAPES 
Borrow Tapes Control 

BRACKETS AND BRACES 
Brackets and Braces 

CALL 
CALL 
CALL 
CALL statement 
CALL USING 

CHARACTER SET 
character set 

5-19 

2-12 
7-88 
7-85 
7-90 

4-4 

6-56 

7-104 
7-57 

6-32 

6-32 

6-56 

5-20 

6-21 

5-10 

6-22 

5-25 

5-14 

3-20 

7-56 
7-49 
7-28 
7-51 

3-1 

DD25 



CHARACTER-STRING 
character-string 
character-string 
PICTURE Character-Strings 

CHARACTERS 
CHARACTERS option 
Special Characters 
WORDS, CHARACTERS, or MODULES 
WORDS, CHARACTERS, or MODULES 

CH~CKPOINT 
Checkpoint Control 
checkpoint dump 

CLASS 
CLASS CONDITION 
class alphabetic 

·class alphanumeric 
class numeric 

CLOSE 
CLOSE 
CLOSE 
CLOSE 
CLOSE 
CLOSE statement 
Standard Close File 
Standard Close Reel 

COBOL 
COBOL FUNCTIONAL CONCEPTS 
ENTER COBOL 

COBOL LIBRARY 
DESCRIPTION OF THE COBOL LIBRARY 
USING A COBOL LIBRARY 

CODE 
CODE 
CODE 
CODE clause 

COLLATE COMMERCIAL 
COLLATE COMMERCIAL option 

COLLATING SEQUENCE 
commercial collating sequence 
collating sequences 

COLLATION 
Output File Collation Control 

COLUMN NUMBER . 
COLUMN NUMBER clause 

COMMA 
comma 
period, comma, or semicolon 

COMMENT 
Comment L:j.nes 

COMMENT-ENTRY 
comment-entry 

i-4 

3-1 
6-46 
3-3 

6-22 
3-21 
5-4 
5-6 

5-13 
5-26 

7-10 
3-3 
3-3 
3-3 

7-103 
7-85 
7-74 
7-98 
7-30 
7-32 
7-32 

2-1 
7-46 

8-1 
2-15 

6-11 
8-3 
6-24 

5-11 

6-75 
7-8 

5-15 

6-25 

3-21 
3-6 

3-18 

4-2 

DD25 



COMMUNICATION-DEVICE 
COMMUNICATION-DEVICE 
COMMUNICATION-DEVICE 
COMMUNICATION-DEVICE 

COMPILE PHASEl ONLY WITH SOURCE ERRORS 
COMPILE PHASEl ONLY WITH SOURCE ERRORS option 

COMPILER-DIRECTING 
Compiler-Directing Sentence Execution 
Compiler-Directing Statements and.Sentences 

COMPUTATIONAL 
COMPUTATIONAL (-1,-2,-3) 

COMPUTATIONAL-3 
COMPUTATIONAL-3 PACKED SYNCHRONIZED 
USAGE COMPUTATIONAL-3 

COMPUTE 
COMPUTE statement 

CONCEPTS 
COBOL FUNCTIONAL CONCEPTS 
LANGUAGE CONCEPTS 
Record Concepts 

CONDITION 
CLASS CONDIT ION 
CONDITION-NAME CONDITION 
IF condition 
OVERFLOW condition 
PAGE condition 
RELATION CONDITION 
SIGN CONDITION 
SWITCH-STATUS CONDITION 

CONDITION-NAME 
CONDITION-NAME CONDITION 
Condition-Name Rules 
CONDITION-NAMES 

CONDITIONAL 
Conditional Sentence Execution 
Conditional Statements and Sentences 

CONDITIONAL VARIABLE 
conditional variable 
conditional variable 
conditional variable 
conditional variable 

CONDITIONS 
Abbreviated Combined Relation Conditions 
CONDITIONS 
Compound Conditions 
Evaluation Rules for Conditions 
Simple Conditions 

CONFIGURATION 
CONFIGURATION SECTION IN THE ENVIRONMENT DIVISION 

CONSOLE 
. CONSOLE 

CONSOLE 
CONSOLE 

5-10 
·7-24 
7-40 

5-12 

7-6 
7-4 

6-74 

6-75 
3-10 

7-34 

2-1 
3-1 
3-8 

7-10 
7-10 
7-6 
6-71 
6-71 
7-8 
7-9 
7-10 

. 7-10 
6-77 
3-2 

7-6 
7-4 

6-77 
7-10 

. 3-2 
3-11 

7-13 
7-7 
7-11 

·7-14 
7-7 

5-2 

5-10 
7-38 
7-21 

DD25 



CONTROL 
Borrow Memory Control 
Borrow Tapes Control 
Checkpoint Control 
CONTROL FOOTING 
CONTROL FOOTING 
CONTROL HEADING 
CONTROL HEADING 
Error'Journal Control 

.FLR Mode Control 
Input Device Positioning:Control 
line control 
Memory Assignment Control 
Multiple Reel File Control 
Output Device .Positioning Control 
Output File Coliation Control 
Output Order Control 
special control techniques 
TYPE CONTROL FOOTING 
TYPE CONTROL FOOTING 
TYPE CONTROL FOOTING 
TYPE CONTROL HEADING 
transfer control 
transfer of control 
transfers of control 
transfers of control 

CONTROL BREAK 
control break 
control break 

CONTROLS 
CONTROL(S) clause 

COPY 
COPY clause 
COPY clause 
COPY library-name p_l;l~?t,·?e 
COPY library-name pl;l.~q§e 

COPY option 
COPY option 
COPY option 
COPY statement 
COPY statement 

CORRESPONDING 
CORRESPONDING 
CORRESPONDING Option 
CORRESPONDING phrase 

COUNTERS 
SUM counters 

CURRENCY 
currency symbol 

CUR~NCY SIGN 
QURRENGY SIGN IS literal option 

CURRENT-DATE 
c:;:urrent-date 

i-6 

5-15 
5-14 
5-13 
7-57 
6-69 
6-69 
7-57 
5-12 
5-16 
5-14 

.6-42 
5-14 
5-16 
5-15 
5-15 
5-12 
5-23 
6-62 
6-26 
6-64 
6-26 
7-59 
7-5 
7-65 
7-98 

6-69 
7-58 

6-26 

6-27 
8-1 
5-18 
5-24 
2-15 
8-7 
8-3 
8-5 
7-35 

7-101 
7-17 
7-67 

7-57 

6-51 

.S-11 

4-7 

. DD25 



DATA 
Concept of Classes of Data 
hierarchy of data 
low-volume data 
low-volume data 
rules for positioning data 
subdivision of data 

DATA DESCRIPTION 
CONCEPT OF COMPUTER-INDEPENDENT DATA DESCRIPTION 
Data Description - Complete Entry Skeleton 

DATA DIVISION 
Data Division Entries 
DESCRIPTION OF THE DATA DIVISION 
FILE SECTION IN THE DATA DIVISION 
Organization of the Data Division 
REPORT SECTION IN THE DATA DIVISION 
WORKING-STORAGE SECTION IN THE DATA DIVISION 

DATA ITEM 
data item 

DATA RECORDS 
DATA RECORDS 
DATA RECORDS clause 

DATA-NAME 
data-name clause 
DATA-NAMES 
KEY data-names 

DATE-COMPILED 
DATE-COMPILED PARAGRAPH 

DATE-WRITTEN 
DATE-WRITTEN PARAGRAPH 

DECIMAL-POINT IS COMMA 
DECIMAL-POINT IS COMMA option 

DECLARATIVES 
DECLARATIVES 
Declaratives 
END DECLARATIVES 

DEFINITIONS 
ENTER DEFINITIONS 

DELTAS 
Deltas 

DEPENDING ON 
DEPENDING ON 
DEPENDING ON phrase 

DESCENDING 
DESCENDING 
DESCENDING phrase 
DESCENDING phrase 

DESTINATION 
DESTINATION 

i-7 

3-9 
6-34 
7-21 
7-37 
3-10 
6-12 

3-7 
6-12 

3-17 
6-1 
6-2 
6-1 
6-4 
6-3 

3-2 

6-57 
6-29 

6-28 
3-2 
7-63 

4-7 

4-6 

5.:.11 

7-1 
3-17 
7-1 

7-48 

3-21 

7-59 
6-39 

6-38 
7-64 
7-97 

7-40 

DD25 



DETAIL 
. DETAIL 
TYPE DETAIL 
TYPE DETAIL 
TYPE DETAIL 

.DISPLAY 
DISPLAY 
DISPLAY 
DISPLAY 
DISPLAY (-1,-2) 
DISPLAY statement 
USAGE IS DISPLAY 

DIVIDE 
DIVIDE statement 

DIVISION 
DIVISION HEADER 
Division, Section, and Paragraph Formats 

DOCUMENTATION 
program documentation 

DOWN BY 
DOWN BY 

DUMP 
checkpoint dump 

EDITING 
Editing Rules 
Editing Sym};)ols 
editing sign 
Fixed Insertion Editing 
Floating Insertion E:!.<liting 
Simple . Insertion Ed;i.;t-i;ng 
Special Insertion Ed:i.~~:ng 
Zero Suppression Edit-i;n.g 

EISF 
EISF or NEISF options 

EJECTION 
page .ejection 

ELECT 
ELECT SORT OPTIONS phrase 

ELEMENTARY ITEM 
elementary item 
elementary item 
elementary item 
elementary item 
elementary item 
elementary item 
elementary item 
elementary item 

ELLIPSIS 
The Ellipsis 

ELSE 
ELSE.. phrase 

i-8 

6-69 
7-57 
6-68 
6-30 

7-68 
5-10 
7-100 
6-74 
7-37 
6-73 

7-:-41 

3-16 
3-16 

5-4 

7-95 

5-26 

6-49 
3-6 
3-10 
6-50 
6-51 
6-50 
6-50 
6-52 

5-7 

3-18 

5-12 

2-8 
3-8 
6-3 
6-46 
6-28 
6-19 
6-25 
6-60 

3-20 

7-61 

DD25 



END 
END DECLARATIVES. 

END PROGRAM 
END PROGRAM 

END-OF-MESSAGE 
END~OF-MESSAGE indicator 

END-OF-SEGMENT 
END-OF-SEGMENT indicator 

END-OF-TRANSACTION 
END-OF-TRANSACTION indicator 

ENDING-FILE-LABEL 
ENDING-FILE-LABEL 

ENDING-TAPE-LABEL 
ENDING-TAPE-LABEL 

ENTER . 
ENTER COBOL 
ENTER DEFINITIONS 
ENTER GMAP 
ENTER LINKAGE MODE 
ENTER. SPACE-SAVING 
ENTER statement 
ENTER TIME-SAVING 

ENTRIES 
Data Division Entries 

ENTRY 
Data Description - Complete Entry Skeleton 
File Description - Complete Entry Skeleton 
level 01 entry 
Report Description - Complete Entry Skeleton 
Report Group Description - Complete Entry Skeleton 
Sort-Merge File Description - Complete Entry Skeleton 

ENTRY POINT 
ENTRY POINT 
ENTRY POINT 
ENTRY POINT phrase 
ENTRY POINT USING/GIVING 

ENVIRONMENT DIVISION 
CONFIGURATION SECTION IN THE ENVIRONMENT DIVISION 
DESCRIPTION OF THE ENVIRONMENT DIVISION 
INPUT-OUTPUT SECTION IN THE ENVIRONMENT DIVISION 
Otganization of the Environment Division 

EQUALS 
EQUALS 
EQUALS 
EQUALS 

ERROR JOURNAL 
Error Journal Control 

EXAMINE 
EXAMINE 
EXAMINE statement 

i-9 

7-1 

7-4 

7-37 

7-37 

7-37 

6-32 

6-32 

7-46 
7-48 
7-46 
7-45 
7-46 
7-44 
7-46 

3-17 

6--12 
6-6 
6-19 
6-10 
6-16 
6-8 

7-29 
7-56 
7-49 
7-51 

5-2 
5-1 
5-16 
5-1 

7-34 
7-44 
7-90 

5-12 

3-5 
7-53 

DD25 



EXIT 
EXIT statement 

EXIT PROGRAM 
EXIT PROGRAM 

EXPONENTIATION 
exponentiation. 

FD 
FD 

FIGURATIVE CONSTANT 
figurative constant 
figurative constant 
Figurative Constants 
figurative constants 

FILE 
Conceptual Characteristics of a File 
FILE 
FILE SECTION IN THE DATA DIVISION 
Multiple Reel File Control 
Physical Aspects of a File 
Standard Close File 
Standard File Lock 

FILE DESCRIPTION 
File Description - Complete Entry Skeleton 
Sort-Merge File Description ..;. Complete Entry Skeleton 

FlLE-CODES 
file-codes 

FILE-CONTROL 
FILE-CONTROL Paragr.aph 

FILE-LIMITS 
FILE-LIMIT(S) phrase 

FILLER 
FILLER 
FILLER clause 

FINAL 
FINAL 
FINAL 
FINAL 
FINAL 

FIRST 
FIRST option 

FIRST DETAIL 
FIRST DETAIL 

FIXED INSERTION 
Fixed Insertion Editing 

FLOATING INSERTION 
Floating Insertion Editing 

FLR MODE 
FLR Mode Control 

i-10 

7-55 

7-56 

7-15 

6-7 

6-79 
6-77 
3-4 
7-68 

3-8 
7-104 
6-2 
5-16 
3-7 
7-32 
7-32 

6-6 
6-8 

5-19 

5-17 

5-19 

6-66 
6-28 

6-62 
7-103 
6-70 
6-26 

7-54 

6-43 

6-50 

6-51 

5-16 

DD25 



FOOTING 
CONTROL FOOT ING 
CONTROL FOOT ING 
FOOTING 
OVERFLOW FOOTING 
OVERFLOW FOOTING 
PAGE FOOTING 
PAGE FOOTING 
REPORT FOOT ING 
REPORT FOOT ING 
TYPE CONTROL FOOTING 
TYPE CONTROL FOOTING 
TYPE CONTROL FOOTING 

FOR LISTING 
FOR LISTING 
FOR LISTING 

FORMAT 
FORMAT CONVENTIONS 
Format Punctuation 
Reference Format Representation 
Division, Section, and Paragraph Formats 

FROM LIBRARY 
FROM LIBRARY 
FROM LIBRARY phrase 

GENERAL FORMAT 
Definition of a General Format 

GENERAL RULE 
general rule 

GENERATE 
GENERATE 
GENERATE 
GENERATE 
GENERATE statement 

GIN 
GIN 

GIVING 
GIVING 
GIVING 
GIVING 
GIVING phrase 
GIVING- phrase 

GLAPS 
GLAPS 
GLAPS 

GMAP 
ENTER GMAP 
GMAP coding 

GO TO 
GO TO 
GO TO 
GO TO statement 

GROUP INDICATE 
GROUP INDICATE clause 

i-11 

6-69 
7-57 
6-43 
6-69 
7-57 
6-69 
7-103 
6-69 
7-103 
6-62 
6-26 
6-64 

5-22 
7-107 

3-19 
3-21 
3-14 
3-16 

6-27 
8-2 

3-19 

3-19 

6-64 
6-69 
7-103 
7-57 

7-21 

7-26 
7-42 
7-102 
7-66 
7-99 

7-21 
5-10 

7-46 
7-46 

7-98 
7-27 
7-59 

6-30 

DD25 



GROUP ITEM 
group item 
group item 
group.item 
group item 
grou:p item 
group item 

GROUPING 
grouping 

.GTIME 
GTIME 
GTIME :rs phrase 

HARDWARE-NAMES 
hardware-names 
hardware-names 

HEADER 
DIVISION HEADER 
PARAGRAPH HEADER, PARAGRAPH-NAME, AND PARAGRAPH 
Procedure Division Header 
SECTION HEADER 

HEADING 
CONTROL HEADING 
CONTROL HEADING 
HEADING 
OVERFLOW HEADING 
OVERFLOW HEADING 
OVERFLOW HEADING 
PAGE HEADING 
REPORT HEADING 
TYPE CONTROL HEADING. 

HIERARCHY 
hierarchy of data 

HIGH DENSITY 
binary high density 

HIGH-VALUE 
HIGH-VALUE 

HMS 
HMS 
HMS option 

I-0 
·I-0 
I-0 phrase 

I-0-CONTROL 
I-0-CONTROL Paragraph 

IDENTIFICATION 
IDENTIFICATION or ID 

IDENTIFICATION DIVISION 
DESCRIPTION OF THE IDENTIFICATION DIVISION 
Organization of the Identification Division 

i-12 

6-60 
6-39 
6-19 
2-7 
6-3 
3-9 

7-13 

7-21 
5-10 

5-6 
5-4 

3-16 
3-16 
7-2 
3-16 

6-69 
7-57 
6-43 
6-69 
7-57 
7-103 
6-69 
6-69 
6-26 

6-34 

6-56 

3-4 

5-10 
7-23 

7-104 
7-74 

5-23 

6-79 

4-1 
4-1 

DD25 



IDENTIFIER 
Identifier 
identifier 
identifier 
identifiers 

IDS SIZE 
IDS SIZE phrase 

IF 
IF condition 
IF statement 

IMPERATIVE-STATEMENTS 
Imperative-Statements and Sentences 

INDEX 
USAGE IS INDEX 
USAGE IS INDEX 

INDEX DATA ITEM 
index data item 
index data items 
index data items 

INDEXED BY 
INDEXED 
INDEXED 
INDEXED 
INDEXED 
INDEXED 

INDEXING 
Indexing 
Indexing 
indexing 

BY 
BY 
BY 
BY 
BY phrase 

Restrictions on Qualification, Subscripting, and Indexing 

INITIAL 
INI'I'IAL option 

IN IT I.ATE 
INITIATE 
INITIATE statement 

INPUT 
INPUT 
INPUT 

INPUT DEVICE 
Input Device Positioning Control 

INPUT LABEL 
input label 

INPUT PROCEDURE 
INPUT PROCEDURE 
INPUT PROCEDURE 

INPUT-OUTPUT 
INPUT-OUTPUT SECTION IN THE ENVIRONMENT DIVISION 

INSTALLATION 
INSTALLATION PARAGRAPH 

i-13 

3-13 
3-2 
7-2 
6-26 

7-6 
7-61 

7-5 

6-75 
6-79 

6-75 
7-94 
2-10 

2-9 
3-12 
7-94 
7-89 
6-39 

3-12 
2-9 
7-95 
3-14 

7-48 

7-103 
7-62 

7-104 
7-74 

5-14 

7-105 

7-96 
7-55 

5-16 

4-5 

DD25 



INTO 
INTO phrase 
INTO phrase 

INVALID KEY 
INVALID KEY 
INVALID KEY phrase 
INVALID KEY phrase 

JUSTIFIED 
JUSTIFIED 
JUSTIFIED 
JUSTIFIED 

KEY 

JUSTIFIED clause 

KEY data-names 
KEY phrase 
KEY phrases 

LA:BEL 
label checking/writing 

LABEL PROCEDURE 
LABEL PROCEDURE 

LABEL RECORDS 
LABEL RECORD(S) clause 
LABEL RECORD ( S) _OMITTED 
LABEL RECORD(S) STANDARD 
LABEL RECORDS 
LABEL RECORDS ARE OMITTED 
label records 

LANGUAGE 
LANGUAGE CONCEPTS 

LAST DE'l'AIL 
LAST DETAIL 

LEADING 
LEADING option 

LEVEL 
level 01 entry 
level 66 
level 77 
level 88 

LEVEL INDICATOR 
level indicator 

LEVEL-NUMBER 
Level-number 88 
level-number 
l.evel-number 01 
level-number 01,· 66, 77, 88 
level-number 66, 77, or 88 
level-number 88 
Level-Numbers 
level-numbers 
level-numbers 66, 77, and 88 
level-numbers 66, 77, or 88 
special level-numbers ·66, 77, and 88 

i-14 

7-88 
7-84 

2-12 
7-108 
7-86 

7-68 
6-77 
3-10 
6-31 

7-63 
6-39 
7-97 

7-74 

7-104 

6-32 
6-33 
6-33 
7-75 
7-104 
6-2 

3-1 

6-43 

7-54 

6-19 
6-59 
6-58 
6-77 

3-17 

6-76 
6-34 
6-16 
6-39 
7-18 
6-15 
3-20 
3-17 
6-34 
7-69 
3-9. 

DD25 



LEVELS 
Concept of Levels 

LIBCPY 
LIBCPY option 
LIBCPY option 
LIBCPY option 

LIBRARY 
library text 

LIBRARY-NAME 
COPY library-name phrase 
COPY library-name phrase 

LINE 
line control 

LINE NUMBER 
absolute line number 
LINE NUMBER 
LINE NUMBER 
LI°NE NUMBER clause 
relative line number 

LINE-COUNTER 
LINE-COUNTER 
LINE-COUNTER 
LINE-COUNTER 
L !NE-COUNTER 
LINE-COUNTER 
LINE-COUNTER Rules 

LINES 
BLANK LINES 
CONTINUATION OF LINES 
Comment Lines 

LINKAGE MODE 
ENTER LINKAGE MODE 

LITERAL 
ALL literal 
CURRENCY SIGN IS literal option 
Literals 
NONNUMERIC LITERALS 
NUMERIC LITERALS 

LOCK 
Standard File Lock 
Standard Reel Lock 

LOGICAL 
Logical Conjunction 
Logical Inclusive Or 
Logical Negation 
logical record 
logical record 

LOW-VALUE 
LOW-VALUE 

LOW-VOLUME 
'low-volume data 
low-volume data 

i-15 

3-8 

2~15 

8-6 
8-2 

8-2 

5-18 
5-24 

6-42 

6-35 
6-19 
6-45 
6-35 
6-35 

6-37 
6-35 
3-5 
7-57 
7-62 
6-45 

3-15 
3-15 
3-18 

7-45 

3-4 
5-11 
3-3 
3-3 
3-3 

7-32 
7-32 

7-11 
7-11 
7-11 
6-59 
3-8 

3-4 

7-21 
7-37 

DD25 



LOWER-BOUND 
LOWER-BOUND 

LSTOF 
LSTOF 

LS TON 
LS TON 

MEMORY ASSIGNMENT 
Memory Assignment Control 

MEMORY SIZE 
MEMORY SIZE phrase 
MEMORY SIZE phrase 

MERGE 
MERGE 
MERGE 
MERGE statement 
merge files 

MERGING 
Merging 

MESSAGE 
ACCEPT MESSAGE 

MNEMONIC-NAME 
FROM mnemonic-name phrase 
UPON mnemonic-name phrase 
MNEMONIC-NAMES 
mnemonic-names 

MODULARIZATION 
MODULARIZATION 
modularization 

MODULES 
WORDS, CHARACTERS, or MODULES 
WORDS, CHARACTERS, or MODULES 

MOVE 
MOVE 
MOVE 
MOVE 
MOVE 
MOVE 
MOVE 
MOVE statement 
elementary moves 

MULTIPLE FILE 
MULTIPLE FILE phrase 

MULTIPLE REEL 
MULTIPLE REEL option 
Multiple Reel File Control 

MULTIPLE UNIT 
MULTIPLE UNIT option 

MULTIPLY 
MULTIPLY statement 

i-16 

3-4 

3-18 

3~18 

5-14 

5-4 
5-6 

7-97 
7-88 
7-63 
5-27 

2-4 

7-24 

7-21 
7-38 
3-3 
5-8 

2-15 
2.;.13 

5-6 
5-4 

7-58 
7-108 
7-18 
7-85 
7-88 
7-87 
7-67 
7-68 

5-27 

5-19 
5-16 

5-19 

7-71 

0025 



NEGATIVE 
·NEGATIVE 

NE I SF 
EISF or NEISF options 

NEXT GROUP 
NEXT GROUP 
NEXT GROUP 
NEXT GROUP clause 

NEXT PAGE 
NEXT PAGE phrase 
NEXT PAGE phrase 

NEXT SENTENCE 
NEXT SENTENCE 
NEXT SENTENCE phrase 

NO DATA 
NO DATA phrase 

NO REWIND 
NO REWIND phrase 

NOT 
NOT 
Use of the NOT Operator 

NOTE 
NOTE sentence 

NUMERIC 
class numeric 
NUMERIC 
NUMERIC LITERALS 
Numeric 
Numeric 
Numeric Operands 
numeric 

NUMERIC EDITED 
Numeric Edited 
Numeric Edited 
numeric edited 

OBJECT PROGRAM 
object program 

OBJECT-COMPUTER 
OBJECT-COMPUTER Paragraph 

OCCURRENCE NUMBER 
occurrence number 
occurrence number 

OCCURS 
OCCURS 
OCCURS 
OCCURS 
OCCURS 
OCCURS 
OCCURS 
OCCURS 
OCCURS clause 

i-17 

7-9 

5-7 

6-19 
6-45 
6-37 

6-37 
6-36 

7-89 
7-61 

7-24 

7-75 

7-11 
7-14 

7-73 

3-3 
7-10 
3-3 
3-9 
7-67 
7-8 
6-46 

3-9 
7-68 
6-47 

2-1 

5-5 

2-8 
7-90 

6-78-
7-69 
6-67 
7-89 
2-9 
2-6 
6-57 
6-38 

DD25 



OCCURS ••• DEPENDING ON 
OCCURS ••• DEPENDING ON 

OPEN 
OPEN 
OPEN 
OPEN 
OPEN statement 

OPERANDS 
Nonnumeric Operands 
Numeric Operands · 

OPERATOR 
Use of the NOT Operator 
Arithmetic Operators 

OPTIONAL 
OPTIONAL phrase 

OPTIONS 
COMMON OPTIONS IN STATEMENT FORMATS 
EISF or NEISF options 
ELECT SORT OPTIONS phrase 

OUTPUT 
OUTPUT 
OUTPUT 

OUTPUT DEVICE 
Output Device Positioning Control 

OUTPUT FILE 
Output File Collation Control 

OUTPUT LABEL 
output label 

OUTPUT ORDER 
Output Order Control 

OUTPUT PROCEDURE 
OUTPUT PROCEDURE 
OUTPUT PROCEDURE 
OUTPUT PROCEDURE 

OVERFLOW 
OVERFLOW condition 
OVERFLOW FOOTING 
OVERFLOW FOOTING 
OVERFLOW HEADING 
OVERFLOW HEADING 
OVERFLOW HEADING 

OVERLAPPING OPERANDS 
Overlapping Operands 

OVERLAY 
OVERLAY phrase 

PACKED DECIMAL 
packed decimal 
packed decimal 

i-18 

7-108 

7-98 
7-84 
7-107 
7-74 

7-8 
7-8 

7-14 
7-14 

5-18 

7-16 
5-7 
5-12 

7-74 
7-104 

5-15 

5-15 

7-105 

5-12 

7-96 
7-63 
7-55 

6-71 
6-69 
7-57 
7-103 
7-57 
6-69 

7-19 

5-20 

6-15 
6-75 

DD25 



PACKED SYNCHRONIZED 
COMPUTATIONAL-3 PACKED SYNCHRONIZED 

PADDING 
padding 

PAGE 
PAGE condition 
PAGE FOOTING 
PAGE FOOTING 
PAGE HEADING 
page ejection. 

PAGE LIMITS 
PAGE LIMIT(S) 
PAGE LIMIT(S) clause 
PAGE LIMITS 
PAGE LIMITS 

PAGE-COUNTER 
PAGE-COUNTER 
PAGE-COUNTER 
PAGE-COUNTER 
PAGE-COUNTER Rules 

PARENTHESES 
parentheses 
parentheses 

PERFORM 
PERFORM 
PERFORM 
PERFORM statement 

PERIOD 
period, comma, or semicolon 
Periods 

PICTURE 
PICTURE 
PICTURE 
PICTURE 
PICTURE 
PICTURE 
PICTURE 
PICTURE 
PICTURE Character-Strings 
PICTURE clause 

PO PUP 
POPUP option 

POSITION 
POSITION option 
Input Device Positioning Control 
nonstandard positioning 
Output Device Positioning Control 
rules for positioning data 
vertical positioning 

POSITIVE 
POSITIVE 

i-19 

6-75 

6-22 

6-71 
7-103 
6-69 
6-69 
3-18 

6-71 
6-42 
6-35 
6-37 

3-5 
7-57 
7-62 
6-44 

7-15 
7-13 

7-51 
7-98 
7-76 

3-6 
3-20 

6-3 
6-21 
6-64 
6-73 
6-76 
7-17 
7-68 
3-3 
6-46 

7-51 

5-27 
5-14 
6-31 
5-15 
3-10 
7-108 

7-9 

DD25 



PRIORITY-NUMBER 
priority-number 
priority-numbers 
priority-numbers 

PROCEDURE DIVISION 
DESCRIPTION OF THE PROCEDURE DIVISION 
Procedure Division Body 
Procedure Division Header 
Procedure Division Segments 

PROCEDURE-NAME 
procedure-name 
PROCEDURE-NAMES 

PROCEDURES 
PROCEDURES 

PROCESS AREA 
APPLY PROCESS AREA ON phrase 
PROCESS AREA 
PROCESS AREA 
process area 

PROCESS DEBUG 
PROCESS DEBUG STATEMENTS 
PROCESS DEBUG STATEMENTS option 

PROCESSING 
Access and Processing Techniques 
Random Access with Sequential Processing 
Sequential Access with Sequential Processing 

.PROCESSING MODE 
PROCESSING MODE IS phrase 

PROGRAM-ID 
PROGRAM-ID 
PROGRAM-ID 
PROGRAM-ID .PARAGRAPH 

PROGRAM-NAME 
program-name 

PUNCTUATION 
Format Punctuation 
Punctuation Symbols 

QUALIFICATION 
Qualification 
Restrictions on Qualification, Subscripting, and Indexing 
rules for qualification 

QUOTE 
QUOTE 

RANDOM-SEQUENTIAL 
random-sequential technique 

RD 
RD 

i-20 

7-3 
2-13 
5-6 

7-1 
7-2 
7-2 
7-3 

7-1 
3-2 

7-1 

5-25 
7-29 
7-50 
6-40 

3-18 
5-11 

2-11 
2-12 
2-11 

5-21 

7-49 
7-28 
4-3 

4-3 

3-21 
3-6 

3-11 
3-14 
3-11 

3-4 

2-12 

6-11 

DD25 



READ 
READ 
READ 
READ 
READ statement 

RECORD 
logical record 
logical record 
physical record 
physical record 
RECORD ORDERING 
Record Concepts 
SAME RECORD AREA 
SAME RECORD AREA phrase 

RECORD CONTAINS 
RECORD CONTAINS clause 

RECORD DESCRIPTION 
STRUCTURE OF A RECORD DESCRIPTION 

RECORDING MODE 
RECORDING MODE clause 
recording mode 
recording mode 

RECORDS 
concept of records 
RECORDS phrase 
Working-Storage Records 

REDEFINES 
REDEFINES 
REDEFINES 
REDEFINES clause 

REEL 
REEL 
Standard Close Reel 
Standard Reel Lock 

REFERENCE 
Reference Format Representation 
Reference to Table Items 
UNIQUENESS OF REFERENCE 

REGISTER 
TALLY REGISTER 
Special Registers 

RELATION 
Abbreviated Combined Relation Conditions 
RELATION CONDITION 
Relation Symbols 

RELATIVE 
relative line number 

RELEASE 
RELEASE 
RELEASE 
RELEASE statement 

i-21 

2-11 
7-98 
7-74 
7-84 

6-59 
3-8 
3-8 
6-22 
2-3 
3-8 
7-107 
5-26 

6-55 

6-2 

6-56 
6-41 
5-26 

2-2 
6-23 
6-4 

6-78 
7-69 
6-57 

7-104 
7-32 
7-32 

3-14. 
2-8 
3-11 

3-5 
3-5 

7-13 
7-8. 
3-7 

6-35 

2-4 
7-97 
7-87 

DD25 



REMAINDER 
REMAINDER 

REMARKS 
REMARKS PARAGRAPH 

REMOTE 
REMOTE 
REMOTE 
REMOTE 

RENAMES 
RENAMES 
RENAMES 
RENAMES 
RENAMES clause 

RENAMING 
RENAMING phrase 

. REPLACING 
REPLACING phrase 
REPLACING phrase 
REPLACING phrase 

REPORT 
REPORT FOOTING 
REPORT FOOTING 
REPORT HEADING 
REPORT SECTION IN THE DATA DIVISION 
REPORT WRITING 
report group 
report group 
report group 
report group 
report group · 
report group 
report groups 

REPORT DESCRIPTION 
Report Description - Complete Entry Skeleton 

REPORT GROUP DESCRIPTION 
Report Group Description - Complete Entry Skeleton 

REPORT WRITER 
Report Writer 

REPORTS 
REPORT(S) clause 

RERUN 
RERUN phrase 

RESERVE 
RESERVE phrase 
RESERVED WORDS 
Reserved Words 

RESET 
RESET 
RESET clause 

RESTRICTIONS 
·Restrictions on Qrialification, Subscripting, and Indexing 

i-22 

7-42 

4-9 

5-10 
7-38 
7-21 

7-69 
3-9 
6-34 
6-59 

5-20 

7-54 
8-3 
8-6 

7-103 
6-69 
6-69 
6-4 
2-5 
2-5 
6-68 
6-62 
6-19 
6-35 
6-30 
6-43 

6-10 

6-16 

6-68 

6-61 

5-26 

5-19 
A-1 
3-7 

6-26 
6-62 

3-14 

DD25 



RESULTANT-IDENTIFIER 
resultant-identifier 

RETENTION~PERIOD 
RETENTION-PERIOD 

RETURN 
RETURN 
RETURN 
RETURN 
RETURN statement 

REWIND 
Rewind 

ROUNDED 
ROUNDED 
ROUNDED 
ROUNDED 
ROUNDED Option 

SAME 

SD 

SAME AREA phrase 
SAME RECORD AREA 
SAME RECORD AREA phrase 
SAME SORT AREA phrase 
SAME SORT-MERGE AREA phrase 

SD 

SEARCH 
SEARCH 
SEARCH ALL 
SEARCH statement 

SECTION 
CONFIGURATION SECTION IN THE ENVIRONMENT DIVISION 
Division, Section, and Paragraph Formats 
FILE SECTION IN THE DATA DIVISION 
INPUT-OUTPUT SECTION IN THE ENVIRONMENT DIVISION 
REPORT SECTION IN THE DATA DIVISION 
SECTION HEADER 
WORKING-STORAGE SECTION IN THE DATA DIVISION 

SECURITY 
SECURITY PARAGRAPH 

SEEK 
SEEK 
SEEK 
SEEK 
SEEK 
SEEK statement 

SEGMENT 
fixed overlayable segment 
fixed permanent segment 
independent segment 

SEGMENT-LIMIT 
SEGMENT-LIMIT 
SEGMENT-LIMIT 
SEGMENT-LIMIT IS phrase 

i-23 

7-16 

6-79 

2-4 
7-98 
7-65 
1~00 

7-33 

7-101 
7-71 
7-43 
7-16 

5-26 
7-107 
5-26 
5-26 
5-26 

6-8 

2-10 
7-89 
7-89 

5-2 
3-16 
6-2 
5-16 
6-4 
3-16 
6-3 

4-8 

2-13 
7-86 
7-108 
7-74 
7-93 

2-14 
2-14 
2-14 

2-14 
T-83 
5-6 

DD25 



SEGMENTATION 
SEGMENTATION 

SEGMENTS 
Procedure Division Segments· 
Program Segments 

SELECT 
SELECT sentence 
SELECTED phrase 

SEMICOLON 
period, comma, or semicolon 
semicolon 

SENTENCE EXECUTION 
Compiler-Directing Sentence Execution 
Conditional Sentence Execution 
Imperative Sentence Execution· 
SENTENCE EXECUTION 

SENTENCES 
Compiler~Directing Statements and Sentences 
Conditional Statements and Sentences 
Imperative-Statements and Sentences 
STATEMENTS AND. SENTENCES 

SEQUENCE NUMBERS 
SEQUENCE NUMBERS 

SEQUENTIAL~SEQUENTIAL 
sequential-sequential technique 

SET 
SET 
SET statement 

SHADING 
Shading 

SIGN 
editing sign 
SIGN CONDITION 
standard operation sign 
Algebraic Signs 

SIMPLE INSERTION 
Simple Insertion Editing 

SIZE 
SIZE option 

SIZE ERROR 
SIZE ERROR 
SIZE ERROR 
SIZE ERROR 
SIZE ERROR 
SIZE ERROR Option 

SORT 
ELECT SORT OPTIONS phrase 
SAME SORT AREA phrase 
SORT . 
SORT 

i-24 

2-13 

7-3 
2-13 

5-19 
6-63 

3-6 
3-21 

7-6 
7-6 
7-6 
7·-5 

7-4 
7-4 
7-5 
7-3 

3-15 

2-12 

7-91 
7-94 

3-21 

3-10 
7-9 
3-10 
3-10 

6-50 

7-48 

7-71 
7-43 
7-25 
7-101 
7-17 

5-12 
5-26 
7-88 
7-87 

DD25 



SORT statement 
sort 
sort files 

SORT-MERGE 
SAME SORT-MERGE AREA phrase 
Sort-Merge File Description - Complete Entry Skeleton 

SORTING 
Sorting 

SOURCE 
SOURCE 
SOURCE Rules 

SOURCE PROGRAM 
source program 

SOURCE-COMPUTER 
SOURCE-COMPUTER Paragraph 

SPACE 
SPACE 

SPACE-SAVING 
ENTER SPACE-S~VING 

SPACES 
SPACES 
spaces 

SPACING 
rules for spacing 
spacing 

SPECIAL INSERTION 
Special Insertion Editing 

SPECIAL-NAMES 
SPECIAL-NAMES 
SPECIAL-NAMES 
SPECIAL-NAMES Paragraph 

STATEMENT FORMATS 
COMMON OPTIONS IN STATEMENT FORMATS 

STATEMENTS 
Arithmetic Statements 
Compiler-Directing Statements and Sentences 
Conditional Statements and Sentences 
Multiple Results in Arithmetic Statements 
PROCESS DEBUG STATEMENTS 
PROCESS DEBUG STATEMENTS option 
STATEMENTS AND SENTENCES 

STOP 
STOP RUN 
STOP statement 

STORAGE 
MASS STORAGE 

SUBSCRIPT ING 
Restrictions on Qualification, Subscripting, and Indexing 
Subscripting 
Subscripting 

. subscripting 

i-25 

7-96 
6-29 
5-27 

5-26 
6-8 

2-4 

6-28 
6-63 

2-1 

5-3 

3-4 

7-46 

6-16 
6-21 

3-14 
6-37 

6-50 

7-37 
7-21 
5-8 

7-16 

7-18 
7-4 
7-4 
7-19 
3-18 
5-11 
7-3 

7-100 
7-100 

2-11 

3-14 
3-12 
2-8 
7-95 

DD25 



SUBTRACT 
SUBTRACT statement 

SUM 
SUM 
SUM counters 
SUM Rules 

SUPPRESSING 
suppressing table residue 

SWI'!'CH 
SWITCH 
SWITCH 
SWITCH option 

SWITCH-STATUS 
SWITCH-STATUS CONDI~ION 

SYMBOL 
currency symbol 
SYMBOL phrase 
Arithmetic Operation Symbols 
Editing Symbols 
Punctuation Symbols 
Relation Symbols 

. USER-CREATED SYMBOLS 

SYNCHRONIZED LEFT 
SYNCHRONIZED LEFT 

SYNCHRONIZED RIGHT 
SYNCHRONIZED RIGHT 

. SYNTAX RULE 
syntax rule 

SYSOUT 
SYSOUT 
SY SO UT 

SYSTEM ·STANDARD FORMA'r 
APPLY SYSTEM STANDARD FORMAT ON phrase 

TABLE 
Reference to Table Items 
suppressing table residue 
TABLE HANDLING 
Table Definition 
table element 
table element 

TALLY 
TALLY REGISTER 
TALLYING phrase 

TECHNIQUE 
random-sequential technique 
sequential-sequential technique 
Access and Processing Techniques 
special control techniques 

i-26 

7-101 

6-62 
7-57 
6-64 

6-40 

7-21 
7-38 
5-10 

7-10 

6-51 
7-48 
3-7 
3-6 
3-6 
3-7 
3-1 

6-66 

6-66 

3-19 

5-10 
7-38 

5-25 

2-8 
6-40 
2-6 
2-6 
2-6 
7-89 

3-5 
7-54 

2-12 
2-12 
2-11 
5-23 

DD25 



TERMINATE 
TERMINATE 
TERMINATE statement 

TEXT 
duplicate text 
duplicate text 
library text 

TIME-SAVING 
ENTER TIME-SAVING 

TIMES 
TIMES option 

TOP OF PAGE 
TOP OF PAGE phrase 

TRANSACTION PROCESSING 
TRANSACTION PROCESSING 
Transaction Processing 
Transaction.Processing Applications Programs 
transaction processing 
transaction processing 

TRANSFERS 
transfers of control 
transfers of control 

TYPE 
TYPE CONTROL FOOTING 
TYPE CONTROL FOOTING 
TYPE CONTROL FOOTING 
TYPE CONTROL HEADING 
TYPE clause 
TYPE DETAIL 
TYPE DETAIL 
TYPE DETAIL 

TYPEWRITER 
TYPEWRITER 
TYPEWRITER 
TYPEWRITER 

UNIT 
UNIT 

UNTIL 
UNTIL option 

UNTIL FIRST 
UNTIL FIRST option 

UP BY 
UP BY 

UPON 
UPON mnemonic-name phrase 

UPPER-BOUND 
UPPER-BOUND 

i-27 

6-69 
7-103 

8-1 
6-27 
8-2 

7-46 

7-78 

7-108 

2-16 
4-3 
2-16 
7-24 
7-40 

7-98 
7-65 

6-64 
6-26 
6-62 
6-26 
6-68 
6-68 
6-30 
7-57 

7-38 
7-21 
5-10 

7-104 

7-79 

7-54 

7-95 

7-38 

3-4 

DD25 



USAGE 
USAGE 
USAGE COMPUTATIONAL-3 
USAGE clause 
USAGE IS DISPLAY 
USAGE IS INDEX 
USAGE IS INDEX 

USE 
USE 
USE 
USE 
USE 
USE 
USE statement 
Use qf the NOT Operator 

USING 
CALL USING 
USING A COBOL LIBRARY 
USING phrase 
USING phras~ 

USING/GIVING 
~NTRY POINT USING/GIVING 

VALUE 
VALUE 
VALUE clause 
VALUE Rule 
value 999 

VALUE OF 
VALUE OF clause 

VARYING 
VARYING option 
VARYING phrase 

VERBS. 
CATEGORIES OF VERBS 

VLR FORMAT 
APPLY VLR FORMAT phrase 

WITH SUPERVISOR CONTROL 
WITH SUPERVISOR CONTROL phrase 
WITH SUPERVISOR CONTROL phrase 

WORDS 
lowercase words 
RESERVED WORDS 
Reserved Words 
uppercase words 
WORDS, CHARACTERS, or MODULES 
WORDS, CHARACTERS, or MODULES 
Words 

i-28 

5-11 
3-10 
6-73 
6-73 
6-75 
6-79 

7-32 
6-32 
7-85 
7-108 
7-75 
7-104 
7-14 

7-51 
2-15 
7-29 
7-98 

7-51 

6-3 
6-76 
6-65 
6-79 

6-79 

7-79 
7-90 

7-19 

5-26 

5-6 
5-4 

3-19 
A-1 
3-7 
3-19 
5-4 
5-6 
3-2 

DD25 



WORKING-STORAGE 
Noncontiguous Working-Storage 
WORKING-STORAGE SECTION IN THE DATA DIVISION 
Working-Storage Records 

WRITE 
WRITE 
WRITE 
WRITE statement 

WRITE ••• ADVANCING 
WRITE ••• ADVANCING 

ZERO 
ZERO 
ZERO 

ZERO SUPPRESSION 
Zero Suppression Editing 

i-29 

6-3 
6-3 
6-4 

2-11 
7-74 
7-107 

5-10 

7-9 
3-4 

6-52 

DD25 





HONEYWELL INFORMATION SYSTEMS 
Technical Publications Remarks Form 

TITLE SERIES 60(LEVEL 66)/6000 COBOL REFERENCE MANUAL 
ADDENDUM A 

ERRORS IN PUBLICATION 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

ORDER NO. , DD2SA, REV. 0 

DATED I FEBRUARY 1977 

r\ You.r comments will be promptly. investiga. ted by appro. priate technical personnel and action will be taken o L(" as required. If you require a written reply, check here and furnish complete mailing address below. 

FROM: NAME~~~--~----~--..--..------~----..--~--~---

TITLE ~----~--~~------~-------~--------------
COMPANY~~--..----~----~--~----------------~ 

ADDRESS·~--~----~--~~~~--------------~--~ 



. PL:EASE FOLD AND TAPE -
.- 'N()TE: U.S. Postal Service will not deliver stapled forms 

ATTENTION: PUBLICATIONS, MS 486 

Business Reply Mail 
Postage Stamp Not Necessary if Mailed in the United States 

Postage Will Be Paid By: 

1:HONEYWELL INFORMATION SYSTEMS 
:2QO:SMITH STREET 
W'At.THAM, MA 02154 

Honeywell 

' I 
I 
I 
I 
I 
u 
Z, 
:i 
(.'.) 
z 
0 
...J 
<( 

. I
:::> 
u 

! 
I ______ , 

FIRST CLASS 
PERMIT NO. 39531 
WALTHAM, MA 
02154 . 

I 
I 
I 
I 
I 
l 
I 


