

COBOL REFERENCE MANUAL
ADDENDUM A

o iend
R

Honevwel

4
W.

SERIES 60 (LEVEL 66)/6000

SOFTWARE

SUBJECT:

Additions and Changes to the Series 60 (Level 66)/6000 COBOL Reference
Manual. :

SPECIAL INSTRUCTIONS:

This update, Order Number DD25A, is the first addendum to DD25, Rev. 0,
dated June 1975. The attached pages are to be inserted into the - manual
as indicated in =@ the collating instructions on the back of this cover.
Change bars in the page margins indicate technical additions and
changes; asterisks indicate deleted material. These changes will be
incorporated into the next revision of the manual. '

For this software release, the syntax construct 6000 WITH EIS
(SOURCE~COMPUTER and OBJECT-COMPUTER paragraphs) may also be specified
as 6000-EIS. The USAGE COMP-3 PACKED SYNC construct may also be
specified as USAGE COMP-4. This release also includes a new OPTIMIZE
COMPUTATIONAL option in the SPECIAL-NAMES paragraph.

NOTE: This cover should be inserted following the " manual cover to
indicate that the document has been updated with Addendum A,
SOFTWARE SUPPORTED:

Series 60 Level 66 Software Release 3
Series 6000 Software Release I

DATE:
February 1977
ORDER NﬁMBER:
-DD25A, Rev. 0

20445
2478
Printed in U.S.A.

(:)1977, Honeywell Information Systems Inc.

2/77

, blank

.5=19 through

5-27, blank
6-5, 6-6
6-13 through
6-~31 through
6-47, 6-48
6-67, 6-68
6=73 through
7-21 through
7-27 through
7-33, 7-34
7-37 through

7-45, 7-46
7-49, 7-50
7-61 through
7-69, 7-70
7-75, 7-76
7-85 through
7-93 through
7-99, 7-100
7-107, 7-108

COLLATING INSTRUCTIONS

5-26

7-66

7-88
7-96

A-1 through A-4

Insert

3-1, 3-2

3~5, 3-6

3-9, 3-10

3-17, 3-18

3-21, blank

5-3 through 5-10
5-10.1, blank
5-11, blank
5-11.1, 5-12

5-19 through 5-24
5=25, blank
5-25.1, 5-26
5-27, blank

6-5, 6-6

6-13 through 6-16
6-31 through 6-34
6-47, 6-48

6-67, 6-68

6-73 through 6~76
7-21 through 7-24
7-27 through 7-30
7-33, 7-34

7-37, 7-38
7-38.1, blank
7-39, 7-40

7-45, 7-46

7-49, 7-50

7-61 through 7-66
7-69, 7-70

7-75, 7-76

7-85 through 7-88
7-93 through 7-96
7-99, 7-100
7-107, 7-108
7-109, blank

A-1 through A-4

To update this manual, remove old pages and insert new pages as follows:

File No.: 1723,1P23

DD25SA

SERIES 60 (LEVEL 66)/6000

SOFTWARE
COBOL REFERENCE MANUAL

SUBJECT

Complete Description of COmmon Business Oriented Language (COBOL)
Implemented Specifically for the Series 60 (Level 66) and Series 6000
Information Systems

SPECIAL INSTRUCTIONS

This manual replaces COBOL Reference Manual, Order Number BS08, for
Series 6000 system users. Order Number BS08 must be used by Series 600
system users and by Series 6000 system users who are on prior software
releases.

Those COBOL features implemented for the Series 60 (Level 66) and 6000
systems that are nonstandard or unique to the Series 60 (Level 66)/6000
systems are indicated by shading. In addition, those features of COBOL
1968 presented in this manual that have not been implemented are
indicated as such by delta symbols (4) in the margins of those pages on
which these features are presented.

SOFTWARE SUPPORTED

Series 60 (Level 66) Software Release 2
Series 6000 Software Release H

ORDER NUMBER
DD25, Rev. 0 : June 1975

Honeywell

PREFACE

This COBOL Reference Manual and a companion manual, the COBOL User's Guide,
have been prepared for Series 60 and Series 6000 users.

This manual is organized in a format similar to that used in the Conference
on Data Systems Languages (CODASYL) COBOL Journal of Development (JOD). It is
intended to be strictly a language reference document containing the formats,
syntax rules, general rules, and special considerations required to construct a
COBOL source program. The contents of the manual reflect (a) Series 60/6000
COBOL as it relates to the Series 60/6000 operating system; (b) implemented
elements of CODASYL COBOL as published in the JOD; and (c) American National
Standard COBOL (X3.23-1968). The highest level of American National Standard
implementation is presented for all modules, with some minor .exceptions
indicated by delta (A) symbols.

As a supplement to the COBOL Reference Manual, the COBOL User's Guide
provides information concerning COBOL concepts, Series 60/6000 1implementation
techniques, internal compiler characteristics, and efficiency considerations. In
addition, sample deck setups and job control data are provided to assist the
user in interfacing with the operating system. '

The following language elements, defined in previous versions of the COBOL
specifications, have been deleted from CODASYL COBOL and are not included in
American National Standard COBOL; however, they are still supported by Series
60/6000 COBOL in the current state of implementation: .

] Figurative constants: HIGH-BOUNDS and LOW-BOUNDS

° PREPARED option

o Constant Section

o CLASS clause

) Editing clauses

. FILE CONTAINS clause
® POINT LOCATION clause
® RANGE clause

o SEQUENCED clause

© 1975, Honeywell Information Systems Inc. File No.: 1723,1P23

DD25

e SIGNED clause

) SIZE clause

° Conditional statement IF...OTHERWISE...THEN...

As a continuing policy of conforming to COBOL standards and encouraging
program transferability, documentation of the above language elements has been

deleted from this manual. For a detailed description of the obsolete. language
elements, refer to Section XVII of the COBOL User's Guide. '

Series 60 Level 66 is hereafter referred to as Series 60. The technical
information contained in this manual refers to both the Series 6000 and Series
60 systems, unless otherwise specifically stated.

iii . ' DD25

ACKNOWLEDGMENT

This acknowledgment has been reproduced from the "Journal of Development,
CODASYL

1968" as requested in that publication, prepared and published by the
COBOL Programming Language Committee.

"Any organization interested in reproducing the COBOL report
specifications in whole or in part, using ideas from this report

and
as

the basis for an instruction manual or for any other purpose 1is free
to do so. However, all such organizations are requested to reproduce

the following acknowledgment paragraphs in their entirety as part

of

the preface to any such publication. Any organization using a short

passage from this document, such as in a book review, is requested
mention COBOL in acknowledgment of the source, but need not quote
acknowledgment. :

COBOL is an industry language and is not the property of any
company or group of companies, or of any organization or group
of organizations.

No warranty, expressed or implied, is made by any contributor
or by the COBOL Committee as to the accuracy and functioning
of the programming system and language. Moreover, no
responsibility is assumed by any contributor, or by the
committee, in connection therewith.

The authors and copyright holders of the copyrighted material
used herein

FLOW-MATIC (Trademark of Sperry Rand Corporation),
Programming for the Univac (R} I and 1II, Data
Automation Systems copyrighted 1958, 1959, by Sperry
Rand Corporation; IBM Commercial Translator Form No. F
28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-
Honeywell C

have specifically authorized the use of this material in whole
or in part, in the COBOL specifications. Such authorization
extends to the reproduction and use of COBOL specifications in
programming manuals or similar publications.”

iv

to
the

DD25

FUNCTIONAL LISTING OF PUBLICATIONS

for

SERIES 60 (LEVEL 66) and SERIES 6000 SYSTEMS

FUNCTION

Hardware reference:

Series 60 Level 66 System
Series 6000 System
DATANET 355 Processor
DATANET 6600 Processo’

Operating system:

Basic Operating £ stem

Job Contr. IJ..nguage
Table Defi .i1tions
I/0 Via MME GEINOS

System initialization:

System Startup
System Operation
Communications System

Communications System
DSS180 Subsystem Startup

Data management:

File System

Integrated Data Store (I D-8)
Integrated Data Store (I-D-5)
File Processing

File Input/Output

File Input/Output

I-D-S Data Query System
I-D-S Data Query System

Program maintenance:

Object Program
System Editing

Test system:

Online Test Program
Test Descriptions

Error Analysis and Logging

Language processors:

Macro Assembly Language
COBOL-68 Language
COBOL-68 Usage

JOVIAL Language

FORTRAN Language

Generators:

Sorting
Merging

APPLICABLE REFERENCE MANUAL
ORDER
TITLE NO.
Series 60 (Level 66)/Series 6000:

Series 60 Level 66 Summary Description DC64

Series 6000 Summary Description DA48
DATANET 355 Systems Manual BS03
DATANET ‘6600 Systems Manual DC88

General Comprehensive Operating

Supervisor . (GCOS) DD19
Control Cards Reference Manual DD31
System Tables DD14
I/0 Programming DB82
System Startup DD33
System Operation Techniques DD50
GRTS/355 and GRTS/6600 Startup

Procedures DDO05
NPS Startup DD51
DSS180 Startup DD34
File Management Supervisor DD45
I-D-S/I Programmer's Guide ~DC52
I-D-S/I User's Guide DC53
Indexed Sequential Processor DD38
File and Record Control pDO7
Unified File Access System (UFAS) DC89

(Series 60 only)

I-D-S Data Query System Installatlon - DD47
I-D-S Data Query System User's Guide DD46
Source and Object Library Editor DDO06
System Library Editor DD30
Total Online Test System (TOLTS) DD39
Total Online Test System (TOLTS)

Test Pages ' DD49
Honeywell Error Analysis and Logglng

System (HEALS) » DD44
Macro Assembler Program DDO8
COBOL - DD25
COBOL User's Guide DD26
JOVIAL DD23
FORTRAN - DD02
Sort/Merge Program . DD09

Sort/Merge Program E DD09

v : DD25

FUNCTION

APPLICABLE REFERENCE MANUAL

ORDER
TITLE ’ NO.
Series 60 (Level 66)/Series 6000:
Simulators:
DATANET 355/6600 Simulation DATANET 355/6600 Simulator DD32
Service and utility routines:
Loader General Loader DD10
Utility Programs Utility DD12
Utility Programs UTL2 Utility Routine (Series 60 only) DCol
Media Conversion Bulk Media Conversion ‘DD11
System Accounting Summary Edit Program DD24
FORTRAN FORTRAN Subroutine Libraries DD20
FNP Loader DATANET 355/6600 Relocatable Loader DD35
Service Routines Service Routines DD42
Software Debugging Debug and Trace Routines DD43
Time Sharing systems: .
Operating System TSS General Informai:ion DD22
System Programming TSS Terminal/Batch Interface DD21
System Programming TSS System Progr«. ier's Reference
Manual ' DD17
BASIC Language Time Sharing BASIC DD16
FORTRAN Language FORTRAN DDO2
Text Editing Time Sharing Text Editor DD18
Remote communications: ‘
DATANET 30/305/355/6600 FNP Remote Terminal Supervisor (GRTS) DD40
DATANET 355/6600 FNP Network Processing Supervisor (NPS) DD438
DATANET 700 RNP RNP/FNP Interface . DB92
Transaction processing:
User's Procedures Transaction Processing System User's
Guide DD41
Handbooks:
System—-operator communication System Console Messages DD13
Pocket guides:
-Control Card Formats Control Cards and Abort Codes DD0O4
FORTRAN FORTRAN Pocket Guide DD82
Rev. 7412 vi DD25

CONTENTS

Section I INntroductione « o« o o« o o o o o o o« o o

Section II Functional Concepts e e e e e
: General Description of COBOL s e e o s
- COBOL Functional ConceptS. . « « + «

Record Ordering. . . « « & « « o & & &

SOXting o « o o« o o o o o s o o o

Merdging .+ o o o o o o o o o o s o

Report Writing .« « & « o o o o o o o+ &

"Table Handling . .+ « « ¢ o & o o o o &

Table Definition., . . e e e e e s

Initial Vvalues of Tables. .« s e e e

Reference to Table Items.
Subscripting. ¢ . 4

IndexXing. « « « o o o o o« o o o o

Mass Storage . « . ¢« ¢ s 6 s 6 e . . .

Access and Processing Techniques. .

Sequential Access with Sequential Processing.
Random Access with Sequential Processing. . .

Segmentation . . . 4 4 4 4 4 e e i e o
Terminology + + « o o« o o o o o o«
Program Segments. <« . . .+ .
Fixed Portion « « + « .« . .
Independent Segments.« . . .

Modularization « « o+ o o o o o & o «

Using a COBOL Library. . . « « . « . .

Transaction Processing . . . e o o e
Transaction Processing System o . e
Transaction Processing Applications

Section IIT Language Concepts « + « & & &+ ¢ & o o o o«
Language Relationships
User-Created Symbols

Words « « v &« 4 o o W
Data-Names
Condition-Names. .
Procedure-Names, .
Mnemonic-Names . . .

Literals. . . « + + &« o+ &
Nonnumeric Literals. .
Numeric Literals . . .

PICTURE Character-Strings

Other COBOL Symbols. . . .
Figurative Constants. « . .

..
I
:

s 6 o s o
.
.
.
.

.
.
.
.
.

vii

Page

-
!
—

t
OO~ U &S W

H
o

DRV NDN
1]

o

w N

2-13
2-13
2-14
2-14
2-15
2-15

wc»u;w(»ua?tuu:wL»quc»
1
BB WWWWWRNNN

DD25

CONTENTS (cont)

Section III (cont)
‘ Special Registers . . .
Tally Register .
Line-Counter . .
Page-Counter . .
Editing Symbols ., .
Punctuation Symbols
Relation Symbols. .
Arithmetic Operation Symbols.
Reserved Words. . . . o . o e .
Concept of Computer—Independent Data Descrlptlon
Physical Aspects of a File. .
Conceptual Characteristics of
Record Concepts « « « + « o
Concept of Levels
Concept of Classes of Data.
Algebraic Signs
Standard Alignment Rules. .
Uniqueness of Reference.
Qualification .
Subscripting. .

e« o o o o
* s e o s
e o o o
o o o o o
o'oooo
* o o o o
3 e o s o o
e o e o o
LI]

. e o o . e o o

[
e
=

[

e

¢« o o o e »

.
.
-
.
.
.

0."'.
" e o o o
* e e o o
¢ s e ¢ & o o
* e e o e .
« e e o o

. .
. . .
. . . .
0 . .

® s e s @

Indexing. . .

o e o o o

Identifier. . . .
Restrictions on Qualification, Sub
and Indexing« + + « .+ & . .

Reference Format . . .« « &« 4 o« « & « « o &
Reference Format Representation
Sequence Numbers+ « . .« . .
Continuation of Lines.
Blank Lines. « « « o o o &« o« o o &
Division, Section, and Paragraph Formats
Division Heade€r. « « o o« o« o s+ o o o &«
Section Header . . « « « o« « . .
Paragraph Header, Paragraph- Name, and
Paragraph . « « o ¢ o o ¢ o o o o v o
Data Division Entries « o « &« & « o
DeclarativesS. « « o « « & o o o o o s o o
Comment Lines . . . s e e e e e s s e s
Format Conventions Used in this Manual .
Definition of a General Format. . . .
Words o & « o o o &
Periods « + « & .+ .
Level-=Numbers . . .
Brackets and Braces
The Ellipsis (...).
Format Punctuation.
Special Characters.
Shading
DeltaS. « « 2 o o o

0
Roe o o«
[

e s e e o s
[ad

.
e« o o & &

.

s o e o s o & o

e ¢ o o o » e

* 2 o e

e o .8 & o o o o o
e ® o o & o & o o

s o & o s © s 9 o

e & o o s s 3 s @

e o 04 " s o s e o

« o o s o

e o e o o e e o @

® o o & ¢ s s o+ o

s e o & o s s e »

e o © » o s e o e ¢ ¢
e &5 ® o o ©o o &

e ® o o o e e

o 6 s o o 8 o »

Section IV Identification Division . + « &+ o & o « o « & & &
Description of the Identification Division . .
Organization of the Identification Division
Structure of the Identification Division. .
PROGRAM~-ID Paragraph . .
AUTHOR Paragraph
INSTALLATION Paragraph .
DATE-WRITTEN Paragraph .
DATE-COMPILED Paragraph.
SECURITY Paragraph . . .
REMARKS Paragraph. . . .

* s e e »

° o

. - . .

s e o o .
e e

« 3. 0 e o

« e o s v o &

e o o o &
o o o o o
v o e o e
s o o o o s
* s e+ o e

viii

® & o ¢ @ e e s+ ° » © o s ° e & & 6 ¥ O s »

* o o s e o &

s e o ¢ o »

e » o ¢ 3 & s 3 e o e

WWwwwwwwwwwwuwwwwwww
4
HHEHOODOONdINNdIaoutumio o

Page

BB B e B B B B D
LI T T |
oI W

DD25

Section V

Section VI

Data Division e e s o o

CONTENTS (cont)

Environment Division. . . « « & « o ¢ ¢ o« o o .

Description of the Environment Division. . . .
Organization of the Environment Division. .
Structure of the Environment Division . . .

Configuration Section in the Environment Division

SOURCE-COMPUTER Paragraph+ « « « . .
OBJECT~COMPUTER ParagraPh . « « o & ¢ « o @
SPECIAL-NAMES Paragraph « . . .

FILE~CONTROL ParagrapPh: + + « &+ o o o « + &
I-O-CONTROL Paragraph . . '+ + o « « o o o &

Description of the Data D1v1510n « o
Organization of the Data Division .
Structure of the Data Division. . .

Structure of a Record Description. . .

File Section in the Data Division.

Working-Storage Section in the Data Division

“ s e o o
« o o = o
s s e e &
o« o o o s o

Noncontiguous Working-Storage
Working- Storage Records . « + & o o &« & o &
Report Section in the Data Division.

File Description - Complete Entry Skeleton.

Sort-Merge File Descrlptlon - Complete Entry

Skeleton e e e e e e e e

.

Input-Output Section in the Environment Division:

.

Report Descrlptlon - Complete Entry Skeleton.

Data Description - Complete Entry Skeleton.
Report Group Description - Complete Entry
SkeletOn o+ 4 o« ¢ ¢ s o o & o o o o o s o
Data Division Clause Descriptions.
BLANK WHEN ZERO . . + . « .« .
BLOCK CONTAINS. . .
CODE. . . . « o e
COLUMN NUMBER .« e
CONTROL
COPY.
data-name/FILLER.
DATA RECORDS. .
GROUP INDICATE.
JUSTIFIED . . .
LABEL RECORDS .
level=-number. .
LINE NUMBER . .
NEXT GROUP., . .

.
* e s s o
.
v e .
* s
« s e »
« o o o

.
" e s e e

¢ o s o e
.
.

s e & o &
.

.

.

. L T T S
.

e e s e s

S o s s s s

.

s e s s o

" s e s s s e s

s o s s e o

« e s s s »

" e s o s

OCCURS. . . .

PAGE LIMIT., .

PICTURE . . .

RECORD CONTAINS
RECORDING MODE.
REDEFINES .
RENAMES . .
REPORT. . .
RESET . . .
SOURCE, SUM, VAL
SYNCHRONIZED.
TYPE., . . .
USAGE v . .
VALUE . . .
VALUE OF. .

® & & e s o o 2 o s s
* o 9 e

¢ o o o & s o o

e & o o o ° & s 6 s e e e e s o s e ® s s o
.
* o o+ & o e s o
¢ o s e

* s s s e

.

s o
¢ o
. .

* e e e & e+ & s e e o e e & s v e s = e e e

* e o 8 .5 o 8 s e+ e

Cie o o o

E

" e s s e
“ e e .
.

s o o 0
® o 8 o s 5 2 s s e s o+ @

e o s 9 o e
" e e e »

" 82 8 e & & s e & & o a
® e . 8 ° s & & s e e & & & @
« o .0 o o e o

® s e s 5 e s s s e v
v e s o o .

e o ¥ & e o o e e s e o * 2
* e s o o s

* e o o o

.
. o
. .
o« e
.« .

ix

.

* s s s e ¢

e o o s e = o

v e e+ o

¢« o e o

¢ o & o s 6 8 s e e & » s

el
Y
[Te]
(14

oot oun
I B LN T T I |

B = 00 W NN

wago

e e R e e e R e
| I B |
OV DWW NN

6-8
6-10
6

6-16
6-20
6-21
6-22
6-24
6-25
6-26
6-27
6-28
6-29
6-30
6-31
6-32
6-34
6-35
6-37
6-38
6-42
6-46
6-55
6~56
6-57
6-59
6-61
6-62
6-63
6-66
6-68
6-73
6-76
6-79

DD25

Section VII

CONTENTS (cont)

Procedure Division. . « ¢« ¢ ¢ ¢« & o o .
Description of a Procedure Division.
DeclarativesS . « o o o o o « o o o @
Procedures . o o« o« s o o o o o o s o
Structure of the Procedure Division,

Procedure Division Header
Procedure Division Body
Procedure Division Segments . . .
Statements and Sentences ., . . .+ ¢« ¢ o .
Conditional Statements and Sentences. .

® o 2 s s e ® o
e o o o o o 8
® & o o o o e ¢ o

Compiler=-Directing Statements and Senten

Imperative-Statements and Sentences . .
Sentence Execution .« « « « 4 o o o o & o
Conditional Sentence Execution.
Compiler-Directing Sentence Execution .
Imperative Sentence Execution
Control Relationship Between Procedures
Conditions . . « « + + . & .

Simple Conditions . . .

Relation Condition .

Sign Condition . . .
Class Condition. . . .
Condition-Name Condition
Switch-~Status Condition.

Compound Conditions . ., .
Abbreviated Combined Relatlon
Use of the NOT Operator . . .
Evaluation Rules for Conditions
Arithmetic-Expressions
Arithmetic Operators. . . . e

Formation and Evaluation Rules for
Arithmetic-Expressions.
Common Options in Statement Formats. .
ROUNDED Option.« e s e s
SIZE ERROR Option

)
.
.
.
°

Y o o o o o »
(o]
T e o ¢ o ¢ 0o o
Q
o o 8 o o o s @

22

& 6 o o e o o o & o s @
(o]

s o o o e o o e o e s o
1]

CORRESPONDING Option.

e e e e o o

Arithmetic Statements .

Overlapping Operands. . .

Multiple Results in Arithmetic Statement
Categories of Verbs. . . .
Specific Statement Formats

ACCEPT. .

ADD . . .

ALTER . .

CALL. . .

CLOSE . .
COMPUTE .

e o © 8 e & o

»
e o e
.

. o o e e .
L.
.

‘v s e ®
)

.
e o s o o
.

* o e e

COPY. .
DISPLAY
DIVIDE.
ENTER .
EXAMINE
EXIT. .
GENERATE.
GO TO . .
IF. « . .
INITIATE.
MERGE . .
MOVE. . .
MULTIPLY.

.
s 0 o & & 8 s s o s & s » o 0

e ® o o e e o s e s s e
e o s o o ® e 9 e

» o o o & o 8 e e 2 s

* & 8 & e & e ¢ o o e o o s 0

.
. & e e e & 6 o s s s o

o ® 5 e o ® s e & s s e s s o
® o ®» s 8 & o & o s 3 v e s v s s e
o 8 & & 8 o e 8 ° e s o 2 8 e s 3 s e s o

e o o o 8 e ¢ o e e & & » o e &

" s e o

e o o

« s o 0

e o o o o
* o e

* o o o o

e o o o 8 o

e e e e e »

e & ¢ s o o (o e o o s e s & o o

@ e o o e & e * & e s & »

°
S

® 8 e o o @ e & ° o & s © o 2

¢ o 6 o s ¢ 2 s 2 s s 0 5 & & o s [} e © S s . e € s o

¢ ® & 8 o ® e 8 2 e & e e ¥ 6 e © 6 * 3 & & 5 6 © & o @

€ e e & & & 3 & & & 6 & & © 3 9 8 ® S ® & © & & & & ° s & @

e o o 8 o e o

e e & o o o ° e 8 B 3 v e s+ 6 o s s » & s

e« o ® o o e o o o° o

e e 6 o & e o e © ©° 3 5 * & © 2 © & o° s

* ©° o 2 e o * . ® o s e.® o o 5

e & o & ® & e 3 o 3 s

el

o)}
Q

[}

EVIESENES RN S BN ERECESERN PR IEN RN RN N RN RN RS S RN |
i
HFHEWOWONNSOAAOAGUIU S B WWN NN

-7-59

7-61
7-62
7-63
7-67
7-71

DD25

CONTENTS (cont)

jection VII (cont)
NOTE. .

OPEN. . . .
PERFORM . .
READ, . . .
RELEASE . .
RETURN. . .
SEARCH. . .
SEEK. . . .
SET
SORT. . . .
STOP. . . .
SUBTRACT. .
TERMINATE .
USE
WRITE . . .

Section VIII The COBOL Library
Description of
COPY Clause. .
COPY Statement

Appendix A Reserved Words. .

[ndex _ T

e o v s s e o s s * * o

e e o 5 & & o * s e & & s s o

xi

. . e
. . o
- . o
. . e
o o .
. * o
. .« e
e o .
. . .
. o o
e .
- . -
. . .
. . .
. o -

. . .
o o .
. . o
. . .

- . e .
. e o .
. o o
. *« s e
- o .
* e . .
. . . .
. e s o
. e o o
¢« .o o .
. . . .
. e s e
3 . . e
. « e .
e o e

Library

s e ° & e & & & o 9+ o

* s & e s e * e e e+ e

® & & & o 2 e e & o s o

® o 6 o o o o o o o e & =

Page

7-73
7-74
7-76
7-84
7-87
7-88
7-89
7-93
7-94
7-96
7-100
7-101
7-103

© DD25

SECTION I

INTRODUCTION

COBOL is an acronym for the phrase COmmon Business Oriented Language. The
COBOL system, which includes a compiler {or language processor) in addition to
the COBOL language, is used to state all the facets of a business-oriented
problem and to convert the statements into a form usable by a computer. The
following sections of this manual describe the COBOL language. The COBOL
compiler is not described since the purpose of this manual is to give the user
an insight into using the language to state the problem most efficiently. A
description of the components of the compiler or how the compiler converts the
statc nt of the problem into the ones and zeros a computer uses is not germane
to using the COBOL language. This manudal, therefore, is for those who understand
business-oriented problems and the concepts of data processing. '

A business-oriented data processing problem can be broken down into four
distinct groups of logically related information. The first is the
identification of the problem such as, is it an inventory control problem, a
personnel accounting problem, a payroll problem, or a billing problem? Also
included in this group is information such as the assignment to solve the
problem, when, and where. The second group of logically related information is
the data processing environment in which the problem is to be solved. That is,
what computer will be used to compile the program and run the Jjob? What
peripheral equipment is necessary to run the job? What other programs (or
software) are necessary? The information in this group is also wuseful when a
program has been written for one computer environment and it is desired to run
it in another computer environment. The third group of logically related
information is that in which the data to be processed and the processed data 1is
described. Each file, both input and output, is described in terms of its
records. Each unique type of record in a file is described 1in terms of its
unique data items. In addition to this, the organization of the files must be
described and the processing mode to be used must be stated. These three groups
of logically related information; the ‘identification of the problem, . the
information related to the data processing environment, and the description of
the data, can be considered as the problem statement. The fourth group of
logically related information can be considered as the procedure (s) by which the
data is to be processed to solve the problem. In this group of information, the
user states in a step-by-step manner exactly what is to be done to the data to
produce new or additional data.

The COBOL language 1is structured to accommodate the four groups of
logically related information in four named divisions. These divisions are the
Identification Division, the Environment Division, the Data Division, and the
Procedure Division. Every COBOL program contains these four divisions in the
above order. The Identification Division is used to identify by name the source
program (that which the user writes) and the outputs of a compilation. Other
information that can be included in the Identification Division is the name of
the programmer, the name of the installation at which the program was written,
the date the program was written, the date of compilation, and any other desired

1-1 DD25

information such as a brief statement of the purpose of the program. . The
Environment Division is that part of the program in which the computer(s) to be
used for compiling and running the program is described. In the Environment
Division, names may be assigned to peripheral equipment and the features of the
files directly related to the hardware may be described. In the Data Division,
the files of data the program processes or creates and the unique individual
records of these files are described. Data is written according to a standard
data format rather than an equipment-oriented format. In the Procedure Division,
a step-by-step logical process is written to instruct the computer to process
the input data.

In the Identification Division, the problem is identified by name, which
may or may not reflect the type of problem. For instance, the problem may be
named INVCON (for Inventory Control) but the type of inventory control problem
may be a combination of updating a master inventory file and producing records
from which new parts can be ordered. COBOL, being a business problem oriented
language, incorporates features that make it possible to accomplish a particular
job without programming the job in detail. The COBOL language allows the user to
perform arithmetic calculations, edit data, sort data, Herge daf and produce
reports. A single COBOL program can perform one or any combination of these
functions.

1-2 DD25

SECTION II

FUNCTIONAL CONCEPTS

GENERAL DESCRIPTION OF COBOL

COBOL is a programming language used throughout the world for programming
business data processing applications. The COBOL language was developed by a
group of computer users and manufacturers, and first documentation was
distributed in April, 1960. Since then it has undergone many changes and
extensions resulting from manufacturer experience with COBOL implementation and
user experience with COBOL programming for computers of many sizes and
configurations. The improvements are embodied in this version of the language
termed COBOL-68. :

COBOL allows computers to be programmed in a language that is similar to
the English language. English paragraphs, sentences, and phrases are written,
following the conventions of a standard reference format, to describe the data
to be processed and to specify the required procedures. The resulting text is
called a COBOL 'source program'. ' '

The source program text consists - of 1lines containing a maximum of 80
characters and is often keypunched on 80-column cards. The source program is
submitted as input to the computer under the control of a special program known

.as a compiler. As output, the compiler produces an object program on punched
cards, magnetic tape, or other suitable storage media. The object program is the
actual sequence of machine instructions required to accomplish the functions
specified in the source program. In addition, the compiler produces an edited
listing, which includes an annotated printout of the source program ‘in the
reference format. Another important function of the compiler is to analyze the
source program for correct COBOL syntax, and to print error comments for any
syntax errors that are detected. The computer's operation under control of the
compiler is called compilation.

COBOL FUNCTIONAL CONCEPTS

The Procedure Division in COBOL corresponds to the overall program in some
other programming languages. In COBOL, however, the Data Division.also plays a
central role. Procedural statements are formed by combining COBOL reserved
words, literals, and data-names.

The COBOL object program typically processes one or more files of data
records, and the user exercises considerable control over the ~actual physical
format of each record, A record can contain a few or many individual items . of
data; the respective items within a record may have quite different formats, and
may be related to each other in complex ways. A file can contain several
distinct record types. o

2—1‘ ' DD25

‘ In the File Section of the Data Division, the user provides a description
of each file, including:

° The types of data records in the file,
® The various data items of which each record is composed.
) The detailed format.of each item.

The user assigns a name (data-name) to each file, record, and data 1tem, to
permit references elsewhere in the source program.

The concept of records is extended to working-storage data items that do
not belong to files. Records in working-storage are . described in exactly the
same manner as records belonging to files, .and can have equal complexity. It is
also possible to describe independent Working-Storage Section data items that
are not structured into records.

In the Procedure Division, many different types of statements may. be
utilized, to accomplish such functions as the following:

) Reading a record from an input file.
° Writing a record on an output file.
) Moving data to or from the current record of an input or output file,

or to or from a working-storage data item. The unit of data moved can
be the entire contents of a record or the contents of a data item
within a record.

° Using the walues of wvarious items, calculating a new value
arithmetically through addition, subtraction, multiplication, or
division, and storing the new value in a specified item.

L Comparing the values of data items, and executing alternative sets of
statements depending upon the outcome of the comparison.

e Transferring control, so that execution continues in another part of
the program. A transfer of control may include provision for control
to be returned when a specified point 1is reached, or the return
provision may be omitted.

° Generating a line (or set of lines) for a report.

) Sorting a collection of records. Procedural statements may

- present the records one by one as sorting ¢y meérging takes place or an

entire file may be submitted, with input housekeeping implicitly

provided. Similarly, an output file may be produced implicitly, or

" procedural statements may receive the records one by. one as their
final order is established.

2-2 ~ DD25

) Obtaining special informétion, such as current date and time of day,
from GCOS; or accomplishing low-volume data transmission.

) Beginning and concludihg processing of each file.
) Beginning and concluding presentation of each report.
° Setting procedural switches; in effect, changing the destinations of

GO TO statements during execution of the object program.

e

o

° Manipulating an item character by character, changing or counting
certain character values. :

) Concluding execution of the object program.

) Causing user~supplied procedures to receive control during the
implementation of certain otherwise automatic input-output and
reporting functions.

° Enhancing source program documentation with explanatory notes.

° Accomplishing special functions that are not defined in the COBOL
language specifications but are available in other languages., For
example, transferring control to another separately compiled or
assembled program, or executing an arbitrary sequence of GMAP
instructions.

) Explicitly defining control exit points, enhancing programming

convenience.

In addition to the preceding Procedure Division functions, COBOL contains
sorting, report writing, table handling, mass storage, and segmentation
features.

RECORD ORDERING

The ability to arrange records into a particular order- or sequence is a
common requirement of a data processing user. The sort and merge features of
COBOL provide facilities to meet this requirement.

While both of these features are concerned with record ordering, the
functions and capabilities of the SORT and MERGE statements are different in a
number of respects. The sort will produce an ordered file from one or more flles
that letel rdered in the sort sequence.] : ro

is de31gned to e

1pa , COLGS: ' : ! z i

Only the BSORT statement prov1ded with an optlonal input

procedure, but both the SORT snd MERGE statements are provided with optional
output procedures. ' :

2-3 ’ ° DD25

Sorting

Sorting constitutes a significant percentage of the workicad in a business
data processing operation. Therefore, an efficient sort program lS required in
any business software system.)

In many sort functions, it is necessary to apply special processing to the
contents of a sort file. This processing may consist of adding, deletlng,
creating, altering, editing, or other modification of the individual records in
the file. It may be necessary to apply the special processing before or after
the records are reordered by the sort, or the processing may possibly be
required in both cases. The COBOL sort feature allows the user to express these
procedures in the COBOL language and to specify at which point, before or after
the sort, they are to be executed. A COBOL program may contain any number of
sorts, and each of them may have independent special procedures. The sort
feature automatically causes these procedures to be executed at the specified
point in such a way that extra passes over the sort file are not required.

The normal organization of a COBOL program containing a sort is such that
the input file is read and operated upon by an input procedure. Within this
input procedure, the RELEASE statement is used to create the sort file. That is,
at the conclusion of the input procedure, the sort file is composed of those
records that have been output by using the RELEASE statement rather than the
WRITE statement, and this file is available only to the SORT statement., The
execution of the SORT statement arranges the entire set of records in the sort
file according to the keys specified in the SORT statement. The sorted records
are made available from the sort file using the RETURN statement during the
output procedure.

The sort file has no label procedures which the user can control; the rules
for blocking and for allocation of internal storage are peculiar to the SORT
statement. The RELEASE and RETURN statements imply nothing with respect to
buffer areas, blocks, or reels., A sort file, then, may be considered as an
internal file which is created from the input file (RELEASE), processed (SORT),
and then made available to the output file (RETURN). The sort file itself 1is
referred to and accessed only by the SORT statement.

For additional information concerning the sort process, refer to Section IX
of the COBOL User's Guide.

of two ,or. more

ambinlng the contents

2-4 DD25

no label procedures which the user can con 1 and the
for allocation of internal. storage are’ ‘peculiar to the
TURN statement implies nothing with respect to ‘buffer
: 1s. A merge file, then, may be considered as an internal
ated from input files by combining them (MERGE) as the file is

. the MERGE statement, A merge file description is considered
of file description., That is, a merge file, like any file,

t onal“znformation concernlng the merge process, refer to sactlon.
-"s Gulde‘_': : :

REPORT WRITING

The production of reports has always placed a heavy burden in terms of
machine time and programmer time on the business data processing wuser. The
Report Writer feature is available to specify and produce reports quickly and
accurately in COBOL. The Report Writer allows the wuser to describe reports
pictorially in the Data Division, thereby minimizing the amount of Procedure
Division coding necessary. In the Report Writer feature, the physical aspects of
the report format must be distinguished from the conceptual characteristics "of
the data in the report. '

When describing the physical aspects of the report, consideration must be
given to the hardware device on which the report is to be written and to the
structure and format of the individual page. Facilities for specifying this
information are included in the Report Writer entries.

The concept of a hierarchy of levels is wused in defining the logical
organization of the report. Lach report is divided into report ygroups which in
turn are divided into sequences of items. The use of a level structure permits
the user to refer to ;. entire report-name, major oOr minor report groups,
elementary items within report groups, etc.

In creating the report, the user must define necessary report groups. A
report group may be of any of the following; HEADING group, FOOTING group,
CONTROL group, or DETAIL PRINT group. A report group may extend over several
actual lines on the page.

The report description entry contains information pertinent to the overall
format of the named report and uses the level indicator RD. The characteristics
of the report page are outlined by describing the number of physical 1lines per
page and specifying the limits for presentation of headings, footings, and
detail lines. Data items that act as format controls for a report are specified
in the RD entry. Each report associated with an output file must be defined by
an RD entry. , :

A report group is a set of data that is composed of several print 1lines
consisting of many data items or one print line containing only one data item. A
report group description entry contains, in addition to other informatioh, a
level-number and a TYPE description. The level-number indicates the relative
position in the data hierarchy of the report groups, and the TYPE clause
describes the purpose of the report group in terms of its presentation within
the report. ‘

2-5 A : DD25

Specifically, the report group description entry defines the format and
characteristics for a report group, whether this group is a line, a series of
lines, or an elementary item. The relative placement of items within a report
group, the level of a particular report group within the hierarchy of report
groups, the format of all items, and any control factors associated with the
group are defined in this entry.

Schematically, a report group is a line or a series of lines., The length of
a line 1is determined by the compiler from environmental specifications.
Initially, the lines consist of all spaces. Within a report, the order of the
individual report groups is not significant. Within a report group, the wuser
describes the elements consecutively from left to right and * then from top to
bottom. The description of a report group is analogous to the description of a
data record except that in the report group spaces are assumed where no specific
entry is indicated for presentation, while in the data record every character
position must be explicitly defined, regardless of 1its data content. Report
Writing is discussed in more detail in Section VIII of the COBOL User's Guide.

TABLE HANDLING

Tables of data are common components of business data processing problems.
Although the items that make up a table could be described as contiguous data
items, there are two reasons why this approach is not satisfactory. First, from
a documentation standpoint, the underlying homogeneity of the items would not be
readily apparent; and second, it would be difficult to make an individual
element of such a table available if a decision is required to make one of these
elements available at object program execution.

Tables composed of contiguous data items are defined in COBOL by including
the OCCURS clause in their data description entries. This clause specifies that
the item is to be repeated as many times as stated. The item is considered to be
a table element and its name and description apply to each repetition or
occurrence. Since each occurrence of a table element does not have a unigue
data-name assigned to it, reference to a desired occurrence may be made only by
specifying the data-name of the table element together with the occurrence
number of the desired table element. The occurrence number is known as a
subscript, and the technique of specifying individual table elements is called
subscripting. :

The number of occurrences of a table element may be specified as fixed or
variable. If the occurrence number is given in the source program as fixed, the
actual data that is entered into the table at object program execution may still
be composed of a variable number of occurrences of the table elements. Thus, not
every table element must contain valid data.

To manipulate specific items and provide table searching, a technique
called indexing is also available. Both subscripting and indexing are described
below,

Table Definition

To define a one-dimensional table, an OCCURS clause is used as part of the
data description of the table element, but the OCCURS clause must not appear in
the description of group items which contain the table element. Example 1 shows
a one-dimensional table defined by the item TABLE—ELEMEN?.

\
\

i
|
i
¥

2-6 ; DD25

Example 1l:

02 TABLE-1l.
03 TABLE-CLEMENT; OCCURS 20 TIMES.
04 DOG; ...

04 FOX; ...

In the preceding example, the complete set of occurrences of TABLE-ELEMENT
has been assigned the name TABLE-1l. However, it is not necessary to assign a
group. name to the table unless it is desired to refer to the complete table as a
group item.

Defining a one-dimensional table within each occurrence of an element of
another one-dimensional table produces a two-dimensional table. To define a
two~-dimensional table, then, an OCCURS clause must appear in the data
description ~f the element of the table, and in the description of only one
group item which contains that element. Thus, in Example 2 below, DOG 1is an
eleme- . of a two-dimensional table; it occurs five times within each element of
the item BAKER which itself occurs 20 times. BAKER is an element of a
one-dimensional table.

Example 2:

02 BAKER; OCCURS 20 TIMES; ...
03 CHARLIE; ...
03 DOG; OCCURS 5 TIMES; ...
In the general case, to define an n~dimensional table, the OCCURS clause
should appear in the data description of the element of the table and in the
descriptions of (n-1l) group items that contain the element. In COBOL, tables of

up to three dimensions are permitted; n cannot exceed three in the foregoing
definition. .

Initial vValues of Tables

In the Working-Storage Section, initial values of elements within tables
are specified in one of the following ways:

) The table may be described as a record by a set of contiguous data
description entries, each of which specifies the VALUE of an element,
or part of an element, of the table. In defining the record and its
elements, any data description clause (USAGE, PICTURE, etc.) may be
used to complete the definition where required. This form is required
when the elements of the table need separate handling due to
synchronization, usage, etc. The hierarchical structure of the table
is then shown by using the REDEFINES entry and its associated
subordinate entries. The subordinate entries (following the REDEFINES
entry), which are repeated due to OCCURS clauses, must not contain
VALUE clauses. ’

2=7 ‘ DD25

) When the elements of the table do not require separate handling, the
VALUE of the entire table may be given in the entry defining the
entire table. The lower 1level entries will show the hierarchical
structure of the table; lower level entries must not contain VALUL
clauses. ‘

Reference to Table Items

Whenever the user refers to a table element or, if the table element 1is a
group item, to the items within it, or to a condition-name associated with the
element or with items contained within the element, the reference must indicate
which occurrence of the element is intended. For access to a one-dimensiocnal
table, the occurrence number of the desired element provides complete
information. For tables of more than one dimension, an occurrence number must be
supplied for each dimension of the table. In Example 2 then, a reference to the
4th BAKER or the 4th CHARLIE would be complete, whereas a reference to the 4th
DOG would not. To refer to DOG, which is an element of a t7¢-dimensional table,
the user must refer to, for example, the 4th DOG in the 5tih BAKER.

Subscripting

One method by which occurrence numbers may be specified is to append one or
more subscripts to the data-name. A subscript 1is an integer whose value
specifies the occurrence number of an element within the group item that has the
next lower level-number. The subscript can be represented either by a Iliteral
which is an integer or by a data=-name which is defined elsewhere as a numeric
elementary item with no character positions to the right of the assumed decimal
point. In either case, the subscript, enclosed in parentheses, 1s written
immediately following the name of the table element. A table element mnust
include as many subscripts as there are dimensions in the table whose element is
being referred to. That is, there must be a subscript for each OCCUKS clause in
the hierarchy containing the data-name, including the data-name itself.

Example 3:

02 BAKER; OCCURS 20 TIMES; ...
03 CHARLIE; ...
03 DOG; OCCURS 5 TIMES
04 EASY; ...
88 MAX; VALUE IS ...
04 FOX; ...
05 GEORGE; OCCURS 10 TIMES; ...
06 HARRY; ...
06 JIM; ...
In Example 3,‘references to BAKER and CHARLIL require only one subscript;

references to DOG, EASY, MAX, and FOX require two; and references to '~ GEORGE,
HARRY, and JIM require three.

2-8 ‘ DD25

When more than one subscript is required, the subscripts are written in the
order corresponding to the occurrence numbers in successively less inclusive
dimensions of the data organization. If a multidimensional table is thought of
as a series of nested tables and the most inclusive or outermost table in the
nest is considered to be the major table with the innermost or least inclusive
table being the minor table, then the subscripts are written from left to right
in the order major, intermediate, and minor. Thus, in Example 3, a refe.‘:nce to
HARRY (18 2 7) means the HARRY in the 7th GEORGE, in the 2nd DOG, in the 18th
BAKER.)

A reference to an item must not be subscripted if the item is not a table
element or an item or condition-name within a table element.

The lowest permissible subscript value is one (1l). The highest permissible
subscript value in any particular case is the maximum number of occurrences of
the item as specified in the OCCURS clause.

When a data-name is used as a subscript, it may be used to refer to items
within many different tables. These tables need not have elements of the same
size. The data-name may also appear as the only subscript with one item and as
one of two or three subscripts with another item. It is also permissible to mix
literal and data-name subscripts; for example, HARRY (12 NEWKEY 2).

Indexing

Another method of referring to items in a table is indexing. To wuse this
technique, one or more index-names are assigned to an item whose data
description contains an OCCURS clause. The INDEXED BY phrase, by which the
index-name is identified and associated with its table, is an optional part of
the OCCURS clause. There is no separate entry to describe the index-name since
its definition is provided by the compiler and it is not considered data per se.
At object program execution, the contents of the index-name will correspond to
an occurrence number for that specific dimension of the table to which the
index-name was assigned. The initial value of an index-name at object program
execution is not determinable and the index-name must be initialized by the SET
statement before use. '

Examgle 4:

02 BAKER; OCCURS 20 TIMES; INDEXED BY IX-1; ...
03 DOG; OCCURS 5 TIMES; INDEXED BY IX-2; ...

05 GEORGE; OCCURS 10 TIMES; INDEXED BY IX-3; PIC XXXX; e

In Example 4, references to BAKER require one subscript or the one index,
IX~1; references to DOG require two subscripts or the two indexes IX-1, IX-2;
and references to GEORGE require three subscripts or the three indexes IX-1,

IX-2, IX-3.

2-9 : : v DD25

An index-name may be used as an operand only by the SET, SEARCH, or PERFORM
statements, or by the word IF in a relation condition. An index-name cannot be
described as data within a COBOL program. Data items described by the USAGE IS
INDEX clause permit storage of the values of index-names as data without
conversion, Such data items are called index data items,

When a reference is made to a table element, or to an item within a table
element, and the name of the item is followed by its related index-name(s) 1in
parentheses, then each occurrence number required to complete the reference will
be obtained from the respective index-name. The index-name thus acts as a
subscript whose value is used in any table reference that specifies indexing.

When a reference requires more than one occurcence number for completeness,
a data-name subscript must not be used to indicate one occurrence number and an
index=~-name to indicate another. Therefore, if indexing 1is to be wused, each
OCCURS clause within the hierarchy (each dimension of the table) must contain an
INDEXED BY phrase. The user may, however, mix literals -and index-names within
one reference, just as literals and data-name subscripts may be mixed.

When a statement that refers to an indexed table element is executed, the
value of the index-name associated with the table element must not correspond to
a value less than 1 nor to a value greater than the highest permissible
subscript value for the table element.

The use of subscripting in a reference to a table element, or to an item
~within a table element, will not cause alteration of any index-names associated
with that table.

. Relative indexing is an additional option for making references to a table
element or to an item within a table element. When the name of the table element
is followed by an index in the form (index-name + integer-1), the occurrence
number required to complete the reference will be the same as if integer-l were
added to the occurrence number to which the current setting of the index-name
corresponds at object program execution. Similarly, when the form (index-name -
integer-2) is used, the occurrence number obtained will be the same as 1if
integer-2 were subtracted from the occurrence number to which the current
setting of the index-name corresponds.

Relative indexing will not cause the object program to altc the value of
the index-name.

A reference to an item must not be indexed by an index-name that 1is not
associated (using the INDEXED BY phrase) with the table of which this item is an
element. '

Data that has been arranged in the form of a table is very often searched.
In COBOL, the SEARCH statement provides facilities, through its two options, for
producing serial and nonserial (i.e., binary) searches. In the SEARCH statem:nt,
the user may vary an associated index-name or an associated data-name., This
statement also provides facilities for executing imperative-statements when
certain conditions are true and an AT END phrase is included.

For additional information concerning table handling, refer to Section XIII
of the COBOL User's Guide.

2-10 | DD25

MASS STORAGE

The operational characteristics and the processing requirements of mass
storage devices differ significantly from those of magnetic tape, punched paper
tape, and punched cards. Tape and card files are normally organized in a
sequential manner; the Data and Procedure Divisions of COBOL, prior to the
inclusion of the mass storage facility, reflected these characteristics.

Mass storage media can be used to store sequentially organized files and
this technique has been provided; more significantly, mass storage devices have
been designed to provide nonsequential storage and access capabilities.

The mass storage feature of COBOL provides for the effective use of mass
storage devices. Mass storage phrases are included in the Environment Division
to describe the characteristics of mass storage files., The Procedure Division
statement, SEEK, together with extensions to the OPEN, READ, WRITE, and CLOSE
statements, provide facilities for efficiently processing mass storage files.

Access and Processing Techniques

The usual technique for applications using magnetic tape 1is sequential
access to the data file and sequential processing of data records. This
sequential-sequential technique is available for mass storage applications.
Another technique for mass storage applications 1is called random access and
sequential processing or the random-sequential technique. Either of these
techniques may be specified by the user as the manner in which a particular mass
storage file is to be processed.

A Mass Storage Control System provides the mechanism for control of these
techniques.

Sequential Access with Sequential ProCessing

Although the sequential-access technique is similar in concept to the
technique commonly used in processing magnetic tape files, a substantial
difference exists between the physical environment of magnetic tape storage and
the physical environment of mass storage.

, In processing magnetic tape files, the execution of a READ statement
implies the possibility of physical movement of the tape reel and proper
positioning of the 1reel for subsequent READ statement executions. This
positioning is done without regard for execution of WRITE statements that
reproduce the updated input record onto a physically different output £file. 1In
processing mass storage files, READ statements may refer to the same physical
file as the associated WRITE statements. That is, mass storage files are usually
used for input and output at the same time. The usual file maintenance method
is to read a record, process the record, and return it to its previous location
by means of a WRITE statement, Thus, once a record is located and read from a
mass storage file, the record location may be retained and, when the record is
returned to the file by the execution of a WRITE statement, the execution time
for the WRITE statement may be reduced..

2-11 ' - DD25

An ACTUAL KEY phrase, which specifies the actual hardware 1location of a
specific mass storage record, is not required for the sequential-sequential
technique. However, if the ACTUAL KEY phrase is specified, varying the contents
of the data item specified in the ACTUAL KEY phrase (actual key) will not result
in any variation in processing order. In the sequential-sequential mode, the
actual key is updated automatically by the Mass Storage Control System to
reflect the location of the mass storage record currently being processed.
Between the execution of the READ and WRITE statements for a particular file,
the contents of the actual key are static.

The execution of a READ statement followed logically by the execution of a
WRITE statement for the same input-output file results in an automatic updating
of the actual key immediately after the execution of the WRITE statement.
Similarly, the execution of a WRITE statement followed logically by the
execution of another WRITE statement for the same file results in an automatic
updating of the actual key after the execution of each WRITE statement. However,
the execution of a READ statement followed logically by the execution of another
READ statement from the same file, without the intervening execution of a WRITE
statement, results in the automatic updating of the actual key only immediately
prior to the execution of the second READ statement, Following the execution of
a WRITE statement, the contents of the actual key reflect the actual location of
the next mass storage record capable of being processed. In terms of COBOL
logic, this is the location of the current mass storage record. Since the
automatic updating of the contents of the actual key is the function of the Mass
Storage Control System and since the ACTUAL KEY phrase is never referred to or
required by the Mass Storage Control System, any changes the user makes to the
actual key do not affect the processing of the mass storage file.

The imperative-statement in the AT END phrase associated with the next READ
statement in order of execution is executed when the logical end of the mass
storage file is detected. For WRITE statements, the detection of the logical end
of a mass storage file before the execution of the CLOSE statement causes the
contents of the actual key to reflect a location outside the environmental
limits of the file. Since this value represents an erroneous location in the
file, the INVALID KEY phrase associated with a particular WRITE statement 1is
executed when that WRITE statement is executed.

Random Access with Sequential Processing

In the sequential-sequential technique, the data records in a mass storage
file are read, processed, and written in an order based on the source program.
The random-sequential technique differs only in +that references are made to
records in the file in a random manner. The sequential processing of randomly
accessed records has all of the processing characteristics and file
characteristics of the sequential-sequential method.

To permit dlrect access to any data record in a file, the user must specxfy .
of the partlcular record de81red '

: inary in
co act
‘responsibility of the user, there are no implicit wupdating functions for an
actual key.

2-12 DD25

In some computer systems, the introduction of the random-access approach to
a mass storage file requires the definition of an input-output statement (SEEK)
to operate in conjunction with the READ and WRITE statements. Since locating
records is always necessary in the random-sequential technique, the function of
the SEEK statement is performed implicitly by a READ or WRITE statement when the
SEEK statement is not specified. The contents of the actual key are used by the
Mass Storage Control System as the desired record's location identifier at the
time the implicit SEEK statement is executed.

The SEEK statement, then, locates a record for subsequent reading or
writing. On the computer it is not possible to separate physical seek times from
the operations of reading or writing. Therefore, the SEEK statement is treated
as a comment and no overlapping of other procedures is possible by its use prior
to a READ or WRITE.

If the user has specified random access for a mass storage file, there is
no logical end to the file. Thus, the AT END phrase of the READ statement is
meaningless and the INVALID KEY phrase must be specified for both the READ and
WRITE statements. If, during execution of either a READ or a WRITE statement,
the contents of the actual key reflect an actual 1location outside the
environmental limits for a file (as defined on system file control <cards), the
imperative-statement in the INVALID KEY phrase is executed.

For additional information concerning file processing, refer to Section V
of the COBOL User's Guide.

SEGMENTATION

COBOL segmentation allows the user to communicate with the compiler to
specify object program overlay requirements. Segmentation is concerned only with
the segmentation of procedures. Therefore, only thé Environment and Procedure
Divisions are considered when determining segmentation. requirements for an
object program.

Terminology

With the advent of a standard concept of segmentation as an extension to
COBOL, it has become necessary to revise terminology. Previously, . the terms
'segmentation' and 'segments' were used to denote capabilities associated with
the operating system. Where these words are used now, they will apply only to
the standard COBOL concept of segmentation as discussed in this manual. The term
modularization will replace the previous usage of the term segmentation and. the
term module will replace the term segment.

Program Segments

The segmentation feature permits the wuser to subdivide the Procedure
Division of a COBOL object program. All source paragraphs which contain the same
priority=-number in their section headers are considered to be one segment at
object program execution. Since priority-numbers can range from 00 through 99,
it is possible to subdivide any object program into a maximum of 100 segments.

2-13 o DD25

The Procedure Division for a source program is usually written as a
consecutive group of sections, each of which is composed of a series of closely
related operations that are designed to collectively perform a particular
function. When segmentation is used, the entire Procedure Division must. be in
sections. Each section must also be c¢lassified (using a priority-number) as
belonging either to the fixed portion or to one of the independent segments ~of
the object program. Segmentation in no way affects the need for qualification of
procedure~-names to ensure uniqueness,

Fixed Portion

The fixed portion is defined as that part of the object program which 1is
logically treated as if it were always in memory. This portion of the program is
composed of two types of segments: fixed permanent scgments and fixed
overlayable segments. '

A fixed permanent segment is a segment in the fixed portion which cannot be
overlayed by any other part of the program. A fixed overlayable segment 1is a
segment in the fixed portion which, although logically treated as i1f it were
always in memory, can be overlayed by another segment to optimize memory
utilization. A fixed overlayable segment, if called for by the program, is
always made available in its last used state. .

Variation of the number of fixed permanent segments in the fixed portion
can be accomplished by using a special facility called the SEGMENT-LIMIT phrase
in the OBJECT-COMPUTER paragraph of the Environment Division. Unless the
SEGMENT-LIMIT phrase is used, all segments numbered 00 through 49 are fixed
permahent segments. However, i1f the user requires fixed overlayable segments,
they are numbered from a user-specified wvalue (01 through 49). The user
indicates the lowest numbered segment which is to be fixed overlayable in the
SEGMENT-LIMIT phrase. Therefore, the more fixed overlayable segments there are,
the fewer fixed permanent segments there can be. Segment 00 is always fixed.

The logical relationship between all segments numbered 00 through 49 is
always the same, regardless of SEGMENT-LIMIT. For example, an altered GO TO
statement which appears in a segment numbered 27 will remain altered, whether
the segment is fixed permanent or fixed overlayable, until the execution of
another ALTER statement; intervening overlays of the segment will not result in
initialization of the segment. Therefore, COBOL paragraphs numbered 00 through
49 can be written as if all such paragraphs were always fixed in memory, and
subsequent changes in SEGMENT-LIMIT will have no effect on program logic.

Independent Segments

An independent segment is defined as part of the object program which can
overlay, and can be overlayed by, either a fixed overlayable segment or another
independent segment. An independent segment is effectively in its initial state
each time the segment is made available to the program. Independent segments are
numbered 50 through 99.

For additional information concerning segmentation, refer to Section XV of
the COBOL User's Guide.

2-14 DD25

IModuies are programs that are c¢ompiled and tested independently and

itly loaled together and executed as a total program. Thus, a user may
up & large complex program into several parts or modules, write
se'drate source program, and compile and test each module
r«by overlapping programming and checkout time. Another use of
: riting common subroutines (1nstallation orxented) 4n
e camplled as independent modules, -

‘esiQf’COBOL program’mddularization’are: v

t practL ‘al separatlon of a data proce551ng program into
functional compone (modules) ., :

-'fﬁe“'&bdules o developed as _separate> COBOL source
s that are comp;led;sapaxately ‘and may . be debugged separately.

trm&t programs to be linked by the object program loader.

s to overlay other modules when called

e'fanctlonal n
¥ large programg within'a limited amount

of COBOL proaedural sectlons as
However, through

e exc'ptxon that there is no way to
ie i ts last used state. Refer to
addat”jnal 1nformahlon. S

USING A COBOL LIBRARY

A COBOL library containing source program text that 1is available at
compilation may be created. By creating a 1library file, the wuser can avoid
lengthy repetitions of data descriptions and/or procedures in programs using
common data descriptions and/or procedures. The effect of the compilation of
library text is the same as if the text were actually written as part of the
source program. The library may contain text for the Env1ronment Division, the
Data Division, and the Procedure D1v151on T ' “ig ‘directed - to. the .

; Y. O] “8 COBOL ward, The text
is made available by using the COPY clause in the Environment and Data Divisions
and by using the COPY statement in the Procedure Division.

For a description of the COPY function, refer to Section VIII, - the COBOL
Library and to Section XIV of the COBOL User's Guide.

2-15 DD25

ocessing System (TPS) gives a remote terminal user the

usiness transactions on a large-scale computer. The

tay represent any of the events in the minute-by-minute
““d;versified bugsiness. ‘ ”

Gene al‘ Comprehen51ve Operating Superv;sor (GCL ,
ing Executive (TPE) calls Transaction Processing
sver they are needed to process transactions
pability of dynam;cally selecting application
.actl‘n allows the TPS to progess an almost

__smng Applmcatlons Programs (TPAPs) are user-supplied
rocess the various types of transactions to be processed
are ta;lored to the precise needs of the wuser

: pendent programs on the GCOS flle system . and
eded to process _transactions - submitted to the

ransactlons from a remote termlnal, the TPAP may
vith the user at the terminal and execute the =
s (DAC) mode. A wraparound prov151on in ‘the TPS
saction Processing Applications Program to be used
r_fessxng Appllcations Program for “furthex

‘ke331n, System User s Guide <for operational
the COBOL User's Gulde

2-16 ' : DD25

SECTION III

LANGUAGE CONCEPTS

LANGUAGE RELATIONSHIPS

The English language is a natural language; that 1is, it is constantly
changing and its rules describe current usage. COBOL is a mechanical language.
Its rules have been predefined and are rigid, which means that the &rules of
COBOL must be changed before the use of COBOL can change.

As a mechanical language, COBOL is described as a higher level language.
This means that COBOL is problem oriented, which has to do with the way data
structures are defined. 1In lower level mechanical languages, the user must know
the addressing structure of the computer as well as the way the computer
structures data. In COBOL, knowledge of the computer's addressing structure is
not required; data structures are defined according to the rules of.COBOL rather
than to the -computer's rules. Because of this, COBOI is said to be a machine
independent language. ‘ '

Machine independence means that COBOL can be translated into many machine
languages. A machine language is the terminology that a computer can recognize.
The COBOL described in this manual is translated into the Series 60/6000
computer (machine) language.

Any language, natural or mechanical, is concerned with syntax and
semantics. Syntax is the relationship between the symbols of the language. The
semantics of a language are the relationships between the symbols of the
language and their meanings. These relationships (and certain other
considerations) make up the rules of the language. The remainder of this
section describes the semantics of COBOL.

USER-CREATED SYMBOLS

The first part of this section 1is concerned with user-created COBOL
symbols. Only three types -of COBOL symbols can be created; words, literals, and
PICTURE character-strings. All symbols created by the wuser are called
character-strings. A character-string is defined as a contiguous set of
characters taken from the COBOL character set that forms a word, a literal, or a
PICTURE character-string. A character-string can be as short as one character
in length or may have as many as 132 characters. A character is an element of
the COBOL alphabet, which is known as the standard character set. The elements
(characters) of the COBOL alphabet (character set) are: :

ABCDEFGHIJKLMNOPOQRSTUVWXY?Z
0123456789 +~-%/=%$,.;" () >< and

the blank or space.

2/77 » 3-1 ' DD25A

There are 51 characters in the character set and only these characters can
be used in character-strings.

Words

A COBOL word is a character~string of from one to 30 characters taken from
the following subset of the COBOL character set:

A through 2

0 through 9
the special character '-' (hyphen)
When a COBOL word is formed, the special character '-' cannot be wused as

the first or last character of the word. A single COBOL word is often formed
from two or more English language words. For example, COST-ANALYSIS is a single
13-character COBOL word and 6-AT-7-VAC-TUBE is a l5-character COBOL word. COBOL
words are created by the user to name or identify something; COBOL names that
can be created are data-names, condition-names, procedure-names, and
mnemonic-names., -

DATA-NAMES

The user creates a data-name to identify by name each data item described
in the Data Division of the program or to identify by name the area that
contains the data referred to in the Procedure Division. A data item can be an
elementary item, a named group of elementary items within a record, or a record.
An identifier is composed of a data-name, followed as required by a combination
of qualifiers, subscripts, and/or indexes to make the identifier reference a
unique data item in the program, '

CONDITION-NAMES .

A condition-name is a word that names one or more of the values a data item
can have when the object program is being executed. A data item that can have
more than one value while the object program is being executed 1is called a
variable. A conditional variable is a data item whose value, sets of values, or
range of values have names. Condition-names are used in the Procedure Division
in conditional statements; i.e., in statements beginning with the word IF,
Condition-names can be defined in the Data Division in level 88 entries or under
SPECIAL~-NAMES in . the Environment Division. Each condition-name created by the
user must be unique or be made unique through qualification.

PROCEDURE~NAMES

Procedure-names are words used to name paragraphs or sections in the
Procedure . Division of the programn. Procedure~-names enable the user to make
references from one paragraph or section to another. This facility allows the
user to write a procedure once and then refer to it as often as necessary. When
a - procedure-name 1is composed of digits such as 00345, a reference to that
procedure-name must contain the leading zeros. That is, 345 is not the same as
00345, : :

2/77 _ 3-2 ' DD25A

MNEMONIC-NAMES

A mnemonic-name is a user-created COBOL word that is assigned to special
names. Mnemonic-names are defined in the SPECIAL-NAMES paragraph of the
Environment Division. The special names are names assigned by the computer
system to certain input-output functions. Mnemonic-names do not have data
descriptions in the Data Division. : :

Literals

The COBOL symbol type known as a literal is a user-created data item. That
is, a literal is not a reference to data such as a data-name or identifier, but
is the actual data to be operated on. A literal is a constant since its wvalue
never changes. The value of a literal is the characters that compose the
literal. Two types of literals may be created, nonnumeric literals and numeric
literals.

NONNUMERIC LITERALS'

A nonnumeric literal can be * class alphanumeric
and can be used only as a display item. is means that nonnumeric literals
cannot be used in computations; a nonnumeric literal cannot be added to some
data item. A nonnumeric literal is defined as a string of characters in the
Series 60/6000 character set, excluding the quotation mark character, bounded by
quotation marks., The user can create a nonnumeric literal that has only one
character or has as many as 132 characters, not counting the. quotation marks
that delimit it. ‘ : '

NUMERIC LITERALS

A numeric literal must be class numeric but, unlike nonnumeric literals, a
numeric literal can be used as a computational item as well as a display item.
To create a numeric literal, only the digits (0 through 9), the + sign, the -
sign, and the decimal point may be used. No other characters are allowed in the
construction of a numeric literal. When either the + or the - sign is used (only
~one of these can be used in each numeric 1literal), it must be the leftmost
character of the literal. When neither sign is used, the literal is assumed to
be positive. When the decimal point is used, it can appear in any character
position of the literal except in the rightmost character position. If the
decimal point is not used, the literal is an integer. Numeric literals may
contain up to 18 digits and must contain at least one digit. The signs (+ and -)
and the decimal point are not’ counted when applying this rule.

PICTURE Character-Strings

A PICTURE character-string is a special type of user-created COBOL symbol.
The PICTURE character-strings that can be created are described in detail in the
description of the PICTURE clause in the Data Division.,

3=-3 : A ' "~ DD25

OTHER COBOL SYMBOLS

This paragraph is concerned with COBOL symbols that are wused -by but not
created by the programmer. These symbols are Figurative Constants, Names of
Special Registers, Editing Symbols, Punctuation Symbols, Relation Symbols,
Arithmetic Operation Symbols, and Reserved Words.

Figurative Constants

_ A constant is a data item whose value rémains fixed. Certain constants have
been assigned fixed data-names, and are called figurative constants. A
figurative constant may be used any place in the source program that a literal
can be used except that wherever a numeric 1literal is required, the only

figurative constant that can be employed is ZERO (or ZEROS or ZEROES). Although
figurative constants may be specified in place of nonnumeric literals, this does
not mean that figurative constants are delimited by quotation marks; they are

not., Figurative constants are COBOL-defined symbols and are recognized as such
‘by the compiler. Therefore, if a figurative constant is delimited by quotation
:marks, the result is a nonnumeric literal whose value is the word itself and not
*the value that the word implies. The figurative constants and their meanings
are:

ZERO ZEROS ZEROES: Represents the value 0 or one or more of the
’ character 0, depending on the context in which it
appears.
SPACE SPACES: - Represents one or more blanks or spaces.

Represents one or more of the character Z. The 2
character is used as a high delimiter in processing
data.

Represents one or more of the character 0. The 0
character is used as a low delimiter 1in processing
data.

HIGH-VALUE HIGH-VALUES: Represents one or more of the character !. The !
’ » character has the highest value in the computer's
collating sequence,

LOW-VALUE LOW-VALUES: Represents one or more of the character 0. The 0
character has the lowest value in the computer's
collating sequence.

QUOTE QUOTES: Represents one or more of the character ". Note that
: this figurative constant cannot be used to delimit a
nonnumeric literal.

ALL literal: Represents one or more of the string of characters

- composing the ‘literal. The literal must be either a
nonnumeric literal or any other figurative constant.
When the word ALL is followed by a figurative
constant, the word ALL is redundant and is included
in the source program only for readability.

3-4 DD25

The singular and plural forms of the figurative constants are equivalent
and, therefore, may be used interchangeably. A figurative constant represents a
string of characters. The number of characters in the string is determined by
the compiler as follows:

1. When a figurative constant is associated with another data item, such
as when the figurative constant is moved to or compared with another
data item, the string of characters that the figurative constant
represents 1is repeated character by character until the number of
characters in the resulting string is equal to the number of
characters specified as the size of the associated data item.

2. When a figurative constant is not associated with another data item,
such as when the figurative constant appears in a DISPLAY, EXAMINE, or
STOP statement, the length of the string is one character.

3. The ALL literal flguratlve constant cannot be used w1th the DISPLAY,
EXAMINE, or STOP statements.

Special Registers

Special registers are compiler-generated memory areas. They are used to
store information that is produced when specific COBOL features are used.

TALLY REGISTER

The primary use of the TALLY register is to temporarily store the
information produced by the EXAMINE statement when the TALLYING option
associated with it is used. The TALLY register generated is just large enough
to contain a decimal integer of five digits whose implicit usage is COMP=1 and
that an operatlonal sign. The word TALLY may also be used as the name of an
elementary dat se value is a de01mal integer . and -whose gize is not

LINE-COUNTER

The purpose of the LINE- COUNTER is to automatically control the vertical
positioning of a report. } HEADING and PAGE/OVERFLOW FOOTING report.~
groups are automatically produced based on the PAGE LIMIT clause specified in
each report description entry. These report groups are used by the compiler to
control the placement of headings and footings on the pages of the report(s)
being generated. Although the LINE-COUNTER is generated by the compiler, its
maximum value may be controlled using the PAGE LIMIT clause.

PAGE-COUNTER

The purpose of the PAGE-COUNTER is to supply page numbers for the pages
within a report group. The initial value of the PAGE-~COUNTER is one, but this
value can be modified by the user immediately after an INITIATE statement has
been executed.

2/77 - : 3-5 _ DD25A

Editing Symbols

The editing rules are described in Section VI under the PICTURE clause.
This paragraph lists those characters of the COBOL character set that are
editing symbols when used in an editing context. The symbols and their meanings
are:

Symbol ' Meaning

Space

Zero

Plus

Minus

Credit

Debit

Zero Suppress
Check Protect
Currency Sign
Comma

Period (Decimal Point)

s P EANUDQI tOW
W

Punctuation Symbols

The punctuation symbols are used to delimit character-strings to -make
source coding more readable and, in ‘certain instances, to «conform to the
requirements of the language. For example, the compiler normally expects. to
encounter a period followed by a space after a section-name., If the period or
the space or both do not appear immediately after a section-name, an error
condition results. Foxr the most part, however, punctuation symbols are optional
in the formats. When pupctuation symbols are used, however, the following rules
must be observed:

1. When used to delimit a character~string, the period, comma, or
semicolon must be followed immediately by a space.

2. Whenever a space is used as a punctuation symbol, as many as desired
may be used.

3. ‘ The left parenthesis may be immediately followed by a space and the
right parenthesis may be immediately preceded by a space.

The punctuation symbois and their meanings are:

Symbol Meaning
Comma
Semicolon
Period

Left Parenthesis
Right Parenthesis
Space

" Quotation Mark

=S R TR N

3-6 A DD25

Relation Symbols

Special symbols may be used in conditional statements in the Procedure
Division to express a relationship (in value) between two data items. The
symbols used for this purpose and their meanings are:

Symbol Meaning
> Greater Than
< Less Than

Equal To

Arithmetic Operation Symbols

The following symbols may be used to perform arithmetic operations in the
Procedure Division: :

Sxmbol Meaning‘
+ Addition
- Subtraction
* , Multiplication
/ Division
*

* : Exponentiation

Reserved Words

Appendix A of this manual contains a 1list of words reserved for the
exclusive use of COBOL. That is, each of these words is a COBOL symbol with a
predefined meaning and must not appear as .a user-defined word. Since the user
can define data-names, condition-names, procedure-names, mnemonic-names,
literals, and PICTURE character=-strings, none of the reserved words can be used
for any of these representations. '

CONCEPT OF COMPUTER-INDEPENDENT DATA DESCRIPTION

The Data Division is that area of the source program in which the wuser
describes the data that the object program is to produce or process. To make
data as computer independent as possible, the attributes (characteristics or
properties) of the data are described in relation to a standard data format
rather than in relation to an equipment-oriented format. The data contained in a
file is described according to. the physical aspects of the file and the
conceptual (or logical) characteristics of the data in the file.

Physical Aspects of a File

The physical attributes of a file describe the data as it appears on the
input or output device. Some of the physical attributes of a file are:

1. The recording mode.

3-7 ‘ ' DD25

2. The grouping (or blocking) of logical records within the physical.
limitations of the device.

3. The means by which the file is identified.

These file attributes are described or defined in the Data Division of the
source program. '

Conceptual Characteristics of a File

The logical attributes of a file are an explicit definition of each logical
entity in the file and are described or defined in the Data Division. In COBOL,
a logical record is a group of related information that is uniquely identifiable
and treated as a unit. A physical record, on the other hand, is a physical wunit
of information whose size and recording mode 1is convenient for a particular
computer for the storage of data on an input or output device. The size of a
physical record is hardware dependent and need bear no direct relationship to
the size of the file of information on a device, For example, a single logical
record may be contained in a single physical record; several logical records may
be contained in a single physical record; or a single logical record may
require several physical records te contain it. In COBOL, the input and output
statements refer to one logical record. The idea of a 1logical record is not
confined to data contained in files. Data in the Working-Storage Section can
also be grouped into logical records.

Record Concepts

Each: unigque logical record is defined by a record description entry in the
Data Division. Record: description entries consist of data description entries
that describe the attributes of a particular logical record. Each data
description entry in a record description entry consists of a level-number which .
is followed by a data-name and by a series of independent clauses as required
for the. entry.

Concept of Levels

The structure of a logical record is based on levels so that subdivisions
of the record. can be named or identified for data reference. After a subdivision
has been named, it can be further subdivided. The most basic subdivision of a
record (that which is not further subdivided) is an elementary item. To refer to
a set of elementary items, the items are combined into named groups. A group
consists of a named sequence of one or more elementary items. Groups may also be
combined into a sequence of two or more groups. An elementary item can,
therefore, belong to more than one group. Note that if a logical record 1is not
subdivided, it is an elementary item.

3-8 » DD25

COBOL employs a system of level-numbers to show the hierarchical structure
of logical records. Since a logical record is the most inclusive data item,
level-numbers for records start at 01, Less inclusive data items (i.e., group
items and elementary items) are assigned higher (but not necessarily successive)
level-numbers not exceeding 49 in wvalue. A group includes all group and
elementary items following it until a level-number less than or equal to the
level-number of that group is encountered. The level-number of an item (either
an elementary item or a group item) which immediately follows the 1last
elementary item of a preceding group must be the same as one of the groups to
which the preceding elementary item belongs. In other words, level-numbers may
not be assigned after a group structure has already been establlshed by spec1f1c
level-numbers.

The special level-numbers 66, 77, and 88 are exceptions to the rule that
level-numbers cannot exceed 49 in value. These special level-numbers are not
associated with describing the hierarchical structure of a logical record but,
instead, are used to specify:

1. Elementary items or groups introduced by a RENAMES clause.
.2, Noncontiguous working-storage data items and constants.
3. Condition=-names.
Entries that describe items through a RENAMES clause (to regroup data
items) use the level-number 66. Entries specifying noncontiguous data items
(which are not subdivided and are not subdivisions of other items) wuse the

level-number 77. Entries . specifying condition-names (to be associated with
particular values of a conditional variable) use the level-number 88.

Concept of Classes of Data

The five categories of data items (refer to the PICTURE clause) are grouped
into three classes; alphabetic, numeric, and alphanumeric, For alphabetic and
numeric, the classes and categories are synonymous. The alphanumeric class
includes the categories of alphanumeric edited, numeric edited, and alphanumeric
(without editing). Every elementary item belongs to one of the three classes and
also to one of the categories. At object program execution, the class of a group
item is treated as alphanumeric regardless of the class of elementary items
subordinate to that group item. The following chart displays the relatlonshlp of
the class and categories of data items.

LEVEL OF ITEM) CLASS ‘ CATEGORY

Alphabetic Alphabetic
Elementary Numeric ~Numeric

Numeric Edited
Alphanumeric Alphanumeric Edited
Alphanumeric

, Alphabetic
Nonelementary : Numeric

(Group) ‘ Alphanumeric - Numeric Edited .
Alphanumeric Edited
Alphanumeric

3-9 ' DD25

The size of an elementary data item or a -group item is the number of
characters in standard data format of the item. Synchronization and usage may
cause a difference between this size and the character positions required for
the internal representation of the data. o

~Algebraic Signs

Algebraic signs are used to indicate whether the value of a data item is
positive or negative; two kinds of signs are employed:

S An operational sign is used to show the wvalue of an item in an
operation.

2.. An editing sign is used to identify the value of an item on an
external, edited report.

The operational sign must be included in the last digit of a numeric item
unless the data description entry specifies USAGE COMPUTATIONAL=4., In this
case, the operational sign must be a separate four-bit digit immediately
following the last digit of the numeric data item. If signs other than
operational signs are used on input data, special handling will be required in
the Procedure Division statements. Editing signs are not operational signs;
they are inserted into a data item using. the sign control symbols of the PICTURE
clause.

Standard Alignment Rules

The standard rules for positioning data within an elementary item depend on
~ the category of the receiving item. These rules are:

1. If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the
receiving . character positions with 2zero-fill or truncation on
either end as required.

b. When a decimal point is not explicitly specified, the data item
is treated as 1if it had an assumed decimal point immediately
following its rightmost character with zero-fill or truncation to
the left, as required. '

2. If the receiving data item is a numeric edited data item, the data
moved to the edited data item is aligned by decimal point with
zero-fill or truncation at either end as required within the reeeiving’
character positions of the data item, except where editing
requirements cause replacement of the leading zeros.

3. If the receiving data item is alphanumeric (other than a numeric
edited data .item), alphanumeric edited, or alphabetic, the sending
data is moved to the receiving character positions and aligned at the
leftmost character position in the data item with space-fill or
truncation to the right, as required.

i

If the JUSTIFIED clause is specified for the receiving item, these standard
rules are modified as described in the JUSTIFIED clause.

2/77 3-10 » DD25A

UNIQUENESS OF REFERENCE

Qualification

Every user-specified name that defines an element in a COBOL source program
must be unique, either because no other name has the identical spelling and
hyphenation, or because the name exists within a hierarchy of names such that
references to the name can be made unique by mentioning one or more of the
higher levels of the hierarchy. The higher levels are called qualifiers and the
process that specifies uniqueness is called qualification. Enough qualification
must be mentioned to make the name unique; however, it may not be necessary to
mention all levels of the hierarchy. Within the Data Division, all data-names
used for qualification must be associated with a 1level indicator or a
level-number. Therefore, two identical data-names must not appear as entries
subordinate to a group item unless they are capable of being made unique through
qualification. In the Procedure Division, two identical paragraph-names iaust not
appear in the same section. .

In the hierarchy of qualification, names associated with a level indicator
are the most significant; then those names associated with level-number 01; then
names associated with level-number 02, ..., 49. A section-name is +the highest
(and the only) qualifier available for a paragraph-name. Thus, the most
significant name in the hierarchy must be wunique and cannot be qualified.
Subscripted or indexed data-names and conditional wvariables, as well as
procedure-names and data-names, may be made unique by qualification. The name of
a conditional variable can be wused as a qualifier for any of its
condition-names. Regardless of the available qualification, no name. can be both
a data-name and a procedure-name.

Qualification is performed by following a data-name or a paragraph-name by
one or more phrases composed of a qualifier preceded by IN or OF. IN and OF are
logically equivalent.

The general formats for qualification are:

‘Format 1:

-

data-name-1 i OF)
data-name=-2 |...
condition~name IN]

Format 2:

-

[(oF

paragraph-name - section-name
IN

L~ .

The rules for qualification are as follows:

1. Each qualifier must be of a successively higher level and within the
same hierarchy as the name it qualifies.

2. The same name must not appear at two levels in a hierarchy.

3. If a data~name or a condition-name is assigned to more than one data
item in a source program, the data-name or condition-name must be
qualified each time it is referred to in the Environment, Data, and
Procedure Divisions (except REDEFINES where, by definition,
qualification is unnecessary).

3-11 ‘ DD25

4. A paragraph-name must not be duplicated within a section. When a
paragraph-name is qualified by a section-name, the word SECTION must
not appear. A paragraph-name need not be qualified when referred to
from within the same section.

5. A data-name ' cannot be subscripted when it 1is being wused as a
qualifier.

6. A name can be qualified even though it does not need qualification; if

there 1is. more than one combination of qualifiers that ensures
uniqueness, then any such set can be used.

Subécripting

Subscripts can be used only when reference is made to an individual element
within a list or table of like elements that have not been assigned individual
data-names. (Refer to the OCCURS clause in Section VI and Table Handling in
Section II.)

The subscript can be represented either by a numeric 1literal that 1is an
integer or by a data-name. The data-name must be a numeric elementary item that
represents an integer. When the subscript is represented by a data-name, the
data-name may be qualified but not subscripted.

. The subscript may contain a plus sign. The lowest possible subscript value
is one (1); this value points to the first element of the table. The next
sequential elements of the table are pointed to by subscripts whose values are
2, 3, «v. . The highest permissible subscript value in any particular case is
the maximum number of occurrences of the item as specified in the OCCURS clause.

The subscript, or set of subscripts, that identifies the table element is
enclosed in parentheses immediately following the terminal space of the table
element data-name. The table element data-name appended with a subscript is’
called a subscripted data-name., Although not required, a comma may separate
subscripts in a series. '

The format is:

data-name (subscript L subscript] ves)

Some examples of writing subscripts are:

MOVE RATE (REGION, STATE, CITY) TO LISTINGS.

IF HEIGHT (10) IS GREATER THAN . . .

MULTIPLY PRICE (STOCK~NO) BY INVENTORY (STOCK-NO).,
EXAMINE TRACT (REGION) REPLACING . . .

Indexing

References can be made to individual elements within a table of 1like
elements by specifying indexing for that reference. An index is assigned to that
level of the table by using the INDEXED BY phrase in the definition of a table.
A name given in the INDEXED BY phrase is known as an index-name and is used to
refer to the assigned index. An .index-name must be initialized by a SET
statement before it is used as a table reference (refer to the SET statement,
Section VII).

3-12 . DD25

Direct indexing of a table element is specified by using an index-name in
the form of a subscript. Relative indexing is specified when the index-name is
followed by the operator + or -, followed by an unsigned integral numeric
literal all enclosed in the set of parentheses that begins immediately after the
terminal space of the data-name.

The general format for indexing is:

’ ‘ +
data-name (index-name [{ }integerj{
+
, index~-name integer ces)

Identifier

An identifier is a term used to reflect that a data-name (if not unigque in
a program) must be followed by a syntactically correct combination of
qualifiers, subscripts, or indexes necessary to ensure uniqueness. '

The general formats for identifiers are:

- Format 1l:

OF
data-name-1 [{}—i} data-name-Z] .+. | (subscript~-1
IN

[, subscript=-2 [, subscript~3]] Y

Format 2:

N OF
data-name-1 7 % data-name-2 Ce
m ,

[' : .
. - (4 4
(index~name-1 integer

B) B + 7
;, index-name-2 { } integer

[: L - , 3

+ .
’ index—name—3 integer |)

3-13 ' ‘ - DD25

Restrictions on Qualification, Subscripting, and Indexing

The restrictions on qualification, subscripting, and indexing follow:
1. The commas shown in the general formats are not fequired.

2. A data~name must not itself be subscripted nor indexed when that
data-name is being used -as an index, subscript, or qualifier.

3. 'Indexing is not permitted where subscripting is not permitted.

4, An index may be modified only by the SET, SEARCH, and PERFORM
statements. Data items described by the USAGE IS INDEX clause permit
storage of the values associated with index-names as data. Such data
items are called index data items.

5. If indexing is to be uéed, each OCCURS clause within the hierarchy
(each dimension of the table) must contain an INDEXED BY phrase.

6. When a reference requires more than one occurrence number for
completeness, a data-name subscript must not be used to indicate one
occurrence number when an index-name is used for another.

7. Literals and index-names may be mixed within one reference just as
literals and data-name subscripts may be mixed.

REFERENCE FORMAT

The reference format, which provides a standard method for describing COBOL
source programs, is expressed in terms of character positions in a line on the
input-output device. The COBOL compiler accepts source programs written in
reference format atid produces an output listing in reference format.

The rules for spacing given in the discussion of the reference format . take
precedence over all other rules for spacing.

The divisions of a source program must be ordered as follows: the
Identification Division, the Environment Division, the Data Division, and the
Procedure Division. Each division must be written according to the rules for the
reference format, :

Reference Format Representation

The reference format for a line is represented as follows:

I I | I I

Margin Margin Margin Margin Margin
L Cc A B : R
1l 2l3lalsle 7 8]olio]1r 12]13]... | 72 73
- —_— J [~— — \ ~— J
Sequence Number Area A Area B
Area r -

Continuation/Comment
Line Indicator Area

3-14 DD25

Margin L designates the leftmost character position of a line, position 1.
Margin C designates the seventh character position relative to L.

Margin A designates the eighth character position relative to L.

Maréin B designates the twelfth character position relative to L.

Margin R designates the rightmost character position of a 1line and is
character position 72 relative to Margin L.

The sequence number area occupies the six character positions beginning at
Margin L, positions 1 through 6.

:line indicator area is the seventh character

The continuation/commentj/
position of the line.

Area A occupies four character positions beginning at Margin A, positions 8
through 11.

Area B occupies sixty-one character positions beginning at Margin B,
positions 12 through 72. ' '

SEQUENCE NUMBERS

A sequence number, consisting of six digits in the sequence number area,
may be used to label a source program line.

CONTINUATION OF LINES

Any sentence or entry that requires more than one line is continued by
starting subsequent line(s) in Area B. These subsequent lines are called the
continuation line(s). The line being continued is called the continued line. Any
word or literal may be broken in such a way that part of it appears on a
continuation line. :

A hyphen in the continuation area of a line indicates that the first
nonblank character in Area B of the current line is the successor of the last
nonblank character of the preceding line with no intervening space. However, if
the continued line contains a nonnumeric literal without a closing quotation
mark, the first nonblank character in Area B of the continuation line must be a
quotation mark, and the continuation starts with the character immediately after
that quotation mark. All spaces at the end of the continued line are considered
part of the literal. Area A of a continuation line must be blank.

If no hyphen is contained in the continuation area of a line, it is assumed
that the last character in the preceding line is followed by a space.

BLANK LINES

A blank line is one that is blank from Margin C to Margin R, inclusive. A
blank line can appear anywhere in the source program except:

a. Immediately preceding a continuation line.

3-15 DD25

Division, Section, and Paragraph Formats

DIVISION HEADER

The division header must start in Area A. After the division - header, no
text may appear before the following section header or paragraph header or
paragraph-name, except that the keyword DECLARATIVES followed by a period may be
present after the Procedure Division header.

SECTION HEADER

The section header must start in Area A.

A section consists of paragraphs in the Environment, Data, and Procéd.re
Divisions., In the Environment and Data Divisions, no text may appear before the
following paragraph header or paragraph-name.

In the Procedure Division, a section header is composed of a section-name,
followed by the reserved word SECTION, followed by a priority-number (optional),
followed by a peried and a space.

PARAGRAPH HEADER, PARAGRAPH-NAME, AND PARAGRAPH

A pafagraph consists of a paragraph-name followed by z€t¢, one, or more
sentences, or a paragraph header followed by one or more entries. A paragraph
header starts in Area A of any line following the first line of a division or a
section. ’

The name of a paragraph starts in Area A of any line following the first
line of a division or a section and ends with a period followed by a space.

The first sentence or entry in a paragraph begins either on the same line
as the paragraph-name or in Area B of the next nonblank 1line that is not a
- comment line. Successive sentences or entries either begin in Area B of the same
line as the preceding sentence or entry or in Area B of the next nonblank 1line
that is not a comment line.

A sentence consists of one or more statements; an entry consists of one or
more clauses; all sentences and entries must be followed by a period followed by
a space.

When the sentences or entries of a paragraph require more than one line,
they may be continued as described in the Continuation of Lines paragraph above.

3-16 ’ DD25

Data Division Entries

Each Data Division entry begins with a level indicator or a level-number,
followed by a space, followed by the name of a data item (except in the Report
Section), followed by a sequence of independent clauses describing the data
item. Each clause, except the -last clause of an entry, may be terminated by a
semicolon followed by a space. The last clause is always terminated by a period
followed by a space. There are two types of Data Division entries; those which
begin with a level indicator and those which begin with a level-number.

A level indicator is any of the following: file description (FD),
file description (SD), or report description (RD). See Section VI.

In Data Division entries that begin with a level indicator, the level
indicator begins in Area A followed in Area B by its associated data-name and
appropriate descriptive information.

Data Division entries that begin with level-numbers are called data
description entries. '

In data description entries that begin with a level-number 01 oxr 77, the
level-number begins in Area A followed by a space and its associated record-name
or item name and appropriate descriptive information.

A level-number may be one of the following set: 01 through 49, 66, 77, 88.
Single digit level-numbers are written either as a digit or as a zero followed
by a digit. At least one space must separate a level-number from the word
following the level-number, :

Successive data description entries may have the same format as the first
or may be indented according to level-number. The entries in the output listing
are indented only if the input is indented. Indentation does not affect the
magnitude of a level-number. ’

When level-numbers are to be indented, each new level-number may begin any
number of spaces to the right of Margin A. The extent .of indentation to the
right is determined only by the width of the physical medium.

Declaratives

The keyword DECLARATIVES and the keywords END DECLARATIVES that precede and
follow, respectively, the declarative portion of the Procedure Division must
appear on a line by themselves. Each must begin in Area A and be followed by a
period and.a space. After the keywords END DECLARATIVES, no text may appear
before the following section header.

3-17 . ' DD25

2/77

line with an asterisk in the. continuation area of the
 appear as any 11ne in a source program, excludlng.

a: ly following -a section header in a segménted

tely fol: owing -jb.é‘x""?”COPY statement.

HENTERgGMAPfﬁfoéédﬁxe;

the charactexs from the computer s character set may be
ea B of a c¢omment line. The asterisk and the
rea B will be produced on the output listing but serve
’sp&Clal types of comment lines are provided:

umn 7 followed by~the word EJECT in columns 8-12 causes
ion after printing the comment.

. column 7 éaﬁ$é$;page ejection prior to printing the

olum:-7 foliowed by LSTOF in columns 8~12 causes suppression
“urce pxogram llstlng. ‘

followed by LSTON causes termination of the.
d by *LSTOF .,

i‘a::e xdentlfwd as such by a single digit (0-9) in
ce normat.. When statements are identified as debugging

with a digit

3-18 DD25A

SPECIAL~NAMES

FORMAT CONVENTIONS USED IN THIS MANUAL

Definition of a General Format

A general format is the specific arrangement of the elements of a clause or
a statement (which consist of elements as defined below). In this manual, a
format is. shown adjacent to information which defines a clause or statement. If
more than one specific arrangement is permitted, the general format is separated
into numbered formats. Clauses must be written in the sequence given in the
general formats. (If used, optional clauses must appear in the sequence shown.)
In certain cases, stated explicitly in the rules associated with a given format,
clauses may appear in sequences other than those shown, Applications,
.requirements, or restrictions are presented as rules:

) A syntax rule amplifies or restricts the usage of the elements within
a general format.

° A general rule amplifies or restricts functions attributed to a
general format or to its constituent elements.

Elements which make up a clause or a statement consist of uppercase words,
lowercase words, level-numbers, brackets, braces, connectives, and special
characters.

Words

All underlined uppercase words are called keywords and are required when
the functions of which they are a part are used. Uppercase words which are not
underlined are optional and may be written in the source program at the
discretion of the user. Uppercase words, whether wunderlined or not, must be
spelled correctly and must appear in the source program exactly as shown in the
formats.

In a general format, lowercase words are generic terms used to represent
COBOL words that must be supplied by the user. Lowercase words which occur in a
general format are replaced by COBOL words in an actual program, except for the
following list of words:

] Statements (Section VII)

° Imperative~statements (Section VII)
° Afithmetic—expressions (Section VII)
° Character-strings (Section VI)

° Comment=-entries (Section IV)

‘. Conditions (Section VII)

® Literals (Section III)

The above exceptions represent combinations of COBOL words constructed in
accordance with the definitions given in the sections noted.

3-19 DD25

" When generic terms are repeated in a general format, a number or ' letter -
appended to the term serves to identify that term for subsequent explanation.

Periods

When a- period is shown in a format, it must appear in the same position
whenever the statement is used in the source program. A period must always be
- followed by at least one space (unless it is the last character of a line).

Level-Numbers

~ When specific level-numbers appear in data description entry formats, those
specific level-numbers are required when such entries are wused in a COBOL
program.

‘Brackets and Braces

When a portion of a general format is enclosed in brackets[], that
portion may be included or omitted at the user's choice. Braces| jenclosing a
~portion of a general format indicate that one of the options contained within
the braces must be selected. In both cases, the possible choices are stacked
vertically in the format. When brackets or braces enclose a portion of a format
but only one possibility is shown, the function of the brackets or braces is to
delimit that portion of the format to which a following ellipsis applies (see
next paragraph). If an option within braces does not contain a key word, that
option is a default option (implicitly selected unless explicitly overridden).

The Ellipsis (...)

The ellipsis may show the omission of a portion of a source program. The
meaning becomes apparent in context.

In the general format, the ellipsis represents the position at which
repetition may occur at the user's option. The portion of the format that may be
repeated is determined as follows:

In a clause or statement format in which the ellipsis (...) appears, scan

from right to left to determine the] or |} delimiter immediately to the
left of the ...; continue scanning from right to 1left and determine the
logically matching [or { delimiter; the ... applies to the words between

the pair of delimiters.

3-20 DD25

Format Punctuation

The punctuation characters comma: and semicolon are shown in some formats.
However, a semicolon must not appear immediately preceding the first clause of
an entry or a paragraph. These punctuation characters are used in each major
COBOL division as explained below. : ’

) Identification Division - Although not expressly shown in the formats
in this division, the comma and semicolon may be used within the
comment-entries. The paragraph itself must terminate with a period
followed by a space.

) Environment Division ~ When either a comma or a semicolon is shown in
the formats, it is optional and may be included or omitted. The entry
itself must terminate with a period followed by a space.

) Data Division - When either a comma or a semicolon is shown in the
formats, it is optional and may be included or omitted. The entry
itself must terminate with a period followed by a space.

° Procedure Division - When a comma is shown in the formats, the comma

is optional and may be included or omitted. If desired, a semicolon
may be used between statements.

Special Characters

When the characters '+', '-', '<', '>"', and '=' appear in formats, they
are required when such formats are used, even though they are not underlined.

- Shading

In this manual, the shaded areas represent the implementation of a feature
specified in the CODASYL COBOL Journal of Development but not specified in
American National Standard COBOL-1968, the implementation of a feature defined
in earlier versions of the COBOL language specifications but subsequently
deleted by CODASYL, or the implementation of a feature that may be unique to the
Series 60/6000 compiler. Some of these features are now contained in American
National Standard COBOL-1974.

For additional information regarding obsolete language elements, refer to
Section XVII of the COBOL User's Guide.

For information concerning the flagging of obsolete language elements and
‘Series 60/6000 language extensions, refer to Appendix -C of the COBOL User's
Guide.

Deltas

A delta A in the margin adjacent to the text indicates that the particular
. feature being described has not been implemented. The A may appear adjacent to
a feature not implemented or adjacent to a feature which is not available for
use with the Software Release associated with this revision of the manual.

2/77 ‘ 3-21 DD25A

SECTION IV

IDENTIFICATION DIVISION

DESCRIPTION OF THE IDENTIFICATION DIVISION

Each COBOL source program must begin with the Identification Division,
which is used to identify the source program and its resultant output 1listing.
The user may also include the date on which the program is written, the date of
source program compilation, and other desired information as shown in the
paragraph structure of the general format below. :

Organization of the Identification Division

Fixed paragraph-names specify the type of information contained in each
paragraph. The name of the program may be given in the first paragraph, the
PROGRAM-ID paragraph., The other paragraphs are optional and may be included at
the discretion of the user, in any-order.

Structure of the Identification Division

The structure of the Identification Division is presented below.
General Format:

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.
[AUTHOR. [comment-entry] ...]

[INSTALLATION. [comment-entry]...]

[DATE-WRITTEN. [comment-entry]...]

[DATE-COMPILED. [comment-entry]...]

[SECURITY. [commentéentry]..,]

[REMARKS. [comment-entry J...]

4-1 . DD25

SYntax Rule:

1. The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period and a space.

General Rule:

1. A comment-entry may be any combination of characters from the
computer's character set, organized to conform to sentence and
paragraph format, .

4-2 DD25

PROGRAM-ID PROGRAM-ID
PROGRAM~-ID PARAGRAPH
The PROGRAM~ID paragraph is required and may be the first paragraph in the

Identifica

General Fo

tion Division.

rmat:

PROGRAM-ID, program-name,

Syntax Rul

es:

The PPOGRAM~ID paragraph must begin with the paragraph-name PROGRAM~ID
which must be followed by a period and a space. It must appear in

every program.

bﬁ*aily'of letters and digii

p'"gram-name exceeds six characters, it will be truncated. Any 1nva11d
aracters wxll be replaced by a period, L

The program-name must be followed by a period and a . space.

“7h:if1rst four characters of program—name must not be LDIN,

£ no- program~name LS s‘e i£1ed, the compller will supply the wordj

General Rules:

1.

The first three characters are used as the Transaction Processing
Applications Program (TPAP) identifier (ID) when the program is to be
used in the Transaction Processing System; therefore, they must be
unique within that system (refer to the COBOL User's Guide).

When the program is to be loaded into the same overlay as other COBOL
programs, the first four characters of each program-name must be

“unique within the overlay.

The program-name will appeax on the program listing.

4-3 : - DD25

AUTHOR

—— o—

AUTHOR

AUTHOR PARAGRAPH

The AUTHOR paragraph is used to supply the name of or . otherwise identify
the author of the program. . '

General Format:

AUTHOR. [comment-entry |...

.Syntax Rules:

1.

General

1.

2o

The AUTHOR paragraph must begin with the paragraph-name AUTHOR which

must be followed by a period and a space.
The comment-entry can be one or more sentences, including any
combination of characters from the computer's character set, organized
to conform to sentence and paragraph format.

Rules:
The paragraph is optional.
If the AUTHOR paragraph is . included in the source program, the

information supplied will appear on the program listing.

4-4 | - DD25

INSTALLATION - - INSTALLATION

INSTALLATION PARAGRAPH

. The INSTALLATION paragraph is used to supply the name of or otherwise
identify the installation at which the source program was written.

" General Format:

INSTALLATION. [comment-entry] ...

Syntax Rules:

1. The INSTALLATION paragraph must Dbegin with the paragraph-name
INSTALLATION which must be followed by a period and a space. ‘
2. The comment-entry can be one or more sentences, including any

combination of characters from the computer's character set, organized
to conform to sentence. and paragraph format.

General Rules:
1. The paragraph is optional.

2. If the INSTALLATION paragraph is included in the source program, the
information supplied will appear on the program listing.

4-5 L . - , DD25

DATE-WRITTEN - ' ' DATE-WRITTEN

DATE-WRITTEN PARAGRAPH

The DATE-WRITTEN paragraph is used to supply the date on which the program
- was written, , ' .

General Format:

DATE-WRITTEN. [comment-entry] ...

Syntax Rules:
1. The DATE-WRITTEN paragraph must begin with the paragraph-name
‘ DATE-WRITTEN which must be followed by a period and a space.
2. The comment-entry -can be ©one or more sentences, including any

combination of characters from the computer's character set, organized
to conform to sentence and paragraph format.

General Rules:
1. The paragraph is optional.

2. If the DATE-WRITTEN paragraph is included in the source program, the
information supplied will appear on the program listing.

4-6 DD25

DATE~-COMPILED ' DATE-COMPILED

DATE-COMPILED PARAGRAPH

The DATE-COMPILED paragraph is used to supply the date on which the program
was compiled. : . ' :

‘General Format:

DATE-COMPILED. [comment-entry] ...

Syntax Rules:

1. The DATE-COMPILED paragraph must begin with the paragraph-name
DATE-COMPILED which must be followed.by a period and a space.
2. The comment-entry may be any combination of characters from the

computer's character set, organized to conform to 'sentence and
paragraph format. : :

General Rules:
1. The paragraph is optional.
2. If the DATE-COMPILED paragraph is included in the source program, it

is replaced during compilation with a paragraph of the form:

_DATE-COMPILED. current-date.

4-7 o - DD25

SECURITY

SECURITY

' SECURITY PARAGRAPH

(The 'SECURITY paragraph is used to supply the level of security attached to
the program by the installation or user.

General Format:

SECURITY. [comment-entry] ...

Byntax Rules:

1.

The SECURITY paragraph must begin with the paragrathname SECURITY
which must be followed by a period and a space.

The comment-entry may -be any combination of characters from the
computer's character set, organized to conform to sentence and
paragraph format.

General Rules:

The paragraph is optional.

If the SECURITY paragraph is included in the source program, the
_information supplied will appear on the program listing.

4-8 ‘ ~ DD25

REMARKS - ; ' REMARKS

REMARKS PARAGRAPH

The REMARKS paragraph is used to supply any information about the program
that is not contained in the other paragraph headings in the Identification
Division. ' : ’ : Co

General Format:

REMARKS. [comment-entry] .

Syntax Rules:
1. The REMARKS paragraph must begin with the paragraph-name REMARKS which
must be followed by a period and a space.
2, The information supplied can be one or more sentences, including any
combination of characters from the computer's character set, organized

to conform to sentence and paragraph format.

3. All lines of comment-entry are restricted to Area B of the reference
format. :

General Rules:
1. The paragraph is optional.

2. If the REMARKS paragraph is- included in the source program, the
information supplied will appear on the program listing.

4-9 : . DD25

SECTION V

ENVIRONMENT DIVISION

DESCRIPTION OF THE ENVIRONMENT DIVISION

The Environment Division must be included in every COBOL source program and
is the second division of a COBOL program. This division provides a standard
method of expressing the aspects of a data processing problem that depend upon
the physical characteristics of any given computer. It is used to identify the
compiling computer and the computer on which the object program is to be run.
Data concerning input-output control, specific hardware characteristics, and
control techniques can also be presented in this division.

Organization of the Environment Division

The Environment Division is divided into two sections, the Configuration
Section and the Input- Output Section. The Configuration Section is required and
the Input-Output Section is optional. The Configuration Section is subdivided
into the following three paragraphs:

e SOURCE~COMPUTER paragraph, which identifies the computer on which the
source program is to be compiled.

° OBJECT-COMPUTER paragraph, which identifies the computer on which the
object program produced by the compiler is to be executed.

° SPECIAL-NAMES paragraph, which associates the names of hardware' and’

operatlng system features used by the compiler with the mnemonic-names
used in the source program.

The "Input-Output Section is subdivided into the folldwing two paragraphs:
~® - FILE~CONTROL paragraph, which names all files used in the program and

associates them with external media.

] -O-CONTROL paragraph, which defines special control technlques to be
used in the object program.

5-1 . DD25

Structure of the Environment Division

. The general outline of the sections and paragraphs in = the Environment
Division and the order of presentation in the source program is given below.

General Format:

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

-

SOURCE=-COMPUTER. [source-computer-entry]]

OBJECT-COMPUTER., [object-compdter—entry]]

SPECIAL-NAMES, - special-names—entry]

-

INPUT-OUTPUT SECTION.

FILE-CONTROL. { file-control-entry }

[;-O—CONTROL. input-output-control—entry]]

Syntax Rules:

1. The Environment Division must be included, must follow the
- Identification Division, and must begin with the reserved words
ENVIRONMENT DIVISION which must be followed by a period and a space.

2. The Configuration Section should be included, follow the Environment

Division header, and begin with the section-name CONFIGURATION SECTION
which must be followed by a perlod and a space.

CONFIGURATION SECTION IN THE ENVIRONMENT DIViSION

The Configuration Section provides program documentation for the Hardware
characteristics of the computer used for compilation and of the computer used to
execute the object program. Provisions are included in this section for
assigning definitions to all mnemonic-names to be wused in the body of the
program, for defining condition-names for the status of switches, and for
defining specific compiler~directing phrases. ‘

=2 ' ‘ : ~ DD25

SOURCE=-COMPUTER ‘ 'SOURCE-COMPUTER

SOURCE~COMPUTER Paragraph

The SOURCE-COMPUTER paragraph identifies the computer wupon which the
program is to be compiled. The paragraph can be written in either of the.
following two formats.

Format 1l:

SOURCE-COMPUTER, COPY library-name

] rword=-2
REPLACING word-1l = BY { literal=1l }
: ’ identifier-1

: . word-4
, word=-3 BY {literal-Z cee .
: identifier-2
Format 2:.

6000

SOURCE-COMPUTER. 6000-EIS

2/77 ’ | . 5-3 : - DD25A

SOURCE-COMPUTER SOURCE-COMPUTER

Syntax Rules:

1. The SOURCE-COMPUTER paragraph must begin with the paragraph-name
: SOURCE-COMPUTER which must- be followed by a period and a space.

2. When Format 1 is used, the COPY library-name phrase is required. The
F; "~ library-name must be identical to the name associated with the desired
: text on the library.

3. In Format 1, a word is any COBOL word.

When Format 2 is used, the computer-name specified should be 6000 or
6000~-EIS, Series 60 users should specify 6000-EIS.

J—
[N
.

General Rules:

1. For a description of the COPY function, see Section VIII, the COBOL
: Library.

2. This paragraph provides program documentation only énd has no effect
on compilation.

Special Considerations:

1. For a program that might be used in an installation with different
-, computers, the SOURCE~COMPUTER paragraph can supply valuable
information for modifying the program for the different environment.

2/77 5-4 , : , DD25A

OBJECT-COMPUTER : OBJECT-COMPUTER

OBJECT-COMPUTER. Paragraph

The OBJECT-COMPUTER paragraph identifies the computer on which the program

is to be executed. The paragraph can be written in either of the following two
formats.

Format 1:

OBJECT-COMPUTER. COPY library-name

word-2
REPLACING word-1l BY literal-1

- identifier-1

» word-4 ‘
, word-3 BY literal-2 e .
identifier-2 :

Format 2:

6000

OBJECT-COMPUTER. | 6000-EIS

—— (‘ —
: WORDS w
integer-1 CHARACTERS
MODULES

, MEMORY SIZE

[} SEGMENT-LIMIT is priority—number:] .

2/11 ' o 5-5 , ~ DD25A

OBJECT-COMPUTER : ‘ OBJECT-COMPUTER

Syntax Rules:

L.

10.

11.

2/77

The OBJECT-COMPUTER paragraph must begin with the paragraph-name
OBJECT-COMPUTER which must be followed by a period and a space.

When Format 1 is used, the COPY library-name phrase is required. The
library-name must be identical to the name associated w1th the desired
text on the library..

In Format 1, a word is any COBOL word.

When Format 2 is used, the computer-name- specified should be 6000 or
6000-EIS., Series 60 users should specify 6000-EIS.

The MEMORY SIZE phrase is optional. When used, the word MEMORY is
required. If the memory size is given as an integer, the integer
specifies the number of WORDS, CHARACTERS, or MODULES the object
program requires. Therefore, one of these three words is requlred
when the memory size is glven as an 1nteger. If the memory lze ‘1s;v

*pec1fy " the xequlred hJ dw

tﬁék 0bjecfl

he a-zunits“uséd to execute

:Ily-iS’réquired may be sbe@ifiéd{

When the SEGMENT-LIMIT IS phrase -is used, the priority-number must be
an integer in the range 1-49. The words SEGMENT-LIMIT IS are
required. '

When the SEGMENT~LIMIT phrase is specified, only those segments having
priority-numbers from 0 up to, but not including, the priority-number
designated as the SEGMENT-LIMIT, are considered as permanent segments
of the object program.

- Those segments having priority-numbers from the SEGMENT-LIMIT through

49 are considered as fixed overlayable segments.
When the SEGMENT-LIMIT phrase: is omitted, all segments having

priority-numbers from 0 through 49 are considered as permanent
segments of the object program. ‘

5-6 ' DD25A

OBJECT-COMPUTER OBJECT-COMPUTER

General Rules:

For a description of the COPY function, see Section VIII, the COBOL
Library.

If the EISF or NEISF options are specified on the $§ COBOL card, these
options will take precedence over the OBJECT-COMPUTER paragraph. A
warning message will be given when EISF has been specified on the
$ COBOL card and the following is encountered in the source program:

OBJECT-COMPUTER. 6000.

The object program will utilize EIS code.

A warning message will be given when NEISF has been specified on the
$ COBOL card and the following is encountered in the source program:

OBJECT-COMPUTER. 6000-EIS.

The object program will not utilize EIS code.

If the OBJECT-COMPUTER paragraph is not present or a syntax .error on
computer-name (none present or illegal name) is detected, the compiler
will determine whether or not EISF or NEISF was specified on the
$ COBOL card before the default determination of processor type is
made. If neither EISF nor NEISF were specified on the $ COBOL card,
the object program will be prepared for the type of processor upon
which the program is being compiled and a warning message will be
issued.

Special Considerations:

1.

The 6000~-EIS phrase causes coding that wutilizes the Extended
Instruction Set (EISﬂ- to be produced unless overridden by the NEISF
option on the $ COBOL card. An object program that includes EIS can
only be executed on an EIS processor.

Programs in the same run unit should either all be compiled in the EIS
mode or all be compiled in the NEIS mode; otherwise, unpredictable
results (including abnormal terminations) may ‘occur during object
program execution.

For a program that might be used in an installation with different
computers, the OBJECT-COMPUTER paragraph can supply valuable
information for modifying the program for the different environment.

lExtended Instruction Set (EIS) refers to an extension to the original Series
6000 instruction set. EIS is the standard instruction repertoire for models

6025,

6040, 6060, and 6080 of the Series 6000 system and all models of the

Series 60 system.

2/717

5.7 . _ DD25A

SPECIAL-NAMES : ' SPECIAL-NAMES

SPECIAL-NAMES Paragraph

The SPECIAL-NAMES paragraph is optional. It provides a method by which
mnemonic-names used in the Data and Procedure Divisions, condition-names for the
status of switches, and certain compiler-directing phrases can be specified.
The paragraph can be written in either of the following two formats.

Format 1l:

SPECIAL-NAMES. COPY library-name

; word-2
REPLACING word-1 BY literal-1l
: identifier-1

' word-4
. word-3 BY (literal-2 ees .
identifier-3

‘Format 2:

SPECIAL-NAMES.

[iiteral-B Is mnemonic-name—%]
[iiteral-4 Is mnemonic—name—Z] .os
[EEE IS mnemonic-name-%]

[?YSOUT IS mnemonic-name—{]

[bOMMUNICATION-DEViCE Is mnemonic—name—é]

[ﬁEMOTE Is mnemonic-name-G]

[cLaps 1s mnemonic-name-7 |

[Eglﬂg IS mnemonic-name-8
[bONSOLE Is mnemonic-name-é]

[TYPEWRITER IS mnemonic—namé-lé]

[292 IS mnemonic-name-li] |

SWITCH integer-l IS mnemonic-name-12

{, ON STATUS IS condition-name-1l EEE:STATUS 1s condition—name-%]

¢ OFF STATUS IS condition-name-2 [QE STATUS IS condition-name-@]

2/77 : 5-8 DD25A

SPECIAL-NAMES | SPECIAL-NAMES

[DECIMAL-POINT IS COMMA]

[[CURRENCY SIGN IS literal-5 |

Syntax Rules:

1. The SPECIAL~-NAMES paragraph must begin with the paragraph-name
SPECIAL-NAMES which must be followed by a period and a space.

2, When Format 1 is used, the COPY library-name phrase is required. The
'library-name' must be identical to the name associated with the
desired text on the library.

3. In Format 1, a word is any COBOL word.

4. When used as a report code, literal-3 or 1literal-4 must be a
single-character nonnumeric literal whose value 1is a letter or a
digit.

5. Mnemonic-names and condition-names may contain up to 30 characters,
one of which must be a letter.

6. If mnemonic~names, condition-names, or compiler-~directing phrases are
used, the SPECIAL-~-NAMES paragraph must be included in the program.

General Rules:

1. For a description of the COPY functlon, see Section VIII, the COBOL
Library.

2/77 : 5-9 ‘ DD25A

SPECIAL-NAMES : SPECIAL-NAMES

2/77

The literal IS mnemonic-name option is used to define report codes.
This option 1is required when more than one report is to be generated
by the program. The literal specified is the code appended' to the
report-name defined in the report description entry for the report.
(Refer to the CODE clause.)

The 'special names' peculiar to the operating system (GIN, SYSOUT,
COMMUNICATION-DEVICE, REMOTE, GLAPS, GTIME, CONSOLE, and TYPEWRITER)
may be assigned mnemonic-names for use with the ACCEPT and DISPLAY
statements. The mnemonic-names assigned these 'special names' may be
referenced by the ACCEPT and DISPLAY statements as follows:

ACCEPT DISPLAY

Statement Statement

GIN N SYSOUT
COMMUNICATION~DEVICE COMMUNICATION-DEVICE
REMOTE REMOTE

GLAPS CONSOLE

GTIME TYPEWRITER

CONSOLE

TYPEWRITER

Although CONSOLE and TYPEWRITER are the same physical "device, the
effect of the ACCEPT and DISPLAY statements using these names is
different. Refer to Section VI in the COBOL User's Guide.

The mnemonic-name assigned to the special name 'TOP' may be referenced
in a WRITE...ADVANCING statement to cause a listing to be advanced to
the top of the next page.

The SWITCH option is used to associate user-specified mnemonic-names
with the operating system's Program Switch Word switch numbers. When
this option is used, at least one of the two possible states of the
switch (ON or OFF) must be assigned a condition-name. The
mnemonic-names associated with the software switches can be referenced
only by using the ACCEPT and DISPLAY statements. The condition-names
associated with the status of switches can be referenced only in
sentences that contain either the IF or PERFORM statement. ' When the
SWITCH option is used, the words SWITCH and IS are required as are

. either of the status names ON or OFF followed by IS.

5-10 ‘ " DD25A

SPECIAL-NAMES : SPECIAL-NAMES

2/77 . © 5-10.1 ' ‘ DD25A

SPECIAL-NAMES ' SPECIAL-NAMES

2/77

10,

11.

12,

The DECIMAL~-POINT IS COMMA option is a compiler-directing phrase that
causes the function of the comma and the decimal point (period) to be
exchanged in PICTURE clause character-strings, numeric literals, .and’

The CURRENCY SIGN IS literal option is a compller—dlrectlng phrase
that substitutes the specified literal for the dollar sign in PICTURE
character-strings | < : rogram editing. The literal
specified must be a 1d must not be one of the
following:

a. Digits 0 through 9;

b. Alphabetic characters A, B, C D
the space;

s, VvV, X, Z; or

Ce Secial h acters l*l' l+l" l_l' |,|’ l.l' l;" l(" l)l, l"l'

5-11 ' o DD25A

SPECIAL-NAMES . SPECIAL-NAMES

13.

2/77 ’ ' 5-11.1 DD25A

SPECIAL-NAMES ’ , SPECIAL-NAMES

14,

15.

2/77 o 5-12 : ’ : DD25A -

SPECIAL-NAMES SPECIAL~-NAMES

- journalize errors. After placing an error occurrence
ge on the execution report, terminate processing
rough the abort routine of the operating system.

ournallze_errors. If the error ocourred while reading the

i ~input, continue processing. If the error occurred
ing ollation file, terminate processing through
VOutine of the operating system.

If the error occurred while readlng the
If the er:or was a-
"10n lee,

'Journallze errors. 1f the error was a block serial number
error while reading the original input, terminate processing
hrough the abort routine of the operating system, If the
error occurred whlle reading ‘a - collation file, terminate
processan (the . aboxt routine of the operating

‘”fIf the error was a block serial number

four options +alléw the user to discriminate between
it errors and collation file errors. They also allow
ec Veryloptlsns for general read errors and block serial
T _differentiation may be required because the
5 b serial error cannot contain the text of the
ror occurs on a - collation flle, ‘it is
h‘records were dropped '

akxng of checkpoxnt records durlng a sort
alues are. : : :

o sort or mer
c file

5-13 ' DD25

- SPECIAL-NAMES ' ‘ .SPECIAL-NAMES

ord Memory Assignment Control

eter forcdes the first word of a data record into an even or
on during a sorting process, and has no meaning for a
vopt= n is normally used to optimize comparison
Y S Acce table parameter values are.'

-§ records in memory 1s lndetermlnate.Q

ecor bezng sort a xa‘placedfxn ,an$

fdtbeing?sottéd

illows the dynamxc allocatlon of free tape handlers to
- at program execution., Such tapes are used for collation
i addxtlon to the tapes allocated by $ TAPE or $ NTAPE c¢ards.
eptable parameter values are: :

The sort process does not borrow tapes for collation files.
he 1 represents a numeric value from one to 13. The sort
_ocess borrows up to n tapes for collation files during

eéxecution. Borrowed tapes are released following the final
) llatlon pass.

I@gn@ybevice Positioning Control

"laws the user to specify handlxng of the input file while
losing the file. The user is responsible for selecting
sposition codes’on file control cards. Acceptable values

OPEN . CLOSE
Rewind Rewind Lock
- Yes Yes - No
Yes RS Yes Yesg
“Yes - No - No
Yes . Yes . No
Yes E Yes No
- No Yes Yes
No No No
No ‘ Yes No

5-14 DD25

SPECIAL-NAMES . SPECIAL-NAMES

*ié”ColxationsCGntrol

‘ls the use of the output file as a collation file
p cess. Normally, the output €file is so wused.
: put flle is not a tape devxce, thls parameter must

_d_closxng the file. The user is responéible for
P riate disposition codes on file control cards.
al as are the same- as those for Field-6. v

% e'Values 5 6, or 7 will prevent collation upon the output
fone of these values is used and Field-7 is not one (1), this
, overrlde Field=7 and an error message will be printed.

_Borrow Memory Control

,rameter allows the dynamic allocation of free memory to a sort
‘ program execution. The free memory area is used for control
kbuffers 1n addition to the area allocated by the § LIMITS

':parameter is meaningful only in a $ LOWLOAD environment (see the
ntrol Caxds manual). Acceptable parameter values are:

nu11~?;No memory is borrowed for the sort process.

s The n represents a numeric value of 1 to 262,144 memory
locations. The sort process borrows n words of memory (or
any available portion of n) at program execution. Memory 1is
borrowed in - 1024-word modules. All borrowed memory is

. released +to - the operating system following the final
¢ollation phase. . o ' ' ’

5-15 . ‘ DD25

SPECIAL-NAMES ' SPECIAL-NAMES

je FLR Mode Control

Evs@pefa’c::‘..at;l.,pz':fcar.:e'asax.u';ng of certain sort ihput files
ge, If the input file contains records which are .

not'f

Nelther the input file, nor the sort file, nor the
ile may be described with the phrases 'APPLY SYSTEM
JARD! or 'APPLY VLR' in the I~O-CONTROL paragraph. None
e files may contain different sized multiple record
ptions, All of the record descriptions must be started
. the item FILLER PIC X(6). This entry allows for the
existence of the record control word which appears on each
logical record. The comparison coding which the compiler
ener tes ls thereby properly aligned with the described key

~Mg}tiple Reel File Control (Optional)

arameter -forces automatic reel switching for labeled or
. ed input files. If used, reel switching is forced at
*;end f*reel for both sort and merge input files. The end-of~-input can

) ndicated nly through operator intervention at reel switching
‘Acceptable parameters are:

ume noxmal processing,
input is on multiple reel unlabeled files.

7ngut i$ on multiple reel labeled filgs.

nHCurrently Implemented

No Option

INPUT-QUTPUT SECTION IN THE ENVIRONMENT DIVISION

The Input-Output Section in the Environment Division 1is optional. This
section is subdivided into two paragraphs; the FILE~-CONTROL paragraph and the
I-0-CONTROL paragraph. If the Input-Output Section is included in a source
program, the FILE-CONTROL paragraph header is required and the I-0-CONTROL
paragraph is optional. . » '

5-16 o ; DD25

. this parameter may be used to cause the sort.
nﬂthe.flxed—length record mode, even though the

FILE-CONTROL FILE-CONTROL.

FILE-CONTROL Paragraph

The FILE~-CONTROL paragraph names each file used in the program and
identifies the type of peripheral device on which each file is stored. 1In
addition, each file may be assigned to a particular input or output peripheral
device, The paragraph can be written in any of the following three formats.

Format 1l:

FILE-CONTROL. COPY library-name

identifier-1
B word-4 »
, word-3 BY literal-2 ese |

L : identifier-2

Format 2:

word-2
REPLACING word-l BY{ literal-l

w

FILE-CONTROL.

file-name-1

{FQMT[wnwm]

ASSIGN TO [integer—l.] file-code-1 [, file-code-2] cen

FOR ool oad

MULTIPLE REEL
L) UNIT
[integer=-2 AREA
RESERVE ALTERNATE []]
A NO AREAS

5-17 : o) DD25

FILE-CONTROL .) v FILE-CONTROL

Format 3:

FILE- LIMIT IS data-name=~-1 THRU data-name~-2
4l
FILE-LIMITS ARE literal-1l THROUGH literal-2
' data-name-3 THRU data—name~4
’ : . ‘v LR
literal-3 THROUGH literal-4
SEQUENTIAL

» ACCESS MODE IS
" RANDOM

[, PROCESSING MODE IS SEQUENTIAL]

[, ACTUAL KEY IS data-name-S]‘ . } .o

FILE-CONTROL.

{%ELECT file~name-1

ASSIGN TO [integer—l] file-code—l.[, file—code—z] N .}» “os

Syhtax Rules:

1.

The FILE-CONTROL paragraph is required when the INPUT-OUTPUT SECTION
header is present.

The FILE~-CONTROL paragraph must begin with the paragraph-name
FILE-CONTROL which must be followed by a period and a space.

When Format 1 is used, the COPY;library-name phrase is required. The
'library-name' must be identical with the name of the desired text on
the library.

In Format 1, a word is any COBOL word.

The OPTIONAL phrase is allowed only for input files accessed in a
sequential manner. It is required for sequential input files that are
not necessarily present each time the object program is executed.

Each file described in the Data Division must be named once and only
once as a file-name in the FILE~-CONTROL paragraph following the
keyword SELECT.

In Format 2, each selected file must have a file description entry in
the Data Division.

5-18 ' DD25

|

FILE-CONTROL : FILE-CONTROL

9.

10.

11.

12.

13.

14.

1s5.
le.

17.

18.

2/77

In Format 3, each selected file must ‘have a sor je file
description entry in the Data Division. Sort files or merge files,
those whose data descriptions begin with SD entries in the Data
Division, must be named and assigned using Format 3.

Intege:—l and integer-2 must be unsigned nonzero integers.

Integer~l is treated as documentation only since multiple devices are
assigned using system control cards.

Integer-1l may not be specified when file-code-2, file-code-3, ..., 1is
also specified in the ASSIGN phrase. , :

Multiple file~codes in the ASSIGN phrase are treated as documentation
only.

File-code-l, ..., must be a two-character word consisting either of
two letters (A through R, T through Z) or of one letter and one digit
(0 through 9). File-codes beginning with the letter S should not be
used in programs that utilize the sort or merge process. These
flle-codes, which 1nclude s1l, s2, ..., SA, SB, ..., SZ, have a special
meaning in the sort ¢f i@¥ge operation. The code specified must not
be a COBOL reserved word. The file-codes for each file named in a
SELECT sentence must be unique within the program. When the object
program is submitted for execution, it is accompanied by peripheral
assignment cards which are used to specify the peripheral device for
each file. The file-code in the peripheral assignment card must be
the same as that assigned in the source program. Each of the object
program's files 1is associated with the designated perlpheral device
when the operating system matches the file-codes.

The MULTIPLE REEL option must be specified whenever the number of
magnetic tape ‘devices might be less than the number of reels in the
file.

The MULTIPLE UNIT option is treated as documentation only.

The RESERVE phrase allows the user to modify the number of
input-output areas allocated by the compiler. The RESERVE integer
ALTERNATE AREAS phrase indicates that the specified number of buffer
areas are to be allocated in addition to the main buffer area reserved
by the COBOL compiler. The value of integer-2 must be less than 256,
If the RESERVE NO ALTERNATE AREAS phrase is specified, one buffer area
is allocated. If the RESERVE phrase is omitted, the compiler
automatlcally allocates one alternate buffer area in addition to the
main buffer area for input-output.

The FILE-LIMIT(S) phrase is treated as documentation only. The
FILE-LIMITS are determined by the amount of file space actually
allocated to a particular file.

The ACCESS MODE and PROCESSING MODE phrases must. be given for mass
storage files. .

5-19 ’ DD25A

FILE-CONTROL . ‘ FILE-CONTROL

General Rules:

1. For a description of the COPY function, see Section VIII, the COBOL
Library '

uéed'

14 ‘ona program, ‘the OVERLAX phrase is

1t again, To
LAy the. OVERLAY phrase must = be
SELECT sentence for ‘each program in which this file is
_ept for that. program that initially references the file.

t an ‘overlay file' does not generate a 'normal' file control

ther, the location symbol (or symbolic address of the file

information) is positioned within the correct Labeled Common

rea'by the compiler. The file properties (including any RERUN

311 f;les using this feature must be identical,

3. The flle-name supplled as file-name-1l in each SELECT sentence must be
exactly the same as the file-name that appears in the file description
entry or sort-merge file description entry in the Data Division,

: the RENAMING phrase is used. When RENAMING is used, the

tion entry associated with file-name-2 is applied to the

specified as ‘file~name-1 in this SELECT sentence. The data

,tian. entry associated with file-name-2 includes its file

: tion entry and associated record description entries. Because

_of this,; the file-name gpecified as file-name-1 must not be described

in the File Section of the Data Division. The file description for the

named file must not be the last file description in the File
on. Also, the SELECT sentence for the file-name specified as
name~2 must not contain a RENAMING phrase., The renamed file must

“a sort-merge file description., The use of the RENAMING phrase

- imply the usge of the SAME AREA phrase of the I-O0-CONTROL

h, Each file named in each SELECT sentence must have a unique

REEAMING phrase is used, the COPY option on the $ COBOL

be Hgthe LIBCPY option must not be used.

4, Each file named in a SELECT sentence must be assigned to a peripheral
' device u51ng the ASSIGN TO phrase.

"e is allocated in the Labeled Common storage area for
r areas, However, if the FOR BLANK COMMON phrase is -
er space for the file is allocated within Blank
er than ip Labeled Common storage. This feature is
.large object programs when a 1limited amount of
In this case, the Blank Common area can be shared
cludlng the variable-field option on a § LOWLOAD
D'optxon is - used, the maximum size of Blank

: torage area is prlntad on the preface page of eachv
e o the. descriptlon of the $ LOWLOAD card 1n the

5-20 ‘ DD25

FILE-CONTROL FILE-CONTROL

BLANK COMMON phrase cannot be used in any program that

v‘e can be used. with independent programs
but caution is. advxsed when using; this-
module overlay en“ ,

The ACCESS MODE IS phrase should not be used for non-mass-storage
files but is required for mass storage files. When ACCESS MODE IS
SEQUENTIAL is specified, the mass storage logical records are read or
written sequentially. The wuser need not specify the actual key
(through the ACTUAL KEY IS phrase) when the access mode of a mass
storage file is sequential. When ACCESS MODE IS RANDOM 1is specified,
the actual key must be specified in the ACTUAL KEY IS phrase. When the
access mode is random, the mass storage logical records are read and
written randomly using the data-name contents of the actual key to
locate or place the records.

The PROCESSING MODE IS phrase has no meaning for non-mass-storage
files but is required for mass storage files, When PROCESSING MODE IS
SEQUENTIAL is specified, the mass storage logical records are
processed in the order in which they are accessed. Thus, if logical
records are accessed randomly, the records are processed in the order
of access.

The ACTUAL KEY IS phrase has no meaning for non-mass-storage files.
For mass storage files, the ACTUAL KEY phrase is optional if access is
sequential and is required if access is random. The ACTUAL KEY, given
as data-name-5, must be a single-precision binary integer with usage
described as USAGE COMP-1, Furthermore, the ACTUAL KEY must be
described in the Data Division as either a level 01 or level 77 entry
in the Working-Storage Section. When the access mode is random, the
user can obtain records sequentially by incrementing by one the value
of the data-name associated with ACTUAL KEY,

5-21 : - DD25

FILE—CONTROI; o _ FILE-CONTROL

Special Considerations:

1.

2/77 ‘ : 5-22 DD252A

I-0-CONTROL I-0-CONTROL

I-0-CONTROL Paragraph

The I-O-CONTROL paragraph defines special control techniques to be used in
the objsct program. Input-output techniques, the points at which rerun is to be
established, the memory area that is to be shared by different files, and the
location of files on a multiple file reel can be specified in the I-0-CONTROL
paragraph. The paragraph can be written in either of the following two formats.,

Format 1l:

I-0-CONTROL. COPY library-name

B word=-2 '
REPLACING word-l BY literal-1l
: identifier-1l

word~4
, word-3 BY \(literal-2 T eee]
identifier-2]) -

Format 3:

I-0-CONTROL.

5-23 ' , DD25

I-0O-CONTROL ‘ , k I-0-CONTROL

SAME RGE}] AREA FOR file-name-9, file-name-10

[, file-name-11, file-name-12] ... | ...

[#ULTIPLE FILE TAPE CONTAINS file-name=-13 [POSITION 1nteger-2]

[: file-name-14 [_POSITION 1nteger—3:]]]

Syntax Rules:

1. The I-O0-CONTROL paragraph is optional. If present, it must begin with
the paragraph-name I-O-CONTROL which must be followed by a period and
a space.

2. When Format 1 is used, the COPY library-name phrase is required. The
'library-name' must be identical +to the name associated with the
desired text on the library.

3. In Format 1, a word is any COBOL word,

8 may be separated by a semicolon.

5. A file-name that represents a sort file or merge file cannot appear in
a RERUN phrase or a MULTIPLE FILE phrase.

6. In the SAME AREA phrase, SORT and SORT-MERGE are equivalent.

7. A file-name that represents a sort file o1’ merge file must not appear
in the SAME sentence unless the SORT, SQR?~MERGE, or RECORD optiocon is
used.

8. The four forms of the SAME phrase (SAME AREA, SAME RECORD AREA, SAME
SORT AREA, ME] are considered separately in the
following:

More than one SAME sentence may be included in a program. However:
a. A file-name must not appear in more than one SAME AREA phrase.

b. A file~-name must not appear in more than one SAME RECORD AREA
phrase.

c. A file-name that represents a sort file @
appear in more than one SAME SORT AREA
phrase. '

2/71 ' 5-24 - DD25A

I-0~CONTROL . ‘ I-0-CONTROL

d. If one or more file-names of a SAME AREA phrase appear in a SAME
RECORD AREA phrase, all of the file~names in that SAME AREA
phrase must appear in that SAME RECORD AREA phrase. However,
additional: file-names not appearing in that SAME AREA phrase may
also appear in that SAME RECORD AREA phrase, The rule that only
one of the files mentioned in a SAME AREA phrase can be open at
any given time takes precedence over the rule that ‘all files
mentioned in a SAME RECORD AREA phrase can be open at any given
time. '

e. If a file-name that does not represent a sort file or merge file
ars in a SAME AREA phrase and one or more SAME SORT AREA OY .
RT-MERGE ARBA phrases, all of the files named in that SAME
AREA phrase must be named in that SAME SORT AREA “gr SAME
E A phrase(s).

9. Each file specified in the MULTIPLE FILE phrase must be named in a
SELECT sentence.

General Rules:

1. For a description of the COPY function, see Section VIII, the COBOL
Library. .

2. AREA ON phrase is provided to direct the compiler to
ks g area (Paocmss AREA) in

2/771 5-25 _ , DD25A

I-O-CONTROL

2/77

I-O-CONTROL

_FORMAT ON phrase is provided as a ‘shorthand

deds

20 BCD characters) .
__assumed; that is,
r by ;

5-25.1

_physical aspects of a file. When the

each

DD25A

I-0-CONTROL ’ ' I-0~CONTROL

7ill be Bmmut cha nmsrrx.
e STANDARD.

TEM STANDARD ‘FORMAT phrase is not used, thesge
‘specified in the appropriate clause(s) in the FD
ilé: "If the APPLY SYSTEM STANDARD FORMAT phrase is used
,e RECORDING ‘MODE, BLOCK CONTAINS, RECORD CONTAINS, or LABEL
8 ar 80 peclfled in the FD entry for the file, there must be
n devxationvfrov the system standard format in the ¥D entry clauses.

When the APPLY VLR FORMAT phrase is specified, the logical records of
the file are preceded in the buffer by a record control word that
contains the record size (in words) and other control information.
Also, the APPLY VLR phrase lmpllCltly speclfles that the recording
~modé ‘is binary. Depending on what is specified in the BLOCK CONTAINS,
"RECORD 'CONTAINS, and LABEL clauses of the FD entry for the file, the
“APPLY VLR FORMAT specification may or may not apply to a file that

_ conforms to the system standard format.

The 'RERUN phrase is used to cause checkpoint memory dumps to be
written, If 'ON file-name~7' is specified, the output device allocated
‘to file-name~7 receives the checkpoint dump; otherwise, the output
device allocated to file-name~8 receives the checkpoint dump. If 'ON
' name-7' is specified, file-name~8 may be either an input or an
file. The number of records specified by integer-1 may not
{ 250,000, The output device must be opened as an output file at
;eve'y point in " the program where a READ or a WRITE statement
. references file-name-8 so that the output device can receive the
“checkpoint dump.

The SAME AREA phrase specifies that two or more files that are not
sort files .or merge files are to use the same memory area during
processing. The area to be shared includes all storage areas (and
alternate areas) assigned to the files specified. It is not valid,
therefore, to have more than one of the files open at the same time. A
file-name must not be used in more than one SAME AREA phrase.

The SAME RECORD AREA phrase specifies that two or more files are to
use the same memory area for processing the current logical record. If
the files named in the SAME RECORD AREA phrase are not also named in a
SAME AREA phrase, then all the files named in the SAME RECORD AREA
phrase can be open at the same time. A 1logical record that is
processed in the 'Same Record Area' is considered to be a Jlogical
record of each opened output file that is named in this SAME RECORD
AREA phrase. In addition, a logical record that is processed in the
'Same Record Area' is considered to be a logical record of the most
‘recently read input file that is named in this SAME RECORD AREA
phrase. A file may be specified in only one SAME RECORD AREA phrase.

If the SAME SORT AREA phrase or the SAME SORT-MERGE AREA phrase is

ed, at least one of the file-names must represent a sort file ox

iy filei Files that do not represent sort files or merge files may
also be named in the phrase. Storage is shared as follows:

The SAME SORT AREA or SAME SORT-MERGE AREA phrase specifies a memory
_area which will be made available for use in sorting oxr ‘merging each
sort file or merge file named. Thus, any memory area allocated for the
sorting- ar'merglng of a sort or merge file is available for reuse in
sorting or merging any of the other sort or merge files.

5-26 : DD25

I-0-CONTROL | ' ~ I-0-CONTROL

In addltlon, memory areas assigned to files that do not represent sort
allocated as needed for sorting or merging
4’ named in the SAME SORT AREA or_vSAME;

~ the sort f;lés '
RGE 'AREA phrase.

Files other than sort files ©r merge £iles do not share the same
memory area with each other. If a user wishes these files to share
the same memory area with each other, a SAME AREA or SAME RECORD AREA
phrase naming these files must also be included in the program.

Durlng the executlon of a SORT Y MERGE statement that refers to a
yoe file named in the SAME SORT AREA or SAME: -BORT-MERGE
;phrases, any non-sort-metyge files named in these phrases must not
be open.

10, The MULTIPLE FILE phrase is required when two or more files share the
same reel of tape. Only those files on a multiple file tape that are
referenced elsewhere in the source program need be named in a MULTIPLE
FILE phrase. If all file-names on the tape are listed consecutively,
the POSITION option may be omitted. If any file in the sequence of
files on the tape is not included in the MULTIPLE FILE phrase, then
the position relative to the beginning of the tape of each file named
in the phrase must be given.

files on a multiple file tape must either have labels present

L -omitted,. Each MULTIPLE FILE phrase describes one
multiple file tape. There can be any number of multiple file input or
output tapes (each having a corresponding MULTIPLE FILE phrase);
however, all files listed for each tape must be contained on a single
reel. Only one file of a multiple file tape can be open at any given

i - ' ‘ files (those s cifled ‘as su. a8

Special Considerations:

3. At program execution, the unique file-codes associated with the files
listed in a given MULTIPLE FILE phrase must be equated to the same
logical unit de51gnator using the appropriate §$ TAPE file control
cards.’

2/77 ‘ 5-27 » DD25A

SECTION VI

DATA DIVISION

DESCRIPTION OF THE DATA DIVISION

The third division of a COBOL source program is the Data Division and it is
required. It is used to describe data that the object program is (1) to accept
as input, (2) to manipulate, (3) to create, or (4) to produce as output., Data to
be processed can be that which is contained in files and enters or leaves the
internal memory of the computer from a specified area or areas, data which is
developed internally and placed into intermediate storage or working-storage or
placed into specific format for output reporting purposes, or constants which
are defined by the user.

Organization of the Data Division

The Data Division is subdivided into three sections; the File Section, the
Working-Storage Section, and the Report Section. '

The File Section is used to define the contents of data files stored on
external media. Each file is defined by a file description entry followed by a
record description or a series of record descriptions. '

The Working-Storage Section is used to describe records and noncontiguous
data items which are not part of external data files but are developed and
processed internally. It also describes data items whose values are assigned in
the source program and do not change during the execution of the object program.

The Report Section is used to describe the content and format of reports
that are to be generated.

Structure of the Data Division

The Data Division is prepared in accordance with the reference format
described in Section III. The Data Division is identified by and must begin with
the division header DATA DIVISION followed by a period and a space. The sections
of the Data Division are optional only if the functions filled by each are not
required to describe the data for the object program. The general format of the
Data Division is given below. ' '

6-1 DD25

General Format:

DATA DIVISION,

FILE SECTION.

WORKING-STORAGE SECTION,

REPORT SECTION.

The names of the sections in the Data Division are fixed and their required
order of appearance is as shown. The section header for the File Section is
followed by one or more sets of entries composed of file description entries or
sort-mexrge file description entries which are followed by associated record
description entries. The section header for the Report Section is followed by
one or more sets of entries composed of report description entries which are
followed by associated report group description entries. The Working-Storage
Section header is followed by data description entries for noncontiguous items,
if any, followed by record description entries.

STRUCTURE OF A RECORD DESCRIPTION

A record description consists of a set of data description entries that
describe the characteristics of a particular record. Each data description entry
consists of a level-number followed by a data-name (if required), followed by a
series of independent clauses as required. A record description has a
hierarchical structure; therefore, the clauses used with an entry may vary
considerably, depending on whether or not the entry is followed by subordinate
entries. The record description structure is further defined in the Concept of
Levels paragraph in Section III. The elements allowed in a record description
are shown in the data description skeleton which follows in this section.

FILE SECTION IN THE DATA DIVISION

 The File Section contains file descriptions (FD entries), sort file or
imerge file descriptions (SD entries), and record descriptions (level-number
entries) for both label and data records in files and for data records in sort
files. Label records and data records are defined in the same manner “but fixed
:] . igned to -gertain label record items to permit = the
: form,speclal operations on certain items ‘of label
. All record description entries pertaining to 1label records and data
records of a file must immediately follow the FD entry for the file. The FD and
SD entries represent the highest level of organization in the File Section,

Th File Section header is followed by a file description entry or a
= ' file description entry. A file description entry consists of a level
indicator (FD), followed by a data-name (the name of the file) and a series of
independent clauses. The clauses specify:

° lata is recorded on the file,
) The size of the logical and physical records.
® The names of the label records contained in the file and values of

label items.

6-2 DD25

° The names of the data records of which the file is composed.
The entry is terminated with a period.

For sort or merge file descriptions, the level indicator SD is followed by
a data-name (the name of the file) and a series of independent clauses. The
clauses specify the name, size, and number of data records in the sort or merge
file. Note that a sort file is a set of records to be sorted or merged using a
SORT or MERGE statement (in the Procedure Division). Therefore, no label
procedures are under the control of the user and the rules for blocking and
internal storage are peculiar to the SORT or MERGE statement.

WORKING-STORAGE SECTION IN THE DATA DIVISION

Working-storage is that part of memory set aside for the intermediate
processing of data. The difference between working-storage and file storage is
that working-storage concerns the memory requirements for the storage of
intermediate data results while file storage concerns the memory requirements
for the storage of each record of the file,

The Working-Storage Section consists of the section header, followed by
data description entries for noncontiguous working-storage data items and record
description entries, in that order. Each Working-Storage Section record-name and
each noncontiguous item name must be unique since they cannot be qualified.
Subordinate data-names need not be unique if they can be made wunique through
qualification.

The initial value of any data item in the Working-Storage Section except an
index data item is specified by using the VALUE clause with the data item. VALUE
can be specified only in terms of homogeneous characters (characters having the
same usage). Therefore, VALUE cannot be specified in a group item containing
elementary items that have different usages. All of the rules for the expression
of literals and figurative constants apply and the use of the VALUE clause
cannot contravene these rules. The size of a literal used to specify an initial
value of an alphabetic or alphanumeric item can be equal to or 1less than the
size specified in the PICTURE clause of the associated data entry, but the size
of the literal cannot be greater than that., When the size of the 1literal is
less, the normal rules for a MOVE statement for the literal apply. The size of a
literal used to specify an initial value of a numeric item may be greater than
the size specified in the PICTURE clause of the associated data entry, but the
literal must not have a value that would require the truncation of nonzero
~digits. The initial value of index data items in working-storage cannot be
predicted,

Noncéntiguous Working-Storage

Items and constants in working-storage that are not related to one another
in a hierarchy need not be grouped in records if they require no further’
subdivision. Instead, in working=-storage, they are classified (and defined by
the user) as noncontiguous elemer .:r,; items. Each noncontiguous elementary item
is defined in a separate da.a description that begins with the special
level-number, 77. For each level 77 data description entry, the data-name of the
item must be specified and a PICTURE clause must be supplied. Other data
description clauses are optional and can be used to complete the descrlptlon of
the item if necessary. However, the OCCURS clause is not meaningful in level 77
entries and will cause a compilation error if used.

6-3 v ~ DD25

Working-Storage Records

Data elements and constants in working-storage that are related to one
another in a hierarchy must be grouped into records according to the rules for
the formation of record descriptions (data description entries)., All of the
clauses used in a data description entry including REDEFINES, OCCURS, and COPY
may be used in a worklng-storage record description. The skeletal format of the
Worklng-storage Section is given below. :

WORKING~-STORAGE SECTION,

77 data-description entry
88 condition-name-1

77 data-description entry
01 data-description entry
02 data-description entry

66 data=-name-n RENAMES data-name-m
01 data-description entry
02 data-description entry
03 data-description entry
88 condition-name=~2

REPORT SECTION IN THE DATA DIVISION

‘A report represents. a pictorial organization of data. To present a report,
the physical aspects of the report format must be differentiated from the
conceptual characteristics of the data to be included in the report. In defining
the physictal aspects of the report format, consideration must be given to the
width and length of the report medium, to individual page structure, and to the
type of hardware device on which the report is to be written. Structure controls
are established to ensure that the report format is maintained.

To define the conceptual characteristics of the data (the logical organi-
zation of the report itself), the concept of level structure 1is used. Each
report may be divided into respective -report groups which, in turn, are
subdivided into a sequence of items. Level structure permits the user to refer
to an entire report-name, a major report group, a minor report group, an
elementary item within a report group, etc.

To create the report, the approach taken is to define the types of report
groups that must be considered in presenting data in a formal manner. Types may
be defined as HEADING groups, FOOTING groups, CONTROL groups, or DETAIL print
groups. A report group describes a set of data that is to be considered as an
individual unit, regardless of its physical format structure., The unit may be
the presentation of a data record, a set of constant report headings, or a
series of variable control totals. The description of the report group is a
separate entity. The report group may extend over several actual lines of a page
and may be of any type described above which is necessary to produce the desired
output report format. ’ '

6-4 DD25

The Report Section consists of two types of entries for each report; one
describes the physical aspects of the report format, and the other describes
conceptual characteristics of the items which make up the report and their
relation to the report format. These are:

® Report description entry (RD).

° Report group description entries.

6-5 : - DD25

FD SKELETON : R FD SKELETON

File Description - Complete Entry Skeleton

The file description specifies information concerning the physical struc-
ture identification, and record-names that apply to a given file. The general
formats of the FD entry, syntax rules for the complete entry, and special
considerations for the entry follow. The individual clauses are described later
in this section. '

Format 1l:
FD file-name COPY library-name

word-2
REPLACING word-1 BY { literal-1 }
identifier-1

T word-4
E word-3 BY { literal-2 } :l
identifier-2

Format 2:

EQ' file-name

— , RECORDS
BLOCK CONTAINS [:integer-l g‘_(_)_] integer=-2 }:l
L : CHARACTERS
RECORD IS
DATA data-name-1 I:, data-name-2 :l :l
RECORDS ARE '

RECORD IS STANDARD
LABEL { } OMITTED

RECORDS ARE

[RECORD CONTAINS | integer-3 TO | integer-4 CHARACTERS]

REPORT IS

: , report-name-1 [, report-name-2 :l e
REPORTS ARE :

2/77 ' 6-6 © DD25A

FD SKELETON ' ‘ , FD SKELETON

literal-1l
[VALUE OF data-name-5 IS 4 i

data~name-64

literal-2
[, data-name=-7 IS] cee] .
data-name-84A

Syntax Rules:

1.

General

The level indicator FD identifies the beginning of a file description
and must precede the file-name.
The clauses following the file-name in Format 2, except for the LABEL
RECORD(S) clause, are optional and the order of entry is not
significant. ' .
The FD entry must be terminated by a period.
The DATA RECORD(S) clause and the REPORT(S) clause must not both
appear in the same file description entry.

Rules:
For a description of the COPY function, see Section VIII, +the COBOL
.Library. ’
Format 1 is used when the COBOL llbrary contains the flle description

entry, otherwise, Format 2 is used.

6=-7 : ' DD25

SD SKELETON ' SD SKELETON

File Description - Complete Entry Skeleton

The file description specifies information concerning the
phy51ca1 structure, identification, and record-names of the file to be sortedior
The general formats of the SD entry, syntax rules for the complete
entry, and special considerations for the entry follow. The individual clauses
are described later in this section.

Format 1l:

§2‘fi1e—name COPY 1library-name

word-2
REPLACING word-l1 -BY literal-1l
o identifier-l)

word=-4
- ‘| . word-3 BY literal-2 oo .
identifier-2-

Format 2:

sD file~-name

RECORD IS
DATA , data-name-l[' data-name-Z] R
‘_RECORDS ARE

[RECORD CONTAINS [integer—l TO], integer-2 CHARACTERS].A

Syntax Rules:
1. The level indicator SD identifies the beginning of the sort-mergé file
description and must precede the file-name.

" 2.. The clauses following file-name in Format 2 are optional and their
order of entry is at the discretion of the user.

3. 'The SD entry must be terminated by a period.

- 6-8 :) DD25

SD SKELETON i : : SD SKELETON

General Rules:
1. For a description of the COPY function, see Section VIII, the COBOL
Library.

2. Format 1 is used when the COBOL library contains the sort-megrge file
description entry; otherwise, Format 2 is used.

3. The file-name used in an SD entry can be referenced only in SORT,

iMERGE, and RETURN statements of the Procedure Division, except when it
is used as a qualifier.

6-9 : _ ; DD25

RD SKELETON : o RD SKELETON

Report Description - Complete Entry Skeleton

The report description entry contains information pertaining to the overall
format of a report named in the File Section and is uniquely identified in the
Report Section by the level indicator RD. The characteristics of the report page
are provided by describing the number of physical lines per page and the limits
for presenting specified headings, footings, and details within a page
structure. Data items which act as control factors during presentation of the
report are specified in the RD entry. Each report named in an FD entry in the
File Section must be defined by an RD entry. The general formats of the RD entry
and syntax. rules follow. The individual clauses are described later 1in this
section.

Format 1l:

RD report-name [CODE mnemonic-name] COPY library-name

word-
REPLACING word-1 BY literal-1l
identifier-1l

word=-4
s word-3 BY literal=-2]... .
identifier-2

Format 2:
RD report-name

[QQQE mnemonic-name-l]

CONTROL IS FINAL
' identifier-1 [, identifier-2] .
| | coNTROLS aRE FINAL, identifier-l1 [, identifier-2] ...

i LIMIT IS LINE
PAGE integer-1
' LIMITS ARE _ LINES

, HEADING integer-Z]

, FIRST DETAIL integer-3]

[
[
[- LasT pETAIL integer=-4]
[

, FOOTING integer—s] .

6-10 ‘ _ DD25

RD SKELETON S ‘ ’ RD SKELETON

Syntax Rules:

The - level indicator RD identifies the beginning of a report
description entry and must precede the report-name.

The report-name must appear in at least one FD entry REPORT (S) clause.

The clauses following the report-name, except for the COPY clause in
Format 1, are optional. The clauses may be defined in any order except
DE clause whi pecified, must immediately - follow -the

The RD entry must be terminated by a period.

General Rules:

For a description of'the COPY function, see Section VIII, the COBOL
Library.

Format 1 1is used when the COBOL 1library contains the report

. description entry; otherwise, Format 2 is used. If the library-name is

not unique, it may be qualified.

The reserved words LINE-COUNTER and PAGE-COUNTER are automatically .
generated by the Report Writer based on specific entries and are not
data clauses. Refer to the PAGE LIMIT(S) clause for additional
information. :

6-11 ' DD25

DATA DESCRIPTION ‘ ‘. DATAlDESCRIPTION
SKELETON SKELETON

Data Description - Complete Entry Skeleton

The data description entry is used to provide information concerning the
characteristics of a particular item of data. A detailed data description
consists of a set of entries. Each entry defines the characteristics of a
particular unit of data. With minor exceptions, each entry 1is capable of
completely defining a unit of data. Because detailed data descriptions in COBOL
involve a hierarchical structure, ' the contents of an entry may vary
considerably, depending on whether or not the entry is followed by subordinate
entries. In defining the lowest level or subdivision of data, the. following
information may be required: '

1. A level-number showing the relationship between this and other units
of data. '

2, A data-name.

3. The predominant usage of the item (COMPUTATIONAL or DISPLAY).
4. The number of consecutive occurrences of elements in a table.
5

K The type of data item being described (alphabetic, numeric, or
alphanumeric) .

6. The presence of an operational sign (+ or =-).

7. The location of an actual or assumed decimal point.

8. The location of editing symbols (such as § and ,).

9. Justification and synchronization of the data.
10. Special editing requirements such as zero suppression.

11. . The initial value of an item or fixed value of a constant in

working-storage.

An entry defining a unit of data must not be contradicted by a subordinate
entry. For example, after USAGE 1is defined, it applies to all subordinate
entries and need not be respecified in the subordinate entries,

The general formats of the detailed data description éntry and syntax rules
follow.. The individual clauses are described later in this section.

6-12 ’ DD25

DATA DESCRIPTION . DATA DESCRIPTION
'~ SKELETON . SKELETON

Format 1:
0l data-name COPY libfary-name

word-2
" REPLACING- word-1l BY literal-1l
identifier-1

. word-4 '
, Wword-3 BY literal-2 vee | o
identifier-2

Format 2:

Format 3:

data-name=~-1
level-number {

FILLER

[: REDEFINES déta-name-z]

B PICTURE
‘ IS character-string
L PIC v

—

—

(" COMPUTATIONAL)
COMP

o

$2/77 6-13 DD25A

DATA DESCRIPTION : DATA DESCRIPTION
SKELETON SKELETON

, integer-1 T0 integer-2 TIMES [DEPENDING ON data-name-3]
OCCURS ‘ _
integer-2 TIMES

ASCENDING v _
— KEY IS data-name-4 [, data-name-5] v e

DESCENDING

[INDEXED BY index=-name-1 [B index—name—Z] ...]
{ SYNCHRONIZED. LEFT
SYNC RIGHT

" JUSTIFIED '
RIGHT

JUST
L —————

[BrANk wHEN ZERO]

[yALUE IS literal-1 | .

Format 4:

66 data-name~l1 RENAMES data-name-2

THRU
data-name=-3 .
THROUGH
Format 5:
VALUE IS
88 condition-name literal-1
VALUES ARE

THRU
literal-2

THROUGH
THRU
» literal-3 , literal-4 cee o
THROUGH :

6-14 ' DD25

DATA DESCRIPTION DATA DESCRIPTION
SKELETON ‘ SKELETON

Syntax Rules:

1. A data description entry must be terminated by a period.

2, In Format 3, the level-number can be any number in the range 01-49 or
it can be 77.

3. The clauses can be written in any order except that:

a. The data-name~l or FILLER clause must immediately follow the
level-number.

b. The REDEFINES clause, when used, must immediately follow the
data-name-1 clause.

4, The PICTURE clause must be specified for every ‘elementary data item
except an index data item, in which case wuse of this clause is
prohibited.

5. The words THRU and THROUGH are equivalent.

General Rules:

1. For a description of the COPY function (Formats 1 and 2), see Section
VIII, the COBOL Library.

2. Thé SYNCHRONIZED, PICTURE, JUSTIFIED,‘and BLANK WHEN ZERO clauses must
only be specified for elementary data items,

3. Format 5 1is wused for each condition-name. Each condition=-name
requires a separate level-number 88 entry. Format 5 specifies the
name of the condition and the value, values, or range of values
associated with the condition-name. The condition-name entries for a
particular conditional variable must follow the entry describing the
item with which the condition-name is associated. A condition-name
can be associated with any data description entry thdat contains a
level~number except for the following:

a. Another condition-name.
b. A level 66 item.

c. A group containing items with descriptions includihg JUSTIFIED,
SYNCHRONIZED, or USAGE (other than USAGE DISPLAY). ‘

d. An index data item. -

2/77 : ' © 6=-15 v DD25A

REPORT GROUP . REPORT GROUP
SKELETON ' SKELETON

Report Group Description - Complete Entry Skeleton

A report group may be as complex as a set of data made up of several print
lines with many data items or as simple as one print line with one: data item. A
description of a set of data becomes a report group by the presence of a
level-number 01 and a TYPE description. The level-number gives the depth of the
group and the TYPE describes the purpose of the report group presentation. At
object program execution, report groups are created as a result of Report Writer
GENERATE statements in the Procedure Division,

This entry defines the characteristics for a report group, whether a line,
a series of lines, or an elementary item. The placement of an item in relation
to the entire report group, the hierarchy of a particular report group, the
format description of all items, and any control factors associated with the
group are all defined in the entry. The system of level-numbers is employed here
to indicate elementary items and group items of data.

Conceptually, a report group is a line, or a series of 1lines, initially
consisting of all SPACES; its length is determined by the compiler based on
environmental considerations. Within the framework of a report, the order of
report groups specified is not significant. Within the framework of the report
group, the presented elements are described line by line from left to right and
then from top to bottom. The description of. a report group, analogous to the
data record, consists of a set of entries defining the characteristics of the
included elements. However, in the report group, SPACES are assumed except where
a specific entry is indicated for presentation, whereas in the data record,
every character position must be defined. :

The general formats of the report group description entry and syntax rules
follow. The individual clauses are described later in this section. :

Format 1l:

- 01 [d‘ata-name] COPY library=-name

word=-2
REPLACING word=-1 BY literal-1l
o identifier=-1

_ word-4
, word-3 BY literal-2 cee .

identifier=-2

6-16 - . DD25

REPORT GROUP ' : REPORT GROUP
SKELETON - ‘ SKELETON

Format 2:
0l [data-name-l]

i ' integer-1 7
LINE NUMBER IS PLUS integer-2
NEXT PAGE

integer=-3
NEXT GROUP IS PLUS integer=-4
NEXT PAGE

(REPORT HEADING 3
RH '

PAGE HEADING
PH

OW HEADING

() s : :
CONTROL HEADING identifier-1
CH } { FINAL }

TYPE IS DETAIL

== ! = . &

CONTROL FOOTING identifier-2
FINAL

CF
ggERFLOW;FOQTIN

PAGE FOOTING
BPF

REPORT FOOTING
L RE

DISPLAY
[osrem 2] { prepmmr |

6-17 - : DD25

REPORT GROUP REPORT GROUP
SKELETON

SKELETON

Format 3:
level-number [data-name-l]
[COLUMN NUMBER IS integer-l] |
[BLANK WHEN zERO]

[GROUP INDICATE]

[. (JUSTIFIED
RIGHT
| JUST o

i _ integer=-2
LINE NUMBER IS PLUS integer=-3
i NEXT PAGE

[PICTURE _
IS character=-string
| (ec
' identifier=-1
RESET ON .
i FINAL

SOURCE IS [SELECTEDY] identifier-2 ’
SUM identifier-3 [, identifier-4] .e» [UPON data-name=-2]
VALUE IS literal-l :

[usace 1s] {,-M } .

DL

Format 4:

6-18 DD25

REPORT GROUP ' REPORT GROUP
SKELETON . SKELETON

Syntax Rules:

1.

General

" The clauses in Format 1 must be presented in the order shown. Except
for the "data-name clause, which must immediately follow the
level~number when present, the clauses in Formats 2 and 3 may be
written in any order.

A report group must have a data-name in order to be referred to by a
Procedure Division statement.

If the COLUMN NUMBER clause is present in the data description of an
elementary data item, the data description must also contain the
PICTURE clause and one of the SOURCE, SUM, or VALUE clauses.

The report group description éntry must be terminated by a period.

In Format 3 and level-number may be any number from 01 to
49, o

Rules:
For a description of the COPY function (Formats 1 and 4), see Section
VIII, the COBOL Library.
Format 2 is used to indicate a report group; the report group extends
from this entry to the next report group level 0l entry.

When LINE NUMBER is specified in Format 2, entries for the first
report line within the report group are presented on the specified
line .

Format 3 is used to indicate an elementary item or group item within a
report group.

If a report group is an elementary entry, Format 3 may include the
TYPE and NEXT GROUP clauses to specify the report group and elementary
item in the same entry.

When LINE NUMBER is specified for Format 3, sequential entries with
the same level-number in the report group are implicitly presented on
the same line. ‘ :

A LINE NUMBER at a subordinate level must not contradict a line number
at a group level.

The NEXT GROUP clause, when specified, refers to the spacing (at
object program execution) between the last line of this report group
and the first line of the next report group.

6-19 . DD25

DATA DIVISION CLAUSE DESCRIPTIONS

Descriptions of the Data Division clauses are contained on the following
. pages. . :

6-20 . DD25

BLANK WHEN ZERO ‘ : BLANK WHEN ZERO

The BLANK WHEN ZERO clause is used to enable the blanking of an item when
that item's value is zero. The clause is optional.

General Format:

BLANK WHEN ZERO

Syntax Rules:

1. The BLANK WHEN ZERO clause may be used only for an elementary item
whose PICTURE is specified as numeric or numeric edited.

2. This clause cannot be used for variable-length items.
General Rules:
1. When this clause is used, the item contains only spaces when the value

of the item is zero.

2. When used for an item whose PICTURE is numeric, the category of the
' item is considered to be numeric edited. '

6-21 DD25

BLOCK CONTAINS . ‘ . . ' BLOCK CONTAINS

The BLOCK CONTAINS
h 51cal_record

of

a

General Format:

- RECORDS
BLOCK CONTAINS [integer-1 T0]| integer-2 { —_ _
‘ : - : CHARACTERS

Syntax Rule:

1. . Integer-1l (when used) and integer-2 must be unsigned nonzero integers,

General Rules:

-1, For mass storage files, the size of a physical record may be given -in
terms of records only if one of the following conditions does not
exist, The CHARACTERS option must be specified if any of the following
conditions exist. :

a. Logical records extend across physical récords.

b. The physical record contains padding (area not contained in a
logical record).

c. Logical records are grouped so that an inaccurate physical record
size would be implied.

rms of characters

.‘.wﬂcomputer~word;

3. When the CHARACTERS option is wused, the physical record size is
specified in terms of the number of standard characters contained 1in
the physical record, regardless of the types of characters wused to
represent the items within the physical record.

4, If only integer-2 is shown, it represents the exact size of the
physical record. If both integer—l and integer-2 are given, they refer
to the minimum and max1mum sxze of the physical record, respectively.
f teg irentation purposes only,”

5. The use of the word CHARACTERS in the clause is optional. Whenever the
keyword RECORDS is not specifically written in the clause, integer-1
(if used) d integer-2 repre t the ber of characters in -the

6-22 - - - ‘ DD25

BLOCK CONTAINS ' - - - BLOCK CONTAINS

When the RECORDS'phrase is used with -variablé-length‘ records, the
block size is equal to the maximum record size (in computer words)
multiplied by the number of records plus one.

For mass storage files in the RANDOM ACCESS mode, the physical record
size associated with the CHARACTERS option is considered identical
with the logical record size. Depending on the mass storage device
normally intended for the file, the physical record size may be
adjusted for efficiency by using this clause with the CHARACTERS
option., Integer-2 may range from 384 +to 24,570 characters (which
results in record sizes in the range 64 to 4095 words). A-size that is
not modulo 384 characters will result in wasted space.

6-23 S DD25

CODE

CODE

The CODE clause of the RD entry is used to affix a unique character to each
report group generated in the report. The unlque character identifies each print
" line as belonging to a spe01f1c report. :

General Format:

CODE mnemonic-name-1

General Rules:

1.

CODE mnemonic-name-1 indicates a unique character(s) which is
automatically affixed to and identifies each line of the report. More
than one report may then be produced simultaneously onto one output
device for later individual report selection.

The mnemonic-name must be identified with a unique character in the
SPECIAL-NAMES paragraph of the Environment Division. Unique character
assignment must be assured when the program is to produce more than
one report. '

he complete entry skeleton for the report .description,
» when' used, must immediately follow the report=name. ’

6-24 DD25

COLUMN NUMBER - ' ’ ' .COLUMN NUMBER

The COLUMN NUMBER clause in a report group description entry is wused to
indicate the absolute column number on thé printed page of the leftmost
character 6f the elementary item (the first print position of the item on the
line).’ : .

General Format:

COLUMN NUMBER IS integer-l

Syntax Rules:

1. The COLUMN NUMBER clause is used only at the elementary level within a
report group.

2. Integer-1 must be an unsigned and nonzero integer. The first position'
-of the print line is considered to be COLUMN NUMBER 1.

3. For any given LINE NUMBER specification within a report group, COLUMN
NUMBER entries must be indicated from left to right.

General Rule:

1. The COLUMN NUMBER clause indicates that the associated elementary item
is presented in the output report group. If COLUMN NUMBER 1is not
specified for an elementary item, that elementary item is included in
the description of the report group for control purposes but 1is not
presented when the report group is produced at ~object program
execution. '

6-25 _ . DD25

CONTROL

CONTROL

The CONTROL(S) clause in the report description (RD) entry is used to
indicate the identifiers which specify the control hlerarchy (the control

breaks)

for this report.

General Format:

CONTROL IS FINAL)
identifier-1 [, identifier-Z] e ‘

CONTROLS ARE.

FINAL, identifier-1 [, identifier-Z]

Syntax Rules:

1.

General

1.

The identifiers specify the control hierarchy for this report and are
listed in order from major to minor. FINAL 1is the highest control,
identifier-1 is the major control, identifier-2 is the intermediate
control, etc. The last identifier specified is the minor control.

The identifiers used in the CONTROL clause must be defined in the File
Section or Working-Storage Section of the Data Division.

Rules:

FINAL is a reserved word that indicates the highest control for this
report. A TYPE CONTROL HEADING FINAL report group is only produced
once, at the 'beginning of the report, when the first GENERATE
statement is executed. Similarly, a TYPE CONTROL FOOTING FINAL report
group is produced only once, at the end of a report, when the
TERMINATE statement is executed.

The CONTROL clause is required when CONTROL HEADING or CONTROL FOOTING
report groups are specified.

The identifiers specified in the CONTROL clause -are the only
identifiers referred to by the RESET and TYPE clauses of a report
group description entry for this report. An identifier used in the
CONTROL clause cannot be referred to by more than one TYPE CONTROL
HEADING report group and one TYPE CONTROL FOOTING report group.

6-26 : ‘ ‘ DD25

copy _ - _ , ' - » - COPY

The COPY clause is used in association with a file or data-name in-FD, SD,
RD, record description, and report group description entries. The COPY clause is
used to direct the compiler to duplicate text from the . source program or a
llbrary into the source program. : '

Format 1l:

COPY library-namé

: } word-2)
REPLACING word=1 BY identifier-1
) literal-1l

» ' word~-4 . '
, word=3 BY identifier-2 : e .

literal=-2

Format 2:

data-name=1 COPY data-name-2 | FROM LIBRARY |.

Syntax Rules:

1. In Format 1, when the COPY clause is specified, the library—name is
. required. The library-name must be identical to the name associated
with the desired text on the library.

2. In Format 1, a word is any COBOL word and may be one of the following:

e Condition-name
[) Data-name
® File~-name
® »Mnemonic-name

3. In Format 1, the COPY clause may be specified only at the 01 level in
data description entries and report group descrlptlon entries.)

General Rules:
1. Format 1 of the COPY clause represents the American National Standard
: COPY function. Format 2 represents the HIS COPY function,

2. For a detailed description of the COPY clausé, see Section VIII, the
COBOL Library, and Section XIV of the COBQOL User's Guide.

6-27 - o . DD25

data-name/FILLER : ‘ » data-name/FILLER

The data-name clause is used . to specify "the name of the data being
described. The FILLER clause is used to. specify an elementary item -of the
logical record that cannot be referred to directly. : .

General Format:
' . (data-name
level~number
FILLER

Syntax Rules:

1.

In the File Section and Working-Storage Section, a data-name or the

keyword FILLER must be the first word following the level-number in

each data description entry.

In the Report Section, a data-name need not appear 1in a data
description entry and the word FILLER cannot be used.

General Rules:

1.

The keyword FILLER can be used to name an elementary item in a record,
but that item then cannot be referred to directly under any
circumstances. ‘

A data-name must be supplied in the Report Section when:

a. The data-name represents a report group to be referred to by a
GENERATE or a USE statement in the Procedure Division,

b. Reference is to be made to the SUM counter in the Procedure
Division or in the Report Section.

c. ‘?he SELECTED option is included with the SOURCE .clause at a-
‘higher level to indicate that at this lower level the SOURCE "
ata-names which are to be used are elementary items, ~ .~

6-28 ‘ : ' ~ DD25

DATA RECORDS . : : DATA RECORDS

The DATA RECORDS clause is used to provide documentation for the names . of
data records within their associated files (SD or FD entries).

General Format:

RECORD IS
DATA - . data=-name-1 [, data-name=2]
RECORDS ARE .

Syntax Rule:

1. Data-name-1 and data-name-2 are the names of data records. They must
have level-number 0l data descriptions (with thé same names)
associated with them. :

General Rules:

1. The presence of more than one data-name indicates that the file
contains more than one type of data record. If record sizes (in words)
are not equal, the file is assigned the variable-length record format
and its recording mode must be binary. The records of the file need
not have the same description. The order in which they occur -as 01
entries is not 51gn1f1cant except for sort files. For a sort file with

‘more than ‘one size data vrecord description, the first record
 ncr1pt1on entry after the SD entry is assumed to be the dominant
‘type; its size is congidered to be the most common in the sort file.
Sort optxmlzation is based on this assumption. Therefore, a careful

_¢Hoice in ordering record des&riptlon entries for a’ sort fxle enhances
object program efficiency. v

2, Conceptually, all data records in a file share the same area. This
concept is not altered by the presence of more than one type of data
record in a file.

- 6-29 -) ' DD25

GROUP INDICATE _ : , . GROUP INDICATE

The GROUP INDICATE clause in a report group description entry is used to
" indicate that the elementary item with which it is associated is to be produced
only on the first occurrence of the item after any CONTROL or PAGE break.

General Format:

'~ GROUP INDICATE

General Rules:

The GROUP INDICATE clause must be specified only at the elementary
item level within a TYPE DETAIL report group.

When an elementary item within a TYPE DETAIL report group is specified
as GROUP INDICATE, it is presented in the first DETAIL report group
that contains it after a CONTROL break and it is presented in the
first DETAIL report group containing it on a new page even though a

CONTROL break did not occur.

=2}
1

30 , .DD25

JUSTIFIED

JUSTIFIED

The JUSTIFIED clause in a data description entry is used to specify
nonstandard positioning of data within a receiving data item.

General Format:

JUSTIFIED .
RIGHT
JUST :

Syntax Rules:

1.

2.

The JUSTIFIED clause can be specified only at the elementary item
level.

JUST is an abbreviation for JUSTIFIED.

General Rules:

1.

The JUSTIFIED clause cannot be specified for an item that has any of
the following properties:

a. Class numeric or numeric edited,

han DISPLAY.

- assumed decimal point.

If the receiving data item is alphanumeric (other than a numeric
edited data item) or alphabetic and the JUSTIFIED clause 1is not

specified, the sending data item is moved to the receiving character
positions and aligned at the leftmost character position in the data

‘item with space-fill or truncation to the right.

When the receiving data item is described with the JUSTIFIED clause
and the sending data item is larger than the receiving data item, the

. leftmost characters are truncated. When the receiving data item is

" described with the JUSTIFIED clause and the sending data item is

smaller than the receiving data item, the data is aligned at the
rightmost character ‘position in the data item with space-fill on . the.
left. ' - : : ' ‘ :

6-31 ’ ‘ . DD25

LABEL RECORDS : ' LABEIL RECORDS

The LABEL RECORD(S) clause in the FD entry is used to .state whether or not
label records are present and to 1dent1fy them if they are present.

.General Format:

RECORD IS STANDARD
* LABEL } { OMITTED }

RECORDS ARE ~-name-2.[, ‘label~-name~2 | ...

Syntax Rules:

l. The LABEL RECORD(S) clause is required in every file description
entry.

one oOr more vlabel~names are specified, only the‘ four fixed
,*names listed in. ‘genexal rule 5 ‘may - be used, i

General Rules:

1. LABEL RECORD (S) ‘STANDARD indicates that logical labels that conform to
. the Series 60/6000 label format specifications are considered to exist
for the file even though they may not be recorded on some of the
physical devices to which the file may be assigned. (For example,
label records associated with mass storage files are not physically
recorded on the external storage device. In this case, USE procedures
associated with the file will act wupon dummy label space. If
identifying information is to be placed on the external storage
device, the information must be written as if it were a data record.)
The STANDARD option must be used whenever system standard format has
been explicitly or implicitly specified for the file,

2, LABEL RECORD(S) OMITTED indicates that no logical labels are

: considered to exist for a file. The OMITTED option must not be used
if system standard format has been explicitly or implicitly specified
for the file.-

2/77 . 6-32 , ' DD25A

LABEL RECORDS - ‘ o ‘ LABEL RECORDS

2/71

‘the four fixed label=-names associated with .
tandard label - format specifications. = These
_aLSer1es 60/6060 standard label records'

fller

precedlngv

Appears at the physxcal beginning of each
of the flrst reel on the flle, precedlnga

following the'
reel of a file, and contains

: last

with

*ppea s_at the phy51cal end of a reel,

60/6000

- thelr formats _are 1nferred by the
&s not necessary to define them within @ the file.
I1f they are explicitly described in ‘the source program,
d record format will be used.

Conceptually, all label records within the file share the same 1label
buffer area in memory. If more than one label-name is specified, it
is an implicit redefinition of the same label area. ‘

Refer to the description of the LABEL RECORD(S) clause in‘Section III
of the COBOL User's Guide for additional information.

6-33 Dp25A

leVel-number‘ ' “ level=-number

The level-number entries show the hierarchy of data within a logical record
or report group. Level-number entries are also used to identify entries for
condition-names, working-storage ' items, noncontiguous data items, and the
RENAMES clause. . 4 :

. The concepts of hierarchy of . data and the use of level-numbers are
described in Section III. : ‘

General Format: .

level-number

Syntax Rules:

1.

A level-number 1is required as the . first element in 'each data
description entry.

Data description entries that are subordinate to FD or SD entries may
use level-numbers with values in the range 01 (or 1) . through 49, or
level-number 66, or level~number 88. '

Data deseription entries that are subordinate to an RD entry may only
use level=numbers whose values are in the range 01 through 49.

Multiple level 01 entries that are subordinate to a level indicator
(FD, SD,. or RD), represent implicit redefinitions of the same area. In
other words, the first occurrence defines an area, and all subsequent
occurrences redefine the same area. :

General Rules:

1.

A level 01 entry must be used to identify the first entry in each
record description and in each report group description.

When no real concept of level exists, the special level-numbers 66,
77, and 88 are assigned as follows:

a. Level-number 66 is.used in a data description entry to identify a
RENAMES entry. Format 4 of the data description skeleton must be
used.

‘b, Level=-number 77 entries may be used 1in the Working-Storage

Section to identify noncontiguous data items. Format 3 of the
data description skeleton must be used.

C.. Level-number 88 entries are used to define condition-names
associated with conditional variables and may be used in the File
Section and the Working-Storage Section. Format 5 of the data
description skeleton must be used.

6-34 ' DD25

LINE NUMBER B LINE NUMBER

The LINE NUMBER clause is used to indicate the line number of this .entry.
The line number may be absolute or relative and may refer either to the page or
to the previous entry.

General Format:

' : integer=-1
LINE NUMBER IS PLUS integer=2 »

NEXT PAGE

Syntax Rules:

1.

Integer-l1l and integer-2 must be unsigned nonzero integers. Integer-1
must be within the range specified in the PAGE LIMITS clause in the
associated RD entry.

The LINE NUMBER clause must be given for each report line of a report
group. For the first line of a report group, the LINE NUMBER clause
must be specified at the report group 1level, or at a group level
subordinate to the report group 1level but prior to the first
elementary item in the line, or as a part of the entry which describes
the first elementary item in the line.

For report lines other than the first line in a report group, the LINE
NUMBER clause must be specified at a group level subordinate to the
report group level but prior to the first elementary item in the line,
or as a part of the entry which describes the first elementary item in
the line. :

General Rules:

l.

Integer-l indicates an absolute line number. The LINE-COUNTER is set
to the value of integer-1l for printing the item in this entry (and
following entries in the report group) until a different value for the
LINE-COUNTER is specified in another LINE NUMBER clause.

Integer-2 indicates a relative line number. This number increments the
LINE-COUNTER for printing the item in this entry (and following
entries in the report group) until a different value for the
LINE~-COUNTER is specified in another LINE NUMBER clause.

If the LINE NUMBER clause is specified at the report group :level,
entries for the first report 1line within the report group are
presented on the specif-et line number, If the LINE NUMBER clause is
specified for an ew.try on other than the report group level,
sequential entries following that entry within the report group that
have the same level-number are presented on the same . line. A line
number at a subordinate level cannot contradict a line number at a
grcup level

6-35 _ _ , - DD25

LINE NUMBER o ‘ - . LINE NUMBER

Within a report group description entry, an absolute 1line number
cannot be preceded by a relative line number and absolute line numbers
must be given in ascending order.

The NEXT PAGE phrase is used to indicate an automatic skip to the next
page before the first line of the current report group is presented.
Appropriate TYPE PAGE/; FLOW FOOTINGS and TYPE PAGE/OVERFLOW
i % will be produced as specified. : ST

6-36 - DD25

NEXT GROUP

NEXT GROUP

The NEXT GROUP clause in a report group description entry is used to
indicate the spacing that is to follow the last line of the report group.

General Format:

NEXT

integer-1
GROUP IS PLUS integer-2

: NEXT PAGE

Syntéx Rule:

1.

Integer-l and integer-2 must be unsigned nonzero integers. When used,
integer-1 cannot exceed the maximum number of lines specified per
report page in the PAGE LIMITS clause of the associated RD entry.

General Rules:

1.

‘Integer-l indicates an absolute line number that sets the LINE-COUNTER

to this value after producing the last 1line of the current report
group.

Integer-2 indicates a relative 1line number that increments the
LINE-COUNTER by the value of integer-2. Integer-2, therefore,
represents the number of lines to be skipped following the 1last 1line
of the current report group. Further spacing is specified by the LINE
NUMBER clause of the next report group produced.

The NEXT PAGE phrase, when used, indicates an automatic skip to the
next page following the generation of the last line of the current
report group. Appropriate PAGE/OVERFLOW FOOTINGS and PAGE/OVERFLOW

'BEADINGS will be produced as specified.

The NEXT GROUP clause may appear only in a level 01 entry that defines
the report group. When specified for a CONTROL FOOTING/HEADING report
group, the NEXT GROUP clause results in automatic 1line spacing only
when a control break o6ccurs on the level for which that control is
specified. o : .

6-37 . : o DD25

‘OCCURS

OCCURS

The OCCURS clause in a data description entry is used to define tables of
repeated items. Use of this clause eliminates the ‘need for separate entries for
‘repeated data and supplles 1nformatlon needed for the appllcatlon of subscripts
or indexes.

‘Format 1l:

~QCCURS integer-2 TIMES

I

ASCENDING)
KEY IS data=name-2 [, data-name=3] cee eoe |
DESCENDING)

Iﬁ@EXED BY index-name~1l [R ihdex-name-z]

OCCURS integer-1l TO integer-2 TIMES [DEPENDING ON data—name-l]

{

ASCENDING .
_ WIKEY IS data-name-2 [, data-name-3 } o . e
DESCENDING

INDEXED BY index-name-1l [, index-name=-2] oo

“Syntax Rules:

1. .

integer—l and integer-2 must be positive integers. Where both are .sed
(in Format 2), the value of integer=-l must be less than the value of
integer-2, The value of integer-l may be zero but integer-2 must not
be zero. :

Data-name~1 (in the DEPENDING phrase) must describe a positive .integer

Data-names used in the OCCURS clause may be gqualified.

Data-name-2 must either be the name of the entry containing the OCCURS
clause or the name of an entry subordinate to the entry containing the
OCCURS clause.

When used, data-name-3, etc., must be the name of an entry subordinate
to the group item that is the subject of this data description entry.

6-38 ‘ "DD25

OCCURS

10.

11.

12.

General

l.

OCCURS

The INDEXED BY phrase is required when the subject of this data
description entry (or an entry subordinate to this entry if it is a
group item) is to be referred to by indexing. The index-names
identified in the OCCURS clause are not defined elsewhere since the
allocation and format of these index-names is hardware dependent. Not
being data, these index-names cannot be associated with any data
hierarchy.

The DEPENDING ON phrase is required only when the end of the
occurrences of the item cannot otherwise be determined.

The OCCURS clause may not be specified in a data description entry
that has a level=-number 01, 66, 77, 88, or in an entry that describes
an item whose size is variable., An item is considered to be variable
~in size if its data description, or the description of any item
subordinate to 1t, if it is a group item, uses Format 2 of the OCCURS
clause.

“(in the DEPENDING phrase) must be an entry in the same
: s the current data descrlptlon entry, and the level-number
entry for data-name-1 must occur prior to the level-number entry
containing the OCCURS clause in which data-name~1 is used.

Any entry .that contains, or has a subordinate entry that -contains,
Format 2 of the OCCURS clause, cannot be the object of a REDEFINES
clause.

If data-name-2 in the KEY phrase is not the“rsubject of +this entry,
then: '

a. All of the items identified by the data-names wused . in thé KEY
phrase must be contained in the group item that is the subject of
this entry.

b. - The items identified by the data-names in the KEY phrase may not
be described by an entry that contains an OCCURS clause or be
subordinate to an entry containing an OCCURS clause,

Index-name~1l, index-name~2, ..., must be unique words within the
program.. :

Rules:

The OCCURS clause is used to define tables and other homogeneous sets
of repeated data. The data-name that is the subject of this data
description entry must either be subscripted or indexed whenever it is
referred to in a Procedure Division statement other than the SEARCH
statement. In addition, if the subject of this data description entry
is the name of a group item, all of the data-names belonging to the
group must be subscripted or .indexed whenever they are used as
operands.

All data description entry clauses except the OCCURS clause - itself

associated with an item whose description includes an OCCURS clause
apply to each occurrence of the item described.

6-39 DD25

OCCURS

OCCURS

In Format 1, the value of integer-2 represents the exact number of
occurrences. In Format 2, the value of integer-2 represents the
maximum number of occurrences and the value of integer-l represents
the minimum number of occurrences. Thus, Format 2 specifies a variable
number of occurrences of the item but does not imply that the 1length
of the item is variable.

The value of data-name-1 is the count of the number of occurrences of
the subject and this value must not exceed integer-2. Reducing the
value of data-name-1 makes the contents of those occurrences of the
data items, whose occurrence numbers are in excess of the value of the
data item referenced by data-name-1, unpredictable.

When a referenced group item has a subordinate entry that specifies
Format 2 of the OCCURS clause, only that part of the table area that

is specified by the value of data-name-l will be used in the

operation.

The results of OCCURS,..DEPENDING generally differ from' one computer
to another. In Series 60/6000 COBOL, the results are as follows:

a. The DEPENDING phrase'hmay not be specified in the record
descriptions of a sort file or a merge file,

b. = In the File Section, OCCURS...DEPENDING results in suppressing
‘ table residue on the peripheral device, as described below, when
the following criteria are met:

® Data-name-1 is described as COMP-1.

) Data-name~l is subordinate to the same record description
entry.
[Data-name-1 precedes the data description entry containing

the OCCURS...DEPENDING clause.

When compression 1is to take place, the compiler will
automatically generate a process area for the file, whether or
not the APPLY .] A phrase is specified in the I-O-~CONTROL
paragraph.

c. When a WRITE statement references a record which may be
compressed, the object program examines the output record for
opportunities for residue suppression. Such opportunities are
rejected unless two or more machine words can be suppressed. In

- the latter case, suppression proceeds on a machine word basis;
the whole-word portion of the residue of each table is replaced
by a single control word. Each variable~-length table in the
record presents an opportunity for residue suppression. Actual
suppression takes place ln an 1mp11c1t move from the process area

~ to the output buffer.

6-40 | | ~ pp25

OCCURS

OCCURS

d. When a READ statement references a file containing records that

may be compressed, the record is implicitly moved from the input
- buffer to the process area and expanded to the format it had in
memory prior to residue suppression.

e. When OCCURS...DEPENDING is used with any record of a file that
may be compressed, the data format is affected in several ways.

° The variable-length record (VLR) format is automatically
applied.
° ‘In addition to any residue suppression control words needed,

each record on the peripheral device begins with a control
word required for reconstructlon. '

°® The recording mode must be binary (explicitly or
implicitly).

The KEY phrase is used to indicate that the repeated data is arranged

in ascending or descending order according to the values contained in
data~-name~2, data-name-3, etc. The data-names are listed in their

- descending order of significance, from most significant to -least

significant. .

6-41 ‘) DD25

PAGE LIMIT : . PAGE LIMIT

The PAGE LIMIT(S) clause in a report description entry is used to indicate
the specific 11ne control to be maintained within the logical presentation of a

page.

General Format:

LIMIT IS LINE
.PAGE integer-1
LIMITS ARE LINES

[,» HEADING integer=-2] L FIRST DETAIL integer-3]

[, LAST DETAIL integer-4] [, FOOTING integer-s]

Syntax Rules:

‘General

1.

Integer~-1 through integer-5 must be unsigned nonzero integers.

Integer-2 through integer-5 each must either be less than or equal to
integer-1l.

Only one PAGE-LIMIT clause may be specified in each report description
entry.

A PAGE LIMIT(S) clause need not be included in the RD entry when an

- association between report groups and the physical format of a page is
not required.

Rules:

The fixed data-names PAGE-COUNTER and LINE-COUNTER are automatically
generated by the Report Writer when the PAGE LIMIT(S) clause is
included in the RD entry.

The PAGE LIMIT integer-1 LINES clause is required to specify the depth
of the report page; the depth of the report page may or may not be
equal to the phy51ca1 perforated continuous form often associated with
the page length in a report.

LINE-COUNTER must be capable of containing the value specified by
integer-1.

If absolute line spacing is indicated for all the report group(s),
none of the integer-2 through integer-5 controls need to be specified.

-

6-42 DD25

PAGE LIMIT

PAGE LIMIT

If relative spacing is indicated for individual TYPE DETAIL report
group description entries, some or all of the above . limits must - be
defined, dependent on the type of report groups within the report, so
that the Report Writer can maintain control of page format.

° HEADING integer-2: the first line number of the first heading
print group. No print group will start preceding integer-2.

° FIRST DET,IL integer~3: the first 1line number of the first
normal print group, that is, body; no DETAIL or CONTROL print
group will start before integer-3.

° LAST DETAIL integer-4: the last line number cf the last normal
print group, that is, body; no DETAIL or CONTROL HEADING print
group will extend beyond integer-4. ,

° FOOTING integer-5: the last line number of the 1last CONTROL
FPOOTING print group; no CONTROL FOOTING print group will start
before integer-3 nor extend beyond integer-5. TYPE PAGE FOOTING
or TYPE OVERFLOW FOOTING print groups will follow integer-5,

When relative line numbers are specified for report groups, PAGE
LIMITS integer-1l is specified and some or all of the HEADING
integer-2, FIRST DETAIL integer-3, LAST DETAIL integer-4, or FOOTING
integer-5 phrases are - omitted, the following implicit control is
assumed for the omitted specifications:

a. If HEADING integer-2 is omitted, integer-2 is considered to be
equivalent to the value one (1), that is, line number one.

b. - If FIRST DETAIL integer-3 is omltted, integer-3 is con31dered to
be equivalent to the value of 1nteger 2,

c. - If LAST DETAIL integer-4 is omitted, 1nteger-4 is considered to

be equivalent to the value of integer-5,

d. If FOOTING integer-5 is omitted, integer-5 is considered to be
equivalent to the value of integer-4.

e. If both LAST DETAIL integer-4 and FOOTING integer-5 are omitted,

integer-4 and integer-5 are both considered to be equivalent to
the value of 'integer-1l.

6-43 DD25

PAGE - LIMIT o , PAGE LIMIT

The following chart represents page format report group control when

~ the PAGE LIMIT clause is spec1f1ed.

REPORT PAGE/ DETAIL/ CONTROL PAGE/

HEADING/ ‘OVERFLOW CONTROL - FOOTING OVERFLOW
ﬁegyzﬂg‘ ﬁEﬁEEEEﬁ » HEADING FOOTING
integer=-2
integer-3
integer-4 , ‘ —_r
integer=-5 . .
inﬁeger-l : ;_—J__; . . ___j_;__

Absolute LINE NUMBER or absolute NEXT GROUP spacing (see report group
description entry) must be consistent with controls specified in the
PAGE LIMIT clause.

PAGE-COUNTER Rules:

l.

PAGE-COUNTBR is a fixed data-name used to reference a counter
generated by the Report Writer to be used as a SOURCE data item 1in
order to automatically present consecutive page numbers.

One PAGE-COUNTER is supplied for each report described in the Report
Section.

If more than one PAGE~COUNTER is given as a SOURCE data item within a
given report, the number of numeric characters indicated by the
PICTURE clauses must be identical. The size must indicate sufficient
numeric character positions to prevent overflow.

If more than one report description entry exists in the Report
Section, PAGE-~COUNTER must . be qualified by the report-name.
PAGE~-COUNTER may be referred to in Data Division clauses and in
Procedure Division statements.

PAGE~COUNTER is initially set to one by thé Report Writer; if a
starting value for PAGE-COUNTER other than one is desired, the user
may change the contents of the PAGE-COUNTER by a Procedure Division
statement after an INITIATE statement has been executed.

PAGE-COUNTER 1is incremented by one each time a page break is
recognlzed by the Report Writer, after the production of any PAGE o
FOOTING report group but before production of any PAGE or
HEADING report group.

6~-44 DD25

PAGE LIMIT , ‘ ‘ PAGE LIMIT

" LINE-COUNTER Rules:

l‘

LINE-COUNTER is a fixed data-name used to reference a counter utilized
by the Report Writer to determine when a PAGE/OVERFLOW HEADING and/or
a PAGE/QVERPLOW FOOTING report group is to be presented. If a PAGE
LIMIT(S) clause is written in the report description entry, a
LINE-COUNTER is supplied for that report.

If more than one report description entry exists in the Report
Section, LINE-COUNTER must be qualified by the report-name,
LINE-COUNTER may be referred to in Data Division clauses and in
Procedure Division statements. '

Changing the LINE-COUNTER by Procedure Division statements may cause
page format control in the Report Writer to become unpredictable.

LINE-COUNTER is tested and incremented by the Report Writer based on
control specifications in the PAGE LIMIT(S) clause and values
specified in the LINE NUMBER and NEXT GROUP clauses.

LINE-COUNTER is initially set to zero by the Report Writer; likewise,
LINE-COUNTER is automatically reset to =zero when the PAGE LIMIT
integer-1 LINES entry is exceeded during execution.

When a relative LINE NUMBER indication or relative NEXT GROUP
indication exceeds the LAST DETAIL PAGE LIMIT specification during
object program execution, a page break occurs and LINE-COUNTER is
reset to zero. No additional setting based on the relative LINE NUMBER
indication or NEXT GROUP indication that forced the page break takes

‘place. :

If an absolute LINE NUMBER indication or an absolute NEXT GROUP
indication is equal to, or less than, the contents of the LINE-COUNTER
during object program execution, the LINE-COUNTER is set to the
absolute LINE NUMBER indication or the absolute NEXT GROUP indication
following the implicit generation of any specified report groups.

The value of the LINE-COUNTER during any Procedure Division test
statement represents the number of the last line used by the . printing
generated by the previous report group, or represents the number of

~the last line skipped by a previous NEXT GROUP specification.

6-45 : , DD25

PICTURE

PICTURE

‘The PICTURE clause is used to describe the general characteristics and
editing requirements of an elementary item.

General Formaté

PICTURE i S
, IS character-string
PIC v '

SYntax Rules:

General

1.

A PICTURE clause may be specified only at the elementary item level.

A character-string consists of certain allowable combinations of
characters in the COBOL character set used as symbols. The allowable
combinations determine the category of the elementary item.

The maximum number of symbols allowed in the character-string is 30.
The PICTURE clause must be s?ecified for every elementary data item
except an index data item, in which case wuse of this clause is
prohibited. '

PIC is an abbreviation for PICTURE,

‘0 suppression symbol, and the "BLANK
@the same entry. S

Rules:

Five categories of data may be described with a PICTURE clause;
alphabetic, numeric, alphanumeric, alphanumeric edited, and numer c
edited.

° To define an item as alphabetic:

a. Its PICTURE character-string may only contain the symbol
'A'; and

b. Its contents when represented in standard data format must
be any combination of the twenty-six (26) letters of the
Roman alphabet and the space from the COBOL character set.

@ = To define an item as numeric:

a. Its PICTURE character-string can only contain thé, symbols
'g*, 'p', 'S', and 'V'; and '

b. Its contents when represented in standard data format must
be a combination of the Arabic numerals '0', '1', '2', '3',
4', '5', '6', '7, '8', and '9', and the item- may include

. an operational sign. -

6-46 | | : DD25

>ICTURE

e

PICTURE

° To define an item as alphanumeric:

a. Its PICTURE character-string is restricted to certain
combinations of the symbols 'A', «%J*; *K', 'X', '9', and the
item is treated as if the character -string contained all
'X's. A PICTURE character=- strlng which contains all 'A's or

all '9's, wi ‘ mb tIt or YKY, does not
define an alphanumerlc item; and
b. Its contents when represented in standard data format are

allowable characters in the computer's character set.
[To define an item as alphanumeric edited:

a. Its PICTURE character-string is ' restricted to certain
combinations of the following symbols: ‘aA', 'x', '9', 'B',
and '0'; and -

(1) The character-string must contain at least one 'X' and
~at least one 'B' or '0' (zero); or

(2) The character-string must contain at least one 10!
(zero) and at least one 'A'; and

b. Its contents when. represented in standard data format are
allowable characters in the computer's character set.

° To define an item as numeric edited:

a. Its PICTURE character~string 1is restricted to certain
comblnatlons of. the symbols 'B', 'p', 'V', 'z‘', '0', '9°',
Yyt Tty YR, e, e, 'CR' 'DB' and fhe currency
symbol. The maximum number of dlglt p051t10ns that may be
represented in the character-string is 18; and

b. The contents of the character pdsitions of those symbols
allowed to represent a digit in standard data format must be
one of the numerals.

The size of an elementary item, where size means the number of
character positions occupied by the elementary item in standard data
format, is determined by the number of allowable symbols that
represent character positions. An unsigned nonzero integer which is
enclosed in parentheses following the symbols 'a‘', ',', 'X', '9', 'p',

Svgt, '*', B!, '0', *'+', '-', or the currency symbol indicates . the

number of consecutive occurrences of the symbol. The following symbols
may appear only once in a given PICTURE: ‘'s*', 'v', *'.', 'CR', and
'DB'. , .

The functions of the symbols used to descrlbe an elementary item are

explained as follows-

A Each 'A' in the character—string represents’ a character

position which can contain only a letter of the alphabet or
a space. ' ‘
B - Each 'B' in the character-string represents a character

position into which the space character will be inserted.

6-47 o ‘ DD25

PICTURE - ' R _ ' ' PICTURE

eraes»GO/GQOO OBOL‘aGcepts Jand K - as equivalent to . X..

1a] fvalue ‘of —a work1ng~storage item is‘
- a J‘ ana mo - VALUE clause is:
; donversion from certain.
5 ganeral subst&tute~

P The 'P' indicates an assumed decimal scaling position and is
used to specify the 1location of an assumed decimal point
when the point is not within the number that appears in the
data -item. The scaling position character ‘P' 1is not
counted in the size of the data item. ~ Scaling position
characters are counted in determining the maximum number of
digit positions (18) in numeric edited items or numeric
items which appear as operands in arithmetic statements. (P

Jioannot be used with COMPUTATIONAL or COMPUTATIONAL=n items.)
The scaling position character 'P' can appear only to the
left or right as a continuous string of 'P's within a
PICTURE description. Since the scaling position character
'P' implies an assumed decimal point (to the left of 'P's if
'P's are leftmost PICTURE characters and to the right of
'P's if 'P's are rightmost PICTURE characters), the assumed
decimal point symbol 'V' is redundant as either the leftmost
or rightmost character within such a PICTURE description.

S The letter 'S' is used in a character-string to indicate the
presence of an operational sign and must be written as the

~ leftmost character in the PICTURE character-string. The 'S'

is not counted in determining the size of the elementary

1tem unless the PICTURE . clause is accompanied by a USAGE
OMP~4. In this case, the 'S' is counted ag a
iepara V& in - the size of the elementary item.
Refer to the USAGE clause for addltlonal information.

v The 'V' is wused 1in a character-string to indicate the
location of the assumed decimal point and may only appear
once in a character-string. The 'V' does not represent a
character position and therefore is not counted in the size
of the elementary item. When the assumed decimal point is
to the right of the rightmost symbol in the string, the 'V'
is redundant.

X Each 'X' in the character—string' is used to represent a
© . character position which contains any allowable character
£ the ter' set. ‘a P ’

Z Each '2' in a character-string may only be used to represent
the leftmost leading numeric character positions which will
be replaced by a space character when the contents of that
character position are zero. Each 'Z' is counted in the
size of the item.

9 Each '9' in the character~string répresents a character

position which contains ‘a numeral and is counted in the size
of the item.

2/71 | | . . 6-48 . ~ DD25A

PICTURE

-,CR,DB

Editing Rules:

1.

PICTURE

Each '0' (zero) in the character-string represents a
character position into which "the numeral zero will be
inserted, The '0' is counted in the size of the item.

Each ',' (comma) in the character-string represents a
character position into which the character ',' will be
inserted. This character position is counted in the size of
the item.

When the character Lt (period) appears in the
character-string, it is an editing symbol which represents
the decimal point for alignment purposes and, in addition,
represents a character position into which the character '.'
will be inserted. The character ',' is counted in the size
of the item. The symbols 'V' and '.' are mutually exclusive.
For a given program, the functions of the period and comma

‘are exchanged if the -phrase DECIMAL-POINT IS COMMA is

specified in the SPECIAL-NAMES paragraph. In this exchange,
the rules for the period apply to the comma and the rules
for the comma apply to the period wherever they appear in a
PICTURE clause. (If insertion character ',' ig the last

symbol in the PICTURE character-string, it must be

immediately followed by a semicolon or the per;od to end the
lata deﬁcrxptlon entxy.)

These symbols are used as editing sign control symbols. When
used, they represent the character position into which the
editing sign control symbol will be placed. The symbols are
mutually exclusive in any one character-string and each
character used in.the symbol is counted in determining the
size of the data item.

Each '*' (asterisk) in the character-string represents a
leading numeric character position into which an asterisk
will be placed when the contents of that position are =zero.
Each '*' is counted in the size of the item. ‘

The '$' (currency symbol) in the character-string represents
a character position into which a currency symbol is to be
placed. The currency symbol 1in a .character-string is.
represented by either the §$§ or by the single character

- specified in the CURRENCY SIGN phrase in the SPECIAL-NAMES

paragraph The currency symbol is counted in the size of the
item.

. Two general methods are used to perform editing in the PICTURE clause,

either by insertion or by suppression and replacement The four types
of insertion editing are: . »

a. Simple insertion.

b, Special insertion.

c. Fixed insertion.

d. AFloating insertion.

6-49 ' s A , DD25

PICTURE

PICTURE

The two types of suppression and replacement editing are:

a. Zero suppression and replacement with spaces.

b. Zero suppression and replécement with asterisks.,

‘The type of editing which may be performed upon an item depends on the

category to which the item belongs. The following list indicates which
type of editing may be performed upon a given category:

Category ©Type of Editing
"Alphabetic None
- Numeric : None
Alphanumeric None
Alphanumeric Edited Simple insertion, '0' and 'B'
Numeric Edited All, subject to the restrictions of
Rule 3 below
Any Variable- None

Length Item

Floating insertion editing and editing by 2zero suppression and
replacement are mutually exclusive in a PICTURE clause. Only one type
of replacement may be used with zero suppression in a PICTURE clause.

Simple Insertion Editing.

The ',' (comma), 'B' (space), and '0' (zero) are used as the insertion
characters. The insertion characters are counted in the size of the
item and represent the position in the item into which the character
will be inserted.

Special Insertion Editing.

The ',' (period) is wused as the insertion character and also
represents the decimal point for alignment purposes. The insertion
character used for the actual decimal point is counted in the size of
the item. The use of the assumed decimal point, represented by the
symbol 'V', and the actual decimal point, represented by the insertion
character, in the same PICTURE character- string is not allowed. If the
racter is the last ‘symbol . in . the ' character-string and
lauses follow ~the: character~str1ng,f;_ then the
’g"must be immedzatelya, ' : semicolonv

follcwed by & - gpac ‘This 8 i

: ppearxng in the data descrlption int) special
insertion editing is the appearance of the insertion character,1n the
item in the same position as shown in the character-string.

Fixed Insertion Editing.

The currency symbol and the editing sign control symbols '+', '-',
'CR', 'DB' are the insertion characters. Only one currency symbocl and,
only one of the editing sign control symbols can be used in a given

6-50 A ' DD25

PICTURE

PICTURE

PICTURE character-string. When the symbols 'CR' or 'DB' are used, they
represent two character positions in determining the size of the item
and they must represent the rightmost character positions that are
counted in the size of the item. The symbol '+' or '~-', when used,
must be the leftmost or rightmost character position to be counted in
the size of the item. The -<currency symbol must be the leftmost
character position to be counted in the size of the item except that
it may be preceded by either a '+' or a '=-' symbol. Fixed insertion
editing results in the insertion character occupying the same
character position in the edited item as it occupied in the PICTURE
character-string. Editing sign control symbols produce the following
results depending upon the value of the data item. '

RESULT
Editing Symbol in ‘
PICTURE Data Item Data Item

Character-String Positive or Zero Negative

+ + -

- space -

CR 2 spaces CR

DB 2 spaces ‘ DB
Floating‘Insertion Editing.
The currency symbol and editing sign control symbols '+' or '-' are

the insertion characters and they are mutually exclusive. as floating
insertion characters in a given PICTURE character-string.

Floating insertion editing is indicated in a PICTURE character-string
by using a string of at least two of the allowable insertion
characters to represent the leftmost numeric character positions into
which the insertion characters can be floated. Any of the simple
insertion characters embedded in the string of floating insertion
characters or to the immediate right of this string are part of the
floating string.

In a PICTURE character-string, there are only two ways of representing
floating insertion editing. One is to represent any or all of the
leading numeric character positions on the left of the decimal point
by the insertion character. The other is to represent all of the
numeric character positions in the PICTURE character-string by the
insertion character. ,

If the insertion characters are only to the left of the decimal point
in the PICTURE character-strlng, the result is that a 51ngle 1nsert10n
character will be placed 4 ;

ted by the rightmo:
RE character-stri t f :
‘the first nonzero digit in the data represented by the
" symbol string, whichever is farther to the 1left in the’

'PICTURE character-string. The character pOSltlonS preceding - the

1nsertlon character are filled w1th spaces.

6-51" | o DD25

PICTURE

PICTURE

If all numeric character positions in the PICTURE character-string are
represented by the insertion character, the result <depends upon the
value of the data. If the value is zero, the entire data item will
contain spaces., If the value is not zero, the result is the same as
when the insertion character is only to the left of the decimal point

"in the PICTURE character-string.

To avoid truncation, the minimum size of the PICTURE. character-string
for the receiving data item must be the number of characters in the
sending data item, plus the number of fixed insertion characters being
edited into the receiving data item, plus one for the floating.
insertion character. : : :

Zero Suppression Editing.

The suppression of leading zeros in numeric character positions is
indicated by the use of the alphabetic character 'Z' or the character
'*' (asterisk) as suppression symbols in a PICTURE character-string.
These. symbols are mutually exclusive in a given PICTURE
character-string. Each suppression symbol is counted in ‘determining
the size of the item, If 'Z' is used, the replacément character will
be the space; if the asterisk is used, the replacement character will
be '*l. . .

Zero suppression and replacement 1is indicated in a PICTURE
character-string by using a string of one or more of the allowable
symbols to represent leading numeric character positions which are to
be replaced when the associated character position in the data
contains a zero..Any of the simple insertion characters embedded in
the string of symbols or to the immediate right of this string are
part of the string.

In a PICTURE character-string, there are only two ways of répresenting
zero suppression. One is to represent any or all of the 1leading
numeric character positions to the 1left of the decimal point by
suppression symbols. The other is to represent all of the numeric
character positions in the PICTURE character-string by suppression
symbols.

If the suppression symbols appear only to the 1left of the decimal
point, any leading zero in the data which corresponds to a suppression
symbol in the string is replaced by the replacement character.
Suppression terminates at the first nonzero digit in the data
represented by the suppression symbol string or at the decimal point,
whichever is encountered first.

If all numeric character positions in the PICTURE character-string are
represented by suppression symbols and the value of the data is not
zexo, the result is the same as if the suppression characters were
only to the left of the decimal point. If the wvalue 1is zero, the
entire data item will be spaces if the suppression symbol is 'Z' or
all '*', except for the actual decimal point, if the suppression
symbol is '*', ‘

The symbols Y, e, '*',"Z', ana the currency symbol, whenh used as

floating replacement characters, are mutually exclusive within a given
character-string.

6-52 DD25

 PICTURE ' ’ PICTURE

Precedence Rules:

The following chart shows the order of precedence when using characters as
symbols in a character-string. An 'X' at an intersection indicates that the
symbol (s) at the top of the column may precede, in a given character-string, the
symbol (s) at the left of the row. Arguments appearing in indicate that the
symbols ‘are mutually exclusive. The currency symbol is indicated by 'ecs'.

In cases'where the General Rules above and this chart conflict, the stated
rules have precedence.

First Fixed Insertion Other Symbols
Symbol
Second + {+ {CR A {Z Z <+ {+}
Symbol BlO],|. {—} —} DBJ| cs X|PiP|Ss|vV *}{*} 9 -} -} {cs | cs
F
i B XIX|X| X} X X || XX X1 XXX X [X |X | X
X 0 XXX XX . X XX X X [X XX [|X[]X [X | X
e ' XX X{X[|X X X X|X|X[X [|X}|X |X | X
d . X]1X[X X X X X X | X X
+
AN :
n —
‘s +
e {} X|X1 X} X X X XX [X X X ' X
r - ‘
t CR]
i {} XXX X X X XXX |X X | X
(o] DB
n cs X X X
A X X 1X X X
P : X X[X
P XXX XXX | X X | X X X | X X
S
¢} \Y% X|X] X X X X[X X X |1 X X
t Z
h X | X|X X X X
e * '
r 1 Z
} X | X1 X|X| X X X X |X |X
S * .
y 9. XXX X[X X || XX X X | X X 1'X X
m +
b } XXX X X
o -
1 +
S } XXX X X X X X | X
(o] X 1X]X X X
CcS XXX XX X X X | X

6-53 . ’ ‘ - DD25

PICTURE : ' ‘ : ‘ PICTURE

At least one of the symbols 'A', 'X*', '2', '9', or '*', or at least two of
the symbols '+', '=', or 'cs' must be present in a PICTURE string. , :

Fixed insertion symbols '+' and '-', and other symbol 'P' appear twice. The
first occurrence represents their use to the 1left of the PICTURE's numeric
character positions and the second their use to +the right of the PICTURE's
numeric character positions. Other symbols '2', '*', '¢g', '+', and '-' appear
twice. The first occurrence represents the use before the decimal point
position; the second the use after the decimal point position.

6-54 , DD25

 RECORD CONTAINS B - | '~ RECORD CONTAINS

The RECORD CONTAINS clause in an FD or SD entry is used to specify the size
of data records.

General Format:

RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS

Syntax Rule:

1.

Integer-l and integer-2 must be unsigned nonzero integers.

General Rules:

1.

The size of each data record 1is completely defined in the record
description (data description) entry; therefore, this clause is never
reguired. When the RECORD CONTAINS clause is wused, however, ' the
following rules apply: '

a. Integer-2 may not be used by itself unless all of the data
records in the file are the same size. In this -case, integer-2
represents the exact number of characters in the data record.
When both integer-1 and integer-2 are given, they refer to the
minimum number of characters in the smallest data record and the
maximum number of characters in the largest data record,
respectively. o '

b. - The size of the data record is specified in terms of the number
of characters in the standard data format contained in the
logical record, regardless of the type of characters used to
represent the items within the logical record. The size of the
record is determined by adding the number of characters in all
the fixed-length elementary items to the sum of the maximum
number of characters in all variable-~length items subordinate to
the record. This sum may be different from the actual size of the
record, Refer to the SYNCHRONIZED and USAGE clauses,

6-55 S ' . DD25

RECORDING MODE ‘ ’ 4 RECORDING MODE

' MODE clause in a file descriptlon entry xs used to speclfy

janization of data on magnetic tape,

General Format:

Syntax Rule:

General Rules:

6-56 : ‘ ‘ DD25

REDEFINES ' o REDEFINES

The REDEFINES clause is used to describe the same memory area by different
data description entries., This is accomplished in either the File Section or
Working-Storage Section; it allows the same memory area to contain different
data items. - ’

General Format:
level-number data-name~l REDEFINES data-name=2

NOTE: Level-number and data~name-l are not part of the REDEFINES clause;
they are shown only for clarity.

Syntax Rules:

1. The REDEFINES clause must immediately follow data-name-1l.

2. The level-numbers of data-name~l and data-name-2 must be identical but
cannot be 66 or 88. ‘

3. The REDEFINES clause cannot be used with level 01 data-names in the
File Section. Implicit redefinition is provided by the DATA RECORDS
clause in the file description entry.

General Rules:

1. Redefinition bégins at data-name-2 and continues until a level-number
less than or equal to that of data-name-2 is encountered.

2, When the level~number of data-name-~l is other than 01, then
data=-name-1 must specify a memory area of the same size as
data-name-2. The REDEFINES clause specifies only the redefinition of a
memory area, not of the data items that occupy the area.

3. The same memory area may be redefined as many times as required. The
entries giving the new descriptions of the memory area must follow the
entries defining the area being redefined, without entries defining
new memory areas intervening. Multiple redefinitions of - the same
memory area must all use as data-name-2 the data-name of the entry
that originally defined the area. ‘

4, The data description entry for data-name-2 cannot contain an OCCURS
clause nor can data-name-2 be subordinate to an entry containing an
OCCURS clause. Neither the original definition nor any subsequent
redefinitions of the area can include an item whose size is variable
as defined for the OCCURS clause.

" 5. The entries giving the new description of the memory area must not
contain VALUE clauses, except in condition-name entries.. '

6-57 : o - DD25

REDEFINES

REDEFINES

Usé caution when specifying REDEFINES of a noncontlguous data item

{level 77) since such data ltems are 1mpllcltly synchronized based . on
the class,. -

When the REDEFINES clause is specified in the Worklng Storage Section
and more than fifty noncontiguous data items (level 77) are defined,
the REDEFINES clause and the item it redefines must be included in the

same group of fifty items; that is, in the first fifty level 77 ltems,
~or the second fifty level 77 ltems, etc. .

6-58 , DD25

RENAMES ’ ' : RENAMES

The RENAMES clause is a level 66 data description entry that . permits
alternative, possibly overlapping, groupings of elementary items.

General Format:

o THRU -
66 data-name-1 RENAMES data-name-2 1< \ data-name-3 |.
: . THROUGH

NOTE: . Level-number 66 and data-name-1 are not part of the RENAMES clause;
’ *hey are shown only for clarity.

Syntax Rules:

1, ~ All RENAMES entries associated with a given 10gical record must
immediately follow that record's last data description entry.

2. Data-name-2 and data-name-3 must be names of elementary items or
groups of elementary items in the associated logical record. They
cannot, however, be the same data-name. .

3. A level 66 entry may not be used to rename another level 66 entry nor
"~ may it be used to rename a level 01, 77, or 88 entry.
\
4, Data-name-l may not be used as a quallfler, and may only be = qualified
by the names of the level 01, FD, i

5. Neither data-name-2 nor data-name~-3 may have an OCCURS clause in its

- - data description entry nor be subordinate to an item having an OCCURS
clause in its data description entry.

6. Data-name-2 and data-name~3 may be qualified.

7. The words THRU and THROUGH are equivalent.

6-59 - _ : DD25

RENAMES

RENAMES

General Rules:

1.

2‘

One or more RENAMES entries may be written for a logical record.

When data-name-3 is specified, data-name-l is ‘a group item that
includes all the elementary items starting with data-name-2 (if
data-name-2 1is an elementary item) or starting with the first
elementary item in data-name-2 (if data-name-2 is a group item) and
concluding with data-name-3 (if data-name-3 is an elementary item) or
concluding with the last elementary item in data-name-3 (if
data-name-3 is: a group item).

When data-name-3 is not specified, data-name-2 can be either a group
or an elementary item. When data-name-2 is a group item, data-name-1
is treated as a group item. When data-name-2 is an elementary item,
data-name-1 is treated as an elementary item.

'hé s

6-60 : ‘ . DD25

. REPORT

REPORT

The REPORT(S) clause in a file description - entfy is used to cross-
reference the report descrlptlon entries with their associated file description

entries.

General Format:

REPORT IS

REPORTS ARE

. report-name-1 [, report—name-z] ces

Syntax Rule:

1.

Each report-name listed in a file descrlptlon entry must - be the
subject of a report description entry in the Report Section.

General Rules:

1.

The REPORT clause is required in the file description entry if the
file being described is an output report file or is to contain output
report records., ' :

The presence of more than one report-name indicates that the file
contains more than one report. These reports may be of different
sizes, formats, etc. The order in whlch the report-names are listed is

- not significant,

6-61 » DD25

RESET : ' o RESET

R The RESET clause in a report group description entry refers to the
identifier used. in. the CONTROL clause of the associated RD entry that causes the
SUM counter in the elementary item entry to be reset to zero on a control break

General ‘Format:

identifier~1
RESET ON- :
FINAL

Syntax Rules:

1. Identifier-1 must be one of the identifiers described in the CONTROL
clausé in the report description entry. Identifier-1 must be a higher
level CONTROL clause identifier than the CONTROL clause identifier
associated with the CONTROL FOOTING report group in which the SUM and
RESET clauses appear.

S 2, The RESET clause may be used only in conjunction with a SUM clause at
the elementary level.

|
\

General Rules:

1. After presentation of the TYPE CONTROL FOOTING report group, the
counters associated with the report group are reset to zero unless an
explicit RESET clause is given specifying reset based on a higher
level control than the associated control for the report group.

2, The RESET clause may be used for progressive totaling of identifiers
where subtotals of identifiers are desired without automatic reset ing
upon producing the report group. '

3. When FINAL is specified, the SUM counter is not reset to zero until
the final control footing is produced at TERMINATE time.

6-62 , DD25

SOURCE, SUM, VALUE o ~ SOURCE, SUM, VALUE

The SOURCE, SUM, and VALUE clauses in a report group description entry are
used to define the purpose of the report item within the report group.

General Format:

SOURCE IS -[$ELECTED] identifier-1
SUM identifier=-2 [R identifier—3] e [UPON data—name—l]

VALUE IS literal-l

Syntax Rules:

1. Each identifier must indicate an item appearing in the File Section or
Working-Storage Section or must be the name of a SUM counter in the.
Report Section. -

2. SOURCE iwithout SELECTED), SUM, and VALUE c¢lauses can be used only at
the elementary level. The SOURCE 1S SELECTED clause c¢an be used only
~.atgthe‘gnaup lavel.

3. When the SELECTED.phrase is used, identifier-l represents a group

item, The identifiers described at the elementary level in the source

regord then become SOURCE entries in the associated report group. The
gSELECTED elementary level identifiers must be unmque data~names.,:

4, Literal-1l may be numeric, nonnumeric, or a figurative. constant.

SOURCE Rules:

1. The SOURCE clause indicates a data item which is to be wused as the
source for this report item. This data item is called a. SOURCE data
item or a SOURCE item., The item is presented according to the. PICTURE
clause in the associated elementary report group description entry,.

n’th’:SELECTED phrase ‘is specified, the elementary level items
dentlfler-l are matched against the data-names specified at
mentary level within the report group. Matching data-names are
SOURCE item entries to be included and presented within
oup, according to the PICTURE and USAGE spec1f1cat10nsf”

data-name in the report group descrlptlon entry.~ ey

6-63 . | DD25

SOURCE, SUM, VALUE ' SOURCE, 'SUM, VALUE

SUM Rules:

A SUM clause may only appear in a TYPE CONTROL FOOTING report group.

If a SUM counter is referred to by a Procedure Division statement or
Report Section entry, a data-name must be specified with the SUM
clause entry. The data-name then represents the summation counter
automatically generated by the Report Writer to total the . operands
specified immediately following the SUM. If a summation counter 1is
never referred to, the counter need not be named explicitly by a
data-name entry. A SUM counter is only algebraically incremented just
before presentation of the TYPE DETAIL report group in which the item
being summed appears as a SOURCE item.

Whether the SUM clause names the summation counter or not, the PICTURE
clause must be specified for each SUM counter. Editing characters or
editing clauses may be included in the description of a SUM counter,
Editing of a SUM counter only occurs upon the presentation of that SUM
counter. At all other times, the SUM counter is treated as a numeric
data item. The SUM counter must be large enough to accommodate the
summed quantity without truncation of integral digits.

Each item being summed, that is, identifier-2, identifier-3, etc.,
must appear as a SOURCE item in a TYPE DETAIL report group or“be names
of SUM counters in a TYPE CONTROL FOOTING report group at an équal or
lower position in the control hierarchy. Although the items must be
explicitly written in a TYPE DETAIL report group, they may actually be
suppressed at presentation time. In this. manner, direct association
without ambiguity can be made from the current data available by a
GENERATE statement to the data items to be presented within the Report
Section. ' .

If higher level report groups are indicated in the CONTROL hierarchy,
counter updating procedures, commonly called 'rolling counters
forward', take place prior to the reset operation.

The summation of data items defined as SUM counters in TYPE CONTROL
FOOTING report groups is accomplished explicitly or implicitly with
the Report Writer automatically handling the updating function. If a
SUM CONTROL of a data item is not desired for presentation at a lower
level but is desired for presentation at a higher 1level, the lower
level SUM specification may be omitted. In this case, the same results
are obtained as if the lower level SUM counter were specified,

The UPON data-name~l1 phrase is required to obtain selective summation
for a particular data item which is named as a SOURCE item in two or
more TYPE DETAIL report groups. Identifier-2 and identifier-3 must be
SOURCE data items in data-name-1l. Data-name-l must be the name of ‘a
TYPE DETAIL report group. If the UPON data-name-1l phrase is not used,
identifier-2, identifier-3, etc., respectively, are added to the SUM
counter at each execution of a GENERATE statement. This statement
generates a TYPE DETAIL report group that contains the SUM operands at
the elementary level. '

. For further explanation, fefér to the ADD statement.

6-64 v | DD25

SOURCE, SUM, VALUE ‘ : SOURCE, SUM, VALUE

VALUE Rule:

1. The VALUE clause causes the report data item to assume the specified
value each time its report group is presented.

6-65) ~ DD25

SYNCHRONIZED ~ . v ' ' SYNCHRON

I1ZED

[

The SYNCHRONIZED clause in a data descripﬁion entry is used to specify
alignment of an elementary item with a computer word or words.

General Format: .

SYNCHRONIZED LEFT
{sync RIGHT -

e

Syntax Rules:

1. ‘The SYNCHRONIZED clause can be used only with an elementary item.

2. SYNC is an abbreviation for SYNCHRONIZED.

General Rules:

1. This clause indicates that the COBOL compiler, 1in creating
internal format of this item, must place the item in the min
number of computer words that can contain the item, with no part
any other item sharing those words.

2. The computer word, or words, containing the synchronlzed item may
have to contain some unused character positions in order to fill
computer word, or words. When SYNCHRONIZED LEFT is specified, t
unused character positions (if any) will occupy the least signifi
portion of the last word of the data item. When SYNCHRONIZED RIGHT

the

the
imum
of

also
the
hese
cant
is

‘'specified, the wunused positions (if any) will occupy the most

significant portion of the first word of the data item. The un
character positions must not be described with FILLER items.

3. All unused character positions resulting from the SYNCHRONIZED cl
appear in the external format.

4, Whenever a synchronized item is referenced in the source program,
original size of the item as shown in the PICTURE clause is used

used
ause

the
in

determining any action which depends on size, such as justification or

truncation. The REDEFINES clause, however, leads to a redefinition
a memory area, not just of the data items occupying the area.
SYNCHRONIZED ZED clauses resulted in unused character p051tlons in
inition of the area, 6!) ;
ned, the new definition must account for all
S, If the first item in the orlglnal definition

of
Iif
the

such
is

SYNCHRONIZED RIGHT, the area being redefined begins in the leftmost

character of the first word allocated to the original item. If
last item of the original definition is SYNCHRONIZED LEFT, the

the
area

being redefined extends to the rightmost character of the last word

allocated to the orlglnal item.

DD25

SYNCHRONIZED) SYNCHRONIZED

2/77

When SYNCHRONIZED is specified for an item within the scope of an
OCCURS clause, each occurrence of the item will be synchronized.

Data items described with USAGE COMPUTATIONAL or COMPUTATIONAL-n are
automatlcall ~ synchronized. Data items described with USAGE
NAT~4" are automatically synchronized on word and half-word
boundarles. All other COMPUTATIONAL or COMPUTATIONAL~-n data items are
automatically synchronized on word boundaries.

If neither LEFT nor RIGHT is specified in the SYNCHRONIZED clause, the
data items are implicitly synchronized as follows:

a. Alphabetic and alphanumerid data items are SYNCHRONIZED LEFT.

b. - Numeric,'numéric edited, and alphanumeric edited data items are
SYNCHRONIZED RIGHT.

Unless otherwise specified in an explicitly stated SYNCHRONIZED
clause, noncontiguous data items (level 77) in working-storage are
implicitly synchronized as follows:

a. Alphabetic and alphanumeric data items are SYNCHRONIZED LEFT.

b. Numeric, numeric edited,; and. alphanumeric edited data items are
SYNCHRONIZED RIGHT.

If the data description of an item contains the SYNCHRONIZED clause
and an operational sign, the sign of the item will appear in the least

51gn1flcant character of the data item, regardless of whether the item
is SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT. .

-

6-67 DD25A

TYPE

. TYPE

" The TYPE clause in a report group description entry is used to specify the

particular type of report group that is described by this entry and to
the time at whlch the report group is to be generated. .

General Format:

[REPORT HEADING
RE
PAGE HEADING
BH
6VERrLow HEADING
o

Q
CONTROL HEADING identifier-nY.
FINAL :

A
@]
=1
<)
S
H
(el

—_——

. TYPE IS
B DE
CONTROL FOOTING identifier-n
CF {FINAL }
OVERFLOW FOOTING
PAGE FOOTING
PF T
REPORT- FOOTING

Syntax Rule:

1. RH is an abbreviation for REPORT HEADING;
" PH is an abbreviation for PAGE HEADING;
. OH is an abbreviation for OVERFLOW HEADING;
CH is an abbreviation for CONTROL HEADING;
DE is an abbreviation for DETAIL;
CF is an abbreviation for CONTROL FQOTING;
¢ 1-abbreviation for OVERFLOW FOOTING;
abbreviation for PAGE FOOTING;
abbreviation for REPORT FOOTING.

General Rules:

indicate

1. The ievel—number 01 1identifies a particular report group to be

generated as output and the TYPE clause in this entry indicates .
time for generation of this report group. If the report group
automatic

described as. other than TYPE DETAIL, its generation is an

the
is

Report Writer function. If the report group is described with the TYPE
DETAIL clause, the Procedure Division statement GENERATE data-name

directs the Report Writer to. produce the named report group.

DD25

TYPE

10,

11.

TYPE

The REPORT HEADING entry indicates a report group that is produced
only once at the beginning of a report during the execution of the
first GENERATE statement, There can be only one report group of this
type in a report. SOURCE clauses used in TYPE RH report groups = refer
to the values of data items at the time the first GENERATE statement
is executed.

The PAGE HEADING entry indicates a report group that is produced at
the beginning of éach page according to PAGE and OVERFLOW condition
rules as specified in Rule 19. There can be only one report group of
this type in a report.

OW HEADING entry indicates a report group that is produced
g of a page following an OVERFLOW condltmon, according -
OVERFLOW rules as specifled in Rule 19. There ¢an be only
sup of this type in a report. . v

The CONTROL HEADING entry indicates a report group that is produced at
the beginning of a control group for a designated identifier or, in
the case of FINAL, is produced once before the first control group at
the initiation of a report during the execution of the first GENERATE
statement. There can be only one report group of this - type for each
identifier and for the FINAL entry specified in a report. To - produce
CONTROL HEADING report groups, a control break must occur. SOURCE
clauses used in TYPE CONTROL HEADING FINAL report groups refer to the
values of the items at the time the first GENERATE statement is
executed.

The DETAIL entry indicates a report group that is produced for each

GENERATE statement in the Procedure Division. Each DETAIL report group
must have a unique data-name at the 01 level in a report.

The CONTROL FOOTING entry indicates a report group that is produced at
the end of a control group for a designated identifier or is produced

"once at the termination of a report ending a FINAL control group.

There can be only one report group of this type for each identifier
and for the FINAL entry specified in a report. To produce CONTROL
FOOTING report groups, a control break must occur. SOURCE clauses used
in TYPE CONTROL FOOTING FINAL report groups refer to the values of the
items at the time the TERMINATE statement is executed,

;’ThQEOVERPLOW FOOTING entry indicates a report group that is produced
»¢at' he bottom of a page following an OVERFLOW condition according to

an "OVERFLOW rules as specified in Rule 19. There can be only one

»f thisg type~;n~a report‘

The PAGE FOOTING entry indicates a report group that 1is produced at

the bottom of each page according to PAGE and OVERFLOW condition rules
as spec1f1ed in Rule 19. There can be only one report group of this
type in a report.

The REPORT FOOTING entry indicates a report group that is produced
only once at the termination of a report. There can be only one report
group of this type in a report. SOURCE clauses used in TYPE REPORT
FOOTING report groups refer to the values of the items at the time the
TERMINATE statement is executed.

Identifiers,»as "well as FINAL, must be one of the identifiers
described in the CONTROL(S) clause in ‘the report description entry.

6-69 ol , . DD25

TYPE'

12,

13.

14.

15,

16.

TYPE

A FINAL type control break may be designated only once for CONTROL
HEADING or CONTROL FOOTING entries within a report.

Nothing precedes a REPORT HEADING entry and nothlng follows a REPORT
FOOTING entry within a report.

The HEADING or FOOTING report groups occur in the .following Report
Writer sequence, if all exist for a given report: -

REPORT HEADING (one occ
PAGE HEADING 0

ence only-flrst page)
DING

CONTROL HEADING
DETAIL)
CONTROL FOOTING

PAGE FOOTING o% :OVERFLOW FPOOTING
REPORT FOOTING (one occurrence only-last page)

CONTROL HEADING report groups are presented in the following
hierarchical arrangement: ‘

~ Final Control Heading
Major Control Heading

Minor Cont#ol Heading

CONTROL FOOTING report groups are presented in the following
hierarchical arrangement: :

Minor Control Footing

Major Control Footing
Final Control Footing

CONTROL HEADING report groups appear with the current values of any
indicated SOURCE data items before the DETAIL report groups of the
CONTROL group are produced. CONTROL FOOTING report groups appear with
the previous values of any indicated CONTROL SOURCE data items Jjust
after the DETAIL report groups of that CONTROL group have been
produced. The USE procedures specified for a CONTROL FOOTING report
group that refer to: a) SOURCE data items specified in the CONTROL(S)
clause affect the previous value of the items; b) SOURCE data items
not specified in the CONTROL(S) clause affect the current value of the
items., These report groups appear whenever a control break is noted.
LINE NUMBER determines the absolute or relative position of the
CONTROL report groups exclusive of the other HEADING and FOOTING

‘report groups.

6-70 ' DD25

- 18,

19.

TYPE

Phe con¢ept of the OVERFLOW condition in a Report Writer is based on
the logical definition of a page format relative to the presentation
“of a complete control group, For purposes of the OVERFLOW condition, a
complete control group depends on the change of a data item value
1thi designated order of specific data items. If the change is a
ol group break, the complete control group includes the
TAIL, and FOOTING report groups associated with the minor
specification. If the change is a major control group break,
e omplete control group includes the HEADING, DETAIL, and FOOTING
oups agssociated with the minor, intermediate, and major
speciflcatlons. Thus, during process time, if a page format
: allow a complete control group to be presented within the

efxnlt on of the page, an OVERFLOW condition is said to exist from
HDETAIL report group printed in the control group on one page
t report group printed in the control group on the next
en ‘the points of from and +to described above, OVERFLOW
-and OVERFLOW HEADING report groups may be produced, if
' ' If a complete control -group, as descrlbed above, and none
definition of
PAGE condltlon 15 sald to exist from the last DETAIL
: “ p and, therefore, PAGE FOOTING and PAGE HEADING report
roups. are produced if specified.

'PAGE HEADING and OVERFLOW HEADING, and PAGE FOOTING and OVERFLOW
.FOOTING phrases, if specified in a report, are mutually exclusive for
any one page. The absence of ‘a TYPE OVERFLOW HEADING clause indicates
that TYPE PAGE HEADING report groups, if specified, are produced at
the beginning of each page regardless of the condition that prompted
‘the new page. Likewise, the absence of a TYPE OVERFLOW FOOTING c¢lause
indicates that TYPE PAGE FOOTING report groups, if specified, arxe
produced at the bottom of each page regardless of the condition that
v ended the .current page. ‘ .

'To recognlze the OVERFLOW condition within the Report Writer and to
- determine the difference between an OVERFLOW condition and a PAGE
- condition, the PAGE LIMIT(S) clause must be given, including an
‘explicit LAST DETAIL phrase. If both TYPE PAGE HEADING and OVERFLOW
HEADING or TYPE PAGE FOOTING and OVERFLOW FOOTING report groups are
_spec1fied in the same report and if the LINE-COUNTER will exceed the
LAST DETAIL limit for generation of the current report group, the
ffollowing rules apply:

Without an explicit PAGE LIMIT(S) FOOTING clause, if the current
report group is not the first report group of a new control
group, an OVERFLOW condition exists from this position on the
page to the position on the next page where the FIRST DETAIL
report group can be presented. If the current report group is the
first report group of a new control group, a PAGE condition
exists, TYPE CONTROL FOOTING report groups are considered part of
the last control group. TYPE CONTROL HEADING report groups are
consldered part of the’ next or current. control group, ... Sl

6-71 L : DD25

TYPE S v TYPE

6-72 ' DD25

USAGE

USAGE

The USAGE clause in a data descrlptlon entry is wused to indicate the
dominant use of a data item or the manner in which a data item is represented in

nemory.

General Format:

[USAGE IS]

7 COMPUTATIONAL |

Syntax Rules:

1.

Genefal

2/77

tion for COMPUTATIONAL. coMP-n is an abbreviation

b;e

The PICTURE character-string for a COMPUTATIONAL !or COMPUTATIONAL-n
data item must only contain '9's, the operational sign 'S', and the
assumed decimal point 'V',

4 is specified,: the object computer must vhe
y’SOGO-EIS.z»~~ G Reeaas e i

The only uéage that can be specified for a ‘repbrt group description
entry is USAGE DISPLAY.

RuleS:

If the usage of a data item is not specified, it is assumed to be
" USAGE DISPLAY.

The USAGE clause may be specified at any 1level of a hierarchical
structure.. If this clause is specified at a group level, it applies
to all of the subordinate elementary items in the group and no
subordinate item may specify a different usage.

The external format of a data item (as it is stored on a peripheral

device) and its internal format (as it is stored in memory) are always
‘the ~same,

6-73 ‘ ' DD25A

USAGE

2/77

USAGE

When the USAGE clause is specified, the internal format invoked for a
computational item must not conflict with the data characteristics

" specified for the item in the PICTURE clause. The USAGE clause

permits a choice of the following internal formats for computational
data items: ' ‘ '

a. COMPUTATIONAL represents decimal-precision binary. The data item
.1s stored as a synchronized signed floating-point binary ' number.
The PICTURE clause description must conform to the rules for
numeric items. If the PICTURE clause specifies eight or less
digits, the item is stored as a single-precision floating-point
number; = otherwise, it is stored as a double~precision
floating-point number. To preserve fractional accuracy, each
item is treated with a span multiplier as described in Section II
of the COBOL User's Guide.

“htéﬁér., The data item is

‘as a synchronized s

. The
vTU_E ‘clause description mus for = numeric
ems and the - assumed de tely :to the',

t -of the rightmost dlglt
fiegs ‘eight oy less d
*e~prec&sxon blnary Lnteg

URE clause’
stored as a
L,oredf as a

IUTATIONAL~2 represents floating~poxnt bxnary. The data item:
‘stored as. a synchronlzed 31gned floatlng~p01nt bxnary number.a

When the USAGE DISPLAY clause is specified, the data items are ‘stored
as standard data format characters. The USAGE clause permits a choice
of the following internal formats for display data items:

a. DISPLAY represents character-oriented data. The data item is
-stored in the native (Series 60/6000) six~bit character set. The
PICTURE clause descrlptlon may imply alphabetlc, numeric,

" alphanumeric, or numeric edited data items.

6-74 "DD25A

USAGE : o : : USAGE

resents edlted floating-point.
‘ '1x~bit chaxacter set.u'

;Nationalb Standa
. Character = sta

¥-2 repreSents character-oriented data,- The ta ltem 13[
_;ziln ‘a nonnative six~bit character set. The ol aracter setj
. the commercial collatzng character set described 1 Appendlx Dj‘
f the COBOL User's Guide. ‘

evPICTURE clause description must imply a class of alphabetidf
.lphanumerlc for the data item, ‘ u

hcugh a DISPLAY-2: data 1tum may not be COmpared to an ltem
having’ any other USAGE, it . may be compared to literals and.

_quratlve canstants. P ' . ' '
,DISPLAY~2 da”a; 1tems must be explicitly moved to USAGE DISPLAY
items if they aré to appear on punched cards, prlntar listings,
similar external medla. This functmon cannot be aCCOmpllShed
“with a REDEFINES clause. .

6. An elementary item described with the USAGE INDEX clause is called an
index data item; +the external and internal format of an index data
item 1is single-precision binary integer. The elementary item
described with the USAGE INDEX clause contains a value that must
correspond to an occurrence number of a table .element and must not be
a conditional variable. It is assigned a single word of memory.

An index data item can be referenced directly only in a SEARCH
statement, a SET statement, or in a relation condition. An index data
item can be part of a group that is referenced in a MOVE statement or
an input-output statement, in which case no conversion takes place. -

The BLANK WHEN ZERO, JUSTIFIED, PICTURE, SYNCHRONIZED, and VALUE
clauses must not be used to describe group items or elementary items
described with the USAGE INDEX clause. . If a group item is described
with the USAGE INDEX clause, the elementary items in the group are all
index data items. The group item itself is not an index data item and
must not be used in SEARCH statements, SET statements, or in a
relation condition.

7. . Although the USAGE clause does not itself limit the use of the "data

item being described, some statements in the Procedure Division may

" restrict the USAGE clauses that may be applied to their operands.

However, the USAGE <clause may affect the decimal point or internal
representatlon of the" data item being described.

2/71 . v 6-75 ' . DD25A

VALUE

VALUE

The VALUE clause in a data description entry is used to define the initial
value of working-storage data ~items, or the values associated with a
‘condition=name. :

Format 1:

VALUE IS literal-l

Format 2:
VALUE IS
88 condition-name-l . literal~1
VALUES ARE
THRU THRU
literal-2 , literal-3 literal-4 e
THROUGH ’ THROUGH

NOTE: Level-number 88 and condition-name-l1 are not part of the VALUE

clause; they are shown only for clarity.

Syntax Rules:

The words THRU and THROUGH are equivalent.

A signed numeric literal must be associated with a signed numeric
PICTURE character-string. »

General Rules:

1.

The VALUE clause cannot be stated for any item whose size, explicitly
or implicitly, is variable. .

The VALUE clause must not conflict with other c¢lauses in the data
description of the item or in the data description within the
hierarchy of the item. If the category of an elementary item is
specified as numeric or alphabetic, it does not contradict the
alphanumeric category of group items. The following rules apply:

a. If the category of the item is numeric, all literals in the VALUE
clause must be numeric literals. If the literal defines the value
of a working~-storage data item, the literal is aligned according
to the alignment rules except that the literal must not have a
value that would require truncation of nonzero digits. A negative

~numeric literal must be associated with a signed numeric (89)
PICTURE character~string.

6-76 : , DD25

‘VALUE

VALUE

b. If the category of the item is alphabetic, alphanumeric,
alphanumeric edited, or numeric edited, all literals in the VALUE
clause must be nonnumeric literals. The literal is aligned in the
data item according to the alignment rules (refer to the
JUSTIFIED clause), except that the number of characters in the
literal must not exceed the size of the item.

c. All numeric literals in a VALUE clause of an item must have a
value which is within the range of values indicated by the
PICTURE clause; for example, for PICTURE PPP99, the literal must
be within the range .00000 through .00099.

d. The function of the BLANK WHEN ZERO clause or any editing
characters in a PICTURE clause has no effect on the
initialization of an item. The VALUE clause is the only clause
that may (depending on its usage) provide initialization. Editing
characters are included, however, in determining the size of the
item. Therefore, the VALUE for an edited item must be presented
in an edited form.

A figurative constant may be substituted in both Format 1 and Format 2
wherever a literal is specified.

The VALUE clause cannot be used for items whose USAGE IS‘INDEX.

Condition-Name Rules:

l'

Each condition-name requires a separate entry with level 88. This

~entry contains the name of the condition and the value, values, or

range of values associated with the condition-name. The condition-name
entries for a particular conditional variable must follow the entry
describing the item with which the condition-name is associated. A
condition-name may be associated with any elementary or group item,
except the following:

a. Another condition-~name.
b. A level 66 item.

c. A group containing items requiring separate handling due to
synchronization, usage, etc.

In a condition-name entry, the VALUE clause 1is required. The VALUE
clause and the condition-name itself are the only two clauses
permitted in the entry. The characteristics of a condition-name are

implicitly those of its conditional variable. ’ : ‘

Format 2 can be used only in connection with condition-names. Whenever
the THRU phrase is wused, literal-l must be 1less than 1literal-2,
literal-3 less than literal-4, etc. No more than 24 ranges of valies
THRY phrases) may be specified in a condition-nam

6-77) ' DD25

VALUE

VALUE

An example of condition-name entries follows:
03 GRADE PIC 9(2).

88 PRIMARY VALUE IS 1.
' 88 SECOND VALUE IS 2.

88 GRADE-SCHOOL VALUES ARE 1 THRU 6.

88 JUNIOR-HIGH VALUES ARE 7 THRU 9.

88 HIGH~-SCHOOL VALUES ARE 10 THRU 12,

88 GRADE-ERROR VALUES ARE 0, 13 THRU 99,

Data Descripﬁion Entries Other Than Condition-Names:

1.

Rules governing the use of the VALUE clause differ with the respective
sections of the Data Division:

a. In the File Section, the VALUE clause may be used only in
condition-name entries. ‘

b. . In the Working-Storage Section, the VALUE clause may be used in
condition-name entries, and it may also be used to specify the
initial value of any other data item; in which case, the clause
causes the item to assume the specified value at the start of
object program execution. If the VALUE clause is not used. in an
item's description, the initial value is undefined.

c. In the Report Section, the VALUE clause causes the report data
item to assume the specified value each time its report group is
presented. This clause may be used only at the elementary level
in the Report Section.

The VALUE clause must not be stated in a data description entry that

contains an OCCURS clause, or in an entry that is subordinate +t¢ an
entry containing an OCCURS clause. This rule does not apply to
condition-name entries.

The VALUE clause must not be stated in a data description entry that
contains a REDEFINES clause, or in an entry that is subordinate to an
entry containing a REDEFINES clause. This rule does not apply to
condition~name entries.

If the VALUE clause is used in an entry at the group 1level, the
literal must be a figurative constant or a nonnumeric literal, and the
group area is initialized without consideration for the individual
elementary or group items contained within this group. The VALUE
clause cannot be stated at the subordinate levels within this group.

The VALUE clause must not be written for a group containing items with
descriptions including the JUSTIFIED, SYNCHRONIZED, or USAGE clauses
(other than USAGE IS DISPLAY). :

Within a given record description, the VALUE clause must not be stated

in a data description entry that is subsequent to a data description
entry in which an OCCURS clause with a DEPENDING ON phrase appears.

6-78 ’ DD25

VALUE OF

VALUE OF

The VALUE OF clause in a file description entry is used to particularize
the description of an item in the label records associated with a file.

General Format:

literal-1l
VALUE OF data-name-1 IS ‘
; data-name~2 A

' literal-2
, data-name-3 Is .o

data-name-44

Syntax Rule:

1.

General

1.

Data—name—l, data~name~2, data~name-3, etc., should be qgualified when
necessary, but cannot be subscripted or indexed, nor can they be items
described with the USAGE IS INDEX clause. ’ -

Rules:

Each data-name-l, data-name-3, etc., must be in one of the 1label

records; & data-name-2, & data-name-4, etc., . must be in the

Working-Storage Section. For an: '

a. Input File: The appropriate label routine checks to see if the
value of data=-name-l is equal to the value of literal-1l, or of A
data-name-2, whichever has been specified.

b. Output File: At the appropriate time, the value of data-name-1 is
made equal to the value of 1literal-l, or of A data-name-2,
whichever has been specified.

A figurative constant may be substituted wherever a literal is

specified.

If label records are standard (see LABEL. RECORDS clause), then
data-name~1l, data-name-3, etc., must be one of the following: :

IDENTIFICATION or ID
RETENTION-PERIOD

a. When ID or IDENTIFICATION is used, a nonnumeric 1literal or a
data=name that has a class of alphanumeric and size of no more
than 12 characters must be associated with the fixed data-name.

b. When RETENTION-PERIOD is used, a numeric literal mnot exceeding

999 must be gpecified. The value 999 signifies permanent
retention. o

6-79 DD25

‘VALUE OF ' ' VALUE . OF

storage files, the VALUE OF IDENTIFICATION clause is -ignored
record is not present on the external device, " However,
1 USE procedures are engaged at OPEN ~and CLOSE for

6-80 _ DD25

SECTION VII

PROCEDURE DIVISION

DESCRIPTION OF THE PROCEDURE DIVISION

The Procedure Division contains the procedures required to solve a given
problem. Procedures are written as sentences, combined to form paragraphs, which
in turn may be combined to form sections. COBOL procedures are expressed in a
manner similar to (but not identical with) ordinary English. The basic wunit of
procedure formation is a sentence or a group of successive sentences.

DECLARATIVES

Declarative sections must be grouped at the beginning of the Procedure
Division preceded by the keyword DECLARATIVES and followed by the keywords - END
DECLARATIVES. The USE statement is called a declarative statement.

PROCEDURES

A procedure is composed of a paragraph, or group of successive paragraphs;
or a section, or group of successive sections within the Procedure Division. If
one paragraph is in a section, then all paragraphs must be in sections. A
procedure-name is a word used to refer to a paragraph or section in the source
program in which it occurs. It consists of a paragraph-name (which may be
qualified) or a section-name.

The end of the Procedure Division and the physical end of the program 1is
that physical position in a COBOL source - program after which no further
procedures appear. ' ‘

A section consists of a section header followed by 2zero, one, or more
successive paragraphs. A section header consists of a section-name followed by
the required word SECTION, a priority-number if desired, and a period. A section
ends immediately before the next section; at the end of the Procedure Division;
or, in the declarative portion of the Procedure Division, at the keywords END
DECLARATIVES. ' ' ' ’

A paragraph consists of a paragraph-name followed by ! zero, one, or more
successive sentences. A paragraph ends immediately before the next
paragraph-name or section-name; at the end of the Procedure Division; or, in the
declaratives portion of the Procedure Division, at the keywords END
DECLARATIVES.

7-1 o DD25

A sentence consists of one or more statements and is terminated by a period
followed by a space.

: A statement is a syntactically ~valid combination of words and symbols
beginning with a COBOL verb.

The term identifier is defined as the word. or words necessary to make
unique reference to a data item. '

Execution begins with the first statement of the Procedure Division,
- excluding declaratives, or at an entry point. Statements are then executed in-
the order in which they are presented for compilation, except where the rules in
this section ‘indicate a different order.

STRUCTURE OF THE PROCEDURE DIVISION

Procedure Division Header

The Procedure Division is identified by and must begin with the following
header:) . ,

PROCEDURE DIVISION.

Procedure Division Body

The body of the Procedure Division must conform to one of the following
formats:

- Format- 1:

[DECLARATIVES.

{ section-name SECTION. declarative sentence

{ paragraph~-name. {sentence } RPN } N } RN

END DECLARATIVES.]

{Asectionéname SECTION [priority-—number] .

{ paragraph—name. { sentence } cee } cee } cos

7-2 ‘ ' " DD25

Format 2:

.{paragraph-name. { sentence} cea } e

Procedure Division Segments

Priority-numbers may be used on section headers to provide for segmentation
of an object program. They identify the fixed -and independent segments of the.
program. .

General Format:

section-name 'SECTIONv[priority—number»] .

Syntax Rules:

1. The priority-number must be an integer ranging in value from 0 through
99, . '

2. If the priority-number is omitted from the section header, the
priority is assumed to be 0. '

General Rules:

1. All sections which have the same priority-number constitute a program
segment with that priority.

2. Segments with a priority-number of 0 through 49 belong to the - fixed
portion of the object program.

3. Segments with a priority~number of 50 through 99 are independent .
segments.

4. Sections in the declarative portion must not contain priority-numbers

in their section headings. These sections are defined to have a
priority of 0. '

STATEMENTS AND SENTENCES

A statement is a syntactically valid combination. of words and symbols
beginning with a COBOL verb. The three types of statements are conditional
statements, compiler-directing statements, and imperative-statements.

A sentence consists of a sequence of one or more statements, the last of.
which is terminated by a period. The three types of sentences are conditional
sentences, compiler-directing sentences, and imperative sentences. ' :

7-3. E . .DD25

Conditional Statements and Sentences

A conditional statement specifies that the truth value of a condition is to
be determined and that the subsequent action of the object program is dependent
on this truth value. A conditional statement is an IF, READ, SEARCH, or RETURN
statement; a WRITE statement that specifies an INVALID KEY phrase; an arithmetic
statement (ADD, COMPUTE, DIVIDE, MULTIPLY, SUBTRACT) that -specifies the SIZE
ERROR phrase; CE MESSAGE statement that speelfxes ‘the NO DATA phrase.

A conditional sentence is a conditional statement terminated by a period
followed by a space. The conditional statement may be optionally preceded by an
imperative-statement.

Compiler-Directing Statements and Sentences

A compiler-directing statement consists of a compiler-directing verb and
its operands. The compiler-directing verbs are COPY, ENTER, and USE. A
compiler-directing statement causes the compiler to take 'a specific action
during compilation.

A compiler~directing statement terminated with a period is a
compiler~directing sentence. For example:

USE AFTER ERROR PROCEDURE ON MASTER-FILE.

% END PROGRAM ‘or END.OF PROGRAM may be considered as special
g statements. The END PROGRAM statement may be used to indicate
hysica ‘end of the source .program, (A STOP RUN statement is used to
teithe logical end of the program.)} Use of the END PROGRAM statement 1is
S Te mmended to faoilitate the orderly completion of compilation of source
L programs that end with NOTE statements or comment lines. If specified, the END
sRAM statament must begin in character position 8 (margin A of the reference
' ”also be termxnated by a- perlod (.). e

7-4 | , DD25

Imperative-Statements and Sentences

An imperative-statement indicates a specific action to be taken by - the
object program. The imperative-statement is any statement that is neither a
conditional statement nox a compiler-directing statement. An
. imperative-statement may consist of a sequence of imperative-statements, each
possibly separated from the next by a separator. The imperative verbs are:

ACCEPT3 EXAMINE PERFORM
ADD! EXIT RELEASE
GENERATE SEEK
GO TO SET
INITIATE SORT
coMPUTE! 5 STOP
DISPLA MOVE SUBTRACT |
DIVIDE! MULTIPLY! TERMINATE
OPEN WRITE2

Whenever the term 'imperative-statement' appears in the general format of
statements described in this section, the 'imperative-statement' refers to that
sequence of consecutive imperative-statements ended by a period, or an ELSE
associated with a previous IF verb, or a WHEN associated with a prev1ous . SEARCH
verb.

An 1mperat1ve—statement ‘terminated by a period is an imperative sentence.
For example.

MOVE A TO B.
MOVE A TO B; ADD C TO D.

An imperative sentence may contain either a GO TO statement or a STOP RUN
statement, which (if present). must be the last statement in the sentence. For
example-

MOVE A TO B; ADD.C TO D GO TO START.

SENTENCE EXECUTION

In the following discussion, 'execution of a sentence or a statement within
a sentence' means 'execution of object coding compiled from a sentence, or from
a statement within a sentence which has been written in " COBOL'. ‘'Transfer of
control' means 'transfer of control in the object program by transferring
(GOing) from one place to another place out of the written sequence'. ‘'Passing
of control' means 'passing of control in the object program by passing from one
place to the next place in the written sequence'

Whenever a GO TO statement is encountered during the execution of a
sentence or statement, there is an unconditional transfer of control to the
first procedural sentence of the paragraph or section referenced by the GO TO
statement,

Without the optional phrase SIZE ERROR.
§W1thout the optlonal phrase INVALID KEY.
HEase N ;

7-5 B DD25

Conditional Sentence Execution

The general format of the conditional sentence is:

. statement-1 ELSE statement-2
IF condition
. . : NEXT SENTENCE

[ELSE NEXT SENTENCE]

, In the conditional sentence, the condition is an expression which is true
or false. If the condition is true, then statement-l is executed and control
transferred to the next sentence, If the condition is false, statement-2 is.
executed and control is passed to the next sentence.

ional, then the conditional statement should be.the
f:statement~l. For example, the conditional

could ‘the form:

IF condltlon-l imperative-statement~1 IF condition-2
statement-3 ELSE statement=-4 ELSE statement~2

If condition-1 is true, imperative-statement-l is executed; then, if
condition-2 is true, statement-3 is executed and control is transferred to the
next sentence. If condition-2 is false, then statement-4 is executed and control
is transferred to the next sentence. If condition-1l 1is false, statement-2 is
executed and control is passed to the next sentence.

Statement-3 can in turn be either imperative or conditional and, if
conditional, can in turn contain conditional statements in arbitrary depth. 1In
‘an identical manner, statement-4 can be either imperative or conditional, as can
statement=-2.

The execution of the phrase 'ELSE NEXT SENTENCE' causes a transfer of
control to the next sentence as written, except when it appears in the last
sentence of a procedure belng performed, in which case control is passed to the

.return mechanism,

Compiler-Directing Sentence Execution

: Compiler-directing sentences. direct a COBOL compiler to tak action at
compilation time, rather than specxfylng action to be taken by the object
‘program. :

Imperative Sentence Execution

An imperative sentence is executed in its entirety and control is passed to
the next procedural sentence. :

7-6 - DD25

Control Relationship Between Procedures

In COBOL, imperative and conditional sentences describe the procedure . that
is to be accomplished. The sentences are written successively, according to the
rules of the reference format, to establish the sequence in which the object
program is to execute the procedure.

Execution begins with the first statement after END DECLARATIVES if a
declarative section is present. Statements are then executed in the order in
which they are presented for compilation, except where the rules indicate some
other order.

In executing procedures, control is transferred only to the beginning of a
paragraph or section. Control is passed to a sentence within a paragraph only
from the sentence written immediately preceding it. If a procedure is named,
control can be passed to it from the sentence immediately preceding it, or can
be transferred to it from any sentence which contains a GO TO oxr PERFORM
followed by the name of the procedure to which control is to be transferred.

CONDITIONS

A condition enables the object program to select between alternate paths of
control, depending upon the truth value of a test. A condition is one " of the
following: - .

) Relation condition

) Sign condition

° Class condition

° ACondition-namé condition

° Switch-status condition

° NOT condition

] condition - »condition & pcondition | ...
OR : | | OR £ : il

Any condition may be enclosed in parentheses., The truth value of a
parenthesized condition is determined from the evaluation of the truth values of
its constituents. A parenthesized condition is a condition in the sense of the
last two items of the preceding list. :

Simple Conditions

" There are five types of simple condition tests. These tests and the
acceptable formats for statlng them are described below. (The word 1IF is not
part of the condltlon, but is shown in.the formats to improve readablllty)

7-7 v o DD25

RELATION CONDITION

A relation condition involves a comparison of two operands, each of which
may be the data item referenced by an identifier, a 1literal, or the value
resulting from an arithmetic-expression., The comparison of two literals is not
" permitted. Comparison of numeric operands is permitted regardless of their
individual usages. All other comparisons require that the USAGE of the operands
being compared is the same. If either of the operands is a group item, the
nonnumeric comparison rules apply. The format for a relation condition is:

-
IS [NOT]
IS [NOT]
‘ 1s [NOTJ
identifier-1 - identifier-2
IF |literal-l {IS [NOT] GREATER THAN literal-2
arithmetic- Is [NOT] LESS THAN arithmetic-
expression=-1 Is [NOT] EQUAL TO ' expression-2

AV

v

In the preceding format, the first operand (identifier-1l, 1literal-l,
arithmetic-expression-1) is called the subject. - The second = operand
(identifier=-2, literal-2, arithmetic-expression-2) is. called the object. The
subject and the object cannot both be literals. :

a. Comparison of Numeric Operands

For numeric operands, a comparison results in the determination that
the algebraic value of one of the operands is less than, equal to, or
greater than the other. The operand length, in terms of the number of
digits, is not significant. Zero is considered to represent a unique
value regardless of the 1length, sign, or implied decimal point
location.

Comparison of these operands is permitted regardless of the manner in
which their usage is described. Unsigned numeric operands are
considered to be positive for comparison purposes.

b, Comparison of Nonnumeric Operands

For two nonnumeric operands, or one numeric (excluding the operational
sign) and one nonnumeric operand, a comparison results in the
determination that one of the operands is less than, equal to, _or
ter than the other w1th respect to an ordered character set.'

. ied as numerie, it. must be' an - int

‘ only‘“when their wusage is the same, explicitly or
: ’ henuﬁUSAGE of »the operandsm LLDX -3 h

‘are presented

7-8 DD25

teral. Numeric and nonnumeric operands ‘may

If the operands are of equal size, characters in corresponding
character positions are compared starting from the high-order end and
continuing until either a pair of unequal characters is encountered or
the low-order end of the item is reached, whichever comes first. The
items are determined to be equal when the low-order end is reached.

The first encountered pair of unequal characters is compared for
relative 1location in the «collating sequence. The operand 'which
contains that character which is positioned higher in the collating
sequence is determined to be the greater operand.

If the operands are of unequal size, comparison proceeds as though the
shorter operand were extended on the right by sufficient spaces to
make the operands of equal size. If this process exhausts the
s of the operand of lesser size, then the operand of lesser
$8 than the operand of larger size unless the remainder of

£ larger size: consxsts solely of spaces, in which case
ﬁequal. ' : .

c. Comparisons ‘Involving Index-Names and/or Index Data Items
Full relation tests may be made between:

(1) Two index-names. The result is the same as if the corresponding
© occurrence numbers are compared.

(2) 2An index-name and a data item (other than an index data item) or
a literal. The occurrence number that corresponds to the value of
the index-name is compared to the data item or literal.

(3) An index data item and an index-name or another index data item,
The actual values are compared without conversion.

The result of the comparison of an index data item with any data item
or literal not specified in 1, 2, or 3 above is undefined.

SIGN CONDITION

The sign condition determines whether or not the algebraic value of an
elementary numeric data item or an arithmetic-expression is less than, equal to,
or greater than zero. The general format for a sign condition is:

identifier : POSITIVE
iF : 1s [NOT] |NEGATIVE
arithmetic-expression ZERO

An operand is POSITIVE only if its value is greater than zero, NEGATIVE if
its value is less than zero, and ZERO if its value is equal to zero. An operand
whose value is zero is NOT POSITIVE and an operand whose value is zero 1is NOT
NEGATIVE; the value zero is considered neither positive nor negative.

7-9 ' ‘ . DD25

CLASS . CONDITION

The class of any item can be tested as follows:

. NUMERIC
IF ' identifier IS [NOT] -
ALPHABETIC

The usage of identifier must. be explicitly or implicitly DISPLAY. The
ALPHABETIC test cannot be used with an item whose data description describes the
" item as numeric. The item being tested is determined to be alphabetic only if
‘the contents consist of any comblnatlon of the alphabetic characters ‘A' through

'Z' and the space. '

The NUMERIC test cannot be wused with an item whose data description
describes the item as alphabetic or as a group item composed of elementary items
whose data description indicates the presence of operational sign(s). If the
data description of the item being tested does not indicate the presence of an
operational sign, the item being tested is determined to be numeric only if the
contents are numeric and an operational sign is not present.

CONDITION-NAME CONDITION

In a condition-name condition, a conditional variable 1is tested to
determine whether or not its value is equal to one of the values associated with
a condition-name in the Data Division. The general format for the condition-name
condition is: '

‘Eﬁﬂj condition—namé

If the condition-name is associated with a range or ranges of values (that
is, the VALUES ARE clause contains at least one 'literal THRU literal' phrase),
then the conditional variable is tested to determine whether or not its value
falls in this range, including the end values.

The rules for comparing a conditional variable with a condition-name value
are the same as those specified for relation conditions.

. The result of the test is true if one of the values corresponding to the
condition-name equals the value of its associated conditional variable.

SWITCH-STATUS CONDITION

In the SPECIAL-NAMES paragraph of the Environment Division, a
condition-name may be agsociated with the ON or OFF status of a software switch.
. The switch is ON when its value is one, OFF when its value is zero. The status
of such a switch may then be tested with a statement using the following format:

[ggg] condition~name

7-10 ' DD25

The results of this test are determined using the following table:

n Test
SPECIAL-NAMES Switch ‘
Phrase Status IF condition-name IF NOT condition-name

.+ .ON STATUS OFF ‘False True
IS condition- ~ ON True ' False

name
...OFF STATUS OFF True False
IS condition- ON False ‘ True

name :

|

Compound Conditions

Simple conditions can be combined with logical operatofs according to
specified rules to form compound conditions. The logical operators AND, OR, - and
NOT must be preceded by a space and followed by a space. The meaning of the
logical operators follows: ;

OR Logical Inclusive Or

AND Logical Conjunction

NOT Logical Negation
The general format of a compound condition is:

AND o AND
IF condition-1 condition-2 condition~n | ...
OR OR .

The word IF is shown to improve readability. Each condition can be either a
relation condition, a sign condition, a «class condition, ~a condition-name
condition, or a switch-status condition.

7-11 . | ' DD25

Letting A and B represent simple conditions, the following table defines
the interpretation of AND, OR, and NOT in compound conditions: .

Condition Condition and Value
A B NOT A AANDB | AORB
True - True False True True
False True True False ‘True
True False False False True
False False True False False

Thus, if A is true and B is false, the expression A AND B is false, while
the expression A OR B is true. ’

The following table indicates the methods in which conditions and logical
operators may be combined:

FIRST SYMBOL ' SECOND SYMBOL
Condition OR AND NOT ()
Condition - P P - - P
OR | - - P p | -
AND 4 - - P P -
NOT pl - - - P -
(P - - P P -
) - P P - - P
'P' indicates that the pair is permissible and '~' indicates that the pair

is not permissible. Thus, the pair 'OR NOT' is permissible, while the pair 'NOT
OR' is not permissible. ‘

"The rules fér,determining the logical value (true or false) of a compound
condition are as follows:

1. If AND 'is the only logical connective used, then the compound
: condition is true if and only if each of the simple conditions is
true.

2, If OR is the only logical connective used, then the compound condition
is true if and only if one or more of the simple conditions is true.

1 .
Permissible only if the condition itself does not contain a NOT.

7-12 | - _ DD25

-3, If both AND and OR appear, then there are two cases to .consider,
depending on whether or not parentheses are used.

a. Parentheses can be used to indicate grouping. They must always be
paired, as in algebra, and the expressions within the parentheses
will be evaluated first. The precedence of nested parenthetical
expressions is the same as in. algebra. That 1is, the innermost
parenthetical expressions are evaluated first,

b, If parentheses are not used, then the conditions are grouped
first according to AND, proceeding from left to right, and then
by OR, proceeding from 1left to right. That is, the 1logical
operator AND has precedence over the logical operator OR in the
same sense that the arithmetic operator * (multiplication) has
precedence over the arithmetic operator + (addition).

4, When NOT precedes a parenthesized condition, it reverses the 1logical
value of the parenthesized condition; that is, NOT (condition) is true
when (condition) is false. For example, NOT (A AND B) is true if
either A or B is false. Thus, NOT (A AND B) is equivalent to NOT A OR
NOT B, and is true when A and B are not both true (i.e., when either
is false or both are false). Similarly, NOT (A OR B) is equivalent to
NOT A AND NOT B, and is true only when A and B are both false.

Abbreviated Combined Relation Conditions

Only conditions involving full relation tests have three terms (a subject,
- a relation, and an object). To simplify writing lengthy expressions, COBOL

allows the omission of some of these terms in certain forms of compound
conditions,

When relation conditions are written in a consecutive sequence, any
relation condition except the first may be abbreviated by: :

1. Omitting the subject of the relation condition, or

2. Omitting the subject and relational operator of the relation

condition.

Within a sequence of relation conditions, both forms of abbreviations may
be used. The effect of using them is as if the omitted subject were replaced by
the last preceding stated subject or the omitted relational operator were
replaced by the last preceding stated relational operator. :

Ambiguity may result from uéing *NOT' in conjunction with abbreviations. In
this event, NOT is interpreted as a logical operator rather than as part of a
relational operation. Thus: ‘

a>b AND NOT >c OR d
is equivalent tos

a >b AND NOT a>c OR a>d or

a>b AND (NOT a>c). OR a>d

7-13 DD25

Use of the NOT Operator

» Simple IF sentences may be preferred when making a conditional test to
. avoid the possibility of misusing the NOT logical operator and to interpret the
. 'source language more clearly. When the NOT logical operator is used in IF
sentences, 'it must precede a left. parenthesis or a simple condition which does
not contain a 'NOT', ‘

Evaluation Rules for Conditions

The evaluation rules for conditions are similar to those given for
arithmetic-expressions except that the following hierarchy applies:

° Arithmetic-expression

° All relational operators
® NOT

° AND

® OR

ARITHMETIC-EXPRESSIONS

An arithmetic-expression can be an identifier described as a numeric
elementary item; a numeric literal; such identifiers and literals separated by
arithmetic operators; two arithmetic-expressions separated by an arithmetic

~operator; or an arithmetic-expression enclosed by parentheses, Any
arithmetic-expression may be preceded by a unary operator. The permissible
combinations of variables, numeric 1literals, arithmetic operators, and

parentheses are presented in the table contained in the Formation and Evaluation
Rules paragraph below.

Identifiers and literals appearing in an arithmetic-expression must
represent either numeric elementary items or numeric literals on which
arithmetic may be performed.

Arithmetic Operators

Five binary arithmetic operators and two unary arithmetic operators may be
used in arithmetic-expressions. They are represented by specific characters
which must be preceded by a space and followed by a space.

Binary ’
Arithmetic Operator Meaning

Addition
Subtraction
Multiplication
Division

* Exponentiation

*NL % |+

7-14 DD25

Unary
Arithmetic Operator Meaning

The effect of multiplication by the
Tan . numeric literal +1 ’
- The effect of multiplication by the

numeric literal -1 ‘

Formation and Evaluation Rules for Arithmetic-Expressions

The formatlon and evaluation rules for arlthmetlc-expre551ons are presented

below.

l.

Parentheses may be used in arithmetic-expressions to specify the order

in which elements are to be evaluated. When parentheses are used, a

space is allowed between the left parenthesis and the leftmost element

and between the right parenthesis and the rightmost element, 1if

desired. Expressions within parentheses are evaluated first and,

within' nested parentheses, evaluation proceeds from the least

inclusive set to the most inclusive set. When parentheses are not

used, or parenthesized expressions are at the same level of
inclusiveness, the following hierarchical order of execution is

implied:

° Unaryf?lﬁs and Minus

) Exponentiation

[Multiplication and Division
° Addition and Subtraction

Parentheses are employed either to eliminate ambiguities in 1logic
where consecutive operations of the same hierarchical level appear, or
to modify the normal hierarchical sequence of execution in expressions
where some deviation from the normal precedence is required,

When the sequence of execution is not specified by parentheses, the
order of execution of consecutive operations of the same hierarchical
level is from left to right. Thus, expressions ordinarily considered
to be ambiguous, such as A/B*C and A/B/C, are permitted in COBOL, They
are interpreted as if they were written (A/B)*C and (aA/B)/C,
respectively.

c
An arithmetic-expression containing a double exponentiation (BB7)
cannot be written in the form (A**B**C); it must be written either
(A**B) **C or A**(B**C), whichever is intended.

The following usages of exponentiation are not allowed and may produce
unpredictable results:

e The value zero exponentiated by the value zero.
° The value zero exponentiated by a negative value.
o A negative value exponentiated by a nonintegral value.

7-15 _ - DD25

3. The methods in which operators, variables, and parentheses may be
combined in an arithmetic-expression are summarized in the following

table,
SECOND SYMBOL
FIRST .
SYMBOL VARIABLE | *,/, Unary ()
*k 4, - + or -
VARIABLE - - P - - P
#,/,**,+,-' | 2 - P P -
P - - P -
(P - P P -
) - P - - P
® The. letter 'P' indicates a permissible pair of symbols.
® The character '~' represents an invalid pair.
° 'VARIABLE' represents an idehtifier or literal;
4, An arithmetic-expression may begin only with the symbol ' (', f+°, '-',

or a variable, and may end only with a ')' or a variable. There must
be a one-to-one correspondence between left and right parentheses of
an arithmetic-expression so that each left parenthesis is to the left
of its corresponding right parenthesis.

5. Arithmetic-expressions allow the user to combine arithmetic operations
without the restrictions on composite of operands and/or receiving
data items. (See Arithmetic Statements.) :

COMMON OPTIONS IN STATEMENT FORMATS

In the statement descriptions of the Procedure Division, several options
appear frequently: the ROUNDED option, the SIZE ERROR option, and the
CORRESPONDING option.

In the discussion below, a resultant-identifier 1is that identifier
associated with a result of an arithmetic operation,

ROUNDED Option

If, after decimal point alignment, the number of places in the fraction of
the result of an arithmetic operation is greater than the number of places
provided for the fraction of the resultant~identifier, truncation is relative to
the size provided for the resultant-identifier. When rounding is requested, the
absolute value of the resultant-identifier is increased by one (1) whenever the
most significant digit of the excess is greater than or equal to five (5).

7-16 REER | DD25

The following shows thé effect of specifying the ROUNDED option.

Result of PICTURE of Values Stored
Arithmetic Resultant- in Resultant-
Operation Identifier Identifier
3.14 sS9V9 3.1
3.15 S9V9 3.2
-3.14 s9vV9 . . -3.1
-3.15 © 89V9 -3.2

When the low=-order integer positions in a resultant-identifier are repre-
sented by the character 'P' in the PICTURE for that resultant-identifier,
rounding or truncation occurs relative to the rightmost integer position -for
which storage is allocated.. ’ : ' .

SIZE ERROR Option

If, after decimal point alignment, the value of the result exceeds the
largest value that can be contained in the associated- resultant-identifier, a
size error condition exists. Division by zero always causes a size error
condition. The size error condition applies only to the final results of an
arithmetic operation and not to intermediate results; except in the MULTIPLY and
DIVIDE statements, in which case the size error condition applies to the
intermediate results as well, If the ROUNDED option is specified, rounding takes
place before checking for size error., When such a size error condition occurs,
the subsequent action depends on whether or not the SIZE ERROR option 1is
specified. '

1. If the SIZE ERROR option is not specified and a size error condition
occurs, the wvalue of those resultant~identifier(s) affected is
undefined. Values of resultant-identifier(s) for which no size error
condition occurs are unaffected by size errors that occur for other
resultant-identifier(s) during execution of this operation.

2. If the SIZE ERROR option is specified and a size error condition
occurs, then the prior values of resultant-identifier(s) affected by
the size errors are not altered. Values of resultant-identifier(s) for
which no size error condition occurs are unaffected by size errors
that occur for other resultant-identifier(s) during execution of this
operation. After completion of the execution of this operation, the
imperative-statement in the SIZE ERROR option is executed.

For ADD and SUBTRACT CORRESPONDING, if any of the individual
operations produce a size error condition, the imperative-statement in
the SIZE ERROR phrase .is not executed until all of the individual
additions. or subtractions are completed. - Co

CORRESPONDING Option

For the purpose of this discussion, dl and d2 represent identifiers that
refer to group items. A pair of data items, one from dl1 and one from d2,
correspond if the following conditions exist: :

1. A data item in dl and a data item in d2 have the same name and the
same qualification up to, but not including, dl and.d2.

7-17 _ ' DD25

At least one of the data items is an elementary data item in the case
of a MOVE statement with the CORRESPONDING option; or both of the data
items are elementary numeric data items in the case of the ADD or
SUBTRACT statements with the CORRESPONDING option.: ‘

Neither dl nor d2 may be data items with level-number 66, 77, or 88
nor be described with the USAGE 1S INDEX clause.

A data item that is subordinate to dl or 42 and contains a REDEFINES,
RENAMES, OCCURS, or USAGE I8 INDEX clause is ignored, as well as those
data items subordinate to the data item that contains the REDEFINES,
RENAMES, OCCURS, or. USAGE IS INDEX clause., However, dl and d2 may have
REDEFINES or OCCURS clauses or be subordinate to data items with

REDEFINES or OCCURS clauses..

Arithmetic Statements

The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY, and
SUBTRACT statements. They have several common rules, '

All literals used in arithmetic statements must be numeric.

The data description of each identifier used as 'an operand must be
that of an elementary numeric item. '

The data descriptions of the operands need not be the same; any
necessary conversion, format transformation, and/or decimal point
alignment is supplied throughout the calculation.

The maximum size of each operand is 18 decimal digits. The composite
of operands (a °~ hypothetical data item resulting from the
superimposition of specified operands in a given statement, aligned on

-their decimal points) must not contain more than 18 digits. The

compiler ensures that enough places are carried so that significant
digits are not lost during the calculation of intermediate results.

Editing symbols must not be specified in the descriptions of any
operand, except in a resultant item that only receives the calculated
result but is not used in the computation itself.

The resultant item of a COMPUTE statement may be an edited item. The
resultant of an ADD, SUBTRACT, MULTIPLY, or DIVIDE statement may be an
edited item only when the GIVING option is specified. Operands in a
computation must not be edited items in any other c¢ircumstances.

When the number of decimal places in a result is greater than the
number of decimal places associated with the resultant-identifier,
truncation occurs. However, when the ROUNDED option is specified for a
resultant-identifier, the least significant digit @ of the

‘resultant-identifier is increased by 1 when the most significant digit

of the truncated excess is equal to or greater than 5.

A size error occurs when the magnitude of the calculated result
exceeds the largest magnitude that can be contained in the
resultant-identifier. When a size error occurs and the ON SIZE ERROR
option is specified, the value of the resultant-identifier 1is not
altered and the imperative-statement is executed. »

7-18 . : pD25

Overlapping Operands.

When a sending and a receiving item in an arithmetic statement or in an
EXAMINE, MOVE, or SET. statement share a part of their storage areas, the result
of the execution of such a statement is undeflned :

Multiple Results in Arithmetic Statements

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements may have
multiple results. Such statements behave as though they had been written as:

1. Statements which perform all arithmetic necessary to arrive at the
result to be stored in the receiving items, and store that result in a
temporary storage location.

2, A sequence of statements transferring or combining the value of this
t wporary . location with a single result. These .statements are
c¢.i.sidered to be written in the same left-to-right sequence in which
the multiple results are listed.

The result of the statement
ADD a, b, c TO ¢, d (¢c), e
is equivalent to:
ADD a, b, ¢ GIVING temp
ADD temp TO c¢
ADD temp TO 4 (c)
ADD temp TO e

where 'temp' is an intermediate result item provided by the compiler.

CATEGORIES OF VERBS

Verbs available in Series 60/6000 COBOL are 1listed below within their
functional categories.

Category ‘ » o " Verb

ADD

COMPUTE

DIVIDE

EXAMINE (TALLYING)
MULTIPLY

SUBTRACT

“Arithmetic

: } COPY
Compiler-Directing S ENTER
. USE

7-19 . o .DD25 .

. Categorx

Conditional

Data Movement

Ending

Input-Output

Inter~-Program
Communicating

- Procedure Branching.

Report Writing
Ordering
"Table Handling

NOTE:

SPECIFIC STATEMENT FORMATS

The specific

statement formats,

- Verb

{NO. DATA)
ROR)

DIVIDE (SIZE ERRCR)

GO TO (DEPENDING)

1iF

3 MULTIPLY (SIZE ERROR)
READ (END or INVALID KEY)
RETURN (END)
SEARCH
SUBTRACT (SIZE ERROR)

_ WRITE (INVALID KEY)

EXAMINE (REPLACING)
MOVE '

{ stor

(ACCEPT

- :
DISPLAY

{ OPEN

READ

SEEK

STOP (literal)
| WRITE

{ carn

(ALTER
CALL

EXIT
1 GO TO
PERFORM

GENERATE .
INITIATE
TERMINATE

MERGE
RELEASE
RETURN
SORT

SEARCH
SET

with associated

IF is a verb only in the COBOL sense; it is recognized that
not an English verb. :

restrictions

1imitatiqns; are contained on. the following pages in alphabetic sequence.

is

and

DD25

ACCEPT ' ' : ACCEPT

The ACCEPT statement is used to cause low-volume data to be made available
to the specified identifier from sources ‘described in the SPECIAL-NAMES
paragraph. ' ‘

Format l:l
ACCEPT identifier [FROM mnemonic-nmmﬂv

Format 2:

Syntax Rules:

1. The mnemonic-name must be associated with one of the options defined
in the SPECIAL-NAMES paragraph. ’

2. The identifier must be a 1level 01 or a level 77 item in
working-storage.
General Rules:
Format 1:
1. An ACCEPT statement may be used to obtain input data from any of the
following sources: :
a. GIN (the system input feature of the operating system).

b. REMOTE (a terminal not operating under the control of the
Transaction Processing System). .

c. GLAPS ‘(an operating systemk feature that provides accumulated
processor time for the current run unit).

d. GTIME (an operating system feature that prov1des the system date
and the system clock time. If the H! .~ is specified, the
time is given in hours, mlnutes, an

e. CONSOLE and TYPEWRITER (the system operator interface).

£, SWITCH (a portion of the program switch word, a special software
feature provided by the operating system).

When the FROM mnemonic-name phrase is not used, the -input source is
considered to be system input (GIN). The FROM phrase must be specified
for any other input source, and the mnemonic-name must be a
user-supplied word associated with an input source by a phrase in the
SPECIAL-NAMES paragraph .

'7-21 S DD25

'ACCEPT

2/77

ACCEPT

ot sbtain data
du@e appearlng in

When utilizing the system input file (GIN) via ACCEPT statements, the

" user may either omit the FROM phrase or associate a mnemonic-name with

GIN in the SPECIAL-NAMES paragraph. The data item referenced in the
ACCEPT statement must be described with USAGE DISPLAY, explicitly or
implicitly. Each record of the system input file is assumed to be a
Hollerith card image in which the data occupies the leftmost character
positions. No automatic format check or conversion is provided, so it
is recommended that the user employ IF statements to assure that the
input card contents satisfy the receiving item's description.
Similarly, no automatic end-of-file provision is available, so the
user must provide an end-of-file test if the volume of system input
data can vary. However, each ACCEPT statement -executed after the
system input 1is exhausted obtains all spaces, as if a blank card had
been read.

v planned to avoid poss;b;e{
ubroutine that controls input
voii o ,

module that w: 1. neVer;
r be executed. » :

Each ACCEPT statement whose mnemonic-name is associated with REMOTE
will cause a single interaction with the remote terminal. The
terminal operator is notified of the need for a response by a carriage
return followed by the display of the character '?' and the ringing of
the terminal's bell, if the terminal is so equipped. The input
characters, if any, are converted to Hollerith, USAGE DISPLAY
characters and are moved into the data item referenced in = the ACCEPT
statement. The referenced data item should be described, explicitly
or implicitly, with USAGE DISPLAY. No automatic format check or radix
conversion is performed. '

If a remote terminal is represented by a mnemonic-name in the ACCEPT

and DISPLAY statements, connections must be made to the appropriate
device at object program execution. A connection may be obtained:

a. By using a 'talk' mode in the time sharing environment. Refer to
the TSS Terminal/Batch Interface manual and the TSS System
Programmers' Reference Manual. ' ‘

b. By obtaining a connection through an external communications
system. Refer to the Network Processing Supervisor (NPS) manual
or to the Remote Terminal Supervisor (GRTS) manual.

C. By requesting a 'line switch from the Transaction Piocessing
Executive (TPE). o ‘

7-22 . : ' DD25A

ACCEPT

2/717

ACCEPT

Each ACCEPT statement whose mnemonic-name 1is associated with GLAPS
will cause the identifier to receive the processor time accumulated by
the current run unit. Time resolution 1is given in units of 1/64
millisecond. The receiving identifier data item must be a
working-storage data item whose description is egquivalent to the
following: :

77 data-name PICTURE 9(10) USAGE COMPUTATIONAL~3,"

Each ACCEPT statement whose mnemonic-name is associated with GTIME,
without the HMS option, will cause the identifier to receive the
current system date and system clock time. Time resolution is given
in units of 1/64 millisecond. The receiving identifier must be a
working-storage data item whose description is equivalent to the
following: ‘ '

01 data-name.
02 MONTH PICTURE 99,
02 DAY-OF-MONTH PICTURE 99.
02 YEAR PICTURE 99, : '
02 TYME PICTURE 9(10) USAGE .COMPUTATIONAL-3.

S lon: is specified in the GTIME phrase to obtain time
resolution terms of hours, minutes, and seconds, the receiving
identifier must be described with USAGE -DISPLAY (explicitly or
implicitly). For example, the receiving identifier could be described
as: :

01 data-name.
02 MONTH PICTURE 99.
02" DAY~OF-MONTH PICTURE 99,
02 YEAR .PICTURE 99.
02 TYME PICTURE 9(6).

NOTE: The data-names used in these examples are for illustration
only.

Each ACCEPT statement whose mnemonic-name is associated with CONSOLE
will cause a single interaction with the operator's console. The
system operator is notified that a response is expected by the display
of a message. The message will have one of the following forms:

a. If a DISPLAY statement associated with CONSOLE has been executed,
the message will be the text of the last line associated with the
latest prior DISPLAY statement associated with CONSOLE. The
message will be followed by the characters '22?!',

b. If no pfior DISPLAY statement associated with CONSOLE has been
executed, the message will be 'TYPEIN EXPECTED...'. '

7-23 o ' DD25A

ACCE

PT

lo0.

11.

12,

ACCEPT

The input characters, if any, are treated as Hollerith, USAGE DISPLAY
characters and are moved into the data item referenced by the ACCEPT
statement. The referenced data item should be described, explicitly
or implicitly, with USAGE DISPLAY. No automatic format check or radix
conversion is performed.

Each ACCEPT statement whose mnemonic-name is associated with
TYPEWRITER will cause a single interaction with the operator's
console., The system operator is notified that a response is expected
by a carriage return followed by the message 'TYPEIN EXPECTED...'.
The input characters, if any, are treated as Hollerith, USAGE DISPLAY
characters and are moved into the data item referenced in the ACCEPT
statement. The referenced data item should be described, explicitly
or implicitly, with USAGE DISPLAY. No automatic format check or radix
conversion is performed. System console input-output is not
recommended unless very unusual circumstances exist.

If a mnemonic-name associated with SWITCH is specified, the ACCEPT
statement causes the value of the identifier to be set to 1 if the
switch is ON, or set to 0 if the switch is OFF. The identifier must
be a data item in the Working-Storage Section whose descrlptlon is
equivalent to the following:

77 data-name PICTURE 9 [¢OmMPL

Refer to Section VI of the COBOL User's Guide for additional
information. '

t 2, mnemonic-name must be associated with COMMUNICATION-
a “the S?ECIAL~NAMESvparagraph The ACCEPT MESSAGE statement.

2/77

7-24 . o DD25A

ADD ADD

- The ADD statement 1s used to sum two or more numeric operands and store the
result,

Format 1l:
literal-1 , literal-2
ADD ... T0 identifier-m [ROUNDED]
identifier-1 , identifier-2
[, identifier-n [ROUNDED]] cen
[ON SIZE ERROR imperative-statemenp]'
Format 2:
|literal-l , literal-2 , literal-3
ADD ‘ .ea
lidentifier-l , identifier-2 , identifier-3

GIVING identifier-m [ROUNDED]
; 1er~n CRDUNDEED]

[?N SIZE ERROR 1mperat1ve statement]

Format 3:

[corr .
ADD { identifier-1 TO identifier-2 [ROUNDED]

ICORRESPONDING

Enq SIZE ERROR imperativeéstatement]

Syntax Rules:

1. When Format 1 or Format 2 is used, each identifier must refer to an
elementary numeric item, except that in Format 2 the identifier
following the word GIVING must refer either to an elementary numeric
item or to an elementary numeric edited item,

2, Each literal must be a numeric literal.

7-25 ‘ : : DDZ5

4.

ADD

No literal or identifier may exceed 18 decimal digits in size. The
composite of operands (the hypothetical data item resulting from the
superimposition of all operands of a given statement, excluding the
data items that follow the word GIVING, aligned on their decimal

points) must not contain more than 18 digits.

CORR is an abbreviation for CORRESPONDING.

General Rules:

l.

When Format 1 is used, the values of the operands preceding the word
TO are added together, That sum is then added to the current value of
each identifier-m, identifier-n, ..., and the result is stored in each
resultant-identifier: identifier-m, identifier-n, ..., respectively.

When Format 2 is used, the values of the operands preceding the word

‘GIVING are added together. That sum is then stored as the new value of

i identifier-m, ‘identifier-n, = ..., which are the
resultant-identifiers., o R ! :

When Format 3 is used, the data items in identifier-l are added to and
stored in corresponding data items in identifier-2,

Refer to the Common Options in Statement Formats paragraph in this

section for an explanation of the wuses of ROUNDED, ' SIZE ERROR,
CORRESPONDING, and multiple results in arithmetic statements.

7-26 DD25

ALTER

ALTER

The ALTER statement is used to change the destination of a GO TO statement
from one procedure-name to another.

General Format:

ALTER pfocedure-name-l TO [PROCEED Ig] procedure~name-2

[, procedure-name-3 TO [PROCEED zg]kvprocedure—name—4] cee

Syntax Rules:

1.

Each procedure-name-1l, procedure-name-3, etc., is the name of a
paragraph containing a single sentence consisting of a GO TO statement
without the DEPENDING option.

Each procedure-name-2, procedure-name-4, etc., 1is the name of a
paragraph or section in the Procedure Division,

General Rules:

1.

When the ALTER statement is executed, the GO TO statement in the
paragraph named procedure-name-l, procedure-name-3, etc., is modified
so that subsequent executions of the GO TO statement cause a- transfer
of control to the paragraphs or sections named procedure-name~2,
procedure-name-4, etc., respectively.

A GO TO statement in a section whose priority-number is equal to or
greater than 50 must not be referred to by an ALTER statement in a
section having a different priority-number. All other uses of the
ALTER statement are valid and are performed, even if the GO TO
statement to which the ALTER statement refers is a fixed overlayable
segment, Refer to Segmentation in Section II. '

7-27 . D25

t ‘nsfer»control

General Format:

Syntax Rules:

2/77

%must be a»ndnnuméric literal.

ame desxgnates a ca ’dfprégram"anafﬁéy;'assume one ©of the
g meanlngs, 7',, i S : ‘ ,

the praqram be1ng aalled is an independently compiled - COBOL
ram, | routine~-name mnst be its PROGRAM=ID,

t efx‘utine~name bexng called is an expllcxt entry—name in an

e‘CALL macro of GMAP which results in
me for a, b, or ¢ above. Routine-name
: at le st _one of wh;ch is

Rules:

7-28 - -DD25A

2/77

CALL

t program produced by the COBOL compller can be galled as a
~ from other object programs., . COBOL object programs may also
iple entry poxnts Wthh can be galled and executed. from other
' pe hould not contain . a STOP
nt procedures ‘should be
o"an*_app ,rlate e
a program has ali
XIT entry~name must be
gram, - .

program may CALL.other COBOL:programs by either éxpllcit or
; must be exerclsed to avomd a‘

= speclfy an argument list ‘for the
he USING arguments are not valid when a CALL
They are
The
descrlptlons ef the arguments must ~conform to the called
requlrements.“ At most, ten arguments may be specified.

Jre being called. -
srences a COBOL program by 1ts PROGRAM«ID program—name.

G phrase 59901f1es input and output arguments to the called
, , USING identifiers must be defined worklng~storage data items
thh level*numbers of 01 or 77, or items in files for which a
PROCESS AREA is specified. A USING argument may be a file-name, in
‘which case the object program argument will be a File Control Block
:901nter. File~names are not valid: arguments when calling a COBOL
“program; they are restricted to called programs developed in another
Hlanguage..’ : :

. The number of USING arguments specified in a CALL to an ENTRY POINT
‘must correspond exactly with the number of USING and GIVING arguments
‘specified in its ENTRY POINT phrase and the data descriptions for each
’r of'“orrespondlng arguments must be Ldentxcal

statement may appear anywhere within a segmented program.
ALL statement appesrs in a section with a priority-number
n or equal to 50, that segment is in its last used state

s in”th"call'dgprogram xeturns contxol

7-29 - _ ~ DD25A

CLOSE B ' . - CLOSE

. The CLOSE statement is used to terminate the processing of reels, units,
~‘and files with optional rewind and/or lock where applicable.

General Format:

REEL NO REWIND
CLOSE file-name-1 WITH {
& unIT LOCK]
REEL NO REWIND]|]
, file-name-2 WITH { . “en
‘ AUNIT LOCK :

Syntax Rules:

1. Each file-name is the name of a file upon which the CLOSE statement is
- to operate; it must not be the name of a sort file of merge file.

2, The REEL and WITH NO REWIND options apply only to files stored on tape
devices and other devices to which these terms are applicable. Theé
UNIT option 1is applicable only to mass storage files in thea
sequential-access mode.

General Rules:.

~ In the discussion below, the term ‘'unit' applies to all input=-output
devices; the term 'reel' applies to tape devices., Treatment of mass storage
devices in the sequential-access mode is logically equivalent to the treatment
of a file on tape or analogous media.

1. For the purpose of showing the effect of various CLOSE options as
applied to various storage media, all input, output, and input-output
files are divided into the following categories: ‘

a. Non-reel, A file whose input or output medium is such that the
concepts of rewinding and reels have no meaning.

b. Sequential single-reel/unit. A sequential file that is entirely
contained on one unit. -

c. Sequential multi-reel. A sequential file that is contained on
more than one reel,

d. Random single-unit, A file in the random-access mode that is
entirely contained on a single mass storage unit.

7-30 ; ~ DD25

CLOSE ' , CLOSE

2, The results of executing each CLOSE option for each type of file are
summarized in the following table; symbol definitions are given after
the summary. If the definition depends on whether the file is an input
or an output file, alternate definitions are given; otherwise, the one
definition applies to input, output, and input-output files,

File Type
CLOSE .
Option Sequential Sequential Random
Non- Single- Multi- Single-|
Reel Reel/Unit ' Reel Unit
CLOSE C c,G c,G,A C
CLOSE WITH Cc,E c,G,E c,G,E,A C,E
LOCK
CLOSE WITH X Cc,B c,B,A X
NO REWIND
' CLOSE REEL X X F,G : X
CLOSE REEL X X F,D X
WITH LOCK
CLOSE REEL X X F,B X
WITH NO -
REWIND

NOTE: The letters in the table are explained below.
A = Previous Reels Unaffected

Input files and input-output files: All reels in the file prior to
the current reel are processed according to the standard reel swap
procedure, except those reels controlled by a prior CLOSE REEL
statement. If the current reel is not the last in the file, the
reels in the file following the current one are not processed in
any way.

Output files: All reels in the file prior to the current reel are
processed according to the standard reel swap procedure, except
those reels controlled by a prior CLOSE REEL statement.

7-31 _ _ DD25

CLOSE -

CLOSE

No Rewind of Current Reel
The current reel is left in its current position.
Standard Close File

Input files and input-output files (sequential-access mode): If
the file is positioned at its end and a Iabel record iIs specified
for the file, the label is processed according to the standard
label convention. The behavior of the CLOSE statement when a label
record is specified but not present, or when a label record is not
specified but is present, is undefined. If specified by the USE
statement, a user's label procedure is executed. The order of
execution of these two processes 1is specified by the USE
statement. If the file is positioned at its end and label records
are not specified for the file, label processing does not take
place but other closing operations are executed. If the file is
positioned other than at its end, the closing operations are
executed, but there is no ending label processing. An input file,
or an input-output file, is considered to be at the end of the
file if the imperative-statement in the AT END phrase of the READ
statement has been executed and no CLOSE statement has been
executed. :

Input files and input-output files (random-access mode) and output
files (random- or sequential-access mode): 1f a label record 1is
specified for the file, the label is processed according to the
standard label convention. The behavior of the CLOSE statement
when a label record is specified but not present, or when a label
record is not specified but is present, is undefined. If specified
by the USE statement, a user's label procedure -is executed. The
order of execution of these two processes is specified by the USE
statement. In addition, other closing operations are executed. 1If
label records are not specified for the file, label processing

does not take place but other closing operations are executed.

Standard Reel Lock

An appropriate technique is supplied to ensure that the current
reel cannot be processed again as a part of this file during this
execution of this object program. (The current reel is rewound.)
Standard File Lock ‘

An appropriate technique is supplied to ensure that this file
cannot be opened again during this execution of this object
program, ~

Standard Close Reel

Input files: The following operations are executed:

® A reel swap.

7-32 - DD25

CLOSE

2/77

CLOSE

o ‘The standard beginning reel label procedure and the user's
beginning reel 1label procedure (if specified by the USE
statement). Theé order of execution of these two procedures
is specified by the USE statement.

. executed READ statement makes available th

_the next reel. e

Output files and input-output files: The following operations are
executed:

) (For output files only.) The standard ending reel label
procedure and the wuser's ending reel label procedure (if
specified by the USE statement). The order of execution of
these two procedures is specified by the USE statement.

[A reel swap.

° The standard beginning reel label procedure and the user's
beginning reel 1label procedure (if specified by the USE
statement). The order of execution of these two procedures
is specified by the USE statement.

G = Rewind

The current reel or analogous device is positioned at the physical
beginning of its content.

X = Illegal

X indicates an illegal combination of a CLOSE optioh and a file
type. If any such combination is used, the results at -object
program execution are unpredictable. i

All files that have been opened must be closed prior to the execution
of a STOP RUN statement.

If the file has been specified with the OPTIONAL phrase in the
FILE-CONTROL paragraph and is not present, the standard end-of-file
processing is not performed.

If a CLOSE statement without the REEL option has been executed for a
file, a READ, WRITE, or SEEK statement for that file must not be
executed unless an intervening OPEN statement for that file is
executed.

7-33 : DD25A

COMPUTE

COMPUTE

- The COMPUTE statement is used to assign the value of a numeric data item, a
literal, or an arithmetic-expression to a data item. - :

General Format:

COMPUTE identifier-1 [ROUNDED]

identifier-2
literal-1
arithmetic-expression

_ [ON SIZE ERROR imperative-statement]

Syntax Rules:

Literal~l must be a numeric literal.

Each identifier must refer to an elementary numeric item. However,
identifier-l 1is not wused as an operand and therefore may, 1if
necessary, describe numeric data items containing editing symbols.

The maximum size of each operand is 18 decimal digits.
The arithmetic-expression, if used, permits any meaningful combination
of identifiers, numeric literals, and arithmetic operators,

parenthesized as required.

0M and EQUALS are equivalent to each other and to the
“be used interchangeably; the choice is given for

General Rules:

1.

Identifier-1 is assigned the value computed from the
arithmetic-expression, or the value of identifier-2, or of 1literal-l.
The identifier-2 and literal-l options provide alternative methods for
setting the value of identifier=-1 equal to the value of identifier-2
or literal-l.

The COMPUTE statement allows the user to combine arithmetic operations
without the restrictions on composite of operands and/or receiving
data items imposed by the arithmetic statements ADD, SUBTRACT,
MULTIPLY, or DIVIDE, :

Refer to the Common Options in Statement Formats paragraph for an
explanation of the uses of the ROUNDED and SIZE ERROR options. For
COMPUTE usage, refer to the COBOL User's Guide.

7-34 . DD25

COPY COPY

The COPY statement is wused 1in the Procedure Division to incorporate
paragraph procedures from a library into the source program.

Format 1l:

paragraph-name.

section-name SECTION [briority—number] J

COPY . library-name

word=-2
REPLACING word-1 BY literal-1
identifier-1
[. word-4
, word-3 BY literal-2 con .
i T |identifier=-2

Format 2:

NCTE: Paragraph-name and secticn-name are not patt of the COPY statement;
they are shown only for clarity.

Syntax Rules:

1. When the COPY statement is specified, the library-name . is required.
The library-name must be identical to the name associated with the
desired text on the library.

2, In Format 1, a word is any COBOL word and may be one of the following:

° Condition-name
° Data-name
° File-name
) Mnemonié-néme
® Procedure4name

3. When the COPY statement is used, it must be the first statement in the
paragraph or section.

7-35 - | DD25

COPY . ' : R R R) , COPY

General Rules:

1. Format 1 of the COPY s;at men

represents the American Nétional
Standard COPY function. resents the)

resent 1S COPY function.

2 For a detailed description of the COPY statement, see Section VIII,
the COBOL Library, and Section XIV_of the COBOL User's Guide.

7-36 - ' Lo B - DD25

DISPLAY ' 4 ' ' ' DISPLAY

The DISPLAY statement is used to transmit low-volume data to a special
output device. ‘ .

Format 1l:

literal~1l literal-2 '
DISPLAY , 3 cee
- lidentifier-1 _identifier-2

[gggg mnemonic—name]

Format 2:

END-OF-SEGMENT
' EST J
literal-1l } , literal=-2 } END-OF-MESSAGE

EMI
END—OF-TRANSACTIO#}

, identifier=2 EN
ETI

identifier-1

UPON. mnemonic-name

Syntax Rules:

1. The mnemonic-name is associated with an I-0 device in the
SPECIAL-NAMES paragraph of the Environment Division. '

2. Each literal may be any figurative constant except ALL.,

MESBAGE phrase. is assumed if no option is specxfxed and the
' assoeiated with COMMUNICATION'DEVICE. -
4. ’bbreVLatlons apply.

"breviation fie ' ND~0F~SEGME&T ;nd;cator.ﬁy

7-37) DD25

DISPLAY - o DISPLAY

'GeneralvRﬁles:

Format 1l:

1. A DISPLAY statement may be used to transmit output data to any of the
following destinations:

a. SYSOUT (the low-volume system output feature of the operating
system) . ‘

b. REMOTE (a terminal not operating -under the control of the
Transaction Processing System).

c. CONSOLE and TYPEWRITER (the system operator interface).

d. SWITCH (a portion of the program switch word, a special software
feature provided by the operating system).

When the UPON mnemonic-name phrase is not used, the output destination
is considered to be system output (SYSOUT). The UPON phrase mist be
specified for any other output destination, and the mnemonic-~name must
be a user-supplied word associated with an output destination by a
phrase in the SPECIAL-NAMES paragraph.

D,,PLAY statement may nct be executed, 1n an ttempt to transmlt;
a system output (SYSOUT), ; ;p oceduxej
dnithe dec;aratlvempoxtlpn of a P gram.- : :

2. The following rules apply to all DISPLAY statements:

a. When the DISPLAY statement specifies multiple operands, the data
characters associated' with each operand are concatenated in the

der of the occurrence of the operands. Opera sare -not
ically ‘separated by spaces.

b. The first character of the first operand is positioned in the
first character position of a llne, s'bject to the ef ects of any

c. Identifier-1, identifier-2, ..., must be descrlbed with USAGE
DISPLAY (explicitly or implicitly) iy DISPLX '

d. Literal-1l, literal-2, ..., may be figurative constants, in which
case only a single occurrence of the figurative constant is
“displayed.

3. When utilizing the system output file (SYSOUT) via DISPLAY statements,
the user may either omit the UPON phrase, or associate a mnemonic-name
with SYSOUT in the SPECIAL-NAMES paragraph. This type of output is
assumed to be directed to a printer, each line of which is considered
to contain 132 character positions. The DISPLAY statement may produce
more than one line of printing to SYSOUT if the cumulative size of the
referenced operands exceeds a total of 132 characters.

2/71 7-38 o DD25A

DISPLAY

4o

2/77

DISPLAY

" The wutilization of DISPLAY statements that transmit data to SYSOUT in
s module overlay environment must be carefully planned to avoid
:.ble overlay loading on top of the COBOL subroutine that controls
or SYSOUT displays. One method that may be used to avoid such
rlay ~is to place at least one DISPLAY statement in the main
hat ‘will never be overlayed. That statement need not actually
outed.. ! .

7-38.1 DD25A

DISPLAY

‘information.

DISPLAY

Each DISPLAY statement whose mnemonic-name is associated with REMOTE
will cause from one to four 1lines to be displayed on the remote

‘terminal, depending upon the size of the referenced data items. Each

line will contain at most 72 characters, thereby limiting the ' total
size of the referenced items to 288 characters.

Each DISPLAY statement whose mnemonic-name is associated with CONSOLE
will allow from one to four 1lines to be displayed on the system
console, depending on the size of the referenced data items. Each line
will contain at most 72 characters, thereby limiting the total size of
the referenced items to 288 characters. The output line (or, if more
than one line results from the statement, the last output 1line) is
held in a buffer until the next execution of an ACCEPT statement
associated with CONSOLE. At that time, the line will bé used to inform
the operator of a pending need for a response.

The ACCEPT and DISPLAY statements need not appear together in the
source program, provided that the DISPLAY statement is executed first.
Should no ACCEPT statement be executed after the DISPLAY statement,
the output data is not displayed. Two DISPLAY statements of this kind
with no intervening ACCEPT statement would result in the suppression
of the output from the first DISPLAY statement. If more than one line
results from an execution of a DISPLAY statement associated with
CONSOLE, all lines except the last line are emitted at once and, in a
multiprogramming environment, there is no assurance that any of the
lines will be juxtaposed on the console display. :

Each DISPLAY statement whose mnemonic-name is associated with
TYPEWRITER will cause from one to four lines to be displayed on the
system console, depending on the size of the referenced data items.
Each line will contain at most 72 characters, thereby 1limiting the
total size of the referenced items to 288 characters. If more than one
line is emitted for a given DISPLAY statement, there is no assurance,
in a multiprogramming environment, that the lines will .be juxtaposed
on the console display. System console output is not recommended
unless very unusual circumstances exist. -

If a mnemonic-name associated with SWITCH is specified, only one
operand (data-name, literal, or the figurative constant ZERO) may be
given. If the value of the operand is 1, the switch will be set ON; if
the value is 0, the switch will be set OFF. If a literal is wused, it
must be an 1nteger that has a value of 'l or 0. If a data-name is
specified, it must be a COb data item in the
Working-Storage Section, with a size not exceeding elght digits. The
following data description is recommended:

77 data-name PICTURE 9

If the value of the item exceeds one (1), the wvalue modulo 2
determines the switch setting. '

Refer to Section VI of the COBOL User's Guide for additional

7-39 o DD25

DISPLAY : ' | DISPLAY

Format 2:

- Format * 2, . mnemonic-name must be associated with
UNICATION-DEVICE in . the SPECIAL~NAMES paragraph. The DISPLAY
1snusedfto dellver a message via the transactlon pxocessxng_

2. : dv the phy51cal llmlts of th?_
3. 'thé lntercom faCiiLtY) the’
n the : outpy (DESTINATION) is used as the
ID: by thejytransactlon processing output intexrface
T will be set to one (1) and DESTINATION (1) will
e lnput 1dent1f1er (SOURCE~ID) if the Transaction
Program - (TPAP) does not ‘initialize those
efexecutionVofuaach DISPLAX statement.
4. ction numb&r in the output header must be initialized

‘txon of each DISPLAY statement lf 1t

More

segments ma

2/77 : 7-40 - DD25A

DIVIDE

The DIVIDE statement is used to divide one numeric data item into

and to set the value of a data item equal to the result.

Format 1:

"identifier-1
DIVIDE ' L INTO identifier-2 [ROUNDED]
literal-1l

[ON SIZE ERROR imperative—sﬁatement]

Format 2:

. identifier-1 identifier-2
DIVIDE INTO GIVING

literal-1 literal~2

identifier=-3 [ROUNDED] ‘[, identifier~4 [ROUNDED:]]‘v

[ON SIZE ERROR imperative-statement]

Format 3:

: identifier-1) identifiexr-2
DIVIDE BY GIVING
. literal-l) literal-2

identifier-3 ,[ROUNDED]

[ON SIZE ERROR" imperative-Statemeht]

DIVIDE

another

DD25

DIVIDE DIVIDE

Format 4:

» identifier-1 ldentlfler-Z
DIVIDE INTO GIVING
: literal-1 literal=-2

identifier-3 [ROUNDED] REMAINDER identifier-4

[ON SIZE ERROR imperative—statement]

~Eormat 5:

identifier-1 identifier=-2
DIVIDE BY GIVING
K literal-1 literal=-2

identifier-3 [ROUNDED] REMAINDER identifier-4

[oN SIZE ERROR imperative-statement]

Format 6:

; ﬁtiﬁieril 'ggllidentifier~2

Syntax Rules:

1. Each identifier must. refer to an elementary numeric item, except that
any identifier associated with the GIVING or REMAINDER phrase must
refer to either an elementary numeric item or an elementary numeric
edited item.

2. Each literal must be a numeric literal.

3. The maximum size of each operand is 18 decimal digits. The composite
of operands (the hypothetical data item resulting from the
superimposition of all operands of a given statement, excluding the
REMAINDER data item, aligned on their decimal points) must not contain
more than eighteen digits.

7-42 ‘ DD25

DIVIDE -

General

1.

DIVIDE

Rules:

When Format 1 is used, the wvalue of identifier-l or 1literal-l is
divided into the value of identifier-2. The value of the -dividend
(identifier-2) is replaced by the quotient. This process also occurs
#or- fdentifier-1 or literal-l and identifier-3, etc, '

When Format 2 is used, the value of identifier-~l. or literal-l is
divided into identifier-2 or literal-2 and the quotient is stored 1in
identifier-3, identifier+4, etc.

When Format 3 is used, the value of identifier-l1 or 1literal-l is
divi'ed by the value of identifier-2 or literal-2 and the quotient is
~t 24 in identifier-3, identifier-4, etc.

Formats 4 and 5 are used when a remainder from the division operation

is desired, namely identifier-4. The remainder in COBOL is defined as

the result of subtracting the product of the quotient (identifier-3)

and the divisor from the dividend. If ROUNDED is wused, the quotient
used to calculate the remainder is an intermediate field which

contains the quotlent of the DIVIDE statement, truncated rather than’
rounded.

In Formats 4 and 5, the accuracy of the REMAINDER data item
(identifier-4) 1is defined by the <calculation described above.
Appropriate decimal alignment and truncation (not rounding) will be
performed for the contents of the data item referenced by
identifier-4, as needed.

se ;s used in Formats 4 and 5, and a size
8 the contents of identifier-3 will not be
of the lelde wxll be used in computing the

.If the size error occurs on the remalnder, the contents of the data
item referenced by identifier-4 will remain unchanged. However, as
w. h other instances of multiple results of arithmetic statements,
lysis must be performed to determine which 31tuatlon has occurred.

'Format 6, the initial value of the dividend {identifier-1l) will be
replaced by the computed value of the quotient obtained from the
‘divigion. This nonstandard format is not recommended.

Refer to the Common Options in Statement Formats paragraph in this
section for uses of the ROUNDED and SIZE ERROR options and multiple

' 7-43 ' DD25

ENTER

The ENTER statement is used to conserve time or space in the
source

or to include specific 'statements' .in
efined in the COBOL language.

. Format 1:

Format 2:

ENTER GMAP.

- GMAP coding

ENTER COBOL.

Format 3:

.EQﬁELS data~name.

ENTER COBOL.,

the

EQUALS [SIZE OF] data=-name
[NiTIAL CHARACTER OF] data-name
PROCEDURE procedure—name

ENTER -

execution of

program

DD25

ENTER

ENTER

" Format 4:

P Tdata~namé~§}k1:{{]‘

2

) data"‘name"4:l . .'.]_ . L
ENTER COBOL.,
Syntax Rules:
1. 1 Format 3; 1nteger must be a 31x~d1g1t numeric literal. _
2. =”rmat 3, ‘litexral~l must be a nonnumeric literal, con31st1ng of one
31x characters which satisfy the GMAP rules for symbol formatlon.
3. L1 Format 3, data~name must be’ defined in the Working-Storage Section
record descrxptlon ‘entry and may be gqualified but not-

Procedure~name must be defined in the Procedure Division
is " a

scripted.
' agraph-name or section-name and may be qualified (if it
blts use of t. same. - name. for both data

General Rules:

ENTER statements in a source program written for a computer other than

1.
the one on which the current
changed.

source program is being compiled must be

Format 1:

l.

2/77 7-45 DD25A

- Format 2:

2/77

1.

ENTER

mal mode is TIME~SAVING. The SPACE~-SAVING mode applies to all

following ENTER SPACE-SAVING until ENTER TIME-SAVING is
xd, - at - which - point the compiler resumes the normal
G mode, : o

The ENTER GMAP statement must not contain a comment; a comment will
cause GMAP flags to be appended to the generated code. The GMAP
coding following an ENTER GMAP statement must be terminated by an
ENTER COBOL statement which must begin on a new line. The ENTER COBOL
statement must not contain a paragraph-name. The lines between the
ENTER GMAP and ENTER COBOL statements must consist of GMAP coding.

The first GMAP line following the ENTER GMAP statement should be
either an executable GMAP instruction or a NULL pseudo-operation. If

-the COBOL statement immediately preceding the ENTER GMAP statement

implies a 'next sentence', a symbol will be generated and ‘assigned to
the first GMAP line. If the first GMAP line is a line for which a

‘symbol is not allowed, the generated symbol will be undefined. If it

is inconvenient to ensure that the first GMAP line is an executable
instruction, the user should: i

‘a. Place a paragraph-name immediately preceding the ENTER ~GMAP

statement, or

b. Ensure that the COBOL statement immediately preceding the ENTER
" GMAP statement does not imply a '"next sentence', or

c. Follow the ENTER GMAP statement with a NULL pseudo-operation.-

The special format used for the GMAP coding 1is the standard GMAP.
format shifted six places to the right.

Columns Interpretation

1-6 COBOL sequence number
7-12 Location field

13 Even/odd subfield
14-19 Operation field

20-21 ' Blank

22-72 Variable field

73-80 Program identification

Information appearing to the right of column 72 is not interpreted as
part of the variable field. As in ordinary GMAP coding, comments must

- be separated from variable field information by at least one blank.

The quotation mark character (") should not be used in the variable
field because it has a special meaning in COBOL; the word QUOTE
should be used instead.

7-46 DD25A

"ENTER

ENTER

GMAP symbols defined in the location field must not conflict with
reserved system symbols. They must follow the GMAP rules for symbcl.
formation. Symbols reserved for compiler use which must not be defined
in the location field of GMAP statements include:

a. Symbols in the form lnnnnn, where 'l' is any letter and 'nnnnn'
is any string of five digits,

b. Symbols having any file-code specified in the Environment
Division as their leftmost two characters.

c. Symbols of the foxrm VEcEOF, where 'fc' is any file-code specified
in the Environment Division.

d. The PROGRAM-ID program-name defined in the = Identification
Division. :

e. The symbol ENTER.

£. Symbols having either ',C' or 'C.' as their leftmost two
characters. :

g. The special symbols ZINBUF, ZOTHDR, ZOUTB1l, ZOUTB2, COMMI, COMMO.

h. Any symbol starting in column 7 with the first character ‘numeric
(such a symbol is treated as an optional debug statement).

COBOL data-names and procedure-names are not directly accessible .to
GMAP coding; a special provision (see Format 3) permits GMAP symbols
to be applied to COBOL procedures and data items. The 'locsym' of each
File Control Block is the two-character file-code assigned in a SELECT
sentence in the Environment Division followed by the characters
'FICB'. (Refer to the File and Record Control reference manual.)

For a file with an explicit or implicit process area,. the beginning
location of the process area has the symbol fcRECD where 'fc¢' is the
file-code assigned. For any other file, a current record location
pointer is available (provided the file is OPEN) in the address field
(bits 0-17) of the File Control Block word with symbol £fcFICB, where
'fe' is the file-code assigned. Data must be addressed relative to the
current record location pointer for such a file,

"References to File Control Blocks make a program sensitive to changes

in input-output software and are therefore strongly deprecated.

All GMAP rules must be observed in the GMAP coding. Pseudo=-operations
that alter the location counter may cause unpredictable results at
object program execution. Their use presupposes a thorough
understanding of the location counter conventions followed by the
COBOL compiler in generating coding. -

7-47 B ’ " DD25

"ENTER

ENTER

The user must ensure that the contents of the EIS address registers
are intact or reinitialized after every ENTER GMAP/ENTER COBOL
sequence., The compiler implicitly optimizes the use of the EIS address
registers across paragraphs. A given register - will not be
reinitialized as long as the compiler can determine from the source
statements that the register data 1is intact. Coding following the
ENTER GMAP statement is not analyzed by the compiler; thus, when
coding following the ENTER GMAP statement is used either to CALL a
subroutine or to modify code generated from COBOL source statements,
the user must either protect all index and address registers having
GMAP coding or indicate to the compiler that the registers are to be
reinitialized. This is accomplished by immediately following the ENTER
COBOL statement with a new paragraph and including at least one 'ENTRY
POINT IS entry-name' phrase in the program.

dws:I~D-S/COBOL programs to specify the size of
=1t : : I checking purposes, It has no effect other
thankto prov1de a warnlng message on the listing when such a check

;fails.,Normally, it is a statement produced by the I-D-S8 translator.
5Integer must be given as exactly six characters. :

A SYMBOL phrase that references a data-name using the SIZE option
‘causes the compiler to equate the symbol to an appropriate number that

indicates. the number of BCD character positions required to contain

vthe data~name.

A SYMBOL phrase that references a data-name using the INITIAL opticn

causes the compiler to equate the symbol to an appropriate number (0
through 5 for BCD fields or either 0 through 7 or 4 through 7 for

‘packed decimal 'fields) indicating the first character position

occupied by the data item within the (first) computer word. For BCD
fields, the leftmost position is indicated by 0; the rightmost by 5.
For. packed decimal fields, the leftmost position is indicated by 0 or

‘4 and the r;ghtmost position is indicated by 3 or 7, depending on
whether the data item begins on the word or half-word boundary.

;A SYMBOL phrase that references a data-name or a procedure~name only
‘cauges the compiler to equate the given GMAP symbol (literal-l) to the

first memoxy location of the specified data area or procedural

instructions. A level 01 data area described in the File Section may

not be equated to a symbol (literal-l) unless a process area will be

present for the file and the compller synbol (fcRECD) is used instead
w,,a‘souxce data=-name.

7-48 DD25

"ENTER

ENTER

Format 4:

2/77

1.

CALL. permlts transfer of control to a separately compiled program or
i int within ~a program with a standard return mechanism
;' - (The ' generated - coding employs the GMAP . CALL
‘pseud operatlon.) CALL 'may also be used without the ENTER LINKAGE
statement. (Refer to the CALL statement.) The following conventions
. govern the use of CALL:

*Nfithefprogram being called is an independently compiled COBOL
gram, routine-name must be its PROGRAM-ID. :

he routine-name being called is an explicit entry-name in an
endently compiled COBOL program, the entry-name must be one
fied in an ENTRY POINT phra_ _in ‘the irdependent program.

he program belng called “has been developed ‘via another
an age;, ruut1ne~name must Pe. the program's identification or
-name accordxng to the rules of that language,

Hmplied entry 901nt (PROGRAM—ID) of a program written in
1 g the first 'nondeclarative procedural statement. This
oint is produced ‘automatically by the compiler. The
i lows immediately after the last procedural
' oprogram. cand is also produced
eueffectlve exit point when a program is
: ogram»name.=

! COBOL object programs
that can be called and
: Normally, such programsx

7-49 : DD25A

ENTER

2/77

ENTER

"”SING,phrasa specifies 'input' and ‘output' arguments to the
d “‘program. USING data-names must reference worklng-storage
ms. with level-numbers of 0l or 77, or items in files for
ROCESS AREA is gpecified. A USING argument may be‘a
in whlch ‘case the object program argument will ‘be ‘a .
ol table p01nter. File-names are not valid axguments
g a COBOL .program; they. are restrleted to called
el ped ln another language. : i .

nts spécxfled in a CALL to an expllclt :

d in its ENTRX POINT phrase and the data
:esponding argument must be . identical,
r;hhan 256 WGrds. ' ‘ ’

‘a way to define entry points into a
_implled ‘entry point (the PROGRAM-ID
st nondeclarative procedural statement.

ing‘conVéniioné”goyern,the use of ENTRY POINT:

The ’entxy—name specified must not contain more than six
characters, at least one of which is nonnumeric and the first of
h _is nonzero, The entry-name must not be the same as the
SRAM~ ID program-name, Refer to the reserved GMAP location
mbols in Appendlx F of the COBOL User's guide.

TRY POINT phrase ¢an be used in any 1ocatlon in the
E‘D1V1510n except w;thln the declaratlve portlon.

”‘tgbe“ o path of“’rogram flow to an _ENTRY POINT phxase

7-50 . DD25A

ENTER

ENTER

h. The GIVING option is used to specify an output argument list for
an ENTRY POINT phrase. The GIVING data-names must be level 77 or
01 items specified in the Working-Storage Section. When a CALL
references an entry point with GIVING arguments, the compiler
_generates word moves for each argument, which will be eXecuted on
an BEXIT entry-name for the referenced ENTRY POINT phrase.

The GIVING option uses the corresponding indirect address
specified in the CALL as a receiving field and the corresponding
data-name from the GIVING argument list for the entry point as a
sending field.

i. The user must assure a one=-to-one correspondence between the CALL
USING arguments and the ENTRY POINT USING/GIVING arguments. The
data formats for the corresponding arguments must be identical,
Arguments may not be larger than 256 words.

3o USING/GIVING data-names must not be subscripted.
k. An entry-name must not be used on a § ENTRY card.

The POPUP option permits extended use of PERFORM statements. Each
executed PERFORM statement causes an exit link to enter & pushdown
stack which services all PERFORMs, The stack is arranged so that only
the exit mechanism for the latest PERFORM executed may be engaged. If
control passes to any other exit mechanism, even if a relevant PERFORM
is active, control is passed to the next statement in the written
seguence, When the exit mechanism of the latest executed PERFORM is
reached, the exit link is removed and the stack is 'popped up' before
control is returned. This stack structure permits recursive performs,
nested performs with crossing ranges, and multiple active performs
with a common exit point. (If such extended capabilities are employed,
the user must supply moves as necessary to avoid unintended overlaying
of data with new values.,}) The pushdown stack approach inherently
requires that all 'popups' eventually occur in an orderly manner. This
means that control must eventually reach the exit mechanism of any

‘active PERFORM; and for nested performs control must pass to the exit

mechanisms in the Ilogical order ‘'innermost to outermost', POPUP
permits this inherent control to be circumvented. When the control
sequence is prepared in such a way that not all exit mechanisms will
be operated in the required order, POPUP must be employed to remove
the unused exit links from the stack. The simplest example of such a
situation ig a GO TO statement transferring control outside of a

ﬁPERFORM range without a subsequent return to the range.

7-51 g _ _ : DD25

'ENTER . ‘ ' X ENTER

”’~’s apply to ‘PORUP 3

de ure~namezmust be the name of the last paragraph or section
e range of a currently active PERFORM. :

OPUP~xemoves all exit links from the stack up to and including

those asso¢iated with the -exit mechanism following the

"*ﬁ:procedureuname' paragraph or section. POPUP does not return
control for any exit link; it merely passes control to the
statement following it in the source program after its action on
the stack.

‘g¢ . If control permanently leaves a PERFORM range, the memory area
7 allocated for the stack will eventually overilow if the PERFORM
- is repeatedly executed unless POPUP is used. Stack overflow
~..aborts the object program.
d.. ~ If the exit mechanism of an active PERFORM 1is deliberately
: bypassed, the exit mechanisms for prior PERFORM statements which
are still active cannot return control unless POPUP is used.

e, #POPUP must not reference an entry-name specified by the ENTRY
e 1‘POINT phrase. : . ‘

7-52 DD25

EXAMINE ‘ : L v ‘ EXAMINE

The EXAMINE statement is used to replace and/or count the number of
occurrences of a given character in a data item. .

Format 1:

UNTIL FIRST)

EXAMINE identifier TALLYING ALL literal-1 -
LEADING

[REPLACING BY literal-2]
Format 2:

ALL

EXAMINE identifier REPLACING LEADING literal-3

I \[ONTIL J FIRST

'BY literal-4

Syntax Rules:

1. The description of 'identifier' must be such that its usage is DISPLAY
(explicitly or implicitly). ’

2. Each literal must consist of a single character belonging to a class
consistent with that of 'identifier'. In addition, each literal may be
any figurative constant except ALL.

3. A signed numeric lite:al'is not permitted in the EXAMINE statement.

General Rules:

i. Examination proceeds as follows:

a. For nonnumeric data items, examination starts at the leftmost
character and proceeds to the right. Each character in the data
item specified by the identifier is examined in turn.

b. If a data item referred to by the EXAMINE statement is numeric, .
it must consist of numeric characters and may possess an
operational sign. Examination starts at the leftmost character
‘and proceeds to the right. Each character is examined in turn., If
the letter 'S' is used in the PICTURE character-string of the
data item description to indicate the presence of an operational
sign, the sign is completely ignored by the EXAMINE statement.

7-53 : ’ , DD25

EXAMINE

EXAMINE

The TALLYING phrase creates an integral count which replaces the value
of a special register called TALLY. The count represents the number
of: '

a. Occurrences of literal-l when the ALL option is used.

b. Occurrences of literal-l prior to encountering a character other
than literal-l when the LEADING option is used.

c. Characters not equal to literal-l encountered before the first
occurrence of literal-l when the UNTIL FIRST option is used. ’

When any of the options in the REPLACING phrase are used, the
replacement rules are as follows, subject to the qualifications stated
in General Rule 2: ‘ ‘

a. When the ALL option is wused, then literal-2 or literal-4 is
substituted for each occurrence of literal-l or literal-3.

b. When the LEADING option is used, the substitution of literal-2 or
literal=-4 terminates as soon as a character other than literal-l
or literal-3 or the right-hand boundary of the data item 1is
encountered.

c. When the UNTIL FIRST option is wused, the substitution of
literal-2 or 1litéral-4 terminates as soon as literal-l or
literal-3 or the right-hand boundary of the data item is
encountered, : '

d. When the TIRST option is used, the first occurrence of literal-1
or literal=-3 is replaced by literal-2 or literal-4.

7-54 .~ DD25

EXIT

The E

procedures oy

EXIT

XIT st ;_ment is - used to define the exit point for a series of
ifine the exit point for the logical end of a called program.

General Format:

paragraph-name.
PROGRAM ’
EXIT | , : .
1. entry~name
Syntax Rules:
1. The EXIT statement must appear in a sentence by itself.

The EXIT sentence must be preceded by a paragraph-name and must be the
only sentence in the paragraph.

. General Rules:

1.

It is sometimes necessary to transfer control to the end point of a
series of procedures. This is wusually accomplished by transferring
control to the next paragraph or section, but in some cases this does
not have the required effect. (For example, the point to which control
is to be transferred may be at the end of a range of procedures
governed by a PERFORM, a SORT, a MERGE, or could be at the end of a
declarative section.) The EXIT statement is provided to enable a
procedure-name to be associated with such a point. If such a procedure
has only a single control path to the exit point, the EXIT statement
is not required. If the procedure has alternative paths to the exit
point, an EXIT paragraph should be employed, and the various paths
should then transfer control to the EXIT paragraph.

The PERFORM statement, the SORT statement's INPUT PROCEDURE and

OUTPUT PROCEDURE phrases, and the MERGE statement's OUTPUT PROCEDURE

se'requlre procedure-names referenced as follows:

.+ sprocedure-name=-1 [THRU procedure-name-2]

The end of procedure-name-2 is the 'exit point' if the THRU option 1is
used; otherwise the end of procedure-name~l is the exit point. The
presence of intervening EXIT paragraphs does not affect this rule, If

" an EXIT paragraph is needed, it must be placed at the proper exit

point.,

7-55 | | | - DD25

EXIT

EXIT

If control reaches an EXIT statement without the PROGRAM or entry-name
option and no associated PERFORM, SORT, MERGE, or USE. statement is
active or if control reaches an EXIT PROGRAM statement ~and mno. CALL
statement ig active, control falls through the EXIT point to the first
sentence of the next paragraph.

If control reaches an EXIT PROGRAM statement while the program is
being executed as the result of a CALL statement, control returns to
the point in ,the calling program immediately follow1ng the CALL
; -atement. :

PROGRAM or EXIT entry~name statement must not be used in

. entry~name opt;on defines an exit point for a specmfxc
;;entr name which is given in the associated ENTRY POINT phrase. The
« wname must be defined by the ENTRY POINT phrase .in the same
as the EXIT entry-name. '

Mo é]than one exit point may be specified for any given entry point,
but there must be at least one EXIT entry-name for each entry point
specified.

If control reaches an EXIT entry-name statement, a check 1is made to
determine if the entry-name corresponds to the currently active entry
point, If they correspond, the exit mechanism passes the GIVING
arguments specified for the entry point, restores all registers, ¥
ret ,“‘control to the point immediately following the CALL gstat
'gm"en entry-name. If the EXIT does not correspo“":‘
ntrol will pass through the EXIT entry
1ge of the next paragraph S

7-56 DD25

GENERATE

GENERATE

The GENERATE statement is used to present a report entry based on Procedure
Division control .

General Format:

.GENERATE identifier

Syhtax Rule:

1‘

General

1.

Identifier represents a TYPE DETAIL report group or an RD entry.
Rules:
If identifier represente the name of a TYPE DETAIL report group,
GENERATE performs all the relevant automatic operations and produces
an actual output DETAIL report group (detail reporting).
If identifier is the name of an RD entry, GENERATE performs all the
relevant automatic operations and updates the FOOTING report group(s)
within the report without producing an actual DETAIL report group
associated with the report. Thus it increments all SUM counters
associated with the report description (summary reporting). If the
report includes more than one TYPE DETAIL report group, all SUM
counters are incremented each time such a GENERATE is executed.
GENERATE produces the following automatic operations (as needed):

- a. ~ Steps and tests the LINE-~COUNTER to produce appropriate PAGE o

¢ ¥ FOOTING and/or PAGE or OVERFLOW HEADING report groups.
Increments PAGE-COUNTER when a PAGE 6r OVERPLOW condition is
determined. ‘

b. Recognizes any specified CONTROL breaks to prdduce apprdpriate
CONTROL FOOTING and/or CONTROL HEADING report groups.

c. Accumulates all specified identifiers into . the SUM counters.
Resets the SUM counters on an associated control break., Performs
an updating procedure between control break levels for each set
of SUM counters.

d. ‘Executes any specified routines defined by 'the BEFORE REPORTING

phrase of a USE statement before producing the assocxated report
group(s).

7-57 v , - . DD25

GENERATE

GENERATE

- During the execution of the first GENERATE statement referring to a

report or to a DETAIL report group within a report, all CONTROL
HEADING report groups specified for the report are produced in the
order major...minor, immediately followed by any DETAIL report group
specified in the statement. If an identifier control break is
recognized when a GENERATE statement is executed (other than the first
one executed for a report), all CONTROL FOOTING report groups
specified for the report are produced from the minor report group up
to and including the report group specified for the identifier which
caused the control break. The CONTROL HEADING report group (s)
specified for the report, from the report group specified for the
identifier which caused the control break down to the minor report
group, are then produced in that order, The DETAIL report group
specified in the GENERATE statement is then produced.

When data is implicitly moved to a report group description entry, it
is edited according to the rules described under the MOVE statement.

7-58 } ‘ - DD25

GO TO - » : o » GO0 TO

The GO TO statement is used to transfer control from one part of the
Procedure Division to another. ‘ ‘

Format 1:

GO TO [procedure-na1e—l]

Format 2:
GO TO procedure-name-1 [, procedure-name—Z] .o

, procedure-name-n DEPENDING ON identifier

Syntax Rules:
1. Each procedure-name must be the name of a paragraph or section in the
-Procedure Division.

2. Identifier is the name of a numeric elementary item described with no
positions to the right of the assumed decimal point.

3. A GO. TO,..DEPENDING @ ON statement requires more than - one
procedure-name.

General Rules:

1. When a Format 1 GO TO statement is executed, control is transferred to
procedure-name-1l or to another procedure-name if the GO TO statement
was modified by an ALTER statement.

2. If procedure-name=-1 in Format 1 is not specified, an ALTER . statement,
that refers to this GO TO statement must be executed prior to the
execution of this GO TO statement.

3. When the Format 1 GO TO statement is referred to by an ALTER
statement, the following rules apply whether or not procedure-name-1
is specified:

a. The GO TO statement must have an associated paragraph-naﬁe.

b. The GO TO statement must be the only statement in the paragraph.

7-59. o _ ~ DD25

GO TO

GO TO

‘When a Format 2 GO TO statement is executed, control is transferred to

procedure=-name-1l, procedure-name-2,..., procedure-name-n, depending on
the value of the identifier being 1, 2, ..., n. If the value of
identifier is anything other than the positive or unsigned integers 1,
2, +«s++, n, then a transfer dees not occur and control passes to the
next statement in the normal sequence for execution. :

7-60 : . : DD25

IF

IF

An IF statement causes a condition to be evaluated. The subseguent .action
of the object program depends on whether the value of the condition is true or

.false.

General Format:

statement~1 ELSE statement-2
IF condition ; [

NEXT SENTENCE ELSE NEXT SENTENCE] .

Syntax Rules:

1.

Statement-1 and statement-2 represent either a conditional statement
or an imperative-statement, and either may be followed: by a
conditional statement. :

The 'ELSE NEXT SENTENCE' phrase may be omitted only if it immediately
precedes the final period of the sentence,

'Conditions' are described at the beginning of this section.

General Rules:

1.

When an IF statement is executed, the following action takes place:

a. If the condition is true, the statements immediately focllowing
the condition (represented by statement-~l) are executed and
control then passes implicitly to the next sentence.

b. If the condition is false, either the statements following ELSE
are executed or, if the ELSE phrase is omitted, the next sentence
is executed. :

When an IF statement is executed and the NEXT SENTENCE phrase is
present, control passes explicitly to the next sentence depending on
the truth value of the condition and the placement of the NEXT
SENTENCE phrase in the statement.) o

Statement-1l and statement-2 may contain an IF statement. In this case,
the'IF statement is said to be nested.

IF statements within IF statements may be considered as paired IF and
ELSE combinations, proceeding from left to right. Thus, ‘any ELSE
encountered is considered to apply to the immediately preceding IF
that has not been already paired with an ELSE.

When control is transferred to the next sentence, either implicitly or

explicitly, control passes to the next sentence as written or to -a
return mechanism of a PERFORM or a USE statement.

7-61 ' - ‘ DD25

INITIATE INITIATE

The‘INITIATE'statement is used to begin processing a report.

. General Format:

report-name-1l , report-name-2 ...

INITIATE

Syntax Rule:

1. Each report-name specified in an INITIATE statement must be defined by
"a report description entry in the Data Division.

General Rules:

1. INITIATE resets to zero all data-name entries associated with ' this
report which contain SUM clauses (SUM counters).

2, The PAGE-COUNTER, if specified, is initially set to one (1). After
the execution of an INITIATE statement for a given report, the
contents of PAGE-COUNTER for that report may be changed using a
Procedure Division statement. i

3. The LINE-COUNTER, if specified, is automatically set to zero (0) by
the INITIATE statement.

4, A report can be reinitiated after it has been terminated.

5. jr’ﬁorﬁs deflned ‘the,_Réppxt’

6. INITIATE does not open the file with which the report is associated.
An OPEN statement for the file must be executed before the INITIATE
statement. : :

2/77 ' 7-62 | o ~ DD25A

MERGE) ‘ _

atement combines two or more identically saquenced files on a
keys, and durmg the process makes records available, in merged
put. procedure or to an output file.

General Format:

+ filenames J...

: _ } section-name=2
- L\ THROUGH) ‘ ‘

Syntax Rules:

o ‘ FR | ' . DD25A -

MERGE

General

2/77

1.

. MERGE

'nn@he.giygfgamg,fgomgg_ﬁultiéls file reel can appedar in the

‘pea:tea within the ME_RGE statement.

Rules:

8 of the data items
ghest value, according
_Jn a relation conditlon. ;

‘the merged sequence will be
contents of the data items

Adowest value,. .accordlng
in a relatl .

’t o éntty”appears 1n a- merge flle

7-64 DD25A

MERGE

2/77

MERGE

sent, must ‘ “of one or. more sectlons”
rively in the s rce program and do not form a
1wwe. The output . procdedure: must include at
‘tement in order to make merged. records available
rol must not be passed to the output ' procedure
d SORT or MERGE statement is being executed. The
r consist of any procedures needed @to select,
‘records that are belng returned, one at a time in
wname~l, The Zestrictions on the procedural
utput pxocedure are‘ : : ;

‘dure must contaln no transfers of.-control to

: e the output procedure; ALTER, GO TO, and PERFORM
tements in the output procedure are not permitted to refer to
r@cedure~names outside the output procedure. COBOL statements
hat cause an implxed transfer of control by the compiler to the

‘put procedures, ALTER, GO TO,
, mainder of the Procedure Division
'M{o edure-names within the output

: 2ccedure.“

£ OUTPUT PROCEDURE is specified, c¢ontrol passes to it during

. of the MERGE. statement.. The compiler inserts a return
st sectmon in. the output procedure,
~last statement -in the output procedure,
or termination of the merge procedure,
the next statement after the MERGE
output prO“edure, the merge procedure
t record in merged ordexr
output procgdure are the

,HGWever, vthe follow1ng

7-65 , DD25A

MERGE ’ - i ‘ ‘ MERGE

i/ 4 7. : A & v ecified, all of the merged records on
’) jtten 1e~name~S ag. the implied

Special Considerations:

tems ‘must not he descrlbed w1th USAGE COMPUTATIONAL~4.

]merglng of records described with an
fer to the Variable~Length Records
“Bection IX in: the COBOL User's

rmatlon concernlng'

2/77 7-66 - : DD25A

MOVE

MOVE

The MOVE statement is used to transfer data to one or more data areas in
accordance with the rules for editing. o

Format 1l:
MOVE

Format 2:

MOVE

identifier-1 ,

TO identifier-2 [, identifier-3 | ...
literal _
¢ RR . _
- identifier-1 TO identifier-2 [, identifier-3] ...
CORRESPONDING : :

Syntax Rules:

Identifier~1l and literal represent the sending area; identifier-2,
identifier-3,..., represent the receiving area. :

CORR is an. abbreviation for CORRESPONDING.

When the CORRESPONDING phrase is used, all identifiers must be group
items.

An index data item cannot appear as an operand of a MOVE statement.

General Rules:

1.

Additional receiving areas may be given following identifier-2, The
data designated by the literal or identifier-l1l will be moved first to
identifier-2, then to identifier-3, etc. The rules referencing
identifier-2 also apply to the other receiving areas.

Rules 2 through 4 refer to a MOVE without the CORRESPONDING option.

a. Any MOVE in which the sending and receiving items -are both
elementary items is an elementary MOVE.

In the following . discussion, PICTURE is wused for clarity;
however, every elementary item belongs to one of the categories
listed below whether or not the PICTURE is used in its
description: ,

N - Numeric. This includes any item whose PICTURE consists

: solely of characters from the set 9, S, V, and P. It also
includes the figurative constant ZERO and any numeric
literal. ' S : :

7-67 o DD25

MOVE

Any

MOVE

NE - Nurmeric Edited. An ltem has at least one of the follow1ng-
e An edltlng clause (e g., BLANK WHEN ZERO) .

° A PICTURE cohtaining any of the numeric editing
: characters 2 * $, . + - CR and DB,

. A PICTURE containing at 1least one of the insertion
character B, and not containing any As or Xs.

AE - Alphanumeric Edited. An item whose PICTURE contains at least
: one of the insertion character B, and at least one X.

AN - Alphanumeric. An item whose PICTURE contains only characters
from the set A, X, 9 treated as if all were Xs. It also
includes nonnumeric literals and the figurative constants
except for ZERO and SPACES.

AB - Alphabetic. An item whose. PICTURE consists entirely of As.
It also includes the figurative constant SPACES.

The following rules apply to an elementary MOVE between the
categories defined above:

) It is illegal to move an NE, AE, the figurative constant
SPACE, or an AB item to an N or NE item.

e It is illegal to MOVE an N, the figurative constant ZERO, or
an NE item to an AB item.

) It is illegal to MOVE an N item whose implicit decimal point
is not immediately to the right of the least significant
digit to an AN or AE item.

° A DISPLAY-2 item can be moved only to a DISPLAY or DISPLAY~-2
item. When a DISPLAY-2 item is a receiving item, the sending
item must be described with USAGE DISPLAY or DISPLAY -2 or be
a literal or figurative constant.

(] All other elementary moves are legal and are performed
according to the procedures given in Rule 3 below.

necessary conversion of data from one form of internal

representation to another takes place during legal elementary moves,
along with any editing specified for the receiving data item:

a.

When an alphanumeric edited or alphanumeric item is a receiving
item, alignment and any necessary space-filling takes place as
defined under the JUSTIFIED clause and the Standard Alignment
Rules., If the size of the sending item is greater than the -size
of the receiving item, the excess characters are truncated on the
right after the receiving item is filled. If the sending item is

described asg belng s;gned numeric, the operational sign w1ll not
be ‘moved. - .

7-68 . DD25

2/77

MOVE

b. When a numeric¢ or numeric edited item -is the receiving item,
alignment by decimal point and any necessary zero-filling takes
place as defined under the Standard Alignment Rules, except where
zeros are replaced because of editing requirements.

° When a signed numeric USAGE DISPLAY or USAGE COMP=4 data
item is the receiving item, the sign of the sending item is
placed in the receiving item. Conversion of the
representation of the sign takes place as necessary. If the
sending item. 1s unsigned, a positive sign is generated for
the receiving item.

[} When a USAGE COMPUTATIONAL or a USAGE COMP=1, (X .
data item 1is the receiving item, the 51gn of the
sending item is placed in the implicitly signed receiving
item, If the sending item is unsigned, the receiving item
will be positive.

) When an unsigned numeric item is the receiving item, the
- absolute value of the sending item is moved and no
operational sign is generated for the receiving item.

° When a data item described as alphanumeric is the sending
item, data is moved as if the sending item were descrlbed as
an unsigned numeric integer.

c. When a receiving field is described as alphabetic, justification
and -any necessary space-filling takes place as defined under the
JUSTIFIED clause and the Standard Alignment Rules. If the size
of the sending item 1is greater than the size of the receiving
item, the excess characters are truncated on the right after the
receiving item is filled.

Any MOVE that is not an elementary move is treated exactly as if it
were an alphanumeric-to-alphanumeric elementary move, except that
there is no conversion ‘of data from one form of internal
representation to another. In such a move, the receiving area will be
filled without consideration for the individual elementary or group
items contained within either the sendlng or receiving area, ¢éxcept as

If the CORRESPONDING option is used, selected items within
identifier-1 are moved, with any required editing, to selected items

‘within identifier-2, Items are selected by matching the data-names of

items defined within identifier-l1 with 1like data-names of ' items
defined within identifier-2 according to the following rules: '

a. At least one of the items must be an elementary item.

b. The respective data—-names are the same including all
qualifications up to but not including identifier-1 and
identifier-2. ~ '

c. A MOVE CORRESPONDING statement must not reference items having
level-numbers 66, 77, or 88, or items described with the USAGE IS -
INDEX clause.

d. Any data-names which are subordinate to identifier~l or

identifier-2 and which have REDEFINES, RENAMES, OCCURS,.
clauses are ignored, as well as any data-names which are
subordinate to ames that = contain REDEFINES, -RENAMES,
OCCURS, clauses. -

[7-69 . , DD25A

MOVE

2/77

- MOVE

This restriction does not prevent identifier-l or identifier-2
from having REDEFINES or OCCURS clauses or from being subordinate
to data-names having REDEFINES or OCCURS clauses.

In the execution of 'MOVE CORRESPONDING ABLE TO BAKER', where the
respective data descrlptlons are as follows-

03 ABLE: 03 BAKER
04 P ' 04 P

04 Q : .04 Q

04 R REDEFINES Q 04 R

05 s 05 s

P and Q will be
REDEFINES), nor
REDEFINES) ;

moved, but R will not be moved (it is a
will S be moved (it is subordinate to a
the same applies if the REDEFINES had been in BAKER.

Each CORRESPONDING source item is moved in conformity with the
description of the receiving area. The results are the same as
if the user had referenced each pair of CORRESPONDING data-names
in separate MOVE statements.

6. The following chait presents the relationship between the legality of
a MOVE and the General Rules (above) which affect the given category.

, Category of Receiving Data Item
Category of Sending
Data Items
. ‘Alphanumeric Numeric Integer
Alphabetic Edited Num. Noninteger
Alphanumeric Numeric Edited
Alphabetic- Legal/3c Legal/3a Illegal/2a
Alphanumeric Legal/3c Legal/3a Legal/3b
Alphanumeric Edited Legal/3c Legal/3a Illegal/2a
Integer Illegal/2b Legal/3a Legal/3b
Numeric
Noninteger Illegal/2b Illegal/2b Legal/3b
Numeric Edited Illegal/2b‘ Legal/3a Illegal/2a

7. When a sending and a receiving item in a MOVE statement share

of their memory areas,

is undefined.

7-70

_part‘
the result of the execution of such a statement

DD25A

MULTIPLY

MULTIPLY

The MULTIPLY statement is used to multiply numeric data items and to set
the values of data items equal to the results.

Format 1l:

v identifier-1
MULTIPLY . BY identifier-2 [ROUNDED]

Format 2:

literal-1
}[;~identifier-3 [ROUNDED]]

[ON SIZE ERROR imperative-statement]

‘ (identifier-1 identifier=-2
MULTIPLY ' BY :
literal-1l literal=2

GIVING identifier-3 [ROUNDED]
['"identifier44 [ROUNDED]A]

[ON SIZE ERROR imperatiVe-statement]

Syntax Rules:

1.

Each identifier must refer to a numeric elementary item, except that
those identifiers appearing to the right of the word GIVING' (Format 2)
can refer to data items containing editing symbols.:

All literals used must be numeric literals.

The maximum size of each operand is 18 decimal digits. The composite
of operands (the hypothetical data item resulting from the
superimposition of all receiving data items of a given statement,
aligned on their decxmal p01nts), must ‘not contain more than 18
digits. :

7-71 ' ' DD25

MULTIPLY MULTIPLY

General Rules:

When Format 1 is used, the value of identifier-1 or literal-l is
multiplied by the value of identifier-2. The value of identifier-2 is
then replaced by the

2. When Format 2 is used, the

value of identifier~l or 1literal-l is
multiplied by the value of identifier-2 or literal-2 and the

product
is stored in identifier-3,

Refer to the Common Options in Statement Formats paragraph in this
‘section for uses of the ROUNDED and SIZE ERROR options e

DD25

NOTE

NOTE

The NOTE sentence is used in the Procedure Division to include explanatory
information which is produced on the output listing but not compiled.

General Format:

NOTE chatacter—string.,

Rules:

Any combination of characters from the allowable character set may
follow the word NOTE as long as the COBOL rules of punctuation and
word and literal formation are observed.

If a NOTE sentence is the first sentence of a paragraph, the entire
paragraph is considered to be a note. The format rules ' for paragraph
structure must be observed.

If a NOTE sentence appears as other than the first sentence of a
paragraph, the explanatory information of which the note is composed
must end with a period followed by a space.

Notes are produced on the reference listing but have no effect on the
object program.

The word NOTE can appear only as the first word of a COBOL sentence.

7-73) DD25

OPEN . ' : : ' '~ OPEN

" The OPEN statement is used to initiate the processing of files. An OPEN
statement .also causes label checking/writing and other input-output functions to
be performed

General Format:
lf
INPUT file-name-1 '[WITH NO REWIND]

, file-name=-2 [WITH NO REWIND]] .

b

OPEN

OUTPUT file-name-3 [WITH NO REWIND] S

— A

, file-name~4 ‘[WITH NO .REWIND] cee

.

1-0 ‘file-name=-5 [, file-name—G]

Syntax Rules:

1. Each of the format choices (INPUT, OUTPUT, I-0) may be specified -only

once in an OPEN statement.
2. The I-O phrase pertains to mass storage files only.
3. The WITH NO REWIND phrase does not apply to mass storage processing.

General Rules:

1. - The OPEN statement must not be applied to sort files or merge files,
but must be applied to all other files. The OPEN statement for a file
must be executed prior to the first READ, WRITE, or SEEK statement for
that file.

2. A second OPEN statement for a file cannot be executed prior to the
execution of a CLOSE statement for that file,

3. The OPEN statement does not obtain or release the first data record. A
READ or WRITE statement must be executed to obtain or release,
respectively, the first data record. Data cannot be moved to an input
record area, nor can the input record area be tested or referenced .in

any way until the first READ statement has been executed for the f1le,

: ‘less an. APPLY PROCESS AREA phrase has been specifled for that input

. 7=74 " DD25

10.

11.

2/77

-OPEN

If a label record is specified for the file, the label is processed
according to the standard beginning label convention. The behavior of
the OPEN statement when a label record is specified but not present,

‘or when a label record is not specified but is present, is undefined.

If specified by the USE statement, a wuser's label procedure is
executed. The order of execution of these two processes is specified
by the USE statement. If label records are indicated as present by a
LABEL RECORDS clause, the wuser's beginning label procedure (if
specified by a -USE statement) is executed before or after (as
indicated) checking but subsequent to writing the first label.

The NO REWIND phrase can be used only with a sequential single
reel/unit. (Refer to the CLOSE statement.)

If the external medium for the file permits rewinding, the following
rules apply:

a. When the NO REWIND phrase is not specified, execution of the OPEN
statement causes the file to be positioned at its beginning.

b. .~ When the NO REWIND phrase is specified, execution of the OPEN

statement does not cause the file to be repositioned. = Therefore,

- when the NO REWIND phrase is specified, the file must have been
positioned at its beginning. '

If an input file is designated with +the OPTIONAL phrase in the

FILE-CONTROL paragraph of the Environment Division, the object program
causes an interrogation for the presence or absence of this file. If
the file is not present, the first READ statement for this file causes
the imperative-statement in the AT END phrase to be executed.

The I-0 option permits the opening of a mass storage file for both
input and output operations. Since this option implies the existence
of the file, it cannot be used if the mass storage file is being
initially created. '

When I-O is specified and the LABEL RECORDS clause indicates label
records are present, the execution of the OPEN statement includes the
following steps:

a. The label (if it exists) 1is checked in accordance . with the
standard conventions for input-output label checking.

b, The user's beginning label procedure, if one is specified by the
USE statement, is executed.

c. The new label is written in accordance with the standard -
conventions for input-output label writing.

When processing mass storage files for which the access mode is
sequential, the OPEN statement supplies the initial address of the
first record to be accessed.

7-75 v v , _ DD25A

PERFORM . ' ’ . S PERFORM

The PERFORM statement is used to depart from vthe normal sequence of
procedures to execute one or more procedures a specified number of times, or
until a condition is satisfied, and then return to the normal sequence.

Format 1l:

THRU

PERFORM procedure-name-1 { } procedure-name-2

THROUGH

Format 23

THRU

PERFORM pro cedure-name-1 {

identifier-1l
TIMES
integer-1

procedure-name-2
THROUGH

Format: 3:
. THRU ' '
PERFORM procedure-name-1l _ procedure~name-2
‘ THROUGH
UNTIL condition-1

Format 4:

THRU
PERFORM procedure-name-1 procedure~name-2
' THROUGH

identifier-l identifier-2
VARYING FROM index=-name=-2

index~name-1- literal-l

7-76 - DD25

PERFORM = , ' PERFORM

identifier-3
UNTIL condition=-1
literal=-2
identifier-4 identifier-5
AFTER FROM index~-name=-4
index-name-3 literal-3
identifier-6
: UNTIL condition-2
literal-4
identifier-7
AFTER
index-name~5
identifier-8 identifier-9)
FROM index-name-6 BY UNTIL condition-3
literal=-5 literal=-6

Syntax Rules:

1. Each proceduré-name is the name of a section or paragraph in the
Procedure Division. ’

2, Each identifier represents a numeric elementary item described in the
Data Division. In Format 2 and in Format 4 with the AFTER option, each
identifier represents a numeric item with no positions to the right of
the assumed decimal point.

3. Each literal represents a numeric literal.

4. The words THRU and THROUGH are equivalent.

General Rulesﬁ

1. The range of a PERFORM starts with the first executable statement in
procedure-name-1l and continues in logical sequence through the last
'executable statement of:

a. Procedure-name-2 if spec1f1ed, or

b. Procedure-name-l if procedure-name-2 is not spec1f1ed

7-77 | . DD25

. PERFORM

PERFORM

When the PERFORM statement is executed, control is transferred to the
first statement of the procedure named procedure-name-l. An automatic
return to the statement following the PERFORM statement is establlshed
as follows:

a. If pfocedure—name 1 is a paragraph-name and procedure-name- -2 is
not specified, then the return occurs after the last statement of
the procedure-name=-l1l paragraph.

b. If procedure-name-l is a section-name and procedure-name-2 is not
specified, then the return occurs after the last statement of the
last paragraph of the procedure-name-1 section.

c. If procedure~name~2 is specified and is a paragraph~name, then
the return occurs after the last statement of the
procedure~name~2 paragraph. '

d. If procedure-name-2 is specified and is a section-name, then the
return occurs after the last statement of the last paragraph of
the procedure-name-2 section.

The 'last statement' performed in all of the above cases must allow
¢ontrol to pass to the return mechanism. There 1s no necessary
relationship between procedure-name-l and procedure-name-2 except that
a consecutive sequence of operations is to be executed beginning at
the procedure named procedure-name~l and ending with the execution of
the procedure named procedure-name-2. In particular, GO TO and PERFORM
statements may occur between procedure-name-l- and the - end of
procedure-name-2, provided control eventually passes to the return
mechanism of procedure-name-2. If it is desired to have two or more
logical paths to the return mechanism, then. procedure-name-2 must be
the name of a paragraph consisting of the EXIT statement, to whlch all
of these paths must lead.

When control passes to these procedures by means other than an
implicit or explicit PERFORM statement and no related PERFORM is in
progress, sequence of control will pass through the 'last statement'
to the following statement as if no PERFORM statement mentioning these
procedures existed.

The PERFORM statement for. Formats 1 through 4 operates as follows,
with Rule 3 above applying to all formats:

a. Format 1 is the basic PERFORM statement. A return to the
statement following the PERFORM 1is inserted after the 'last
statement' as defined in Rule 2, and sequence control is sent to
procedure~name~-1 for execution once.

b. Format 2 is the TIMES option. The specified number of times must
be an integer. The integer may be negative or zero, in which case
control passes to the next statement. The PERFORM mechanism sets
up a counter and tests it against the specified value before each
transfer to procedure-name=-l. The return mechanism after the
'last statement' steps the counter and then sends control to the
test. The test cycles control to procedure-name-l the specified
number of times, and after the last tlme sends control to the
statement following the PERFORM, ,

7-78 : DD25

PERFORM

PERFORM

During execution of the PERFORM statement, reference to
identifier-1 cannot alter the number of times the procedures are
to be executed from that which was indicated by the initial value
of identifier-1.

Format 3 is the UNTIL option. This option is similar to the TIMES
option, except that an evaluation of a condition takes the place
of counting and testing against a specified integer. The
condition may be any simple or compound condition, as described
under the Conditions paragraph in this - section. When the
condition is satisfied (true), control is transferred to the next
statement after the PERFORM statement. If the condition 1is true
when the PERFORM is entered, no transfer to procedure-name-l
takes place and control is passed to the next statement after. the
PERFORM statement.

Format 4 is the VARYING option. This option is used to augment
the value of one or more identifiers or index-names in an orderly-
fashion during the execution of a PERFORM statement. In the
following discussion, every reference to identifier as the object
of the VARYING and FROM (starting value) phrases also refers to
index-names. When index-names are used, the FROM and BY phrases
have the same effect as in a SET statement.

In Format 4, when one identifier is varied, identifier-1 1is set
to its starting value (the value of identifier-2 or literal-l) at
the point of initial execution of the PERFORM statement; then, if
the condition of the UNTIL phrase is false, the sequence of
procedures, procedure-name=1 through procedure-name-2, is
executed once. The value of identifier-l 1is augmented by the
specified increment or decrement value (the value of identifier-3
or literal-2) and condition-l 1is evaluated again. The cycle
continues until this condition is true, at which point control
passes to the statement following the PERFORM statement. If

.condition=-1 is true at the beginning of execution of the PERFORM

statement, control passes directly to the statement following the
PERFORM statement.

ENTRANCE

Set identifier~1l equal
to initial value (FROM)

True

condition-1

Execute procedure-name-1

[THRU procedure-name=-2J]

Augment identifier-1 with
its BY value

Flow Chart for the Varying Option of a PERFORM Statement ﬁaVing One Condition

7-79 L o DD25

PERFORM

PERFORM

In Format 4, when two identifiers are varied, identifier-1 and
identifier-4 are set to their 1initial wvalues (the values of
identifier-2 and identifier-5, respectively). During execution,
these initial values must be positive. After initializing the
identifiers, condition=-1 is evaluated; if true, control is passed
to the statement following the PERFORM statement; if false,
condition-2 is evaluated. If condition-2 is false,

" procedure-name~1 through procedure-name-2 is executed once, then

identifier-4 is augmented by identifier-6 or literal-4 and
condition-2 is evaluated again. This c¢ycle of "“evaluation and
augmentation continues until condition~-2 is true. When
condition-2 is true, identifier-4 is set to its initial wvalue
(the value of identifier-5 or 1literal-3), identifier-1 is
augmented by identifier~3 and condition-l1l 1is re-evaluated. The
PERFORM statement is completed if condition-1 is true; if not,
the cycles continue until condition-l is true. Identifier-3 and
identifier-6 must not be zero. During execution of the PERFORM
statement, reference to index-names or identifiers of the FROM
phrase has no effect in altering the number of times the
procedures are to be executed. Changing a value of index-names or
identifiers of the VARYING .phrase or identifiers of the 'BY

phrase, however, will change the number of times procedures are
.executed.

ENTRANCE

Set identifier-~1 and
identifier-4 to
initial walues (FROM)

True
condition~]
True
Execute procedure-name-1l Set identifier-4 to
LTHRU procedure-name=-2] its initial value (FROM)
Augment identifier-4 Augment identifier-1
with its BY wvalue with its BY value

Flow Chart for the Varying Option of a PERFORM Statement Having Two Conditions

(Format 4)

7-80 . . ‘ DD25

PERFORM-

PERFORM

At the termination of the PERFORM statement, identifier~4
contains its initial value, while identifier-l has a wvalue that
exceeds the last used setting by an increment or decrement value,
unless condition-l was true when the PERFORM statement was
entered, in which case identifier-l and identifier-4 contain
their initial wvalues. When two identifiers are varied,
identifier-4 goes through a complete cycle (FROM, BY, UNTIL) each
time identifier-l is varied. For three identifiers, the mechanism
is the same as for two identifiers, except that identifier-7 goes
through a complete cycle each time that identifier-4 is augmented
by identifier-6 or literal-4, and identifier-4 - in turn. goes
through a complete cycle each time identifier-1 1is varied. The
following flow chart illustrates the logic of the PERFORM
statement when three identifiers are varied.

ENTRANCE

Set identifier-l,
identifier-4, and
identifier-7 to
initial values (FROM)

True
condition-1
False
True
condition-2
False
True
condition-3
- False
Execute Set) Set
procedure-name-1 identifier-7 identifier=-4
ETHRU procedure—name—Z] to its initial to its initial
) value (FROM) value (FROM)
Augment - Augment ‘ Augment
identifier=-7 identifier-4 1 identifier-1l
with its BY with its BY with its BY
yalue ; value value

Flow Chart for the Varying Option of a PERFORM Statement Having Three Conditions

7-81 , DD25

PERFORM

6.

PERFORM

After the completion of the PERFORM statement, identifier-4 and
identifier=7 contain their initial values, while identifier-1 has
a value that exceeds its last used setting by one increment or
decrement value, unless condition-l1l 1is true when - the PERFORM
statement is entered, in which case identifier-1, identifier-4,
and identifier=-7 all contain their initial values.

rocedure~name~1 should not be the next statement after

f it is, the result is that the loop is executed one

”than was probably intended; ' since, after - the PERFORM is

gontrol passes to procedure~name~1 in the normal .
of the sequence,

If a sequence of statements referenced by a PERFORM includes another

PERFORM statement the seguence associated with the included PERFORM
ke either be totally included in, or totally excluded. from,.

sequence referenced by the first PERFORM e '

'x PERFORM a THRU m - x PERFORM a THRU m

; A - e
2 4 PERFORM F THRU'jY ‘ d PERFORM £ THRU j
it ' S . h
T 2 m
£
3 |

RFORM a THR m

PERFORM £ THRUJ 1

eﬂof pxocedurss aSSOclated with a PERFORM statement may

P intersect the sequence associated with another PERFORM,
provided. that neither sequence includes the PERFORM statement
' sociated w;th the other sequence. ‘

'ectwusageffjf‘ Lo Incorrect Usage

RFORM a THRU m % PERFORM a THRU m
R— - a —

d PERFORM £ THRU j

£ - - ;

m

3

ERFORM £ THRU 3

7-82 L DD25

PERFORM

PERFORM

A PERFORM statement that appears in a section whose priority-number is
less than the SEGMENT-LIMIT, can have within its range only the
following:

a. - Sections, each of which has a priority-number less than 50, or

b.. Sections wholly contained in a single ' segment ' whose
priority-number is greater than 49,

A PERFORM state.tent that appéars in a section whose priority-number is
equal to or greater than the SEGMENT-LIMIT, can have within its range
only the following:

S a. ¢z2ctic. 3, each of which has the same priority-number as . that

:ontaining the PERFORM statement, or
b. Sections having a priority-number less than the SEGMENT-LIMIT.
When a procedure-name in a segment with a priority-number greater than
49 is referred to by a PERFORM statement contained in a segment with a

different priority-number, the segment referred to is made available
in its initial state for each execution of the PERFORM statement.

7-83 R DD25

READ ‘ . READ

For sequential-access file processing, the READ statement makes available
the next logical record from an input or input-output file and allows
performance of a specified imperative-statement when end-of-file is ‘detected.

For random-access file processing, the READ statement makes available a
specified record from a mass storage file and allows performance of a specified
imperative-statement if the contents of the associated ACTUAL KEY data item are
found to be invalid.)

Format 1 (Sequential=-Access Files):

READ file-name RECORD [INTO identifier]

AT END imperative-statement

Format 2 (Random-Access Files):

READ file-name RECORD [INTO identifier]

INVALID KEY imperative-statement

Syntax Rules:

1. The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record descriptions.
The storage area associated with 'identifier' and the storage area
which is the record area associated with the file-name must not be the
same storage area. File-name must not represent a sort file ox a merge

2, Format 1 is used only for non-mass-storage files and for mass storage
files in the sequential-access mode,

3. 'Formétvz is used for mass storage files in the random-access mode.
General Rules:

1. An OPEN statement must be executed for a file prior to the execution
of the first READ statement for that file.

7-84 : DD25

READ

If after reading the last logical record of a file another READ
statement is initiated for that file, that last logical record is no
longer available in its record area .and the READ statement is
completed by the execution of the AT END phrase. Attempts to access
the record area after the AT END phrase has been executed will cause
unpredictable results. After the AT END condition has been recognized
for a file, a READ statement for that file must not be given without
prior execution of a CLOSE statement and an OPEN statement for that
file. (Refer to Section V of the COBOL User's. Guide.)

When the logical records of a file are described with more than one
record description, these records automatically share the same storage
area; this is equivalent to an implicit redefinition of the area. Only
the information that is present in the current record is accessible,

If the INTO phrase is specified, the current record is moved from the
input area to the area specified by identifier according to the rules
specified for the MOVE statement without the CORRESPONDING phrase. Any
subscripting or indexing associated with identifier is evaluated after
the record has been read and immediately before it is moved to the
data item.,

When the INTO phrase is used, the record being read 1is available in
both the input record area and the data area associated with
identifier.

If a file described with the OPTIONAL phrase 1is not present, the
imperative-statement in the AT END phrase is executed on the first
READ. The standard end-of-file procedures are not performed. (See the
OPEN and USE statements, and the FILE-CONTROL paragraph in the
Environment Division.,) :

If the end of a tape reel is recognized during execution of a READ

‘statement, and the logical end of the file has not been reached, the

following operations are accomplished:
a. The standard ending reel label procedure and the user's ending
reel label procedure, if specified by the USE statement., The

order of execution of these two procedures is specified by the
USE statement. :

b. A reel swap.

c. The standard beginning reel label procedure and the usef's
beginning reel 1label procedure, .if specified. The order of
execution is again specified by the USE statement.

d. = The first data record of the;new reel is made available.’

7-85 , - DD25

lo.

2/77

READ

Format 2 is used for mass storage files in the random—access mode.

The READ statement implicitly performs the function of the SEEK
statement for a specific mass storage file. If such files are
accessed for a specified mass storage record and the contents of the
associated ACTUAL KEY data item are invalid, the INVALID KEY phrase is

executed.

Regardless of the method used to overlap access time with processing
time, the concept of the READ statement is unchanged in that a record
is available prior to the execution of any statement following the
READ statement.

part of a label procedure
L oprogram.. '

7-86 ' ‘ ‘DD25A

RELEASE

RELEASE

The RELEASE statement is used to transfer records to the initial phase’of a
sort operation. , - .

General Format:

RELEASE record-name [FROM identifier |

Syntax Rules:

General

2/77

l.

The record-name must be the name of a logical record in an associated
sort ge file description entry and may be qualified.

The identifier and the record area associated "with record-name must
not be associated with the same storage area.

The RELEASE statement can be used only within the range of an input
procedure associated with a SORT statement for a file whose sort-merge
file description contains record-name. ‘If the RELEASE statement is
_any other application e object program will terminate

Rules:

If the FROM phrase is specified, the contents of the identifier data
area are moved to record-name and the contents of record-name are then
transferred to the initial phase of the sort process. Moving takes
place in accordance with the rules for the MOVE statement without the
CORRESPONDING phrase. The information in the record area is no longer
available but the information in the identifier area is available.

After the RELEASE statement is executed, the contents. of record-name
are no longer available. ‘

When control passes from the input procedure, the sort file then
consists of those records that were placed in it by the execution of

RELEASE statements.

7-87 : - DD25A

RETURN _ ' : : RETURN

tatement is used to obtain ordered records from the final phase
operation.

The RETURN
of a sort

General Format:
RETURN file-name RECORD [INTO identifier |

AT END imperative-statement

Syntax Rules:

1. The file-name must be described in a sortei & file description entry

in the Data Division.

2. The identifier and the record area associated with file-name must not
be associated with the same storage area.

3. The INTO phrase may be used only when the ordered file contains ' just
one type of record.

4. The RETURN statement can be used only within the range of an output
associated with a SORT ot MERGE:statement for a file whose
. file descrlptlon contains file-name. If .. the ' RETURN
; other application, the object Program.

General Rules:

1. When successive RETURN statements are executed, the records are
delivered in the order specified by the KEY data-names described in
the SORT: ; " statement. The next record becomes available for
processing in the record area associated with file-name,

2. If the INTO phrase is specified, the current record is moved from the
input area to the area specified by identifier in accordance with the
rules for the MOVE statement without the CORRESPONDING phrase. When:

- : ' 1 RECORD' is Stlll available in the

3. After the AT END imperative-statement is executed, a RETURN statement
must not be executed within the current output procedure.

2/77° - | 7-88 ~ DD25A

SEARCH - . : SEARCH

The SEARCH statement is used to search a table for a table element that
satisfies the specified condition and to adjust the associated index-name to
indicate that table element,

Format 1l:

index-name-1
SEARCH identifier-1 VARYING .
identifier-2

[AT END imperativedstatement-l]

, imperative~statement-2
WHEN condition=-1l

NEXT SENTENCE

' imperative-statement-3
WHEN condition-2 o
) NEXT SENTENCE

Format 2:
SEARCH ALL identifier-1 [AT END imperative-statement-1]

imperative~-statement-2
WHEN condition-1 : ' :
'NEXT SENTENCE

Syntax Rules:

1. In both Formats 1 and 2, identifier-1l must not be subscripted or
indexed, but its description must contain an OCCURS clause and an
INDEXED BY phrase. The description of identifier-l1l in Format 2 must
also contain the KEY IS option in its OCCURS clause.

2. Identifier-2, when specified, must be described with USAGE INDEX or as
a numeric elementary item with no positions to the right of the
assumed decimal point. Identifier=2 is incremented by the same amount
as, and at the same time as, the occurrence number represented by the
index-name associated with identifier-1l is incremented.

3. In Format 1, condition-l, condition-2, etc., may be any condition as
described previously in this section under Conditions.

7-89 ' DD25

. SEARCH - _ ‘ v SEARCH

4. In Format 2, condition-1l may consist of a relation condition

incorporating the relation EQUALS or EQUAL TO or equal sign, or a
condition-name condition, where the VALUE clause that describes the
condition-name contains only a single literal. Alternatively,
condition-1 may be a compound condition formed from simple conditions
of the type just mentioned, with AND as the only connective. Any
‘data-name that appears in the KEY phrase of identifier-1 may appear as
the subject or object of a test or be the name of the conditional
variable with which the tested condition-name is associated; however,
all. preceding data=-names in the KEY phrase must also be included
within condition-1l. No other tests may appear within condition-1l.

General Rules:

1. If Format 1 of SEARCH is used, a serial type of search operation takes
place, starting with the current index setting. If the VARYING phrase
specifying index-name-l is used and index-name~l occurs in the INDEXED
;B phrase associated with identifier-l, index-name~-l specifies the

dndex which controls the execution of the SEARCH statement. If the

'VARYING phrase is not used or does not specify an index-name-l1 which

occurs. in the INDEXED BY phrase associated with identifier-l, the

‘index which = controls the execution of the SEARCH statement 1is

fspeclfied by the first index~name that appears 1in the INDEXED BY

phrase associated with identifier-l. ‘

a. If, at the start of execution of the SEARCH statement, the
index-name associated with identifier-1 «c¢ontains a value that
corresponds to an occurrence number that is greater than the
highest permissible occurrence number for identifier-1l, the
SEARCH is. terminated immediately. Then, if the AT END phrase is
specified, imperative-statement-l is executed; if +the AT END
phrase is not specified, control passes to the next sentence.

b. If, at the start of execution of the SEARCH statement, the

‘ index-name associated with identifier-1 contains a value that
corresponds- to an occurrence number that is not greater than the
highest permissible occurrence number for identifier-1, the
SEARCH statement operates by evaluating the conditions in the
order that they are written, making use of the index settings,
wherever specified, to determine the occurrence of those items to
be tested. If none of the conditions are satisfied, the
index~-name for identifier-1 is incremented to obtain reference to
the next occurrence. The process is then repeated using the new
index-name settings unless the new value of the index-name
settings for identifier-l corresponds to a table. element which
exceeds the last element of the table by one or more occurrences,
in which case the search terminates as indicated in a. above. If
one of the conditions is satisfied wupon its evaluation, the
search terminates immediately and the imperative-statement
associated with that condition is executed; the index-name
remains set at the occurrence which caused the condition to be
satisfied.

7-90. : DD25

SEARCH

SEARCH

If Format 2 of SEARCH is used, a nonserial type of search operation
takes place, in which case the initial setting of the index-name for
identifier-1 is ignored and its setting is varied during the search
operation in a manner which allows a 'binary' search operation to be
executed, with the restriction that at no time is it set to a value
that exceeds the value which corresponds to the last element of the
table, or that is less than the value that corresponds to the first
element of the table. The index that controls the execution of the
SEARCH statement is specified by the first index-name that appears in
the INDEXED BY phrase associated with identifier-l. If condition-1

‘cannot be satisfied for any setting of the index within this permitted

range, control is passed to imperative-statement-l when the AT ‘END
phrase appears, or to the next sentence when the AT END phrase does
not appear; in either case the final setting of the index 1is not
predictable. If condition-1l can be satisfied, the index indicates an
occurrence that allows condition-1 to be satisfied, and control passes
to imperative-statement-2.

After execution of imperative-statement-l, imperative-statement-2, or
imperative-~statement-3 that does not terminate with a GO TO statement,
control passes to the next sentence.

In the VARYING index~name-1l phrase, if index-name-l appears in the
INDEXED BY phrase of another table entry, the occurrence number
represented by index-name-l is incremented by the same amount as, and
at the same time as, the occurrence number represented by the
index-name associated with identifier-1l is incremented.

If identifier-1 is a data item subordinate to a data item that
contains an OCCURS clause (providing for a two- or three-dimensional
table), an index=-name must be associated with each dimension of the
table through the INDEXED BY phrase of the OCCURS clause. Only the
setting of the index-name associated with identifier-1.(and the data
item identifier-2 or index-name-l, if present) is modified by the
execution of the SEARCH statement. To search an entire two- or
three~dimensional table, it is necessary to execute a SEARCH statement
several times. Prior to each execution of a SEARCH statement, SET
statements must be executed whenever index=-names must be adjusted to
appropriate settings.

- 7-91 ' = - DD25

SEARCH : ' ‘ . SEARCH

A diagram of the Format 1 SEARCH operation containing two WHEN phrases

follows:
¥ W
Index setting: 1 .
highest permissible |> = AT END .| imperative-
occurrence number statement-1

condition~-1

True . » imperative- p— :
) statement-2 }2

True " imperative- —
statement-3

condition-2

Increment
index-name for
identifier~l
(index-name-1
if applicable)

Increment
index-name-1 (for
a different table)
or identifier-2

1 These operations are options included only when specified in the
SEARCH statement.

2Bach of these control transfers is to the next sentence unless the
imperative-statement ends with a GO TO statement.

7-92 o ~ DD25

SEEK

SEEK

_ The SEEK statement is used to initiate the accessing of a mass storage data
record for subsequent reading or writing. .

General Format:

SEEK file-name RECORD

General Pules:

1.

The SEEK statement pertains only to mass storage files in the
random-access mode and may be present prior to the execution of each
READ and WRITE statement. However, due to the requirements of the
operating system, the SEEK statement has no effect on the access of a
record.

Two SEEK statements for the same mass storage file may - logically
follow each other. :

SET _ ' , SET

The SET statement is used to establish reference points for - table-handling
operations by setting index-names associated with table elements.

Format 1l:

index-name-1 [, index-name—Z] s index~-name=-3
SET TO identifier-3
— |identifier-1 [, identifier-2] ... literal-l
Format 2:

UP BY identifier-4
SE"! index-name-4 [, index-name—S] ves

DOWN BY literal=-2

Syntax Rule:

1. All references to index-name-1, identifier-1, and index-name-4 apply
equally to index-name-2, identifier-2, and index-name-5, respectively.

General Rules:

1. All identifiers must name either index data items or elementary items
described as an integer, except that identifier-4 in Format 2 must not
name an index data item. When a literal is used, it must be a positive
integer. Index-names are considered related to a given table and are
uniguely defined by being specified in the INDEXED BY phrase of the
OCCURS clause, ~

2, In Format 1, the following action occurs:

a. Index-name-1l is set to a value causing it to refer to the table
element that corresponds in occurrence number to the table
element referred to by index-name-3, identifier-3, or 1literal-l.
If identifier-3 is an index data item, or if index-name~3 1is
related to the same table as index-name=-1l, no conversion takes
place. If the value contained in an index data item does not
gorrespond to an oOccurrence number of an element in° the ' table
indexed by index-name~l, the result is undefined.,

b. If identifier-1 is an index data item, it may be set equal to
either the contents of index-name~3 or identifier-3, where
identifier-3 is also an index data item. Literal-l cannot be used
in this case. .

c. If identifier=l is not an index data item, it may be set only to
an occurrence number that corresponds to the value of
index-name-3. Neither identifier-3 nor literal-l can be used in
this case. '

7-94 : ‘ - DD25

SET

2/71

SET

d. The process is repeated for index-name-2, identifier-2, etc., if
specified. Each time, the value of index~name-3 or identifier-3
is used as it was at the beginning of the execution of the
statement. Any subscripting or indexing associated with
identifier-1, etc., is evaluated immediately before the value of
the respective data item is changed.

In Format 2, the contents of index-name-4 are incremented (UP BY) or
decremented (DOWN BY) by a value that corresponds to the number of
occurrences represented by the value of literal-2 or ‘identifier-4;
thereafter, the process is repeated for index-name-5, etc. Each time,
the value of identifier-4 is used as it was at the beginning of the
execution of the statement. ~

7

95 - . DD25A

SORT - : e : _ : - SORT

The SORT statement is used to create a sort file by executing input
procedures or by transferring records from another file; to sort the records in
the sort file on a set of specified keys; and, in the final phase of the sort
operation, to make available each record from the sort file, 1n sorted order, to
some output procedures or to an output file.

General Format:

, DESCENDING
© SORT file-name-1 ON KEY data-name-1
) ASCENDING

[, data-name-2]

[DESCENDING
ON KEY data-name-3 [, data-name=47] ... | ..
ASCENDING
(A
: THRU
INPUT PROCEDURE IS section-name-1 section-name=-2
) THROUGH

USING file-name-2

. 7
()
THRU
OUTPUT PROCEDURE IS section-name-3 } section-name=-4
: THROUGH

GIVING file-name~3

Syntax Rules:

1. File-name-l must be described in a sort-merge file description entry
in the Data Division. Each data-name must represent data items
described in records associated with file-name-1.

2, Section-name~l1l represents: the ' name of an input procedure.
Section-name~3 represents the name of an output procedure.

3. File-name-2 and file-name=-3 must be described in a file description
entry (not in a sort-merge file description entry) in the Data
Division. The actual size of the 1logical record(s) described for
file-name-~2 and file-name-3 must be equal to the actual size of the
logical record(s) described for file-name-1l. If the data descriptions
of the elementary items that make up these records are not identical,
the corresponding records must be described in such a manner to cause
equal amounts of memory to be allocated for the corresponding records.

7-96 _ DD25

General

l.

- SORT

The data-names may be qualified.
The words THRU and THROUGH are equivalent.
Rules:

The KEY data-names are listed from left to right in the SORT statement

in order of decreasing significance without regard - to how they are

divided into KEY phrases. In the format, data-name-1l is the major key
and data-name-2 is the next most significant key.

a. When an ASCENDING phrase is used, the sorted sequence will be
from the lowest to the highest value of KEY according to. the
rules for comparison of operands in a Relation condition.

b. When a DESCENDING phrase is used, the sorted sequence will be
from the highest to the lowest value of KEY according to the
rules for comparison of operands in a Relation condition.

When more than one record description entry appears in a sort file

description, the key data items need be described only in one of the

record description entries. Each key data item must occur in every
data record of the sort file and must have the same relative position
and actual format in all records. The PICTURE and USAGE of a given key
data item must be the same for all records in the sort file. If a key
data item is synchronized or Jjustified, it must be identically
synchronized or justified in all records in the sort file. The key
data item descriptions must not contain an OCCURS clause or be
subordinate to entries containing an OCCURS clause. Keys must be data
items that do not require subscripting or indexing. The dominant -
record size is set equal to the size of the first record described in
the sort file description entry (SD) in the Data Division. (See File
Ordering - Sort and Merge in the COBOL User's Guide.)
If INPUT PROCEDURE is specified, control is passed to the input

procedure before file-name-1l is sequenced by the SORT statement. The

“compiler inserts a return mechanism at the end of the last section 1in

the input procedure; when control passes from the last statement in
the input procedure, the records that have been released to

file-name-1 will be sorted.

The input procedure, if present, must consist of one or more sections
which must be written consecutively, and do not form a part of any
output procedure. The input procedure must include at least one
RELEASE statement in order to transfer records to the sort file.
Control must not be passed to the input procedure except when a
related SORT statement is being executed. The input procedure can
include any procedures required to select, create, or modify records.
Three restrictions apply to procedural statements within the input
procedure: ’

a. The in ut“proéedure must contain no SORT statements ©or MERGE:
ements. : : ' . S

7-97 . , DD25

SORT

SORT

b. The input procedure must contain no transfers of control to
points outside the input procedure. That is, ALTER,. GO TO, and
PERFORM statements in the input procedure are not permitted to
refer to procedure-names outside the input procedure, COBOL
statements that cause an implied transfer of control to USE
procedures are allowed.

c. The remainder of the Procedure Division must contain no transfers
of control to points inside the input procedure. That is, ALTER,
GO TO, and PERFORM statements in the remainder of the Procedure
Division are not permitted to refer to procedure-names within the
input procedure.

If the USING phrase is specified, all the records in file-name-2 are
transferred automatically to file-name-l. When the SORT statement is
executed, file-name-2 must not be open., The SORT statement will
automatically perform the necessary OPEN, READ, and CLOSE functions
for file-name-2, File-name-2 must have a file description entry (not a
sort~merge file description entry) in the Data Division and must have
the same file properties. The data records of file-name-2 and their
descriptions must be identical to those of file-name-1.

If OUTPUT PROCEDURE is specified, control passes to the output
procedure of the sort after file-name-1 has been sequenced by the SORT
statement. The compiler inserts a return mechanism at the end of the
last section in the output procedure. When control passes from the
last statement in the output procedure, the return mechanism provides
for termination of the sort and then sends control to the next
statement after the SORT statement. Before entering ‘the output
procedure, the 'sort can select the next record in sorted order when
requested. The RETURN statements 1in the output procedure are ' the
requests for the next record.

The output procedure, if present, must consist of one or more sections
which must be written consecutively, and do not form a part of any
input procedure. The output procedure must include at least one- RETURN
statement in order to make sorted records available for processing.
Control must not be passed to the output procedure except when a
related SORT statement is being executed. The output procedure can
consist of any procedures required to select, modify, or copy the
records which are being returned, one at a time in sorted order, from
the sort file. Three restrictions apply to procedural statements

within the output procedure: '

a. The output procedure must contain no SORT statements or MERGE
statements.

b. The output procedure must contain no transfers of control to
points outside the output procedure. That is, ALTER, GO TO, and
PERFORM statements in the output procedure are not permitted to
refer to procedure-names outside the output procedure. COBOL
statements that cause an implied transfer of control to USE
procedures are allowed.

c. The remainder of the Procedure Division must contain no transfers
of control to points inside the output procedure. That is, ALTER,
GO TO, and PERFORM statements in the remainder of the Procedure
Division are not permitted to refer to procedure-names within the

- output procedure.

7-98 : DD25

SORT

If the GIVING phrase is specified, all the sorted records 'in
file~-name~1 are automatically transferred to file-name-3 as the
implied output procedure for this SORT statement. When the SORT
statement is executed, file-name-3 must not be open. File-name-3 is
automatically opened before transferring the records and .a CLOSE
file-name~3 is executed automatically after the last record in the

" sort file is returned. File-name-3 must have a file description entry

(not a sort-mérge file description entry) in the Data Division, with
the same file properties. The data records of file-name-3 and their
descriptions must be identical to those of file-name-l.

Segmentation, as defined in the COBOL User's Guide, can be applied to
programs containing the SORT statement. However, the following
restrictions apply: : .

a. If a SORT statement appears in a section that is not in an
independent segment, then any input procedures or output
procedures referenced by that SORT statement must appear:

1. Totally within nonindependent segments, or
2. Wholly contained in a single independent segmeht.

b. If a SORT statement appears in an independent segment, then any
input procedures or output procedures referenced by that SORT
statement must be contained:

1. Totally within nonindependent segments, or

2. Wholly within the same independent segment.

Special Considerations:

2/717

7-99 . DD25A

STOP

STOP

The STOP statement is used to halt the execution'of the run unit either
temporarily or. permanently. : ' o

General Format:

STOP {

literal}

RUN

Syntax Rule:

1.

General

1.

The literal may be numeric, nonnumeric, or any figurative constant
except ALL.,

Rules:

If the RUN option is wused, the standard termination procedure is
instituted for the current run unit.

If the STOP literal option is used, the literal is displayed upon the
console display mechanism. When the operator acknowledges the message,
continuation of the object program begins with the execution of the
next statement in sequence., The literal used must conform to the rules.
for operands given for the DISPLAY statement, This option is not
recommended except in unusual circumstances and should never be used
to terminate the execution of the program.

If a STOP RUN statement appears in an imperative sentence, it must

appear as .the only or last statement in a sequence of
imperative-statements.

7-100 . ‘ " DD25

SUBTRACT : ’ ' - v SUBTRACT

The SUBTRACT statement is used to subtract one, or the sum of two or ‘more,
numeric data items from one or more items, and set the values of one or more

items equal to the results.

Format 1:

. literal-1 , literal-2
SUBTRACT cer

identifier-1 , identifier-2
FROM identifier-m [ROUNDED]
L identifier-n [ROUNDED]] cee

[ON' SIZE ERROR imperative-statement]

Format 3:

: literal-1l , literal-2 '
SUBTRACT cee
identifier-1 , identifier-2
literal-m
FROM
identifier-m
GIVING identifier-n [ROUNDED]
PN SIZE ERROR imperative-stateménq
Format 3:

CORR

SUBTRACT l identifier-1

CORRESPONDING

FROM identifier=-2 [ROUNDED]

[ON SIZE ERROR imperative—statemenf]

7-101 : : ' - DD25

SUBTRACT

SUBTRACT -

Syntax Rules:

1.

Each identifier must refer to a numeric elementary item except:

a. In Format 2, where the identifiers that appear only to the right
of the word GIVING may refer to a data item that contains editing
symbols. ’ '

b. In Format 3,‘where each identifier must refer to a group item,

The maximum size of each operand is 18 decimal digits. The composite
of operands (the hypothetical data item resulting from the
superimposition of all operands of a given statement, excluding the
data items that follow the word GIVING, aligned on their decimal

‘points) must not contain more than eighteen digits.

CORR is an abbreviation for CORRESPONDING.

General Rules:

1.

In Format 1, all literals or identifiers preceding the word FROM are
added together and this total is subtracted from identifier-m,
identifier-n, etc., and the differences are stored as the new values
of identifier-m, identifier-n, etc.

In Format 2, all literals or identifiers preceding the word FROM are
added together, the sum is subtracted from literal-m or identifier-m,
and the result of the subtraction is stored as the new 'value of
identifier-n, identifier-o, etc.

If Format 3 is used, data items in identifier-1 are subtracted f£from
and stored into corresponding data items in identifier-2,

Refer to the Common Options in Statement Formats paragraph in this
section for the uses of the ROUNDED, SIZE ERROR, and CORRESPONDING
options, and multiple results.

7-102 DD25

TERMINATE

TERMINATE

The TERMINATE statement is used to terminate the processing of a report.

General Formati

TERMINATE

report-name-1 [, report-name-2] cas

ALY

Syntax Rule:

1.

Each report-name specified in a TERMINATE statement must be defined by
a report description entry in the Data Division. .

General Rules:

1.

TERMINATE produces all the control footings associated with this
report as if a control break had just occurred at the highest level,
i.e., FINAL control break, and completes the Report Writer functions
for the named reports. The TERMINATE statement also produces the last
PAGE FOOTING and/or REPORT FOOTING report groups for the named
reports.

Appropriate PAGE and OVERFLOW HEADING and/or FOOTING report groups are
prepared in their respective order for the report description entry.

A second TERMINATE for a particular report may not be executed wunless
a second INITIATE statement has been executed for the report-name. If
a TERMINATE statement has been executed for a report, a GENERATE
statement for that report must not be executed unless an intervening
INITIATE statement for the report is executed.

If the ALL phrase is specified, all reports defined in the Report

Section of the Data Division that were initiated are terminated.

TERMINATE does not close the file with which the report is associated.
A CLOSE statement for the file must be executed after the TERMINATE
statement has been executed. The TERMINATE statement performs Report
Writer functions for individually described report programs analogous
to the input-output functions performed by the CLOSE statement for
individually described files.

SOURCE clauses in TYPE CONTROL FOOTING FINAL or TYPE REPORT FOOTING

report groups refer to the values of the items during execution of the
TERMINATE statement. : .

7-103 v , DD25

USE , : S USE

The USE statement specifies procedures for input-output label and error
handling that are in ‘addition to the standard procedures provided by the
input-output system. It is also used to specify Procedure Division statements
that are executed just before a report group named in the Report Section of the
Data Division is produced.

Format 1:

file~name~-1
» ‘ ' , file-name-2] ...
USE AFTER STANDARD ERROR PROCEDURE ON INPUT ’ T
- OUTPUT
5
Format 2:
BEFORE BEGINNING REEL
USE STANDARD . . ‘ FILE
T |AFTER ENDING AUNIT
file-name-1
R file-name-Z] e
LABEL PROCEDURE ON INPUT .
OUTPUT
I-0

e

Format 3:

USE BEFORE REPORTING identifier-1

Syntax Rules:

1. A USE statement, when present, must immediately follow a section
header in the declarative portion of the Procedure Division and must
be followed by a period followed by a space. The remainder of the
section must consist of one or more procedural paragraphs that define
the procedures to be used.

2. If the file-name phrase is used as a part of Format 2, the file

description entry for each file-name must not specify a LABEL RECORDS
" ARE OMITTED clause.

7-104 - | DD25

USE

General

l.

USE

In Format 3, identifier-l represents a nondetail report group named in
the Report Section of the Data Division. An identifier must not appear
in more than one USE statement.
No Report Writer statement (GENERATE, INITIATE, or TERMINATE) may be
written in a procedural paragraph or paragraphs following the USE
sentence in the declarative portion. '
The USE statement itself is never executed; rather, it defines the
conditions calling for the execution of the USE procedures.
If the words BEGINNING or ENDING are not included. in Format 2, the
designated procedures are executed for both beginning and ending
labels.
If neither A UNIT, REEL, nor FILE is included, the designated
procedures are executed for both REEL and FILE labels. The REEL phrase
is not applicable to mass storage files.
The same file-name can appear in a different specific arrangement of a
format. However, the appearance of a file-name in a USE statement must
not cause the simultaneous request for execution of more than one USE
declarative, ‘
No file-name may represent a sort file or merge file.
Rules:
The designated procedures are executed by the input-output system at
the appropriate time as follows:
a. In Format 1, after completing the standard input-output error
routine,. '
b. In Format 2, before or after a beginning or ending 1input label
check procedure is executed.
Before a beginning or ending output label is created.
After a beginning or ending output label is created, but before
it is written.
Before or after a beginning or ending input-output label check
procedure is executed.
None of the Format 2 procedures will be performed for files that
are being actively used as the USING or GIVING file in a SORT
statement or a MERGE statement.. ‘
In Format 2, within the procedures of a USE declarative in which the

USE statement specifies a phrase other than the file-name-1 phrase,

- yeferences to common label items need not be qualified by a file-name.

A common label item is an elementary data item that appears in every

‘label record of the program, but at the same time does not appear in

any data record of this program. Furthermore, a common label item must
have the same name, description, and relative 9051t10n in every label
record.

7-105 : ' : ' DD25

USE

USE

If the INPUT, OUTPUT, or I-O option is specified, the USE procedures .
do not apply, respectively, to input, output, or input-output files:
that are described with the LABEL RECORDS ARE OMITTED clause.

In Format 3, the designated procedures are executed by the Report
Writer just before the named report group is produced, regardless .of
page,; overflow, or control break associations with report groups. The
report group may be any type except DETAIL.

Within a USE procedure, there must be no reference to nondeclarative
procedures, Conversely, in the nondeclarative portion, there must be
no reference to procedure-names that appear in the declarative
portion, except that PERFORM statements may.refer to a USE declarative
having Formats 1, 2, or 3, or to the procedures associated with such a
USE declarative. :

"xOCedures must not execute any OPEN, CLOSE, SEEK,
'Yj U?ON SYSOUT, 0:~’ACCEPT ~FROM GIN

7-106 ‘ ; DD25

WRITE | | WRITE

The WRITE statement is used to place a logical record on an output file.
For mass storage files, the = WRITE statement allows a specified
imperative-statement to be executed if the contents of the associated actual key
data item are found to be invalid.

Format 1l:
WRITE record-name '[FROM identifier-l]

BEFORE identifier-2 LINES
ADVANCING) integer LINES
AFTER O TOP OF P,

f%nemonic-namé K
Format 2:
WRITE record-name Eggggyidentifier-l]
INVALID KEY imperative-statement
Syntax Rules:

1. The record-name must not represent a sort file or a mergeafile;

2. The record-name is the name of a logical record in the Flle Section of
the Data Division and may be qualified.

3. Identifier-1 and the record area associated with record-name must not
be associated with the same storage area.

the ADVANCING phrase is specified, the file must be a551gned with
STING' phrase in the SELECT sentence.

5. When identifier-2 is used in the ADVANCING phrase, it must be the name
of a numeric elementary item described with no positions to the right
of the assumed decimal point.

6. When integer is used in the ADVANCING phrase, it must have a positive
or a zero value.

7. When mnemonic-name is used in the ADVANCING phrase, any mnemonic-name
defined 1in the SPECIAL-NAMES paragraph is acceptable, although the
mnemonic-name associated with the TOP IS phrase is preferred.

General Rules:

1. An OPEN statement must be executed for a file prior to the execution
of the first WRITE statement for that file. ’

2/717 . ' o . 7-107 ol DD25A

WRITE - ' R o , . WRITE

2. The logical record released by the execution of the WRITE statement is
no longer available unless X 1€ 6 :

& , or the asso iated file is named

a SAME RECORD AREA phrase. The logical record is also available to
. the program as a record of other files that are contained in the same
SAME RECORD AREA phrase as the associated output . file.

3. If the FROM phrase 1is specified, the value of identifier-1 is
implicitly moved to record-name (the current output record area).
Moving takes place in accordance with the rules for the MOVE statement
without the CORRESPONDING phrase. After the WRITE statement is
executed, the information in the identifier-l area is available but
the information in the record-name area is not available.

Format 1 (Serial Files):

1. For serial files assigned to magnetic tape, or for serial files that
utilize the device independence feature of linked mass storage file
space, the WRITE statement performs the following operations after
recognizing an end-of-reel condition:

a. The standard ending reel label procedures, and the user's ending
reel label procedures, if specified by the USE statement. The
order of execution of these procedures is determined by the USE
statement.

b. A reel swap. (Reel swap includes rewinding the completed reel
and returning it to the standby condition.) .

C. The standard beginning reel label procedures, and the user's
beginning reel 1label procedures, if specified by the USE
statement. The order of execution of these procedures is
determined by the USE statement.

2/77 , 7-108 - ‘ » ‘ DD25A

WRITE , _ WRITE.

2. . The ADVANCING phrase prov1des control of the vertical p051tlon1ng of
= hrase mustf

produce single spacing when the file is assigned with the FOR LISTING“
in the SELECT sentence. If the ADVANCING phrase is specified,
the automatic advancing is overridden as follows:

a. If identifier-2 is used, the listing is advanced the number of
lines equal to the current value associated with identifier-2.

b. If integer is used, the value of integer determines the number of
lines the listing will be advanced.

d. If the mnemonic-name associated with the TOP IS phrase in the
SPECIAL~-NAMES paragraph is used, the listing is advanced to the
top of the next page.

Format 2 (Mass Storage Files):

1. For files processed in the sequential-access mode, - the
imperative-statement in the INVALID KEY phrase is executed when the
end of the file is reached and an attempt is made to execute a WRITE
statement for that file. The end of the file is defined as being the
physical end of the allocated mass storage unit.

2. For files processed in the random~access mode, the WRITE statement
implicitly performs the function of the SEEK statement for a specific
mass storage record. The imperative-statement in the INVALID KEY
phrase 1is executed when the contents of the actual key being used to
locate the mass storage record are found to be invalid. When an
INVALID KEY condition exists, no writing takes place and the
information in the record area is available for additional processing.

2/71 7-109 e . ' DD25A

SECTION VIII

THE COBOL LIBRARY

DESCRIPTION OF THE COBOL LIBRARY

The library function provides the capability for specifying text that is to
be copied from a library file. The COBOL library contains text that is available
to a source program at compilation time. The effect of the compilation of
library text is the same as if the text were actually written as part of the
source program. '

Anr entry in the COBOL library may contain source program text for the
Envirorment Division, the Data D1v1s1on, and the Procedure Division. The library
is accessed using the COPY clause or the COPY statement. ’

COBOL library text is placed on the COBOL library as a functlon independent
of the COBOL proqram.

COPY Clause

The COPY clause is used in association with a file-name or data-name in FD,
SD, RD, record descrlptlon, and report group description entries. The COPY
clause is used the compiler to duplicate text from a llbrary into the
source program 1Sewhere ~in the Data DlVlSlOn o ’

Format 1l:

COPY library-name

: word-2
REPLACING word-1 BY identifier-1}
literal=-1
word- ' ,
, word-3 - BY identifier=-2 cee |
- literal-2 -

Format 2:

5 '1eve1 indicator : 5 o
o 1 data-name-1 COPY data-name~2 [FROM LIBRARY] .
level-number T ' : : R

8-1 = ' DD25

Syntax Rules:

Format‘l:

1.

Format 2:

1.

When the COPY clause is specified, the library-name is required. The
library-name must be identical with the name associated with the
desired text on the library. ' :

In Format 1, a word is any COBOL word and may be one of the following:

° Condition—name
o Data-name
° File=-name
° Mnemonic-name

In Format 1, the COPY clause may be specified only at the 0l level in

data descrlptlon entries and report group description entries.

';When the information to be duplicated is on the 1library, the FROM
_LIBRARY phrase must be included. :

‘When the FROM LIBRARY phrase is used, the name of the level 01 llbrary
‘entry must be included in the quallflcatlon of data-name-2 unless
.data=-name-2 is itself a level 01 entry. This is required even if the

level 01 library entry name is not necessary to make the reference’
unlque.

General Rules:

Format l:

1.

Format 1 of the COPY clause represents the American National Standard
COPY function and is engaged by including the LIBCPY option in the
variable field of the $ COBOL card, The LIBCPY option may appear in

‘any order 1n relation to other control card options.

The llbrary text is copied from the library and the result of the
compilation is the same as if the text were actually a part of the
source program.

The .COPY clause is printed on the annotated = source program listing

preceding the library text to which it refers,

The text contained on the library must not contain a COPY clause.
The COPY clause may appear:
a. In any of the paragraphs of the Environment Division.

b. In any level indicator entrles or in an 01 1evel—number entry in
the Data Division. ~ : ,

1 8-2 : DD25

lo.

11.

Format 2:

No other clause may appear in the same entry as the COPY clause with
the exception of the Report Writer CODE clause which, if specified,
must precede the COPY clause when a report descrlptlon (RD) entry

to be copied.

The copying process is terminated by the end of the library text.

is

If format or syntax errors are encountered in source lines copied from
: copied
text contains source errors, the line number references given with the

a library, the compilation results are unpredictable. If = the

total errors message that follows the Llast source line
compilation listing may not agree with the alter numbers
compilation listing.

If the REPLACING phrase is used, each occurrence of word-1,
etc., in the text being copied from the library 1is replaced

“in the
in the
word-3,

. by the

word, 1dent1f1er, or literal associated with it in the REPLACING

phrase.

Use of the REPLACING phrase does not alter the text as it appears

the library.
The COPY clause is written in any of the following forms:
a. Environment Division -

SOURCE-COMPUTER. copy-clause.
OBJECT-COMPUTER. copy-clause.
SPECIAL-NAMES. copy=-clause.
FILE-CONTROL. copy-clause.
I-0-CONTROL. copy-clause.

b. Data Division, File Section -
FD file-name copy-clause.
SD sort-file-name copy-clause.
01 data-name copy-clause.
c. Data Division, Working-Storage Section -
01 data-name copy-clause.

d. Data Division, Report Section =~

RD file-name CODE mnemonic-name] copy-clause,
0l data-name Copy-clause.

Format 2 of the COPY clause represents the HIS COPY function

and

on

is.

engaged by including the COPY option in the variable field of the

other control card options.

 Tke;HI$'COPY feature provides two options:

Division.

£ a source program.

~ § COBOL card. The COPY option may appear in any order 1n relation

"Ipternal copy that permits duplication of text. within the

to

Data

1 Library copy, which is invoked by the FROM LIBRARY phrase,
‘permits text to be copied from a library into the Data Division

DD25

1evel~number of

umber is egual to ‘or less than the
3ame-2 entry, or whose level-number is 66,

ere are entries subordinate to data-name-l, it is the user's
'¢ibllity to ensure that the resulting hierarchical structure is
‘If the level-number of data-name-l is 77, data-name-2 must be

entary item,

, level-numbers of data-name-l and data-name-2 are both 01, any

4.
ev 1 66 entriesg associated with the data-name-2 record description
rted by . the dupllcatlon process. '
5. ame-2 may be quallfled but not subscrlpted
6. ~OPY clause can be wxltten in any of the follow1ng forms.

‘a-Divlsxon, Flle Sectlon -

D file-name - copy-clause.
8b. sort-file-name copy-clause,
Teével-number data-name copy-clause.

Data Division, Working-Storage Section ~
level-number data-name copy-clause.
c;‘5;ﬁata Division, Report Section -

RDY report-name [CODE mnemonlc—name] copy-clause.
I“Velnnumber data“name copy-clause.- '

7. The copylng pnocess is termlnated by the appearance of the . Procedure
.on headex. :

NOTE: Refer to the COBOL User's Guide for information on the use of the

COPY clause with compressed source deck options.

DD25

COPY Statement

The COPY statement is used in the Procedure Division of a COBOL source

program to incorporate paragraph procedures from the library into
program with the capability for word substitution as text is copied.

Format 1:.

paragraph-name. ' I

section-name SECTION [priority-number]

COPY library=-name

word=2
REPLACING word-1l BY ({literal-l
™ lidentifier-1
word=-4
, word-3 BY literal-2 cie .
’ identifier-2

Format 2:

me. COPY library-name FROM LIBRARY..

the

source

NOTE: Paragraph-hame and section-name are not part of the ' statement

syntax; they are shown only for clarity.
Syntax Rules:

Format 1:

1. When the COPY statement is specified, the 1library-name is required.
The library-name must be identical to the name associated with the

desired text on the lib:ary.

2. In Format 1; a word is any COBOL word and may be one of the following:

o Condition-name
(B Data-name .

‘o bFile-name

) ﬁnemonic-name
® x Procedure-name

DD25

3.

When the COPY statement is used, it must be the first statement in the

- paragraph or section.

' Format 2:

the information to be duplicated is on the library, the FROM
Y phrase must be included,

fh«namesﬁdefined in the HIS COPY library must be unique.

General Rules:

Format iz

- 10.

1.

“Format 1 of the COPY statement represents the American National

Standard COPY function and is engaged by including the LIBCPY option
: Fvariable_flel& of the $ COBOL card. The LIBCPY option may
r in any order in relation to other control card options.

The library text is copied from the library and the result of the
compilation is the same as if the text were actually a part of the
source program.

The COPY statement is printed on the annotated source program 1isting
preceding the library text to which it refers.

The text contained on the library must not contain a COPY statement.

The COPY statement may appear only in the Procedure Division.

No other statement may appear in the same entry as the COPY statement.

The copying process is terminated by the end of the library text.

If format or syntax errors are encountered in source lines copied from

a llbrary, the compilation results are unpredictable., If the : copied
=} ing source errors, the line number references given with the

sage that follows the last source line in the
ngamay not agree ‘with the alter numbers 1n “the

If the REPLACING phrase is used, each occurrence of word-1l, word-3,

"etc., in the text being copied from the library is replaced by the

word, identifier, or literal associated with it in the REPLACING
phrase.

- Use of the REPLACING phrase does not alter the text as it appears on

the library.

The COPY statement cannot be used to duplicate section-names.

8-6 i .DD25

12,

Format 2:

1.

NOTE:

,library 1nto ‘the Provedure Division of a source pIOgra
 The HIS COPY statement is- wrltten in the foll WLng‘fo

p 'cedure Division =

The COPY statement is written in the following form:
Procedure Division -
paragraph-name.

section-name SECTION [prioritanumber] e copy-stateme: z.

v?Format 2 of the COPY statement represents the HIS COPY functlon and is
‘engaged by including the COPY option in ‘the variable field of the
$.COBOL card. The COPY option may appear in any order in relatlon to
'other control card options.

In the HIS COPY function, llbrary copy, whlch is invoked by the FROM

LIBRARY phrase of the COPY statement, parmlts:text to be copled from a

Refer to the COBOL User's Guide for information on the use of the
COPY statement with compressed source deck options.

8=7 v — 'DD25

APPENDIX A

RESERVED WORDS

Reserved words are words that may be used in COBOL source programs but may
not appear as user-defined words. The two types of reserved words are:

1. .

Keywords

A keyword is one whose presénce is required when the format in which
the word appears is used in a source program. Within the formats shown

" in this manual, keywords are uppercase and underllned The three types

of keywords are:

a. Verbs, such as ADD, READ, and ENTER.

' b. Required words, which appear in statement and entry formats.

c¢. Words having a specific functlonal meanlng, such as NEGATIVE,

SECTION, TALLY, etc.

Optional Words

Within each format, uppercase words that are not wunderlined are
optional words. The presence or absence of optional words within a
format does not alter the compiler's translation, Misspelling of an
optional word, or using another word in its - place, however, is not

" allowed.

The following list contains the COBOL reserved words; shadihg indicates
nonstandard (American National Standard) reserved words,

A-1 o : DD25

- ACTUAL

- AT

COMPUTE
CONFIGURATION

CONTROL (S)
COPY

CORR

ADD
ADDRESS
ADVANCING
AFTER

DATE~COMPILED

DATE-WRITTEN

ALTERNATE

AREA(S)
ASCENDING

ASSIGN

AUTHOR
DECIMAL-POINT

2/77

FD

FILE

FILE-CONTROL
FILE-LIMIT(S)

"FILLER

FINAL

FOOTING

'~ GENERATE

GREATER

INDICATE

INITIATE
INPUT
INPUT-OUTPUT

DD25A

INSTALLATION
INTO

INVALID

IS

JUST
JUSTIFIED

KEY (S)

LEADING

LINE-COUNTER

&3

LOW-VALUE (S)

MODE
MODULES
MOVE-

NEGATIVE
NEXT
"NO
NOT
NOTE
NUMBER

OFF

OMITTED

2/77

PAGE ,
PAGE-COUNTER
PERFORM

PF

PH

POSITIVE

D

QUOTE (S)

RANDOM

REDEFINES

REPLACING

" A=3

REPORT (S)
REPORTING
RERUN
RESERVE
RESET

REVERSED
REWIND

RF

RH
RIGHT
ROUNDED
RUN

SAME

SD
SEARCH
SECTION
SECURITY
SEEK
SEGMENT-LIMIT
SELECT

. AVING
_SPECIAL-NAMES
‘spEED

STAN

DARD

SUBTRACT
SUM

DD25A

TALLY
TALLYING
TAPE

THROUGH
_THRU

TYPE

VARYING
WHEN

WITH

- WORDS
WORKING-STORAGE
WRITE

ZERO (S)
ZEROES

LAV 2 %1 +

2/71 : A-4 DD25A

INDEX

$ COBOL
$ COBOL

$ LOWLOAD
$ LOWLOAD

6000 WITH EIS
6000 WITH EIS
6000 WITH EIS
6000 WITH EIS

ABBREVIATIONS
abbreviations

ABORT ROUTINE
abort routine

ABSOLUTE
absolute line number

ACCEPT
ACCEPT
ACCEPT
ACCEPT MESSAGE
ACCEPT statement

ACCESS :
Access and Processing Techniques
Random Access with Sequential Processing
Sequential Access with Sequential Processing

ACCESS MODE

ACCESS MODE IS RANDOM -
ACCESS MODE IS SEQUENTIAL

ACTUAL KEY

ACTUAL KEY

ACTUAL KEY

ACTUAL KEY IS phrase
ADD

ADD statement
ADDRESS

ADDRESS
ADDRESS

ADVANCING :
ADVANCING phrase

7-107

DD25

ALIGNMENT
alignment
Standard Alignment Rules .
Standard Alignment Rules

ALL
ALL literal
ALL option
ALL phrase’
ALL phrase
SEARCH ALL

ALPHABETIC
ALPHABETIC
Alphabetic
Alphabetic
alphabetic
class alphabetic

ALPHANUMERIC
Alphanumeric
Alphanumeric
alphanumeric
class alphanumeric

ALPHANUMERIC EDITED
Alphanumeric Edited
Alphanumeric Edited
alphanumeric edited

ALTER
ALTER
ALTER
ALTER statement

ALTERNATE AREAS
ALTERNATE AREAS phrase

APPLY
APPLY BLOCK SERIAL NUMBER ON phrase
APPLY PROCESS AREA ON phrase

APPLY SYSTEM STANDARD FORMAT ON phrase
APPLY VLR FORMAT phrase

AREA
SAME AREA phrase
SAME RECORD AREA
SAME RECORD AREA phrase
SAME SORT AREA phrase
SAME SORT-MERGE AREA phrase

ARITHMETIC
‘Arithmetic Operation Symbols
Arithmetic Operators
Arithmetic Statements
Multiple Results in Arithmetic Statements

ARITHMETIC-EXPRESSIONS
ARITHMETIC~-EXPRESSIONS
Formation and Evaluation Rules for Arithmetic-Expressions

ASCENDING
ASCENDING
'ASCENDING phrase
ASCENDING phrase.

6-66
3-10
7-68

5-25
5-25
5-25
5-26

5-26
7-107
5-26
5-26
5-26

DD25

ASSIGN
ASSIGN phrase

AT END

: AT END
AT END
AT END phrase
AT END phrase

AUTHOR
AUTHOR PARAGRAPH

BCD
BCD option

"BEFORE REPORTING

BEFORE REPORTING
BEFORE REPORTING

BEGINNING-FILE-LABEL
BEGINNING-FILE-LABEL

BEGINNING-TAPE-LABEL
BEGINNING-TAPE~LABEL

BINARY
binary high density

BLANK COMMON
BLANK COMMON phrase

BLANK WHEN ZERO
BLANK WHEN ZERO clause

BLOCK
BLOCK option

BLOCK CONTAINS
BLOCK CONTAINS clause

BLOCK SERIAL NUMBER v .
APPLY BLOCK SERIAL NUMBER ON phrase

BORROW MEMORY
Borrow Memory Control

BORROW TAPES _
Borrow Tapes Control

BRACKETS AND BRACES
Brackets and Braces

CALL
CALL
CALL
CALL statement
CALL USING

 CHARACTER SET
" character set

2-12
7-88
7-85
7-90

7-56
7-49

- 7-28

7-51

DD25

CHARACTER-STRING
character-string
‘character-string ‘
PICTURE Character-Strings

CHARACTERS
CHARACTERS option
Special Characters
' WORDS, CHARACTERS, or MODULES
WORDS, CHARACTERS, or MODULES

‘CHECKPOINT
' Checkpoint Control
checkpoint dump

CLASS
CLASS CONDITION
"class alphabetic
‘class. alphanumeric
class numeric

'CLOSE
CLOSE
CLOSE
CLOSE

CLOSE
CLOSE statement

Standard Close File
Standard Close Reel

COBOL
COBOL FUNCTIONAL CONCEPTS
ENTER COBOL

COBOL LIBRARY
DESCRIPTION OF THE COBOL LIBRARY
USING A COBOL LIBRARY :

CODE
CODE
CODE
CODE clause

COLLATE COMMERCIAL
COLLATE COMMERCIAL option

COLLATING SEQUENCE
commercial collating sequence

collating sequences

COLLATION :
' Output File Collation Control

' COLUMN NUMBER
COLUMN NUMBER clause

COMMA
_ comma.
~period, comma, or semicolon
COMMENT
Comment Lines

COMMENT~-ENTRY
comment-entry

COMMUNICATION-DEVICE
COMMUNICATION-DEVICE
COMMUNICATION-DEVICE
COMMUNICATION-DEVICE

COMPILE PHASEl ONLY WITH SOURCE ERRORS.

COMPILE PHASEl ONLY WITH SOURCE ERRORS option

COMPILER-DIRECTING)
Compiler-Directing Sentence Execution

Compiler-Directing Statements and Sentences

COMPUTATIONAL 4
COMPUTATIONAL (-1,-2,-3)

COMPUTATIONAL-3

COMPUTATIONAL~3 PACKED SYNCHRONIZED
USAGE COMPUTATIONAL-3

COMPUTE .
COMPUTE statement

CONCEPTS
COBOI, FUNCTIONAL CONCEPTS
LANGUAGE CONCEPTS
Record Concepts

CONDITION
CLASS CONDITION
CONDITION-NAME CONDITION
IF condition
OVERFLOW condition
PAGE condition
RELATION CONDITION
SIGN CONDITION
SWITCH-STATUS CONDITION

CONDITION-NAME
CONDITION~NAME CONDITION
Condition-Name Rules
CONDITION-NAMES

CONDITIONAL
Conditional Sentence Execution
Conditional Statements and Sentences

CONDITIONAL VARIABLE
conditional variable
conditional variable
conditional variable
conditional variable -

CONDITIONS o
Abbreviated Combined Relation Conditions
CONDITIONS
Compound Conditions
Evaluation Rules for Conditions
Simple Conditions

CONFIGURATION

CONFIGURATION SECTION IN THE ENVIRONMENT DIVISION

CONSOLE
. CONSOLE
CONSOLE
" CONSOLE

. 5-10
S 7-24

7-40

5-10
7-38
7-21

DD25

CONTROL

- Borrow Memory Control
Borrow Tapes Control
Checkpoint Control
CONTROL FOOTING
CONTROL FOOTING
CONTROL HEADING
CONTROL HEADING
Error Journal Control
.FLR Mode Control v
Input Device Positioning Control
line control
Memory Assignment Control
Multiple Reel File Control
Output Device Positioning Control
Output File Collation Control
Output Order Control
special control techniques
TYPE CONTROL FOOTING
TYPE CONTROL FOOTING
TYPE CONTROL FOOTING
TYPE CONTROL HEADING
transfer control
transfer of control
‘transfers of control
transfers of control

CONTROL BREAK
control break
control break

CONTROLS
CONTROL (S) clause

COPY
: COPY clause
COPY clause
COPY library-name phrase
COPY library-name phrase
COPY option
COPY option
COPY option
COPY statement
COPY statement

CORRESPONDING
CORRESPONDING
CORRESPONDING Option
' CORRESPONDING phrase

COUNTERS
SUM counters

CURRENCY :
currency symbol

CURRENCY SIGN
CURRENCY SIGN IS literal option

‘CURRENT-DATE
" current-date

Prord UL
Ul O~

\J@O)ODR;JUIU!(DO\
WU W NN
(6]

7-101
7-17
7-67

. DD25

DATA
Concept of Classes of Data
hierarchy of data
low-volume data
low-volume data
rules for positioning data
subdivision of data-

DATA DESCRIPTION

CONCEPT OF COMPUTER-INDEPENDENT DATA DESCRIPTION
Data Description - Complete Entry Skeleton

DATA DIVISION
Data Division Entries

DESCRIPTION OF THE DATA DIVISION

FILE SECTION IN THE DATA DIVISION
Organization of the Data Division

REPORT SECTION IN THE DATA DIVISION :
WORKING-STORAGE SECTION IN THE DATA DIVISION

DATA ITEM
data item

DATA RECORDS
DATA RECORDS
DATA RECORDS clause

DATA-NAME
data-name clause
DATA-NAMES
KEY data~names

DATE-COMPILED
DATE~COMPILED PARAGRAPH

DATE-WRITTEN
DATE-WRITTEN PARAGRAPH

DECIMAL-POINT IS COMMA
DECIMAL-POINT IS COMMA option

DECLARATIVES
DECLARATIVES
Declaratives
END DECLARATIVES

DEFINITIONS
ENTER DEFINITIONS

DELTAS
Deltas

DEPENDING ON
DEPENDING ON
DEPENDING ON phrase

DESCENDING
DESCENDING
DESCENDING phrase

DESCENDING phrase

" DESTINATION

DESTINATION

i-7

3-9

6-34
7-21
7-37
3-10
6-12

DD25

DETAIL
' DETAIL
TYPE DETAIL
TYPE DETAIL
TYPE DETAIL
.DISPLAY
’ DISPLAY
DISPLAY
DISPLAY
DISPLAY (~-1,-2)
DISPLAY statement
USAGE IS DISPLAY

DIVIDE. ,
DIVIDE statement .

DIVISION
DIVISION HEADER
‘Division, Section, and Paragraph Formats

" DOCUMENTATION
program documentation

DOWN BY '
DOWN BY

DUMP
* checkpoint dump

EDITING

‘Editing Rules

Editing Symbols

editing sign

Fixed Insertion Editing
Floating Insertion Editing
Simple Insertion Edit
Special Insertion Ed]
Zero Suppression Editing

EISF ,
EISF or NEISF options

EJECTION
page ejection

ELECT
ELECT SORT OPTIONS phrase

ELEMENTARY ITEM
elementary item
elementary item -
elementary item
elementary item
elementary item
‘elementary item
elementary item
elementary item

ELLIPSIS o
The Ellipsis

. ELSE
ELSE. phrase

6~69
7-57
6-68
6-30

7-68

.5~10

7-100
6-74
7-37
6-73

6-49
3-6

3-10
6-50
6-51
6-50
6-50
6~52

DD25

END
END DECLARATIVES'

END PROGRAM
END PROGRAM

END=-OF~MESSAGE
END-OF-MESSAGE indicator

END-OF~SEGMENT
END-OF-SEGMENT indicator

END~OF~-TRANSACTION
END-OF-TRANSACTION indicator

ENDING-FILE-LABEL
ENDING-FILE-LABEL

ENDING=TAPE-LABEL
ENDING-TAPE-LABEL

ENTER
ENTER COBOL
. ENTER DEFINITIONS
ENTER GMAP
ENTER LINKAGE MODE
ENTER SPACE-SAVING

ENTER statement
ENTER TIME-~SAVING

* ENTRIES ;
Data Division,Entries

ENTRY
' Data Description - Complete Entry Skeleton
File Description - Complete Entry Skeleton
level 01 entry
Report Description - Complete Entry Skeleton
Report Group Description - Complete Entry Skeleton
Sort~Merge File Description - Complete Entry Skeleton

ENTRY POINT
ENTRY POINT
ENTRY POINT
ENTRY POINT phrase
ENTRY POINT USING/GIVING

ENVIRONMENT DIVISION
CONFIGURATION SECTION IN THE ENVIRONMENT DIVISION
DESCRIPTION OF THE ENVIRONMENT DIVISION
INPUT-OUTPUT SECTION IN THE ENVIRONMENT DIVISION
Organization of the Environment Division

EQUALS
EQUALS
- EQUALS
EQUALS
N
ERROR JOURNAL
: Error Journal Control

EXAMINE

EXAMINE
EXAMINE statement

7-29
7-56

DD25

EXIT -
-~ EXIT statement

EXIT PROGRAM
EXIT PROGRAM

EXPONENTIATION
exponentiation.

FD-
FD

FIGURATIVE CONSTANT
figurative constant
figurative constant

Figurative Constants
figurative constants

FILE i

Conceptual Characteristics of a File
FILE

FILE SECTION IN THE DATA DIVISION
Multiple Reel File Control

. Physical Aspects of a File

Standard Close File

Standard File Lock

FILE DESCRIPTION _
File Description - Complete Entry Skeleton
Sort-Merge File Description -~ Complete Entry Skeleton

 FILE-CODES
file-codes

FILE~CONTROL
~ FILE-CONTROL Paragxraph

FILE-LIMITS v
FILE-LIMIT (S) phrase

FILLER
FILLER
FILLER clause

FINAL
FINAL
FINAL
FINAL

FINAL

FIRST]
FIRST option

FIRST DETAIL
FIRST DETAIL

FIXED INSERTION
Fixed Insertion Editing

FLOATING INSERTION
Floating Insertion Editing

FLR MODE
FLR Mode Control

i-10

DD25

FOOTING
CONTROL FOOTING
CONTROL FOOTING
FOOTING
OVERFLOW FOOTING
OVERFLOW FOOTING
PAGE FOOTING
PAGE FOOTING
REPORT FOOTING
REPORT FOOTING
TYPE CONTROL FOOTING
TYPE CONTROL FOOTING
TYPE CONTROL FOOTING

FOR LISTING
FOR LISTING
FOR LISTING

FORMAT
FORMAT CONVENTIONS
Format Punctuation
Reference Format Representation
Division, Section, and Paragraph Formats

FROM LIBRARY
FROM LIBRARY
" FROM LIBRARY phrase

GENERAL FORMAT
Definition of a General Format

GENERAL, RULE
general rule

GENERATE
GENERATE
GENERATE
GENERATE
GENERATE statement

GIN
GIN

GIVING
GIVING
GIVING
GIVING
GIVING phrase
GIVING phrase

GLAPS
GLAPS
GLAPS

GMAP
ENTER GMAP
GMAP coding

GO TO
GO TO

GO TO
GO TO statement

 GROUP INDICATE :
GROUP INDICATE clause

i-11

6-69
7-57
6-43

- 6-69

7-57
6-69
7-103
6-69
7-103
6-62
6-26
6-64

5-22
7-107

3-19
3-21
3-14
3-16

6-64
6-69
7-103
7-57

DD25

GROUP ITEM
group item
group item
group .item
group item
group item
‘group item

';GROUPING
grouping

‘GTIME
. GTIME
GTIME IS phrase

HARDWARE-NAMES
hardware-names
hardware-names

HEADER
DIVISION HEADER

PARAGRAPH HEADER, PARAGRAPH-NAME, AND PARAGRAPH

Procedure Division Header
SECTION HEADER

'HEADING
CONTROL HEADING
CONTROL HEADING
HEADING
OVERFLOW HEADING
OVERFLOW HEADING
OVERFLOW HEADING
PAGE HEADING
REPORT HEADING
TYPE CONTROL HEADING

' HIERARCHY
hierarchy of data

HIGH DENSITY
binary high density

HIGH-VALUE
HIGH-VALUE

-HMS
HMS
HMS option

I-0
I-0
I-O0 phrase

I-0-CONTROL
I-0-CONTROL Paragraph

IDENTIFICATION
IDENTIFICATION or ID

"IDENTIFICATION DIVISION

DESCRIPTION OF THE'IDENTIFICATION DIVISION
Organization of the Identification Division

i-12 .

6-60
6-39
6-19

6-69
7-57
6-43
6-69
7-57
7-103
6-69
6-69
6-26

- DD25

IDENTIFIER
Identifier
identifier
identifier
identifiers

IDS SI1IZE
IDS SIZE phrase

IF
IF condition
IF statement

IMPERATIVE-STATEMENTS
Inperative~Statements and Sentences

INDEX .
USAGE IS INDEX
USAGE IS INDEX

INDEX DATA ITEM
index data item
index data items
index data items

INDEXED BY
INDEXED BY
INDEXED BY
INDEXED BY
INDEXED BY
INDEXED BY phrase

INDEXING
Indexing
Indexing
indexing

Restrictions on Qualification, Subscripting, and Indexing

INITIAL
INITIAL option

INITIATE
INITIATE
INITIATE statement

INPUT
INPUT
INPUT

INPUT DEVICE
Input Device Positioning Control

INPUT LABEL
input label

INPUT PROCEDURE
INPUT PROCEDURE
INPUT PROCEDURE

INPUT-OUTPUT
INPUT-OUTPUT SECTION IN THE ENVIRONMENT DIVISION

INSTALLATION
INSTALLATION PARAGRAPH

DD25

INTO ,
INTO phrase
INTO phrase

"INVALID KEY
INVALID KEY ;
INVALID KEY phrase
INVALID KEY phrase

JUSTIFIED
JUSTIFIED
JUSTIFIED
JUSTIFIED

JUSTIFIED clause

KEY
KEY data-names
KEY phrase
KEY phrases

LABEL.
label checking/writing

LABEL PROCEDURE
LABEL PROCEDURE

‘LABEL RECORDS
LABEL RECORD(S) clause
LABEL RECORD(S) OMITTED
LABEL RECORD (S) STANDARD
LABEL RECORDS
LABEL RECORDS ARE OMITTED
label records

LANGUAGE
LANGUAGE CONCEPTS

LAST DETAIL
LAST DETAIL

- LEADING
LEADING option

LEVEL
level 01 entry
level 66
level 77
level 88

'LEVEL INDICATOR
level indicator

LEVEL-NUMBER

Level-number
level-number
level=-number
level=-number
level=-number
level-number

88

0l
0l, 66, 77, 88
66, 77, or 88
88

Level-Numbers

level-numbers

level-numbers 66, 77, and 88
level-numbers 66, 77, or 88

special level-numbers 66, 77, and 88

i-14

7-68
6-77
3-10

" 6-31

7-63
6-39
7-97

7-104

6-32
6-33
6-33
7-75
7-104
6-2

6-19
6-59
6-58
6-77

6~76
6-34
6-16
6-39
7-18
6-15
3-20
3-17
6-34
7-69
3-9

DD25

LEVELS :
Concept of Levels

LIBCPY
LIBCPY option
LIBCPY option
LIBCPY option

LIBRARY
library text

LIBRARY-NAME

COPY library-name phrase
COPY library-name phrase

LINE
line control

LINE NUMBER
absolute line number
LINE NUMBER
LINE NUMBER
LINE NUMBER clause
relative line number

LINE-COUNTER

LINE-COUNTER
LINE-COUNTER
LINE-COUNTER
LINE-COUNTER
LINE-COUNTER
LINE-COUNTER Rules

LINES
BLANK LINES

CONTINUATION OF LINES
Comment Lines

LINKAGE MODE
ENTER LINKAGE MODE

LITERAL
ALL literal

CURRENCY SIGN IS literal option

Literals
NONNUMERIC LITERALS
NUMERIC LITERALS

LOCK
Standard File Lock
Standard Reel Lock

LOGICAL
Logical Conjunction
Logical Inclusive Or
Logical Negation
logical record
logical record

LOW-VALUE
LOW-VALUE

LOW-VOLUME
low-volume data
low=volume data

i-15

6-35
6-19
6-45
6-35
6-35

7-11
7-11
7-11
6-59
3-8

DD25

LOWER-BOUND
LOWER~-BOUND

LSTOF
'LSTOF

LSTON
LSTON

MEMORY ASSIGNMENT
Memory Assignment Control

MEMORY SIZE
MEMORY SIZE phrase
MEMORY SIZE phrase

MERGE
"~ MERGE
MERGE
MERGE statement
merge files

MERGING
Merging

MESSAGE
ACCEPT MESSAGE

MNEMONIC-NAME
FROM mnemonic-name phrase
UPON mnemonic-name phrase
MNEMONIC-NAMES
mnemonic-names

MODULARIZATION
MODULARIZATION
modularization

MODULES
WORDS, CHARACTERS, or MODULES
WORDS, CHARACTERS, or MODULES

MOVE

MOVE

"MOVE

MOVE

MOVE

MOVE

MOVE

MOVE statement
elementary moves

MULTIPLE FILE
MULTIPLE FILE phrase

MULTIPLE REEL
MULTIPLE REEL option
Multiple Reel File Control

MULTIPLE UNIT .
MULTIPLE UNIT option ;

MULTIPLY
MULTIPLY statement

i-16

7-97
7-88
7-63
5-27

7-58
7-108
7-18
7-85
7-88
7-87
7-67
7-68

DD25

NEGATIVE
-‘NEGATIVE

NEISF
EISF or NEISF options

NEXT GROUP
NEXT GROUP
NEXT GROUP
NEXT GROUP clause

NEXT PAGE
NEXT PAGE phrase
NEXT PAGE phrase

NEXT SENTENCE
NEXT SENTENCE
NEXT SENTENCE phrase

NO DATA
NO DATA phrase

NO REWIND
NO REWIND phrase

NOT
NOT
Use of the NOT Operator

NOTE
NOTE sentence

NUMERIC

class numeric
NUMERIC

NUMERIC LITERALS
Numeric

Numeric

Numeric Operands
numeric

NUMERIC EDITED
Numeric Edited
Numeric Edited
numeric edited

OBJECT PROGRAM
object program

OBJECT-COMPUTER
OBJECT-COMPUTER Paragraph

OCCURRENCE NUMBER
occurrence number
occurrence number

OCCURS
OCCURS
OCCURS
OCCURS
OCCURS
OCCURS
OCCURS
OCCURS
OCCURS ‘clause

Ci-17

6-78
7-69
6-67
7-89
2-9

2-6

6-57
6-38

DD25

OCCURS. . .DEPENDING ON
OCCURS. . .DEPENDING ON

OPEN
~OPEN
OPEN
OPEN
OPEN statement

OPERANDS v
Nonnumeric Operands
Numeric Operands

OPERATOR
Use of the NOT Operator
Arithmetic Operators

OPTIONAL :
OPTIONAL phrase

OPTIONS

COMMON OPTIONS IN STATEMENT FORMATS
EISF or NEISF options

ELECT SORT OPTIONS phrase

OUTPUT _
"~ OUTPUT
OUTPUT

OUTPUT DEVICE
~ Output Device Positioning Control

- OUTPUT FILE
Output File Collation Control

OUTPUT LABEL
output label

OUTPUT ORDER
Output Order Control

OUTPUT PROCEDURE

OUTPUT PROCEDURE
OUTPUT PROCEDURE

OUTPUT PROCEDURE

OVERFLOW
.- OVERFLOW condition
OVERFLOW FOOTING
OVERFLOW FOOTING
OVERFLOW HEADING

OVERFLOW HEADING
OVERFLOW HEADING

OVERLAPPING OPERANDS
Overlapping Operands

OVERLAY
OVERLAY phrase

PACKED DECIMAL
packed decimal
packed decimal

i-18

DD25

PACKED SYNCHRONIZED
COMPUTATIONAL-3 PACKED SYNCHRONIZED

. PADDING
padding

PAGE
PAGE condition
PAGE FOOTING
PAGE FOOTING
PAGE HEADING
page ejection

PAGE LIMITS
PAGE LIMIT (S)
PAGE LIMIT(S) clause
PAGE LIMITS
PAGE LIMITS

PAGE-COUNTER
PAGE~COUNTER
PAGE-COUNTER
PAGE~COUNTER
PAGE~-COUNTER Rules

PARENTHESES

parentheses
parentheses

PERFORM
PERFORM
PERFORM
PERFORM statement

- PERIOD ,
period, comma, Or semicolon
Periods

PICTURE

PICTURE

PICTURE

PICTURE

PICTURE

PICTURE

PICTURE

PICTURE

PICTURE Character-Strings
PICTURE clause

POPUP
POPUP option

POSITION
POSITION option
Input Device Positioning Control
nonstandard positioning
Output Device Positioning Control
rules for positioning data
vertical positioning

POSITIVE
POSITIVE

i-19

6-71
7-103
6-69
6-69
3-18

6-71
6-42
6-35
6-37

5-27
5-14
6-31
5-15
3-10
7-108

’DD25

PRIORITY-NUMBER
‘priority-number
priority-numbers
priority-numbers

PROCEDURE DIVISION :
DESCRIPTION OF THE PROCEDURE DIVISION
Procedure Division Body

~ Procedure Division Header
Procedure Division Segments

PROCEDURE-NAME
procedure-name
- PROCEDURE~-NAMES

PROCEDURES
PROCEDURES

PROCESS AREA
APPLY PROCESS AREA ON phrase
PROCESS AREA

PROCESS AREA
process area

PROCESS DEBUG
PROCESS DEBUG STATEMENTS
PROCESS DEBUG STATEMENTS option

‘PROCESSING
Access and Processing Techniques
Random Access with Sequential Processing
Sequential Access with Sequential Processing

.PROCESSING MODE
PROCESSING MODE IS phrase

PROGRAM-ID
PROGRAM~-1ID
PROGRAM~-ID
PROGRAM-ID PARAGRAPH

PROGRAM-NAME
program-name

PUNCTUATION
Format Punctuation
Punctuation Symbols

. QUALIFICATION
Qualification

Restrictions on Qualification, Subscripting, and Indexing

rules for qualification
QUOTE
QUOTE

RANDOM-SEQUENTIAL
random-sequential technique

RD
RD

i-20

3-11
3-14
3-11

3-4

DD25

READ
READ

READ
READ
READ statement

RECORD

logical record

logical record
physical record
physical record

RECORD ORDERING

Record Concepts

SAME RECORD AREA

SAME RECORD AREA phrase

RECORD CONTAINS
RECORD CONTAINS clause

RECORD DESCRIPTION
STRUCTURE OF A RECORD DESCRIPTION

RECORDING MODE
RECORDING MODE clause
recording mode '
recording mode

RECORDS
concept of records
RECORDS phrase
Working-Storage Records

REDEF INES
REDEF INES
REDEFINES
REDEFINES clause

REEL
REEL
Standard Close Reel
Standard Reel Lock

REFERENCE
Reference Format Representation

Reference to Table Items
UNIQUENESS OF REFERENCE

REGISTER
TALLY REGISTER
Special Registers

RELATION

Abbreviated Combined Relation Conditions

RELATION CONDITION
Relation Symbols

RELATIVE
relative line number

RELEASE
RELEASE
RELEASE)
RELEASE statement .

i-21

2-11
7-98

(Ye]

U'l\leOl'\wwG\
NHEHoOWNhOoOM
N

[=) W]

| S T B I |
<

=)
1

(52}

w

DD25

REMAINDER
REMAINDER

- REMARKS : :
REMARKS PARAGRAPH

" REMOTE

REMOTE
REMOTE
REMOTE

~ RENAMES

RENAMES
RENAMES
RENAMES
RENAMES clause

RENAMING
RENAMING phrase

" REPLACING

REPLACING phrase
REPLACING phrase
REPLACING phrase

REPORT

" REPORT FOOTING
REPORT FOOTING
REPORT HEADING
REPORT SECTION IN THE DATA DIVISIO
REPORT WRITING :
report group
report group
report group
report group
report group -
repcrt group
report groups

REPORT DESCRIPTION

Report Description - Complete Entry Skeleton

REPORT GROUP DESCRIPTION

Report Group Description - Complete Entry Skeleton

REPORT WRITER
Report Writer

REPORTS
REPORT (S) clause

RERUN :
RERUN phrase
RESERVE
RESERVE. phrase

RESERVED WORDS
Reserved Words

RESET
'RESET
- ‘RESET clause

RESTRICTIONS

Restrictions on Qualification, Subscripting; and Indexing

i-22

5-10
7-38
7-21

7-69
3-9

6~34
6-59

DD25

RESULTANT-IDENTIFIER
resultant-identifier

RETENTION-PERIOD
RETENTION~-PERIOD

RETURN
RETURN
RETURN
RETURN
RETURN statement

REWIND
Rewind

ROUNDED
ROUNDED
ROUNDED
ROUNDED
ROUNDED Option

SAME
SAME AREA phrase
SAME RECORD AREA
SAME RECORD AREA phrase
SAME SORT AREA phrase
SAME SORT-MERGE AREA phrase

" 8D
SD

SEARCH
SEARCH
SEARCH ALL
SEARCH statement

SECTION
CONFIGURATION SECTION IN THE ENVIRONMENT DIVISION
Division, Section, and Paragraph Formats
FILE SECTION IN THE DATA DIVISION
INPUT-OUTPUT SECTION IN THE ENVIRONMENT DIVISION
REPORT SECTION IN THE DATA DIVISION
SECTION HEADER
WORKING=-STORAGE SECTION IN THE DATA DIVISION

SECURITY
SECURITY PARAGRAPH

SEEK
"SEEK
SEEK
SEEK
SEEK
SEEK statement

SEGMENT
fixed overlayable segment

fixed permanent segment
independent segment

SEGMENT-LIMIT
SEGMENT-LIMIT
SEGMENT-LIMIT
SEGMENT-LIMIT IS phrase

i-23

2-4
7-98
7-65 -
7-88

7-101
7-71
7-43
7-16

5-26
7-107
5-26
5~-26
5-26

2-13
7-86
7-108
7-74
7-93

DD25

SEGMENTATION
SEGMENTATION

SEGMENTS -
. Procedure Division Segments
‘Program Segments

- SELECT
. SELECT sentence
SELECTED phrase

SEMICOLON
period, comma, or semicolon
semicolon ‘

SENTENCE EXECUTION
Compiler-Directing Sentence Execution
Conditional Sentence Execution
Imperative Sentence Execution-
SENTENCE EXECUTION

SENTENCES -
Compiler=-Directing Statements and Sentences
Conditional Statements and Sentences
Imperative~Statements and Sentences
STATEMENTS AND SENTENCES

SEQUENCE NUMBERS
SEQUENCE NUMBERS

SEQUENTIAL-SEQUENTIAL
© sequential-sequential technique

SET
SET
SET statement

SHADING
Shading

SIGN
editing sign
SIGN CONDITION
standard operation sign
Algebraic Signs

SIMPLE INSERTION
Simple Insertion Editing

SIZE
SIZE option

SIZE ERROR
SIZE ERROR
SIZE ERROR
SIZE ERROR
SIZE ERROR
SIZE ERROR Option

SORT }
ELECT SORT OPTIONS phrase
SAME SORT AREA phrase
SORT '
SORT

i-24

7-3
2-13

5-19
6-63

7-71
7-43
7-25
7-101
7-17

5-12
5-26
7-88
7-87.

DD25

SORT statement
sort
sort files

SORT-MERGE .
SAME SORT-MERGE AREA phrase

Sort-Merge File Description - Complete Entry Skeleton

SORTING
Sorting

SOURCE
SOURCE

SOURCE Rules

SOURCE PROGRAM
source program

SOURCE-COMPUTER
SOURCE~COMPUTER Paragraph

SPACE
‘ SPACE

SPACE~-SAVING
ENTER SPACE-SAVING

SPACES
SPACES
spaces

SPACING
rules for spacing
spacing

SPECIAL INSERTION
Special Insertion Editing

SPECIAL-NAMES
SPECIAL~NAMES
SPECIAL-NAMES

- SPECIAL-NAMES Paragraph

STATEMENT FORMATS
COMMON OPTIONS IN STATEMENT FORMATS

STATEMENTS

© . Arithmetic Statements
Compiler-Directing Statements and Sentences
Conditional Statements and Sentences
Multiple Results in Arithmetic Statements
PROCESS DEBUG STATEMENTS)
PROCESS DEBUG STATEMENTS option
STATEMENTS AND SENTENCES

STOP
STOP RUN
STOP statement

STORAGE
MASS STORAGE

SUBSCRIPTING

Restrictions on Qualification, Subscripting, and Indexing

Subscripting
Subscripting
. subscripting

i-25

7-96
6-29
5-27

DD25

SUBTRACT
SUBTRACT statement

SUM
SUM :
SUM counters
‘SUM Rules

SUPPRESSING A
~suppressing table residue

- SWITCH
- SWITCH
SWITCH
SWITCH option

SWITCH-STATUS
~ SWITCH-STATUS CONDITION

- SYMBOL
currency symbol
SYMBOL phrase
Arithmetic Operation Symbols
Editing Symbols
Punctuation Symbols
Relation Symbols
"USER-CREATED SYMBOLS

SYNCHRONIZED LEFT
SYNCHRONIZED LEFT

‘SYNCHRONIZED RIGHT -
SYNCHRONIZED RIGHT

'SYNTAX RULE
syntax rule

- SYSOUuT
SYSOuT
SYSOUT

SYSTEM STANDARD FORMAT :
- APPLY SYSTEM STANDARD FORMAT ON phrase

TABLE
Reference to Table Items
suppressing table residue
TABLE HANDLING
Table Definition
table element
table element

TALLY
TALLY REGISTER
TALLYING phrase

- TECHNIQUE

random-sequential technique
sequential-sequential technique
Access and Processing Techniques
special control techniques

i-26

7-21
7-38
5-10

2-12

2-12
2-11
5-23

DD25

TERMINATE

UPPER-BOUND

TERMINATE 6-69

TERMINATE statement 7-103
TEXT

duplicate text 8-1

duplicate text 6-27

library text 8~-2
TIME-SAVING

ENTER TIME-SAVING 7-46
TIMES .

TIMES option 7-78
TOP OF PAGE

TOP OF PAGE phrase 7-108
TRANSACTION PROCESSING

TRANSACTION PROCESSING 2-16

Transaction Processing 4-3

Transaction Processing Applications Programs 2-16

transaction processing 7-24

transaction processing 7-40
TRANSFERS

transfers of control 7-98

transfers of control 7-65
'TYPE

TYPE CONTROL FOOTING 6-64

TYPE CONTROL FOOTING 6-26

TYPE CONTROL FOOTING 6-62

TYPE CONTROL HEADING 6-26

TYPE clause 6-68

TYPE DETAIL 6-68

TYPE DETAIL 6-30

TYPE DETAIL 7-57
TYPEWRITER

TYPEWRITER 7-38

TYPEWRITER 7-21

TYPEWRITER . 5-10
UNIT

UNIT 7-104
UNTIL

UNTIL option 7-79
UNTIL FIRST

UNTIL FIRST option 7-54
UP BY

UP BY 7-95
UPON

UPON mnemonic-name phrase 7-38
UPPER-BOUND

3-4

i-27 , 1 ' DD25

USAGE
USAGE
USAGE COMPUTATIONAL-3
USAGE clause
USAGE IS DISPLAY
USAGE IS INDEX
USAGE 1S INDEX

USE

USE

- USE

USE

USE

USE

USE statement

Use of the NOT Operator

USING
CALL USING
USING A COBOL LIBRARY
USING phrase
USING phrase

USING/GIVING :
ENTRY POINT USING/GIVING

VALUE
'~ VALUE
VALUE clause
‘VALUE Rule

value 999

‘VALUE OF)
VALUE OF clause

VARYING
VARYING option
VARYING phrase

VERBS
CATEGORIES OF VERBS

VLR‘FORMAT
APPLY VLR FORMAT phrase

WITH SUPERVISOR CONTROL ,
WITH SUPERVISOR CONTROL phrase
* WITH SUPERVISOR CONTROL phrase

WORDS
lowercase words
RESERVED WORDS
Reserved Words
uppercase words
WORDS, CHARACTERS, or MODULES
WORDS, CHARACTERS, or MODULES
Words

i-28

5-11
3-10
6-73
6-73
6-75
6-79

7-32
6-32
7-85
7-108
7-75
7-104
7-14

7-51
2-15
7-29
7-98

DD25

WORKING-STORAGE
Noncontiguous Working-Storage
WORKING-STORAGE SECTION IN THE DATA DIVISION
Working~Storage Records

WRITE
WRITE
WRITE :
WRITE statement

WRITE...ADVANCING
WRITE. . .ADVANCING

'ZERO
ZERO
ZERO

ZERO SUPPRESSION
Zero Suppression Editing

i-29

DD25

HONEYWELL INFORMATION SYSTEMS

Technical Publications Remarks Form i

ri7Le | SERIES 60(LEVEL 66)/6000 COBOL REFERENCE MANUAL ORDERNO.| DD254, REV. 0

ADDENDUM A

DATED | FEBRUARY 1977

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be promptly investigated by appropriate technical personnel and action will be taken D
as required. If you require a written reply, check here and furnish complete maiting address below.

FROM: NAME ' DATE
TITLE ' -
COMPANY
ADDRESS

‘PLEASE FOLD AND TAPE —

"NOTE: U. S. Postal Service will not deliver stapled forms

FIRST CLASS
PERMIT NO. 39531
WALTHAM, MA
02154 ‘

e e e e e e CUT ALONG LINE o e e

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

ATTENTION: PUBLICATIONS, MS 486

Postage Will Be Paid By:

‘HONEYWELL INFORMATION SYSTEMS

'200:SMITH STREET
WALTHAM, MA 02154

- Honeywell

