FORTRAN

-~ Honeywell SUBROUTINES LIBRARIES

LEVEL 66
SOFTWARE

FORTRAN
Honeywell SUBROUTINE LIBRARIES
ADDENDUM A

SERIES 60(LEVEL 66)/6000

SOFTWARE T TR s e R k1 R st S 00 et s st e 1

SUBJECT:

Additions and Changes to Series 60 (Level 66)/6000 FORTRAN Subroutine

Libraries

SPECIAL INSTRUCTIONS:

This wupdate, Order Number DD20A, is the first addendum to DD20, Rev.

manual
as indicated 1in ‘the collating instructions on the back of this cover.

dated May 1975. The attached pages are to be inserted into the

Change bars “in the page margins indicate technical additions
changes; asterisks indicate deleted material.
incorporated into the next revision of the manual.

NOTE: This cover should be placed following the manual cover

indicate that the document has been updated with Addendum A.

SOFTWARE SUPPORTED:

Series 60 Level 66 Software Release 3
Series 6000 Software Release I

DATE :
March 1977
ORDER NUMBER:
DD20A, Rev. 0
21363

1.5778
Printed in U.S.A.

These changes will be

C) 1977, Honeywell Information Systems Inc.

3,77

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove

v, vi

vii, blank

2-1 through 2-4
2-7 through 2-12
2-15, 2-16

2-31 through 2-34
2-49, 2-50

3-1, 3-2

3-7, 3-8

3-23, 3-24

3-27, 3-28
3-31, blank

4-1 through 4-60

Insert

v, vi

vii, blank

2-1 through 2-4
2-7 through 2-12
2-15, 2-16

2-31 through 2-34
2-49, 2-50

3-1, 3-2

3-7, 3-8

3-23, 3-24
3-24.1, blank
3-27, 3-28

3-31, 3-32

3-33 through 3-42
3-43, blank

4-1 through 4-66
4-67, blank

DD20A

File No.: 1723,1P23

SERIES 60 (LEVEL 66)/6000
FORTRAN
SUBROUTINE LIBRARIES

SUBJECT

FORTRAN Input/Output, Error Monitoring, Mathematical, and
Nonmathematical Subroutines

SPECIAL INSTRUCTIONS

For Series 6000 systems, this manual replaces the manual of the same name,
Order Number BR95, dated June 1971. Order Number BR95 remains an active
publication for Series 600 systems and for Series 6000 systems on prior software
releases.

‘SOFTWARE SUPPORTED

Series 60 Level 66 Software Release 2
Series 6000 Software Release H

ORDER NUMBER
DD20, Rev. 0 May 1975

Honeywell

PREFACE

This manual describes the FORTRAN Subroutine Libraries. These libraries

include subroutines for input/output, mathematical and nonmathematical
functions, and execution error monitoring.

(:) 1975, Honeywell Information Systems Inc. File No.: 1723,1P23

DD20

FUNCTIONAL LISTING OF PUBLICATIONS

for

SERIES 60 (LEVEL 66) and SERIES 6000 SYSTEMS

FUNCTION

Hardware reference:

Series 60 Level 66 System
Series 6000 System
DATANET 355 Processor
DATANET 6600 Processor

Onerating system:

Basic Operating System

Job Control Language
Table Definitions
I/0 Via MME GEINOS

System initialization:

System Startup
System Operation
Communications System

Communications System
DSS180 Subsystem Startup

Data management:

File System

Integrated Data Store (I-D-S)
Integrated Data Store (I-D-S)
File Processing

File Input/Output

File Input/Output

S Data OQuery System
S

I-D-
I-D-S Data Query System

Program maintenance:

Object Program
System Editing

Test system:

Online Test Program
Test Descriptions

Error Analysis and Logging

Language processors:

Macro Assembly Language
COBOL-68 Language
COBOL-68 Usage

JOVIAL Language

FORTRAN Language

Generators:

Sorting
Merging

APPLICABLE REFERENCE MANUAL
ORDER
TITLE NO.
Series 60 (Level 66)/Series 6000:

Series 60 Level 66 Summary Description DC64 -

Series 6000 Summary Description DA4S8
DATANET 355 Systems Manual BS03
DATANET 6600 Systems Manual DC88

General Comprehensive Operating

Supervisor (GCOS) DD19
Control Cards Reference Manual DD31
System Tables DD14
I/0 Programming DB82
System Startup DD33
System Operation Techniques DD50
GRTS/355 and GRTS/6600 Startup

Procedures DDO05
NPS Startup DD51
DSS180 Startup DD34
File Management Supervisor DD45
I-D-S/I Programmer's Guide DC52
I-D-S/1 User's Guide DC53
Indexed Sequential Processor DD38
File and Record Control DDO7
Unified File Access System (UFAS) DC89

(Series 60 only)

I-D-S Data Query System Installation DD47
I-D-S Data Query System User's Guide DD46
Source and Object Library Editor DD06
System Library Editor DD30
Total Online Test System (TOLTS) DD39
Total Online Test System (TOLTS)

Test Pages DD49
Honeywell Error Analysis and Logging

System (HEALS) DD44
Macro Assembler Program DD08
COBOL " DD25
COBOL User's Guide DD26
JOVIAL DD23
FORTRAN . DD02
Sort/Merge Program DD09
Sort/Merge Program DD09

iii DD20

FUNCTION

Simulators:

DATANET 355/6600 Simulation

Service and utility routines:

Loader

Utility Programs
Utility Programs
Media Conversion
System Accounting
FORTRAN

FNP Loader

Service Routines
Software Debugging

Time Sharing systems:

Operating System
System Programming
System Programming

BASIC Language
FORTRAN Language
Text Editing

Remote communications:

DATANET 30/305/355/6600 FNP
DATANET 355/6600 FNP
DATANET 700 RNP

Transaction processing:

User's Procedures

Handbooks:

System—operator communication

Pocket guides:

Control Card Formats
FORTRAN

Rev. 7412

APPLICABLE REFERENCE MANUAL

TITLE
Series 60 (Level 66)/Series 6000:

DATANET 355/6600 Simulator

General Loader

Utility

UTL2 Utility Routine (Series 60 only)
Bulk Media Conversion

Summary Edit Program

FORTRAN Subroutine Libraries

DATANET 355/6600 Relocatable Loader
Service Routines

Debug and Trace Routines

TSS General Information

TSS Terminal/Batch Interface

TSS System Programmer's Reference
Manual

Time Sharing BASIC

FORTRAN

Time Sharing Text Editor

Remote Terminal Supervisor (GRTS)
Network Processing Supervisor (NPS)
RNP/FNP Interface

Transaction Processing System User's
Guide

System Console Messages

Control Cards and Abort Codes
FORTRAN Pocket Guide

iv

ORDER
NO.

DD32

DD10
DD12
DCO1
DD11
DD24
DD20
DD35
DD42
DD43

DD22
DD21
DD17
DD16

DDO02
DD18

DD40
DD48
DB92

DD41
DD13

DD04
DD82

DD20

CONTENTS

Page
Section I Introduction. o o o ¢ o o o o o o o o o o o o o o o o 1-1
Section II Input/Output LibXary. « « « o o o o o o o o o o s o = 2-1
Library CallsS. o« o o o « o s o o o o o s o s o o @ 2-1
Input/Output Library Subroutines « « « . . 2-3
Subroutines Implicitly Called. . « « « « « o o « = 2~4
Linked Binary Input/Output Interface. 2-4
Short List Input/Output Processor . . . « . . 2-8
Random Binary Input/Output. 2-10
Format Controlled Sequential Input/Output .« . 2-12
Namelist Input. . ¢« o ¢« ¢ ¢ &« ¢ & o o o o « = 2-17
Namelist and Dump Output. . . & « « o « o & & 2-21
Character String Assignment . . « « « o « o = 2-23
Character String COmMPaAre. « « o« « o o o o o« & 2-24
Output Stop and Pause Information 2-25
Object Time Debug ProcesSOr . . « o « o o o = 2=-27
Pre—-execution Initializer (Batch) 2-28
Pre-execution Initializer (Time Sharing). . . 2-30
Arithmetic Fault ProCesSSOr. « + « « o o o o = 2-31
Backspace ReCOrd. « « o o 2 o o o o o o o o @ 2=-32
Rewind and Endfile ProcesSOY.: « « « « o« o« « & 2~34
End-of~File (On Input) Processor. . « . . « = 2-36
File Opening. o+ « « « s o o o o o o o o s o @ 2-37
Carriage Control Simulator. . « ¢« « « o« o o 2-39
Subroutines That Are User Callable 2-41
Console Communication . « ¢« o« o o o e.0o s o &« 2-41
Memory Dump e e e e e e s 2-43
File Control Block and Loqlcal Unit
Table Routines . .« « ¢« o v & ¢ ¢ ¢ o o« o o 2-44
Define File Control Block. . « « &« o o« o & 2~-44
Define Buffer(s) for a Specified File
Control Block e e e e e e e e . 2-45
Define Logical Unit Table. e e e e e e e e 2~46
File CloSing. o + o o o o o o o o o o s s o = 2-47
Initialization of End-of-File Processing. . . 2-48
Initialization of Data Error Processing . . . 2-49
Job Termination « « o« ¢« o ¢ o ¢ o ¢ o o« o o & 2-50
File Forwardspace and Backspace . . « . + .« . 2-51
Call TSS Subsystem. « o ¢« & &+ o+ ¢ « & ¢ o o & 2-52
Create TSS Temporary File . + ¢ ¢ ¢« ¢« ¢ o o & 2-53
Specify Record Size, Random Binary File . . . 2-54
Set or Reset Some I/0 Parameters of
Run~-Time Library . « « o o« o o o o o o o o « 2-55

Section III

3/77

Miscellaneous Library Subroutines
Subroutines Implicitly Called.

Double Precision Powers of Ten Table. . .
Restore Link = H* . . . ¢ ¢« ¢ ¢ o o o o =

Terminal Input RECOVEXY « ¢« o « o o o +
ASCII/BCD Indicators. . . . e o e e
Subroutines That Are User Callable e e s e
Exponent Register Overflow and Divide
Check TeStS. o o« ¢ o o o o o o o o o o o
v

DD20A

Section IV

77

CONTENTS (cont)

Sense Light Simulator
Sense Switch Test -

Restore Links Durlng Executlon (Batch)

Restore Links During Execution
(Time Sharing) « « o ¢« o« &« o &
Execution Error Monitor
Switch Word Groups
GMAP Calling Sequence. . . .
FORTRAN Calling Sequences. .
File Transliteration.
Date and Time + « &+ « « o « o &
Access a Permanent File

Close File, Detach Buffers, Remove from
Attach a Temporary Mass Storage or

Terminal File. « +v & o o« & o &

.

.

.

FORTRAN Debugging System (FDS) Subroutines

Core Allocator. . . . « « « o &
Special Entry Point
FDEBUG Bootstrap. « « « o« « «
FDUMP Bootstrap . « « « « o « o
LINK/LLINK Interface.
Delete From Wrapup List
Release Unused Memory o«
Dummy Setup
Add to Wrapup List. .
Timing Facility . . .
Wrapup and Loader . .
Linking Subroutine. . . . « . .

o s o e

Mathematical Library Subroutines. . .
Mathematical Library Descriptions.
Definitions and Considerations . .

.

Exponentiation - Integer Base and
Exponent . ¢« o ¢« ¢ ¢ o o o o o o o o @
Exponentiation - Real Base, Integer
Exponent . ¢ ¢ o ¢ ¢ ¢ ¢ o o o o o o o
Exponentiation - Real Base and
EXponent . . . ¢ ¢ ¢ ¢ o o o o o o o =
Exponentiation - Complex Base, Any
Exponent « ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o @
Natural, Base 2, and Common Logarithms.
Real Hyperbolic Arcsine, Arccosine,

and Arctangent . .« .« .« ¢ o o o o o o o
Real Arcsine and Arccosine. . « .+ . .
Real Arctandgent . « « « ¢ o o o o o o
Complex Absolute Value. . « « + « « &
Complex Exponential . « o « ¢ o« o «
Complex Natural Logarithm
Complex Multiplication and DlVlSlOn .
Real Cube ROOE. v 4 & ¢ o o o o o o »
Complex Sine and Cosine . . & &« o « & &
Complex Square Root . « « .« . .« .
Exponentiation - Complex Base, Intege
Exponent « « o ¢ o o o o o o o o o o
Double Precision Hyperbolic Arcsine,
Arccosine, and Arctangent
Double Precision Arcsine and Arccosine.
Double Precision Arctangent . . «+ « + o«
Double Precision Cube Root. . . o« o o

¢ e o 0

Double Precision Exponential, Base 2, and

Base 10. v ¢ ¢ o ¢ o o o o o o o o o @

vi

e o o o

DD20A

Section V

Table
Table
Table
Table
Table
Table
Table
Table

3/77

R
HENER®WN

Gt wWwwihbhn

CONTENTS (cont)

Double Precision Natural, Base 2, and

Common Logarithms.
Double Precision Remaindering

Double Precision Hyperbolic Sine, Cosine

and Tangent . . « « + & o+

Double Precision Sine and Cosine. . . .

Double Precision Square Root.
Double Precision Tangent. . .

Double Precision Exponential Complement

. e e o o

. " e e o

¢ e e w o o

Double Precision Exponentiation, Real

Base or Exponent (or Both) .
Real Exponential Complement .
Real Exponential, Base 2, and
Real Sine and Cosine.
Real Square Root. « « ¢« o« « &
Real Tangent. . « ¢ ¢ « o o
Real Hyperbolic Sine, Cosine,

Nonmathematical Library Subroutines

Mode Determination by FORTRAN
Character String Manipulation
Sort Array of Data.
Memory Usage . ¢« & o o « o o«
User Time ani Identification.
Set/Reset Switch Word
Shift/Rotate Word Contents. .
Random Number Generator . . .

File and Record Control I/O Error

TABLES

Input/Output Library Subroutines. .
Linked Binary Subroutines and Entry
Initialization of I/O . « ¢ + o « &
List and End-of-File Processing . .
Miscellaneous Library Subroutines .
Error Codes and Returns . . . « o+ o«
Mathematical Library Subroutines. .
Nonmathematical Library Subroutines

vii

Base 10 .

and Tangent

« s & o e e

e o o o o

* e o o o
o o o o
e o o o
o o o o

Points. . .

e o e e o o

s o o o
.

o o o o
.

e o o @
.

Sk
R 1
o o
o

HOYooJdoumd wn -

(SRS RE 0BG, O O O Oy

Recovery.

[T T B B |
HWHNDEHEFHFOW
B w

el

¢ o e o &
e o o o o
e wwhhoNoN

SECTION I

INTRODUCTION

FORTRAN is an automatic coding 1language especially suited to solving
complex scientific and engineering problems. This capability is greatly enhanced
by the use of subroutines from the Input/Output (I/O0) and math 1libraries to

perform the basic elements of the FORTRAN language - arithmetic, control, and
. input/output.

This manual describes the subroutines that make up the FORTRAN Library.

DD20

SECTION II

INPUT/OUTPUT LIBRARY

The FORTRAN Input/Output (I/0) subroutines perform the functions associated
with the execution of and input/output requirements of the user's program. The
descriptions 1in this section define the general mode of operation of the
subroutines that constitute the FORTRAN I/0 Library. In these descriptions, it
is assumed that the reader is familiar with the manner in which the General
Loader processes General Comprehensive Operating Supervisor (GCOS) and § FFILE
control cards.

The I/0 subprograms require that program execution be started with the
FORTRAN initialization subprogram .FSETU, because one of its functions is the
initialization of fault vector «cell 25 (octal). This location contains the
address where the "logical file/file control block" table begins. The user can
also accomplish this initialization by calling SETLGT when he has created his
own table. The library subroutines also depend on the limits of wunused memory
being expressed 1in fault vector cell 37 (octal). This is always done by the
General Loader. When the $ OPTION FORTRAN card is encountered in the batch
mode, the General Loader ensures that the FORTRAN initialization subprogram is
loaded. 1In the time sharing mode, the RUN subsystem ensures that the proper
initialization subprogram is loaded.

LIBRARY CALLS

A call to any 1I/0 Library subroutine from a FORTRAN language program
contains, as one of the arguments, the logical file code expressed -as an
integer. This integer is placed in character position 5 (bits 30-35) of cell
.PBAD, (defined in subroutine FOPEN) by the called I/0 subprogram. The called
subroutine then calls FOPEN which searches the "logical file - file control
block" table defined as follows:

1. Fault vector cell 25 (octal) is of the form

ZERO TAB,O
2. The actual logical unit (LGU) table has the form
ZERO ENDTAB,O
TAB VFD 18/FCB1,6/LGUl,6/LGU2,6/LGU3

VFD 18/FCB2,6/LGU4,6/LGU5,6/LGU6

ENDTAB ZERO 0,0

3/77 , 2-1 DD20A

where: a. TAB - 1 contains the address of the last available location in
the table.

b. i FCBl contains the address of cell LOCSYM of file control block
1.

C. LGUl, LGU2, LGU3 are the FORTRAN logical files that reference
file control block 1. Missing files are filled in with zeros.

If more than three logical files reference the same file control block, the
FCBl pointer and the additional files can occur at any other place in the
table.

There are as many entries in the table as needed to express the various
file control blocks and logical files referencing them. After the last
entry in the table, zeros fill out the table.

FOPEN places the address of the file control block for the referenced file
in bits 0-18 of cell .FBAD., but does not destroy the logical file code in bits
30-35 (character position 5) of that cell. FOPEN then proceeds to open the file
and return.

The subroutine that called FOPEN now has the information necessary to
perform calls to the proper File and Record Control subprograms. In the case of
an output file, bits 30-35 of .FBAD. are used as the report code of the output
record. Thus, if many logical files are connected to SYSOUT, they are separated
automatically at printing time according to the calling <¢ode originally
specified in the FORTRAN program calling sequence.

2-2 DD20

INPUT/OUTPUT LIBRARY SUBROUTINES

The input/output library subroutines are summarized in Table 2-1. Table 2-1

gives the input/output function and the library subroutine that performs the
function in the different modes -- batch and time sharing and using the BCD and
ASCII character sets, Subroutines can be categorized as those implicitly called
and those that are user callable.
Table 2-1. Input/Output Library Subroutines
Function Batch Time Sharing
BCD ASCII BCD ASCII
Linked Binary I/O Interface FRDB FRDB FRDB FRDB
Short List Binary I/0 Interface FBLO FBLO FBLO FBLO
Short List I/0 Processor FSLI FSLI FSLI FSLI
Random Binary I/O FRRD FRRD FRRD FRRD
Format Controlled Sequential I/0
(Common Procedure) FDIO FDIO FDIO FDIO
Format Controlled Sequential I/0
(BCD/ASCII Procedure and Data) FRDD FRDA FRDD FRDA
Format Controlled Short List I/0
Processor FSLO FSLO FSLO FSLoO
Namelist Input (Common Procedure) FNLI FNLI FNLI FNLI
Namelist Input (BCD/ASCII Procedure
and Data) FVFI FIFA FVFI FIFA
Namelist and Dump Output
(Common Procedure) FNLO FNLO FNLO FNLO
Namelist and Dump Output
(BCD/ASCII Procedure and Data) FVFO FOFA FVFO FOFA
Character String Assignment FCHA FCHA FCHA FCHA
Character String Compare FCOM FCOM FcoMm FCOM
Output Stop and Pause Information FPAW FPAW FPAW FPAW
e Console Communications FCSL FCSL
Object Time Debug Processor FDBG FDBG FDBG FDBG
Memory Dump (Common Procedure) FDMP FDMP FDMP FDMP
e Memory Dump (BCD/ASCII Procedure
and Data) FDPD FDPA FDPD FDPA
Pre-execution Initializer FSTU FSTU FTSU FTSU
Arithmetic Fault Processor FFLT FFLT FFLT FFLT
® Define Buffer(s) for File Control Block FSET FSET FSET FSET
® Define File Control Block FSET FSET FSET FSET
e Define Logical File Table FSET FSET FSET FSET
Backspace Record FBST FBST FBST FBST
e File Closing FCLO FCLO FCLO FCLO
Rewind and Endfile Processor FEFT FEFT FEFT FEFT
End-of-File (On Input) Processor FLOF FEQF FEOF FEOF
® Initialization of End-of-File Procescsing |FFEE FFEE FFEE FFEE
® Initialization of Data Error
Processing FFER FFER FFER FFER
File Opening FOPE FOPE FOPE FOPE
e Job Termination FXIT FXIT FXIT FXIT
® File Forward and Backspace FFFB FFFB FFFB FFFB
Carriage Control Simulator FSLW - FSLW FTGF
e Call TSS Subsystem -— - FCAL FCAL
® Create TSS Temporary File - - FDEF FDEF
® Specify Record Size, Random Binary File FRRD FRRD FRRD FRRD
® Set or Reset Some I/0 Parameters
of Run-Time Library FSTU FSTU FTGF FTGF
® User callable
2-3 DD20

SUBROUTINES IMPLICITLY CALLED

Linked Binary Input/Output Interface

FUNCTION

Linked Binary I/0 Interface consists of two subroutines (FRDB and FBLO)
called for 1linked binary input/output interface; for processing linked
binary elements; linked binary arrays; and for end-of-list processing for
input/output statements of the following forms:

READ (fc, END=S1l, ERR=S2) list

WRITE (fc, END=S1l, ERR=S2) list

fc = file code

END = optional transfer location for end-of-file

ERR = optional transfer for program error

list = integer, real, complex, double precision, logical, and

character elements and arrays

The FBLO subroutine is called to process short list items; that is, arrays
referenced without a subscript.

The following sequence results for a READ statement where the 1list 1is an
integer, real, logical, double precision, or complex element.

TSX1 .FRDB. Initialization for
TRA * + offset

ZERO .E.L.., E.I. READ

ARG pointer to file code

TRA ERR-clause

TRA END~clause

TSX1 .FBxT. List processing

STy element

TSX1 .FRLR. Signals end of record
X L for integer, real, complex, or logical elements

D for double precision elements
A for integer, real, complex, or logical elements
AQ for double precision elements

The following list processing sequence results for a READ statement where
the list is a character element.

EAA list
TSX1 .FBBC. (or .FBBCA in ASCII mode)
NOP element size, DL

I 2-4 DD20A

The following list processing sequence results for a READ statement where
the list is an integer, real, complex, double precision, character, or
logical array.

TSX1 .FBxI. (.FXDI. for double precision arrays)

ARG array locator

ARG array size, DL (total number of words in array)
X L for integer, real, complex, and logical arrays

noa

S for character arrays

The following sequence results for a WRITE statement where the list is an
integer, real, complex, double precision, or logical element.

TSX1 .FWRB. Initialization for
TRA * + offset

ZERO E.L..,E.I. WRITE

ARG pointer to file code

TRA ERR-clause

TRA END-clause

LDx element List processing

TSX1 .FByT.

TSX1 .FWLR. Signals end of output
x = A for integer, real, logical, or complex elements

AQ for double precision elements
L for integer, real, complex, or logical elements
D for double precision elements

y

The following list processing sequence results for a WRITE statement where
the list is a character element.

EAA list
TSX1 FBBC. (or .FBBCA in ASCII mode)
NOP element size, DL

The following list processing sequence results for a WRITE statement where
the list is an integer, real, complex, double precision, character, or
logical arrays.

TSX1 .FBxO. (.FXDO. for double precision arrays)
TRA * + offset

ZERO .E.L..,E.I.

ARG array locator

ARG array size, DL (total number of words in array)
X L for integer, real, complex, or logical arrays

won

S for character arrays

The following table, Table 2-2, contains a summary of the 1linked binary
subroutines and entry points.

.

2-5 DD20

Table 2-2. Linked Binary Subroutines and Entry Points

Type Short List Short List
Initialization Element Input Qutput End of Input Fnd of Output
Routine Entry Routine Entry Routine Entry Routine Entry Rout ine Entry Routine Fatiy
Integer FRDB FRDB FRDB FSLT FBLO FBRL1 FBLO FBLO FRDB FRLR FRDB FWLR
Real FRDB FRDS FRDB FBLT FBLO FRLL FBLO FBLO FRDB FRLR FRDB FWI R
Complex FRDB FRDB FRDB FBLT FHLO FBLI FBLO FBLO FRDB FRLR FRDB FWi R
Double-Precision FRDB FRDB FRDB FBDT FBLO FBDT FBLO FBDO FRDB FRLR FRDSB FWLR
Logical FRDB FRDB FRDB FBLT FBLO FBLI | FBLO FBLO FRDB FRLR FRDB FWLR
Character FRDB FRDB FRDB FBBC FBLO FBSI FBLO FBSO FRDB FRLR FRDB FWLR

Subroutine FBLO calls FSLI to set up indexing for the processing of the
input/output of nonsubscripted arrays.

CALLING SEQUENCE

See Function.

METHOD

Binary I/0 is standard system format I/O unless otherwise specified and
reads or writes media code 1 records. The binary I/0 routine uses File and
Record Control buffers, eliminating the need for an internal work area.
Records are assumed to be variable length records and can be up to 4095
words in length. Logical, variable length records too large to fit in one

buffer are partitioned and follow the rules for partitioned records as
defined below.

1. Only logical, variable length (VLR) records too large to fit in
one buffer are partitioned.

2. A partitioned record begins in a new buffer and ends in a buffer
with no other records in that final buffer.

3. Partition indicators:

Initial Block:

RCW bits 24-25 = 01
Intermediate Blocks:
RCW bits 24-25 = 10

Bits 26-35

Partition counter starting with
2 and advancing by 1 for each
new block in the record.

2-6 i DD20

Final Block:

RCW bits 24-25

[

11

I

Bits 26-~35 Partition counter described above.

Valid batch mode loader $ FFILE options include NSTDLB, NBUFFS, BUFSIZ,
FIXLNG, and NOSRLS. Additional information on FRDB can be obtained from
documentation at the front of the assembly listing.

RETURN

Normal return is to the next executable statement in the calling program.
Error conditions are handled as follows:

1. Error code 39 when an end-of-file condition, other than 17 or 23
(octal numbers), is detected.
2. Error code 33 because Read after Write is illegal.

3. Error code 40 when 1list exceeds logical record 1length. Aall
remaining list items are set to zero.

4, Error code 41 when SYSOUT or fixed length records are not smaller
than block size,

2-7 DD20

Short List Input/Output Processor

FUNCTION

FSLI provides list processing for a nonsubscripted array in conjunction
l with subprograms FSLO, FRDB, and FRRD.

CALLING SEQUENCE

The subprograms FSLO, FRDB, and FRRD have calling sequences to the
subprogram FSLI to accomplish the data transfer.

For Formatted I/0 (FSLO)

Output Input
E STX2 .FSLII E STX2 LFSLIT
TSX2 .FSLI (m) TSX2 .FSLI (m)
E LD(r) *% 2 E TSX1 c
TSX1 c ST(r) ** 2
E ZERO pP.0 E ZERO p,sl
m 0,1

[a]

LI 1 ¢ S| O | A I T A 1 I 1

A for single precision

AQ for double precision

.FCNV. for single and double precision
.FCNVI for integer

.FCNVR for real

.FCNVD for double precision

.FCNVL for logical

.FCNVC for character

1 for single precision

2 for double precision

For Binary I/O (FRDB, FRRD)

LDA n,DU

(ADLA 1,DL) double precision only
XED .FSLIB,AU*

ARG ENDTL

ARG CRTAL
ARG sSvx1

3/77 2-8 DD20A

METHOD

For formatted I/0, FSLI initializes the I/O loop and processes the entire
array, starting with the first element. For binary I/O, an EIS move is
used to process the entire array.

RETURN

For formatted I/0, FSLI restores C(X2) = C(.FSLII)0-17 and exits to FSLO.
For binary I/0, return is directly to the object code.

3/77 2-9 DD20A

Random Binary Input/Output

i

FUNCTION

FRRD is called for random binary source statements of the following form:

READ(f'n,optl,opt2) list

WRITE(f'n,opt2) list

£ = a file reference

n = sequence number of the logical record

optl = end of file transfer (optional)

opt2 = error transfer (optional)

list = input/output list that can consist of single precision,

double precision, character, or array items

This subroutine also includes the RANSIZ (Random Record Size) subroutine
that is called by the following sequence:

CALL RANSIZ (argl,arg2,arg3)

argl = a file code
arg2 = the logical record size
arg3 = standard system format

When arg3 is missing or zero, the file is assumed to be in standard system
format.

RANSIZ needs to be called only once for each file.

CALLING SEQUENCES

FRRD contains different entry points for I/0 1list and end-of-list

processing. The sequences generated are similar to those generated for
linked binary.

TSX1 .FRRD. For READ (n',f) list

TSX1 +FRWD. For WRITE(n',6f) list

TSX1 .FRLT, For single precision I/0 list entry
TSX1 .FRDT. For double precision I/O0 list entry
TSX1 .FRST. For binary character (BCD)

TSX1 .FRSTA. For binary character (ASCII)

TSX1 .FRLI. -For single precision short list input
TSX1 .FRDI. For double precision short list input
TSX1 .FRSI. For binary character short list input
TSX1 .FRLO. For single precision short list output
TSX1 .FRDO. For double precision short list output
TSX1 .FRSO. For binary character short list output
TSX1 .FRRR. For binary input end-of-list

TSX1 .FWRR, For binary output end-of-list

CALL RANSIZ Random Record Size Routine

2-10 DD20

METHOD

Random binary files are standard systen format (unless specified
otherwise), 320-word blocks, with fixed record size. The module calculates
logical record 1location based on physical device block size (64 words),
logical record size (given by CALL RANSIZ command), buffer block size
(320), and record number. The record size is compared to the buffer block
size and if greater the file is considered partitioned and follows the
rules for partitioned files of standard system format (see the File and
Record Control manual).

The user should express record size as the sum of items in the I/0 list in
computer words, remembering that storage allocation for character variables
and arrays differs when compiling BCD or ASCII (six characters versus four
characters per word). The record size specified wvia RANSIZ should not
include the record control word for the logical record in the size
argument. An abnormal termination with an associated error message occurs
when records are read that fall outside the file limits.

RANSIZ needs to be called once prior to the first file reference. FRRD
calls FSLI for the processing of the input/output of nonsubscripted arrays.

RETURN

3/77

Normal return is to the next executable statement of the calling program,
except as specified below:
1. Error code 72 if the list exceeds logical record length.
2, Error code 73 for any of the following conditions:
a. Zero block count on random read.
b. Block serial number error on random read.
c. Record count of zero on random read.
3. Error code 74 if the file is not present.

4. Error code 75 for a zero or negative record number on a random
read or write.

5. Error code 76 where the record size is not given. Random files
have fixed 1length records. Record size must be specified by a
CALL RANSIZ for the referenced file. This CALL should precede
the first I/0 to a linked file.

6. Error code 77 for an attempted random I/0 to a linked file.

7. Error code 78 when the record number in the random read or write
statement is outside file limits. However, if "END=" is given
(for READ only), that exit is taken if the record number is
outside the file limits. A write outside file limits causes the
file space to grow.

8. Error code 79 when the list 1is greater than specified record
size.

9. Error code 80 when file space is exhausted (on output, the file
can no longer be "grown").

2-11 DD20A

Format Controlled Sequential Input/Output

FUNCTION
Formatted sequential input/output is contained in five subroutines:

FDIO contains the procedures that are common to BCD and ASCII
formatted sequential input/output.

FRDD contains the BCD peculiar procedures and data.

FRDA contains the ASCII peculiar procedures and data.

FSLO contains the short list input/output interface.
FSLI contains the short list input/output processor.

Formatted sequential input/output is accomplished by calls to these

subroutines to initialize the input/output; to process the input/output
list; - and for end-of-file processing.

Subroutines FRDD and FRDA also contain the processing for the DECODE and
ENCODE statements.

CALLING SEQUENCE

The calling sequences to initialize the input/output are as follows:

TSX1 entry point in FRDD or FRDA

TRA * + offset

ZERO .E.L..,E.I.

ARG file code for formatted statements or 41,42,43 for

' READ, PRINT/WRITE, or PUNCH respectively.
ARG format statement reference or FORMAT (V) for list
directed input/output.
TRA ERR=-clause
TRA END-~-clause

2-12 DD20

The subroutines and entry points for initialization of input/output are as

listed in Table 2-3.

Table 2-3. Initialization of I/0

Statement Type BCD ASCII
Entry Entry
Module | Point Module| Point
WRITE (fc,format) list FRDD FWRD FRDA FWRDA
WRITE format, list FRDD FWRD FRDA FWRDA
PRINT format, list FRDD FWRD FRDA FWRDA
PRINT, list FRDD FWRD FRDA FWRDA
PUNCH format, list FRDD FPUN FRDA FPUNA
READ (fc,format) list FRDD FRDD FRDA FRDDA
READ format, list FRDD FRDD FRDA FRDDA
READ, list FRDD FRDD FRDA FRDDA

The calling sequence for list processing where 1list is integer,
double precision, logical, or complex element is as follows:

LDx element if output
TSX1 .FCNVy
STx element if input
x = A for single precision items
= AQ for double precision items
y = I for integer, R for real and complex,

D for double precision, and
L for logical

The calling sequence for 1list processing of character elements
follows:

EAA element
TSX1 .FCNVC
NOP element size, DL

The calling sequence for all short list routines (except character)
follows:

TSX1 short list routine
ARG array locator
ARG array size

2-13

real,
is- as
is as

DD20

The calling sequence for character short list input/output is as follows:

TSX1
TRA
ZERO
ARG
ARG
NOP

X

.FSCx.
* + offset

.E.L..,E.I.

array locator
array size, DL
element size, DL

O for output

= I for input

The following table, Table 2-4, gives the subroutines and entry points
list processing and end-of-file processing.

Table 2-4. List and End-of-File Processing

for

Type Short List Short List End-of -File Ind-of-File
Element Out put Input Output Input
Entry Entry Entry FEntry Fntry
Module Point Module Point Module Point Module Point Module Point
BCD
Integer FRDD FCNVI FSLO FsI0 FSLO Fs1I FRDD FFIL FRDD FRTN
Real FRDD FCNVR FSLO FSRO FSLO FSRI FRDD FFIL FRDD FRTN
Complex FRDD FCNVR FSLO FSRO FSLO FSRI FRDD FFIL FRDD FRTN
Double-Precision FRDD FCNVD FSLO FS20 FSLO Fs21 FRDD FFIL FRDD FRTN
Logical FRDD FCNVL FSLO FSBO FSLO FSBI FRDD FFIL FRDD FRTN
Character FRDD FCNVC FSLO FSCO FSLO FSCI FRDD FFIL FRDD FRTN
ASCII
Integer FRDA FCNVI FSLO FSI0 FSLO FSII FRDA FFILA FRDA FRTNA
Real FRDA FCNVR FSLO FSRO FSLO FSRI FRDA FFILA FRDA FRTNA
Complex FRDA FCNVR FSLO FSRO FSLO FSRI FRDA FFILA FRDA FRTNA
Double-Precision FRDA FCNVD FSLO FS20 FSLO FS21 FRDA FFILA FRDA FRTNA
Logical FRDA FCNVL FSLO FSBO FSLO FSBI FRDA FFILA FRDA FRTNA
Character FRDA FCNVC FSLO FSCO FSLO FsCl FRDA FFILA FRDA FRTNA

The calling sequences for

TSX1
TSX1
TRA
ZERO
ARG
ARG
TRA
TRA
NOP
NOP

. « FDEC

.FENC

* +4 or 6
.E.L..,E.I.
buffer
format
ERR~clause
END-clause

record size
buffer size

the DECODE and ENCODE

for DECODE
for ENCODE

in characters, DL
in words, DL

statements are:

DD20

The following calling sequences are used for internal conversion routines
with format:

CALL .BDCNV (buf,form,wda,lines) memory to buffer

CALL .DBCNV (buf,form,wda,lines) buffer to memory

lines = number of lines specified by FORMAT statement.
wda = word count of each line.

form = starting location of format.

buf = starting location of buffer.

METHOD

On the entry for initialization, the file code is determined and the file
is opened and read if input. An appropriate tally word for data transfer is

built. For output, the address of a 41-word buffer is wused in the tally
word. (This provides for a maximum length record of 160 characters). For
input, the address of the File and Record Control buffer is wused directly
so no intermediate storage is necessary; this allows records up to 4095
characters in length to be processed. After initialization, the format scan
begins and when a field separator or a right parenthesis 1is encountered,
return is made to the user's generated code. The generated code causes
control to transfer to the appropriate entry point for 1list processing.
Thus, each list item corresponds to a format specification. This continues
until all list items are processed, rescanning the format if necessary. The
end-of-list entry determines that processing of the record is complete.

The processing for ENCODE and DECODE is the same except that the address of

the in-memory buffer provided by the user is wused in the data transfer
tally word.

The routine FDIO contains code that is common for ASCII/BCD character sets
while FRDA and FRDD contain ASCII and BCD unique code and symbols.

FSLI is called by FSLO to set up indexing for the processing of short 1list
input/output. ‘

RETURN

Normal return is to the next executable statement of the calling program,
except as specified for the following error conditions:

1. Error code 31 for an illegal format statement. Format scan
proceeds as for end of format.

2. Error code 32 for an illegal character in data or bad format.
Data scan treats illegal character as zero.

3. Error code 33 if user attempts to read an output file. Execution
is terminated.

4. Error code 34 for illegal end-of-file mark. FRWD calls FEOF for
error recovery.

2-15 DD20

.
i

5. Error code 57 for illegal character for L conversion. Data scan
treats illegal character as space.
6. Error code 81 for excessive line length.

7. Error code 82 for illegal character as first nonblank character.
Execution is terminated.

8. Error code 86 for a recursive entry to the I/O routine.

3/77 2-16 DD20A

Namelist Input

FUNCTION

The NAMELIST input function is contained in the following subroutines:
FNLI contains the procedures that are common to BCD and ASCII NAMELIST
input.
FVFI contains the BCD peculiar procedures and data.
FIFA contains the ASCII peculiar procedures and data.
NAMELIST input is accomplished using File and Record Control variable
length records for source statements of the following forms:
NAMELIST /naml/v,w,X

READ (fc,naml,END=S1, ERR=S2)

fc = logical file reference.

naml = NAMELIST name.

sl = (optional) is the statement label pointing to the statement to
which control is transferred upon encountering an EOF for a
READ.

S2 = (optional) is the statement label pointing to the statement to

which control is transferred upon encountering an error.
v,w,x = NAMELIST variables.

CALLING SEQUENCE

TSX1 .FVFI. (BCD)

TSX1 .FVFIA, (ASCII)

TRA * + offset

ZERO .E.L..,E.I.

ARG pointer to location of DEC FC

ARG pointer to location of BCI 1,NAM1

ARG pointer to location containing address of the EOF exit

2-17 DD20

METHOD

The input file is scanned for the proper NAMELIST name. When the name is
found, it is verified that the variables are included in the NAMELIST and
the input values are stored according to the type specified in the NAMELIST
table. The entries for the above NAMELIST example (NAMl) are:

BCI
BCI

TALLYD

ZERO
ZERO
ZERO
ZERO
ZERO
BCI

.

BCI

1,NAM1
1,v
Lv,C,X
N1,N2
PROD,d; .

Present only when

0/-1/d1 *d,*3d3 ,d; *dp

-1/d;*dz...d
-1, di*d; ..
1,w

1,X

5,d1*d2...*d4
.. dg

NAM1l is the NAMELIST name

LV is the location of the variable

V is the variable

c

PROD

N1
N2

0]

D w N

7777 if V is not dimensioned

if V has
if V has
if V has
if V has

for real

for double pr
for complex
for logical
for character

1l or 2 dimensions
3 or 4 dimensions
5 or 6 dimensions
7 dimensions

as follows:

ecision

is the product of all dimensions
N1,N2 are present when K=6 (character data)

]

number of word

s per element

if
if
if
if

[eXo N No -]

(character data)

6
1
2
3
4

number of characters per element (maximum of 120)
dy,dz, ...,dn are the dimensions for the variable

DD20

Bits of index register 6 are set (=1) to indicate the following:

Bit number

B O

[ooBE N B Y

10
11

12

14
15
16
17

EXAMPLE

The following example shows the expansion using variable V with

Meaning

Logical variable

Integer variable

Free

Slash preceded current
variable name

Complex mode not allowed

Complex mode

Neither star nor character
field allowed

Decimal point present

Negative number

Negative decimal exponent

Decimal exponent allowed

D field allowed

E field allowed

No decimal point allowed

Two words per element

One word per element

0,1,2,3,4
)

dimensions (these are designated as VO0,V1,V2,V3,V4). The dimensions (d;j

are designated as L,M,N,O.

V0 = undimensioned

vl (L)
v2 (M,N)
v3 (0,P,Q)

v4 (R,S,T,U)

L through U are integers
1. With V not dimensioned
BCI 1,V0

TALLYD VO0,07777,K

2. V with a dimension of 1

BCI 1,v1
TALLYD V1,1,K
ZERO L,L

3. V with a dimension of 2 (V2)

BCI 1,v2
TALLYD V2,1,K
ZERO M*N, L

DD20

4. V with a dimension of 3 (V3)

BCI 1,v3

TALLYD V3,2,K

ZERO 0*pP*Q,0
ZERO 0 or -1,0%*p

5. V with a dimension of 4 (Vv4)

BCI 1,v4
TALLYD V4,2,K
ZERO R*S*T*U,R

ZERO R*S*T ,R*S
6. Where K = 6 (character data), there is a slight variation in the
expansion for ASCII and BCD character data. For example,
CH*10 will cause the following expansion for BCD:
BCI 1l,CH
TALLYD CH,07777,6
ZERO 2,10

CH*10 will cause the following expansion for ASCII:

BCI 1,CH
TALLYD CH,07777,6
ZERO 3,10

RETURN

Normal return is to the next executable statement of the calling program.
Under the error conditions listed below, execution is continued only if the
user initialized FLGERR, which causes a normal return with an indication
that bad data was encountered, or if the ERR = option was used. FLGERR and
ERR = can be used in any combination.

1. Error code 42 for illegal heading card. FNLI continues as for
end-of-data.

2. Error code 43 for illegal variable name. FNLI continues as for
end-of-data.

3. Error code 44 for illegal subscript or when the array size is
exceeded. FNLI continues as for end-of-data.

4. Error code 45 for illegal character after right parenthesis. Data
scan assumes a comma between right parenthesis and the next
character,

5. Error code 46 for illegal character in the data. Data scan treats
the illegal character as zero.

6. Error code 48 for illegal logical constant. Data scan treats an
illegal constant as .FALSE.

7. Error code 52 for an illegal character field. FNLI continues as
for end-of-data.

8. Error code 59 for an empty character field.

2-20 DD20

Namelist and Dump Output

FUNCTION

Three subroutines process NAMELIST, DEBUG,

standard File
statements of the following forms:

and Record Control variable

DUMP, and
length

PDUMP
records

output
for

using
source

NAMELIST /naml/v,w,x

WRITE (fc,naml,ERR=S2)

CALL DUMP
CALL DUMPA
CALL PDUMP
CALL PDUMPA
DEBUG

or
(arguments) BCD
(arguments) ASCII
(arguments) BCD
(arguments) ASCII

is invoked via General Loader control cards.

The subroutines that process NAMELIST and DUMP output are as follows:

FNLO

FVFO

FOFA

fc
s2

arguments

V,W,X

CALLING SEQUENCE

TSX1
TSX1
TRA
ZERO
ARG
ARG
ARG
ARG

.FVDO
.FVFO

contains the procedures that are common to BCD and ASCII NAMELIST
output.

contains the BCD peculiar procedures and data.

contains the ASCII peculiar procedures and data.

logical file reference
(optional) is the statement
statement to ° which control
encountering an error

see "Memory Dump" for the memory dump subroutines, in this
section

NAMELIST variables

the
upon

label pointing to
is transferred

(For DEBUG, DUMP, or PDUMP output)
(For NAMELIST output)

* + offset
E.I.

.E.L..,
pointer
pointer
pointer
pointer

to
to
to
to

of DEC FC

of BCI 1,NAM1

containing address of error exit
containing address of EOF exit

location
location
location
location

DD20

METHOD

These subroutines scan a NAMELIST table and print the current value of each
NAMELIST variable in the format specified by its entry in the table. Refer
to the description of NAMELIST input for a descrlptlon of the entries for
NAMELIST, DUMP (DUMPA), and PDUMP (PDUMPA).

For NAMELIST, DUMP, and PDUMP output or for NAMELIST input, the entry for a
NAMELIST veariable, V, is of the following form:

BCI 1,v always present

TALLYD LV,D,K always present

ZERO PROD,D1 @ present if D is 1 or 2 \
ZERO O,D1*D2 present if D is 2

LV is the location of variable V (must not be 2zero)
D 1is octal 7777 if V has no dimensions
1 if V has 1 or 2 dimensions
2 if v has 3 dimensions
D1 and D2 are the first and second dimensions (if any)
PROD is the product of the dimensions
K for octal
for integer
for real
for double precision
for complex
for logical
for character

AU W =O

For DEBUG output, the entry for variable V is:

RETURN

BCI i,v always present

TALLYD LV,D,K+16 always present

ZERO 12,11 present if D is not octal 7777

I1 and I2 are the initial and final subscripts

respectively, in increments of D (or
1 if D is zero)

If V is octal 777777777777, the output is a memory dump from Il to 1I2
in increments of D elements (1 or 2 words). For memory dumps, LV
is ignored and can be octal 7777.

K is the same as for NAMELIST

If Vv is not octal 777777777777, LV and K are the same as for NAMELIST
and the octal value 7777 for D indicates that LV has no
dimensions.

All arrays in the DEBUG mode are considered as one-dimensional arrays.

Normal return is to the next executable statement in the calling program.

2-22 DD20

Character String Assignment

FUNCTION

FCHA moves character strings from one character variable to another when
the character variable is used in an assignment statement.

CALLING SEQUENCE

The following calling sequence is for A = B where A and B are character

variables.
TSX1 .FCHM. (or .FCHMA for ASCII)
TRA * + 6
ZERO .E.L.., E.I.
ARG B,I
ARG J,I
ARG A,I
ARG I,I
B = location of sending field
J = location of variable containing size (in characters) of B
A = location of receiving field
I = location of variable containing size (in characters) of A

METHOD

The character string identified by character variable B 1is assigned to
character variable A. If size B> size A, B is truncated at the size of A,

If size B< size A, the remaining characters in A after the assignment are
blank filled.

RETURN

Return is to the next executable statement in the calling program.

2-23 DD20

Character String Compare

FUNCTION

FCOM compares BCD or ASCII character strings for character variables

appearing in logical or relational expressions of the form IF (A
where A and B are character variables.

CALLING SEQUENCE

TSX1 .FCOM (or .FCOMA for ASCII)

TRA * 4+ 6

ZERO .E.L..,E.I.

ARG A,I

ARG I,I

ARG B,I

ARG J,I

A = address of character string A

I = address containing size of A in characters
B = address of character string B

J = address containing size of B in characters

METHOD

.EQ. B)

1. The length of both strings in words is determined. If the lengths are

different, the difference is saved.

2. The two strings are compared on a word-for-word basis over equal

length. Indicator register is set as follows:

a. If A¢B, the carry indicator is set off
(At the first non-compare, the comparison stops; >

or £ 1is

determined by the collating sequence of the character set.)

b. If A=B, the zero indicator is set

Ce. If A>B, the carry indicator is set

3. If the strings are equal over their equal length but one string is
longer than the other, the difference is compared against blanks. If

the difference is blanks, the strings are equal.

RETURN

Return is to the next executable statement in the calling program.

DD20

Output Stop and Pause Information

FUNCTION

FPAW outputs a message to the system console (user terminal for time
sharing) when a PAUSE or STOP statement 1is encountered in the source
program,

CALLING SEQUENCES

TSX1 .FPAW. (or .FPAWA for ASCII)
TRA *42
ZERO .E.L..,E.I.
Generated for a PAUSE statement with no message.

TSX1 .FPAI. (or .FPAIA for ASCII)

TRA *43
ZERO .E.L..,E.I.
ARG pointer to integer

Generated for a PAUSE statement with integer message.

TSX1 +.FPAC. (or .FPACA for ASCII)

TRA *+4

ZERO .E.L..,E.I.

ARG pointer to character message
ARG number of characters, DL

Generated for a PAUSE statement with character string message.
TSX1 LFIXT. (or .FIXTA for ASCII)
TRA *+3
ZERO .E.L..,E.I.
ARG pointer to integer
Generated for a STOP statement with integer message.

TSX1 .FCXT. (or .FCXTA for ASCII)

TRA *44

ZERO E.L..,E.I.

ARG pointer to character message
ARG number of characters, DL

Generated for a STOP statement with a character string message,

2-25 DD20

METHOD

This routine returns the following information to the user terminal (time

sharing user) or the system console (batch user) when the following
statements are encountered:

STATEMENT ‘ ‘ MESSAGE
PAUSE PAUSE LINE # nnnn

SNUMB xxxx-xx (batch only)
PAUSE integer PAUSE nnnnnn

SNUMB xxxxx-xx (batch only)
PAUSE character string PAUSE user message
STOP integer STOP AT LINE nnnn
STOP character string STOP user message

RETURN

Normal return is to the next executable statement in the calling program.

2-26 DD20

Object Time Debug Processor

FUNCTION

FDBG decides whether or not to produce DEBUG output based on the contents
of the IF and FOR statements.

CALLING SEQUENCE

FDBG is entered by a DRL (Derail) instruction.

METHOD

The location of the DRL instruction by which FDBG was entered is checked to
see if it was inserted by the General Loader (a legal DEBUG request), or if
it was originally present in the interrupted program. If it was a DEBUG
request, the IF and FOR statements are examined in the order in which they
were specified. If these statements are satisfied, FDBG writes information
describing the particular input it is interrupting. It then calls FVFO or
FOFA for the list output, using the NAMELIST table supplied in the DEBUG
table by the General Loader. The instruction replaced by DRL is then
executed and control is returned to the next instruction in the interrupted
program. If DRL was not inserted by the General Loader, it is ignored and
control is returned to the next instruction in the interrupted program. For
additional details on DEBUG, see the General Loader manual.

FDBG assumes that the General Loader has placed a debug table in memory.

RETURN

Normal return is to the next statement in the interrupted program.

2-27 DD20

Pre-execution Initializer (Batch)

FUNCTION

FSTU performs certain initialization functions prior to the executign of
the user program. The subroutine used depends on the system installation.

CALLING SEOUENCE

FSTU is entered by the General Loader only. The entry point is .SETU.; the
General Loader assumes a six-position storage block (cells .SETU.-1 to
.SETU.-6 inclusive).

CELL DEFINITION
.SETU.~6 Batch/time sharing flag. Set to zero.
 .SETU.=-5 Upper half contains lowest address of memory used by the

program and the LABELED COMMON region; lower half contains
the highest memory address used in BLANK COMMON region.

.SETU.~4 Logical unit table pointer in address field.

.SETU.-3 Upper half = lowest cell used by the program. Lower half #
0 = address of pointer to DEBUG subroutine in link 0.

.SETU.-2 Memory reset constant.

<SETU.-1 Upper half = entry point address. Lower half # 0 indicates
low~-load job.

METHOD

FSTU clears unused memory and sets it to either the constant specified in
the $ OPTION control card or to zeros if the constant is not defined. It
places the address of the "logical file - file control block" table in
fault vector location 25 (octal). In a link job with DEBUG requested in
link 0, it places a transfer to the DEBUG table in fault vector location 15
(octal). It places the entry point and a bit indicating a low-load Job in
fault vector location 24 (octal). It then calls the subroutine .FLTPR to
initialize for fault processing. A secondary SYMDEF, .FLTPR, is imbedded in
the Execution Error Monitor subroutine to satisfy this SYMREF in a FORTRAN
execution. This routine places transfers to fault processing routines in
fault vector locations 7 and 11 (both octal numbers). These are also
imbedded in the Execution Error Monitor subroutine. There also exists in
the library a separate subroutine with SYMDEF .FLTPR which zeros fault
vector locations 7 and 11 (both octal numbers) (divide check and overflow).
The default option, if either condition occurs, is to abort. This
subroutine is used if the job uses no FORTRAN library subroutines. Either
of the .FLTPR subroutines returns to FSTU, which zeros out all index
registers and performs a TSXl to the real entry point of the user's
program. FSTU can be easily changed by an installation to perform the fault
processing, accounting techniques, etc., for the particular installation.

2-28 DD20

RETURN

Normal return is to the next executable statement of the calling program.

RESTRICTIONS

If the user requires initialization of the cells specified in FSTU, he must
either use this subroutine or supply one of his own to perform this
initialization.

2-29 DD20

Pre-execution Initializer (Time Sharing)

FUNCTION

FTSU performs the same function for time sharing that FSTU performs for
batch programs. In addition, FTSU sets wup the file control block and
logical unit table (performed by the General Loader in a batch environment)
for all files specified in the time sharing RUN command. Cell .SETU.-6 is
set to nonzero so that it can be used as a test for batch/time sharing.
Refer to the description of FSTU (batch) for additional details on FTSU.

2-30 DD20

Arithmetic Fault Processor

FUNCTION

FFLT zeros fault vectors for overflow, divide check, and underflow faults;

called by FTSU and FSTU if FXEM is not loaded. (FXEM has its own version of
.FLTPR that initializes fault vectors.)

CALLING SEQUENCE
CALL .FLTPR

RETURN

After the execution of the subroutine, control is returned to the calling
program.

2-31 DD20

Backspace Record

FUNCTION

- FBST backspaces one logical record of a file on magnetic tape or sequential

disk.

CALLING SEQUENCE

In FORTRAN (indirect):
BACKSPACE n

For GMAP:

CALL .FBST.(n)

n = logical file to be backspaced

METHOD

3/77

If the file has buffers and the device is magnetic tape or disk, the
current record index is examined. If the current record index is for the
first logical record in a block of logical records, a further check is made
to determine if partitioned (segmented) records are present. When
partitioned records are found, the control word of the current record is
checked to determine if the segment now in memory is the last segment of a
partitioned record. If so, the file is backspaced until it is positioned
at the beginning of the first segment of the record. At exit, the "next
record not there" bit is on, and the file is in the input mode.

If the current record index is not for the first logical record in the
block, or if the record is not partitioned, the pointer in the file control
block and buffer control word are altered. This indicates that the logical
record preceding the desired logical record has just been read.

If positioned at end-of-file, the execution of one BACKSPACE positions the
file so that a WRITE statement allows appending to the file, while a READ
repeats the end-of-file exit if mass store, or an abnormal termination if
magnetic tape.

The execution of two BACKSPACE commands positions the file so that a READ
statement will obtain the last record prior to the end of file.

2-32 DD20A

RETURN

3/77

Normal return is to the next executable statement of the calling program,
except under the following error conditions:

1.

Error code 47 if the logical file is assigned to SYSOUT or to a
device other than magnetic tape or disk. The Execution Error
Monitor terminates this execution,

Error code 49 if an erroneous end-of-file appears. The Execution
Error Monitor terminates this execution.

Error code 50 if the backspace request 1is refused because the
block count in the file control block is zero; i.e., inhibits
backing out of the file. A message is written on SYSOUT to
indicate the refusal, and the operation continues.

2-33 DD20A

Rewind and Endfile Processor

FUNCTION

FEFT, for FORTRAN statement ENDFILE (i), writes an end-of-file record on the
file. If the file is in input mode prior to executing ENDFILE, FEFT changes
the mode to output (assuming there is no error condition). FEFT, for
FORTRAN statement REWIND(i), rewinds magnetic tape or disk. If the file is
in output mode prior to executing REWIND, FRWT writes an end-of-file record
prior to the rewind operation. If the exit from FRWT is without an error
condition, the file is in the input mode.

CALLING SEQUENCES

CALL .FEFT. (arg) compiled for FORTRAN statement ENDFILE (i)
CALL .FRWT. (arg) compiled for FORTRAN statement REWIND(i).
arg is the location of

DEC i

METHOD

1. ENDFILE - ,FEFT. sets the file designator word options to provide the
following responses: '

a. File initially open and in input mode: FEFT calls GSTOT to change
the mode to output, and then calls GCLSE to write an end-of-file
record and close without rewind.

b. File initially open and in output mode =~ FEFT calls GCLSE to
write an end-of-file record and close without rewind.

C. File initially closed ~ FEFT calls .GOPEN to open the file as
output without rewind, and then calls .GCLSE to write an
end-of-~file record and close without rewind.

2. REWIND - FRWT sets the file designator word options to provide the
following responses:

a. File initially open and in input mode - FRWT calls GCLSE to close
the file with rewind.

b. File initially open and in output mode =~ FRWT calls GCLSE to
write an end-of-file record and <close the file with rewind.

Following the rewind, the file is set to the input mode.

c. File initially closed -~ FRWT calls GOPEN to open the file as
input with rewind, and then calls GCLSE to close the file.

2-34 DD20

RETURN

Normal return is to the next executable statement in the calling program,
except for error condition 35. Error code 35 applies if there is an attempt
to rewind or write an end-of-file record if the device assigned to the file

is SYSOUT or is not magnetic tape or disk. Execution is continued; however
the endfile/rewind request is ignored.

2-35 DD20

End-of~File (On.Input) Processor

FUNCTION

FEOF writes an end-of-~file message and either terminates execution or
returns to the calling program when an end-of-file on input is encountered.

CALLING SEQUENCE

CALL .FEOF.

It is assumed that the address of the proper file control block is in the
FOPE subprogram cell .FBAD.

METHOD

If a library subroutine detects an end-of-file on an input file, it calls
FEOF. FEOF places the file number in the message and calls the Execution
Error Monitor to print the message.

RETURN
FEOF selects one of the following:

1. Terminates execution with error code 34 writing end-of-file
message.

2, If the user has provided for end-of-file condition by previously

calling FLGEOF for the current file, returns to the calling
program, indicating an end-of-file was encountered.

2-36 DD20

File Opening

FUNCTION

FOPE selects and assures that the. physical file associated with the
specified logical file is open.

CALLING SEQUENCE

1.

CALL .FGTFB obtains the file control block address that 1is 1in the
field of cell .FBAD. only.

CALL .FOPEN(s) obtains the information described in CALL .FGTFB and
assures that the logical file is open. S indicates the mode in which
the file is to be opened: .

-1,DL, open the file in its previous mode.
0dd, open the file as output.

Even, open the file as input.

-1,DL, only bit 35 is examined.

H®O®®
)
)]
oW

In both these calling sequences, it is assumed that upon entry to FOPE
the logical file references are contained in character position 5 of
cell .FBAD.

NOTE: When a file is opened, a table is used to find the available

buffers that can be assigned to the file being opened. The
table of standard 1length reusable buffers (321 words) is

defined as in .FBFTB.

An equivalent entry to .FOPEN is .FXOP., which 1is wused by the
Execution Error Monitor to prevent destroying calling sequences in
case of recursive entry. This entry is used to open P* in order to
write an error message.

CALL FLGFRC (lgu, ptr) allows the user to set his error routine
address in a file control block in the case of a File and Record
Control error.

numeric file code

1gu

ptr address of recovery routine

See "File and Record Control 1/0 Error Recovery" in Section V.

2-37 DD20

METHOD

FOPE is performed in three phases: (1) locating the physical file, (2)
assigning buffers to the file, and (3) assuring that the file is open. FOPE
examines the logical file table for a logical file identical to the one in
cell .FBAD. The file control block: is examined to determine if buffers are
required that have not previously been assigned. If buffer assignment 1is
necessary, table .FBFTB is examined to see if any buffers have been
released that were previously assigned to another file. These buffers are
assigned first. If none of these buffers are available, buffers are
assigned from available unused memory. The file control block 1is again
examined to see if the file is open. If it is not open, the File and Record
Control subprogram OPEN is called for the proper file control block.
Control is returned to the calling program.

By the use of FLGFRC, the user can cause word -15 of the file control block
to point to his error routine. If word -15 is zero when a file is first
referenced, no change is made to the file control block. However, if word
-15 is not zero, then a pointer to a translation routine within FOPE is
stored in word -5, so that a File and Record Control error results in a
trap to FOPE, an error code 85 message, and a transfer to the user error
routine in word -15. When running in batch mode, a user error routine can
be specified by use of a § FFILE card. This causes the address of the error
routine to be placed in word-5 of the file control block, thus avoiding the
trap to FOPE on a File and Record control error.

RETURN

Normal return from .FGTFB and .FOPEN is to the next executable instruction
in the calling program, except for the following error conditions:

1. Error code 37 if the logical file requested is not in the logical
unit table. FXER terminates execution.

2, Error code 38 if there is not enough memory available for I/O
- buffer assignment. FXER terminates execution.

3. Error code 56 if there 1is an attempt to read SYSOUT. FXER
terminates execution.

4. Error code 54 if there is an attempt to write GIN. FXER
terminates execution.

5. Abort code Q2 if no logical file table exists.

6. Abort code Q3 if logical file 06 does not exist in the 1logical
unit table. A message from FXER cannot be written.

2-38 DD20

Carriage Control Simulator

FUNCTION

FSLW formats FORTRAN generated print lines for the printer.

CALLING SEQUENCE
CALL .FSLEW(pl)

pl = location of the print line. It is assumed that location .FBAD. in
subroutine FOPE contains the address of the file control block for the
output file, and that word +1 of the file control block contains the
size of the print line.

METHOD

FSLW is called by the FORTRAN I/0 routine FRWD (I/0 Interface by Format
Control), Control is passed to FSLW after each print line has been prepared
according to the format specification. Recognized carriage control

characters are 0, 1, +, and ¥, and FSLW looks to see if the first character
of the prepared print line is one of these.

If the first character is not a recognized carriage control character, FSLW
assumes the normal case: single space carriage positioning (PB). FSLW
therefore appends one word of single space slew information to the current
print line.

If the first character of the prepared print line is a recognized carriage
control character, FSLW proceeds as follows:

1. B - Single Space - This is the normal case, single space carriage
positioning (B).

2. + - Space Suppress - The single space slew information appended
to the previous print line is replaced by space suppress slew
information.

NOTE: For space suppression control, two conditions are assumed:

' (1) that the last record written on the current file is
the line on which overprinting is desired and (2) that its
slew information can be changed. Both conditions must be
satisfied for proper operation.

3. l - Eject Before Printing - A one-word print 1line (that is, a
one-word record) consisting of slew-to-top-of-page information is
generated. This causes a slew to top of page to follow

immediately after the single space resulting from the information
appended to the previous line.

2-39 DD20

4. 0 - Double Space ~ A one-word print line (that 1is, a one-word
record) consisting of single space slew information is generated.
This information and the single space information appended to the
previous print line result in a double space operation.

Besides taking the actions described above for the recognized carriage
control characters, FSLW sets any such control character to a blank (B), if
it is not already a blank.

The NOSLEW option on the -$ FFILE card causes bit 23 of FCB word =6 to be
set to 1.

FSLW recognizes this option and changes its normal operation as follows:

1. The addition of a slew word at the end of a data record is
inhibited.

2. The generation of one-word print 1lines containing only slew
information is inhibited.

3. The substitution of a blank character for the carriage control
character (first character of data record) is inhibited.

4. A media code 0 is stored in the record control word in place of
media code 3.

5. The "blank line" records generated by consecutive slashes in
FORMAT statements are represented by one-word records consisting

only of blanks. (In the absence of the NOSLEW option, consecutive
slashes in FORMAT statements cause one~word records containing

slew characters for single-line slews to be generated.

RETURN

Normal return is to the next executable statement of the calling program.

2-40 DD20

SUBROUTINES THAT ARE USER CALLABLE

Console Communication

FUNCTION

FCSL permits operator-program communication via the console; restricted to
batch mode, not executable in time sharing.
CALLING SEQUENCE
CALL CNSLIO (console,message,nwords,nreply,nrepws)
console = Any of - BCI 1,0000T/ for master console,
BCI 1,0000T* for tape console,
BCI 1,0000*T for unit record console,
BCI 1,0000/T for special purposes.
If CONSOLE is none of these, BCI 1,0000/T is used.
message = an array containing one line of the message (in BCI) to be
output. The message, as received, 1is prefixed by the SNUMB:
(SLEW) SSSS8S-AA; it will be suffixed by "07701".
nwords = number of words to be output. Any value greater than 11 is set to
11.
nreply = optional and used if a reply is desired (it need not be any
particular type). The reply 1is 1limited to a maximum of six
characters unless "nrepws" is supplied.
nrepws = contains the maximum length in words (up to 11) of the reply.
Characters are leftjustified in the reply word.
METHOD

FCSL outputs the message to the console specified by the calling sequence.
If the console specification is not one of the four wvalid specifications,
the message is output to the master console. This subroutine takes nwords

(11 maximum) starting at message, prefixes the message with SNUMB
suffixes the message with a one line slew, and sends the message to
console. If a reply is called for (nreply used), the reply is limited
six characters, and is left justified. (Nreply is optional.)

The program relinquishes control until the console I/0 is completed.

and
the
to

The

registers and indicators are restored and a return is made to the next

executable statement in the calling program.

2-41 DD20

RETURN

Return is to the next executable statement of the calling program and is
done after the console input/output is completed. All registers and
indicators are restored prior to the return.

RESTRICTIONS

Message may not exceed 11 words. Anything in excess of 11 words is ignored.
Nwords = 0 results in only the SNUMB being output.

The reply buffer area (nreply) is not cleared by FCSL. If required, the
user must clear this area prior to the call to CNSLIO.

2-42 DD20

Memory Dump

FUNCTION

FDMP dumps registers and all of memory or designated areas of memory (that
has been allocated to variables) in a specified format.

CALLING SEQUENCE

CALL DUMP (aj,b;,f1,....an,bn,fpn) for BCD
CALL DUMPA (aj;,bi,f1,...an,bn,fn) for ASCII
CALL PDUMP (aj,b;,f1,....apn,bn,fp) for BCD
CALL PDUMPA (a;,by,f,,...an,bn,fn) for ASCII

a and b are variables at the beginning and end of the area to be dumped. a
or b may represent the first and last variables in the program unit, in
which case all memory allocated to the variables is dumped.

f is an integer specifying the dump format as follows:

Octal

Integer

Real

Double precision
Complex

Logical
Character

oo
AU W O

f;

If fi is omitted, it is assumed to be zero. If no arguments are given,
all of memory, including the program object code, is dumped in octal.

METHOD

An appropriate NAMELIST table is created, using the parameters specified in
the calling sequence. FDMP calls FNLO for the actual NAMELIST output
processing. The panel is dumped, followed by the blocks of memory
requested. :

RETURN

If DUMP (or DUMPA) is called, execution is terminated by a call to EXIT. If
PDUMP (or PDUMPA) is called, the panel is restored and control is returned
to the calling program.

2-43 ' DD20

File Control Block and Logical Unit Table Routines

FUNCTION

FSET contains three subroutines to allow the user to assign space in memory
for use as an input/output buffer; to define a file control block for wuse
by the input/output subroutines; and to define a logical unit table for use
by the input/output library subroutines. Each of these three subroutines
are described separately.

DEFINE FILE CONTROL BLOCK

FUNCTION

This entry point in FSET, SETFCB, allows the user to define a file control

block for use by the I/0 subroutines. SETLGT must be called first if the
General Loader has not created any file control blocks.

CALLING SEQUENCE

CALL SETFCB(a,i,Jj...)

a = location of LOCSYM in the user created file control block
i4j... = logical files that refer to this file control block
METHOD

SETFCB searches the previously defined logical file table for an open space
to insert the reference to the file control block., It accepts the file
control block address and appends characters 3,4,5 to the various 1logical

file codes referring to this file control block. SETFCB makes as many
entries as necessary in the "logical file - file control block" table.

RETURN

Normal return is to the next executable statement of the calling program

except when error conditions are encountered. Possible error conditions
are:

1. Abort code Q2 if there is no logical file table.

2. Abort code Q1 if there is no space available in the logical file table
for inserting a specified file control block.

2-44 DD20

DEFINE BUFFER(S) FOR A SPECIFIED FILE CONTROL BLOCK

FUNCTION

This entry point in FSET, SETBUF, allows the user to assign space in memory
for use as an input/output buffer.

CALLING SEQUENCE

CALL SETBUF (i,a)

CALL SETBUF (i,a,b)

i = logical file designator

a = location of first buffer

b = location of a second buffer if necessary
METHOD

SETBUF searches the logical file table for the specified file and its

associated file control block. It then attaches the buffers defined to the
file control block. No check is made to verify that the buffers are of
sufficient size, as this is the user's responsibility.

RETURN
Normal return is to the next executable statement in the calling program.

RESTRICTIONS

The size of the total buffer must be one location greater than the area to

be used for actual record storage. Therefore standard buffer size is 321
words.

2-45 . DD20

DEFINE LOGICAL UNIT TABLE

FUNCTION

This entry point in FSET, SETLGT, allows the user to define a logical unit
table for use by the I/0 library subroutine.

CALLING SEQUENCE

CALL SETLGT (a,i)

a = location of logical unit table to be used
i = number of cells in table a

METHOD

SETLGT accepts the array specified by the user as the logical unit table.
It changes its first location to be a pointer to the last usable position
of the array and places the address of the array + 1 in fault vector
location 25 (octal).

RETURN

Normal return is to the next executable statement of the calling program.

RESTRICTIONS

SETLGT must be called before any input/output 1is requested. SETLGT is
called only when the user wants to suppress the 1logical file table
generated by the General Loader and to place the table in his own portion
of memory. The user should use the NOFCB option on the $ OPTION General
Loader control card.

2-46 DD20

File Closing

FUNCTION

FCLO closes a file and releases the buffer assigned to that file. The
buffer is released only if it is standard size (321 words).

CALLING SEQUENCE

CALL FCLOSE(u)

u = logical file number
METHOD

FCLO opens the file in its previous mode and calls the File and Record
Control routine to close the file without rewind. ‘FCLO examines and
releases any standard size buffers assigned to the file. It places the
memory address of these buffers in a table of available buffers (location

.FBFTB in the FOPE subroutine) for possible reassignment to a newly opened
file.

RETURN

Normal return is to the next executable statement in the calling program.

RESTRICTIONS

If more than one logical file refers to one physical file, the physical
file must be closed, using FCLO only once.

2-47 : DD20

Initialization of End-of-File Processing

FUNCTION

FFEE provides a signal to FEOF requesting a return to the calling
subroutine if an end-of-file condition occurs.

CALLING SEQUENCE

CALL FLGEOF (u,v)

u = logical file number
v = address of the variable used to indicate an end-of-file condition (user
must test v when an end-of-file condition could have occurred)
METHOD

The address of the variable to be used for end-of-file processing is placed
in word -15 (upper) of the file control block. The value of the variable is
set to 0 (set to nonzero if an end-of-file is encountered on 1logical file
u).

RETURN

Normal return is to the next executable statement in the calling program.

RESTRICTIONS

The user must observe the following restrictions on FFEE operation:

1. If more than one logical file refers to one physical file, the same

variable must be used for all logical files referring to that physical
file.

2. This call must be made prior to any reference to file u.

2~48 DD20

Initialization of Data-Error Processing

FUNCTION

FFER provides a variable used in detecting the occurrence of erroneous
data.

CALLING SEQUENCE

CALL FLGERR(u,v)

u = logical file number .
v = variable used to indicate an input data error (user should test v
before processing the data because this subroutine gives a normal
return)
METHOD

FFER places the address of the variable in word -16 (upper) of the file
control block. The value of the variable is initialized to zero (an error
detected in the input data sets the variable to nonzero).

o

RETURN

Normal return is to the next executable statement of the calling program.

- RESTRICTIONS

If more than one logical file refers to one physical file, the same
variable must be used for all logical files referring to that physical

file.

2-49 DD20

Job Termination

FUNCTION

FXIT contains an entry point .FTERM that is used to terminate the current
activity.

CALLING SEQUENCE

CALL .FTERM

METHOD

3/77

FXIT transforms the logical file table created by the General Loader or by
FTSU into a file designator word list for closing all files. FXIT calls
CLOSE which purges all buffers, writes an end-of-file on an output file,
and notes the closing of an input file. Execution is terminated by a MME
GEFINI or DRL RETURN. Control is returned to the General Comprehensive
Operating Supervisor.,

This call will terminate the current activity without checking the wrapup
list that may have been generated wvia a CALL ATCALL or CALL NOCALL
statement. (Refer to Appendix F, FORTRAN Debugging System, in the FORTRAN
manual.) A CALL EXIT or CALL LFEXIT statement may also be used to
terminate the current activity and the wrapup list will be inspected.

2-50 DD20A

File Forwardspace and Backspace

FUNCTION

FFFB allows users who generate multifile tapes to space from one file to
another (valid only with tape files).

CALLING SEQUENCE

CALL FILBSP (xx,n) Backspace n files

CALL FILFSP (xx,n) Forwardspace n files

»
b
([}

filecode, integer constant or variable
number of files to skip; integer variable or constant

METHOD

This subroutine is called directly by the user. To ensure proper

positioning, the current file, if output, should be closed with an ENDFILE
xx statement and counted as one of the files to be backspaced over.

There are some file restrictions based on the File and Record Control.
1. File must be declared multifile.

2. File must be unlabeled.
This can be accomplished by using a $ FFILE card as follows:

$ FFILE XX,MLTFIL,NSTDLB

RETURN

Normal return is to the next executable statement of the calling program.
However, there is one error exit from the subroutine, error code 36. The
user has requested a backspace larger than the number of files currently
processed on the tape. The error message is printed and the tape is
positioned at the first file; execution continues.

2-51 bD20

Call TSS Subsystem

FUNCTION

FCAL is used to provide the user with a method to call or

sharing system subsystem.

CALLING SEQUENCE

CALL CALLSS (string)
or

CALL CALLSS (string, name)

go to a time

time sharing

a terminating

string = ASCII character constant or variable that is
~ command to invoke the subsystem. The string must contain a
carriage return or backward slash (octal 134)
character.
name = 4-character ASCII name of subsystem to be called

Return is to the next executable statement in the FORTRAN program.

CALLGT (string)
or

CALLGT (string,name)

String and name are as for CALLSS. The program terminates rather than

returning.

Both calls are ignored in batch.

METHOD

DRL CALLSS or DRL T.GOTO are used.

DD20

Create TSS Temporary File

FUNCTION

FDEF is used to create a named temporary file and to access the file in a
user's available file table (AFT).

CALLING SEQUENCE

CALL DEFIL (name, links, mode, istat)

name = up to 8-character variable or constant containing the ASCII name of
the temporary file to be created
links = size in links of file to be created
mode = 0, sequential file is created
0, random file is created
istat = status return word as follows:

0, successful
3, no room in AFT

4, temporary file not available
5, duplicate file name

6, no room in PAT

This call is ignored in batch.

 METHOD

DRL DEFIL is used.

2-53 DD20

Specify Record Size, Random Binary File

FUNCTION

FRRD permits the user to specify the record size for a random binary file.
Normal return is to the next executable statement of the calling program.
If the record size for a given random file is not provided at load time via
the $ FFILE card, a call to this subroutine before opening (first I/O to)
the file is mandatory.

CALLING SEQUENCE
CALIL RANSIZ (u,n,m)

logical file designator
record size
file format indicator

W

u
n
m

u, n and m must be of type integer. They can be any legal arithmetic
expression.

Note that a call to RANSIZ can also be used to override a §$ FFILE size
specification and that this is the preferred method of specification since
its function works for both batch and time sharing.

The third arqument (m) is optional. When not supplied, file u will be
processed in standard system format (blocked, variable 1length records,
etc.). When supplied, 2zero indicates standard system format; non-zero
indicates that block and record control words are not to be processed. This
latter format provides compatibility with random files generated in the
time sharing mode. The total file space is available for data; records arc
not blocked, can begin anywhere in a sector and can span device boundaries.

2-54 : DD20

Set or Reset Some I/0 Parameters of Run-Time Library

FUNCTION

This subroutine (FSTU for batch, FTGF for time sharing) permit$.the user to
set or reset some of the I/0 parameters of the run-time library.
Specifically, it may be used to:

1. Set the line length (modulo 4) for formatted output directed to a
terminal. The default setting for this parameter is 72.

2. Set the media code for unformatted file output. The default setting of
this parameter is 1.

3. Set the reflexive read characters that are sent to a terminal to
request input. The default setting of this parameter is the ASCII
CHARACTER constant 'carriage return', 'line feed', 'equal sign', X-ON.

CALLING SEQUENCE
CALL FPARAM (i,j)

i = integer, with a value of 1, 2, or 3 corresponding to one of the three
functions above
j = integer, providing the line length or media code for i values of 1 and

2, or providing the octal value of four ASCII characters for an i value
of 3

2-55 DD20

SECTION III

MISCELLANEQOUS LIBRARY SUBROUTINES

This section contains descriptions of library subroutines other than
input/output. These subroutines are listed in Table 3-1. These subroutines can
be catagorized as those implicitly called and those that are user callable.

3-1 DD20

Table 3-1. Miscellaneous Library Subroutines

Function Batch Time Sharing
BCD ASCII BCD ASCII
Double Precision Powers of Ten Table FDPT FDPT FDPT FDPT
e Exponent Register Overflow and Divide
Check Tests ’ FDCK FDCK FDCK FDCK
® Sense Light Simulator FLIT FLIT FLIT FLIT
® Sense Switch Test FSWI FSWI FSWI FSWI
® Restore Links During Execution FLNK FLNK FTLK FTLK
Execution Error Monitor (Common
Procedure) FXER FXER FXER FXER
® Execution Error Monitor (Batch/Time
Sharing Procedures and Data) FXEM FXEM FXMA FXMA
Restore Link - H¥* FLHS FLHS
e File Transliteration FMED FMED FMED FMED
Terminal Input Recovery FRBC FRCV FRBC FRCV
ASCII/BCD Indicator FBCD FASC FBCD FASC
® Date and Time FDTM FDTM FDTM FDTM
® Access a Permanent File FTAC FTAC FTAC FTAC
® Close File, Detach Buffers, From AFT FDTH FDTH FDTH FDTH
® Attach a Temporary Mass Storage or File | FCRA FCRA FCRA FCRA
Core Allocator (FDS) FALC FALC FALC FALC
Special Entry Point (FDS) FDBD FDBD FDBD FDBD
e FDEBUG Bootstrap (FDS) FDEB FDEB FDEB FDEB
e FDUMP Bootstrap (FDS) FDUM FDUM FDUM FDUM
LINK/LLINK Interface (FDS) FLKL FLKL FLKL FLKL
® Delete From Wrapup List (FDS) FNCL FNCL FNCL FNCL
Release Unused Memory (FDS) FREL FREL FREL FREL
Dummy Setup (FDS) FSTP FSTP FSTP FSTP
e Add to Wrapup List (FDS) FTCL FTCL FTCL FTCL
® Timing Facility (FDS) FTMR FTMR FTMR FTMR
Wrapup and Loader (FDS) FWRP FWRP FWRP FWRP
Linking Subroutine (FDS) FYLK FYLK FYLK FYLK
e User callable

3/77 ' 3-2 DD20A

SUBROUTINES IMPLICITLY CALLED

Double Precision Powers of Ten Table

FUNCTION

FDPT stores a table of double precision powers of ten for quick reference
by all decimal radix conversion routines,

CALLING SEQUENCE

.F1DO. is the only SYMDEF symbol.

METHOD

.F1DO. +2*n is the location of DEC 1.0Dn = 10**n, for n = -34, -37,...,-1,
0, 1,..., 37, 38. There are no executable instructions.

3-3 DD20

Restore Link - H*

FUNCTION

FLHS reloads a program from an H* file (tape) generated in a previous
General Loader activity. The H* file was generated by a $§ TAPE H* control
card at execution time.

CALLING SEQUENCE

This program is called directly from the subroutine library and requires no
other subprograms, The entire job could be set up as follows:

SNUMB

IDENT

USE .LHSF

ENTRY .LHSF
EXECUTE

LIMITS

TAPE H*,...

DATA AB (Optional)

v -V nn

$ ENDJOB
*% kEOF

If the NOFCB option was in effect when the General Loader generated the H*
file, an entry card of the form:

$ ENTRY .LHSNF

must replace the card following the $ USE card.

METHOD

The H* file generated by the General Loader contains a link identified as
//////, which is the main or common subprogram of the job. If the FCB
option was in effect during loading (generation of H* file), a second 1link
identified as /////1 containing all file blocks generated by the General
Loader will also be present on H*., LHSF searches the file for these
identifiers (/////1 is optional), restores them, and enters the main
subprogram at the entry location specified during the General Loader
activity.

Under time sharing execution, the YFORTRAN RUN command restores the main
link.

RETURN

Normal return is to the next executable statement of the calling program.

3-4 DD20

RESTRICTIONS

The following restrictions apply to FLHS:

1.

2.

A $ LOWLOAD card (see General Loader manual) must be included if H*
file was generated under this option.

The memory limits in effect when H* file was generated must be
requested. :

One of the setup subroutines must have been used when H* file was

generated. Entry to the main link is made through those subroutines to
initialize fault vectors.

3-5 : DD20

Terminal Input Recovery

FUNCTION

FRCV (ASCII) and FRBC (BCD) permit the FORTRAN user to correct a string of

characters input from a terminal when a character is illegal for the
current format conversion.

CALLING SEQUENCE

CALL .RCOV (curtal,initl)TRA-OK

curtal = current input tally
initl initial input tally
TRA~OK recovery transfer point

I]

If no recovery is possible, the return is 0,1

METHOD

When a character is illegal for the current format conversion, the current
record (current input line) is output with a pointer to the illegal
character. The user can then input a correction or change (several
characters) that will replace the corresponding characters previously
input. The input/output routine will resume with the new string. If the
user responds with a carriage return, the usual execution error monitor
message will be output. This routine is not callable by the wuser. It is
called by FDIO when appropriate.

3-6 DD20

ASCII/BCD

Indicators

FUNCTION

3/77

FASC

FBCD

is a module that is selected when the ASCII option is used.

Secondary SYMDEF Entry .ASCB = nonzero
.ASCB+1 = ASCII blanks (040040040040)
Other ASCII constants are included.

is a module that is selected when the BCD option is used.

Secondary SYMDEF Entry .ASCB = 0
.ASCB+1 BCD blanks (202020202020)
Other BCD constants are included.

DD20A

SUBROUTINES THAT ARE USER CALLABLE

Exponent Register Overflow and Divide Check Tests

FUNCTION

FDCK tests the Fault Status Word for a previous exponent register overflow
or divide check.

CALLING SEQUENCE

CALL DVCHK(j) for divide check
CALL OVERFL(j) for exponent register overflow

j = location of integer variable

METHOD

This routine checks the fault vector area and sets an integer variable to 1
if a fault has occurred, or 2 if not. The Fault Status Word (31 octal) is

not maintained in the time sharing environment.

RETURN

Normal return is to the next executable statement in the calling program.
This routine assumes normal recovery from exponent register overflow and
divide check.

3-8 DD20

sense Light Sisile
T R VR AT T L)

FUNCTION

FLIT ginvlabves vthe onbeios and tooraog of goanoe {gabes,

CATIING SRQUENC

CALL SLITEL0) to bovn GfE sl ronae Liobibo,
OALL STITE (LY by barnoan oo Liaghie 4

CALL S TVW‘LﬂJ) oo beat oavidd Darn of ©onanao Looghy 1ol oon.

],,\L)Lf oroon
.:vMav E’m EL(“

% T4

oYy

METIOD

with 0

Loarn&
Lntgqon
: lntogCT
Note Lhat

l l"-“ . "Ln
nLtlnq, or 1=

Sense Switch Test

FUNCTION

FSWI tests the GCOS switch word for the status cf a sense switch.

CALLING SEQUENCE

CALL SSWTCH(i,j) to test sense switch i.
i integer variable or constant, value between 1 and 6
j integer variable to be set to 1 if sense

switch i is ON, or 2 if it is OFF

METHOD

Bits 6-11 of the GCOS switch word correspond to the sense switches 1-6,
with 0 denoting OFF and 1 denoting ON. Sense switch specified by i is
tested and the integer in j is set to 1 if i was ON or to a 2 if i was OFF.

RETURN

Normal return is to the next executable statement in the calling program. A
possible error condition is error code 53, If i is not 1~6, sense switch i
is declared OFF.

3-10 DD20

Restore Links During Execution (Batch)

FUNCTION

FLNK enables the programmer to call program overlayeg in batch mode.

CALLING SEQUENCES

CALL LINK (name)
CALL LLINK (name)

name = link identifier specified as a character variable or character

constant
METHOD
FLNK assumes that the General Loader has created a file (file code H¥*)
containing the user's program segmented into links as specified by $ LINK
control cards. (H* file is generated by GESAVE.) Both LINK and LLINK use
the GERSTR function of GC0S. The procedure for restoring a link depends on
the entry used as follows:
LINK - Restore the link and transfer to its entry point as specified
at load time.
LLINK - Restore the 1link and return to the next statement or
instruction in the calling subroutine.
If DEBUG is requested at load time in any or all of the 1links, these
subroutines join the respective DEBUG tables, enabling the user to take

snap dumps of any links in memory at the time of his request.

After restoring a link, the link is tested to determine if it contained a

DEBUG table. If it contained a DEBUG table, the address of this table
chained to existing tables. If there was no DEBUG table in memory at
time, the address of this table is placed in the DRL cell (cell 13 of
fault vector). DEBUG tables, corresponding to links which are overlayed

the process, are deleted from the chain.

The link overlay names must be five to eight characters for ASCII
executions.

RETURN

Returns are defined under Method.

is
this
the
in

mode

DD20

Restore Links During Execution (Time Sharing)

FUNCTION

FTLK performs the same functions for time sharing programs as FLNK performs
for batch programs. Refer to FORTRAN manual for specific details.

1. The YFORTRAN time sharing subsystem RUN command is used to load the
main program link from an H* permanent file for execution,

2. The overlay link names on the H* must be five to eight characters when
running in the time sharing ASCII mode.

3. The DEBUG option is not available under time sharing execution.

3-12 DD20

Execution Error Monitocr

FUNCTION

The Execution Error Monitor performs the following functions:

1. Prints a trace of subroutine calls, if appiicable.
2, Prints execution error messages.
3. Terminates executicn with a Q6 abort or does one of the following:
a. Continues with execution of the program.
b. Transfers to an alternate error routine.
4. Allows the user to determine if an error has been processed by the

Execution Error Monitor.

The Execution Error Monitor functions are performed by the following
subroutines:

FXER contains the procedures that are common to both batch and time
sharing operations.
FXEM contains the procedures and data peculiar to batch operations.

FXMA contains the procedures and data peculiar to time sharing
operations.

Execution error monitor functions are optional and are determined by three
groups of switch words (presently there are four words per group) in which
each bit corresponds to an error code. The first group (.FXSW1l) controls
termination; the second (.FXSW2) controls message printing and trace; and

the third (.FXSW3) controls the alternate error returns. Table 3-2 contains
the error codes and default procedures.

SWITCH WORD GROUPS

1. .FXSW1l (termination). Table 3-2 shows the standard bit settings and
the routines that use the corresponding error codes. The bit settings
are defined as:

C (Continue execution)

A (Terminate with a Q6 abort)

Termination may be overridden by the corresponding bit of .FXSW3.

3-13 DD20

.FXSW2 (message printing and trace) - The meaning of the bit setting
is

1 - Suppress printing
0 - Print

This group is initialized to zero. Settings may be changed by a
program call to FXOPT,

.FXSW3 (alternate error return) - The meaning of the bit setting is
1 - Alternate error return (overrides termination set in .FXSW1).
0 - Use normal return.

This group is initialized to 2zero. Settings may be changed by a
program call to FXOPT.

GMAP CALLING SEQUENCE

CALL

-
o

.FXEM. (x,y)

address of error description controls
address of tally word used to indicate card column found in error; vy
is optional and is used only if a card image is to be printed

Instruction sequence at x
X ZERO A,B

ZERO C,D

ZERO E,F

A = Address of card image to be printed, or zero when card image is
not to be printed.

B = Error code expressed as an integer (n) in the range 1_n_143.

(@]
[

Address of message 1.

v}
1l

Word count of message 1.
E = Address of message 2.

F = Word count of message 2.

3-14 DD20

FORTRAN CALLING SEQUENCES

1.

CALL FXOPT (ncode,il,1i2,12)

FXOPT is an entry to .FXER and may be called to alter the standard
switch word settings. In the statement FXOPT(ncode,il,i2,i3), ncode is
an error code, and il, 12, and i3 provide the settings for the
corresponding bhits in the three switch word groups.

Examples:

1. CALL FXOPT(32,0,1,0)
2. CALL FXOPT(32,1,0,0)
3. CALL FXOPT(32,0,0,1)

NOTE: Error code 32 denotes an illegal character in input data.

Example 1 causes a Q6 abort when the error occurs, and no message or
trace is printed.

Example 2 causes execution to continue after message and trace are
printed.

Example 3 indicates that return is to an alternate error routine after
trace and message are printed, since the alternate return option takes
precedence over termination.

CALL FXALT (SR)

FXALT is an entry to .FXER and may be called to set the alternate
error return location. The statement CALL FXALT (SR) communicates the
name SR of the alternate error routine to the execution error monitor.
An EXTERNAL SR must be included in the calling routine. If the

alternate return option for an error code is indicated but no call to
FXALT has been made, a Q5 abort follows when the error occurs. A

RETURN statement in the alternate routine continues execution at the
instruction immediately following the one where the error occurred.

The statement CALL FXALT ($n) designates statement n in the calling
program as the alternate error return.

NOTE: If the same error occurs in the alternate error routine, an
interminable loop results.

3-15 DD20

3. Overflow and divide check fault test

The fault processor processes divide check, overflow, exponent
overflow, and exponent underflow faults. A message is output on file
06 stating the type of fault and the location at which the fault
occurred. Execution continues in the normal manner, although the EAQ
registers may have been reset as depicted in the following table.

FAULT EAQ REGISTERS
Exponent overflow Large floating-point valuel
Divide check (FP) Large floating-point valuel
Exponent underflow Floating=-point zero
Overflow (Integer) No change
Divide check (Integer) No change

To have another value returned in the EAQ registers after a divide
check, CALL FXDVCK(r,m) should be executed prior to the occurrence of
the fault., This statement causes the value of r to be returned in the
EAQ registers after a real divide check and the value of m to be
returned in the Q register after an integer divide check. The first
argument must be double precision. The second argument may be omitted.

4, CALL FXEM (ncode,msg,n)

A FORTRAN-callable entry has been provided so that it may be called
when the program detects an error condition.

This statement causes the printing of an error trace and the Hollerith
message contained in the msg array. The number of words (n) to be
printed must be within the limits 0< n<£ 20. If only the first argument
is given, only the trace is printed.

5. CALL ANYERR (V)

The user may desire to detect some error that has occurred in an
input/output routine or a mathematical FUNCTION routine.

v is a variable into which .FXER will initially place the value zero.
If an error occurs, the error code is placed in v, The 1logical IF
statement provides a suitable means of testing if v is typed LOGICAL.

lallows further computations without another immediate fault. This value is set
to approximately 10%*%*36,

3-16 DD20

METHOD

1.

Error linkage for tracing calls is generated by the Macro Assembler
Program (GMAP) and by the FORTRAN compiler. Tracing stops when the
address of the CALL instruction in the error linkage word is zero, or
when the number of traces exceeds a constant.

The error trace prints in reverse order. It includes the name of each
calling routine, identifying number of the CALL instruction, absolute
location of the CALL instruction, and up to five calling arguments.

The functions of this routine are optional. The options are controlled
by the following switch word groups:

.FXSW1l - Termination
.FXSW2 -~ Message printing
.FXSW3 -~ Alternate error returns

Each of the bits (1-143) in a switch word group corresponds to an
error code.

Special processing applies to error code 55. When this error is
encountered, the following message is written:

ILLEGAL VALUE FOR COMPUTED GO TO AT ID NUMBER XXXXX

The error code is always stored in the location FXCODE in FXER. Since
this is a SYMDEF, it may be accessed by a GMAP program.

The error code is also stored indirectly through a pointer defined in
FXER. This pointer may be set by calls to ANYERR. If this pointer has
been initialized to contain the address of a variable in the wuser's
program via a call to ANYERR, the variable will contain the error
code, expressed as an integer, upon return to the calling subprogram,
after an error.

FXOPT is an entry to .FXER. which, for a given error code, sets the
corresponding bits in .FXSW1l, .FXSW2, and .FXSW3 to the low-order bit
of the second, third, and fourth arguments. The first argument is the
error code. When a call is made to .FXER., the error code is wused to
shift each switch word group and set the options accordingly.

FXALT stores the location of its argument in location FXALT1l in .FXER.
If the alternate error return option is used, index register 1 and the
indicator register are restored; and a transfer 1is made to FXALT1
indirect. Thus, if the alternate return is a subprogram, the RETURN
statement transfers to the location following the call to .FXER. If no
alternate has been supplied, a Q5 abort occurs.

3-17 DD20

RETURN

A divide check, an overflow, or an underflow transfers to .FXER. via
the program fault vector. (For a description of the fault vector, see
the manual General Comprehensive Operating Supervisor.) .FXER. writes
the error message and loads the proper values into the EAQ-registers.
The normal return is RET 6 (divide check) or RET 8 (overflow and
underflow). If an alternate return is requested, the indicators and
index register 1 are loaded from the fault vector, so that a RETURN
statement in the alternate routine will transfer +to the location
immediately following the one that generated the fault.

FXEM is the entry provided for error conditions detected by the user's
program. Error codes 61-66 are reserved for users. The statement

CALL FXEM (ncode,msg,n)

prints an error trace and n words of the message in the array msg. Msg
must be an array containing character information. If either msg or n
is omitted or is zero, no message is printed. If n is greater than 20
words, only 20 words are printed.

Error codes and returns are defined in Table 3-2.

3-18 DD20

6T-€

ozaa

DEFAULT
PROCEDURE
ERROR ABORT/
CODE CONTINUE FUNCTION ERROR
0 A Not used
1 C I**J I=0,J=0
2 C I**J I=0,J<0
3 C DA**J DA=0,J=0
A**J A=0,J=0
4 C A**J A=0,J<0
DA**J DA=0,J<0
5 C B**C B<0,C=0
6 C A**B A=0,B=0
7 C A**C A=0,C<0
8 C e**p B>88.028
9 C LOG (A) A=0
10 C LOG (B) B<O0
11 C ARCTAN (A/B) A=0,B=0
427
12 o SIN (A) |a|>2
COS (A4)
13 C ‘/B B<O0
14 C CA**K CA=0,K=0

EXCEPTION

RETURN

0 — OR
235 ~2—QR
0—EAQ
10°2. Eag
0 — EAQ
0—EAQ
10°% Eag
10%2. eag

10°2- EaQ
0—EAQ
0—EAQ

0—EAQ

=

0 —AQ

Table 3-2. Error Codes And Returns

MESSAGE
LINE 1

EXPONENTIATION ERROR
0**0

EXPONENTIATION ERROR
0** (~J)

EXPONENTIATION ERROR
0**0

EXPONENTIATION ERROR
0%* (-J)

EXPONENTIATION ERROR
(-=B) **C

EXPONENTIATION ERROR
0**0

EXPONENTIATION ERROR
0*%* (~C)

EXP (B) ,B GRT THAN 88.028
NOT ALLOWED

LOG (0) NOT ALLOWED
LOG (-B) NOT ALLOWED
ATAN2(0,0) NOT ALLOWED

SIN OR COS ARG GRT TH
2*%27 NOT ALLOWED

SQORT (-B) NOT ALLOWED

EXPONENTIATION ERROR
0%*0

MESSAGE

SET RESULT=0

SET RESULT=2**35-2

SET RESULT=

SET RESULT=10%*%*38

SET RESULT=0

SET RESULT=0

SET RESULT=10%*%*38

SET RESULT=10**38

SET RESULT=10**33

SET RESULT=C.0

SET RESULT=0

SET RESULT=0

EVALUATE FOR +B

SET RESULT=0

0Z-¢

0zaa

DEFAULT
PROCEDURE

ERROR ABORT/

CODE CONTINUE FUNCTION
15 C CA**J
16 C DA**DB
17 C DA**DB
18 C DA**DB
19 C e**DA
20 C LOG (DA)
21 C LOG (DA)
22 C ‘VDA
23 C SIN DA

COS DA
24 ARCTAN (DA/DB)
25 CA/CB
26 C . e**CA
27 C e**CA
28 C LOG (CA)
29 C SIN (CA)
COS (CA)
30 C COos (Ca)

Table 3-2

ERROR

CA=0,J<0
DA< 0, DB#0
DA=0,DB=0
DA=0,DB<0
DA > 88.028

DA=0
DA<O

DA <0

|pa|> 227

DA=0,DB=0

CB=(0,0)
REAL CA>88.028
|IMAG ca| > 227
ca=(0,0)

|REAL(CA)|>227

IMAG (CA)>88.028

(cont).

EXCEPTION

RETURN

10°8. ar
0 — QR

0—EAQ
0—EAQ

1038+ EaQ

10}§AR
1028 0r

Error Codes And Returns

MESSAGE
LINE 1

EXPONENTIATION ERROR
0** (=J)

EXPONENTIATION ERROR
(-DA) **DB

EXPONENTIATION ERROR
0**0

EXPONENTIATION ERROR
0%* (~B)

EXP(B),B GRT 88.028,
NOT ALLOWED

DLOG (0) NOT ALLOWED
DLOG (-B) NOT ALLOWED
SQRT (-B) NOT. ALLOWED

DSIN OR DCOS ARG GRT
2**54 NOT ALLOWED

DATAN2 (0,0) NOT ALLOWED
COMPLEX 7Z/0 NOT ALLOWED
EXP(Z) ,REAL PART GRT
88.028 NOT ALLOWED

EXP (Z),IMAG PART GRT
2**27 NOT ALLOWED

CLOG (0) NOT ALLOWED

CSIN OR CCOS ARG WITH
REAL PART GRT 2**27 NOT

ALLOWED

CSIN OR CCOS ARG WITH IM

PART GRT 88.018 NOT
ALLOWED

MESSAGE
LINE 2

SET RESULT=(10%*38,0.0)
SET RESULT=0

SET RESULT=0

SET RESULT=10**38

SET RESULT=10**38

SET RESULT=- (10**38)
SET RESULT=0
EVALUATE FOR +B

SET RESULT=0

SET RESULT=0

SET RESULT=(10**38,
10**38)

SET RESULT=(10%**38,
10**38)

SET RESULT=0,0
SET RESULT
(-{(10%*38),0.0)

SET RESULT=0

SET RESULT=(10*%*38,
10**38)

TZ¢-¢

0caa

DEFAULT
PROCEDURE
ERROR ABORT/
CODE CONTINUE FUNCTION
31 c BCD I/0
32 o BCD I/0
33 A LINKED
BINARY I/0O
34 c BCD 1/0
35 c REWIND AND
END FILE
PROCESSOR
36 c FFFB
37 A FILE OPENING
38 A FILE OPENING
39 C LINKED
BINARY I/O
40 c LINKED
BINARY I/0
41 A LINKED
BINARY I/0
42 c NAMELIST
INPUT
43 o NAMELIST
INPUT
44 C NAMELIST
INPUT

Table 3-2

ERROR

ILLEGAL FORMAT
STATEMENT

ILLEGAL CHARACTER

IN DATA OR BAD
FORMAT

ATTEMPT TO READ
OUTPUT FILE

END-OF~FILE

ILLEGAL REQUEST

BACKSPACE ERROR

FILE NOT DEFINED

NO SPACE FOR I/0
BUFFERS

ILLEGAL END-
OF-FILE

LIST EXCEEDS
LOGICAL RECORD
LENGTH

SYSOUT/FIXED
LENGTH RECORDS

ILLEGAL HEADING
CARD

ILLEGAL VARIABLE
NAME

ILLEGAL SUBSCRIPT

OR ARRAY SIZE
EXCEEDED

(cont). Error Codes And Returns

MESSAGE
LINE 1_

EXCEPTION
RETURN

FORMAT AT LLLLLL, HAS

ILLEGAL CHAR
ILLEGAL CHAR IN DATA
OR BAD FORMAT

READ AFTER WRITE
IS ILLEGAL

END OF FILE READING
FILE CODE FC

REQUEST TO XXXXXX ON FC
WAS IGNORED

TAPE POSITIONED AT FIRST
FILE

FC XX
DOES NOT EXIST

INSUFFICIENT CORE AVAIL-
ABLE FOR BUFFERS

UNEXPECTED EOF OR BAD
FORMAT

LIST EXCEEDS LOGICAL
RECORD LENGTH
SYSOUT/FIXED LENGTH
RECORDS

ILLEGAL HEADING CARD
BELOW

ILLEGAL VARIABLE
NAME BELOW

ILLEGAL SUBSCRIPT BELOW,
OR DATA EXCEEDS VARIABLE

MESSAGE
LINE 2

TREAT AS END
OF FORMAT

TREAT ILLEGAL
CHAR AS ZERO

FC XX

OPTIONAL RETURN
NOT REQUESTED

BACKSPACE REQ. LARGER

THAN FILE COUNT

FC XX

STORE ZEROS 1IN
REMAINING LIST

ITEMS MAY NOT BE
PARTITIONED-FC XX
SCAN TERMINATED
SKIPPING TO NEXT
VARIABLE NAME

SKIPPING TO NEXT
VARIABLE NAME

¢Z-¢

0zaa

DEFAULT
PROCEDURE
ERROR ABORT/
CODE CONTINUE FUNCTION
45 C NAMELIST
INPUT
46 c NAMELIST
INPUT
47 A BACKSPACE
RECORD
48 C NAMELIST
INPUT
49 A BACKSPACE
FILE
50 c BACKSPACE
FILE
51 C SENSE LIGHT
SIMULATOR
52 C NAMELIST
INPUT
53 C SENSE SWITCH
TEST
54 A FILE OPENING
55 A FXEP
56 A FILE OPENING
57 C BCD I/0
58 C BACKSPACE

RECORD

Table 3-2 (cont).

ERROR

ILLEGAL CHARACTER
AFTER RIGHT
PARENTHESIS

ILLEGAL CHAR IN
DATA

FILE CANNOT BE
BACKSPACED

ILLEGAL LOGICAL
CONSTANT

ERRONEOUS
END-OF-FILE

BLOCK COUNT
OF ZERO
INDEX NOT
0<n<35
ILLEGAL

CHARACTER FIELD

INDEX NOT
l<n<6

ATTEMPT TO WRITE
I*

ILLEGAL VALUE

ATTEMPT TO READ
P*

ILLEGAL CHAR
FOR L CONVERSION

EXCEPTION

Error Codes And Returns

MESSAGE
LINE 1

ILLEGAL CHAR IN DATA
BELQW

ILLEGAL CHAR IN DATA
BELOW

FILE CODE XX, BACKSPACE
REFUSED

ILLEGAL LOGICAL CONSTANT

APPEARS BELOW (OR AT
END OF PRECEDING RECORD)

END-OF-FILE ON READ BUT
NOT ON PREVIOUS BACKSPACE
OF SAME TAPE RECORD

BLOCK COUNT = 0

REFERENCE TO NON-EXISTENT
SENSE LIGHT

ILLEGAL CHARACTER
FIELD BELOW

NON-EXISTENT SENSE SWITCH
TESTED

ILLEGAL WRITE REQUEST
ON SYSIN1

ILLEGAL VALUE FOR COM-

PUTED GO TO AT ID NUMBER
XXXXX

IT IS ILLEGAL TO READ
FROM SYSOUT FC XX

ILLEGAL CHAR FOR L
CONVERSION IN DATA BELOW

FILE NN IS CLOSED

MESSAGE
LINE 2

ASSUME COMMA PRECEDES
CHAR

TREAT CHAR AS ZERO

FILE IS SYSOUT OR IS
NOT MAG TAPE, D/D

TREAT ILLEGAL LOGICAL
CONSTANT AS F

DECLARED OFF IF
TESTING IGNORED
IF SETTING

SKIPPING TO NEXT
VARIABLE NAME

SWITCH DECLARED
OFF

NO OPTIONAL EXIT
EXECUTION TERMINATED

XKXXXX

TREAT ILLEGAL
CHARACTER AS SPACE

€C-¢

0caa

Table 3-2 {cont). Error Codes And Returns

EXCEPTION
ERROR

EMPTY CHARACTER
FIELD

J>36,J IS EVEN
J>36,J IS ODD,I>0
J>36,J IS ODD,I<0

RESERVED FOR USERS

DEFAULT
PROCEDURE
ERROR ABORT/
CODE CONTINUE FUNCTION

59 c NAMELIST
INPUT

60 o TI**J

61

62

63 A

64

65

66

67 c FAULT

68 o FAULT

69 c FAULT

70 c FAULT

71 o FAULT

72 C RANDOM
BINARY I/0

73 A RANDOM
BINARY I/0

74 A RANDOM
BINARY I/0

75 A RANDOM
BINARY I/O

76 A RANDOM
BINARY I/0

EXPONENT UNDERFLOW
INTEGER OVERFLOW
EXPONENT OVERFLOW

INTEGER DIVIDE
CHECK

FLOATING POINT
DIVIDE CHECK

LIST EXCEEDS LOGICAL
RECORD LENGTH

FILE NOT STANDARD

SYSTEM FORMAT. ZERO
BLOCK COUNT; BSN

ERROR; ZERO RECORD COUNT

NO FCB FOR FILE

BAD RANDOM RECORD REFERENGE

RECORD SIZE NOT SPECIFIED
IN FCB. GIVE VIA $ FFILE
CARD OR CALL RANSIZ
(FC,SIZE)

RETURN

MESSAGE
LINE 1

EMPTY CHARACTER FIELD

235 _2_+0R EXPONENT > 35 OR
2¥5£g—»QR EXPONENTIATION OVERFLOW
~-(2°° -2)-0R

EXPONENT UNDERFLOW
OVERFLOW
EXPONENT OVERFLOW

DIVIDE CHECK

DIVIDE CHECK

LIST EXCEEDS LOGICAL
RECORD LENGTH

FILE NOT STANDARD
SYSTEM FORMAT
FC XX

LOGICAL FILE CODE XX
DOES NOT EXIST

ZERC OR NEGATIVE
RANDOM REC #

REC SIZE NOT GIVEN
FOR RANDOM FILE

MESSAGE
LINE 2

TREAT AS BLANKS

SET RESULT =
+/=((2**35)~2)

AT LOCATION YXXXXX
AT LOCATION XXXXXX
AT LOCATION XXXXXX

AT LOCATION XXXXXX
AT LOCATION XXXXXX

STORE ZEROS IN
REMAINING LIST ITEMS
FC XX

NO OPTIONAL EXIT
EXECUTION TERMINATED

FC XX

FC XX

LL/€

¥z-¢

vozaa

DEFAULT
PROCEDURE
ERROR ABORT/
CODE CONT INUE FUNCTION
77 A RANDOM
BINARY I/0
78 A RANDOM
BINARY I/0
79 A RANDOM
BINARY I/O
80 A RANDOM
BINARY I/0
81 c FORMAT 1/0
ENCODE /DECODE
‘82 A FORMAT I/0
ENCODE/DECODE
83 C ARCSINE
84 C FORMAT 1/0
ENCODE /DECODE
85 C 1/0
86 A FORMAT 1/0
ENCODE /DECODE
87 c I1/0

Table 3-2 (cont).

EXCEPTION
ERROR RETURN

RANDOM WRITE TO LINKED
FILE ILLEGAL. LINKED

FILE MAY BE READ RANDOMLY

BUT NOT WRITTEN TO.

THE RECORD NO. GIVEN IN
THE RANDOM READ OR WRITE
STATEMENT IS OUTSIDE THE

FILE LIMITS.

LIST EXCEEDS DECLARED
RECORD LENGTH.

FILE IS NOT LARGE
ENOUGH TO CONTAIN
RECORD

LINE EXCEEDS SIZE OF
RECEIVING FIELD

FIRST NON-BLANK CHAR-~-
ACTER IS NOT (

| ARG 1> 1.0
I INTEGER|> 2*%35~1

"GFRC" ERROR
ENCODE/DECODE-I/0
MAY NOT BE USED

RECURSIVELY

SPACE/CORE OBTAINED

Error Codes And Returns

MESSAGE
LINE 1

RANDOM WRITE TO
LINKED FILE ILLEGAL

REC # OUT-OF-BOUNDS-

LIST EXCEEDS DECLARED
RECORD LENGTH

FILE SPACE EXHAUSTED-

LINE EXCEEDS SIZE OF
RECEIVING FIELD

FIRST NON-BLANK CHAR-
ACTER IS NOT (

| ARGI> 1.0

| INTEGER | > 2**35=1
"GFRC" ERROR
ENCODE/DECODE~

I1/0 MAY

SPACE/CORE OBTAINED
FOR

MESSAGE
LINE 2

FC XX

FC XX

FC XX

FC XX

TREAT AS END
OF FORMAT

TREAT AS END
OF FORMAT

EVALUATE FOR
ARG=1.0

LIMIT TO
2%*35-1

FC XX
NOT BE USED
RECURSIVELY

LOG. FILE
CODE XX

LL/g

T1°ve-¢

v0Zad

Table 3-2 (cont). Error Codes And Returns

DEFAULT
PROCEDURE
ERROR ABORT/ EXCEPTION
CODE CONTINUE FUNCTION ERROR RETURN
88 C CALLSS END OF STRING
CHARACTER MISSING
89 C EXP UNDERFLOW
DEXP
90 c TAN ARG TOO LARGE
DTAN
91 C ACOSH ILLEGAL ARG
DACOSH
"92 (o ATANH ILLEGAL ARG
93-99 NOT PRESENTLY USED

NOTATION: I,J,K are integers
A,B,C are real numbers
DA,DB,DC are double-precision numbers

MESSAGE
LINE 1

EXP (TOO LARGE A
NEGATIVE NUMBER)

LARGE ARG(71E4)
TO TAN

ACOSH OF NUMBER .LT.
1.0 NOT ALLOWED

iX1 .GE., 1.0 TO
ATANH (X)

CA,CB,CC where CA=¥,Y are complex numbers

MESSAGE

LINE 2

SET RESULT
=0.0

MAY CAUSE LOSS
OF PRECISION

SET RESULT
TC 0.0

SET RESULT TO
+ CR -10**38

File Transliteration

FUNCTION

FMED is a file media transliteration module.

CALLING SEQUENCE

CALL FMEDIA (fc,media)

fc

FORTRAN logical file code

media = pointer to a code representing the form of the output as follows:

1l

media 0, BCD NSLEW

2, BCD cards

3, Printer

5, Time Sharing ASCII (obsolete)

= 6, Standard System Format ASCII (no slew)

All others are ignored

(L]

il

The legal combinations are as follows:

0 to 2 3 to O
0 to 3 3 to 2
0 to 5 3 to 5
0 to 6 3 to 6
2 to 0 6 to 0
2 to 3 6 to 2
2 to 5 6 to 3
2 to 6 6 to 5

METHOD

FMED sets bits 18-21 of the file control block LOCSYM+5. These bits are
used to inform the I/0 edit function that each output record directed to
the file (fc) must be transliterated to the format represented by the media
in bits 18-21 of FCB+5. FMED calls FOPEN to locate the file control block.
FOPEN returns the file control block location. FMED calls GMEDIA. If media
= 0, the nslew bit in the file control block is also set.

Automatic file transliteration is provided and/or reformating on a logical
record basis permits the following:
1. Executing of a BCD program under time sharing.

a. I/0 can be directed to the terminal.

b. Input files can be ASCII (media 5 or 6).

C. Output files can be media 0,2,3 BCD or 5,6 ASCII.

3-25 i ‘ DD20

Execution of an ASCII program in batch.

a. I/0 can be directed to reader, printer, punch or

b. Input files can be media 0,2,3 BCD or 5 ASCII.

c. Output files can be media 0,2,3 BCD

Execution of a BCD program in batch.

or 6 ASCII,

a. Input files can be ASCII (either media 5 or 6).

b. Output files can be media 0,2,3 BCD
Execution of an ASCII program under time
a. Terminal I/0 is provided.

b. Input files can be media 5 ASCII or

C. Output files can be media 0,2,3 BCD

or 6 ASCII.

sharing.

0,2,3 BCD.

or 5,6 ASCII.

SYSOUT.

DD20

Date and Time

FUNCTION

FDTM allows a user to obtain the current date and time.

CALLING SEQUENCE

CHARACTER A*8
REAL B

CALL DATIM (A,B)

Upon return, A will contain the date in the form mm/dd/yy (with trailing

blanks if in BCD mode); B will contain the time-of-day in hours as a
floating point binary number.

METHOD

FDTM uses the MME GETIME in the batch mode and the DRL TIME in the time

sharing mode. FDTM uses the GCVT module for transliteration on the date, if
required.

Cell .SETU.-6 1is used to determine if the environment is batch or time
sharing.

3-27 DD20

Access a Permanent File

FUNCTION

FTAC is used to access an existing permanent file.

CALLING SEQUENCE

' CALL ATTACH (lgu,catfil,iprmis,mode,istat,buffer)

3/77

1gu =

catfil

iprmis =

If iprmis

mode
mode
mode
mode
istat

Wwnnn

buffer

(L

the FORTRAN file code (an integer expression, variable, or
constant)
a character constant, or variable, containing the catalog/file
string. It must be terminated by & semicolon; embedded blanks
are ignored. The user master catalog password is wused if it
exists; the system master catalog password 1s never used;
however, subsequent passwords are required if they are part of the
file description.

the permissions desired. These will be ORed with any permissions
in the catfil,

= 1, READ only; if iprmis = 2, WRITE only; if iprmis =3, READ and
WRITE; otherwise, undefined and may change.

an integer variable or constant

0; Gets file as defined

1l; Gets file as random

2; Gets terminal

the status return from the file system (see the TSS System
Programmer's Reference Manual for TSS codes), or will contain a
status as follows:

OK (batch mode only)

File is currently open

Terminal requested in batch mode (illegal)

Additional memory needed, request denied (time sharing user is
aborted)

catfil all blanks

WO

onnn

4

L]

null arg: get a file system buffer.

not null arg: use this variable array as a buffer (at least 380
words) .

Example of null arg:

CALL ATTACH (lgu, "catfil;",iprmis,mode,istat,)

3-28 DD20A

METHOD

Upon successful return from FTAC (attach), a file control block will have
been created and the file name (or alternate name) will be in FCB -10, =9
(in ASCII). If the file was in the available file table (AFT), it will be
deaccessed and reaccessed with the new permissions, if necessary.

[
1
)
W0
i
jw)
N
>

Close File, Detach Buffers, .Remove from AFT

FUNCTION

FDTH is used to close a file and release its buffers. In time sharing, the
file is also removed from the AFT. If more memory is needed (to deaccess
the file) and the request is denied, the time sharing user is aborted.

CALLING SEQUENCE

CALL DETACH (lgu,istat,buffer)

lgu =
- istat =

buffer

I

the FORTRAN code (an integer expression, variably, or constant)
the status return word

istat = 0, means OK

istat = 1, means could not get file system buffer

null arg: get a file system buffer

not null: use this buffer (at least 380 words)

The following is an example of a null argument.

CALL DETACH (lgu,istat,)

METHOD

See Function.

3-30 DD20

Attach a Temporary Mass .Storage or Terminal File

FUNCTION

FCRA is used to create and access a temporary mass storage or terminal
file.

CALLING SEQUENCE:

CALL CREATE (lgu,isize,mode,istat)

lgu the FORTRAN file c¢ode (an integer expression, variable, or
constant)

the size, in words, of the temporary file wanted

0 for a linked mass storage file

1 for a random mass storage file

2 for a terminal file

the status return word (see the TSS System Programmer's Reference
Manual for TSS codes). The following codes also apply:

isize
mode

o

o

istat

0, successful

1, mode is invalid

2, file is currently open

3, no room in AFT

temporary file not available
5, duplicate file name

6, no room in PAT

7, illegal device specified

IO T 1 I
'S

METHOD

If the function is successful, a FCB is created and the file code, in
ASCII, is placed in FCB -10, -9.

3-31 DD20

FORTRAN DEBUGGING SYSTEM (FDS) SUBROUTINES

Core Allocator

FUNCTION

FALC is a general dynamic storage allocator capable of dispensing memory
space from a region composed of a list of disjoint free blocks.

CALLING SEQUENCE

The following call will allocate a block of n consecutive words:

LDQ n,DL
TSX1 .FDSGT

If the request is denied, the Q register will be returned with the value
zero. If the request is granted, bits 0-17 of the Q register will contain
the address of the allocated block and bits 18-35 will contain the length
of the block as designated in the call. (Currently, denial returns are
given only in the batch mode of operation.)

METHOD

3/77

The free blocks are chained together with a linked list running through
bits 18-35 of their initial words. The last block on the <chain contains
zero 1in this field. Bits 0-17 of the first word of a free block contain
the address of the last word in the block plus one. Equality of these two
fields indicates that the block is immediately followed by another free
block and the two may be coalesced into one.

To locate memory space to satisfy a storage request, the chain of free
blocks is first searched, and blocks are coalesced as the search proceeds.
If a sufficiently large free block 1is found, the requested space is
allocated and any,K excess memory is returned to the free block chain.

If no free block is found that satisfies the request, space is sought in
the "core-hole" described by word 37 (octal) of the slave prefix. If
enough memory space is available at this location, the requested space is
allocated out of the 1low end and the core-hole 1limits are adjusted
accordingly.

If no memory space is available in the core-hole, a request is made to the
operating system for additional memory. The memory space obtained in this
operation is transformed into a new core-hole and the old core-hole is
merged into it, if possible.

To ensure that the core-hole does not become too small, any free blocks

adjacent to the core-hole are merged with the c