
Honeywell

LEVEL 66
SOFTWARE

FORTRAN
SUBROUTINES LIBRARIES

Honeywell
FORTRAN
SUBROUTINE LIBRARIES
ADDENDUM A

SERIES 60(LEVEL 66)/6000

~ ~ -............ __ ..,.,,,.,,._,_,, ,_~-- .. ----·" ~-···---·
SOFTWARE

SUBJECT:

Additions and Changes to Series 60 (Level 66)/6000 FORTRAN Subroutine
Libraries

SPECIAL INSTRUCTIONS:

This update, Order Number DD20A, is the first addendum to DD20, Rev. O,
dated May 1975. The attached pages are to be inserted into the manual
as indicated in ·the collating instructions on the back of this cover.
Change bars .: in the page margins indicate technical additions and
changes; asterisks indicate deleted material. These changes will be
incorporated into the next revision of the manual.

NOTE: This cover should be placed following the manual cover to
indicate that the document has been updated with Addendum A.

SOFTWARE SUPPORTED:

DATE:

Series 60 Level 66 Software Release 3
Series 6000 Software Release I

March 1977

ORDER NUMBER:

21363
1.5778

DD20A. Rev. 0

Printed in U.S.A.

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove

v, vi
vii, blank
2-1 through 2-4
2-7 through 2-12
2-15, 2-16
2-31 through 2-34
2-49, 2-50
3-1, 3-2
3-7, 3-8
3-23, 3-24

3-27 I 3-28
3-31, blank

4-1 through 4-60

Insert

v, vi
vii, blank
2-1 through 2- 4
2-7 through 2-12
2-15, 2-16
2-31 through 2-34
2-49, 2-50
3-1, 3-2
3-7, 3-8
3-23, 3-24
3-24= 1, blank
3-27, 3-28
3-31, 3-32
3-33 through 3-42
3-43, blank
4-1 through 4-66
4-67, blank

@) 1977, Honeywell Information Systems Inc.

3; 7 7

File No.: 1723,1P23

DD20A

SUBJECT

SERIES 60 (LEVEL 66)/6000
FORTRAN

SUBROUTINE LIBRARIES

FORTRAN Input/Output, Error Monitoring, Mathematical, and
NonmathematiCal Subroutines

SPECIAL INSTRUCTIONS

For Series 6000 systems, this manual replaces the manual of the same name,
Order Number BR95, dated June 1971. Order Number BR95 remains an active
publication for Series 600 systems and for Series 6000 systems on prior software
releases.

SOFTWARE SUPPORTED

Series 60 Level 66 Software Release 2
Series 6000 Software Release H

ORDER NUMBER

DD20, Rev. 0 May 1975

Honeywell

PREFACE

This manual describes the FORTRAN Subroutine Libraries.
include subroutines for input/output, mathematical and
functions, and execution error monitoring.

These libraries
nonmathematical

{§) 1975, Honeywell Information Systems Inc. File No.: 1723,1P23

0020

FUNCTIONAL LISTING OF PUBLICATIONS
for

SERIES 60 (LEVEL 66) and SERIES 6000 SYSTEMS

FUNCTION

Hardware reference:
Series 60 Level 66 System
Series 6000 System
DATANET 355 Processor
DATANET 6600 Processor

Operating system:
Basic Operating System

Job Control Language
Table Definitions
I/O Via MME GEINOS

System initialization:
System Startup
System Operation
Communications System

Communications System
DSS180 Subsystem Startup

Data manaqement:
File System
Integrated Data Store (I-D-S)
Integrated Data Store (I-D-S)
File Processing
File Input/Output
File Input/Output

I-D-S Data Query System
I-D-S Data Query System

Proqram maintenance:
Object Program
System Editing

Test system:
Online Test Program
Test Descriptions

Error Analysis and Logging

Language processors:
Macro Assembly Language
COBOL-6R Language
COBOL-68 Usage
JOVIAL Language
FORTRAN Language

Generators:
Sorting
Merging

APPLICABLE REFERENCE MANUAL

TITLE
Series 60 (Level 66)/Series 6000:

Series 60 Level 66 Summary Description
Series 6000 Summary Description
DATANET 355 Systems Manual
DATANET 6600 Systems Manual

General Comprehensive Operating
Supervisor (GCOS)

Control Cards Reference Manual
System Tables
I/O Programming

System Startup
System Operation Techniques
GRTS/355 and GRTS/6600 Startup

Procedures
NPS Startup
DSS180 Startup

File Management Supervisor
I-D-S/I Programmer's Guide
I-D-S/I User's Guide
Indexed Sequential Processor
File and Record Control
Unified File Access System (UFAS)

(Series 60 only)
I-D-S Data Query System Installation
I-D-S Data Query System User's Guide

Source and Object Library Editor
System Library Editor

Total Online Test System (TOLTS)
Total Online Test System (TOLTS)

Test Pages
Honeywell Error Analysis and Logging

System (HEALS)

Macro Assembler Program
COBOL
COBOL User's Guide
JOVIAL
FORTRAN

Sort/Merge Program
Sort/Merge Program

iii

ORDER
NO.

DC64 ·
DA48
BS03
DC88

DD19
DD31
DD14
DB82

DD33
DD50

DD05
DD51
DD34

DD45
DC52
DC53
DD38
DD07
DC89

DD47
DD46

DD06
DD30

DD39

DD49

DD44

DD08
DD25
DD26
DD23
DD02

DD09
DD09

DD20

/

FUNCTION

Simulators:
DATANET 355/6600 Simulation

Service and utility routines:
Loader
Utility Programs
Utility Programs
Media Conversion
System Accounting
FORTRAN
FNP Loader
Service Routines
Software Debugging

Time Sharing systems:
Operating System
System Programming
System Programming

BASIC Language
FORTRAN Language
Text Edi ti.ng

Remote communications:
DATANET 30/305/355/6600 FNP
DATANET 355/6600 FNP
DATANET 700 RNP

Transaction processing:
User's Procedures

Handbooks:
System-operator communication

Pocket guides:
Control Card Formats
FORTRAN

Rev. 7412

APPLICABLE REFER.ENCE MANUAL

TITLE
Series 60 {Level 66)/Series 6000:

DATANET 355/6600 Simulator

General Loader
Utility
UTL2 Utility Routine (Series 60 only)
Bulk Media Conversion
Summary Edit Program
FORTRAN Subroutine Libraries
DATANET 355/6600 Relocatable Loader
Service Routines
Debug and Trace Routines

TSS General Information
TSS Terminal/Batch Interface
TSS System Programmer's Reference

Manual
Time Sharing BASIC
FORTRAN
Time Sharing Text Editor

Remote Terminal Supervisor (GRTS)
Network Processing Supervisor (NPS)
RNP/FNP Interface

Transaction Processing System User's
Guide

System Console Messages

Control Cards and Abort Codes
FORTRAN Pocket Guide

iv

ORDER
NO.

DD32

DDlO
DD12
DC91
DDll
DD24
DD20
DD35
DD42
DD43

DD22
DD21

DD17
DD16
DD02
DD18

DD40
DD48
DB92

DD41

DD13

DD04
DD82

DD20

Section I

Section II

Section III

3/77

CONTENTS

Introduction. • • • • •

Input/Output Library ••
Library Calls •••
Input/Output Library Subroutines •
Subroutines Implicitly Called ••••

Linked Binary Input/Output Interface.
Short List Input/Output Processor • • • •
Random Binary Input/Output. • • • ••
Format Controlled Sequential Input/Output •
Namelist Input. • • • • • • • •
Namelist and Dump Output. • •
Character String Assignment
Character Str~ng Compare ••
Output Stop and Pause Information
Object Time Debug Processor • • •
Pre-execution Initializer (Batch)
Pre-execution Initializer (Time Sharing) ••
Arithmetic Fault Processor •••
Backspace Record. • • • • • • • •
Rewind and Endfile Processor •••
End-of-File (On Input) Processor.
File Opening ••••••••••
Carriage Control Simulator ••••

Subroutines That Are User Callable •
Console Communication • • • • • •
Memory Dump • • • • • • • • • • •
File Control Block and Logical Unit

Table Routines • • • • • • • • • •
Define File Control Block. • • . .
Define Buffer(s) for a Specified File
Control Block • • • • • •

Define Logical Unit Table.
File Closing •••••••••
Initialization of End-of-File Processing ••
Initialization of Data Error Processing •
Job Termination • • • • • • • • • •
File Forwardspace and Backspace •
Call TSS Subsystem. • • • •
Create TSS Temporary File • • • •
Specify Record Size, Random Binary File •
Set or Reset Some I/O Parameters of

Run-Time Library • • • • • •

Miscellaneous Library Subroutines • •
Subroutines Implicitly Called. • • • •

Double Precision Powers of Ten Table.
Restore Link - H* • • • • • • • •
Terminal Input Recovery • • • • •
ASCII/BCD Indicators ••••••

Subroutines That Are User Callable
Exponent Register Overflow and Divide

Check Tests ••••••••••••••

v

Page

1-1

2-1
2-1
2-3
2-4
2-4
2-8
2-10
2-12
2-17
2-21
2-23
2-24
2-25
2-27
2-28
2-30
2-31
2-32
2-34
2-36
2-37
2-39
2-41
2-41
2-43

2-44
2-44

2-45
2-46
2-47
2-48
2-49
2-50
2-51
2-52
2-53
2-54

2-55

3-1
3-3
3-3
3-4
3-6
3-7
3-8

3-8

DD20A

Section IV

CONTENTS (cont)

Sense Light Simulator • • • • • • • • •
Sense Switch Test •••••••••••
Restore Links During Execution (Batch).
Restore Links During Execution

(Time Sharing) • • • • •
Execution Error Monitor •

Switch Word Groups ••••
GMAP Calling Sequence. • •
FORTRAN Calling Sequences.

File Transliteration •••
Date and Time • • • • • • • •
Access a Permanent File • • • •
Close File, Detach Buffers, Remove from AFT
Attach a Temporary Mass Storage or

Terminal File. • • • • ••••••
FORTRAN Debugging System (FDS) Subroutines

Core Allocatore •••
Special Entry Point •
FDEBUG Bootstrap. • • • •
FDUMP Bootstrap • • •
LINK/LLINK Interface. • • • •
Delete From Wrapup List •
Release Unused Memory •
Dummy Setup • • • •
Add to Wrapup List.
Timing Facility •••
Wrapup and Loader • •
Linking Subroutine.

Mathematical Library Subroutines •••
Mathematical Library Descriptions.
Definitions and Considerations ••••••

Exponentiation - Integer Base and
Exponent • • • • • •

Exponentiation - Real Base, Integer
Exponent • • • • • • • • • • •

Exponentiation - Real Base and
Exponent • • • • ., • • • • • • •

Exponentiation - Complex Base, Any
Exponent • • • • • • • • • • • • •

Natural, Base 2, and Common Logarithms •••••
Real Hyperbolic Arcsine, Arccosine,

and Arctangent • • • • • • •
Real Arcsine and Arccosine. • • • ••
Real Arc tangent • • • • • • • •
Complex Absolute Value. • • •
Complex Exponential • • • •
Complex Natural Logarithm ••
Complex Multiplication and Division
Real Cube Root ••••••
Complex Sine and Cosine • • • • • • • • • • • •
Complex Square Root • • • • • • • •
Exponentiation - Complex Base, Integer

Exponent • • • • • • • • • • • • • • •
Double Precision Hyperbolic Arcsine,
Arccosine, and Arctangent •••••••

Double Precision Arcsine and Arccosine.
Double Precision Arctangent • • • • • •
Double Precision Cube Root. • • • • •
Double Precision Exponential, Base 2, and
Base 10 •••••••••••••••

vi

Page

3-9
3-10
3-11

3-12
3-13
3-13
3-14
3-15
3-25
3-27
3-28
3-30

3-31
3-32
3-32
3-33
3-34
3-35
3-36
3-37
3-38
3-39
3-40
3-41
3-42
3-4 3

4-1
4-2
4-6

4-8

4-10

4-11

4-13
4-14

4-16
4-18
4-21
4-23
4-24
4-25
4-26
4-28
4-30
4-32

4-33

4-34
4-35
4-37
4-39

4-40

DD20A

Section V

Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 3-1
Table 3-2
Table 4-1
Table 5-1

3/77

CONTENTS {cont)

Double Precision Natural, Base 2, and
Common Logarithms ••••••••

Double Precision Remaindering • •
Double Precision Hyperbolic Sine, Cosine,

and Tangent • • • • • • • • • • • • • • •
Double Precision Sine and Cosine.
Double Precision Square Root ••••
Double Precision Tangent •••••
Double Precision Exponential Complement
Double Precision Exponentiation, Real

Base or Exponent (or Both) • • • • •
Real Exponential Complement • • • • •
Real Exponential, Base 2, and Base 10 •
Real Sine and Cosine. • •••••
Real Square Root. • •
Real Tangent. • • • •
Real Hyperbolic Sine, Cosine, and Tangent •

Nonmathematical Library Subroutines
Mode Determination by FORTRAN •
Character String Manipulation •
Sort Array of Data ••••••
Memory Usage • • • • • • • •
User Time ani Identification ••
Set/Reset Switch Word • • • • • • •
Shift/Rotate Word Contents ••
Random Number Generator
File and Record Control I/O Error Recovery.

TABLES

Input/Output Library Subroutines.
Linked Binary Subroutines and Entry Points.
Initialization of I/O
List and End-of-File Processing .
Miscellaneous Library Subroutines
Error Codes and Returns
Mathematical Library Subroutines. . .
Nonmathematical Library Subroutines

vii

. .

. .

Page

4-42
4-44

4-45
4-47
4-49
4-50
4-52

4-54
4-56
4-58
4-60
4-62
4-64
4-66

5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10

2-3
2-6
2-13
2-14
3-2
3-19
4-3
5-1

DD20A

I

SECTION I

INTRODUCTION

FORTRAN is an automatic coding language especially suited to solving
complex scientific and engineering problems. This capability is greatly enhanced
by the use of subroutines from the Input/Output (I/O) and math libraries to
perform the basic elements of the FORTRAN language - arithmetic, control, and
input/output.

This manual describes the subroutines that make up the FORTRAN Library.

1-1 DD20

SECTION II

INPUT/OUTPUT LIBRARY

The FORTRAN Input/Output {I/O) subroutines perform the functions associated
with the execution of and input/output requirements of the user's program. The
descriptions in this section define the general mode of operation of the
subroutines that constitute the FORTRAN I/O Library. In these descriptions, it
is assumed that the reader is familiar with the manner in which the General
Loader processes General Comprehensive Operating Supervisor (GCOS) and $ FFILE
control cards.

The I/O subprograms require that program execution be started with the
FOR'l'RAN ini tiali za ti on subprogram • FSETU, because one of its functions is the
initialization of fault vector cell 25 (octal). This location contains the
address where the "logical file/file control block" table begins. The user can
also accomplish this initialization by calling SETLGT when he has created his
own table. The library subroutines also depend on the limits of unused memory
being expressed in fault vector cell 37 (octal). This is always done by the
General Loader. When the $ OPTION FORTRAN card is encountered in the batch
mode, the General Loader ensures that the FORTRAN initialization subprogram is
loaded. In the time sharing mode, the RUN subsystem ensures that the proper
initialization subprogram is loaded.

LIBRARY CALLS

A call to any I/O Library subroutine from a FORTRAN language program
contains, as one of the arguments, the logical file code expressed as an
integer. This integer is placed in character position 5 (bits 30-35) of cell
.FBAD. (defined in subroutine FOPEN) by the called I/O subprogram. The called
subroutine then calls FOPEN which searches the "logical file - file control
block" table defined as follows:

3/77

1. Fault vector cell 25 (octal) is of the form

ZERO TAB, 0

2. The actual logical unit (LGU) table has the form
ZERO ENDTAB / 0

TAB VFD 18/FCB1,6/LGU1,6/LGU2,6/LGU3

VFD 18/FCB2,6/LGU4,6/LGU5,6/LGU6

ZERO 0 ,O

ENDTAB ZERO 0,0

2-1 DD20A

I

I

where: a. TAB - 1 contains the address of the last available location in
the table.

b. FCBl contains the address of cell LOCSYM of file control block
1.

c. LGUl, LGU2, LGU3 are the FORTRl\N logical files that reference
file control block 1. Missing files are filled in with zeros.

If more than three logical files reference the same file control block, the
FCBl pointer and the additional files can occur at any other place in the
table.

There are as many entries in the table as needed to express the various
file control blocks and logical files referencing them. After the last
entry in the table, zeros fill out the table.

FOPEN places the address of the file control block for the referenced
in bits 0-18 of cell .FBAD., but does not destroy the logical file code in
30-35 {character position 5) of that cell. FOPEN then proceeds to open the
and return.

file
bits
file

The subroutine that called FOPEN now has the information necessary to
perform calls to the proper File and Record Control subprograms. In the case of
an output file, bits 30-35 of .FBAD. are used as the report code of the output
record. Thus, if many logical files are connected to SYSOUT, they are separated
automatically at printing time according to the calling code originally
specified in the FORTRAN program calling sequence.

2-2 DD20

INPUT/OUTPUT LIBRARY SUBROUTINES

The input/output library subroutines are summarized in Table 2-1. Table 2-1
gives the input/output function and the library subroutine that performs the
function in the different modes -- batch and time sharing and using the BCD and
ASCII character sets. Subroutines can Le categorized as those implicitly called
and those that are user callable.

Table 2-1. Input/Output Library Subroutines

Function

Linked Binary I/O Interface
Short List Binary I/O Interface
Short List I/O Processor
Random Binary I/O
Format Controlled Sequential I/O

(Common Procedure)
Format Controlled Sequential I/0

(BCD/ASCII Procedure and Data)
Format Controlled Short List I/O
Processor

Namelist Input (Common Procedure)
Namelist Input (BCD/ASCII Procedure

and Data)
Namelist and Dump Output

(Common Procedure)
Namelist and Dump Output

(BCD/ASCII Procedure and Data)
Character String Assignment
Character String Compare
Output Stop and Pause Information

• Console Communications
Object Time Debug Processor
Memory Dump (Common Procedure)

• Memory Dump (BCD/ASCII Procedure
and Data)

Pre-execution Initializer
Arithmetic Fault Processor

• Define Buffer(s) for File Control Block
• Define File Control Block
• Define Logical File Table

Backspace Record
• File Closing

Rewind and Endf ile Processor
End-of-File (On Input) Processor

• Initialization of End-of-File Processing
• Initialization of Data Error

Processing
File Opening

• Job Termination
• File Forward and Backspace

Carriage Control Simulator
• Call TSS Subsystem
• Create TSS Temporary File
• Specify Record Size, Random Binary File
• Set or Reset Some I/O Parameters

of Run-Time Library

• User callable
'·

2-3

Batch Time Sharin_g_ BCD ASC--I-I ____ B_C_D __ ,_A_S_C_I_I __ --t

FRDB
FBLO
FSLI
FRRD

FDIO

FRDD

FSLO
FNLI

FVFI

FNLO

FVFO
FCHA
FCOM
FPAW
FCSL
FDBG
FDMP

FDPD
FSTU
FFLT
FSET
FSET
FSET
FBST
FCLO
FEFT
FLOF
FFEE

FFER
FOPE
FXIT
FFFB
FSLW

FRRD

FSTU

FRDB
FBLO
FSLI
FRRD

FDIO

FRDA

FSLO
FNLI

FIFA

FNLO

FOFA
FCHA
FCOM
FPAW
FCSL
FDBG
FDMP

FDPA
FSTU
FFLT
FSET
FSET
FSET
FBST
FCLO
FEFT
FEOF
FFEE

FFER
FOPE
FXIT
FFFB

FRRD

FSTU

FRDB
FBLO
FSLI
FRRD

FDIO

FRDD

FSLO
FNLI

FVFI

FNLO

FVFO
FCHA
FCOM
FPAW

FDBG
FDMP

FDPD
FTSU
FFLT
FSET
FSET
FSET
FBST
FCLO
FEFT
FEOF
FFEE

FFER
FOPE
FXIT
FFFB
FSLW
FCAL
FDEF
FRRD

FTGF

FRDB
FBLO
FSLI
FRRD

FDIO

FRDA

FSL.J
Ft{LI

FIFA

FNLO

FOFA
FCHA
FCOM
FPAW

FDBG
FDMP

FDPA
FTSU
FFLT
FSET
FSET
FSET
FBST
FCLO
FEFT
FEOF
FFEE

FFER
FOPE
FXIT
FFFB
FTGF
FCAL
FDEF
FRRD

FTGF

DD20

SUBROUTINES IMPLICITLY CALLED

Linked Binary Input/Output Interface

FUNCTION

Linked Binary I/O Interface consists of two subroutines (FRDB and FBLO)
called for linked binary input/output interface; for processing linked
binary elements; linked binary arrays; and for end-of-list processing for
input/output statements of the following forms:

READ (fc, END=Sl, ERR=S2) list

WRITE (fc, END=Sl, ERR=S2) list

f c
END
ERR
list

file code
optional transfer location for end-of-file
optional transfer for program error
integer, real, complex, double precision,
character elements and arrays

logical, and

The FBLO subroutine is called to process short list items; that is, arrays
referenced without a subscript.

The following sequence results for a READ statement where the list is an
integer, real, logical, double precision, or complex element.

TSXl
TRA
ZERO
ARG
TRA
TRA
TSXl
STy
TSXl

eFRDB e

* + offset
.E.L •• , E.I.
pointer to file
ERR-clause
END-clause
.FBxT.
element
.FRLR.

code}

}
Initialization for

READ

List processing

Signals end of record

x = L for integer, real, complex, or logical elements
D for double precision elements

y A for integer, real, complex, or logical elements
AQ for double precision elements

The following list processing sequence results for a READ statement where
the list is a character element.

EAA
TSXl
NOP

list
.FBBC. (or .FBBCA in ASCII mode)
element size, DL

2-4 DD20A

The following list processing sequence results for a READ
the list is an integer, real, complex, double precision,
logical array •

statement where
character, or

TSXl
ARG
ARG

• FBxI. (.FXDI. for double precision arrays)
array locator
array size, DL (total number of words in array)

x = L for integer, real, complex, and logical arrays
S for character arrays

The following sequence results for a WRITE statement where the list is an
integer, real, complex, double precision, or logical element.

TSXl .FWRB.

COJ
Initialization for

TRA * + offset
ZERO .E.L •• ,E.I. WRITE
ARG pointer to file
TRA ERR-clause

} TRA END-clause
LDx element List processing
TSXl .FByT.
TSXl .FWLR. Signals end of output

x = A for integer, real, logical, or complex elements
AQ for double precision elements

y L for integer, real, complex, or logical elements
D for double precision elements

The following list processing sequence results for a WRITE statement where
the list is a character element.

EAA
TSXl
NOP

list
.FBBC. (or .FBBCA in ASCII mode)
element size, DL

The following list processing sequence results for a WRITE statement where
the list is an integer, real, complex, double precision, character, or
logical arrays •

TSXl
TRA
ZERO
ARG
ARG

• FBxO. (.FXDO. for double precision arrays)
* + off set
.E.L •• ,E.I.
array locator
array size, DL (total number of words in array)

x L for integer, real, complex, or logical arrays
S for character arrays

The following table, Table 2-2, contains a summary of the linked binary
subroutines and entry points.

2-5 DD20

Table 2-2. Linked Binary Subroutines and Entry Points

Type Short Lid Shc>rt List
Initialization Element Input Out;>ut EnJ of lnput EnJ ,lf Cl11t put

Routine Entry Rout in<' Entry Routine Entry Rnut i ne Entry Rout i nP Entry Rout i nP Fnt 1 v
-

Int eg<' r FRDB FIU>ll FRDB FBLT FBLO FBLl FBLO FBLO FRDB FRI-R FRDB FWI.R

lkal FRDll FRDB FRDB Fm,r FBLO FRLI ~·BLo FBLO FRIHI FRl.R FRDB F\.:l R

Cnmple>r
Doublc>-Prc>ci~irin

Logic,• l
Character

FRDll
FRDB
FRDB
FRDB

FRDB
~·RDs

mos
FRDB

FRDB FBLT Flll,0
FRDB FBl.Yf FBLO
FRDB FBLT FBLO
FRDB FBl!C FBLO

FBI. I FBI.O FBLO FRDB FRJ,R FRDB l'\,'j

FBOI FBLO FllOO FRDB FRLR FRllll Fl-:1.1\
FBLI FBLO FRLO FRDB FRLR FRD!l F\.:IR
FBSI FBLO FBSO FRDB FRLR FRflB FWJ.R

Subroutine FBLO calls FSLI to set up indexing for the processing of the
input/output of nonsubscripted arrays.

CALLING SEQUENCE

See Function.

METHOD

Binary I/O is standard system format I/O unless
reads or writes media code 1 records. The binary
Record Control buffers, eliminating the need for
Records are assumed to be variable length records
words in length. Logical, variable length records
buffer are partitioned and follow the rules for
defined below.

otherwise specified and
I/O routine uses File and

an internal work area.
and can be up to 4095
too large to fit in one
partitioned records as

1. oniy logical, variable length (VLR) records too large to fit in
one buffer are partitioned.

2. A partitioned record begins in a new buffer and ends in a buffer
with no other records in that final buffer.

3. Partition indicators:

Initial Block:

RCW bits 24-25 01

Intermediate Blocks:

RCW bits 24-25

Bits 26-35

10

Partition counter starting with
2 and advancing by 1 for each
new block in the record.

2-6 DD20

Final Block:

RCW bits 24-25 11

Bits 26-35 Partition counter described above.

Valid batch mode loader $ FFILE options include NSTDLB, NBUFFS, BUFSIZ,
FIXLNG, and NOSRLS. Additional information on FRDB can be obtained from
documentation at the front of the assembly listing.

RETURN

Normal return is to the next executable statement in the calling program.
Error conditions are handled as follows:

1. Error code 39 when an end-of-file condition, other than 17 or 23
(octal numbers) , is detected.

2. Error code 33 because Read after Write is illegal.

3. Errdr code 40 when list exceeds logical record length. All
remaining list items are set to zero.

4. Error code 41 when SYSOUT or fixed length records are not smaller
than block size.

2-7 DD20

I

Short List Input/Output Processor

FUNCTION

FSLI provides list processing for a nonsubscripted array in conjunction
with subprograms FSLO, FRDB, and FRRD.

CALLING SEQUENCE

3/77

The subprograms FSLO, FRDB, and FRRD have calling sequences to the
subprogram FSLI to accomplish the data transfer.

For Formatted I/O (FSLO)

Output Input

E

E

E

m
r

c

p

STX2 .FSLII E STX2
TSX2 • FSLI (m) TSX2
LD(r) ** '2 E TSXl
TSXl c ST(r)
ZERO p,O E ZERO

O,I
= A for single precision

AQ for double precision
= .FCNV. for single and double precision

eFCNVI for integer
.FCNVR for real
.FCNVD for double precision
.FCNVL for logical
.FCNVC for character
1 for single precision
2 for

LOA
(ADLA
XED
ARG
ARG
ARG

double precision

For Binary I/O (FRDB, FRRD)

n,DU
l,DL) double precision only
.FSLIB,AU*
ENDTL
CRTAL
SVXl

2-8

.FSLII

.FSLI(m)
c
**,2
p,l

DD20A

METHOD

For formatted I/O, FSLI initializes the I/O loop and processes the entire
array, starting with the first element. For binary I/O, an EIS move is
used to process the entire array.

RETURN

3/77

For formatted I/O, FSLI restores C(X2) = C(.FSLII)0-17 and exits to FSLO.
For binary I/O, return is directly to the object code.

2-9 DD20A

Random Binary Input/Output

FUNCTION

FRRD is called for ,random binary source statements of the following form:

READ(f'n,optl,opt2) list

WRITE(f 'n,opt2) list

f
n
optl
opt2
list

a file reference
sequence number of the logical record
end of file transfer (optional)
error transfer (optional)
input/output list that can consist of single precision,
double precision, character, or array items

This subroutine also includes the RANSIZ (Random Record Size) subroutine
that is called by the following sequence:

CALL

argl
arg2
arg3

RANSIZ (argl,arg2,arg3)

a file code
the logical record size
standard system format

When arg3 is missing or zero, the file is assumed to be in standard system
format.

RANSIZ needs to be called only once for each file.

CALLING SEQUENCES

FRRD contains different entry points
processing. The sequences generated are
linked binary.

TSXl .FRRD. For READ (n I If) list
TSXl .FRWD. For WRITE (n', f) list

for I/O
similar to

list and end-of-list
those generated for

TSXl .FRLT. For single precision I/O list entry
TSXl .FRDT. For double precision I/O list entry
TSXl .FRST. For binary character (BCD)
TSXl .FRSTA. For binary character (ASCII)
TSXl .FRLI. -For single precision short list input
TSXl .FRDI. For double precision short list input
TSXl .FRSI. For binary character short list input
TSXl .FRLO. For single precision short list output
TSXl .FRDO. For double precision short list output
TSXl .FRSO. For binary character short list output
TSXl .FRRR. For binary input end-of-list
TSXl .FWRR. For binary output end-of-list
CALL RANSIZ Random Record Size Routine

2-10 DD20

METHOD

Random binary files are standard system format (unless specified
otherwise), 320-word blocks, with fixed record size. The module calculates
logical record location based on physical device block size (64 words) ,
logical record size (given by CALL RANSIZ command), buffer block size
(320), and record number. The record size is compared to the buffer block
size and if greater the file is considered partitioned and follows the
rules for partitioned files of standard system format (see the File and
Record Control manual).

The user should express record size as the sum of items in the I/O list in
computer words, remembering that storage allocation for character variables
and arrays differs when compiling BCD or ASCII (six characters versus four
characters per word). The record size specified via RANSIZ should not
include the record control word for the logical record in the size
argument. An abnormal termination with an associated error message occurs
when records are read that fall outside the file limits.

RANSIZ needs to be called once prior to the first file reference. FRRD
calls FSLI for the processing of the input/output of nonsubscripted arrays.

RETURN

3/77

Normal return is to the next executable statement of the calling program,
except as specified below:

1. Error code 72 if the list exceeds logical record length.

2. Error code 73 for any of the following conditions:

a. Zero block count on random read.

b. Block serial number error on random read.

c. Record count of zero on random read.

3. Error code 74 if the file is not present.

4. Error code 75 for a zero or negative record number on a random
read or write.

5. Error code 76 where the record size is not given. Random files
have fixed length records~ Record size must be specified by a
CALL RANSIZ for the referenced file. This CALL should precede
the first I/O to a linked file.

6. Error code 77 for an attempted random I/O to a linked file.

7. Error code 78 when the record number in the random read or write
statement is outside file limits. However, if "END=" is given
(for READ only), that exit is taken if the record number is
outside the file limits. A write outside file limits causes the
file space to grow.

8. Error code 79 when the list is greater than specified record
size.

9. Error code 80 when file space is exhausted (on output, the file
can no longer be "grown") •

2-11 DD20A

Format Controlled Sequential Input/Output

FUNCTION

Formatted sequential input/output is contained in five subroutines:

FDIO contains the procedures that are common to BCD and ASCII
formatted sequential input/output.

FRDD contains the BCD peculiar procedures and data.
FRDA contains the ASCII peculiar procedures and data.
FSLO contains the short list input/output interface.
FSLI contains the short list input/output processor.

Formatted sequential input/output is accomplished by
subroutines to initialize the input/output; to process
list;-and for end-of-file processing.

calls to these
the input/output

Subroutines FRDD and FRDA also contain the processing for the DECODE and
ENCODE statements.

CALLING SEQUENCE

The calling sequences to initialize the input/output are as follows:

TSXl
TRA
ZERO
ARG

ARG

TRA
TRA

entry point in FRDD or FRDA
* + off set
.E.L •• ,E. I.
file code for formatted statements or 41,42,43 for

READ, PRINT/WRITE, or PUNCH respectively.
format statement reference or FORMAT(V) for list

directed input/output.
ERR-clause
END-clause

2-12 DD20

The subroutines and entry points for initialization of input/output are as
listed in Table 2-3.

Table 2-3. Initialization of I/O

Statement Type BCD ASCII

Entry Entry
Module Point Module Point

WRITE (fc, format) list FRDD FWRD FRDA FWRDA
WRITE format, list FRDD FWRD FRDA FWRDA
PRINT format, list FRDD FWRD FRDA FWRDA
PRINT, list FRDD FWRD FRDA FWRDA
PUNCH format, list FRDD FPUN FRDA FPUNA
READ (fc,format) list FRDD FRDD FRDA FRDDA
READ format, list FRDD FRDD FRDA FRDDA
READ, list FRDD FRDD FRDA FRDDA

The calling sequence for list processing where list is integer, real,
double precision, logical, or complex element is as follows:

LDx
TSXl
STx

element
.FCNVy
element

if output

if input

x = A for single precision items
AQ for double precision items

y I for integer, R for real and complex,
D for double precision, and
L for logical

The calling
follows:

EAA
TSXl
NOP

The calling
follows:

TSXl
ARG
ARG

sequence for list processing of

element
.FCNVC
element size, DL

sequence for all short list routines

short list routine
array locator
array size

2-13

character elements is as

(except character) is as

DD20

The calling sequence for character short list input/output is as follows:

TSXl
TRA
ZERO
ARG
ARG
NOP

x

.FSCx.
* + off set
.E .L •• ,E. I.
array locator
array size, DL
element size, DL

O for output
I for input

The following table, Table 2-4, gives the subroutines and entry points for
list processing and end-of-file processing.

The calling sequences for the DECODE and ENCODE statements are:

TSXl .FDEC for DECODE
TSXl .FENC for ENCODE
TRA * +4 or 6
ZERO .E.L •• ,E.I.
ARG buffer
ARG format
TRA ERR:-clause
TRA END-clause
NOP record size in characters, DL
NOP buff er size in words, DL

2-14 DD20

The following calling sequences are used for internal conversion routines
with format:

METHOD

CALL

CALL

lines
wda
form
buf

.BDCNV (buf ,form,wda,lines) memory to buffer

.DBCNV (buf ,form,wda,lines) buffer to memory

number of lines specified by FORMAT statement.
word count of each line.
starting location of format.
starting location of buffer.

On the entry for initialization, the file code is determined and the file
is opened and read if input. An appropriate tally word for data transfer is
built. For output, the address of a 41-word buffer is used in the tally
word. (This provides for a maximum length record of 160 characters). For
input, the address of the File and Record Control buffer is used directly
so no intermediate storage is necessary; this allows records up to 4095
characters in length to be processed. After initialization, the format scan
begins and when a field separator or a right parenthesis is encountered,
return is made to the user's generated code. The generated code causes
control to transfer to the appropriate entry point for list processing.
Thus, each list item corresponds to a format specification. This continues
until all list items are processed, rescanning the format if necessary. The
end-of-list entry determines that processing of the record is complete.

The processing for ENCODE and DECODE is the same except that the address of
the in-memory buffer provided by the user is used in the data transfer
tally word.

The routine FDIO contains code that is common for ASCII/BCD character sets
while FRDA and FRDD contain ASCII and BCD unique code and symbols.

FSLI is called by FSLO to set up indexing for the processing of short list
input/output.

RETURN

Normal return is to the next executable statement of the calling program,
except as specified for the following error conditions:

1. Error code 31 for an illegal format statement. Format scan
proceeds as for end of format.

2. Error code 32 for an illegal character in data or bad format.
Data scan treats illegal character as zero.

3. Error code 33 if user attempts to read an output file. Execution
is terminated.

4. Error code 34 for illegal end-of-file mark. FRWD calls FEOF for
error recovery.

2-15 DD20

I

3/77

5. Error code 57 for illegal character for L conversion. Data scan
treats illegal character as space.

6. Error code 81 for excessive line length.

7. Error code 82 for illegal character as first nonblank character.
Execution is terminated.

8. Error code 86 for a recursive entry to the I/O routine.

2-16 DD20A

Namelist Input

FUNCTION

The NAMELIST input function is contained in the following subroutines:

FNLI contains the procedures that are common to BCD and ASCII NAMELIST
input.

FVFI contains the BCD peculiar procedures and data.

FIFA contains the ASCII peculiar procedures and data.

NAMELIST input is accomplished using File and Record Control variable
length records for source statements of the following forms:

NAMELIST /naml/v,w,x

READ (fc,naml,END=Sl, ERR=S2)

f c
naml
Sl

S2

v,w,x

CALLING SEQUENCE

TSXl
TSXl
TRA
ZERO
ARG

logical file reference.
NAMELIST name.
(optional) is the statement

which control is transferred
READ.
(optional) is the statement

which control is transferred
NAMELIST variables.

• FVFI. (BCD)
.FVFIA. (ASCII)
* + offset
.E.L •• ,E.I.

label
upon

label
upon

pointer to location of DEC FC
pointer to location of BCI l,NAMl

pointing to the statement to
encountering an EOF for a

pointing to the statement to
encountering an error.

ARG
ARG pointer to location containing address of the EOF exit

2-17 DD20

METHOD

The input file is scanned for the proper NAMELIST name. When the name is
found, it is verified that the variables are included in the NAMELIST and
the input values are stored according to the type specified in the NAMELIST
table. The entries for the above NAMELIST example (NAMl) are:

BCI
BCI
TALL YD
ZERO
ZERO
ZERO
ZERO
ZERO
BCI

BCI

l,NAMl
l,V
LV,C,K
Nl,N2 Present only
PROD,d1
O/-l/d1 *d2 *d3 ,d1 *d2
-l/d1*d2 ••• d5,d1*d2 ••• *d4
-1, d1 *d2 •••• d6
l,W

l,X

NAM! is the NAMELIST name

LV

v

is the location of the variable

is the variable

c 07777 if v is not dimensioned
1 if v has 1 or 2 dimensions
2 if v has 3 or 4 dimensions
3 if v has 5 or 6 dimensions
4 if v has 7 dimensions

K is the data type as follows:
K 1 for integer

2 for real
3 for double precision
4 for complex
5 for logical
6 for character

PROD is the product of all dimensions
Nl,N2 are present when K=6 (character data)

Nl = number of words per element

when K
if c
if c
if c
if c

6 (character data)
1
2
3
4

N2 = number of characters per element (maximum of 120)
d1,d2, .•• ,dn are the dimensions for the variable

2-18 DD20

Bits of index register 6 are set (=l) to indicate the following:

Bit number Meanin9:

0 Logical variable
1 Integer variable

2-4 Free
5 Slash preceded current

variable name
6 Complex mode not allowed
7 Complex mode
8 Neither star nor character

field allowed
9 Decimal point present

10 Negative number
11 Negative decimal exponent
12 Decimal exponent allowed
13 D field allowed
14 E field allowed
15 No decimal point allowed
16 Two words per element
17 One word per element

EXAMPLE

The following example shows the expansion using variable V
dimensions (these are designated as VO,Vl,V2,V3,V4). The
are designated as L,M,N,O.

VO = undimensioned
Vl (L)
V2 (M,N)
V3 (O,P,Q)
V4 (R,S,T,U)

L through U are integers

1. With v not dimensioned

BCI 1, VO
TALL YD V0,07777 ,K

2. V with a dimension of 1

BCI 1, Vl
TALL YD Vl,l,K
ZERO L,L

3. v with a dimension of 2 (V2)

BCI 1, V2
TALL YD V2,l,K
ZERO M*N,L

2-19

with 0,1,2,3,4
dimensions (di>

DD20

RETURN

4. V with a dimension of 3 (V3)

BCI l,V3
TALL YD V3,2,K
ZERO O*P*Q,O
ZERO 0 or -1,0*P

5. v with a dimension of 4 (V4)

BCI l,V4
TALL YD V4,2,K
ZERO R*S*T*U,R
ZERO R*S*T,R*S

6. Where K = 6 (character data), there is a slight variation in the
expansion for ASCII and BCD character data. For example,

CH*lO will cause the following expansion for BCD:

BCI
TALL YD
ZERO

l,CH
CH,07777,6
2,10

CH*lO will cause the following expansion for ASCII:

BCI
TALL YD
ZERO

l,CH
CH,07777,6
3,10

Normal return is to the next executable statement of the calling program.
Under the error conditions listed below, execution is continued only if the
user initialized FLGERR, which causes a normal return with an indication
that bad data was encountered, or if the ERR = option was used. FLGERR and
ERR = can be used in any combination.

1. Error code 42 for illegal heading card. FNLI continues as for
end-of-data.

2. Error code 43 for illegal variable name. FNLI continues as for
end-of-data.

3. Error code 44 for illegal subscript or when the array size is
exceeded. FNLI continues as for end-of-data.

4. Error code 45 for illegal character after right parenthesis. Data
scan assumes a comma between right parenthesis and the next
character.

5. Error code 46 for illegal character in the data. Data scan treats
the illegal character as zero.

6. Error code 48 for illegal logical constant. Data scan treats an
illegal constant as .FALSE.

7. Error code 52 for an illegal character field. FNLI continues as
for end-of-data.

8. Error code 59 for an empty character field.

2-20 DD20

Namelist and Dump Output

FUNCTION

Three subroutines process NAMELIST, DEBUG, DUMP, and PDUMP output using
standard File and Record Control variable length records for source
statements of the following forms:

NAMELIST /naml/v,w,x

WRITE (fc,naml,ERR=S2)

CALL
CALL
CALL
CALL

or

DUMP (arguments)
DUMPA (arguments)
PDUMP (arguments)
PDUMPA (arguments)

BCD
ASCII
BCD
ASCII

DEBUG is invoked via General Loader control cards.

The subroutines that process NAMELIST and DUMP output are as follows:

FNLO contains the procedures that are common to BCD and ASCII NAMELIST
output.

FVFO contains the BCD peculiar procedures and data.

FOFA contains the ASCII peculiar procedures and data.

f c
S2

arguments

v,w,x

logical file reference
(optional) is the statement label
statement to which control is
encountering an error

pointing to the
transferred upon

see "Memory Dump" for the memory dump subroutines, in this
section
NAMELIST variables

CALLING SEQUENCE

TSXl
TSXl
TRA
ZERO
ARG
ARG
ARG
ARG

.FVDO (For DEBUG, DUMP, or PDUMP output)

.FVFO (For NAMELIST output)
* + off set
.E.L •• , E.I.
pointer to location of DEC FC
pointer to location of BCI l,NAMl
pointer to location containing address of error exit
pointer to location containing address of EOF exit

2-21 DD20

METHOD

These subroutines scan a NAMELIST table and print the current value of each
NAMELIST variable in the format specified by its entry in the table. Refer
to the description of NAMELIST input for a description of the entries for
NAMELIST, DUMP (DUMPA) , and PDUMP (PDUMPA) •

For NAMELIST, DUMP, and PDUMP output or for NAMELIST input, the entry for a
NAMELIST vc;~riable, v, is of the following form:

BCI 1, V
TALLYD LV,D,K
ZERO PROD,Dl
ZERO O,Dl*D2

always present
always present
present if D is 1 or 2
present if D is 2

LV is the location of variable V (must not be zero)
D is octal 7777 if V has no dimensions

1 if V has 1 or 2 dimensions
2 if V has 3 dimensions

Dl and D2 are the first and second dimensions (if any)
PROD is the product of the dimensions

K 0 for octal
1 for integer
2 for real
3 for double precision
4 for complex
5 for logical
6 for character

For DEBUG output, the entry for variable v is:

RETURN

BCI 1, V
TALLYD LV,D,K+l6
ZERO I2,Il
Il and 12

always present
always present
present if D is not octal 7777
are the initial and final subscripts
respectively, in increments of D (or
1 if D is zero)

If Vis octal 777777777777, the output is a memory dump from Il to I2
in increments of D elements (1 or 2 words). For memory dumps, LV
is ignored and can be octal 7777.

K is the same as for NAMELIST

If Vis not octal 777777777777, LV and Kare the same as for NAMELIST
and the octal value 7777 for D indicates that LV has no
dimensions.

All arrays in the DEBUG mode are considered as one-dimensional arrays.

Normal return is to the next executable statement in the calling program.

2-22 DD20

Character String Assignment

FUNCTION

FCHA moves character strings from one character variable to another when
the character variable is used in an assignment statement.

CALLING SEQUENCE

The following calling sequence is for A
variables.

B where A and B are character

METHOD

TSXl
TRA
ZERO
ARG
ARG
ARG
ARG

B
J
A
I

.FCHM. (or .FCHMA for ASCII)
* + 6
.E.L •• , E.I.
B,I
J,I
A, I
I,I

location of sending field
location of variable containing size (in characters) of B
location of receiving field
location of variable containing size {in characters) of A

The character string identified by character variable B is assigned to
character variable A. If size B >size A, B is truncated at the size of A.
If size B < size A, the remaining characters in A after the assignment are
blank filled.

RETURN

Return is to the next executable statement in the calling program.

2-23 0020

Character String Compare

FUNCTION

FCOM compares BCD or ASCII character strings for character
appearing in logical or relational expressions of the form IF (A
where A and B are character variables.

variables
• EQ. B)

CALLING SEQUENCE

TSXl
TRA
ZERO
ARG
ARG
ARG
ARG

.FCOM (or .FCOMA for ASCII)
* + 6
.E.L •• ,E.I.
A, I
I,I
B,I
J,I

A = address of character string A
I = address containing size of A in characters
B address of character string B
J address containing size of B in characters

METHOD

1. The lenqth of both strings in words is determinede If the lengths are
different, the difference is saved.

2. The two strings are compared on a word-for-word basis over equal
length. Indicator register is set as follows:

3.

RETURN

a. If A<B, the carry indicator is set off
(At the first non-compare, the comparison stops; > or < is
determined by the collating sequence of the character set.)

b. If A=B, the zero indicator is set

c. If A>B, the carry indicator is set

If the strings are equal over their equal length but one
longer than the other, the difference is compared against
the difference is blanks, the strings are equal.

string
blanks.

is
If

Return is to the next executable statement in the calling program.

2-24 DD20

Output Stop and Pause Information

FUNCTION

FPAW outputs a message to the
sharing) when a PAUSE or STOP
program.

system console (user terminal for time
statement is encountered in the source

CALLING SEQUENCES

TSXl
TRA
ZERO

TSXl
TRA
ZERO
ARG

TSXl
TRA
ZERO
ARG
ARG

TSXl
TRA
ZERO
ARG

TSXl
TRA
ZERO
ARG
ARG

.FPAW. (or .FPAWA for ASCII)
*+2
.E.L •• ,E.I.

Generated for a PAUSE statement with no message •

• FPAI. (or .FPAIA for ASCII)
*+3
.E.L •• ,E.I.
pointer to integer

Generated for a PAUSE statement with integer message •

• FPAC. (or .FPACA for ASCII)
*+4
.E.L •• ,E.I.
pointer to character message
number of characters, OL

Generated for a PAUSE statement with character string message.

.FIXT. (or .FIXTA for ASCII)
*+3
.E.L •• ,E.I.
pointer to integer

Generated for a STOP statement with integer message.

.FCXT. (or .FCXTA for ASCII)
*+4
.E.L •• ,E.I.
pointer to character message
number of characters, OL

Generated for a STOP statement with a character string message.

2-25 0020

METHOD

This routine returns the following information to the user
sharing user) or the system console (batch user) when
statements are encountered:

STATEMENT MESSAGE

PAUSE PAUSE LINE # nnnn

terminal (time
the following

SNUMB xxxx-xx (batch only)

PAUSE integer PAUSE nnnnnn
SNUMB xxxxx-xx (batch only)

PAUSE character string PAUSE user message

STOP integer STOP AT LINE nnnn

STOP character string STOP user message

RETURN

Normal return is to the next executable statement in the calling program.

2-26 DD20

Object Time Debug Processor

FUNCTION

FDBG decides whether or not to produce DEBUG output based on the contents
of the IF and FOR statements.

CALLING SEQUENCE

FDBG is entered by a DRL (Derail) instruction.

METHOD

The location of the DRL instruction by which FDBG was entered is checked to
see if it was inserted by the General Loader (a legal DEBUG request), or if
it was originally present in the interrupted program. If it was a DEBUG
request, the IF and FOR statements are examined in the order in which they
were specified. If these statements are satisfied, FDBG writes information
describing the particular input it is interrupting. It then calls FVFO or
FOFA for the list output, using the NAMELIST table supplied in the DEBUG
table by the General Loader. The instruction replaced by DRL is then
executed and control is returned to the next instruction in the interrupted
program. If DRL was not inserted by the General Loader, it is ignored and
control is returned to the next instruction in the interrupted program. For
additional details on DEBUG, see the General Loader manual.

FDBG assumes that the General Loader has placed a debug table in memory.

RETURN

Normal return is to the next statement in the interrupted program.

2-27 DD20

Pre-execution Initializer (Batch)

FUNCTION

FSTU performs certain initialization functions prior to the execution of
the user program. The subroutine used depends on the system installation.

CALLING SEQUENCE

FSTU is entered by the General Loader only. The entry point is .SETO.; the
General Loader assumes a six-position storage block (cells .SETU.-1 to
.SETU.-6 inclusive).

CELL

• SETU.-6

.SETU.-5

• SETU.-4

.SETU.-3

• SETU.-2

METHOD

DEFINITION

Batch/time sharing flag. Set to zero •

Upper half contains lowest address of memory used by the
program and the LABELED COMMON region; lower half contains
the highest memory address used in BLANK COMMON region.

Logical unit table pointer in address field •

Upper half = lowest cell used by the program. Lower half 1
O = address of pointer to DEBUG subroutine in link O •

Memory reset constant.

Upper half = entry point address. Lower half 1 0 indicates
low-load job.

FSTU clears unused memory and sets it to either the constant specified in
the $ OPTION control card or to zeros if the constant is not defined. It
places the address of the "logical file - file control block" table in
fault vector location 25 (octal). In a link job with DEBUG requested in
link O, it places a transfer to the DEBUG table in fault vector location 15
(octal). It places the entry point and a bit indicating a low-load job in
fault vector location 24 (octal). It then calls the subroutine .FLTPR to
initialize for fault processing. A secondary SYMDEF, .FLTPR, is imbedded in
the Execution Error Monitor subroutine to satisfy this SYMREF in a FORTRAN
execution. This routine places transfers to fault processing routines in
fault vector locations 7 and 11 (both octal numbers). These are also
imbedded in the Execution Error Monitor subroutine. There also exists in
the library a separate subroutine with SYMDEF .FLTPR which zeros fault
vector locations 7 and 11 (both octal numbers) (divide check and overflow).
The default option, if either condition occurs, is to abort. This
subroutine is used if the job uses no FORTRAN library subroutines. Either
of the .FLTPR subroutines returns to FSTU, which zeros out all index
registers and performs a TSXl to the real entry point of the user's
program. FSTU can be easily changed by an installation to perform the fault
processing, accounting techniques, etc., for the particular installation.

2-28 DD20

RETURN

Normal return is to the next executable statement of the calling program.

RESTRICTIONS

If the user requires initialization of the cells specified in FSTU, he must
either use this subroutine or supply one of his own to perform this
initialization.

2-29 DD20

Pre-execution Initializer (Time Sharing)

FUNCTION

FTSU performs the same function for time sharing that FSTU performs for
batch programs. In addition, FTSU sets up the file control block and
logical unit table (performed by the General Loader in a batch environment)
for all files specified in the time sharing RUN command. Cell .SETU.-6 is
set to nonzero so that it can be used as a test for batch/time sharing.
Refer to the description of FSTU (batch) for additional details on FTSU.

2-30 DD20

Aritlunetic Fault Processor

FUNCTION

FFLT zeros fault vectors for overflow, divide check, and underflow faults;
called by FTSU and FSTU if FXEM is not loaded. (FXEM has its own version of
.FLTPR that initializes fault vectors.)

CALLING SEQUENCE

CALL .FLTPR

RETURN

After the execution of the subroutine, control is returned to the calling
program.

2-31 DD20

I

Backspace Record

FUNCTION

FBST backspaces one logical record of a file on magnetic tape or sequential
disk.

CALLING SEQUENCE

In FORTRAN (indirect) :

BACKSPACE n

For GMAP:

CALL .FBST.(n}

n = logical file to be backspaced

METHOD

3/77

If the file has buffers and the device is magnetic tape or disk, the
current record index is examined. If the current record index is for the
first logical record in a block of logical records, a further check is made
to determine if partitioned (segmented} records are present. When
partitioned records are found, the control word of the current record is
checked to determine if the segment now in memory is the last segment of a
partitioned record. If so, the file is backspaced until it is positioned
at the beginning of the first segment of the record. At exit, the "next
record not there" bit is on, and the file is in the input mode.

If the current record index is not for the first logical record in the
block, or if the record is not partitioned, the pointer in the file control
block and buffer control word are altered. This indicates that the logical
record preceding the desired logical record has just been read.

If positioned at end-of-file, the execution of one BACKSPACE positions the
file so that a WRITE statement allows appending to the file, while a READ
repeats the end-of-file exit if mass store, or an abnormal termination if
magnetic tape.

The execution of two BACKSPACE commands positions the file so that a READ
statement will obtain the last record prior to the end of file.

2-32 DD20A

RETURN

3/77

Normal return is to the next executable statement of the calling program,
except under the following error conditions:

1. Error code 47 if the logical file is assigned to SYSOUT or to a
device other than magnetic tape or disk. The Execution Error
Monitor terminates this execution.

2. Error code 49 if an erroneous end-of-file appears. The Execution
Error Monitor terminates this execution.

3. Error code 50 if the backspace request is refused because the
block count in the file control block is zero; i.e., inhibits
backing out of the file. A message is written on SYSOUT to
indicate the refusal, and the operation continues.

2-33 DD20A

Rewind and Endf ile Processor

FUNCTION

FEFT, for FORTRAN statement ENDFILE(i), writes an end-of-file record on the
file. If the file is in input mode prior to executing ENDFILE, FEFT changes
the mode to output (assuming there is no error condition). FEFT, for
FORTRAN statement REWIND(i), rewinds magnetic tape or disk. If the file is
in output mode prior to executing REWIND, FRWT writes an end-of-file record
prior to the rewind operation. If the exit from FRWT is without an error
condition, the file is in the input mode.

CALLING SEQUENCES

CALL .FEFT. (arg) compiled for FORTRAN statement ENDFILE(i)

CALL .FRWT. (arg) compiled for FORTRAN statement REWIND(i).

arg is the location of

DEC i

METHOD

1. ENDFILE - .FEFT. sets the file designator word options to provide the
following responses:

a. File initially open and in input mode: FEFT calls GSTOT to change
the mode to output, and then calls GCLSE to write an end-of-file
record and close without rewind.

b. File initially open and in output mode FEFT calls GCLSE to

c.

write an end-of-file record and close without rewind.

File initially closed - FEFT calls .GOPEN to open
output without rewind, and then calls .GCLSE
end-of-file record and close without rewind.

the file
to write

as
an

2. REWIND - FRWT sets the file designator word options to provide the
following responses:

a. File initially open and in input mode - FRWT calls GCLSE to close
the file with rewind.

b. File initially open and in output mode FRWT calls GCLSE to
write an end-of-file record and close the file with rewind.
Following the rewind, the file is set to the input mode.

c. File initially closed ,- FRWT calls GOPEN to open the file as
input with rewind, and then calls GCLSE to close the file.

2-34 DD20

RETURN

Normal return is to the next executable statement in the calling program,
except for error condition 35. Error code 35 applies if there is an attempt
to rewind or write an end-of-file record if the device assigned to the file
is SYSOUT or is not magnetic tape or disk. Execution is continued; however
the endfile/rewind request is ignored.

2-35 0020

End-of-File (On Input) Processor

FUNCTION

FEOF writes an end-of-file message and either terminates execution or
returns to the calling program when an end-of-file on input is encountered.

CALLING SEQUENCE

CALL .FEOF.

It is assumed that the address of the proper file control block is in the
FOPE subprogram cell .FBAD.

METHOD

If a library subroutine detects an end-of-file on an input file,
FEOF. FEOF places the file number in the message and calls the
Error Monitor to print the message.

it calls
Execution

RETURN

FEOF selects one of the following:

1. Terminates execution with error code 34 writing end-of-file
message.

2. If the user has provided for end-of-file condition by previously
calling FLGEOF for the current file, returns to the calling
program, indicating an end-of-file was encountered.

2-36 DD20

File Opening

FUNCTION

FOPE selects and assures that the physical file associated with the
specified logical file is open.

CALLING SEQUENCE

1. CALL .FGTFB obtains the file control block address that is in the
field of cell .FBAD. only.

2.

3.

CALL .FOPEN(s) obtains the information described in CALL
assures that the logical file is open. S indicates the mode
the file is to be opened:

.FGTFB and
in which

s -1,DL, open the file in its previous mode.
s Odd, open the file as output.
s Even, open the file as input.
If s 1 -1,DL, only bit 35 is examined.

In both these calling sequences, it is assumed that upon entry to FOPE
the logical file references are contained in character position 5 of
cell .FBAD.

NOTE: When a file is opened, a table is used to find the available
buffers that can be assigned to the file being opened. The
table of standard length reusable buffers (321 words) is
defined as in .FBFTB.

An equivalent entry to .FOPEN is .FXOP., which is
Execution Error Monitor to prevent destroying calling
case of recursive entry. This entry is used to open P*
write an error message.

used by the
sequences in
in order to

CALL FLGFRC (lgu, ptr) allows the user to
address in a file control block in the case
Control error.

set
of

his error
a File and

routine
Record

lgu = numeric file code

ptr = address of recovery routine

See "File and Record Control I/O Error Recovery" in Section V.

2-37 DD20

METHOD

FOPE is performed in three phases: (1) locating the physical file, (2)
assigning buffers to the file, and (3) assuring that the file is open. FOPE
examines the logical file table for a logical file identical to the one in
cell .FBAD. The file control block is examined to determine if buffers are
required that have not previously been assigned. If buffer assignment is
necessary, table .FBFTB is examined to see if any buffers have been
released that were previously assigned to another file. These buffers are
assigned first. If none of these buffers are available, buffers are
assigned from available unused memory. The file control block is again
examined to see if the file is open. If it is not open, the File and Record
Control subprogram OPEN is called for the proper file control block.
Control is returned to the calling program.

By the use of FLGFRC, the user can cause word -15 of the file control block
to point to his error routine. If word -15 is zero when a file is first
referenced, no change is made to the file control block. However, if word
-15 is not zero, then a pointer to a translation routine within FOPE is
stored in word -5, so that a File and Record Control error results in a
trap to FOPE, an error code 85 message, and a transfer to the user error
routine in word -15. When running in batch mode, a user error routine can
be specified by use of a $ FFILE card. This causes the address of the error
routine to be placed in word-5 of the file control block, thus avoiding the
trap to FOPE on a File and Record control error.

RETURN

Normal return from .FGTFB and .FOPEN is to the next executable instruction
in the calling program, except for the following error conditions:

1. Error code 37 if the logical file requested is not in the logical
unit table. FXER terminates execution.

2. Error code 38 if there is not enough memory available for I/O
buffer assignment. FXER terminates execution.

3. Error code 56 if there is an attempt to read SYSOUT. FXER
terminates execution.

4. Error code 54 if there is an attempt to write GIN. FXER
terminates execution.

5. Abort code 02 if no logical file table exists.

6. Abort code 03 if logical file 06 does not exist in the logical
unit table. A message from FXER cannot be written.

2-38 DD20

Carriage Control Simulator

FUNCTION

FSLW formats FORTRAN generated print lines for the printer.

CALLING SEQUENCE

CALL • FSLEW (pl)

pl location of the print line. It is assumed that location .FBAD. in
subroutine FOPE contains the address of the file control block for the
output file, and that word +l of the file control block contains the
size of the print line.

METHOD

FSLW is called by the FORTRAN I/O routine FRWD (I/O Interface by Format
Control). Control is passed to FSLW after each print line has been prepared
according to the format specification. Recognized carriage control
characters are O, 1, +, and ~' and FSLW looks to see if the first character
of the prepared print line is one of these.

If the first character is not a recognized carriage control character, FSLW
assumes the normal case: single space carriage positioning (~). FSLW
therefore appends one word of single space slew information to the current
print line.

If the first character of the prepared print line is a recognized carriage
control character, FSLW proceeds as follows:

1. ~ - Single Space - This is the normal'case, single space carriage
positioning (~).

2. + - Space Suppress - The single space slew
to the previous print line is replaced by
information.

information appended
space suppress slew

NOTE: For space suppression control, two conditions are
(1) that the last record written on the current
the line on which overprinting is desired and (2)
slew information can be changed. Both conditions
satisfied for proper operation.

assumed:
file is
that its
must be

3. 1 - Eject Before Printing - A one-word print line (that is, a
one-word record) consisting of slew-to-top-of-page information is
generated. This causes a slew to top of page to follow
immediately after the single space resulting from the information
appended to the previous line.

2-39 DD20

4. 0 - bauble· Space - A one-word print line (that is, a one-word
record) consisting of single space slew information is generated.
This information and the single space information appended to the
previous print line result in a double space operation.

Besides taking the actions described above for the recognized carriage
control characters, FSLW sets any such control character to a blank (~),if
it is not already a blank.

The NOSLEW option on the $ FFILE card causes bit 23 of FCB word -6 to be
set to 1.

FSLW recognizes this option and changes its normal operation as follows:

RETURN

1. The addition of a slew word at the end of a data record is
inhibited.

2. The generation of one-word print lines containing only slew
information is inhibited.

3. The substitution of a blank character for the carriage control
character (first character of data record) is inhibited.

4. A media code 0 is stored in the record control word in place of
media code 3.

s. The "blank line" records generated by consecutive
FORMAT statements are represented by one-word records
only of blanks. (In the absence of the NOSLEW option,
slashes in FORMAT statements cause one-word records
slew characters for single-line slews to be generated.

slashes in
consisting

consecutive
containing

Normal return is to the next executable statement of the calling program.

2-40 DD20

SUBROUTINES THAT ARE USER CALLABLE

Console Communication

FUNCTION

FCSL permits operator-program communication via the console; restricted to
batch mode, not executable in time sharing.

CALLING SEQUENCE

CALL CNSLIO (console,message,nwords,nreply,nrepws)

console = Any of - BCI l,OOOOT/ for master console,
BCI l,OOOOT* for tape console,

message

nwords

nreply

nrepws

METHOD

BCI l,OOOO*T for unit record console,
BCI 1,0000/T for special purposes.

If CONSOLE is none of these, BCI 1,0000/T is used.

an array containing one line of the message (in
output. The message, as received, is prefixed by
(SLEW) SSSSS-AA; it will be suffixed by 11 07701 11

•

BCI)
the

to be
SNUMB:

number of words to be output. Any value greater than 11 is set to
11.

optional and used if a reply is desired
particular type). The reply is limited
characters unless "nrepws" is supplied.

(it need not be
to a maximum of

any
six

contains the maximum length in words (up to 11) of the reply.
Characters are leftjustified in the reply word.

FCSL outputs the message to the console specified by the calling sequence.
If the console specification is not one of the four valid specifications,
the message is output to the master console. This subroutine takes nwords
(11 maximum) starting at message, prefixes the message with SNUMB and
suffixes the message with a one line slew, and sends the message to the
console. If a reply is called for (nreply used), the reply is limited to
six characters, and is left justified. (Nreply is optional.)

The program relinquishes control until the console I/O
registers and indicators are restored and a return is
executable statement in the calling program.

2-41

is completed. The
made to the next

DD20

RETURN

Return is to the next executable statement of the calling program and is
done after the console input/output is completed. All registers and
indicators are restored prior to the return~

RESTRICTIONS

Message may not exceed 11 words. Anything in excess of 11 words is ignored.
Nwords = 0 results in only the SNUMB being output.

The reply buffer area (nreply) is not cleared by FCSL. If required, the
user must clear this area prior to the call to CNSLIO.

2-42 DD20

Memory Dump

FUNCTION

FDMP dumps registers and all of memory or designated areas of memory (that
has been allocated to variables) in a specified format.

CALLING SEQUENCE

CALL DUMP (a1,b1 ,f1' •••• an,bn,fn) for BCD

CALL DUMP A (a1,b1,f1, ••• an,bn,fn) for ASCII

CALL PD UMP (a1 1 b 1 ,f1 , •••• an,bn,fn) for BCD

CALL PDUMPA (a 1 ,b 1 ,f 1 , ••• an,bn,fn) for ASCII

a and b are variables at the beginning and end of the area to be dumped. a
or b may represent the first and last variables in the program unit, in
which case all memory allocated to the variables is dumped.

f is an integer specifying the dump format as follows:

METHOD

f i 0 Octal
1 Integer
2 Real
3 Double precision
4 Complex
5 Logical
6 Character

If fi is omitted, it is assumed to be zero. If no arguments are given,
all of memory, including the program object code, is dumped in octal.

An appropriate NAMELIST table is created, using the parameters specified in
the calling sequence. FDMP calls FNLO for the actual NAMELIST output
processing. The panel is dumped, followed by the blocks of memory
requested.

RETURN

If DUMP (or DUMPA) is called, execution is terminated ~y a call to EXIT. If
PDUMP (or PDUMPA) is called, the panel is restored and control is returned
to the calling program.

2-43 DD20

File Control Block and Logical Unit Table Routines

FUNCTION

FSET contains three subroutines to allow the user to assign space in memory
for use as an input/output buffer; to define a file control block for use
by the input/output subroutines; and to define a logical unit table for use
by the input/output library subroutines. Each of these three subroutines
are described separately.

DEFINE FILE CONTROL BLOCK

FUNCTION

This entry point in FSET, SETFCB, allows the user to define a file
block for use by the I/O subroutines. SETLGT must be called first
General Loader has not created any file control blocks.

CALLING SEQUENCE

CALL SETFCB(a,i,j .•.)

a location of LOCSYM in the user created file control block
i,j ..• ~logical files that refer to this file control block

METHOD

control
if the

SETFCB searches the previously defined logical file table for an open space
to insert the reference to the file control block. It accepts the file
control block address and appends characters 3,4,5 to the various logical
file codes referring to this file control block. SETFCB makes as many
entries as necessary in the "logical file - file control block" table.

RETURN

Normal return is to the next executable statement of the
except when error conditions are encountered. Possible
are:

1. Abort code Q2 if there is no logical file table.

calling program
error conditions

2. Abort code Ql if there is no space available in the logical file table
for inserting a specified file control block.

2-44 DD20

DEFINE BUFFER(S) FOR A SPECIFIED FILE CONTROL BLOCK

FUNCTION

This entry point in FSET, SETBUF, allows the user to assign space in memory
for use as an input/output buffer.

CALLING SEQUENCE

CALL SETBUF (i,a)

CALL SETBUF (i,a,b)

i logical file designator
a location of first buff er
b location of a second buff er if necessary

METHOD

SETBUF searches the logical file table for the specified file and its
associated file control block. It then attaches the buffers defined to the
file control block. No check is made to verify that the buffers are of
sufficient size, as this is the user's responsibility.

RETURN

Normal return is to the next executable statement in the calling program.

RESTRICTIONS

The size of the total buff er must be one location greater than the area to
be used for actual record storage. Therefore standard buffer size is 321
words.

2-45 DD20

DEFINE LOGICAL UNIT TABLE

FUNCTION

This entry point in FSET, SETLGT, allows the user to define a logical unit
table for use by the I/O library subroutine.

CALLING SEQUENCE

CALL SETLGT(a,i}

a = location of logical unit table to be used
i = number of cells in table a

METHOD

SETLGT accepts the array specified by the user as the logical unit table.
It changes its first location to be a pointer to the last usable position
of the array and places the address of the array + 1 in fault vector
location 25 (octal}.

RETURN

Normal return is to the next executable statement of the calling program.

RESTRICTIONS

SETLGT must be called before any input/output
called only when the user wants to suppress
generated by the General Loader and to place the
of memory. The user should use the NOFCB option
Loader control card.

2-46

is requested. SETLGT is
the logical file table

table in his own portion
on the $ OPTION General

DD20

File Closing

FUNCTION

FCLO closes a file and releases the buffer assigned to that file. The
buffer is released only if it is standard size (321 words).

CALLING SEQUENCE

CALL FCLOSE(u)

u = logical file number

METHOD

FCLO opens the file in its previous mode and calls the File and Record
Control routine to close the file without rewind. FCLO examines and
releases any standard size buffers assigned to the file. It places the
memory address of these buffers in a table of available buffers (location
.FBFTB in the FOPE subroutine) for possible reassignment to a newly opened
file.

RETURN

Normal return is to the next executable statement in the calling program.

RESTRICTIONS

If more than one logical file refers to one physical file, the physical
file must be closed, using FCLO only once.

2-47 DD20

Initialization of End-of-File Processing

FUNCTION

FFEE provides a signal to FEOF requesting a return to the calling
subroutine if an end-of-file condition occurs.

CALLING SEQUENCE

CALL FLGEOF(u,v)

u = logical file number
v = address of the variable used to indicate an end-of-file condition (user

must test v when an end-of-file condition could have occurred)

METHOD

The address of the variable to be used for end-of-file processing is placed
in word -15 (upper) of the file control block. The value of the variable is
set to O (set to nonzero if an end-of-file is encountered on logical file
u) •

RETURN

Normal return is to the next executable statement in the calling program.

RESTRICTIONS

The user ~ust 9bserve the following restrictions on FFEE operation:

1. If more than one logical file refers to one physical file, the same
variable must be used for all logical files referring to that physical
file.

2. This call must be made prior to any reference to file u.

2-48 DD20

Initialization of Data-Error Processing

FUNCTION

FFER provides a variable used in detecting the occurrence of erroneous
data.

CALLING SEQUENCE

CALL FLGERR(u,v)

u = logical file number
v variable used to indicate an input data error (user should test v

before processing the data because this subroutine gives a normal
return)

METHOD

FFER places the address of the variable in word -16 (upper) of
control block. The value of the variable is initialized to zero
detected in the input data sets the variable to nonzero).

RETURN

the file
(an error

Normal return is to the next executable statement of the calling program.

RESTRICTIONS

If more than one logical file refers
variable must be used for all logical
file.

2-49

to one physical file,
files ref erring to that

the same
physical

DD20

I

I

I

Job Termination.

FUNCTION

FXIT contains an entry point .FTERM that is used to terminate the current
activity.

CALLING SEQUENCE

CALL .FTERM

METHOD

3/77

FXIT transforms the logical file table created by the General Loader or by
FTSU into a file designator word list for closing all files. FXIT calls
CLOSE which purges all buffers, writes an end-of-file on an output file,
and notes the closing of an input file. Execution is terminated by a MME
GEFINI or DRL RETURN. Control is returned to the General Comprehensive
Operating, Supervisor.

This call will terminate the current activity without checking the wrapup
list that may have been generated via a CALL ATCALL or CALL NOCALL
statement. (Refer to Appendix F, FORTRAN Debugging System, in the FORTRAN
manual.) A CALL EXIT or CALL .FEXIT statement may also be used to
terminate the current activity and the wrapup list will be inspected.

2-50 DD20A

File Forwardspace and Backspace

FUNCTION

FFFB allows users who generate multifile tapes to space from one file to
another (valid only with tape files).

CALLING SEQUENCE

CALL FILBSP(xx,n) Backspace n files

CALL FILFSP(xx,n) Forwardspace n files

xx filecode, integer constant or variable
n number of files to skip; integer variable or constant

METHOD

This subroutine is called directly by the user. To ensure
positioning, the current file, if output, should be closed with an
xx statement and counted as one of the files to be backspaced over.

proper
ENDFILE

There are some file restrictions based on the File and Record Control.

1. File must be declared multifile.

2. File must be unlabeled.

This can be accomplished by using a $ FFILE card as follows:

$ FFILE XX,MLTFIL,NSTDLB

RETURN

Normal return is to the next executable statement of the calling
However, there is one error exit from the subroutine, error code
user has requested a backspace larger than the number of files
processed on the tape. The error message is printed and the
positioned at the first file; execution continues.

2-51

program.
36. The

currently
tape is

DD20

Call TSS Subsystem

FUNCTION

FCAL is used to provide the user with a method to call or go to a time
sharing system subsystem.

CALLING SEQUENCE

CALL CALLSS (string)

or

CALL CALLSS (string, name)

string ASCII character constant or variable that is the time sharing
command to invoke the subsystem. The string must contain a
carriage return or backward slash (octal 134) as a terminating
character.

name 4-character ASCII name of subsystem to be called

Return is to the next executable statement in the FORTRAN program.

CALLGT (string)

or

CALLGT (string,narne)

String and name are as for CALLSS. The program terminates rather than
returning.

Both calls are ignored in batch.

METHOD

DRL CALLSS or DRL T.GOTO are used.

2-52 DD20

Create TSS Temporary File

FUNCTION

FDEF is used to create a named temporary file and to access the file in a
user's available file table (AFT).

CALLING SEQUENCE

CALL DEFIL (name, links, mode, istat)

name up to 8-character variable or constant containing the ASCII name of
the temporary file to be created

links size in links of file to be created
mode O, sequential file is created

~ 0, random file is created
istat status return word as follows:

0, successful
3, no room in AFT
4, temporary file not available
5, duplicate file name
6, no room in PAT

This call is ignored in batch.

METHOD

DRL DEFIL is used.

2-53 DD20

Specify Record Size, Random Binary File

FUNCTION

FRRD permits the user to specify the record size for a random binary file.
Normal return is to the next executable statement of the calling program.
If the record size for a given random file is not provided at load time via
the $ FFILE card, a call to this subroutine before opening (first I/O to)
the file is mandatory.

CALLING SEQUENCE

CALL RANSIZ (u,n,m}

u logical file designator
n record size
m file format indicator

u, n and m must be of type integer. They can be any legal arithmetic
expression.

Note that a call to RANSIZ can also be used to override a $ FFILE size
specification and that this is the preferred method of specification since
its function works for both batch and time sharing.

The third arqurnent {m) is optional. When not supplied,
processed in standard system format {blocked, variable
etc.). When supplied, zero indicates standard system
indicates that block and record control words are not to
latter format provides compatibility with random files
time sharing mode. The total file space is available for
not blocked, can begin anywhere in a sector and can span

2-54

file u will be
length records,

format; non-zero
be processed. This
generated in the
data; records arc
device boundaries.

DD20

Set or Reset Some I/O Parameters of Run-Time Library

FUNCTION

This subroutine (FSTU for batch, FTGF for time sharing) permit~·the user to
set or reset some of the I/O parameters of the run-time library.
Specifically, it may be used to:

1. Set the line length (modulo 4) for formatted output directed to a
terminal. The default setting for this parameter is 72.

2. Set the media code for unformatted file output. The default setting of
this parameter is 1.

3. Set the reflexive read characters that are sent to a terminal to
request input. The default setting of this parameter is the ASCII
CHARACTER constant 'carriage return', 'line feed', 'equal sign', X-ON.

CALLING SEQUENCE

CALL FPARAM (i,j)'

i inteqer, with a value of 1, 2, or 3 corresponding to one of the three
functions above

j integer, providing the line length or media code for i values of 1 and
2, or providing the octal value of four ASCII characters for an i value
of 3

2-55 DD20

SECTION III

MISCELLANEOUS LIBRARY SUBROUTINES

This section contains descriptions of library subroutines other than
input/output. These subroutines are listed in Table 3-1. These subroutines can
be catagorized as those implicitly called and those that are user callable.

3-1 DD20

Table 3-1. Miscellaneous Library Subroutines

Function

Double Precision Powers of Ten Table
• Exponent Register Overflow and Divide

Check Tests
• Sense Light Simulator
• Sense Switch Test
• Restore Links During Execution

Execution Error Monitor (Common
Procedure)

• Execution Error Monitor (Batch/Time
Sharing Procedures and Data)

Restore Link - H*
• File Transliteration

Terminal Input Recovery
ASCII/BCD Indicator

• Date and Time
• Access a Permanent File
•Close File, Detach Buffers, From AFT
• Attach a Temporary Mass Storage or File

Core Allocator (FDS)
Special Entry Point (FDS)

• FDEBUG Bootstrap (FDS)
• FDUMP Bootstrap (FDS)

LINK/LLINK Interface (FDS)
• Delete From Wrapup List (FDS)

Release Unused Memory (FDS)
Dummy Setup (FDS)

e Add to Wrapup List (FDS)
• Timing Facility (FDS)

Wrapup and Loader (FDS)
Linking Subroutine (FDS)

• User callable

3/77 3-2

Batch
BCD ASCII

FDPT

FDCK
FLIT
FSWI
FLNK

FXER

FXEM
FLHS
FMED
FRBC
FBCD
FDTM
FTAC
FOTH
FCRA
FALC
FDBD
FDEB
FDUM
FLKL
FNCL
FREL
FSTP
FTCL
FTMR
FWRP
FYLK

FDPT

FDCK
FLIT
FSWI
FLNK

FXER

FXEM
FLHS
FMED
FRCV
FASC
FDTM
FTAC
FOTH
FCRA
FALC
FDBD
FDEB
FDUM
FLKL
FNCL
FREL
FSTP
FTCL
FTMR
FWRP
FYLK

Time Sharing
BCD ASCII

FDPT

FDCK
FLIT
FSWI
FTLK

FXER

FXMA

FMED
FRBC
FBCD
FDTM
FTAC
FOTH
FCRA
FALC
FDBD
FDEB
FDUM
FLKL
FNCL
FREL
FSTP
FTCL
FTMR
FWRP
FYLK

FDPT

FDCK
FLIT
FSWI
FTLK

FXER

FXMA

FMED
FRCV
FASC
FDTM
FTAC
FOTH
FCRA
FALC
FDBD
FDEB
FDUM
FLKL
FNCL
FREL
FSTP
FTCL
FTMR
FWRP
FYLK

DD20A

SUBROUTINES IMPLICITLY CALLED

Double Precision Powers of Ten Table

FUNCTION

FDPT stores a table of double precision powers of ten for quick reference
by all decimal radix conversion routines.

CALLING SEQUENCE

.FlDO. is the only SYMDEF symbol.

METHOD

.FlDO. +2*n is the location of DEC l.ODn = lO**n, for n
O, 1, ••• , 37, 38. There are no executable instructions.

3-3

-34, -37, .•• ,-1,

DD20

Restore Link - H*

FUNCTION

FLHS reloads a program from an H* file (tape) generated in
General Loader activity. The H* file was generated by a $ TAPE
card at execution time.

CALLING SEQUENCE

a previous
H* control

This program is called directly from the subroutine library and requires no
other subprograms. The entire job could be set up as follows:

$ SNUMB
$ IDENT
$ USE
$ ENTRY
$ EXECUTE
$ LIMITS
$ TAPE
$ DATA

$ ENDJOB
***EOF

.LHSF

.LHSF

H*, • • •
AB (Optional)

If the NOFCB option was in effect when the General Loader generated the H*
file, an entry card of the form:

$ ENTRY .LHSNF

must replace the card following the $ USE card.

METHOD

The H* file generated by the General Loader contains a link identified as
//////, which is the main or common subprogram of the job. If the FCB
option was in effect during loading (generation of H* file), a second link
identified as /////1 containing all file blocks generated by the General
Loader will also be present on H*. LHSF searches the file for these
identifiers (/////1 is optional), restores them, and enters the main
subprogram at the entry location specified during the General Loader
activity.

Under time sharing execution, the YFORTRAN RUN command restores the main
link.

RETURN

Normal return is to the next executable statement of the calling program.

3-4 DD20

RES'I'RICTIONS

The following restrictions apply to FLHS:

1. A $ LOWLOAD card (see General Loader manual) must be included if H*
file was generated under this option.

2. The memory limits in effect when H* file was generated must be
requested.

3. One of the setup subroutines must have been used when H* file was
generated. Entry to the main link is made through those subroutines to
initialize fault vectors.

3-5 DD20

Terminal Input Recovery

FUNCTION

FRCV {ASCII) and FRBC (BCD) permit the FORTRAN user to correct a string of
characters input from a terminal when a character is illegal for the
current format conversion.

CALLING SEQUENCE

CALL .RCOV (curtal,initl)TRA-OK

curtal
initl
TRA-OK

current input tally
initial input tally
recovery transfer point

If no recovery is possible, the return is 0,1

METHOD

When a character is illegal for the current format conversion, the current
record (current input line) is output with a pointer to the illegal
character. The user can then input a correction or change (several
characters) that will replace the corresponding characters previously
input. The input/output routine will resume with the new string. If the
user responds with a carriage return, the usual execution error monitor
message will be output. This routine is not callable by the user. It is
called by FDIO when appropriate.

3-6 DD20

ASCII/BCD Indica t-ors

FUNCTION

3/77

FASC is a module that is selected when the ASCII option is used.

Secondary SYMDEF Entry .ASCB = nonzero
.ASCB+l = ASCII blanks {040040040040)
Other ASCII constants are included.

FBCD is a module that is selected when the BCD option is used.

Secondary SYMDEF Entry .ASCB = 0
.ASCB+l BCD blanks (202020202020)
Other BCD constants are included.

3-7

I

I

I

DD20A

SUBROUTINES THAT ARE USER CALLABLE

Exponent Register Overflow and Divide Check Tests

FUNCTION

FDCK tests the Fault Status Word for a previous exponent register overflow
or divide check.

CALLING SEQUENCE

CALL DVCHK(j) for divide check

CALL OVERFL(j) for exponent register overflow

j = location of integer variable

METHOD

This routine checks the fault vector area and sets an integer variable to 1
if a fault has occurred, or 2 if not. The Fault Status Word (31 octal) is
not maintained in the time sharing environment.

RETURN

Normal return is to the next executable statement in the calling program.
This routine assumes normal recovery from exponent register overflow and
divide check.

3-8 DD20

FUNC't' :~rn1

r:'.?\J,:, ;~T.JTl·:(i .. \ !·:·) i·•iri1 ·,r• ·'.r··i·

' ,1 t !. I, 't °L f, "-1 tl ..

l, i,t)\\ t :;;
,., ~ L

Sense Switch Test

FUNCTION

FSWI tests the GCOS switch word for the status of a sense switch.

CALLING SEQUENCE

CALL SSWTCH(i,j) to test sense switch i.

i integer variable or constant, value between 1 and 6
j = integer variable to be set to 1 if sense

switch i is ON, or 2 if it is OFF

METHOD

Bits 6-11 of the GCOS switch word correspond to the sense switches 1-6,
with 0 denoting OFF and 1 denoting ON. Sense switch specified by i is
tested and the integer in j is set to 1 if i was ON or to a 2 if i was OFF.

RETURN

Normal return is to the next executable statement in the calling program. A
possible error condition is error code 53. If i is not 1-6, sense switch i
is declared OFF.

3-10 DD20

Restore Links During Execution (Batch)

FUNCTION

FLNK enables the programmer to call program overlays in batch mode.

CALLING SEQUENCES

CALL LINK(name)

CALL LLINK(narne)

name

METHOD

link identifier specified as a character variable or character
constant

FLNK assumes that the General Loader has created a file (file code H*)
containing the user's program segmented into links as specified by $ LINK
control cards. (H* file is generated by GESAVE.) Both LINK and LLINK use
the GERSTR function of GCOS. The procedure for restoring a link depends on
the entry used as follows:

LINK - Restore the link and transfer to its entry point as specified
at load time.

LLINK - Restore the link and return to the next statement or
instruction in the calling subroutine.

If DEBUG is requested at load time in any or all of the links,
subroutines join the respective DEBUG tables, enabling the user to
snap dumps of any links in memory at the time of his request.

these
take

After restoring a link, the link is tested to determine if it contained a
DEBUG table. If it contained a DEBUG table, the address of this table is
chained to existing tables. If there was no DEBUG table in memory at this
time, the address of this table is placed in the DRL cell (cell 13 of the
fault vector). DEBUG tables, corresponding to links which are overlayed in
the process, are deleted from the chain.

The link overlay names must be five to eight characters for ASCII mode
executions.

RETURN

Returns are defined under Method.

3-11 DD20

Restore Links During Execution (Time Sharing)

FUNCTION

FTLK performs th~ same functions for time sharing programs as FLNK performs
for batch programs. Refer to FORTRAN manual for specific details.

1. The YFORTRAN time sharing subsystem RUN command is used to load the
main program link from an H* permanent file for execution.

2. The overlay link names on the H* must be five to eight characters when
runninq in the time sharing ASCII mode.

3. The DEBUG option is not available under time sharing execution.

3-12 DD20

Execution Error Monitor

FUNCTION

The Execution Error Monitor performs the following functions:

1. Prints a trace of subroutine calls, if applicable.

2. Prints execution error messages.

3. Terminates executicn with a Q6 abort or does one of the following:

a. Continues with execution of the program.

b. Transfers to an alternate error routine.

4. Allows the user to determine if an error has been processed by the
Execution Error Monitor.

The Execution Error Monitor functions are performed by the following
subroutines:

FXER contains the procedures that are common to both batch and time
sharing operations.

FXEM contains the procedures and data peculiar to batch operations.

FXMA contains the procedures and data peculiar to time sharing
operations.

Execution error monitor functions are optional and are determined by three
groups of switch words (presently there are four words per group) in which
each bit corresponds to an error code. The first group (.FXSWl) controls
termination; the second (.FXSW2) controls message printing and trace; and
the third (.FXSW3) controls the alternate error returns. Table 3-2 contains
the error codes and default procedures.

SWITCH WORD GROUPS

1. .FXSWl (termination). Table 3-2 shows the standard bit settings and
the routines that use the corresponding error codeso The bit settings
are defined as:

C (Continue execution)

A (Terminate with a Q6 abort)

Termination may be overridden by the corresponding bit of .FXSW3.

3-13 DD20

2. .FXSW2 (messag.e printing and trace) - The meaning of the bit setting
is

1 - Suppress printing

0 - Print

This group is initialized to zero. Settings may be changed by a
program call to FXOPT.

3. .FXSW3 (alternate error return) - The meaning of the bit setting is

1 - Alternate error return (overrides termination set in .FXSWl).

0 - Use normal return.

This group is initialized to zero. Settings may be changed by a
program call to FXOPT.

GMAP CALLING SEQUENCE

CALL .FXEM. (x,y)

x = address of error description controls
y address of tally word used to indicate card column found in error; y

is optional and is used only if a card image is to be printed

Instruction sequence at x

X ZERO A,B
ZERO C,D
ZERO E,F

A Address of card image
not to be printed.

B Error code expressed

c Address of message 1.

D Word count of message

E Address of message 2.

F Word count of message

to be printed, or zero when card image is

as an integer(n) in the range 1 n 143.

1.

2.

3-14 DD20

FORTRAN CALLING SEQUENCES

1. CALL FXOPT (ncodc:, il, i2, i3)

FXOPT is an entry to o FXER anc'.. may be called to alter the standard
switch word settings. In the statement FXOPT(ncode,il,i2,i3), ncode is
an error code, and il, i2, and i3 provide the settings for the
corresponding bi ts in the tlu::ee switch word groups.

Examples:

1. CALL FXOPT(32,0,l,O)
2. CALL FXOPT(32,l,O,O)
3. CALL FXOPT(32,0,0,l)

NOTE: Error code 32 denotes an illegal character in input data.

Example 1 causes a Q6 abort when the error occurs, and no message or
trace is printed.

Example 2 causes execution to continue after message and trace are
printed.

Example 3 indicates that return is to an alternate error routine after
trace and message are printed, since the alternate return option takes
precedence over termination.

2. CALL FXALT(SR)

FXALT is an entry to .FXER and may be called to set the alternate
error return location. The statement CALL FXALT(SR) communicates the
name SR of the alternate error routine to the execution error monitor.
An EXTERNAL SR must be included in the calling routine. If the
alternate return option for an error code is indicated but no call to
FXALT has been made, a Q5 abort follows when the error occurs. A
RETURN statement in the alternate routine continues execution at the
instruction immediately following the one where the error occurred.

The statement CALL FXALT($n) designates statement n in the calling
program as the alternate error return.

NOTE: If the same error occurs in the alternate error routine, an
interminable loop results.

3-15 DD20

3. Overflow and divide check fault test

The fault processor processes
overflow, and exponent underflow
06 stating the type of fault a;nd
occurred. Execution continues in
registers may have been reset as

divide check, overflow, exponent
faults. A message is output on file
the location at which the fault

the normal manner, although the EAQ
depicted in the following table.

FAULT

Exponent overflow

Divide check (FP)

Exponent underflow

Overflow (Integer)

Divide check (Integer)

EAQ REGISTERS

Large floating-point valuel

Large floating-point valuel

Floating-point zero

No change

No change

To have another value returned in the EAQ registers after a divide
check, CALL FXDVCK(r,m) should be executed prior to the occurrence of
the fault. This statement causes the value of r to be returned in the
EAQ registers after a real divide check and the value of m to be
returned in the Q register after an integer divide check. The first
argument must be double precision. The second argument may be omitted.

4. CALL FXEM(ncode,msg,n)

A FORTRAN-callable entry has been provided so that it may be called
when the program detects an error condition.

This statement causes the printing of an error trace and the Hollerith
message contained in the msg array. The number of words (n) to be
printed must be within the limits O< n~ 20. If only the first argument
is given, only the trace is printed.

5. CALL ANYERR (v)

The user may desire to detect some error that has occurred in an
input/output routine or a mathematical FUNCTION routine.

v is a variable into which .FXER will initially place the value zero.
If an error occurs, the error code is placed in v. The logical IF
statement provides a suitable means of testing if v is typed LOGICAL.

1Allows further computations without another immediate fault. This value is set
to approximately 10**36.

3-16 DD20

METHOD

1. Error linkage for tracing calls is gerierated by the Macro Assembler
Program (GMAP) and by the FORTRAN compiler. Tracing stops when the
address of the CALL instruction in the error linkage word is zero, or
when the number of traces exceeds a constant.

The error trace prints in reverse order. It includes the name of each
calling routine 9 identifying number of the CALL instruction, absolute
location of the r:ALL instrnction, and up to five calling arguments.

2. The functions of this routine are optional. The options are controlled
by the following switch word groups:

.FXSWl - Termination

.FXSW2 - Message printing

.FXSW3 - Alternate error returns

Each of the bits (1-143) in a switch word group corresponds to an
error code.

3. Special processing applies to error code 55. When this error is
encountered, the following message is written:

ILLEGAL VALUE FOR COMPUTED GO TO AT ID NUMBER XXXXX

4. The error code is always stored in the location FXCODE in FXER. Since
this is a SYMDEF, it may be accessed by a G~ffiP program.

5. The error code is also stored indirectly through a pointer defined in
FXER. This pointer may be set by calls to ANYERR. If this pointer has
been initialized to contain the address of a variable in the user's
program via a call to ANYERR, the variable will contain the error

6.

code, expressed as an integer, upon return to the calling subprogram,
after an error.

FXOPT is an entry to .FXER. which, for a given error code, sets
corresponding bits in .FXSWl, .FXSW2, and .FXSW3 to the low-order
of the second, third, and fourth arguments. The first argument is
error code. When a call is made to .FXER., the error code is used
shift each switch word group and set the options accordingly.

the
bit
the
to

7. FXALT stores the location of its argument in location FXALTl in .FXER.
If the alternate error return option is used, index register 1 and the
indicator register are restored; and a transfer is made to FXALTl
indirect. Thus, if the alternate return is a subprogram, the RETURN
statement transfers to the location following the call to .FXER. If no
alternate has been supplied, a QS abort occurs.

3-17 DD20

8. A divide check, an overflow, or an underflow transfers to .FXER. via
the program fault vector. (For a description of the fault vector, see
the manual General Comlrehensive Operatinl Supervisor.) .FXER. writes
the error message and oads the proper va ues into the EAQ-registers.
The normal return is RET 6 (divide check) or RET 8 (overflow and
underflow). If an alternate return is requested, the indicators and
index register 1 are loaded from the fault vector, so that a RETURN
statement in the alternate routine will transfer to the location
immediately following the one that generated the fault.

9. FXEM is the entry provided for error conditions detected by the user's
program. Error codes 61-66 are reserved for users. The statement

RETURN

CALL FXEM(ncode,msg,n)

prints an error trace and n words of the message in the array msg. Msg
must be an array containing character information. If either msg or n
is omitted or is zero, no message is printed. If n is greater than 20
words, only 20 words are printed.

Error codes and returns are defined in Table 3-2.

3-18 DD20

w
I

I-'
\.0

t1
t1
N
0

ERROR
CODE

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

DEFAULT
PROCEDURE
ABORT/
CONTINUE FUNCTION ERROR

A Not used

c

c

c

c

c

c

c

c

c

c

c

c

c

c

I**J

I**J

{
DA**J}
A**J

fA**J}
lDA**J

B**C

A**B

A**C

e**B

LOG(A)

LOG(B)

ARCTAN (A/B)

fSIN (Af_
lCOS (A)j

F
CA**K

I=O,J=O

I=O,J<O

DA=O,J=O
A=O,J=O

A=O,J<O
DA=O,J<O

B<O,C=O

A=O,B=O

A=O,C<O

B>88.028

A=O

B<O

A=O,B=O

!Al >227

B<O

CA=O,K=O

Table 3-2. Error Codes And Returns

EXCEPTION
RETURN

O-QR

235 -2-QR

0-EAQ

10 3~ EAQ

0 -EAQ

0-EAQ

103~ EAQ

103~ EAQ

103~ EAQ

0-EAQ

0-EAQ

O-EAQ

F=JIBI
0-AQ

MESSAGE
LINE 1

EXPONENTIATION ERROR
O**O

EXPONENTIATION ERROR
O**(-J)

EXPONENTIATION ERROR
O**O

EXPONENTIATION ERROR
O**{-J)

EXPONENTIATION ERROR
(-B)**C

EXPONENTIATION ERROR
O**O

EXPONENTIATION ERROR
O** (-C)

EXP(B),B GRT THAN 88.028
NOT ALLOWED

LOG(O) NOT ALLOWED

LOG(-B) NOT ALLOWED

ATAN2(0,0) NOT ALLOWED

SIN OR COS ARG GRT 'I'H
2**27 NOT ALLOWED

SQRT(-B) NOT ALLOWED

EXPONENTIATION ERROR
O**O

MESSAGE
LINE 2

SET RESULT=O

SET RESULT=2**3S-2

SET RESULT=O

SET RESULT=l0**38

SE'r RESULT=O

SET RESULT=O

SET RESULT=l0**38

SET RESULT=l0**38

SET RESULT=l0**38

SET RESULT=O.C

SET RESULT=O

SET RESULT=O

EVALUATE FOR +B

SET :RESULT=O

Table 3-2 (cont). Error Codes And Returns

DEFAULT
PROCEDURE

ERROR ABORT/ EXCEPTION MESSAGE MESSAGE
CODE CONTINUE FUNCTION ERROR RETURN LINE 1 LINE 2

15 c CA**J CA=a,J<a 103 ~ AR EXPONENTIATION ERROR SET RESULT=(la**38,0.0)
a -- QR a**(-J)

16 c DA**DB DA< a I DB;ia O--EAQ EXPONENTIATION ERROR SET RESULT=O
(-DA)**DB

17 c DA**DB DA=O,DB=O 0-EAQ EXPONENTIATION ERROR SET RESULT=O
a**O

18 c DA**DB DA=O,DB<.O 103~ EAQ EXPONENTIATION ERROR SET RESULT=l0**38
a** (-B)

19 c e**DA DA> 88. 028 103~ EAQ EXP(B),B GRT 88.028~ SET RESULT=l0**38
NOT ALLOWED

20 c LOG(DA) DA=O -la3~ EAQ DLOG (O) NOT ALLOWED SET RESULT=-(10**38)

21 c w LOG(DA) DA<O 0-EAQ DLOG (-B) NOT ALLOWED SET RESULT=O
I

../DA VDA={fDAI
I\) 22 c DA<O SQRT(-B) NOT.ALLOWED EVALUATE FOR +B 0

23 c {SIN DA} !DAI> 227 a--EAQ DSIN OR DCOS ARG GRT SET RESULT=a
COS DA 2**54 NOT ALLOWED

24 c ARCTAN(DA/DB) DA=O,DB=a 0-EAQ DATAN2(a,a) NOT ALLOWED SET RESULT=a

25 c CA/CB CB=(O,a) AR=la38 COMPLEX z/a NOT ALLOWED SET RESULT=(la**38,
QR=la38 10**38)

26 e**CA
38

EXP(Z),REAL PART GRT c REAL CA>88. 028 1038 AR SET RESULT=(l0**38,
la- QR 88.a28 NOT ALLOWED la**38)

27 c e**CA IIMAG CAI> 227 a-AR EXP(Z),IMAG PART GRT SET RESULT=O,a
a-QR 2**27 NOT ADLOWED

28 LOG(CA) CA=(a,a)
38

CLOG (a) c -10-AR NOT ALLOWED SET RESULT
0--QR (-(10**38) ,0.0)

29 c {SIN (CA)} IREAL (CA)I > 22 7 0--AQ CSIN OR CCOS ARG WITH SET RESULT=O
COS(CA) REAL PART GRT 2**27 NOT

t:J ALLOWED t:J
I\)

0 30 c COS(CA) IMAG(CA)>88.028 lO~AR CSIN OR CCOS ARG WITH IM SET RESULT=(l0**38,
lO~QR PART GRT 88.018 NOT la**38)

ALLOWED

w
I

rv
I-'

a
a
rv
0

ERROR
CODE

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Table 3-2 (cont). Error Codes And Returns

DEFAULT
PROCEDURE
ABORT/
CONTINUE FUNCTION ERROR

c

c

A

c

c

c

A

A

c

c

A

c

c

c

BCD I/O

BCD I/O

LINKED
BINARY I/O

BCD I/O

REWIND AND
END FILE
PROCESSOR

ILLEGAL FORMAT
STATEMENT

ILLEGAL CHARACTER
IN DATA OR BAD
FORMAT

ATTEMPT TO READ
OUTPUT FILE

END-OF-FILE

ILLEGAL REQUEST

FFFB BACKSPACE ERROR

FILE OPENING FILE NOT DEFINED

FILE OPENING NO SPACE FOR I/O
BUFFERS

LINKED
BINARY I/O

LINKED
BINARY I/O

LINKED
BINARY I/O

NAMELIST
INPUT

NAMELIST
INPUT

NAMELIST
INPUT

ILLEGAL END
OF-FILE

LIST EXCEEDS
LOGICAL RECORD
LENGTH

SYSOUT/FIXED
LENGTH RECORDS

ILLEGAL HEADING
CARD

ILLEGAL VARIABLE
NAME

ILLEGAL SUBSCRIPT
OR ARRAY SIZE
EXCEEDED

EXCEPTION
RETURN

MESSAGE
LINE 1

FORMAT AT LLLLLL, HAS
ILLEGAL CHAR

ILLEGAL CHAR IN DATA
OR BAD FORMAT

READ AFTER WRITE
IS ILLEGAL

END OF FILE READING
FILE CODE FC

REQUEST TO XXXXXX ON FC
WAS IGNORED

TAPE POSITIONED AT FIRST
FILE

FC XX
DOES NOT EXIST

INSUFFICIENT CORE AVAIL
ABLE FOR BUFFERS

UNEXPECTED EOF OR BAD
FORMAT

LIST EXCEEDS LOGICAL
RECORD LENGTH

SYSOUT/FIXED LENGTH
RECORDS

ILLEGAL HEADING CARD
BELOW

ILLEGAL VARIABLE
NAME BELOW

ILLEGAL SUBSCRIPT BELOW,
OR DATA EXCEEDS VARIABLE

MESSAGE
LINE 2

TREAT AS END
OF FORMAT

TREAT ILLEGAL
CHAR AS ZERO

FC XX

OPTIONAL RETURN
NOT REQUESTED

BACKSPACE REQ. LARGER
THAN FILE COUNT

FC XX

STORE ZEROS IN
REMAINING LIST

ITEMS MAY NOT BE
PARTITIONED-PC XX

SCAN TERMINATED

SKIPPING TO NEXT
VARIABLE NAME

SKIPPING TO NEXT
VARIABLE NAME

w
I

I\.)

tv

t:1
t:1
N
0

ERROR
CODE

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Table 3-2 (cont) . Error Codes And Returns

DEFAULT
PROCEDURE
ABORT/
CONTINUE FUNCTION ERROR

c

c

A

c

A

c

c

c

c

A

A

A

c

c

NAMELIST
INPUT

NAMELIST
INPUT

BACKSPACE
RECORD

NAMELIST
INPUT

BACKSPACE
FILE

BACKSPACE
FILE

ILLEGAL CHARACTER
AFTER RIGHT
PARENTHESIS

ILLEGAL CHAR IN
DATA

FILE CANNOT BE
BACKSPACED

ILLEGAL LOGICAL
CONSTANT

ERRONEOUS
END-OF-FILE

BLOCK COUNT
OF ZERO

SENSE LIGHT INDEX NOT
SIMULATOR 0<n<35

NAMELIST ILLEGAL
INPUT CHARACTER FIELD

SENSE SWITCH INDEX NOT
TEST l<n<6

FILE OPENING ATTEMPT TO WRITE
I*

FXEP ILLEGAL VALUE

FILE OPENING ATTEMPT TO READ
P*

BCD I/O

BACKSPACE
RECORD

ILLEGAL CHAR
FOR L CONVERSION

EXCEPTION
RETURN

MESSAGE
LINE 1

ILLEGAL CHAR IN DATA
BELOW

ILLEGAL CHAR IN DATA
BELOW

FILE CODE XX, BACKSPACE
REFUSED

ILLEGAL LOGICAL CONSTANT
APPEARS BELOW (OR AT
END OF PRECEDI~G RECORD)

END-OF-FILE ON READ BUT
NOT ON PREVIOUS BACKSPACE
OF SAME TAPE RECORD

BLOCK COUNT :::: 0

MESSAGE
LINE 2

ASSUME COMMA PRECEDES
CHAR

TREAT CHAR AS ZERO

FILE IS SYSOUT OR IS
NOT MAG TAPE, D/D

TREAT ILLEGAL LOGICAL
CONSTANT AS F

REFERENCE TO NON-EXISTENT DECLARED OFF IF
SENSE LIGHT TESTING IGNORED

IF SETTING

ILLEGAL CHARACTER SKIPPING TO NEXT
FIELD BELOW VARIABLE NAME

NON-EXISTENT SENSE SWITCH SWITCH DECLARED
TESTED OFF

ILLEGAL WRITE REQUEST NO OPTIONAL EXIT
ON SYSINl EXECUTION TERMINATED

ILLEGAL VALUE FOR COM
PUTED GO TO AT ID NUMBER
xxxxx

IT IS ILLEGAL TO READ
FROM SYSOUT FC XX

ILLEGAL CHA:<.. FOR L
CONVERSION IN DATA BELOW

FILE NN IS CLOSED

xxxxx

TR.EAT ILLEGAL
CHARACTER AS SPACE

w
I

N
w

0
0
N
0

ERROR
CODE

59

60

61} 62
63
64
65
66

67

68

69

70

71

72

73

74

75

76

DEFAULT
PROCEDURE
ABORT/
CONTINUE FUNCTION

c

c

NAMELIST
INPUT

I**J

Table 3-2 (cont) . Error Codes And Returns

ERROR

EMPTY CHARACTER
FIELD

J>36 ,J IS EVEN
J>36,J IS ODD,I>O
J~36,J IS ODD,I<O

EXCEPTION
RETURN

MESSAGE
LINE 1

EMPTY CHARACTER FIELD

235 -2-QR EXPONENT > 35 OR
235 -2-QR EXPONENTIATION OVERFLOW
- (235 - 2)-QR

A RESERVED FOR USERS

c

c

c

c

c

c

A

A

A

A

FAULT

FAULT

FAULT

FAULT

FAULT

RANDOM
BINARY I/O

RANDOM
BINARY I/O

RANDOM
BINARY I/O

RANDOM
BINARY I/O

RANDOM
BINARY I/O

EXPONENT UNDERFLOW

INTEGER OVERFLOW

EXPONENT OVERFLOW

INTEGER DIVIDE
CHECK

FLOATING POINT
DIVIDE CHECK

LIST EXCEEDS LOGICAL
RECORD LENGTH

FILE NOT STANDARD
SYSTEM FORMAT. ZERO
BLOCK COUNT; BSN
ERROR; ZERO RECORD COUNT

NO FCB FOR FILE

BAD RANDOM RECORD REFERENCE

RECORD SIZE NOT SPECIFIED
IN FCB. GIVE VIA $ FFILE
CARD OR CALL RANSIZ
(FC,SIZE)

EXPONENT UNDERFLOW

OVERFLOW

EXPONENT OVERFLOW

DIVIDE CHECK

DIVIDE CHECK

LIST EXCEEDS LOGICAL
RECORD LENGTH

FILE NOT STANDARD
SYSTEM FORMAT
FC XX

LOGICAL FILE CODE XX
DOES NOT EXIST

ZERO OR NEGATIVE
RANDOM REC #

REC SIZE NOT GIVEN
FOR RANDOM FILE

MESSAGE
LINE 2

TREAT AS BLANKS

SET RESULT ::::
+/- ((2**35)-2)

AT LOCATION XXXXXX

AT LOCATION XXXXXX

AT LOCATION XXXXXX

AT LOCATION XXXXXX

AT LOCATION XXXXXX

STORE ZEROS IN
REMAINING LIST ITEMS
FC XX

NO OPTIONAL EXIT
EXECUTION TERMINATED

FC XX

FC XX

w
..........
-..J
-..J

w
I

N
~

0
0
N
0
~

ERROR
CODE

77

78

79

80

81

82

83

84

85

86

87

Table 3-2 (cont) • Error Codes And Returns

DEFAULT
PROCEDURE
ABORT/
CONTINUE FUNCTION ERROR

EXCEPTION
RETURN

A

A

A

A

c

A

c

c

c

A

c

RANDOM
BINARY I/O

RANDOM
BINARY I/O

RANDOM
BINARY I/O

RANDOM
BINARY I/O

RANDOM WRITE TO LINKED
FILE ILLEGAL. LINKED
FILE MAY BE READ RANDOMLY
BUT NOT WRITTEN TO.

THE RECORD NO. GIVEN IN
THE RANDOM READ OR WRITE
STATEMENT IS OUTSIDE THE
FILE LIMITS.

LIST EXCEEDS DECLARED
RECORD LENGTH.

FILE IS NOT LARGE
ENOUGH TO CONTAIN
RECORD

FORMAT I/O LINE EXCEEDS SIZE OF
ENCODE/DECODE RECEIVING FIELD

FORMAT I/O FIRST NON-BLANK CHAR-
ENCODE/DECODE ACTER IS NOT (

ARCSINE

FORMAT I/O
ENCODE/DECODE

I/O

FORMAT I/O
ENCODE/DECODE

I/O

I ARG I> 1.0

IINTEGERI> 2**35-1

"GFRC" ERROR

ENCODE/DECODE-I/O
MAY NOT BE USED

RECURSIVELY

SPACE/CORE OBTAINED

MESSAGE
LINE l

RANDOM WRITE TO
LINKED FILE ILLEGAL

REC # OUT-OF-BOUNDS-

LIST EXCEEDS DECLARED
RECORD LENGTH

FILE SPACE EXHAUSTED-

LINE EXCEEDS SIZE OF
RECEIVING FIELD

FIRST NON-BLANK CHAR
ACTER IS NOT (

I ARG I> 1.0

IINTEGERI> 2**35-1

"GFRC" ERROR

ENCODE/DECODE
I/O MAY

SPACE/CORE OBTAINED
FOR

MESSAGE
LINE 2

FC XX

FC XX

FC XX

FC XX

TREAT AS END
OF FORMAT

TREAT AS END
OF FORM..~T

EVALUATE FOR
ARG=l.O

LIMIT TO
2**35-1

FC XX

NOT BE USED
RECURSIVELY

LOG. FILE
CODE XX

w
.........
-....)

"'-.]

w
I

N
.i::. .
.....

0
0
N
0
~

DEFAULT
PROCEDURE

ERROR ABORT/
CODE CONTINUE

88 c

89 c

90 c

91 c

92 c

93-99

FUNCTION

CALLSS

EXP
DEXP

TAN
DTAN

ACOSH
DACOSH

ATANH

Table 3-2 (cont) • Error Codes And Returns

ERROR

END OF STRING
CHARACTER MISSING

UNDERFLOW

ARG TOO LARGE

ILLEGAL ARG

ILLEGAL ARG

EXCEPTION
RETURN

MESSAGE
LINE 1

EXP (TOO LARGE A
NEGATIVE NUMBER)

LARGE ARG (71E4)
TO TAN

ACOSH OF NUMBER .LT.
1. 0 NOT ALLOWED

I X I • GE • 1. 0 TO
ATANH(X)

NOT PRESENTLY USED

NOTATION: I,J,K are integers
A,B,C are real numbers
DA,DB,DC are double-precision numbers
CA,CB,CC where CA=X,Y are complex numbers

MESSAGE
LINE 2

SET RESULT
=O.O

MAY CAUSE LOSS
OF PRECISION

SET RESULT
TO 0.0

SET RESULT TO
+ OR -10**38

File Transliteration

FUNCTION

FMED is a file media transliteration module.

CALLING SEQUENCE

CALL FMEDIA (fc,media)

f c FORTRAN logical file code

media pointer to a code representing the form of the output as follows:

The

METHOD

media O, BCD NSLEW
2, BCD cards
3, Printer

legal

0 to
0 to
0 to
0 to
2 to
2 to
2 to
2 to

5, Time Sharing ASCII (obsolete)
6, Standard System Format ASCII (no slew)

All others are ignored

combinations are as follows:

2 3 to 0
3 3 to 2
5 3 to 5
6 3 to 6
0 6 to 0
3 6 to 2
5 6 to 3
6 6 to 5

FMED sets bits 18-21 of the file control block LOCSYM+S. These bits are
used to inform the I/O edit function that each output record directed to
the file (fc) must be transliterated to the format represented by the media
in bits 18-21 of FCB+5. FMED calls FOPEN to locate the file control block.
FOPEN returns the file control block location. FMED calls GMEDIA. If media
= O, the nslew bit in the file control block is also set.

Automatic file transliteration is provided and/or reformating on a logical
record basis permits the following:

1. Executing of a BCD program under time sharing.

a. I/O can be directed to the terminal.

b. Input files can be ASCII (media 5 or 6).

c. Output files can be media 0,2,3 BCD or 5,6 ASCII.

3-25 DD20

2. Execution of an ASCII program in batch.

a. l/O can be directed to reader, printer, punch or SYSOUT.

b. Input files can be media 0,2,3 BCD or 5 ASCII.

c. Output files can be media 0,2,3 BCD or 6 ASCII.

3. Execution of a BCD program in batch.

a. Input files can be ASCII (either media 5 or 6).

b. Output files can be mediq, 0,2,3 BCD or 6 ASCII.

4. Execution of an ASCII program under time sharing.

a. Terminal I/O is provided.

b. Input files can be media 5 ASCII or 0,2,3 BCD.

c. Output files can be media 0,2,3 BCD or 5,6 ASCII.

3-26 DD20

Date and Time

FUNCTION

FDTM allows a user to obtain the current date and time.

CALLING SEQUENCE

CHARACTER A*8
REAL B

CALL DATIM (A,B)

Upon return, A will contain the date in the form rnrn/dd/yy
blanks if in BCD mode); B will contain the time-of-day
floating point binary number.

METHOD

(with trailing
in hours as a

FDTM uses the MME GETIME in the batch mode and the DRL TIME in the time
sharing mode. FDTM uses the GCVT module for transliteration on the date, if
required.

Cell .SETU.-6 is used to determine if the environment is batch or time
sharing.

3-27 DD20

I

Access a Permanent File

FUNCTION

FTAC is used to access an existing permanent file.

CALLING SEQUENCE

3/77

CALL ATTACH (lgu,catfil,iprmis,mode,istat,buffer)

lgu the FORTRAN file code (an integer expression, variable, or
constant)

catfil a character constant, or variable, containing the catalog/file
string. It must be terminated by a semicolon; embedded blanks
are ignored. The user master catalog password is used if it
exists; the system master catalog password is never used;
however, subsequent passwords are required if they are part of the
file description.

iprmis the permissions desired. These will be ORed with any permissions
in the catfil.

If iprmis = 1, READ only; if iprmis = 2, WRITE only; if iprmis =3, READ and
WRITE; otherwise, undefined and may change.

mode
mode
mode
mode
is tat

buffer

an integer variable or constant
O; Gets file as defined
l; Gets file as random
2; Gets terminal
the status return from
Programmer's Reference
status as follows:

the file system (see the TSS System
Manual for TSS codes), or will contain a

O OK (batch mode only)
l File is currently open
2 = Terminal requested in batch mode (illegal)
3 = Additional memory needed, request denied (time sharing user is

aborted)
4 catfil all blanks

null arg: get a file system buffer.
not null arg: use this variable array as a buffer (at least 380
words}.

Example of null arg:

CALL ATTACH (lgu,"catfil;",iprmis,mode,istat,

3-28 DD20A

METHOD

Upon successful return from FTAC (attach), a file control block will have
been created and the file name (or alternate name) will be in FCB -10, -9
(in ASCII)o If the file was in the available file table (AFT), it will be
deaccessed and reaccessed with the new permissions, if necessary.

3-29 :JD20

Close File, Detach Buffers, .Remove from AFT

FUNCTION

FOTH is used to close a file and release its buffers. In time sharing, the
file is also removed from the AFT. If more memory is needed (to deaccess
the file) and the request is denied, the time sharing user is aborted.

CALLING SEQUENCE

CALL DETACH (lgu,istat,buffer)

lgu
is tat

the FORTRAN code (an integer expression, variably, or constant)
the status return word

buff er

istat = O, means OK
istat = 1, means could not get file system buffer
null arg: get a file system buffer
not null: use this buffer (at least 380 words)

The following is an example of a null argument.

CALL DETACH (lgu,istat,)

METHOD

See Function.

3-30 DD20

Attach a Tempora~j Mass .Storage or Terminal File

FUNCTION

FCRA is used to create and access a temporary mass storage or terminal
file.

CALLING SEQUENCE:

CALL CREATE (lgu,isize,mode,istat)

lgu

isize
mode

is tat

METHOD

the FORTRAN file code (an integer expression, variable, or
constant)
the size, in words, of the temporary file wanted
0 for a linked mass storage file
1 for a random mass storage file
2 for a terminal file
the status return word (see the TSS System Programmer's Reference
Manual for TSS codes). The following codes also apply:

O, successful
= 1, mode is invalid

2, file is currently open
3, no room in AFT
4, temporary file not available

= 5, duplicate file name
= 6, no room in PAT
= 7, illegal device specified

If the function is successful, a FCB is created and the file code, in
ASCII, is placed in FCB -10, -9.

3-31 DD20

FORTRAN DEBUGGING SYSTEM (FDS) SUBROUTINES

Core Allocator

FUNCTION

FALC is a general dynamic storage allocator capable of dispensing memory
space from a region composed of a list of disjoint free blocks.

CALLING SEQUENCE

The following call will allocate a block of n consecutive words:

LDQ n,DL
TSXl .FDSGT

If the request is denied, the Q register will be returned with the value
zero. If the request is granted, bits 0-17 of the Q register will contain
the address of the allocated block and bits 18-35 will contain the length
of the block as designated in the call. (Currently, denial returns are
given only in the batch mode of operation.)

METHOD

3/77

The free blocks are chained together with a linked list running through
bits 18-35 of their initial words. The last block on the chain contains
zero in this field. Bits 0-17 of the first word of a free block contain
the address of the last word in the block plus one. Equality of these two
fields indicates that the block is immediately followed by another free
block and the two may be coalesced into one.

To locate memory apace to satisfy a storage request, the chain of free
blocks is first searched, and blocks are coalesced as the search proceeds.
If a sufficiently large free block is found, the requested space is
allocated and any, excess memory is returned to the free block chain.

If no free block is found that satisfies the request, space is sought in
the "core-hole" described by word 37 (octal) of the slave prefix. If
enough memory space is available at this location, the requested space is
allocated out of the low end and the core-hole limits are adjusted
accordingly.

If no memory space is available in the core-hole, a request is made to the
operating system for additional memory. The memory space obtained in this
operation is transformed into a new core-hole and the old core-hole is
merged into it, if possible.

To ensure that the core-hole does not become too small, any free blocks
adjacent to the core-hole are merged with the core-hole and are removed
from the free block chain.

3-32 DD20A

Special Entry Point

FUNCTION

3/77

FDBD provides a special entry point to a dummy routine. If a
user-generated version of the FDEBUG module has been provided, control will
be passed to the dummy routine rather than to the FDEBUG bootstrap routine.

3-33 DD20A

FDEBUG Bootstrap

FUNCTION

FDEB is the bootstrap subroutine for the FDEBUG module.

CALLING SEQUENCE

CALL FDEBUG

METHOD

The FDEBUG overlay is loaded into memory (if not already loaded) and
control is transferred to the entry point.

3/77 3-34 DD20A

FDUMP Bootstrap

FUNCTION

FDUM is the bootstrap subroutine for the symbolic dump facility FDUMP.

CALLING SEQUENCE

CALL FDUMP

METHOD

The FDUMP overlay is loaded into memory (if not already loaded) and control
is transferred to the entry point.

3/77 3-35 DD20A

LINK/LLINK Interface

FUNCTION

FLKL provides an interface between LINK/LLINK and the FDEBUG module.

CALLING SEQUENCE

TSXl .FDLNK

It is assumed that the A register contains the link origin in bits 0-17 and
the link .size in bits 18-35.

The entry point .FDLLD has the calling sequence

CALL .FDLLD (name)

where: 'name' is the address of the link name in character form.

METHOD

3/77

Control is first passed to FDEBUG following the entry to .FDLNK so that any
overlayed breakpoints can be removed from the breakpoint table. Control is
then passed to .FDBDL, a secondary entry point in the FDEBUG bootstrap
subroutine.

The subroutine .FDLLD is an elaborate NOP that is capable of being
breakpointed. The user can therefore gain control after a link has been
loaded to install new breakpoints.

3-36 DD20A

Delete From Wrapup List

FUNCTION

FNCL allows the user to delete subroutines from the wrapup list.

CALLING SEQUENCE

CALL NOCALL(subr)

METHOD

When a CALL NOCALL(subr) statement is included, all occurrences of the
subroutine are deleted from the wrapup list.

3/77 3-37 DD20A

Release Unused Memory

FUNCTION

FREL provides the capability to return a block of memory space to the free
block list.

CALLING SEQUENCE

To free a block of memory, the address of the block is placed in bits 0-17
of the Q register and the length of the block is placed in bits 18-35 (this
is the data returned by .FDSGT). The following call is made:

TSXl .FDSRL

The following call will release as much memory as possible from the high
end of core:

TSXl .FDSRM

METHOD

3/77

Returning a block of memory space to the free list is a simple matter of
finding the appropriate location in the chain and then adjusting the
pointers. Blocks are not merged with the core-hole during this search.

3-38 DD20A

Dwruny Setup

FUNCTION

FSTP is a dummy subroutine that prevents binding of FDS modules when the
FDS option has not been invoked.

CALLING SEQUENCE

TSXO .FDSET

METHOD

3/77

If called, this subroutine simply returns via index register zero.
Secondary SYMDEFs are provided for FDEBUG and FDUMP that allow calls to
FDEBUG and FDUMP to return to the user unless the FDS option has been
invoked.

3-.39 DD20A

Add to Wrapup List

FUNCTION

FTCL allows the user to add subroutines to the wrapup list that is
maintained dynamically by the FORTRAN debugging system.

CALLING SEQUENCES

CALL ATCALL(subr)
CALL NTCALL(subr)

METHOD

3/77

The wrapup list is inspected whenever a program terminates abnormally or
terminates when a STOP statement is executed. However, when a program
terminates upon the execution of a CALL FTERM statement, the wrapup list is
not inspected, thus providing a mechanism to avoid calling procedures on
the wrapup list.

The wrapup list is maintained in a first-in/first-out basis so that the
subroutines entered first will be called first. If the entry is made using
ATCALL, the subroutine will be called when the program terminates
abnormally. If the entry is made using NTCALL, the subroutine will be
called when the program terminates normally.

3-40 DD20A

Timing Facility

FUNCTION

FTMR provides the subprogram timing measurement system of FDS, called
FTIMER.

CALLING SEQUENCE

CALL FTIMER

NOTE: A $ USE FTIMER control card may be included in the batch mode to
force the timing measurement system to be loaded.

METHOD

3/77

FTMR contains replacements for the entry points .ENTY, .RETY, and .FRETY
that are contained in the linking subroutine FYLK. These replacements
dynamically allocate data blocks in which timing measurement statistics are
accumulated as the program executes. These statistics are sununarized and
printed when the program terminates (even if the termination is abnormal).
The measurements are given only for those subprograms compiled with the FDS
option.

3-41 DD20A

Wrapup and Loader

FUNCTION

FWRP provides the standard FORTRAN wrapup procedure as well as the overlay
loader used by the FDEBUG and FDUMP bootstrap subroutines.

CALLING SEQUENCE

TSXl
TSXl

.FEXIT

.FDSLD
(Termination)
(Overlay loader)

METHOD

3/77

FWRP contains the standard FORTRAN wrapup procedure .FEXIT. When this
procedure is called, it first determines whether the termination is normal
or abnormal and then invokes each user-supplied wrapup routine as required.
When all of the subroutines in the wrapup list have been called, the
subroutine .FTERM is then invoked to provide standard termination.

FWRP contains the overlay loader. When it is called, the A register
contains zero (0) if an FDUMP overlay is to be loaded or two (2) if an
FDEBUG overlay is to be loaded.

3-42 DD20A

Linking Subroutine

FUNCTION

FYLK contains the subroutines .ENTY, .RETY, and .FRETY, as well as the
setup procedure.

CALLING SEQUENCE

TSXO .ENTY {or .RETY or .FRETY)
NOP .E.L ••

METHOD

3/77

Subroutine .ENTY is called whenever a FORTRAN subprogram is entered. Its
function is to save the indicator register and index register 1 in the
error linkage area and to insert the address of the error linkage area into
bits 0-17 of .CE.L.

Subroutine .RETY is called whenever a RETURN statement is executed. Its
function is to restore the indicator register and to set bits 0-17 of
.CE.L. to the address of the caller's error linkage area.

Subroutine .FRETY is called whenever a RETURN n statement is executed. Its
function is to restore the indicator register, to set bits 0-17 of .CE.L.
to the address of the caller's error linkage area, and to execute the
return.

The setup procedure is called by the fault processor (.FLTPR) via a TSXO
.FDSET. Its primary function is to call FDEBUG when required prior to
entering the main program. In the batch mode of operation, tests are
performed to verify whether file designator 44 is present; if it is, the
FDEBUG module is called. In the time sharing mode, bit 4 of the program
switch word is checked to determine whether or not the FDEBUG module should
be called.

3-43 DD20A

SECTION IV

MATHEMATICAL LIBRARY SUBROUTINES

'!'he subroutines that make up the Mathematical Library offer the FORTRAN
user a wide range of options to help solve complex mathematical problems. These
subroutines provide increased flexibility and computational capability to the
FORTRAN scientific programming language.

The purpose of the FORTRAN mathematical library subroutines is to provide a
fast method of calculating the basic mathematical functions. The purpose of
this update is to improve the accuracy and performance of the present
subroutines and to add several new functions. The results obtained with this
improved version of the library will in many cases differ from those obtained
when using earlier versions; in these cases, answers obtained are more
accurate. The following statements relate to the degree of accuracy for both
single- and double-precision floating-point binary numbers.

The single-precision subroutines were written to provide accuracy to full
single precision plus or minus one bit, whenever possible. This gives a
relative error of less than 1*2**-27.

The double-precision subroutines use polynomials with theoretical accuracy
beyond that of the floating-point hardware (greater than 18 decimal digits).
Any error that exists is due to rounding or truncation. Programming techniques
were used to minimize this type of error within the routine with the result that
most routines are accurate to about 17 or more decimal digits.

It is assurred that the binary representation of the argument (in single or
double precision) is the exact value, and the ensuing calculations and results
are based on that assumption. Rounding or conversion error prior to ent~ring
the subroutine cannot be anticipated. However, since argument error can cause
serious problems in calculations, the discussion of each new or revised
subroutine contains a brief summary of the possible effects of argument error on
the results. This information is presented in terms of a formula that usually
gives only the first term in the series expansion for the error term.

The following notation is used in the error formulas:

ACT Correct result
AEA Absolute error of the argument
AER Absolute error of the result
REA Relative error of the argument
RER Relative error of the result
RES Result given by the subprogram

3/77 4-1 DD20A

Overflow and underflow faults are not masked during the execution of the
subroutines. In cases where the result cannot be represented as a
floating-point number because it is too small or too large, a call is made to an
error routine and an appropriate error message is generated.

In certain cases, underflow may occur for valid input arguments but this
condition will not affect the accuracy of the result. Intermediate overflow
should not occur during the execution of the subroutines.

MATHEMATICAL LIBRARY DESCRIPTIONS

The FORTRAN mathematical library subroutines are composed of the function
subprograms and are summarized in Table 4-1. The definition, calling name, and
edit name are given for each library subroutine. The page numbers are included
since the indexed page numbers for Section IV are no longer valid for this
addendum.

3 17 7 4-2 DD20A

Table 4-1. Mathematical Library Subroutines

Subprogram Calling Edit Page
Function Definition Name Nrune No.

• • Absolute Value, Complex 1a1 CABS FCAB 4-23

Arithmetic, Complex, Multiply a*b a/b Implied FCMP 4-26
and Divide

• • Arccosine, Real ARCOS FASN 4-18
cos-1 (a)

• Arccosine, Double DARCOS FDAS 4-35

• Arccosine, Hyperbolic, Real ACOSH FASH 4-16
cosh-l (a)

• Arccosine, Hyperbolic, Double DACOSH FDAH 4-34

• • Arcsine, Real ARSIN FASN 4-18
sin-1 (a)

• Arcsine, Double DARSIN FDAS 4-35

·----·--·

• Arcsine, Hyperbolic, Real AS I NH FASH 4-16
sinh -l (a)

• Arcsine, Hyperbolic, Double DASINH FDAH 4-34

• • Arctangent, Real ATAN FATN 4-21
tan -l (a)

• • Arctangent, Double DA TAN FOAT 4-37

• • Arctangent 2, Real
tan- 1 (a/b)

ATAN2 FATN 4-21

• • Arctangent 2, Double DATAN2 FDA'!". 4-37

• Arctangent, Hyperbolic, Real
tanh-l

ATANH FASH 4-16
(a)

• Arctangent, Hyperbolic, Double DA TANH FDAH 4-34

• • Cosine, Real cos FSIN 4-60

• • Cosine, Double cos (a) DCOS FDSN 4-47

Cosine, Complex ccos FCSN 4-30

• Cosine, Hyperbolic, Real COSH FTNH 4-66
co sh (a)

• Cosine, Hyperbolic, Double DCOSH FDPH 4-45

• New\ Subroutine

• • Revised Subroutine

3/77 4-3 DD20A

Table 4-1 (cont). Mathematical Library Subroutines

Subprogram Calling Edit Page
Function Definition Name Name No.

• Cube Root, Real
(a)l/3

CBRT FCRT 4-28

• Cube Root, Double DCB RT FDCR 4-39

• • Exponential, Real EXP FEXP 4-58

• • Exponential, Double e a DEXP FDEX 4-40

Exponential, Complex CEXP FCEX 4-24

• • Exponential 2, Real
2 a

EXP2 FEXP 4-58

• • Exponential 2, Double DEXP2 FDEX 4-40

• • Exponential 10, Real
108

EXPlO FEXP 4-58

• • Exponential 10, Double DEXPlO FDEX 4-40

• Exponential Complement, Real
e

8
-1. 0

EXPC FEXC 4-56

• Exponential Complement, Double DEXPC FDXC 4-52

• Exponential Complement 2, Real
2

8
-1.0

EXPC2 FEXC 4-56

• Exponential Complement 2, Double DEXPC2 FDXC 4-52

• Exponential Complement 10' Real a
10 -1.0

EXPClO FEXC 4-56

• Exponential Complement 10' Double DXPClO FDXC 4-52

Exponentiation, Complex Base, ' Implied F4XP 4-13
Any Exponent

Exponentiation, Complex Base, Implied FCXP 4-33
Integer Exponent

• • Exponentiation, Double Precision, Implied FDXP 4-54
Base or Exponent (or Both)

ab
Exponentiation, Integer Base Implied FlXP 4-8

and Exponent

• • Exponentiation, Real Base Implied F3XP 4-11
and Exponent

Exponentiation, Real Base, Implied F2XP 4-10
Integer Exponent '~

• New Subroutine

• • Revised Subroutine

3/77 4-4 DD20A

Table 4-1 (cont). Mathematical Library Subroutines

Subprogram Calling Edit Page
Function Definition Name Name No.

• • Logarithm, Natural, Real ALOG FALG 4-14

• • Logarithm, Natural, Double loge (a) DLOG FDLG 4-42

Logarithm, Natural, Complex CLOG FCLG 4-25

• • Logarithm, Base 2, Real ALOG2 FALG 4-14
log

2
(a)

• • Logarithm, Base 2, Double DLOG2 FDLG 4-42

• • Logarithm, Common, Real ALOGlO FALG 4-14
loglO (a)

• • Logarithm, Common, Double DLOGlO FDLG 4-42

• • Power, Real (Exponentiation) POW F3XP 4-11
ab

Power, Double (Exponentiation) DPOW FDXP 4-54

Remaindering, Double al (mod a
2

) DMOD FDMD 4-44

• • Sine, Real SIN FSIN 4-60

• • Sine, Double sin (a) DSIN FDSN 4-47

Sine, Complex CSIN FCSN 4-30

• Sine, Hyperbolic, Real SINH FTNH 4-66
sinh (a)

• Sine, Hyperbolic, Double DSINH FDPH 4-45

• • Square Root, Real SQRT FSQR 4-62

• • Square Root, Double (a) 1/2 DSQRT FDSQ 4-49

• • Square Root, Complex CSQRT FCSQ 4-32

• Tangent, Real TAN FTAN 4-64
tan (a)

• Tangent, Double DTAN FDTN 4-50

• • Tangent, Hyperbolic, Real TANH FTNH 4-66
tanh (a)

• Tangent, Hyperbolic, Double DTANH FDPH 4-45

• New Subroutine

• • Revised Subroutine

3/77 4-5 DD20A

· DEFINITIONS AND CONSIDERATIONS

3/77

1. The following descriptions show both the GMAP calling sequence and an
example of user coding. The subroutines that do not show user coding
are generally called by other subroutines that makP. use of the called
subroutines.

2. The subroutines in the math library are function subprograms and are
not called by a CALL statement by the user. Some are called by the
FUNCTION name (i.e., A=SQRT(X)) while others are called implicitly.
For example, subprogram FlXP is invoked via an arithmetic statement of
the following type: K=I**J.

3. The answer is always returned in processor registers. The FORTRAN
compiler generates the appropriate store instructions (if a
replacement operation is involved). The registers used are determined
by the type of the function and are as follows:

Answer

Real
Double Precision
Integer, Logical
Complex

Register

EAQ
EAQ
Q
AQ

Processor Instruction

FSTR
DFSTR
STQ
STAQ

If the answer is to be stored into a variable of a different type, the
compiler will supply a suitable conversion algorithm. See the FORTRAN
reference manual for the various combinations and normal type of
results.

4. When the letter Z appears in a function description, it indicates a
complex variable, unless otherwise noted.

4-6 DD20A

l

5. Errors are detected by many of the subprograms. The functional flow
when an error is detected is as follows:

6.

It is
ends
could
would

MAIN PROGRAM
• • • • •

PERFORM
FUNCTION

FUNCTION NAME--------.~---.------'

·-------------. • •
YES

RESULT

LOAD STANDARD
ANSWER FOR
THIS ERROR

CALL FXER
TO OUTPUT

MESSAGE

PROCESS
ERROR

GO TO
ALTERNATE

PROCEDURE 1

Where the argument types are listed for a subprogram, the subprogram
assumes that the arguments are of the type listed. No explicit error
messages are issued if incorrect arguments are supplied.

assumed here that the alternate procedure is a FUNCTION subprogram which
with a RETURN statement. This is not necessary; the alternate procedure
be a section of the main program (or subprogram) in which case the flow
not include the "SET INDICATORS---".

3/77 4-7 DD20A ·

FlXP

Exponentiation - Integer Base and Exponent

FUNCTION

FlXP computes I**J in an expression.

USAGE

K=I**J I,J are integers.

GMAP CALLING SEQUENCE

CALL • FXP 1 (I , J)

METHOD

For I=O,J=O, then K=O, error code 1 1.

2. For I=O, J<O, then K=(2**35)-2, error

3. For I=O, J>O, then K=O

For I~O, J=O, then K=l

For I=l, J~O, then K=l

4.

5.

6. For I=-1, J is even, K=l

7. For I=-1, J is odd, K=-1

8. For 111:::2, J<O, K=O

9. For 111:::2, J<36, K=I**J

10. For I I I ~ 2, J~36

11. If IKf >(2**35)-1, error code 60

If J is even, K=(2**35)-2

code

If J is odd, I is negative, K=-(2**35)-2

If J is odd, I is positive, K=(2**35)-2

3/77 4-8

FlXP

2

DD20A

FlXP FlXP

RETURNS

3/77

Normal return is to the next executable statement in the calling program,
when AQ(0-71) contains K. Normally only the last 36 bits of Q (36-71) are
used.

1. Error code 1 if I=O~ J=O, then K=O. Execution continues.

2. Error code 2 if I=O, J<O, then K=(2**35)-2. Execution continues.

3. Error code 60 if K=I**J and IKI >(2**35)-1. Execution continues.

4-9 DD20A

F2XP F2XP

Exponentiation - Real Base, Integer Exponent

FUNCTION

F2XP computes A**K in an expression.

USAGE

B A**K A is real or double precision,. K is an integer.

GMAP CALLING SEQUENCE

CALL .FXP2(A,K) for real A

CALL .FDXPl(A,K) for double precision A

METHOD

1. For A=O, K=O, then B=O, error code 3

2. For A=O, K~O, then B=O

J. For A=O, K<O, then B=l0**38, error code 4

4. For A~O, K=O, then B=l.O

5. For negative values of K, change sign of K and take the reciprocal of
the result.

6. K is an integer with values from -2**35 to (2**35)-1.

A and A**K are floating-point numbers with values from -2**127 to
(2**127)-2**64.

7. A**K is accurate to eight decimal positions for FXP2 or 16 decimal
positions for FDXPl.

RETURNS

Normal return is to the next executable statement of the calling program.

1. Error code 3 if A=O and K=O. Then A**K=O.O. Execution continues.

2. Error code 4 if A=O and K<O. Then A**K=l0**38. Execution continues.

: 177 4-10 DD20A

F1XP F3XP

Exponentiation - Real Base and Exponent

FUNCTION

F3XP computes X**Y in an expression.

USAGE

C=X**Y X and Y are real.

GMAP CALLING SEQUENCE

CALL .FXP3(X,Y)

CALL POW(X,Y)

METHOD

1. The subroutine is based on the formula

X**Y = 2**(Y*ALOG2(X)).

2. The subroutine uses the entry point .ALOG2 into the ALOG2 subroutine
and the entry point .EXP2 into the EXP2 subroutine. (EXP2(Z} finds
the value of 2**Z.)

3. The largest known relative error is less than 1*2**-27 (one bit in
single precision).

EFFECT OF ARGUMENT ERROR

The error propagation can be calculated from the guidelines provided in the
ALOG2 and EXP2 subroutines.

RETURNS

3/77

Normal return is to the next executable statement in the calling program,
except as specified below:

1. If (X.LT.O.O}, the result is set to 0.0 and FXEM is called with error
code 5.

2. If (X.EQ.O.O .AND. Y.EQ.O.O), the result is set to the largest
possible number and FXEM is called with error code 7.

4-11 DD20A

F3XP

3.

3/77

F3XP

Appropriate overflow and underflow errors may occur in EXP2 (edit name
FEXP} if the results cannot be expressed as a single-precision number.

4-12 DD20A

F4XP F4XP

Exponentiation - Complex Base, Any Exponent

FUNCTION

USAGE

F4XP computes A**B in an expression.

C=A**B
C=A**B

A and B are complex.
A is complex; B is real or double precision.

GMAP CALLING SEQUENCE

CALL .FCXP2 (A,B)

CALL .FCXP3(A,B)

for complex base and exponent

for complex base and real or double-precision exponent

METHOD

(CA, CB are the arguments)

CALL
STAQ
CALL
STAQ
CALL

CLOG(CA)
AA
.FCFMP (AA,CB)
AA
CEXP(AA)

Complex logarithm of complex A
CLOG of argument 1
Product

Complex exponential

For complex base and real or double-precision exponent, a complex number is
formed with the real part equal to the argument and the imaginary part
equal to zero. Otherwise, it uses the same method as complex base and
exponent.

Accuracy: 7 places + l.0*10**-7

RETURNS

Normal return is to the next executable statement in the calling program.

3/77 4-13 DD20A

FALG FALG

Natural, Base 2, and Conunon Logarithms

FUNCTION

USAGE

FALG computes loge(a) for ALOG(X), where X.GT. 0.0; log 2 (a) for ALOG2(X),
the logarithm base 2; and log 10 (a) for ALOGlO(X), the common logarithm or
logarithm base 10.

A=ALOG(X)
A=ALOG2(X)
A=ALOGlO(X)

X is real.

GMAP CALLING SEQUENCE

CALL ALOG(X) for loge(a)
CALL ALOG2(X) for log2 (a)
CALL ALOGlO(X) for log10 (a)

METHOD

3/77

1. The basic function calculated by the subroutine is ALOG2(X). The
results for ALOG and ALOGlO are obtained by using the expression
ALOG(X) = ALOG2(X)*ALOG(2.0) or ALOGlO(X) = ALOG2(X)*ALOG10(2.0).

2. The constants ALOG(2.0) and ALOG10(2.0) are stored in the subroutine;
the necessary multiplication is performed just prior to the return.
No multiplication is performed for ALOG2.

3. The polynomial approximation for ALOG2 is accurate over the range
(.707, 1.414) and is of the form

POO+Z**2*(POl+Z**2*(P02+Z**2*P03))

where: Z = (RRX-1.)/(RRX+l.).

The range reduction of the argument utilizes the fact that:

ALOG2(RRX*2**IEXP) = ALOG2(RRX) + IEXP.

4-14 DD20A

FALG

4.

FALG

The following steps are performed:

a. If X is already within the range (.707, 1.414), omit the
remaining steps and use the polynomial directly. This prevents
loss of precision for arguments near 1.0.

b. EXP exponent of x.

c. RRX (X with exponent set to O), so RRX is within the range (.5,
1. 0).

d. Since the polynomial is accurate over the range (.707, 1.414),
multiply RRX by the SQRT(2) and compensate for the multiplication
by subtracting 0.5 (which is ALOG2(SQRT(2))) from the final
answer. The actual multiplication is not performed; instead, the
quotient (X-l/SQRT(2))/(X+l/SQRT(2)) is formed in finding Z for
use in the polynomial. Note that (SQRT(2)*X-l)/(SQRT(2)*X+l) is
equivalent to the previous quotient.

e. In summary: ALOG2(X) =exponent of X - 0.5 + ALOG(SQRT(2)*RRX)

where: RRX is X with the exponent set to 0.0.

5. The largest known relative error is less than 1*2**-27 (one bit in
single precision).

EFFECT OF ARGUMENT ERROR

AER REA, which means that the RER for arguments near 1.0 may be large.

RETURNS

3/77

Normal return is to the next executable statement of the calling program,
except as specified below:

1. If (X.EQ. O.O), the result is set to the most negative number and FXEM
is called with error code 9.

2. If (X.LT.O.O), the result is set to O.O and FXEM is called with error
code 10.

4-15 DD20A

FASH FASH

Real Hyperbolic Arcsine, Arccosine, and Arctangent

FUNCTION

USAGE

FASH computes sinh•l {a) for ASINH{X), the value of the hyperbolic arcsine
of X for all inputs; cosh-1 {a) for ACOSH{X), the value of the hyperbolic
arccosine; and tanh·l {a), the value of the hyperbolic arctangent.

A=ASINH{X)
A=ACOSH(X)
A=ATANH(X)) X is real.

GMAP CALLING SEQUENCE

CALL ASINH(X) for sinh-1 (a)
CALL ACOSH(X) for cosh-1 {a)
CALL ATANH(X) for tanh-1 (a)

METHOD

3/77

1. ASINH is calculated as ALOG(X+SQRT(X**2+1.0)).

2. ACOSH is calculated as ALOG(X+SQRT(X**2-l.O)).

For the above two expressions, SQRT (X**2-l.) is set equal to X for
X.GE. l. OES.

3. ATANH is calculated as .S*ALOG((l.+X)/(1.-X)).

4. These subroutines call other routines that are accurate to single
precision. An attempt was made to minimize the accumulated error in
calculating the mathematically correct expressions.

4-16 DD20A

FASH FASH

RETURNS

3/77

Normal return is to the next executable statement of the calling program,
except as specified below:

1. If (X.LT.1.0) for ACOSH, the result is set to o.o and FXEM is called
with error code 91.

2. If (X.LE.-1.0) for ATANH, the result is set to the most negative
number and FXEM is called with error code 92.

3. If (X.GE.1.0) for ATANH, the result is set to the most positive number
and FXEM is called with error code 92.

4-17 DD20A

FASN FASN

Real Arcsine and Arccosine

FUNCTION

USAGE

FASN computes sin-1 (a) for ARSIN(X), the principal value of the
trigonometric arcsine of X (in radians); and cos -1 (a) for ARCOS(X), the
principal value of the trigonometric arccosine of X (in radians).

A=ARSIN (X)
A=ARCOS (X)

X represents any number within the range (-1. 0, 1. 0) , meaning -1. 0 :S X :S 1. 0.
The arcsine and arccosine are undefined for arguments outside of this
range.

GMAP CALLING SEQUENCE

CALL ARSIN (X) for sin •l (a)
CALL ARCOS (X) for cos -1 (a)

METHOD

') 77

1. Initial range reduction is performed by setting AX=ABS(X), which
reduces the range to (O, ARSIN(PI/2)).

2. The range between (O, ARSIN(PI/2)) is divided into four parts, with
the partition points of R expressed as follows:

R(0)
R(1)
R(2)
R(3)
R (4)

o.
.5
.866
.965
1.0

SIN (0)
SIN(PI/6)
SIN (PI/3)
SIN (S*PI/12)
SIN (PI/2}

3. The basic formulas used to derive the actual formulas used in the
subroutine for the above four ranges are:

a. TN(X)
Tl (X)
T2 (X)
T4(X)

COS(N*ARCOS(X)), which means:
x
2*X**2-l
8*X**4-8*X**2+1

This is the standard Chebyshev polynomial of the first kind.

b. ARSIN(X) = (N-l)*PI/(2*N) + (l/N)*ARSIN(TN(X))

where: SIN ((N-2) *PI/ (2*N)) :S X ::; 1. 0.

4-18 DD20A

FASN

3/77

c.

d.

This form is most efficient near:

SIN(PI/2-PI/(2*N)), where TN(X) approaches O.

ARSIN(X)

ARCOS(X)

PI/2 - 2*ARSIN(SQRT((l-X)/2)).

PI/2 - ARSIN (X) for 0 S ARCOS (X) S PI.

FASN

4. The following chart presents the applicable formulas and the values of
N for the different ranges.

Transformation Transform
Interval Used Ran2e
SIN (A) s x s SIN (B) Formula N /RRX/ S SIN(Z)

A B z

0 PI/6 None PI/6
PI/6 PI/3 (3a) 2 PI/6
PI/3 S*PI/12 (3b) 4 PI/6

S*PI/12 PI/2 (3c) PI/24

Two different minimax polynomials are used to approximate ARSIN(RRX)
over the ranges (O, PI/6) and (0, PI/24). For the range (0, PI/6), a
polynomial of the form

Y*P(Y**2)/Q(Y**2)

is used, where P is of the second order and Q is of the third order.
For the range (O, PI/24), P and Qare both of the first order.

5. Using all of the above formulas, the following formulas actually used
in the subroutine can be derived.

Range 1:

for X (O.O, 0.5); equivalently
X (SIN(O.O), SIN(PI/6)), or
X (COS(PI/2), COS(S*PI/6));

PQARG
ARSIN
ARCOS

Range 2:

x
O.O + PQARG*l.O*P(PQARG**2)/Q(PQARG**2)
PI/2. - PQARG*l.O*P(PQARG**2)/Q(PQARG**2)

for X (0.5, .866025404); equivalently
X (SIN(PI/6), SIN(PI/3)), or
X (COS(S*PI/6), COS(2*PI/3));

PQARG
ARSIN
ARCOS

2*X** 2-1
= PI/4. + PQARG*0.5*P(PQARG**2)/Q{PQARG**2)

PI/4. - PQARG*O.S*P(PQARG**2)/Q{PQARG**2)

4-19 DD20A

FASN

Range 3:

for X (.866025404, .965925826); equivalently
X (SIN(PI/3), SIN(5*PI/12)), or
X (COS(2*PI/3), COS(PI/12));

PQARG 8*X**4 - 8*X**2 + 1.
ARSIN = 3*PI/8 + PQARG*0.25*P(PQARG**2)/Q{PQARG**2)
ARCOS = PI/8 - PQARG*0.25*P(PQARG**2)/Q(PQARG**2}

Range 4 (uses a different polynomial approximation):

for X (.965925826, 1.0); equivalently
X (SIN(S*PI/12), SIN(PI/2)), or
X (COS(PI/12), COS(O.O));

PQARG
ARSIN
ARCOS

(1-X) /2.
PI/2 - SQRT(PQARG)*2*P(PQARG**2)/Q(PQARG**2)
0.0 + SQRT(PQARG)*2*P(PQARG**2)/Q(PQARG**2)

Now, for all ranges
If the original argument was negative:

ARSIN
ARCOS

-ARSIN
PI - ARCOS

Then, return.

FASN

For ranges 1, 2, and 3, the same formula for the polynomial is used.
In range 4, a different formula is used and a call to SQRT must be
made.

6. The largest known relative error is less than 1*2**-27 (one bit in
single precision).

EFFECT OF ARGUMENT ERROR

AER = AEA/(l-X**2)**.5

If the value of X is small, RER AEA for the arcsine.

RETURNS

3/77

Normal return is to the next executable statement of the calling prog~am,
except as specified below:

1. If (X.LT.-1.0), FXEM is called with error code 83. Then
is found for X = -1.0.

the answer

2. If (X.GT.1.0), FXEM is called with error code 83. Then the answer is
found for X = +l.O.

4-20 DD20A

FA'l'N FATN

Real Arctangent

FUNCTION

USAGE

FATN computes the principal value (in radians) of the arctangent of Z for
ATAN(Z) or the arctangent of (Y,X) for ATAN2 (Y,X), where Z = Y/X, for any
valid input argurnent(s).

A=ATAN(Z)
A=ATAN2 (Y ,X)

(Y,X) or Z are any nwnbers, except that the expression (Y,X)=(O.,O.) is
invalid.

CALLING SEQUENCE

CALL ATAN (Z) for tan -1 (a)
CALL ATAN2(Y,X) for tan•l (a/b)

METHOD

3/77

1. The algorithm is the same for both ATAN and ATAN2, except that for
ATAN2(Z) the z is calculated as Z = Y/X. For ATAN(Z), the answer may
be located in either quadrant 1 or quadrant 4 (-PI/2 ~ ATAN ~ PI/2).
For ATAN2(Y,X), the answer will be in the correct quadrant with (-PI~
ATAN2 ~PI).

2. The ABS(Z) is found, thus reducing the range to (O.O, arctangent
(PI/2)) •

3. The range between (0, arctangent (PI/2)) is then divided into nine
parts with partition points R and evaluation nodes S. The partition
points are chosen as follows:

R(O)=O
R(I)=tangent((2*I-l)*PI/32.)
R(9) =infinity
S(I)=tangent((2*I-2)*PI/32.)

I=l,2, ••• 8

I=2,3, ••• 9

4. The range of z, and thus the value of the index I, is then found
within the range (R(I-1), R(I)). That is, R(I-l)<Z <R(I). I is found
using a binary search to determine the range of z. After I is found,
the formula

ATAN(Z) = ATAN(S(I)) + ATAN(T)

is used, where: T=S(I)**-1-(S(I)**-2+1)/(S(I)**-l+Z).

4-21 DD20A

FATN FATN

5. ATAN(S(I)) and the values for (S(I)**-1) and (S(I)**-2+1) are stored
in tables.

6. Tis within the range (-PI/32., PI/32.) and ATAN(T) is calculated
using a polynomial approximation of the third order which has the form

POO+T*(POl+T*(P02+T*P03))

and provides accuracy beyond single precision.

7. After the value of ATAN is found for positive Z (quadrant 1), the
answer is placed in the proper quadrant by subtracting it from PI
and/or negating it if necessary.

8. The largest known relative error is less than 1*2**-27 (one bit in
single precision}.

EFF'ECT OF ARGUMENT ERROR

AER=AEA/(l-Z**2} for a lesser value of z.
RER=REA for the larger values of z.

RETURNS

3/77

Normal return is to the next executable statement of the calling program,
except as specified below:

1. If (Y.EQ.0.0.AND. X.EQ.O.O), the result is set to 0.0 and FXEM is
called with error code 11.

4-22 DD20A

FCAB FCAB

Complex Absolute Value

l"UNC'rION

USAGE

FCAB computes the absolute value of the complex number X in the expression
CABS(X).

A=CABS(X)

X represents any complex number of the form (A,B) •

GMAP CALLING SEQUENCE

CALL CABS(X)

METHOD

1. The complex argument X is treated as a number pair (A,B):

S.ML = MIN (A, B)
BIG = MAX(A,B)

2. CABS= ABS(BIG*SQRT(l.+(SML/BIG)**2}. Note that the answer is a real
number.

3. The largest known relative error is less than 1*2**-27 (one bit in
single precision).

EFFECT OF ARGUMENT ERROR

RER (1./2.)*REA

RETURNS

Normal return is to the next executable statement of the calling program.

3/77 4-23 DD20A

FCEX

Complex Exponential

FUNCTION

FCEX computes e**Z for CEXP(Z) in an expression.

USAGE

A=CEXP(Z) Z is complex.

GMAP CALLING SEQUENCE

CALL CEXP(Z)

METHOD

1. z
A

(X,Y)
y + TT

2
B e**X
X B*SIN A
Y B*SIN Y
ANSWER = (X, Y)

2. Zand e**X are complex numbers(X,Y), with

X~8 8. O 2 8 , I Y I< 2 * * 2 7, and I Y + j I< 2 * * 2 7 •

FCEX

3. Each part (X,Y) of e**Z is accurate to seven decimal positions.

RETURNS

".:,/77

Normal return is to the next executable statement of the calling program,
except as specified below:

1.

2.

Error code 26 if X~88.028.
continues.

Then e**Z=(l0**38, 10**38). Execution

Error code 27 if IYl~2**27 or if IY+ 'l21~2**27.
Execution continues.

4-24

Then e**Z=(O.O).

DD20A

FCLG FCLG

Complex Natural Logarithm

FCLG computes logeZ for CLOG(Z} in an expression.

USAGE

A=CLOG(Z} Z is complex.

GMAP CALLING SEQUENCE

CALL CLOG(Z)

METHOD

1. log eZ=loge (X, Y} (where Z= (X, Y))

=(logelZI, arctan Y/X)

2. z and log8 Z are complex numbers; values of X and Y range from

-2**127 to *2**127-2**100 inclusive.

3. logeZ is accurate to seven decimal positions.

RETURNS

Normal return is to the next executable statement of the calling program,
except as specified below:

1. Error code 28 if Z=(O,O). Then log 8 Z =(-(10**38), 0.0).

3/77 4-25 DD20A

FCMP

Complex Multiplication and Division

FUNCTION

FCMP computes (A,B}*(C,D) or (A,B)/(C,D) in an expression.

USAGE

A=B*C or A=B/C B and C are complex.

GMAP CALLING SEQUENCE

CALL .FCFMP(R,S) for R*S

CALL .FCFDP(R,S) for R/S

R (A,B)
S = (C,D)

METHOD

1. (A,B)*(C,D) = (A*C-B*D,A*D+B*C)

FCMP

2. (A,B)/(C,D)=((A,B)*(C,-D))/(C**2+D**2) = (A*C+B*D,B*C-A*D)/(C**2+D**2)

? 1 77

3. If (A,B) = (O,O), then the quotient= (O,O}. Otherwise,

4.

U D/C
Y (A/C)/(l+U**2)
T B/A
X Y* (T*U+l)
Y Y* (T-U)

Before computing (A,B} I (9,D), replace the numerator by (-B ,A)
I Bl and the denominator by , (-D,C) if ICI < I DI. Adjust the
(X, Y) accordingly:

a. If IAl>IBI and IC I >IDI, then the result (X, Y) •

b. If IAl~IBI and I c l~IDI I then the result (X, Y) •

c. If I Bl~IAI and IC l>IDI, then the result (Y,-X).

d. If IAl>IBI and ID l~iCI, then the result (-Y,X).

4-26

if IAI <
quotient

DD20A

FCMP FCMP

5. A, B, C, D, X, and Y are real numbers, with values from -2**127 to
(2**127)-2**100 inclusive.

6. The answer is accurate to eight decimal positions.

RETURNS

3/77

Normal return is to the next executable statement of the calling program,
except as specified below:

1. In a division operation,
(A,B)/{C,0)=(10**38,10**38).

error code 25 if (C,D)=(O,O).
Execution continues.

4-27

Then

DD20A

FCRT

Real Cube Root

FUNCTION

FCRT computes the cube root of X in the expression CBRT(X).

USAGE

A=CBRT(X)

X represents any number.

GMAP CALLING SEQUENCE

CALL CBRT (X)

METHOD

1. X is expressed as RM*2**IE. RM is real.
reduction is performed using the formula

CBRT {RM*2**IE) RM/3*CBRT(2**IE).

If I=IE/3 and J=IE-3*!, then

CBRT{RM*2**IE) = CBRT{RM*2**J)*2**I.

IE is integer.

FCRT

Range

2. RRX is RM*2**J and is within the range (.5,4.). The CBRT{RRX) is
found using an initial polynomial approximation of the form

3/77

YO = POO+RRX*{POl+RRX*P02)

which makes YO accurate to approximately 1.8 decimal digits.

3. Three Newton's iterations are then used with the formula

Yl = YO-{YO-X/Y0**2)/3

to extend the accuracy to full single precision.

4. The largest known relative error is less than 1*2**-27 (one bit in
single precision).

4-28 DD20A

FCRT FCRT

EFFECT OF ARGUMENT ERROR

RER = (l./3.)*REA-(l./9.)*REA**2 •••

RETURNS

Normal return is to the next executable statement of the calling program.

3/77 4-29 DD20A

FCSN FCSN

Complex Sine and Cosine

FUNC'I'ION

FCSN computes sin Z or cos Z for CSIN(Z) or CCOS(Z) in an expression, where
Z is in radians.

USAGE

A=CSIN(Z) or A=CCOS(Z) Z is complex.

GMAP CALLING SEQUENCE

CALL CSIN(Z) for sin Z

CALL CCOS(Z) for cos Z

METHOD

3/77

1. sin Z=sin(X,Y) (where Z=(X,Y))
=sin X*cos(O,Y)+cos X*sin(O,Y)
=(sin X*cosh Y,O)+(O,cos X*sinh Y)
=(sin X*cosh Y, cos X*sinh Y)

2. cos Z=sin (Z+11)
2

3. Z, sin Z, and cos Z are complex numbers, with IXl<2**27,

IX+111<2**27, and IY1<88.028.
2

4. The answer is accurate to seven decimal positions.

4-30 DD20A

FCSN FCSN

RETURNS

3/77

Normal return is to the next executable statement of the calling program,
except as specified below:

1. Error code 29 if: IXl>2**27

IX+ 'i2 I ::_2 ** 27

e**Y=O

Then the answer is (O,O). Execution continues.

2. Error code 30 if IYl>88.028. Then the answer is (10**38, 10**38).
Execution continues.

4-31 DD20A

FCSQ FCSQ

Complex Square Root

FUNCTION

FCSQ computes the square root of Zin the expression CSQRT(Z).

USAGE

A=CSQRT(Z)

Z is any complex number of the form (A,B) •

GMAP CALLING SEQUENCE

CALL CSQRT(Z}

METHOD

1. The argument is expressed as A+B*i.

2. ANSA = SQRT(/A/+CABS((A,B))/2.).

3. If (A.LT.O.AND.B.LT.O}, ANSA = -ANSA.

4. ANSB = B/(2.*ANSA).

5. If (A.LT.O), return answer (ANSB, ANSA); else return (ANSA, ANSB).

6. These formulas can be derived from the definitions for complex number
multiplication.

7. The largest known relative error is less than 1*2**-27 (one bit in
single precision) •

EFFECT OF ARGUMENT ERROR

1. Using i = (-1.)**.5, express A+B*i as Rl*e**(Al*i).

2. Express the answer as R2*e**(A2*i) •

3.

RETURNS

RER (R2)
RER (A2)

• S*REA (Rl)
REA(Al)

Normal return is to the next executable statement of the calling program.

3/77 4-32 DD20A

FCXP

Exponentiation - Complex Base, Integer Exponent

FUNCTION

FCXP computes A**K in an expression.

·USAGE

C=A**K A is complex. K is an integer.

GMAP CALLING SEQUENCE

CALL .FCXPl (A,K)

METHOD

1.

2.

3.

If A=(O,O), K=O

If A=(O,O), K>O

If A=(O,O), K<O

then A**K =(O,O) error code 14

then A**K =(O,O)

then A**K =(10**38,0) error code 15

4. A and C are complex numbers (X,Y} with values X and Y from
-2**127 to (2**127)-2**100.

K is an integer with values from -2**35 to (2**35) -1.

5. Each C(X,Y} is accurate to eight decimal positions.

RETURNS

FCXP

Normal return is to the next executable statement in the calling program.

1. Error code 14 if A=(O,O) and K=O. Then A**K=(O,O}.

2. Error code 15 if A=(O,O) and K<O. Then A**K=(l0**38,0.0).

3/77 4-33 DD20A

FDAH FDAH

Double Precision Hyperbolic Arcsine, Arccosine, and Arctangent

FUNCTION

USAGE

FDAH computes sinh·l (a) for DASINH(X), the value of the hyperbolic arcsine
of X for all inputs; cosh-1 (a} for DACOSH(X), the value of the hyperbolic
arccosine; and tanh"l (a) for DATANH(X), the value of the hyperbolic
arctangent.

A=DASINH (X) }
A=DACOSH(X) X is double precision.
A=DATANH(X)

GMAP CALLING SEQUENCE

CALL DASINH (X) for sinh .. 1 (a)
CALL DACOSH (X) for cosh •l (a)
CALL DATANH(X) for tanh-1 (a)

METHOD

1. DASINH is calculated as DALOG(X+DSQRT(X**2+1.0)).

2. DACOSH is calculated as DALOG(X+DSQRT(X**2-l.O)).

For the above two expressions, DSQRT(X**2-l.) is set equal to
X for X.GE.l.OElO.

3. DATANH is calculated as .S*DALOG((l.+X)/(l.~X)).

4. These subroutines call other routines that are accurate to double
precision. An attempt was made to minimize the accumulated error in
calculating the mathematically correct expressions.

RETURNS

3/77

Normal return is to the next executable statement of the calling program,
except as specified below:

1. If (X.LT.1.0) for DACOSH, the result is set to 0.0 and FXEM is called
with error code 91.

2. If (X.LE.-1.0} for DATANH, the result is set to the most negative
number and FXEM is called with error code 92.

3. If (X.GE.1.0) for DATANH, the result is set to the most positive
number and FXEM is called with error code 92.

4-34 DD20A

FDAS FDAS

Double Precision Arcsine and Arccosine

FUNCTION

USAGE

FDAS computes sin-1 (a) for DARSIN(X), the value of the trigonometric
arcsine of X (in radians); and cos-1 (a) for DARCOS(X), the value of the
trigonometric arccosine of X (in radians).

A=DARSIN(X)
A=DARCOS(X)

X represents any number within the range (-1.0, 1.0), meaning -1.0 ~ X ~
1.0. The arcsine and arccosine are undefined for arguments outside of this
range.

GMAP CALLING SEQUENCE

CALL DARSIN(X) for sin-1 (a)
CALL DARCOS(X) for cos-1 (a)

METHOD

1. The method used for DARSIN is the same as that used for the
single-precision ARSIN subroutine (edit name FASN), except that more
accurate minimax polynomials are used for the approximation to DARSIN.

2. The polynomial used in ranges 1, 2, and 3 is of the order 6 and the
polynomial used in range 4 has P of the order 3 and Q of the order 4.

3. The minimax polynomial is accurate to more than 19 places. Any error
in the result is caused only by rounding and truncation; the result
should be accurate to approximately 17 places.

EFFECT OF ARGUMENT ERROR

AER=AEA/(l-X**2)**.5

If the value of X is small, RER AEA for the arcsine.

3/77 4-35 DD20A

FDAS FDAS

RETURNS

3/77

Normal return is to the next executable statement of the calling program,
except as specified below:

1. If (X.LT.-1.0), FXEM is called with error code 83. Then the answer is
found for X=-1.0.

2. If (X.GT.1.0), FXEM is called with error code 83. Then the answer is
found for X=+l.O.

4-36 DD20A

FDl\T FDAT

Double Precision Arctangent

FUNCTION

USAGE

FDAT computes the principal value (in radians) of the arctangent of Z for
DATAN(Z) or the arctangent of (Y,X) for DATAN2(Y,X), where Z=Y/X for any
valid input argument(s).

A=DATAN(Z)
A=DATAN2 (Y ,X}

(Y,X} or z are any numbers, except that the expression (Y,X}
invalid.

(O.,O.} is

GMAP CALLING SEQUENCE

CALL DATAN (Z} for tan •l (a}
CALL DATAN2(Y,X) for tan-1 (a/b)

METHOD

3/77

1. The algorithm is the same for both DATAN and DATAN2, except that for
DATAN2(Z) the Z is calculated as Z=Y/X. For DATAN(Z), the answer may
be located in either quadrant 1 or quadrant 4 (-PI/2 ~ DATAN ~ PI/2).
For DA7AN2(Y,X), the answer will be in the correct quadrant with (-PI
~ DATAN2 ~ PI).

2. The method used for DATAN and DATAN2 is the same as that used for the
single-precision subroutines ATAN and ATAN2 (edit name FATN), except
that a minimax polynomial of the order seven (instead of the order
three) is used for approximating the DATAN function. Using the same
notation described for the ATAN function, the polynomial is

POO+l*(P0l+T*(P02+T*(P03+T*(P04+T*(POS+T*(P06+T*P07))))))

which provides accuracy suitable for double precision.

3. The minimax polynomial is accurate to more than 19 places. Any error
in the result is caused only by rounding and truncation: the result
should be accurate to approximately 17 places.

4-37 DD20A

FOAT FOAT

EFFECT OF ARGUMENT ERROR

AER=AEA/(l-Z**2) for a lesser value of z.
RER=REA for the larger values of z.

RETURNS

3/77

Normal return is to the next executable statement of the calling program,
except as specified below:

1. If (Y.EQ.O.O.ANO.X.EQ.O.O), the result is set to 0.0 and FXEM is
called with error code 24.

4-38 D020A

FDCR FDCR

Double Precision Cube Root

FUNCTION

FDCR computes the cube root of X in the expression DCBRT(X).

USAGE

A=DCBRT(X)

X represents any double-precision number.

GMAP CALLING SEQUENCE

CALL DCBRT(X)

METHOD

1. The method used for
single-precision CBRT
more Newton's iteration
accuracy to full double

EFFECT OF ARGUMENT ERROR

\
DCBRT is the same as that used for the
subroutine (edit name FCRT), except that one
is performed (for a total of four) to provide
precision.

RER (l./3.)*REA-(l./9.)*REA**2 •••

RETURNS

Normal return is to the next executable statement of the calling program.

3/77 4-39 DD20A

FDEX FDEX

Double Precision Exponential, Base 2, and Base 10

FUNCTION

USAGE

FDEX computes e 8 for DEXP(X), the value of the exponential of X for all
valid input argument(s); 2 8 for DEXP2(X), the value of 2.**X· and 10 8 for
DEXPlO(X), the value of 10.**X.

A=DEXP (X)
A=DEXP2 (X)
A=DEXPlO (X)

X represents any double-precision value so that the result will be
presented as a double-precision number.

GMAP CALLING SEQUENCE

CALL DEXP(X)
CALL DEXP2 (X)
CALL DEXPlO (X)

METHOD

3/77

1. The basic function calculated by the subroutine is DEXP2(X).
results for DEXP and DEXPlO are calculated considering that

DEXP(X) = DEXP2(X*log2(e)) and
DEXPlO(X) = DEXP2(X*log2(10)).

The

The constants log2(e) and log2(10) are stored within the subroutine.

2. Range reduction is performed considering that

DEXP2(RRX+INTX) = DEXP2(RRX)*DEXP2(INTX).

INTX is the integer value nearest to X and RRX is X minus INTX.
Therefore, RRX is within the range (-.5,.5).

3. DEXP2(RRX) is found using a minimax polynomial approximation of the
form

(Q(X**2)+X*P(X**2))/(Q(X**2)-X*P(X**2))

where the polynomial P is of the second order and Q is of the third
order. This provides results that are suitable for double precision.

4-40 DD20A

FDEX FDEX

4. DEXP2 (RRX) *DEXP2 (INTX) is found by adding INTX to the exponent of the
result for DEXP2(RRX).

5. The minimax polynomial is accurate to more than 19 places. Any error
in the result is caused only by rounding and truncation; the result
should be accurate to approximately 17 places.

EFFECT OF ARGUMENT ERROR

RER = AEA
AER REA*X

NOTE: Serious error amplification can occur if
encountered in a large value of x.

small errors are

RETURNS

3/77

Normal return is to the next executable statement of the calling program,
except as specified below:

1. If (result.GT.2.**127), the result is set to the largest number and
FXEM is called with error code 19.

2. If (result.LT.2.**-128), the result is set to 0.0 and FXEM is called
with error code 89.

4-41 DD20A

FDLG FDLG

Double Precision Natural, Base 2, and Conunon Logarithms

FUNCTION

USAGE

FDLG computes loge(a) for DLOG(X), the natural logarithm of any input
argument X where X.GT.O.O; log2 (a) for DLOG2(X), the logarithm base 2; and
log 10 (a) for DLOGlO(X), the conunon logarithm or logarithm base 10.

A=DLOG(X)
A=DLOG2(X)
A=DLOGlO(X)

X represents any double-precision number .GT.O.O.

GMAP CALLING SEQUENCE

CALL DLOG(X) for loge(a)
CALL DLOG2(X) for logz(a)
CALL DLOGlO{X) for log 10 (a)

METHOD

3/77

1. The method used in this subroutine is exactly the same as that used
for the single-precision subroutine ALOG, ALOG2, and ALOGlO (edit name
FALG) , except that a more accurate polynomial approximation is used.
The polynomial used for approximating DLOG2 is of the form

Z*P(Z**2)/Q(Z**2)

where Z is the same as that found in the single-precision subroutine.

2. P is a third-order polynomial of the form

POO+Z**2*(POl+Z**2*(P02+Z**2*P03))

and Q is a fourth-order polynomial of the form

QOO+Z**2*(QOl+Z**2*(Q02+Z**2*(Q03+Z**2*Q04)))

which provides results suitable for double precision.

3. The minimax polynomial is accurate to more tha~ 19 places. Any error
in the result is caused only by rounding and truncation; the result
should be accurate to approximately 17 places.

4-42 DD20A

FDLG FDLG

EFFECT OF ARGUMENT ERROR

AER REA, which means that the RER for arguments near 1.0 may be large.

RETURNS

3/77

Normal return is to the next executable statement of the calling program,
except as specified below:

1.

2.

If (X.EQ.O.O), the result is set to the most negative number and FXEM
is called with error code 20.

If (X.LT.O.O), the result is set to 0.0 and FXEM is called with error
code 21.

4-43 DD20A

FDMD FDMD

Double Precision Remaindering

FUNCTION

FDMD computes A=X{mod Y) for DMOD{X,Y) in an expression.

USAGE

A=DMOD{X,Y) X and Y are double precision.

GMAP CALLING SEQUENCE

CALL DMOD{X,Y)

METHOD

1. If Y=O, then A=X. Otherwise, compute Z = the greatest integer 5 X/Y
and give Z the same sign as that of X/Y. Then A=X- Y*Z.

2. A, X, and Y are double-precision numbers, with values from -2**127 to
(2**127)-2**64 inclusive.

3. A is accurate to 63 binary positions.

NOTE: If X>Y*lO**lO, the results may be incorrect; A may be greater
than Y.

RETURNS

Normal return is to the next executable statement in the calling program.

3/77 4-44 DD20A

FDPH FDPH

Double Precision Hyperbolic Sine, Cosine, and Tangent

FUNCTION

USAGE

FDPH computes sinh(a) for DSINH(X), the value of the hyperbolic sine of X
for all valid input arguments: cosh(a) for DCOSH(X), the value of the
hyperbolic cosine: and tanh(a) for DTANH(X), the value of the hyperbolic
tangent.

A=DSINH(X)
A=DCOSH(X)
A=DTANH(X)

X represents any double-precision value so that the result will be
presented as a double-precision number.

GMAP CALLING SEQUENCE

CALL DSINH(X) for sinh(a)
CALL DCOSH(X) for cosh(a)
CALL DTANH(X) for tanh(a)

METHOD

3/77

1. DCOSH(X) is calculated as (DEXP(X)+l./DEXP(X))/2.o.·

2. DSINH(X) is calculated as follows:

If (/X/.GE.1.44269), DSINH

If (/X/.LT.1.44269), DSINH

(DEXP(X)-1./DEXP(X))/2.0.

(DEXPC(X)/(DEXPC(X)+l.O)+DEXPC(X))/2.0.

3. DTANH(X) is calculated as follows:

If (X.GE.22.0), DTANH = 1.0.

If (X.LE.-22.0), DTANH = -1.0.

If (/X/.LT.1.44269), DTANH = DEXPC(2*X)/(2.+DEXPC(2*X)).

If (/X/.GT.1.44269.AND./X/.LT.22.0),
DTANH = (DEXP(X)-1./DEXP(X))/(DEXP(X)+l./DEXP(X)).

4. These subroutines call other routines that are accurate to double
precision. The complementary forms of the exponential functions were
used to help minimize accumulated errors in calculating the
mathematically correct expressions.

4-45 DD20A

FOPH FOPH

EFFECT OF ARGUMENT ERROR

1 •.

2.

3.

For OSINH: AER = AEA*COSH(X)
RER = AEA*COSH(X) = REA

For OCOSH: AER = AEA*OSINH(X)
RER = REA*TANH(X) = AEA

For DTANH: AER = (1.-TANH (X) **2) *AEA
RER = 2. *AEA/SINH (2*X)

For a small value of X, RER = REA; for a large value of X, RER is
affected less and less by REA.

RETURNS

3/77

No error handling is performed by this subroutine, but potential
underflow/overflow conditions will be displayed by the DEXP or DEXPC
routines that are called by this subroutine.

4-46 DD20A

FDSN FDSN

Double Precision Sine and Cosine

FUNCTION

USAGE

FDSN computes sin(a) for DSIN(X), the value of the trigonometric sine of X
for any valid input argument (in radians); and cos(a) for DCOS(X), the
value of the trigonometric cosine of X for any valid input argument (in
radians).

A=DSIN(X)
A=DCOS(X)

X represents any double-precision number, but accuracy may be affected in
finding the sine or cosine of large input arguments due to the periodicity
of the trigonometric functions.

GMAP CALLING SEQUENCE

CALL DSIN(X) for sin(a)
CALL DCOS(X) for cos(a)

METHOD

1. The method used for this subroutine is equivalent to that used for the
single-precision sine and cosine subroutines (edit name FSIN), except
that a more accurate minimax polynomial approximation is used. The
minimax polynomial is of the ninth order and has the form

P(Y)=POO+Y*(POl+Y*(P02+Y*(P03+Y*(P04+Y*(POS+Y*(P06+Y*(P07+Y*(P08
+Y*P09)))))))) •

2. The minimax polynomial is accurate to more than 19 places. Any error
in the result is caused only by rounding and truncation; the result
should be accurate to approximately 17 places.

EFFECT OF ARGUMENT ERROR

AER = AEA

NOTE: The relative error may increase for larger arguments outside of the
principal range (-PI, +PI).

3/77 4-47 DD20A

FDSN FDSN

RETURNS

3/77

Normal return is to the next executable statement of the calling program,
except as specified below:

1. If (/X/.GT.2**27), FXEM is called with error code 23 to issue a
warning. Then the sine or cosine is found with as much accuracy as
possible.

4-48 DD20A

FDSQ FDSQ

Double Precision Square Root

FUNCTION

FDSQ computes the square root of X in the expression DSQRT(X), where
X.GE.O.O.

USAGE

A=DSQRT (X)

X represents any double-precision number .GE.O.O.

GMAP CALLING SEQUENCE

CALL DSQRT (X)

METHOD

1. The method used for DSQRT is exactly the same as that used for the
single-precision SQRT subroutine (edit name FSQR), except that one
more Newton's iteration is performed (for a total of three).

EFFECT OF ARGUMENT ERROR

RER .S*REA

RETURNS

Normal return is to the next executable statement of the calling program,

3/77

except as specified below:

1. If (X.LT.O.O), FXEM is called with error code 22.
DSQRT (/X/) •

4-49

Then find

DD20A

·~

FDTN FDTN

Double Precision Tangent

FUNCTION

USAGE

FDTN computes tan(a) for DTAN(X), the value of the trigonometric tangent of
X for any valid input argument (in radians).

A=DTAN(X)

X represents any double-precision number, but accuracy may be affected in
finding the tangent of large input arguments due to the periodicity of the
trigonometric functions.

GMAP CALLING SEQUENCE

CALL DTAN(X) for tan(a)

METHOD

1. The algorithm used to find DTAN(X) is identical to that used for the
single-precision tangent subroutine (edit name FTAN), except that a
more accurate minimax polynomial is used. In this case, the
polynomials P and Q are of the fourth order; P has the form

POO+Y*(POl+Y*(P02+Y*(P03+Y*P04)))

and Q has the form

QOO+Y*(QOl+Y*(Q02+Y*(Q03+Y*Q04))).

2. The minimax polynomial is accurate to more than 19 places. Any error
in the result is caused only by rounding and truncation; the result
should be accurate to approximately 17 places.

EFFECT OF ARGUMENT ERROR

3/77

AER AEA/(COS(X)**2)
RER = 2./SIN(2*X)

NOTE: Near singularities of the expression X=(K+.S)*PI, large errors in
values may occur.

4-50 DD20A

FDTN FDTN

RETURNS

3/77

Normal return is to the next executable statement of the calling program,
except as specified below:

1. If (/X/.GT.2**27), FXEM is called
warning. Then the tangent is
possible.

4-51

with error
found with

code 90
as much

to issue a
accuracy as

DD20A

FDXC FDXC

Double Precision Exponential Complement

FUNCTION

FDXC computes ea-1.0 for DEXPC(X}, the value of the exponential complement
of X (e**X-1.0} for all valid input arguments; 28 -1.0 for DEXPC2(X), the
value of 2.**X-1.0; and 108 -1.0 for DXPClO(X), the value of 10.**X-l.O.

These functions are useful for calculating the above expressions when the
arguments are near the value zero. However, if the standard exponential
subroutines were used for calculating an expression such as 2.**X-1.0,
accuracy would be lost for arguments that are near 0.0 because of the
subtraction of two almost identical numbers (1.0 and -1.0). This loss of
accuracy is avoided by using these subroutines.

USAGE

A=DEXPC(X)
A=DEXPC2(X}
A=DXPClO(X}

X represents any double-precision value so that the result will be
presented as a double-precision number.

GMAP CALLING SEQUENCE

CALL DEXPC(X}
CALL DEXPC2(X}
CALL DXPClO(X}

METHOD

3/77

1. The basic function calculated by the subroutine is DEXPC2(X).
results for DEXPC and DXPClO are calculated considering that

DEXPC(X) = DEXPC2(X*log2(e)) and
DXPClO(X} = DEXPC2(X*log2(10}).

The

The constants log2(e} and log2(10) are stored within the subroutine.

2. For /X/.LT.0.5, the function is calculated using a minimax polynomial
approximation of the form

EXPC2 = 2*X*P(X**2}/(Q(X**2}-X*P(X**2}}

where: P(Y} POO+Y*(POl+Y*P02} and
Q{Y} = QOO+Y*(QOl+Y*(Q02+Y*Q03)}.

4-52 DD20A

FDXC

3. For /X/.GE.0.5, the
DEXP2(X)-l.O. That
subtraction of 1.0.

function DEXPC2
is, a call to

is
DEXP2

FDXC

simply calculated as
is made followed by a

4. The minimax polynomial is accurate to more than 19 places. Any error
in the result is caused only by rounding and truncation: the result
should be accurate to approximately 17 places.

EFFECT OF ARGUMENT ERROR

RER AEA
AER REA*X

NOTE: Serious error amplification can occur if
encountered in a large value of X.

small errors are

RETURNS

3/77

No error handling is performed by this subroutine. However, for large
positive or negative arguments the subroutine DEXP2 is called and it will
generate any appropriate error messages.

4-53 DD20A

FDXP FDXP

Double Precision Exponentiation, Real Base or Exponent (or Both)

FUNCTION

USAGE

FDXP has five entry points that compute the value of Dl**D2 for any valid
double-precision numbers Dl and 02. For entry points other than .FDXP2,
the arguments are converted to double precision. The entry points and
computation are as follows:

DPOW(Dl,D2) or .FDXP2(Dl,D2) for Dl**D2
.FDXP3(Dl,R2) for Dl**R2
.FXP4(Rl,D2) for Rl**D2
.FXPS(Il,R2) for Il**R2
.FXP6(Il,D2) for Il**D2

where: Dl any double-precision number
02 any double-precision number
Il any integer .GE.O
I2 any integer
Rl any single-precision number
R2 = any single-precision number

X Dl**D2

.GE.a.a

.GE.O.O

GMAP CALLING SEQUENCE

CALL DPOW(Dl,02)
CALL .FDXP2(Dl,D2)
CALL .FDXP3(Dl,R2)
CALL .FXP4(Rl,D2)
CALL .FXP5(Il,R2)
CALL .FXP6(Il,D2)

Notation is described above

METHOD

3/77

1. The subroutine is based on the formula

X**Y = 2**(Y*DLOG2(X)).

2. The subroutine uses the entry point .DLOG2 into the DLOG2 subroutine
and the entry point .DEXP2 into the DEXP2 subroutine. (DEXP2{Z) finds
the value of 2**Z.)

3. The minimax polynomial used is accurate to more than 19 places. Any
error in the result is caused only by rounding and truncation; the
result should be accurate to approximately 17 places.

4-54 DD20A

FOXP FDXP

EFFECT OF ARGUMENT ERROR

The error propagation can be calculated from the guidelines provided in the
OLOG2 and OEXP2 subroutines.

RETURNS

3/77

Normal return is to the next executable statement in the calling program,
except as specified below:

1. If (01.LT.O.O), the result is set to 0.0 and FXEM is called with error
code 16.

2. If (Ol.EQ.O.O.AND.02.EQ.O.O), the result is set to 0.0 and FXEM is
called with error code 17.

3. If (Ol.EQ.O.O.AN0.02.LT.O.O), the result is set to the largest
positive number and FXEM is called with error code 18.

4. Appropriate overflow and underflow errors may occur in DEXP2 (edit
name FOEX) if the results cannot be expressed as a double-precision
number.

4-55 DD20A

FEXC FEXC

Real Exponential Complement

FUNCTION

USAGE

FEXC computes e 8 -l.0 for EXPC(X), the value of the exponential complement
of X (e**X-1.0) for all valid input arguments; 2 8 -1.0 for EXPC2(X), the
value of 2.**X-1.0: and 108 -1.0 for EXPClO(X), the value of lO~**X-1.0.

These functions are useful for calculating the above expressions when the
arguments are near the value zero. However, if the standard exponential
subroutines were used for calculating an expression such as 2.**X-1.0,
accuracy would be lost for arguments that are near 0.0 because of the
subtraction of two almost identical numbers (1.0 and -1.0). This loss of
accuracy is avoided by using these subroutines.

A=EXPC(X)
A=EXPC2(X)
A=EXPClO(X)

X represents any value so that the result will be presented as a
single-precision number.

GMAP CALLING SEQUENCE

CALL EXPC(X)
CALL EXPC2 (X)
CALL EXPClO(X)

METHOD

. 3/77

1. The basic function calculated by the subroutine is EXPC2(X).
results for EXPC and EXPClO are calculated considering that

EXPC(X) = EXPC2(X*log2(e}} and
EX~ClO(X) = EXPC2(X*log2(10}).

The

The constants log2(e) and log2(10} are stored within the subroutine.

2. For /X/. LT .1. 0, the function is calculated using a minimax polynomial
approximation of the form

3.

POO+X*(POl+X*(P02+X*(P03+X*(P04+X*(P05+X*(P06+X*P07)))))).

For /X/.GE.1.0, the function EXPC2
EXP2(X)-l.O. That is, a call to
subtraction of 1.0 •

4-56

is
EXP2

simply
is made

calculated
followed by

as
a

DD20A

FEXC FEXC

4. The largest known relative error is less than 1*2**-27 (one bit in
single precision).

EFFECT OF ARGUMENT ERROR

RER AEA
AER REA*X

NOTE: Serious error amplification can occur if
encountered in a large value of X.

small errors are

RETURNS

3/77

No error handling is performed by this subroutine. However, for large
positive or negative arguments, the subroutine EXP2 is called and it will
generate any appropriate error messages.

4-57 DD20A

FEXP FEXP

Real Exponential, Base 2, and Base 10

FUNCTION

USAGE

FEXP computes e 8 for EXP(X), the value of the exponential of X for all
valid input argument(s); 2 8 for EXP2(X), the value of 2.0**X; and 10 8 for
EXPlO(X), the value of lO**X.

A=EXP(X)
A=EXP2 (X)
A=EXPlO (X)

X represents any value so that the result will be presented as a
single-precision number.

GMAP CALLING SEQUENCE

CALL EXP(X)
CALL EXP2(X)
CALL EXPlO(X)

METHOD

~ '77

1. The basic function calculated by the subroutine is EXP2{X).
results for EXP and EXPlO are calculated considering that

EXP(X) = EXP2(X*log2(e)) and
EXPlO(X) = EXP2(X*log2(10)).

The

The constants log2(e) and log2(10) are stored within the subroutine.

2. Range reduction is performed considering that

EXP2(RRX+INTX) = EXP2(RRX)*EXP2(INTX).

INTX is the largest integer less than X and RRX is X minus INTX.
Therefore, RRX is within the range (0.,1.).

4-58 DD20A

FEXP FEXP

3. EXP2(RRX) is found using a minimax polynomial approximation of the
form ·

POO+RRX*(POl+RRX*(P02+RRX*(P03+RRX*(P04+RRX*{POS+RRX*
(P06+RRX*P07))))))

which provides results suitable for single precision.

4. EXP2{RRX)*EXP2(INTX) is found by adding INTX to the exponent of the
result for EXP2(RRX).

S. The largest known relative error is less than 1*2**-27 (one bit in
single precision).

EFFECT OF ARGUMENT ERROR

RER = AEA
AER = REA*X

NOTE: Serious error amplification can occur if
encountered in a large value of x.

small errors are

RETURNS

3/77

Normal return is to the next executable statement of the calling program,
except as specified below:

1. If (result .GT.2.**127), the result is set to the largest number and
FXEM is called with error code 8.

2. If (result .LT.2.**-128), the result is set to 0.0 and FXEM is called
with error code 89.

4-59 DD20A

FSIN FSIN

Real Sine and Cosine

FUNCTION

USAGE

FSIN computes sin(a) for SIN(X), the value of the trigonometric sine of X
for any valid input argument (in radians); and cos(a) for COS(X), the value
of the trigonometric cosine of X for any valid input argument (in radians).

A=SIN (X)
A=COS(X)

X represents any single-precision number, but accuracy may be affected in
finding the sine or cosine of large input arguments due to the periodicity
of the tr~gonometric functions.

GMAP CALLING SEQUENCE

CALL SIN{X) for sin(a)
CALL COS(X) for cos(a)

METHOD

3/77

1. The first procedure to be followed in calculating this function is to
reduce the range of the argument to {-.5,+.5) by employing the
periodicity of the sine or cosine function. The steps are:

a. AX = X * { 1. /PI)

b. If the entry was for COS{X), then AX=AX+.5, since COS{X)
SIN(PI/2+X).

c. INTAX = the nearest integer to AX.

d. If INTX is odd, RRX = INTAX minus AX. If INTX is even, RRX AX
minus INTAX.

2. Since RRX is now within the range {-.5,+.5), the polynomial must be
accurate within the range (-PI/2,+PI/2).

3. A polynomial approximation is then used to find SIN(RRX) and is of the
form

RRX*2*P(4*RRX**2)

where: P(Y) has the form

POO+Y*(POl+Y*(P02+Y*(P03+Y*(P04+Y*P05)))).

4-60 DD20A

FSIN FSIN

4 .• The range reduction described in step ld above is where the error for
large values of the argument may occur.

s. The largest known relative error is less than 1*2**-27 (one bit in
single precision).

EFFECT OF ARGUMENT ERROR

AER .= AEA

·NOTE:·· . The rel~tive error. may in~rease for large arguments outside of the
principal range (-PI,+PI).

RETURNS

3/77

Normal return is to the next executable statement of the calling program,
except as specified below:

1. If (/X/.GT.2**27), FXEM is called with error code 12 to issue a
warning. Then the sine or cosine is found with as much accuracy as
possible.

4-61 DD20A

FSQR FSQR

Real Square Root

FUNCTION

USAGE

FSQR computes the square root of X in the expression SQRT(X), where
X.GE.O.O.

A=SQRT (X)

X represents any single-precision number .GE.O.O.

GMAP CALLING SEQUENCE

CALL SQRT (X)

METHOD

3/77

1. X is expressed as M*2**E, where

M = the mantissa of X(.5,1.0) and
E = the exponent of x.

2. Range reduction is performed using formulas based on

E even: SQRT(X)=(2*SQRT(.25*M))*2**E/2

E odd: SQRT(X)=(2*SQRT(.5*M))*2**(E-l)/2

3. The SQRT(.25*M) or SQRT(.5*M) is expressed as SQRT(RRX) and E/2 or
(E-1)/2 is expressed as EXPNT.

4. SQRT(RRX), where RRX is (.125,.5), is found using
polynomial approximation accurate to more than two
Newton's iterations are then used to find 2*SQRT(RRX):

YO POO+RRX*(P0l+P02*RRX)
Yl = .5*(YO+RRX/YO)
Y2 = 2*SQRT(RRX)=2*.5(Yl+RRX/YO)

The result is then expressed as

SQRT(X) ~ Y2*2**EXPNT

an initial
places. Two

5. The largest known relative error is less than 1*2**-27 (one bit in
single precision).

4-62 DD20A

FSQR FSQR

EFFECT OF ARGUMENT ERROR

RER = .S*REA

RETURNS

3/77

Normal return is to the next executable statement of the calling program,
except as specified below:

1. If (X.LT.O.O), FXEM is called with error code 13. Then SQRT(/X/) is
found with as much accuracy as possible.

4-63 DD20A

FTAN FTAN

Real Tangent

FUNCTION

USAGE

FTAN computes tan(a) for TAN(X), the value of the trigonometric tangent of
X for any valid input argument (in radians).

A=TAN(X)

X represents any single-precision number, but accuracy may be affected in
finding the tangent of large input arguments due to the periodicity of the
trigonometric functions.

GMAP CALLING SEQUENCE

CALL TAN(X) for tan(a)

METHOD

3/77

l. The first procedure to be followed in calculating this function is to
reduce the range of the argument to (-.5,+.5) by employing the
periodicity of the tangent function. The steps are:

a. AX=X*(2/PI). The value 2/PI is stored as a constant.

b. INTAX = the nearest integer to AX.

c. RRX = INTAX minus AX.

2. Since RRX is now within the range (-.s,+.5), the polynomial must be
accurate within the range (-PI/4,+PI/4).

3. A minimax polynomial is used of the form

RRX*P(RRX)/Q(RRX)

where the polynomials P and Q are of the second order; P(Y) has the
form

POO+Y*(POl+Y*P02)

and Q has the form

QOO+Y*(QOl+Y*Q02).

4. If the original argument was in octant 1, 2, 5, or 6, the result is
Q(RRX)/(P(RRX)*RRX).

4-64 DD20A

FTAN FTAN

If the original argument was in octant O, 3, 4, or 7, the result is
-RRX*P(RRX)/Q(RRX).

These final adjustments are required because of the synunetry of the
tangent function.

5. The largest known relative error is less than 1*2**-27 (one bit in
single precision).

EFFECT OF ARGUMENT ERROR

AER AEA/(COS(X)**2)
RER 2./SIN(2*X)

NOTE: Near singularities of the expression X=(K+.5)*PI, large errors in
values may occur.

RETURNS

3/77

Normal return is to the next executable statement of the calling program,
except as specified below:

1. If (/X/.GT.2**27), FXEM is called with error code 90 to issue a
warning. Then the tangent is found with as much accuracy as possible.

4-65 DD20A

; ..

FTNH FTNH

Real Hyperbolic Sine, Cosine, and Tangent

FUNCTION

USAGE

FTNH computes sinh(a) for SINH(X), the value of the hyperbolic sine of x
for all valid input arguments; cosh(a) for COSH(X), the v1lue of the
hyperbolic cosine; and tanh(a) for TANH(X), the value of the hyperbolic
tangent.

A=SINH(X)
A=COSH(X)
A=TANH{X)

X represents any value so that the result will be presented as a
single-precision number.

GMAP CALLING SEQUENCE

CALL SINH(X) for sinh(a)
CALL COSH(X) for cosh(a)
CALL TANH(X) for tanh(a)

METHOD

3/77

1. COSH(X) is calculated as (EXP(X)+l./EXP(X))/2.0.

2. SINH(X) is calculated as follows:

If (/X/.GE.1.44269), SINH (EXP(X)-1./EXP(X))/2.0.

If (/X/.LT.1.44269), SINH = (EXPC(X)/(EXPC(X)+l.O) + EXPC(X))/2.0.

3. TANH(X) is calculated as follows:

If (X.GE.22.0), TANH= 1.0.

If (X.LE.-22.0), TANH= -1.0.

If {/X/.LT.1.44269), TANH= EXPC(2*X)/(2.+EXPC(2*X)).

If (/X/.GT.1.44269.AND./X/.LT.22.0), TANH= (EXP(X)-1./EXP(X))
/(EXP(X)+l./EXP(X)).

4. These subroutines call other routines that are accurate to single
precision. The complementary forms of the exponential functions were
used to help minimize accumulated errors in calculating the
mathematically correct expressions.

4-66 DD20A

FTNH FTNH

EFFECT OF ARGUMENT ERROR

1.

2.

3.

For SINH: AER AEA*COSH(X)
RER = AEA*COSH(X) = REA

For COSH: AER AEA*SINH (X)
RER REA*TANH(X) = AEA

For TANH: AER = (l.-TANH(X)**2)*AEA
RER 2.*AEA/SINH(2*X)

For a small value of X, RER
affected less and less by REA.

REA; for a large value of X, RER is

RETURNS

3/77

No error handling is performed by this subroutine, but potential
underflow/overflow conditions will be displayed by the EXP or EXPC routines
that are called by this subroutine.

4-67 DD20A

SECTION V

NONMATHEMATICAL LIBRARY SUBROUTINES

This section describes library subroutines that are utilized in the same
manner as those described in Section IV. The subroutines described in this
section are nonmathematical in nature.

Table 5-1 lists the nonmathematical library subroutines.

Table 5-1. Nonmathematical Library Subroutine

Edit
Name Function Number

FMDE Mode determination by FORTRAN CD600El. 075

l•'CA'l' Character string manipulation CD600El.069

FSRT Sort character array of data CD600El. 070

FTSF Memory usage CD600El. 072

FTSG User time and identification CD600El. 071

FRSW Set/reset switch word CD600El. 074

FSHF Shift/rotate word contents CD600El. 073

FRND Random number generator CD600D3.009

FFER File and Record Control I/O error CD600El. 011
recovery

5-1 DD20

Mode Determination by FORTRAN

. FUNCTION

FMDE is used to provide the FORTRAN user with means to determine whether
the environment is batch or time sharing and whether it is BCD or ASCII.

CALLING SEQUENCE:

j MODE(i)

for i 1, j

for i 2 I j

0 if batch, j 1 if time sharing

0 if BCD, j 1 if ASCII

If i is neither 1 nor 2, j is set to -1.

METHOD

The FORTRAN compiler and library provide flags for determination of mode
and character set. These are interrogated to give information to the user.

5-2 DD20

Character String Manipulation

FUNCTION

FCAT is used to provide the FORTRAN user with ability to move or compare a
character substring of arbitrary length and position within a string.

CALLING SEQUENCE:

CALL CONCAT (a,n,b,m,f)

where:

a = string to be replaced

n = initial character of a (n=l implies first character)

b replacement string

m initial character of b (m=l implies first character)

f number of characters to be replaced; if f is not given, 1 is
assumed

Causes characters n through (n + f -1) of a to be replaced with
characters m through (m + f -1) of b.

Example:

0010 CHARACTER A*20/"FIFTEEN WERE THERE "/
0020 CHARACTER B*20/"SIXTEEN WERE ABSENT "/
0030 PRINT A,B
0040 CALL CONCAT (A, 1, B, 1, 3)
0050 PRINT,A,B
0060 STOP;END

READY

*RUN
FIFTEEN WERE THERE SIXTEEN WERE ABSEilT
SIXTEEN WERE THERE SIXTEEN WERE ABSENT

i KOMPCH (a,n,b,m,f) is function where substring of b is
compared character by character to substring of a.

if b = a, I = 0

if b > a, I 1

if b < a, I -1

METHOD

The move is done by the way of the SC modification after tally words are built
using parameters in the calling sequence.

5-3 DD20

Sort Array of Data

FUNCTION

FSRT is used to sort an array of data in ascending or descending order.
SORT is for ascending sort; SORTO is for descending sort.

CALLING SEQUENCE:

CALL SORT/SORTO (array, nrec, lrs, key1 , ••• , keyn)

array the name of the array to be sorted.

nrec the number of items, or logical records in the array.

lrs the logical record size, or the size in words of each item in the
array.

key the relative word number of the ith sort key in each logical record
and must be such that O~ keyi <lrs. Record comparisons are made
starting with key and either progress through to keyn' or until a

METHOD

non-equal comparison is made. Any number of sort keys may be
specified; however, at least one must always be specified.

Implementation is by use of the Shell method as described in ACM Computer
Survey, December 1971.

5-4 0020

Memory Usage

FUNCTION

FTSF is used to obtain memory usage of a program, the terminal station
code, and to move data from/to a 10-word memory file.

CALLING SEQUENCE:

CALL MEMSIZ (j)

j is returned as the number of 1024-word blocks of memory currently
allocated this job. The return is a 3-character variable. HEHSIZ can
also be used as a function; e.g., IF (MEMSIZ (j) .GE.n)

CALL TERMNO (a)

where a is a type character variable capable of receiving the
2-character station code.

For batch, the call returns blanks.

CALL CORFL (loc,i,j,k)

loc first word address of area to or from which data is to be moved

i number of words to be moved such that 1 < i ~ 10

j relative location in the 10-word area at which transfer is to begin

k O, data to be transferred into the 10-word area

k 1, data to be transferred out of the 10-word area

This call is ignored in batch.

METHOD

Memory size is determined from the BAR. TERMNO and CORFL use services
provided by the time sharing system.

5-5 DD20

User Time And Identification

FUNCTION

FTSG is used to obtain user time and user identification.

CALLING SEQUENCE

CALL CORSEC (a)

a, a real variable, is returned as the product of 1024-word blocks
currently allocated and processor time in seconds. CORSEC can also be
used as a function. For example,

IF (CORSEC (A) .GE.B)

CALL TERMTM (a)

a, a real variable, is returned ~s hours since log-on time; ignored in
batch.

CALL USRCOD (s)

s is character type variable of at least 12 characters into which the
user identification will be returned. (Time sharing only; ignored in
batch.)

CALL PTIME (a)

METHOD

a, a real variable, is returned as elapsed processor time in hours.
PTIME can also be used as a function.

Service routines provided by the time sharing system are used to obtain
data.

5-6 DD20

Set/Reset Switch Word

FUNCTION

FRSW sets or resets bits in the program switch word.

CALLING SEQUENCE

j ISETSW(i) for setting switch word.

j IRETSW(i) for resetting switch word.

i contains an octal value that specifies one or more bits that are to
be set or reset.

METHOD

1 set bit on
0 leave bit as is

j is resultant switch word setting in the respective positions of the
program switch word.

1 bit is on
0 = bit is off

In time sharing, bits 0-17 cannot be changed.

MME GESETS/GERETS or DRL SETSWH/RSTSWH is used.

5-7 DD20

Shift/Rotate Word Cpntents

FUNCTION

FSHF shifts/rotates word contents.

CALLING SEQUENCE:

j

j

j

j

METHOD

ILS(k,p)

IRS(k,p)

ILR(k,p)

ILR(k,p)

k left shift by p bit positions

k right shift by p bit positions (fill vacated positions
with contents of· bit position zero)

k left rotate by p bit positions

k right logical shift by p bit positions (fill vacated
positions with zeros)

j new word

k word to shift

p number of bits

k is shifted as indicated by p bit positions and stored into j. k and pare
assumed to be integers; if j is not an integer, the compiler provides a
conversion prior to storage.

5-8 DD20

Random Number Generator

FUNCTION

USAGE

FRND provides four different calls to generate random numbers from a
uniform (rectangular) distribution.

A = RAND (range) (seed is always 1)

Use of this version of the function results in the same sequence of random
numbers each time the program is executed.

A = RANDT (range) (seed = current time register value)

Use of this version results in a different sequence of random numbers each
time the program is executed.

For the above two uses, the algorithm used is the same. A is a positive
real number such that O<A <range.

A = FLAT (seed)

This version allows the seed to be varied, but the range is constant
(O A 1)

A = UNIFM2 (seed, mean, width)

This version allows the seed and the range to be varied. The range will be
such that (mean - width/2 <A <mean + width/2).

For example:

A = UNIF.M2 (6. 5, 0. 5, 1. 0)

will generate a set of random numbers between 0.0 and 1.0.

For the above two uses, the algorithm used is the same.

NOTE: For all calls, the value of the initial argument (seed) initializes
the algorithm for generation of the sequence of random numbers. For
all subsequent calls to the function, during execution of the same
program unit, the value of the argument is ignored.

5-9 DD20

File and Record Control I/O Error Recovery

FUNCTION

FFER provides the user with some control on File and Record Control
only (not FORTRAN). The subroutine allows the user to set his error
address into the file control block; a default address is provided
user does not provide the address.

crro s
rout.:i ·e
if the

File control block (FCB) word -5 contains an address for user error
recovery. When a file is first used, this word (FCB -5) is set with a
pointer to FOPE and the user-specified address, if one is supplied, is
placed in the lower half of FCB -15. At any time, the user can place his
recovery address in FCB -15 by the following call.

CALLING SEQUENCE

CALL FLGRC (lgu,ptr)

lgu numeric file code

ptr address of the recovery routine

M~THOD

See Function.

5-10 DD20

INDEX

.FBD'l'.
.FBDT • 2-8

• FBLT.
.FBLT • 2-8

• FBST.
CALL .FBST. 2-32

.FCFDP
CALL .FCFDP 4-7

.FCFMP
CALL .FCFMP 4-7

.FCNV.
.FCNV • 2-8

• FCNVC.
.FCNVC • 2-8

• FCNVD •
. FCNVD. 2-8

.FCNVI •
• FCNVI. 2-8

.FCNVL •
• FCNVL. 2-8

.FCNVR •
• FCNVR. 2-8

.FCXPl
CALL .FCXPl 4-19

.FCXP2
CALL .FCXP2 4-18

.FCXP3
CALL .FCXP3 4-18

.FDXPl
CALL .FDXPl 4-14

.FDXP2
CALL .FDXP2 4-21

.FDXP3
CALL .FDXP3 4-21

.FEFT.
CALL .FEFT. 2-34

i-1 DD20

.FEOF.
CALL .FEOF. 2-36

.FEXIT
CALL .FEXIT 2-50

.FGTFB
CALL .FGTFB 2-37

.FLTPR
CALL .FLTPR 2-31

.FOPEN
CALL .FOPEN 2-37

.FRWT.
CALL .FRWT. 2-34

.FSLEW
CALL .FSLEW 2-39

.FXEM.
CALL .FXEM. 3-14

.FXPl
CALL .FXPl 4-12

.FXP2
CALL .FXP2 4-14

.FXP3
CALL .FXP3 4-16

.FXP4
CALL .FXP4 4-21

.FXPS
CALL .FXPS 4-21

.FXP6
CALL .FXP6 4-21

.FXSWl
.FXSWl 3-13

.FXSW2
.FXSW2 3-14

.FXSW3
.FXSW3 3-14

.RCOV
CALL .RCOV 3-6

.SETU •
• SETU. 2-28

ABSOLUTE
Complex Absolute Value 4-10

ACCESS
Access a Permanent File 3-28

AFT
Close File, Detach Buffers, Remove from AFT 3-30

i-2 DD20

ALOG
CALL ALOG

ALOGlO
CALL ALOGlO

ARCOS
CALL ARCOS

ARCTANGENT
Double Precision Arctangent
Real Arctangent

ARITHMETIC
Arithmetic Fault Processor

ARRAY
Sort Array of Data

ARSIN
CALL ARSIN

ASCII/BCD
ASCII/BCD Indicators

ASSIGNMENT
Character String Assignment

ATAN
CALL ATAN

ATAN2
CALL ATAN2

ATTACH
Attach a Temporary Mass Storage or Terminal File
CALL ATTACH

BACKSPACE
Backspace Record
File Forwardspace and Backspace

BINARY
Linked Binary Input/Output Interface
Random Binary Input/Output
Specify Record Size, Random Binary File

BLOCK
File Control Block

BUFFERS
Close File, Detach Buffers, Remove from AFT

CABS
CALL CABS

CALL
CALL .FBST.
CALL .FCFDP
CALL .FCFMP
CALL .FCXPl
CALL .FCXP2
CALL .FCXP3
CALL .FDXPl
CALL .FDXP2.
CALL .FDXP3

i-3

4-39

4-39

4-60

4-31
4-42

2-31

5-4

4-60

3-7

2-23

4-42

4-42

3-31
3-28

2-32
2-51

2-4
2-10
2-54

2-44

3-30

4-10

2-32
4-7
4-7
4-19
4-18
4-18
4-14
4-21
4-21

DD20

CALL .FEFT.
CALL .FEOF.
CALL .FEXIT
CALL • FG'rFB
CALL .FLTPR
CALL .FOPEN
CALL .FRWT.
CALL .FSLEW
CALL .FXEM.
CALL .FXPl
CALL .FXP2
CALL .FXP3
CALL .FXP4
CALL .FXP5
CALL .FXP6
CALL .RCOV
CALL ALOG
CALL ALOGlO
CALL ARCOS
CALL ARSIN
CALL ATAN
CALL ATAN2
CALL ATTACH
CALL CABS
CALL CALLSS
CALL CCOS
CALL CEXP
CALL CLOG
CALL CONCAT
CALL CORFL
CALL CORSEC
CALL COS
CALL CREATE
CALL CSIN
CALL CSQRT
CALL DATAN
CALL DATAN2
CALL DATIM
CALL DCOS
CALL DEFIL
CALL DETACH
CALL DEXP
CALL DLOG
CALL DLOGlO
CALL DMOD
CALL DSIN
CALL DSQRT
CALL DUMP
CALL DUMP
CALL DUMPA
CALL DUMPA
CALL DVCHK
CALL EXIT
CALL EXP
CALL FCLOSE
CALL FILBSP
CALL FILFSP
CALL FLGEOF
CALL FLGERR
CALL FLGFRC
CALL FLGRC
CALL FMEDIA
CALL FPARAM
CALL FXALT
CALL FXEM

.CALL FXOPT

i-4

2-34
2-36
2-50
2-37
2-31
2-37
2-34
2-39
3-14
4-12
4-14
4-16
4-21
4-21
4-21
3-6
4-39
4-39
4-60
4-60
4-42
4-42
3-28
4-10
2-52
4-58
4-52
4-54
5-3
5-5
5-6
4-45
3-31
4-58
4-56
4-31
4-31
3-27
4-28
2-53
3-30
4.-24
4-34
4-34
4-5
4-28
4-26
2-43
2-21
2-21
2-43
3-8
2-50
4-37
2-47
2-51
2-51
2·-48
2-49
2-37
5-10
3-25
2-55
3-15
3-16
3-15

DD20

CALL LINK
CALL LLINK
CALL MEMSIZ
CALL OVERFL
CALL PDUMP
CALL PDUMP
CALL PDUMPA
CALL PDUMPA
CALL PTIME
CALL RANSIZ
CALL RANSIZ
CALL SETBUF
CALL SETFCB
CALL SETLGT
CALL SIN
CALL SLITE
CALL SLITET
CALL SORT/SORTD
CALL SQRT
CALL SSWTCH
CALL TANH
CALL TERMNO
CALL TERMTM
CALL USRCOD
Call TSS Subsystem

CALL GT
CALL GT

CALL SS
CALL CALLSS

CARRIAGE
Carriage Control Simulator

ccos
CALL CCOS

CEXP
CALL CEXP

CHARACTER
Character String Assignment
Character String Compare
Character String Manipulation

CLOG
CALL CLOG

CLOSE
Close File, Detach Buffers, Remove from AFT

COMMON
Double Precision Natural and Common Logarithms
Natural and Common Logarithms

COMPARE
Character String Compare

i-5

3-11
3-11
5-5
3-8
2-21
2-43
2-43
2-21
5-6
2-10
2-54
2-45
2-44
2-46
4-45
3-9
3-9
5-4
4-50
3-10
4-48
5-5
5-6
5-6
2-52

2-52

2-52

2-39

4-58

4-52

2-23
2-24
5-3

4-54

3-30

4-34
4-39

2-24

DD20

COMPLEX
Complex Absolute Value
Complex Base and Double Precision Exponent
Complex Base and Exponent
Complex Base and Real Exponent
Complex Exponential
Complex Multiplication and Division
Complex Natural Logarithm
Complex Sine and Cosine
Complex Square Root
Exponentiation - Complex Base, Integer Exponent

CONCAT
CALL CONCAT

CONSOLE
Console Communication

CORFL
CALL CORFL

CORSEC
CALL CORSEC

cos
CALL COS

COSINE
Complex Sine and Cosine
Double Precision Sine and Cosine
Real Sine and Cosine

CREATE
CALL CREATE
Create TSS Temporary File

CSIN
CALL CSIN

CSQRT
CALL CSQRT

DATA-ERROR
Initialization of Data-Error Processing

DATAN
CALL DATAN

DATAN2
CALL DATAN2

DATE
Date and Time

DAT IM
CALL DATIM

DCOS
CALL DCOS

DEBUG
Object Time Debug Processor

DE FIL
CALL DEFIL

i-6

4-10
4-18
4-18
4-18
4-52
4-7
4-54
4-58
4-56
4-19

5-3

2-41

5-5

5-6

4-45

4-58
4-28
4-45

3-31
2-53

4-58

4-56

2-49

4-31

±-31

.{-27

-27

l-28

2-27

2-53

DD20

DETACH
CALL DETACH
Close File, Detach Buffers, Remove from AFT

DEXP
CALL DEXP

DIVIDE
Exponent Register Overflow and Divide Check Tests

DIVISION
Complex Multiplication and Division

DLOG
CALL DLOG

DLOGlO
CALL DLOGlO

DMOD
CALL DMOD

DOUBLE
Complex Base and Double Precision Exponent
Double Precision Arctangent
Double Precision Base and Exponent
Double Precision Base and Real Exponent
Double Precision Exponential
Double Precision Modulus
Double Precision Natural and Common Logarithms
Double Precision Powers of Ten Table
Double Precision Sine and Cosine
Double Precision Square Root
Integer Base and Real or Double Precision Exponent
Real Base and Double Precision Exponent

DSIN
CALL DSIN

DSQRT
CALL DSQRT

DUMP
CALL DUMP
CALL DUMP
Memory Dump
Namelist and Dump Output

DUMP A
CALL DUMPA
CALL DUMPA

DVCHK
CALL DVCHK

END-OF-FILE
End-of-File (On Input) Processor
Initialization of End-of-File Processing

ENDFILE
Rewind and Endfile Processor

ERROR
Execution Error Monitor
I/O Error Recovery

i-7

3-30
3-30

4-24

3-8

4-7

4-34

4-34

4-5

4-18
4-31
4-21
4-21
4-24
4-5
4-34
3-3
4-28
4-26
4-21
4-21

4-28

4-26

2-43
2-21
2-43
2-21

2-21
2-43

3-8

2-36
2-48

2-34

3-13
5-10

DD20

EXIT
CALL EXIT

EXP
CALL EXP

EXPONENT
Complex Base and Double Precision Exponent
Complex Base and Exponent
Complex Base and Real Exponent
Double Precision Base and Exponent
Double Precision Base and Real Exponent
Exponent Register Overflow and Divide Check Tests
Exponentiation - Complex Base, Integer Exponent
Exponentiation - Floating-Point Base Integer Exponent
Exponentiation - Integer Base and Exponent
Exponentiation - Real Base and Exponent
Integer Base and Real or Double Precision Exponent
Real Base and Double Precision Exponent

EXPONENTIAL
Complex Exponential
Double Precision Exponential
Natural Exponential

EXPONENTIATION
Exponentiation - Complex Base, Integer Exponent
Exponentiation - Floating-Point Base Integer Exponent
Exponentiation - Integer Base and Exponent
Exponentiation - Real Base and Exponent

FlXP
FlXP

F2XP
F2XP

F3XP
F3XP

P4XP
F4XP

FALG
FALG

FASC
FASC

FASN
FASN

FATN
FATN

FAULT
Arithmetic Fault Processor

FBCD
FBCD

FBLO
FBLO
FBLO

i-8

2-50

4-37

4-18
4-18
4-18
4-21
4-21
3-8
4-19
4-14
4-12
4-16
4-21
4-21

4-52
4- '.4
4-37

4-19
4-14
4-12
4-16

4-12

4-14

4-16

4-18

4-39

3-7

4-60

4-42

2-31

3-7

2-8
2-4

DD20

FBST
FBST 2-32

FCAB
FCAB 4-10

FCAL
FCAL 2-52

FCAT
FCAT 5-3

FCEX
FCEX 4-52

FCHA
FCHA 2-23

FCLG
FCLG 4-54

FCLO
FCLO 2-47

FCLOSE
CALL FCLOSE 2-47

FCMP
FCMP 4-7

FCOM
FCOM 2-24

FCRA
FCRA 3-31

FCSL
FCSL 2-41

FCSN
FCSN 4-58

FCSQ
FCSQ 4-56

FCXP
FCXP 4-19

FOAT
FOAT 4-31

FDBG
FDBG 2-27

FDEF
FDEF 2-53

FDEX
FDEX 4-24

FDIO
FDIC 2-12

FDLG
FDLG 4-34

FDMD
FDMD 4-5

i-9 DD20

FDMP
FDMP

FDPT
FDPT

FDSN
FDSN

FDSQ
FDSQ

FOTH
FOTH

FDTM
FDTM

FDXP
FDXP

FEFT
FEFT

FEOF
FEOF

FEXP
FEXP

FFEE
FFEE

FFER
FFER
FFER

FFFB
FFFB

FFLT
FFLT

FIFA
FIFA

FI LB SP
CALL FI LB SP

FILE
Access a Permanent File
Attach a Temporary Mass Storage or Terminal File
Close File, Detach Buffers, Remove from AFT
Create TSS Temporary File
File Closing
File Control Block
File Forwardspace and Backspace
File Opening
File Transliteration
Specify Record Size, Random Binary File

FILFSP
CALL FILFSP

FLAT
FLAT

i-10

2-43

3-3

4-28

4-26

3-30

3-27

4-21

2-34

2-36

4-37

2-48

2-49
5-10

2-51

2-31

2-17

2-51

3-28
3-31
3-30
2-53
2-47
2-44
2-51
2-37
3-25
2-54

2-51

5-9

DD20

FLGEOF
CALL FLGEOF

FLGERR
CALL FLGERR

FLGFRC
CALL FLGFRC

FLGRC
CALL FLGRC

FLHS
FLHS

FLIT
FLIT

FLNK
FLNK

FLOATING-POINT
Exponentiation - Floating-Point Base Integer Exponent

FMDE
FMDE

FMED
FMED

FMEDIA
CALL FMEDIA

FNLI
FNLI

FNLO
FNLO

FOFA
FOFA

POPE
POPE

FORMAT
Format Controlled Sequential Input/Output

FORTRAN
Mode Determination by FORTRAN

FORWARD SPACE
File Forwardspace and Backspace

FPARAM
CALL FPARAM

FPAW
FPAW

FRBC
FRBC

FRCV
FRCV

FRDA
FRDA

i-11

2-48

2-49

2-37

5-10

3-4

3-9

3-11

4-14

5-2

3-25

3-25

2-17

2-21

2-21

2-37

2-12

5-2

2-51

2-55

2-25

3-6

3-6

2-12

DD20

FRDB
FRDB 2-4

FRDD
FRDD 2-12

FRND
FRND 5-9

FRRD
FRRD 2-8
FRRD 2-10
FRRD 2-54

FRSW
FRSW 5-7

FSET
FSET 2-44

FSHF
FSHF 5-8

FSIN
FSIN 4-43

FSLI
FSLI 2-8
FSLI 2-12

FSLO
FSLO 2-12
FSLO 2-8

FSLW
FSLW 2-39

FSQR
FSQR 4-50

FSRT
FSRT 5-4

FSTU
FSTU 2-55
FSTU 2-28

FSWI
FSWI 3-10

FTAC
FTAC 3-28

FTGF
FTGF 2-55

F.TLK
FTLK 3-12

FTNH
FTNH 4-48

FTSF
FTSF 5-5

FTSG
FTSG 5-6

i-12 DD20

FTSU
FTSU

FVFI
FVFI

FVFO
FVFO

FXALT
CALL FXALT

FXEM
CALL FXEM
FXEM

FXER
FXER

FXIT
FXIT

FXMA
FXMA

FXOPT
CALL FXOPT

GENERATOR
Random Number Generator

H*
Restore Link - H*

HYPERBOLIC
Real Hyperbolic Tangent

I/O
I/O Error Recovery
I/O Parameters of Run-Time Library

IDENTIFICATION
User Time And Identification

ILR
ILR

ILS
ILS

INDICATORS
ASCII/BCD Indicators

INITIALIZER
Pre-execution Initializer
Pre-execution Initializer

INPUT
End-of-File (On Input) Processor
Namelist Input
Terminal Input Recovery

i-13

2-30

2-17

2-21

3-15

3-16
3-13

3-13

2-50

3-13

3-15

5-9

3-4

4-48

5-10
2-55

5-6

5-8

5-8

3-7

2-30
2-28

2-36
2-17
3-6

DD20

INPUT/OUTPUT
Format Controlled Sequential Input/Output
INPUT/OUTPUT LIBRARY
INPUT/OUTPUT LIBRARY SUBROUTINES
Linked Binary Input/Output Interface
Random Binary Input/Output
Short List Input/Output Processor

INTEGER
Exponentiation - Complex Base, Integer Exponent
Exponentiation - Floating-Point Base Integer Exponent
Exponentiation - Integer Base and Exponent
Integer Base and Real or Double Precision Exponent

INVERSE
Inverse Sine/Cosine

IRETSW
IRETSW

IRS
IRS

ISETSW
ISETSW

LIBRARY
I/O Parameters of Run-Time Library
INPUT/OUTPUT LIBRARY
INPUT/OUTPUT LIBRARY SUBROUTINES
LIBRARY CALLS
MATHEMATICAL LIBRARY

LINK
CALL LINK
Restore Link - H*
Linked Binary Input/Output Interface
Restore Links During Execution (Batch)
Restore Links During Execution (Time Sharing)

LIST
Short List Input/Output Processor

LLINK
CALL LLINK

LOGARITHM
Complex Natural Logarithm
Double Precision Natural and Common Logarithms
Natural and Common Logarithms

LOGICAL
DEFINE LOGICAL UNIT TABLE
Logical Unit Table Routines

MANIPULATION
Character String Manipulation

MASS
Attach a Temporary Mass Storage or Terminal File

MATHEMATICAL
MATHEMATICAL LIBRARY

i-14

2-12
2-1
2-3
2-4
2-10
2-8

4-19
4-14
4-12
4-21

4-60

5-7

5-8

5-7

2-55
2-1
2-3
2-1
4-1

3-11
3-4
2-4
3-11
3-12

2-8

3-11

4-54
4-34
4-39

2-46
2-44

5-3

3-31

4-1

D020

MEMORY
Memory Dump
Memory Usage

MEMSIZ
CALL MEMSIZ

MODE
MODE
Mode Determination by FORTRAN

MODULUS
Double Precision Modulus

MONITOR
Execution Error Monitor

MULTIPLICATION
Complex Multiplication and Division

NAMELIST
Namelist and Dump Output
Namelist Input

NATURAL
Complex Natural Logarithm
Double Precision Natural and Common Logarithms
Natural and Common Logarithms
Natural Exponential

NUMBER
Random Number Generator

OBJECT
Object Time Debug Processor

OUTPUT
Namelist and Dump Output
Output Stop and Pause Information

OVERFL
CALL OVERFL

OVERFLOW
Exponent Register Overflow and Divide Check Tests

PARAMETERS
I/O Parameters of Run-Time Library

PAUSE
Output Stop and Pause Information

PD UMP
CALL PDUMP
CALL PDUMP

PDUMPA
CALL PDUMPA
CALL PDUMPA

PERMANENT
Access a Permanent File

i-15

2-43
5-5

5-5

5-2
5-2

4-5

3-13

4-7

2-21
2-17

4-54
4-34
4-39
4-37

5-9

2-27

2-21
2-25

3-8

3-8

2-55

2-25

2-43
2-21

2-21
2-43

3-28

DD20

PRE-EXECUTION
Pre-execution Initializer
Pre-execution Initializer

PRECISION
Complex Base and Double Precision Exponent
Double Precision Arctangent
Double Precision Base and Exponent
Double Precision Base and Real Exponent
Double Precision Exponential
Double Precision Modulus
Double Precision Natural and Common Logarithms
Double Precision Powers of Ten Table
Double Precision Sine and Cosine
Double Precision Square Root
Integer Base and Real or Double Precision Exponent
Real Base and Double Precision Exponent

PROCESSING
Initialization of Data-Error Processing
Initialization of End-of-File Processing

PTIME
CALL PTIME

RAND
RAND

RANDOM
Random Binary Input/Output
Random Number Generator
Specify Record Size, Random Binary File

RANDOM RECORD SIZE
Random Record Size

RANDT
RANDT

RANSIZ
CALL RANSIZ
CALL RANSIZ

REAL
Complex Base and Real Exponent
Double Precision Base and Real Exponent
Exponentiation - Real Base and Exponent
Integer Base and Real or Double Precision Exponent
Real Arctangent
Real Base and Double Precision Exponent
Real Hyperbolic Tangent
Real Sine and Cosine
Real Square Root

RECORD
Backspace Record
Specify Record Size, Random Binary File

RECOVERY
I/O Error Recovery
Terminal Input Recovery

REGISTER
Exponent Register Overflow and Divide Check Tests

REMOVE
Close File, Detach Buffers, Remove from AFT

i-16

2-28
2-30

4-18
4-31
4-21
4-21
4-24
4-5
4-34
3-3
4-28
4-26
4-21
4-21

2-49
2-48

5-6

5-9

2-10
5-9
2-54

2-10

5-9

2-10
2-54

4-18
4-21
4-16
4-21
4-42
4-21
4-48
4-45
4-50

2-32
2-54

5-10
3-6

3-8

3-30

DD20

RESTORE
Restore Link - H*
Restore Links During Execution (Batch)
Restore Links During Execution (Time Sharing)

REWIND
Rewind and Endf ile Processor

RUN-TIME
I/O Parameters of Run-Time Library

SENSE
Sense Light Simulator
Sense Switch Test

SEQUENTIAL
Format Controlled Sequential Input/Output

SET/RESET
Set/Reset Switch Word

SETBUF
CALL SETBUF

SETFCB
CALL SETFCB

SETLGT
CALL SETLGT

SHIFT/ROTATE
Shift/Rotate Word Contents

SIN
CALL SIN

SINE
Complex Sine and Cosine
Double Precision Sine and Cosine
Real Sine and Cosine

SINE/COSINE
Inverse Sine/Cosine

SIZE
Specify Record Size, Random Binary File

SL I TE
CALL SLITE

SLITET
CALL SLITET

SORT
Sort Array of Data

SORT/SORTO
CALL SORT/SORTO

SPECIFY
Specify Record Size, Random Binary File

SQRT
CALL SQRT

i-17

3-4
3-11
3-12

2-34

2-55

3-9
3-10

2-12

5-7

2-45

2-44

2-46

5-8

4-45

4-58
4-28
4-45

4-60

2-54

3-9

3-9

5-4

5-4

2-54

4-50

DD20

SQUARE ROOT
Complex Square Root
Double Precision Square Root
Real Square Root

SSWTCH
CALL SSWTCH

STOP
Output Stop and Pause Information

STORAGE
Attach a Temporary Mass Storage or Terminal File

STRING
Character String Assignment
Character String Compare
Character String Manipulation

SUBSYSTEM
Call TSS Subsystem

TANGENT
Real Hyperbolic Tangent

TANH
CALL TANH

TEMPORARY
Attach a Temporary Mass Storage or Terminal File
Create TSS Temporary File

TERMINAL
Attach a Temporary Mass' Storage or Terminal File
Terminal Input Recovery

TERMINATION
Job Termination

TERMNO
CALL TERMNO

TERMTM
CALL TERMTM

TRANSLITERATION
File Transliteration

TSS
Call TSS Subsystem
Create TSS Temporary File

UNIFM2
UNIFM2

USER
User Time And Identification

USRCOD
CALL USRCOD

VALUE
Complex Absolute Value

i-18

4-56
4-26
4-50

3-10

2-25

3-31

2-23
2-24
5-3

2-52

4-48

4-48

3-31
2-53

3-31
3-6

2-50

5-5

5-6

3-25

2-52
2-53

5-9

5-6

5-6

4-10

DD20

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE SERms 60(LEVEL 66)/6000 FORTRAN SUBROUTINES
LIBRARIES, ADDENDUM A

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

ORDER NO. I DD20A, REV. 0

DATED' MARCH 1977

r\. Your comments will be promptly investigated by appropriate technical personnel and action will be taken 0 L(' as required. If you require a written reply, check here and furnish complete mailing address below.

FROM: NAME~~~~----------~-----------------------

TITLE --------~~~~~~--~~~---------------~
COMPANY----~~~--~~~----------------------

ADDRESS----~~~------~----------------------~

PLEASE FOLD' AND TAPE -
NOTE: U. S. Postal Service will not deUver stapled forms.

A lTENTION: PUBUCATtOIS•, M'S 488

Business Reply Mail
Postage Stamp Not Necessary if Mailed· in1 thi: United S,tafls

Postage Will Be Paid iy:

HONEVWEll lNFORMAnON: SYSTEMS
200 SMITH STREET
WAL THAM, MA 02154

Honeywell

FlR5T ClMS·
PERMIT NG •. 39'
WAt 1tfAM, MA.
82154

