
Honeywell
SERIES 6000/600

dataBASIC SYSTEM
LANGUAGE MANUAL

dataBASIC SYSTEM
LANGUAGE MANUAL

SUBJ ECT:

Honeywell
SERIES 6000/600

The dataBASIC System Language Considerations Including an Introduction to the Language, General
System Characteristics, Statements, Control Commands, Subsystems, Methods of Communicating
with the dataBASIC System, and Summaries of Language Statements and Replacement Expressions.

DATE:
May, 1971

ORDER NUMBER: DA08
Rev. 0

PREFACE

This manual is a reference guide for using Honeywell's Series 6000/600

dataBASIC language. Section I explains the basic function of the language and lists the

notations used in programs. Section II defines the data BASIC program in terms of elements

and data structure in files, records, and fields; it is followed by Section III which describes

and illustrates each program in one or more typical program constructions. Section IV,

entitled Advanced Data Selection, provides instructions for creating generalized procedures

so as to be reusable in o~her applications. Section V explains the control commands for

disposition of programs; Section VI describes the dataBASIC system in terms of its sub

systems; and Section VII outlines procedures for communicating with the system via a

remote Teletype terminal. For quick reference, dataBASIC language statements, along

with expressions and replacements, are summarily tabulated in Appendix A, while

terminal commands and reserved words are alphabetically listed in Appendices Band C.

In Appendix D terminal error mes sages are tabulated; Appendix E contains guidelines to be

followed when trying for higher programming efficiency and more effective selection of

file loading techniques. Finally, Appendix F contains a block diagram of the Series 6000/

600 dataBASIC file structure.

Within the text of this manual, all references to Series 6000 systems are applicable

to 600 systems unless otherwise stated.

Other Honeywell publications related to the dataBASIC system include the following

titles and document order numbers:

dataBASIC Load/Unload System, Order No. DA09

GECOS Time-Sharing System General Information Manual, Document No. CPB-1643

Comprehensive Operating Supervisor, Document No. CPB-1518

Integrated Data Store (I-D-S), Document No. CPB-1565

File and Record Control, Document No. CPB-1003

The dataBASIC system is a coded system designed to extend the power
of Series 6000 in the area of data control. It is supported by compre
hensive documentation and training; periodic program maintenance and,
where feasible, improvements are furnished for the current version of
the system, provided it is not modified by the user.

@ 1971, Honeywell Information System s Inc.

#DA08

Section I

Section II

Section III

TABLE OF CONTENTS

Page

Introduction•.••.......•....••......•.....•....... I-I
General System Description•.•.......•..•.....•... I-I
dataBASIC System Applications. • . . . • • . . • . . . • I-I
The dataBASIC Language ..•.•.....•...••••..•.......•.. 1-2
Document Notations .• . . . • . . . • . . . • . . • • . . . • . . . • . . • • 1-2

Reserved Words•.••......•.............. 1-2
Braces ...••..•...•...•...•..•...•..•..........•... 1-2
Brackets . • . . • . . . • . . . • . • • . . • • . . . • 1-2
Ellipses.. 1-3

General System Characteristics ...•..••.......•............
The dataBASIC Program
The dataBASIC Statement•..••..••..•.......•.......

2-1
2-1
2-1

line:number•......••............ 2-1
control:word. • • . . . • 2-1
all other words...................................... 2-1
carriage:return character.. •.•.. .•. •.... 2-1

dataBASI~ Language Elements...... ...•...•.•........... 2-1
Data Structure•....•........•...••...... 2-2

Data Files. • • • . • • • • • . . . • • • 2-2
Data Records ...••.....•..••.............. • 2 - 3
Data Fields ...•.... ". . . • • . . • • . . . • • • . . . • • • 2-4
Duplicates. • • • . . • . . . • • • • • 2-5
Special Convention•....•..••...•....•..•.•...•. 2-5

dataBASIC Language Statements•..•..••....•........
Declaration Statements•.•..••••..•••.••••.•....•...

The DATA Statement••..•••.•...••............
Data Storage and Maintenance ...•••..•••..........•...

The FILE Statement .•....•....••....•.......•....
Data Selection Statements•.•......•...•....••.....

The FOR Statement ..•.••..••••...••.....•...••...
Accessing All File Records ...•.•.•••...•.......•...•

The FOR ALL Statement •.•....••...•...••...•....
Acce s sing Selected Records ...•........•.............

The NEXT Statement .•. ,•.......••.......
Field Selection•..•..............•..........
Dictionary Functions••....•....•.................

The FOR FNAME Statement
The FOR FV ALUE Statement .•....................

Data Manipulation Statements•........
Data Deletion•...•...•...•...•...............

The DELETE RECORD Statement•............

iii

3-1
3-1
3-1
3-1
3-1
3-2
3-2
3-2
3-2
3-3
3-3
3-9
3-10
3-10
3-11
3-13
3-13
3-13

#DA08

Section III (cont.)

TABLE OF CONTENTS (cont)

Field Deletion•...•..•..•..•...•......•....••.
The DELE TE Statement ...••.••..••...•..••••.•••.

Data Modification ••••..••.•.•••....•..••.•...•••....
The FIX Statement •....••...•••.•••.•••..••.•••.•.
The LE T Statement ..•.•••.....•••.•.••..•.•.•••.

Assignment Expressions .•.•.••••••.••.•••••••••.•.•.
Arithmetic Expres sion .•••.••..•••••...••••..••..•••.
Data Storage ...•...•......•...•..•..•.......••......

The STORE RECORD Statement •.•.•..•••••••••..•.
The STORE COpy Statement ..•.••••.•.••..••••.•..

Field Storage .••.•...•••.•...•.••..•.••..••..•.•.•..
The STORE Statement .•••••.••..••••••....••....•.

Input/Output Statements ...•••••...••..••.••.•••.•••..•••
Terminal Input .••.••..•..•••..••..••.•••..•••...•..

The INPUT Statement .••..•••..••..••.....••..•••.
Printing

The PRINT Statement ••...••..•...•..••.••...•..•.
The PRINT RECORD Statement .•...........•••..••

Print Record Field•....•....................
Print Literal ••..•.........•...•...•.......•...•..•.
Pring Working Storage Field ...•...•...••..•..•....•.
Special Print Convention•.............•
Print With Edit•...•..•.......•......•..•.......
Num eric Editing ...•.••..•...•...••.•..•••.••.••...•
Alphanumeric Editing .•.•.....•....•...•..•....•....•
Horizontal Spacing••...........•....•...•.
Vertical Spacing ...•....•..•...•....................

The READ Statement ..•..•••.••..••..•••.•...•..•
Control Statements•................................

Program Termination•...••...............
The END Statement•...............

Conditional Termination of Selection•........
The EXIT Statement .•........••.......•....•...•.

Subroutine s ...••..•...•.•..•.•....•...••............
The GOSUB Statement ..•..••..••...•...•.........
The RE TURN Statement••...••...•.....•..

Conditional Restoring of a File ..•••...•...............
The RETREAT Statement••..................

Branching••.............................
The GOTO Statement•....•...•...•..••...•..
The IF Statement•.....••.....................

iv

Page

3-14
3-14
3-14
3-14
3-15
3-15
3-18
3-20
3-20
3-20
3-21
3-21
3-21
3-21
3-21
3-22
3-22
3-23
3-24
3-24
3-25
3-25
3-26
3-26
3-27
3-28
3-29
3-29
3-31
3-31
3-31
3-31
3-31
3-32
3-33
3-33
3-34
3-34
3-35
3-35
3-35

#DA08

Section III (cont)

Section IV

Section V

Section VI

Section VII

TABLE OF CONTENTS (cont)

Program Halting••...••.•••.••.••..••.•.•••.•..
The STOP Statement .•..•.••..••..•.•••..• ',' .•••...

Page

3-36
3-36

Program Documentation Statement••...••.........••• 3-37
The REM Statement ...••••..••.•...•...•...•.•...•. 3-37

Advanced Data Selection•.••..••..••.•.•..••.•.••..••. 4-1
Data Selection Using Working Storage Fields. . • . • • . . . • • • • . • 4-1
Pivoting. . • . . • • • • . • • • • • . • . • . . • . • • • • . • . . • . . . • • . • • . • • 4-2
Synthetic Selection of Fields•.....•....•.....••...... 4-3

Control Commands •••.•.••••••.•.•••••.•••••.••.••.••.•... 5-1
Control Commands Versus Statements•....•......... 5-1
Control Command Categories ••.••...•••••..••.••..•..... 5-1

dataBASIC Commands (Category #1) . ..•.....•• 5-1
RUN•...••.•••.•..•.•.••...•.••.•.•..•...•. 5-1
CREATE.. 5-1
DES TROY. . • . • . . . • . • • • • • . • . • . . • • • • . . • . . • . • . • 5-2
ANALYZE. . •. . • • . • •. . . • .•• • • • •• 5-2
VERIFY.. ..•.•.. 5-2

dataBASIC/ Time-Sharing Commands (Category #2) . •. 5-2
LIST. • • • • • • . . 5-2
DONE. • • • • • • . . • . • • • 5-2
BYE•...........••.....•.....•......• 5-3
SAVE... 5-3
NEW. • . . . •. • • •. . 5-3
OLD... ..•.••.•..•.••...•.....•....••...•......... 5-3
RESEQUENCE.................. ... •..•. .•.•.•. 5-4
AUTOMATIC. • . . • . . . • • •. • . . • . . . • • 5-4
TAPE...•..•.. . ••.... .. 5-4
PURGE•.•.•...••......•... ~ • 5-4

dataBASIC Subsystems..................................... 6-1
The CREATE Subsystem........... •••.••..•••..•..•..... 6-1
The ANALYZE Subsystem ..•..••.•...•.•..•••..•••.•.... 6-5
The DESTROY Subsystem. • • . . • • • • . . • . • • . • • • . • • . . • . • 6-11
The VERIFY Subsystem.......••..•..••.••..••...... 6-13

Communicating With the System ...•....•..••..•............ 7-1
Terminal Operation Controls. • • . . • 7-1
Connecting Terminal to Computer. •• 7-2
Getting On Procedure•....•...••....•...•... 7-2
Creating a dataBASIC Program. 7-3
Entering a Program•...............•.•......... 7-4
Entering the Program From Paper Tape................... 7-5

v #DA08

Section VII (cont)

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

T ABLE OF CONTENTS (cont)

Error Corrections ...•..••.. 0.00 0 00 •• 0 0 • 0 0 •• 0 •• 0 •• 0 • 0 0 ••

Running the PrograTI1 0 • 0 • 0 • 0 •• 0 •• 0 ••••• 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Getting Off Procedure 0 • 0 0 0 • 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 • 0 • 0 • 0 0 0 0 0 0 0 0

AutoTI1atic TerTI1ination FroTI1 TerTI1inal. . 0 0 0 0 0 • 0 0 0 0 0 .·0 0 0 •• 0

SUTI1TI1ary of dataBASIC Language StateTI1ents, Expressions

Page

7-5
7-6
7-7
7-7

and Replacements • . . • . A-I

Alphabetic List of Ter1rflinal COTI1TI1ands . 0 0 • 0 0 0 0 0 0 0 0 0 •• 0 ••• 0 0 0 B-1

Alphabetic List of Reserved Words. 0 ••••••• 0 0 • 0 0 • 0 0 • 0 0 ••• 0 • • C-l

TerTI1inal Error Messages and SysteTI1 Malfunction Messages 000 D-l
TerTI1inal Error Message Types 0000 0 0 0 0 0 • 0 .0 0 • 0 0 0 0 00 000 • • D-l

COTI1piler Error Messages 00000. 0 o. 0 0 o. 000000000000000 D-l
RuntiTI1e Error Messages 0 0 o. 0 0 0 0 0 0 0000 0 0 0 0 o. 0 0 • 0 • 0 0 0 0 D-3
Language Processor Error Messages 00, 000000000000000 D-5

SysteTI1 Malfunction Messages o. 0 0 0 0 0 0 000000 0 0 0 0 0 0 0 0 00 0 • 0 0 D-5

PrograTI1TI1ing Considerations 0 0 • 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • E-l
ITI1pleTI1entation Guidelines 0000. 0 0 0 000000000000. o. 0 ••• 000. E-l

File Creation 0 0 • 0 0 0 0 0 0 • 0 0 0 ••• 0 0 • 0 0 0 • 0 0 0 • 0 0 •• 0 • 0 0 0 0 0 0 0 E-l
Loading Techniques o. 0 0 • 000 ••••••• 0 0 •••• 0 •• 0 0 •• o. 0 000 E-2
Retrieval Techniques 00 •• 0 • 0 0 0 • 0 • 0 0 •• 0 •• 00 •• 000. 0 0 • 0 0 0 E-2

SysteTI1 Usage 0 ••• 00 000 ••••• o. 0 •• 0.0 •••• 0 0 0000 ••••• 0.0.0 E-4

dataBASIC File Structure ..• 0 •••• 0 ••••••••••• 0 •• 0 •••• 0 • • • • • • F-l

vi #DA08

Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 7-1
Figure F-l

Table A-I
Table A-2
Table D-l
Table D-2
Table D-3
Table D-4
Table D-5

Table D-6
Table D-7
Table D-8
Table D-9
Table D-10
Table D-ll
Table D-12

LIST OF ILLUSTRATIONS

CREATE Subsystem Error Messages •..•.••.•••.•..••••...•
ANALYZE Subsystem Error Messages .•..••..•.•••..•.••...•
Sample Long Form and Short Form Headers•..••.••....
Sam pIe "0ne Page II Graph .••..•.••.......•••.•.••••..•.•...
Sample S1.lInmary Only•....••...••......•..•.....•.....
Sam pIe Maximum .•...•••.•.••••••.•••.••••.••••••...••...
DESTROY Subsystem Error Messages and Meanings••....
Output Report Sample of Verification of File DBTEST .••......•
Teletype Model 33 or 35 Special Purpose Keys••..•.....
dataBASIC File Structure••...•.....•••.........•...

LIST OF TABLES

dataBASIC Language Statements•...•....•...•...•.•...
dataBASIC Expressions and Replacements ..•..••.••.••..•....
Compiler Error Messages - Type 1•..............
Compiler Error Messages - Type 2 ..•......................
Runtime Error Messages ..•................................
Language Processor Error Messages
System Malfunction Messages During Compilation/

Execution
System Malfunction Messages During I-D-S Routines
System Malfunction Messages During .DATAO Accessing
System Malfunction Messages During .JOUR. Accessing
System Malfunction Messages During RETREAT Attempt.
System Malfunction Messages During CREATE Att~mpt
System Malfunction Messages During DESTROY Attempt
System Malfunction Messages During ANALYZE Attempt

vii

Page

6-3
6-7
6-9
6-9
6-10
6-10
6-12
6-14
7-1
F-l

A-I
A-3
D-2
D-3
D-4
D-5

D-6
D-lO
D-10
D-ll
D-13
D-14
D-15
D-15

#DA08

GENERAL SYSTEM DESCRIPTION

SECTION I

INTRODUC TION

Honeywell's dataBASIC system provides for data base management and inquiry by

combining data base manipulation capabilities with a BASIC type language. It permits a

file to be constructed, maintained, retrieved, and deleted on a content-addressable ba.sis.

Records of any size, containing from one to hundreds of fields, may be created completely

without record de scriptions. The records are, in fact, self -de scr ibed and proces sed on

the basis of field names and values which are supplied by the user at the time of record

storage.

dataBASIC SYSTEM APPLICATIONS

The dataBASIC system has many applications, the few listed below are suggestive

of many other potential uses:

Real estate listings, single or multiple, where an inquiry might ask for all houses

of Spanish architecture, having four bedrooms and a pool, and located in the Arcadia

School district.

Personnel files, where an inquiry might involve all single, male programmers

having FOR TRAN application experience, and whose last rate change preceded January 1,

1966.

A public service/police file, where a request might involve all 1968 white Chevrolets

registered with Maricopa County and owned by individuals with a previous criminal record.

A medical index of symptoms and diseases to aid in the diagnoses of illnesses.

A library index, which permits access to documents on the bases of subject, author,

title, citations, publisher, and date of publication.

1-1 #DA08

THE dataBASIC LANGUAGE

In its basic forrn, the dataBASIC language is a procedural language for record

storage, retrieval, and display; additional programming capabilities, conditional and

unconditional transfers, and subroutine functions complete all the r~quirements for the

advanced dataBASIC system user. User learning time for the dataBASIC language is

minimized; a small set of control words call upon all the basic functions of the system.

These words make up the dataBASIC language.

DOCUMENT NOTATIONS

In the documentation of the dataBASIC language, standard English notations are used

with the following restricted meanings.

Reserved words

Reserved words for the dataBASIC language are in the upper case and are under

lined. A reserved word must be spelled exactly as it appears in a statement definition,

and its use is restricted to the function defined for it. It cannot, for example, be used as

field :name.

Example: COpy

Braces

{ }
Example

denote alternative s one of which must be selected

STORE

{
RECORD}
COpy

means that the user may state STORE RECORD or STORE COpy.

Brackets

[] denote an option

Example

[NOT]
means that the user may elect to use the NOT option at his own discretion.

1-2 #DA08

Ellipses

. • • denotes optional repetition of the prec eding expre s sion, which is deliITlited by the

iITlITlediately preceding set of braces or brackets.

ExaITlple

PRINT [value J
ITleans the user ITlay substitute one or ITlore values.

1-3 #DA08

SECTION II

GENERAL SYSTEM CHARACTERISTICS

THE dataBASIC PROGRAM

A dataBASIC program consists of an ordered set of statements that instruct a

computer to solve a problem. In its simple st form it contains the data (values) to be

worked on, formulae which tell the computer what to do with these numbers, and input/

output statements which tell the computer where to get the data and what to do with the

answers.

THE dataBASIC STATEMENT

A dataBASIC system statement comprises four parts in the following sequence.

line:number

The line:number has one to five digits and serves two purposes: (1) It is used as a

sequence control within the program, spec ifying the order in which statements are to be

executed; and (2) it uniquely identifies a statement. The line:number cannot contain

imbedded spaces but must be followed by one or more spaces.

control:word

The control:word tells the dataBASIC system what function is to be performed.

(Control words are listed in Appendix A of this manual.)

all othe r words

All other words are written in accordance with the specifications for each

control :word.

carriage:return character

The carriage:return character denotes the end of a line; the dataBASIC system

responds with a line :feed and prints an asterisk (,:~) when it is ready to accept the next

line of input. Characters following the 72nd character of a line will not be used.

dataBASIC LANGUAGE ELEMENTS

Elements of the dataBASIC language include both alphanumeric and numeric

literals and the words rfield and wsfield.

2-1 #DA08

Alphanumeric leterals contain letters. number s, punctuation rna rks, etc., and may

contain all characters (except II@" and data transmission control characters). They are

enclosed within quotation marks. An example of an alphanumeric literal is "JOE JONES. "

Numeric literals consist only of the numbers 0-9 written without quotatlOn marks,

and may contain an embedded decimal point. In absence of an embedded decimal point,

the numeric literal is considered an integer; in the absence of a sign, the numeric literal

is assumed to be plus. Examples of numeric literals are 1492, 1967, S.97, 0.0001.

The word rfield denotes user-assigned record field:names. The field:name may

consist only of the letters A thru Z, the numbers 0 thru 9, and the special character.

An rfield must start with two alphabetic characters.

The word \vsfield denotes user-assigned working storage names. The user may

specify one or several working storage fields to be used for temporary storage purposes

within the dataBASIC program. They may be used to store a field name, field value, or

the results of an arithmetic or functional operation. Working storage field names are one

alphabetic character (A-Z) in length and are established by virtue of their use. A working

storage field whose content is to be used as a field:name, as opposed to a field:value, is

indicated by an ampersand (&) suffix on the working storage field, e. g., A&. In either

case, reference is to the same wsfield; only the use of its content is being declared to be

different. Whenever the contents of a working storage field is changed by a dataBASIC

program statement, the working storage as sumes the size of the new content.

DATA STRUCTURE

Data consists of information which is stored in the file as fields of records and which

will remain there until deleted under user-program-control.

Data Files

All records stored under a specified dataBASIC file:name form a logically separate

structure; they can only be retrieved for maintenance and reporting by programs referred

to by that file:name. A file:name is from one to eight alphanumeric characters in length

and may contain the letters A thru Z, the digits 0-9, and the special characters - and.

There may be no embedded spaces in the file:name.

2-2 #DAOS

Terminals or inquiry stations can access a specific file:name, but only if properly

authorized. One terminal may access several files, but a given program can access only

one file.

A file may contain any number of different record types, that is, records which

contain different fields.

Data Records

The dataBASIC record serves to collect and hold a set of field:names and associated

field:values. These fields describe an entity, or a person, event, place. thing. concept,

or whatever else the user desires. The data concerning this entity is the record, and it

is stored so that it is available for subsequent retrieval and proces sing.

dataBASIC records have no predefined format or content. They consist merely of

the collection of fields with which they are associated at the moment. It is this flexibility

that allows for multiple record types. Data records themselves have no names and are

known solely in terms 01 their content of data fields. Fields may be stored in, or deleted

from. a record at any time, as long as at least one field continues to exist within the

record. When the last field of a record is deleted. the record ceases to exist.

The concept of "current record" is important because many dataBASIC language

functions are based on the existence of a current record and operate on this record and

its fields. The following two statements are the only statements in the system which can

make a record the current record:

1. The STORE RECORD, a statement which creates a new record and
makes it the current record.

2. The FOR record, a process which selects and makes current (one at
a time) all the records satisfying the selection criteria.

There are only three situations during processing in which there is no current

record. The first is at the beginning of processing when no STORE RECORD or FOR

record statements have been processed to create a current record; the second is after a

DELETE RECORD statement has deleted the current record; the third is after the EXIT

from a FOR record selection process, when there was no current record prior to the FOR

record process. An attempt to execute a statement requiring a current record when no

sllch record exists will result in LINE XXXXX NO CURRENT RECORD being printed at

run time and retreat being performed.

2-3 #DA08

Data Fields

record field:name

The user of the dataBASIC system may select and establish his own field:names.

A field:name may not exceed twenty-four (24) characters in length. A field:name may be

expressed using rfield or wsfield&. rfield denotes the expression itself to be used as the

field:name. An example would be the field:name MAKE in

100 STORE MAKE "DATSUN"

wsfield& denotes that the content of the working storage spec ified is to be used as

the field:name. The following two statements would achieve the same result as did the

above statement:

090 LET B = "MAKE"

100 STORE B& "DATSUN"

record field:value

The field:value to be stored in a record may be one to twenty-four (24) characters

in length. A field:value may be expressed using rfield, wsfield&, wsfield or literal.

rfield specifies a field:name whose corresponding field:value is to be used as the

value. For example, the rfield MAKE in

100 LET A = MAKE

places the value of the field:name MAKE in the wsfield A. If the field:value for the iield

name MAKE had been "DATSUN" wsfield A would have contained "DATSUN" after the

statement had been executed.

wsfield& indicates that the field:value for a working storage field whose content

specifies a field:name is to be used as a value. The following two statements would

achieve the same result as in the above example for rfield:

090 LET B = "MAKE"

100 LET A ~ B&

2-4 #DA08

wsfield denotes that the content of the specified wsfield will be used as the value; for

exaITlple, the content of B would be used as the value in the stateITlent:

100 STORE MAKE B

Literal denotes that the expression itself will be used as the value. For exaITlple,

the literal "DATSUN" is used as the value in the stateITlent:

100 STORE MAKE "DATSUN"

ITlultiple field :value s with saITle field:naITle

The dataBASIC systeITl perITlits ITlultiple field:values to be stored for a specified

field:narne. There is no liITlit to the nUITlber of field:values associated with a particular

field:naITle; nor is there any requireITlent that the field:values be logically consistent.

Duplicates

Any nUITlber of duplicate field:naITles and/or field:values ITlay be contained in a

given record; ITloreover, a file IT1a y contain any nUITlber of duplicate records. The

existence or non-existence of duplicate records and/or fields is controlled by the user.

Special Convention

Through the use of unique text:nuITlbers, the user ITlay store, ITlodify, and delete

de sc riptive inforITlation conc erning different records. For exaITlple,

100 STORE TEXT:OOI "TEXT LINE ONE"

110 STORE TEXT:002 "TEXT LINE TWO"

Text:nuITlbers and text:values differ froITl field:naITles and field:values in that they cannot

be used as selection criteria and that a line of text ITlay be as long as 60 characters.

2-5 #DA08

SECTION III

dataBASIC LANGUAGE STATEMENTS

DECLARA TION STATEMENTS

THE DATA STATEMENT

The DA TA statement enables the user to store within the dataBASIC program data

he would like to use during the execution of his program. The statement itself is never

executed; it only supplies a stream of data for READ statements which ask for data.

The DA TA statement can include as many literals as can be contained completely

within one line, but there can be multiple DA TA statements. Care should be taken against

having an odd number of quotation marks within one DATA statement. This causes scan

termination of the line.

Notation:

line:number DATA { literal}

Example:

900 DATA "BUICK" "RIVIERA" "AIR-COND" @

Data Storage and Maintenance

THE FILE STATEMENT

Each file has a name which is unique to a user :number. Any number of file s may

exist under one user:number. Associated file passwords are asked for at execution time.

A file is created or deleted at the system command level (See Section V, Control Commands),

but declaring the HIe as being used is accomplished within the program. A program can

access only one file.

Notation:

line:number FILE file:name

3-1 #DA08

Example:

100 FILE CARLOT @

This statement causes the dataBASIC system to request passwords from the user at

the time the program is run. The pas swords are established at the time the file is created.

If the user supplies invalid passwords, he is not allowed access to the file.

DATA SELECTION STATEMENTS

THE FOR STATEMENT

The FOR record statement provides a technique for processing, one at a time, all

records which meet a selection criteria, or all the field:values within a record having the

same field:name. Details of record and field selection follow. (A maximum of ten nested

FOR statements is allowed.)

Accessing All File Records

THE FOR ALL STATEMENT

All records in the file may be accessed for processing by use of the FOR ALL

statement. Records are accessed, one at a time; and for each record accessed, the

system executes the statements nested between the FOR ALL and the NEXT statements.

Records are accessed in reversed storage sequence; that is, the newest record is

acce s sed firs t.

Notation:

line:number FOR ALL

line :number NEXT @

Example:

100 FOR ALL §

500 NEXT e
3-2 #DA08

Acce s sing Selec ted Rec ords

The dataBASIC system provides the FOR record statement to selectively access

records so that their data fields may be used for subsequent processing. This statement

is based on the content addressability of the dataBASIC data records and data fields.

The FOR record statement initiates the record accessing process and, with the

matching NEXT statement, defines the limits of processing for a selected record. Records

acce s sed for proce s sing are those records within the file who se field content is cons istent

with the relational:expression, any number of which may be specified to delimit the records

to be acce s sed within the file.

THE NEXT STATEMENT

As each record is accessed for processing, it becomes both the current record and

the object of all record and record field operations included within the action statements.

When the NEXT statement is encountered, the record ceases to be the current record, and

another record is selected. After the last record is processed, control is transferred to

the statement following the NEXT statement.

Simple Condition: This version of the FOR record statement allows the selection of records

which contain the specified field:name/field:value pair. A maximum of 25 simple conditions

are allowed within any relational expression.

Notation:

line:number FOR [NOT]

line:number NEXT @

{

rfield 1
wsfield~

wsfield
liter al

3-3

relational:operator {~~;i~ld!1 G
wsfield Q
literal

#DA08

relational:operator may be any of the following:

> or

< or <

= (which means equal to)

> (\X/hich means greater than)

< (which means less than)

> (which means greater than or equal to)

(which means less than or equal to)

> < or < > (which means not equal to)

Example:

100 FOR MAKE "FORD"

200 NEXT @

All records which contain a field:name/field:value of MAKE/ FORD will be selected.

100 FOR NOT MAKE = "FORD" @

200 NEXT §

In this example, all records which do not contain a field:name /field:value of

MAKE/ FORD will be selected.

Range Condition: This version of the FOR record statement allows the selection of records

which have a field either within a range or not within a range.

Notation:

line:number FOR r NOT] {Wlrf~;::lld_j FROM {:f!;il:ld_~ --L'-- Itera ---- literal
. wsfield wsfield

line :number NEXT §

3-4

TO
{

rfield]
wsfield~

literal
wsfield

cr

#DA08

E xaITlple:

100 FOR YEAR FROM "1966" TO "1968 11 §

200 NEXT @

Using this exaITlple, all records which contained a field:value for the field:naITle

YEAR that is in the range of 1966 to 1968 will be selected for further proces sing within

the FOR record stateITlents.

Value Selection: With this version of the FOR record stateITlent it is possible to select

all records which contain a spec ific field:value regardle ss of as soc iated field:naITle.

Notation:

line:number FOR [NOT] ALL

line :nuITlber NEXT

ExaITlple:

100 FOR ALL "RED" @

200 NEXT §

{

rfield }
w. sfield~
literal
wsfield

The above exaITlple will cause all records containing a field:value to be presented

to the prograITl. If we use the previous used car lot exaITlple, RED ITlight appear in the

field:naITle COLOR and UPHOLSTERY:COLOR.

NaITle Selection: With this version of the FOR stateITlent it is possible to select all

records containing a spec ific field:naITle regardle ss of the as soc iated field:values.

3-5 #DA08

Notation:

line :number FOR
r l l NOT J

line:number NEXT

Examples:

100 FOR COLOR ALL @

200 NEXT @

r wSfield~}
l rfield

ALL

All records containing a field:name COLOR, regardless of the field:value, will be

selected.

100 FOR NOT COLOR ALL §

200 NEXT 0

All records not containing a field:narne COLOR will be selected. This option could

be used to check for records in a file not having a mandatory (as defined by the user)

field.

Compound Record Selection: The dataBASIC system allows a user to specify multiple

conditions as a criteria for record selection. These conditions can be any of the simple:

conditions. In order for a record to be selected, all conditions must be met. Conditions

are entered on a one-per-line basis. The first line contains the FOR action statement,

and all sub sequent line s contain the AND statement.

3-6 #DA08

Notation:

line:number FOR simple:condition §
line:number AND simple:condition @

line:number AND simple:condition @

line :number NEXT §

Example:

100 FOR YEAR FROM "1966" TO "1968" @
110 AND MAKE:: "FORD" €9
120 AND NOT BODY:: "STATION WAGON" @
130 AND HORSEPOWER FROM 392 TO 406 @

200 NEXT @

This statement will cause the dataBASIC system to search the file for records

describing Fords made in model year s 1966 thru 1968, but which are not station wagons

and whose horsepower ranges from 392 to 406.

Complex Record Selection: At times it may be desirable to select records based upon

unrelated selection criteria. This flexibility is allowed for by use of the "OR" action

statement. The OR connects two or more compound:conditions which consist of one or

more simple conditions.

3-7 #DA08

NotaLion:

line:nurnber FOR compound:condition

line :nurnbe r OR compound:c ondition

line :nurnber OR compound :condition

line:nurnber NEXT

Example:

100 FOR MAKE = "CHEVROLET" @
110 AND MODEL = "IMPALA" @
120 OR MAKE = 11PONTIAC" §
130 AND MODEL = 11BONNEVILLE11 @

200 NEXT @

In this example all records which described Chevrolet Impalas or Pontiac

Bonnevilles will be selected.

100 FOR MAKE = 1IDATSUN" @
110 OR MAKE = "TOYOTA" @
120 AND OPTIONS = "AIR-COND" @
130 AND NOT TRANSMISSION = "3-SPEED STICK" e

200 NEXT @

Using this example, all records describing MAKE = "DATSUN", regardless of any

other field in the record, and all records with MAKE = "TOYOTA" that have air-condition-

ing but do not have a standard 3-speed transmission, will be selected. The criteria

OPTIONS = and NOT TRANSMISSION = do not apply to MAKE = "DA TSUN". If those

criteria should apply, they will have to be repeated for the "DATSUN" selection.

3-8 #DA08

100 FOR COLOR = "WHITE" §
110 OR OPTIONS = "AIR-COND" @

200 NEXT @
The above exaITlple illustrates a set of criteria which ITlay not be ITlutually exclusive;

that is, a record which is selected by the criteria COLOR = "WHITE" could also be selected

for OPTIONS = "AIR-COND" if a white car with air-conditioning exists on the file. However,

the saITle record will not be selected ITlore than once within each selection process.

Field Selec tion

The d3.taBASIC systeITl allows the association of an unliITlited nUITlber of field:values

with a given field:narne. Process stateITlents use only one occurrence of a field:value

unless each is selected separately. Selection is accoITlplished using the FOR naITle state

ITlent. It should be noted that a current record ITlust have been previously selected.

Notation:

line:nuITlber FOR {
rfield }
wsfield~

line:nuITlber NEXT @

This version of the FOR stateITlents does not select a "current" record. Instead,

it is always subordinate to (and logically within) a FOR record stateITlent, as described

earlier in this section of the language ITlanual. When used it will serially select all the

field:values of a field:naITle which are part of the current record.

3-9 #DA08

Exanlple:

100 FOR !\1AKE = "BUICK" (c?)
110 AND OPTIONS = IIAIR-CON15'1I

part 1 [
150 FOR OPTIONS ®

part 2

200 NEXT

part 3 [
300 NEXT

Part 1 specified the criteria for record selection (a "BUICK" with "AIR-COND")

and the stateITlents to be processed for the current record prior to Part 2. Part 2

spec ifie s that each field:value for OP TIONS is to be proce s sed. Because all FOR state

ITlents ITlust have a NEXT stateITlent, the NEXT stateITlent appears in Part 2 (which refers

to the FOR in Part 2) and the NEXT in Part 3 (which refers to the FOR in Part 1). State-

ITlents contained in Part 1 and Part 3 will be executed once for each record selected;

whereas stateITlents in Part 2 will be executed once for each value of OPTIONS in the

current record. Parts 1, 2, and 3 all refer to the same current record.

Dictionary Functions

The dataBASIC language provides the ability to access the dictionary (i. e., field:

names and field:values) independent of records. This selection differs from record

selection in that there is Iino current record ll resulting froITl the dictionary selection

functions. Instead, field:naITles and field:values are ITlade current and are available for

use in record selection criteria, or vice versa.

Selection of field:naITle

THE FOR FNAME STATEMENT

The FOR FNAME stateITlent allows selection of the field:naITles within a file.

3-10 #DA08

Notation:

ALL

line:number FOR FNAME relational :operator

FROM

{

rfield ~ {rfield 1 w sfield.§:: TO wsfield.§::
wsfield wsfield
literal literal

The ALL option is used to select all field:names within a file. The relational

operator option allows selection of field:names based upon their relation to a record

rfield, working storage field, or literal. The valid relational:operators are:

(which means equal to)

> (which means greater than)

< (which means less than)

> (which means greater than or equal to)

< = (which means less than or equal to)

> < or < >(which means not equal to)

The FROM option allows selection of field:names within the specified range. The

current field:name is available to the user and is contained in the system working storage

field named FNAME.

Selection of field:value

THE FOR FVALUE STATEMENT

The FOR FVALUE staten1.ent allows selection of the field:values which are asso-

ciated with the current field:name. This use requires a field:name having been made

current by the FOR FNAME process. The formats available are the sarne as those

available to the FOR FNAME statement.

3-11 #DA08

Notation:

line:number FOR FVALUE relational :operator

FROM

{

rfield 1
wsfield!
wsfield
literal

TO

{

rfield }
ws£ield~

w sfie ld
literal

{

rfield ~
wsfield!
wsfield
literal

The ALL option is used to make available all values as soc iated with the current

field:name.

The relational:operator option is used to make available all field:values associated

with the current field:name based upon their relation to a record field, working storage

field, or literal. The valid relational:operators are the same for FVALUES as they are

for FNAME.

The FROM options allow range selection. The current field:value is available to

the user in the system working storage field:named FVALUE.

EXalTIple:

This example shows a way to print all the names along with the values associated

with tho se narne s, for the entire file.

100 FILE USED CAR €9
110 FOR FNAME ALL €9
120 PRINT "FIELD NAME\S" FNAME €9
130 FOR FVALUE ALL €9
140 PRINT "VALtJE"k)" FVALUE G
150 NEXT €>
160 PRINT €9
170 NEXT €9
180 END €9

3-12 #DA08

The above example would produce a report that might look, in part, like the following:

FIELD NAME MAKE

VALUE "FORD"

VALUE "PLYMOUTH"

VALUE "DODGE"

VALUE "TOYOTA"

VALUE "B UICK"

FIELD NAME OPTIONS

VALUE "AIR-COND"

Uses of FNAME and Value: The value-references FNAME and FVALUE can be used only

in the "FOR FNAME" and "FOR FVALUE" statements, and in the two statements which

follow:

1.

2.

LET wsfield = {FNAME}
FVALUE

PRINT { ~~!~~E }

DATA MANIPULATION STATEMENTS

Data Deletion

THE DELETE RECORD STATEMENT

The current record of the program will be deleted from the file only when a "DELETE

REC ORD" statement is executed. After the deletion is complete there is no current record;

and statements which require the current record as an operand will cause LINE XXXXX

NO CURRENT RECORD to be printed and a retreat to be performed.

Notation:

line:number DELETE RECORD @

Example:

100 DELETE RECORD @

3-13 #DA08

Field Deletion

TP..E DELETE STATE~.1ENT

A dataBASIC record field:value is deleted by using the DELE TE name value statement.

This statement operates only on the c'urrent record and will delete either (1) the field

specified by field:name and field:value; (2) all the field:values for a specified field:name;

or (3) all fields which contain a specific field:value.

Notation:

line:number DELETE {

rfield }
wsfield& [

wsfield]
literal

{WSfield~ literal f ALL

Note: field:value references are restricted to wsfield and literal for the

DELETE statement.

Example:

200 DELETE ALL "FORD" @
This statement deletes all field:names and field:values which contain the specific field:

value "FORD".

200 DELETE MAKE §
This statement deletes the field:narne "MAKE" and all field:values for that field:name.

200 DELETE MAKE "PONTIAC" "OLDS" §
This statement deletes the field MAKE PONTIAC and the field MAKE OLDS.

Da ta Mo dif ica tio n

THE FIX STATEMENT

Modification of field:values for a given field:name of the current record is accom-

plished by us ing the FIX statement. The FIX statement provide s the capability of

modifying all or a specific field:value which is associated with a field:narne. This is the

only statement which will modify the contents of an existing file. An attempt to modify

field values of a non-existent field:name will result in no action.

3-14 #DA08

Nota. tion:

line :nuITlber FIX {

rfield ~
wsfield~ f [

wsfieldJ
literal {wsfield~ literal f

Note: field:value references are restricted to wsfield and literal for the FIX stateITlent.

ExaITlple:

100 FIX COLOR "RED"

The above exaITlple will delete all but one field:value with field:naITle COLOR froITl

the current record and will set the one reITlaining field:value equal to RED.

200 FIX MAKE "VOLKSWAGEN" = "VW" §

The above exaITlple will change the field MAKE VOLKSWAGEN in the current record

to MAKE VW, and will not affect other field:values.

THE LET STATEMENT

The general forITlat of this stateITlent is LET wsfield = expression. The LET state

ITlent enables the user to teITlporarily hold or ITlanipulate values in working storage fields

during the execution of his prograITl. There are 26 working storage fields available,

denoted by the letters A through Z. Note that only working storage field nan'les n'lay appear

to the left of the equal sign in this stateITlent. If it is necessary to change the value of a

record field, then the FIX stateITlent ITlust be used.

In general, the content of working storage fields is cOITlpletely under the user's

control. It is he who ITlust assign initial values, ITlake changes as needed, and ITlake use

of the working storage field values. The exception to this are fields which are used in the

"LET wsfield = SUM/MIN/MAX" stateITlents. These are initialized to null at the beginning

of the program. and when first referenced within a FOR loop. However, if no records are

selected by the FOR loop, the wsfield will contain, after execution of the loop, whatever

it had going into the loop.

As signITlent Expres s ions

SiITlple assignITlent: The siITlplest forITl of the LET stateITlent is that which sets the value

of a working storage field equal to the value of another field. This is the only forITl of the

LET stateITlent that can be used with working storage fields containing naITles.

3-15 #DA08

l'J Q ta tion:

r literal I
line:num.ber LET wsfield t rfield J

wsfield
wsfield~

If value is a Ii teral, the literal itself will be m.oved to the working storage field.

If value is a record field or another working st orage field, then the contents of the field

will be m.oved.

Exam.ple:

100 LET A

110 LET B

100 e
"FORD" e

When the previous statem.ents were executed, the contents of A would have been m.ade

equal to the num.eric value 100, and B would have been m.ade equal to the alphanum.eric

value "FORD".

100 LET A COLOR e
This statem.ent would cause the contents (or field:value) of the field:nam.e COLOR

of the current record to be m.oved to the working storage field A. If the current record

contained m.ore than one field:value for the field:nam.e COLOR, A would contain the first

value referenced. All other values of a m.ulti-valued field would have been ignored.

100LETB.=A @

The contents of working storage field A would be m.oved to working storage field B.

Null Assignm.ent: In order to allow a field to be reset to a NULL value, a special form.

of the LET statem.ent has been provided. Working storage fields are initially set to null

during com.pilation.

Notation:

line:num.ber LET wsfield = NULL §

Exam.ple:

100 LET A NULL

3-16 #DA08

Minimum/Maximum Assignment: A special form of the LET statement has been designed

to facilitate the determination of the minimum or maximum field:value.

Notation:

line:number LET wsfield

{

rfield)
wsfield!
wsfield

This as signment statement will re set the spec ified working storage field value to

null value when first encountered within a repetition of a FOR sequence. The field:value

of the field:name specified is compared with the current value in the working storage field.

If value is an rfield or wsfield&, and there is no field:nan'le as specified, then no action is

taken. If the named field has lnultiple field:values within the record, then all field:values

are compared.

The contents of the working storage field holding the minimum/ maximum value is

accessible at any time within the selection/action process. The final value is accessible

at the completion of the process.

Example:

100 LET A MIN YEAR §

Dictionary As signment: The following form of the LET statement is provided to assign the

current field:name and/or field:value for the file to working storage. If the statement is

encountered and there is no current field:name and/or field:value, then a null value is

as signed.

Notation:

line:number LET wsfie1d
{

FNAME}
- FVALUE

Example:

100 LET A FNAME

In the above example, the working stQrage field A includes the current field:name

contained in FNAME after execution of statement 100.

3-17 #DA08

Arithmetic Expression

Formula Assignment: The LE T statement also pe rmits ar ithmetic operations whe re da ta

value s may be added, subtracted, multiplied divided or exponentiated with the res ulting

value stored in the specified working storage field. Only one arithmetic process is allowed

in each LE T statement.

Notation:

line:number LET wsfield {w~field~l {~} rheld -.-
wsfield j
literal A

Valid arithmetic operators are:

+ add

subtrac t

-'- multiply -.-

j divide

,\ raise to the power of

Example:

{wsfield~} rfie ld
wsfield
literal

To calculate interest based on the formula interest principal x rate x time, these

steps would be necessary:

100 LET A = PRINCIPAL ::~ RATE @
110 LET B = A ::~ TIME (9
Working storage location B would then contain the interest.

Summary Assignment: A special form of the LET statement has been designed to facilitate

the accumulating or summing of field:values.

Notation:

line:number LET wsfield = SUM tfield

}

wsfield~

wsfield
lite ral

3-18 #DA08

If the value is an rfield or wsfield&, and there is no field with the spec ified field:

name within a selected record, then no action is taken. If there are multiple fields with

the specified field:name within a selected record, each field is added. If wsfield is

spec ified, the contents of that field is added to the sum field each time the LET statement

is encountered. If a literal is specified, the literal is added to the sum field each time

the LET statement is encountered.

Example:

100 LET A SUM SALES @

The record field:name SALES will be added to the working storage field named A.

LET A = SUM 1 §
The above example will cause the working storage field A to be incremented by one (1)

each time the statement is executed.

Functions Assignment: The LET statement allows for use of special arithmetic functions.

These functions include absolute value, integer, random number generation and negate.

Notation:

line:number LET wsfield

Example:

{

ABS} INT
RND
NEG

{

wsfield }
lite ral

wsfield!
rfield

100 LET A = ABS NET:PROFIT §

In the above example, the working storage value A is assigned the absolute value of

the field:value whose field:name is NE T:PROFIT.

100 LET A = INT COST €9

In the above example, the working storage field A is as signed the integer value of

the field:value whose field:name is COST.

3-19 #DA08

100 LE T A RND 1. 5 €9

In this example the working storage field A is assigned a system-generated random

number. The value specified (in this case, the literal 1. S) is used as a base for the nUluber

generation.

100LETA NEG B

In this example the working storage field A is assigned the algebraic negative of the

content of working storage field B.

Data Storage

THE STORE RECORD STATEMENT

A record is stored by the recognition and execution of a STORE RECORD statement,

and the storing in that record of one or mor e data fields by execution of the STORE name

value statement. The execution of the S TORE RECORD statement makes the record created

the current record of the program, which may then be accessed to store additional data

fields, or to print, or delete, or perform any other relevant action. If no S TORE name

value statements appear after a STORE RECORD, the newly created record is automat

ically deleted.

Notation:

line:number STORE RECORD €9

Example:

100 STORE RECORD @

THE STORE COpy STATEMENT

A copy of the current record is stored by the recognition and execution of a STORE

COpy statement. The execution of the STORE COpy statement makes the record stored

the current record of the program.

Notation:

line:number STORE COPY e
Example:

100 STORE COpy €9
3-20 #DA08

Field Storage

THE STORE STATEMENT

A new field may be added to the current record by execution of a STORE name value

statement. The fields of a dataBASIC record are defined by a field:name and the field:

values associated with that field:name. The first field defined is either the record field:

name (rfield) or a working storage field which contains the record field:name (wsfield&).

All other fields are either the values assigned (literal) or contain the value (wsfield).

Notation:

line:number STORE {
rfield }
wsfield~ {

wsfield}
lite ral ..•

Note: field:value references are restricted to wsfield and literal for the STORE statement.

Example:

090 STORE RECORD €9
100 STORE YEAR 1967 @
110 STORE MAKE "VOLKSWAGEN" @
120 STORE C& "BLUE" €9
130 STORE COLOR "WHITE" "BLUE" §
140 STORE OPTIONS "RADIO" "HEATER" @

INPUT/OUTPUT STATEMENTS

Terminal Input

THE INPUT STATEMENT

The INPUT Statement enables the user to input variable data without changing the

dataBASIC program. If while a program is executing an INPUT statement is encountered,

the dataBASIC system will type a que stion mark (?) and wait for the user to type in the

needed data. Any number of fields that can be specified in one line of the dataBASIC

program can be input with one INPUT statement. Data is always INPUT to working storage

field and is entered in the fonTI of literal. Data can be either field:names or field:values.

The INPUT statement is usually used with the PRINT statement, which tells the

user what information is expected by the program.

3-21 #DA08

Notation:

line:nurnber I!'JPUT (WSfield}

Example:

010 PRINT "ENTER MAKE, MODEL, OPTION" @
050 INPUT ABC G
100 FOR MAKE = A e
110 AND MODEL = B @
120 AND OP TIONS = C €9
130 PRINT "MODEL REQUESTED AVAILABLE WITH"; €9
140 PRINT "THESE OPTIONS" €3
150 FOR OPTIONS €9
160 PRINT OPTIONS EDIT "BBXXXXXXXXXXXXXXX" §
170 NEXT e
180 NEXT @

Statement 010 prints instructions to the user and is immediately followed by the

INPUT command. As soon as the system types the" ?", the user can enter his data,

which would appear as:

? "BUICK" "RIVIERA" "AIR-COND" @

Output of this example would be the same as for the preceding example. If fewer

fields are entered than were requested, the system will respond with the message

"LINE 0 50 DA TA FORMA T ERR OR", and then reque st that all data be input aga in.

Printing

THE PRINT STATEMENT

The PRINT statement may be used for the following five purposes:

1. To display the contents of a specified record field or working storage field

2. To display all field:names and field:values of a record

3. To display literals

4. To start at the beginning of a new print line

5. To perform a combination of the above

The operand of the PRINT statement is called a print:expres sion; a PRINT state-

m€nt may have one, none, or multiple print:expressions.

3-22 #DA08

PRINT statements containing only literals and/or working storage references are

record-independent and may be executed anywhere within the program.

PRINT statements containing print:expressions followed by the word RECORD or by

record field:names operate on field:value within the current record. An attempt to

execute such a record-dependent PRINT statement when the current record of the program

is undefined will result in the transmission of the message, "LINE XXXXX NO CURRENT

RECORD" the program is then terminated and a retreat is performed.

Print format control editing may be left entirely to the dataBASIC system or may

be specified by the user-program. The PRINT RECORD always causes printing in the

unedited mode. All other print:expressions may be printed in either the edited or unedited

mode.

When printing in the unedited mode, character strings are followed by two space

characters, except for literals which have no spaces following. Alphanumeric field:

values are printed enclosed in quotation marks.

THE PRINT RECORD STATEMENT

The PRINT RECORD statement causes the system to display all field:names and

field:values of the current record. If the current record is undefined, the Inessage,

"LINE XXXXX NO CURRENT RECORD" is transmitted to the user, the program is

aborted, and a retreat is performed. If the current record has been established, it

is printed according to the following four rules:

1. The first field:name is printed in column 5 of a new print line.

2. Field:names are followed by two blank characters.

3. Multiple field values with the same field:name are separated by a comma
followed by a blank character.

4. Four blank characters separate the last field:value of a field:name from
the next field:name.

Notation:

line:number PRINT RECORD

Example:

100 PRINT RECORD e

3-23 #DA08

Output from such a statement might be

MAKE "TOYOTA" MODEL "CORONA"

OPTIONS fIAIR-COND", IIAM-FMII; IIBUCKET SEATS I'

YEAR 111967" COLOR "BLACK", IIWHITE"

TRANSMISSION I'STANDARD " SALES:PRICE

1050.00

Print Record Field

This form of PRINT statement causes the system to display all the field:values in

the current record which are as soc iated with the specified record Held:name. If no

field:value is present, the system prints the character string, 'INO VALUE" in lieu of

the field:value. If multiple field:values are present, each is printed, being separated

by a comma and single space. Spacing between the field:value(s) displayed and the

output of prior and successive print expressions is controlled by the rules listed under

"HorizontalSpacing 'l and "Vertical Spacing'l in this section of the Language Manual.

(See pages 3-28 and 3-29.)

Notation:

line :number PRINT
{

rfield ~
wsfield! J

Examples:

100 PRINT OPTIONS @
110 PRINT A& @

Output of statement 100 above might be:

"AIR-COND", "AM-FM", "BUCKET-SEATS"

If A& contained the field name "OPTIONS", output would look like that of the

preceding statement.

Pr int Literal

This form of the PRINT statement allows the user to display a literal exactly as

shown in the program. If the literal is alphanumeric (that is, displayed in the user

program within quotation marks), the dataBASIC system prints the exact character string

without quotation marks. Numeric literals are printed exactly as they appear in the PRINT

statement. No space characters are produced by the dataBASIC system following literals.

3-24 #DA08

Notation:

line:number PRINT literal §

Example:

100 PRINT "THIS IS AN ALPHANUMERIC LITERAL" §
110 PRINT 1. 0 §
120 PRINT 1 §

Output of above would be

THIS IS AN ALPHANUMERIC LITERAL

1.0

Print Working Storage Field

This form of the PRINT statement causes the system to display the contents of a

working storage field. Working storage fields are those established by a LET, INPUT,

or READ statement. If there is no data ·currently stored in the specified working storage

field, the system prints the character string, IINO VALUEII, in lieu of the values.

Notation:

{

wsfield ~
wSfield~j

line:number PRINT

Example:

100 PRINT A 0
110 PRINT A& §

If A contained the field name OP TIONS, the output would be as follows:

I'OPTIONS I'

IIAIR-CONDII, IIAM-FM"

Spec ial Print Convention

The PRINT statement may also be used to display all or selected text fields

associated with any record. If there are no text fields associated with a record, the

character string "NO VALUE II will be printed.

Notation:

line:number PRINT
{

text }
text:number

3-25 #DA08

Exam.ple:

100 PRINT TEXT @
110 PRINT TFXT:OOI e

Output of Line 100 above would be all the text associated with the current record; and the

output of Line 110 would be the fir st line of text for the current record.

Print with Edit

The print expres sions referring to record field:name s or working storage field name s

may be printed under user-supplied EDIT format control at the users option. Whenever an

EDIT format is supplied, it completely governs the printed character string. No space

characters are added before or after the edited field. If an rfield to be edited is not found

in the current record, or if a working storage field has null value, space characters will

be printed for the length of the edit form.at. If it is known that multiple values exist for a

specific field and it is desired to print each value edited, they may be selected by means

of the FOR name statement. An edit format must be enclosed in quotation marks.

Notation:

line:number PRINT

Example:

{

rfield ~
wsfield!
wsfield
literal

EDIT format:expres sion

100 PRINT A EDIT "+99.9" @

If A contained the number 7, the output would be:

+07.0

Numeric Editing

The following characters are valid within a format:expres s ion for a numeric field.

B (means insert one space character.)

9 (means replace with one numeric character.)

Z (means replace with one space character if a leading zero,
otherwise replace with one numeric character.)

(means ins ert a dec imal point.)

(means insert a comma unless it lies immediately to the right of a space
character, in which case insert a space character.)

3-26 #DA08

(TIleans print a space character if the field being edited is positive, and
a - if negative. This TIlust be the first character of the edit forTIlat.)

+ (TIleans print a + if the field being edited is positive, and a - if negative.
This TIlust be the first character of the edit forTIlat.)

The data field is deciTIlal-aligned with the edit forTIlat. Truncation or addition of

zero-valued characters is perforTIled as specified by the edit forTIlat. If no deciTIlal place

is specified in either the edit forTIlat or in the data, the dataBASIC systeTIl aSSUTIles that

the forTIlat or data is an integer for purposes of deciTIlal alignTIlent.

ExaTIlple s:

DATA EDIT FORMAT RESULT

20 B99.9B ~20.0~

2 B99.9B ~02.0~

.02 B99.9B ~OO.O~

120.4 B99.9B ~20.4~

2. 134 BZZ.ZB ~~2. 1~

0 BZZ. ZB ~~rPrPrPrP

null-value BZZ. ZB rPrPrPrPrPrP

.02 BZZ. ZB rPrPrPrPrPrP

• 1 BZZ, ZZ9. 9B rPrP1.6~rPrPO.lrP

105 BZZ, ZZ9. 9B ~rPrPlPI05.016

1157.79 BZZ, ZZ9. 9B rPrPl, 157.7~

100000 BZZ, ZZ9. 9B rPrPrP~rP~O.OrP

AlphanuTIleric Editing

The following characters are valid within a forTIlat:expression for an alphanuTIleric

field:

B (TIleans insert one space character)

X (TIleans r eplac e with one alphanuTIle ric char ac ter)

The data is left-justified and inserted into the character positions specified by XIS.

If there is TIlore data than X forTIlat characters, the field is truncated on the right. If

there are TIlore X forTIlat characters than data, spare characters replace any excess

X forTIlat characters.

3-27 #DA08

Example:

DATA

MARCH

Jf/)

MAR191969

Horizontal Spacing

EDIT FORMAT

BXXXB

BXXXB

BXXXBSSBSSSSB

The following rules apply to horizonta~ spacing.

PRINT RECORD RULES:

RESULT

l6MARl6

l6J f/) l61JS

l6MARl61 9161 96 916

1. The first field of the record will be printed in column 5 of the first line.

2. The field name will be printed, followed by two space characters,
followed by the field:value(s).

3. Multiple field:values for one field:name will be printed, being
separated by a comma and a space character.

4. Four space characters will separate the last (or only) field:value
from the next field:name.

PRINT LITERAL RULES:

1. Numeric literals will be printed exactly as they are entered in the PRINT
statement.

2. Alphanumeric literals will be printed exactly as shown within the
quotation marks (the quotation marks will not be printed).

3. No space characters will be used to separate literals from the field
following, if any.

PRINT UNEDITED rfield, wsfield, or wsfield:

1. The contents of such fields, if alphanumeric, will be printed enclosed
within quotation marks.

2. The space characters will be used to separate an unedited field from
the following field.

3. If an rfield to be printed is not contained within the current record,
the mes sage "NO VALUE" will be printed.

PRINT EDITED RULES:

1. No space character s will be used to separate an edited field from the
following field.

2. If an rfield to be printed is not contained within the current record, or
if a wsfield is null-valued, then space characters will occupy all positions
of the edit format.

3-28 #DA08

Vertical Spac ing

A semicolon (;) is used to continue a print statement (i. e., there will be no carriage

return or line feed). If it terminates with no punctuation or with punctuation other than a

semicolon, a line feed and carriage return will be generated.

A print statement alone (that is one with no print:expression) will cause a carriage

return and line feed to be transmitted. This results in feeding paper to the next line.

If the dataBASIC system finds that the remaining space on the print line is not large

enough to contain the data to be printed, it will insert a carriage return and line feed

befor e printing that data. This spacing is in addition to, rather than in lieu of, us er

spec ified vertical spac ing.

THE READ STATEMENT

Whenever a READ statement is encountered, the literal values are moved from

the DATA statement to the working storage field(s) specified in the READ statement.

As many values will be moved as there are wsfield in the READ statement. If there are

multiple READ statements, or if a READ statement is logically executed more than once,

new literal value s will be supplied for each statement as long as there are sufficient

literals defined in the DATA statement(s). If there are multiple DA TA statements, values

will be taken from the first statement until it is depleted; then from the second, and so on,

until all have been used. If a READ is executed after all the data has been used, the system

will display the message "LINE XXXXX OUT of DATA", and then stop (no retreat occurs).

Notation:

liLe:nurrtber READ (WSfield)

Example:

010 READ ABC §

Now let us suppose that the used car lot sales manager has written a program, to

be used by all his salesmen, that will select all available cars of a specific make, model,

and spec ific option, and that will print all options available with the car. The sale s

3-29 #DA08

manager has stored this program, and it is available for use by everyone. This prograrn

might appear as:

005 FILE USED:CAR @
010 READ ABC §
020 IF NOT A = "NONE" THEN 100 @
030 PRINT "ENTER DATA IN LINE 200 THEN RUN" §
040 STOP §
100 FOR MAKE = A €9
110 AND MODEL = B €9
120 AND OPTIONS = @
130 PRINT "MODEL REQUESTED AVAILABLE WITH THESE"; §
140 PRINT "OPTIONS" §
150 FOR OPTIONS @
160 PRINT OPTIONS EDIT "BBXXXXXXXXXXXXXXX" §
170 NEXT €9
180 NEXT @
190 STOP §
200 DATA "NONE" "NONE" "NONE" §
210 END <§

Statement 010 reads the data specified in statement 200. If the data has not been

changed, the message "ENTER DATA IN LINE 200 THEN RUN" is printed and the program

stops. Suppose the statement 200 DATA "BUICK" "RIVIERA" "AIR-COND" was entered.

After execution of the read, A will contain BUICK, B will contain RIVIERA, and C will

contain AIR-COND. The FOR statement and the related AND statements then select the

records with the proper make, model and option; and statements 130 and 140 print a

message which serves to indicate the start of a new car. Statements 150 through 170

select and process each option, and statement 180 delimits the record selection process.

Output of this example might appear as follows:

MODEL REQUESTED AVAILABLE WITH THESE OPTIONS

AIR-COND

AM-STEREO-FM

BUCKET-SEATS

Now let us suppose that the DATA statement read:

200 DATA "BUICK" "RIVIERA" §

3-30 #DA08

As soon as the READ in statement 010 tried to read data into working storage

field C, the program would stop with the message "LINE 200 OUT OF DA TAli displayed

to the user.

If the data statement was changed to

200 DATA "BUICK" "RIVIERA" "AIR-COND" "AM-FM" e
and the program was executed, the last literal, "AM-FM", would be ignored because

no READ statement calls upon it.

CONTROL STATEMENTS

Program Termination

THE END STATEMENT

The END statement is the last statement of the program and defines the end of

program. It has the same effect as a STOP statement.

Notation:

line:number END §

Example:

99999 END @

Conditional Termination of Selection

THE EXIT STATEMENT

The EXIT statement enables the user to discontinue proce s sing anywhere within

a record or field selection statement. The statement immediately following the NEXT

statement, which delimits the record or field selection process, receives control when

the EXIT statement is encountered.

This statement cannot logically be replaced by a GOTO statement because EXIT

also insures proper handling of FOR statement termination.

3 -31 #DA08

Notation:

line:number EXIT §

Example:

100 FOR MAKE = VOLVO @
110 AND OPTIONS = "AIR-COND" §
120 PRINT RECORD ,§
130 IF OPTIONS = "AM-FM" §
140 AND YEAR "1967" THEN 160 €.9
150 GO TO 170 §
160 EXIT @)
170NEXT @
180 END @

In the above example, printing will continue for all Volvo cars ~aving air condi

tioners; however, after the printing of a Volvo model later than 1967, printing and

processing will stop.

Subroutine s

Within any computer program, as within any plan of action, there are procedures

to be executed at many different points within the main procedure. For example, a

banking system may, during the daily posting, check account numbers for validity,

perform standard procedures whenever an overdraft occurs, compute service charges,

and so on. The procedures for validity checking, overdrafts, and service charges may

be executed at various points within the daily posting procedure and, on any given day,

may be executed once, rnany times, or not at all. Such standardized procedures are

effie iently handled in a computer program through the use of subroutines. Subroutine s

are computer procedures that may be called from anywhere within the total procedure;

and, at the end of a subroutine execution, processing is resumed at the statement

immediately following the one that called for the subroutine execution.

It should be noted that a procedure becomes a subroutine only when it is called

through the execution of a GOSUB statement. A subrou.tine execution is terminated when

a RETURN statement is detected in the sequence of statements being executed.

3-32 #DA08

THE GOSUB STATEMENT

The GOSUB statement of the dataBASIC language provides for calling and entering

a subroutine. It acts as an unconditional branch or GOTO statement, in that processing

resumes by executing the statement specified by the statement identifier. However, the

dataBASIC system records the line number of the GOSUB statement for future use.

This line number will be used to return to the sequence of statements following the GOSUB

statement when a RETURN statement is detected during subroutine execution. The

listing of wsfields after the line number operand will cause the wsfield content to be

saved, and will make the specified wfields available for use within the subroutine.

Notation:

line:number GOSUB line :number {WSfield .. 1
Example:

In the following example, the used car sale sman has written a program such that

the selection and output are separate parts of the program, thus making it easy to change

one part.

100 FILE USED:CAR §
110 GOSUB 200 §
130 STOP §
200 FOR MAKE = "VOLKSWAGEN" §
205 IF COLOR = "RED" THEN 220 §
210 GOSUB 300 §
220 NEXT @
230 RETURN §
300 PRINT SERIAL: NO OPTIONS §
310 RETURN §
400 END §

THE RETURN STATEMENT

The RE TURN statement marks the end of a procedure when it is executed a s a

subroutine. Whenever the dataBASIC system encounters a RETURN statement, it

resumes sequential processing at the line immediately following the GOSUB statement

which called the subroutines. It then restores the original value of wsfields declared

in the GOSUB statement. If the procedure is being executed as a result of sequential

processing rather than a subroutine call, there is no GOSUB statement to return to,

and the RE TURN statement is ignored.

3-33 #DA08

Notation:

line:number RETURN §

Conditional Restoring of a File

THE RETREAT STATEMENT

The RE TREA T statement enables the user to restore a file to its status at the

beginning of a particular run, thus allowing him to enter modifications to his file, to

check modifications against expected results, to assure accuracy, and to RETREAT

should he elect to simulate a particular condition or locate an error in logic.

Notation:

line:number RETREAT §

Example:

100 FILE USED:CAR §
110 FOR MAKE = "VOLKSWAGEN" e
120 OR MAKE

130 OR MAKE

140 OR MAKE

150 OR MAKE

"TOYOTA" e
"DATSUN" @
"VOLVO" §
"OPEL" e

160 STORE SPECIAL "FOREIGN" €9
170 PRINT MAKE SPECIAL @
180 NEXT @
190 PRINT "IF RESULTS OK ENTER OK" @
200 INPUT A e
210 IF A = IIOK" THEN 900 e
220 RETREAT §
900 END §

When this program was entered, an undetected error was made (line 160 should

be, STORE SPECIAL IIFOREIGN"). However, upon execution, the error becomes

apparent because the field SPECIAL is printed, and no value IlFOREIGNl1 appears.

Therefore, when the message "IF RESULTS OK ENTER OK" appears, the user enters

a value other than "OK", and the file is restored to its status prior to the start of that

run. The user can then correct his program and re-enter the new field properly.

3-34 #DA08

Branching

The dataBASIC system provides for database management and inquiry. Its basic

repertoire of statements enables the user to perform all necessary data storage and

maintenance functions as well as all data selection functions necessary for inquiry.

The system processes statements in the order indicated by the statement numbers.

Certain more complex problems, however, cannot be adequately handled by the sequential

statement execution; rather they require decision making capabilities outside the data

selection or storage process. They also require the capability of altering the order in

which the statements are being executed, either conditionally depending on the outcome

of a decision process, or unconditionally.

THE GOTO STATEMENT

This statement allows the user to unconditionally go to another part of his program

and resume execution. The line:number referenced must be found within the user's

program.

Notation:

line:number GOTO line :number §

Example:

100 INPUT A @
110 PRINT A @)
120 GOTO 100 §

In this example, line 120 is a GOTO statement which causes the execution of 100

and 110 to be repeated.

THE IF STA TEMENT

Conditional branch statements are required whenever it is necessary to change

the sequence of execution of instructions based upon a dec ision. These statements

take the following format:

Notation:

line:number IF relational:expres s ion THEN line :number

3-35 #DA08

It includes cOITlpound conditions (ITlultiple siITlple conditions connected by AND! s)

and cOITlplex conditions (multiple s iITlple and/or cOITlpound conditions connec ted by OR's).

These conditions were previously defined under iiData Selection StateITlents ii
, page 3-2,

in this section of the Language Manual.

Control is passed to the stateITlent number specified whenever any relational:

expr e s s ion is found to be true.

100 INPUT A @
110PRINTA @
120 PRINT "DO YOU WISH TO CONTINUE" @
130 INPUT B €V
140 IF B = "YES" THEN 100 §
150 STOP §

In this exaITlple, the IF stateITlent is used to test whether or not a user wishes to

continue. If he inputs "YES" then control is transferred to stateITlent 100; otherwise

the next stateITlen't is executed.

PrograITl Halting

THE STOP STATEMENT

Whenever the dataBASIC systeITl encounters an END stateITlent, it indicates to the

user that the execution of that user prograITl is cOITlplete, and it enables hiITl to either

cOITlpose and execute a new prograITl or re-execute the prograITl just cOITlpleted. This

saITle function is perforITled whenever the dataBASIC systeITl encounter s the STOP

state ITlent.

Notation:

line:nuITlber STOP §

ExaITlple:

400 STOP 09

3-36 #DA08

PROGRAM DOCUMENTATION STA TEMENT

THE REM STATEMENT

The REM statement allows the user to enter as a part of his program, remarks

about that program or some section of it. For instance, if a program has several

sections, the user may wish to begin each section with one or more lines of REM state

ments describing what each section does. If a remark exceeds one line, the REM

control word must be repeated on each line. GOSUB, GOTO, and IF statements may

not refer to this line.

Notation:

line:number REM character:string @

Example:

100 REM THIS IS AN EXAMPLE OF A "REM" STATEMENT.

3-37 #DA08

SECTION IV

ADV ANCED DATA SELECTION

DATA SELECTION USING WORKING STORAGE FIELDS

In the previously explained LE T statement (See Section III), it was mentioned that

working storage fields could contain field:names rather than field:values. The dataBASIC

system gives this ability to the user so that he can write procedures which are generalized

so as to be reusable. The dataBASIC system differentiates between working storage fields

to be considered as containing a field:name and those t1lat contain a field:value by looking

for an ampersand (&) as the second character of the working storage field:name. There

fore, the field named A would be treated as if it contained the field:name of the record

field whose contents are to be addressed. In each case, reference is to the same field but

for a different use.

Example:

100 FILE USED CAR @
110 PRINT "ENTER RECORD OR A FIELD NAME" €9
120 INPUT A G
125 IF A ="END:OF:FILE" THEN 200 @
130 IF A NOT = "RECORD" THEN 160 @
140 S TORE RECORD €9
150 GOTO 110 @
160 PRINT "ENTER FIELD VALUE" e
170 INPUT B (§
180 STORE A& B <0
190 GOTO 110 €9
200 END @

4-1 #DA08

Th~ following ~xample illustrat~s th~ use of wsfi~lrl& in sel~rting recoros:

100 FILE USED CAR €3
110 PHINT "YOU MAY F,NTEH UP TO 1 FIELD NAMES AND VALUES"

120 PRINT "ENTER FIRST FIELD NAME AT\TD VALUE" @
130 INPUT ABe

140 PRINT "ENTER 2ND NAME AND V ALUE OR 0,0" @
150 INPUT C D @
160 PRINT "ENTER 3RD NAME AND V ALUE OR 0,0" €9
170 INPUT E F @
180 IF NOT C = 0 THEN 210 @
190 LET C

200 LET D

NULL €9
NULL €9

210 IF NOT E = 0 THEN 240 @
220 LET E NULL @
230 LET F NULL €9
240 FOR A& = B @
250 Al'.TI C& = D @
260 AND E& = F §
270 PRINT RECORD @
280 NEXT €9
290 PRINT "TO REPEAT ENTER REPEAT" @
300 INPUT A @
310 IF A = "REPEAT" THEN 110 §
320 END @

Note that when working storage fields C and E had a value of zero, the NULL value

was moved to those fields. This is done because the data selection process ignores any

null-valued fields it finds v.h ile in the proce s s of determining the records to be selected.

PIVOTING

Pivoting refers to the use of data from a set of selected records as criteria for

choosing another selection path. To exemplify this type logic, assume that part of our

file contains information concerning major automobile accidents that have occurred in the

state, the identification of these being the auto serial numbers. ("Major" is defined as

causing damage greater than $200 on one car.)

4-2 #DA08

This inforlTIation, which lTIay or lTIay not relate to any of the cars in our previous

used car lot exalTIple, is supplied by the State Highway Patrol. AssulTIe also that the

lTIaintenance of this data is outside our responsibility, and that all data referring to acci

dent records is denoted by having its field nalTIe preceded by "ACC:".

Having this data in our file enables us to select cars by the prospective custolTIer's

criteria and to provide hilTI with SOlTIe inforlTIation of accident history without our needing

to directly connect the used car lot records with the accident records. A progralTI using

this technique could look like the following:

100 FILE USED CAR §
110 FOR MAKE = "DODGE" @
120 AND MODEL = "DAR T" e
130 AND YEAR = "1967" e
140 LET A = SERIAL:NO §
150 PRINT RECORD @
160 FOR ACC:SERIAL:NO = A §
170 PRINT RECORD ;/Jf3
180 PRINT €9
190 NEXT e
200 PRINT e
210 NEXT @
220 END e

SYNTHE TIC SELEC TION OF FIELDS

It is sOlTIetilTIes desirable to select records based on a particular grouping, the

criteria of which include several factors. For instance, our used car saleslTIan lTIay have

a request for an air-conditioned cOlTIpact car with an AM-FM radio. Without any synthetic

selection fields, he lTIight have to use:

100 FOR MAKE = "CHEVROLET" @
110 AND MODEL = "CORV AIR" e
120 AND OPTIONS "AIR:COND" @
130 AND OPTIONS "AM:FM" @
140 OR MAKE = "FORD" G
150 AND MODEL = "MUSTANG" G
160 AND OPTIONS = "AIR-COND" §

4-3 #DA08

170 AND OPTIONS == "AM-Fl'v1" @
180 OR MAKE = "RAMBLER"

= ".L~~v1ERICAN"

He would have to repeat the options definition for every type compact car, thus

causing his program to become lengthy and difficult to enter. To avoid this, he may add

to his record definitions the field:name SPECIAL. This field:name could contain as many

field:values per car as needed to describe synthetic selection criteria. As an example, a

Volkswagen could be classified as a SPECIAL "COMPACT" and a SPECIAL "IMPOR Til.

Synthetic selection fields can be assigned to a record either as it enters the file or at a

point in time after the file has been created when there is a need for such fields.

4-4 #DA08

SECTION V

CONTROL COMMANDS

CONTROL COMMANDS VERSUS STATEMENTS

dataBASIC control commands direct the system in the disposition of a dataBASIC

program; for example, they command the system to either execute, list, or save a

program for future use. Commands differ from statements in that they do not form a part

of the program and are effective immediately upon being entered at the terminal. Also,

control commands are not prefixed with line numbers as statements are, and they may be

entered whenever the dataBASIC system is in control.

CONTROL COMMAND CATEGORIES

The control commands available to the dataBASIC system fall into three categories.

In the first category are the commands RUN, CREATE, DESTROY, ANALYZE, and

VERIFY; these are especially relevant to the dataBASIC system. The function performed

by these commands are described under "dataBASIC Commands (Category #1)."

In the second category are commands used by the dataBASIC system but are of the

standard Time-Sharing types. These commands are also described but are identified by

an asterisk. See "dataBASIC Time-Sharing Commands (Category #2). "

In the third category are standard Time-Sharing commands which are also available

to the data BASIC system but are not particularly relevant to it. These commands are not

mentioned in this language manual but are described in the GECOS Time-Sharing System

General Information Manual, Document Number CPB-l643.

dataBASIC Commands (Category # 1)

RUN

The RUN command instructs the system to execute program statements in numerical

sequence. The execution of the program is commonly referred to as running the program,

or as a run of a program.

CREATE

The CREATE command is used to allocate and initialize storage space for a

dataBASIC file (not a program file). It requests several parameters from the user in

5-1 #DA08

order to determine file size requirements. All dataBASIC data files must be created

through use of this command within the dataBASIC system. (See Section VI, "data BASIC

Subsystem s" for a detailed explanation of this command.)

DESTROY

The DESTROY command is used to release dataBASIC data files only. Program

files should be deleted using the PUR GE or RELEASE command.

ANAISZE

The ANALYZE command is used to execute the data BASIC ANALYZE subsystem

described in Section VI of this manual.

VERIFY

The VERIFY command is used to execute the dataBASIC VERIFY subsystem

described in Section VI of this manual.

da taBASIC / Time -Sharing Commands (Category #2)

~:~LIST

The LIST command is given when the program is to be printed. This command will

result in a printout of the entire program, along with any additions or changes that may

have been made prior to the use of LIST. If only a portion of the program is desired, the

LIST command can be modified by line numbers indicating the portion desired, as follows:

~:~ LIS T xxxx, yyyy

(will result in a printout of the program between line numbers xxxx and yyyy).

,:~ LIS T xxxx

(will result in the printout of statements beginning with statement xxxx through the
end of the program).

~:~ LIS T ,yyyy

(will result in a printout of statements from the be ginning of the program through
statement yyyy).

~:~DONE

The user terminates his session with the dataBASIC system by the use of the DONE

command, but he may still retain use of the terminal for selection of another time-sharing

sy stem or re - selec tion of the data BASIC sy stem.

5-2 #DA08

~:~BYE

This command is given when the user wishes to terminate his session with the com

puter. He will then receive a summary of the amount of resources used for this session

along with the total resources used by his account to date. His terminal will then be dis

connected from the system.

~:~SAVE file:name

This command permits the user to save a program for future use. File:name can

be any combination of alphanumeric, period, and minus sign characters; but it cannot

exceed eight characters. This command is given just prior to discontinuing the immediate

use of the program.

~:~NEW

This command is given when the user is to continue the use of the dataBASIC system

by building a new program.

~:~o LD file: name

This command is given if the user is to select another saved program as his current

program. Other form s of the OLD command follow.

~:~OLD file:name (xxxx, yyyy)

The statements numbered xxxx to yyyy, inclusive, of the program saved under the
the name file :name are brought into the user's working storage for proce s sing.

,:~O LD file: nam e 1; file: nam e 2 ; ... ; file: nam en

The n nam ed programs are adjoined in the order given, and are brought into

working storage. (The line numbers of the resultant program are not resequenced.)

The contents of the current file can be included in the new file by use of the name "':~" in

the file name list. If the list is too long for one line, it may be continued on the next line

if a semicolon is the last non-blank character before the carriage return.

':~OLD file:name (xxxx
1

, YYYYl);" .; file:name (xxxx, YYYY)
1 n n n

The segments of the named file s specified by line numbers XXX X through yyyy are

adjoined in the order given, and they replace the user's current program. (The line

num1:-ers of the resultant program are not resequenced.) If the list is too long for one

line, it can be continued on to the next line if a semicolon is the last non-blank character

before the carrage return.

5-3 #DA08

F or exam pIe, Ute corn manu

':!OLD PROGRAM 1 (10, 85);PROGRAM4

will Cau~e Lhe ~LaLemenb IlUmlered 10 Lhrough 85 of Lhe .file FROGRAJvl1, along with the

statements of the file PROGRAM4 to be concatenated in that order, to become the (new)

current program.

':!RESEQUENCE

This command causes the line numbers of the current program to be resequenced.

Resequencing begins with line number 10 and is incremented by steps of 10. Statement

number references within the program (such as GOTO, GOSUB, AND IF statements) are

modified correspondingly. Another form of RESEQUENCE is

':~RESEQUENCE n, m

The line numbers of the current program are resequenced beginning with line num

ber n and with increments of m. Either n or m may be omitted; the value 10 will be

assumed in either case.

':!AUTOMA TIC

This command causes the automatic creation of line numbers, beginning at the point

at which the automatic mode is entered (or re-entered), with line numbers initially

sta:cting at 10 and incremented in steps of 10. These line nurnbers are generated by the

system; appear in the terminal copy, and are written in the file, just as though the user

had typed them himself. Another form of AUTOMATIC is

':!AUTOMATIC n, m

Automatic creation of line numbers begin with line number n and are incremented by

m.

':~TAPE

This command implies that statements are to be entered from the paper-tape reader

instead of from the keyboard. See Section VII, "Entering the Program From Paper Tape"

for detailed instructions.

':!PURGE

This command deletes the specified program files from the system.

5-4 #DA08

SECTION VI

dataBASIC SUBSYSTEMS

The dataBASIC system includes the four subsystems - CREATE, ANALYZE,

DESTROY, and VERIFY.

THE CREATE SUBSYSTEM

Functions

The main functions of the CREATE subsystem are to establish the user's

dataBASIC file and to initialize it for use by I-D-S and the dataBASIC system. A

dataBASIC file is in fact an I-D-S file and as such may be accessed by I-D-S utility routines

or user-written I-D-S programs. All I-D-S files which are also dataBASIC files may be

processed by dataBASIC programs; however, I-D-S files which are not also dataBASIC

files cannot be processed by dataBASIC programs. For further details regarding I-D-S

programs, refer to the Honeywell publication entitled Integrated Store (I-D-S), Document

N urn b e r C PB - 1 565.

The user supplies estimated values in response to questions asked by the subsystem.

These numbers are used to estimate the user's space requirements. A file of the com-

puted size is established and initialized on the disk. The catalog name is user-assigned,

but the file name is always set to ".DATAO". A retreat file ".JOUR." is also created to

contain before images of all altered I-D-S pages. The size of the retreat file is deter-

mined by the equations:

R = D , for D:; 5

R = 5 + D for D> 5 10 '

Where R is the size in links (i. e., 3840 words) of the retreat file, and D is the size in

links of the data file. The retreat file". JOUR." is subordinate to the same subcatalog

name assigned by the user to which .DA TAO is subordinated.

In addition to the standard I-D-S page format, the file and control records required

for dataBASIC startup are placed on file.

All input used by CREATE is from the keyboard input device via Time-Sharing

System derails.

6-1 #DA08

Processing

If the user inputs information that exceeds the hardware or software limits, CREATE

will recycle and repeat all the questions. If it must recycle six times, it will terminate

the user; if a total of one hundred disk errors occur during the run, the subsystem will

be terminated.

Output

The user file is output to the mass storage device having the most available space.

One link of twenty I-D-S pages is written at a time. All the I-D-S pages have one record,

that is the dataBASIC control record which is stored on them. In addition, Page One has

the file record stored on it.

The only other output are the questions asked of the user; these are output to the

keyboard device via Time-Sharing System derails.

Error Handling

If the maximum size allowed for an input parameter (in characters) is exceeded,

the system starts over after the message "ESTIMATE EXCEEDS SYSTEM LIMITATIONS"

has been sent to the user.

If the computed space requirement exceeds the available user capacity, the message

"ALLOCATED FILE SPACE EXCEEDED" is sent to the user, and all inputs are requested

again up to a maximum of six restarts.

If there is an error return from one of the derails, the message "SYSTEM

MALFUNCTION CQ99" (where 99 is the error code returned by TSS) is sent to the user,

and all the us er inputs are req ue s ted again.

If the total I/O errors for the run exceed 100, the message "SYSTEM MALFUNCTION

CQ41" is sent to the user, the files are purged, and the abnormal termination return to

TSS is executed.

If during the error wrapup, any of the file structure (catalog and/ or file) cannot be

purged, the message "ANY FILES CREATED MUST BE PURGED USING ACCESS" is

printed, and the abnormal termination return to TSS is executed. (ACCESS is explained in

Honeywell publication, GECOS Time-Sharing System General Information Manual, Docu

men t N urn b e r C P B-1 643.)

6-2 #DA08

If the name supplied cy the user is already being used, the message "NON-UNIQUE

FILE NAME" is printed, and the program recycles.

If the password supplied by the user has invalid characters, "INVALID CHARACTERS

IN PASSWORD" will be printed, and the user will be asked for the password again.

Error Messages

Error messages and meanings for the CREATE subsystem are tabulated in

Figure 6-1.

Error Message Meaning

System Malfunction CQ4l More chan 100 disk errors.

Excessive Errors More than 10 errors have been made in
inputting the answers to the create
questions.

System Malfunction CQ43 Currently unused.

Any files created must be purged Attempt to purge catalog and/ or file
using access has resulted in errors. Cannot get rid

of catalog or files created within run.

System Malfunction CQNN NN is error status returned from DRL
FILACT.

Non- Unique File Name User-supplied name is already under the
user master catalog as a sub-catalog
name.

Invalid file name User-supplied name has an invalid
character or a name scan failure.

AFT is full No room in AFT for file name .DATAO

Duplicate file name in AFT .DATAO is already open and in AFT.

Estimate Exceeds System Limitation User-supplied parameter is too large
and would result in an answer that is
beyond data storage ability.

Figure 6-1. CREATE Subsystem Error Mes sages

6-3 #DA08

Error Message

Allotted file space exceeded

Password Incorrect

Invalid characters in password

Meaning

Space required is greater than a
DSU270,

or

no link space is available,

or

requested space exceeds maximum
allowed.

The TSS has returned an error status in
dicating mis sing or invalid pas sword as
a result of attempt to access the file.

Characters other than A thru Z, a thru
9, II ", or "_" found in password.

Figure 6-1. CREATE Subsystem Error Messages (Cont.)

Programming Notes

Below is a copy of the terminal messages with user-responses underlined. Note

that all numeric responses are terminated by any non-numeric to appear in the character

string. All numeric values must be less than 100, 000 (decimal).

File name? DUMMY

File Pas sword?

File Estimates

Gene ral, Specific or Explain? EXPLAIN

To create a file you must provide estimates v.h ich will assist in determining the

amount of file space to be allocated. The following describes the estimates you must pro

vide depending on whether you elect General or Specific. All estimates should be as

accurate as possible to insure maximum utilization of file space and should allow for any

anticipated growth.

General

Records in file - you must provide an estimate of the number of records to be stored
in the file.

Fields per record - you must provide an estimate of the average number of fields
to be stored in a record.

6-4 #DA08

Specific

Records in file - same as for general.

Fields per record - same as for general.

Unique field names - you must provide an estimate of the number of unique field
names to be stored in the file.

Unique field values per field name - you rnust provide an estimate of the average
number of unique field values per field name to
be stored in the file.

General or specific? GENERAL

Records in file? 100

Fields per record? 10

File initialization com plete.

File name? DUMMY

File pas sword?

File estimate s

General, specific or explain? SPECIFIC

Records in file? 100

Fields per record? 10

Unique Field Names? 15

Uniq ue field values per field name? 12

File initialization com plet e.

THE ANALYZE SUBSYSTEl-.1

Functions

The functions of the ANALYZE subsystem are to analyze a named user's dataBASIC

file to determine the percentage of available space Ilsed, and to display the information

on the user's terminal in the form of a bar chart followed by a summary.

The user selects the file, the type of information to be presented, and the range of

page s to be checked for percent of loading.

6-5 #DA08

The execution of the program is dependent on the supplied file name referencing a

valid data BASIC file. The first page is read in and the file record (line number TWO) is

examined to dp.terrnine the page number of the last dictionary and the last page number of

the file.

Input comes from the user and from his named dataBASIC file on the disk. User

input is supplied to the program from a keyboard input device in response to questions

asked of the user by the program. The disk input read is the first sector of the I-D-S pages

indicated by the user.

Processing

The user IS required to supply the dataBASIC file name and the program will con

tinue to recycle and ask for the name until a valid one is supplied, but all other questions

can be defaulted.

Output

Output to the keyboard I/o device is in one of four formats. The two basic formats

are (1) the bar chart with summary and (2) the summary only.

The bar chart has two forms: the standard form with a" "as the left margin which

is used for a specific graph (i. e. space used, or lines used), and the "S", "L" used with

the maximum graph (i. e., the bar printed shows the maximum use of lines or space).

At the user I s option, there are in addition a long form and a short form of the

messages.

Error Handling

Error in acce s sing the catalog: If the file under the nam ed catalog cannot be acce s sed,

the message "SYSTEM MALFUNCTION CROO" is typed out, and the program returns con

trol to the Time-Sharing System.

Invalid name: If the user-supplied name has a special character other than "_" or ". ",

or if it has more than eight characters, the message "IJ\,"'V ALID CATALOG NAME" will be

printed, and the program will recycle.

6-6 #DA08

Invalid line number: If in response to the starting and ending page numbers the user

inputs a page number larger than four digits, the message "LINE NUMBER GREATER

THAN MAXIMUM ALLOWED" will be printed, and the program will again ask the

question.

Disk errors: If there are more than twenty-five disk read errors, the message "UNABLE

TO READ NAMED FILE" will be printed, and the program will exit back to the primitive

list.

Incorrect page: When each page is read, its number in the header is compared to the

expected (next) page; if they are not equal, "PAGE NUMBER INCORRECT" is printed and

the program will exit back to the primitive list.

Invalid password: If the password contains a special character other than a decimal or a

dash, the message "INVALID CHARACTERS IN PASSWORD" is printed, and the user is

again asked for the password.

If the TSS returns an error status of 14
8

, the message "PASSWORD INCORRECT"

is printed and the program recycles.

Error Messages

Error messages and meanings for the ANALYZE subsystem are tabulated in Figure

6-2.

Error Message Meaning

Invalid catalog name Something other than a character 0 thru
0 A thru Z. . (Decimal) or -(minus) /1

has been included in the name.

Cannot access named catalog The attempt to access the catalog has
resulted in an error status return
from TSS.

Unable to read named file The attempt to read the file (.DATAO)
has re sulted in 25 consecutive bad
reads.

Page Number Incorrect When the I-D -S page was read in, it
did not match the expected page num-
ber.

Password Incorrect Error status from TSS indicate s
missing or invalid password.

Invalid characters in password Special characters other than " II or

" -" were found in password.

Figure 6-2. ANALYZE Subsystem Error Messages

6-7 #DA08

Programming Note s

"Y" FOR SHOR T FOR~.,.f ~.,.fESSAGES

Each of the questions asked of the user has a short forrn and a long forrn. A response

of Y will re sult in the printing of the que s tion, explanations, and header in the short form.

Any other response will give the "normal" long form.

Except for FILE NAME and FILE PASSWORD, the short form of each question is

shown beneath each long form question in the examples which follow:

FILE NAME?

Enter the name of the dataBASIC file to be examined. If the name does not exist,

the message "CANNOT ACCESS NAMED CATALOT" will be printed. If the name is too

long or no name is supplied, the question will be repeated.

FILE PASSWORD?

Enter the password for this file; it is the same as that supplied to CREATE.

"L" LINE LOADING, "M" MAXIMUM, "5" SPACE (Long Form). L, M, S? (Short

Form)

There are three types of file analyses:

1. Line loading analysis; i. e., the percentage lines used on each page. (Enter
"L" to get this type of analysis.)

2. Space loading analysis; i. e., the percentage of space used on each page.
(Enter "5" to get this type of analysis.)

3. Maximum loading analysis; i. e., the percentages are calculated for each
page by both space and line, and the larger of the two is used for the graph.
If an undefined character or only carriage return, is entered, the "5" option
is assumed.

When the "M" option is selected and the short form has not been selected,
the following explanation is output:

The " J" WILL BE REPLACED BY "5" IF SPACE IS LARGER

"L" IF LINE PERCENT IS LARGER, UNCHANGED IF EQUAL.

"Y" TO ENTER PAGE NUMBERS (Long Form) (See Figure 6-3.)

6-8 #DA08

RANGE? (Short Form)

If you wish to start and! or stop the analysis at specific page numbers, "X" will

allow you to control the s e limits.

ENTER START IF OTHER THAN PAGE ONEo (Long Form)

STAR T? (Short Form)

Enter the page number of the first page to be graphed; if it is to start with the first

page, just hit "return".

ENTER END IF OTHER THAN EOF (Long Form)

END? {Short Form}

Enter the number of the last page to be graphed if the entire file from the "START"

is not checked. By entering the same page number in the start and end, a one line (page)

graph would result. {See Figure 6-4. }

ENTER "Y" TO LIST SUMMARY ONLY {Long Form} {See Figure 6-5.}

SUMMARY ONLY? {Short Form}

To skip the graph {bar graph} and output, only the summary of the analysis enter

"Y". The summary follows all graphs and reflects only the area "analyzed". Thus, if a

"range" of 10 to 20 were given and a "Summary Only" requested, the summary would

reflect only pages 10 to 20, inclusively.

GRAPH OF PERCENT LOADING OF DATA-BASE BY MAXIMUM {Long Form}

MAXIMUM {Short Form}

Figure 6-3. Sampl e Long Form and Short Form Headers

2 3 4 5 6 7 8 9

a 0 a 0 0 0 0 0 0

.. 1 1 11 1 ' ...
... 1 1 " 1 1 1'"

0008]

% FILLED 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

OF PAGES 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000

Figure 6-4. Sample "One Page" Graph

6-9 #DA08

MAXIMUM

% FILLED

OF PAGES

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0021 0027 0009 0002 0003 0006 0003 0001 0005 0003

Figure 6-5. Sample "Summary Only"

0059 S 1.

0060 S 1.

0061 S 1. .•.

0062 L ..

0063 L ..

0064 S 1. ...

0065 S

0066 S

0067 S •... 1.

0068 S •... 1 2 3 ..•. 4 5 6 .. .

0069 S .••. 1 ...• 2 3 4 5 6 7 ..•. 8

0070 S 1 2 .•.. 3 4 5 ...• 6 7 .••. 8

0071 S ••.. 1 •... 2 3 .••• 4 5 •..• 6 •.•• 7 .•.. 8

0072 S .•.• 1 2 ...• 3 ••.• 4 5 •... 6

0073 L ..

0074 L ..

(Note the "S" and "L" marking of left column to show which percent was larger,

space or lines. Also note that the six asterisks (,:o:o:o:o:o:c) mark the division of

dictionary area from record area.)

Figure 6-6. Sample "Maximum"

6-10 #DA08

THE DESTROY SUBSYSTEM

Function

The DESTROY subsystem is used to release a dataBASIC file. If the tree structure

of catalog and files is not properly handled, there will be an unanswered and almost un

recoverable loss of link space. To avoid this, DESTROY was developed to handle the

release of the entire structure.

The user supplies the name of his "file" which, in the file structure, is actually the

catalog name; a check is made to determine if there is a retreat file and data file under

the catalog. The files that are present are released, starting with the retreat file, followed

followed by the data file, and finally the catalog.

If any file is present and cannot be released, then DESTROY stops to notify the user

and to return control to the system.

If all the files and catalog are released, the word "SUCCESSFUL" is printed on the

user1s keyboard device.

Input

The only input to the program is the dataBASIC file name which is supplied by the

user from the keyboard input device via TSS.

Processing

The user-supplied name is put into the cat/file description as the catalog name, and

the name ".JOUR." is put in as the file name. An attempt is made to access the file. If

the file is not present, the program next considers the data file ".DATAO". If it is

present, it must be successfully released or the program will not continue.

The catalog is then purged last.

Output

The only output consists of the messages to the user at the keyboard device via TSS

derails.

6-11 #DA08

Error Handling

If the journal is present and cannot be purged, the message "SYSTEM

MALFUNCTION CS30" is printed and the program exists to the system, If the catalog can-

not be purged, the message "SYSTEM MALFUNCTION CSlO" is printed and the program

exits to the system.

If the user-supplied name has special characters other than " " or "-" the message

"INV ALID FILE NAME" is printed and the program recycles.

If the password contains special characters other than decimal or dash, the message

"INV ALID CHARACTERS IN PASSWORD" is printed and the user is asked for the password.

If TSS returns a status of 148 to the program, a message of "PASSWORD INVALID"

is printed and the program recycle s.

Error Messages

Error rnessages and meanings for the DESTROY subsystem are tabulated in

Figure 6-7.

Error Message Meaning

Invalid File Name Name has character included that is
non-alpha, non-nume ric, and not a
decimal (.) or dash (-).

System Malfunction CS30 Journal is present but cannot be purged
from the file.

System Malfunction CS20 Data file is pre sent and cannot be
purged. Journal has been purged.

System Malfunction CS 1 0 Cannot purge catalog. Journal and
data files have been purged ..

Invalid Characters in Password Special characters other than " " or
"-" found in pas sword.

Password Incorrect Error status from TSS indicates
mis sing or invalid password.

Figure 6-7. DESTROY Subsystem Error Messages and Meanings

6-12 #DA08

THE VERIFY SUBSYSTEM

Functions

The VERIFY subsystem is a Time-Sharing subsystem which checks a dataBASIC

file by traversing the I-D-S chains in the file. A count of all records of each record type

is made and compared with the corresponding counter in the file record. All record

counts in the PRIME NAME and PRIME VALUE records are also verified. Whenever the

count differs from that in the file, it replaces the previous count. ENTITY, NAME, and

V ALUE records having no OCCURRENCE detail records are deleted. Whenever no

SYNONY:tY1 record exists which corresponds to a NAME record (or no INDEX record

corresponding to a Value record), a SYNONYM record is generated.

Input is any data BASIC file.

Processing

In response to SYSTEM? specify DATABASIC.

For OLD OR NEW, respond NEW.

For ~:~, respond VERIFY.

For FILENAME, give the DATABASIC file name.

For PASSWORD, give the password for the dataBASIC file.

Output

Output consis ts of a lis t of {I} record type s found in the file, {2} co rre s ponding

record counts as recorded in the file record {noted as "OLD"}, and {3} the record counts

generated as this program traverses the various I-D-S chains {noted as "NEW"}. When

ever these counts differ, an "~:~,, is printed following the new count, and the new count re

places the corresponding count in the file record.

Error Handling

Whenever a Prime Name record, a Prime Value record, or an Entity record has

no occurrences, that record is deleted and the corresponding record count is adjusted.

Any deleted names or values are printed.

Whenever a Prime Name record has no Synonym record, a Synonym record is

generated.

6-13 #DA08

Whenever a Prime Value record has no Index record, an Index record is generated.

A three-way check of the total number of occurence records is made which includes

(1) total entity occurrenQes, (2) total name occurrences, and (3) a sum of the value occur

rence counts in the value records. Whenever two of these disagree, the three totals are

printed.

Error Me s sage s

The following error messages may occur when attempting to access the dataBASIC

file (in each case the file name or password should be given when requested):

,,~:~~:~~:~ ERR - ILLEGAL DELIMITER X"

,,~:o:o:~ ERR - NAME TOO LONG"

,,~::~::~:: ERR - PASSWORD TOO LONG"

If an I-D-S error of the type which can be trapped by the program occurs, a message

of the following type is printed:

,,~:~~:o:~ ERR - UNSUCCESSFUL AAAAA BBBBB - CURRENT RECORD XXXXX YY"

where AAAAA is the dataBASIC record (or chain) name, BBBBB is either RETRIEVE,

STORE, MODIFY or DELETE, and XXXXX YY is the reference code of the current record.

VERIFICA TION OF FILE DB TES T 12/05/69

V ALUE COUNT ERROR, PRIME NAME - MAIL:DROP

OLD COUNT 8 NEW COUNT 7

PRIME VALUE DELETED - - X

V ALUE COUNT ERROR, PRIME NAME - ASSIGNED

OLD COUNT 1 1 NEW COUNT 10

2 PRIME NAME RECORDS WITH VALUE COUNT ERRORS

TOTAL COUNT OLD NEW

ENTITY 23 23

PRIME NAME 15 15

SYNONYM 15 15

VALUE 122 122

INDEX 122 122

OCCURRENCE 179 179

~::~:~~:: ERRORS NOTED ABOVE WERE CORRECTED ~:~~:~~:~

END OF DATABASIC FILE VERIFICATION

DELETIONS ADDITIONS

Figure 6-8. Output Report Sample of Verification of File DBTEST

6-14 #DA08

SECTION VII

COMMUNICATING WITH THE SYSTEM

TERMINAL OPERA TION CONTROLS

This manual assumes that the terminal used is a Teletype Model 33 or 35. With

this terminal, the communication between user and computer is displayed by means of

typed copy on paper. The Teletype keyboard is a standard typewriter keyboard except

that it has special-purpose keys which the user must be familiar with. These keys

with associated functions are indicated in Figure 7-1.

KEY

RETURN

C TRL plus X

@
SHIFT plus P

BREAK

FUNCTION

Depressing the RETURN key returns the carriage
and transmits the typed line to the system.

The computer ignores the typed line until this
key is depres sed.

When these keys are depressed simultaneously,
the terminal deletes the entire line being typed.

The word DEL is printed and the carriage is
returned. The line is ignored by the computer.

The @ symbol is located on the P key and is
generated when depressed with either shift key.

It is used to delete the character or space
immediately preceding the @ If this key is
depressed n times, the n preceding characters
or spac e s will be deleted. For example:
ABCWT@9bE will be treated as ABCDE when
RETURN is depressed.

AB C@@@CDE will be treated as ACDE when
RETURN is depressed.

Depressing the BREAK key causes the system to
discontinue printing or computation. One type of
terminal requires that a BRK-RLS (break-release)
button be depressed followin'g the use of BREAK in
order that operations continue.

Figure 7-1. Teletype Model 33 or 35 Special Purpose Keys

7-1 #DA08

KEY ~TT ~T'- I'"'T"lTr""\1\.T .r u l\jv 1.1.Vl\j

BREAK BREAK should not be used unless absolutely
necessary becautse it cautsets the file to be retstoreu
to its contents prior to execution if the dataBASIC
prograITl caused the file to be changed.

Figure 7-1. Teletype Model 33 or 35 Special Purpose Keys (continued)

Other operational controls not on the keyboard are necessary to the operation of

the terITlinal; they include power on-off, connection to a phone line, and selection of

operating ITlode. The location and operation of these controls differ according to the

type of ter ITlinal in use. The us er ITlust rec eive on- site instruc tion or ITlust study the

instruction ITlanual for his terITlinal to gain faITliliarity with these operational controls.

For a cOITlplete description of the Teletype unit, refer to the instruction ITlanual

accoITlpanying the unit.

CONNECTING TERMINAL TO COMPUTER

In order to connect with the cOITlputer froITl a terITlinal, proceed as follows:

1. Turn unit on and obtain a dial tone.

2. Dial one of the nUITlbers at the Tin1.e-Sharing Center.

When the connection is rn.ade, a high-pitched tone is received; then there will be

no tone at all, and the terITlinal will print out an indication that the cOITlputer is avail

able and that con1.ITlunication with the cOITlputer can be ITlade through the terITlinal.

GETTING ON PROCEDURE

\Vith the terITlinal connected to the cOITlputer, the systeITl initiates a "log-on"

procedure. During this procedure, the terITlinal will ask for inforITlation; to this a

proper response ITlust be ITlade, each re sponse followed by a carriage return (achieved

by depressing the RETURN key). First, the terITlinal will ask for a user's identification.

(This is a string of characters assigned to uniquely identify the user to the cOITlputer for

the purposes of identifying his prograITls and accounting for the user's charges.)

Next, the terITlinal will ask for a password. The area on which the password is

printed will be scored over by the terITlinal to ITlake the password illegible. The purpose

of this password is to assure the cOITlputer that it is "talking!! to the legitiITlate user and

not to SOITleone else using his identification. The password is his protection against

unauthorized use of his user identification.

7-2 #DA08

Next, the terminal will ask the user to select the system he wishes to use (in this

case, the dataBASIC system). If an invalid system name is given, the system will print

the message "SYSTEM UNKNOWN" and will repeat the request for a name until a valid

name is given. After a valid response, the terminal will ask if the user is going to work

with an OLD or NEW program, to which the user must reply with either OLD or NEW.

A NEW program is one in which the user will enter all of the program statements

at this session at the terminal. An OLD program, on the other hand, is a program that

has been previously generated at other sessions at the terminal and has been saved for

future use. If the user's response is OLD to the question OLD or NEW, the system

will ask him for the OLD file name. This will be the same name he had previously used

when saving his program with the control command SAVE.

After the terminal prints READY FOR INPUT, and an asterisk on the following

line, the user may begin to enter his new program, add or modify statements in his

old program, or use one of the control commands (e. g., LIST or RUN).

A typical log-on sequence follows:

THIS IS THE T /S SYSTEM ON 09/14/67 AT 9.183

USER ill - - DOE

PASSWORD

$$$$$$$$$

SYSTEM? DA TABASIC

OLD OR NEW -NEW

READY FOR INPUT

,'.
'.'

This example illustrates the most elementary use of the OLD/NEW selection

of programs.

CREATING A dataBASIC PROGRAM

The essentials of forming statements or lines and of creating a dataBASIC program

are as follows. Each line contains four parts in the below listed sequence.

1. Line number: Each statement is prefixed by a one to five digit line
number that serves two purposes: (a) It is used as a sequence control
within the program, specifying the order in which statements are to
be executed, and (b) it uniquely identifies a line. It can contain no
imbedded spaces, but must be followed by one or more space s.

7-3 #DA08

2. Control word: This word tells the dataBASIC systeIll what function it is to
perforIll. (See Appendix A for list of control words.)

3. All other words: These are written in accordance with the spec ifications
for each control word.

4. Carriage return character: This character denotes the end of a line. The
dataBASIC systeIll responds to this with a line feed and prints an asterisk
(l:C) when it is ready to accept the next line of input.

Characters after the 72nd character of a line will not be used.

An exaIllple of a sta teIllent follows:

10 READ ABC D €9
(The line is identified as stateIllent 10, READ is the control word, and
ABC D are variables.)

A second exaIllple is:

40 END €9
The line is identified as stateIllent 40, and END is the control word
constituting the staten."1ent. The actual entry at the terIllinal of a
sequence of stateIllents of a dataBASIC prograIll requires knowledge
of control cOIllIllands, terIllinal operation, and eleIllentary dataBASIC
stateIllents.

ENTERING A PROGRAM

After the terIllinal prints READY FOR INPU T, it indicates its availability for

input by printing an asterisk on the next line at the left Illargin. Thereafter, each

carriage return generates an asterisk at the left Illargin of each succeeding line, thus

indicating readiness for input. Each stateIllent should begin with a line nUIllber (after

the asterisk) containing no Illore than eight digits and no spaces or non-digit characters.

The RE TURN key IllUSt be depressed at the cOIllpletion of each line of input to achieve

a carriage return, causing the transIllis sion of the inforIllation to the cOIllputer.

The prograIll input for a siIllple prograIll following READY FOR INPU T and

subsequent asterisk would appear as follows:

READY FOR INPUT

l:clO FOR MAKE = "BUICK" §
~:c20 PRINT RECORD €9
~:c30 NEXT €9
~:c40 END @
~cRUN @

7-4 #DA08

The above program would print the records describing BUICK upon the receipt of

the control command RUN.

ENTERING THE PR<XiRAM FROM PAPER TAPE

If the user is to enter his program from paper tape, he must respond with the

control command TAPE after READY FOR INPUT. The procedure for using paper tape

is as follows:

1. Place paper tape in terminal tape reader.

2. Select tape-input operating mode, if required.

3. Start tape reader.

4. Input from paper tape will be accepted until one of the following occur s:

a. tape reader is turned off,

b. tape runs out,

c. tape jams in tape reader, or

d. an X OFF character is encountered on the tape.

ERROR CORRECTIONS

If while entering his program the user has made errors which are self-evident,

he can correct his program during typing or before giving the R UN command as follows:

• A new statement may be substituted for a statement containing errors
by retyping the statement number and a corrected version of the
statement. The fir st ver sion of the statement will be ignored in the
running or listing of the program.

• A statement may be eliminated from the program by typing its number
and depressing the RETURN key. That statement will then be ignored
during the running or listing of the program.

• The current line being typed can be deleted by depressing the CTRL and
X keys simultaneously. That line will then be ignored.

• Typing errors if perceived during the typing process may be corrected
by using the @ symbol. The character or space immediately preceding
the @will thus be deleted. If this key is depressed n times, the n
preceding characters will be deleted.

• Additional statements may be inserted into the program by typing them
with line numbers which indicate their places within the program sequence.
For example, if one or more new statements are desired between statements
30 and 40, they could be assigned line numbers from 31 to 39. In the running
or listing of the program, the new statements will be properly sequenced.

7-5 #DA08

If language errors (stateITlents violating the dataBASIC language format) are made

by the user while entering his program and they are not perceived,' error messages of

a diagno stic nature v:ill be printed upon use of t.1"e control command R UN to aid the user

in making corrections. (See Appendix D.)

RUNNING THE PROGRAM

After typing the complete program, the user type s the control command RUN

and depresses the RETURN key. If there are no format errors, the computer will

execute the statements, and the terminal will print out the results. If it is obvious to

the user that wrong answers are being given, he can depress the BREAK key, causing

output to cease. However, it is better that he debug his program by limiting the record

selection phase through the use of counts to some small numbers of records. For

example, if the user were interested in finding the total value of all Plymouths with

autornatic transmis sions in his lot, and he wanted to check his program prior to running

it completely, he might use this sequence of statements:

10 FOR MAKE = "PLYMOUTH"

20 AND TRANSMISSION = "AUTOMATIC"

30 AND B < 10

40 LET A = SUM SALES:PRICE

50 LET B = SUM 1

60 PRINT SALES:PRICE

70 NEXT

80 PRINT "TOTALS" A II "NO. CARSl.6"B

90 END

Using this program, he could check his results by computing the sum of the sales

prices for the first 10 selected cars, and then checking this computation against the

total printed on line 80. When he is satisfied that his results are correct, he could

remove lines 30 and 60 from the program, and run it. If logical errors were made by

the user in constructing his program, the results will be erroneous or may not appear

at all.

Logical errors do not generate error messages, they must be found by analyzing

the program. Upon completion of program execution and its resulting output (if any),

the terminal prints READY which indicates the system's availability for further input.

If the user wishes to modify his program, he may now do so by retyping only those

statements he wishes changed to achieve the desired modification. When the control

7-6 #DA08

cOITlITland RUN is again given, a new output will be produced. The ITlodification process

can be repeated as often as wanted by the user. The control cOITlITland LIST ITlay be used

at any tiITle the user wishes to inspect the current content of his prograITl; it will show

the result of any ITlodification.

If the user wishes to save his prograITl for future use, he ITlust use the control

cOITlITland SAVE file :naITle; the systeITl will respond with

DA TA SAVED-file:naITle

where file :naITle is the naITle under which the prograITl is saved. If the user wishe s to

discontinue working with his present probleITl but to continue the use of the dataBASIC

systeITl, he ITlay use either the cOITlITland NEW or OLD. If NEW is typed, the systeITl

will respond with READY and the user can then enter a new prograITl. If OLD is typed,

the systeITl will ask for OLD NAME. When the old prograITl naITle file :naITle is supplied,

the systeITl will respond with READY FOR INPUT. Modifications can be ITlade as with

a NEW prograITl, and the prograITl can be listed. Upon the control cOITlITland R UN, the

old prograITl will be run. (The entry OLD file :naITle will bypass the request OLD

NAME-.)

NOTE: The old prograITl ITlust be a dataBASIC prograITl which has been
saved at a previous session at the terITlinal. If the user types
the control cOITlITland DONE while the dataBASIC systeITl is
requesting input froITl the terITlinal, the tiITle-sharing systeITl
will sign hiITl off the dataBASIC systeITl; but it will perITlit hiITl to

select another systeITl within the confines of the tiITle-sharing
systeITl, and continue his use of the cOITlputer.

GETTING OFF PROCEDURE

If the control cOITlITland BYE is entered while the dataBASIC systeITl is requesting

input froITl the terITlinal, it will cause the tiITle-sharing systeITl to "log-off" the user

and disconnect the terITlinal. The tiITle- sharing systeITl will then provide a SUITlITlary of

the aITlount of tiITle and re sourc e s used for this run, along with the total aITlount of the

user's resources expended to date.

AUTOMATIC TERMINATION FROM TERMINAL

The user will be autoITlatically terITlinated froITl the systeITl for any of the following

reasons:

1. If he responds twice with an invalid user identification, the terITlinal will
reply after the first invalid use with the ITlessage ILLEGAL ID-RETYPE--;
if he responds with an invalid user identification a second tiITle, he will be
terITlina ted.

7-7 #DA08

2. If he responds twice wit...~ an invalid password, the terminal will reply after
the first invalid use with the message ILLEGAL PASSWORD--RETYPE--;
if he responds with an invalid password a second time, he will be terminated.

3. If he depresses the CLR button on the terminal.

4. If he leaves the terminal in an idle state for more than ten minutes.

5. If his user's resources are overdrawn by more than 10 percent, the message
"RESOURCES EXHAUSTED. CANNOT ACCEPT YOU" will be printed by the
terminal before termination takes place.

7-8 #DA08

Functional
Category

DECLARATIONS

APPENDIX A

SUMMARY OF dataBASIC LANGUAGE STATEMENTS,

EXPRESSIONS AND REPLACEMENTS

Table A-I. dataBASIC Language Statements

Control
Word

DATA
FILE

DATA
FILE

Statement

literal ... literal
filename

DATA SELECTION FOR FOR ALL

NEXT

DATA MANIPULATION DELETE

INPUT/OUTPUT

FIX

LET

STORE

INPUT

PRINT

READ

FOR
FOR
FOR
FOR
NEXT

name
relational: expre s sion
FNAME dictionary:expres sion
FV ALUE dictionary:expression

DELETE RECORD
DELETE name
DELETE name value value ..• value
DELETE ALL value
FIX name = value --
FIX name value = value
LET wsfield = assignment:expression
LET wsfield = arithmetic:expression
STORE RECORD
STORE COpy
STORE name value value .•. value

INPUT wsfield wsfield ..• wsfield

PRINT RECORD
PRINT print:expre s sion print:expre s sion

. .. print:expre s sion
PRINT

PRINT
READ

A-I

print:expre ssion print:expres sion
. •. print:expre s sion;

wsfield wsfield ... wsfield

#DA08

Table A-l. dataBASIC Language Statements (Cant.)

Functional Control
Category Word Statement

CONTROL END END --EXIT EXIT
GOSUB GOSUB line:num ber

GOSUB line :num be r wsfield wsfield ...
wsfield

GOTO GOTO line:number ---IF IF relational:expre s sian THEN -
line:number

RETREAT RETREAT
RETURN RETURN
STOP STOP ---

DOCUMENTATION REM REM character: string ---
(Note: Value references are

restricted to wsfield and literal
for "s TORE", "FIX", and
"DELE TE" statements.)

A-2 #DA08

Table A-2. dataBASIC Expression and Replacements

Expression May Be Replaced By

relational:expre s sion

corn pound:condition

condition

sim pIe : condition

name

value

relational:operator

dictionary:expre ssion

ari thm etic :expre s sion

compound:cond.
compound:cond. OR compound:cond . .•. OR

compound:cond.

condition
condition AND condition ... AND condition

sim pIe : condition
NOT simple:condition

name
ALL
--
value
value
value

rfield
wsfield

Ii teral
wsfield
rfield
wsfield

=

>
<
= >

< =

< >

ALL --

ALL --
value
reI a ti 0 nal : 0 per a to r value
NULL ---
FROM value TO value

& -

& -

(which means equal to)
(which means greater than)
(which means Ie s s than)
(which means greater than or equal to)
(which means less than or equal to)
(which means not equal to)

relational:operator value
FROM value TO value --

value arithmetic :ope rat~r value
ABS value
--
RND value
--
SUM value
NEG value
--
INT value

A-3 #DA08

Table A-2. dataBASIC Expres sian and Replacements (Cant.)

Expression May Be Replaced By

assignment:expres sion value
MAX value --
MIN value --
NULL
FNAME
FVALUE

ari thmetic :operator + (which means add)

- (which means subtract)
-,- (which means multiply) -,'

I (which means divide)

/\ (which means raise to a power)

forma t: expre s sion II alphanumeric:format II

II nume ric :format II

print: expre s sion value
value EDIT format:expression ---
FNAME·
FVALUE

A-4 #DA08

AUTOMATIC

ANALYZE

BYE

CATALOG

CREATE

DESTROY

DONE

LIST

NEW

OLD

PURGE

RESEQUENCE

RUN

SAVE

STATUS

TAPE

VERIFY

APPENDIX B

ALPHABETIC LIST OF TERMINAL COMMANDS

B-1 #DA08

APPENDIX C

ALPHABETIC LIST OF RESERVED WORDS

ABS NULL

ALL PAIR

COpy PHO

EDIT PRINTER

FNAME PUNCH

FROM READER

FVALUE RECORD

HIER RND

INT RULE

LOCK SUM

MAX TAPE

MIN THEN

NEG TO

NOT UNTIL

C-l #DA08

APPENDIX D

TERMINAL ERROR MESSAGES AND SYSTEM MALFUNCTION MESSAGES

TERMINAL ERROR MESSAGE TYPES

Terminal error messages are printed by the dataBASIC system whenever a

dataBASIC language rule is violated. These messages are printed at the terminal after

the control command RUN is given.

Terminal error messages may be divided into three classes; namely, compiler

error messages, routine error messages, and language processor error messages.

Compiler Error Messages

Compiler error messages may be printed during program compilation and may

prevent execution. They rnay be subdivided into two groups. The first group references

the statement printed on the line preceding the error message. An example of this group

of error messages is

lOOA LET A "XXX"

MISSING OR INVALID LINE NUMBER

The above example indicates that the statement contains a Ir"lissing or invalid line

number and is repeated in Table D-l along with other compiler error messages.

D-l #DA08

Table D-l. Compiler Error Messages - Type 1

Message

MISSING OR INVALID
LINE NUJ\tlBE R

INVALID STATEMENT

INVALID OPERA TOR

INVALID STATEMENT FORMAT

INVALID EDIT FORMAT

MISSING OR INVALID
FIELD NAME

MISSING OR INVALID FIELD
VALUE

FILE PREVIOUSLY DECLARED

MISSING OR INVALID WORKING
STORAGE REFERENCE

INVALID CHARACTER IN
STATEMENT

MISSING QUOTE MARK

UNPAIRED NEXT STATEMENT

INVALID EXPRESSION

Explanation

Statement contains a mis sing or invalid
line number.

Statement is unrecognizable.

Statement contains an invalid arithmetic
or logical operator.

Statement has been specified incorrectly.

Statement contains an invalid edit
format control word.

Statement is either missing a required
field:name or contains an invalid
fi e ld : na me •

Statement is either missing a required
field:value or contains an invalid
field :value.

A file statement has previously been
encountered. dataBASIC allows reference
to only one file dur ing a run.

Statement is either mis sing a required
working storage reference or contains an
invalid working storage reference.

Statement contains an invalid dataBASIC
character for which a blank is substituted.

Statement contains an alphanumeric literal
or print format control word with a
missing quote mark.

Statement has no corresponding FOR
statement.

Statement contains an invalid arithmetic
or logical expre s sion.

D-2 #DA08

Table D-l. Compiler Error Messages - Type 1 (cont.)

Mes sage

EXPRESSION EXCEEDS COMPILER
LIMITATION

Explanation

Statement has caused a compiler limitation
to be exceeded. Compiler limitations are

• A maximum of 10 nested FOR
sta tements.

(This may cause invalid UNPAIRED
NEXT STATEMENT error messages
to be printed.)

• A maximum of 25 simple conditions
in a relational:expression.

The second group of compiler error messages references the overall structure

of the dataBASIC program. This group is tabulated in Table D- 2.

Table D-2. COlTIpiler Error Messages - Type 2

Message Explanation

FILE NOT DECLARED Program doe s not contain a file statement.

MISSING NEXT STATEMENT Program contains one or more FOR
statements with no corresponding NEXT
statement.

LINE XXXXX UNDEFINED Program references a line numbered
statement which is undefined.

Runtime Error Messages

Runtime error messages may be printed during execution of a dataBASIC program.

Each of these messages contains a reference to the statement being executed when the

error occurred. Ac tion taken after the error occur s is error-dependent.

An example of a runtime error message which indicates that a divide check

occurred during the execution of statement 100 is

LINE 100 DIVIDE CHECK

D-3 #DA08

Other runtime error messages are listed and explained in Table D-3 below.

Table D-3. Runtime Error Mes sages

Me s sage Explanation

LINE XXXXX FILE UN- File is currently being updated by
AVAILABLE another user. Program is terminated

with no retreat.

LINE XXXXX ALLOTTED
FILE SPACE EXCEEDED

LINE XXXXX INVALID INPUT

LINE XXXXX NO CURRENT
RECORD

LINE XXXXX INVALID FIELD
VALUE

LINE XXXXX FILE NOT
DECLARED

LINE XXXXX OUT OF DA TA

LINE XXXXX DIVIDE CHECK

LINE XXXXX OVERFLOW

D-4

File space has been filled to
capacity. Program is terminated
and retreat performed.

Terminal input has been incorrectly
specified. Request for input is
repeated.

No current record is available for
a statement requiring a current
record for execution. Prograrn ~s
terminated, and if the program
contains a statement which modifies
the file, retreat is performed.

Field:name specified in wsfield is
invalid. Program is terminated,
and if the program contained a
statement which modified the file,
retreat is performed.

Statement requiring access to the
file has been executed prior to
execution of the file declaration
statement. Program is terminated
with no retreat.

Attempt to read more data than
specified in DA TA statements.
Program is terminated with no
retreat.

Divide check occurred during ex
ecution 0'£ statement specified. The
result is set zero and the program
continues.

Arithmetic overflow occurred during
execution of statement spec ified.
The result is set zero and the prograrn
continues.

#DA08

Table D-3. Runtime Error Mes sage s (cont.)

Message Explanation

LINE XXXXX INVALID Exponentiation error occurred during
EXPONENT execution of statement specified. The

result is set zero and the program
continues.

Language Processor Error Messages

Language error messages may be printed during compilation or execution of

a dataBASIC program. Each of these messages causes processing to stop. If an

error occurs during execution and the program contains a statement modifying the

file, then retreat will occur.

Table D-4 lists and explains the two language processor error messages printed

by the dataBASIC system:

Table D-4. Language Processor Error Messages

Message Explanation

LINE XXXXX MEMOR Y The memory allotted to compile and
EXCEEDED execute the dataBASIC program has

been exceeded.

SYSTEM MALFUNCTION XXXXX
(See also tables D-5 through
D-12)

SYSTEM MALFUNCTION MESSAGES

A system malfunction has occurred
over which the user has no control.
This error should be reported to
per sons responsible for maintaining
the system.

System malfunction messages may
be classified according to the activity
during which they originate.

System malfunction messages may occur during the many activities of the

dataBASIC system. Tables D-5 through D-12 provide a list of these messages in code

form, along with a definition of each message and its associated activity source.

D-5 #DA08

Table D-5 lists system malfunction messages which may occur during the

compilation or execution of a program:

Table D- 5. System Malfunction Me ssage s During Compilation/Execution

Mes sage Code Definition Ac tivity Sourc e

00004 COMPILER ERROR During management
routines

AAOl INVALID ERROR CODE-
COMPILER ERROR

AA02 BAD OFFSET

AAFl INVALID OP CODE

AAF2 MEMORY FAULT

AAF3 TAB FAULT

BJOl COMPILER ERROR IN During control
SOURCE FILE (POSSIBLE routines
NO SOURCE FILE)

BJ03 COMPILER ERROR -
BLOCK COUNT

BJ02 COMPILER ERROR -
READING INPUT

BMOl COMPILER ERROR - During code generation
INVALID SUBROUTINE routines
NAME

BM02 COMPILER ERROR -
INV ALID OPERA TOR

BM03 COMPILER ERROR -
INV AL ID LOG IC
OPERATOR

BM04 COMPILER ERROR -
CODE GENERA TION

BM05 COMPILER ERROR -
CODE GENERATION

BM06 COMPILER ERROR -
CODE GENERATION

D-6 #DA08

Table D-S. System Malfunction Messages During Compilation/Execution (cont.)

Message Code Definition Activity Source

BM07 COMPILER ERROR - During code generation
CODE GENERA TION routines

BM08 COMPILER ERROR -
CODE GENERATION

BM09 COMPILER ERROR -
CODE GENERA TION

BMIO COMPILER ERROR -
CODE GENERATION

BKOI EXPANSION LEVEL During compiler
GREA TER THAN 8 expansion routines

BK02 EXPANSION ERROR

BK03 ERROR IN FOR ...
EXPANSION

BK04 ERROR IN FOR ...
EXPANSION

BKOS ERROR IN FOR •••
EXPANSION

BK06 ERROR IN FOR •.•
EXPANSION

BK07 ERROR IN FOR ...
EXPANSION

BK08 ERROR IN FOR .••
EXPANSION

BK09 ERROR IN FOR ••.
EXPANSION

BKIO ERROR IN FOR •..
EXPANSION

BKll ERROR IN FOR ...
EXPANSION

BK12 EXPANSION ERROR

BK14 ERROR IN FOR ...
OR FIX ... EXPANSION

D-7 #DA08

Table D- 5. System !-.1alfunction Me s sage s During Compilation/ Execution (cont.)

Mes sage Code Definition Activity Source

BK15 ERROR IN FIX ... During com.piler
EXPANSION expansion routine s

BK16 ERROR IN FIX ...
EXPANSION

BK17 ERROR IN LET •.•
EXPANSION

BK18 ERROR IN LET •••
EXPANSION

BK19 EXPANSION ERROR

BK20 EXPANSION ERROR

BK21 EXPANSION ERROR

BK22 EXPANSION ERROR

BK23 EXPANSION ERROR

BK24 EXPANSION ERROR

BK25 EXPANSION ERROR

BK26 EXPANSION ERROR

BK27 EXPANSION ERROR

BK28 EXPANSION ERROR

BK29 EXPANSION ERROR

BK30 EXPANSION ERROR

BK31 EXPANSION ERROR

BK32 EXPANSION ERROR

BK33 EXPANSION ERROR

BK34 EXPANSION ERROR

BK35 EXPANSION ERROR

BK36 EXPANSION ERROR

BK37 EXPANSION ERROR

D-8 #DA08

Table D- 5. System Malfunction Me s sages During Compilation/Execution (cont.)

Message Code Definition Activity Source

BK38 EXPANSION ERROR During compiler
expansion routine s

BK39 EXPANSION ERROR

BK40 EXPANSION ERROR

BK41 EXPANSION ERROR

BK50 ERROR IN FIX ..•
EXPANSION

BK51 ERROR IN FIX ...
EXPANSION

BK52 ERROR IN FIX ...
EXPANSION

0005 COMPILER SCAN During compiler
ERROR management

0006 COMPILER ERROR -
PREVIOUSLY
DEFINED LINE NO.

OOO? COMPILER ERROR -
INVALID ERROR CODE

0008 COMPILER ERROR -
IN LINE NO.
REFERENCE

System malfunction messages are also possible at runtime. being generated

during I-D-S routines. These messages are listed and defined in Table D-6.

D-9 #DA08

Table D-6. System Malfunction Mes sages During I-D-S Routine s

Message Code~:~

XANN

DMNN

~:cNote: The code NN
can take on four
value s not defined as
normal I-D-S error
codes. These values
are defined below and
are generated by the
Q TDRL subroutine:

76

77

78

79

Definition

ANN is the I-D-S ERROR CODE
(See CPB-156 5.)

M IS 1 OR 2, AND NN IS THE I-D-S
ERROR CODE (See CPB -1565.)

CHECKSUM CHARACTER ALERT

END OF FILE CONDITION

END OF LOGICAL FILE CONDITION

UNDEFINED I/O ERROR CONDITION

System Malfunction Messages may also be generated by . SIDSO during a routine

attempt to access the dataBASIC file. DATAO. These messages are tabulated and

defined in Table D-7.

Table D-7. System Malfunction Messages During .DATAO Accessing

Message Code Definition

BB1B 4002 - I/O ERROR - CANNOT PROCEED

BB1F 4006 - LLINK SPACE EXHAUSTED

BB1G 4007 - DEVICE TYPE UNDEFINED

BB1H 4010 - LINK SPACE EXHAUSTED

BB11 4011 - NON-UNIQUE NAME

BB1J 4012 - SIZE REQUESTED LESS THAN
CURRENT SIZE

BBIK 4013 - REQUESTED SPACE EXCEEDS THAT
ALLOWED

D-10 #DA08

Table D-7. System Malfunction Messages During. DATAO Accessing (cont.)

Message Code Definition

BBIM 4015 - I-D -S FILE IN ABOR T S TA TUS

BBIN 4016 - I-D-S FILE IN RECOVERY STATUS

BBIO 4017 - SEEK ADDRESS CALCULA TION ERROR

BBIP 4020 - FAILURE IN NAME SCAN (IMP.)

BBIQ 4021 - UNDEFINED DEVICE (IMP.)

BBIR 4022 - DEVICE LINK TABLE CHECKSUM
ERROR

BBIS 4023 - INCONSISTENT FDW BLOCK COUNT

BBl T 4024 - INTERNAL LINK TABLE CHECKSUM
ERROR

BBIV 4037 - DUPLICATE NAME IN AFT

BBIW 4040 - NO PA T SPACE AVAILABLE
UNDEFINED STATUS CODE
RETURNED

System Malfunction Messages may also be generated by . SIDSO during a routine

attempt to access the Retreat file. JOUR. These messages are listed and defined in

Table D-S.

Table D-8. Systenl Malfunction Messages During. JOUR. Accessing

Message Code Definition

BB2A 4001 - NAME NOT IN SYSTEM MASTER

CATALOG

BB2B 4002 - I/O ERROR - CANNOT PROCEED

BB2C 4003 - PERMISSIONS DENIED

BB2D 4004 - FILE BUSY

BB2E 4005 - INCORRECT CATALOG/FILE
DESCR IP TION

BB2F 4006 - LLINK SPACE EXHAUSTED

D-ll #DAOS

Table D-8. System Malfunction Messages During. JOUR. Acce.ssiu::: (cont.)

1vles sage Code

BB2G

BB2H

BB2I

BB2J

BB2K

BB2L

BB2M

BB2N

BB20

BB2P

BB2Q

BB2R

BB2S

BB2T

BB2V

BB2W

Definition

4007 - DEVICE TYPE UNDEFINED

4010 - LINK SPACE EXHAUSTED

4011 - NON-UNIQUE NAME

4012 - SIZE REQUESTED LESS THAN
CURRENT SIZE

4013- REQUESTED SPACE EXCEEDS
THA T ALLOWED

4014 - REQ UIRED OR INCORREC T
PASSWORD

4015 - I-D-S FILE IN ABORT STATUS

4016 - I-D-S FILE IN RECOVERY STATUS

4017 - SEEK ADDRESS CALC U LA TION
ERROR

4020 - FAILURE IN NAME SCAN
(IMP.)

4021 - UNDEFINED DEVICE (IMP.)

4022 - DEVICE LINK TABLE CHECKSUM
ERROR

4023 - INCONSISTENT FDW BLOCK COUNT

4024 - INTERNAL LINK TABLE CHECKSUM
ERROR

4037 - DUPLICATE NAME IN AFT

4040 - NO PAT SPACE AVAILABLE

BB20 UNDEFINED STATUS CODE RETURNED

Other system malfunction message may occur during an attempt to RETREAT

to restore the integrity of a data file. These messages are listed and defined in

Table D-9.

D-12 #DA08

Table D-9. System Malfunction Mes sages During RETREAT Attempt

Message Code

CPOO

CP01

CP02

CP03

CP04

CP05

CP06

CP07

CP10

CP11

CP12

CP13

CP14

CP15

CP16

CP17

CP20

CP21

CP22

CP23

CP24

Definition

UNDEFINED FILSYS STATUS CODE
RETURNED

4001 - NAME NOT IN SYSTEM MASTER
CATALOG

4002 - I/O ERROR - CANNOT PROCEED

4003 - PERMISSIONS DENIED

4004 - FILE BUSY

4005 - INCORRECT CATALOG/FILE
DESCRIP TION

4006 - LLINK SPACE EXHAUSTED

4007 - DEVICE TYPE UNDEFINED

4010 - LINK SPACE EXHAUSTED

4011 - UNIQUE NAME

4012 - SIZE REQUESTED LESS THAN
CURRENT SIZE

4013 - REQUESTED SPACE EXCEEDS THAT
ALLOWED

4014 - REQUIRED OR INCORRECT
PASSWORD

4015 - I-D-S FILE IN ABOR T STA TUS

4016 - I-D-S FILE IN RECOVERY STATUS

4017 - SEEK ADDRESS CALCULA TION
ERROR

4020 - FAILURE IN NAME SCAN (IMP.)

4021 - UNDEFINED DEVICE (IMP.)

4022 - DEVICE LINK TABLE CHECKSUM
ERROR

4023 - INCONSISTENT FDW BLOCK COUNT

4024 - INTERNAL LINK TABLE CHECKSUM
ERROR

D-13 #DA08

Table D-9. System Malfunction :tvlessages During RETREAT Attempt (cont.)

Message Code Definition

CP36 4036 - AFT IS FULL

CP37 4037 - DUPLICA TE NAME IN AFT

CP40 4040 - NO PAT SPACE AVAILABLE

CP41 I/O CHECKSUM ERROR

CP42 I/O END-OF-FILE ERROR

CP43 I/O END-OF-LOGICAL-FILE
ERROR

CP44 I/O UNDEFINED STATUS CODE
RETURNED

System malfunction messages may occur during an attempt to CREATE a

dataBASIC file. These messages are listed and defined in Table D-IO.

Table D-IO. System Malfunction Messages During CREATE Attempt

Mes sage Code

CQOl

CQ02

CQ03

CQ04

CQ05

CQ06

CQ07

CQ12

CQ14

CQIS

Definition

4001 - NAME NOT IN SYSTEM MASTER
CATALOG

4002 - I/O ERROR - CANNOT PROCEED

4003 - PERMISSIONS DENIED

4004 - FILE BUSY

4005 - INC ORREC T CA TALOG / FILE
DESCRIPTION

4006 - LLINK SPACE EXHAUSTED

4007 - DEVICE TYPE UNDEFINED

4012 - SIZE REQUESTED LESS THAN
CURRENT SIZE

4014 - REQUIRED OR INCORREC T
PASSWORD

4015 - I-D-S FILE IN ABOR T STA TUS

D-l4 #DA08

Table D-IO. System Malfunction Messages During CREATE Attempt (cont.)

Message Code Definition

CQ16 4016 - I-D-S FILE IN RECOVERY STATUS

CQ17 4017 - SEEK ADDRESS CALCULA TION
ERROR

CQ21 4021 - UNDEFINED DEVICE (IMP.)

CQ22 4022 - DEVICE LINK TABLE CHECKSUM
ERROR

CQ23 4023 - INCONSISTENT FDW BLOCK COUNT

CQ24 4024 - INTERNAL LINK TABLE CHECKSUM
ERROR

CQ40 4040 - NO PAT SPACE AVAILABLE

CQ41 MORE THAN 100 DISC I/O ERRORS

System malfunction messages may also occur during an attempt to DESTROY a

dataBASIC file. These messages are listed and defined in Table D-ll.

Table D-ll. System Malfunction Messages During DESTROY Attempt

Message Code Definition

CSIO Subcatalog is present but cannot be purged.
(Retreat and data files have been purged.)

CS20 Data file is present but cannot be purged.
(Retreat file has been purged.)

CS30 Retreat file is present but cannot be purged.

A System Malfunction Message may occur during an attempt to ANALYZE a

dataBASIC file. This message is entered and defined in Table D-12.

Table D-12. System Malfunction Messages During ANALYZE Attempt

Message Code Definition

CROO Unable to access the file specified.

D-15 #DA08

Finally there are system malfunction messages which are possible during an

attempt to verify a dataBASIC file. For a listing and definition of these errors, see

Tables D-6 and D-7 of this Appendix.

D-16 #DA08

APPENDIX E

PROGRAMMING CONSIDERA TIONS

IMPLEMENTATION GUIDELINES

This appendix outlines some general considerations and guidelines to be followed

when trying for higher dataBASIC programming efficiency and selecting more effective

file loading techniques.

File Creation

A dataBASIC file consists of a subcatalog, referenced by the "dataBASIC file name, "

w~th two dependent random access files, .DATAO and. JOUR. The .DATAO file is the

data file, and the .JOUR. file is the journal, or recovery, file. These files may be

created by the CREATE subsystem, or they must be created through a direct file system

activity when loading of a dataBASIC file is done with the Loa;l/ Unload system. Any pass

word supplied to the CREATE subsystem will be assigned at the subcatalog level. The

files .DATAO and .JOUR. are without passwords. The .JOUR. file will contain 'before'

images of all I-D-S pages modified during an update run. In the event of a system mal

function prior to completion of an update run, the pages written to the .JOUR. file during

the current run will be restored on the .DATAO file, thus oblite rating all effects of this

run.

To allow a user to quickly calculate the approximate number of links needed for a

proposed data BASIC file, the following formulae are provided:

L = R{F+4) + 7N(V+I)
D 900

where,

R total records to be placed on the file

F average number of fields per record

N total unique field name s on the file

V average number of unique values per unique field name

Ln= size of the data file .DATAO (in links)

L
R
= size of the retreat file .JOUR. (in links) where LR is never smaller than

five links.

E-I #DA08

Normally a terminal user would not process such a large number of updates during

anyone run that the 'before' page images would exceed the allotted .JOUR. file space. In

such an event, the user would be notified of a D 177 System Malfunction and the contents

of the file would be restored to their status at the beginning of the aborted run. In order

to circumvent such a possibility, the user may wish to enlarge the size of the .JOUR. file.

He may accomplish this by purging it, then recreating it through a file system activity

with all attributes, other than the size, identical to those of the purged file. The file can

not merely be increased in size since the file system does not allow a random file to grow.

Loading Techniques

There are three methods for loading data onto a dataBASIC file. The first method

involves use of the dataBASIC Load/Unload System. It is usually used when most of the

data is to be loaded at file creation time when operation is in the batch world environment.

For a full description of the Load/Unload system, see the dataBASIC Load/Unload System

Implementation Guide, Document Number DA09.

The second method involves use of the Time-Sharing Media Conversion Program

described in the GECOS Time-Sharing System General Information Manual, Document

Num be r CPB-1643. Following this procedure, card-image input can be converted to

time-sharing format stored on some pre-defined mass storage device. Using the TSS

Editor, each line could then be converted to a dataBASIC-compatible DATA statement.

Then these DATA statements could be appended to a data.3ASIC program with appropri

ate READ and STORE statements which when executed would store the converted data as

directed in a time-sharing environment.

The third method (usually used to store small amounts of data) allows for user

terminal interaction with the dataBASIC program while in execution. This is accomplished

by use of the INPUT statement within the framework of the data BASIC program, followed

by appropriate READ and STORE statements.

Retrieval Technique s

Because of the nature of a dataBASIC data file, certain record selection techniques

will be more efficient than others. It is an inverted file; that is, unique name:value pairs

occur only once within the entire file in the portion of the file which is designated as the

dictionary range. Whenever a record is stored containing an already used name:value

pair, a pointer field is placed in the record range portion of the file linking the new record

to the already present name:value pair in the dictionary range. It is important to realize

E-2 #DA08

that the name:value pair fields can be quickly accessed through a randomization algorithm

used by the dataBASIC system. Once located, these fields point directly to their associated

records stored in the record range. (Note that the dictionary and record ranges are

physically placed at the lower and higher halves of the file respectively.) The records,

however, appear in reverse order from that in which they are stored. Thus, if one

wishes to access the first record stored on the file without first randomizing to some

name:value pair appearing in that record, the dataBASIC system will have to follow a series

of pointers, linking together all records on the file until it finds the one desired-in this

case the last record to be encountered.

The following selection commands are those which will go to the dictionary range of

the file first and will be most efficient:

FOR name = value

FOR NOT name = value

FOR name ALL

where name may be an actual field name or a working storage field suffixed by the

character &, and value may be a literal or a working storage field.

In each of the above cases, an occurrence tally is maintained as the selected name:

value pairs are found in the dictionary range and compared to a number equal to 70

percent of the total number of records on the file. If the occurrence tally is greater than

this number, the record range portion of the file will be examined.

The FOR FNAME and FOR FV ALUE commands, by definition, must always go to

the dictionary range.

Examples of selection commands which interrogate the dictionary range include:

1) 100 FOR LAST:NAME = "SMITH"

2) 100 LET A = "SMITH"
110 FOR LAST:NAME A

3) 100 FOR LAST:NAME ALL

4) 100 FOR FNAME ALL

5) 100 FOR FNAME < 220

6) 100 FOR FNAME FROM 3 TO 110

7) 100 FOR FVALUE ALL

8) 100 FOR FVALUE > 30

9) 100 FOR FVALUE FROM 50 TO 55

E-3 #DA08

NOTE: The two example s which follow achieve the same results as the above
examples but are considerably faster since they force interrogation of
the dictionary range:

1)

2)

200 FOR AGE FROM 21 TO 35

300 NEXT

200 LET A = 21
210 FOR AGE = A

300 IF A < 35 THEN 320
310 EXIT
320 LE T A = A + 1
330 NEXT

SUBSYSTEM USAGE

The CREATE and DESTROY subsystems are to be used whenever a dataBASIC

file is created or released. The ANALYZE and VERIFY subsystems are more special-

ized in that the usual user might never use them. It is important to realize that on large

files the VERIFY subsystem may be very slow in terminal response time since it walks

through all I-D-S chains on the file checking their integrity and tallying all associated

records. When finished, a short summary report will be printed at the terminal.

E-4 #DA08

1 to M

\
CALC

1 to M C
1 to

• ISYNR
(125)

\.
CALC • IVIXM

(after)

1 to M C

.IINDR
(140)

APPENDIX F

dataBASIC FILE STRUCTURE

• IPNMR
(120)

M

• IVALR
(130)

P

1-1

• IFILR
(100)

.INMLM
(after) 1 to

S

P

M

.ILOKR
(180)

Mt1 to N

• IOCCR
(150)

S

1 to N P

• ICTLR
(001)

. IALIM
(first)

Mtl to N P

• IENTR
(110)

S

.IEOCM .IETXM

(sorted) (sorted)

Mt1 to N S

.ITXTR
(160)

Records Chains

.IFILR file record

.IPNMR - prime name record
• ISYNR ~ synonym name record
. IVALR - value record
.IINDR - index record
.IENTR - entity record
. IOCCR - occurrence record
.ITXTR - text record
. ICTLR - control record

.IPARM - pair chain

.IALLM - all chain

.INMSM - name synonym chain

.INMVM - name value chain

.INMLM - name lock chain

.IVIXM - value index chain

. IVOCM - value occurrence chain

.IEOCM - entity occurrence chain

.IETXM - entity text chain

Figure F -1. dataBASIC File Structure

F-1 #DA08

COM~UTER GE~ERATED INDEX

AC~ESSING ALL FILE RECORDS
ACCESSING ALL fILE RECORDS. 3-2

AC~ESSING SELECTED RECORDS
ACCESSING SELECTED RECORDS. 3-3

ADVANCED DATA SELECTION
ADVANCED DATA SELECTION. 4-1

ALI-'HANUMERIC
AL~HANUMERIC EOITING. 3-27

ANALYZE
ANALYZE SUBSYSTEM. 6-5
ANALYZE. 5-2

A~I-'L1 CA TI ONS
APPLICATIONS. 1-1

ARITHME:.TIC
ARITHMETIC EXPRESSION. 3-18

ASSIGNMENT
ASSIGNMENT EXPRESSIONS. 3-15

BASIC
DATA BASIC STATEMENT. 2-1

BRACES
BRACES. 1-2

BRACKETS
BRACKETS. 1-2

BRANCHING
BRANCHIN<j. 3-35

BYE
BYE. 5-3

CARRIAGE
CARRIAGE:RETURN CHARACTER. 2-1

CAlEGORIES
CONTROL COMMAND CATEGORIES. 5-1
DATABASIC COMMAND (CAT~GORY 11). 5-1
DATABASIC/TIME-SHARING COMMANDS (CATEGORY #2). ~-2

COMMAND
DATABASIC COMMAND (CATEGURY #1). 5-1
DATABASIC/TIME-SHARING COMMANDS CCATEGORY '"2). 5-2

COM~ILER
COMPILER ERROR MESSAGES. 0-1

CONDITIONAL RESTORING Of A fILE
CONDITIONAL RESTORING O~ A fILE. 3-34

CONDITIONAL TERMINATION Of SELECTION
CONDITIONAL TERMINATION OF SELECTION. 3-31

CONNECTING ~ERMINAL TO COMPUTER
CONNECTING TERMINAL TO COMPUTER. 7-2

CONTROL
CONTROL;WORD. 2-1
CONTRO(STATEMENTS. 3-31

CONTROL COMMAND
CONTROL COMMAND CATLGORIES. 5-1
CONTROL COMMANOS VERSUS STATEMENTS. 5-1
CONTROL COMMANDS. 5-1

CONTROLS
TERMINAL OPERATION CONTROLS. 7-1

CORRElTlONS
ERROR CORRECTIONS. 1-5

CREATE
CREATE SUBSYSTEM. 6-1
CREATE. 5-1

~R~ATING A DATABASIC PROGRAM

DATA

CREATING A DATABASIC PROGRAM. 7-3

DATA BASIC STATEMENT. 2-1
DATA DELETION. 3-13
DATA fIt:LDS. Z-4
DATA FILES. 2-2
DATA MANI~ULATION STATEMENTS. 3-13
DATA MODIfICATION. 3-14
DATA RECORDS. 2-3
DATA SELECTION STATEMENTS. 3-Z
DATA STATEMENT. 3-1
DATA STORAGE AND MAINTENANCE. 3-1
DATA STORAGE. 3-20
DATA STRUCTURE. 2-Z

DATA SELECTION
DATA SELECTION USING WORKING STORAGE FIELDS. 4-1

DATABASIC
DATABASIC COMMAND (CATEGORY '1). 5-1
DATABASIC FILE STRUCTURE. F-l
DATABASIC SUBSYSTEMS. 6-1

DATABASIC/TIME-SHARING
DATABASIC/TIME-SHARING COMMANDS (CATEGORY #Z). 5-Z

DE~LARATION
DECLARATION STATEMENTS. 3-1

DELET~
DELETE STATEMENT. 3-14

DELETE RECORD
DELETE RECORD STATEMENT. 3-13

DELETION
DATA DELETION. 3-13
FIELD DELETION. 3-14

DESTROY
DESTROY SUBSYSTEM. 6-11
DESTROY. 5-~

DICTIONARY
DICTIONARY FUNCTIONS. 3-10

DOCUMENT
DOCUMENl NOTATIONS. 1-Z

DOCUMENTATION
PROGRAM DOCUMENTATION STATEMENT. 3-37

DUPLICATES
DUPLICATES. Z-5

EDITING
ALPHANUMERIC EDITING. 3-Z7
NUMERIC EDITING. 3-Z6

ELEMENTS
LANGUAGE ELEMENTS. Z-1

ELLIPSES
ELLIPSES. 1-3

END
END STATEMENT. 3-31

ERROR
ERROR CORRECTIONS. 7-5

ERROR MESSAGE

EXIT

COMP1LER ERROR MESSAGES. D-l
LANGUAGE PROCESSOR ERROR MESSAGES. u-5
RUNTIME ERRUR MESSAGES. D-3
TERMINAL ERROR MESSAGE TYPES. D-l

EXIT STATEMENT. 3-31
EXPRESSION

fIELD

FILE

ARITHMETIC EXPRESSION. J-18
ASSIGNMENT EXPRESSIONS. 3-15
LANGUAGE STATEMENTS. EX~RESSIONS AND RE~LACEMENTS. A-I

DATA FIELDS. Z-4
DATA SELECTION USING WOKKING STORAGE FIlLDS. 4-1
FIELU DELETION. 3-14
FIELU SELECTION. ~-9
FIELD STORA~E. 3-l1
PRINT RECORD fIELD. 3-Z4
PRINT WORKING STORAGE FIELD. ~-25

FILE STATEM~NT. 3-1
fILE CREATION

FILE CREATIUN. E-l
f'ILE STRUCTURE

DATABASIC fILE STRUCTURl. F-1
fILES

DATA ~ILES. Z-2
fIX

fIX STATEMENT. 3-14
fUR ALL

fOR ALL STATEMENT. 3-Z
FOR fNAME

fOR fNAME STATEMENT. 3-10
FOR VALUE

fOR VALUE SlATEMENT. 3-11
fUNCTIONS

DICTIONARY FUNCTIONS. 3-10
GETTING OFf

GETTING OFF PROCEDURE. (-7
GETTING ON

GETTING ON. 7-Z
GOSUB

GOSUB STATEMENT. ~-33
GOTO

GOTO STATEMENT. 3-35
HALTING

PROG~AM HALTING. 3-36
HORIZONTAL

HORIZONTAL SPACING. 3-Z~

IMPLEMENTATIO~ GUIDELINtS
IMPLEMENTATION GUIDELINES. E-l

INPUT
INPUT STATEMENT. 3-21
TERMINAL INPUT. 3-Z1

INPUT/OUTPUT
INPUT/OUTPUT STATEMENTS. 3-21

LANGUAGE
LANGUAGE ELtMENTS. Z-1
LANGUAGE STATEMENTS. 3-1
LANGUAGE. 1-2

LANGUAGE PROCESSOR
LANGUAGE PROCESSO~ ERROR MESSAGES. D-5

LANGUAGE STATEMENTS

LET

LINE

LIST

LANGUAGE STATEMENTS. EXPRESSIONS AND RE~LACEMENTS. A-I

LET STATEMENT. 3-15

LINE:NU,.'BER. 2-1

LIST. 5-2

COM~UTER GENERATED INDEX

llTERAl
~RINT LITERAL. 3-Z4

LOADING
LOADING. E-Z

MAINTENANCE
DATA ~TORA~E AND MAINTENANCE~ 3-1

MOI)It-ICATION
I)ATA MODIFICATION. 3-14

NOTATIONS
DOCUMENT NOTATIONS. 1-2

NUMBER
LINE:NUM~ER. Z-1

NUMERIC
NUMERIC EDITING. 3-26

Oll)
OLD. 5-3

OPERATION
TERMINAL OPERATION CONTROLS. 7-1

~A~ER TAPE
ENTERING THE PROGRAM FROM PAPER TAPE. 7-5

P I VOTING

~RIN'
PIVOTING. 4-Z

PRINT LITERAL. 3-24
PRINT RECORD FIELD. 3-2~
~RINT STATEMENT. 3-22
PRINT WORKING STORAGE t-IELD. 3-25

PIHNT RECORD
PRINT RECORD STATEMENT. 3-23

PRINT WITH EDIT
PRINT WITH EDIT. 3-26

PRINTING
PRINTING. 3-22

~ROCI:.DURE
GETTING O~F PROCEDURE. 7-7

IJROGRAM
ENTERING A PROGRAM. 7-4
ENTERING THE PROGRAM FROM PAPER TAPE. 7-5
PROGRAM DOCUMENTATION STATEMENT. 3-37
PROGRAM HALTING. 3-36
PROGRAM TERMINATION. 3-31
RUNNING THE PROGRAM. 7-6

~kOGRAMMING CONSIDERATIONS
PROGRAMMING CONSIDERATION~. E-I

PURGE. 5-~
READ

READ STATEMENT. 3-29
RElOIW

DATA RECORDS. 2-3
IJRINT RECORD FIELD. 3-24

REM STATEMENT. 3-37
Rt.I-'LAllMENTS

LANGUAGE STATEMENTS. EXI-'RESSIONS AND REI-'LACEMENTS. A-I
Rt.SE(JUENCE

RESEQUENCE. 5-~
RESERVt.D

RESERVED WORDS. 1-2 C-l
RETREAT

RETREAT STATEMENT. 3-34
RETRIEVAL

RETRIEVAL. E-2
RETURN

RETURN STATEMENT. 3-33
Rt.IURN CHARACTER

CARRIAGE:RETURN CHARACTI;.R. 2-1
RUN

RUN. 5-1
RUNNING

RUNNING THE PROGRAM. 7-6
RUNTIME

RUNTIME ERROR MESSAGES. D-3
SAVE

SAVE. 5-3
SELElTION

DATA SELECTION STATEMENTS. 3-2
rIELD SELECTION. 3-9

SPACING
HORIZONTAL SPACING. 3-2ij
VERTICAL SPACING. 3-29

SI-'I;.CIAL CONVENTION
SPECIAL CONVENTION. 2-5

SIJI;.CIAL PRINT CONVENTION
SPECIAL PRINT lONVENTION. 3-25

STATEMENT
CONTROL COMMANDS VERSUS STATEMENTS. 5-1
CONTROL STATEMENTS. 3-31
DATA BASIC STATEMENT. 2-1
DATA MANIIJULATION STATEMENTS. 3-13
DATA SELECTION STATEMEN1S. 3-2

STATEMENT (CONTI

STOP

DECLARATION STATEMENTS. 3-1
DELETE RECORD STATEMENT. 3-13
DELETE STATEMENT. 3-14
END STATEMENT. 3-31
EXIT STATEMENT. 3-31
FILE STATEMENT. 3-1
FIX STATEMENT. 3-14
FOR ALL STATEMENT. 3-2
fOR FNAME STATEMENT. 3-10
FOR STATEMENT. 3-Z
FOR VALUE STATEMENT. 3-11
GOSUB STATEMENT. 3-33
GOTO STATEMENT. 3-35
IF STATEMENT. 3-3~
INPUT STATEMENT. 3-21
INPUT/OUTPUT STATEMENTS. 3-21
LANGUAGt. STATEMENTS. 3-1
LET STATEMENT. 3-15
NEXT STATEMt.NT. 3-3
PRINT RECOR!) STATEMENT. 3-23
PRINT STATEMENT. 3-22
PROGRAM DOCUMENTATION STATEMENT. 3-37
REAU STATEMENT. 3-29
REM STATEME~T. 3-37
RETREAT STATEMENT. 3-34
RETURN STATEMENT. 3-33
STOP STATEMeNT. 3-36
STORE CO~Y STATEMENT. 3-20
STORE RECORD STATEMENT. 3-20
STORE STATEMENT. 3-21

STOP STATEMeNT. 3-36
STORAGE

STORE

DATA STORAGE AND MAINTENANCE. 3-1
DATA STORAGI:.. 3-20
FIELD STORAGE. 3-Z1

STORE STATEMENT. 3-21
STORE COpy

STORE COpy STATEMENT. 3-20
STORE RECORD

STORE RECORD STATEMENT. 3-20
SIRUCTURE

DATA STRUCTURE. 2-2
SUBROUTINES

SUBROUTI~ES. 3-32
SUBSYSTEM

ANALYZE SUBSYSTEM. 6-5
CREATE SUGSYSTEM. 6-1
DATABASIC SUBSYSTEMS. 6-1
DESTROY SUB~YSTEM. 6-11
VERIFY SUBSYSTEM. 6-13

SYNTHETIC SELECTIUN OF FIELDS
SYNTH~TIC StLECTION OF FIELDS. 4-3

SYSTEM
SYSTEM USAGE. E-~

SYSTEM MALt-UNCT IOI~ MESSAGI:.S
SYSTEM MALFUNCTION MESSAGES. 0-5
TERMINAL ERROR MESSAGES AND SYSTEM MALFUNCTION MESSAGI;.S.

D-1
TAPE

TAPE. 5-~
TI;.RMINAL

AUTOMATIC TtRMINATION FROM TERMINAL. 7-1
TERMINAL ERROR MESSAGE TYPES. D-1
TERMINAL INPUT. 3-21
TERMINAL OPI:.RATION CONTROLS. 7-1

TI;.RMINAL COMMANDS
TERMINAL COMMANDS. B-1

TERMINAL ERROR MESSAGES
TERMINAL ERROR MESSAGES AND SYSIEM MALFU~CTION MESSAGES.
0-1

TERMINATION

TYPES

USAGE

AUTOMATIC TI;.RMINATION FKOM TERMINAL. 7-1
PROGRAM TERMINATION. 3-jl

TERMINAL ERKOR MESSAGE TYPES. 0-1

SYSTEM USAGL. E-4
VERIFY

VERIFY 5UUSYSTEM. 6-13
VERIFY. 5-2

VERTICAL
VERTIlAL SPACING. 3-29

WORD
CONTROL:WORu. 2-1
RESERVED WORDS. 1-2 (-1

WORKING STORAC,E
DATA SELECTiON USING WORKING STORAGI;. FILLDS. 4-1
PRINT WORKING STORAGE FIELD. 3-l5

•

w
Z
...J

'" Z
o
...J
<t:
r
::::>
u

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form*

SERIES 6000/600
TITLE: dataBASIC SYSTEM

A E

ERRORS IN PUBLICATION:

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION:

(Please Print)

FROM: NAME ____________________________________ __

CO MPANY __________________________________ __

TITLE ______________________ _

ADDRESS-________________________________ __

ORDER NO: I DAOS, Rev. 0

DATED: I MAY, 1971

DATE _____________ __

*Your comments will be promptly investigated by appropriate technical personnel, action will be taken as
required, and you will receive a written reply. If you do not require a written reply, please check here.O

POSTAGE WILL BE PAID BY:

HONEYWELL INFORMATION SYSTEMS

60 WALNUT STREET
WELLESLEY HILLS, MASS. 02181

ATTN: U.S. GROUP PUBLICATIONS, MS 050

Honeywell

2124
2671
Printed in U.s.A.

The Other Computer Company:

Honeywell

HONEYWELL INFORMATION SYSTEMS

DA08, Rev. 0

