
Honeywell

SERIES 600/6000

SOFTWARE

TIME-SHARING SYSTEM
PROGRAMMERS'
REFERENCE MANUAL

GeOS

Honeywell TIME-SHARING SYSTEM
PROGRAMMERS'
REFERENCE MANUAL

SERIES 600/6000 GeOS

SUBJECT:

SubsysteITl Organization, PrograITlITling Methods for Extending SysteITl Capabilities,
Instructions for Placing a PrograITl in the SysteITl, ConlITland Language and PriITlitives,
File ForITlats, and Honeywell-Supplied Systen~s.

SPECIAL INSTRUC T IONS:

DATE:

This n~anual, Order Number BR39, Rev. 1, supersedes CPB-1514C, dated SepteITlber
1970, AddenduITl No.1, dated February 1971 and BR39, Rev. 0, dated SepteITlber 1970.
The new order nUITlber is assigned to be consistent with the overall Honeywell publica
tions nUITlbering systeITl. Series 600 Software Release 5. a and Series 6000 Software
Relea se C (SR was formerly SysteITl DevelopITlent Letter -SDL) inforITlation ha s been
added to this edition of the ITlanual. Technical additions and changes froITl the previous
edition are indicated by change bars in the ITlargins; deletions are indicated by
asterisks.

NoveITlber 1971

ORDER NUMBER:

BR39, Rev. 1 (Supersedes CPB-1S14C)

FILE NUMBER:

1613, 1713

PREFACE

This manual provides methods for the experienced programmer to develop
and extend the capabilities of the time-sharing system via new
subsystems.

The text material includes an explanation of subsystem organization,
information required to program for the Series 60001 GCOS Time-Sharing
System, and instructions for placing a program in the system. Other
sections are devoted to command language and primitives, file formats,
and Honeywell-supplied subsystems.

GCOS is a coded system designed to extend the power of Series 600/6000 in the
areas of program preparation and waintenance, data control, operations control,
and utility functions. It is supported by comprehensive doC"umentation and
training; periodic program maintenance and, where feasible, improvements are
furnished for the current version of the system, provided it. is not modified by
the user.

1All references in this manual to Honeywell Series 6000
equally applicable to Honeywell Series 600 systems,
references explicitly specifying Series 600 only.

systems are
except those

1968, 1969, 1970, General Electric Company, U.S.A.
1971, 1972, Honeywell Information Systems Inc.

BR39

FUNCTIONAL LISTING OF PUBLICATIONS
for

SERIES 600 SYSTEM

FUNCTION APPLICABLE REFERENCE MANUAL

Hardware reference:
Series 600
DATANETI 355

Operating system:
Basic Operating System

Control Card Formats

System initialization:
GCOS Startup
Communications System
Storage Subsystem Startup

Data management:
File system
Integrated Data Store

(I-D-S)
File Processing

Program maintenance:
Object Program
System Editing

Test system:
Peripheral on-line testing

Language processors:
Macro Assembly Language
COBOL Language
COBOL Usage
ALGOL Language
JOVIAL Language
FORTRAH Language
FORTRAN IV Language
DATANET 355

Generators:
Sorting
Merging

Simulators:
DATANET 355 Simulation

Remote terminal system:
DATANET 355

DATANET 30

ITradernark.

FORliER ORDER
TITLE PUB. NO. NO.
Series 600:

System I-ianual
DATANET 355 Systems Manual

Comprehensive Operating
Supervisor (GCOS)

Control Cards

System Operating Techniques
GRTS/355 Startup Procedures
DSS180 Disk Storage Subsystem

Startup Procedures

GCOS File System
Integrated Data Store

Indexed Sequential Processing

Source Object Editor
System Library Editor

GCOS On-Line Peripheral Test
System (OPTS-600)

Programming Reference Manual
COBOL Reference Manual
COBOL User's Guide
ALGOL
JOVIAL
FORTRAN
FORTRAN IV
DATANET 355 Macro-Assembly

Program

Sort/Merge
Sort/Merge

DATANET 355 Simulator

GRTS/355 Programming
Reference

GRTS/30 Progran~ing
Reference

iii

371
1645

1518
1688

DAIO
1715

DAII

1513
1565

DAJ7

1723
1687

1573

1004
1652
1653
1657
1650
1686
1006

1660

1005
1005

1663

1664

1558

BM78
BS03

BR43
BS19

DA10
BJ70

DA11

BR38
BR69

DA37

BJ71
BS18

BR76

BN86
BS08
BS09
BS11
BS06
BJ67
BN88

BB98

BN87
BN87

Bt'J23

BJ66

BR68

BR39

FUNCTION

Service and utility routines:
File I/O
Loader
utility programs
Conversion
System Accounting

FORTRAN

Controller loader

Time-sharing systems:
Operating System

System Programming

System Programming

BASIC Language
FORTRAN Language
Text Editing

Handbooks:
Console Messages
Index

Pocket guides:
Time-Sharing Programming
Nacro Assembly Language
COBOL Language
Control Card Formats

Software maintenance (SND):
Table definitions

Startup program
Input system
Peripheral allocation

Core allocation/rollcall

Fault processing
Channel modules
Error processing
Output system
File system modules
Utility programs
Time-sharing system

Rev. 7201

TITLE

APPLICABLE REFERENCE MANUAL
FORMER

PUB. NO.
Serles 600:

File and Record Control
General Loader
Utility
Bulk Media Conversion
GCOS Accounting Summary

Edit Program
FORTRAN IV Subroutine

Libraries
Relocatable Loader

GCOS Time-Sharing System
General Information

GCOS Time-Sharing
Terminal/Batch

GCOS Time-Sharing System -
System Programmer's
Reference

Time-Sharing BASIC
Time-Sharing FORTRAN
Time-Sharing Text

Editor

GCOS Typewriter Messages
Comprehensive Index

GCOS Time-Sharing System
GCOS GMAP
COBOL
GCOS Control Cards and Abort

Codes·

Introduction and System
Tables

Startup (INIT)
Input System
Dispatcher/Peripheral

Allocation
Rollcall, Core Allocation and

Operator Interface
Fault Processing
I/O Supervision (lOS)
Exception Processing
Termination and SYSOUT
File System
GCOS Utility Routines
Time-Sharing Executive

iv

1003
1008
1422
1096

1651

1620
DA12

1643

1642

1514
1510
1566

1515

1477
1499

1661
1673
1689

1691

1488
1489
1490

1491

1492
1493
1494
1495
1496
1497
1498
1501

ORDER
NO.

BN85
BN90
BQ66
BP30

BS07

BR95
DA12

BSOl

BR99

BR39
BR36
BR70

BR40

BR09
BR28

BS12
BS16
BJ68

BJ69

BR17
BR18
BR19

BR20

BR2l
BR22
BR23
BR24
BR25
BR26
BR27
BR29

BR39

FUNCTIONAL LISTING OF PUBLICATIONS
for

SERIES 6000 SYSTEM

FUNCTION APPLICABLE REFERENCE MANUAL

Hardware reference:
Series 6000
DATANET 355

Operating system:
Basic Operating System

Control Card Formats

System initialization:
GCOS Startup
Communications System
Storage Subsystem Startup

Data management:
File System
Integrated Data Store

(I-D-S)
File Processing

Program maintenance:
Object Program
System Editing

Test system:
On-Line Peripheral Testing

Language processors:
Hacro Assembly Language
COBOL Language
COBOL Usage
ALGOL Language
JOVIAL Language
FORTRAN Language
DATANET 355

Generators:
Sorting
Merging

Simulators:
DATANET 355 Simulation

FORMER ORDER
TITLE PUB. NO. NO.
Series 6000:

Summary Description
DATANET 355 Systems Manual

Comprehensive Operating
Supervisor (GCOS)

Control Cards

System Startup and Operation
GRTS/355 Startup Procedures
DSS180 Disk Storage Subsystem

Startup Procedures

GCOS File System
Integrated Data Store

Indexed Sequential Processor

Source Object Editor
System Library Editor

GCOS On-Line Peripheral Test
System (OPTS-600)

Programming Reference Manual
COBOL Reference Manual
COBOL User's Guide
ALGOL
JOVIAL
FORTRAN
DATANET 355 !-'lacro-Assembly

Program

Sort/Merge
Sort/Merge

DATANET 355 Simulator

v

DA48
1645

1518
1688

DA06
1715

DAll

1513
1565

DA37

1723
1687

1573

1004
1652
1653
1657
1650
1686

1660

1005
1005

1663

DA48
BS03

BR43
BS19

DA06
BJ70

DAll

BR38
BR69

DA37

BJ71
BS18

BR76

BN86
BS08
BS09
BSll
BS06
BJ67

BB98

BN87
BN87

BW23

BR39

FUNCTION

Service and utility routines:
File I/O
Loader
Utility Programs
Conversion
System Accounting

FORTRAN

Controller Loader

Time-sharing systems:
Operating System

System Programming

System Programming

BASIC Language
FORTRAN Language
Text Editing

Remote terminal system:
DATANET 355

DATANET 30

Handbooks:
Console Messages
Index

Pocket guides:
Time-Sharing Programming
Macro Assembly Language
COBOL Language
Control Card Formats

Rev. 7112

APPLICABLE REFERENCE MANUAL
FORMER

TITLE PUB. NO.
Serles 6000:

File and Record Control
General Loader
Utility
Bulk Media Conversion
GCOS Accounting Summary

Edit Program
FORTRAN IV Subroutine

Libraries
Relocatable Loader

GCOS Time-Sharing System
General Information

GCOS Time-Sharing
Terminal/Batch

GCOS Time-Sharing System -
System Programmer's
Reference

Time-Sharing BASIC
FORTRAN
Time-Sharing Text Editor

GRTS/355 Programming
Reference

GRTS/30 Programming
Reference

GCOS Typewriter 1'1essages
Comprehensive Index

GCOS Time-Sharing System
GCOS GMAP
COBOL
GCOS Control Cards and Abort

Codes

vi

1003
1008
1422
1096

1651

1620
DA12

1643

1642

1514
1510
1686
1515

1664

1558

1477
1499

1661
1673
1689

1691

ORDER
NO.

BN85
BN90
BQ66
BP30

BS07

BR95
DA12

BSOl

BR99

BR39
BR36
BJ67
BR40

BJ66

BR68

BR09
BR28

BS12
BS16
BJ68

BJ69

BR39

Section I

Section II

Section III

CONTENTS

Introduction •.•••••.•••.•••••••
Simultaneous Batch and Time-Sharing •.
Ease of System Extension by User . • • • •

Subsystem Organization. . . . • • •• . .•.
Subsystem Program Organization .• ..••
Subsystem Program Descriptor Organization ..•

Primary Portion of Program Descriptor •
Program Descriptor Command-Language/

Primitive List. • • .. . ••.
Program Descriptor Example .•.•.

Programming for the Time-Sharing System •
Base Register Protection • .
Subsystem Data Area and Fault Vector ..
Subsystem Switch Word. . .

LUCID Command Bit (5)
Break Status Bit (7) ..
HOLD/SEND Bit (11) •.
PARITY/NOPARITY Bit (16) ..

System Nacros.•...•.

General Service Function Derails ...
DRL ABORT, ABORT (octal 7) ..•.
DRL ABTJOB, Abort Batch Job (octal 51)
DRL ADDMEM, Add Memory (octal 16) ..
DRL ATTRI, Pick Up Users Attributes

(octal 70) • • • • • • • • • • • •
DRL CALLSS, Internal Call to Another

Subsystem (octal 30)
DRL CGROUT, Process Line Switch

(octal 46) •.•.•.•.•.
DRL CORFIL, Data from/to Core File

(octal 17) ..•.•..•......
DRL DRLDSC, Disconnect Terminal

(octal 43) ••••••••••••••
DRL DRLIHT, Store Processor Time Limit

(octal 54) ••••••••••
DRL GWAKE, Wake Me Later (octal 66).
DRL IDS, Make an Entry into .MIDSC

(octal 67) • • • • • • • • • • • •
DRL JSTS, Obtain Job Status (octal 45)
DRL KIN, Keyboard Input Last Line

(octal 4) ••••••••••••
DRL KOTNOW, Keyboard Output From

Unfilled Buffer (octal 56)
DRL KOUT, Keyboard Output (octal 2).
DRL KOUTN, Keyboard Output then Input

(octal 3). • • • • • •• . ••••
DRL OBJTIM, Processor Time and Core Size

Limit (octal 57)
DRL PASAFT, Pass Li~t of Files to

Subsystem (octal 22) •...

vii

Page

1-1
1-1
1-1

2-1
2-1
2-1
2-2

2-2
2-3

3-1
3-1
3-1
3-3
3-4
3-5
3-5
3-6
3-6
3-7
3-7
3-7
3-9
3-9

3-10

3-10

3-11

3-11

3-12

3-12
3-13

3-13
3-14

3-14

3-15
3-15

3-17

3-17

3-18

BR39

Section III
(cont.)

CONT.ENrs (cont.)

DRL PASDES, Pass Aft File Names and
Descriptions (octal 44).

DRL PASFLR, Pass File to Remote Batch
Processor (octal 60) ..••.•

DRL PASUST, Pass UST to Subsystem
(octal 33) ••...•.••••

DRL PRGDES, Pass Program Descriptor to
Subsystem (octal 65)•...

DRL PSEUDO, Simulated Keyboard Input
(octal 64) ...••••••.••••

DRL RELHEH, Release Memory (octal 15) ..
DRL RESTOR, Overlay-Load a Subsystem

(octal 25)••.....
DRL RETURN, Return to Primitive List

(octalS) •.•....•.....
DRL RSTSWH, Reset Switch Word (octal 11)
DRL DRLSAV, Save Program on Permanent

File (octal 62).. • ..•..•.
DRL SETLNO, Set Line Number/Increment

in UST (octal 37) .•••••••
DRL SETSWH, Set Switch Word (octal 10)
DRL SNUHB, Obtain Snumb (octal 20)
DRL SPAWN, Pass File to Batch Processor

(octal 26)
DRL STOPPT, Stop Paper Tape Input

(octal 61) . • . • • . . •
DRL SYSRET, Return to System (octal 40).
DRL TAPEIN, Start Paper Tape Input

(octal 27)•..•.••..
DRL TASK, Spawn a Special Batch Activity

(octal 63) .•..•..••..
DRL TERMTP, Terminal Type and Line

Number (octal 23). • . .
DRL TIME, Obtain Processor Time and Time

of Day (octal 21) .•....••...
Mass Storage File Activity Derails ••.•.

DRL DEFIL, Define and Access a Temporary
File (octal 6) • .

DRL DIO, DO I/O on User's File
(octal 1). •

DRL FILACT, Permanent File Activities
(octal 36) .•..••.•..••.•

FlLACT, Create Catalog Function ..
FILACT, Create File Function ..•
FILACT, Access File Function ••.
FILACT, Purge/Release Catalog/File

Function . • • . • • • • . • • •
FlLACT, Hodify Catalog/File Function .•
DRL FILSP, Space a Linked File

(octal 13) .•..........
DRL GROW, Grow a Permanent or Temporary

File (octal 50) •••••••••
DRL HORLNK, and Links to Temporary File

(octal 34)•.....
DRL PART, Partial Release of Temporary

File (octal 47).

viii

Page

3-19

3-20

3-20

3-20

3-21
3-22

3-22

3-24
3-24

3-24

3-25
3-26
3-26

3-27

3-28
3-28

3-28

3-29

3-32

3-34
3-34

3-35

3-36

3-3,
3-41
3-42
3-44

3-46
3-47

3-49

3-50

3-51

3-52

BR39

Section III
(con t.)

Section IV

Section V

Section VI

Section VII

CONTENTS (cont.)

DRL RETFIL, Return a File (octal 14)
DRL REW, Rewind a Linked File

(octal 12) ...•.
DRL SWITCH, Switch Temporary File

Names (octal 53) • • . • . • • . •
TSS File Usage • . • . • • • • • • • • • •

Temporary User Files Assigned by TSS. •
Collector File (SY**) •.
Current File (*SRC) ••..

Permanent Files Assigned by User ..
Structure of the File System •
Catalogs and Files • •
Passwords. • . ••.••
Permissions •••.••••.•

User's Contact with the File System
Available File Table (AFT) Usage ••
Temporary Files • • . • • • • •

Permanent Files. . •••
File I/O • ••..

Command Language and Primitives. • .••
Keyboard Input Modes
Primitives ..•.....

Format of Primitives •••
Primitive Descriptions••.••••

Startup Procedure ••..•
Use of Existing Subsystems .
Program Descriptor Examples.

Placing Subsystem Programs in the System. •
Permanent Subsystem Placement .••••

Writing the Subsystem Program .•
Editing Subsystem Program to GCOS •
Assembling the Program Descriptor •
Modi fy ing the TSTART !--lodule • • •

Temporary Subsystem Placement ••••
Loading the Temporary Subsystem . . . • . .
Octal Patching the Temporary Subsystem. . .

Subsystem Debugging Facility ••••••.
TDS Usage During Subsystem Preparation.
TDS Usage During Subsystem Checkout •
TDS Error Indications and Messages •.••.

Subsystem Dump Facility ...•.••.••.•
Dump Procedure ••.•.•••.•.•••.
SABT (Scan Abort File) Subsystem. .

File Formats •••.......•..
Source (*SRC) File Format ..
SY**File Format ..
TAP* File Format • . • • .

Hone}well-Supplied Subsystems .
Honeywell Subsystem Types .••••..••
Honeywell Subsystem Descriptions .

BSED (Line Editor) Subsyytem •..•..•.
Build Subsystem • . . • . .
OLDN (Old/New File Request) Subsystem .

ix

Page

3-52

3-53

3-53
3-54
3-54
3-54
3-54
3-55
3-55
3-57
3-57
3-57
3-58
3-58
3-58
3-59
3-59

4-1
4-4
4-5
4-5
4-5
4-7
4-7
4-8

5-1
5-1
5-1
5-2
5-3
5-4
5-4
5-5
5-6
5-6
5-7
5-8
5-12
5-13
5-13
5-13

6-1
6-1
6-2
6-4

7-1
7-1
7-1
7-2
7-4
7-4

BR39

CONTENTS (cont.)

Appendix A. System Macros • . . • . . .

Appendix B. OCTAL-ASCII Conversion Equivalents.
Definitions . ••..

Appendix C. Series 600/6000 Standard Character Set.

x

Page

A-I

B-1
B-2

C-l

BR39

SECTION I

INTRODUCTION

The Series 600/6000 GCOS (formerly GECOS) Time-Sharing System (TSS) is a
feature of an integrated batch/remote time-sharing system. The
time-sharing portion of GCOS is organized as a privileged slave program
and has a dynamically variable but contiguous block of memory allocated
to it. Thus, the time-sharing function can be carried on in conjunction
with the normal batch load. The TSS does not occupy core storage if it
is not in use; it does take a variable amount of core if the system is
being used. Primary features of the system are discussed in the
following paragraphs.

SIMULTANEOUS BATCH AND TIME-SHARING

The simultaneous batch and time-sharing feature allows the user to
develop time-sharing applications without dedicating a complete computer
system to this function. In many cases the initial time-sharing load is
small and would not justify committing a large system solely to this
function.

EASE OF SYSTEM EXTENSION BY USER

As in the batch system, it is necessary that the user be allowed to
write programs for his unique applications. The time-sharing system is
designed as an executive, or monitor, servicing generic subsystems. The
subsystems are analogous to slave programs in the batch environment. Any
number of actual subsystems can be combined into one logical subsystem
for ease of use by the ultimate user.

It is expected that users will add capabilities via new subsystems to
suit their local installation requirements. The time-sharing system has
been designed to minimize the efforts required to generate and install
these subsystems. The debugging facilities permit checkout of a new
subsystem while normal time-sharing operation continues.

1-1 BR39

SECTION II

SUBSYSTEM ORGANIZATION

A subsystem consists of two logically and physically separate parts: a
program and a program descriptor. The organization of these parts is the
subject of this section.

SUBSYSTEM PROGRAM ORGANIZATION

A subsystem program (that is, the block of code to be executed) is
organized like a batch-environment slave program. It can be written in
any language whose object code is loadable by the General Loader at
system edit time. As many other subsystems as desired may be included,
as well as SYMREF, SYMDEF, and BLOCK pseudo-ops and library subroutines.
The program executes within the TSS core storage area; the base register
is set around the code as loaded, so that the subsystem is always
unaware of its relative position in core.

The following restrictions apply to subsystem programming:

• A subsystem data area of 100 (decimal) words must precede the
program coding. TSS uses this space for such things as
bookkeeping during program swap and register storage. (The user I
must provide 36 of these words by using BSS 36 as the first
code generated in his subsystem.)

• Intentional faults called derails (DRLs) instead of
MME functions, as in a batch processing environment -- must be
used to request service functions. These functions are provided
by the TSS Executive.

SUBSYSTEM PROGRAM DESCRIPTOR ORGANIZATION

The Communication Region module, TSSA, consists of three block common I
areas: .TSCOM, the communication region proper, .TPRGD, the program
descriptor block, and .TPCOM, the command language and primitive lists
block.

The GMAP-generated program descriptor is stored in the .TPRGD block in
the TSS Communications Region. The descriptor is separated into a
primary portion and a command-language/primitive list. (See Section IV
for details.)

2-1 BR39

I

Primary Portion of Program Descriptor

The primary portion of the descriptor is fixed in length and is placed
in sequence with the other subsystem descriptors at the beginning of the
program descriptor block. It includes the following designer-supplied
information:

• Subsystem name (in ASCII lower-case alphanumeric)

• Pointer to subsystem command-language/primitive list

• Number of subsystem build mode command-language words, if any

Program Descriptor Command-Language/Primitive List

The command language list, pointed to by the primary portion, comprises
for each cornrnand (1) the com~and itself, (2) an associated mask word,
and (3) a pointer to the primitives for the command. The list ends with
a pointer to the primitives for the subsystem startup procedure.

A primitive is a high-level instruction sequence that directs subsystem
execution when the subsystem is initially encountered (startup
primitive) or when build-mode command language is encountered (command
primitive). The primary function of primitives is to combine several
related subsystems logically into a larger subsystem, so that the user
at the terminal needs to deal only with the larger subsystem. Within the
CARDIN subsystem, for example, one can call up the SCAN subsystem in
build mode.

The subsystem startup procedure allows the designer to specify either
(1) a direct execution of the subsystem after selection by the user or
(2) calling of other subsystems or performance of other preliminary
operations following user selection and before subsystem loading and
execution. The BASIC subsystem, for example, calls the OLDN subsystem
(via a primitive) to assign a current file and provide the OLD/NEW file
request. A second primitive then places the subsystem in build mode to
accumulate terminal input until a command-language word is encountered.
(See Section IV for details.) The LIST subsystem, on the other hand,
begins execution immediately upon selection, provided that no data
exists in the input collector file (SY**).

2-2 BR39

Program Descriptor Example

For the simplest case, a subsystem with no command language (CL)
direct execute at startup, the program descriptor layout would
follows:

Subsystem name, in

BSS 3

(used by TSS)

Loc (A) 0

BSS 4

(used by TSS)

A ZERO AI,O

ASCII

(no CL words)

Primary Portion (in
sequence with those
for other subsystems)

} Startup pointer

and a
be as

Al r--E~X-E-;c----(~e-x-e~c--u-t-e--S-U--b-s-y-s-t-e~m-L-)--------~~}
Startup and end primitives

I POPUP (return to previous level)
I

The program-descriptor layout for the more complex situation of a
subsystem with command language is described in Section IV.

2-3 BR39

SECTION III

PROGRAMMING FOR THE TIME-SHARING SYSTEM

Hriting a subsystem program for the time-sharing system (TSS) is not
significantly different from programming in slave mode for the batch
environment. The primary difference concerns service functions. All
11ME functions provided by GCOS are eliminated, and similar functions are
provided for time-sharing by the TSS Executive via derail (DRL)
instructions.

BASE REGISTER PROTECTION

Hhile the subsystem program is in execution, the base register is set to
prevent the subsystem from referencing any memory area not assigned to
it. The base register is always set to the user's current origin in
memory, so that he is not aware of any changes in absolute memory area
due to program swapping.

SUBSYSTEM DATA AREA AND FAULT VECTOR

The time-sharing system requires a data area of 100 (decimal) words in
each subsystem for bookkeeping. This area must be at the beginning of
the program. The loader normally reserves 64 words at the beginning of a
program, and this area is usable for the bookkeeping as well. Thus, a
subsystem program would normally start with a BSS 36 to reserve the
additional space required to make a total of 100 words.

Words 0-17 (octal) of this data area represent
vector and are defined as for a GCOS slave. These
pairs, one pair for each type of fault which can
subsystem program, as shown on the next page.

3-1

the subsystem fault
words are used in

be returned to the

BR39

Words

0,1

2,3
4,5
6,7

10,11
12
13

14,15
16,17

{

Illegal op-code fault
Zero op-code fault
Command fault
Connect fault
Lockup fault
Memory fault
Fault tag
Divide check
Overflow fault
Not used
.LBRT - location of abort and reason code
(not yet implemented)
.LBRK - break status fault
.LSZTM- time and size limit fault

Format of each word pair:

First word C(IC) C (IR)

Second word TRA Instruction

If a subsystem program causes one of the defined optional-recovery
faults, TSS checks the second word of the corresponding fault-vector
pair. If the second word is not zero, and the address specified is
within subsystem bounds, TSS stores the IC and indicators in the first
word of the pair. If the second word is zero, TSS aborts the subsystem
program, giving a message to the terminal. For example, if a subsystem
program wishes to recover from divide check, overflow, and Break status
faults, the vector would be set up as follows:

0
1

2
3

4
5

6
7 TRA DVCK

10
11 TRA OVFLO

12 Not used

13 Not implemented

14
15 TRA BRKFLT

16
17 TRA SZTM

No recovery wanted

No recovery wanted

No recovery wanted

Transfer to divide check
recovery routine

Transfer to overflow recovery
routine

Transfer to Break status
wrapup routine

Transfer to size/time-limit-exceeded
wrapup vector

3-2 BR39

The transfers, if any, must be stored in the fault vector by coding
within the subsystem. Transfer vectors must be reinitialized after each
recovery fault. The rest of the lOa (decimal) words in the subsystem
data area are reserved exclusively for TSS usage.

SUBSYSTEM SWITCH WORD

The TSS provides a subsystem switch word (.LSWTH) for each user. This
word is used to maintain status or to pass information between
subsystems during execution. Subsystem programs can modify or test the
bit settings (l) with the SETSWH and RSTSWH derails or (2) with the
primitives defining control flow in the user-selected subsystem. Thus, a
programmer can make execution of primitives dependent upon conditions
set up by his subsystem program.

Bits 0-17 are reserved for use by
time-sharing system. Bits 18-35 are for
usage is as follows.

subsystems issued with
user definition. Current

Bits a

1

.....

.<..

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

- ALGOL RUN (RUNY Subsystem) or Call TAPE subsystem
after execution (EDTX Subsystem).

- JOVIAL RUN (RUNY Subsystem) or Call RECO Subsystem
after execution (EDTX Subsystem).

- BREAE received whlle in EDBN (EDITOR build mode) .

- Unused

- Unused

- Transparent Paper Tape Mode (LUCID)

- Object code execution limits in effect

- Break status requested

- OLDP#/NEWP# command in effect

CHAIN overlay (BASIC) in use

- Automatic dump (SY**) engaged

- HOLD command in effect

- Paper tape source file (*TAP) exists

- FORTRfu~ source file exists

- Last RESEQUENCE command was in a
non-BASIC subsystem

- OLD/NEW command received from user

- NOPARITY command in effect

- Valid data on Sy** file

3-3

the
TSS

BR39

I

As already noted, users may not define usage of bits 0-17 but can
manipulate these bits by using derails or primitives. The bits of
special interest to a user designing his own subsystem are described in
the following paragraphs.

LUCID Command Bit (5)

Normally, paper tape output from a time-sharing terminal must be in
ASCII 7-bit, even-parity code. However, typing the LUCID (or #LUC in the
EDITOR subsystem) command instead of the TAPE (or #TAP) command when
using a manufacturer-supplied subsystem permits input of non-ASCII tape
(for numerical control, for example). Any character code from 000-377
(octal) is accepted and is stored without editing or parity modification
on the time-sharing file.

Typing LUCID causes the Executive to set bit 5 of the subsystem switch
word. If bit 5 is set, the paper tape subsystem (TPTA) requests a
larger- than-normal TAP* file for accumulation of the input. When input
terminates, TAP* is rewound by TPTA and is left in the AFT as is. TPTA
then resets bit 5 and returns to the SYSTEM? level.

The user can implement the LUCID command in his subsystem, or he can
design the subsystem to handle non-ASCII tape input automatically. For
example, running under LODX, the TAP* file size would first be defined
as required. A DRL SETSWH would set bit 5 of .LSWTH and execute a DRL
TAPEIN to start input. Operation would then be as already described
until termination of tape input. Control would then return to the
subsystem, which would reset bit 5.

Input is terminated whenever a pause greater than 1 second is
encountered during transmission. The X-OFF normally required for
termination of paper tape input via a DATANETI 355 is not necessary.

NOTE:

lTrademark

This feature cannot be used with a DATANET 355 unless
communication is via a high-speed line adapter (HSLA).

3-4 BR39

Break Status Bit (7)

Using the Break status bit makes it possible to pass this status to a
subsystem for unique action on its part rather than terminating the
subsystem and returning to the previous level, as will otherwise
automatically occur.

To use this feature, the programmer must set up subsystem location 15 as
a transfer vector. (Locations are in octal, as are all others
following.) Also, he must set bit 7 of the subsystem switch word with a
DRL SETSWH.

When a Break status occurs, it is detected by the line service module,
TSSJ. The module then interrogates bit 7. If it is off, the break is
processed normally. If the bit is on (as described in the preceding
paragraph), the status is transferred to .LTSSV; and bit 35 of .LFLAG is
set. (Both are UST locations.)

Executive Module, TSSM, in returning to subsystem execution via RETSBS,
examines bit 35 of .LFLAG before dispatching. If bit 35 is off, return
to subsystem execution is normal. If bit 35 is on (as described in the
preceding paragraph), TSSM turns it off and examines location 15 of the
subsystem for a transfer vector. The transfer will be made to the user's
coding for action following a Break status for the subsystem. (Or, if
location 15 contains a DRL RETURN, the derail is executed; and the
subsystem terminates normally.)

Hhen a valid transfer vector is present, TSSM withdraws the current IC
and I from subsystem location 22 and places it in location 14. It then
places the contents of location 15 (the transfer vector) in location 22
and clears location 15 to prevent blind looping. (Note: therefore, the
subsystem must restore the contents of location 15 after each break if
continued unique processing of breaks is desired.) TSSM then continues
with normal dispatch to the subsystem.

If no transfer vector or an out-of-range transfer is present in location
15 (and bit 7 of .LSWTH is set), TSSM terminates the subsystem, sends
either an ILLEGAL BREAK VECTOR or an OUT OF RANGE message to the
terminal, and returns to the subsystem-request level, just as TSSJ does
in normal procedure.

HOLD/SEND Bit (11)

During printer or paper tape output from his subsystem program, the user
can prevent interruptions at the terminal from console-issued or
master-user-issued messages by setting bit 11 of the subsystem switch
word. This can be done with the primitive STRUE or the derail SETSWH.

3-5 BR39

When the bit is reset with the primitive STFALS or the derail RSTSWH,
the last message withheld is typed at the terminal. The user assumes
responsibility for any warnings he may have missed during the interval
the bit was on.

PARITY/NOPARITY Bit (16)

Upon initial connection for direct access in the TSS, bit 16 of the
subsystem switch word is off; and the terminal receives ASCII 7-bit,
even-parity code. At the subsystem-selection level, the NOPARITY command
turns bit 16 oni and the terminal receives 8-bit, parity-independent
code. The PARITY command is used to turn the bit off again. (These
commands are also available within the BASIC, FORTRAN, and CARDIN
subsystems.)

Thus, by controlling bit 16 with the SETSWH and RSTSWH derails, a user
programming his own subsystem can cause an automatic change in the code
sent to a terminal. Note, however, that this option currently functions
only with type 4 terminals (a hardware limitation). See DRL TERMTP for
identification of terminal types.

SYSTEM MACROS

A set of TSS macros is available to facilitate the writing of TSS
modules and subsystems. Two of these useful to the designer of a normal
subsystem are .SSDRL and PRNTTY. the .SSDRL macro provides the symbolic
address-value equivalences for the service function DRLs (see the
section on "Service-Function Derails"); PRNTTY is convenient for issuing
messages to the terminal.

The TSS macro library is loaded at assembly time by the call LODM.

Appendix A describes the function of LODM and gives the definition of
each macro.

3-6 BR39

DERAILS

Since a subsystem program is prevented from referencing any memory area
outside that allocated and protected by the base register, a service
function request must be made by an intentional fault--a derail (DRL).
DRL functions and their associated addresses are shown in the table on
the following page.

Upon return to the subsystem, all registers not specifically modified by
the DRL function are restored to their original value, and execution
resumes at the first location after the DRL calling sequence.

The two following subsections contain descriptions of the derails
available to the designer of a normal subsystem. (DRLs that are
privileged or otherwise restricted are marked with a superscript in the
table on the following page and are not described in this manual.) The
first section, "General Service Function Derails," comprises those not
concerned with mass storage file activities. The second section, "Mass
Storage File Activity Derails," comprises those used by TSS for
performing service functions for files on magnetic disc or drum
peripheral devices.

Within each subsection the descriptions appear in alphabetical order by
derail name. To locate a description by page number, see the index under
the heading "DRL" or undf"r thf" derail's name or the name of its
function. (These names appear in the table on the following page.)

General Service Function Derails

DRL ABORT, ABORT (octal 7)

8 16

DRL ABORT

This derail indicates to the Executive that an abnormal event has
occurred in a process. If the user has previously defined a file with
the name ABRT, a core dump of the subsystem will be written to that
file. In any case, a message is sent to the terminal stating that an
abort has occurred; and the user is free to select a new subsystem.

3-7 BR39

DRL Address
DRL Name DRL Function Name octal decimal

DIO
KOUT
KOUTN
KIN
RETURN
DEFIL
ABORT
SETSWH
RSTSWH
REW
FILSP
RETFIL
RELMEM
ADDMEM
CORFIL
SNUMB
TIHE
PASAFT
TERHTP
PDIOl
RESTOR
SPAHN
TAPEIN
CALLSS
USERIDI
TERM1,
PASUST
MORLNK
NEWUSRI
FILACT
SETLNO
SYSRET
STPSYSI
STATUS
DRLDSC
PASDES
JSTS
CGROUT
PART
GROW
ABTJOB
CONSOLI
SvJITCH
DRLIHT
JOUTl

Do I/O on User's File
Keyboard Output
Keyboard Output Then Input
Keyboard Input Last Line
Return to Primitive List
Define and Access a Temporary File
Abort
Set-Switch Hord
Reset Switch Hord
Rewind a Linked File
Space a Linked File
Return a File
Release Memory
Add Memory
Data From/To Core File
Obtain SNUMB
Obtain Processor Time and Time of Day
Pass List of Files to Subsystem
Terminal Type and Line Number
Do I/O on a System File
Overlay-Load a Subsystem
Pass File to Batch Processor
Start Paper Tape Input
Internal Call to Another Subsystem
Pass USERID and Priority to Executive
Clean Up UST After User Termination
Pass UST to Subsystem
Add Links to Temporary File
Log-on New User Without Disconnect
Permanent File Activities
Set Line Number/Increment in UST
Return to System
Stop Execution of Master Subsystem
Check I/O Status (not implemented)2
Disconnect Terminal
Pass AFT File Names And Descriptions
Obtain Job Status
Process Line Switch
Partial Release of Temporary File
Grow a Permanent File
Abort Batch Job
Talk to System Console
Switch Temporary File Names
Store Processor Time Limit
Batch Output Request

1
2
3
4
5
6
7

10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
40
41
42
43
44
45
46
47
50
51
52
53
54
55

1This DRL function is privileged, or otherwise restricted, and is
protected against execution by a normal subsystem.

I 2If executed, this derail is effectively a TRA*+2 instruction.

3-8

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

BR39

DRL Name

KOTNOW
OBJTIM
PASFLR
STOPPT
DRLSAV
TASK
PSEUDO
PRGDES
GWAKE
IDS
ATTRI

T.STATI

DRL Function Name

Keyboard Output from Unfilled Buffer
Processor Time and Core Size Limit
Pass File to Remote Batch Processor
Stop Paper Tape Input
Save Program on Permanent File
Spawn a Special Batch Activity
Simulated Keyboard Input
Pass Program Descriptors
Go to Sleep, Wake Me in N-Sec
To Make an Entry into .MIDSC
Pick up Users Attributes

(Type 7 Block)
Write Statistical Collection File

DRL ABTJOB, ABORT BATCH JOB (octal 51)

loc

8

DRL
BCI

16

ABTJOB
l,snumb

DRL Address
octal decimal

56
57
60
61
62
63
64
65
66
67

70
71

46
47
48
49
50
51
52
53
54
55

56
57

~nls deral~ is usea to abort the batch JOb submittea trom the requesting
terminal via TSS, identified by snumb. On return, the lower-half of the
derail-argument word (loc)will contain the following result-code:

o job not in system
1 job not initiated from requesting terminal (not your job)
2 abort initiated

DRL ADDMEM, ADD MEMORY (octal 16)

8 16

DRL ADDMEM

C (A)

C(Q)

Return location

No.

0

words high

This derail is the same as RELMEM except that the value in Q is
interpreted as a request for additional memory at the upper boundary. A
subsystem may not obtain memory at the lower boundary. The number of
words specified must be modulo 1024, or the number will be rounded.

3-9 BR39

I

DRL ATTRI, PICK UP USERS ATTRIBUTES (octal 70)

IDS subsystems that access permanent IDS files need access to the file
attribute information. This information is maintained by the file system
in the type 7 block. This derail will allow a subsystem to retrieve the
attribute information.

Calling format:

8

DRL
ZERO
ZERO
RETURN

where:

16

ATTRI
L(destination) , L(fileid)
L(buffer) , L(status)

1. Destination - a 57 word buffer in the users' subsystem to store
the attribute information.

2. Fileid - 2 word filename in BCD.

3. Buffer - 158 word working buffer used by file system.

4. Status - 1 word status return location.

DRL CALLSS, INTERNAL CALL TO ANOTHER SUBSYSTEM (octal 30)

8

DRL
ASCII

16

CALLSS
l,name

The current (calling) subsystem is swapped out to the swap file, to be
resumed later when a POPUP primitive of the called subsystem is
executed. Internal calls may not be more than three deep; that is,
nesting to more than two levels is not allowed.

The called subsystem may be any subsystem known
program descriptor in the TSS communication
subsystem name as recorded in the descriptor.

3-10

to TSS
region) .

(one
Name

with a
is the

BR39

DRL CGROUT, PROCESS LINE SWITCH (octal 46)

8

DRL
VFD
ZERO

where:
op

16

CGROUT
l8/0,6/op,H12/line-id
L(snumb) ,0

25 for line-switch from TSS to DAC

line-id line-identifier (station code) of the line to be switched

or

op 26 for line-switch from DAC to TSS

line-id ° if all lines connected to snumb have been reswitched, or

line-id of a line still connected (receiving output) .

This derail is used for two purposes:

(1) To switch a remote-terminal line, identified by line-id and
connected to TSS, to direct-access connection with the slave
program identified by snumb. (The line-id can either be
considered as a two-character code interpreted in BCI--that is,
the GERTS "station code" -- or as a four-digit octal number,
which corresponds to the "channel" number printed by TSS.) The
specified batch slave program must have been submitted through
TSS.

(2) The complementary use of this derail is to switch any lines
connected to the slave program identified by snumb back to TSS,
provided such lines were originally connected to TSS. This
usage of the derail (op = 26) may need to be repeated until
line-id (bits 24-35 of the argument) indicates that all lines
have been switched. Note that line-id needs to be rezeroed
before each repeat call.

DRL CORFIL, DATA FROM/TO CORE FILE (octal 17)

8 16

DRL CORFIL

C(A)

C(Q)

Data location

i

n

k

3-11 BR39

maintained for
another without

is 10 words in
using the CORFIL

A short block of core storage, called the core file, is
each user. It allows one subsystem to pass data to
accessing a mass storage device. This block of core
length and may be written or read by a subsystem
derail.

The left-half of A contains the location within the subsystem that the
data is to be read into or written from. The right-half of A contains
the number of words (n) to be transmitted. The value of n must be equal
to or less than 10. The left-half of Q contains the number of the
core-file cell (i) at which transmission is to begin. The core-file
cells are numbered 1 through 10. The right-half of Q (k) indicates the
type of operation desired:

k 0 - transfer data from subsystem to core file
k 1 - transfer data from core file to subsystem

DRL DRLDSC, DISCONNECT TERI1DJAL (octal 43)

8 16

DRL DRLDSC

This derail gives the subsystem the ability to disconnect terminals that
do not disconnect upon reception of the EOT character (ASCII 004). Any
input that has been placed into the line-buffer area for the terminal is
written out; upon completion of the MME GEROUT the disconnect is issued.
The subsystem will not be reentered after execution of the DRLDSC. This
derail is normally used to ensure the disconnection of a terminal of any
type.

DRL DRLIMT, STORE PROCESSOR TIME LIMIT (octal 54)

8 16

DRL DRLIMT

C (A) Time Limit

This derail stores the processor time limit for the subsystem in .LIMIT
of the UST. The time limit is placed in the A-register, right-justified,
expressed in seconds. The derail processor converts the value to clock
pulses and stores it in the UST.

DRLIMT functions in conjunction with DRL OBJTIM. If an installation time
limit has been enabled by execution of OBJTIM and a time limit has also
been stored in .LIMIT by DRLIMT, then the smaller of the two is stored
in .LIMTR and used by the time limit check in TSSM (see OBJTIM
description) .

3-12 BR39

DRLIMT is chiefly for use with the FORTRAN and BASIC subsystems, where
it is executed by the RUN-nn option and allows the user to specify a
time limit shorter than that set by the installation.

DRL GvJAKE, WAKE ME LATER (octal 66)

8 18

LDQ L (time)
DEL GWAKE

where:

time - contains the number of seconds, right ustified the user
wishes to sleep.

This derail causes the calling program to be set inactive and eligible
for swap of the number of seconds specified in the Q-register. There is
an inherent delay of 1 to 2 seconds in the derail. Breaks will cause the
user to be awakened before the sleep time has elapsed.

DRL IDS, MAKE fu~ ENTRY INTO .MIDSC (octal 67)

DRL IDS will allow a time-sharing subsystem to access an I-D-S perm file
under control of the I-D-S concurrent feature. I-D-S concurrent access
assures that all time-sharing subsystems having access to the same I-D-S
file do not interfere with each other or with any batch job also
accessing the same file.

1-D-S bit in UST, bit 28 of .LFLG2

Calling format to DRL IDS:

IDS
0, function number

DRL
ZERO
ZERO
RETURN
RETURN
RETURN

lL (arg list pointer) ,0
abnormal
normal
variable

Function numbers

1 - open
7 - request file
8 - release file
9 - remove entry from PIC

10 - enter entry from PIC
12 - validate data
14 - remove TSS subsystem

1 for function 14 -- 0, °

3-13 BR39

I

DRL JSTS, OBTAIN JOB STATUS (octal 45)

loc

8

DRL
BCI

16

JSTS
l,snumb

This derail is used to obtain the processing status of the batch
identified by snumb. On return the contents of the derail-argument
(loc)are as follows:

o 89

loc Status Activity
Code Number

Status codes:

o - Output ready
1 - Reading - card reader
2 - Reading - magnetic tape
3 - Reading - reading remote
4 - Waiting - allocation
5 - Waiting - peripherals
6 - Waiting - core
7 - In hold
8 - In limbo
9 - Executing

10 - Swapped out
11 - Waiting - tape
12 - Too big
13 - Overdue
14 - Output waiting
15 - Output complete
16 - Not in system
17 - Output complete
18 - Not accessible
19 - Not your job
20 - Aborted

The activity number is in binary.

1718

SNUMB

DRL KIN, KEYBOARD INPUT LAST LINE (octal 4)

8

DRL
ZERO
ZERO

16

KIN
L (dat) ,L (count)
L (status)

3-14

35

job
word

BR39

This derail retrieves the last line of input. Normally this sequence
would follow immediately the KOUTN sequence; however, this is not
necessary. KIN may be repeated to retrieve the same line of input as
many times as desired. The last line will remain in the buffer until
some output or additional input destroys it. Dat is the location at
which the string of input characters is to be stored. count is a word in
which the count of characters moved will be stored in the lower part of
the word. A zero character count will be returned if there is no data in
the input buffer. The parameter L(status) is provided for future
capabilities. The purpose of the status word is to receive the status of
the line when it is passed back to the subsystem for certain conditions,
such as break, disconnect, etc. In the present implementation the
handling of these conditions is done by the Executive, and the status
word in the subsystem is not altered.

DRL KOTNOW, KEYBOARD OUTPUT FROM UNFILLED BUFFER (octal 56)

8

DRL
ZERO

16

KOTNOW
L(tally) ,L(char)

The call for KOTNOW is the same as the call for KOUT. The action is also
the same, except that KOTNOW forces keyboard output from a partially
filled buffer rather than waiting until the buffer has filled. This
feature allows users to substitute KOTNOW for ~vu~ ill ~ubsystems with
low output, where several messages may stack up in the buffer before its
content is sent to the remote terminal by KOUT.

KOTNOW is a separate entry point to the KOUT coding, primarily for
setting a flag and providing the test and decision logic to retain
control within the derail until the buffer has been emptied.

The KOTNOW flag is tested immediately after the KOUTN test. If the flag
has not been set, normal processing continues with a return to the
subsystem. If the flag has been set by an entry at KOTNOW, the buffer is
emptied and the allocator notified that I/O is in progress. An exit is
then made to LINSRV.

DRL KOUT, KEYBOARD OUTPUT (octal 2)

8

DRL
ZERO

16

KOUT
L(tally), L(char)

3-15 BR39

I

The field L(tally) points to a driver tally word pointing in turn to a
list of line TALLYB words which define each line of output of ASCII
characters to be sent to the terminal. The driver tally has the count of
the line tallies in the list. This procedure allows the user to define
scattered lines not necessarily starting at word boundaries.

It should be noted that the derail processor utilizes
and that they are modified on return to the subsystem.
must be refreshed prior to each execution.

the tally
Therefore,

words
they

The optional field L(char) points to a word containing up to four
characters that will be appended to the end of the output defined by
each line tally. These characters could be line feed, carriage return,
etc. If this field is not present in the calling sequence, characters
are not added. If the field is present, the first character of zero
terminates the appending of characters. In any case, no more than four
characters will be appended.

The method used is to accumulate the user's output in a buffer for
eventual output to the keyboard. When the buffer is full, output to the
keyboard is initiated. At this point, execution of the subsystem is
inhibited and the subsystem made eligible for swap. When the output is
complete, the program is eligible for execution again.

Example:

DTAL

LTAL

LINEI
LINE2

ENDC

DRL
ZERO

TALLY

TALLYB
TALLYB

KOUT
DTAL,ENDC

LTAL,2

LINEl,15
LINE2,19

ASCII 4, THIS IS LINE 1
ASCII 5, THIS IS SECOND LINE

OCT 015012177000

This sequence prints two lines with three characters
line feed, delete (rubout) -- appended to each line.

carriage return,

NOTE: Because of timing considerations and character set differences
between terminal types it may be necessary to follow the carriage
return, or line feed characters, with a number of delete (rubout)
characters.

3-16 BR39

DRL KOUTN, KEYBOARD OUTPUT THEN INPUT (octal 3)

8

DRL
ZERO

16

KOUTN
L(tally) ,L(char)

This derail sends output to the keyboard device with an anticipated
reply. The L(tally) and L(char) fields are identical to those for the
KOUT sequence. In this case, however, the Executive adds this output
message to any data that has accumulated in the keyboard output buffer
and sends the data directly to the keyboard device. The transfer of data
differs from that for KOUT in that the line is left open for a response.
The response can be retrieved by means of DRL KIN.

DRL OBJTIM, PROCESSOR TIME AND CORE SIZE LIMIT (octal 57)

8 16

DRL OBJTIM

This derail causes the object program elapsed processor time and program
core size to be checked against installation- or user-specified limits.
If the ins Lallation has not assembled or patcned the time and size
limits into TSSA or a derail DRLMT has not been done, this DRL will have
no effect.

In addition, this derail exists primarily for installation
setting size and time limits for FORTRAN and BASIC programs.
these limits are set, they may not be satisfactory values
subsystem being designed. If the user desires to set a
processor object time limit for the subsystem or allow the
user to set one he should use DRL DRLIMT.

use in
Even if
for the
separate

subsystem

OBJTIM sets bit 6 of .LSWTH (subsystem switch word), which
limits stored in TSSA effective for the current interaction.
size limit is stored in .TASSZ in number of words; the time
stored in .TASTM in number of clock pulses--seconds*64000.)

makes the
(The core
limit is

If bit 6 of .LSWTH is set, TSSM places the contents of .TASTM in .LIMTR
of the UST. When OBJTIM and DRLIMT are concurrently in effect the
smaller of the two time limits (installation or user) specified is
placed in .LIMTR. Each time through TSSM, the contents of .LIMTR is
decremented until it runs out or the interaction ends.

Core size is checked in TSSL at the time of the derail OBJTIM and at the
time of any later ADDMEM request.

3-17 BR39

When either limit is exceeded, word 15 (octal) of the subsystem
area is checked for a fault vector. If a valid vector is present,
action is as described in Section III under "Subsystem Data Area
Fault Vector" (except that only a certain small time limit is given
wrapup). Bit 34 in word 14 is set when the size limit is exceeded;
35 is set when the time limit is exceeded. If no valid vector
present, TSS types one of the following messages and returns to
subsystem-selection level:

64 - EXECUTE TIME LIMIT EXCEEDED

65 - OBJECT PROGRAM SIZE LIMIT EXCEEDED

data
TSS
and
for
bit
is

the

The time limit in .LIMTR (and the limit in .LIMIT, if present), word 17
of the subsystem data area, and bit 6 of .LSWTH are reset at the end of
the interaction.

DRL PASAFT, PASS LIST OF FILES TO SUBSYSTEM (octal 22)

8

DRL
ZERO

where:

max

o

16

PASAFT
L(table) ,L(max) or 0

1718 35

n

n = maximum number of file names to be passed (if 0, all file names
pass to the requestor)

This sequence places either the first n names or all user's file names
(n = 0) in the area specified. The format of the table passed back at
location table is:

Word 1 No. of active files 1
(bi ts 18-35)

2 File 1, characters 1-4

3 File 1, characters 5-8

N*2 File n, characters 1-4

N*2+l File n, characters 5-8

IMaximum of 20

3-18 BR39

DRL PASDES, PASS AFT FILE NAMES AND DESCRIPTIONS (octal 44)

8

DRL
ZERO

where:

buff

16

PASDES
L(buff) ,0

BSS 3* (number of files in AFT)+l

This derail will place in buff the names and descriptions of the files
in the user's available file table (AFT). The format of buff on return
is:

Word 1

2

3

4

5
6
7

No. of active files

Filename, characters 1-4

Filename, characters 5-8

File description (see below)

.

File description format:

Bits 0-5 Device type

6-17 Nurnber of words per physical block

if bit 18 0 bits 24-35 number of links in the file

if bit 18 1 bits 24-35 number of 320-word blocks in

if bit 19 0 Linked file

if bit 19 1 Random file

if bit 20 0 Temporary file

if bit 20 1 Permanent file

21-23 Unused

3-19

the file

BR39

I

DRL PASFLR, PASS FILE TO REMOTE BATCH PROCESSOR (octal 60)

This derail is like derail SPAWN in all repects, except that the job is
passed to the remote batch processor.

DRL PASUST, PASS UST TO SUBSYSTEM (octal 33)

8

DRL
ZERO

where: N

16

PASUST
L (buffer) ,N

No. of words to pass back.

This derail copies the user status table (UST) , maintained within the
TSS Executive, to the buffer provided by the subsystem. The TSS
Communication Region equivalence .LLNUE defines the size of the UST. The
user must be aware of the format and content of the UST as currently
defined by TSS. This DRL should be used carefully, since this UST
definition is subject to change.

DRL PRGDES, PASS PROGRAM DESCRIPTOR TO SUBSYSTEM (octal 65)

8

DRL
ASCII
ZERO

where:

16

PRGDES
1,SSNAME
L(BUF),0

SSNAME - is the name of the subsystem; the descriptor of the
subsystem will be passed to the calling program.

BUF - is a nine-word buffer in the calling program in which the
program descriptor will be placed.

This derail copies the program descriptor of the requested subsystem to
the nine-word buffer specified by the call. If the specified subsystem
does not exist, the nine-word buffer will be set to zeroes. Return is
always to the word following the calling sequence.

The program descriptor is described in Section IV of this manual.

3-20 BR39

DRL PSEUDO, SIMULATED KEYBOARD INPUT (octal 64)

8

DRL
ZERO
return

where:

16

PSEUDO
L (tally), L (status)

tally is a pointer to a preinitialized TALLYB, which in turn
references the contigious block of data to be moved to the UST.

status is a pointer to a I-word status return location
currently implemented but must be specified). Return is to
second location past the DRL in the calling subsystem.

(not
the

This derail allows a subsystem to place data in the UST I/O buffer for
recovery by another subsystem using DRL KIN. For example, subsystem X
could use this DRL to pass data to subsystem Y, which has been activated
by a DRL CALLSS. When Y's activities end, control is returned to X. In
this manner, X passes data to Y and other subsystems for action.
Subsystem X is, in effect, a surrogate for a user subsystem, availing
itself of the capabilities of a "library" of existing subsystems to
perform its functions.

For each execution (1) the data to be transferred must be in a
contigious block of not more than 62 words (244 nine-bit characters, I
with a carriage return as the last character in the string) and (2) the
tally must be reinitialized. The data may be coded in any form, so long
as it is placed in 9-bit characters. To the DRL KIN it appears just like
keyboard input.

Error checks are made by the derail processor upon receipt of the
derail. A detected error causes output of one of the following messages:

xxxxxx ADDRESS OUT OF RANGE

Tally address or status word address
xxxxxx is outside subsystem limits.

DRL PSEUDO TALLY INCORRECT

Tally is set for 6-bit characters or attempts
to pulse out more than 248 characters.

NOTE: This derail is not available on DATANET 760 terminals.

3-21 BR39

DRL RELMEM, RELEASE MEMORY (octal 15)

8 16

DRL RELMEM

Return location C(A)

C(Q) No. words low

0

No. words high

This derail reduces the amount of memory assigned to a subsystem program
during execution. The number of words to be released from the lower
portion of the subsystem is in the left-half of the Q-register, and the
number of words to be released from the upper portion of the subsystem
is in the right-half of the Q-register. Memory is released only in
blocks of 1024 words. If the number of words specified (either high or
low) is not a mUltiple of 1024, the number will be rounded. The address
at which execution is to be resumed is in the left-half of the
A-register (the right-half must be zero). This address will be taken
relative to the new base. When low memory is released, it is the
responsibility of the user to reestablish the fault vector or clear it
to zero.

DRL RESTOR, OVERLAY-LOAD A SUBSYSTEM (octal 25)

8 16

DRL RESTOR
ASCII 1, name
ZERO loc, 0 or non-O
ZERO tra, 0

where:

name is the ASCII name by which the subsystem is identified in its
program descriptor.

loc is the address at which to load the subsystem. If the lower half
of this parameter is 0, the subsystem location 0 is loaded at loco
If the lower half of this parameter is not 0, the subsystem is
loaded such that the initial load address is at loco

tra is the location of the next instruction to be executed.

3-22 BR39

To overlay-load a permanent file or a program from a multiprogram
permanent file, the following coding is required:

8

DRL
ZERO
ZERO
ZERO

where

16

RESTOR
nameptr,O or 1
loc, ° or non-O
tra, bufloc

nameptr points to 3 words containing:

for nameptr,l (used in referring to a multiprogram file) an
ASCII file name (1-8 characters) in words 1 and 2 and a BCD
program name (1-6 characters) in word 3.

for nameptr,O (used in referring to a single-program file)
the filename, as above, in words 1 and 2. Word 3 is ignored.

loc is the location at which to start loading the file. If the lower
half of the parameter is 0, location ° of the program on a permanent
file will be loaded at loco If both loc and the lower half are 0,
the subsystem is loaded according to the program control block
initial load address. If the parameter is non-O, the initial load
address of the file will be loaded at loco

tra is the location of the next instruction to be executed. If tra
is 0, the entry address is taken from the program control block.

bufloc is (1) the location of a 40-word work buffer,
single-program file is to be restored (nameptr,O) or
location of a 40-word or 64-word buffer (its size depending
size for the device where the file resides) when a program
multiprogram file is to be restored (nameptr,l).

when a
(2) the
on block

from a

This function will load a subsystem or the contents of a permanent file
as an extension of, or an overlay of, the calling subsystem. (See also
DRLSAV.) Hhen the lower portion of the parameter containing loc is
nonzero, the user is indicating that the data area affixed by the loader
is to be relinquished. This allows such things as floatable libraries to
be loaded without wasted space. Upon return, the upper half of the
A-register contains the number of words loaded.

A user subsystem is aborted, with one of the following messages to the
originating terminal, if an error occurs during a DRL RESTOR:

OOOss BAD STATUS-DRL SAVE/RESTOR FILE

where ss is erroneous status

SAVE/RESTOR FILE NAME NOT IN AFT

3-23 BR39

DRL RETURN, RETURN TO PRIMITIVE LIST (octal 5)

8 16

DRL RETURN

This derail indicates to the Executive that this subsystem process has
reached a normal termination. The TSSH module selects the next primitive
in the sequence defined within the program descriptor and, based on this
primitive, initiates the next process. (Refer to the description of
primitives in Section IV.)

DRL RSTSWH, RESET SWITCH HORD (octal 11)

8 16

DRL RSTSWH

This derail is similar to Set Switch Word except that each
Q-register that is on will be turned off in the switch
resultant value will be returned in the Q-register.

DRL DRLSAV, SAVE PROGRAM ON PERMANENT FILE (octal 62)

8

DRL
ZERO
ZERO
ZERO
Z:CRO

where:

16

DRLSAV
nameptr, a or 1
loc 1, loc 2
entry addr, load org
tra, bufloc

nameptr points to 3 words containing:

bit in
word.

the
The

for nameptr,l - the name of an existing permanent file (1-8
ASCII characters) in words 1 and 2 and a BCD program name (1-6
characters) in word 3.

for nameptr,O - word contents as above, but used for first
program saved on a file.

loc 1 and loc 2 are the initial and final addresses of the program.

entry addr and load org are the entry address and load origin to be
placed in the control block for the file. (They may be 0,0.)

tra is the location of the next instruction to be executed.

3-24 BR39

bufloc is the location of a 40-word (DSS204) or 64-word (other mass
storage devices) buffer, its size depending on the block size of the
device where the file resides.

This DRL writes an element (program) on a permanent file in standard
program format. The element can then be loaded with a DRL RESTOR. If the
saved program is the first on the file (nameptr, 0) , a catalog block and
an available space block are initialized. If the program is saved on an
existing file (nameptr,l) , the catalog and available space blocks are
updated. Up to nine programs can be written on a device having 40-word
blocks; as many as 14 can be written on a device having 64-word blocks.
The file name referred to must be in the AFT upon entry to the derail.

The entry address and load origin are not actually used by DRLSAV but
may be required for a later RESTOR and are therefore included.

Upon return to the transfer address, the A-register contains 0 if the
DRLSAV was successful. It contains a l-bit in position 35 if the file is
not large enough to accommodate the requested DRLSAV. The user may grow
the file and attempt the derail again.

A user subsystem is aborted, with one of the following messages to the
originating terminal, if an error occurs during a DRLSAV:

OOOss BAD STATUS-DRL SAVE/RESTOR FILE

where ss is erroneous status

SAVE/RESTOR FILE NAME NOT IN AFT

REACHED CATALOG LIMIT DRL SAVE

Since catalogs are presently limited to one hardware block,
number of programs which can be saved on a file is
(block size/4) -1.

drl loc BAD DRL SAVE DATA LOC

where drl loc is the derail location

DRL SAVE-DO FIRST PROG SAVE BEFORE ADDED PROG

Nameptr,l was attempted on new file.

DRL SAVE ON RANDOM FILE ONLY

DRL SETLNO, SET LINE NUMBER/INCREMENT IN UST (octal 37)

8 16

DRL SETLNO

3-25 BR39

I

C(A)

C(Q)

o

xl
Line number

Increment

This derail initiates automatic line-numbering mode. The specified line
number and increment value are stored in the user status table for use
by Line Service. An indicator for automatic line-numbering mode is set
in .TFLG2 (in UST). A blank/no-blank indicator is set in .TFLG2 also, as
specified by bit 0 of the Q-register. If the bit value (X) is 1, a blank
is not supplied following the line number.

DRL SETSWH, SET SWITCH WORD (octal 10)

8 16

DRL SETSWH

A 36-bit switch word (.LSWTH) is provided for each user. This derail
provides a method of setting individual bits of this word. The value of
the Q-register is ORed into the switch word. Thus, any bit that is on or
true is set true in the switch word. Other bits are not disturbed. The
value returned in the Q-register is the resultant setting of the switch
word. This provides a method of reading the switch word and determining
a course of logic based on events in preceding subsystem processes.
Thus, if one subsystem process encounters an abnormal situation, a
prearranged bit may be set; and subsequent subsystems may interrogate
the switch word and take appropriate action.

Bits 0-17 are reserved for use of subsystems
time-sharing system. Bits 18-35 are kept free
subsystems. (See Subsystem Switch Word paragraph.)

DRL SNUMB, OBTAIN SNUMB (octal 20)

8 16

DRL SNUMB

issued with the
for user-generated

If a subsystem wishes to spawn a batch job, a unique SNUMB is required.
The TSS Executive obtains a SNUMB using a MME GESNUM routine. It is
returned in the following format:

C(A) nnnnT~ (in BCI)

3-26 BR39

The trailing character T in the BCI form serves to distinguish this job
and its output as a TSS-initiated job. The subsystem program uses this
number to generate the input file for the batch job, using this same
number when the request is made to pass the file to the batch processor
-- that is, DRL SPAWN (possibly notifying the user of the assigned
SNUMB) •

DRL SPAWN, PASS FILE TO BATCH PROCESSOR (octal 26)

8 16

SPAWN DRL
ZERO L(snumb) ,L(buffer)

C(A) o o or 1

o immediate return
1 return after batch job completes

C(Q) I File-name ptr. o

The subsystem writes the file as an input job deck on a linked file, and
QU points to the name. The file must have an empty 320-word first block.
The input deck (beginning with the second block, numbered "1") must have
SNUMB and ENDJOB, as in a normal card-image input deck, and must end
with a GEFRC end-of-file (control record of zero). The file is in BCI
format.

L(snumb) specifies the location of the SNUMB obtained via DRL SNUMB.
L(buffer) points to a 325-word work area provlaea by tne subsystem.
SPAWN generates the information required by GEIN in this area and writes
it into the 320-word first block of the file.

Upon return to the subsystem, any error condition is indicated in the
Q-register. The one-digit error code, right-justified in QU, is as
follows:

o - no error
1 - undefined file
2 - no PAT's for PASFIL
4 - SNUMB not given
5 - no program number available,

try again

3-27 BR39

I

I

*

I

DRL STOPPT, STOP PAPER TAPE INPUT (octal 61)

8 16

DRL STOPPT

This DRL causes a halt to paper tape input via a DATANET 355 when it is
necessary to send an error message to the terminal. Because of interface
and queueing system requirements unique to the DATANET 355, it is vital
that these messages not be delayed until termination of tape input, as
with the DATANET 30.

DRL SYSRET, RETURN TO SYSTEM (octal 40)

8 16

DRL SYSRET

This derail causes the subsystem to be killed; control returns to the
subsystem-selection point, bypassing the normal return via the
primitives.

NOTE: This is not the normal return from a subsystem. The derail RETURN
is the normal end-of-process return.

DRL TAPEIN, START PAPER TAPE INPUT (octal 27)

8

DRL
ZERO

16

TAPEIN
L(tally) ,L(char)

where L(tally) and L(char) are as in DRL KOUT.

This derail gives a subsystem the ability to print a message and start
the input of a paper tape from the keyboard terminal. The TSS Executive
will build the terminal input on the tape collector file (TAP*) in the
format described in Section VI. When the paper tape input is complete,
the subsystem receives control. The derail does not issue an X-ON
character to start the tape reader (this is a user action). Note that
~ output is required, as in any terminal operation.

NOTE: Paper tape input must be interrupted for output of error messages
by execution of DRL STOPPT, if time-sharing is via a DATANET 355.

3-28 BR39

DRL TASK, SPAWN A SPECIAL BATCH ACTIVITY (octal 63)

8

LDA
DRL
ZERO

where

16

O,DU
TASK
L(SSA buffer), L(file list)

SSA buffer is a 645-word buffer in the slave service area that
provides 640 words for writing to the *J file.

File list is a list of files for which PATs must be copied to the
SSA buffer. All files listed must be in rewound condition and exist
in the user's AFT.

3-29 BR39

The format of the BUFFER PASSED TO DRL TASK is:

U T
S A
E S
R K

* 0

* 15

* 50
* 55

* 56
* 57

* 58
* 59
* 60
* 61
* 62

* 305
* 306

308

* 570
* 573
* 575

* 597
* 598
* 599
* 600
* 601

* 602
* 608

* 609
* 610
* 611
* 612
* 614
* 615
* 618

* 619
* 620-629
* 630-639

640-644

*J PAT BODY

URGENCY

TIME OF DAY
STATION ID, SOURCE TYPE
SNUMB
.SACT
ACTIVITY NAME .SACTY
.STATI (0)
.SNPAT
.SPTBE
.SNIO

I/O TIME LIMIT
*J SCT, LINK
LOCATION OF PAT BODIES

LOCATION PAT PTRS
JOB TIME LIMIT
JOB I/O TIME LIMIT
SCT POINTER (PUSH DOWN FILE)
IOC TIME FOR THIS FILE (PUSH DOWN FILE)
RANDOM (005200)
NUMBER OF LINKS FOR PUSH DOWN FILE

DESCRIPTORS FOR PUSH DOWN FILE

.STQTM

.SWIT
ACTIVITY TIME LIMIT
GELOOP TIME LIMIT
.SUID (USERID)

rvlME GECALL
ACTIVITY NAME
ACTIVITY*, SNUMB (PP£FIX WORD 30)
GELOAD LIMITS
IDENT CARD
COMMENT CARD
USED BY DRL TASK (*J FILE DCW's)

TASK checks values of user supplied items and erases all other unused
cells.

3-30 BR39

The format of the file list is as follows:

L Number of files listed

+1 ASCII file name 1 (char. 1-4)

+2 char. 5-8

+3 File code 1 (BCI)

+4 ASCII file name 2 (char. 1-4)

+5 char. 5-8

+6 File code 2 (BCI)

Upon return a code appears in the A-register, as follows:

o No error on DRL execution. (If this code appears, the
Q-register contains the current status of the batch
activity.)

1 Undefined file

2 No SNUMB

3 Duplicate SNUMB

4 No program number available

5 Activity name undefined

6 Illegal user limit (time,size, etc.)

7 Bad status on *J read or write

This derail was created to spawn a job to the Series 6000 FORTRAN
compiler but may be used for other similar applications. In execution,
DRL TASK first copies the PATs for the files in the file list to the
designated SSA buffer. The buffer contents are then written on the first
two blocks of the user's *J file. GEPOP then assumes control and enters
the batch activity at core allocation level. Upon completion of the
spawned activity, the DRL is again entered. The first two blocks of *J
are read back to the user's SSA buffer. The derail then uses the current
PATs now in the buffer to make any necessary updates in the PATs for the
files in the file list.

If the user enters a BREAK or attempts a disconnect while the spawned
activity is executing, it will be ignored until TASK has completed the
final phase of its execution.

3-31 BR39

The following abort messages are possible with TASK:

ADDRESS OUT OF RANGE

The SSA buffer or file list address
is outside subsystem limits.

ILLEGAL ENTRY DRL TASK

See specific error code
returned in A-register.

DRL TERMTP, TERHINAL TYPE AND LINE NUMBER (octal 23)

8 16

DRL TERMTP

For some situations, it is necessary that the subsystem be aware of the
type of terminal that is connected. It would be desirable to assume that
all terminals could be made to look the same by use of the ASCII
character set. While this is generally true, there are some essential
features available on terminals that would be utilized by different
procedures. This derail will return the line number, in BCI, in the
rightmost 12 bits of the A-register and the terminal type code in bit
positions 19-23. The codes for terminal type will be the same as defined
by the GRTS programming system. Refer to Series 6000 GRTS Programming
Reference Manual, for further details.

o 171819 2324 35

C (A) o I I (code) (line number) I

3-32 BR39

DATANET-30

Code Terminal Type

1 - Reserved for system
2 - 115 voice grade
3 - 115 Telpak
4 - TTY
5 - DATANET 760 4 lines/screen}
6 - DATANET 760 8 lines/screen
7 - DATANET 760 16 lines/screen

10 - DATANET 760 26 lines/screen
11 - VIP775 22 lines/screen

~~ ~}Reserved for system

20 - 2741

21 }
60 ~ Reserved for system

: ~ J Reserved for customer use

DATANET-355

1 - Reserved for system
2 - Reserved for system
3 - Remote computer
4 - TTY
5 - DATANET 760 4 lines/screen}
6 - DATANET 760 8 lines/screen
7 - DATANET 760 16 lines/screen

10 - DATANET 760 26 lines/screen
11 - VIP765/775 22 Lines/screen

~~ =}Reserved for system

20 - 2741

:: ~} Reserved for system

25 - Mass store link

:: ~} Reserved for system

30 - MRS200 (document handler)
31 - DRD200 (document handler)
32 - DRD236 (document handler)

:: ~} Reserved for system

61 _-} Reserved for customer use
77

3-33

46 characters/line

46 characters/line

BR39

DRL TIME, OBTAIN PROCESSOR TIME AND TIME OF DAY (octal 21)

8

DRL
ZERO

16

TIME
L (date)

From this derail, the processor time used by the current user, the time
of day, and (optionally) the date are returned, in the following form:

C(A) Processor time

C(Q) Time of day

The unit of time is 1/64 of a millisecond.

At location date, the date is entered, in ASCII code, with slashes
inserted between the values in the following form:

DATE

+1 /

where

MM is the month
DD is the day
YY is the year

/ D

Y Y

If the value of L(date) is zero, the date is not stored.

Mass Storage File Activity Derails

TSS file usage is discussed in the paragraphs beginning on page 3-54.
This discussion will be helpful to the subsystem designer who wishes to
adhere to standard practice in using the file activity derails.

3-34 BR39

DRL DEFIL, DEFINE AND ACCESS A TEMPORARY FILE (octal 6)

8 16

DRL DEFIL
ZERO L(arg) ,L(stat)

arg Filename, (characters 1-4)
in ASCII

arg+l Filename, (characters 5-8)

0 5 6 16 17 18 19 35

arg+2 I a I Ib Ie I d

where:

a = device type as follows

00 - DSS 270 (disk)
01 - DSS 200 (disk)
02 - DSS 167 (disk)
03 - MDS 200 (drum)
04 - MSS 800 (disk)
05 - DSS 170 (disk)
06 - DSS 180 (disk)
07 - DSS 181 (disk)

b 0 - use the standard TSS temporary-file device
b 1 - use the type of device defined in a

c = 0 for linked file
c = 1 for random file

d number of links desired, in binary

stat (2 words)
word:

status return in binary, right-justified in first

o
3
4
5
6
7

successful
no room in AFT
temporary file not available
duplicate file name
no room in PAT
illegal device specified

A temporary file can be requested either on a specific type of device or
on the standard TSS system device for temporary files (bit 17, arg + 2).

If a specific device type is requested but there is not enough space on
that device, the request will be satisfied from the standard device.

After the file space is obtained, the DEFIL function builds the PAT
entry and enters the file in the user's AFT.

3-35 BR39

I

I

Upon a successful return from this function, the A-register contains the
following information:

Bits 0-5 Device type

6-17 Nunber of words per physical block

if bit 18 0 bits 24-35 number of links in the file

if bit 18 1 bits 24-35 number of blocks in the file

if bit 19 0 Linked file

if bit 19 1 Random file

if bit 20 0 Temporary file

if bit 20 1 Permanent file

21-23 Unused

This information will also be returned for an already-defined file
(status = 5).

DRL DIO, DO I/O ON USER'S FILE (octal 1)

8 16

DRL DIO
Seek command
ZERO L(fileid) ,L(dcwl)
Read/Write command
ZERO L(fileid) ,L(dcw2)
ZERO L(stat) ,0

where:

fileid (2 words) contains the file name in ASCII, 1 to 8 characters

dcwl IOTD L(rbn) ,1

where rbn contains, for random
number (set by user) (This word
routines.)

3-36

files, the
is always

relative block
altered by I/O

BR39

dcw2 IOTD L(data) ,n

where data contains the starting address at which data is to
be read/written and n is the number of words to be
transferred

stat (2 words) is the status-return
6000 Comprehensive Operating
codes.)

location (Refer
Supervisor, for

to
the

Series
status

I/O commands the user need not be concerned about giving commands
for a specific device type because the seek (34)
command, write (3l) command, and read (25) command
will be accepted for all devices. The actual
commands used will be acquired for the particular
device.

This function is for files that appear in a user's list of files (AFT).
It performs the equivalent of the MME GEINOS and performs the indicated
seek, read, or write, using the master-mode routines. The subsystem is
not eligible for execution until the I/O is complete.

Standard statuses are returned, except that Device Busy has special
meaning. It is used to notify the user that his file name is not yet
defined. (True Device Busy status is never returned by the GCOS file
system.) Logical end-of-file is returned as major status 17.

If an invalid relative block number is given for a
requesting subsystem is aborted; and an error message
terminal.

random file,
is sent to

the
the

The requesting subsystem is also aborted, with an error message sent to
the terminal, if the terminal user does not have the necessary
permissions. In particular, if a read is requested and the:ile does not
have READ permission, a check is made to see whether EXECUTE permission
was granted on the file when opened. If it was and if the subsystem is
BASIC, FORTRAN, or CARDIN, the file read is executed. Otherwise, the
read request is denied.

DRL FILACT, PERMANENT FILE ACTIVITIES (octal 36)

Grouped under DRL FILACT are the following permanent file functions:

Create Catalog (CC)
Creat File (CF)
Access File (AF)
Purge Catalog (PC)
Purge File (PF)
Release File (RF)
Modify Catalog (MC)
Modify File (MF)

3-37 BR39

They are differentiated by a function number which is passed in the
upper-half of word 3 of the calling sequence. The DRL FILACT handles all
permanent file requests with the exception of file deaccesses. These are
handled by DRL RETFIL.

The following parameter descriptions are common to most of the DRL
FILACT calling sequences. Following a calling sequence in which one or
more of these parameters differ from the common layout, the description
of such parameters is given.

(1) buffer:

buffer BSS 380

This buffer is required in all cases as File System working
storage.

(2) status return:

o
Status

Code

1112 35

2 words

NOTE: The status return words are automatically zeroed by the File
System when initialization takes place for the selected permanent
file function.

Upon return, a status code of other than 4000
that the request was denied.

3-38

(octal) indicates

BR39

Status codes:

4000 NO ERRORS

4001 NAME NOT IN MASTER CATALOG
4002 I/O ERROR ON DEVICE XXX SA NNN NNN
4003 PERMISSIONS DENIED
4004 FILE BUSY: TRY LATER
4005 INCORRECT CAT/FILE DESCRIPTION AT AAA •..... AAA
4006 LLINK SPACE EXHAUSTED, DEVICE XXX
4007 UNDEFINED DEVICE YYY ZZZZZZ
4010 LINK SPACE EXHAUSTED, DEVICE XXX
4011 NON-UNIQUE NAME
4012 SIZE REQUESTED LS THAN ALLOCATED
4013 SPACE REQUEST GR THAN ALLOWED
4014 PASSWORD REQUIRED AT AAA AAA

PASSWORD AAA AAA AT AAA AAA INCORRECT
4015 I-D-S FILE IN ABORT STATUS
4016 I-D-S FILE IN RECOVERY STATUS
4017 SEEK ERROR ON DEVICE XXX SA NNN NNN
4020 FAILURE IN NAME SCAN (IMP.)
4021 UNDEFINED DEVICE (IMP.)
4022 DEVICE LINK TABLE CHKSUM ERROR
4023 INCONSISTENT FSW BLOCK COUNT
4024 INTERNAL LINK TABLE CKSM ERROR
4025 REQUESTED ENTRY NOT ON-LINE
4026 NON-STRUCTURED FILE ENTRY
4027 FILE IN EFFECTIVE STATUS
4030 ILLEGAL PACK TYPE
4031 ACCESS GRANTED TO I-D-S FILE
4042 INVALID FILE CODE OR PAT PTR
4043 INVALID CATALOG BLOCK ADDRESS
4044 PERMISSION DENIED - SHARED FILE
4045 INVALID SPACE IDENTIFIER
4051 CHECKSUM ERROR - DEVICE XXX SA = NNN NNN
4052 DEVICE XXX RELEASED

WHERE: XXX
NNN .•.... NNN
AAA .•.•.. AAA

YYYY
ZZZZZZ

=DEVICE NAME (ST1,DS1, ...)
=OCTAL REPRESENTATION OF THE SEEK
=12 BCD CHARACTERS OF THE CATALOG

IN ERROR
=TYPE fORI NAME
=DEVICE NAME OR CLASS OF DEVICE

(3) permissions (assigned or requested)

01234 35

If corresponding bit is set:

r general read permission
w general write permission
a general append permission
e general execute permission

3-39

ADDRESS
ELEMENT

BR39

(4) options:

Optional

Specific

Permissions

o 1 2 3 4 5 G 7 8 17 18 29 30 35

j device name or type

Initial File Size
(For CF and MF only;

Max. File Size
otherwise unused)

USERID (Chars. 1-6 in BCI)

USERID (Chars. 7-12 in BCI)

o 1 2 3 4 5 6 35

USERID (Chars. 1-6 in BCI)

USERID (Chars. 7-12 in BCI)

rlwlalelplml

-1 (end of list)

35 Bits of User-Specified Attributes
(For CF or MF only;otherwise not needed)

If corresponding bit is set:

j contiguous allocation desired
(Create File only)

b random file type
(Create File only)

c USASCII file (Create File only)
d I-D-S file
k allocation in 320-word blocks

(Create File only)
f tape file
g DSU 167
h I-D-S attributes file
i user-specified attributes

(Create File or Modify File only)
r = specific read permission
w specific write permission
a specific append permission
e = specific execute permission
p specific purge permission
m specific modify permission

3-40 BR39

Device name or type is defined as:

or

Specific (named) device, in BCI (for example, DS1, where
"DS1" would have been assigned as a specific device name
in the installation's GCOS Startup deck)

Type of device (in bits 30-35) -

00 DSS 270 (disk)
01 DSS 200 (disk)
02 DSS 167 (disk)
03 MDS 200 (drum)
04 MDS 300 (drum)
05 DSS 170 (disk)
06 DSS 180 (disk)
07 DSS 181 (disk)

where:

-1 (bits 18-35) denotes the file with the most available
space.

FILACT, CREATE CATALOG FUNCTION

8

DRL
ZERO
ZERO

where:

16

FILACT
O,L(arglist)
2,L(buffer)

arglist ZERO L(status-return) ,0
ZERO L(cat/filedescr) ,L(permission)
ZERO L(options)

3-41 BR39

I

cat/filedescr:

User's
t-1aster
Catalog:

Name and
Password

,..

....
Intermediate}

Catalogs
(as below)

Catalog
Level
To Be
Created

(

,..

'--

USERID (Chars. 1-6 in BCI)

USE RID (Chars. 7-12 in BCI)

Password - always BCI blanks,
at this level, for TSS

Password - always BCI blanks,
at this level, for TSS

Catalog Name (Chars. 1-6 in BCI)

Catalog Name (Chars. 7-12 in BCI)

Password (Chars. 1-6 in BCI)

Password (Chars. 7-12 in BCI)

-1 (end-of-list)

}
}

2 words

2 words

2 v-lords

2 words

1 word

(1) All names and passwords are left-justified with trailing
blanks.

(2) -1 in place of the user's-master-catalog name indicates that
the USER-ID of the current terminal user is to be filled in by
the derail processor.

This FILACT function, identified by the function number 2, creates the
specified new catalog at the level indicated. All existing intermediate
catalogs must be specified in the cat/filedescr table (that is, the
complete catalog string).

FILACT, CREATE FILE FUNCTION

8

DRL
ZERO
ZERO

where:

arglist

16

FILACT
O,L(arglist)
3,L(buffer)

ZERO
ZERO
ZERO

L(status return) ,0
L(cat/filedescr) ,L(permissions)
L(options)

3-42 BR39

User's
Master
Catalog:

Name and
Password

cat/filedescr:

USERID (Chars. 1-6 in BCI)

USERID (Chars. 7-12 in BCI)

Password - always BCI blanks,
at this level, for TSS

Password - always BCI blanks,
at this level, for TSS

I} 2 words

2 words

Intermediate }
Catalogs
(see CC
Function)

File To
Be

Created

File name

File name

Password

Password

-1

in ASCII

in ASCII

(Chars.

(Chars.

(end of

(Chars. 1-4)
2 words

(Chars. 5-8)

1-6 in BCI)
2 words

7-12 in BCI)

list)) 1 word

(1) All names and passwords are left-justified with trailing
blanks.

(2) All entries are in BCI, except for the file name.

(3) -1 in place of the user's-master-catalog name indicates that
the USERID of the current terminal user is to be filled in by
the derail processor.

options:

Includes the appended word of user-specified attributes,
following the -1 word, if the i bit of options + 0 is on.

NOTE: If this bit is on, bits 1-35 of the attributes word are
placed in the file descriptor and are returned on a
subsequent file access.

The Create-File function creates a permanent-file descriptor
information specified in both the cat/filedescr and options
and acquires the necessary file space. The file name is not
the user's AFT (see FILACT Access File Function).

3-43

from the
parameters

entered in

BR39

FILACT, ACCESS FILE FUNCTION

8 16

DRL
ZERO
ZERO

FILACT
L(altname) ,L(arglist)
4,L(buffer)

where:

arglist ZERO
ZERO

L(status return) ,1 for random/O for linked file l
L(cat/filedescr) ,L(permissions)

altname

where-:

altname in ASCII, or all
2 words

zeros if no alternate naming desired

This two-word entry is used when a file is to be accessed by a
name other than that by which it was created (that is, a file
created in the batch environment with a name of more than 8
characters or a file whose name is the same as one already in
the user's AFT).

NOTE: When an-alternate name is used, the defined file name in
the cat/file description must be in BCI and the
alternate name in ASCII.

status return:

o 1 11 12 18 35
Status I I pd

2 words nl User-specified attributes

pd 400300 (Permissions Denied status) when the file is already
open and the permissions are not equal to or a subset of
those current (See following discussion.)

n = 0 for a null file
n ~ 0 for a non-null file

lIf this field is nonzero, the file will be accessed as
file regardless of how it is defined. If the field is
file will be accessed according to how it is defined.

a random
zero, the

3-44 BR39

cat/filedescr:

User's
Master
Catalog:

Name and
Password

Intermediate}
Catalogs

(see CC
Function) ,...

File to
Be

Accessed
<

.....

USERID (Chars. 1-6 in BCI)

USERID (Chars. 7-12 in BCI)
Password - always Bel blanks,

at this level, for TSS
Password - always BCI blanks,

at this level, for TSS

File name in ASCII (except when

an alternate name is given; then
See altname, above.)

Password (Chars. 1-6 in BCI)

Password (Chars. 7-12 in BCI)

-1 (end of list)

\
J

2 words

words

} BCI.
2 words

2 words

) 1 word

(1) All names and passwords are left-justified with trailing
blanks.

(2) All entries are in BCI, except for the file name or alternate
name.

(3) -1 in place of the user's-master-catalog name indicates that
the USERID of the current terminal user is to be filled in by
the derail processor.

The Access File function places the specified file in the user's AFT and
sets the file busy consistent with the permissions requested. If the
file is already open and the new permissions requested in arglist are
equal to, or a subset of, those already granted, a status code of 4037
(Duplicate Name in AFT) is returned. If the file is already open and the
requested permissions are not equal to, or a subset of, those current, a
status code of 4003 (Permissions Denied) is returned left-justified in
bits 18-35, with the 4037 status code in bits 0-11.

The file is placed in the AFT under its actual file name or under an
alternate name, as indicated. (The effect of alternate naming is
restricted to the AFT associated with the current user and does not in
any way change the file's definition in the file system.) An
alternately-named file, if returned (released from the AFT see DRL
RETFIL) 1 must be returned under its alternate name.

Note that files created through the DRL FILACT Create File function may
be treated as either linked or random files. Their intended use must,
however, be specified in each file-access request, as previously
indicated in word 1 of arglist.

3-45 BR39

Upon a successful return from this function, the A-register contains the
following information:

Bits 0-5 Device type

6-17 Number of words per physical block

if bit 18 0 bits 24-35 = number of links in the file

if bit 18 1 bits 24-35 number of 320-word blocks in the file

if bit 19 0 Linked file

if bit 19 1 Random file

if bit 20 0 Temporary file

if bit 20 1 Permanent file

21-23 Unused

The status return word pair indicates, in addition to the status code in
the first word, whether or not the accessed file is null (empty) -- bit
o of the second word. The 35 bits of the user-specified attributes are
also returned in the second word.

FILACT, PURGE/RELEASE CATALOG/FILE FUNCTION

8

DRL
ZERO
ZERO

where:

16

FILACT
O,L(arglist)
n,L(buffer)

arglist ZERO L(status return) ,0
ZERO L(cat/filedescr) ,0

n (function number)
n 8 Purge Catalog
n 9 Purge File
n = 22 Release File

3-46 BR39

cat/filedescr:

User's
Master
Catalog:

Name and
Password

Intermediate}
Catalogs

(as below)

USERID (Chars. 1-6 in BCI)

USE RID (Chars. 7-12 in BCI)
Password - always BCI blanks,

at this level, for TSS
Password - always BCI blanks,

at this level, for TSS

Catalog/File Name (Chars. 1-6 in BCI)
Catalog
or File

To Be
Purged

Catalog/File Name (Chars. 7-12 in
Password (Chars. 1-6 In BCI)

Password (Chars. 7-12 in BCI)

-1 (end-of-list)

BCI)

}2 words

} words

2 words

2 words

) 1 word

(1) All names and passwords are left-justified with trailing
blanks.

(2) -1 in place of the user's-master-catalog name indicates
the USERID of the current terminal user is to be filled
the derail processor.

that

At the file level, this function deletes the file descriptor from the
file system and either releases the corresponding file space (n=22) or
zeros and releases the space (n=9). At the catalog level, this function
deletes the named catalog and all catalogs and files subordinate to it.

NOTE: User's master catalogs cannot be purged under TSS.

FILACT, MODIFY CATALOG/FILE FUNCTION

8

DRL
ZERO
ZERO

16

FILACT
O,L(arglist)
n,L(buffer)

3-47 BR39

where:

arglist ZERO L(status return),O
ZERO L(cat/filedescr) ,L(permissions)
ZERO L(options) ,L(newname)

n (function number)
n 10 Modify Catalog
n = 11 - Modify File

permissions follows the common layout, except as indicated under
(3), below, and is used as follows:

options

(1) change the assigned general permissions
permission bits (0-3) must specify the new set
permissions, not just additions.

the
of

(2) delete all general permissions
word must contain all zeros.

the permissions

(3) indicate no change of general permissions
permissions word must contain a -1 (that is,
I-bits) .

follows the common layout and is used as follows:

the
all

(1) change the assigned specific permissions
permlssion bits must specify the new
permissions, not just additions.

the
set of

(2) delete all specific permission (for one user)
all permission bits must be zero.

(3) indicate no change - omit entry for the user whose
specific permissions are to remain unchanged.

(4) change size in Modify File - the new maximum size
(only) is indicated in lower-half of options +1.

(5) replace the user-specified attributes bits in the
file descriptor with those (1-35) of the appended
attributes word, if bit i of options is set.

3-48 BR39

new name/password:

New catalog/file name

-1 if name change

New password in

-1 if password is not

in BCI, or a

not desired.

BCI, or a

to be changed.

}
}

2 words

2 words

This function will modify a catalog or file descriptor, depending
the function number specified. Unlike alternate naming in Access
the changes made by this function are permanent. However, for a
that has already been opened, subsequent reference to the file
still be by its original name. The reason is that, even though
modification has taken place, the AFT entry has not been altered.

DRL FILSP, SPACE A LINKED FILE (octal 13)

8

DRL
ZERO
ZERO

where:

16

FILSP
L(fileid) ,L(n)
L(stat) ,0

fileid (2 words) contains the file name in ASCII

upon
File,
file
must

the

n contains the number of 320-word blocks, n, to be spaced; a
negative value of n denotes backspacing

stat (2 words) is the status-return location

This function spaces a linked file forward or backward n 320-word
blocks, depending upon whether n is positive or negative, respectively.
Loadpoint and End of File status indications are returned. An
undefined-file condition is returned as Device Busy status (major status
01) .

If a request is made to space a random file, the requesting system is
aborted, and and error message is sent to the terminal.

3-49 BR39

I

I DRL GROH, GROvJ A PERMANENT OR TE!1PORARY FILE (octal 50)

8

DRL
ZERO
ZERO

where:

16

GROvJ
L(n), L(fileid)
L (buff) ,L (stat)

n(O-17) contains the number specifying the unit of growth.
If bit 0 is On (bit 0 = 1) the unit is in links; if bit 0
is Off (bit 0 = 0) the unit is in 320-word blocks. If n is
zero the system determines the growth rate.

file name (2-words) is the name of the file in ASCII.

buffer is a lS8-word work area required for permanent
files only.

status is a two-word status return area.

This derail is used to grow an already accessed (opened) permanent or
temporary file up to its maximum size limit.

The number n in the location pointed to by the first argument specifies
the growth rate or, if it is 0, specifies that the system is to set the
growth rate. (For a temporary file, the system-controlled rate is 1
link.)

The contents of bit position 0 in the location pointed to by the first
argument are used to specify the unit of growth:

o - The unit of growth is n 320-word blocks for a permanent
file, or the number of blocks is rounded up to make full
links for a temporary file. For example, if n=15, a
permanent file is grown by IS-block units; a temporary
file is grown by 2-link units (1 link=12 blocks) .

1 - The unit of growth is n links for either type of file (1
link=12 blocks).

On return:

stat (0-11) 4000 - no errors
4002 - I/O error - cannot proceed
4010 - Link space exhausted
4020 - Failure in name scan
4024 - Internal link table checksum error
4040 - No PAT space available

3-50 BR39

DRL HORLNK, ADD LINKS TO TEMPORARY FILE (octal 34)

8

DRL
ZERO
return

where:

16

MORLNK
L(links) ,L(fileid)

links (0-17) contains the number of additional links desired

fileid (2 words) contains the file name in ASCII

On return, links contains the following:

Bit

bits 0-5 - error indication, as follows:

(set) 0 PAT full

1 Link space exhausted

2 File is permanent file

3 File name not in AFT

4 No links requested

5 (Not currently used)

bits 18-35 - number of links obtained; will bp
number requested or O. If 0, see
error indication in bits 0-5.

This function will acquire the additional number of links requested, if
possible, and update the user's entry for the file.

NOTE: The programmer may use DRL GROW in place of DRL MORLNK and the I
system will determine if the file is permanent or temporary.

3-51 BR39

DRL PART, PARTIAL RELEASE OF TEMPORARY FILE (octal 47)

8

DRL
ZERO

where

16

PART
L (fileid) ,n

fileid (2 words) contains the file name in ASCII

n is the number of links to be released

The derail is used to release a portion of a temporary file. If the
specified number of links, n, is greater than or equal to the number of
links in the file, the file is reduced in size to one link.

On return, the result is indicated in the upper half of the A-register:

C (AU)

C(AU)

o if request is satisfied

1 if file is nonexistent or not a temporary file

If the request is satisfied, the file is in rewound position.

DRL RETFIL, RETURN A FILE (octal 14)

8

DRL
ZERO

\vhere:

16

RETFIL
L(fileid) ,L(buff)

fileid (2 words) contains the file name in ASCII, or a
right-justified 777 in first word if all files (except SY**)
are to be returned.

buff (BSS 380) is a work area used by the system. This parameter
is required only for permanent files.

When a temporary file is returned, the file space and PAT-entry space
are released and the file deleted from the AFT. When a permanent file is
returned, the file system is notified to deaccess the file, the
PAT-entry space is released, and the file is deleted from the AFT.

3-52 BR39

NOTE: A file that cannot be found in the AFT is considered by this
function to be already released.

DRL REW, REWIND A LINKED FILE (octal 12)

8

D~

ZERO

where:

16

REW
L(fileid) ,L(stat)

fileid (2 words) contains the file name in ASCII

stat (2 words) is the status-return location

This function rewinds the linked file specified. The
indication is returned. An undefined-file condition
Device Busy status (major status 01).

loadpoint status
is returned as

If a request is made to rewind a random file, the requesting subsystehl
is aborted; and an error message is sent to the terminal.

DRL SWITCH, SWITCH TEMPORARY FILE NAMES (octal 53)

8 16

DRL SWITCH
ZERO L(fileidl) ,L(fileid2)
Error return
Successful return

where:

each fileid (2 words) contains a file name in ASCII

This derail is used to switch the names assigned to two temporary files
specified by fileidl and filcid2. Note that this effectively
accomplishes an exchange of the contents of the two files.

On an error return:

C(A)

C(A)

o if either file is nonexistent

nonzero if either file is not a temporary file

3-53 BR39

TSS FILE USAGE

Temporary User Files Assigned by TSS

The usage of standard temporary user files is described here on the
basis of what is done by the Honeywell-supplied TSS subsystems,
primarily BASIC and EDITOR. The designer of a new subsystem which
requires a source file for each user may select this usage, both for
overall system consistency and to take advantage of facilities already
provided in TSS. All standard temporary files should have at least one
asterisk (ASCII 052) in their names to differentiate them from
user-created files.

There are two standard temporary files for each terminal user: the
collector file, SY**, and the current file, *SRC.

COLLECTOR FILE (SY**)

The Sy** file is automatically assigned to each terminal user by the TSS
Executive. All terminal input except command language is collected on
this file while the system is in build mode (see Build Input primitive
in Section IV). This is the raw data received from the terminal. The
collection of input-is performed by the Line Service portion of the TSS
Executive; that is, no subsystem is in execution. Thus, the assignment
of SY**, the collection of input data on it, and the scanning of the
input for command language are automatic functions of TSS, provided that
the selected subsystem used build mode for the collection of new or
additional input destined for a source file. Examples of Sy** input are
the numbered language statements in BASIC and the text entries in
EDITOR. SY** file format is described in Section VI.

CURRENT FILE (*SRC)

An *SRC file is assigned to a user by the OLDN (Old-New) subsystem. In
the BASIC subsystem, for example, the OLDN subsystem is called by the
first primitive of the startup procedure. OLDN produces the old-new file
request sequence -- OLD OR NEW- (and, conditionally, OLD NAME-) .

The current file receives the edited and/or merged version of the file
with which the user is currently working. For example, if the user is
writing a new BASIC program, the collector (SY**) file contains all the
raw input, including any mistakes and corrections, other than keying
errors corrected by @ or CRTL/X.

3-54 BR39

VJhen the user gives one of the BASIC commands, this causes the BSED
subsystem to edit the data on Sy** all corrections applied,
duplications removed, etc. Sy** is then written to the current file,
*SRC, which is the copy that is listed, run, and/or saved.

For an old BASIC program, the OLD file is copied directly to the user's
*SRC file. Any changes that are typed are collected on Sy** until a
BASIC command is given. This causes the sy** file to be edited and then
merged with the data on *SRC and the new, merged copy written to *SRC.
Again, it is this new copy of the program that is run, listed, and/or
saved.

In an OLD file, the user is always working with a copy of that file on
*SRC -- either as is, or modified by Sy** data -- and not the original.
This feature leaves the OLD (permanent) file as backup copy (except when
using OLDP/NEWP commands).

The format of the *SRC file is described in Section VI.

Permanent Files Assigned by User

TSS never assigns permanent file space to a user unless specifically
told to do so by that user. Permanent files are handled by the File
S~lstenl, ~l'lhich is cornrnon to all prograIT1S opera tirlg under Geos. Perrnarlerll
time-sharing files are ordinarily created by using SAVE or PEru1
commands; otherwise, they are created via the ACCESS subsystem or a
batch FILSYS activity. (See also NEWP/OLDP commands.)

STRUCTURE OF THE FILE SYSTEM

The GCOS File System is described in the Series 6000 GCOS File System.
The main points of interest to the TSS user are repeated he~

The GCOS File System is, in formal terms, a tree structure of indefinite
length whose origin is the system master catalog. The primary nodes of
the tree are user's master catalogs; the lower-level nodes are
subcatalogs created by the user. The terminal points of the structure
are the files themselves. (See the diagram on the next page.)

3-55 BR39

SYSTEM HASTER
CATALOG

r- - - --- ---- ______1

I
I

I
I

USER'S MASTER
CATALOG

;"-------

{ "\
\ I

....... _-----"""

SUBCATALOG

Legend:

o Denotes a file

@ Denotes a quick-access file

"-------- --- - - - ----.,

USER'S MASTER
CATALOG

I
I
I

I
I
I
I
I
I
I

/ " (\

\ I
.... _------/

SUBCATALOG SUBCATALOG

SUBCATALOG

The master catalogs for each user are identified by USERID. A USERID
must be unique within the system. All subcatalog and files names are
automatically qualified by the user's master catalog name and the names
of any intermediate subcatalogs. The system master catalog cannot be
accessed by the normal user.

3-56 BR39

CATALOGS AND FILES

A catalog consists of a description containing catalog name,
and permissions. A catalog cannot be read or written, since it
no user data.

password,
contains

In the GCOS File System, a file consists of a
file name, file size, password, permissions, and
the physical file space. The file description
physical file space, which may contain user data
written.

description containing
the specification of

is distinct from the
and can be read or

PASSWORDS

Passwords can be attached to any catalog or file. A password simply
allows a user to traverse a catalog/file string. The user can get to a
given catalog or file only if he can give the passwords for all
higher-level catalogs in the string. The originator of a given string
must also give the required passwords when traversing that string.
However, when traversing a string, a password must not be given if none
has been attached.

PERHISSIONS

Permissions, both general and specific, can be attached to any catalog
or file. When permissions are attached at the catalog level, they apply
to all subordinate catalogs and files. The originator of a catalog/file
string has all permissions for that string but must give the passwords.

The allowable permissions are:

Read

Write
Append
Execute

Purge

Modify

Exclusive

allows the user to execute RUN and also LIST, FDUMP,
etc., on the file.
allows a file to be written.
(presently treated as Write)
allows the user to execute RUN on the file. He may not
execute LIST or any other operation that allows him to
see the file's contents. If the file is a source file,
he is not allowed to see the resultant object file. In
FORTRAN or BASIC, if the file is a source file and the
only permission is Execute, a RUN command cannot be
used to build an object file.
allows catalogs and/or files to be purged (specific
permission only) .
allows catalog and/or file definitions to be changed
(specific permission only)
the current user has exclusive use of this file,
blocking out all other users.

3-57 BR39

I

Multiple concurrent reading or executing of a file is allowed by the
File System, but mUltiple writing or appending is not.

USER'S CONTACT WITH THE FILE SYSTEM

The terminal user's contact with the GCOS File System is mainly through
the Old-New (OLDN) and Save/Resave-Purge (SAVE) subsystems.

OLDN, when OLD is selected, writes the contents of the permanent (OLD)
file onto the user's current file, *SRC. SAVE or RESAVE writes the
contents of *SRC onto the named permanent file. (See the description of
OLDN in Section VII.) In either subsystem, to "access" a permanent file
means to enter it into the user's available file table (AFT), as
explained in the following description of the AFT.

Available File Table (AFT) Usage

TSS maintains an available file table (AFT) for each user. Before any
I/O can be done on a file, an entry for that file must be placed in the
AFT.

The AFT allows sufficient file descriptions to be kept in core, thus
minimizing the access time for these files. The AFT also allows files to
be identified by their file names alone; for permanent files, the full
file description may consist of many catalogs and passwords.

TEMPORARY FILES

DRL DEFIL (Define and Access a Temporary File) creates a temporary file
and places the file entry in the AFT. All temporary files defined by
subsystems should contain at least one special character (that is, other
than alphabetic, numeric, period, or hyphen) in the file name. The
asterisk is used by Honeywell-supplied sUbsystems. Since special
characters are not allowed in permanent file names defined from a
terminal, any conflict is avoided.

DRL RETFIL (Return a File) removes the file entry from the AFT
releases the file space. When a subsystem is finished with a file,
should return the file. All user's files in the AFT are released
termination.

3-58

and
it

upon

BR39

PERMANENT FILES

DRL FILACT function number 4 (Access File) places the file entry in the
AFT and sets the file "busy" for the permissions requested.

NOTE: This function does not create a file. Before a permanent file can
be accessed it must have been created by DRL FILACT function
number 3 (Create File).

DRL RETFIL (return a file) removes the file entry from the AFT and sets
it "not busy" with respect to the current user.

FILE I/O

After the file is placed in the AFT, the following can be executed:

DRL DIO Reads or writes a file

DRL FILSP Positions a file forward or backward

DRL REW Positions a file to its beginning

DRL "'KI'""\T""IT ,..'TT"
F1U.K.LJL\ll, Increases the siz:e of d temporary file

DRL GROW Adds space to a permanent file, up to its maximum
size

DRL PART Releases a portion of a temporary file

DRL SWITCH Switches two temporary fiJe names

These are the only file I/O derails that affect or relate to the AFT and
are most often used by subsystem programs. The others (all of the FILACT
functions except Access File) affect only the GCOS File System.

3-59 BR39

SECTION IV

CO!-1MAND LANGUAGE AND PRIHITIVES

In the design of many time-sharing programs, it is desirable to
recognize unique command language and initiate process sequences based
on these commands. The user can define command language independently
for his subsystem. Each command word has associated with it a list of
primitives that are specified by the system designer. These primitives
are interpreted by TSS to control the processes implied when the command
is recognized. Command language is recognized by TSS only when the
subsystem is in the build mode of keyboard input. (See "Keyboard Input
Modes" later in this section.)

The command-language/primitive lists are incorporated in the TSS
communication region (block . TPCOH) , along with the primary portion of
the program descriptor. (Refer to Section II.)

The primary portion of the program descriptor is arranged with those for
other subsystems in a contiguous block for rapid scanning. Progr~l
descriptor format is shown on the next page. The process of assembling
the program descriptor portions into the communication region is
described in Section V.

4-1 BR39

-

4

,--

r--

I--

I--

r-.
~

Program Descriptor Proper: (block .TPRGD)

subsys tern name in ASCII

program sizel load size (nonzero block size)l

entry pointl parametersl

seek addressl initial load address l

command-language pointer no. of words in command language

program statistics1

Command-Language List:

command word 1

scan mask 1

command word 2

scan mask 2

conunand word n

scan mask n

primitive pointer 1

primitive pointer 2

.
primitive pointer n

startup-primitive
pointer

Primitives

primitives - one
word each

~

lsupplied by the system

(block . TPCOM)

-<

)

}

4-2

word-pair

word-pair

word-pair

in same sequence as
the word-pairs
above

always last (that is,
(n*3)+1 from top of
command language list)

arranged in normal
instruction-execution
sequence

BR39

Program Descriptor
Entry Description

Name in ASCII

Program Size

Entry Point

Load Size

Initial Load
Address

Parameters

Seek Address

Command Lan
guage Pointer

Name of subsystem to be used to identify the program in
response to the user's reply to SYSTEM?

Actual program size to be used in execution.
register will be set to include this region.
by the sys tern.)

The base
(Supplied

Address relative to zero that contains the
executable instruction. (Supplied by the system.)

The size remaining when all leading and trailing
have been eliminated. This is used to reduce the
of the original copy of the program. (Supplied by
system.)

first

zeros
size
the

The address of the first nonzero word in the program.
(Supplied by the system.)

Flags defining the type of program: privileged, master,
or normal subsystem. (See end of table.)

Location on mass storage where the original copy is
stored. (Supplied by the system.)

Address of the first word of the command-word/mask
pairs.

Number of Words The number of command-word/mask pairs.
in Command
Language

Program
Statistics

Command Words
and Masks

Statistics kept by TSS Executive reyardiny usaye of
this program.

Word pairs defining the command-language word and number
of characters in the word:

command word

xxxx
xx
xxx

mask

a
777777

777

The mask is used in the CMK instruction to remove
irrelevant trailing characters from the comparison scan
of input data. The command words, of up to four
characters, must be in ASCII.

4-3 BR39

Primitive
Pointers

Primitives

Startup
Primitive
Pointer

Addresses of groups of primitives to be executed when a
command language word is encountered. These pointers
are in the same order as the command language words.

See Description of Primitives in this section for
definition of the primitive format.

The last primitive pointer. This points to the block of
primitives to be executed when the program is initiated
from some source by a CALLP primitive.

Program Descriptor Parameter Definitions

Bits (set)18-3l
32
33
34
35

KEYBOARD INPUT MODES

Not defined
Program stored on secondary program file #Q
Patches are in patch table
Do not set base register on dispatch
Permitted privileged derails

Two modes of keyboard input are available to a TSS subsystem
mode and build mode.

direct

In the direct mode, the subsystem program in execution requests input
via the keyboard I/O derails. The requested input passes directly to the
subsystem, and no scan or interpretation is made by the TSS Executive.
Thus, while in this mode, there is no recognition of commands by TSS.
The subsystem program can, of course, interpret the input and take
appropriate action.

In the build mode, no subsystem program is actually in execution, and
input is under control of TSS. All input is collected and written to a
system-assigned, temporary file (SY**) maintained for each user. Each
line of input is scanned for command language while in this mode. When
con~and language is found, the execution of the associated primitives is
initiated. The build mode of input is initiated by the primitive Build
Input (BIN).

4-4 BR39

PRIMITIVES

Format of Primitives

Each primitive occupies one 36-bit word. The primitives, once initiated,
are normally executed in sequence. Some primitives allow conditional
transfer of control. These cause the execution to continue with another
primitive at the specified location. The format of a single primitive is
p, n, a, where

p is the primitive operation
n is an optional integer argument
a is an optional address

Macros exist for expansion of the primitives
machine-word format.

into the proper

Note that a in CALLP is the symbolic address of the program descriptor
for the desired subsystem. It mayor may not correspond to the ASCII
subsystem name (determinable by inspection of the .TPRGD listing).

Primitive Descriptions

• CALLP a (where a is a program-descriptor location)

This primitive transfers control to the subsystem program
descriptor located at a. TSS finds the startup sequence in the
program descriptor of the called subsystem and takes its next
primitive from this list. CALLP may occur in any list of
primitives of a progrma descriptor and will interrupt the
execution of primitives from the current list. However, it is
normally necessary that control be returned to the previous
level after the series of functions performed by the called
program is completed. The location of the primitive when the
CALLP was encountered is saved in a pushdown list in the user
status table. Thus it is possible to have several levels of
calls and to be able to resume operation at a previous level.
The primitive POPUP will resume operations at the previous
level.

• EXEC

This primitive initiates the loading and execution of the
current subsystem program. This is accomplished by placing this
job in the new interaction queue for the allocator. When the
subsystem program has completed its functions, the subsystem
returns control to the Executive via a DRL RETURN operation.
This causes the next primitive in sequence to be executed.

4-5 BR39

• BIN

This primitive initiates the building of input. While in this
mode, TSS reads and accumulates data on a collection file
(SY**) for a given user. Each line of input is scanned for the
command language associated with the subsystem. If no command
language is found, TSS accumulates the input in a buffer and
dumps it when required to the user's input collector file. If a
command word is recognized, TSS Executive does the necessary
housekeeping before the command is executed. Not that once the
Build Input primitive is encountered, there is no next
primitive implied. The next primitive will be defined when a
command word is encountered.

• POPUP

This primitive indicates that processing at this level is
completed and that processing at the previous level is to be
resumed. TSS obtains the previous set of pointers from the user
status table, obtains the next primitive, and continues the
flow of control from that point. If the previous level does not
exist (that is, if this was the first level of control) POPUP
calls the system routine which asks the user which subsystem he
wishes to select next. All files defined during previous calls
remain defined.

• IFALSE n,a

This primitive provides for conditional execution of another
block of primitives. The conditional test is based on the
subsystem switch word (see Section III). The interpretation is:
If bit n is false (off), transfer control to the block of
primitives at location a. If the test is true (on), control
passes to the next primitive in sequence. This function allows
considerable interaction between the execution of subsystem
programs and the interpretation of primitives. A subsystem can,
via the appropriate derail, set or reset these switches. Bit
positions are 0-35 counted from left to right.

• IFTRUE n,a

The interpretation of this primitive is the same as IFALSE,
except that transfer of control passes to a if the test is true
(on) .

4-6 BR39

• STFALS n,a

This primitive provides the capability of setting the switches
in the individual subsystem switch word. This allows
considerable interaction with the subsystem programs, since
they can also test these switches. The subsystem program can
then execute different blocks of code based on the setting of
switches made by the primitives. The settings, of course, could
be different for different sequences of primitives. The
interpretation of the above primitive is: Set bit n false (off)
in the present subsystem switch word and transfer control to
the block of primitives starting at location a.

• STRUE n,a

The interpretation of this primitive is the same as STFALS,
except that the switch word bit is set true (on).

STARTUP PROCEDURE

One set of primitives is always part of the descriptor for each
subsystem program. This is the startup procedure that is used to
initiate the process when a subsystem is selected. This provides
potential flexibility in allowing initialization procedures before the
subsystem program is executed.

USE OF EXISTING SUBSYSTEMS

When a new subsystem is to be added to TSS, the implementor may wish to
incorporate a command language within the snhsystem. Instead of
processing commands within the new subsystem (that is, using direct
mode) or writing additional new subsystems, existing subsystems which
perform the desired functions may be utilized.

The command word selected to activate an existing subsystem may be the
same as that used by another calling subsystem (for example, LIST in
BASIC and FORTRAN) or it may differ. The command-language list of the
selected subsystem determines the command-language words, whereas the
corresponding primitive pointers and the primitive list determine which
additional subsystems are called. For example, the standard LIST
subsystem might be activated as a result of the command word DISPLAY. It
is recommended, however, that for overall system consistency new command
language conform to standard usage wherever possible.

Although the command-language/primitive-pointer list must be unique for
a subsystem, its primitive sequences need not be. That is, appropriate
portions of other subsystems' primi ti ve lists may be utilized. ~'Jhen
prepari~g the program descriptor and lists, refer to the communication
region module (TSSA) listing for existing primitive sequences that may
be used.

4-7 BR39

In a subsystem which uses the BIN (Build Input) build mode primitive in
the usual fashion, any primitive sequence that executes a CALLP must
first test for data on Sy** (switch-word bit 17 on) and call an Sy**
editor (see BSED in Section VII, for example). Otherwise, any new data
on Sy** prior to the command is lost.

An inspection of Example 1 under Examples of Program Descriptors in this
section and the command lists of the major Honeywell-supplied subsystems
will suggest usable working and command-processor subsystems.

Just as in the major system-selectable-only subsystems such as BASIC or
FORTRAN, user-designed subsystems may have a null program portion, as
opposed to the null command-list type of subsystem illustrated in
Example 2 following. While the latter's primitive list contains only an
EXEC and corresponding POPUP primitive, the former type of subsystem
contains no EXEC primitive but only CALLPs. Thus, no corresponding
program portion exists. (There is no logical necessity for this type of
subsystem; it is rather a matter of programming convenience, with a view
to greater generality.)

PROGRAM DESCRIPTOR EXAlvlPLES

Two examples of subsystem program descriptors follow.

Example 1

In this example, the new subsystem being integrated into TSS is a
compiler/loader called HYLAnguage with a line-number-dependent
source language similar to BASIC. Associated with the subsystem are
two command words which cause execution of the subsystem program -
COMP (for compile-only) and GO (for compiler and/or go). (Either or
both of these commands could have variable-field options for direct
interpretation by the r·lYLAng subsystem.) However, the implementor
wishes his users also to be able to call a permanent file from the
File System, to start a new file, to list a file, to save or purge
a file, and to escape to the subsystem-selection level (SYSTEH?).

Since this is a line-number-dependent subsystem and the implementor
chooses to utilize the standard TSS temporary files Sy** and *SRC
(refer to Sections III and VI), Honeywell-produced standard
subsystems exist to perform these auxiliary functions: The LIST
subsystem, the OLDN subsystem (for OLD/NEW), and the SAVE subsystem
(for SAVE/PURGE). The standard line-number editor, BSED (Basic
Edit), also is available for editing keyboard input on Sy** and
merging the input onto *SRC (refer to Section VII). The implementor
reasonably chooses to retain the standard TSS command words
LIST, OLD, NEW, SAVE, and PURGE to activate the
cOllQand-processor subsystems. He also uses the standard escape
command, DONE, which simply causes a POPUP to the calling level
(the TSS Executive) .

4-8 BR39

The program descriptor and command-language/primitive list are
shown on the following page. The startup procedure calls the OLDN
subsystem (program-descriptor location symbol OLDNEW) with bit 15
of the subsystem switch word off, indicating that the OLD OR NEW
request message is to be issued. The OLD and NEW commands also call
OLDN, but with bit 15 on to bypass the issuance of this message.

Before any command processor is called that destroys the current
file (all but OLD and NEW), bit 17 of the subsystem switch word is
tested to see if Sy** has received any build input preceding the
last-received command. If build input has been received, BSED is
called to write it to *SRC before the appropriate subsystem is
called. MYLA utilizes the user's bit 18 of the switch word to
differentiate, for the subsystem program, between an execution
resulting from COM (on) or GO (off). (The subsystem program itself
could make this differentiation by direct inspection of the command
-- via DRL KIN -- but the method employed would be more economical,
unless the DRL KIN is also required otherwise for inspection of the
variable field.)

If the subsystem were to provide for the unlikely case of
build-input immediately preceding a DONE command, a test of Sy**
(bit 17) and a conditional call of BSED would be indicated just
prior to the POPUP primitive (P6). In a nonhypothetical situation,
the automatic dumping of Sy** on overflow (dummy command word of
OCT 004004004001) would have to be provided for as well.

4-9 BR39

HYLACL

Program Descriptor

H Y L A

HYLACL 8

.

Command Language

C 0

000 000
G 0

000 000
L I

000 000
0 L

000 000
N E

000 000
S A

000 000
P U

000 000
D 0

000 000
PI
P2
P3
P4
P4
P5
P5
Ph
P7

N P

000 000

777 777
S T

000 000
D

000 777
W

000 777
V E

000 000
R G

000 000
N E

000 000
(camp)
(qo)
(list)
old)
new)
save)
Durae)
done)

(startup)

4-10

PI

Pl.l

Pl.2

P2
P3

P3.1

P4
P5

P5.1

P6
P7
P7.1

Primitive List

STRUE 18,Pl.l

IFALSE 17,Pl.2
CALLP BSED
EXEC
BIN
STFALS 18,Pl.l
IFALSE 17,P3.1
CALLP BSED
CALLP LIST
BIH
STRUE 15,P7.1
IFALSE 17,P5.1
CALLP BSED
CALLP SAVE
BUJ
POPUP
STFALS 15,P7.1
CALLP OLDNEH
BIl~

BR39

Example 2:

The subsystem AB has no command language and is to be executed
directly when selected. When the subsystem completes its function,
control is to be returned to the previous level. The system
designer must supply only the program name, a pointer to the null
command language list, a pointer to the startup procedure, and a
primitive to cause control to return to the previous level. This
sequence is adequate for many subsystems placed into TSS. The
program descriptor is shown in source language form (utilizing the
PRGDES macro) .

(program descriptors)

PRGDES AB,ABCL,O

(end of program descriptors)

ABeT,

ABPRIH EXEC
POPUP

Program descriptor

(name, command
language ptr., no.
of command language
words)

ZERO
primitive

J'..BPRI!1 Pointer to

Load and execute
Return to previous level

4-11 BR39

SECTION V

PLACING SUBSYSTEl1 PROGRAMS IN THE SYSTEM

Subsystem programs may be placed in the time-sharing system either
permanently or temporarily. The temporary placement of a subsystem does
not require an edit of TSS or construction of a program descriptor. This
provides a more convenient means of loading and checking out a version
of a subsystem still under development. Since some of the procedures
required for permanent placement of a subsystem are also required for
temporary placement, the former is described first.

PERNANENT SUBSYSTEH PLACEMENT

There are four steps necessary to placing a subsystem permanently in the
time-sharing system:

1. Write and assemble the program.

2. Edit into GCOS.

3. Prepare and assemble
command-language/primitive
region.

the program descriptor and
list into the TSS communication

4. Modify and reassemble the TSTART module of TSS to cause the
subsystem to be included in TSS initialization.

A summary of step 1 follows; steps 2 through 4 are discussed in detail.

Writing the Subsystem Program

The several restrictions and available facilities for writing TSS
subsystem programs, discussed in previous sections, are summarized here:

• An unused subsystem data area of 100 (decimal) words must
precede the executable subsystem coding, for use by TSS.

The 64 words normally reserved by the loader can be
part of the required area. Therefore, the first
definition statement must be at least a BSS 36.

5-1

used as
storage

BR39

I

• If it is desired that the subsystem process any or all of the
faults from which recovery is possible under TSS, coding to
store the fault-vector transfers must be included in the
subsystem. They cannot be loaded and must be reinitialized
after each recovery attempt.

• No J'.1l1E functions are permi t ted. The analogous DRL functions
defined by TSS must be used.

• For coding convenience, two macros are available for general
use. These TSS macros are called by LODM .G3TSn (see Appendix
A) . Then the macro call .SSDRL provides derail
address-value/mnemonic equivalences. The macro PRNTTY causes a
message to be printed at the terminal; the format of this macro
is:

PRl\JTTY n, (message) ,k

where n is the number of characters in the message, and k
(optional) is a pointer to a word containing control characters
to be affixed to the end of the line (CR, LF, NULL, etc.). The
length of the message is limited to the space available on the
punch card between the nand k fields.

Appendix A, System Macros, describes these and other available
TSS macros .

• All character input/output, file names, etc., must be in ASCII.

Editing Subsystem Program to GCOS

Editing to GCOS is performed by the standard System Editor procedure.
Briefly, the deck setup is as follows:

$ SYSLD CATALOG=.TSxxx
$ LOWLOAD
$ OPTION NOSETU
$ NOLIB
$ OBJECT

program-binary decks

$ DKEND
$ ENTRY entry point (optional)
$ EXECUTE
$ ENDLD

5-2 BR39

The TSS catalog names are prefixed by .TS so the user
his subsystem only a three-character identifier (xxx)
among the TSS subsystems. When placed with the rest of
the decks are edited into GCOS.

Assembling the Program Descriptor

must
that
the

select for
is unique
subsystems

The program descriptor and command-language/primitive lists must be
constructed next. Section IV gives the format. These lists must be
assembled into the TSS communication region deck (CD600Tl.OOl),
TSS-TSSA, and specifically within blocks .TPRGD and .TPCOM. The size of
the BSS area, following the program descriptor list, should be
decremented one space each time a descriptor is added. This should be
done to keep the overall size of TSSA constant. However, if the required
number of entries exceeds the currently assigned value of .LNPD, the
definition of .LNPD (maximum number of entries in the program descriptor
list) must be modified. In this case, all TSS Executive modules
referencing .LNPD must be reassembled.

An inspection of the listing indicates the required position of the
program descriptor proper and the conventional placement of the command
language/primitive lists. The program descriptor must be contiguous with
the other program descriptors; the command-language/primitives may be
placed anywhere following the last descriptor.

The PRGDES macro is provided for constructing the program descriptor:

PRGDES x, y, z, n

where:

x subsystem name (in ASCII)
y command-language pointer
z number of command-language words

n=O - EXEC primitive exists in list
~O - no EXEC primitive exists in list

(for example, only CALLPs used)

Each of the primitives is generated by a macro called as follows:

CALLP
EXEC
BIN
POPUP
IFALSE
IFTRUE
STFALS
STRUE

a

n, a
n, a
n, a
n, a

Call subsystem a
Execute program
Build Input (go into build mode)
Return to previous control level
If bit n false, go to a
If bit n true, go to a
Set bit n false, go to a
Set bit n true, go to a

5-3 BR39

Primitives are described in detail in Section IV.

Modifying the TSTART Module

The TSS deck CD600Tl.015, TSS-TSSO, must be modified and reassembled so
that the new subsystem is initialized and made known to the TSS
Executive. A three-word entry to the table IN900 is made as follows:

word 1 - ASCII
2 - BCI
3 - ZERO

1, name
1, • TSxxx
parameters

Subsystem name
Catalog name
Bit 35 = privileged
program

Bit 34 = master
subsystem

Bit 32 = place on
secondary program
file #Q

If at any time it is not desired that a subsystem be initialized at load
time, a zero patch at word 1 of the IN900 entry for that subsystem will
suppress its inclusion in the TSS program file and initialization of its
program descriptor.

TEHPORARY SUBSYSTEM PLACEMENT

The procedure for temporarily loading and checking out a developmental
subsystem, without doing an edit of the system, utilizes the LODX
subsystem. Octal patches may be made after loading and prior to
execution. Permission from the master user must be on record in TSS
before a particular user can employ LODX.

LODX may also be used to load little-used subsystems not integrated into
TSS.

The subsystem program is written and assembled for permanent placement.
(The program descriptor need not be assembled; as it will not be
referenced. Do not modify TSSO.) The following steps are then performed:

• Create a random permanent file using ACCESS. The subsystem is
stored and referenced from this file.

5-4 BR39

• Submit the program decks as a GELOAD activity to GCOS with the
following deck setup:

$ IDENT •..••
$ USERID ID$PASSWORD
$ LOWLOAD
$ OPTION SAVE/prog-name,NOGO,NOSETU

$ EXECUTE
$ LIMITS

other control cards

subsystem decks

$ PID1FL H*,WRITE,R,cat-name/filename
$ ENDJOB

Loading the Temporary Subsystem

After submitting the decks as a GELOAD activity, the user may have the
subsystem loaded and checkout started from a terminal.

In response to SYSTEM?, specify LODX filedescr. For filedescr, give the
file description specified on the $ ProWL card.

LODX will then load the file and request a function response:

FUNCTION (RUN,PATCH,FILE,SAVE)
?

Responses:

RUN

Gives control to the program just loaded.

PATCH

Issues question marks for patch insertion, going into execution
upon receipt of * or D. Upon null response (carriage return only)
return is to the FUNCTION ... ? level.

FILE filedescr

5-5 BR39

This response accepts a file description, or will ask FILEN~ill? The
specified file will be used as a patch source. The format of the
file is exactly the same as a series of patches entered from the
keyboard. If CARDIN or BASIC is used to create the file, the patch
addresses will appear as pseudo line numbers.

A patch file created via the Text Editor may also contain D or * to
indicate RUN. If an end of file is reached, LODX will return to the
FUNCTION .•. ? level to permit additional patches from the keyboard.

SAVE

This response saves the current file as it exists in core onto
permanent file whose file descriptor was used to load the file.
this way the user may alter his program by patches and save
altered program for later use. Upon completion of SAVE, LODX
return to the FUNCTION ... ? level.

Octal Patching the Temporary Subsystem

the
In

the
will

If PATCH is typed as the response to FUNCTION?, the program is loaded
and a carriage return, line feed, and question mark are given. The user
then may type patches in one of the following forms:

?address patch
?address patchl,patch2, ...

In both forms, the address and patch must be separated by a single
blank. All addresses and patches must be in octal, and the addresses are
relative to the load map produced when the file was written. In the
second type, sequential patches may be given beginning at the specified
address. In this form, the patches are comma-separated and as many may
be given as will fit on the line. Leading zeros need not be typed.
Typing * or D after the question mark indicates that patching is
completed.

The subsystem program is then executed.

SUBSYSTEM DEBUGGING FACILITY

During checkout, the Terminal Debug Subroutine (TDS) is provided for
inclusion in a subsystem that is placed in the system. TDS is included
on the System Subroutine Library. Its primary STI!DEF is TDS.

TDS allows the user to gain control at selected locations within the
subsystem. When TDS is in control, the user may display and/or patch
selected areas of the subsystem, and either return to the subsystem
normally or to a specified location within the subsystem. The user may
add or delete breakpoint locations during operation of the subsystem.

5-6 BR39

TDS Usage During Subsystem Preparation

TDS may be entered from the subsystem in either one of two ways:

1. At each location where the user is to gain control, the
instruction:

XED TDS

is inserted into and assembled with the subsystem.

2. Once the user has control he can add breakpoint locations at
the terminal during the debugging process. (At least one
breakpoint must be provided with an XED TDS, as in item 1.)

The subsystem to be checked out must contain a SYIlREF to TDS. Then when
the subsystem is submitted as a General Loader activity (to be loaded
later by LODX) , a binary object deck of the TDS subroutine must be
included. *

The following program shows how to construct an H* file for use under
LODX. It includes the use of TDS.

1

10 $
20 $
30 $
40 $
50 $
60 $
70 $
80 <:: .,..

90 $
100 $
110 $
120 $

8

IDENT
USERID
LOWLOAD
OPTION
ENTRY
GHAP
SELECT
SELECT
SELECT
EXECUTE
PRMFL
ENDJOB

16

SAVE/X,NOGO,NOSETU
ASCASC
COHDK,NDECK
DEESHIP/KTZAA
LIBRARY/TDS
K64BAIR/SCAF

H*,R/W,R,DEESHIP/ASCASC

Explanatory notes:

Line 50

Line 70

Line 80

- Specifies the SYNDEF entry point of the program to be placed
on H*.

- Directs GCOS to obtain from the user's file space
called KTZAA, which may be a GHAP source file or
file.

a file
a COHDK

- Directs GCOS to obtain from the system's file space a file
called TDS. (Object code)

5-7 BR39

Line 90 - Directs GCOS to obtain from another user's file space a file
called SCAF. (Object code)

Line 100 - Directs the General Loader to load the three previous
programs and, because of the NOGO option in line 40, not
transfer control to the H* file produced by the loader.

Line 110 - Directs the General Loader to save the H* file on a random
file called ASCASC in the user's file space.

It is assumed that the main program KTZAA includes SYrIREFs to SCAF and
TDS and that at least one XED TDS exists in the program.

TDS Usage During Subsystem Checkout

The user calls the subsystem to be checked out by the LODX procedure.
When any of the locations at which the user has placed a breakpoint are
encountered, the following message will appear at the user's terminal:

xxx xxx FUNCTION?

where xxxxxx is the octal address of the breakpoint.

In the following messages, the requests and their respective results are
listed. Note that "absolute" value refers to an address relative to
subsystem zero; to initiate transmission, all requests must be followed
by a carriage return.

Response: S parameters
or

SA parameters

(Snap)

(Snap Absolute)

This request indicates that the user wishes a snap or display of certain
memory locations.

The S form specifies that an offset or relocation,
automatically added to the address parameters. Using
function, the user will have set the offset value.

value is
the Offset

The SA form specifies an absolute value for the address parameters.

5-8 BR39

The parameters are as follows:

aaa,n displays (snaps) n locations starting at aaa

aaa-bbb displays (snaps) locations aaa through bbb

aaa displays (snaps) location aaa

The parameters follow the function identifier
intervening blanks.

(S or SA) without

When the Snap request is satisfied, the TDS subroutine responds with a
question mark, which indicates that another function, or a return to
processing, may be requested.

Response: P parameters
or

PA parameters

(Patch)

(Patch Absolute)

This request indicates that the user wishes to patch or replace the
contents of selected locations within the subsystem.

The P form specifies that an offset, or relocation, value is
automatically added to the patch-loc<ltion par &''Clete r • Using the OIIbet
function, the user will have set the offset value.

The PA form specifies an absolute value for the
parameter.

The parameters are as follows:

patch-location

aaa~bbb where aaa (1-6 octal digits) is the patch location. Field bbb
is the octal patch to be made. Fields aaa and bbb must be
separated by one blank, and bbb can be any of the following:

xxxxxxyyyyyy
Rxxxxxxyyyyyy

xxxxxxyyyyyyR
Rxxxxxxyyyyyy R

where x is an octal digit of the upper-half word, y is an octal
digit of the lower-half word, and R is a Relocation indicator
specifying that the upper half, lower half, or both halves of
the word are to be incremented by the offset value. Where
consecutive patching begins at aaa, successive patches may be
given in the form of comma-separated fields. Tne patch field
(bbb,ccc,) may contain up to 12 octal characters, which are
right-justified and stored in the respective memory locations.

5-9 BR39

When this request is satisfied, the TDS subroutine
question mark which indicates that another function,
processing, may be requested.

Response: X (Display Registers)

responds with a
or a return to

This request indicates that the user wishes to display the contents of
all working registers.

Alternatively, this function allows selective designation of individual
registers using the following forms of the X request:

form: Xn Display the nth index register only

XA Display the A-register only

XQ Display the Q-register only

XE Display the E-register only

XI Display the indicator register only

When this request is satisfied, the TDS subroutine responds with a
question mark, allowing another request to be given.

Response: M parameters (Ilodi fy Registers)

This request indicates that the user wishes to modify the contents of a
working register.

The permissible forms of this request are:

form: MxnJ6xxxxxx Modify nth index register -

!-lAJ6xxx ... xx Modify A-register

HQJ6xxx ... xx Hodify Q-register

HEJ6xxx Modify E-register

HIJ6xxxxxx Hodify indicator register

where x is an octal numeric, and the right-hand, blank-separated field
is always the modification data.

5-10 BR39

After this request is satisfied, the TDS subroutine responds with a
question mark, allowing another request to be given.

Response: B parameters
or

BA parameters

(Breakpoint)

(Breakpoint Absolute)

This request indicates that the user wishes to establish a new
breakpoint, or debugging location, within the system. Establishing a
breakpoint is analogous to assembling an XED TDS instruction into the
subsystem at a location logically preceding the instruction residing at
the address specified in the breakpoint request. The instruction that
has been replaced at the specified address is executed following the
requested breakpoint function. Each time the specified address is
encountered in the execution of the subsystem, TDS will print BREAKPOINT
aaa, stop execution, and ask for a function request (FUNCTION?).
Location aaa will be relative to the offset value, if any.

The user must not attempt to insert a breakpoint at a location affected
by a repeat-type instruction or containing one of the instructions
listed below:

RPT XEC
RPD XED
RPL tIME
S'l'Cl Dl,s
STC2 DRL

The permissible forms of the Breakpoint request are:

form: B Break at effective address offset + 0

BA Break at location 0, Absolute

Baaa Break at effective address offset + aaa

BAaaa Break at location aaa, Absolute

5-11 BR39

After the request is satisfied, the TDS subroutine responds with a
question mark, allowing another request to be given.

Response: Oxxxxxx (Offset)

This request indicates that the user wishes to set (or reset) the offset
value to xxxxxx, where x is an octal numeric. The offset value is
initially set to zero by TDS. When this request is satisfied, the TDS
subroutine responds with a question mark, allowing another response to
be given.

Response: Dxxxxx (Delete breakpoint)

This request indicates that the user wishes to delete a breakpoint
established with the TDS Breakpoint option by replacing it with the
original instruction. The effective address for the request is offset +
xxxxx. If the effective address is offset + 0, xxxxx may be omitted.

When this request has been satisfied, the TDS subroutine responds with a
question mark, allowing another request to be given.

Response: R (Return)

This request causes control to return to the subsystem at the location
following the XED TDS, or breakpoint XED instruction.

Response: Rxxxxxx
or

RAxxxxxx

(Return to location)

(Return to Absolute location)

This request causes a special return to the subsystem at location
xxxxxx, where xxxxxx is an octal address. In the R form of this request,
the offset is added.

TDS Error Indications and ~less ages

1. ILLEGAL INPUT - RETYPE -- message appears when illegal input is
typed in response to FUNCTION? or ?

2. ILLEGAL COMMAND, BUST PRECEDE DATA WITH S,P,R,D,X,B,O, OR M
message appears in response to parameters not preceded by a
function-type indicator.

3. ROOM FOR BREAKPOINT ENTRIES EXHAUSTED -- message appears when
no more breakpoints can be accepted.

4. NO ENTRY -- message appears when an attempt is made to delete a
breakpoint at a location that does not contain one.

5-12 BR39

SUBSYSTEM DUMP FACILITY

Dump Procedure

If the user wishes his subsystem to be dumped when an unexpected
occurs (or when, at his discretion, he calls for a dump via DRL
he does the following:

fault
ABORT)

1. Creates a permanent linked file named ABRT of sufficient length
to hold his entire subsystem.

2. Before calling the subsystem into execution, accesses the
named ABRT. This can be done with the ACCESS subsystem,
command, etc.

file
GET

The subsystem will now be dumped to this file when either a fault occurs
which the subsystem does not handle or a DRL ABORT is executed by the
subsystem. After this occurs, the user can inspect his dump with the
subsystem called SABT (Scan Abort File), described below.

SABT (Scan Abort File) Subsystem

When a fault occurs in a subsystem which does not handle such faults, or
a DRL ABORT is executed, and the user has a file named ABRT opened, the
aborted subsystem is copied to the file. By means of the SABT subsystem,
the user may scan the ABRT file by snapping portions of it at the
terminal. (The ABRT file must have been accessed before calling SABT, or I
it must be a non-password, quick-access file named ABRT.)

SABT is called as a system selection:

SYSTEM? SABT
OFFSET?

The user may specify an offset to be added to all addresses
Designation of areas to be snapped may be given as in the
examples (all numbers are octal and will have offset;
automatically added to them) .

?1235
?172,14

Meaning

snap 1 word at 1235
snap 14 words starting at 1672
snap from 2354 through 2367

requested.
following
if any,

?2354-2367
?(carriage return) done, return to subsystem-selection level.

output is typed in the following form:

loc wordl word2 word3 word4

5-13 BR39

SECTION VI

FILE FORMATS

SOURCE (*SRC) FILE FORMAT

The standardization of source-text files allows more than one system to
process these files. For example, using a standard file format allows
EDITOR to operate on BASIC text. All text files are maintained as
character strings in ASCII format. They are linked files that contain
block and logical record control words that allow the files to be
accessed by File and Record Control. The standard source file used by
Honeywell-released subsystems (the current file) is named *SRC. Its
format is as follows:

Initial 320-word block:

1 n

20 Media Code (5)
in bits 26-29

of 320-word
data blocks
in file

Line edit indicator

0 0
296 Media Code (5)

#c

~I #c I~
1000 0361

~/~~~/~/~/~//~/~//.//:.
All zeros or EOF. If final block,
the last word must contain 000000170000.

6-1

n = 318 if more blocks
follow

n = 319 if this is final
block

20-word file header.
Contents not defined
except for words 1 and
2. (For discussion of
line edit indicator,
see BSED in Section VII.)

ASCII text and control
characters; #c is count
of characters in
following line string

BR39

Second and succeeding 320-word blocks:

Block no. n

317 Media Code (5)

#c

I ~ 100010361
/" /"/' /////////////////

0

n = 318 if more blocks
follow

n 319 if this is final
block

ASCII text and control
charactersi#c is count of
characters in following
line string

The ASCII text consists of packed strings of 9-bit characters. The first
character of each string is interpreted as a character count, in binary,
of the number of characters following in the string. A character count
of zero followed by a character of 036 (octal) indicates that end of
data in a block. The value of n (318 or 319) in the block control word
(word 1 of the block) indicates whether or not succeeding blocks follow.
The last word of the last block must also be 000000170000 (octal) to
indicate EOF. A character string does not extend from one block to
another.

SY**FILE FORMAT

All nonempty records except the last:

Rec.
Cant.
Word

No.
of
vvords

, o 1718

(Number of Words Relative Block

>- Character Count 0

9-bit ASCII characters

Character Count 0

9-bit ASCII characters

(

Character Count 0

9-bit ASCII characters

Unused

""

35
Count

On

On

On

Count begins
with zero

40 words/disk
block or 64
words/drum block

n (bit 35) = 1 if the string contains 80 characters with no carriage
return; = 0 otherwise.

6-2 BR39

Final nonempty record:

o 1718
r Number of Words Relative Block Count

No.
of
Words

(

"-

Character Count 0

9-bit ASCII

Character count 0

9-bit ASCII

Character count

Unused

characters

characters

777777 (EOF)

35

On

On 40
words/disk
block or
64
words/drum
block

n (bit 35) = 1 if the string contains 80 characters with no carriage
return; = 0 otherwise

Empty record (a command word was the
first line in input buffer)

o 1718
Number of Words Relative Block

35
Count

Character Count 777777 (EOF)

Unused

Note:

40
words/disk
block or
64
words/drum
block

An empty record mayor may not be the first record in file.

6-3 BR39

TAP* FILE FORHAT

TAP* is the punched paper tape (PPT) collector file which contains the
unedited PPT input. It is a random file, with a maximum of 2 links.

Format from Disk - 40 words/block:

o 1718 333435
Number of Words Relative Block Count

31 wd.
max.

m I xl YI 0

9-bit ASCII Characters

Unused

m character count of input data block (~120) - may be zero
x = 1 if timing error occurred
Y 1 if last block

Format from Drum - 64 words/block:

o 1718 333435
Number of Words Relative Block Count

31 wd.
max.

31 wd.
max.

>

"-

m

m

\xlylo

9-bit ASCII Characters

\x\yIO

9-bit ASCII Characters

Unused

m character count of input data block «120) - may be zero
x = 1 if timing error occurred
y 1 if last block

6-4 BR39

SECTION VII

HONEYWELL-SUPPLIED SUBSYSTEMS

A significant part of the time-sharing system is implemented in
subsystem form, rather than as part of the Executive. For example,
command-language processing is performed by subsystems, one subsystem
for each command. These subsystems are, for the most part, available for
use as part of a user-designed system within TSS. ·Functional
descriptions of several subsystems are included in this section.

HONEYWELL SUBSYSTEM TYPES

There are three general types of Honeywell-supplied subsystems:

1. Working subsystems -- these are not directly callable by the
terminal user, either by system-selection or by command, but
are called by another subsystem as subroutines, to perform
specific functions. An example is the BSED (Basic Edit)
subsystem, which is called when editing of raw, line-numbered
input, from file Sy** to file *SRC, is required.

2. Command-processor subsystems -- these subsystems are called to
process specific commands given by the terminal user in build
mode. Certain of these also fall under type (3).

3. Direct mode subsystem -- these subsystems normally are called
by the user at the subsystem-selection (SYSTEH?) level and
communicate directly with him; ACCESS is an example. Certain of
these also fall under type (2), since they may also be called
at the command level -- for example, the SCAN subsystem. These
subsystems are documented separately in other Series 6000 TSS
manuals.

HONEYWELL SUBSYSTEM DESCRIPTIONS

The following definitions are pertinent to descriptions of certain
commands and user responses that appear in the subsystem descriptions.

• filename -- a 1- to 8-character name of a permanent file

7-1 BR39

I

• filedescr -- this symbol can be replaced by one of the
following:

1. filename

2. filename$password

3. userid/catalog$password/ ... /
catalog$password/filename$password

If the file to be described emanates from
master catalog, the USEHID may be omitted
description begun with an initial slash:

/catalog$password/ •.. /filename$password

the user's
and the

own
file

• permissions -- this may be one of the following:

READ (or R) READ and WRITE

WRITE (or W) READ and APPEND

APPEND (or A) EXCLUSIVE

EXECUTE (or E)

The default interpretation for permissions is generally READ,
WRITE (that is, for example, if READ permission only is
desired, it must be specified) .

• altname -- a 1- to 8-character alternate name.

The altname parameter, enclosed in double quotes, is given when
the file filename is referred to by an alternate name during
the current session at the terminal.

• (i,j) -- i and j are line numbers within a specified file;
thus, filename (i,j) specifies a file segment.

BSED (LINE EDITOR) SUBSYSTEM

Purpose:

Sorts into ascending numerical sequence any lines (in line-numbered
statement format) on the collector (SY**) file and, if data already
exists on the current (*SRC) file, merges these new lines into that file
without disturbing its numerical sequence. New line numbers which
correspond to existing lines on the current file replace or delete the
existing lines.

7-2 BR39

Usage:

BSED is called as a result of commands issued while in the BASIC,
FORTRAN, or CARDIN subsystems. When one of the commands--such as RUN,
LIST, DONE, or SAVE--is entered after the user has entered new source
language statements, the BSED subsystem is called. If no new source
language lines have been entered since the last command was given to the
system, BSED will not be called, as the current file is assumed to be in
proper order.

Word 2 of the header for each source-text file is used by BSED.
Source (*SRC) File Format in Section VI.) This word is zero if the
is an old file not yet updated by the current BSED. Otherwise, the
contains one of the following:

(See
file
word

• The number (binary) of the first line in the last block of the
file.

• A negative number.

If word 2 contains a negative number, it indicates that the file has
been altered and that it may contain empty or loose blocks or that the
number of the first line of the last block may have changed. Thus, any
subsystem that alters the contents of a source text file and creates
empty or loose blocks should place a negative value in the second word
of the header. This will indicate to BSED that such an alteration has
occurred.

Error Comments:

<51>

<51>

<51<

<53>

<54>

COLLECTOR FILE--I/O STATUS xx Unrecoverable read error
occurred on SY**; xx is the hardware status returned.

CURRENT FILE--I/O STATUS xx Unrecoverable read error occurred
on *SRC; xx is hardware status returned.

CURRENT FILE--I/O STATUS xx Unrecoverable write error occurred
on *SRC; xx is hardware status returned.

LINES IGNORED BY EDIT --- LINES ... Indicated lines were not
merged into current file because they lacked line numbers.

SYSTEM MALFUNCTION--CURRENT FILE ERROR The *SRC file not in
standard TSS source-file format.

7-3 BR39

BUILD SUBSYSTEM

Purpose:

Before entry to a subsystem not dependent on line numbers, reformats
keyboard input on Sy** or punched paper tape input on SYT* and writes
this to *SRC, appending the input to any already-existing information.

Usage:

BUILD is called as a result of a first-column carriage-return command, a
#TAP command, or an overflow (automatic-dump) of Sy** or SYT*.

Error Comments:

<50>

<51>

<51<

CURRENT FILE -- NO EOF
No logical EOF detected on read of *SRC.

CURRENT FILE -- I/O STATUS xx
COLLECTOR FILE -- I/O STATUS xx
Unrecoverable read error occurred on *SRC or SY**,
specified; xx is the hardware status returned.

CURRENT FILE -- I/O STATUS xx

as

Unrecoverable write error occurred on *SRC; xx is the hardware
status returned.

<54> SYSTEM MALFUNCTION -- CURRENT FILE ERROR
*SRC not in standard TSS source-file format.

OLDN (OLD/NEW FILE REQUEST) SUBSYSTEM

Purpose:

The OLDN subsystem allows the user to specify the file he wants to work
with as his current file.

Usage:

The OLDN subsystem is called whenever a user selects a
as BASIC or EDITOR, that requires a current file and
SAME, OLD, or LIB command is subsequently encountered.

7-4

subsystem,
whenever a

such
NEW,

BR39

The first response from the time-sharing system after such a subsystem
is selected comes from the OLDN subsystem:

OLD OR NEW-

The legitimate responses to this demand are:

• NEW

a. NEW

The OLDN subsystem will see if a current file has
defined (opened) and if it has, it will initialize
file. If a current file has not yet been defined, it
be defined and initialized. the next response will be

READY

been
the

will

b. NEWP filedescr (permissions applicable)

A permanent file filedescr is created and defined as the
current file. It remains as the current file until the next
NEH, NEWP, NEWP#, OLD, OLDP, OLDP#, or LIB command is
given. The file is then deaccessed but remains in the
user's catalog until released.

If permissions are not specified, the file is created
without permissions.

c. NEWP# filedescr (permissions applicable)

• SAME

Execution is the same as for NEHP, except that only
the next UEWP, NEWP#, ULUP, or ULUPir is tne
deaccessed. It remains as the current file as long as
subsequent commands are NEW, OLD, SAHE, or LIB.

with
file
the

This response allows a user to keep his current file intact
when changing from one system to another. The OLDN program will
verify that the user already has a current file. The next
response will be

READY

7-5 BR39

• OLD

a. OLD filedescr, permissions, "altnarne"

(If filedescr is not given, the user will be asked OLD
NAt-1E.) OLDN will see if the narned file has been previously
accessed (opened), and if not, it will attempt to access
the file. If this is not successful, an appropriate error
message will be printed. After accessing the narned file,
OLDN will make sure that the user has a current file and
will copy the named OLD file to it. The next response from
the time-sharing system will be

READY

b. OLD filedescr, permissions, "altnarne" (i,j)

The specified file segment becomes the current file. The
file must be a line-numbered file.

c. OLD filedescr, permissions (i,j)l; ... ;
filedescr, permissions (i,j)n

The files and/or file-segments specified by filedescr
through n) are adjoined in the order listed and become
current file. Adjoining of BASIC files should be done
caution (line numbers are also statement numbers) .

(1
the

with

If the list is too long for one line, the subsystem will
request more input if a comma is the last nonblank
character before the carriage return. The altnarne parameter
may be used as required in this form of the response also.

d • OLD f (i , j) 1: ... : f (i , j) n
applicable)

(permissions and altnarne

The n files or file segments are merged together by line
numbers, and become the current file, where f is a
filedescr (colon-separated). If duplicately numbered
statements appear in two or more files, each such statement
will appear in the order specified by the file list. The
asterisk designating the contents of the current file (or
segment thereof) may appear as a filedescr anywhere in the
file list.

7-6 BR39

e. OLDP filedescr (permissions applicable)

Existing permanent file filedescr becomes the current file.
It remains as the current file until the next OLD, OLDP,
OLDP#, NEW, NEWP, NEWP#, or LIB command is given. The file
is then deaccessed but remains in the user's catalog until
released.

If permissions are not specified, all permissions are
automatically requested for the file.

f. OLDP# filedescr

Execution is the same as for OLDP, except that only
the next OLDP, OLDP#, WEt'JP, or NEWP# cornrnand is the
deaccessed. It remains as the current file as long as
subsequent commands are NEW, OLD, SAME or LIB.

• LIB filedescr

with
file
the

The file in the system library specified by filedescr becomes
the current file.

When NEW is subsequently given, OLDN will reinitialize the current file
and the next response will be:

READY

Other responses from the OLDN subsystem are:

• PLEASE RESPOND WITH "OLD" i "NEW"; "SiUvlE" or "LIB"

The user has responded to the OLD or NEW question with
something other than OLD, NEW, SMlE, or LIB.

• PASS~vORD - filename - ?

Followed by a mask over which the password is to be typed. The
user has failed to supply a required password.

7-7 BR39

APPENDIX A.

SYSTEM MACROS

The time-sharing system modules and subsystems require many
of the Communication Region, UST contents, DRLs, etc. These
formulated into a set of macros. They are loaded by

definitions
have been

LODM .G3TSn

where n depends upon the catalog name currently assigned.

The macros and their use are as follows:

.TSCOM

.SSUST

.SSDRL

PRNTTY

This macro contains all the common communcation definitions
and the macro call .SSUST for the UST equivalences. It is not
normally used in a subsystem.

Subsystems use this macro to provide the UST and
equivalences.

Normal subsystems use this macro
definitions.

n, (comment n chars. long) ,k.

to obtain the

DRL

DRL

This macro is used to print the error comment from a
subsystem. K (optional) is a pointer to a word containing
control characters to be affixed to the end of the line (CR,
LF, NULL, etc.).

A-I BR39

APPENDIX B.

OCTAL-ASCII CONVERSION EQUIVALENTS

OCTAL ASCII OCTAL ASCII OCTAL ASCII OCTAL ASCII
NUMB. CHAR. NUMB. CHAR. NW"'lB • CHAR. NUMB. CHAR.

000 NULL 040 ~ 100 @ 140 GM
001 SOH 041 EXP 101 A 141 a
002 STX 042 " 102 B 142 b
003 ETX 043 # 103 C 143 c
004 EOT 044 $ 104 D 144 d
005 ENQ 045 % 105 E 145 e
006 ACK 046 & 106 F 146 f
007 BELL 047 107 G 147 g

010 BSP 050 (110 H 150 h
011 HT 051) III I 151 i
012 LF 052 * 112 J 152 j
013 VT 053 + 113 K 153 k
014 FFD 054 114 L 154 1
015 CR 055 115 11 155 m
016 SO 056 116 N 156 n
I"\~'" SI 057 / 117 0 157 0 U J...I

020 DLE 060 0 120 P 160 p
021 DCl 061 1 121 Q 161 q
022 DC2 062 2 122 R 162 r
023 DC3 063 3 123 S 163 s
024 DC4 064 4 124 T 164 t.
f'\'"Ie: ~~AK 065 5 125 U 165 u V':'J

026 SYN 066 6 126 V 166 v
027 ETB 067 7 127 W 167 w

030 CAN 070 8 130 X 170 x
031 EM 071 9 131 Y 171 Y
032 SUB 072 132 Z 172 z
033 ESC 073 133 LBK 173 LBR
034 FS 074 LTN 134 RSL 174 VTL
035 GS 075 135 RBK 175 RBR
036 RS 076 GTN 136 CFX 176 'ELD
037 US 077 ? 137 177 DEL

B-1 BR39

DEFINITIONS

Communications Control

ACK Acknowledgment
CAN Cancel
DCI Device Control I
DC2 Device Control 2
DC3 Device Control 3
DC4 Device Control 4
DLE Data Link Escape
EM End of Medium
ENQ Enquiry
EOT End of Transmission
ESC Escape (Alternate Hode)
ETB End of Transmission Block
ETX End of Text
NAK Negative Acknowledgment
SOH Start of Heading
STX Start of Text
SUB Substitute Character
SYN Synchronous Idle

Form Effectors

BSP Backspace
CR Carriage Return
FFD Form Feed
HT Horizontal Tabulation
LF Line Feed
VT Vertical Tabulation

Item Separators

FS File Separator
GS Group Separator
RS Record Separator
US Unit Separator

B-2 BR39

Text Material

BELL Bell, or other attention signal

CFX II

DEL Delete (Rubout)

EXP

GRA

GTN >

LBK [

LBR

LTN <

NULL Null

RBK]

RBR }

RSL \

SI Shift In

SO Shift Out

SP Space

TLD

VTL Vertical Line

B-3 BR39

APPENDIX C.

Series 600/6000 Standard Character Set

Character Set

ASCII

HONEYWELL CARD OCTAL
0-- 1 - -

0 0 -00 NULL @

1 1 -01 SOH A
2 2 -02 STX B
3 3 -03 ETX C
4 4 -04 EOT D
S S -os ENQ E
6 6 -06 ACK F
7 7 -07 BELL G
8 8 -10 BSP H
9 9 -11 HT I
[2-8 -12 LF J
if 3-8 -13 VT K
@ 4-8 -14 FFD L
: 5-8 -15 CR M
> 6-8 -16 SO N
? 7-8 -17 SI 0
b (blank) -20 DLE P
A 12-1 -21 DC1 Q
B 12 -2 -22 DC2 R
C 12-3 -23 DC3 S
D 12-4 -24 DC4 T

E 12 -s -25 NAK U
F 12-6 -26 SYN V

G 12 -7 -27 1:TB W

H 12-8 -30 CAN X
I 12-9 -31 EM y

& 12 -32 SUB Z
12 -3-8 -33 ESC [

] 12-4-8 -34 FS \
(12-5-8 -35 GS 1
< 12-6-8 -36

I
RS 1\

\ 12 -7-8 -37 US -
t 11-0 -40 b ,
J 11-1 -41 ! a i

I K
i

11-2 -42 " b I
L 11-3 -43 11 c
M 11-4 -44 $ d

N 11-5 -45 % e
0 11-6 -46 & f
P 11-7 -47

,
g

Q 11-8 -SO (h
R 11-9 -SI) i

- 11 -52 * j
$ 11-3-8 -S3 + k
'1< 11-4-8 -54 , 1
) 11-5-8 -55 - m . 11-6-8 -56 n , 11-7-8 -57 / 0

+ 12-0 -60 0 p

/ 0-1 -61 1 q
S 0-2 -62 2 r
T 0-3 -63 3 5

U 0-4 -64 4 t

V 0-5 -65 5 u

w 0-6 -66 6 v
X 0-7 -67 7 w
y 0-8 -70 8 x
Z 0-9 -71 9 y

..... 0-2 -8 -72 : z
, 0-3-8 -73 ; [

0-4-8 -74 < !

= 0-5-8 -75 = J
" 0-6-8 -76 '> ~

! 0-7 -8 -77 ? DEL

C-l BR39

*SRC
CURRENT FILE (*SRC)
SOURCE (*SRC) FILE FORMAT

.LFLAG
.LFLAG

.LIMTR
.LIMTR

.LLNUE
.LLNUE

.LNPD
.LNPD

.LSWTH
.LSWTH
. LSWTH

.LTSSV
.LTSSV

.MIDSC

INDEX

DRL IDS, MAKE AN ENTRY INTO .MIDSC

.SSDRL
.SSDRL

.TASSZ
.TASSZ

.TASTM
.TASTM

.TFLG2
.TFLG2

.TPCOM
• TPCOM
• TPCOM

. TPRGD
. TPRGD

.TSCOM
.TSCOM

ABORT
DRL ABORT, ABORT
DRL ABTJOB, ABORT BATCH JOB
SABT (Scan Abort File) Subsystem

ABTJOB
DRL ABTJOB, ABORT BATCH JOB

X-I

3-54
6-1

3-5

3-17

3-20

5-3

3-3
3-26

3-5

3-13

5-2

3-17

3-17

3-26

4-1
2-1

2-1

2-1

3-7
3-9
5-13

3-9

BR39

ADDr1EM
DRL ADDMEM, ADD .MEMORY

AFT
AFT
Available File Table (AFT) Usage
DRL PASDES, PASS AFT FILE NA.MES AND DESCRIPTIONS

ALTNAME
altname

ATTRI
ATTRI
DRL ATTRI, PICK UP USERS ATTRIBUTES

ATTRIBUTES
DRL ATTRI, PICK UP USERS ATTRIBUTES

BIT
Break Status Bit
HOLD/SEND Bit
LUCID Command Bit
PARITY/NOPARITY Bit

BSED
BSED (LINE EDITOR) SUBSYSTEM

CALLSS
DRL CALLSS, INTERNAL CALL TO ANOTHER SUBSYSTEH

CATALOG/FILE
FILACT, HODIFY CATALOG/FILE FUNCTION
FILACT, PURGE/RELEASE CATALOG/FILE FUNCTION

CGROUT
DRL CGROUT, PROCESS LINE SWITCH

CHARACTER SET
Series 600/6000 Standard Character Set

COLLECTOR
COLLECTOR FILE (SY**)

COMl·1AND - LA1~ GUAGE/P RIMI T I VE
command-language/primitive lists
Program Descriptor Command-Language/Primitive List

CORFIL
DRL CORFIL, DATA FROM/TO CORE FILE

CREATE
FILACT, CREATE CATALOG FUNCTION
FILACT, CREATE FILE FUNCTION

DEBUGGING
SUBSYSTEM DEBUGGING FACILITY

DEFIL
DRL DEFIL, DEFINE AND ACCESS A TEMPORARY FILE

X-2

3-9

3-58
3-58
3-19

7-2

3-9
3-10

3-10

3-5
3-5
3-4
3-6

7-2

3-10

3-47
3-46

3-11

C-l

3-54

4-1
2-2

3-11

3-41
3-42

5-6

3-35

BR39

DERAILS
DERAILS
derails

DIO

DRL

General Service Function Derails
Mass Storage File Activity Derails

DRL DIO, DO I/O ON USER'S FILE

DRL ABORT, ABORT
DRL ABTJOB, ABORT BATCH JOB
DRL ADDMEM, ADD MEMORY
DRL ATTRI, PICK UP USERS ATTRIBUTES
DRL CALLSS, INTERNAL CALL TO ANOTHER SUBSYSTEM
DRL CGROUT, PROCESS LINE SWITCH
DRL CORFIL, DATA FROM/TO CORE FILE
DRL DEFIL, DEFINE AND ACCESS A TEMPORARY FILE
DRL DIO, DO I/O ON USER'S FILE
DRL DRLDSC, DISCONNECT TERMINAL
DRL DRLIMT, STORE PROCESSOR TIME LIMIT
DRL DRLSAV, SAVE PROGRAM ON PERMANENT FILE
DRL FILACT, PERMANENT FILE ACTIVITIES
DRL FILSP, SPACE A LINKED FILE
DRL GROH, GROW A PERMANENT OR TEMPORARY File
DRL GWAKE, WAKE ME LATER
DRL IDS, MAKE AN ENTRY INTO .MIDSC
DRL JSTS, OBTAIN JOB STATUS
DRL KIN, KEYBOARD INPUT LAST LINE
DRL KOTNOW, KEYBOARD OUTPUT FROM UNFILLED BUFFER
DRL KOUT, KEYBOARD OUTPUT
DRL KOUTN, KEYBOARD OUTPUT THEN INPUT
DRL MORLNK, ADD LINKS TO TEMPORARY FILE
DRL OBJTIM, PROCESSOR TIME AND CORE SIZE LIMIT
DRL PART, PARTIAL RELEASE OF TEMPORARY FILE
DRL PASAFT, PASS LIST OF FILES TO SUBSYSTEM
DRL PASDES, PASS AFT FILE NAMES AND DESCRIPTIONS
DRL PASFLR, PASS FILE TO REMOTE BATCH PROCESSOR
DRL PASUST, PASS UST TO SUBSYSTEM
DRL PRGDES
DRL PSEUDO, SIMULATED KEYBOARD INPUT
DRL RELMEM, RELEASE MEMORY
DRL RESTOR, OVERLAY-LOAD A SUBSYSTEM
DRL RETFIL, RETURN A FILE
DRL RETURN, RETURN TO PRIMITIVE LIST
DRL REW, REWIND A LINKED FILE
DRL RSTSWH, RESET SWITCH WORD
DRL SETLNO, SET LINE NUMBER/INCREMENT IN UST
DRL SETSWH, SET SWITCH WORD
DRL SNUMB, OBTAIN SNUMB
DRL SPAWN, PASS FILE TO BATCH PROCESSOR
DRL STOPPT, STOP PAPER TAPE INPUT
DRL SWITCH, SWITCH TEMPORARY FILE NAMES
DRL SYSRET, RETURN TO SYSTEM
DRL TAPEIN, START PAPER TAPE INPUT
DRL TASK, SPAWN A SPECIAL BATCH ACTIVITY
DRL TERMTP, TERMINAL TYPE AND LINE NUMBER
DRL TI~m, OBTAIN PROCESSOR TIME AND TIME OF DAY

DRLDSC
DRL DRLDSC, DISCONNECT TERMINAL

X-3

3-7
2-1
3-7
3-34

3-36

3-7
3-9
3-9
3-10
3-10
3-11
3-11
3-35
3-36
3-12
3-12
3-24
3-37
3-49
3-50
3-13
3-13
3-14
3-14
3-15
3-15
3-17
3-51
3-17
3-52
3-18
3-19
3-20
3-20
3-20
3-21
3-22
3-22
3-52
3-24
3-53
3-24
3-25
3-26
3-26
3-27
3-28
3-53
3-28
3-28
3-29
3-32
3-34

3-12

BR39

DRLIMT
DRL DRLIMT, STORE PROCESSOR TIME LIMIT

DRLSAV
DRL DRLSAV, SAVE PROGRAM ON PERMANENT FILE

DUHP
Dump Procedure

EDITOR
BSED (LINE EDITOR) SUBSYSTEM

EQUIVALENTS
OCTAL-ASCII CONVERSION EQUIVALENTS

EXAMPLES
PROGRAM DESCRIPTOR EXAMPLES

FAULT
SUBSYSTEM DATA AREA AND FAULT VECTOR

FILACT
DRL FILACT, PERMANENT FILE ACTIVITIES
FILACT, ACCESS FILE FUNCTION
FILACT, CREATE CATALOG FUNCTION
FILACT, CREATE FILE FUNCTION
FILACT, MODIFY CATALOG/FILE FUNCTION
FILACT, PURGE/RELEASE CATALOG/FILE FUNCTION

FILE
Available File Table (AFT) Usage
COLLECTOR FILE (SY**)
CURRENT FILE (*SRC)
current file
DRL CORFIL, DATA FROM/TO CORE FILE
DRL DEFIL, DEFINE AND ACCESS A TEMPORARY FILE
DRL DIO, DO I/O ON USER'S FILE
DRL DRLSAV, SAVE PROGRAM ON PERMANENT FILE
DRL FILACT, PERMANENT FILE ACTIVITIES
DRL FILSP, SPACE A LINKED FILE
DRL GROW, GROW A PERHANENT OR TEMPORARY File
DRL MORLNK, ADD LINKS TO TEMPORARY FILE
DRL PART, PARTIAL RELEASE OF TEMPORARY FILE
DRL PASFLR, PASS FILE TO REMOTE BATCH PROCESSOR
DRL RETFIL, RETURN A FILE
DRL REW, REWIND A LINKED FILE
DRL SPAWN, PASS FILE TO BATCH PROCESSOR
DRL S~'VITCH, S~'VITCH TEMPORARY FILE NAMES
FILACT, ACCESS FILE FUNCTION
FILACT, CREATE FILE FUNCTION
FILE FORMATS
FILE I/O
OLDN (OLD/NE~\T FILE REQUEST) SUBSYSTEM
overlay-load a permanent file
SABT (Scan Abort File) Subsystem
SOURCE (*SRC) FILE FORMAT
TAP* FILE FORMAT
TSS FILE USAGE

~-4

3-12

3-24

5-13

7-2

B-1

4-8

3-1

3-37
3-44
3-41
3-42
3-47
3-46

3-58
3-54
3-54
6-1
3-11
3-35
3-36
3-24
3-37
3-49
3-50
3-51
3-52
3-20
3-52
3-53
3-27
3-53
3-44
3-42
6-1
3-59
7-4
3-23
5-13
6-1
6-4
3-54

BR39

FILEDESCR
filedescr

FILENAME
filename

FILES
CATALOGS AND FILES
DRL PASAFT, PASS LIST OF FILES TO SUBSYSTEM
PERMANENT FILES
Permanent Files Assigned by User
TEMPORARY FILES
Temporary User Files Assigned by TSS

FILSP
DRL FILSP, SPACE A LINKED FILE

FUNCTION
FILACT, ACCESS FILE FUNCTION
FILACT, CREATE CATALOG FUNCTION
FILACT, CREATE FILE FUNCTION
FILACT, MODIFY CATALOG/FILE FUNCTION
FILACT, PURGE/RELEASE CATALOG/FILE FUNCTION

GCOS
Editing Subsystem Program to GCOS

GHAP
GH]',P

GROvv
DRL GROW, GROW A PERMANENT OR TEMPORARY File

GWAKE
DRL m'JAKE, WAKE ME LATER

HOLD/SEND
HOLD/SEND Bit

HONEYWELL
HONEYWELL SUBSYSTEM DESCRIPTIONS
HONEYWELL SUBSYSTEM TYPES

HONE YvJELL - S UPP L I ED
HONEYWELL-SUPPLIED SUBSYSTEMS

I/O
DRL DIO, DO I/O ON USER'S FILE
FILE I/O

IDS
DRL IDS, HAKE AN ENTRY INTO .MIDSC
IDS

JSTS
DRL JSTS, OBTAIN JOB STATUS

X-5

7-2

7-1

3-57
3-18
3-59
3-55
3-58
3-54

3-49

3-44
3-41
3-42
3-47
3-46

5-2

2-1

3-50

3-13

3-5

7-1
7-1

7-1

3-36
3-59

3-13
3-9

3-14

BR39

KIN
DRL KIN, KEYBOARD INPUT LAST LINE

KOTNOH
DRL KOTNOW, KEYBOARD OUTPUT FROM UNFILLED BUFFER

KOUT
DRL KOUT, KEYBOARD OUTPUT

KOUTN
DRL KOUTN, KEYBOARD OUTPUT THEN INPUT

LIMIT
DRL DRLIMT, STORE PROCESSOR TIME LIMIT
DRL OBJTIM, PROCESSOR TIHE AND CORE SIZE LIMIT

LINKS
DRL MORLNK, ADD LINKS TO TEMPORARY FILE

LOADING
Loading the Temporary Subsystem

LODM
LODM

LODX
LODX subsystem

LUCID
LUCID Command Bit

HACROS
SYSTEM I·1ACROS
SYSTEM MACROS

MASS STORAGE
Mass Storage File Activity Derails

MESSAGES
Messages

MME FUNCTIONS
MME functions
HME functions
t-1ME functions

MORLNK
DRL MORLNK, ADD LINKS TO TEMPORARY FILE

OBJTIM
DRL OBJTIM~ PROCESSOR TIME AND CORE SIZE LIMIT

OCTAL
Octal Patching the Temporary Subsystem

OCTAL-ASCII
OCTAL-ASCII CONVERSION EQUIVALENTS

X-6

3-14

3-15

3-15

3-17

3-12
3-17

3-51

5-5

5-2

5-4

3-4

A-l
3-6

3-34

5-12

5-2
3-1
2-1

3-51

3-17

5-6

B-1

BR39

OLD/NEW
OLDN (OLD/NEW FILE REQUEST) SUBSYSTEM

OLDN
OLDN (OLD/NEW FILE REQUEST) SUBSYSTEM

ORGANIZATION
SUBSYSTEM ORGANIZATION
SUBSYSTEM PROGRAM ORGANIZATION

OVERLAY-LOAD
DRL RESTOR, OVERLAY-LOAD A SUBSYSTEM
overlay-load a permanent file

PARI TY/NOPARITY
PARITY/NOPARITY Bit

PART
DRL PART, PARTIAL RELEASE OF TEMPORARY FILE

PASAFT
DRL PASAFT, PASS LIST OF FILES TO SUBSYSTEM

PASDES
DRL PASDES, PASS AFT FILE NAMES AND DESCRIPTIONS

PASFLR
DRL PASFLR, PASS FILE TO REMOTE BATCH PROCESSOR

PASSWORDS
PASSWORDS

PASUST
DRL PASUST, PASS UST TO SUBSYSTEM

PATCHING
OCTAL Patching the Temporary Subsystem

PERMISSIONS
PERMISSIONS
permissions

PREPARATION
TDS Usage During Subsystem Preparation

PRGDES
PRGDES
PRGDES
PRGDES, PASS PROGRAM DESCRIPTOR TO SUBSYSTEM

PRIMITIVES
COMMAND LANGUAGE AND PRIMITIVES
Format of Primitives
PRIMITIVES
primitives

PRNTTY
PRNTTY

PROGRAM DESCRIPTOR ORGANIZATION
PROGRAM DESCRIPTOR ORGANIZATION

X-7

7-4

7-4

2-1
2-1

3-22
3-23

3-6

3-52

3-18

3-19

3-20

3-57

3-20

5-6

3-57
7-2

5-7

5-3
3-9
3-20

4-1
4-5
4-5
5-3

5-2

2-1

BR39

PSEUDO
DRL PSEUDO, SIMULATED KEYBOARD INPUT

PURGE/RELEASE
FILACT, PURGE/RELEASE CATALOG/FILE FUNCTION

REGISTER PROTECTION
BASE REGISTER PROTECTION

RELMEM
DRL RELMEM, RELEASE MEMORY

REQUEST
OLDN (OLD/NEW FILE REQUEST) SUBSYSTEM

RESET
DRL RSTSWH, RESET SWITCH WORD

RESTOR
DRL RESTOR, OVERLAY-LOAD A SUBSYSTEM

RETFIL
DRL RETFIL, RETURN A FILE

RETURN
DRL RETFIL, RETURN A FILE
DRL RETURN , RETURN TO PRIMITIVE LIST
DRL SYSRET, RETURN TO SYSTEM

REW
DRL REW, REWIND A LINKED FILE

REWIND
DRL REW, REWIND A LINKED FILE

RSTSWH
DRL RSTSWH, RESET SWITCH WORD

SABT
SABT (Scan Abort File) Subsystem

SAVE
DRL DRLSAV, SAVE PROGRAM ON PERMANENT FILE

SCAN
SABT (Scan Abort File) Subsystem

SERVICE FUNCTION
General Service Function Derails

SET
DRL SETLNO, SET LINE NUMBER/INCREMENT IN UST
DRL SETSWH, SET SWITCH WORD

SETLNO
DRL SETLNO, SET LINE NUMBER/INCREMENT IN UST

SETSWH
DRL SETSWH, SET SWITCH WORD

X-8

3-21

3-46

3-1

3-22

7-4

3-24

3-22

3-52

3-52
3-24
3-28

3-53

3-53

3-24

5-13

3-24

5-13

3-7

3-25
3-26

3-25

3-26

BR39

SNUMB
DRL SNUMB, OBTAIN SNUMB

SOURCE
SOURCE (*SRC) FILE FORMAT

SPA~VN

DRL SPAWN, PASS FILE TO BATCH PROCESSOR
DRL TASK, SPAWN A SPECIAL BATCH ACTIVITY

STARTUP PROCEDURE
STARTUP PROCEDURE

STATUS
Break Status Bit
DRL JSTS, OBTAIN JOB STATUS

STOP
DRL STOPPT, STOP PAPER TAPE INPUT

STOPPT
DRL STOPPT, STOP PAPER TAPE INPUT

STRUCTURE
STRUCTURE OF THE FILE SYSTEM

SUBROUTINE
Terminal Debug Subroutine (TDS)

SUBSYSTEM CHECKOUT
Subsystem Checkout

SUBSYSTEM DUMP
SUBSYSTEM DUMP

SUBSYSTEM PLACEMENT
SUBSYSTEM PLACEMENT
SUBSYSTEM PLACEMENT

SWITCH
DRL CGROUT, PROCESS LINE SWITCH
DRL RSTSWH, RESET SWITCH WORD
DRL SETSWH, SET SWITCH WORD
DRL SWITCH, SWITCH TEMPORARY FILE NAMES
SUBSYSTEM SWITCH WORD

SY**
COLLECTOR FILE (SY**)

SY**FILE
SY**FILE FORMAT

SYSRET
DRL SYSRET, RETURN TO SYSTEM

TAP *
TAP* FILE FORMAT

TAPEIN
DRL TAPEIN, START PAPER TAPE INPUT

X-9

3-26

6-1

3-27
3-29

4-7

3-5
3-14

3-28

3-28

3-55

5-6

5-8

5-13

5-1
5-4

3-11
3-24
3-26
3-53
3-3

3-54

6-2

3-28

6-4

3-28

BR39

TASK
DRL TASK, SPAWN A SPECIAL BATCH ACTIVITY

TDS
TDS Usage During Subsystem Preparation
Terminal Debug Subroutine (TDS)
IDS Usage During Subsystem Checkout
IDS Error Indications and Messages

TEMPORARY SUBSYSTEM
Temporary Subsystem
Temporary Subsystem

TERMINAL
DRL DRLDSC, DISCONNECT TERMINAL
DRL TERMTP, TERMINAL TYPE AND LINE NUMBER
Terminal Debug Subroutine (TDS)

TERMTP
DRL TERMTP, TERMINAL TYPE AND LINE NUMBER

TIME OF DAY
DRL TIME, OBTAIN PROCESSOR TIME AND TIME OF DAY

TSS
Temporary User Files Assigned by TSS
TSS FILE USAGE

TSSA
TSSA

TSSJ
TSSJ

TSSM
TSSM

TSTART

UST

Modifying the TSTART Module
TSTART

DRL PASUST, PASS UST TO SUBSYSTEM
DRL SETLNO, SET LINE NUMBER/INCREMENT IN UST

~V'AKE

DRL GWAKE, WAKE ME LATER

X-I0

3-29

5-7
5-6
5-8
5-12

5-5
5-6

3-12
3-32
5-6

3-32

3-34

3-54
3-54

5-3

3-5

3-5

5-4
5-1

3-20
3-25

3-13

BR39

u
i!':
j ,
~

5
J

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form*

TITLE:
SERIES 600/6000 GCOS
TIME-SHARING SYSTEM
PROGRAMMERS' REFERENCE MANUAL

ERRORS IN PUBLICATION:

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION:

(Please Prin t)

FROM: NAME ____________________________________ __

CO MPANY __________________________________ _

TITLE _____________________ _

ORDER NO.:! BR39. REV. 1 I
DATED: I NOVEMBER 19711

DATE: ___________ ...-....-

*Your comments will be promptly investigated by appropriate technical personnel, action will be taken as
required, and you will receive a written reply. If you do not require a written reply, please check here. 0

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

POSTAGE WILL BE PAID BY:

HONEYWEll INFORMATION SYSTEMS
60 WALNUT STREET
WELLESLEY HILLS, MASS. 02181

ATTN: PUBLICATIONS, MS 050

Honeywell

FIRST CLASS
PERMIT NO. 39531
WELLESLEY HILLS,
MASS. 02181

, ... i

3880
'---'1.5372

Printed in U.S.A.

The Other Computer Company:

HoneY"'ell

HONEYWELL INFORMATION SYSTEMS

In the U.S.A.: 200 Smith Street, MS 061, Waltham, Massachusetts 02154
I n Canada: 2025 Sheppard Avenue East, Willowdale, Ontario BR39, Rev. 1

