
Honey"1ell TIME-SHARING BASIC

SERIES 600/6000

SOFTWARE

Honeywell TIME-SHARING BASIC

SERIES 600/6000

SUBJECT:

Introduction to Terminal Operation and the BASIC Language; Advanced BASIC
Programming Techniques; Error Messages and Debugging.

SPECIAL INSTRUCTIONS:

This mariual, Orc;ler Number BR36, Rev. 1, supersedes BR36, Rev. O, and CPB-1510B,
dated March 1970, and Addendum No. 1, dated February 1971. The new order number
is assigned to be consistent 'Yith the overall Honeywell publications numbering system.
New information and changes added to the manual since the previous edition are
indicated by marginal change bars.

SOFTWARE SUPPORTED:

Series 600 Software Release 8. 0
Series 6000 Software Release F

DATE:

INCLUDES UPDATE PAGES ISSUED AS ADDENDUM A IN JUNE 1972;
ADDENDUM B, OCTOBER 1972; AND ADDENDUM C, MAY 1973 ..

September 1971

ORDER NUMBER:

BR36~ Rev. 1 (Supersedes BR36, Rev. O, and CPB-1510B)

PREFACE

This manual is intended to provide a reference source for users of
BASIC. For the new user, a description of terminal operation is supplied
and the elements of the language are listed. For the experienced user,
methods for more advanced use of the language are provided. To
fac~litate the use of BASIC, possible error messages that may be
encountered are listed and an example of program error location and
correction (debugging) is given. Portions of this manual are based upon
the BASIC language developed by Dartmouth College. ~ime-Sharing BASIC is
a subsystem of the Series 600/6000 Time-Sharing System.

Series 600/6000 Time-Sharing BASIC is a coded program designed
to extend the power of Series 600/6000 in the area of program
preparation and maintenance. It is supported by comprehensive
documentation and training; periodic program maintenance and,
where feasible, improvements are furnished for the current
version of the program, provided it is not modified by the user.

File No.: 1623, 1723

© 1968,1969,1970,1971,1972,1973, Honeywell Information Systems Inc.

BR36

FUNCTIONAL LISTING OF PUBLICATIONS
for

SERIES 600 SYSTEM

FUNCTION APPLICABLE REFERENCE MANUAL

Hardware reference:
Series 600
DATANET 355

Operating system:
Basic Operating System

Control Card Formats

System initialization:
GCOS Startup
Communications System

Storage Subsystem Startup

Data management:
File System
Integrated Data Store

(I-D-S)
File Processing
Multi-Access I-D-S

File Input/Output
I-D-S Data Query System

I-D-S Data Query System

Program maintenance:
Object Program
System Editing

Test system:
On-Line Peripheral testing

Total On-Line testing

Language processors:
Macro Assembly Language
COBOL Language
COBOL Usage
ALGOL Language
JOVIAL Language
FORTRAN Language
FORTRAN IV Language
DATANET 355

Generators:
Sorting
Merging

Simulators:
DATANET 355 Simulation

TITLE
Series· 600:

System Manual
DATANET 355 Systems Manual

General Comprehensive Operating
Supervisor (GCOS)

Control Cards Reference Manual

System Operating Techniques
GRTS/355 Startup Procedures

Reference Manual
DSS180 Disk Storage Subsystem

Startup Procedures

File Management Supervisor
Integrated Data Store

Indexed Sequential Processor
Multi-Access I-D-S

Implementation Guide
File and Record Control
I-D-S Data Query System

Installation
I-D-S Data Query System

User's Guide

Source and Ob]ect Library Editor
System Library Editor

GCOS On-Line Peripheral Test
System (OPTS-600)

Total On-Line Test System
(TOLTS)

Macro Assembler Program
COBOL Compiler
COBOL User's Guide
ALGOL
JOVIAL
FORTRAN
FORTRAN IV
DATANET 355 Macro-Assembler

Program

Sort/Merge Program
Sort/Merge Program

DATANET 355 Simulator
Reference Manual

iii

FORMER ORDER
PUB. NO. NO.

371
1645

1518
16SS

DAlO

1715

DAll

DB54
1565

DA37

DASO
1003

DB57

DB56

1723
16S7

1573

DA49

1004
1652
1653
1657
1650
16 S6
1006

1660

1005
1005

1663

BM78
BS03

BR43
BS19

DAlO

BJ70

DAll

DB54
BR69

DA37

DASO
BNS5

DB57

DB56

BJ71
BS18

BR76

DA49

BNS6
BS08
BS09
BSll
BS06
BJ67
BNaS

BB98

BNS7
BN87

BW23

FUNCTION

Remote terminal system:
DATANET 30

DATANET 30/305/355

Service and utility routines:
Loader
Utility Programs
Conversion
System Accounting

FORTRAN

Controller Loader
Service Routines
Software Debugging

Time-sharing systems:
Operating System

System Programming

System Programming

BASIC Language
FORTRAN Language
Text Editing

Transaction processing:
User's Procedures

Handbooks:
Console Messages
Index

Pocket guides:
Time-Sharing Programming
Macro Assembly Language
COBOL Language
Control Card Formats

Software maintenance (SMD) :
Table Definitions

Startup program
Input System
Peripheral Allocation

Core Allocation/Rollcall

Fault Processing
Channel Modules
Error Processing
Output System
File System Modules
Utility Programs
Time-Sharing System

Rev. 7303

TITLE

APPLICABLE REFERENCE MANUAL
FORMER

PUB. NO.
Sen.es 60 0:

NPS/30 Programming
Reference Manual

GRTS Progra~ing Reference

General Loader
Utility
Bulk Media Conversion
GCOS Accounting Summary

Edit Programs
FORTRAN Subroutine Libraries

Reference Manual
Relocatable Loader
Service Routines
Trace and Debug Routines

GCOS Time-Sharing System
General Information

GCOS Time-Sharing Terminal/Batch
Interface Facility

GCOS Time-Sharing System
Programmers' Reference
Manual

Time-Sharing BASIC
Time-Sharing FORTRAN
Time-Sharing Text Editor

Transaction Processing System
User's Guide

Console Typewriter Messages
Comprehensive Index

GCOS Time-Sharing System
GMAP
COBOL
GCOS Control Cards & Abort Codes

GCOS Introduction & System
Tables SMD

Startup (INIT) SMD
System Input SMD
Dispatcher and Peripheral

Allocation SMD
Rollcall, Core Allocation and

Operator Interface SMD
Fault Processing SMD
I/O Supervisor (fOS) SMD
GCOS Exception Processing SMD
Termination and System Output SMD
File System Maintenance SMD
GCOS Utility Routines SMD
Time-Sharing Executive SMD

iv

1558
DA79

1008
1422
1096

1651

1620
DA12
DA97
DB20

1643

1642

1514
1510
1566
1515

DA82

1477
1499

1661
1673
1689
1691

1488
1489
1490

1491

1492
1493
1494
1495
1496
1497
1498
1501

ORDER
NO.

BR68
DA79

BN90
BQ66
BP30

BS07

BR95
DA12
DA97
DB20

BSOl

BR99

BR39
BR36
BR70
BR40

DA82

BR09
BR28

BS12
BS16
BJ68
BJ69

BR17
BR18
BR19

BR20

BR21
BR22
BR23
BR24
BR25
BR26
BR27
BR29

BR36

FUNCTIONAL LISTING OF PUBLICATIONS
for

SERIES 6000 SYSTEM

FUNCTION APPLICABLE REFERENCE MANUAL

Hardware reference:
Series 6000
DATANET 355

Operating system:
Basic Operating System

Control Card Formats

System initialization:
GCOS Startup
Communications System

Storage Subsystem Startup

Data management:
File System
Integrated Data Store

(I-D-S)
File Processing
Multi-Access I-D-S

File Input/Output
I-D-S Data Query System

I-D-S Data Query System

Program maintenance:
Object Program
System Editing

Test system:
On-Line Peripheral Testing

Total On-Line Testing

Error Analysis and
Logging

Language processors:
Macro Assembly Language
COBOL Language
COBOL Usage
ALGOL Language
JOVIAL Language
FORTRAN Language
DATANET 355

Generators:
Sorting
Merging

TITLE
Series 6000:

Series 6000 Summary Description
DATANET 355 Systems Manual

General Comprehensive Operating
Supervisor (GCOS)

Control Cards Reference Manual

System Startup and Operation
GRTS/355 Startup Procedures

Reference Manual
DSSlSO Disk Storage Subsystem

Startup Procedures

File Management Supervisor
Integrated Data Store

Indexed Sequential Processor
Multi-Access I-D-S

Implementation Guide
File and Record Control
I-D-S Data Query System

Installation
I-D-S Data Query System

User's Guide

Source and Object Library Editor
System Library Editor

GCOS On-Line Peripheral Test
System (OPTS-600)

Total On-Line Test System
(TOLTS)

Honeywell Error Analysis
and Logging System

Macro Assembler Program
COBOL Compiler
COBOL User's Guide
ALGOL
JOVIAL
FORTRAN
DATANET 355 Macro-Assembler

Program

Sort/Merge Program-
Sort/Merge Program

v

FORMER ORDER
PUB. NO. NO.

DA4S
1645

151S
16SS

DA06

1715

DAll

DB54
1565

DA37

DASO
1003

DB57

DB56

1723
1687

1573

DA49

DB50

1004
1652
1653
1657
1650
16S6

1660

1005
1005

DA4S
BS03

BR43
BS19

DA06

BJ70

DAll

DB54
BR69

DA37

DASO
BNS5

DB57

DB56

BJ71
BS18

BR76

DA49

DB50

BNS6
BSOS
BS09
BSll
BS06
BJ67

BB9S

BN87
BN87

BR36

FUNCTION

Simulators:
DATANET 355 Simulation

Service and utility routines:
Loader
Utility Programs
Conversion
System Accounting

FORTRAN

Controller Loader
Service Routines
~oftware Debugging

Time-sharing systems:
Operating System

System Programming

System Programming

BASIC Language
FORTRAN Language
Text Editing

Remote terminal system:
DATANET 30
DATANET 30/305/355

Transaction processing:
User's Procedures

Handbooks:
Console Messages
Index

Pocket guides:
Time-Sharing Programming
Macro Assembly Language
COBOL Language
Control Card Formats

Rev. 7303

APPLICABLE REFERENCE MANLAL

TITLE
Series 6000:

DATANET 355 Simulator
Reference Manual

General Loader
Utility
Bulk Media Conversion
GCOS Accounting Summary

Edit Programs
FORTRAN Subroutine Libraries

Reference Manual
Relocatable Loader
Service Routines
Trace and Debug Routines

GCOS Time~Sharing System
General Information

GCOS Time-Sharing Terminal/Batch
Interface Facility

GCOS Time-Sharing System
Programmers' Reference
Manual

Time-Sharing BASIC
FORTRAN
Time-Sharing Text Editor

NPS/30 Programming Reference
GRTS Programming Reference

Transaction Processing System
User's Guide

Console Typewriter Messages
Comprehensive Index

GCOS Time-Sharing System
GMAP
COBOL
GCOS Control Cards and Abort

Codes

vi

FORMER ORDER
PUBe NO. NO.

1663

1008
1422
1096

1651

1620
DA12
DA97
DB20

1643

1642

1514
1510
1686
1515

1558
DA79

· DA82

1477
1499

1661
1673
1689

1691

BW23

BN90
BQ66
BP30

BS07

BR95
DA12
DA97
DB20

BSOl

BR99

BR39
BR36
BJ67
BR40

BR68
DA79

DA82

BR09
BR28

BS12
BS16
BJ68

BJ69

BR36

Section I

Section II

Section III

Section IV

TABLE OF CONTENTS

Introduction. • • • • • • •
Computer Programs •••
Programming Languages ••
BASIC Progranuning Language
Time-Sharing System. • • • •
BASIC and Time-Sharing • •

Basic Language Characteristics. •
BASIC Programs • • • • • •
BASIC Statements • • • • • • • •
BASIC Words. • • • • • • •

Arithmetic Statements •
Specification Statements. •
Input/Output Statements • • •
Loop and Subroutine Statements ••
Logic Statements ••••
Utility Statements. • • •
Documentation Statement • •

Creating A BASIC Program •
Control Conunands • • • • •
Stopping Program Execution

Terminal Operation and Procedures • •
Terminal Operation • • • • • • • •
Connecting Terminal to the Computer ••

. .

Getting On (Log-On) Procedure. • • • •
Entering the Program • • • • • • • • •
Entering the Program from Paper Tape • • • • •
Correcting the Program • • • • • • • •
Running the Program. • • • • • • • • • • • • •
Getting Off (Log-Off) Procedure ••••••••
Automatic Termination from Terminal. •
Example of Terminal Operation- and Procedures •

Elementary BASIC •••••••••••••••••
Statement Definition • • • • • • • • • • • • •
Mathematical Notation and Operations Within
a Statement. • • • • • • • • • • • • •

Variable Representation • • • • • • •
List and Table Variables. • •••••
Use of Numbers. • • • • •••
Arithmetic Operations • • • • • • • • • • •
Relational Symbols. • • • • •••
Use of Expressions. • • •
Mathematical Functions. •
Miscellaneous Functions

Statement Descriptions •
A BASIC Program Example.

General • • • • • • •
Analyzing the Problem
Converting to BASIC Language ••
Explanation of the Statements • • • • •
Entering and Running the Program. • • • • •

vii

Page

1-1
1-1
1-1
1-1
1-2
1-2

2-1
2-1
2-1
2-2
2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-4
2-5
2-9

3-1
3-1
3-2
3-2
3-3
3-4
3-4
3-5
3-7
3-7
3-7

4-1
4-1

4-1
4-1
4-2
4-2
4-3
4-3
4-4
4-4
4-5
4-6
4-34
4-34
4-34
4-35
4-36
4-39

BR36

Section V

I

I

Section VI

Section VII

Appendix A.

Appendix B.

Appendix c.

Appendix D.

I Appendix E.

Index. .

6/72

TABLE OF CONTENTS (cont.)

Advanced BASIC •••••••••••••
General •••••••••••••••
Flexibility in Program Output Format •

Formatting Output with a Conuna or
Semicolon • • • • • • • • • •
Spacing Within an Output Line with
Functions TAB(X) and SPC(X)
Formatting Line Output ••

Defining Functions • • . • • •
Multiple-Line DEF Statement. • • • • • • •
Data Input During Program Execution •••
Matrices • • • • • • • • • • • • • • •
Additional Functions •
Subroutines •••••••
Loops. • • • • • • • . • • • . . . • . •
Lists and Tables . • • • • • • • •
Alphanumeric Data and String Manipula·Lion.
ASCII Data Files • • • • • • • • • • • •
ASCII Data File Input/Output Statement
Formats. • • • • • • . • • •.•
Binary Files • • • • • • • • • • • • • •
Binary File Input/Output Statement Formats
Multiple Statements Within One Line ••
Saving Temporart Files • • • • • •
Saving and Execution Object Files ••
File Access. . • • • . ••••••

Error Mes sages • • • • • •
Error Messages as a Result of Errors of Form •
Error Messages as a Result of System Errors ••

Error Location and Correction •
General ••••.••••••
Debugging a Sample Program •

Glossary of Time-Sharing Terms.

Sample Basic Programs • • • • •

Octal/USASCII Conversion Equivalents ••

Sununary of Basic Language Characteristics •

Alphabetic Codes for Relational Symbols •

.

viii

Page

5-1
5-1
5-1

5-1

5-4
5-6
5-9
5-10
5-10.1
5-12
5-17
5-25.4
5-26
5-29
5-31
5-36

5-38
5-61
5-63
5-81
5-81
5-.82
5-83

6-1
6-1
6-8

7-1
7-1
7-2

A-1

B-1

C-1

D-1

E-1

X-1

BR36A

SECTION I

INTRODUCTION

COMPUTER PROGRAMS

A computer program is a set of instructions that tells a computer how to
accomplish a specific task. Each instruction is performed in the
sequence specified by the program. In this way, the computer processes
and produces information as directed by the program.

A program must meet two primary requirements before it can be run (have
all instructions executed} on a computer.

• The program must be submitted to the computer in a language
that the computer recognizes.

• All language instructions must be complete and be precisely
stated.

PROGRAMMING LANGUAGES

Human languages are impractical for preparing computer programs because
these languages contain many ambiguities and redundancies; the computer
interprets language absolutely literally. By the same token, machine
languages are also impractical because they are difficult for people to
use. Most programming languages are compromises between human and
machine languages.

BASIC PROGRAMMING LANGUAGE

BASIC (Beginner's All-Purpose Symbolic Instruction Code} is a
problem-oriented, algebraic programming language that enables the user
to present his program in ordinary mathematical notation, with simple
and precise vocabulary and grammar. BASIC is intended to be used with a
keyboard-type terminal tied into a time-sharing system.

1-1 BR36

TIME-SHARING SYSTEM

The time-sharing system uses a technique by which programs are handled
in parallel. A supervisory program acts as a controller of these
programs, controlling "stop" and "go" signals to inputs from terminals
and preventing demands of one terminal from interfering with demands of
other terminals. Thus, time-sharing permits a user to work directly with
the computer, whether it is within his sight or thousands of miles away.

The user believes that he has exclusive use of the computer, even though
many others at the same time share this illusion.

Time-sharing permits a dialogue between the computer and user,
permitting the dialogue to begin immediately, without waiting for the
computer to complete previous programs. Data is fed from the terminal
directly to the computer and answers are received quickly at the same
terminal.

If the program contains a mistake, the computer informs the user.

The program can be corrected or changed by the user as if
conversing by phone, except in this case, the conversation is
displayed, dependent upon the type of terminal in use.

he were
typed or

BASIC AND TIME-SHARING

Because BASIC is such
time-sharing permits the
within minutes, BASIC in
satisfactory computation
programmer.

a simple programming language and because
correction and completion of most problems
use in a time-sharing system provides a highly
environment for both the novice and experienced

Appendix A is a glossary of time-sharing terms which may be encountered
by the user of BASIC.

1-2 BR36

SECTION II

BASIC LANGUAGE CHARACTERISTICS

BASIC PROGRAMS

A BASIC program is a sequence of instructions to the computer that
results in the solution of a problem when the instructions are executed.
These instructions are given in units called "statements". The computer
executes the statements and produces the desired output.

Statements in a BASIC program may be used in elementary or sophisticated
ways, depending upon the user's level of programming knowledge and
skill. Information pertaining to the use of BASIC on an elementary level
is contained in Section IV. Some advanced techniques in BASIC usage are
contained in Section V.

BASIC STATEMENTS

The BASIC language allows the user seeking the solution to an algebraic
problem to select words that, when formatted by the user into complete
statements, result in powerful computer operations. When placed in a
meaningful sequence, these statements constitute a BASIC program.

BASIC-language statements may be grouped into functional categories as
follows:

Functional Category

arithmetic

speciffcation

input/output

When used in BASIC programs,
these statements

- perform arithmetic operations

specify input data values and sizes of lists and
tables

- direct input/output operations

loop and subroutine - provide direction and control for use of loops and
subroutines contained in the programs

logic

utility

documentation

modify the processing sequence
conditions occur

- provide service routines

when certain

- allow remarks to be inserted into the program.

2-1 BR36

I

BASIC WORDS

BASIC words are short, distinctive, easily recognizable words that are
either valid words or abbreviations of words. When formatted into a
statement, a word becomes an explicit instruction to the computer to
perform some operation. Some statements can be made by the use of a
BASIC word alone; other statements require other information in addition
to the BASIC word.

BASIC words may be grouped by type of statements in
The words and their associated functional statement
follows:

which they occur.
categories are as

Arithmetic Statements

BASIC Word When formatted into a statement

DEF - defines a repeatedly used function

LET - requests a computation
arithmetic variable

or manipulation upon an

MAT - requests a computation or manipulation upon a matrix

Specification Statements

BASIC WORD

CHANGE

DATA

When formatted into a statement

- converts string characters to numerical code or vice
versa

specifies numeric values for variables listed in a READ
statement

DIM - reserves space for list or table

Input/Output Statements

BASIC Word

INPUT

PRINT

When formatted into a statement

- delays input of values to variables until program is in
execution; program will request input of data by
terminal user or a user's file when statement is
executed

- prints co~puted results; prints text
- prints computed results and text
- skips lines
- formats output data

2-2 BR36

- formats output line
PRINT
USING
READ - reads values from a DATA statement or user's file and

assigns them to designated variables

RESTORE - restores previously processed blocks of input data from
DATA statements

Loop and Subroutine Statements

BASIC Word When formatted into a statement

CALL - directs processing sequence to a subroutine previously
saved

FOR - is first statement of a loop and sets conditions of loop

NEXT - is last statement of loop

GO SUB - directs processing sequence to a subroutine

RETURN - returns processing sequence from a subroutine

Logic Statements

BASIC Word When formatted into a statement

GOTO - unconditionally transfers the processing sequence to a
designated statement

IF-----THEN
or

IF---GOTO- conditionally transfers the processing sequence to a
designated statement

ON-----THEN
or

ON---GOTO- conditionally transfers the processing sequence to
designated statements

STOP - stops the execution of the program

END - indicates end of program

Utility Statements

BASIC Word When formatted into a statement

CHAIN - compiles and executes series of programs

TRACE ON - prints line numbers of statements between
TRACE OFF TRACE ON/TRACE OFF statements

Documentation Statement

BASIC Word When formatted into a statement

REM - inserts a remark into the statement sequence

2-3 BR36

CREATING A BASIC PROGRAM

The essentials for forming statements and_ creating a BASIC program are
as follows:

•
•

•

Each statement' includes or is composed of a BASIC word •1

Each statement is prefixed by a line number to specify the order
in which the statement is to be executed.

Line numbers for statements are limited to a maximum of· eight
digits (a range of l to 99999999). If a line number contains two
or more digits, no spaces are permitted between digits of the
number. The number itself must be followed by one or more
spaces.

• Each statement of a program must be completed within one line~

• Statements may be entered out of numerical order. (Before the
program is executed, the computer sorts and edits the program so
that the statements are sequenced in the order specified by
their line numbers.) If a line number has been duplicated, only
the last statement identified by that number will be retained.

The choice of line numbers for statements is arbitrary. The user
may wish to assign a 1, 2, 3, •.• order to a sequence of
statements, a 10, 20, 30, •.. order, or even an order which has
no pattern (e.g., 8, 19, 27, •••.). Any numbering order with
intervals between numbers would be a better choice than the
first because it permits the insertion of statements after the
initial program entry.

• Except within line numbers, omission or insertion of spaces will
not affect the execution of a statement. Spacing, within a
statement to make it more readable is optional.

An example of a statement is as follows:

10 READ A,B,C,D

The line is identified as statement 10, READ is the BASIC word, and
A,B,C,D are variables.

A second example is:

40 END

The line is identified as statement 40, and END is the BASIC word
constituting the statement.

lAn exception is the LET statement, where the BASIC word LET may be
implied.

2Multiple statements are permitted within one line (see Section V).

2-4 BR36

The actual entry at the terminal of a sequence of statements of a BASIC
program requires knowledge of control conunands (described below),
terminal operation (given in Section III), and elementary BASIC
(described in Section IV).

CONTROL COMMANDS

Control commands are used to direct the BASIC system regarding the
disposition or manipulation of a BASIC program. The system can be
commanded, for example, to execute or list the program or save it for
future use. Commands differ from statements in that they do not form a
part of the program and are effective immediately upon being entered at
the terminal. A control command is a "one,...shot" instruction to the
system as opposed to a statement which, although entered at the terminal
only once, may be executed by the system many times. Control commands
are not prefixed with line numbers and may be entered at any time the
BASIC system is in control.

control commands are part of the time-sharing system control language. I
Only those control commands and their formats most commonly used with
BASIC are described below. All control commands and all possible control
command formats for use with BASIC are described in Time-Sharing System
General Information Manual.

Control commands most applicable to BASIC are as follows:

RUN

This command instructs the system to execute program statements in
numerical sequence. (The execution of the program is commonly
referred to as "running" the program, or as a "run" of a program.)

Another form of RUN is

RUNH

This form of the command has the same effect as RUN but with
the addition of a header line which is printed before program
execution. The header consists of the date and time of the
run, with the time expressed in hours and hundredths of hours
(hh. hh).

I,IST

This command is given when the user wants his
printed. The command will result in a printout
program, along with any additions or changes that
made prior to the use of LIST. If only a portion of
desired, the LIST command can be modified by
indicating the portion desired, as follows:

LIST xxxx,yyyy

program to be
of the entire
may have been
the program is
line numbers

will result in a printout of the program between line numbers
xxxx and yyyy.

2-5 BR36

I

DONE

LIST xxxx

will result in the printout of statements beginning with
statement xxxx through the end of the program.

LIST ,yyyy

will result in a printout of statements from the beginning of
the program through statement yyyy.

The user terminates his session with the BASIC system by the use of
this command but may still retain use of the terminal for selection
of another time-sharing system (or reselection of BASIC).

BYE

When the user wishes to terminate his session with the computer,
this command is given. He will then receive a summary of the amount
of resources used for this session and the total resources used by
his account to date. His terminal will then be diaconnected from
the system.

SAVE filename

This command permits the user to save a program for future use.
Filename can be any combination of alphanumeric, period, and minus
sign characters, but cannot exceed eight characters. This command
is given just prior to discontinuing the immediate use of the
program.

RESAVE filename

If the user wishes to make changes in a program which has been
previously saved, he must make use of the RESAVE command to save
the changed program; i.e., the SAVE command cannot be used to
resave an altered program. Note that the original program will be
purged upon use of the RESAVE command. The RESAVE command may also
be used to place a current file on an existing permanent file.

NEW

This command is given when the user wishes to continue the use of
BASIC by building a new program.

OLD filename

This conunand is given if the user wishes to select another saved
program as his current program. Other forms of the OLD command are
as follows.

2-6 BR36

OLD filename (xxxx,yyyy)

The statements numbered xxxx to yyyy,
program saved under the name filename are
user's working storage for processing.

OLD filename
1

; filename 2; ••• ; filenamen

inclusive, of
brought into

the
the

The n named programs are adjoined in the order given and are
brought into the user's working storage. (The line numbers of
the resultant program are not resequenced.) The contents of
the current file can be included in the new file by the use of
the name 11 * 11 in the file name list. If the list is too long
for one line, it may be continued on the next line if a
semicolon is the last nonblank character before the carriage
return.

OLD filename
1

••• ; filename 2 ••• : filenarnen···

The files and/or file segments specified and separated by the
semicolon are adjoined in the order listed and become the
current file. Filenames which are separated by a colon are
"weaved" and then adjoined to the current file. For example, a
file containing statement numbers 10, 20, 30, 40 •••• and
another file with numbers 5, 15, 25 •.•• , when "weaved" make a
file with statements numbered 5, 10, 15, 20, 25 •••• If the
same statement number occurs in more than one of the files
being "weaved", both statements appear in the "weaved" file
and in the order in which the files were named.

The asterisk (*), designating current file, may appear as a
filename anywhere in the OLD list.

OLD filename1(xxxx1,YYYY2); .•• ;
filenamen(xxxxn,YYYYn)

The segments of the named files specified by line numbers xxxx
through yyyy are adjoined in the order given and replace the
user's current program. (The line numbers of the resultant
program are not resequenced.) If the list is too long for one
line, it can be continued on the next line if a semicolon is
the last nonblank character before the carriage return. For
example, the command

OLD PROGRAM1(10,85);PROGRAM4

will cause the statements numbered 10 through 85 of the file
PROGRAMl, and the statements of the file PROGRAM4 to be
concatenated in that order, to become the (new) current
program.

GET filedescr (applicable permissions)

where filedescr represents the full file description (user
identification, catalog and file names, and any required
passwords) and permissions are READ and WRITE.

The permanent file designated by filedescr is accessed and
made available to the user.

2-7 BR36

RESEQUENCE

This command causes the line numbers of the current program to be
resequenced. Resequencing begins with line number 10 and is
incremented by steps of 10. Statement-number references within the
program (such as GOTO, GOSUB, and IF statements) are modified
correspondingly. Another form of RESEQUENCE is

RESEQUENCE n,m,x-y

The line numbers of the current program are resequenced,
beginning with line number n and with increments of m. Either
n or m may be omitted; the value 10 will be assumed in either
case.

x and y are used only if partial resequencing is desired. x
indicates the starting line number and y the ending line
number for resequencing. x- would result in resequencing from
line x to the end of the file; -y would result in resequencing
from the beginning of the file to· line y.

AUTOMATIC

This command causes the automatic creation of line numbers,
beginning at the point at which the automatic mode is entered (or
re-entered), with line numbers initially starting at 10 and
incremented in steps of 10. These line numbers are generated by the
system, appear in the terminal copy, and are written in the file,
just as though the user had typed them himself.

Another form of AUTOMATIC is

AUTOMATIC n,m

Automatic creation of line numbers begin with line number n
and are incremented by m.

Normally, the generated line number will be followed
Any nonblank, nonnumeric characters affixed to the
command word will suppress the blank. For example:

AUTOMATICNB or AUTOMATICX

2-8

by a
end

blank.
of the

BR36

No further commands are recognized while the system is in automatic
mode. The automatic mode is cancelled by a carriage return
immediately following the issuance of an asterisk and line number.

DELETE

This command is given when the user wishes selective lines of his
current file deleted. The DELETE command must be accompanied by
operands to indicate lines to be deleted. For example:

DELETE a,f-k

will result in lines numbered a, and f through k being deleted.

This form of the command,

DELETE;*

will result in all lines of the current file being deleted.

TAPE

This command implies that statements are to be entered from the
paper-tape reader instead of the keyboard. See "Entering the
Program From Pape~ Tape", Section III, for detailed instructions.

STOPPING PROGRAM EXECUTION

Most BASIC programs are designed to process data, display the results,
and then halt. In these cases, the system will automatically return to a
"ready-for-further-input" mode, indicated by the word READY and an
asterisk printed out by the terminal. All control commands described
above are accepted in this mode.

Some programs, however, are designed to ask for keyboard input during
execution. The input is processed, the results displayed, and the
program then continues. When a program is awaiting numeric input, the I
response S {or any word beginning with the letter s, e.g., STOP) will
cause termination of the program.

5/73 2-9 BR36C

SECTION III

TERMINAL OPERATION AND PROCEDURES

TEID1INAL OPERATION

The assumption is made in this manual that the terminal available to the
user is a Teletypel Model 33 or 35. With this terminal, the
communication between user and computer is displayed by means of typed
copy on paper. The Teletype keyboard is a standard typewriter keyboard
for the most part, but there are special-purpose keys that the user must
be familiar with. These are as follows:

~
~

Function

Depressing this key returns the carriage and
transmits the typed line to the system. The computer
ignores the typed line until this key is depressed.

8TRL plus~ When these keys are depressed simultaneously, the
~ terminal deletes the entire line being typed. The

word DEL is printed and the carriage is returned.
The line is ignored by the computer.

The @ symbol is located on the P key and is
generated when depressed with either shift key. It
is used to delete the character or space immediately
preceding the @. If this key is depressed n times,
the n preceding characters or spaces will be
deleted. For example:

ABCWT@@DE will be treated as ABCDE when RETURN is
depressed.

AB C@@@CDE will be treated as ACDE when RETURN is
depressed.

lFor a complete description of the Teletype unit, refer to instruction
manual accompanying the unit.

3-1 BR36

(;;;:\
~ Depressing this key causes the system to discontinue

printing or computation. One type of terminal
requires that a BRK-RLS (break-release) button be
depressed following the use of BREAK in order that
operations continue. BREAK should be used sparingly
and with discretion.

Other operational controls, not on the keyboard, are necessary to the
operation of the terminal -- power on-off, connection to a phone line,
and selection of operating mode. The location and operation of these
controls differ with the type of terminal in use. The user must receive
on-site instruction or must study the instruction manual for his
terminal to gain familiarity with these operational controls.

CONNECTING TERMINAL TO THE COMPUTER

In order to connect with the computer from a terminal, proceed as
follows:

1. Turn unit on and obtain a dial tone.

2. Dial one of the numbers at the Time-Sharing Center.

When the connection is made, a high-pitched tone is received, then no
tone at all, and the terminal prints out an indication that the computer
is available and that communication with the computer, through the
terminal, can be now made.

GETTING ON (LOG-ON) PROCEDURE

With the terminal connected to the computer, the system initiates a
"log-on" procedure. During this procedure the _terminal will ask for
information and a proper response must be made, each response followed
by a carriage return (achieved by depressing the RETURN key). First, the
terminal will ask for a user's identification. This is a string of
characters that is assigned to uniquely identify the user to the
computer for the purpose of identifying his programs and accounting for
the user's charges.

3-2 BR36

The terminal will next ask for a password. The area on which the
password is printed will be scored over by the terminal to make the
password illegible. The purpose of this password is to assure the
computer that it is "talking" to the legitimate user and not someone
else u~ing his identification. The password is his protection against
unauthorized use of his user identification.

Th~ terminal will then ask the user to select the system he
use (in this case, BASIC). If an invalid system name is
system will print the message SYSTEM UNKNOWN and repeat the
a name until a valid name is given. After a valid response,
will ask if the user is going to work with an OLD or NEW
which the user must reply, either with OLD or NEW.

wishes to
given, the

request for
the terminal
program, to

A NEW program is one in which the user will enter all of the program
statements at this session at the terminal. An OLD program is a program
that has been previously generated at other sessions at the terminal and
has been saved for future use. If the user's response is OLD to the
question OLD or NEW, the system will ask him for the OLD file name. This
will be the same name that he had previously used when saving his
program with the control command SAVE.

After the terminal prints READY and an asterisk on a following line, the
user may begin entering his new program, add or modify statements in his
old program, or use one of the control commands (e.g., LIST or RUN). A
typical log-on sequence follows:

HIS SERIES 6000, SERIES 600 ON 05/28/71 AT 9.183
USER ID--OOE
PASSWORD
U$1St$lJ$lSt
SYSTEM ? BASIC
OLD OR NEW-NEW
READY
*

This example illustrates the most elementary use of the OLD/NEW
selection of programs.

ENTERING THE PROGRAM

After the terminal prints READY, it indicates its availability for input
from the user by printing an asterisk on the next line at the left
margin. Thereafter, each carriage return generates an asterisk ·at the
left margin of each succeeding line, indicating readiness for input.
Each statement should begin with a line number (after the asterisk) that
contains no more than eight digits and contains no spaces or nondigit
characters. The RETURN key must be depressed at the completion of each
line of input to achieve a carriage return and transmission of the
information to the computer.

3-3 BR36

The program input for a simple program, following READY
subsequent asterisk, would appear as follows (refer to Section
information pertaining to the formatting of statements).

READY
*10 FOR I = 1 to 45
*20 PRINT 2**I;
*30 NEXT I
*40 END
*RUN

and
IV

the
for

This program would print the powers of 2 for exponents 1 through 45 upon
the receipt of the control command RUN.

ENTERING THE PROGRAM FROM PAPER TAPE

If the user wishes to enter his program from paper tape, he must respond
with the control command TAPE after READY. The procedure for using
paper tape is as follows:

1. Place paper tape in terminal tape reader.

2. Select tape-input operating mode, if required.

3. Start tape reader.

4. Input from paper tape will be accepted until one of the
following occurs:

a. tape reader is turned off,
b. tape runs out,
c. tape jams in tape reader, or
d. an X OFF character is encountered on the tape.

Refer to Time-Sharing System General Information
description of the preparation of paper tape.

CORRECTING THE PROGRAM

Manual

If the µser, while entering his program, has made errors
self-evident, he can correct his program in the midst of his
before giving the RUN command as follows:

for a

which are
typing or

• A new statement may be substituted for a statement containing
errors by retyping the statement number and-a corrected version
of the statement. The first version of the statement will be
ignored in the running or listing of the program.

3-4 BR36

•

•

A statement may be eliminated from the program by typing
number and depressing the RETURN key. This statement will
ignored in the running or listing of the program.

The current line being typed can be deleted by depressing
and X keys simultaneously. That line will be ignored.

its
be

CTRL

• Typing errors, if perceived during the typing process, may be
corrected by use of the @ symbol. The character or space
immediately preceding the @ will be deleted. If this key is
depressed n times, the n preceding characters or spaces will be
deleted. ·

• Additional statements may be inserted into the program by typing
them with line numbers which indicate their places within the
program sequence. For example, if one or more new statements are
desired between statements 30 and 40, they could be assigned
line numbers from 31 to 39. In the running or listing of the
program, the new statements will be properly sequenced.

If language errors (statements violating the BASIC language format) are
made by the user in entering his program and are not perceived, error
messages of a diagnostic nature will be printed upon use of the control
command RUN, so as to aid the user in making corrections. Error messages
may be grouped as follows:

• Compilation error messages those that are printed during
program entry. They prevent further entries or program execution
until the errors are corrected.

• Execution error messages - those that are printed during program
execution, and may or may not stop program execution.

Section VI lists all error messages along with interpretations of the
messages.

Section VII contains a sample program and information on how errors can
be located and corrected (debugged) so as to attain a successful program
execution.

RUNNING THE PROGRAM

After typing in the complete program, the user types the control command
RUN and depresses the RETURN key. If there are no format error,s, the
computer will execute the statements and the terminal will print out the
results. If it is obvious to the user that wrong answers are being
given, he can depress the BREAK key and output will cease.

3-5 BR36

The BRK-RLS button must then be depressed in order to permit further use
of the system. If logical errors were made by the user in constructing
his program, the results will be erroneous or may not appear at all.
Logical errors do not generate error messages. They must be found by
analyzing the program. Upon completion of program execution and its
resulting output (if any), the terminal prints READY to indicate the
system's availability for further input. If the user wishes to modify
his program, he may now do so by retyping only those statements he
wishes changed to achieve the desired modification. When the control
command RUN is again given, a new _output will be produced. The
modification process can be repeated as often as the user wishes. The
control command LIST may be used at any time the user wishes to inspect
the current content of his program, it will show the result of any
modifications.

If the user wishes to save his program for use at another time, he must
use the control command SAVE filename, the system will respond with

DATA SAVED-filename

where filename is the name under which the program is saved. If the user
wishes to discontinue working with his present problem but wishes to
continue the use of BASIC, he may use either the command NEW or OLD. If
NEW is typed, the system will respond with READY and the user can then
enter a new program. If OLD is typed, the system will ask for OLD NAME-.
When the old program name filename is supplied, the system will respond
with READY. Modifications can be made, as with a NEW program, and the
program can be listed. Upon the control command RUN, the old program
will be run. (The entry.OLD filename will bypass the request OLD NAME-.)

Note

The old program must be a BASIC program and one
which has been saved at a previous session at the
terminal. Access to programs other than the user's
own requires use of the ACCESS subsystem as
described in Section V, "File Access".

If, while BASIC is requesting input from the terminal,
the control command DONE, the time-sharing system will
the BASIC system but will permit him to select another
confines of the time-sharing system and continue with
computer. If, during execution of a BASIC program, the
asks for new data input, a response of STOP (or S)
program execution.

3-6

the user types
sign the user off
system within the
the use of the
program halts and
will break off

BR36

GETTING OFF {LOG-OFF) PROCEDURE

If, while BASIC is requesting input from the terminal, the user types
the control command BYE, the time-sharing system will "log-off" the user
and disconnect the terminal. The time-sharing system will then give the
user a summary of the amount of time and resources used for this run and
the total amount of the user's resources used to date.

AUTOMATIC TERMINATION FROM TERMINAL

The user will be automatically terminated from the system for any of the
following reasons:-

• If he responds twice with an invalid user identification. The
terminal will reply after the first invalid use with the message
ILLEGAL ID--RETYPE--. If the user responds with an invalid user
identification a second time, he will be terminated.

• If he responds twice with an invalid password. The terminal will
reply after the first invalid use with the message ILLEGAL
PASSWORD--RETYPE--. If the user responds with an invalid
password a second time, he will be terminated.

• If more than one minute passes without a response to user
identification or password request.

• If he leaves the terminal in an idle state for over ten minutes.

• If his resources are overdrawn by more than 10 per cent. The
message, RESOURCES EXHAUSTED. CANNOT ACCEPT YOU, will be printed
by the terminal before termination takes place.

EXAMPLE OF TERMINAL OPERATION AND PROCEDURES

The following elementary example illustrates steps in terminal operation
and procedures required for entering and running a BASIC program.

3-7 BR36

I

HIS SERIES 6000, SERIES 600 ON }
05/28/71 AT 9.891 CHANNEL 0020

USER ID --DOE
PASSWORD-
ACi$Cl;ll$l
SYSTEM ? BASIC
OLD OR NEW-NEW
READY

* Sequence
of

* Statements

* RUN

(Output)

READY

*BYE
**RESOURCES USED $ 0.32, USED
TO DATE $ 35.00=10%
**TIME SHARING OFF AT 10.006
ON 05/28/71

10/72

}
}

}
}

}

Acknowledgement of
terminal connection
to time-sharing system

Log-on procedure

Sequence of statements

Control command to
execute statements

Output data resulting
from execution of
statements

Indication of system's
continued availability

Log-off procedure and
accounting

3-8 BR36B

SECTION IV

ELEMENTARY BASIC

STATEMENT DEFINITION

Each BASIC statement consists of the following elements arranged in the
order given:

Statement (or line) number - by its ascending order, indicates the
processing sequence of the statement.

BASIC word - specifies the computer operation to be performed.

Parameters - in most statements
numbers used in- or to direct
statement.

are
the

variables,
operation

expressions,
performed by

MATHEMATICAL NOTATION AND OPERATIONS WITHIN A STATEMENT

Variable Representation

In the BASIC language, a variable can be represented by

1. a letter
2. a letter and a digit
3. either of the above, followed by the character $

and
the

For example A,Z,K6, and X may represent variables, but AR, Zl2, 6K, and
22 can not. The inadvertent use of the digit 0 for the letter ·o (and
vice versa) in a variable will cause errors in a program; use of the
letter O or the digit 0 in variable representation is not recommended.
The user may find choice of a letter as a mnemonic for a variable
helpful; for example, P for price, S for sales, and N for numbers.

Variables with $'s are restricted to the assignment of strings
{alphanumeric data) and are referred to as "string variables", in
contrast to variables without the $ that are referred to as "numeric
variables". Numeric variables, when used as a starting point in
calculations (e.g., for a counter), have an initial value of zero.
String variables have an initial value of zero when used for character
count.

6/72 4-1 BR36A

I

A BASIC variable is assigned a value, during the execution of a program,
from the numbers given in a related LET, FOR, READ, or INPUT statement.
It retains this value during the processing, unless it is reassigned a
new value by another of these statements.

List and Table Variables

Subscripted variables are represented in BASIC as

variable name (subscript)
or

variable name (subscript, subscript)

where the subscript can be an integer, variable, or an
expression such as (l+K) or (A(3,7) ,B-C). The subscript must
enclosed by parentheses. Subscript values should begin at 1
0) •

arithmetic
always be

(i.e., not

A list variable designates an element of a one-dimensional array that
can be represented by such as P(l5), P(H) or L(20). Before a list
variable can be used in any statement, the maximum value of its
subscript (i.e., size of list) must be specified in a DIM statement;
otherwise a list of 10 or less is implied.

A table variable designates an element of a two-dimensional array that
can be represented by such as S(l5,17) or T(20,30). Before a table
variable can be referenced in any statement, the maximum value of its
subscripts must be specified in a DIM statement; otherwise, subscripts
of 10 or less are implied.

Specification of the values of subscripts for list variables or table
variables in DIM statements is not required if subscripts of 10 or less
occur. BASIC provides for automatic dimensioning in such cases.
Automatic dimensioring assigns a value of 10 for the subscript of the
list variable and a value of 10 by 10 for the array of a table value. If
a subscript with a value greater than 10 is used with a list or table
variable and the list or table variable is not dimensioned in a DIM
statement, an error message will be generated. Conversely, if values of
subscripts less than 10 are specified in DIM statements, no adverse
programming effects result.

Use of Numbers

A number may be positive or negative, may contain up to nine digits, and
must be in decimal form. BASIC would accept 0.01, 2, -3.675, 123456789,
-.987654321, and 483.4156 as numbers, but would reject 14/3 (this is an
expression) or 32,437 (as representing 32437). Numbers are stored as
single-precision floating-point values. Thus, the maximum value that can
be represented accurately is 134217727; larger values are only
approximated since digits beyond the eighth position are not reliable.

6/72 4-2 BR36A

A number can also be expressed in "E notation", which is equivalent to
expressing it as a power of 10. For example, in E notation,

0.00123456789
1967
10,000,000 {

may be} 0.123456789E-2 or 12.3456789E-4
expr~ssed l.967E3 or 19.67E2

as 1E7 or lOOES

The decimal point can be positioned anywhere
as the integer following the E indicates its
E and an exponent alone cannot represent a
cannot be written as a number to represent
written as 1E7 to indicate 1 multiplied by 10

Arithmetic Operations

within_ the number as
correct position. Note

number. For example,
10,000,000: it must

to the 7th power.

Five arithmetic operations can
following symbols represents
included in an expression.

be
an

performed
arithmetic

by BASIC.
operation

Each
that

of
can

Operator symbol denotes as illustrated by

+ addition A + B
subtraction A - B

* multiplication A * B
I division A I B

or ** raise to a power A t B or A ** B

Relational Symbols

long
that

E7
be

the
be

Six relational tests can be made with BASIC. Symbols representing these
relationships can be used in statements when comparisons are required.
The symbols and illustration of their use follow.

Relational S:imbol denotes as illustrated by

= is equal to A = B
< is less than A < B
<= or =< is less than or A<= B or A = < B

equal to
> is greater than A> B
>= or => is greater than or A>= B or A =>B

equal to
<>or >< is not equal to A<> B or A><B

Those terminals that lack the < {less than) or > {greater than)
characters can make use of an alphabetic code to obtain required
relational symbols. See Appendix E.

6/72 4-3 BR36A

I

Use of Expressions

The computer performs its primary function (that of computation) by
evaluating expressions which are contained within program statements.
These expressions are similar to those used in standard mathematical
notation with the exception that all BASIC expressions must be complete
within a statement and a statement is restricted to a single line.
Expressions are made up of numbers, variables, operations, and functions
by themselves or in conjunction with one another.

The user must be careful to make sure that he groups together those
things which he wants together. He must also understand the order in
which the computer does its work. For example, if he types A + B * C t
D, the computer will first raise C to the power D, multiply this result
by B and then add A to the resulting product. This is the same
convention as is usual for A + B times C rai.sed to the power D. If this
is not the order intended, then he must use parentheses to indicate a
different order. For example, if it is the product of B and C that he
wants raised to the power D, he must write A + (B * C) t D; or, if he
wants to multiply A + B by C to the power D, he writes ~A + B) * C t D.
He could even add A to B, multiply their sum by C, and raise the product
to the power D by writing ((A+B) * C) t D. The order of arithmetic
priorities is summarized in the following rules.

1. The expression inside parentheses is computed before the
parenthesized quantity is used in further computations.

2. In the absence of parentheses in an expression involving
addition, multiplication, and the raising of a number to a
power, the computer first raises the nunlber to the power, then
performs the multiplication, and the addition comes last.
Division has the same priority as multiplication, and
subtraction the same as qddition.

3. In the absence of parentheses in an expression involving only
multiplication and division, the operations are performed from
left to right, as they are read. The computer performs addition
and subtraction from left to right.

Practically, extensive use of parentheses will tend to eliminate most
ambiguities that may arise.

Mathematical Functions

BASIC provides for standard mathematical functions. Each is represented
by a 3-letter mnemonic of its name and is followed by an expression
enclosed in parentheses. The user need only enter the function in a
statement to obtain its computed value in a run-of a program.

4-4 BR36

Function

SIN(X)
COS(X)
TAN(X)
COT(X)
ATN(X)
EXP(X)
LOG(X)
CLG(X)
ABS(X)
SQR(X)

means find the

sine of X
cosine of X
tangent of X
cotangent of X
arctangent of X
e to the power X
natural logarithm of X
common logarithm of X
absolute value of X
square root of X

In these definitions, the letter X represents an expression, which, for
the trigonometric functions, implies an angle measured in radians. If
the value of X in LOG(X), CLG(X), or SQR{X) is negative, then the
negative sign is ignored, the positive value is used, and an error
message is printed.

Four additional mathematical functions are included in BASIC.

Function

INT(X)
RND(X)
SGN(X)
DET(X)

means

truncate X
produce a random number
sign determination
provide determinant of last matrix inverted

Refer to Section V, "Additional Functions", for details concerning the
use of these functions.

In addition, the user may employ the DEF statement to define one or more
of his own functions.

Miscellaneous Functions

A set of miscellaneous functions is available for use to provide a
variety of non-mathematical operations. These are as follows:

6/72

Function

TIM(X)
CLK$
DAT$
NUM(X)
SST (X$, Y1 Z)
TAB(X)
SPC(X)
LEN(X$)
LIN(X)

ASC(X)
STR$(N)
VAL (S$)
TST(S$)

HPS (X)

means obtain

elapsed processor time
time of day
calendar date
count of matrix data elements
selected characters of a string (substring)
character print position
space print position
number of characters in string
last line number encountered in

reading/writing file
numeric value of character or abbreviation
expression to string conversion
string to expression conversion
nonzero output if string can be interpreted as a

number
horizontal point position of next field, in

current line, of file being written

4-5 BR36A

I

I

. Refer to Section V, "Additional Functions", for details concerning the
use of these functions.

STATEMENT DESCRIPTIONS

Purpose: A concise statement of the operation it performs.

Format: The general form for its use in the. program, with the literal
entries in CAPITAL letters and descriptive names for variable
entries in lower-case letters enclosed within the symbols
< > • Parentheses are to be inserted as indicated. Note that
an expression can be either a simple variable.or a formula.

Examples: Typical uses are given to explain and clarify the format.

Rules:

Remarks:

Statement numbers are arbitrary and are used for illustrative
purposes.

Requirements and cautions concerning the
statement.

use of . the

Pertinent comments related to the uses of the statement.

4-6 BR36

Aritlunetic Statement

DEF

Purpose:

Format:

Example:

. Rules:

Remarks:

6/72

To define a function that is to be used repeatedly within a
given program.

DEF FN (variable) =<expression>

*10 DEF FNG(Z) = 1 + SQR(l+Z*V)

1. The variable must be unsubscripted.

2. Up to 26 functions can be defined within a single
program: i.e., FNA, FNB, ' FNZ.

3. The space following FN is to be filled with any alpha
character.

If a function requires more than one line for its definition,
a multiple-line defined function can be written. Refer to
"Multiple-Line DEF Statement" in Section V.

Refer to "Defining Functions" in Section V for details of the
use of the DEF statement.

4-7 BR36A

I

Arithmetic Statement

LET

Purpose:

Format:

To evaluate an expression and assign the resultant value to a
specified variable.

LET <variable> = <expression>

Examples: 1. *10 LET X=X+l

Remarks:

2. *20 LET W7=(W-X4+3)*(Z-A)/(A-B)-17
3. *30 LET X(6)=0

The LET statement is not a statement of algebraic equality;
it is an assignment or replacement statement.

A variable defined in a LET statement may be subscripted or
unsubscripted.

Multiple variable replacement is permitted within a LET
statement. For example:

*10 LET A=B=C
*20 LET A=B=C=lOO
*30 LET A(I)=B{X+Y/Z)=C{J)
*40 LET A{B{J))=B(J)=C(S)
*50 LET E$=F$=G$
*60 LET E$=F$=G$="MULTIPLE REPLACEMENT"
*70 LET H$(B{J))=Hl$="EXAMPLES"

Replacement is executed on a right-to-left basis. A ·numeric
BASIC variable may not be replaced by a string variable and
vice versa. Multiple replacement is limited to 20 elements
within one LET statement.

The BASIC word LET may be implied; i.e. , the statement

*10 X=X+l

implies LET precedes the variable X and is a valid assignment
statement.

4-8 BR36

Arithmetic Statement

MAT

Purpose:

Format:

Remark:

To request the system to compute or manipulate a matrix.

MAT READ< variable or conuna-separated variables>

MAT PRINT< variable or conuna-separate.d variables>

MAT INPUT <variable>

MAT <variable> = operation

A detailed description of the use
operations upon matrices is qiven in
heading "Matrices".

of MAT
Section

statements
V, under

in
the

4-9 BR.36

Specification Statement

CHANGE

Purpose:

Format:

To permit translation of data from numeric
representation to its equivalent string character
conversely, string character to numeric code.

CHANGE< variable> TO< variable>

code
and,

Examples: 1. *10 CHANGE A TO Al$

Rules:

6/72

Elements of numeric variable A are
characters ~nd stored in ~tring Al$.

2. *20 CHANGE ZS$ TO X

converted to

Characters in string ZS$ are converted to their numeric
equivalents and stored in the elements of X.

1. One variable must be a numeric variable, the other a
string variable.

2. The number of characters to be converted is limited to
132.

3. If a numeric variable has not been previously
dimensioned, it will automatically be dimensioned by 10.

4. When.the conversion is to be from a numeric code list to
a character string, it is necessary for the user to
provide a count of the number of elements to be
converted. This is done prior to the CHANGE command by an
assignment statement which stores the desired count in
element (0) of the numeric array.

For example:

*10 LET A(O) = 15
*20 CHANGE A TO Al$

directs the program to convert
elements in list A to their
concatenate them in string Al$.

fifteen
related

of the numeric
characters and

If the count specified for.conversion is smaller than the
number of items · in the numeric list, the remaining
characters will be· truncated; if the count given is
larger, the string will contain irrelevant information.

4-10 BR36A

Remarks:

6/72

s. When a string is converted to numerics, a count is not
specified. The complete string will be converted if the
numeric array is of sufficient length. If the array
dimension is smaller than the string length, an error
message will occur at execution time. If the string
characters do not fill the entire array, the remaining
array elements remain unchanged.

6. A table of characters and equivalent codes can be
in Section V under "Alphanumeric Data and
Manipulation."

found
String

An explanation of the
manipulation within a
under the heading
Manipulation". Use of
detail.

use of alphanumeric data and string
BASIC program is given in Section V

"Alphanumeric Data and String
the CHANGE statement is given there in

4-10.1 BR36A

Specification Statement

DATA

Purpose:

Format:

Example:

Rules:

Remarks:

To specify numeric values for variables in a READ statement.

DATA <number or comma-separated numbers>

*10 READ A,B,X,Ll,Z

*100 DATA l,3.4,7,-167.921,l.9ES

1. Only numbers (positive or negative) are allowed; numbers
may be written conventionally or with E-not1tion.

2. The numbers in the DATA statement must
sequence as the respective variables in
READ statement {in the example; X = 7).

be in
the

the same
associated

3. The numbers may be in one or more DATA statements, but
the sequence must correspond to that for the variables in
the READ statement. That is, the DATA statement in the
example could be replaced by as many as five DATA
statements.

DATA and READ statements are always used jointly.

The collection of all numbers in all of the DATA statements
of a program is referred to as a "data block."

The placement of DATA statements in a program
common practice is to collect all of the DATA
one place in the program.

4-11

is arbitrary;
statements in

BR36

I

Specification Statement

DIM

Purpose:

Format:

To define the dimension(s) of a list or table and thereby
reserve sufficient space in the computer.

l. For a list

DIM< variable > (subscript)

2. For a table

DIM< variable > (subscript, subscript)

Examples: l. *10 DIM H(35)

Rules:

6/72

This statement reserves 35 computer locations.

2. *20 DIM Q(5,25)

Tbis statement reserves 125 computer locations, since it
involves 5 items times 25 items, as in 5 x 25 table.

Space for more than one list and/or table may be defined in a
single DIM statement.

*30 DIM M(50), R(25,35), T(l0,10)

l. A subscripted variable must appear in a DIM statement to
achieve explicit dimensioning; otherwise, automatic
dimensioning (subscript value of 10 or less} is implied.

2. DIM statements defining variables must precede the use of
these variables.

3. The dimension(s} of a list or table in a DIM statement
must be expressed explicitly; expressions are not to be
used as subscripts.

. .
4. For a list, the variable can be numeric or string; for a

table, the variable must be numeric.

4-12 BR36A

Input/Output Statement

INPUT

Purpose:

Format:

Example:

Rules:

To permit the input of desired values of variables during
program execution time.

INPUT< variable or comma-separated variables>

When, in the execution of the program, this statement is
reached, a question mark is printed. The user must then enter
a number or sequence of numbers before the program can
continue.

*10 INPUT X,Y,Z is entered into the program as a
statement

? but only a question mark appears
during execution; the user is
then to type the comma-separated
values of X, Y, and Z after the
question mark.

1. Each INPUT statement must be positioned logically ahead
{in the order of processing) of the statement that is to
use the data values requested.

2. The numbers listed after the question mark must also be
separated by commas.

3. The numbers must be typed in the same sequence as the
variables to which they are assigned.

4-13 BR36

Input/Output Statement

PRINT

Purpose:

Format:

To instruct the system to perform one of the following print
operations:

1. Print out the result of computations.

2. Print out text, verbatim, to supply such items as
messages, information, or labels.

3. Print out a combination of uses 1 and 2.

4. Skip a line in the printout of program execution.

Every PRINT statement begins with the BASIC
may vary in form, dependent upon the
required.

word
print

PRINT but
operation

Example of Use 1:

*10 PRINT X,SQR(X)

will result in the printing of the value of X, and a few
spaces to the right of that number, its square root.

*20 PRINT B*C,EXP(A),Y/Z,E+F,Xt2

will result in the printout of 5 computed values.

Example of Use 2:

Whenever text is to be printed verbatim during the execution
of a program, it is enclosed within quotation marks in the
statement; whatever is enclosed will be reproduced, including
spaces and punctuation. This verbatim text is referred to as
a label.

*40 PRINT "NO UNIQUE SOLUTION"

results in the printout

NO UNIQUE SOLUTION

4-14 BR36

Input/Output Statement

PRINT

Example of Use 3:

*50 PRINT "THE VALUE OF X IS", X

results in the printout, if X = 3,

THE VALUE OF X IS 3

*60 PRINT "THE SQUARE ROOT OF" X, "IS" SQR(X)

results in the printout, if X = 625,

THE SQUARE ROOT OF 625 IS 25

Example of Use 4:

When a statement such as

*70 PRINT

is encountered by the program during
terminal carriage is advanced one line
program execution.

its
at

execution,
that stage

Remarks: The form in which BASIC prints numbers is not under
control of the user. The following items apply to
printing of numbers when PRINT statements are utilized.

the
of

the
the

1. When a number is an integer, the decimal point is not
printed.

2. When a computed value consists of an integer with more
than seven digits, BASIC prints

• the first significant digit

• followed by a decimal point

• the next five digits (the integer is rounded)

• the letter E

• followed by a space

• and finally, a number indicating the power of 10 (how
many places the decimal point is to be moved to the
right) •

For example, the integer

32437528259 becomes 3.24375E 10 when printed.

3. No more than seven significant digits are printed.

4-15 BR36

Input/Output Statement

PRINT

4. Numbers less than 1.0 are printed with a decimal point
followed by up to seven significant digits.

For example,

.1234567

would be printed exactly as shown, whereas the number

.01234576978

would be rounded and printed as

.0123458

5. Numbers less than 0.0001 are printed in E-forrnat.

For example,

.00001234567

would be rounded and printed as

1. 23457E-05

The PRINT statement may be modified by the use of:

commas

semicolons

function TAB(X)

function SPC(X)

in order to vary the format of the output. Refer to Section V
for details concerning.the PRINT statement modification.

4-16 BR36

Input/Output Statement

PRINT USING

Purpose:

Format:

Example:

Rules:

To instruct the system to print out a formatted line.

PRINT USING< statement number, output list >

where:

"statement number" is number of a statement in the program
which contains format control characters and printable
constants; "output list" consists of comma-separated
arguments to be printed in sequential order.

*10 A = 100
*20 B 200
*30 c -300
*40 D$ = "END OF LIST"
*50 PRINT USING 60,A,B,C,D$
*60: UH HU H## 'LLLLLLLLLLLLLL
*70 END
*RUN

~~100~~200~-300~END OF LIST

1. The statement number named in a PRINT USING statement
points to an "image" statement which formats the line to
be printed. The image statement is of the form

statement number: image

2. The image of an image statement (colon-separated from the
statement number) consists of format control characters
and printable constants.

3. Format control characters are as follows:

' (apostrophe) - a !-character field that is filled with
the first character in an alphanumeric string, regardless
of string length.

(pound sign) - the replacement field for a numeric I
character; each # specifies a space for one digit; a #
specifies space for the minus sign if sign is present.

tttt (four up-arrows) - specifies scientific notation for
a numeric field (E-format).

4. Printable constants are all characters other than format
control characters.

6/72 4-17 BR36A

Ineut/Output Statement

PRINT USING

Remarks: The image of an image statement may consist of one or more of
the following fields:

integer
decimal
exponential
alphanumeric
literal

Refer to Section V, "Formatting tine Output", for details
concerning use of the PRINT USING statement.

4-18 BR36

Input/Output Statement

READ

Purpose:

Format:

Example:

Rules:

Remarks:

To read values listed in DATA statements and assign them to
specified variables.

READ <variable or comma-separated variables>

*10 READ A,B,X,Ll,Z

*100 DATA 1,2,7,2,-167.921

1. Each READ statement must be positioned logically ahead
(in the order of processing) of the arithmetic or PRINT
statement that is to use the data requested.

2. The variables in a READ statement must be in the same
sequence as the respective values in the associated DATA
statement (in the example, 7 will be assigned to X).

READ and DATA statements are always used jointly. If there
are not enough numbers in the data block (collection of DATA
statements) for the variables in a READ statement, then the
program is assumed to be finished, no further processing of
data occurs, message OUT OF DATA is printed, and the program
terminates processing.

If a READ statement is executed more than once, as if
loop, the data block supplies the next available number
each execution, unless a RESTORE statement is executed.

4-19

in a
for

BR36

Input/Output Statement

RESTORE

Purpose:

Format:

Example:

Remarks:

To restore the data block to its original state, so that it
may be read by a logically subsequent READ statement and thus
used for further processing.

RESTORE

In the following portion of a program

*100 READ N
*110 FOR I = 1 TO N
*120 READ X

*200 NEXT I

*560 RESTORE
*570 READ X
*580 FOR I = 1 TO N
*590 READ X

*650 DATA 4, 15, 35, 23, 9
* 660 END

the data is read, the data block is then restored to its
original state, and the data is then read again for
processing. Statement 570 is used to pass over the value of
N, since it is already known.

When the program is executed, the data from the DATA
statements are saved in memory as a data block. The data is
then assigned to variables via a READ statement in the
sequence given. The RESTORE statement directs the computer to
reassign data starting from the beginning of the data block;
if this statement were not present in the above example, then
the system would stop processing at statement 570 and print
out the message OUT OF DATA.

Special uses of RESTORE (RESTORE* and RESTORE$) are described
in Section V under "Alphanumeric Data and String
Manipulation".

4-20 BR36

Loop and Subroutine Statement

CALL

Purpose:

Format:

Example:

Rules:

Remarks:

6/72

To call a program, previously saved on a permanent file, for
use as a subroutine within the primary program.

CALL < filename, pas sword >

*10 DEF FNP{X,Y)=SQR(X*X+Y*Y)
*20 CALL SUBl
*30 DATA 3
*40 END

Program SUBl, previously saved, is as follows:

*10 READ B,C
*20 IF B=O THEN 70
*25 CALL SUB2
*30 LET A=FNP(B,C)
*40 PRINT "HYPOTENUSE=";A
*SO GOTO 10
*60 DATA 4,0,0
*70 RETURN

Program SUB2, previously saved, is as follows:

*10 IF B > 0 THEN 40
*20 PRINT "NEGATIVE ARGUMENT"
*30 STOP
*40 IF C < 0 THEN 20
*50 RETURN
*60 END

1. All variables and functions must be common to the primary
(calling) program and the called programs.

2. The return from a called program to the calling program
must be by the way of a RETURN statement.

A password is required only if one is attached to the
filename.

Multiple returns are permitted within a called program. The
return is always to the statement immediately following the
CALL statement. A called program may call other programs.

4-21 BR36A

I

I

Loop and Subroutine Statement

CALL

An END or STOP statement to terminate execution may be in
either the calling or called program.

Line numbers in calling or called programs are completely
independent.

DATA statements are compiled from the primary program first,
and then from each of the called programs in the order in
which the CALL statements are encountered.

A total of 15 different programs may be called from the
primary and called programs.

4-22 BR36

Loop and Subroutine Statements

FOR and NEXT

Purpose:

Format:

Examples:

The FOR statement is the initial statement of a program loop
and it specifies the variable used to count the iterations
through the loop, its range of values, and the step-size for
each pass through the loop. The NEXT statement is the last
statement in the loop and it directs the processing to either
repeat the loop or continue sequential execution if the
specified number of iterations have been completed.

FOR <variable> = <expression> TO <expression>
STEP< size expression>

. .
NEXT< variable>

<variable> specifies an unsubscripted loop-control variable.
<expression> TO <expression> specifies the range of values to
be assigned to the variable. The first expression sets the
initial value of the variable1 the second expression sets the
final value of the variable. For a positive step-size, the
loop will be repeated until the variable reaches a value
greater than or equal to the final value. For a negative
step-size, the loop will be repeated until the variable
reaches a value less than or equal to the final value. STEP
<size expression> specifies the increment or decrement to be
added to the loop-control variable on each pass through the
loop1 if STEP and its size expression are omitted, the
increment is assumed to be 1.

1. *30 FOR x = 1 TO 25

*80 NEXT x

2. *120 FOR X4 (l 7+COS (·Z) /3) TO 3*SQR(l0) STEP N*Z

*235 NEXT X4

3. *240 FOR z = 8 TO 3 STEP -1

*300 NEXT z

4-23 BR36

Loop and Subroutine Statements

FOR and NEXT

Rules:

4. *450 FOR J -3 TO 12 STEP 2

.
*500 NEXT J

5. *30 FOR X 0 TO 25 STEP A

*80 NEXT X

1. If the range requires a negative step and it is omitted,
the body of the loop will be executed once for the
initial value of the variable. The variable is tested
after the first time the implied step (+l) is added, and
will be found to exceed the termination condition.

2. Paired FOR and NEXT statements must specify the same
loop-control variable.

4-24 BR36

Loop and Subroutine Statements

GOSUB and RETURN

Purpose:

Format:

Example:

Remarks:

GOSUB - To direct the system to the first statement
subroutine sequence that is located elsewhere in the
(i.e., to "call" a subroutine).

of a
program

RETURN - To return the processing to the next statement
following the GOSUB statement used to call the subroutine.

GOSUB <number of first statement of subroutine>

*80 GOSUB 200
*90 LET X = 5

*200 LET X

*350 RETURN

INT (A/B)

Statement 350 will return the processing to statement 90.

A subroutine may be placed anywhere within a program but
should only be entered by the way of a GOSUB statement.
Return from a subroutine must be by the way of a RETURN
statement; 'no other type of statement can be used.

4-25 BR36

Logic Statement

GOTO

Purpose:

Format:

Example:

Remark:

To transfer unconditionally to a statement other than the
next one in the processing sequence.

GOTO <statement number>

*50 GOTO 20

The GOTO statement may be used as a means of delegating a
program to return repeatedly to blocks of instructions.

4-26 BR36

Logic Statement

IF-----THEN
or

IF-----GOTO

Purpose:

Format:

To direct the system to either go to a designated
out-of-sequence statement if a certain condition is met or
proceed to process in sequence, thus providing a 2-way
conditional switch.

IF <expression >relation <expression> r THEN)< statement number>
: _GOTO

Examples: 1. *10 IF SIN(X)
*10 IF SIN(X)

M THEN 80 or
M GOTO 80

Rule:

6/72

2. *20 IF G=O THEN 65 or
*20 IF G=O GOTO 65

In each example, if the condition is met, then the computer
transfers to the designated statement number; otherwise, it
proceeds to process the next statement in sequence.

BASIC provides six relational tests. The following symbols
representing relationship can be used in IF----THEN or
IF----GOTO statements when comparisons are required.

Relational
Symbol

<
<= or =<

>
>= or =>

<> or ><

denotes

is equal to
is less than
is less than or

equa+ to
is greater than
is greater than

or equal to
is not equal to

as illustrated by

A = B
A< B
A<= B or A = < B

A> B
A>= B or A = > B

A<> B or A>< B

Those terminals that lack the < {less than) or > (greater I
than) characters can make use of an alphabetic code to obtain
required relational symbols. See Appendix E.

4-27 BR36A

Lo9ic Statement

ON-----THEN
or

ON-----GOTO

Purpose: To direct the system to go to designated statements, thus
providing a multiple switch.

Format: ON< expression> {THEN"\ <Statement numbers>
_GOTO)

Examples: 1. *10 ON X GOTO 100,200,150

Rules:

Remarks:

if X=l, the system branches to statement 100
if X=2, to statement 200
if X=3, to statement 150

The value of X is dependent upon conditions set in
another part of the program.

2. *110 FOR X = 1 TO 3
*120 ON X GOTO 200,300,400
*200 PRINT"A"
*210. GOTO 500
*300 PRINT"B''
*310 GOTO 500
*400 PRINT"C"
*500 NEXT X
*600 STOP
*900 END
*RUN

A
B
c

1. Any number of statement numbers may follow THEN or GOTO,
providing.they fit on one line.

2. Statement numbers following THEN or GOTO may be repeated.

The expression can be a variable or a formula. The variable
must be an integer ranging from one to the number of
statement numbers specified. For a formula, computation is
made and its integer part is taken as the value. If the
integer part is less than one or is larger than the number of
statement numbers specified, an error message is printed.

4-28 BR36

Logic Statement

STOP

Purpose:

Format:

Example:

Remark:

To stop the execution of the program.

STOP

*250 STOP

*340 STOP

*990 END

This example illustrates that there may be more than one STOP
statement within a program, and if any one is processed, the
program is terminated.

STOP is the equivalent of GOTO XXXX, where XXXX is the line
number of the END statement in the program.

4-29 BR36

Logic Statement

END

Purpose:

Format:

Example:

Rules:

Remarks:

To indicate the end of a program.

END

*990 END

1. The END statement is optional in a program.

2. The END statement, if used, must have the highest line
number of the program.

3. ~ The END statement, if omitted, is simulated when the RUN
command is given and if an end-of-file situation is
detected.

In the execution of the program, the system recognizes the
END statement as a command to terminate output. The END
statement may be reached during program execution by normal
sequential processing, or by program control being
transferred to it by means of a GOTO or STOP statement.

4-30 BR36

Utility Statement

CHAIN

Purpose:

Format:

To permit sequential compilation and execution of a series of
BASIC programs.

CHAIN <filename, password, line number>

Examples: 1. *10 CHAIN FILEl,PASSl,100

Rules:

Remarks:

2. *20 CHAIN A$,PASS2
3. *30 CHAIN B$,1234,

1. The filename can be expressed in the following manner:

a. in ASCII characters, a limit of eight characters

b. enclosed in quotes; i.e., "filename"

c. as an alphanumeric variable,
unsubscripted, with the values of
subscript (if any) assigned at
execution times.

subscripted
the variable

compilation

or
and
or

2. If a file with a password is named in a CHAIN statement,
the password must accompany the filename.

3. The CHAIN statement permits chaining to a line number
within a file.

4. Each CHAIN statement is restricted to one filename.

5. If a password is all numeric and no line number is
specified, the password must be delimited by a trailing
comma; otherwise, the password will be interpreted as a
line number.

The current file and a file named in a CHAIN
be files saved prior to any attempt to perform
function.

statement must
the chaining

If a line number is given in a CHAIN statement, it must be
given as a numeric value.

There is no limit to the number of programs the user desires
to compile and execute by means of CHAIN statements.

The use of double quotes to enclose a filename permits
compatibility with programs written for other systems.

4-31 BR36

Utility Statement

TRACE ON

TRACE OFF

Purpose:

Format:

Example:

Remarks:

To instruct the system to print out the line numbers, at
execution time, of those statements enclosed between a TRACE
ON and TRACE OFF statement.

TRACE ON

sequence of statements

TRACE OFF

* 10 LET X=O
*20 IF X > 0 GOTO 80
*30 TRACE ON
*40 LET X=lS
*50 PRINT "PHASE l"
*60 GOTO 20
*70 TRACE OFF
*80 PRINT "PHASE 2"
*90 END

When RUN is given as a command, program execution will be as
follows:

* AT 40
* AT 50
PHASE 1
* AT 60
PHASE 2

A TRACE ON
statement;

statement
i.e., the END

may be used
statement

without a TRACE OFF
simulates a TRACE OFF

statement. If a TRACE OFF statement is encountered before a
corresponding TRACE ON statement, that TRACE OFF statement is
ignored.

Multiple TRACE ON-TRACE OFF statements may be made within one
program.

4-32 BR36

Documentation Statement

REM

Purpose:

Format:

Example:

Remarks:

To permit the insertion of an explanatory remark in a
program.

REM <followed by the remark>

*50 REM
*60 REM
*70 REM

INSERT DATA IN LINES 900-1000.
THE FIRST NUMB~R IS N, THE
NUMBER OF POINTS REQUIRED.

The computer stores the text of the REM statement and does
not process it. A GOSUB, IF-----THEN, or GOTO statement can
refer to a REM statement by referencing its statement number.
When a remark exceeds a line, a statement number and REM must
be typed on each succeeding line before continuing the
remark.

Programs containing distinctive parts such as subroutines or
loops should have these parts labeled by means of REM
statements. Such labeling readily identifies sections of a
lengthy program and permits the user to rapidly scan the
program if corrections or additions are required.

4-33 BR36

A BASIC PROGRAM EXAMPLE

General

The first step in writing a BASIC program is to analyze the problem
determine the exact operations that must be performed to produce
desired results. Having determined the required operations, it is
necessary to convert them into BASIC statements.

This example describes the preparation of a
calculate and print out the average rrumber
vehicle per gallon of gasoline, given:

BASIC program that
of miles traveled

Old New Gallons of Average Number of
Miles Miles Gasoline Used Miles Eer Gallon

3332 3553 14.8 ?
3801 7.4 ?
3926 15.2 ?
4091 11. 3 ?
4275 10.9 ?
4460 9.8 ?
4628 9.8 ?
4864 12.3 ?
5250 13.6 ?
5617 6.7 ?
6112 10.0 ?
6379 14.0 ?

Overall average miles traveled per
gallon of gasoline ?

Analyzing the Problem

and
the

then

will
by a

An analysis of the problem indicates that the following operations
should be performed to arrive at the solution:

1. Show five column headings across the typeout as follows:

Old Miles
New Miles
Miles Traveled
Gallons of Gasoline Used
Average Miles Traveled per Gallon of Gasoline

2. Write given "old miles" value in column one.

3. Write first given "new miles" value in column two.

4-34 BR36

4. Write first given "gallons of gasoline" value in column four.

5. Subtract value in column one from the value in column two and
write the result in column three.

6. Divide value in column three by value in column four and write
the result in column five. This is average number of miles
traveled per gallon of gasoline.

7. Move down to second line in each column.

8. Write first given "new miles" value in column one.

9. Write second given "new miles" value in column two.

10. Write second given "gallons of gasoline" value in column four.

11. Subtract last value in column one from last value in column
two and write result in column three.

12. Divide last value in column three by last value in column four
and write result in column five.

13. Move down to third line in each column.

Continue writing of appropriate values in proper columns and
making computations until all data is utilized. Move down to
next line after completing each "average miles traveled per
gallon of gasoline" computation and writing of result in
column five.

14. Divide total number of miles traveled by total gallons of
gasoline used and title the result "Overall average miles
traveled per gallon of gasoline".

Converting to BASIC Language

Having determined the required operations, it is now necessary to
convert the operations into BASIC statements.

4-35 BR36

I

The following relationships and abbreviations will facilitate the
writing of the program:

M N-L and A = M where:
G

M miles traveled

L old miles

N new miles

A average miles per gallon

G gallons of gasoline

The following sequence of statements can now be written.

5
10
20
30
40
50
60
70
80
90
100
llO
120
130
140
150
160
170
180
190
200
210
220
230

REM TOTAL MILES/GALS
PRINT"OLD MILES ";"NEW MILES ";"MITR ";"GAL GAS ";"AMPG"'
PRINT"--- 11

READ L
LET Ll = L
READ N
IF N=O THEN 190
READ G
LET M=N-L
IF M=O THEN 120
LET A=M/G
IF A<> 0 THEN 130
PRINT "YOUR TANK HAS A HOLE IN IT"
IF A < 35 THEN 150
PRINT "I DONT BELIEVE IT"
PRINT L;N;M;G;A
LET L=N
LET Gl=Gl+G
GOTO 50
PRINT "TOTAL MILES/GALS",(L-Ll)/Gl
DATA 3332,3553,14.8,3801,7.4,3926,l5.2,4091,ll.3,4275
DATA 10.9,4460,9.8,4628,9.8,4864,12.3,5250,13.6,5617
DATA 6.7,6112,10.0,6379,14.0,0
END

Explanation of the Statements

5 REM TOTAL MILES/GALS

Identifies the program; does not enter into the execution process.

6/72 4-36 BR36A

10 PRINT "OLD MILES ";"NEW MILES ";"MITR ";"GAL GAS ";"AMPG"

20 PRINT "---"

Statements 10 and 20 direct the system to print verbatim that
information enclosed by quotation marks.

30 READ L

Assigns the first value in the data block to variable L; i.e., 3332
to L (old mileage).

40 LET Ll=L

Assigns the existing value of L which is 3332, to Ll. The value
assigned to L will change as the program execution progresses but
the value assigned to Ll will remain 3332. It is ~ecessary to
preserve the 3332 value for calculating total miles traveled;
statement 190 directs the computer to make this computation.

50 READ N

Assigns the next value in the data block to variable N; i.e., 3553
to N (new mileage).

60 IF N=O THEN 190

Directs the system to execute statement 190 instead of statement 70
if the value assigned to Nin statement 50 was O; i.e., last entry
in data block.

70 READ G

Assigns the next value in the data block to variable G; i.e., 14.8
to G (gallons of gasoline)

80 LET M=N-L

Directs the system to subtract the value of L from the value of N
and assign the difference to variable M (miles traveled) •

90 IF M=O THEN 120

6/72

Directs the system to execute statement 120 instead of statement
100 if the value assigned to M in statement 80 was O.

4-37 BR36A

I

100 LET A=M/G

Directs the system to divide the value of M by the value of G and
assign the resulting value to A (average miles per gallon).

110 IF A<> 0 THEN 130

Directs the system to execute statement 130 next instead of
statement 120 if the value assigned to A in statement 100 was any
value other than O.

120 PRINT "YOUR TANK HAS A HOLE IN IT"

Directs the system to print out, verbatim, that information
enclosed- by quotation marks. This statement is executed only if the

-value assigned to A in statement 100 was O, or if the value
assigned ·to M in statement 90 was 0.

130 IF A < 35 THEN 150

Directs the system to execute statement 150 instead of statement
140 if the value assigned to A in statement 100 was less than 35.

140 PRINT "I DONT BELIEVE IT"

Directs the system to print out, verbatim, information enclosed by
quotation marks. This statement is executed only if the value
assigned to A in statement 100 was equal to or greater than 35.

150 PRINT L, N, M, G, A

Directs the system to print, in column form, the values of L, N, M,
G, and A assigned in statements 30, 50, 80, 70, and 100,
respectively.

160 LET L=N

Assigns the existing value of N (new mileage) to L (old mileage) in
preparation for the next calculation.

170 LET Gl=Gl+G

The objective of this statement is to establish a means for
recording the accumulative gallons of gasoline used for the entire
trip. As there was no READ statement to assign a value, the
computer initially set Gl to zero.

4-38 BR36

On the first pass through the data block, G was assigned the value
14.8. This statement directs the computer to add the value of G
(14.8 in this instance, assigned in statement 70) to the initial
value of Gl (zero), establishing a new value for Gl (14.8)~ On the
second pass through the data block the next value of G (7.4) will
be added to the existing value of Gl (14.8) establishing another
new value.for Gl of 22.2. This summation of G and Gl will be
repeated on subsequent passes as long as there are new values of G
in the data block.

180 GOTO 50

Directs the system to go to line 50, thus repeating the same
sequence of statements over again to find the average miles
traveled per gallon of gasoline for the next refueling. Eventually,
a value of N equal to zero will be achieved and statement 60 will
be executed. At that point, control of the program will be given to
statement 190. ·

190 PRINT "TOTAL MILES/GAL", (L-Ll)/Gl

The system is instructed to calculate and print the overall miles
traveled per gallon of gasoline for the entire trip.

The statement accomplishes this by directing the system to subtract
Ll (3332 from statement 40) from L (6379 - the last old mileage
assignment in the data block) and then divide the difference by Gl
(accumulative gallons of gasoline calculated in statement 170).

200, 210, 220 DATA

Data statements are not executed. They are used to enter the data
required for the subsequent execution of the program. The
arrangement in which the data is entered in the statement is
critical because the computer must be directed to store the data in
a sequence compatible with the requirements of the program
statement~.

230 END

Directs the system to end the execution of the program.

Entering and Running the Program

The sequence of statements representing the problem and its solution can
now be entered at the terminal. The complete program would appear as
below, assuming no errors have been made. To run the program, the
control command RUN is given.

4-39 BR36

I

I

REM TOTAL MILES/GALS *5
*10
*20
*30
*40
*SO
*60
*70
*80
*90
*100
*110
*120
*130
*140
*150
*160
*170
*180
*190
*200
*210
*220
*230
*RUN

PRINT "OLD MILES ";"NEW MILES ";"MITR ";"GAL GAS ";"AMPG"
PRINT"--"
READ L
LET Ll = L
READ N
IF N=O THEN 190
READ G
LET M=N-L
IF M=O THEN 120
LET A=M/G
IF A<> 0 THEN 130
PRINT "YOUR TANK HAS A HOLE IN IT"
IF A < 35 THEN 150
PRINT "I DONT BELIEVE IT"
PRINT L;N;M;G;A
LET L=N
LET Gl=Gl+G
GO TO 50
PRINT "TOTAL MILES/GALS", (L-Ll)/Gl
DATA 3332,3553,14.8,3801,7.4,3926,l5.2,4091,ll.3,4275
DATA 10.9,4460,9.8,4628,9.8,4864,12.3,5250,l3.6,S617
DATA 6.7,6112,10.0,6379,14.0,0
END

OLD MILES NEW MILES MITR GAL GAS AMPG

3332 3553 221 14 .8 14.93243
3553 3801 248 7.4 33.51351
38-01 3926 125 15.2 8.223684
3926 4091 165 11.3 14.60177
4091 4275 184 10.9 16.88073
4275 4460 185 9.8 18.87755
4460 4628 168 9.8 17.14286
4628 4864 236 12.3 19.187
4864 5250 386 13.6 28.38235

I DONT BELIEVE IT
5250 5617 367 6.7 54. 77612

I DONT BELIEVE IT
5617 6112 495 10 49.50000
6112 6379 267 14 19.07143

TOTAL MILES/GALS 22.43741

6/72 4-40 BR36A

SECTION V

ADVANCED BASIC

GENERAL

Advanced BASIC presupposes knowledge, on the part of the
details contained in Section IV concerning the general
statements and assumes that.the user has acquired some
application of these statements.

user,
use of
skill

of the
BASIC

in the

This chapter provides additional information pertaining to the use of
statements and is intended for the more experienced user who wishes to
obtain more flexibility in his programs or needs to solve more complex
problems.

FLEXIBILITY IN PROGRAM OUTPUT FORMAT

General uses of the PRINT statement and PRINT USING statement were
described in Section IV. For the advanced programmer, forms of the PRINT
statement and PRINT USING statement are available that permit more
flexibility in the formatting of the program output.

Formatting Output With a Comma or Semicolon

The end of a PRINT statement signals the end of the line, unless a comma
or a semicolon is the last character of the statement.

For example, statement 20 in the program entry

* 10 FOR I = l TO 15
* 20 PRINT I
* 30 NEXT I
* 40 END
* RUN

5-1 BR36

will result in output of 15 numbers printed on 15 lines, thus:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

The use of a conuna after a variable in a PRINT statement implies data
placed in a zone format upon printout. BASIC provides for a line
comprising five zones, each zone being referred to as a standard zone.
By the use of a comma after a variable, data is allotted to zones and
the data is right-justified within the zone. Thus, by rewriting
statement 20 as

* 20 PRINT I,

The resulting format will be

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15

The statement

* 10 PRINT X, Y

will result in the printing of the value of X in the first
zone, the value of Y in the second standard zone and the return
next line, while

* 20 PRINT X, Y,

standard
to the

will result in the printing of these two values in the first and second
standard zones and no return; the next value called for in a subsequent
PRINT statement will be printed in the third standard zone.

5-2 BR36

The statement

* 30 PRINT X, Y, Z, A, B, C

will result in the printing of the first five values in the five
standard zones across the page; the sixth value will be printed in the
first zone beneath the first value. Five values are the limit to a
printout line, each value being restricted automatically within the
confines of its zone upon printout. (Refer to the remarks of the PRINT
statement description in Section IV.)

The use of a semicolon after a variable in a PRINT statement implies a
variation of the standard zone format. Spacing is compacted to obtain
more zones on the line. Minimum size zone is 7 columns and can contain a
number up to 4 characters. The next larger size zone is 9 columns and
contains up to 7 characters. All other fixed point numbers are printed
as 12-column zones. Negative numbers are preceded by a minus sign in the
first column of a zone.

For the following program (note use of semicolon in statement 20) the
printout of values would be in compacted zones as illustrated.

* 10 FOR I = 1 TO 15

* 20 PRINT I;

* 30 NEXT I

* 40 END

* RUN
1 2 3 4 5 6 7 8 9 10 11 12

13 14 15

Commas and semicolons may be used within the same PRINT statement. The
statement

* 5 0 PRINT X, Y ; Z ,

will result in the values of X and Z being printed in standard zones,
while the zone of value Y would be compacted.

Text to be printed verbatim is referred to as a label. A label is
printed just as it appears in the PRINT statement left-justified in a
zone. If two or more labels appearing in the same PRINT statement are
comma-separated, the first label will be printed left-justified in the
first zone and each succeeding label will be printed left-justified in
the next succeeding available zone.

The statement

* 10 PRINT "X VALUE" , "SIZE", "RESOLUTION"

5-3 BR36

results in the printout

X VALUE SIZE RESOLUTION

Semicolon (or null-separated) labels in the same PRINT statement are
printed with no character separation.

The statement

* 20 PRINT "OLD MILES"; "NEW MILES"

results in the printout

OLD MILESNEW MILES

If a label exceeds the length of a line, the line must be ended
quotation marks and its carryover on the next line or lines treated
additional PRINT statements.

Spacing Within an Output Line with Functions TAB(X) and SPC(X)

by
as

When used in a PRINT statement, functions TAB(X) and SPC(X} give the
user additional control of spacing within an output line. These
functions may be used as any field within the PRINT statement.

The TAB function is expressed in the form:

PRINT TAB (expression); <data to be printed>

It will cause the printing of the next data field at the character
position indicated by the value of the expression plus one.

The SPC function is expressed in the form:

PRINT SPC {expression); <data to be printed >

The number of spaces, equal to the value of the expre sion, will be
inserted in the print line. If this number causes the pr nt position to
exceed 72, the carriage will return and the print pos tion indicator
will be set at 1.

6/72 5-4 BR36A

Exception conditions:

TAB: r.- When the expression results in a number which is less than the
current character position where the carriage is sitting, the
TAB function is ignored.

2. When the expression results in the number which is greater than
the line limit, the TAB function is ignored.

SPC:
When the expression results in a number which, when
the current character position on the line, exceeds
limit, the current line will be printed and the
character position will be reset to the first position
next line.

Examples:

* 10 PRINT X, TAB(20); Y; TAB(40); Z

added to
the line

current
on the

will result in the values of X starting right-justified in
the first zone, the values of Y starting at position 21, and
the values of Z starting at position 41.

In the example

* 10 PRINT TAB (20); "DATA"
* 20 END
* RUN

the resulting printout is DA'"rA positioned as
follows:

·Position 20 21 22 23 24

D A T A

* 20 PRINT T.AB(lO*SIN(X)+lO); X
will result in the value of X being printed in the position
specified by the value of the expression (lO*SIN(X)+lO).

In the example

* 10 FOR X = 1 TO 5
* 20 PRINT X; SPC(X); "+"
* 30 NE:>ff' X
* 40 END
* RUN

5-5 BR36

I

the resulting printout is

l +
2 +
3 +
4 +
5 +

Formatting Line Output

(separated by l space)
(2 spaces)
(3 spaces)
(4 spaces)
(5 spaces)

A line of output (a printed line) may be formatted by the user by means
of the PRINT USING and PRINT # USING statements.

The fields which compose the image of the image statement pointed to by
the PRINT USING and PRINT # USING statements may be made up of the
following types:

integer
decimal

exponential
alphanumeric

literal

Format control characters depict the fields within the image statement;
the fields are separated by one or more literal characters (which may be
blanks).

Each character following the colon of a PRINT USING or PRINT # USING
statement is treated as a print position, specifying either a literal or

-control character.

To facilitate explanation of format control characters and fields, the
examples following make use of the PRINT USING statement only. The PRINT
USING statement directs the system to immediately produce a visible
result at the terminal upon program execution. In contrast, the PRINT #
USING statement, making use of the same format control characters and
fields, formats data on the designated file, which may later be made
visible by the way of the LIST command.

INTEGER TYPE FIELD

Each numeric of an integer type field is indicated by a pound sign (#);
the field width must also include a # for the algebraic sign, plus or
minus. Upon program execution, the numbers of an integer type field are
right-justified within the field and rounded if they are not integral.

Example:

*
*
*
*
*
*

10 LET A = 123
20 LET B = 12.34
30 PRINT USING 40,A,B
40: #### ####
50 END
RUN

123 12

If a number does not fit into the specified format, a field of asterisks
of the length specified will be printed upon program execution.

5/73 5-6 BR36C

Example:

* 10 LET A = 1234
* 20 PRINT USING 30,A,A
* 30: ###H ###
* 40 END
* RUN

1234 ***

If an integer type field is preceded by a dollar sign ($), the $ will
float up against the first non-zero digit in the field upon program
execution.

Example:

*
*
*
*
*

10 LET A = 123
20 PRINT USING 30,A
30: $######
40 END
RUN

$123

DECIMAL TYPE FIELD

Each numeric of a decimal type field is indicated by a #; the field
width must also include a # for the algebraic sign if minus. Upon
program execution·, the nwnbers of a decimal type field are
right-justified within the field and the value is rounded to the number
of places specified by the #'s following the decimal point.

Example:

*
*
*
*
*
*
*

10 LET A 123.45
20 LET B = -3.456
30 LET C = - .O 17
40 PRINT USING 50 ,A,B ,C
50: ###.## ##.#### #.##
60 END
RUN

123.45 -3.4560 -.02

Note

The remarks concerning the use of the dollar sign
and display of asterisks in regard to the integer
type field also apply to the decimal type field.

5-7 BR36

I

I

EXPONENTIAL TYPE FIELD

An exponential type field is a decimal type field followed by four
up-arrows (tttt): the up-arrows serve to reserve space for placint an
exponent. The field width must include a # for the algebraic sign if
minus. For negative values, a minimum of two #'s should be specified to
the left of the decimal point to provide for the minus sign and at least
one digit. The value will be rounded as with decimal type fields.

Example:

* 10 LET A 123000000
* 20 LET B 123.456
* 30 LET C -.0177
* 40 PRINT USING 50,A,B,C
* 50:###.##tttt #.####tttt ##.##tttt
* 60 END
* RUN

123.00E 06 l.2346E 02 -l.77E-02

ALPHANUMERIC TYPE FIELDS

An alphanumeric type field may be specified in one of four possible
ways, each of these indicated by the use of a single quote (') followed
by one or more letters to indicate place of the alphanumeric string
within the field. Note that the quote of the designated field is also a
place holder. The fields are as follows:

6/72

'L •.. L indicates the string is to be left-justified within the
field and blank-filled or truncated.

'R •.. R indicates the string is to be right-justified within the
field and blank-filled or truncated.

'C •.• c indicates the string is to be centered within the field and
blank-filled or truncated to the right. If an odd number of
characters is to be centered in a specified format calling
for an even number of characters, the string is centered
one character to the left of a centered position.

'E .• ~E indicates the string is to be left-justified within the
field and the field is to be right-extended to accommodate
the string if the string is longer than the field itself.

5-8 BR36A

Example:

A$= 11 ABCDEFG 11 010
OLO
030
040
050
060
070
080
090
100:
110:
120:
130:
140:
150

B$= 11 ABCDEFGHIJKL 11

PRINT"l234567890123456789012345678901234567890l2345678901234567890"
PRINT
PRINT USING 100,A$
PRINT USING 110,A$
PRINT USING 120,A$
PRINT USING 130,A$
PRINT USING 140,B$
'LLLLLLLLL
'RRRRRRRRR
•ccccccccc
'EEEEEEEEE
'EEEEEEEEE
END

LEFT JUSTIFIED IN A 10-CHAR FIELD
RIGHT JUSTIFIED IN A 10-CHAR FIELD
CENTER JUSTIFIED IN A 10-CHAR FIELD
EXTENDED FIELD LONGER THAN STRING
EXTENDED FIELD SHORTER THAN STRING

When executed, this program will print:

123456789012345678901234567890123456789012345678901234567890

AB CD EFG
ABCDEFG

AB CD EFG
ABCDEFG
ABCDEFGHIJKL

6/72

LEFT JUSTIFIED IN A 10-CHAR FIELD
RIGHT JUSTIFIED IN A 10-CHAR FIELD
CENTER JUSTIFIED IN A 10-CHAR FIELD
EXTENDED FIELD LONGER THAN STRING

EXTENDED FIELD SHORTER THAN STRING

5-8.l BR36A

LITERAL TYPE FIELD

A literal type field is composed of characters (other
characters). Upon program execution, the field will appear
indicated by the image statement.

Example:

*
*
*
*
*

10 LET A = 123.450
20 PRINT USING 30,A
30: THE VALUE OF A IS
40 END
RUN

THE VALUE OF A IS

$####.##

$123.45

CONCATENATION OF MULTIPLE FORMATTED IMAGES

than control
exactly as

The output of multiple PRINT USING or PRINT # USING statements can be
placed on one line by use of a conuna or semicolon following an output
list •. Images will be concatenated end-to-end. When used in conjunction
with MARGIN to extend the right-most character position, lines can be
formatted beyond the normal length of 75 characters.

DEFINING FUNCTIONS

The user can define any function which he expects to use a number of
times in his program by use of a DEF statement. The name of the defined
function must be three alpha characters. The user may define up to 26
functions. One suggested method of accounting for the number of
functions within a program is to label function names alphabetically;
e.g., FNA, FNB .••. , FNZ.

The handiness of such a function can be seen in a program where the user
frequently needs the function (e raised to -x squared) . He would
introduce the function by the statement:

* 10 DEF FNE (X) = EXP (-X**2)

and later on call for various values of the function by such statements
as

* 100 LET A
* 100 LET B

FNE(.l)
FNE(3.45)

Such a definition can be a great time-saver when the user wants values
of some function for a number of different values of the variable.

6/72 5-9 BR36A

The function to find the length of the hypotenuse of a right triangle
will serve as another example. Given sides of X and Y, the function can
be formatted in the statement

* 20 DEF FNA(X,Y) = SQR (X**2 + Y**2)

The function can then be used in the program as often as desired. For
example:

* 50 LET H
* 60 LET G

The PRINT statement

FNA (3, 4)
FNA (A+6, B-3)

* 70 PRINT H,G

will then result in the printout of the two required answers.

The DEF statement must occur previous to the use of the function in the
program, and the expression to the right of the equal sign may be any
formula which can fit onto one line. It may include any combination of
other functions, including those defined by different DEF statements,
and it can involve other variables besides the one denoted as · the
argument of the function. Thus, assuming FNR is defined by:

* 10 DEF FNR(X) = SQR (2+LOG{X)-EXP(Y*Z)*(X+SIN(2*Z)))

the current value of Y and Z will be used in the computation of X.

A DEF statement can contain up to nine arguments; the total number of
arguments for all DEF statements within a program is limited to 99.

MULTIPLE-LINE DEF STATEMENT

The user may find occassions for the use of the DEF statement wherein he
wishes to assign arguments or values which cause the statement to exceed
'the length of a line. If a DEF statement requires more than one line for
the definition of a function, the function may be introduced -with a DEF
statement in which no equal sign appears, continue in a series of lines
in which arguments or values are assigned, and end in a line containing
the word FNEND. The function is thus defined in a multiple-line DEF
statement, the end of the statement indicated by the line FNEND. Local
variables defined within a function definition bear no relation to
similarly-named variables used outside the definition. Multiple-line DEF
statements may not be nested. Transfers from inside a multiple-line DEF
statement to outside, and vice versa, are not allowed.

6/72 5-10 BR36A

The following examples illustrate the use of the multiple-line DEF
statement.

Example 1

Example 2

*10
*20
*30
*40
*SO
*60
*70
*80
*RUN

DEF FNX(A,B)
FNX=A
IF A < B THEN SO
FNX=B
PRINT "FNX=";FNX
FNEND
Xl=FNX(S,7)
END

Lines 10 through 60 constitute the DEF statement. The program
results in the printout.

*10
*20
*30
*40
*SO
*60
*70
*80
*90
*100
*110
*120
*130
*RUN

FNX= S

C=3
D=4
DEF FNA(X,Y)C,D
C=S
D=lO
FNA=X
IF X=Y THEN 90
FNA=Y
PRINT "C="C;"D="D;"FNA="FNA
FNEND
Cl=FNA(9,7)
PRINT"C="C;"D="D
END

Lines 30 through 100 constitute the DEF statement; therefore,
the values of C and D outside the statement bear no relation
to values of C and D assigned within the statement. The
program results in the printout

C= S D= 10 FNA= 7
C= 3 D= 4

DATA INPUT DURING PROGRAM EXECUTION

There are times when it is desirable to enter data during the running of
a program. This is particularly true when one person writes the program
and saves it in the system and other persons are to supply the data when
they wish to make use of the program. Data may be requested by means of
an INPUT statement, which acts as a READ statement but does not draw
numbers from a DATA statement. If, for example, the user is to supply
values for X, Y, and Z into a program, the statement

INPU'l' x, y I z

6/72 s-10.1 BR36A

will appear ahead of the first statement that is to use these variables.
When the system encounters this statement during program execution, the
terminal will print out a question mark. The user then types values for
X, Y, and Z immediately after the question mark, each separated by a
conuna, depresses the return key, and the computer resumes program
execution.

An INPUT statement can be used in conjunction with a PRINT statement to
permit identification of variable values being requested. The user can
employ the sequence

* 20 PRINT "WHAT ARE X, Y, Z";
* 30 INPUT X, Y, Z

and the terminal will print out the following during program execution:

WHAT ARE X, Y, Z?

to which the user must respond with values, on the same line. (Without
the semicolon at the end of statement 20, the question mark would have
been printed on the next line.)

If an INPUT statement is employed in a loop to repeatedly request input
of a numeric value, program execution must be terminated by typing the
letter S (or any word beginning with the letters, e.g., STOP) after the I
question mark.

It may take a long time to enter large amounts of numeric values
INPUT statements. Therefore, INPUT statements should be used only
small quantities of values are to be entered, or when there
requirement to enter values during the running of the program.

NOTE: The special case for matrix data input during program
execution when use is made of the MAT INPUT statement is
described in "Matrices" below.

using
when

is a

A program to
illustrate the
is designed to
another input,
mark at a time

convert degrees Fahrenheit to Centigrade serves to
usefulness of the INPUT statement. Because this program
loop back to the program beginning each time to demand
the user must type in the word STOP after the question
he wishes to terminate the program.

5/73 5-11 BR36C

I
I

* 10 PRINT "FAHRENHEIT":
* 20 INPUT F
* 30 LET C = (F-32) * 5/9
* 40 PRINT "CENTIGRADE =" c
* 50 PRINT
* 60 GOTO 10
* 70 END
* RUN

FAHRENHEIT ?32
CENTIGRADE = 0

FAHRENHEIT ?212
CENTIGRADE = 100

FAHRENHEIT ?STOP

MATRICES

A set of special statements is provided for operating upon matrices.
These statements are identified by the word MAT, with which each such
statement begins. Although the user can construct programs using only
elementary BASIC to perform calculations on--or otherwise
manipulate--matrices, the set of MAT statements simplifies the
programming effort by shortening programs considerably.

The format of the MAT statements are:

MAT READ A,B,C,... Read into matrices A, B, C, ••• , their
dimensions having been previously specified.
Data is read in row-wise sequence from
standard-format DATA statements, and entered
into the matrices. Each matrix may be totally
or partially filled. Zeroes are automatically
assigned to any unfilled positions.

MAT PRINT A,B,C, ••• Print matrices A, B, c, ... The semicolon, TAB,
and SPC can be used, as in the normal PRINT
statement. Double space is provided for between
rows: between folded parts of the same row,
single space is provided.

MAT INPUT A

MAT C = A + B

6/72

Input desired values for elements of matrix A
during program execution time.

Add two matrices A and B and store result in
matrix c.

5-12 BR36A

MATC=A-B

MAT C A* B

MAT C = INV(A)

MAT C

MAT C
MAT C

MAT C

MAT C

MAT C

TRN (A)

= (K)
A *

CON

ZER

ION

* A or
(K)

Subtract matrix B from matrix A and store
result in matrix c.

Multiply matrix A by matrix B and store result
in matrix C.

Invert matrix A and store resulting matrix in
c.

Transpose (interchange rows and columns) matrix
A and store resulting matrix in C.

Multiply matrix A by value represented by K. K
may be either a number or an expression, but in
either case it must be enclosed in parentheses.

Each element of matrix C is set to one.

Each element of matrix C is set to zero.

Diagonal elements of matrix C are set to one's,
yielding an identity matrix.

The last three MAT statements may also be written with- subsQripts
suffixed to the right-hand side; e.g., MAT C = ZER(I,J). The use of this
form is described below.

Special rules apply to the dimensioning of matrices which occur in MAT
instructions. DIM statements indicate what the maximum dimension of a
matrix is to be. Thus

DIM M(20, 35)

5-13 BR36

I

means th.at M may have up to 20 rows and up to 35 columns. The dimensions
of all matrices occurring in MAT statements must be specified in DIM
statements; otherwise, automatic dimensioning (subscript values of 10 or
less) is implied.

Note

Rows and columns of matrices are numbered 1 through
n. That is, there is no row or column numbered 0 in
matrices used in MAT statements.

The current dimension of a matrix may be determined either when it is
initially defined by the dimension statement or by special usage of
certain MAT statement forms. The four general forms which may be used to
accomplish dynamic redimensioning are:

1. MAT READ A(M,N)
2. MAT A ZER (M,N)
3. MAT A CON (M,N)
4. MAT A IDN(N,N)

The first, MAT READ, will redefine the current dimensions of matrix A as
M rows and N columns and then read M*N data values to fill in the
elements. More than one matrix may be redimensioned and read with a
single statement.

The other three forms are used to redefine the current dimensions of a
matrix (A) and then fill its elements with values as specified by the
statement type.

The rules for dynamic redimensioning are as follows:

1. No dimension may be changed to a value that exceeds its
original declaration in the DIM statement.

10/72

2. Using the statement types described above, dimensions may be
redefined in either the upward or downward direction as long as
the definition is within the bounds of item 1 above and the
original declaration in the DIM statement.

5-14 .BR36B

For example, a matrix specified in the DIM statement as (6,4) might be
redimensioned as (4,4), but not as (10,2) -- by rule 1 -- or (5,5) -- by
rule 2.

In addition to use of a DIM statement, and possibly a declaration of
current dimensions, the user must use MAT statements with care. For
example, a matrix product MAT C = A * B may be illegal for one of two
reasons: A and B may have dimensions such that t~ product is not
mathematically defined, or even if it is defined, C may not have
reserved enough space for the answer. In either case, the message IN
XXXX DIM ERROR results, where XXXX is the line number of the statement
in question.

The same matrix may occur on both sides of a MAT statement in cases of
addition, subtraction, multiplication by a constant, or inversion, but

,not in any other statement forms. Legal forms are:

MATA
MATA=
MATA
MATA

A + B
A - B
(2.5)*A
INV (A)

Also, note that the special form of- matrix multiplication

MATB A*A

is legal.

Illegal forms are:

MATA
MATA
MATA
MATA

B
B*A
TRN(A)
A + B - C

The last example is an attempt to use more than one arithmetic operator
in a MAT statement. Each matrix operation requires its own matrix
statement.

A 2-dimensional string matrix (e.g., Al$(10,20)) is not permitted. No
MAT operations are permitted for string variables.

5/73 5-15 BR36C

I

The following program illustrates some simple operations upon matrices
by the use of MAT statements.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

7

7

-5

1

2

8

6

5

4

10 DIM A(2, 3) , B (2, 3) , S (2, 3)
2 0 DIM D (2 , 3) , M (2 , 3) , T (3 , 2)
30 MAT READ A;B
40 REM SUM OF MATRICES
50 MAT S,. = A + B
60 MAT PRINT S
7 0 REM DIFFERENCE OF MATRICES
80 MAT D = A - B
90 MAT PRINT D
100 REM MULTIPLY MATRIX
110 MAT M = (2) * A
120 MAT PRINT M
130 REM TRANSPOSE MATRIX
140 MAT T = TRN (B)
150 MAT PRINT T
160 DATA 1,2,3,4,5,6
170 DATA 6,5,4,3,2,l
180 END
RUN

7

7

-3

3

4

10

3

2

1

7

7

-1

5

6

12

The MAT INPUT statement permits input of data, pertaining to the
elements of a matrix, at program execution time. The function NUM(X) can
be utilized to supply a count of the number of data elements entered;
thus, the matrix array can be filled to any level desired (.i.e., user
need not input data elements to fill the entire array) • The count of
NUM(X) always reflects the number of input data elements for the most
recently executed MAT INPUT statemerit. If more than one line of V?lues
is required, the line (and subsequent lines, if needed) is terminated
with an ampersand (&) to indicate continuation. The ampersand may or may
not be comma-separated from the last value. The MAT INPUT statement may
be used with either 1- or 2-dimensional arrays. The !-dimensional array
is filled beginning with element 1. Two-dimensional arrays are filled in
a row sequence.

5-16 BR36

Two examples of the use of the MAT INPUT statement are as follows:

Exam;ele 1:

* 10 DIM S (100)
* 20 MAT INPUT S
* 30 PRINT S (1) ; " + " ; S (2} ; "
* 40 LETT= S(l)+S(2}
* so FOR I = 3 TO NUM(X)
* 60 LETT= T + S(I)
* 70 PRINT"
* 80 NEXT I
* 90 END

READY

*RUN

?l,2,3,4,S&
?6,7,8,&
?9,10,11

1 + 2
+ 3
+ 4
+ 5
+ 6
+ 7
+ 8
+ 9
+ 10
+ 11

Exam;ele 2:

* 10 DIM Ml(3,4)
* 20 MAT INPUT Ml
* 30 MAT PRINT Ml;
* 40 END

READY

*RUN

?1,2,3,4,S,6,7

1
5
0

2
6
0

3
7
0

ADDITIONAL FUNCTIONS

=
=
=

=
=

=

=

4
0
0

+ ";S(I);"

3
6

10
15
21
28
36
45
55
66

";S (1) +S (2)

= ";T

BASIC provides for the use of other functions in addition to the
standard mathematical functions listed in Section IV.

5-17 BR36

I
These additional functions are as follows:

INT(X)
RND(X)
SGN(X)
DET(X)

TIM(X)
CLK$
DAT$

NUM(X)
SST (X$, Y, Z)

TAB(X)
SPC(X)

LEN (X$)
LIN(X)
ASC(X)

STR$(N)
VAL (S$)
TST (S$}
HPS(X)

Function INT(X)

Purpose: To truncate a number to integer form.

Format: INT (expression)

Examples: * 10 PRINT INT (2.35)
* 20 PRINT INT (-2.35)
* 30 PRINT INT (2.9)

are three ex~~ples of this function placed in a PRINT
statement and used to truncate a number. The resultant
printouts would produce 2, -3, and 2, respectively.

Function RND(X)

Purpose:

Format:

Examples:

6/72

To . generate random numbers for computational procedures
requiring random variables.

The general format is

RND (any variable or constant)

which will produce a random number between
including) 0 and 1.

(but not

If a great number of these random numbers are produced, it
becomes apparent that they tend to fall uniformly over the
range, for the numbers come from a uniformly distributed
population.

*
*
*
*
*

10 FOR L = 1 TO 20
20 PRINT RND (X),
30 NEXT L
40 END
RUN

5-18 BR36A

might generate the following:

0.3199251
0.8075665
0.3074467
0.7088735

0.0590169
0.964758
0.4493044
0.2340001

0.4018556
0.2424602
0.7489442
0.9746831

0.6280534
0.066037
0.4024822
0.5227955

0.2292995
0.368314
0.301177
0.6405085

If random integers between 0 and 10 are desired, statement 20
can be changed to read

* 20 PRINT INT (lO*RND(X)),

which results in

3
8
3
7

0
9
4
2

4
2
7
9

6
0
4
5

If statement 20 were changed to read

* 20 PRINT INT (20*RND(X)+5),

2
3
3
6

then the printout would contain random numbers between
integers 5 and 25.

The range of random numbers generated, therefore, is
dependent upon how function RND(X) is modified.

The function RND(X) lends itself readily to programs
involving probability. For example, to simulate a 5-trial
coin tossing contest, the following program can be written:

* 10 FOR T = 1 TO 5
* 20 IF RND (T) < =O. S THEN SO
* 30 PRINT "HEADS"
* 40 GOTO 60
* so .PRINT "TAILS"
* 60 NEXT T
* 70 END

The program execution will be a reasonable facsimile of the
results of a coin tossed five times.

S-19 BR36

The use of the RND function as described above is appropriate
when the same sequence of random nuriibers is to be generated
each time a program is run. If the variable or constant used
as an argument is a positive quantity and is not changed, the
same sequence of random numbers is generated for each
execution of the program.

The use of a negative argument for the RND function will
cause an unpredictable series of random numbers to be
generated each time the program is run. For example, if the
user wishes different sequences of random numbers for each
execution of his program, he may use one of the following
techniques:

*
*
*
*
*

*
*
*
*
*

*
*
*
*

10 LET x = -1
20 FOR I = 1 TO 20
30 PRINT RND (X)
40 NEXT I
50 END

10 LET x = 1
20 FOR I = 1 TO 20
30 PRINT RND (-X)
40 NEXT I
50 END

10 FOR I = 1 TO 20
20 PRINT RND (-1)
30 NEXT I
40 END

Function S GN (X)

Purpose:

Format:

To determine the sign of an expression.

SGN {expression)

The function yields +l, -1, or O, depending upon the value of
the expression. The following list gives the options:

SGN
SGN
SGN

{Value of expression)

{zero)
(positive,non-zero)
{negative,non-zero)

Yields

0
+l
-1

Examples: * 10 IF SGN(X) = 1 THEN 100

In this statement, the value of X must be positive to
accomplish the transfer of processing to statement 100.

5-20 BR36

The statement

* 20 LET X SGN(Y)*ABS(X)

assigns to X the sign resulting from the value of Y.

Function DET(X)

Purpose:

Format:

Examples:

To obtain the determinant of the last matrix inverted.

DET (any variable or constant)

*10
*20
*30

MAT B=INV(A)
LET C=DET(X)
PRINT C

The program, when executed, will invert matrix A,
result in matrix B, and print out the value
determinant of matrix B.

store
of C,

the
the

The determinant can be made .an element of a more complex
numeric expression.

*10 PRINT 2*DET(X)
*20 IF DET(X)=O THEN 60

Any attempt to invert a singular matrix does not stop the
program, but DET(X) is set to zero. For any program, the user
must decide if a determinant is large enough to be
meaningful.

Function TIM(X)

Purpose:

Format:

Examples:

6/72

To obtain elapsed processor time in seconds.

TIM (any keyboard character)

*50 PRINT "PROCESSOR TIME=";TIM(X);"SECONDS"

A program including such a statement, when executed, would
contain a printout line

PROCESSOR TIME= < value > SECONDS

The processor time may be assigned a variable name.

*50 LET T=TIM(X)
*60 PRINT "PROCESSOR TIME =";T

5-21 BR36A

Function CLK$

Purpose:

Format:

Examples:

To provide the time of day as a string.

CLK$

*50 PRINT CLK$

A program including such a statement, when executed, would
contain a printout line indicating time of day in hours
ranging from 1 to 24 and in portions of hours, such as
NN.NNN.

The time of day may also be assigned to a string variable.

*10 LET T$=CLK$
*20 PRINT T$

Function DAT$

Purpose: To provide the calendar date as a string.

Format: DAT$

10/72 5-21.l BR36B

I

Examples: *SO PRINT DAT$

A program including such a statement, when executed, would
contain a printout line indicating the calendar date (month,
date, year), such as

MM/DD/YY

The calendar date may also be assigned to a string variable.

*10 LET A$=DAT$
*20 PRINT A$

Function NUM(X)

Purpose:

Format:

To supply count of number of data elements in response to
request from MAT INPUT statement.

NUM (any alphanumeric character)

Refer to MAT INPUT statement under "Matrices" in this Section
for an example concerning use of NUM(X).

Function SST(X$,Y,Z)

Purpose:

Format:

To extract selected characters of a string.

SST(string variable,
characters)

beginning character, number of

Refer to the use of the LET statement under "Alphanumeric
Data and String Manipulation", in this Section, for an
explanation of the use of this function.

Function. TAB (X)

Purpose: To position data field at indicated character position within
an output line.

5-22 BR36

Format: TAB {expression) , < data to be printed>

Refer to "Spacing Within An Output Line with Functions TAB{X)
and SPC{X)", in this Section, for an explanation of the use
of this function.

Function SPC {X)

Purpose:

Format:

To insert spaces at indicated positions within an output
line.

SPC{expression); <data to be printed>

Refer to "Spacing Within an Output Line with Functions TAB(X)
and SPC(X)", in this Section, for an explanation of the use
of this function.

Function LEN (X$}

Purpose:

Format:

Examples:

To determine the number of characters in a specified string
variable.

LEN(string variable}

*
*
*
*
*

10 READ A$,B$,C$
20 PRINT LEN(A$) ;LEN(B$) ;LEN(C$)
30 DATA LENGTH, OF, STRING
40 END
RUN

results in a printout of

6 2 6

The value of LEN may be assigned to a variable.

*
*

10 LET X=LEN {A$)
20 PRINT" LENGTH OF STRING=" ;X

5-23 BR36

Function LIN (X)

Purpose: To provide the last line number encountered in reading f r0m
or writing to a file.

Format: LIN(file designator)

Examples: * 10 FILES A
* 20 SCRATCH #1
* 30 FOR I=l to 45
* 40 WRITE #1,I;
* 50 NEXT I
* 60 PRINT "LAST LINE WRITTEN IS ";LIN (1)
* 70 RESTORE #1
* 80 PRINT
* 90 FOR I=l to 24
* 100 READ #1,Xl
* 110 PRINT Xl;
* 120 NEXT I
* 130 PRINT
* 140 PRINT "LAST LINE READ IS ";LIN (1)
* 150 END
* RUN

upon execution, the program will produce

LAST LINE WRITTEN IS 50

1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24

LAST LINE READ IS 30

The listing of file A will show that it contains the
following data:

000010 1, 2,
000020 10, 11,
000030 19, 20,
000040 28, 29,
000050 37, 38,

3, 4, 5,
12, 13, 14,
21, 22, 23,
30, 31, 32,
39, 40, 41,

6, 7, 8, 9,
15, 16, 17, 18,
24, 25, 26, 27,
33, 34, 35, 36,
42, 43, 44, 45,

The value of LIN may be assigned to a variable.

* 10 LET N=LIN(l)
* 20 PRINT "LAST LINE READ IS ";N

5-24 BR36

Function ASC(X)

Purpose:

Format:

Examples:

6/72

To provide the numeric value of a specified character or, for
the case of non-printing characters, an abbreviation.

ASC {(character) l
(abbreviation>}

*
*
*
*

10 PRINT "VALUE FOR A IS ";ASC(A)
20 PRIN'l' "VALUE FOR CR IS ";ASC(CR)
30 END
RUN

which results in

VALUE FOR A IS 65
VALUE FOR CR is 13

The value of ASC may be assigned to a variable.

* 10 LET X=ASC(A)
* 20 PRINT "VALUE FOR A IS ";X

The conversion equivalents for characters
characters are listed in the table "Numeric
this section.

5-25

and non-printing
Code Table" in

BR36A

Function STR$(N)

Purpose: To produce a string corresponding to a value of a number
represented by an expression.

Format: STR$ (expression)

Examples: The value of STR$ may be assigned to a string variable

6/72

*10 LET X$=STR$(N)

or may be used directly

*20 PRINT STR$(N)

where N is a number, STR$ converts N to a string containing
the same digits.

*10 LET N=77.233
*20 LET X$=STR$(N)
*30 LET Y$=STR$(63)
*40 PRINT X$;Y$
*50 END

when executed, the program results in

77.233 63

Use of STR$ implies placement of the string right-justified
in the smallest zone into which it will fit. Blanks will
occupy the remaining character positions of the zone.

5-25.l BR36A

Function VAL(S$)

Purpose: To produce a numeric value corresponding to the value of a
string represented by a string variable.

Format: VAL (string variable)

Examples: The value of VAL may be assigned to a variable

*10 LET A=VAL(S$)

or may be used as an element of a numeric expression

*20 LET Al=2*VAL(S$)
*30 PRINT 3*VAL(S$)+A+Al

The string variable of VAL must be a valid constant. The
program

*10 LET A$="12345"
*20 LET B$="12.95"
*30 LET C=VAL (A$)
*40 PRINT C;VAL (B$)
*50 END

when executed, results in

12345 12.95

Function TST{S$)

Purpose: To produce a 1 as output if a string represented by a string
variable can be interpreted as a number, or produce a 0 if
the string cannot be interpreted as a number.

Format: TST (string variable)

Examples: The value of TST may be assigned to a variable

6/72

*10 LET T=TST{S$)

or may be used as an element of a numeric expression

*20 PRINT VAL{S$)*TST{S$)
*40 IF TST{S$)=0 THEN 50

The program

*10 LET A$="49"
*20 LET T=TST{A$)
*30 IF T=O THEN 50
*40 PRINT VAL{A$)
*50 END

when executed, results in

49

5-25.2 BR36A

Function HPS(X)

Purpose: To provide a horizontal print position of the next field to
be transmitted to a specified file.

Format: HPS (file designator)

Examples: The function can be assigned to a variable

6/72

*10 LET P=HPS(O)

or can be used as an element of a numeric expression

*20 PRINT 12+HPS(O)

The program

*10 FOR X=l to 8
*20 PRINT X:
*30 NEXT X
*40 LET A=HPS(O)
*50 PRINT A
*60 END

when executed, results in

1 2 3 4 5 6 7 8 49

The horizontal pr.int position of the file is 49.

*10 FILES OUT!
*20 SCRATCH #1
*30 FOR I=l TO 5
*40 WRITE #1,I:
*SO NEXT I
*60 PRINT "HOR. PRINT POS. OF FILE l=":HPS(l)
*70 END

This program when executed, results in

HOR. PRINT POS. OF FILE 1=44

A listing of file OUTl would show

10 1, 2, 3, 4, 5,

The file designator for function HPS must be a numeric
between zero and 8 inclusive. Zero is interpreted as
the user's terminal.

value
being

The use of function HPS is limited to providing the
horizontal print position for output. If the specified file
is open for input, a zero horizontal print position is
returned.

5-25.3 BR36A

SUBROUTINES

When a particular part of a program is to be performed more than one
time, or possibly at several different places in the overall program,
the part or parts are most efficiently progranuned as subroutines.
Subroutines can be likened to programs within the main program which
permit the user to partition his main program.

The subroutine is entered by the way of a GOSUB statement. For example,

* 90 GOSUB 210

directs the processing to jump to statement 210, the first statement of
the subroutine. The last statement of the subroutine to be executed must
be a RETURN statement directing the processing to return to the earlier
part of the program. For example,

* 350 RETURN

will tell the processing to go back to the first statement numbered
greater than 90 and to continue the program from there.

6/72 5-25.4 BR36A

GOSUB statements may be used within subroutines to branch to still other
subroutines. The following nonsense program illustrates the technique:

* 10 READ L
* 20 GOSUB 50

* 30 PRINT A,B ,C,

* 40 STOP
* 50 REM THIS IS SUBROUTINE 1
* 60 LET A = 5
* 70 GOSUB 100
* 80 LET B = 10
* 90 RETURN
* 100 REM THIS IS SUBROUTINE 2

* llO LET C 15
* 120 FOR I = 1 TO L
* 130 LET C = I*C

* 140 NEXT I
* 150 RETURN
* 160 DATA 5

* 170 END

Statement 20 jumps the processing to Subroutine 1. Statement 70, in
turn, transfers processing from Subroutine 1 to Subroutine 2. Statement
150 then returns the processing to the most recent point of departure -
statement 80. When statement 90 is encountered, processing is returned
to statement JO. Statement 40 prevents the program from falling back
into Subroutine 1 again and the program is terminated.

LOOPS

Frequently, there are operations in programming that must be repeated
many times; therefore, some statern,ents within a program must be executed
many times. This repetition of a set of statements is referred to as a
loop. For example, if a table were required of the first 100 positive
integers and their square roots, it could be obtained by this program.

*
*

*
*
*

10 PRINT 1, SQR(l)
20 PRINT 2, SQR (2)

990 PRINT 99, SQR(99)
1000 PRINT 100, SQR(lOO)
1010 END

By means of two BASIC statements, a programming loop can be written that
will accomplish the same as the program with 101 statements but in only
four statements; namely,

*
*
*
*

10 FOR X = 1 TO 10 0
20 PRINT X, SQR(X)
30 NEXT X
40 END

5-26 BR36

The FOR statement denotes the beginning of the loop, and it specifies
the range (1 to 100) for the given variable· (X) and in unit steps
(implied step-size of 1 when STEP is not given) as the program keeps
passing through the loop. If the steps were to be increments of other
than 1, then statement 10 would include the-word STEP followed by the
required size. If the increments were, say 2, then the statement would
be written as

* 10 FOR X 1 TO 100 STEP 2

The NEXT
system to
each pass
specified
system to

statement (statement 30) terminates the loop and
statement 10, with the statement between being
through the loop. When the loop has been
number of times (100, in the example), then it
the statement after the NEXT statement (statement

returns
executed
executed
directs
40) •

the
for
the
the

The program loop described above is a simple one. The FOR and NEXT
statements can be used effectively in more complex problems wherever
iterations are required. For example, if integration of a function is
required, the FOR statement can be used to define limits and set the
count of iterations through the loop. Computation statements can then be
made and the NEXT statement used to repeat the iteration until the count
has been achieved.

It is possible, as well as useful, to have loops within loops. However,
a loop cannot cross another loop. To illustrate:

This method of creating loops is allowed:

[

FORY

NE~T Y

For each pass through the X loop,

the Y loop is executed the

specified number of times.

t-------NEXT X

For example, if the X loop had a range of 5 and the Y loop a range of
10, then for each pass through the X loop the Y loop is executed 10
times. When the X loop has been executed 5 times, the Y loop will have
been executed 50 times (i.e., 10 Y passes per 1 X pass).

5-27 BR36

This method is also allowed:

r----FOR X

~~~)z 
FOR W 
NEXT W 
NEXT Y 

C FOR Z 
NEXT Z 

---NEXT X 

END 

This method is not allowed: note the cross-over of the loops: 

~
FOR X 
FOR Y 
NEXT X 
NEXT Y 

Loops may also be created within a program by the use of GOTO and READ 
statements. If a READ statement contains a variable to which the user 
wishes to assign more than one value, a GOTO statement will direct the 
program to loop back to the READ statement and assign another value. 

The loop will be performed as many times as there are values available 
in a DATA statement. When the values have all been assigned, execution 
of the program is terminated and the message OUT OF DATA is printed. 

The following sample program illustrates the use of a GOTO-READ loop: 

10 READ A,B,D,E 
15 LET G = A*E-B*D 
20 IF G = 0 THEN 65 
30 READ C,F 
37 LET X = (C*E-B*F)/G 
42 LET Y = (A*F-C*D)/G 
55 PRINT X,Y 
60 GOTO 30 
65 PRINT "NO UNIQUE SOLUTION" 
70 DATA 1,2,4 
80 DATA 2,-7,5 
85 DATA 1,3,4,-7 
90 END 

5-28 BR36 



This program has assigned one set of values to the variables A, B, D, E, 
but three values each to the variables C and F. Therefore, the solution 
should provide six answers. To achieve multiple answers, a loop is 
created by the way of statement 60. Here the program is directed back to 
statement 30 to assign new values to C and F from the data block. 

The program and the resulting run would appear as follows: 

* 10 READ A,B,D,E 
* 15 LET G=A*E-B*D 
* 20 IF G = 0 THEN 65 
* 30 READ C,F 
* 37 LET X = (C*E-B*F)/G 
* 42 LET Y = (A*F-C*D)/G 
* 55 PRINT X,Y 
* 60 GOTO 30 
* 65 PRINT "NO UNIQUE SOLUTION" 
* 70 DATA 1,2,4 
* 80 DATA 2,-7,5 
* 85 DATA 1,3,4,-7 
* 90 END 
* RUN 

4 
0.6666667 
-3.666667 

-5.5 
0.1666667 
3,8333333 

OUT OF DATA IN 30 

LISTS AND TABLES 

Often in the writing of a program the need arises to make use of a list 
of numbers. The user will find it most advantageous to give the list a 
single variable name rather than provide separate variables for each 
number in the list. For example, if 25 salesmen were to be listed in a 
program, the list could be called S and the salesmen would be 
represented by Sand a subscript, ranging from S(l) to S(25). Thus S(5) 
would represent the fifth salesman in list S and S(25) would represent 
the 25th or last salesman in the list. The user may also find the need 
to make use of tables in his programs. Here again, a single variable 
name rather than separate variables for each entry of a table is most 
convenient. For example, P(3,J) would represent row 3, column J in table 
P; table P could be a 5 by 10 array. P(S,10) represents the entire 
table and could be dimensioned as such in a DIM statement. 

10/72 5-29 BR36B 

I 



Lists and tables thus permit the user to enter groups of numbers into 
his program that are to be worked upon concurrently. Such programs can 
be used over and over again, with the user updating the data each time 
he uses the program. 

The usefulness of employing a list in a program can be illustrated by an 
example. A brush salesman has 10 kinds of brushes he carries in his 
sample case. At the end of the day, he wishes to compute the dollar 
value of the orders he has taken. The prices of the 10 brushes are as 
follows: 

0.50, 1.75, 2.25, 2.75, 3.45, 4.00, 4.25, 4.75, 5.00, 5.25 

In writing his program, the salesman enters his quantity of sales for 
individual brushes and then asks for a printout of total sales. 

* 10 DIM P ( 10) 

* 20 FOR I = 1 TO 10 

* 30 READ P (I) 
* 40 NEXT I 

* 50 LET S = 0 
* 55 FOR I = 1 TO 10 
* 60 READ B 

* 70 LET S = s + B * p (I) 

* 75 NEXT I 
* 80 PRINT "TOTAL SALES = $" S 
* 90 DATA 0.50, 1. 75' 2.25, 2.75, 3.45 
* 100 DATA 4.00, 4.25, 4.75, 5.00, 5.25 
* 110 DATA 0,5,7,3,12 
* 120 DATA 25,15,30,10,35 

* 130 END 

At the end of each work day, the salesman updates DATA statements 110 
and 120 to reflect his orders and obtain new sales totals. 

The use of tables is simply the extension of the use of lists. Refer to 
Appendix D for a sample program using both a list and a table. 

The user should be aware of the need to dimension a list or table to at 
least the minimum of the subscript value. But it may be expedient to 
dimension somewhat generously over the minimum to permit changes to an 
existing program. For example, the brush salesman would do well to 
change statement 10 in his program to: 

* 10 DIM P(25) 

5-30 BR36 



This will enable him to use his program if he adds up to 15 additional 
kinds of brushes to his line. 

No harm will be done if extra large dimensions are defined in DIM 
statements, but space in computers is limited and a realistic dimension 
is in the best interest of all users of the time-sharing system. 

ALPHANUMERIC DATA AND STRING MANIPULATION 

BASIC has the ability to manipulate alphanumeric information in addition 
to numeric data. Data consisting of alphanumerics and certain, special 
characters can be treated as if it were numeric data. 

A sequence of alphanumeric data is referred to as a "string"; the string 
size, in turn, is limited to 132 valid characters. Initially, space for I 
20 characters is allocated; the space is then expanded if space for more 
characters is required. Manipulation of a string is by means of a 
"string variable", created by following any permissible BASIC variable 
with the character $. For example, 

A$,Kl$,X5$ 

are valid string variables. Manipulation, incidentally, should not be 
interpreted as meaning arithmetic operations; such operations cannot be 
performed on string variables. 

The use of alphanumeric data and string manipulation are restricted to 
certain BASIC statements. The following is a list of these statements, 
each accompanied by explanation of alphanumeric data use and string 
manipulation as applicable. The use of quotes to enclose strings is 
recommended where doubt exists as to their use; superfluous quotes will 
be ignored by the system. 

6/72 

e DIM 

A user may set up a list of allied strings as a one-dimensional 
array. The DIM statement must then be used to reserve space. For 
example, 

* 10 DIM A$(15) ,B$(25) 

Space for fifteen 20-character strings are then reserved by A$ 
and twenty-five 20-character strings by B$. The user may then 
select particular strings within a string list; for example, 
A$(4) would be the fourth string in the A$ list and B$(6) the 
sixth string in the B$ list. 

5-31 BR36A 



I 

I 

6/72 

e LET 

The LET statement may be used to assign the contents of one 
string variable to another string variable, assign a string 
constant to a string variable, concatenate strings, and extract 
selected characters of a string. Quotes must enclose any 
assigned string constant. An ampersand (&) is used to indicate 
string concatenation. 

The statement 

*10 LET R$=T$ 

assigns the contents of the string T$ to R$. 

The statement 

*10 LET G$ = "THIS IS A STRING" 

assigns the string, THIS IS A STRING, to G$. 

String concatenation is limited within one LET statement to two 
string variables or one string constant and one string variable. 

The statements 

*10 LET A$ = "JOHN DOE " 
*20 LET B$ = "EMPLOYEE NUMBER 12345" 
*30 LET C$ = A$ & B$ 
*40 PRINT C$ 

or 

*10 LET A$ = "JOHN DOE " 
*20 LET C$ = A$ & "EMPLOYEE NUMBER 12345" 
*30 PRINT C$ 

when executed, will produce the printout 

JOHN DOE EMPLOYEE NUMBER 12345 

Extraction of selected characters of a string is achieved by use 
of the substring extraction function, which has the general 
format 

SST (string variable, beginning character, number of characters) 

where 

1. String variable has been assigned contents of a string 

2. Beginning character is numeric value to indicate 
position of character with which to begin extraction 

3. Number ·value of characters to extract 

5-32 BR36A 



Character positions of a string are numbered from left to right, l 
through 132. Based on three arguments supplied to the SST function, a 
substring will be extracted and stored left justified in the string 
variable specified to the left of the equal sign of the LET 
statement. Blanks within a string, of course, are considered as 
characters when the character count is made. 

The statements 

*10 
*20 
*30 
*40 
*SO 
*60 
*70 

LET A$ = 
LET B$ = 
LET C$ 
LET D$ = 
PRINT B$ 
PRINT C$ 
PRINT D$ 

"THIS IS A DEMONSTRATION OF THE SUBSTRING FUNCTION" 
SST(A$,l,10) 
SST(A$,ll,14) 
SST(A$,25,25) 

upon program execution, will produce printouts of 

THIS IS A 
DEMONSTRATION 
OF THE SUBSTRING FUNCTION 

• IF-----THEN or IF-----GOTO 

Strings and string variables may be manipulated with these statements 
also. Only one string variable is permitted on each side of the 
relational symbol and the string must be eRclosed by quotes. 
Relational symbols indicate relation in regard to alphabetic order. 

Examples are as follows: 

* 10 IF G$ = "THIS IS A STRING" THEN 30 

* 10 IF G$ > H~ GOTO 30 

* 10 IF "MAY" < >M$ THEN 30 

e CHANGE 

The change statement may be used to convert string characters to 
equivalent numeric code or vice versa. 

The process involves two lists, one numeric, the other a string 
variable. When converting numeric codes to a character string, the 
numeric list is to contain the valid numeric equivalent of a single 
character in each element. Given the desired number of items to 
convert, the CHANGE conunand will perform the conversion and 
concatenate the resulting characters into the string variable. 

In changing from a character string, the cormnand stores 
numeric code for each character into the elements of 
array. 

6/72 5-33 

the related 
the numeric 

BR36A 



I 

The following table lists the string characters and their equivalent 
numeric code. 

Numeric Code Table 

String Code No. String Code No. 
Characters (decimal) Characters (decimal) 

(blank) 32 @ 64 
• 33 A 65 (97) . 
" 34 B 66 (98) 
# 35 c 67 (99) 
$ 36 D 68 (100) 
% 37 E 69 (101) 
& 38 F 70 (102) 
• 39 G 71 (103) . 
( 40 H 72 (104) 
) 41 I 73 (105) 

* 42 J 74 (106) 
+ 43 K 75 (107) 

44 L 76 (108) 
45 M 77 (109) . 46 N 78 (110) 

I 47 0 79 (111) 
0 48 p 80 (112) 
1 49 Q 81 (113) 
2 so R 82 (114) 
3 51 s 83 (115) 
4 52 T 84 (116) 
5 53 u 85 (117) 
6 54 v 86 (118) 
7 55 w 87 (119) 
8 56 x 88 (120) 
9 57 y 89 (121) 

58 z 90 (122) 
59 .[ 91 

< 60 \ 92 
61 ] 93 

> 62 94 
? 63 

Numerics in parentheses indicate lower case 

Additional symbols useful on output are: 

(backward arrow)95 LF (line feed) 10 
EOT (end of transmission)4 CR (carriage return)13 
BELL (rings bell in teletype)? RUB-OUT (tape use only)l27 

Notes: 1. This is not a complete list there are 128 characters 

6/72 

numbered 0 through 127. Some of these numbers duplicate the 
above (on some teletypes) and some are just spaces. 

2. The EOT character will hang up the phone if it is sent to a 
~odel 33 Teletype. 

5-34 BR36A 



6/72 

The following sample program illustrates the use of the CHANGE 
statement. 

* 10 DIM A(lOO) 
* 20 FOR I = 1 TO 26 
* 30 LET A(I) = 64 + I 
* 40 NEXT I 
* 45 REM AT THIS POINT THE A LIST IS 65,66,67 ••• 90 
* 50 LET A(0)=20 
* 60 REM CONVERT ONLY THE lST 20 CODES IN A 
* 70 REM TO EQUIVALENT CHARACTERS 
* 80 CHANGE A TO B$ 
* 90 PRINT B$ 
* 100 END 
* RUN 

ABCDEFGHIJKLMNOPQRST 

Statement 80 has caused the conversion of numerics 
equivalent string characters. Statement 50 provides a 
the number of chracters the user wishes to convert. 

e READ and DATA 

to their 
count of 

READ and DATA statements are utilized in the conventional manner 
to manipulate alphanumeric data. A READ statement may be a mix 
of both numeric variables or string variables or ,_ may simply 
contain string variables. In turn, the DATA statement will list 
the sequence of data to correspond to the variables listed in 
the READ statement. Strings in a DATA statement must be enclosed 
in quotation marks if they begin with a digit or have an 
embedded conuna. For example, 

* 10 READ A,B$,C,D$,E$,F 

* 90 DATA 85,XYZ,5,"4FG 0 ,"MAY 26,1969°,20 

A leading blank in a string listed in the DATA statement is 
ignored unless the blank and its string _are enclosed in quotes. 

e PRINT 

Strings are printed in the conventional manner; i.e., all forms 
of the PRINT statement are applicable when alphanumeric data is 
to be printed. Fbr example, 

* 10 READ A$,B$,C$ 
* 20 PRINT C$;B$;A$ 
* 30 DATA ING,SHAR,TilIB
* 40 END 
* RUN 

will result in the printout of 

TIME-SHARING 

5-35 BR36A 



e INPUT 

The requirements for handling alphanumeric data in an INPUT 
statement correspond to those of the READ statement in that the 
INPUT statement may be a mix of both numeric and string 
variables or may contain only string variables. For example, 

* 10 INPUT X,Y$,Z 

If the string variable represents a string with an embedded 
comma, the string, when entered during program execution, must 
be enclosed in quotes. A leading blank in a string is ignored 
unless the blank and its string are enclosed in quotes. 

e RESTORE 

Numeric data and string data are stored independently within two 
separate blocks of the BASIC system. The conventional RESTORE 
statement will restore both numeric and string data. If the user 
wishes to restore only numeric data he must use RESTORE followed 
by an asterisk: 

* 10 RESTORE* 

If the user wishes to restore only string data he must use 
RESTORE followed by the $ charact~r: 

* 10 RESTORE$ 

Additional functions pertaining to string manipulation are available. 
These functions are CLK$ (to provide time of day) DAT$ (to provide 
calendar date), SST(X$,Y,Z) (to extract selected characters of a string), 
and LEN(X$) (to determine the number of characters in a specified string 
variable). Refer to "Additional Functions", in this chapter, for details 
concerning use of these functions. 

ASCII DATA FILES 

BASIC provides the means for creating files of data which may be read, 
written on, or otherwise manipulated, all within the confines of the 
BASIC subsystem. A data file to be used as input must be prepared in 
advance and must be saved before it can be used in a program. A data 
file on which output is to be written during execution of a program does 
not necessarily need to have been created before that program is 
executed. If not in the user's catalog of permanent files when needed 
for output, a file will be created as temporary, and may be changed to 
permanent status at log-off time. Refer to "Saving of Temporary Files" 
in this chapter. Data files can be created with or without line numbers. 
Data in a data file may range from zero to an unlimited nwnber of 
characters. 

All files will initially be in read mode. A file can be placed in write 
mode by the use of a SCRATCH # statement. Read mode may be 
re-established by use of the RESTORE # statement. 

5-36 BR36 



Data files are implemented by data file input/output 
supplement BASIC language statements. These data 
statements may be categorized as follows: 

statements which 
file input/output 

10/72 

• File preparation statements 

FILES filename 1, password; •••• ;filename n, password 
FILES user~id/catalogname$password/ ••• / 

filename$password,permissions 
FILE # file designator, "filename, password" 

• File read statements 

READ # file designator, input list 
INPUT # file designator, input list 

• File write statements 

WRITE # file designator, output list 
PRINT # file designator, output list 
PRINT # file designator, USING statement number, output list 

• Matrix input statements 

MAT READ # file designator, matrix input list 
MAT INPUT # file designator, matrix input list 

• Matrix output statements 

MAT WRITE # file designator, matrix output list 
MAT PRINT # file designator, matrix output list 

• File manipulation statements 

SCRATCH # file designator 
RESTORE # file designator 
BACKSPACE # file designator 

• Utility statements 

APPEND # file designator 
MARGIN # file designator, expression 
DELIMIT # file designator, fCcharacter} ) 

\_(abbreviation~ 

IF END # file designator, (THEN} line number 
GOTO 

IF MORE # file designator, (THEN} line number 
GOTO 

5-37 BR36B 

I 

I 



ASCII DATA FILE INPUT/OUTPUT STATEMENT FORMATS 

The formats of data file input/output statements are described below. 
All statements, excepting FILES (used for initial data file 
preparation), make use of a data "file designator", a numeric argument 
whose value is used to select the data file desired for current 
operation. The numeric argument may be an integer, variable (subscripted 
-or unsubscripted) or an arithmetic expression. The file designator is 
always preceded by a pound sign (#). 

5-38 BR36 



File Preparation Statement 

FILES 

Purpose: To establish a relationship between numeric file designators 
and alphanumeric file names. 

Format 1: FILES <filename !,password; ••• ; filename n,password > 

Format 2: FILES< user-id/catalogname$password/ ••• /filename$password, 
permissions> 

Ex~ples: *10 FILES MONDAY;TUESDAY,PASSl 

Rules: 

*10 FILES USERA/CAT1$PC/FIL1$PF1,R,W 

1. Semicolons are used as filename separators. 

2. Filename passwords (if any) are separated from 
by commas in Format l and by commas or dollar 
Format 2. Where the slant (/) does not 
password, a comma may be used. 

filenames 
signs in 

precede a 

3. An asterisk may be used in place of a filename, in which 
case the filename may be filled in via a FILE # statement 
(described below) • 

4. The filename of a data file must be referenced in a FILES 
statement before its, first use within a program. 

5. Multiple FILES statements are permissible within one 
program; one program is limited to eight named files. 

6. Filenames may not be duplicated within a set of FILES 
statements for a given program. 

•• 

I 

I 

7. For Format 2, there is a 3-level limitation of catalog I 
structure ·on files to be accessed. To exceed this 3-level 
limitation, the ACCESS subsystem must be used. See "File 
Access~' in this section. 

6/72 5-39 BR36A 



Remarks: 

• 

6/72 

The FILES statement sets all named data files to read mode. 

Format 1 limits the user to the ability of accessing files 
contained in his own master catalog. Format 2 permits the 
user to access files emanating from his own subcatalogs or 
from catalogs and subcatalogs belonging to another user. The 
user, of course, must know the other user's identification, 
catalog and file names, and any required passwords. General 
or specific permissions for files are established by the 
files originator. Legal permission combinations are: 

READ 
WRITE 
APPEND 
READ,WRITE 
READ,APPEND 

Additional examples of the use of Format 2 may prove helpful. 

*10 FILES USER1/CAT1$PC1/CAT2/CAT3/FIL1$PF1,R,W 

Three levels of catalog structure (the limit) are accessed to 
get to FILl, another user's file. Read and write permissions 
for the file are requested. 

*10.FILES FIL2;USERB/FIL3,R,W;FIL4,PW4 

Three files are being accessed here. FIL2 and FIL4 are 
user's own files. FIL3 is a file originated by a 
identified as USERB. Read and write permissions are 
requested for FIL3. 

*10 FILES/CATU/FIL7;USERD/CATD$PW/FIL8,R,W 

the 
user 

being 

Two files are being accessed here. FIL7 is the user's own 
files located in his catalog CATU. FIL8 is a file originated 
by user USERD. Read and write permissions are being requested 
for FIL8 . 

5-40 BR36A 



File Preparation Statement 

FILE # 

Purpose: 

Format: 

To permit replacement of a data file, 
specification of a data file indicated by an 
FILES statement. 

FILE # <file designator, "filename,pa.ssword" > 

or to 
asterisk 

permit 
in a 

Examples: l. *10 FILES A;B;C 

Rules: 

*50 FILE #3 ,"D" 

Data file c, the third file, is replaced by data file D. 

2. *10 FILES A;*;C 

1. 

2. 

*SO FILE #2 ,"B" 

The asterisk-indicated data file, the second file, is 
specified as data file B. 

The filename may be indicated as follows: 

a. filename and password (if any) enclosed in quotes 

b. string variables (subscripted or unsubscripted) for 
filename and password (if any) 

c. asterisk enclosed in quotes (see Remarks below) 

A file named in a FILE # statement cannot appear 
FILES statement, unless the file has been released 
its use in the FILE # statement. 

in a 
before 

3. One program is limited to eight named files. 

Remarks: When a quote-enclosed asterisk is used as a "filename", the 
associated file designator is invalidated until such time that 
it is validated again by a subsequent FILE statement. For 
example: 

6/72 

*10 FILES A;B;C 

*SO FILE #3 "*" ' 

5-41 BR36A 

I 

I 

I 

I 



In statement 50, file designator 3 now refers to a null 
filename and cannot be used again until it is reset by another 
FILE # statement. 

A colon (instead of a comma) may be used as the separator 
between file designator and "filename". 

A string variable may be substituted for 
string variable contains the filename to 
example: 

*10 FILES MONDAY;TUESDAY;WEDNESDAY 
*20 LET Al$ = "SATURDAY" 
*30 FILE #1 ,Al$ 

5-42 

"filename" if 
be referenced. 

the 
For 

BR36 



File Read Statement 

READ # 

Purpose: To read data from a data file into an input list. 

Format: READ # <file designator, input list> 

Example: *10 FILES MONDAY;TUESDAY 
*20 READ #l,Xl,Al$,X2,A2$ 

Rules: 

If data file MONDAY is represented by 

10 5.6, SEPTEMBER, 100.5, OCTOBER 

at execution time, the real value of 5.6 would be read 
Xl, string SEPTEMBER into Al$, real value 100.5 into X2, 
string OCTOBER into A2$. 

into 
and 

1. The input list must 
variables, numeric or 
subscripted. 

consist 
string, 

of 
any 

delimiter-separated 
of which may be 

2. When an input list contains both numeric 
variables, data elements in the data file must 
one-to-one to ~he input list. 

and string 
correspond 

3. If the file designator is zero, data will be read from 
internal data created by the program's DATA statement(s). 
For reading of internal data, there need not be a 
one-to-one correspondence between numeric and string 
variables in the input list and data file. 

4. A colon may be used in the READ # statement instead of a 
comma to separate file designator from the input list. 

Remarks: The line number of a data file is not part of the data read by 
a file read statement into an input list. At least one blank 
should separate the line number from data in the data file. 

5/73 

If an entire data file is not read because of insufficient 
variables in the input list of a file read statement, the word 
pointer will remain positioned after the last data item read 
until additional file read statement(s) are executed. 

If the first character of an input string is a quote ("), 
string must be terminated by a delimiter following 
trailing quote. The resulting string consists of 
characters enclosed by the quotes. 

the 
the 
the 

Data files to be read by the READ # statement require that 
elements of each data line be delimiter-separated. A delimiter 
may or may not end the line, the decision being left to the 
user. 

5-43 BR36C 

I 



I 

File Read Statement 

INPUT # 

Purpose: To read data from a data file into an input list, treating 
line numbers as data items. 

Format: 

Example: 

Rules: 

INPUT # <file designator, input list> 

*10 FILES MONDAY,TUESDAY 
*20 INPUT #1,A,B,C,D,E 

If data file MONDAY is represented by 

10 1,2,3,4,5 

the statement 

*30 PRINT A;B;C;D;E 

would produce 

101 2 3 4 5 

at program execution time. 

1. The input list must consist of comma-separated variables, 
numeric or string, any of which may be subscripted. 

2. When an input list contains both numeric 
variables, data elements in the data file must 
one-to-one to the input list. 

and string 
correspond 

3. A colon may be used in the INPUT statement instead of a 
comma to separate the file designator from the input list. 

4. If the file designator is zero, at execution time the 
program will ask for data from the user's terminal. In 
response to a question mark, the user supplies data 
elements to correspond to the input list. 

Remarks: Embedded blanks within a line number 
misinterpretation in reading of a line number. 

will cause 

5/73 

If the first character of an input string is a quote ("), the 
string must be terminated by a specified delimiter following 
the trailing quote. The resulting string consists of the 
characters enclosed by the quotes. 

5-44 BR36C 



File Write Statement 

WRITE # 

Purpose: 

Format: 

Example: 

Rules: 

To generate a data file in which each line contains a line 
number and data elements delimiter-separated. 

WRITE # < file designator, output list > 

*10 FILES SUNDAY; MONDAY; ABC 
*20 READ #2 I Xl, Al$ 
*30 SCRATCH #3 
*40 WRITE #3, Xl, Al$ 

If data file MONDAY is represented by 

10 5, OCTOBER, 1969 

the WRITE # statement generates a new data file ABC with 
contents of 

10 5, OCTOBER 

Data file ABC may be a temporary or permanent file. 

1. The output list may consist of numeric or string variables 
(any of which may be subscripted), or arithmetic 
expressions. 

2. The format conventions of the normal PRINT statement apply 
to the WRITE # statement. 

3. If the file designator is zero, the generated data file 
will be written out to the user's terminal upon program 
execution, with no SCRATCH'# statement required. 

4. A colon may be used in the WRITE statement instead 
comma to separate the file designator from the 
list. 

of a 
output 

5. The standard line length is equal to 75 characters, I 
including line numbers. The MARGIN statement can be used 
to adjust a line from 2 to 132 characters. 

Remarks: The WRITE # statement generates a data file that begins with 
line number 10 and increments by 10 for each additional line. 
Each line number is separated from the first data element of 
the line by at least one blank. Data elements, in turn, are 
separated by delimiters (commas or user-specified delimiters). 

6/72 5-45 BR36A 



When the TAB(X) function is used, the line number is included 
in the count for the tab position. 

A data file generated by a WRITE # statement is equivalent to 
a data file saved in the conventional manner; i.e., the file 
can serve as input to other subsystems (e.g., LIST). 

5-46 BR36 



File Write Statement 

PRINT # 

Purpose: 

Format: 

Example: 

Rules: 

To generate a data file which contains no line numbers or 
delimiters on printout. 

PRINT # < file designator, output list> 

*10 FILES SUNDAY;MONDAY;ABC 
*20 INPUT #2,Xl,Al$ 
*30 SCRATCH #3 
*40 PRINT #3,Xl,Al$ 

If data f i 1-e MONDAY is represented by 

5,0CTOBER,1969 

the PRINT # statement generates a new data file ABC with 
contents of 

5 OCTOBER 

1. The output list may consist of numeric or string variables 
(any of which may be subscripted), arithmetic expressions, 
or string constants (literals) in quotes. 

2. The format conventions of the normal PRINT statement apply 
to the PRINT # statement. 

3. If the file designator is zero, the generated data file 
will be printed out on the user's terminal upon program 
execution, with no SCRATCH # statement required. 

4. A colon may be used in the PRINT # statement instead of a 
comma to separate the file designator from the output 
list. 

5. The standard line length is equal to 75 characters 
including line numbers. The MARGIN statement can be used 
to adjust a line from 2 to 132 characters. 

6. No delimiters are created by the PRINT # statement. 

Remarks: The PRINT # and WRITE # statements are utilized in similar 
fashions. The difference lies in the manner in which the 
generated data file is printed out. With the use of the PRINT 
statement, no line numbers or data element delimiters (commas 
or semicolons_) appear. 

6/72 

A data file generated by a PRINT # statement can serve as 
input to other subsystems (e.g., LIST). 

5-47 BR36A 

I 



File Write Statement 

PRINT # USING 

Purpose: 

Format: 

Example: 

Rules: 

To provide the ability to format data written to a data file. 

PRINT # <file designator> , USING< statement number, output 
list> 

where: 

"statement number" is number of a statement 
which contains format control characters 
constants; "output list" consists of 
arguments to be printed in sequential order. 

*10 FILES FORMAT 
*20 SCRATCH #1 
* 30. A 123.45 
*40 B = -3.456 
*50 c = -.017 
*60 PRINT #1, USING 80 ,A,B ,C 
*70 PRINT #1, US ING 90,A,B,C 
*80:DECIMAL FIELDS ###. ## ##.### 
*90 :EXPONENT FIELDS ##. ###tttt ##.###tttt 
*100 END 

* RUN 

DECIMAL FIELDS 123.45 -3.456 
EXPONENT FIELDS 12.345E 01 -3.456E 00 

in the program 
and printable 
conuna-separated 

#. ### 
##.###tttt 

-.017 
-1. 700E-02 

1. The statement nmnber named in a PRINT # USING statement 
points to an "image" statement which formats the line to 
be printed. The image statement is of the form 

statement number: image 

2. The image of an image statement (colon-separated from the 
statement number) consists of format control characters 
and printable constants. 

5-48 BR36 



Remarks: 

3. Format control characters are as follows: 

(apostrophe) - a 1-character field that is filled with 
the first character in an alphanumeric string, regardless 
of string length. 

# (pound sign) - the replacement field for a numeric 
character; each # specifies a space for one digit. 

tttt (four up-arrows) - specifies scientific notation for 
a numeric field (E-format) • 

4. Printable constants are all characters other than format 
control characters. 

The image of an image statement may consist of one or more of 
the following fields: 

integer 
decimal 
exponential 
alphanumeric 
literal 

Refer to "Formatting Line Output" in this Section for details 
concerning use of format control statement. 

Data to be retrieved from a data file via READ # or INPUT # 
statements should not be placed on the file by a PRINT # 
USING statement. Data files containing data formatted by 
PRINT # USING statements are intended for terminal printout 
only by the way of the LIST command. 

5-49 BR36 



• 

Matrix Input Statement 

MAT READ # 

Purpose: To read data from data file into a matrix input list. 

Format: MAT READ # <.file designator, matrix input list> 

Example: *10 FILES A;B 

Rules: 

*20 DIM Ml(3,3) ,M2(5,7) 
*30 MAT READ #l,Ml,M2 

If data file A is represented by 

10 1,2,3, ••••• ,10, 

50 •••••••• 48,49,50, 

Ml will contain the matrix 

1 2 3 
4 5 6 
7 8 9 

M2 will 

10 11 
17 18 
24 25 
31 32 
38 39 

contain 

12 13 
19 20 
26 27 
33 34 
40 41 

the matrix 

14 15 16 
21 22 23 
28 29 30 
35 36 37 
42 43 44 

1. String variables may not be used in the matrix input list. 

2. Matrices in the matrix input list may have their 
dimensions specified in a DIM statement or in the MAT READ 
# statement itself. 

3. When a matrix in the matrix input list is not dimensioned, 
a 10 by 10 matrix is assumed. 

4. Files to be read by a MAT READ # statement must contain 
line numbers. 

5-50 BR36 



5. A colon may be used in the MAT READ # statement instead of 
a conuna to separate the file designator from the matrix 
input list. 

Remarks: If the file designator is zero, internal data is to be read 
from user-supplied DATA statement(s) within the program. 

If there are not enough data elements in a data file to fill a 
designated matrix, the matrix will be filled out with zeros. 

5-51 BR36 



Matrix Input Statement 

MAT INPUT # 

Purpose: To read data from a data file into a matrix input list, 
treating line numbers as data items. 

Format: MAP INPUT # < file designator, matrix input list > 

Example: *10 FILES Ml 
*20 DIM M2(3,3) 

Rules: 

*30 MAT INPUT #l,M2 

If data file Ml contains 

10 1,2,3,4,5,6,7,8,9 

M2 will contain the matrix 

101 
4 
7 

2 
5 
8 

3 
6 
9 

1. String variables may not be used in the matrix input list. 

2. Matrices in the matrix. input list may 
dimensions specified in a DIM statement or 
INPUT # statement itself. 

have their 
in the MAT 

3. When a matrix in the matrix input list is not dimensioned, 
a 10 x 10 matrix is assumed. 

4. A colon may be used in the MAT INPUT # statement instead 
of a comma to separate the file designator from the matrix 
input list. 

Remarks: If the file designator is zero, at execution time the program 
will ask for data from the user's terminal. In response to a 
question mark, the user supplies data elements to correspond 
to the input list. 

10/72 

If there are not enough data elements in a data file to fill a 
designated matrix, the matrix will be filled out with zeros. 

5-51.l BR36B 



Matrix Output Statement 

MAT WRITE # 

Purpose: To write matrices specified in a matrix output list to 
designated data file(s). 

Format: MAT WRITE #<file designator, matrix output list> 

Example: *10 FILES A;B;C 

Rules: 

Remarks: 

*20 DIM Ml(3,3)M2(5,7) 
*30 MAT READ #l,Ml,M2 
*40 SCRATCH #2 
*50 MAT WRITE #2,Ml,M2 

Matrices Ml and M2, read from data file A, are written to data 
file B. 

1. String variables may not be used in the matrix output 
list. 

2. Matrices in the matrix output list 
dimensions specified in a DIM statement; 
dimensioned in a MAT WRITE # statement. 

must 
they 

have their 
cannot be 

3. A colon may be used in the MAT WRITE statement instead of 
a conuna to separate the file designator from the matrix 
output list. 

The MAT WRITE # statement generates a data file that begins 
with line number 10 and increment by 10 for each additional 
line. Each line number is separated from the first data 
element of the line by a blank. 

5-52 BR36 



Matrix Output Statement 

MAT PRINT # 

Purpose: To write matrices ~pecified in 
designated data file which 
delimiters on printout. 

a matrix output 
contains no line 

list to 
numbers 

a 
or 

Format: MAT PRINT # < file designator, matrix output list> 

Example: *10 FILES Ml,M2 

Rules: 

Remarks: 

10/72 

*20 MAT INPUT #l,A(2,3) 
*30 SCRATCH #2 
*40 MAT PRINT #2,A 

If data file Ml is represented by 

1,2,3,4,5,6 

The MAT PRINT # statement generates a new data file M2 which 
consists of 

1 
4 

2 
5 

3 
6 

1. String variables may not be used in the matrix output 
list. 

2. Matrices in the matrix output list 
dimensions specified in a DIM statement; 
dimensioned in a MAT PRINT # statement. 

must 
they 

have their 
cannot be 

3. A colon may be used in the MAT PRINT # statement instead 
of a comma to separate the file designator from the matrix 
output list. 

The MAT PRINT # and MAT WRITE # statements are utilized in 
similar fashions. With the use of the MAT PRINT # statement, 
no line numbers or data element delimiters appear. 

A data file generated by a MAT PRINT # statement can serve· as 
input to other subsystems (e.g., LIST). 

If the file designator is zero, the generated data file will 
be printed out at the user's terminal upon program execution. 

5-52.1 BR36B 



File Manipulation Statement 

SCRATCH # 

Purpose: To place a data file in write mode. 

Format: SCRATCH # <file designator> 

Example: *10 FILES DEBITS;CREDITS 
*20 READ #l,Xl,X2,X3 
*30 SCRATC~ #2 
*40 WRITE #2,Xl,X2,X3 

Data file CREDITS is placed in write mode by SCRATCH # 
statement 30, prior to being written on by WRITE # statement 
40. 

Remarks: A SCRATCH # statement deletes all data previously contained in 
the designated file; i.e., for files created by WRITE #, MAT 
WRITE #, or PRINT # statements. 

If the data file CREDITS is a file not previously created 
saved, the file system will query the user as to 
disposition of the file. 

5-53 

and 
the 

BR36 



File Manipulation Statement 

RESTORE # 

Purpose: To position the data pointer for the designated data file to 
the beginning of the file and permit the file to be read. 

Format: RESTORE # <file designator> 

Examples: 1. *10 FILES A;B;C 
*20 READ #l,Xl,X2,X3 
* 30 RESTORE # 1 
*40 READ #l,Yl,Y2,Y3 

RESTORE # statement 30 permits data from data file A to be 
read again. 

2. *10 FILES A;B;C 
*20 READ #l,Xl,X2,X3 

*SO SCRATCH #1 
*60 WRITE #l,Yl,Y2,Y3 
*70 RESTORE #1 
*80 READ #l,Xl,X2,X3 

RESTORE # statement 70 places data file A in read mode and 
permits data just written to be read. 

Remarks: If a designated data file is in write mode as the result of a 
SCRATCH # statement, a RESTORE # statement repositions the 
data pointer to the beginning of the file and places the file 
in read mode. 

5-54 BR36 



File Manipulation Statement 

BACKSPACE # 

Purpose: To position the data pointer for the designated data file 
backward one delimiter. 

Format: BACKSPACE # <file designator> 

Example: If data file A contains 

10·1,2,3,4,s, 

20 6,7,8,9,10, 

The program 

*10 FILES A;B;C 
*20 READ #l,Xl,X2,X3,X4,XS,X6,X7 
*30 FOR I = 1 to 4 
*40 BACKSPACE #1 
*50 NEXT I 
*60 READ #l,Yl,Y2,Y3,Y4 
*70 PRINT Xl,X2,X3,X4,XS,X6,X7 
*80 PRINT Yl,Y2,Y3,Y4 
*90 END 
*RUN 

will produce 

1 2 3 4 5 6 7 

4 5 6 7 

Remarks: The BACKSPACE # statement places the designated file in read 
mode. 

If the designated file is backspaced past the beginning of the 
file, the data pointer will be positioned to the beginning of 
the file. 

s-ss BR36 



Utility Statement 

APPEND l 

Purpose: To permit data to be added to a designated file. 

Format: APPEND #<file designator> 

Example: *10 FILES A;B;C 
*20 READ #l,Xl,X2,Al$ 
*30 APPEND #2 
*40 WRITE #2,Xl,X2,Al$ 

APPEND # statement 30 places data file B in write mode and 
permits WRITE # statement 40 to append data to data already on 
B. 

Remarks: When the APPEND # statement is executed, the data pointer for 
the designated file will be moved immediately past the last 
data item on the file. The file.is also placed in write mode, 
ready to accept the next WRITE # statement. 

5-56 BR36 



Utility Statement 

MARGIN # 

Purpose: To permit the specification of the rightmost 
position for a designated file. 

character 

Format: MARGIN # <file designator, expression> 

Example: *10 FILES A;B;C 

Rules: 

5/73 

*20 SCRATCH #1 
*30 SCRATCH #2 
*40 MARGIN #1,20 
*50 MARGIN #2,M*N-5 
*60 WRITE #l,Xl,X2,X3,X4 
*70 WRITE #2,Yl,Y2,Y3,Y4 

1. The standard line (record) length for files created by 
WRITE # or PRINT # statements is 75 characters, including 
the line number. By use of the MARGIN # statement, the 
user may explicitly specify a maximum line length for a 
designated file to be any value between 2 and 160 I 
characters. If the specified line length exceeds the 
physical capability of the terminal in use, the result may 
be a character overprint at the end of the line. 

2. A colon may be used in the MARGIN # statement instead of a 
comma to separate the file designator from the expression. 

3. A file designator of zero is interpreted as being the 
user's terminal. 

5-57 BR36C 



Utility Statement 

DELIMIT # 

Purpose: To permit the use of a delimiter other than a comma in a 
designated file. 

Format: DELIMIT #<file designator, 
{

(character) "'\ 
( abbreviationU 

> 

Example: *10 FILES INPUT;OUTPUT 
*20 READ #l,A,B,C,D,E,F 
*30 DELIMIT #2,(LF) 

Rules: 

*40 SCRATCH #2 
*50 WRITE #2,A;B;C;D;E;F 

If data file INPUT contains 

10 1,2,3,4,5,6 

a printout of data file OUTPUT would produce 

10 1 
2 

3 
4 

5 
6 

1. The standard delimiter separating data elements in a data 
file is the comma. The DELIMIT # statement may specify any 
character, or abbreviation for non-printing character(s). 

2. Non-printing character abbreviations (e.g.,CR for carriage 
return; LF for line feed) are those specified by USASCII. 
Refer to Appendix C for a list of octal/USASCII conversion 
equivalents. 

3. A DELIMIT # statement must be used prior to its associated 
READ # or WRITE # statement. 

Remarks: A PRINT # statement will result in the printout of designated 
data without delimiters (or line numbers) regardless of 
whether standard or non- standard delimiters are used. 

5-58 BR36 



Utility Statement 

IF END #----THEN 
or 

IF END #----GOTO 

Purpose: To provide for a means of testing for the end of data when 
reading a data file. 

Format: IF END # <file designator> (THEN"\ 
GOTOj 

<Statement number> 

Example: *10 FILES A;B 
*20 READ #l,Xl,X2,X3 
*30 PRINT Xl,X2,X3, 
*40 IF END #1 THEN 60 
*50 GOTO 20 
*60 PRINT "OUT OF DATA IN FILE A" 
*70 END 
*RUN 

If data file A contains 

10 1,2,3,4,5,6,7, 

20 8,9,10, 

the executed program will produce 

1 2 3 4 5 6 7 8 9 10 0 0 

OUT OF DATA IN FILE A 

Rules: A conuna or a colon may be used in an IF END #---THEN statement 
to separate the file designator from the THEN portion of the 
statement. 

Remarks: If data elements (or string data) of a data file are exhausted 
before the input list in a READ # or MAT READ # statement is 
satisfied, the list will be filled out by zeros (or null) upon 
program execution. 

The IF END #---THEN statement directs the system to go to a 
designated out-of-sequence statement when no more data remains 
on the file. 

5-59 BR36 



Utility Statement 

IF MORE #---THEN 
or 

IF MORE #---GOTO 

Purpose: 

Format: 

To provide for a means of testing to 
least one valid data element remains 
reading the file. 

determine 
on a data 

whether at 
file when 

IF MORE # <file designator> {THEN"'\ <statement number> 
\_GOTOj 

Example: *10 FILES A;B 

Rule: 

*20 READ #l,Xl,X2,X3 
*30 PRINT Xl,X2,X3, 
*40 IF MORE #1 THEN 20 
*50 PRINT "OUT OF DATA IN FILE An 
*60 END 
*RUN 

If data file A contains 

10 1,2,3,4,5,6,7, 

20 8,9,10, 

the executed program will produce 

1 2 3 4 5 6 7 8 9 10 0 0 

OUT OF DATA IN FILE A 

A comma or a colon may be 
statement to separate the 
portion of the statement. 

used 
file 

in an IF MORE 
designator from 

# ---THEN 
the THEN 

Remarks: If data elements (or string data) of a data file are exhausted 
before the input list of a READ # or MAT READ # statement is 
satisfied, the list will be filled out by zeros (or null) upon 
program execution~ 

The IF MORE #---THEN statement directs the system to go to a 
designated out-of-sequence statement when more data remains on 
the file. 

5-60 BR36 



BINARY FILES 

BASIC permits the user to perform file input/output with files made up 
in binary format. This mode of operation presupposes a sophisticated 
user whose knowledge encompasses the makeup of binary-type files and who 
has the need to create programs that have special applications. · 

The use of binary input/output, as contrasted with the use of 
alphanumeric (ASCII) input/output, provides the user with advantages ,in 
program execution speed and file space compactness. However, data cannot 
be placed on a binary file directly from the user's terminal, nor can a 
binary file be listed (by means of the LIST command) so as to verify its 
content. 

Binary files can be either sequential or random and can be written, 
read, backspaced, scratched, and restored. Data can be appended to the 
end of a sequential binary file. Any word on a random binary file is 
accessible for reading or writing without the need for traversing the 
file space which precedes the word. When a random binary file is to be 
created, file space must be obtained by means of the ACCESS subsystem 
(see "File Access" below}. 

A word pointer is maintained in the file control block of each binary 
file so as to indicate the next word of the file to be read or written. 
Each binary file consists of a number of words, zero through n-1. For 
sequential files, the word pointer is initially set to word zero and 
moved forward with each READ: and WRITE: statement. The word pointer can 
be moved backward by means of the RESTORE:, SCRATCH:, and BACKSPACE: 
statements. This same forward and backward movement of the word pointer 
through statement manipulation exists for random files, with the 
exception that the user can alter the position of the word pointer by 
means of an additional statement--SET:. If the user wishep to begin 
reading and writing of a random file at a position other than word zero, 
he can position the word pointer to any position within the file with 
the SET: statement and begin his reading or writing at that point. The 
current position of the word pointer for a random file and the current 
length of a ~andom file can be deteimined by use of functions LOC and 
LOF. 

Each numeric data element on a binary file occupies one word and is in 
single-precision, floating-point format. Alphanumeric strings, which may 
vary in length from 1 to 132 characters, are placed on binary files with 
a string control word on either end of the string. Each string will thus I 
occupy two words for control, plus enough words to contain the actual 
string of characters at four characters per word. The user must exercise 
caution in manipulating the word pointer on random binary files 
containing strings. A SET: statement could inadvertently position the 
word pointer to the middle of a string, causing an error in the next 
read or write. The user must take care to position the word pointer to a 
leading string control word and see to it that extended strings do not 
destroy data already on a file. 

6/72 5-61 BR36A 



I 

All sequential files will initially be in read mode. 
placed in write mode by the use of SCRATCH: statement. 
re-established by the use of the RESTORE: statement. 
does not apply to random files, which may be read or 
point at any time. 

A file can be 
Read mode may be 
Read/write mode 
written at any 

Bin~ry files are implemented by binary file input/output statements 
which supplement BASIC language statements. These binary file 
input/output statements are categorized as follows and, unless 
ind~cated, apply to both sequential and random binary files: 

6/72 

• File preparation statements 

FILES filename l,password; •••• ;filename n,password 

FILES user-id/catalogname$password/ ••• / 
filename$password,permissions 

FILE: file designator, "filename,password" 

• File read statement 

READ: file designator,input list 

• File write statement 

WRITE: file designator,output list 

• Matrix input statement 

MAT READ: file designator,matrix input list 

• Matrix output statement 

MAT WRITE: file designator,matrix output list 

• File manipulation statements 

SCRATCH: file designator 

RESTORE: file designator 

BACKSPACE: file designator 

• Utility statements 

APPEND: file designator 
(for sequential files only) 

IF END: file designator {THEN } line number 
GOTO 

IF MORE: file designator {THEN} line number 
· GOTO 

SET: file designator TO expression 
(for random files only) 

5-62 BR36A 



The current positibn of the word pointer for a random binary file or its 
current length can be determined by the use of special functions. These 
functions are as follows: 

• Word pointer location 

LOC(file designator) 

• File length 

LOF(file designator) 

Upon program execution, these functions contained within a program cause 
the printout of integers, indicating the desired word numbers. 

Note 

For all practical purposes, the IF END: and IF MORE: 
statements are applicable to sequential files only. Random 
files have no logical end-of-data; the entire random file 
supposedly contains good data and is accessible at any point 
for reading and writing. Thus, if a random file has a current 
size of three blocks (960 words) and has data written in only 
the first 10 words, the IF END: and IF MORE: statements cannot 
be used to determine when the end of the first 10 words has 
been reached. The remaining 950 words are accessible data 
despite the fact that they are empty. 

BINARY FILE INPtJr/OUTPUT STATEMENT FORMATS 

The formats of binary file input/output statements are described below. 
All statements, excepting FILES (used for initial binary file 
preparation) make use of a "file designator", a numeric argument whose 
value is used to select the binary file desired for current operation. 
The numeric argument may be an integer, a variable {subscripted or. 
unsubscripted), or an arithmetic expression. The file designator is 
always preceded by a colon. 

5-63 BR36' 



I 

File Preparation Statement 

FILES 

Purpose: To establish a relationship between numeric file designators 
and alphanumeric file names. 

Format l: FILES < filename 1, password; ••. ; filename n, password > 

Format 2: FILES< user-id/catalogname$password/ .••. / 
filename$password,permissions> 

Examples: *10 FILES MONDAY;TUESDAY,PASSl 

I *10 FILES USERA/CAT1$PC/FIL1$PF1,R,W 

Rules: 

I 

I 
Remarks.: 

6/72 

1. Semicolons are used as filename separators. 

2. 

3. 

Filename passwords (if any) are separated from 
by commas in Format 1 and by commas or dollar 
Format 2. Where the slant (/) does not 
password, a comma may be used. 

An asterisk may be used in place of a filename, 
case the filename may be filled in via a FILE: 
(described below). 

filenames 
signs in 

precede a 

in which 
statement 

4. The filename must be referenced in a FILES statement 
before its first use within a program. 

5. Multiple FILES statements are permissible within one 
program; one program is limited to eight named files. 

6. Filenames may not be duplicated within a set of FILES 
statements for a given program. 

7. For Format 2, there is a 3-level limitation of catalog 
structure on files to be accessed. To exceed this 3-level 
limitation, the ACCESS subsystem must be used. See "File 
Access" in this section. 

The FILES statement sets all named sequential binary and 
ASCII files to read mode. 

5-64 BR36A 



6/72 

Format 1 limits the user to the ability of accessing files 
contained in his own master catalog. Format 2 permits the 
user to access files emanating from his own subcatalogs or 
from catalogs and ·subcatalogs belonging to another user. The 
user, of course, must know the other user's identification, 
catalog and file names, and any required' passwords. General 
or specific permissions for files ·are established by the 
files' originator. Legal permission combinations are: 

Read 
Write 
Append 
Read,Writ~ 
Read, Append 

Additional examples of the use of Format 2 may prove helpful. 

*10 FILES USER1/CAT1$PC1/CAT2/CAT3/FIL1$PF1,R,W 

Three levels of catalog structure (the limit) are accessed to 
get to FILl, another user's file. Read and write permissions 
for the file are requested. 

*10 FILES FIL2;USERB/FIL3,R,W;FIL4,PW4 

Three files are being accessed here. FIL2 and FIL4 are 
user's own files. FIL3 is a file originated by a 
identified as USERB. Read and write permissions are 
requested for FIL3. 

*10 FILES/CATU/FIL 7; USERD/CATD:$PW/FIL8, R, W 

the 
user 

being 

Two files are being accessed here. FIL7 is the user's own 
files located in his catalog CATU. FIL8 is a file originated 
by user USERD. Read and write permissions are being requested 
for FIL8. 

5-64.l BR36A 





File Preparation Statement 

FILE: 

Purpose: 

Format: 

To permit replacement of a binary file by another 
filename, or to permit specification of a binary 
indicated by an asterisk in a FILES statement. 

FILE: <file designator, "filename, password" > 

binary 
file 

Examples: 1. *10 FILES A;B;C 

Rules: 

*SO FILE: 3, "D" 

Binary file C, the third file, is replaced by binary file 
D. 

2. *10 FILES A;*;C 

l. 

*50 FILE: 2,"B" 

The asterisk-indicated binary file, the second file, is 
specified as binary file B. 

The filename may be indicated as follows: 

a. filename and password (if any) enclosed in quotes 

b. string variables (subscripted or unsubscripted) for 
filename and password (if any) 

c. asterisk enclosed in quotes {see Remarks below) 

2. A file named in a FILE: statement cannot appear in a FILES 
statement, unless the file has been released before its 
use in the FILE: statement. 

3. One program is limited to eight named files. 

Remarks: When a quote-enclosed asterisk is used as a "filename", the 
associated file designator is invalidated until such time that 
it is validated again by a subsequent FILE statement. For 
example: 

*10 FILES A;B;C 

*50 FILE: 3,"*" 

6/72 5-65 BR36A 

I 



In statement 50, file designator 3 now refers to a null 
filename and cannot be used again until it is reset by another 
FILE: statement. 

A colon (instead of a comma) may be used as the separator 
between file designator and "filename". 

A string variable may be substituted for 
string vari~ble contains the filename to 
example: 

*10 FILES MONDAY;TUESDAY;WEDNESDAY 
*20 LET Al$ = "SATURDAY" 
*30 FILE: l,Al$ 

5-66 

"filename" if 
be refe~enced. 

the 
For 

B~36 



File Read Statement 

Purpose: To read binary data from a permanent binary file into an input 
list. 

Format: READ: <file designator, input list> 

Example: The binary file SUNS contains a list of the names of 
basketball players, with each player's score average following 
his name. The beginning of the file (the - first three names) 
could appear as follows: 

Data Word Octal Representation 

Control word 0 001600000700 
HAWK 1 110101127113 
INS 2 111116123040 
Control word 3 001400000700 

30 4 012740000000 
Control word 5 001600000400 
WALK 6 127101114113 
Control word 7 001400000440 

20 8 012500000000 
Control word 9 001600001000 
GOOD 10 107117117104 
RICH 11 122111103110 
Control word 12 001400001000 

25 13 012620000000 

The fol lowing program will produce the names 
three players and their score averages. 

*10 FILES SUNS 
*20 FOR I = 1 to 3 
*30 READ:l,N$,S 
*40 PRINT USING 60,N$,S 
*50 NEXT I 
*60:'LLLLLLLLLLL ### 
*70 PRINT 
*80 PRINT II MORE TO COME" 
*90 END 
*RUN 

HAWKINS 
WALK 
GOODRICH 

MORE TO COME 

30 
20 
25 

5-67 

of the first 

BR36 



Rules: 

1. 

2. 

The input list · must 
variables, numeric or 
subscripted. 

consist 
string, 

of 
any 

delimiter-separated 
of which may be 

When an input list contains both numeric 
variables, data elements in the binary 
correspond one-to-one to the input list. 

and 
file 

string 
must 

3. A colon may be used, instead of a comma, to separate the 
file designator from the input list. 

Remarks: If an entire binary file is not read because of insufficient 
variables in the input list file read statement, the word 
pointer will remain positioned after th.e last data item read 
until additional file read statement(s) are executed. 

5-68 BR36 



File Write Statement 

WRITE: 

Purpose: To write binary data on a permanent binary file. 

Format: WRITE: <file designator,output list":> 

Example: 

Rules: 

*10 FILES PHXl 
*20 Hl = H2 = 5 
*30 HJ = 6\H4 = 6.2 
*40 Sl$="BINARY" 
*SO S2$="DATA" 
*60 SCRATCH: 1 
*70 WRITE:l,Hl,H2,H3,H4,Sl$,S2$ 
*80 END 

Upon program execution, the following data would be placed in 
binary file PHXl. 

Data Word Octal ReEresentation 

5 0 006500000000 
5 1 006500000000 
6 2 006600000000 
6.2 3 006614631463 
Control word 4 001600000600 
BINA 5 102111116101 
RY 6 122131040040 
Control word 7 001400000600 
Control word 8 001600000400 
DATA 9 104101124101 
Control word 10 001400000400 

The file's word pointer would be at word 11 of the file. 

1. The output list may consist of numeric or string variables 
(any of which may be subscripted), or arithmetic 
expressions. 

2. The format conventions of the normal PRINT statement apply 
to the WRITE: statement. 

3. A colon may be used in the WRITE: statement instead 
comma to separate the file designator from the 
list. 

of a 
output 

Remarks: The word pointer for the referenced binary file is incremented 
by one after each word is written on the file. 

5-69 BR36 



Matrix Input Statement 

MAT READ: 

Purpose: To read· data from permanent binary file into a matrix input 
list. 

Format: MAT READ: <file designator ,matrix input list > 

Example: Assume that binary file INTEGERS contains the numbers 0 
through 10 in its first 11 words. The following program can be 
used to read data from file INTEGERS into a matrix input list. 

Rules: 

*10 FILES*; INTEGERS 
*20 DIM MS ( 6) 
*30 READ:2,Nl,N2 
*40 MAT READ:2,MS 
*50 MAT PRINT MS 
*60 END 

Upon execution, the program would produce the following 
printout: 

2 

3 

4 

5 

6 

7 

1. String variables may not be used in the matrix input list. 

2. Matrices in the matrix input list must 
dimensions specified in a DIM statement or 
READ: statement itself. 

have their 
in the MAT 

3. When:a matrix in a matrix input list is not dimensioned, a 
10 by 10 matrix is assumed. 

4. A colon may be used, instead of a conuna, to separate the 
file designator from the matrix input list. 

Remarks: If there are not enough data elements in a binary file to fill 
a designated matrix, the matrix will be filled out with zeros. 

s-1·0 BR36 



Matrix Output Statement 

MAT WRITE: 

Purpose: To write matrices specified in a matrix output list to 
designated permanent binary file. 

Format: MAT WRITE: <file designator,matrix output list~ 

Example: Assume that binary file ABCD has been created via ACCESS as a 
random file. The following program can be used to write a 
matrix output list to file ABCD. 

Rules: 

* 10 FILES ABCD 
* 2 0 DIM T ( 2 I 3) 
*30 T(l,l)=l\T(l,2)=2\T(l,3)=3 
*40 T(2,1)=4\T(2,2)=5\T(2,3)=6 
*50 SCRATCH:! 
*60 SET:l TO 4 
*70 MAT WRITE:l,T 
*80 END 

Statement 60 could not be used if ABCD was not random. 

Upon execution, file ABCD will contain matrix T as follows: 

Data 

1 
2 
3 
4 
5 
6 

Word 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Octal Representation 

400000000000 
400000000000 
400000000000 
400000000000 
002400000000 
004400000000 
004600000000 
006400000000 
006500000000 
006600000000 

1. String variables may not be used in the matrix output 
list. 

2. 

3. 

4. 

Matrices in the matrix output list 
dimensions specified in a DIM statement; 
dimensioned in a MAT WRITE: statement. 

. When a matrix in the matrix output 

must have their 
they cannot be 

list is not 
dimensioned, a 10 by 10 matrix is assumed. 

A colon may be used, instead of a conuna, to separate the 
file designator from the matrix output list. 

5-71 BR36 



File Manipulation Statement 

SCRATCH: 

Puri;>ose: To place a binary file in write mode. 

Format: SCRATCH: <file designator > 

Example: 

Remarks: 

*10 FILES ABC;XYZ 
*20 READ:l,Xl,X2,X3 
*30 SCRATCH:l 
*40 WRITE:l,Xl,X2,X3 

Binary file ABC is placed in write mode by SCRATCH: statement 
30, prior to being written on by WRITE: statement 40. 

A SCRATCH: statement deletes all data previously contained 
the designated file; i.e., data written by WRITE: or 
WRITE: statements. 

in 
MAT 

The SCRATCH: statement can be used with both sequential and 
random binary files. For sequential files, the word printer is 
set to zero and the file is placed in write mode. For random 
files, the entire £ile is filled with floating.point zeros and 
the word pointer is set to zero. The read/write mode does not 
apply to random file; therefore, the SCRATCH: statement need 
not be utilized with a random file unless the user wishes to 
clear the entire random file to zeros. 

5-72 BR36 



File Manipulation Statement 

RESTORE: 

Purpose: To position the word pointer for the designated binary file to 
the beginning of the file and permit the file to be read. 

Format: RESTORE: <file designator > 

Example: 

*10 FILES HUGO 
*20 Rl=8.8 
*30 R2=9.9 
*40 R3=10.10 
*50 Rl$="THIS LINE SHOULD APPEAR TWICE" 
*60 SCRATCH:l 
*70 WRITE:l,Rl,R2,R3,Rl$ 
* 80 RESTORE: 1 
*90 FEAD:l,Sl,S2,S3,Sl$ 
*lGC PRINT Rl$;Rl;R2;R3 
*110 PRINT Sl$;Sl;S2;S3 
* 120 END 
*RUN 

will produce the printout 

THIS LINE SHOULD APPEAR TWICE 8.8 9.9 10.l 
THIS LINE SHOULD APPEAR TWICE 8.8 9.9 10.l 

RESTORE: (statement 80) places binary file HUGO in read mode 
and permits data just written to be read. 

Remarks: If a designated binary file is in write mode as a result of a 
SCRATCH: statement, a RESTORE: statement repositions the word 
pointer to the beginning of the file. The file is placed in 
read mode if it is sequential. 

5-73 BR36 



I 

File Manipulation Statement 

BACKSPACE: 

Purpose: To position the word pointer for the designated binary file 
backward one data element. 

Format: 

Example: 

BACKSPACE; <file designator> 

*10 FILES HIPPO 
*20 Al=l\A2=2\A3=3 
*30 El$="IS A" 
*40 E2$=" CROYJD" 
*50 SCRATCH:l 
*60 WRITE:l,Al,A2,A3,El$,E2$ 
*70 FOR J=l TO 3 . 
*80 BACKSPACE:l 
*90 NEXT J 
*100 READ:l,B3,Gl$,G2$ 
*110 PRINT B3;Gl$;G2$ 
*120 END 
*RUN 

will produce the printout 

3 IS A CROWD 

Remarks: The BACKSPACE: statement places the designated binary file in 
read mode if the file is sequential. If the designated binary 
file is backspaced past the beginning of the file, the word 
pointer will be positioned to the beginning of the file. 

6/72 5-74 BR36A 



Utility Statement 

APPEND: 

Purpose: To permit data to be added to a designated, sequential binary 
file. 

Format: APPEND: <file designator~ 

Example: Assume that the binary file SEE is a sequential file 
containing the integers 1 through 15. 

*10 FILES A;B;SEE 
*20 APPEND:3 
*30 FOR I=l6 TO 20 
*40 WRITE:3,I 
*50 NEXT I 
*60 END 
*RUN 

The executed program will append the integers 16 through 20 to 
the file SEE. 

Rules: The APPEND: statement applies to sequential files only. 

Remarks: The APPEND: statement will set the word pointer for the 
designated file to the position immediately following the last 
data word. The file is then placed in write mode, ready to 
accept the next WRITE: statement. 

5-75 BR36 



Utility Statement 

IF END:----THEN 
or 

IF END: ----GOTO 

Purpose: To provide a means of testing for end of data when reading a 
binary file. 

Format: 

Example: 

~THEN} IF END: <file designator> <statement number> 
GOTO 

* 10 FILES ZORRO 
*20 Kl=l 
*30 A$="EACH STRING " 
*40 B$="HAS A " 
*50 C$="LEADING AND TRAILING " 
*60 D$="CONTROL " 
*70 E$="WORD" 
* 80 SCRATCH: l 
*90 WRITE:l,A$,B$,C$,D$,E$ 
*100 RESTORE: l 
*110 IF END:l THEN 150 
*120 READ:l,V$ 
*130 PRINT V$; 
*140 GOTO 110 
*150 END 
*RUN 

The executed program will produce the printout 

EACH STRING HAS A LEADING AND TRAILING CONTROL WORD 

Rules: A comma or a colon may be used in an IF END:---THEN statement 
to separate the file designator from the THEN portion of the 
statement. 

Remarks: The IF END:---THEN statement directs the system to go to a 
designated out-of-sequence statement when no more data remains 
on the file. 

5-76 BR36 



Utility Statement 

IF MORE:----THEN 
or 

IF MJRE:----GO'l'O 

Purpose: 

Format: 

Example: 

Rules: 

Remarks: 

To provide for a means of testing to 
least one valid data element remains on 
reading the file. 

determine whether at 
a binary file when 

~HENJ IF MORE: <file designator > < statement number> 

* 10 FILES ZORRO 
*20 Kl=l 
*30 A$= 11 EACH STRING II 

*40 B$= 11 HAS A II 

GOTO 

*50 C$= 11 LEADING AND TRAILING II 

*60 D$= 11 CONTROL II 

*70 E$="WORD" 
*80 SCRATCH:! 
*90 WRITE:l,A$,B$,C$,D$,E$ 
*100 RESTORE: 1 
*110 READ:l,V$ 
*120 PRINT V$; 
*130 IF MORE:! THEN 110 
*140 END 
*RUN 

The executed program will produce the printout 

EACH STRING HAS A LEADING AND TRAILING CONTROL WORD 

A comma or a colon may be used in an IF MORE:---THEN statement 
to separate the file designator from the THEN portion of the 
statement. 

If data elements (or string data) of a binary 
exhausted before input list of a READ: or MAT READ: 
is satisfied, the list will be filled out by 
program execution. 

file are 
statement 

zeros upon 

The IF MORE:---THEN statement directs the system to go to a 
designated out-of-sequence statement when more data remains to 
be read on the file. 

5-77 BR36 



Utility Statement 

SET: 

Purpose: To permit the word pointer for a random binary file to be 
positioned so that data can be read or written at any point on 
the file. 

Format: SET: <file designator> TO <expression> 

Example: Assume random binary file ORKIN is created via the ACCESS 
system and its size is three blocks (3 x 320 = 960 words). 

*10 FILES ORKIN 
*20 SET:l TO 620 
*30 FOR P=l TO 36 
* 4 0 WRITE : l Ip 
*50 NEXT P 
*70 FOR K=655 TO 620 STEP -1 
* 8 0 SET : l TO K 
*90 READ:l,N 
*100 PRINT N; 
*120 NEXT K 
*130 END 
*RUN 

Upon execution, the program will write the integers l through 
36 on file ORKIN, beginning at word 620 and ending at word 
655. In addition, the contents of words 620 through 655 are 
verified and the integers (in reverse order) are printed out 
as follows: 

36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 

6 5 4 3 2 l 

Rules: The SET: statement applies to random binary files only. 

Remarks: The expression in the SET: statement is evaluated and its 
integer portion, if greater than or equal to zero, stored in 
the word pointer of the designated file. If the integer 
portion is negative, an explanatory error message and program 
termination result. 

5-78 BR36 



The text previously contained on this page has been moved to page 5-10. * 

6/72 5-79 BR36A 



The text previously contained on this page has been moved to page 5-10. 

6/72 5-80 BR36A 



MULTIPLE STATEMENTS WITHIN ONE LINE 

While each statement of a program must be confined to a single line, the 
user may make multi'ple statements within a single line, utilizing one 
line number. Statements within a line are separated by means of a 
reverse slant (\). For example, the line 

*10 A=l2\B=37\C=SQR(A+B)\PRINT A,B,C 

is equivalent to four statements and is identified by line number 10. 

If a multiple-statement line is used in a 
transfers, a transfer can only be made to 
statements. For example, 

* 10 LET N=O 

program employing 
the first of the 

loops or 
multiple 

* 20 READ X,Y,Z\PRINT X,Y,Z\N=N+l\RESTORE 

* 30 IF N < 5 THEN 20\DATA 1, 2, 3 

* 40 END 

SAVING TEMPORARY FILES 

When the user terminates his session at 
sequence, the system is scanned for the 
message 

n TEMPORARY FILES CREATED 

the terminal with 
user's temporary 

a log-off 
files. The 

is issued, n being the number of files. Each temporary file name is 
listed, followed by a question mark. The user may respond as follows: 

1. carriage return -- implies that this file is to be released; 
pass to the next file if more temporary files exist. 

2. NONE. -- implies this and all succeeding files are to be 
released. 

3. SAVE filename -- specifies that this file is to be saved as one 
of the user's permanent files; pass to the next file if more 
temporary files exist. 

5-81 BR36 



I 

SAVING AND EXECUTING OBJECT FILES 

The RUN command may be used to save a file in its obj.ect (binary) 
form and/or execute a program with such a file. Basic forms of the 
conunand to achieve these purposes are as follows: 

1. RUN = objfile 

code 
RUN 

The user's current file will be compiled and saved as an object 
file on random file objfile. 

2. RUN = catalog/objfile 

Same as item 1 except that catalog/filename structure is used. 

3. RUN objfile 

The contents of random file objfile are loaded into memory and 
executed. Compilation has already been performed. 

4. RUN catalog/objiile 

I Same as item 3 except that catalog/filename structure is used. 

5. RUN filename obj file 

The file filename will be compiled, saved as an object file on 
random file objfile, and executed. 

6. RUN filename = objfile (NO GO) 

The file filename will be compiled and saved as an object file 
on random file ob~file. No execution will take place if (NO GO) 
option is utilize • 

For example, 

RUN JDOE/RACE,R = MYFILE 

will compile file RACE: RACE will then be saved as object file MYFILE 
and MYFILE will be executed. 

RUN MYFILE 

will execute object file MYFILE. 

If a catalog/filename structure is used, a maximum of 
permitted. Legal permission combinations for the 
structure are: 

.6/72 

Read 
Write 
Append 
Execute 
Read,Write 
Read, Append 

5-82 

three levels is 
catalog/filename 

BR36A 



The user should note that, as a general rule, object programs are not I 
transferable from software release to software release. 

FILE ACCESS 

For the normal time-sharing user, al.l files (programs) will be defined 
by his user identification and a unique file name for each of his set of 
files. Since the user identification which was given to the 
time-sharing system on the log-on procedure, and the file name (OLD 
program name), completely define the file for a normal situation, the 
time-sharing system will automatically give the user access to his own 
files stored by use of the SAVE control command. However, if the user 
wishes to make use of other files (for instance, those saved by another 
user), it is necessary for him to previously have accessed these files. 
One method of accessing other users files is by a time-sharing subsystem 
called ACCESS. This subsystem will allow the time-sharing user to 
access files that have been saved by others, or that have been stored in 
the file system by means other than the control command SAVE (e.g., 
batch-world files), and to place these files at his disposal for a 
session at the terminal. If this feature is required, the user must 
select ACCESS before he goes to the BASIC system. The ACCESS subsystem 
is described in Time-Sharing System General Information Manual. 

An alternate method of accessing other users files is by means 
control command GET; refer to "Control Commands" in Section II 
description of the command. 

5/73 5-83 

of the 
for a 

BR36C 





SECTION VI 

ERROR MESSAGES 

ERROR MESSAGES AS A RESULT OF ERRORS OF FORM 

One or more of the following diagnostic error messages are printed at 
the terminal whenever an error of form occurs; that is, whenever a BASIC 
language rule is violated. The messages will be printed after the 
control command RUN is given. 

There are two groups of error messages: 

Compilation - these may be printed during program compilation and 
prevent further entry or execution. 

Execution - these may be printed during program execution and may or 
may not stop execution. 

Compilation Errors 

Note 

When a subroutine referenced by a CALL statement, or a CHAIN 
link, is being compiled and an error is detected, the message 

IN FILE filename 

will follow the error message. 

Error Message 

BAD SOURCE FILE 

FOR WITHOUT NEXT 

ILLEGAL FOR LOOP 

ILLEGAL TERMINATION 
OF XXXX 

5/73 

Interpretation 

Attempt made to read source program having 
invalid format. 

Missing NEXT statement. 

Statement sequence cannot perf orrn requested 
loop. 

Statement XXXX has 
correctly. 

6-1 

not been terminated 

BR36C 



IN XXXX DEF STATEMENT 
TABLE EXCEEDED 

IN XXXX DUP DIMENSION 

More than 26 DEF statements being utilized in 
program. 

Variable appears in DIM statement more than 
once. 

IN XXXX DUP FUNCTION Same function name defined more than once. 

IN XXXX NAME NOT 
DECLARED IN DIM Dimensioned variable not previously defined in 

DIM statement. 

IN XXXX NEXT WITHOUT FOR Missing FOR statement. 

IN XXXX SYNTAX ERROR 
IN FILE DESCR 

NULL SOURCE FILE 

• STATEMENT ERROR 

SYSTEM FAULT BASIC 
IN XXXX 

NO LINE NUMBER XXXX 

5/73 

An error has been detected in formatting of 
FILES statement; causes most likely: 

1. Filename greater than eight charact.ers. 

2. User-id, catalog name or password greater 
than 12 characters. 

3. Termination of a file descriptor string 
with a delimiter. 

4. Illegal permission. 

5. Greater than 
description. 

3-level catalog file 

Attempt made to compile nonexistent current 
program • 

This message encompasses the majority of 
errors that may occur in the formatting of a 
statement. The arrow points to the portion of 
the statement containing the error. Study this 
portion of the message to determine cause of 
the error. 

Self-explanatory. 

Statement XXXX appearing in a GOTO, GOSUB, or 
IF----THEN statement does not appear as a line 
number in the program. 

6-2 BR36C 



Execution Errors 

Error Message Interpretation 

BLOCK SERIAL NUMBER ERROR 
AT XXXX The file being read was out of position 

system malfunction. 

DUPLICATE FILE NAME XXXX The program already has a file whose name is a 
duplicate of the one specified by a FILE 
statement. A program cannot have two file 
designators referring to the same file name. 

EXPECTED LINE NUMBER 
AT XXXX A sequence number could not be found on a line 

where one was expected. 

6/72 6-2.1 BR36A 





FATAL ERROR IN FILE I/O 
AT XXXX A fatal error occurred in a read, write, 

backspace, or forward space sequence. This is 
a system malfunction. 

FILE CLASS ERROR AT XXXX Using mixture of ASCII 
operations on same file. 

and binary I/O 

FILE DESIGNATOR NOT BETWEEN 
ONE AND EIGHT AT XXXX There is a limit of 

program. Therefore a 
between 0 and 8 
represents the file 
user's terminal. 

eight active files per 
file designator must fall 
inclusively, where 0 

being processed at the 

FILE NOT ASCII AT XXXX 

FILE NOT BINARY AT XXXX 

An attempt was made to read a non-ASCII file. 
Only formatted ASCII files may be read. 

Attempting to perform binary I/O operation on 
ASCII file. 

FILE NOT DEFINED BY FILES OR 
FILE STATEMENT AT XXXX A file designator points to a vacant slot in 

the program's possible list of files. 

FILE NOT IN WRITE MODE 
AT XXXX 

FILE NOT IN READ MODE 
AT XXXX 

FILE NOT RANDOM AT XXXX 

6/72 

EXAMPLE: READ #6,X 
where file #6 has not been named by a FILES or 
FILE statement. 

An attempt was made to transmit output to a 
file while the file was in input mode. Use a 
SCRATCH statement before output. 

An attempt was made to transmit data from a 
file while the file was in output mode. Use a 
RESTORE statement before reading from a file 
which was previously in output mode. 

Attempting to use SET, LOF, or LOC with ASCII 
or sequential binary file. 

6-3 BR36A 



FILE NOT SEQUENTIAL 
BINARY AT XXXX 

ILLEGAL ARG IN XXXX 

ILLEGAL ENTRY 
TO SUBROUTINE 

ILLEGAL FIELD IN XXXX 

ILLEGAL INPUT AT XXXX 

ILLEGAL INPUT FORMAT. 
RETYPE? 

ILLEGAL MARGIN AT XXXX 

INCONSISTENT FIELD IN 
xxxx 

INCORRECT FILE FORMAT 
AT XXXX 

5/73 

Attempting to use APPEND: statement with ASCII 
or random file. 

Argument in VAL function not a valid constant. 

A RETURN statement was executed without a 
corresponding GOSUB or CALL, or more than 15 
GOSUB or CALL statements were executed without 
corresponding RETURN statements. 

In an image statement for PRINT USING, there 
were too few places specified for the left of 
a decimal point. A special character such as a 
dollar sign {$) or minus sign {-) was needed 
and there was no space, or a scientific 
notation {E-type) did not specify at least one 
place to the left of the decimal as required. 

Data read from a file did not correspond in 
type to that expected by the source statement 
I/O list. The I/O list and data to be read 
must be compatible. 

Invalid response has been given to 
statement request. Execution stops. 

The argument of a MARGIN statement was 
between the allowable limits of 2 to 
characters, inclusively. 

INPUT 

not 
160 

In PRINT USING statement XXXX, the I/O list 
and fields specified by the image statement do 
not agree in type and/or number. Check the I/O 
list and image statement for compatibility. 

A line of the file being read is in incorrect 
format. The most probable error is an 
incorrectly formatted sequence number for the 
line. 

6-4 BR36C 



INVALID CHANGE IN XXXX 

INVALID COMPUTED GOTO IN 
xx xx 

INVALID SUBSTRING 
ARGUMENT IN XXXX 

IN XXXX DIM ERROR 

IN XXXX DIV CHECK 

IN XXXX DUPLICATE FILE 
NAME 

IN XXXX EXP(B) GRT 88.028 
SET RESULT = ARGUMENT 

IN XXXX EXP ERROR 00 ** 
(-C) - SET RESULT = 0 

IN XXXX EXP OVERFLOW 

IN XXXX EXP UNDERFLOW 

5/73 

An invalid CHANGE statement has been executed 
at statement number XXXX. The string is longer 
than the array, or the number of array entries 
to be converted to characters is less than 1 
or greater than 132. If conversion is a 
numeric array to a string variable, check to 
see that element zero of one array specifies 
the number of conversion characters. 

A computed GOTO has been executed 
negative or zero index, or the index 
large to correspond to one of the 
points (sequence numbers). 

with a 
is too 
switch 

An argument in statement XXXX is invalid: 
either null string, beginning character 
position greater than string length, or number 
of characters exceed length of string to right 
of beginning character. 

Dimension of variable used in matrix 
calculation inconsistent with dimension 
declared in DIM statement. Execution stops. 

A division by zero has been attempted. System 
supplies + infinity and execution continues. 

A FILES statement has attempted to specify a 
file name already in use by this program. 

Argument of exponential function greater 
88.028.. System supplies argument value 
continues execution. 

Computation of form 0 ** (-1) has 
attempted. The system sets result to zero 
continues execution. 

Floating point overflow. System supplies + 
- infinity and execution continues. 

than 
and 

been 
and 

or 

Floating point underflow. System supplies zero 
and execution continues. 

6-5 BR36C 

I 





IN XXXX FNEND WITHOUT 
DEF 

IN XXXX LOG(-B) NOT 
ALLOWED -EVAL FOR +B 

5/73 

Multiple-line DEF statement not initiated by 
DEF. 

Program has attempted to calculate 
of a negative number. System 
logarithm of absolute value and 
continues. 

6-5.1 

logarithm 
supplies 

execution 

BR36C 



IN XXXX LOG(O) NOT ALLOWED 
SET RESULT = 0 Program has attempted to 

of O. The system sets 
execution continues. 

calculate 
result to 

logarithm 
zero and 

IN XXXX MORE THAN 8 
FILES 

IN XXXX MORE THAN 20 
REPLACEMENTS 

IN XXXX NESTED DEF 

IN XXXX SIN/COS ARG 
GRT 2 ** 27 - SET 
RESULT = 0 

IN XXXX SQR(-B) ILLEGAL 
-EVAL FOR +B 

LINE NUMBER GREATER THAN 
8 CHARACTERS AT XXXX 

A FILES or FILE # statement has exceeded the 
limit of 8 files per program. 

The limit of 20 equal signs for a multiple 
replacement statement has been exceeded. 

Multiple-line DEF statements may 
nested. 

not be 

Argument of function greater than 2 ** 27. 
System sets result to zero and execution 
continues. 

Program has attempted to extract square root 
of negative number. System supplies square 
root of absolute value and execution 
continues. 

Self-explanatory. 

MORE THAN 15 FILES REFERENCED 
BY CALL STATEMENT 
IN XXXX The limit of 15 file statements referenced by 

CALL statements has been exceeded. 

6-6 BR36 



NO CHARACTERS IN STRING 
VARIABLE AT XXXX 

NULL FILE AT XXXX 

OUT OF DATA IN XXXX 

SUBSCRIPT ERROR 
IN XXXX 

UNFINISHED DEF 

WORD POINTER OUTSIDE FILE 
AT XXXX 

WORD POINTER POSITION 
ERROR AT XXXX 

A null string variable was used in statement 
XXXX. A ·string variable must be set before use 
in statements such as PRINT, FILE, or CHAIN. 

Attempt made to read file at statement XXXX 
which does not contain data. 

READ statement for which there is nb data has 
been encountered. May mean normal end of 
program, and should be ignored in those cases. 
Otherwise, it means not enough data has been 
supplied. In either case, execution stops. 

A subscript in statement XXXX is 
out-of-bounds; either negative, greater than 
specified in DIM statement, or greater than 10 
if implied dimension was used. 

Multiple-line DEF statement not ended 
FNEND. 

by 

Value of word pointer is negative, or 
than size of file. 

greater 

String control word encountered when not 
expected, or string control word not present 
where needed. May be caused by input list not 
matching file contents as to data type, or by 
an error in positioning the word pointer via 
SET: statement. 

Filename or Password HAS TOO 
MANY CHARACTERS IN XXXX In a CHAIN statement, a filename or password 

represented by a string variable is too long. 
The limit for filename and password is 8 and 
12 characters, respectively. 

6/72 6-7 BR36A 



I 

< S 0 > CANNOT ADD LINKS TO 
FILE AT XXXX (reason) 

TEMP 

<SO> CANNOT GROW PERM FILE 

Additional links were needed for a temporary 
file for output purposes, but could not be 
obtained. Note reason given and refer to HELP 
subsystem, code SO, if necessary. 

AT XXXX A perm file needed to grow for output 
purposes, but could not. Note the reason given 
and refer to HELP subsystem, code 50, if 
necessary. 

<SO> ERROR IN CREATING TEMP 
FILE AT XXXX A temp file could not be created for output 

purposes. Note the reason given and refer to 
HELP subsystem, code SO, if necessary. 

<SO> UNABLE TO ACCESS 
AT XXXX (reason) 

064 EXECUTE TIME 
LIMIT EXCEEDED 

FILE 
A file could not be accessed correctly 
I/O. If the reason for failure is 
self-explanatory as given, refer to the 
subsystem, code SO. 

for 
not 

HELP 

Execution time limit specified by user or 
installation exceeded. 

ERROR MESSAGES AS A RESULT OF SYSTEM ERRORS 

Error messages may also be generated as a result of errors made in the 
use of the time-sharing system. 

System error messages will be indicated by a number code accompanying 
the message. For example: 

009 -- SYSTEM UNKNOWN 

The system HELP (a subsystem of the time-sharing system) will provide an 
explanation of any number - coded error message along with suggestive 
corrective actions for some errors. 

6/72 6-8 BR36A 



SECTION VII 

ERROR LOCATION AND CORRECTION 

GENERAL 

Locating and correcting errors (6r "bugs"} in a program is referred to 
as "debugging." Occasionally (especially in smaller programs) the first 
run of a new program will be free of errors; but is is more common to 
have some errors present and therefore the need to correct them exists. 

In BASIC, possible errors are of two types: 

Form - caused by violating BASIC language rules; can stop the 
processing of the program. 

Logical - caused by erroneous statements of facts, data, equations, 
etc., made by the user; do not stop the processing but 
will cause erroneous output data or perhaps no data at 
all. 

Errors of form result in diagnostic error messages being printed. 
Section VI contains a list of these error messages and their 
interpretations. Logical errors, however, are not easily detected and 
generally require a great deal of diligent effort and patience on the 
part of the user for their detection. 

In any case, when errors are detected, the program containing them can 
be debugged by: 

a. retyping statements, 
b. inserting new statements, and/or 
c. deleting incorrect'or superfluous statements from the program. 

7-l BR36 



No overall set of rules can be-given that will provide the user with 
complete means for debugging programs. For the most part, the 
experienced programmer accumulates techniques from one program to the 
next. For the majority of programs, the user may find the following 
procedure helpful. 

Before attempting the execution of a program, obtain a printout of the 
statement sequence by means of the control command LIST. The printout 
will be an edited version of the sequence, incorporating all 
corrections, additions, and changes made to the program during entry. 
The printout can then be readily scanned for possible program errors 
that may have been otherwise obscured. 

Error detection in lengthy programs can best be accomplished by means of 
PRINT statements requesting a printout of intermediate results. These 
test results can then be examined and necessary corrections made to the 
program before voluminous amounts of data are generated. In addition, 
the user might ask by way of PRINT statements for printout of sample 
data, results of which the user is already aware or which can be readily 
checked by hand computation. These testing PRINT statements may then be 
deleted when they are no longer required. 

DEBUGGING A SAMPLE PROGRAM 

A sample program and debugging methods are given below. The 
their detection, and their correction may appear forced but the 
is merely intended to provide guidelines for debugging. 

errors, 
sample 

Consider the following problem: Find the maximum point on the sine curve 
between 0 and 3 radians by searching along the X axis. The computer 
will be directed to test successive values in intervals of 0.1, 0.01, 
and 0.001. Thus, the computer is to find the sine of O, 0.1, 0.2, 
0.3, .•... , 2.8, 2.9 and 3, and to determine which of these 31 values is 
the largest. Then it is to repeat the search with a 0.01 interval, which 
involves 301 numbers this time. Then, the search is to be repeated for 
a 0.001 interval, which involves 3001 numbers. At the end of each 
search, the computer is directed to print: (a) the value of Xl that has 
the largest sine, (b) the sine of that number, and (c) the interval of 
search. 

Prior to going to the terminal, the program to accomplish the above 
problem is organized and written down. 

10 READ D 
20 LET

0
Xl = 0 

30 FOR X = 0 TO 3 STEP D 
40 IF SIN(X)< = M THEN 100 
50 LET Xl = X 
60 LET M = SIN(X) 
70 PRINT Xl, X, D 
80 NEXT X 
90 GOTO 20 100 DATA 0.1, 0.01, 0.001 110 END 

7-2 BR36 



The program entries and executions are listed below, with explanations 
of the debugging process to the right of the program. 

6/72 

* 
* 

10 READ D 
LET Xl = 0 

The sequence of statements 
are entered and the conunand 

* 30 FOR X = 0 TO 3 
* 40 IF SINR (X) < =M 

STEP 
THEN 

D to execute the program is given. 
100 

* 50 LET Xl = X 
* 60 LET M = SIN(X) 
* 70 PRINT Xl, X, D 

* 80 NEXT Xl 

* 90 GOTO 20 
* 100 DATA O.l,O.Ol,0.001 

* llO END 

* RUN 

40 IF SINR (X) < = M THEN 100 
t 
STATEMENT ERROR 
ILLEGAL FOR LOOP 

FOR WITHOUT NEXT 
UNDEFINED NUMBER 20 

READY 
* 20 LET Xl = 0 
* 40 IF SIN(X) < = M THEN 80 
* ·RUN 

ILLEGAL FOR LOOP 
FOR WITHOUT NEXT 

READY 
* 80 NEXT X 
* RUN 

* 
* 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0 

20 LET 
RUN 

0.1 0.1 
0.2 0.1 
0.3 0.1 
0.4 0.1 
0.5 0.1 
0.6 0.1 
0.7 0.1 

M = -1 

The statements are edited 
and error messages are 
printed. Entering statement 
20 defines the number :'n 
statement 90 and rectiiies 
the omission of the statement 
number in the second 
statement. 

Statement 40 is corrected. 
The RUN command is again 
given. 

The requested loop is 
formatted incorrectly. The 
variable in statement 80 is 
made to duplicate that in 
statement 40. The RUN 
command is again given. 

Program execution is taking 
place but every value of X 
is being printed. Execution 
is halted by depressing 
BREAK. 

A review of the statements 
indicates that in the first 
time through the loop 
(statements 30-80) SIN(O) is 
compared with M but no value 
has been assigned to M. 

7-3 BR36A 

I 



0 0 0.1 
0 .,l 0.1 0.1 
0.2 0.2 0.1 
0.3 0.3 0.1 
0.4 

* 70 
* 85 PRINT Xl,M,D 

* RUN 

1.6 0.9995736 
1.6 0.9995736 
1.6 0.9995736 
1.6 0.9995736 
1.6 0.9995736 

* 90 GOTO 10 
* RUN 

0.1 
o_.1 
0.1 
0.1 
0 

Furthermore, statement 50 
"remembers" the value of X 
each time the loop is 
executed, so that statement 
20 is useless. 

Statement 20 is used to 
assign a value to M less than 
the maximum value of the sine 
and the RUN command is again 
given. 

Again Xl, the current value 
of X, and the interval are 
being printed. Execution is 
halted by depressing BREAK. 

Statement 70 is within the 
loop and requests the print
out of these items. 

Statement 70 is deleted by 
typing its number and 
statement 85 is formatted 
with M substituted for X. 
The RUN command is again 
given. 

The same operation is being 
repeated. Execution is halted 
by depressing BREAK. 

The loop is being repeated 
for a D value of 0.1. Examin
ation reveals that statement 
90 regenerates the same loop 
by directing the sequence 
back to statement 20. 

Statement 90 is corrected by 
directing the sequence back 
to statement 10 for a new 
value of D. The RUN 
command is again given. 

7-4 BR36 



- 10/72 

1 .. 6 
1.57 

1.57099 

0.9995736 
0.9999997 

1 

OUT OF DATA IN 10 

0.1 
0.01 

0.001 

The execution results in a 
printout of Xl, M and D and 
the program is terminated. 

7-5 

I 

BR36B 





APPENDIX A 

GLOSSARY OF TIME-SHARING TERMS 

Available File Table (AFT) 

Table provided by the time-sharing system which lists all files made 
available to the user for his current session at the terminal. 

Binary Files 

Files implemented by binary file 'input/output 
supplement BASIC language statements. 

Catalog 

statements 

Time-sharing subsystem containing a list of user's file names. 

Central Processor 

which 

This is the central computer of the time-sharing system whose functions 
are to receive user input from the data communications processor; 
process user commands, execute user programs; and transmit user output 
to the data communications processor ••• all in a multiprogrammed 
time-sharing mode of operation. 

Character 

A digit, letter of the alphabet, or symbol of the terminal's keyboard. 

Command Language 

A set of orders or instructions which request functions to be performed 
for a program being executed at a terminal. 

A-1 BR36 



Communications Processor 

One of the group of peripheral computers attached to the time-sharing 
system used to monitor the telephone lines for which it is responsible; 
collect user input lines; form messages; transmit the messages to the 
central processor; and transmit lines of message output to the user. 

Current Program 

Program which user is working upon at his current session at the 
terminal. 

Data Files 

Files implemented by data file input/output statements which supplement 
BASIC language statements. 

Delimiter 

Keyboard characters used to separate parts of a statement. 

Executive Program 

The system program which controls time-sharing system operation. 

File 

A generic term for all data 
time-sharing system. Files are 
files and user files. 

File System 

stored 
of two 

within 
major 

and processed 
classifications: 

by the 
system 

The repository for all permanent files kept within the time-sharing 
system. 

A-2 BR36 



Input Line 

A group of characters ending with a Cqrriage return (RETURN), that are 
entered by the user from his terminal. 

Permanent Files 

Permanent files are files which are stored in the file system, by the 
normally explicit control command SAVE. 

Source Program 

A user file composed of program statements written in one of the 
time-sharing compiler languages (e.g., BASIC). Each program statement is 
entered as a line of input via the terminal. Input lines begin with a 1 
to 8-digi t line number and end with a carriage return chara.cter. 

System Files 

System files include the program files (such as the executive modules, 
compilers, command processing routines, and supporting subroutines) 
which control time-sharing system operation, and the data files (such as 
catalogs, tables, and libraries) used by the time...:sharing sys tern to 
support its operation. 

Temporary Files 

Temporary files are files which are processed by the time-sharing system 
under the direction of a user connected to the system. Temporary files 
may be new files entered into the time-sharing system by the user; or 
they may be copies of permanent files which have been called out of the 
file system by the user for processing. Temporary files reside in the 
central processor's core memory. They are stored in the file system only 
by explicit control command SAVE. Temporary files are created and 
released dynamically in the time-sharing system in the course of the 
user command processing. Temporary files in existence when the user 
signs off are released. 

A-3 BR36 



Terminal 

A keyboard device designed to send and receive programs or data. 

User Files 

User files include both temporary and permanent source program files, 
and data files entered into the time-sharing system by the user. 

A-4 BR36 



APPENDIX B 

SAMPLE BASIC PROGRAMS 

While each program in this appendix is titled to indicate 
use, the set of programs could serve as a general guide to 
BASIC and is intended to illustrate some problem-solving 
and programming techniques. 

The sample programs are as follows: 

1. Creating a Table of Roots (Program with Loops) 

a specific 
the use of 

possibilities 

2. Determining Greatest Common Divisor (Program with Subroutine) 

J. Computing Total Sales (Program with a List and Table) 

4. Plotting a Sine Function (Program with Plot of Function) 

5. Calculating True Annual Interest (Program Requiring Input 
During Execution) 

B-1 BR36 



SAMPLE PROGRAM NO. 1 

CREATING A TABLE OF ROOTS 

(Program With Loops) 

A program which creates a table of roots provides the opportunity to 
study the use of loops. The range of numbers for which roots are desired 
are l to 15. The roots desired are square root, cube root, and fourth 
root. The statement sequence and run of the program are as follows: 

* 10 FOR X = 1 to 15 
* 20 PRINT x, 
* 30 FOR R ;:::: 2 to 4 
* 40 PRINT X** (l/R) , 
* 50 NEXT R 
* 60 PRINT 
* 70 NEXT X 
* 80 END 
* RUN 

1 1 1 1 
2 1. 414214 1.259921 1.18920 7 
3 1. 732051 1. 44225 1.316074 
4 2 1.587401 1.414214 
5 2.236068 1. 709976 1. 495349 
6 2.44949 1. 817121 1.565085 
7 2.645751 1.912931 1.626577 
8 2.828427 2 1. 6 8179 3 
9 3 2.080084 1. 732051 

10 3.162278 2.154435 1. 77828 
11 3.316625 2.223980 1. 821160 
12 3.464102 2.289428 l.·86121 
13 3.605551 2.351335 1.898829 
14 3.741657 2.410142 1.934336. 
15 3. 872983 2.466212 1.96799 

Statements 10 and 70 create the outer loop and determine the range of 
numbers. Statements 30 and 50 create the inner loop and determine the 
roots. Note the use of PRINT statement 60 to advance the output a line 
each time the inner loop is executed and thus line the numbers up with 
their roots. 

This brief program is an indication of 
hundreds of computations can be made 
repeatedly. 

B-2 

the 
by 

power of 
executing a 

loops 
few 

by which 
statements 

BR36 



SAMPLE PROGRAM NO. 2 

DETERMINING GREATEST COMMON DIVISOR 

(Program With Subroutine) 

The following example is a program for determining the greatest common 
divisor (GCD) of three integers (using the Euclidean algorithm) and 
illustrates the.use of subroutines. The first two numbers are selected 
in statement 30 and 40 and their GCD is determined in the subroutine, 
statements 200-310. The. GCD just found is called X in statement 60, the 
third number is called Y in statement 70, and ~he subroutine is entered 
from statement 80 to find the GCD of these two numbers. This number is, 
of course, the GCD of the three given numbers and is printed out with 
them, as directed by statement 90. 

* 10 PRINT TAB(l3) ;"A";TAB(28) ;"B";TAB(43) ;"C";TAB(58) ;"GCD" 
* 20 READ A,B,C 
* 30 LET X = A 
* 40 LET Y = B 
* 50 GOSUB 200 
* 60 LET X = G 
* 70 LET Y = C 
* 80 GOSUB 200 
* 90 PRINT A,B,C,G 
* 100 GOTO 20 
* 110 DATA 60,90,120 
* 120 DATA 38456,64872,98765 
* 130 DATA 32,384,72 
* 200 LET Q = INT(X/Y) 
* 210 LET R = X-Q*Y 
* 220 IF R = 0 THEN 300 
* 230 LET X = Y 
* 240 LET Y = R 
* 250 GOTO 200 
* 300 LET G = Y 
* 310 RETURN 
* 320 END 
* RUN 

A 
60 

38456 
32 

OUT OF DATA 

B 
90 

64872 
384 

c 
120 

98765 
72 

GCD 
30 

1 
8 

B-3 BR36 



I 

SAMPLE PROGRAM NO • .3 

COMPUTING TOTAL SALES 

(Program With a List and Table) 

Below is a listing and run of a program which uses both a list and a 
table. The program computes the total sales of each of five salesmen, 
all of whom sell the same three products. The list P gives the 
price/item of the three products and the table S tells how many items of 
each product each man has sold. Product number 1 sells for $1.25 per 
item, number 2 for $4.30 per item, and number 3 for $2.50 per item; 
salesman number 1 sold 40 items of the first product, 10 of the second, 
and 35 of the third, and so on. The program reads in the price list in 
statements 10, 20, 30, using data in line 160, and the sales table in 
lines 40-80, using data in statements 170-190. The same program could be 
used again, modifying only statement 160 if the prices change, and only 
statements 170-190 to enter the sales in another month. 

* 5 DIM s ( 3 ' 5 ) I p ( 3 ) 
* 10 FOR I = 1 TO 3 
* 20 READ P (I) 
* 30 NEXT I 
* 40 FOR I = 1 TO 3 
* 50 FOR J = 1 TO 5 
* 60 READ S(I,J) 
* 70 NEXT J 
* 80 NEXT I 
* 90' FOR J 1 TO 5 
* 100 LET s 0 
* 110 FOR I 1 TO 3 
* 120 LET S s + P(I)*S(I,J) 
* 130 NEXT I 
* 140 PRINT "TOTAL SALES FOR SALESMAN II ' J I II $ II I s 
* 150 NEXT J 
* 160 DATA 1. 25 I 4 o 30 I 2 • 50 
* 170 DATA 40,20,37,29,42 
* 180 DATA 10,16,3,21,8 
* 190 DATA 35,47,29,16,33 
* 200 END 

*RUN 

TOTAL SALES FOR SALESMAN 1 $ 180.5 
TOTAL SALES FOR SALESMAN 2 $ 211.3 
TOTAL SALES FOR SALESMAN 3 $ 131. 65 
TOTAL SALES FOR SALESMAN 4 $ 166.55 
TOTAL SALES FOR SALESMAN 5 $ 169.4 

6/72 B-4 BR36A 



SAMPLE PROGRAM NO. 4 

PLOTTING A SINE FUNCTION 

(Program With Plot of Function) 

Functions may be readily plotted by the use of a keyboard character to 
.depict the plot. In this example, the plot of a sine function at 
approximately 10-degree intervals is illustrated. The program consists 
essentially of a loop in which the character is positioned by means of 
the computation of the TAB expression. The range of the variable X is in 
radians and each step of the range is printed in line with its 
positioned character. 

* 10 FOR X = 0 TO 6.2832 STEP 0.17 
* 20 PRINT TAB(l0*SIN(X)+l5);"+'';TAB(40);INT((X+.005)*100)/100 
* 30 NEXT X -
* 40 END 
* .RUN 

+ 0 
+ 0.17 

+ 0.34 
+ 0.51 

+ 0.68 
+ 0.85 

+ 1.02 
+ 1.19 

+ 1. 36 
+ 1.53 
+ 1.7 
+ 1. 87 

+ 2.04 
+ 2.21 

+ 2.38 
+ 2.55 

+ 2. 72 
+ 2.89 

+ 3.06 
+ 3.23 

+ 3.4 
+' 3.57 

+ 3.74 
+ 3.91 

+ 4.08 
+ 4.25 

+ 4.42 
+ 4.59 
+ 4.76 
+ 4.93 
+ 5.1 

+ 5.27 
+ 5.44 

+ 5.61 
+ 5.78 

+ 5.95 
+ 6.12 

6/72 B-5 BR36A 

I 

I 



SAMPLE PROGRAM NO.' 5 

CALCULATING TRUE ANNUAL INTEREST RATE 

(Program Requiring Input During Execution) 

This program is an example of a program that has been formatted by 
user so as to require an input upon program execution. The program 
then been saved by use of the control command SAVE under the file 
TRUINT. To inspect the program, the file name is supplied and 
control command LIST is given. The program depicted below will 
printed out at the terminal. 

OLD NAME-TRUINT 
READY 
*LIST 

10 PRINT "THIS PROGRAM WILL CALCULATE THE TRUE ANNUAL INTEREST" 
11 PRINT "RATE CHARGED ON AN INSTALLMENT LOAD. YOU SUPPLY THE" 
12 PRINT "VALUES OF FOUR VARIABLES: A= AMOUNT OF LOAN (IN $) , " 
13 PRINT "P=AMOUNT OF EACH PAYMENT ($), N=THE TOTAL NUMBER" 
14 PRINT "OF PAYMENTS DUE, AND K=THE NUMBER OF PAYMENTS DUE" 
15 PRINT "IN ONE' YEAR."; 
17 PRINT "WHAT ARE A,P,N,K"; 
18 INPUT A, P, N, K 
19 PRINT 
20 IF N=l THEN 60 
21 IF P*N > = A THEN 27 
22 PRINT 
2 3 PRINT "THAT'S NOT REASONABLE. THE PAYMENTS ADD UP" 
24 PRINT "TO LESS THAN THE AMOUNT OWED. TRY AGAIN" 
25 PRINT 
26 GOTO 17 
27 LET R=O 
28 LET D=lOO 
29 GOSUB 38 
30 IF P~Pl THEN 48 
31 IF P>Pl THEN 34 
32 LET R=R-D 
33 GOTO 35 
34 LET R=R+D 
35 LET D=D/2 
36 IF D<0.0001 THEN 48 
37 GOTO 29 
38 LET Rl=R/(lOO*K) 
39 LET Q=l+Rl 
40 IF N*LOG(Q)/LOG(lO)< = 75 THEN 43 
41 LET Pl=A*Rl 
42 RETURN 
4 3 IF Q > l THEN 4 6 
44 LET Pl=A/N 
45 RETURN 

. B-6 

the 
has 

name 
the 
be 

BR36 



46 LET Pl~A*QtN*Rl/(QtN-1) 
47 RETURN 
48 LET R=O.Ol*INT{O.S+lOO*R) 
49 IF R < 199. 5 THEN 55 . 
50 PRINT 
51 PRINT "ARE YOU SURE THE DATA IS RIGHT? THE INTEREST" 
52 PRINT "RATE WOULD BE OVER 20 0 PERCENT. TRY AGAIN" 
53 PRINT 
54 GOTO 17 
55 PRINT "THE TRUE ANNUAL INTEREST RATE "; R 
56 PRINT 
57 PRINT 
58 PRINT "ANOTHER CASE? (TYPE 'S' TO STOP NOW)." 
59 GOTO 17 
60 LET R=(P/A-l)*K 
61 LET R=lOO*R 
62 GOTO 48 
63 END 

To use the program, the control command RUN is given in place of LIST. 
Upon execution, statement 18 requests assignment of values to the 
variables A, P, N, and K. Complete execution of the program, one which 
will provide for a value representing true annual interest rate, will be 
held up until the input request is complied with by the way of the user 
typing in his inputs on the' line containing the question mark. 

A run of this program with an assignment of values to variables A, P, N, 
and K is depicted below. 

*RUN 
THIS PROGRAM WILL CALCULATE THE TRUE ANNUAL INTEREST 
RATE CHARGED ON AN INSTALLMENT LOAD. YOU SUPPLY THE 
VALUES OF FOUR VARIABLES: A= AMOUNT OF LOAD (IN$), 
P = AMOUNT OF EACH PAYMENT ( $) , N = THE TOTAL NUMBER 
OF PAYMENTS DUE, AND K = THE NUMBER OF PAYMENTS DUE 
IN ONE YEAR. WHAT ARE A,P,N,K ?600.00, 31.99, 21, 12 

THE TRUE ANNUAL INTEREST RATE = 12.61 

ANOTHER CASE? (TYPE 'S' TO STOP NOW). 

WHAT ARE A,P,N,K ?S 

B-7 BR36 





APPENDIX C. 

OCTAL/ASCII CONVERSION EQUIVALENTS 

Octal ASCII Octal ASCII Octal ASCII Octal ASCII 
No. Char. No. Char. No. Char. No. Char. 

0.00 NULL 040 SP 100 @ 140 GRA 
001 SOH 041 EXP 101 A 141 a 
002 STX . 042 II 102 B 142 b 
00 3 ETX 043 # 103 c 143 c 
004 EOT 044 $ 104 D 144 d 
005 ENQ 045 % 105 E 145 e 
006 ACK 046 & 106 F 146 f 
007 BELL 047 107 G 147 g 

010 BSP 050 ( llO H 150 h 
011 HT 051 ) 111 I 151 i 
012 LF 092 * 112 J 152 j 
013 VT 053 + 113 K 153 k 
014 FFD 054 114 L 154 1 
015 CR 055 115 M 155 m 
016 so 056 . 116 N 156 n 
017 SI 057 I 117 0 157 0 

020 DLE 060 0 120 p 160 p 
021 DCl 061 1 121 Q 161 q 
022 DC2 062 2 122 R 162 r 
023 DC3 063 3 123 s 163 s 
024 DC4 064 4 124 T 164 t 
025 NAK 065 5 125 u 165 u 
026 SYN 066 6 126 v 166 v 
027 ETB 067 7 127 w 167 w 

030 CAN 070 8 130 x 170 x 
031 EM 071 9 131 y 171 y 
032 SUB 072 132 z 172 z 
033 ESC 073 133 LBK 173 LBR 
034 FS 074 < 134 RSL 174 VTL 
035 GS 075 = 135 RBK 175 RBR 
036 RS 076 > 136 CFX 176 TILDE 
037 us 077 ? 137 177 DEL 

C-1 BR36 



DEFINITIONS 

COMMUNICATIONS CONTROL 

ACK Acknowledgment 
CAN Cancel 
DCl Device Control 1 
DC2 Device Control 2 
DC3 Device Control 3 
DC4 Device Control 4 
DLE Data Link Escape 
EM End of Medium 
ENQ Enquiry 
EOT End of Transmission 
ESC Escape (Alternate Mode) 
ETB End of Transmission Block 
ETX End of Text 
NAK Negative Acknowledgment 
SOH Start of Heading 
STX Start of Text 
SUB Substitute Character 
SYN Synchronous Idle 

FORM EFFECTORS 

BSP Backspace 
CR Carriage Return 
FFD Form Feed 
HT Horizontal Tabulation 
LF Line Feed 
VT Vertical Tabulation 

ITEM SEPARATORS 

FS File Separator 
GS Group Separator 
RS Record Separator 
us Unit Separator 

c-2 BR36 



TEXT MATERIAL 

BELL Bell, or other attention signal 

CFX A 

DEL Delete (Rubout) 

EXP 

GRA 

LBK [ 

LBR { 

TILDE 

NULL Null 

RBK J 

RBR } 

RSL \ 

SI Shift In 

so Shift Out 

SP Space 

VTL Vertical Line 

C-3 BR36 





APPENDIX D 

SUMMARY OF BASIC LANGUAGE CHARACTERISTICS 

BASIC STATEMENTS 

Arithmetic Statements 

DEF - defines a repeatedly used function 

LET - requests a computation or manipulation upon an 
arithmetic variable 

MAT - requests a computation or manipulation upon a 
matrix 

Specification Statements 

CHANGE 

DATA 

DIM 

- converts string characters to numerical code 
or vice versa 

specifies numeric values for variables listed 
in a READ statement 

- reserves space for list or table 

Input/Output Statements 

CHAIN compiles and executes series of programs 

INPUT - delays input of values to variables until program 
is in execution; program will request input of data 
by terminal user or a user's file when statement is 
executed 

PRINT 

PRINT 
USING 
READ 

RESTORE 

- prints computed results; prints text 
- prints computed results and text 
- skips lines 
- formats output data 

- formats output line 
- reads values from a DATA statement or user's 

file and assigns them to designated variables 

- restores previously processed blocks of input 
data from DATA statements 

D-1 BR36 



Loop and Subroutine Statements 

CALL 

FOR 

NEXT. 

GOSUB 

RETURN 

- directs processing sequence to a subroutine 
previously saved 

- is first statement of a loop and sets conditions 
of loop 

- is last statement of loop 

directs processing sequence to a subroutine 

- returns processing sequence from a subroutine 

Logic Statements 

GOTO - unconditionally transfers the processing sequence 
to a designated statement 

IF-----THEN 
or 

IF---GOTO- conditionally transfers the processing sequence 
to a designated statement 

ON-----THEN 
or 

ON---GOTO- conditionally transfers the processing sequence 
to designated statements 

STOP - stops the execution of the program 

END - indicates end of program 

Utility Statements 

CHAIN - compiles and executes series of programs 

TRACE ON - prints line numbers of statements between 
TRACE OFF TRACE ON/TRACE OFF statements 

D-2 BR36 



Documentation Statement 

REM - inserts a remark into the statement sequence 

ARITHMETIC OPERATIONS 

Operator symbol 

+ 

* 
I 
t or ** 

RELATIONAL SYMBOLS 

Relational symbol 

= 
< 

< = or = < 
> 

>= or = > 

<>or > < 

MATHEMATICAL FUNCTIONS 

Function 

denotes 

addition 
subtraction 
multiplication 
division 
raise to a power 

denotes 

is equal to 
is less than 
is less than or 

equal to 
is greater than 
~is greater than or 

equal to 
is not equal to 

Operation 

sine of X 
cosine of X 
tangent of X 
cotangent of X 
arctangent of X 
e to the power X 
natural logarithm of X 
common logarithm of X 
absolute value of X 
square root of X 
truncate X 
produce a random number 
sign determination 

SIN(X) 
COS(X) 
TAN(X) 
COT(X) 
ATN(X) 
EXP(X) 
LOG(X) 
CLG(X) 
ABS (X) 
SQR(X) 
INT(X) 
RND(X) 
SGN(X) 
DET (X) provide determinant of last matrix inverted 

6/72 D-3 BR36A 

I 



I 

MISCELLANEOUS FUNCTIONS 

Function 

TIM(X} 
CLK$ 
DAT$ 
NUM(X} 
SST(X$,Y,Z} 

TAB (X} 
SPC (X} 
LEN(X$) 
LIN (X) 

ASC (X) 

STR$ (N} 
VAL (S$) 
TST(S$} 

HPS (X) 

Operation 

elapsed processor time 
time of day 
calendar date 
count of matrix data elements 
selected characters of a string 
(substring) 
character print.position 
space print position 
number of characters in string 
last line number encountered in 
reading/writing file 
numeric values of character or 
abbreviation 
expression to string conversion 
string to expression conversion 
nonzero output if string can be 
interpreted as a number 
horizontal print position of next 
field, in current line, of file 
being written 

ASCII DATA FILE STATEMENTS 

10/72 

• File preparation statements 

FILES filename 1, password; •••• ;filename n, password 
FILES user-id/catalogname$password/ ••• / 

filename$password,permissions 
FILE # file designator, "filename, password" 

• File read statements 

READ # file designator, input list 
INPUT # file designator, input list 

• File write statements 

• 

WRITE # file designator, output list 
PRINT # file designator, output list 
PRINT # file designator, USING statement number, 

output list 

Matrix input statements 

MAT READ # file designator, matrix input list 
MAT INPUT # file designator, matrix input list 

D-4 BR36B 



10/72 

• Matrix output statements 

MAT WRITE # file designator, matrix output list 
MAT PRINT # file designator, matrix output list 

• File manipulation statements 

SCRATCH # file designator 
RESTORE # file designator 
BACKSPACE # file designator 

• Utility statements 

APPEND # file designator 
MARGIN # file designator, expression 
DELIMIT # file designator, {(character) } 

(abbreviation) 
IF END # file designator {THEN} line number 

GOTO 
IF MORE # file designator {THEN} line number 

GOTO 

D-5 BR36B 



I 

BINARY FILE STATEMENTS 

• 

• 

File preparation statements 

FILES filename 1,password; •••• ;filename n,password 
FILES user-id/catalogname$password/ ••• / 

filename$password,permissions 
FILE: file designator, "filename,password" 

File read statement 

READ: file designator,input list 

• File write statement 

WRITE: file designator,output list· 

• Matrix input statement 

MAT READ: file designator,matrix input list 

· • Matrix output statement 

MAT WRITE: file designator,matrix output list 

• File manipulation statements 

SCRATCH: file designator 

RESTORE: file designator 

BACKSPACE: file designator 

• Utility statements 

APPEND: file designator 
(for sequential files only) 

IF END: file designator {THEN·} line number 
GOTO 

IF MORE: file designator { THEN } line number 
GOTO 

SET: file designator TO expression 
(£or random files only) 

BINARY FILE FUNCTIONS 

. 6/72 

Function 

LOC (file designator) 

LOF (file designator) 

Operation 

word pointer location 

file length 

D-6 BR36A 



APPENDIX E 

ALPHABETIC CODES FOR RELATIONAL SYMBOLS 

Relational Code Denotes As Illustrated By 

EQ is equal to A EQ B 

LT is less than A LT B 

LE is less than or A LE B 
equal to 

GT is greater than A GT B 

GE is greater than A GE B 
or equal to 

NE is not equal to A NE B 

E-1 BR36 





I N DE X 

ACCESS 
FILE ACCESS 

ADVANCED 
ADVANCED BASIC 

ALPHANUMERIC 
ALPHANUMERIC DATA 
ALPHANUMERIC TYPE FIELDS 

APPEND 
APPEND: 
APPEND# 

ARITHMETIC 
ARITHMETIC OPERATIONS 
Arithmetic Operations 
Arithmetic Statements 

ASCII 
ASCII DATA FILE STATEMENTS 
ASCII DATA FILES 

ASCX 
Function ASC(X) 

AUTOMATIC 
AUTOMATIC 
AUTOMATIC TERMINATION FROM TERMINAL 
automatic dimensioning . 

BACKSPACE 
BACKSPACE: 
BACKSPACE # 

BASIC 
ADVANCED BASIC 
BASIC AND TIME-SHARING 
BASIC LANGUAGE CHARACTERISTICS 
BASIC PROGRAM EXAMPLE 
BASIC PROGRAMMING LANGUAGE 
BASIC PROGRAMS 
BASIC STATEMENTS 
BASIC STATEMENTS 
BASIC WORDS 
CREATING A BASIC PROGRAM 
ELEMENTARY BASIC 

X-1 

Page 

5-83 

5- 1 

5-31 
5- 8 

5-75 
5-56 

D- 3 
4- 3 
2- 2 

D- 4 
5-36 

5-25 

2- 8 
3- 7 
4- 2 

5-74 
5-55 

5- 1 
1- 2 
2- 1 
4-34 
1- 1 
2- 1 
2- 1 
D- 1 
2- 2 
2- 4 
4- 1 

BR36 



BINARY 
BINARY FILE FUNCTIONS 
BINARY FILE INPUT/OUTPUT STATEMENT FORMATS 
BINARY FILE STATEMENTS 
BINARY FILES 

BYE 
BYE 

CALL 
CALL 

CHAIN 
CHAIN 

CHANGE 
CHANGE 

CHARACTERS 
format control characters 

CLK$ 
Function CLK$ 

COMMA 
Formatting Output With a Comma or Semicolon 

COMMANDS 
CONTROL COMMANDS 

COMPILATION 
Compilation Errors 

COMPUTER 
COMPUTER PROGRAMS 
CONNECTING TERMINAL TO THE COMPUTER 

CONTROL 
CONTROL COMMANDS 
FORMAT CONTROL CHARACTERS 

DAT$ 
Function DAT$ 

DATA 
ALPHANUMERIC DATA 
ASCII DATA FILE INPUT/OUTPUT STATEMENT FORMATS 
ASCII DATA FILE STATEMENTS 
ASCII DATA FILES 
DATA 
DATA INPUT DURING PROGRAM EXECUTION 

DEBUGGIN,G 
debugging methods 

DECIMAL 
DECIMAL TYPE FIELD 

X-2 

D- 6 
5..:..63 
D- 6 
5-61 

2- 6 

4-21 

4-31 

4-10 

4-17 

5-21 

5- 1 

2- 5 

6- 1 

1- 1 
3- 2 

2- 5 
4-17 

5-21 

5-31 
5-38 
D- 4 
5-36 
4-11 
5-10 

7- 2 

5- 7 

BR36 



DEF 
DEF 

DELIMIT 
DELIMIT # 

DESIGNATOR 
LOF(file designate~) 

DIM 
DIM 

DIMENSIONING 
automatic dimensioning 

DOCUMENTATION 
Documentation Statement 

DONE 
DONE 

END----GOTO 
IF END:----GOTO 

END 
END 
IF END #----GOTO 
IF END #----THEN 

ERROR 
ERROR MESSAGES 
ERROR MESSAGES AS A RESULT OF ERRORS OF FORM 

ERRORS 
Compilation Errors 
ERROR MESSAGES AS A RESULT OF ERRORS OF FORM 
Execution Errors 

EXECUTION 
DATA INPUT DURING PROGRAM EXECUTION 
Execution Errors 
STOPPING PROGRAM EXECUTION 

EXPONENTIAL 
EXPONENTIAL TYPE FIELD 

EXPRESSION 
sign of an expression 
Use of Expressions 

FIELD 
DECIMAL TYPE FIELD 
EXPONENTIAL TYPE FIELD 
INTEGER TYPE FIELD , 
LITERAL TYPE FIELD 
ALPHANUMERIC TYPE FIELDS 

X-3 

4- 7 

5-58 

5-63 

4-12 

4- 2 

2- 3 

2- 6 

5-76 

4-30 
5-59 
5-59 

6- 1 
6- 1 

6- 1 
6- 1 
6- 2 

5-10 
6- 2 
2- 9 

5- 8 

5-20 
4- 4 

5- 7 
5- 8 
5- 6 
5- 9 
5- 8 

BR36 



FILE 
ASCII DATA FILE INPUT/OUTPUT STATEMENT FORMATS 
ASCII DATA FILE STATEMENTS 
BINARY FILE FUNCTIONS 
BINARY FILE INPUT/OUTPUT STATEMENT FORMATS 
BINARY FILE STATEMENTS 
FILE: 
F.ILE ACCESS 
File Write Statement 

FILES 
ASCII DATA FILES 
BINARY FILES 
SAVING AND EXECUTING OBJECT' FILES 
SAVING TEMPORARY FILES 

FNEND 
FNEND 

FOR 
FOR and NEXT 

FORMAT 
format control characters 
PROGRAM OUTPUT FORMAT 

FORMATS 
ASCII DATA FILE INPUT /OUTPUT STATEMENT FORMATS 
BINARY FILE INPUT/OUTPUT STATEMENT PORMATS 

FORMATTED 
formatted line 

FDRMATTING 
Formatting Output With a Comma or S'emicolon 

FUNCTION 
Function ASC(X) 
Function CLK$ 
Function DAT$ 
Function INT(X) 
Function LEN(X$) 
Function LIN(X) 
Function NUM(X) 
Function RND ( X) 
Function SGN ( X) 
Function SPC(X) 
Function SST(X$,Y,Z) 
Function TAB(X) 
Function TIM(X) 

FUNCTIONS 
BINARY FILE FUNCTIONS 
DEFINING FUNCTIONS 
Functions TAB(X) and SPC(X) 
MATHEMATICAL FUNCTIONS 
Mathematical Functions 
MISCELLANEOUS FUNCTIONS 
Miscellaneous Functions 

X-4 

5-38 
D- 4 
D- 6 
5-63 
D- 6 
5-65 
5-83 
5-48 

5-36 
5-61 
5-82 
5-81 

5-79 

4-23 

4-17 
5- 1 

5-38 
5-63 

4-17 

5- 1 

5-25 
5-21 
5-21 
5-18 
5-23 
5-24 
5-22 
5-18 
5-20 
5-23 
5-22 
5-22 
5-21 

D- 6 
5- 9 
5- 4 
D- 3 
4- 4 
D- 4 
4- 5 

BR36 



GET 
GET 

GETTING 
GETTING OFF (LOG-OFF) PROCEDURE 
GETTING ON (LOG-ON) PROCEDURE 

GO SUB 
GOSUB and RETURN 

GOTO 
GOTO 

IF 
IF END #----GOTO 
IF END #----THEN 
IF END:----GOTO 
IF END:----THEN 
IF MORE #---GOTO 
IF MORE #---THEN 
n· MORE: ----GOTO 
IF MORE:----THEN 

IF-----GOTO 
IF-----GOTO 

IF-----THEN 
IF-----THEN 

IMAGE 
image statement 

INPUT 
DATA INPUT DURING PROGRAM EXECUTION 
INPUT 
INPUT # 

INPUT /OUTPUT 
ASCII DATA FILE INPUT/OUTPUT STATEMENT FORMATS 
BINARY FILE INPUT/OUTPUT STATEMENT FORMATS 
Input/Output Statements 

INTEGER 
INTEGER TYPE FIELD 
integer form 

LANGUAGE 
BASIC LANGUAGE CHARACTERISTICS 
BASIC PROGRAMMING LANGUAGE 

LENX$ 
Function LEN {X$) 

LET 
LET 

X-5 

2- 7 

3- 7 
3- 2 

4-25 

4-26 

5-59 
5-59 
5-76 
5-76 
5-60 
5-60 
5-77 
5-77 

4-27 

4-27 

4-17 

5-10 
4-13 
5-44 

5-38 
5-63 
2- 2 

5- 6 
5-18 

2- 1 
1- 1 

5-23 

4- 8 

BR36 



LINE 
formatted line 
Multiple Statements Within One Line 
Spacing Within an Output Line 

LINX 
Function LIN(X) 

LIST 
LIST 
List and Table Variables 

LISTS 
LISTS AND TABLES 

LITERAL 
LITERAL TYPE FIELD 

LOG-OFF 
GETTING OFF (LOG-OFF) PROCEDURE 

LOG-ON 
GETTING ON (LOG-ON) PROCEDURE 

LOGIC 
Logic Statements 

LOOP 
Loop and Subroutine Statements 

LOOPS 
LOOPS 

MARGIN 
MARGIN # 

MAT 
MAT 
MAT READ # 
MAT READ: 
MAT WRITE # 
MAT WRITE: 

MATRICES 
MATRICES 

MESSAGES 
ERROR MESSAGES 
ERROR MESSAGES AS A RESULT OF ERRORS OF FORM 

MORE----GOTO 
IF MORE:----GOTO 

MORE----THEN 
IF MORE:----THEN 

MORE 
IF MORE #---GOTO 
IF MORE #---THEN 

X-6 

4-17 
5-81 
5- 4 

5-24 

2- 5 
4- 2 

5-29 

5- 9 

3- 7 

3- 2 

2- 3 

2- 3 

5-26 

5-57 

4- 9 
5-50 
5-70 
5-52 
5-71 

5-12 

6- 1 
6- 1 

5-77 

5-77 

5-60 
5-60 

BR36 



MULTIPLE 
Multiple Statements Within One Line 
Multiple variable replacement 

NEW 
NEW 

NEXT 
FOR and NEXT 

NOTATION 
MATHEMATICAL NOTATION AND OPERATIONS WITHIN A STATEMENT 

NUMBER 
truncate a number 

NUMBERS 
printing of numbers 
random numbers 
Use of Numbers 

OBJECT 
SAVING AND EXECUTING OBJECT FILES 

OLD 
OLD 

ON-----GOTO 
ON-----GOTO 

ON-----THEN 
ON-----THEN 

OUTPUT 
Formatting Output With a Comma or Semicolon 
PROGRAM OUTPUT FORMAT 
Spacing Within an Output Line 

PAPER 
ENTERING THE PROGRAM FROM PAPER TAPE 

PRINT 
PRINT 
PRINT 
PRINT # 
PRINT # USING 
PRINT USING 
PRINT USING 

x-7 

5-81 
4- 8 

2- 6 

4-23 

4- 1 

5-18 

4-15 
5-18 
4- 2 

5-82 

2- 6 

4-28 

4-28 

5- 1 
5- 1 
5- 4 

3- 4 

4-14 
4-16 
5-47 
5-48 
4-17 
4-18 

BR36 



PROGRAM 
A SAMPLE PROGRAM 
BASIC PROGRAM EXAMPLE 
CORRECTING THE PROGRAM 
CREATING A BASIC PROGRAM 
DATA INPUT DURING PROGRAM EXECUTION 
ENTERING THE PROGRAM 
ENTERING THE PROGRAM FROM PAPER TAPE 
PROGRAM OUTPUT FORMAT 
RUNNING THE PROGRAM 
STOPPING PROGRAM EXECUTION 

RANDOM 
random numbers 
random variables 

READ 
MAT READ: 
MAT READ # 
READ 
READ: 
READ # 

RELATIONAL 
RELATIONAL SYMBOLS 
Relational Symbols 

REM 
REM 

RE SAVE 
RESAVE 

RESEQUENCE 
RESEQUENCE 

RESTORE 
RESTORE 
RESTORE # 
RESTORE: 

RETURN 
GOSUB and RETURN 

RUN 
RUN 

SAVE 
SAVE 

SAVING 
SAVING AND EXECUTING OBJECT FILES 
SAVING TEMPORARY FILES 

SCRATCH 
SCRATCH: 
SCRATCH # 

X-8 

7- 2 
4-34 
3- 4 
2- 4 
5-10 
3- 3. 
3- 4 
5- 1 
3- 5 
2- 9 

5-18 
5-18 

5-70 
5-50 
4-19 
5-67 
5-43 

D- 3 
4- 3 

4-33 

2- 6 

2- 8 

4-20 
5-54 
5-73 

4-25 

2- 5 

2- 6 

5-82 
5-81 

5-72 
5-53 

BR36 



SEMICOLON 
Formatting Output With a Comma or Semicolon 

SET 
SET: 

SIGN 
sign of an expression 

SIZE 
string size 

SPACING 
Spacing Within an Output Line 

SPECIFICATION 
Specification Statements 

STATEMENT 
ASCII DATA FILE INPUT/OUTPUT STATEMENT FORMATS 
BINARY FILE INPUT/OUTPUT STATEMENT FORMATS 
Documentation Statement 
File Write Statement 
image statement 
MATHEMATICAL NOTATION AND OPERATIONS WITHIN A STATEMENT 
STATEMENT DEFINITION 
STATEMENT DESCRIPTIONS 

STATEMENTS 
Arithmetic Statements 
ASCII DATA FILE STATEMENTS 
BASIC STATEMENTS 
BASIC STATEMENTS 
BINARY FILE STATEMENTS 
Input/Output Statements 
Logic Statements 
Loop and Subroutine Statements 
Multiple Statements Within One Line 
Specification Statements 
Utility Statements 

STOP 
STOP 

STRING 
STRING MANIPULATION 
string size 
string variables 

SUBROUTINE 
Loop and Subroutine Statements 

SUBROUTINES 
SUBROUTINES 

SYMBOLS 
RELATIONAL SYMBOLS 
Relational Symbols 

X-9 

5- 1 

5-78 

5-20 

5-31 

5- 4 

2- 2 

5-38 
5-63 
2- 3 
5-48 
4-17 
4- 1 
4- 1 
4- 6 

2- 2 
o:.. 4 
D- 1 
2- 1 
D- 6 
2- 2 
2- 3 
2- 3 
5-81 
2- 2 
2- 3 

4-29 

5-31 
5-31 
5-31 

2- 3 

5-25 

D- 3 
4- 3 

BR36 



TABLE 
List and Table Variables 
LISTS AND TABLES 

TAPE 
ENTERING THE PROGRAM FROM PAPER TAPE 

TERMINAL 
AUTOMATIC TERMINATION FROM TERMINAL 
CONNECTING TERMINAL TO THE COMPUTER 
TERMINAL OPERATION 
TERMINAL OPERATION AND PROCEDURES 

TERMINATION 
AUTOMATIC TERMINATION FROM TERMINAL 

TIME-SHARING 
BASIC AND TIME-SHARING 
TIME-SHARING SYSTEM 

TRACE 
TRACE OFF 
TRACE ON 

TRUNCATE 
truncate a number 

USING 
PRINT # USING 
PRINT USING 
PRINT USING 

UTILITY 
Utility Statements 

VARIABLE 
Multiple variable replacement 
Variable Representation 

VARIABLES 
List and Table Variables 
random variables 
string variables 

WRITE 
File Write Statement 
MAT WRITE # 
MAT WRITE: 
WRITE # 
WRITE: 

X-10 

4- 2 
5-29 

3- 4 

3- 7 
3- 2 
3- 1 
3- 1 

3- 7 

1- 2 
1- 2 

4-32 
4-32 

5-18 

5-48 
4-18 
4-17 

2- 3 

4- 8 
4- 1 

4- 2 
5-18 
5-31 

5-48 
5-52 
5-71 
5-45 
5-69 

BR36 



HONEYWELL INFORMATION SYSTEMS 
Technical Publ.ications Remarks Form* 

TITLE: SERIES 600/ 6000 TIME-SHARING BASIC 

ERRORS IN PUBLICATION: 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION: 

(Please Print) 

FROM: NAME~~~~~~~~~~~~~~~~~~ 

COMPANY~~~~~~~~~~~~~~~~~ 

TITLE--------------------

ORDER No.:I BR36, REV. l I 
DATED: f sEPTEMBER 19711 

DATE: 

*Your comments will be promptly investigated by appropriate technical personnel, action will be taken as, 
required, and you will receive a written reply. If you do not require a written reply, please check here. D 



Business Reply Mail 
Postage Stamp Not Necessary_ if Mailed in the United States 

POSTAGE WILL BE PAID BY: 

HONEYWELL INFORMATION SYSTEMS 
60 WALNUT STREET 
WELLESLEY HILLS, MASS. 02181 

ATTN: PUBLICATIONS, MS 050 

Honeywell 

FIRST CLASS 
PERMIT NO. 39531 
WELLESLEY HILLS, 
MASS. 02181 


